
USENIX Association

November 4–6 2020

Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation (OSDI ’20)

© 2020 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
 employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-19-9

Cover Image created by freevector.com and distributed under the Creative Commons Attribution-ShareAlike 4.0
license (https://creativecommons.org/licenses/by-sa/4.0/).

Symposium Organizers
Program Co-Chairs
Jon Howell, VMware Research
Shan Lu, University of Chicago

Program Committee
Rachit Agarwal, Cornell University
Lorenzo Alvisi, Cornell University
Tom Anderson, University of Washington
Sebastian Angel, University of Pennsylvania
Andrea Arpaci-Dusseau, University of Wisconsin—Madison
Andrew Baumann, Microsoft Research
Irina Calciu, VMware Research
George Candea, EPFL
Rong Chen, Shanghai Jiao Tong University
Wenguang Chen, Tsinghua University
Vijay Chidambaram, The University of Texas at Austin and

VMware Research
Byung-Gon Chun, Seoul National University
Allen Clement
Natacha Crooks, University of California, Berkeley
Dilma Da Silva, Texas A&M University
Alexandra Fedorova, University of British Columbia
Jason Flinn, Facebook
Roxana Geambasu, Columbia University
Yossi Gilad, The Hebrew University of Jerusalem
Haryadi Gunawi, University of Chicago
Andreas Haeberlen, University of Pennsylvania
Tim Harris, Amazon
Chris Hawblitzel, Microsoft Research
Gernot Heiser, University of New South Wales and

CSIRO’s Data61
Y. Charlie Hu, Purdue University
Ryan Huang, Johns Hopkins University
Rebecca Isaacs, Twitter
Frans Kaashoek, Massachusetts Institute of Technology
Manos Kapritsos, University of Michigan
Baris Kasikci, University of Michigan
Kimberly Keeton
Anne-Marie Kermarrec, EPFL
Ana Klimovic, Google Research and ETH Zurich
Jinyang Li, New York University
Wyatt Lloyd, Princeton University
Jay Lorch, Microsoft Research

Xiaosong Ma, Quatar Computing Research Institute
Kathryn S. McKinley, Google
James Mickens, Harvard University
Robert Morris, Massachusetts Institute of Technology
Derek Murray, Google
Madan Musuvathi, Microsoft Research
Bryan Parno, Carnegie Mellon University
Simon Peter, The University of Texas at Austin
Don Porter, The University of North Carolina at Chapel Hill
Dan Ports, Microsoft Research
Costin Raiciu, University Politehnica of Bucharest
Malte Schwarzkopf, Brown University
Ryan Stutsman, University of Utah
Michael Swift, University of Wisconsin—Madison
Kaushik Veeraraghavan, Facebook
Rashmi Vinayak, Carnegie Mellon University
Xi Wang, University of Washington
Yang Wang, The Ohio State University
John Wilkes, Google
Emmett Witchel, The University of Texas at Austin
Harry Xu, University of California, Los Angeles
Tianyin Xu, University of Illinois at Urbana–Champaign
Junfeng Yang, Columbia University
Ding Yuan, University of Toronto
Nickolai Zeldovich, Massachusetts Institute of Technology
Irene Zhang, Microsoft Research
Yiying Zhang, University of California, San Diego
Lidong Zhou, Microsoft Research
Yuanyuan Zhou, University of California, San Diego

Steering Committee
Andrea Arpaci-Dusseau, University of Wisconsin—Madison
Jason Flinn, Facebook
Casey Henderson, USENIX Association
Kimberly Keeton
Hank Levy, University of Washington
James Mickens, Harvard University
Brian Noble, University of Michigan
Timothy Roscoe, ETH Zurich
Margo Seltzer, University of British Columbia
Geoff Voelker, University of California, San Diego

External Reviewers
Joy Arulraj

Mahesh Balakrishnan

Fred Chong

Peter Chubb

Zhihao Jia

Gerwin Klein

Jing Li

Ashlie Martinez

Justin Meza

Rajesh Nishtala

Rohan Padhye

Mark Silberstein

Adriana Szekeres

Chunqiang Tang

Carl Waldspurger

Ben Y. Zhao

Message from the
OSDI ’20 Program Co-Chairs

Dear colleagues,

Welcome to the 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’20)!

This year’s program offers an unprecedented 70 exceptional papers. These papers represent the many strengths of our
community and cover a wide range of topics, including file and storage systems, networking, scheduling, security, formal
verification of systems, cluster management, system support for machine learning, hardware, consistency, consensus
protocols, debugging, and, of course, operating systems design and implementation.

Our committee received a bumper crop of 400 submissions, an increase of more than 50% over OSDI ’18. This growth
demanded that we modify the review process and grow the committee at the last minute to handle the load. When you bump
into a PC member, give them a huge thank you! Sixty-five members participated, including academics, industrial researchers,
and industrial practitioners. Papers received two reviews in the first round; 305 advanced to round two, where they received
an additional review. Of those, 177 advanced to round three, where they received three more reviews. For a small number of
papers, where opinions were divided or where a paper was particularly specialized, we solicited additional expert reviews. In
total, the PC and external reviewers wrote more than 1.6 million words in more than 1,600 thoughtful reviews.

After a rigorous online discussion across the full PC, the heavy PC members discussed 101 papers in a virtual 2-day PC
meeting. The PC chairs strove to ensure that all the discussed papers received full and fair consideration, coming to a
consensus agreement in almost every case. Papers were placed into high-level categories according to their main topic so that
similar papers could be discussed together at the PC meeting. All discussed papers received a summary of the PC discussion
written by a heavy PC member. In the end, the PC selected 70 papers for presentation at the conference, resulting in an 18%
acceptance rate, similar to prior years. Each of the accepted papers was allocated an additional two pages and shepherded by
a member of the heavy PC to help the authors address the reviewers’ comments in their camera-ready versions.

After finalizing the program, we created a separate committee to decide the Jay Lepreau Best Paper Awards composed of PC
members with no conflicts with the papers under consideration. PC members nominated papers for these awards. We selected
four papers with at least two nominations for best paper as candidates for the award. After reading the nominated papers and
considering the reviews from the full PC, the awards committee agreed on three Jay Lepreau Best Paper Awards.

As PC co-chairs, we stand on the shoulders of so many who did a tremendous amount of hard work to make OSDI ’20 a
success. First, we thank the authors of all submitted papers for choosing to send their work to OSDI. Thanks also to the
program committee for their hard work in reviewing and discussing the submissions and in shepherding the accepted
papers. We thank Vijay Chidambaram and James Mickens for organizing the Ask Me Anything sessions, and we thank
Malte Schwarzkopf, Aastha Mehta, Natacha Crooks, and Brian Noble for organizing the student mentoring sessions. We are
delighted that Anjo Vahldiek-Oberwagner, Eric Eide, and Ryan Stutsman have organized the artifact evaluation process.
We are also grateful to the external reviewers who provided additional perspectives. We thank the USENIX staff, who have
been fundamental in organizing OSDI ’20 in an especially difficult year. Finally, OSDI wouldn’t be what it is without our
attendees—thank you for listening to our speakers, asking challenging and insightful questions, sharing your ideas with
others, and networking with one another in Slack!

We hope you will find OSDI ’20 interesting, educational, and inspiring!

Shan Lu, University of Chicago
Jon Howell, VMware
OSDI ’20 Program Co-Chairs

Message from the
OSDI ’20 Artifact Evaluation Committee Co-Chairs

It is our pleasure to report on the artifact evaluation process conducted as part of OSDI ’20. This year’s conference represents
the first time that OSDI has included an artifact evaluation committee (AEC), and it immediately follows the inaugural year
for artifact evaluation at SOSP.

The goal of artifact evaluation is to incentivize authors to invest in the broader scientific community by producing artifacts
that illustrate their claims, enable others to validate those claims, and accelerate future scientific progress. A paper with
artifacts that have passed the artifact evaluation process is recognized in two ways: first by badges that appear on the paper’s
first page, and second by an appendix that details the artifacts.

Process
In designing the artifact evaluation process for OSDI, we aimed to bridge the processes from earlier USENIX conferences
(USENIX Security) and the prior effort from ACM SOSP. USENIX previously used a single-badge process, whereas SOSP
used a system based on the ACM’s artifact review and badging policy. After deliberation, we decided on a three-badge
approach to evaluation. This helps establish congruence between the processes for SOSP and OSDI, and the finer granularity
of a multi-badge system encourages participation even when full artifacts cannot be shared or specific results are too
challenging for the committee to reproduce. The three badges that we used for OSDI are:

• Artifacts Available: Have the artifacts associated with the paper been made available for retrieval both permanently
and publicly?

• Artifacts Functional: Do the artifacts conform to the expectations set by the paper in terms of functionality, usability,
and relevance?

• Results Reproduced: Can the AEC use the submitted artifacts to obtain the main results presented in the paper?
The criteria for each badge are independent; for example, an artifact does not need to be deemed available or functional in
order to be considered for the “Results Reproduced” badge. The third badge corresponds to the “Results Replicated” badge
at SOSP ’19 but differs in name. The OSDI badge name matches terminology recommended by the National Information
Standards Organization (NISO).

Evaluation
To form the artifact evaluation committee, we issued an open invitation to the systems community for self-nominations. From
the self-nominations, we selected 40 early-career researchers and graduate students based on their levels of expertise.

After the decisions for OSDI ’20 paper submissions were distributed, the authors of accepted papers were invited to submit
artifacts for evaluation. (Thus, the artifact evaluation process had no effect on which papers were chosen to appear at
OSDI.) Authors had one and a half weeks, until August 28, to respond to the call for artifacts. At artifact-submission time,
authors were required to choose the badges for which their submission would be considered. The overwhelming majority of
submissions applied for all three badges. Each artifact was accompanied by the accepted version of its associated paper so
that the AEC could evaluate each artifact against its paper’s claims.

A total of 49 artifacts were submitted for evaluation. The AEC members bid on artifacts, and we assigned two or three
reviewers for each submission—three if the submission applied for the “Results Reproduced” badge, and two otherwise. After
bidding, the AEC had five weeks, until October 9, to make judgments.

Evaluation started with an attempt to build the artifact (where appropriate). Next, AEC members tried to repeat some or all of
the experiments described in the artifact’s paper. AEC members were cognizant that it would be difficult to reproduce certain
reported results, e.g., due to environmental or time limits. Reviewers were able to communicate with authors and regularly
did so for clarifications and for help in debugging issues, with HotCRP preserving single-blind reviewing. Along the way,
AEC members assessed each artifact’s completeness, documentation, and apparent ease of reuse. After all reviews were
submitted, the AEC held an online discussion to decide if—for each artifact—it met, exceeded, or fell below the expectations
set by its paper.

Overall, the process generated 133 reviews and 1,180 comments with an average of about 3,000 words of combined review
text and comments per artifact.

Results
OSDI ’20 accepted 70 papers; in comparison, SOSP ’19 accepted 38. Correspondingly, we received a greater number of
submitted artifacts: 49 versus 23. We also saw an increase in the fraction of papers that chose to participate: 70%, up from
61% at SOSP ’19. We hope that this trend will continue as artifact evaluation becomes a regular part of our community’s
conferences.

Of the 49 submitted artifacts, the AEC found that 48 met or exceeded expectations for at least one of the three badges. Per
the choices of the authors, not all artifacts were considered for all badges.

• 47 artifacts received the Artifacts Available badge (96%).
• 46 artifacts received the Artifacts Functional badge (94%).
• 39 artifacts received the Results Reproduced badge (80%).

The papers that describe these artifacts can be easily recognized by the USENIX artifact evaluation badges that appear on
their initial pages.

Takeaways
Cloud Resources: Increasingly, systems papers present experimental results that depend on large-scale pools of resources
for reproduction. Based on feedback from the SOSP ’19 efforts, we sought out resources to evaluate these types of artifacts,
and Microsoft generously donated resource credits for running artifacts on Azure to help with this issue. Unfortunately,
these resources were hard to leverage for the artifacts for which they would have been most useful. Several artifacts relied
on access to high-end GPU resources; allocating these resources in Azure requires special approval and quota increases,
which we were not able to secure. In some cases, the authors of these artifacts were able to provide reviewers with access to
pre-existing resources that the AEC could use for reproduction. In the future, it may make sense to secure quotas for the use
of specialized resources (specific GPUs, for example) before the start of the artifact evaluation process, based on types of
resources required in the set of accepted papers.

Single vs. Multiple Badges: Of the 48 papers that received badges, 11 papers received a subset of the three available badges.
We believe this is a strong outcome in favor of the multi-badge badge process we used. If we had opted to use a single
badge that encompassed all of our evaluation criteria, it is likely that fewer papers would have received that badge, and
consequently, fewer high-quality systems artifacts would have been recognized and documented.

Closing
We thank the authors of the 49 submitted artifacts for their hard work in creating these valuable accompaniments to their
papers. We also thank the 40 AEC members, who collectively spent hundreds of hours evaluating and discussing these
artifacts. Finally, we thank Microsoft for their generous support of the AEC through Microsoft Azure credits. Our hope is
that the AEC effort has strengthened the work of the authors who participated, and that it will help facilitate work that builds
on the papers that appear in the OSDI ’20 proceedings.

The full results and badging for OSDI ’20, as well as reports from other artifact evaluation processes within the systems
community, can be found online at sysartifacts.github.io.

Eric Eide, University of Utah
Ryan Stutsman, University of Utah
Anjo Vahldiek-Oberwagner, Intel Labs
OSDI ’20 Artifact Evaluation Committee Co-Chairs

OSDI ’20: 14th USENIX Symposium on Operating Systems
Design and Implementation

November 4–6, 2020

Wednesday, November 4
Correctness
Theseus: an Experiment in Operating System Structure and State Management . 1
Kevin Boos, Rice University; Namitha Liyanage, Yale University; Ramla Ijaz, Rice University; Lin Zhong, Yale University

RedLeaf: Isolation and Communication in a Safe Operating System . 21
Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel, and Zhaofeng Li, University of California, Irvine; Gerd
Zellweger, VMware Research; Anton Burtsev, University of California, Irvine

Specification and verification in the field: Applying formal methods to BPF just-in-time compilers in the
Linux kernel . 41
Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang, University of Washington

Cobra: Making Transactional Key-Value Stores Verifiably Serializable . 63
Cheng Tan and Changgeng Zhao, NYU; Shuai Mu, Stony Brook University; Michael Walfish, NYU

Determinizing Crash Behavior with a Verified Snapshot-Consistent Flash Translation Layer. 81
Yun-Sheng Chang, Yao Hsiao, Tzu-Chi Lin, Che-Wei Tsao, Chun-Feng Wu, Yuan-Hao Chang, Hsiang-Shang Ko, and
Yu-Fang Chen, Institute of Information Science, Academia Sinica, Taiwan

Storage Systems are Distributed Systems (So Verify Them That Way!) . 99
Travis Hance, Carnegie Mellon University; Andrea Lattuada, ETH Zurich; Chris Hawblitzel, Microsoft Research; Jon
Howell and Rob Johnson, VMware Research; Bryan Parno, Carnegie Mellon University

Storage
Fast RDMA-based Ordered Key-Value Store using Remote Learned Cache . 117
Xingda Wei, Rong Chen, and Haibo Chen, Shanghai Jiao Tong University

CrossFS: A Cross-layered Direct-Access File System . 137
Yujie Ren, Rutgers University; Changwoo Min, Virginia Tech; Sudarsun Kannan, Rutgers University

From WiscKey to Bourbon: A Learned Index for Log-Structured Merge Trees . 155
Yifan Dai, Yien Xu, Aishwarya Ganesan, and Ramnatthan Alagappan, University of Wisconsin - Madison; Brian Kroth,
Microsoft Gray Systems Lab; Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau, University of Wisconsin - Madison

LinnOS: Predictability on Unpredictable Flash Storage with a Light Neural Network . 173
Mingzhe Hao, Levent Toksoz, and Nanqinqin Li, University of Chicago; Edward Edberg Halim, Surya University; Henry
Hoffmann and Haryadi S. Gunawi, University of Chicago

A large scale analysis of hundreds of in-memory cache clusters at Twitter . 191
Juncheng Yang, Carnegie Mellon University; Yao Yue, Twitter; K. V. Rashmi, Carnegie Mellon University

Generalized Sub-Query Fusion for Eliminating Redundant I/O from Big-Data Queries . 209
Partho Sarthi, Kaushik Rajan, and Akash Lal, Microsoft Research India; Abhishek Modi, Prakhar Jain, Mo Liu, and Ashit
Gosalia, Microsoft; Saurabh Kalikar, Intel

OS & Networking
A Simpler and Faster NIC Driver Model for Network Functions . 225
Solal Pirelli and George Candea, EPFL

PANIC: A High-Performance Programmable NIC for Multi-tenant Networks . 243
Jiaxin Lin, University of Wisconsin - Madison; Kiran Patel and Brent E. Stephens, University of Illinois at Chicago;
Anirudh Sivaraman, New York University (NYU); Aditya Akella, University of Wisconsin - Madison

Semeru: A Memory-Disaggregated Managed Runtime . 261
Chenxi Wang, Haoran Ma, Shi Liu, and Yuanqi Li, UCLA; Zhenyuan Ruan, MIT; Khanh Nguyen, Texas A&M University;
Michael D. Bond, Ohio State University; Ravi Netravali, Miryung Kim, and Guoqing Harry Xu, UCLA

Caladan: Mitigating Interference at Microsecond Timescales . 281
Joshua Fried and Zhenyuan Ruan, MIT CSAIL; Amy Ousterhout, UC Berkeley; Adam Belay, MIT CSAIL

Overload Control for µs-scale RPCs with Breakwater . 299
Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mohammad Alizadeh, and Adam Belay, MIT CSAIL

AIFM: High-Performance, Application-Integrated Far Memory . 315
Zhenyuan Ruan, MIT CSAIL; Malte Schwarzkopf, Brown University; Marcos K. Aguilera, VMware Research; Adam
Belay, MIT CSAIL

Consistency
Performance-Optimal Read-Only Transactions . 333
Haonan Lu, Princeton University; Siddhartha Sen, Microsoft Research; Wyatt Lloyd, Princeton University

Toward a Generic Fault Tolerance Technique for Partial Network Partitioning . 351
Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan, and Samer Al-Kiswany, University of Waterloo, Canada

PACEMAKER: Avoiding HeART attacks in storage clusters with disk-adaptive redundancy 369
Saurabh Kadekodi, Francisco Maturana, Suhas Jayaram Subramanya, Juncheng Yang, K. V. Rashmi, and Gregory R.
Ganger, Carnegie Mellon University

Pegasus: Tolerating Skewed Workloads in Distributed Storage with In-Network Coherence Directories 387
Jialin Li, National University of Singapore; Jacob Nelson, Microsoft Research; Ellis Michael, University of Washington;
Xin Jin, Johns Hopkins University; Dan R. K. Ports, Microsoft Research

FlightTracker: Consistency across Read-Optimized Online Stores at Facebook . 407
Xiao Shi, Scott Pruett, Kevin Doherty, Jinyu Han, Dmitri Petrov, Jim Carrig, John Hugg, and Nathan Bronson, Facebook, Inc.

KVell+: Snapshot Isolation without Snapshots . 425
Baptiste Lepers and Oana Balmau, University of Sydney; Karan Gupta, Nutanix Inc.; Willy Zwaenepoel, University of Sydney

Thursday, November 5
Machine Learning 1
Serving DNNs like Clockwork: Performance Predictability from the Bottom Up . 443
Arpan Gujarati, Max Planck Institute for Software Systems; Reza Karimi, Emory University; Safya Alzayat, Wei Hao, and
Antoine Kaufmann, Max Planck Institute for Software Systems; Ymir Vigfusson, Emory University; Jonathan Mace, Max
Planck Institute for Software Systems

A Unified Architecture for Accelerating Distributed DNN Training in Heterogeneous GPU/CPU Clusters 463
Yimin Jiang, Tsinghua University and ByteDance; Yibo Zhu, ByteDance; Chang Lan, Google; Bairen Yi, ByteDance;
Yong Cui, Tsinghua University; Chuanxiong Guo, ByteDance

Heterogeneity-Aware Cluster Scheduling Policies for Deep Learning Workloads . 481
Deepak Narayanan and Keshav Santhanam, Stanford University and Microsoft Research; Fiodar Kazhamiaka, Stanford
University; Amar Phanishayee, Microsoft Research; Matei Zaharia, Stanford University

PipeSwitch: Fast Pipelined Context Switching for Deep Learning Applications . 499
Zhihao Bai and Zhen Zhang, Johns Hopkins University; Yibo Zhu, ByteDance Inc.; Xin Jin, Johns Hopkins University

HiveD: Sharing a GPU Cluster for Deep Learning with Guarantees . 515
Hanyu Zhao, Peking University and Microsoft; Zhenhua Han, The University of Hong Kong and Microsoft; Zhi Yang,
Peking University; Quanlu Zhang, Fan Yang, Lidong Zhou, and Mao Yang, Microsoft; Francis C.M. Lau, The University
of Hong Kong; Yuqi Wang, Yifan Xiong, and Bin Wang, Microsoft

AntMan: Dynamic Scaling on GPU Clusters for Deep Learning . 533
Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and Yangqing Jia,
Alibaba Group

Consensus
Write Dependency Disentanglement with Horae . 549
Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu, Tsinghua University

Blockene: A High-throughput Blockchain Over Mobile Devices . 567
Sambhav Satija and Apurv Mehra, Microsoft Research India; Sudheesh Singanamalla, University of Washington; Karan
Grover, Muthian Sivathanu, Nishanth Chandran, Divya Gupta, and Satya Lokam, Microsoft Research India

Tolerating Slowdowns in Replicated State Machines using Copilots . 583
Khiem Ngo, Princeton University; Siddhartha Sen, Microsoft Research; Wyatt Lloyd, Princeton University

Microsecond Consensus for Microsecond Applications . 599
Marcos K. Aguilera and Naama Ben-David, VMware Research; Rachid Guerraoui, EPFL; Virendra J. Marathe, Oracle
Labs; Athanasios Xygkis and Igor Zablotchi, EPFL

Virtual Consensus in Delos . 617
Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mihir Dharamshi, Ahmed Jafri, Xiao Shi, Santosh Ghosh, Hazem Hassan,
Aaryaman Sagar, Rhed Shi, Jingming Liu, Filip Gruszczynski, Xianan Zhang, Huy Hoang, Ahmed Yossef, Francois Richard,
and Yee Jiun Song, Facebook, Inc.

Byzantine Ordered Consensus without Byzantine Oligarchy . 633
Yunhao Zhang, Cornell University; Srinath Setty, Qi Chen, and Lidong Zhou, Microsoft Research; Lorenzo Alvisi,
Cornell University

Bugs
From Global to Local Quiescence: Wait-Free Code Patching of Multi-Threaded Processes . 651
Florian Rommel and Christian Dietrich, Leibniz Universität Hannover; Daniel Friesel, Marcel Köppen, Christoph
Borchert, Michael Müller, and Olaf Spinczyk, Universität Osnabrück; Daniel Lohmann, Leibniz Universität Hannover

Testing Database Engines via Pivoted Query Synthesis . 667
Manuel Rigger and Zhendong Su, ETH Zurich

Gauntlet: Finding Bugs in Compilers for Programmable Packet Processing . 683
Fabian Ruffy, Tao Wang, and Anirudh Sivaraman, New York University

Aragog: Scalable Runtime Verification of Shardable Networked Systems . 701
Nofel Yaseen, University of Pennsylvania; Behnaz Arzani and Ryan Beckett, Microsoft Research; Selim Ciraci, Microsoft;
Vincent Liu, University of Pennsylvania

Automated Reasoning and Detection of Specious Configuration in Large Systems with Symbolic Execution 719
Yigong Hu, Gongqi Huang, and Peng Huang, Johns Hopkins University

Testing Configuration Changes in Context to Prevent Production Failures . 735
Xudong Sun, Runxiang Cheng, Jianyan Chen, and Elaine Ang, University of Illinois at Urbana-Champaign; Owolabi
Legunsen, Cornell University; Tianyin Xu, University of Illinois at Urbana-Champaign

Scheduling
Providing SLOs for Resource-Harvesting VMs in Cloud Platforms . 753
Pradeep Ambati, University of Massachusetts, Amherst; Íñigo Goiri, Felipe Frujeri, Microsoft Azure and Microsoft
Research; Alper Gun and Ke Wang, Google; Brian Dolan, Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh
Elnikety, Marcus Fontoura, and Ricardo Bianchini, Microsoft Azure and Microsoft Research

The CacheLib Caching Engine: Design and Experiences at Scale . 769
Benjamin Berg, Carnegie Mellon University; Daniel S. Berger, Carnegie Mellon University and Microsoft Research; Sara
McAllister and Isaac Grosof, Carnegie Mellon University; Sathya Gunasekar, Jimmy Lu, Michael Uhlar, and Jim Carrig,
Facebook; Nathan Beckmann, Mor Harchol-Balter, and Gregory R. Ganger, Carnegie Mellon University

Twine: A Unified Cluster Management System for Shared Infrastructure . 787
Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor, Scott Michelson, Thawan Kooburat, Aravind
Anbudurai, Matthew Clark, Kabir Gogia, Long Cheng, Ben Christensen, Alex Gartrell, Maxim Khutornenko, Sachin
Kulkarni, Marcin Pawlowski, Tuomas Pelkonen, Andre Rodrigues, Rounak Tibrewal, Vaishnavi Venkatesan, and Peter
Zhang, Facebook Inc.

FIRM: An Intelligent Fine-grained Resource Management Framework for SLO-Oriented Microservices 805
Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer, University of Illinois at
Urbana–Champaign

Building Scalable and Flexible Cluster Managers Using Declarative Programming . 827
Lalith Suresh, VMware; João Loff, IST (ULisboa) / INESC-ID; Faria Kalim, UIUC; Sangeetha Abdu Jyothi, UC Irvine
and VMware; Nina Narodytska, Leonid Ryzhyk, Sahan Gamage, Brian Oki, Pranshu Jain, and Michael Gasch, VMware

Protean: VM Allocation Service at Scale . 845
Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E Greeff, David Dion, Star Dorminey, Shailesh Joshi,
Yang Chen, Mark Russinovich, and Thomas Moscibroda, Microsoft Azure and Microsoft Research

Friday, November 6
Machine Learning 2
Ansor: Generating High-Performance Tensor Programs for Deep Learning . 863
Lianmin Zheng, UC Berkeley; Chengfan Jia, Minmin Sun, and Zhao Wu, Alibaba Group; Cody Hao Yu, Amazon Web
Services, Inc; Ameer Haj-Ali, UC Berkeley; Yida Wang, Amazon Web Services; Jun Yang, Alibaba Group; Danyang
Zhuo, UC Berkeley and Duke University; Koushik Sen, Joseph E. Gonzalez, and Ion Stoica, UC Berkeley

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks . 881
Lingxiao Ma, Peking University and Microsoft Research; Zhiqiang Xie, ShanghaiTech University and Microsoft Research;
Zhi Yang, Peking University; Jilong Xue, Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao Zhang, and Lidong
Zhou, Microsoft Research

A Tensor Compiler for Unified Machine Learning Prediction Serving . 899
Supun Nakandala, UC San Diego; Karla Saur, Microsoft; Gyeong-In Yu, Seoul National University; Konstantinos
Karanasos, Carlo Curino, Markus Weimer, and Matteo Interlandi, Microsoft

Retiarii: A Deep Learning Exploratory-Training Framework . 919
Quanlu Zhang, Zhenhua Han, Fan Yang, Yuge Zhang, Zhe Liu, Mao Yang, and Lidong Zhou, Microsoft Research

KungFu: Making Training in Distributed Machine Learning Adaptive . 937
Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos Fertakis, Andrei-Octavian Brabete, and Peter Pietzuch, Imperial
College London

Hardware
FVM: FPGA-assisted Virtual Device Emulation for Fast, Scalable, and Flexible Storage Virtualization 955
Dongup Kwon, Department of Electrical and Computer Engineering, Seoul National University / Memory Solutions
Lab, Samsung Semiconductor Inc.; Junehyuk Boo and Dongryeong Kim, Department of Electrical and Computer
Engineering, Seoul National University; Jangwoo Kim, Department of Electrical and Computer Engineering, Seoul
National University / Memory Solutions Lab, Samsung Semiconductor Inc.

hXDP: Efficient Software Packet Processing on FPGA NICs . 973
Marco Spaziani Brunella and Giacomo Belocchi, Axbryd/University of Rome Tor Vergata; Marco Bonola, Axbryd/CNIT;
Salvatore Pontarelli, Axbryd; Giuseppe Siracusano, NEC Laboratories Europe; Giuseppe Bianchi, University of Rome Tor
Vergata; Aniello Cammarano, Alessandro Palumbo, and Luca Petrucci, CNIT/University of Rome Tor Vergata; Roberto
Bifulco, NEC Laboratories Europe

Do OS abstractions make sense on FPGAs? . 991
Dario Korolija, Timothy Roscoe, and Gustavo Alonso, ETH Zurich

Assise: Performance and Availability via Client-local NVM in a Distributed File System . 1011
Thomas E. Anderson, University of Washington; Marco Canini, KAUST; Jongyul Kim, KAIST; Dejan Kostić, KTH Royal
Institute of Technology; Youngjin Kwon, KAIST; Simon Peter, The University of Texas at Austin; Waleed Reda, KTH
Royal Institute of Technology and Université catholique de Louvain; Henry N. Schuh, University of Washington; Emmett
Witchel, The University of Texas at Austin

Persistent State Machines for Recoverable In-memory Storage Systems with NVRam . 1029
Wen Zhang, UC Berkeley; Scott Shenker, UC Berkeley/ICSI; Irene Zhang, Microsoft Research/University of Washington

Agamotto: How Persistent is your Persistent Memory Application? . 1047
Ian Neal, Ben Reeves, Ben Stoler, and Andrew Quinn, University of Michigan; Youngjin Kwon, KAIST; Simon Peter,
University of Texas at Austin; Baris Kasikci, University of Michigan

Security
Orchard: Differentially Private Analytics at Scale . 1065
Edo Roth, Hengchu Zhang, Andreas Haeberlen, and Benjamin C. Pierce, University of Pennsylvania

Achieving 100Gbps Intrusion Prevention on a Single Server . 1083
Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe, Vyas Sekar, and Justine Sherry, Carnegie Mellon University

DORY: An Encrypted Search System with Distributed Trust . 1101
Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and Ion Stoica, University of California, Berkeley

SafetyPin: Encrypted Backups with Human-Memorable Secrets . 1121
Emma Dauterman, UC Berkeley; Henry Corrigan-Gibbs, EPFL and MIT CSAIL; David Mazières, Stanford University

Efficiently Mitigating Transient Execution Attacks using the Unmapped Speculation Contract 1139
Jonathan Behrens, Anton Cao, Cel Skeggs, Adam Belay, M. Frans Kaashoek, and Nickolai Zeldovich, MIT CSAIL

Clusters
Predictive and Adaptive Failure Mitigation to Avert Production Cloud VM Interruptions . 1155
Sebastien Levy, Randolph Yao, Youjiang Wu, and Yingnong Dang, Microsoft Azure; Peng Huang, Johns Hopkins
University; Zheng Mu, Microsoft Azure; Pu Zhao, Microsoft Research; Tarun Ramani, Naga Govindaraju, and Xukun Li,
Microsoft Azure; Qingwei Lin, Microsoft Research; Gil Lapid Shafriri and Murali Chintalapati, Microsoft Azure

Sundial: Fault-tolerant Clock Synchronization for Datacenters . 1171
Yuliang Li, Google Inc. and Harvard University; Gautam Kumar, Hema Hariharan, Hassan Wassel, Peter Hochschild,
and Dave Platt, Google Inc.; Simon Sabato, Lilac Cloud; Minlan Yu, Harvard University; Nandita Dukkipati, Prashant
Chandra, and Amin Vahdat, Google Inc.

Fault-tolerant and transactional stateful serverless workflows . 1187
Haoran Zhang, University of Pennsylvania; Adney Cardoza, Rutgers University–Camden; Peter Baile Chen, Sebastian
Angel, and Vincent Liu, University of Pennsylvania

Unearthing inter-job dependencies for better cluster scheduling . 1205
Andrew Chung, Carnegie Mellon University; Subru Krishnan, Konstantinos Karanasos, and Carlo Curino, Microsoft;
Gregory R. Ganger, Carnegie Mellon University

RackSched: A Microsecond-Scale Scheduler for Rack-Scale Computers . 1225
Hang Zhu, Johns Hopkins University; Kostis Kaffes, Stanford University; Zixu Chen, Johns Hopkins University;
Zhenming Liu, College of William and Mary; Christos Kozyrakis, Stanford University; Ion Stoica, UC Berkeley; Xin Jin,
Johns Hopkins University

Thunderbolt: Throughput-Optimized, Quality-of-Service-Aware Power Capping at Scale . 1241
Shaohong Li, Xi Wang, Xiao Zhang, Vasileios Kontorinis, Sreekumar Kodakara, David Lo, and Parthasarathy Ranganathan,
Google LLC

Theseus: an Experiment in Operating System Structure and State Management

Kevin Boos
Rice University

Namitha Liyanage
Yale University

Ramla Ijaz
Rice University

Lin Zhong
Yale University

Abstract
This paper describes an operating system (OS) called The-

seus. Theseus is the result of multi-year experimentation to
redesign and improve OS modularity by reducing the states
one component holds for another, and to leverage a safe pro-
gramming language, namely Rust, to shift as many OS re-
sponsibilities as possible to the compiler.

Theseus embodies two primary contributions. First, an OS
structure in which many tiny components with clearly-defined,
runtime-persistent bounds interact without holding states for
each other. Second, an intralingual approach that realizes
the OS itself using language-level mechanisms such that the
compiler can enforce invariants about OS semantics.

Theseus’s structure, intralingual design, and state manage-
ment realize live evolution and fault recovery for core OS
components in ways beyond that of existing works.

1 Introduction
We report an experimentation of OS structural design, state
management, and implementation techniques that leverage
the power of modern safe systems programming languages,
namely Rust. This endeavor was initially motivated by stud-
ies of state spill [16]: one software component harboring
changed states as a result of handling an interaction from
another component, such that their future correctness depends
on said states. Prevalent in modern systems software, state
spill leads to fate sharing between otherwise modularized and
isolated components and thus hinders the realization of de-
sirable computing goals such as evolvability and availability.
For example, state spill in Android system services causes the
entire userspace frameworks to crash upon a system service
failure, losing the states and progress of all applications, even
those not using the failed service [16]. Reliable microkernels
further attest that management of states spilled into OS ser-
vices is a barrier to fault tolerance [21] and live update [28].

Evolvability and availability of systems software are crucial
in environments where reliability is necessary yet hardware
redundancy is expensive or impossible. For example, sys-
tems software updates must be painstakingly applied without
downtime or lost execution context in pacemakers [26] and
space probes [25, 62]. Even in datacenters, where network
switches are replicated for reliability, switch software failures
and maintenance updates still lead to network outages [27,48].

On the quest to determine to what extent state spill can be
avoided in OS code, we chose to write an OS from scratch.
We were drawn to Rust because its ownership model pro-
vides a convenient mechanism for implementing isolation
and zero-cost state transfer between OS components. Our ini-
tial OS-building experience led to two important realizations.
First, mitigating state spill, or better state management in gen-
eral, necessitates a rethinking of OS structure because state
spill (by definition) depends on how the OS is modularized.
Second, modern systems programming languages like Rust
can be used not just to write safe OS code but also to statically
ensure certain correctness invariants for OS behaviors.

The outcome of our experimentation is Theseus OS, which
makes two contributions to systems software design and im-
plementation. First, Theseus has a novel OS structure of many
tiny components with clearly-defined, runtime-persistent
bounds. The system maintains metadata about and tracks
interdependencies between components, which facilitates live
evolution and fault recovery of these components (§3).

Second, and more importantly, Theseus contributes the in-
tralingual OS design approach, which entails matching the
OS’s execution environment to the runtime model of its im-
plementation language and implementing the OS itself us-
ing language-level mechanisms. Through intralingual design,
Theseus empowers the compiler to apply its safety checks
to OS code with no gaps in its understanding of code be-
havior, and shifts semantic errors from runtime failures into
compile-time errors, both to a greater degree than existing
OSes. Intralingual design goes beyond safety, enabling the
compiler to statically check OS semantic invariants and as-
sume resource bookkeeping duties. This is elaborated in §4.

Theseus’s structure and intralingual design naturally reduce
states the OS must maintain, reducing state spill between
its components. We describe Theseus’s state management
techniques to further mitigate the effects of state spill in §5.

To demonstrate the utility of Theseus’s design, we imple-
ment live evolution and fault recovery (for availability) within
it (§6). With this, we posit that Theseus is well-suited for high-
end embedded systems and datacenter components, where
availability is needed in the absence of or in addition to hard-
ware redundancy. Therein, Theseus’s limitations of being a
new OS and needing safe-language programs have a lesser
impact, as applications can be co-developed with the OS in
an environment under a single operator’s control.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1

We evaluate how well Theseus achieves these goals in §7.
Through a set of case studies, we show that Theseus can easily
and arbitrarily live evolve core system components in ways
beyond prior live update works, e.g., joint application-kernel
evolution, or evolution of microkernel-level components. As
Theseus can gracefully handle language-level faults (panics
in Rust), we demonstrate Theseus’s ability to tolerate more
challenging transient hardware faults that manifest in the OS
core. To this end, we present a study of fault manifestation
and recovery in Theseus and a comparison with MINIX 3 of
fault recovery for components that necessarily exist inside the
microkernel. Although performance is not a primary goal of
Theseus, we find that its intralingual and spill-free designs do
not impose a glaring performance penalty, but that the impact
varies across subsystems.

Theseus is currently implemented on x86_64 with support
for most hardware features, such as multicore processing,
preemptive multitasking, SIMD extensions, basic networking
and disk I/O, and graphical displays. It represents roughly
four person-years of effort and comprises ~38000 lines of
from-scratch Rust code, 900 lines of bootstrap assembly code,
246 crates of which 176 are first-party, and 72 unsafe code
blocks or statements across 21 crates, most of which are for
port I/O or special register access.

However, Theseus is far less complete than commercial
systems, or experimental ones such as Singularity [33] and
Barrelfish [8] that have undergone substantially more devel-
opment. For example, Theseus currently lacks POSIX support
and a full standard library. Thus, we do not make claims about
certain OS aspects, e.g., efficiency or security; this paper fo-
cuses on Theseus’s structure and intralingual design and the
ensuing benefits for live evolution and fault recovery.

Theseus’s code and documentation are open-source [61].

2 Rust Language Background
The Rust programming language [40] is designed to provide
strong type and memory safety guarantees at compile time,
combining the power and expressiveness of a high-level man-
aged language with the C-like efficiency of no garbage col-
lection or underlying runtime. Theseus leverages many Rust
features to realize an intralingual, safe OS design and em-
ploys the crate, Rust’s project container and translation unit,
for source-level modularity. A crate contains source code and
a dependency manifest. Theseus does not use Rust’s standard
library but does use its fundamental core and alloc libraries.

Rust’s ownership model is the key to its compile-time mem-
ory safety and management. Ownership is based on affine
types, in which a value can be used at most once. In Rust,
every value has an owner, e.g., the string value "hello!" al-
located in L4 below is owned by the hello variable. After a
value is moved, e.g., if "hello!" was moved in L5 from hello

to owned_string (L14), its ownership would be transferred
and the previous owner (hello) could no longer use it.

1 fn main() {
2 let hel: &str;
3 {
4 let hello = String::from("hello!");
5 // consume(hello); // −→ "value moved" error in L6
6 let borrowed_str: &str = &hello;
7 hel = substr(borrowed_str);
8 }
9 // print!("{}", hel); // −→ lifetime error

10 }
11 fn substr<'a>(input_str: &'a str) -> &'a str {
12 &input_str[0..3] // return value has lifetime 'a
13 }
14 fn consume(owned_string: String) {...}

When the owner’s scope ends, e.g., at the end of a lexical
block, the owned value is dropped (released) by virtue of the
compiler inserting a call to its destructor. Destructors in Rust
are realized by implementing the Drop trait for a given type,
in which a custom drop handler can perform arbitrary actions
beyond freeing memory. On L8 above, the hello string falls
out of scope and is auto-deallocated by its drop handler.

Values can also be borrowed to obtain references to them
(L6), and the lifetime of those references cannot outlast the
lifetime of the owned value. The syntax in L11 gives the name
'a to the lifetime of the input_str argument, and specifies
that the returned &str reference has that same lifetime 'a.
That returned &str reference is assigned to hel in L7, which
would result in a lifetime violation in L9 because hel would
be used after the owned value it was originally borrowed
from (hello) was dropped in L8. Rust’s compiler includes a
borrow checker to enforce these lifetime rules, as well as the
core tenet of aliasing XOR mutability, in which there can be
multiple immutable references or a single mutable reference
to a value, but not both at once. This allows it to statically
ensure memory safety for values on the stack and heap.

Theseus also extensively leverages Rust traits, a decla-
ration of an abstract type that specifies the set of meth-
ods the type must implement, similar to polymorphic in-
terfaces in OOP languages. Traits can be used to place
bounds on generic type parameters. For example, the function
fn print_str<T: Into<String>>(s: T){ } uses the under-
lined trait bound to specify that its argument named s must
be of any abstract type T that can be converted into a String.

3 Theseus Overview and Design Principles
The overall design of Theseus specifies a system architecture
consisting of many small distinct components, called cells,
which can be composed and interchanged at runtime. A cell is
a software-defined unit of modularity that serves as the core
building block of the OS, much like their namesake of biolog-
ical cells in an organism (no relation to Rust’s std::cell).
Theseus enables all software written in safe Rust, including
applications and libraries, to coexist alongside the core OS
components in a single address space (SAS) and execute at a
single privilege level (SPL), building upon language-provided
type and memory safety to realize isolation instead of hard-
ware protection. Everything presented herein is written in
Rust and runs in the SAS/SPL environment.

2 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Theseus follows three design principles:

P1. Require runtime-persistent bounds for all cells.

P2. Maximize the power of the language and compiler.

P3. Minimize state spill between cells.

The remainder of this section describes how Theseus satisfies
the first principle and why it matters, while §4 and §5 discuss
the second and third principles, respectively.

3.1 Structure of Runtime-Persistent Cells
Cells in Theseus have bounds that are clearly defined at im-
plementation time and persist into and throughout runtime:
a cell exists as a Rust crate at implementation time, a single
object file at compile time, and a set of loaded memory re-
gions with per-section bounds and dependency metadata at
runtime. This applies to all cells, not just a select subset such
as kernel extensions in monolithic and safe-language OSes or
userspace servers in microkernels; there are no exemptions
for components within a “base kernel” image. Explicit cell
bounds identifiable at runtime are the foundation for strong
data/fault isolation and state management in Theseus.

At runtime, Theseus loads and links all cells into the sys-
tem on demand. Briefly, this entails finding and parsing the
cell object file, loading its sections into memory, resolving
its dependencies to write linker relocation entries, recursively
loading any missing cells as needed, and adding new public
symbols to a symbol map. In doing so, Theseus constructs
detailed cell metadata, depicted in Figure 1, which is cru-
cial knowledge for live evolution (§6.1) and fault recovery
(§6.2). The set of loaded cells defines a CellNamespace, a
true namespace containing all cells’ public symbols, used
to quickly resolve dependencies between cells. Each loaded
cell node tracks its constituent sections and the memory re-
gions (§4.3.1) that contain them. The sections in each cell
correspond to those in its crate’s object file, e.g., executable,
read-only data, and read-write data sections. Each loaded sec-
tion node tracks its size, location in memory, and bidirectional
dependencies (incoming and outgoing); additional metadata
exists to accelerate cell swapping and other system functions.

Persistence of Cell Bounds Reduces Complexity: Theseus’s
persistent cell bounds provide a consistent abstraction of OS
structure throughout all phases of their existence. This re-
duces the complexity of a developer’s mental model of the
OS and simplifies fault recovery and evolution logic, as The-
seus can introspect upon and manage its own code from the
same cell-oriented viewpoint at runtime. The SAS/SPL en-
vironment augments this consistent view with completeness,
in that everything from top-level applications and libraries to
core kernel components are observable as cells. This enables
Theseus to (i) implement a single mechanism, cell swapping,
uniformly applicable to any cell, and (ii) jointly evolve cells
from multiple system layers (e.g., applications and kernel
components) in a safe manner.

depends on

LoadedCell
name: my_driver

MP: { }

name:
size:
vaddr:

func1
1.2 KB
FE54…

name:
size:
vaddr:

str1
86 B
FE98…

name:
size:
vaddr:

my_var
8 B
FEBC…

LoadedCell

name:
size:
vaddr:

foo
406 B
FF14…

name: my_module

MP: { }

CellNamespace
symbol_map: { … }

default simd

regular
crates

SIMD
crates

MappedPages (MP) LoadedSection

TextSec RodataSec DataSec TextSec

Figure 1: Theseus constructs detailed metadata that tracks runtime
cell bounds in memory and bidirectional, per-section dependencies
in order to simplify cell swapping logic.

Striking a Balance with Cell Granularity: Theseus cells are
elementary in their scope; we follow separation of concerns to
split functionality into many tiny crates, letting unavoidable
circular dependencies between them halt further decompo-
sition. We do not use Rust’s source-level module hierarchy
in which one crate contains multiple Rust (sub)modules, as
those module bounds are lost when the crate is built into an
object file. Instead, we extract would-be modules into distinct
crates, realizing hierarchy by organizing crates’ source files
into folders in Theseus’s repository. This design offers both
a programmer-friendly hierarchical view of source code and
a simple system view of all cells as a flat set of distinct ob-
ject files. It also strikes a balance between the complexity of
needing to swap myriad tiny cells and the inefficiency and
impracticality of swapping a large monolithic cell.

3.2 Bootstrapping Theseus with the nano_core
Theseus splits the compilation process at the linker stage,
placing raw cell object files directly into the OS image
such that linkage is deferred to runtime. From a practical
standpoint, unlinked object files cannot run, so we must
jump-start Theseus with the nano_core. The nano_core is
a set of normal cells statically linked together into a tiny,
executable “base kernel” image, comprising only components
needed to bootstrap a bare-minimum environment that
supports virtual memory and loading/linking object files.
Because statically linking cells loses their bounds and
dependencies, the nano_core fully replaces itself at the
final bootstrap stage by dynamically loading its constituent
cells one by one, using augmented symbol tables and other
metadata burned into the OS image at build time. This meets
the requirement of runtime-persistent bounds for all cells,
allowing the nano_core to be safely unloaded after bootstrap.

4 Power to the Language
The second design principle Theseus follows is to leverage
the power of the language by enabling the compiler to check
safety and correctness invariants to the fullest extent possible.
We term this approach intralingual, within the language, as it

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 3

involves matching Theseus’s execution environment to that
of the language’s runtime model, and implementing OS se-
mantics fully within the strong, static type system offered by
modern languages like Rust. This extends compiler-checked
invariants (e.g., no dangling references) to all types of re-
sources, not just those built into the language.

Intralingual design offers two primary benefits. First, it
empowers the compiler to take over resource management
duties, reducing the states the OS must maintain, which in
turn reduces state spill and strengthens isolation. Second, it
enables the compiler to apply safety checks with no gaps
in its understanding of code behavior, approaching end-to-
end safety from applications to core kernel components and
shifting semantic runtime errors into compile-time errors.

In contrast, traditional extralingual approaches rely on hard-
ware protection and runtime checks to uphold invariants for
safety, isolation, and correctness. These features are trans-
parent to the compiler and require unsafe code. Even exist-
ing safe-language OSes [3, 13, 33, 44] have a gap between
language-level safe code and the underlying unsafe core that
implements the language’s required abstractions as a black
box. Below, we describe how Theseus closes this gap and
opens up such black boxes to the compiler.

4.1 Matching the Language’s Runtime Model
The compiler for many languages, including Rust, expects that
its output will become (part of) an executable that runs within
one address space and privilege level, e.g., a single userspace
process. Thus, the compiler cannot holistically observe or
check the behavior of independently-compiled components
that run in different address spaces or privilege levels.

To address this shortcoming, we tailor Theseus’s OS exe-
cution environment to match Rust’s runtime model: (i) only
a single address space (SAS) exists and thus a single set of
addresses is visible, for which Theseus guarantees a one-to-
one virtual-to-physical mapping; (ii) all code executes within
a single privilege level (SPL), thus there is no other world
or mode of execution; (iii) only a single allocator instance
exists, matching the compiler’s expectation that a global heap
serves all allocation requests. Note that Theseus does support
multiple arbitrary heaps within that single instance (§7.3).

4.2 Intralingual OS Design
Matching the language’s runtime model only allows the com-
piler to view all Theseus components. For the compiler to
understand those components and apply its safety checks
to them, we must implement them in a manner that exposes
their safety requirements, invariants, and semantics to the
compiler. As an aside, Theseus uses safe code to the fullest
extent possible at all layers of the system, prioritizing safety
over all else, e.g., convenience, performance. It only descends
into unsafety when fundamentally unavoidable: executing in-
structions directly above hardware and select functions within
Rust’s foundational libraries, i.e., core and alloc.

Theseus goes beyond language safety to further empower
the compiler to check our custom OS invariants as if they were
built in. First, for each OS resource, Theseus identifies the set
of invariants that prevent unsafety and incorrect usage. As the
Rust compiler already checks myriad invariants for the usage
of language-provided types and mechanisms, Theseus em-
ploys these existing mechanisms to allow its resource-specific
invariants to be subsumed into those compiler invariants. For
example, Theseus uses Rust’s built-in reference types, such as
&T and Arc<T> (Atomic Reference-Counted pointer), to share
resources (e.g., memory regions, channel endpoints) across
multiple tasks in a safe language-level manner, instead of ex-
tralingual sharing mechanisms like raw pointers or mapping
multiple pages to the same frame. This eliminates possible
use-after-free errors by subsuming resource mismanagement
checks into the compiler’s lifetime invariants.

Second, Theseus employs lossless interfaces for both exter-
nal functions that export a resource’s semantics and internal
functions that implement those semantics. An interface is
lossless if crossing it preserves all language-level context,
e.g., an object’s type, lifetime, or ownership/borrowed status.
Furthermore, the provenance of that language-level context
must be statically determinable, such that the compiler can
authenticate that there was no broken link in the chain of calls
and interface crossings when using a given resource. In other
words, language-level knowledge must not be lost and then
reconstituted extralingually. For example, invoking a system
call in Linux loses the type and lifetime information of its
arguments because they must be reduced to raw integer values
to cross the user-kernel boundary.

Ensuring Resource Cleanup via Unwinding
One major invariant we enforce beyond default Rust safety is
to prevent resource leakage, an acquired resource not being
released even after no references to it remain. Although leak-
age does not violate safety, it is generally incorrect behavior.
Theseus prevents resource leakage by (i) implementing all
cleanup semantics in drop handlers (§2), a lossless language-
level approach that allows the compiler to solely determine
when it is safe to trigger resource cleanup, and (ii) employ-
ing stack unwinding to ensure acquired resources are always
released in both normal and exceptional execution.

When tasks acquire resources in Theseus, they directly own
objects representing those resources on their stack (§5.1). The
Rust compiler tracks ownership of those objects to statically
determine when a resource is dropped and, thus, where to
insert its cleanup routine. Implementing all resource cleanup
in only drop handlers frees developers from the burden of cor-
rectly ordering release operations or considering corner cases
such as exceptional control flow jumps. Applying this to ac-
quired locks allows Theseus to statically prevent many cases
of deadlock: lock guards are auto-released during unwinding,
and domain-specific locks automatically disable/re-enable
preemption or interrupts, e.g., when modifying task runstates.

4 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

We implement Theseus’s unwinder from scratch in Rust,
with custom unwinding logic based on the DWARF stan-
dard [1] but independent from existing unwind libraries; thus,
it works in core OS contexts without a standard library or
allocation. Theseus starts the unwinder only upon a software
or hardware exception or a request to kill a task; it does not
interfere with normal execution performance, unlike garbage
collectors. This prevents failed or uncooperative tasks from
jeopardizing resource release and reclamation, strengthening
fault isolation. The unwinder uses compiler-emitted informa-
tion along with cell metadata to locate previous frames in
the call stack, calculate and restore register values present
during that frame, and discover and invoke cleanup routines
or exception-catching blocks. Cell metadata even enables the
unwinder to traverse through nonstandard stack frames for
hardware-entered asynchronous calling contexts, e.g., inter-
rupts or CPU exception handlers.

Theseus supports intralingual resource revocation in two
forms. First, Theseus can forcibly revoke generic resources
by killing and unwinding an uncooperative task. This avoids
isolation-breaking undefined behavior by ceasing to execute
a task once its assumptions of safe resource access no longer
hold. Second, Theseus can cooperatively revoke reclaimable
resources, such as in-memory caches and buffer pools, which
express the possibility of resource absence within their type
definition, e.g., using Option or weak references. This design
unifies system-level and language-level resource actions to
guarantee that revoked resources are freed exactly once.

4.3 Examples of Intralingual Subsystems
We next describe how Theseus intralingually implements
foundational OS resources, namely memory management and
task management. Additional invariants, details, and exam-
ples, such as inter-task communication (ITC) channels, are
omitted for brevity and available elsewhere [15].

4.3.1 Memory Management
Theseus intralingually implements virtual memory via the
MappedPages type of Listing 2, which represents a region of
virtually-contiguous pages statically guaranteed to be mapped
to (optionally contiguous) real physical frames. MappedPages
is the fundamental, sole way to map and access memory in
Theseus, and serves as the backing representation for stacks,
heaps, and arbitrary memory regions, e.g., device MMIO and
loaded cells. The design of MappedPages empowers the com-
piler’s type system to enforce the following key invariants,
extending Rust’s memory safety checks to all OS memory
regions, not just the compiler-known stack and heap.

M.1: The mapping from virtual pages to physical frames
must be one-to-one, or bijective. This prevents aliasing (shar-
ing) from occurring beneath the language, forcing all shared
memory access in Theseus to use only language-level mecha-
nisms, such as references (&MappedPages). In Theseus’s SAS
environment (§4.1), this is both possible and non-restrictive.
In contrast, both conventional and existing safe-language OS

1 fn main() -> Result<()> {
2 let frames = get_hpet_frames()?;
3 let pages = allocate_pages(frames.count())?;
4 let mp_pgs = map(pages, frames, flags, pg_tbl)?;
5 {
6 let hpet: &HpetRegisters = mp_pgs.as_type(0)?;
7 print!("HPET device Vendor ID: {}", hpet.caps_id.read() >> 16);
8 }
9 let (sender, receiver) = rendezvous::new_channel::<MappedPages>();

10 let new_task = spawn_task(receiver_task, receiver)?;
11 sender.send(mp_pgs)?;
12 Ok(()) // `mp_pgs` not dropped, it was moved
13 }

14 fn receiver_task(receiver: Receiver<MappedPages>) -> Result<()> {
15 let mp: MappedPages = receiver.receive()?;
16 let hpet: &HpetRegisters = mp.as_type(0)?;
17 print!("Current HPET ticks: {}", hpet.main_counter.read());
18 Ok(()) // `mp` auto-dropped and unmapped here
19 }

20 struct HpetRegisters {
21 pub caps_and_id: ReadOnly<u64>,
22 _padding: [u64, ...],
23 pub main_counter: Volatile<u64>,
24 ...
25 }

Listing 1: Example code that maps a memory region representing
the HPET device, accesses the HPET vendor ID via MMIO, then
spawns a new task and sends that memory region to it over a channel.
The new task receives that memory region and uses it to read the
HPET counter. This refers to code continued in Listing 2 and 3.

designs allow different virtual pages to map the same physical
frame, an extralingual approach that renders sharing transpar-
ent to the compiler and thus uncheckable for safety.

We realize this invariant via the map() function (L26),
which leverages type safety to take ownership of the allo-
cated pages and frames in order to return a new MappedPages

object. The lossless map() interface statically ensures the
provenance of this relationship between AllocatedPages,
AllocatedFrames, and MappedPages, guaranteeing they can-
not be reused for duplicate mappings.

M.2: Memory must not be accessible beyond the mapped
region’s bounds. To access a memory region, one must use
MappedPages methods like as_type() (L45) or as_slice()
(L52) that overlay a statically-sized struct or dynamically-
sized slice atop it; mutable versions exist, see M.4 below.
The in-bounds invariant (L46) is checked dynamically un-
less elided when the size and offset are statically known, as
in some MMIO cases. These access functions are lossless
because they return sized types that preserve the lifetime rela-
tionship described below.

M.3: A memory region must be unmapped exactly once,
only after there remain no outstanding references to it.
MappedPages realizes its release and cleanup semantics only
within its drop handler (L38), ensuring that a MappedPages

object, such as mp in L15 of Listing 1, is unmapped in both
normal execution (L18) and exceptional execution. Corre-
spondingly, memory must not be accessible after it has been
unmapped. The above access methods tie the lifetime of the
re-typed borrowed reference &'m T to the lifetime of its back-
ing MappedPages memory region, allowing compiler lifetime
checks to statically prevent use-after-free. As such, obtaining
ownership of an overlaid struct is impossible by design, as

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 5

26 pub fn map(pages: AllocatedPages, frames: AllocatedFrames,
flags: EntryFlags, ...) -> Result<MappedPages> {

27 for (page, frame) in pages.iter().zip(frames.iter()) {
28 let mut pg_tbl_entry = pg_tbl.walk_to(page, flags)?

.get_pte_mut(page.pte_offset());
29 pg_tbl_entry.set(frame.start_addr(), flags)?;
30 }
31 Ok(MappedPages { pages, frames, flags })
32 }

33 pub struct MappedPages {
34 pages: AllocatedPages,
35 frames: AllocatedFrames,
36 flags: EntryFlags,
37 }

38 impl Drop for MappedPages {
39 fn drop(&mut self) {
40 // unmap here: clear page table entry, invalidate TLB.
41 // AllocatedPages/Frames are auto-dropped and deallocated.
42 }
43 }

44 impl MappedPages {
45 pub fn as_type<'m, T>(&'m self, offset: usize) -> Result<&'m T> {
46 if offset + size_of::<T>() > self.size_in_bytes() {
47 return Error::OutOfBounds;
48 }
49 let typed_mem: &T = unsafe {

&*((self.pages.start_addr() + offset) as *const T) };
50 Ok(typed_mem)
51 }

52 pub fn as_slice<'m, T>(&'m self, offset: usize, count: usize)
-> Result<&'m [T]> { ... }

53 }

Listing 2: The basic MappedPages type (L33) exposes an interface
(L44-53) for safely accessing its underlying memory region. The
map() function (L26) maps a range of virtual pages to physical
frames and returns a new MappedPages instance that represents that
memory region. Sanity checks and details omitted for brevity.

that would lossily discard the above lifetime relationship.
M.4: A memory region must only be mutable or ex-

ecutable if mapped as such. We ensure this using dedi-
cated types, MappedPagesMut and MappedPagesExec, that of-
fer as_type_mut() and as_function(), which statically pre-
vents page protection violations as described elsewhere [15].

In summary, MappedPages bridges the semantic gap be-
tween the compiler’s and OS’s knowledge of memory, guar-
anteeing at compile time that unexpected invalid page faults
cannot occur. Note that the necessary unsafe code in L49 is
innocuous (see §8) as it merely indicates that the compiler
cannot ensure the overlaid struct type has valid contents. Cor-
rectness of struct contents (e.g., HpetRegisters in L20) is
unavoidably left to the developer. Regardless of developer
mistakes, the compiler can still check that this unsafe code
does not violate fault or data isolation because other invariants
ensure it cannot produce dangling references (M.3) or access
out-of-bounds addresses (M.2) beyond the reach of safe code.
All other memory management code is safe down to the low-
est level, where page table walks require extralingual code to
accommodate hardware-defined page table formats.

4.3.2 Task Management
While MappedPages is the center of intralingual memory man-
agement, the Task struct in Theseus is minimized in both
content and significance. Rather, task management centers
around intralingual functions that leverage a consistent set of
generic type parameters to handle each stage of the task life-

54 pub trait TFunc<A,R> = FnOnce(A) -> R;
55 pub trait TArg = Send + 'static;
56 pub trait TRet = Send + 'static;

57 pub fn spawn_task<F,A,R>(func: F, arg: A, ...) -> Result<TaskRef>
where A: TArg, R: TRet, F: TFunc<A, R> {

58 let stack = alloc_stack(stack_size)?;
59 let mut new_task = Task::new(task_name, stack, ...)?;
60 let trampoline_offset = new_task.stack.size_in_bytes() -

size_of::<usize>() - size_of::<RegisterCtx>();
61 let initial_context: &mut RegisterCtx = new_task.stack

.as_type_mut(trampoline_offset)?;
62 *initial_context = RegisterCtx::new(task_wrapper::<F,A,R>);
63 new_task.saved_stack_ptr = initial_context as *const RegisterCtx;
64 let func_arg: &mut Option<(F, A)> = new_task.stack.as_type_mut(0)?;
65 *func_arg = Some((func, arg));
66 Ok(TaskRef::new(new_task))
67 }

68 fn task_wrapper<F,A,R>() -> ! where A: TArg, R: TRet, F: TFunc<A,R> {
69 let opt: &mut Option<(F, A)> = current_task.stack

.as_type(0).unwrap();
70 let (func, arg) = opt.take().unwrap();
71 let res: Result<R, KillReason> = catch_unwind_with_arg(func, arg);
72 match res {
73 Ok(exit_value) => task_cleanup_success::<F,A,R>(exit_value),
74 Err(kill_reason) => task_cleanup_failure::<F,A,R>(kill_reason),
75 }
76 }

77 fn task_cleanup_success<F,A,R>(exit_value: R) -> !
where A: TArg, R: TRet, F: TFunc<A, R> {

78 current_task.set_as_exited(exit_value);
79 task_cleanup_final::<F,A,R>()
80 }

81 fn task_cleanup_failure<F,A,R>(kill_reason: KillReason) -> !
where A: TArg, R: TRet, F: TFunc<A, R> {

82 current_task.set_as_killed(kill_reason);
83 task_cleanup_final::<F,A,R>()
84 }

85 fn task_cleanup_final<F,A,R>(curr_task: TaskRef) -> !
where A: TArg, R: TRet, F: TFunc<A, R> {

86 runqueue::remove_task(current_task());
87 scheduler::schedule(); // task is descheduled, will never run again
88 loop { }
89 }

Listing 3: The interface to spawn a task (L57) creates a new task and
sets up its stack such that it will jump to task_wrapper() upon first
context switch, which will then invoke its entry function normally.
Every function that handles a task lifecycle stage is parameterized
with the same set of trait bounds (L54-56), ensuring that a task’s type
information (function, argument, return type) is losslessly preserved
across its entire lifecycle. Code simplified for brevity.

cycle, as shown in Listing 3: spawning and entering new tasks
(L57,68), modifying task runstates as they run, and exiting and
cleaning up tasks (L77,81,85). Theseus enforces the following
invariants to empower the compiler to uphold memory safety
and prevent resource leaks throughout the task lifecycle.

T.1: Spawning a new task must not violate memory safety.
Rust already ensures this for multiple concurrent userspace
threads, as long as they were created using its standard library
thread type. Instead of using the standard library, Theseus
provides its own task abstraction, overcoming the standard li-
brary’s need to extralingually accommodate unsafe, platform-
specific thread interfaces, e.g. fork(). Theseus does not offer
fork because it is known to be unsafe and unsuitable for
SAS systems [7], as it extralingually duplicates task context,
states, and underlying memory regions without reflecting that
aliasing at the language level.

Theseus’s task abstraction preserves safety similarly to
and as an extension of Rust threads. The spawn_task() in-
terface (L57) requires specifying the exact type of the entry

6 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

function F, argument A, and return type R, with the following
constraints: (i) the entry function must be runnable only once
(FnOnce in L54), (ii) the argument and return type must be safe
to transfer between threads (Send in L55-56), and (iii) the life-
time of said three types must outlast the duration of the task it-
self. All task lifecycle functions are lossless and have identical
type parameters (F,A,R), allowing the compiler to naturally
extend its safety guarantees to concurrent execution across
multiple Theseus tasks and to statically prevent invalidly-
typed task entry functions, arguments, and return values.

T.2: All task states must be released in all possible execu-
tion paths. Releasing task states requires special consideration
beyond simply dropping a Task object to prevent resource
leakage (§4.2). Task states such as the stack are used during
unwinding and can only be cleaned up once unwinding is
complete, and task cleanup comprises multiple stages that
each permit varying levels of resource release. For example, a
task’s stack and saved register context can be released when it
is exited (L78) or killed (L82), but its runstate and exit value
must persist until it has been reaped (not shown).

In addition, there exist multiple potential paths in the end
stages of the task lifecycle that each require different cleanup
actions. When a task runs to completion, its entry function nat-
urally returns execution to the task_wrapper (L73), which
can then safely mark the task as exited with its exit value.
When a task crashes, the exception handler starts the unwind-
ing procedure to release all task-held resources, after which
it invokes the task failure function (L81) that marks the task
as crashed. Both normal and exceptional execution paths in-
voke a final task cleanup function (L85) that removes the task
from runqueues and deschedules it. All of these functions are
parameterized with <F,A,R> types, a key part of intralingual
fault recovery mechanisms like restartable tasks (§6.2).

T.3: All memory transitively reachable from a task’s entry
function must outlive that task. Although all memory regions
in Theseus are represented by MappedPages, which prevents
use-after-free via lifetime invariants, it is difficult to use Rust
lifetimes to sufficiently express the relationship between a
task and arbitrary memory regions it accesses. This is because
a Rust program running as a task cannot specify in its code
that its variables bound to objects in memory are tied to the
lifetime of an underlying MappedPages instance, as they are
hidden beneath abstractions like stacks, heaps, or program
sections. Even if possible, this would be highly unergonomic
and inconvenient, rendering ownership useless. For example,
all local stack variables would need to be defined as borrowed
references with lifetimes derived from that of the Mapped-

Pages representing the stack.
Thus, to uphold this invariant, we instead establish a chain

of ownership: each task owns the cell that contains its entry
function, and that cell owns any cells it depends on, given by
the per-section dependencies in the cell metadata (§3.1). As
such, the MappedPages regions containing all functions and
data reachable from a task’s entry function are guaranteed

to outlive that task itself. This avoids littering lifetime con-
straints across all program variables, and allows Rust code
to be written normally with the standard assumption that the
stack, heap, data, and text sections will always exist.

In contrast, conventional task management leaves the en-
forcement of these invariants to the OS programmer, an ex-
tralingual approach. In Theseus, only swapping stack pointer
registers during a context switch is not intralingual.

5 State Management in Theseus
The third design principle Theseus follows is to minimize
and ideally eliminate state spill in its cells. As Theseus’s
component structure is based on cells, state spill can only
occur in interactions (e.g., function calls) that cross a cell
boundary and result in changed state(s) in the receiving cell.

5.1 Opaque Exportation through Intralinguality
Theseus employs opaque exportation to avoid state spill
in client-server interactions: each client is responsible for
owning the state that represents its progress with the server,
hence exportation, but cannot arbitrarily introspect into or
modify that server-private state due to type safety, hence
opaque. Opaque exportation is only possible because The-
seus’s safe, intralingual design enables shifting the burden of
resource/progress bookkeeping from the OS into the compiler.
This allows bookkeeping states to be distributed, or offloaded
to each client, e.g., held only on a client task’s stack. Theseus’s
unwinder can still find and invoke cleanup routines without
needing OS knowledge about which resources a client has
acquired, thus the server and OS at large need not maintain
bookkeeping states for each client.

Conversely, Theseus eschews traditional state encapsula-
tion, in which a server holds all states representing its clients’
progress and resource usage [16, 17]. Such encapsulation
constitutes state spill and causes fate sharing that breaks iso-
lation: when a server crashes and loses its state, its clients
will also fail. Opaque exportation still preserves information
hiding [52], a primary benefit of encapsulation.

A corollary of opaque exportation is stateless communica-
tion (à la RESTful web architectures [24]), which dictates that
everything necessary for a given request to be handled should
be included in that request. Servers that employ stateless
communication need not store intermediary states between
successive client interactions, as future interactions will be
self-sufficient, containing previously-exported states.

Opaque exportation enables Theseus to avoid common
spillful abstractions such as handles. Client-side handles to
server-owned data forces the server to maintain a global ta-
ble that associates each client’s handle with its underlying
resource object, a form of state spill. Theseus rejects handles
in favor of a client directly owning the underlying resource
object; for example, an application task owns a MappedPages

object instead of a virtual address handle, as shown by mp_pgs

in L4 of Listing 1. This relieves the server (mm cell) from

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 7

the burden of maintaining a handle table, e.g., a list of vir-
tual memory areas (VMAs) that correspond to the virtual ad-
dresses given to clients as handles for mapped regions. Note
that clients are only responsible for owning, not cleaning up,
objects that represent resources they acquired; when said ob-
ject falls out of scope (or during unwinding), it is cleaned up
via compile-time insertion of a server-provided cleanup rou-
tine, i.e., the object’s drop handler. Thus, Theseus decouples
the duty of owning and holding a state from the responsibility
of implementing and invoking its cleanup functionality.

Accommodating Multi-Client States: Server-defined re-
sources may pertain to or be shared across more than one
client. Thus, Theseus extends opaque exportation to enable
all pertinent clients to jointly own that resource state, i.e.,
multi-client states. Joint ownership and resource sharing in
general can be realized via heap-allocated objects with auto-
matic reference counting (e.g., Arc); while this can be viewed
as state spill into the heap, considering spill into the allocator
itself is not useful for two reasons. First, heap allocations are
represented by owned objects elsewhere that point back to
the heap, e.g., types like Box or Arc. Therefore, it suffices to
consider only the propagation of those owned objects when
determining where state spill occurred, rather than observing
the internal state of the heap itself. Second, state spill into the
heap is unavoidable; every basic action from creating a new
local string variable to invoking a function would constitute
state spill into the heap or stack, rendering it a useless metric.

5.2 Management of Special States in Theseus
Theseus cells often hold soft states, those that can be lost or
discarded without error [19, 55]. Soft states exist for the sake
of convenience or performance, e.g., an in-memory cache of
a clock source’s period read from hardware. Although soft
states technically constitute state spill, they can be idempo-
tently re-obtained or recalculated with no impact on correct-
ness. Therefore, Theseus permits soft states as harmless state
spill with no adverse effects on evolution or availability.

We identify unavoidable states in two general forms: (i)
clientless states, those that hardware requires the OS to main-
tain on its behalf, and (ii) states needed to handle asyn-
chronous, hardware-invoked entry points that do not provide
sufficient context. The former renders opaque exportation im-
possible and the latter violates stateless communication. In
the first case, we cannot modify the behavior or capacity of
underlying hardware to accommodate exported states. Thus,
Theseus must hold these states to ensure they persist through-
out all execution. Examples include low-level x86 structures
like the Global Descriptor Table (GDT), Task State Segment
(TSS), Interrupt Descriptor Table (IDT). In the second case,
Theseus must store necessary contextual states with a static
lifetime and scope that exceeds that of the asynchronous hard-
ware event’s entry function, e.g., an interrupt handler.

To preserve the interchangeability of server cells in both
such cases, Theseus assigns their states a well-defined owner

and static lifetime by moving them into state_db, a state
storage facility with minimal semantics akin to key value
databases. Any singleton cell can move its static state into
state_db and get a weak reference in return, a form of soft
state. The state_db retains interchangeability despite har-
boring states spilled from other cells, as it uniquely must
cooperate in its own swapping process by hardening itself via
serialization to nonvolatile storage. The only other similar cell
is the cell manager, which must also serialize its cell metadata.
This design decouples a hardware state’s lifetime from that
of the server cell interacting with it, enabling said cell to be
evolved without losing mandatory system-wide states.

5.3 Intralinguality and Spill Freedom: Examples
We further illustrate the relationship between intralingual
design and state spill freedom with two example subsystems:
memory and task management.

Memory Management: Theseus’s MappedPages type (§4.3)
eliminates state spill through opaque exportation: the client
requesting the mapping owns the resultant MappedPages ob-
ject, e.g., mp_pgs on L4, rather than the server (mm cell) that
created it. In contrast, mm entities in existing OSes harbor
state spill in the form of metadata representing each memory
mapping, e.g., a list or table of virtual memory area (VMA)
objects; clients must blindly trust that the underlying map-
ping and VMA persist throughout the usage of their virtual
address handle. Importantly, we consider page tables to be
hardware-required MMU states, much like x86’s GDT or TSS.
Page table entries are not language-level objects with lasting
variable name bindings in Theseus; thus, writing to a page
table is a hardware-externalized side effect rather than state
spill. Crucially, the state representing this side effect — the
transition from “unmapped” to “mapped” — is not lost, but
reflected in the client-side MappedPages object rather than a
hidden server-side state change.

Task Management: Theseus’s intralingual design and its
ensuing opaque exportation significantly reduce the scope and
size of its Task struct, thus avoiding most instances of state
spill from other subsystems into its task management cells.
This is possible because the unwinder and compiler together
retain the ability to fully clean up a task’s acquired resources,
even those shared across tasks, without needing to consult its
task structure for resource bookkeeping states. Theseus also
moves task-related states specific to other OS features, e.g.,
runqueue and scheduler information, out of the task struct and
into those components themselves. This better follows sepa-
ration of concerns than conventional OSes that hoard a huge
list of OS states needed for manual resource bookkeeping and
task cleanup into a centralized, all-encompassing task struct.
Such a task struct design causes myriad OS operations to spill
state into the task management entities and results in cross-
cutting dependencies that closely entangle entities together,
hindering their evolution or recovery. Thus, Theseus’s task
struct can contain only the bare necessities, e.g., the task’s

8 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

runstate, stack, and saved execution context (register values).
Correspondingly, it excludes lists of open files, open sockets,
memory mappings, wait queues, etc.

6 Realizing Evolvability and Availability
To demonstrate the utility of Theseus’s design, we implement
mechanisms inside it to realize challenging computing goals:
live evolution and fault recovery.

6.1 Live Evolution via Cell Swapping
The fundamental evolutionary mechanism in Theseus is cell
swapping, a multi-stage procedure that replaces O “old” ex-
isting cells with N “new” ones; O need not equal N. (i) First,
Theseus loads all new cells into a new empty CellNames-
pace (§3.1), an isolated linking environment. (ii) Theseus
then verifies dependencies bidirectionally: new cells must
satisfy existing dependencies fulfilled by the old cells, and ex-
isting cells must satisfy the new cells’ dependencies. Isolated
loading allows this to occur before making invasive changes
to the running system. (iii) Theseus redirects all cells that
depend on the old cells to depend on the corresponding new
cells, which involves rewriting their relocation entries and
dependency metadata, updating on-stack references to the old
cells, and transferring states if necessary. (iv) Finally, The-
seus atomically removes the old cells and symbols from the
CellNamespace whilst moving in the new cells.

Evolving a running instance of Theseus is as easy as com-
mitting to its repository, which triggers our build server tool
to re-compile Theseus and generate an evolution manifest
file specifying which new cells shall replace which old ones.
Maintainers can also select individual cells to evolve, and all
others that must be evolved alongside them are automatically
included to ensure a well-formed evolution manifest.

Theseus’s design facilitates cell swapping and simplifies
known live update techniques like quiescence and state trans-
fer. In stage (i), runtime cell bounds let Theseus’s dynamic
loader ensure that a cell’s sections will not overlap or be inter-
leaved in memory with those of another, allowing each cell to
claim sole ownership of its memory regions and be cleanly re-
movable in stage (iv). Dynamic loading also produces precise
dependency information, needed in stages (ii) and (iii).

Spill-free design of cells in Theseus simplifies state transfer.
As previously mentioned, opaque exportation allows a server
cell to be more easily swapped because it need not maintain
state between successive interactions with clients, increas-
ing its quiescent periods. Stateless communication reduces
a given function’s dependencies on other cells because it re-
ceives necessary states and function callbacks or closures via
its arguments. Overall, this hastens the dependency rewriting
and state transfer steps in stage (iii).

The cell metadata accelerates cell swapping. In stage (ii),
dependency verification amounts to a quick search for fully-
qualified symbols in the CellNamespace’s symbol map. In
stage (iii), Theseus need not scan every task’s stack, rather

only a limited subset for which the old cells’ public functions
or data are reachable from the task’s entry function; reacha-
bility is trivially determined by following dependency links
in the metadata. Compile-time ownership semantics allow
Theseus’s cell manager to fearlessly remove old cells and
their symbols in stage (iv) without first checking for their
usage elsewhere, as the compiler has already ensured a re-
moved old cell will not be actually dropped and unloaded
until it is no longer referred to by any other cells; this avoids
a computationally-complex graph traversal over all metadata.

Theseus’s intralingual design extends to transfer functions
needed for evolving a data structure in stage (iii). We allow
and require such functions to be implemented intralingually
using Rust’s type conversion traits, e.g., Into. Generation of
transfer functions is ongoing work, thus the results reported
in §7.1 use manually-implemented transfer functions.

6.2 Availability via Fault Recovery
We next describe how Theseus recovers from language-level
exceptions (Rust panics) and hardware-induced faults like
CPU exceptions. Theseus follows a multi-stage, cascading
approach towards fault recovery, taking increasingly drastic
measures until normal execution is recovered. A system-wide
fault log records fault context (e.g., instruction pointer, current
task) and the recovery action taken in order to track progres-
sion through recovery stages and avoid recurring fault loops.

The first recovery stage is to simply tolerate the fault by
fully cleaning up a failed task via unwinding. This form of
fault isolation allows other tasks that depend on resources
shared with the failed task to continue running.

The second recovery stage is to respawn a new instance
of the failed task. We extend the existing task infrastructure
(Listing 3) to provide a fully intralingual implementation of
restartable tasks, in which the spawn interface further con-
strains the <F,A,R> type parameters to enable the compiler
to check that tasks are well-formed and safely restartable.
The augmented trait bounds are F: Fn(A) -> R + Clone and
A: Send + Clone + 'static, which require that the entry
function can be safely executed multiple times (F: Fn, not
FnOnce) and the argument can be safely duplicated (Clone).

The most significant recovery stage reuses the cell swap-
ping mechanism (§6.1) to replace corrupted cells with freshly-
loaded instances at different memory locations. This approach
addresses faults that occur on invalid accesses of cell data or
text sections, indicating they have been corrupted (e.g., due
to a hardware memory failure). This represents the simplest
possible case of cell swapping, with no possibility of missing
dependencies or changes to code or data types. Following
this, the failed task is restarted (as above), which allows it to
successfully execute atop the new cell instance(s).

Notably, Theseus’s fault recovery mechanisms operate with
few dependencies, allowing it to tolerate faults in the lowest
system layers in the face of multiple failed subsystems. The
fault-critical TCB of components for each recovery stage are

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 9

as follows: (i) cleanup of a failed task’s states relies upon the
unwinder, which only needs a basic execution environment
to access the stack and invoke functions; (ii) restartable tasks
rely upon task spawning; (iii) cell replacement relies upon
object file parsing, loading, and linking. All of this can safely
execute within the context of a CPU exception handler in
Theseus. In comparison, fault recovery approaches in reliable
microkernels like MINIX 3 [30] require support for context
switches, interrupts, IPC, and userspace to work properly.

7 Evaluation
We evaluate Theseus to show that it achieves easy and arbi-
trary live evolution and increases system availability through
fault recovery. We assess the impact of intralingual, state spill-
free designs on memory and task management performance
and compare Theseus’s base performance with that of Linux
through a series of benchmarks. All experiments were con-
ducted on an Intel NUC 6i7KYK [2] with 4 (8 SMT) 2.6 GHz
cores and 32 GB memory, unless otherwise stated.

7.1 Live Evolution
Theseus’s evolutionary mechanisms are implemented in-band,
that is, within the OS core and using its own features, which
differs from existing works that implement live update func-
tionality out-of-band or on a mature OS. As such, it is difficult
to conduct a statistical analysis showing which historical com-
mits can be supported by Theseus’s live evolution. Instead, we
use case studies (as in Baumann et al. [9]) to demonstrate that
Theseus is able to evolve core system components in unique
manners beyond prior live update works. Figure 2 shows the
time scale of evolutionary stages for three case studies: (a)
ITC channels, (b) scheduler and runqueue infrastructure, and
(c) an Ethernet driver and network update client.

Inter-Task Communication (ITC) Channels: We show how
Theseus can evolve its ITC channel layer (the equivalent of
IPC) from an existing synchronous, unbuffered rendezvous
channel into a new asynchronous buffered channel. We chose
this because the histories of MINIX 3, seL4, and QNX Neu-
trino reveal significant, necessary evolution in their micro-
kernel cores, most notably the addition of or change from
synchronous to asynchronous IPC [4, 22]; all require a stan-
dard reboot to apply the change. Here, Theseus advances the
state of the art by live evolving (i) a fundamental OS primitive
that must be implemented within a microkernel, (ii) a kernel
API that necessitates joint evolution of dependent userspace
and kernel entities, and (iii) a widely-used component whilst
preserving the execution context of those that depend on it.

During this experiment, we spawn multiple applications
that exchange messages with each other over multiple syn-
chronous channels, in addition to system tasks (e.g., input
event manager) that already use said channel. We then issue
a live evolution command at a random point while messages
are in flight. Because Theseus can evolve cells independently

from execution contexts, it can swap the channel implementa-
tion out from underneath a running application without having
to kill it. As shown in Figure 2(a), this improves availability by
reducing median downtime to 385 µs because it preserves the
application’s runtime progress, avoiding the domino effect of
needing to restart multiple other dependent tasks transitively.

Scheduling and Runqueue Subsystems: In this experiment
of Figure 2(b), we replace the existing round-robin scheduler
with a new priority scheduler and the existing dequeue-based
runqueue with a priority queue. All the while, Theseus runs
multiple tasks of varying priorities that print messages, il-
lustrating the visible difference in task execution order and
frequency before and after evolution. This showcases The-
seus’s ability to evolve at runtime the modularity of the OS
itself (by changing multiple cell bounds) and core cells used
incessantly by many others.

At first glance, this appears trivial because existing OSes
can already switch between multiple schedulers at runtime.
The key distinction is that Theseus booted as an OS that did
not originally contain a priori knowledge of or in-band sup-
port for multiple schedulers, whereas existing OSes require a
scheduler infrastructure with a pre-defined common interface
to accommodate multiple scheduler policies. This illustrates
a significant benefit: subsystems in Theseus need not incor-
porate a special design or interface to support multiple ver-
sions of a given component, e.g., functions like schedule()

or task_switch() can be unaware of multiple schedulers.
Instead, Theseus components can rely upon an arbitrary, out-
of-band cell swapping mechanism to evolve or flexibly switch
between multiple alternatives, resulting in a simpler design.

Ethernet Driver and Network Update Client: In this experi-
ment of Figure 2(c), we evolve Theseus to fix unreliable net-
work downloads, comprising two cells that must be evolved
simultaneously: (i) the core Ethernet driver underneath the
network stack, and (ii) Theseus’s evolution client application
that sits atop the network stack to communicate with the build
update server. This demonstrates Theseus’s capacity for co-
ordinated, multi-part evolution (as does the above scheduler
case) versus small-scope live updates that only patch one
driver function. The new Ethernet driver fixes an insidious
bug that caused inconsistent connectivity due to incorrectly
setting head and tail registers for the ring buffer of received
packets; the new evolution client fixes its HTTP layer usage
to properly recover from unexpected remote socket disconnec-
tions. We achieve this without losing any NIC configuration
settings or packet data progress, tested by downloading files
during the evolution and verifying them with checksums.

This case shows that Theseus can provide availability with-
out redundancy, e.g., for solitary embedded systems in the
field, and better availability atop hardware redundancy, e.g.,
for datacenter network switches that must be brought down
during driver updates. Moreover, it shows that Theseus can
perform “meta-evolution,” i.e., loading a new evolution client

10 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

17 18 19 20

19.5 ms

(a) Inter-Task Communication

63 64 65 66 67

65.6 ms

(c) Network

2.7 ms

19 20 21 22

(b) Scheduler

Load new cells (i)

Rewrite relocations (iii)

Update dependencies (iii)

State transfer (iii)

Cell/symbol cleanup (iv)

21.3 ms…

… 0 …0 …

Verify dependencies (ii)

……

ms ms 0 ms

…

0

Figure 2: The time taken for each step in Theseus’s live evolution procedure, with cell swapping stages marked (i-iv) (§6.1). The first two steps
are performed in isolation and do not affect the running system. Only the middle two steps (shaded) are critical and may impact execution by
requiring atomicity, i.e., a system pause, but this can be avoided when the evolved components robustly handle state unavailability errors, as in
the scheduler (b) case. The last two steps must lock the cell metadata to prevent overlapping evolution, but do not affect execution.

using that client’s own evolutionary features. This procedure
is facilitated by state spill freedom that results in network
states being owned by the application task, except for mini-
mal states necessary to handle asynchronous receive buffers.

7.2 Fault Recovery
We demonstrate Theseus’s ability to tolerate faults within
low-level core components, e.g., those that necessarily exist
inside a microkernel. We focus on stress-testing whether The-
seus can recover from unexpected hardware-induced faults
beneath the language, as Theseus can recover from language-
level faults easily because the compiler understands and can
account for them, guaranteeing that unwinding will work.

Our fault injection method is to run Theseus atop the
QEMU emulator [11] to enable us to automate arbitrary
changes to hardware state, including randomly flipping one
bit or overwriting full quadwords in memory, and randomly in-
crementing the instruction pointer register to skip instructions.
We inject faults while running a workload of graphical render-
ing, task spawning, in-memory FS access, and ITC channel
usage, and monitor the workload/OS behavior to determine if
and how the fault manifests. This follows common practices
in the literature [21, 30, 65]. As found in other fault injec-
tion works [30], very few randomly injected faults (< 0.5%)
manifest into observable failures; thus, we augment our fault
injector to target specific regions in memory where faults are
likely to manifest, namely a given task’s working set of stack,
heap, and cell memory (text, data, and rodata sections).

Theseus Recovers from Microkernel-level Faults: Literature
on fault-tolerant microkernels, e.g., MINIX 3 [31] and Cu-
riOS [21], only evaluate recovery from faults injected into
userspace system servers, not the microkernel itself. To show
that Theseus supports recovery from faults in such low-level
components, we inject faults into both MINIX 3’s IPC layer
and Theseus’s ITC channels and evaluate their ability to re-
cover. To ensure a fair comparison, we manually inspect all
layers of MINIX 3’s IPC implementation and Theseus’s ITC
channel implementation to discover 13 faults [45] that cause
deterministic failures in both systems.

Out of the 13, Theseus recovers correctly in all but two
cases, in which the receiver and sender tasks hang but do not
crash; this can be solved via timeouts or resetting the channel.

MINIX 3 fails to recover correctly in all 13; its kernel crashes
in 11 cases and loses a message in the other two. For example,
corrupting the pointer to a passed message that is accessed in
the IPC receive routine manifests as an invalid page fault in
both Theseus and MINIX 3; MINIX 3’s kernel crashes and
reboots whereas Theseus unwinds and properly restarts the
ITC receiver task, allowing the sender to progress.

General Fault Recovery: To comprehensively assess The-
seus’s fault recovery, we injected 800,000 faults into subsys-
tems actively used by the above workloads, of which 0.083%
manifested as observable failures. Table 1 shows that Theseus
successfully recovered from 69% of total manifested faults.
Restarting the failed task sufficed in 11% of cases, indicating
corrupted stack or heap values; in the remaining 89%, Theseus
needed to reload one or more cells, indicating corruption of
text or data sections. The observable downtime of Theseus’s
fault recovery mechanisms is evaluated elsewhere [15].

Theseus failed to recover from 31% of manifested faults,
primarily due to the lack of asynchronous unwinding in
Rust/LLVM. The compiler generates synchronous unwinding
tables that only cover instructions where language-level excep-
tions (Rust panics) may occur. As hardware faults can occur
at any instruction, Theseus’s unwinder may only find an inex-
act match for a faulted instruction pointer in the unwinding
table, with a cleanup routine that may not completely release
all resources acquired at the point of failure. Note that only
local variables in the excepted stack frame may be missed, all
other stack frames are properly handled. Though the known
solution of asynchronous unwinding is unsupported, we are
exploring OS and compiler solutions to augment coverage of
unwinding information, beyond the scope of this work.

In another 30 cases, the fault caused the system or workload
task to hang, recoverable via complementary hardware mecha-
nisms like watchdog timers. In the remaining 18 and 62 cases
respectively, Theseus failed to reload a new cell to replace the
corrupted cell or suffered a fault in the unwinder’s code path
itself, for which recovery failures are expected. Collectively,
these represent the limitations of Theseus’s fault recovery.

7.3 Cost of Intralinguality & State Spill Freedom
Though performance is not a primary goal of Theseus, its
intralingual and spill-free designs naturally raise performance

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 11

Successful Recovery 461
Restart task 50
Reload cell 411

Failed Recovery 204
Incomplete unwinding 94
Hung task 30
Failed cell replacement 18
Unwinder failure 62

Total manifested faults 665

Table 1: Theseus recovers from 69% of manifested faults in our
fault injection trials that emulate hardware failures.

questions. In general, we observe and expect a trend in which
many spill-free designs incur mild overhead, such as task
and heap management, while some perform better, such as
MappedPages. We compare multiple versions of Theseus
with controlled differences to tease out the performance im-
pact of these specific design choices. We also compare against
Linux by porting LMBench microbenchmarks to Rust and
running them on both Linux and Theseus; as Theseus is exper-
imental and lacks POSIX support, results should be regarded
as informative rather than conclusive. Overall, we do not
observe any glaring performance penalties herein.

MappedPages: Better Performance and Scalability: Figure 3
compares our MappedPages design with a conventional spill-
ful memory mapping implementation that encapsulates a red-
black tree of VMAs, carefully modeled after and optimized
to match Linux’s behavior. MappedPages performs slightly
better because (i) clients directly own MappedPages objects,
a form of distributed bookkeeping that obviates the need to
search the VMA tree for the memory region that contains a
given virtual address, and (ii) memory safety invariants are
upheld at compile-time. Overall, this difference is unlikely to
significantly impact real system workloads.

Avoiding Task State Spill has Negligible Overhead: As de-
scribed in §5.3, Theseus eliminates runqueue and scheduler
states spilled into the task struct, subverting the conventional
all-inclusive task struct. This imposes the overhead of iter-
ating through and removing a dead task from all runqueues
rather than just the runqueue(s) it is known to be on. We
evaluate the worst case in which a task is known to be on
only one runqueue; the more runqueues a task is on, the less
relative overhead Theseus has. We run Theseus on a 36-core
(72 SMT) Supermicro 119u-7 server with one runqueue per
hardware thread, to accurately reflect caching effects when
searching through runqueues on other cores. The experiment
of Figure 4(a) repeatedly removes a non-running task from its
runqueue; while this is a contrived scenario impossible in any
OS workload, it does show that overhead increases with the
number of runqueues. The experiment of Figure 4(b) spawns
and runs a dummy task that immediately exits, measuring the
worst possible realistic overhead. Here, the impact is negligi-
ble because the prerequisite of spawning a task dominates the
overhead of removing it from every runqueue.

Heap Designs threadtest shbench
unsafe 20.27 ± 0.009 s 3.99 ± 0.001 s
partially-safe 20.52 ± 0.010 s 4.54 ± 0.002 s
safe 24.82 ± 0.006 s 4.89 ± 0.002 s

Table 2: Heap microbenchmark results for various design points.
Threadtest [12] allocates and deallocates 100 million 8-byte objects;
shbench [34] does so for 20 million objects of size 1 to 1000 bytes.

Intralingual Heap Bookkeeping causes Overhead: Table 2
shows that an intralingual, safe heap implementation can im-
pose up to 22.5% overhead in bookkeeping costs over an
unsafe version. Each heap design variant is based on The-
seus’s slab [14] allocator that tracks available memory as
lists of MappedPages, one per slab, which serves allocation re-
quests of a specific size. Multiple heap instances exist within
a single alloc/dealloc interface, matching Rust’s language
model (§4.1). The unsafe heap design maintains raw pointers
to allocation metadata and neither owns its backing Mapped-

Pages nor knows of their lifetimes. The partially-safe heap
owns its backing MappedPages but embeds raw pointers to
them within the allocation metadata, discarding lifetime in-
formation. The safe heap maintains a collections type (e.g.,
red-black tree) that maps a virtual address to its allocation
metadata and its backing MappedPages, allowing the compiler
to observe and check that the association between an alloca-
tion and its backing MappedPages is never lost. This is crucial
for Theseus to safely exchange memory between multiple
per-core heaps, but causes overhead during deallocation when
looking up the allocation metadata for a given address.

Microbenchmark Comparisons with Linux: We reimplement
select LMBench benchmarks [47] in safe Rust on both Linux
and Theseus, omitting those irrelevant to core OS components
or with no equivalent in Theseus (e.g., RNG latency, futexes),
and those that test subsystems still rudimentary in Theseus
(e.g., networking, filesystems). Table 3 shows the results of
each benchmark as the mean value across 100,000 iterations;
full details are available elsewhere [15]. We do not claim that
Theseus generally outperforms existing OSes like Linux, as
larger-scale workloads may reveal different trends, but our
results do not indicate significant performance drawbacks.
The differences shown stem from eliminating the overhead of
switching between hardware protection modes and address
spaces; these are known benefits of SAS/SPL OSes [33].

In addition, we compare against microkernel IPC fastpaths
by implementing an ITC fastpath within Theseus that by-
passes the disconnection semantics of Theseus’s channels.
We realize this fastpath in fully safe code via shared refer-
ences to an atomic type that holds a small message, achieving
a 1-byte RTT of 687 cycles compared to seL4’s [41] one-
way IPC fastpath latency of 401 cycles on the same hardware
(without Meltdown mitigations). For reference, Theseus’s
asynchronous channel has an RTT of 1664 cycles, close to
Singularity’s reported 1415-cycle channel RTT [5].

12 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 500

 1000

 1500

 2000

 2500

10 2
10 3

10 4
10 5

(a) Map

Ti
m

e
 (

n
s)

total mappings:

with state spill (VMAs) state spill free (MappedPages)

10 2
10 3

10 4
10 5

(b) Remap

10 2
10 3

10 4
10 5

(c) Unmap

Figure 3: The time to map, remap, and unmap a 4 KiB page is con-
stant for Theseus’s spill-free MappedPages approach, slightly better
than a traditional spillful approach based on a red-black VMA tree.

 0

 1

 2

 3

 4

 5

4 8 16 32 64 72

(b) Spawn empty task

Ti
m

e
 (

u
s)

cores:

with state spill state spill free

 0

 10

 20

 30

 40

 50

 60

 70

4 8 16 32 64 72

(a) Remove task from runqueue

Ti
m

e
 (

u
s)

cores:

Figure 4: (a) The time to remove a task from the runqueue(s) in-
creases when eliminating runqueue states from the task struct, but is
minor in the worst realistic case of (b) spawning an empty task.

LMBench
Benchmark Ported behavior on Theseus; (Linux behavior, if different) Linux (Rust) Theseus

Theseus
(static)

null syscall call curr_task() function; (invoke getpid() syscall in vDSO) 0.28 ± 0.01 0.02 ± 0.00 0.02 ± 0.00
context switch switch between two threads that continuously yield 0.61 ± 0.06 0.35 ± 0.00 0.34 ± 0.00
create process spawn “Hello, World!” application; (fork + exec) 567.78 ± 40.4 242.11 ± 0.88 244.35 ± 0.06
memory map map, write, then unmap 4KiB page; (use MAP_POPULATE flag) 2.04 ± 0.15 1.02 ± 0.00 0.99 ± 0.00
IPC 1-byte RTT over async ITC; (non-blocking pipe between threads) 3.65 ± 0.35 1.06 ± 0.00 1.03 ± 0.00

Table 3: Microbenchmark results in microseconds, smaller is better. Linux (Rust) is LMBench benchmarks reimplemented in safe Rust on
Linux, Theseus is those benchmarks on Theseus, and Theseus (static) is those benchmarks on a statically-linked build of Theseus. Standard
deviations of zero indicate values smaller than the timer period of 42 ns, and cannot be accurately measured.

Finally, the rightmost column of Table 3 shows that the
overhead of runtime-linked code due to dynamic cell loading
in Theseus is generally negligible. For this, we run the same
set of benchmarks atop a build of Theseus in which all kernel
cells are statically linked into a monolithic kernel binary.

8 Limitations and Discussion
Unsafe Code is an Unfortunate Necessity in a low-level kernel
environment, needed to interface with hardware because the
compiler understandably lacks a model of hardware seman-
tics. Not all unsafe code is equal; we distinguish between
two types of unsafe code: innocuous and infectious, in which
infectious code may violate isolation but innocuous cannot.
Unsafe code is infectious if it can circumvent the type system
to access data inside another component, thereby “infecting”
it, e.g., by dereferencing arbitrary pointers, but is innocuous
if it merely accesses data reachable from safe code, e.g., writ-
ing the address of a variable to an I/O port. Innocuous code
can still cause incorrect behavior. As part of ongoing work,
we develop a compiler plugin to automate checks for the
reachability and type safety of addresses accessed in unsafe
blocks; this currently supports language-level unsafe blocks,
e.g., within MappedPages, but requires manual whitelisting
of inline assembly, e.g., context switch routines.

Reliance on Safe Language: Theseus must trust the Rust
compiler and its core/alloc libraries to uphold safety with-
out soundness holes. Fortunately, the risk of trusting Rust is

continually decreasing as multiple ongoing works strive to
improve and verify the Rust compiler and its base libraries by
checking unsafe usage [36, 37, 53]. To enjoy Theseus’s bene-
fits, components must be implemented in safe Rust. Legacy
code in other safe or managed languages could be supported
by implementing their VMs/runtimes in Rust, but unsafe lan-
guages require hardware protection or dynamic interposition
on memory accesses (à la SFI [60]) if isolation was desired.

Spillful Abstractions: There is tension between achiev-
ing spill freedom and supporting existing abstractions that
need or benefit from state spill. One example is each task’s
runnability state that represents whether it is blocked. Choos-
ing a fully spill-free implementation would remove that state
altogether, resulting in wasted CPU cycles as tasks would
have no alternative but to endlessly spin while waiting on
unavailable resources (e.g., acquired locks). As this impacts
performance and convenience, we resolve the tension by seek-
ing the middle ground: a minimal boolean state is spilled into
each task that represents its runnability. This avoids the high
cost of fruitlessly spinning but stops short of a traditional,
fully-spillful design that spills information into the task struct
about who blocked it and why (the conditions). In Theseus,
the state of that blocked condition exists in and is owned by
each entity that blocked that task, as per intralingual design.

Similar tensions exist in other subsystems, such as filesys-
tems (FS) and memory. A fully spill-free FS would break
existing POSIX interfaces by granting sole ownership of a file

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 13

to the client currently accessing it, meaning that the file would
appear to be absent until the client releases it. We have not
yet deeply explored custom filesystems, so Theseus’s current
tradeoff is to support legacy FS standards at the cost of accept-
ing state spill in the FS cells. For memory mapping, Theseus
fully embraces the spill-free design choice, MappedPages.

Limitations of Intralinguality go beyond the overhead im-
posed by select designs (§7.3) or runtime bounds checks [20].
First, integrating existing unsafe components or libraries into
the system can break the chain of compiler knowledge, i.e.,
intermixed extralinguality limits the benefits of other intralin-
gual components. Second, not all knowledge is available stat-
ically; runtime checks may be necessary for nondeterministic
input, such as user-specified memory mapping flags. Third,
additional design effort is needed to express invariants using
the type system versus using simple runtime checks, though
this quickly becomes advantageous in OS contexts with com-
plex runtime conditions that are tricky to get right.

9 Related Work
Theseus draws inspiration from much prior work. Related
to its use of safe language, i.e., Rust, numerous prior works
use safe languages in OSes: Modula-3 in SPIN [13], Java
in JX [29], C# in Singularity [33], Rust in Tock [44] and
Redox [3], and Go in Biscuit [20]. Many recent works have
specifically leveraged Rust’s safety to realize efficient isola-
tion [42, 49, 51, 66]. Theseus’s intralingual design approach
(§4.2) goes beyond using a safe language, empowering the
compiler to subsume resource-specific invariants into existing
ones and thus check safety and correctness to a greater extent.

Theseus’s use of a single address space and single privilege
level was inspired by SPIN [13] and Singularity [33], but for
a different purpose than performance: matching the OS’s
runtime model to that of the language (§4.1).

Our work is motivated by recently diagnosed problems in
systems software due to state spill [16] and the ensuing ar-
gument for a spill-free OS [17]. Other works have implicitly
targeted symptoms of state spill, e.g., CuriOS [21] shows that
holding client-relevant states in server processes complicates
fault recovery. CuriOS moves said states into each client’s
address space, temporarily mapping them into a given server’s
address space during an interaction; this offers effective isola-
tion but incurs overhead, and only works for userspace servers
in a microkernel OS. Theseus isolates client and server states
within the same SAS and SPL using type and memory safety.

Theseus employs dynamic loading for runtime-persistent
bounds of its cells. Dynamic loading is common in OSes
to support kernel extensibility [13, 50, 56, 64], but only to
load new modules, such as drivers and extensions, alongside
(not in place of) a large, monolithic kernel without clear run-
time bounds. Jacobsen et al. embed a microkernel within
the Linux kernel as an indirection layer to decompose Linux
into lightweight capability domains [35]; this helps to isolate

kernel subsystems but not to evolve or recover them.
Microkernel OSes [21, 31, 41] have persistent bounds for

OS services that run in hardware-isolated userspace processes.
Genode [23] is a similarly-modularized OS framework that
creates a hierarchical tree of processes for strong access con-
trol. These OS structures make it easier to recover from ser-
vice failures or update an OS service by restarting its process,
but modularizing along coarse-grained process bounds limits
their ability to evolve and recover from faults in core microker-
nel components. Also, Theseus’s finer-grained components
make hardware-enforced process bounds uneconomical.

Live update of systems software has been extensively stud-
ied. Many works retrofit live update into legacy OSes like
Linux [6, 18, 39, 46, 54, 58, 63]. Existing solutions need deep
kernel expertise or tedious manual effort to generate or ap-
ply an update [18, 46, 54]; some impose overhead due to
intermediary layers of indirection [18, 32, 57] or full-system
checkpointing [39]; others are unable change kernel APIs,
internal data structures, or non-function entities [6, 54, 58].
Overall, these works target small, localized security patches.
In contrast, Theseus can apply sweeping evolutionary changes
to core kernel components, their modularity, and kernel APIs
by virtue of its new OS structure and spill-free design.

K42 [9, 10, 32, 57] is an object-oriented OS that deeply
explores live update via hot-swapping of objects, similar to
Theseus’s cell swapping. Unlike Theseus, K42 requires a
uniform indirection layer atop all objects and can swap only
objects, not low-level code beneath the OOP language layer,
e.g., exception handling or hardware interaction. Similarly,
microkernel solutions like PROTEOS [28], based on MINIX 3,
can accommodate complex system updates for userspace
server processes. Theseus builds upon PROTEOS’s novel
techniques for state transfer, but can evolve finer-grained
components, including those within a microkernel.

Fault-tolerant OS literature spans a wide variety of ap-
proaches, including using software domains to isolate and
recover from failures in drivers and select OS subsystems [43,
59, 60], hardware isolation between OS service processes in
microkernels [21, 31], and checkpoint/restore of drivers [38]
or OS services [30] for faster, stateful recovery. Theseus uses
intralingual mechanisms like unwinding and restartable tasks
to ensure that language-level safety assumptions and compiler-
provided isolation are not violated by recovery actions. The-
seus also distinguishes between recovering a component (cell)
and an execution context (task), can recover and replace finer-
grained components than processes, and leverages novel state
management techniques to simplify recovery logic.

Acknowledgments
This work is supported in part by NSF Awards #1422312,
#2016422, and their REU supplements. We are grateful to the
anonymous reviewers and our shepherd Malte Schwarzkopf,
whose input strengthened our final paper.

14 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] The DWARF debugging standard. http://dwarfstd.org/.

Accessed: 2020-05-08.

[2] Intel NUC Kit NUC6i7KYK technical specifica-
tions. https://www.intel.com/content/www/us/en/
products/boards-kits/nuc/kits/nuc6i7kyk.html. Ac-
cessed: 2020-04-26.

[3] Redox - your next(gen) os. https://www.redox-os.org/.
Accessed: 2017-08-11.

[4] The QNX Neutrino Microkernel – QNX Neutrino
IPC. http://www.qnx.com/developers/docs/6.3.2/
neutrino/sys_arch/kernel.html#NTOIPC. Accessed:
2020-05-22.

[5] Mark Aiken, Manuel Fähndrich, Chris Hawblitzel,
Galen Hunt, and James Larus. Deconstructing process
isolation. In Proc. ACM Workshop on Memory System
Performance and Correctness, 2006.

[6] Jeff Arnold and M. Frans Kaashoek. Ksplice: Automatic
rebootless kernel updates. In Proc. ACM EuroSys, 2009.

[7] Andrew Baumann, Jonathan Appavoo, Orran Krieger,
and Timothy Roscoe. A fork() in the road. In Proc.
HotOS, 2019.

[8] Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Timo-
thy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
The Multikernel: A new OS architecture for scalable
multicore systems. In Proc. ACM SOSP, 2009.

[9] Andrew Baumann, Gernot Heiser, Jonathan Appavoo,
Dilma Da Silva, Orran Krieger, Robert W Wisniewski,
and Jeremy Kerr. Providing dynamic update in an oper-
ating system. In Proc. USENIX ATC, 2005.

[10] Andrew Baumann, Jeremy Kerr, Jonathan Appavoo,
Dilma Da Silva, Orran Krieger, and Robert W Wis-
niewski. Module hot-swapping for dynamic update and
reconfiguration in K42. In 6th Linux. Conf. Au, 2005.

[11] Fabrice Bellard. QEMU: a fast and portable dynamic
translator. In Proc. USENIX ATC, 2005.

[12] Emery D Berger, Kathryn S McKinley, Robert D Blu-
mofe, and Paul R Wilson. Hoard: A scalable memory
allocator for multithreaded applications. In Proc. ACM
ASPLOS, 2000.

[13] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex-
tensibility, safety and performance in the SPIN operating
system. In Proc. ACM SOSP, 1995.

[14] Jeff Bonwick. The slab allocator: An object-caching
kernel memory allocator. In Proc. USENIX Summer
Technical Conf., 1994.

[15] Kevin Boos. Theseus: Rethinking Operating Systems
Structure and State Management. PhD thesis, Rice Uni-
versity, 2020.

[16] Kevin Boos, Emilio Del Vecchio, and Lin Zhong. A
characterization of state spill in modern operating sys-
tems. In Proc. ACM EuroSys, 2017.

[17] Kevin Boos and Lin Zhong. Theseus: a state spill-free
operating system. In Proc. ACM PLOS, 2017.

[18] Haibo Chen, Rong Chen, Fengzhe Zhang, Binyu Zang,
and Pen-Chung Yew. Live updating operating systems
using virtualization. In Proc. ACM VEE, 2006.

[19] David Clark. The design philosophy of the DARPA
internet protocols. In Proc. ACM SIGCOMM, 1988.

[20] Cody Cutler, M. Frans Kaashoek, and Robert T. Morris.
The benefits and costs of writing a POSIX kernel in a
high-level language. In Proc. USENIX OSDI, 2018.

[21] Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle,
and Roy H. Campbell. CuriOS: Improving reliability
through operating system structure. In Proc. USENIX
OSDI, 2008.

[22] Kevin Elphinstone and Gernot Heiser. From L3 to seL4:
What have we learnt in 20 years of L4 microkernels? In
Proc. ACM SOSP, 2013.

[23] Norman Feske. Genode operating system frame-
work. https://genode.org/documentation/genode-
foundations-19-05.pdf, 2015. Accessed: 2017-08-19.

[24] Roy Fielding. Representational state transfer. Architec-
tural Styles and the Design of Network-based Software
Architecture, 2000.

[25] Glenn Fleishman. In space, no one can hear you ker-
nel panic. https://increment.com/software-architecture/
in-space-no-one-can-hear-you-kernel-panic/, February
2020.

[26] U.S. Food and Drug Administration. Firmware
update to address cybersecurity vulnerabilities iden-
tified in Abbott’s (formerly St. Jude Medical’s)
implantable cardiac pacemakers: FDA safety com-
munication. https://www.fda.gov/medical-devices/
safety-communications/firmware-update-address-
cybersecurity-vulnerabilities-identified-abbotts-
formerly-st-jude-medicals. Published: 2017-08-29.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 15

http://dwarfstd.org/
https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc6i7kyk.html
https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc6i7kyk.html
https://www.redox-os.org/
http://www.qnx.com/developers/docs/6.3.2/neutrino/sys_arch/kernel.html#NTOIPC
http://www.qnx.com/developers/docs/6.3.2/neutrino/sys_arch/kernel.html#NTOIPC
https://genode.org/documentation/genode-foundations-19-05.pdf
https://genode.org/documentation/genode-foundations-19-05.pdf
https://increment.com/software-architecture/in-space-no-one-can-hear-you-kernel-panic/
https://increment.com/software-architecture/in-space-no-one-can-hear-you-kernel-panic/
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals

[27] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan.
Understanding network failures in data centers: mea-
surement, analysis, and implications. In Proc. ACM
SIGCOMM, 2011.

[28] Cristiano Giuffrida, Anton Kuijsten, and Andrew S.
Tanenbaum. Safe and automatic live update for op-
erating systems. In Proc. ACM ASPLOS, 2013.

[29] Michael Golm, Meik Felser, Christian Wawersich, and
Jürgen Kleinöder. The JX operating system. In Proc.
USENIX ATC, 2002.

[30] Jorrit Herder. Building a dependable operating system:
fault tolerance in MINIX 3. PhD thesis, Vrije Univer-
siteit Amsterdam, 2010.

[31] Jorrit N Herder, Herbert Bos, Ben Gras, Philip Hom-
burg, and Andrew S Tanenbaum. MINIX 3: A highly
reliable, self-repairing operating system. ACM SIGOPS
Operating Systems Review, 40(3):80–89, 2006.

[32] K. Hui, J. Appavoo, R. Wisniewski, M. Auslander,
D. Edelsohn, B. Gamsa, O. Krieger, B. Rosenburg, and
M. Stumm. Supporting hot-swappable components for
system software. In Proc. HotOS, 2001.

[33] Galen C. Hunt and James R. Larus. Singularity: Re-
thinking the software stack. ACM SIGOPS Operating
Systems Review, 2007.

[34] MicroQuill Inc. Microquill smartheap 4.0 benchmark.
http://microquill.com/.

[35] Charles Jacobsen, Muktesh Khole, Sarah Spall, Scotty
Bauer, and Anton Burtsev. Lightweight capability do-
mains: Towards decomposing the Linux kernel. SIGOPS
Oper. Syst. Rev., 2016.

[36] Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek
Dreyer. Stacked borrows: An aliasing model for Rust.
In Proc. ACM POPL, 2020.

[37] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers,
and Derek Dreyer. RustBelt: Securing the foundations of
the Rust programming language. In Proc. ACM POPL,
2017.

[38] Asim Kadav, Matthew J. Renzelmann, and Michael M.
Swift. Fine-grained fault tolerance using device check-
points. In Proc. ACM ASPLOS, 2013.

[39] Sanidhya Kashyap, Changwoo Min, Byoungyoung Lee,
Taesoo Kim, and Pavel Emelyanov. Instant OS updates
via userspace checkpoint-and-restart. In Proc. USENIX
ATC, 2016.

[40] Steve Klabnik and Carol Nichols. The Rust program-
ming language. https://doc.rust-lang.org/book/. Ac-
cessed: 2020-05-22.

[41] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood.
seL4: Formal verification of an OS kernel. In Proc.
ACM SOSP, 2009.

[42] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian
Zhang, Robert Ricci, and Ryan Stutsman. Splinter: bare-
metal extensions for multi-tenant low-latency storage.
In Proc. USENIX OSDI, 2018.

[43] Andrew Lenharth, Vikram S Adve, and Samuel T King.
Recovery domains: an organizing principle for recover-
able operating systems. In Proc. ACM ASPLOS, 2009.

[44] Amit Levy, Bradford Campbell, Branden Ghena,
Daniel B Giffin, Pat Pannuto, Prabal Dutta, and Philip
Levis. Multiprogramming a 64KB computer safely and
efficiently. In Proc. ACM SOSP, 2017.

[45] Namitha Liyanage. Fault recovery in the Theseus oper-
ating system. Master’s thesis, Rice University, 2020.

[46] Kristis Makris and Kyung Dong Ryu. Dynamic and
adaptive updates of non-quiescent subsystems in com-
modity operating system kernels. In Proc. ACM Eu-
roSys, 2003.

[47] Larry W McVoy, Carl Staelin, et al. LMbench: Portable
tools for performance analysis. In Proc. USENIX ATC,
1996.

[48] Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and
Onur Mutlu. A large scale study of data center network
reliability. In Proc. ACM IMC, 2018.

[49] Samantha Miller, Kaiyuan Zhang, Danyang Zhuo,
Shibin Xu, Arvind Krishnamurthy, and Thomas Ander-
son. Practical safe Linux kernel extensibility. In Proc.
HotOS, 2019.

[50] George C Necula and Peter Lee. Safe kernel extensions
without run-time checking. In Proc. USENIX OSDI,
1996.

[51] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls,
Sylvia Ratnasamy, and Scott Shenker. NetBricks: Tak-
ing the V out of NFV. In Proc. USENIX OSDI, 2016.

[52] David Lorge Parnas. On the criteria to be used in de-
composing systems into modules. Communications of
the ACM, 15(12):1053–1058, 1972.

16 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://microquill.com/
https://doc.rust-lang.org/book/

[53] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and
Yiying Zhang. Understanding memory and thread safety
practices and issues in real-world Rust programs. In
Proc. ACM PLDI, 2020.

[54] RedHat. Introducing kpatch: Dynamic kernel patch-
ing. https://www.redhat.com/en/blog/introducing-
kpatch-dynamic-kernel-patching, 2014.

[55] Angela Schuett, Suchitra Raman, Yatin Chawathe,
Steven McCanne, and Randy Katz. A soft-state pro-
tocol for accessing multimedia archives. In Proc. ACM
NOSSDAV, 1998.

[56] Margo I. Seltzer, Yasuhiro Endo, Christopher Small,
and Keith A. Smith. Dealing with disaster: Surviving
misbehaved kernel extensions. In Proc. USENIX OSDI,
1996.

[57] Craig A. N. Soules, Jonathan Appavoo, Kevin Hui,
Robert W Wisniewski, Dilma Da Silva, Gregory R
Ganger, Orran Krieger, Michael Stumm, Marc A Aus-
lander, Michal Ostrowski, Bryan Rosenburg, and Jimi
Xenidis. System support for online reconfiguration. In
Proc. USENIX ATC, 2003.

[58] SUSE. SUSE releases kGraft for live patching of Linux
kernel. https://www.suse.com/c/news/suse-releases-
kgraft-for-live-patching-of-linux-kernel/, 2014.

[59] Michael M. Swift, Muthukaruppan Annamalai, Brian N.
Bershad, and Henry M. Levy. Recovering device drivers.
In Proc. USENIX OSDI, 2004.

[60] Michael M. Swift, Brian N. Bershad, and Henry M.
Levy. Improving the reliability of commodity operating
systems. In Proc. ACM SOSP, 2003.

[61] Theseus Operating System. https://github.com/theseus-
os/Theseus, 2020.

[62] Kim Tingley. The New York Times: The loyal
engineers steering NASA’s Voyager probes access
the universe. https://www.nytimes.com/2017/08/03/
magazine/the-loyal-engineers-steering-nasas-voyager-
probes-across-the-universe.html, 2017.

[63] Steven J. Vaughan-Nichols. Kernelcare: New no-reboot
Linux patching system. https://www.zdnet.com/article/
kernelcare-new-no-reboot-linux-patching-system/,
2014.

[64] Robert Wahbe, Steven Lucco, Thomas E Anderson, and
Susan L Graham. Efficient software-based fault isola-
tion. In Proc. ACM SOSP, 1993.

[65] Long Wang, Zbigniew Kalbarczyk, Weining Gu, and
Ravishankar K Iyer. An OS-level framework for provid-
ing application-aware reliability. In Proc. IEEE PRDC,
2006.

[66] Minhong Yun and Lin Zhong. Ginseng: Keeping secrets
in registers when you distrust the operating system. In
Proc. NDSS, February 2019.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 17

https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching
https://www.redhat.com/en/blog/introducing-kpatch-dynamic-kernel-patching
https://www.suse.com/c/news/suse-releases-kgraft-for-live-patching-of-linux-kernel/
https://www.suse.com/c/news/suse-releases-kgraft-for-live-patching-of-linux-kernel/
https://github.com/theseus-os/Theseus
https://github.com/theseus-os/Theseus
https://www.nytimes.com/2017/08/03/magazine/the-loyal-engineers-steering-nasas-voyager-probes-across-the-universe.html
https://www.nytimes.com/2017/08/03/magazine/the-loyal-engineers-steering-nasas-voyager-probes-across-the-universe.html
https://www.nytimes.com/2017/08/03/magazine/the-loyal-engineers-steering-nasas-voyager-probes-across-the-universe.html
https://www.zdnet.com/article/kernelcare-new-no-reboot-linux-patching-system/
https://www.zdnet.com/article/kernelcare-new-no-reboot-linux-patching-system/

A Artifact Appendix
A.1 Abstract
The full source code and documentation for Theseus OS is
available online as a GitHub repository [61], where we invite
contributions from the public. All OS components, source
artifacts, and experiments described in the paper are present
in the repository, along with detailed instructions on how to
run or use them.

A.2 Artifact check-list
• Program: The Theseus Operating System

• Compilation: Rust, Make, no_std, freestanding, bare-metal

• Binary: OS .iso images

• Run-time environment: x86_64 bare-metal

• Hardware: Virtual or real x86_64 machine with BIOS

• Experiments: microbenchmarks, live evolution, fault recovery

• Required disk space: under 1GB

• Expected experiment run time: 10-12 hours

• Public link: https://github.com/theseus-os/Theseus/tree/
osdi20ae/osdi20ae

• Code licenses: MIT

A.3 Description
A.3.1 How to access
The Theseus repository is hosted on GitHub at https://github.com/
theseus-os/Theseus. The top level README contains detailed in-
structions on building and running Theseus. The branch osdi20ae
contains pre-built Theseus images with instructions that specify
how to easily reproduce each evaluation experiment, available at
https://github.com/theseus-os/Theseus/tree/osdi20ae. The source-
level documentation and high-level Theseus book are hosted online
at https://theseus-os.github.io/Theseus/, but is best viewed using the
commands make doc and make book, as specified in our README.

A.3.2 Hardware dependencies
We have tested Theseus on a variety of real machines, including Intel
NUC devices, various Thinkpad laptops, and Supermicro servers.
Currently, the only known limiting factor is support for booting via
USB or PXE using traditional BIOS rather than UEFI; support for
UEFI is a work in progress.

A.3.3 Software dependencies
We have tested building and then running Theseus in QEMU atop of
the following host OSes:

• Linux, 64-bit Debian-based distributions like Ubuntu, tested
on Ubuntu 16.04, 18.04, 20.04.

• Windows, using the Windows Subsystem for Linux (WSL),
tested on the Ubuntu version of WSL and WSL2.

• MacOS, tested on versions High Sierra (10.13) and Catalina
(10.15.2).

• Docker container environments.

The specific set of package dependencies are listed in the top-level
README. Additional packages needed for artifact evaluation only are
specified in the READMEs for each experiment.

A.4 Installation
Standard installation procedures are not required; steps to build and
run a functional Theseus OS image are listed in our README.

A.5 Experiment workflow
All experiments described in the paper are implemented directly
within the source code of Theseus and gated by compile-time config-
uration settings, so they are straightforward to inspect and run. The
experiments are divided into the following groups, each of which
has an accompanying script and set of instructions describing how to
run it within its respective artifact folder in the repository. To further
simplify reproduction of results, we provide pre-built OS images
that are properly configured for each experimental setup.

• Case studies of live evolution of core OS components

• General fault injection and recovery

• Comparison with IPC fault recovery in MINIX 3

• Overhead of state spill and intralingual designs

– The cost of MappedPages for memory mapping

– The cost of removing runqueue/scheduler state spill
from the task struct

– The cost of safety and intralinguality in heap allocation

• LMBench microbenchmarks ported to Theseus and Linux

The documentation as well as a pre-built image of Theseus for
each experiment can be found in the subfolder with the same name in
the osdi20ae folder: https://github.com/theseus-os/Theseus/tree/
osdi20ae/osdi20ae. Some experiments require Theseus to be built
with special flags or need to be passed certain parameters to match the
test cases in the paper. The requirements for running each benchmark
as it was run in the paper are given in the documentation.

A.6 Evaluation and expected result
Due to differences in hardware and execution environments, the
exact results presented in the paper may differ from those reproduced
on other machines. However, the relative performance trends and
conclusions drawn in our evaluation should hold.

A.6.1 Live evolution case studies
In these case studies, which correspond to §7.1 and Figure 2 in the
paper, we start with a standard build of Theseus and evolve it into a
different version with completely different functionality. This pro-
cess downloads a set of modified crates as specified by an evolution
manifest generated by our build tool, and then applies them to the
running system using the upd application. The experiments can ei-
ther be reproduced using a host machine that runs our build server
alongside a virtualized instance of Theseus within QEMU, or using
two separate physical machines with network access, one for the
build server and one for Theseus. We provide detailed instructions on
how to set up and reproduce each case study, as well as screenshots
that describe what new behavior is expected after the evolutionary
procedure has completed. We also explain how to obtain the raw
values and calculate the measurements in Figure 2; one expects a
general trend in which the first step of loading and linking crate
object files takes the longest, and the critical third and fourth steps
are very fast, within tens of µs to a few hundred µs.

18 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/theseus-os/Theseus/tree/osdi20ae/osdi20ae
https://github.com/theseus-os/Theseus/tree/osdi20ae/osdi20ae
https://github.com/theseus-os/Theseus
https://github.com/theseus-os/Theseus
https://github.com/theseus-os/Theseus/tree/osdi20ae
https://theseus-os.github.io/Theseus/
https://github.com/theseus-os/Theseus/tree/osdi20ae/osdi20ae
https://github.com/theseus-os/Theseus/tree/osdi20ae/osdi20ae

A.6.2 Fault injection and recovery
In this experiment, Theseus runs atop the QEMU emulator, and we
attach GDB to the virtualized instance of Theseus and use a script
to inject faults into it by modifying the contents of memory and
other hardware components like the instruction pointer register. We
provide pre-built images of Theseus that run two of the sample work-
loads described in §7.2: accessing an in-memory filesystem and
using inter-task communication channels. Each image is accompa-
nied by a script that will inject faults into the system components
used by the workloads run in that image. At the end of the experi-
ment, each script should output the number of successful recoveries
and failed recoveries. We also provide a full CSV table listing every
fault injected and its outcome in our own trials.

A.6.3 IPC fault comparison
In this experiment, we compare 13 deterministic faults injected
into Theseus’s ITC channels and MINIX 3’s IPC channels. A ta-
ble describing the nature of each fault and the expected response
observed in both Theseus and MINIX 3 is given in the README
in this experiment’s folder. As described in that README, modified
source code of MINIX 3 is available at https://github.com/theseus-
os/minix_osdi_ae, which contains a separate branch for each fault
and instructions on how to build and run both systems to reproduce
said fault recovery behavior.

A.6.4 Evaluation of MappedPages
This experiment measures the time to map, remap, and unmap a 4KiB
page in two configurations: using the state spill-free, intralingual
MappedPages implementation in Theseus, and using a traditional
spillful approach based on a red-black tree of VMAs (see Figure 3).
We provide a pre-built image for automated use with QEMU, with
an accompanying script that runs this benchmark multiple times,
parses the results, and calculates the statistics given in the paper.
One should expect to observe similar trends as Figure 3, in which the
MappedPages approach scales to many concurrent mappings better
than the VMA-based approach.

A.6.5 Evaluation of runqueue state spill in tasking
This experiment measures the overhead of eliminating state spill into
the tasking subsystem from the runqueue and scheduler subsystems,
i.e., the overhead measured in Figure 4. We provide two pre-built
images of Theseus (and instructions to re-create them manually),
one using our standard spill-free implementation of runqueue and
task states and one with a traditional spillful approach of a large
stateful task struct. One should expect to observe similar trends as
Figure 4(a), in that simply removing an exited task in the spill-free
version will scale roughly linearly with the number of total runqueues
in the system, whereas the spillful version should remain constant.
The more important trend to observe is that of Figure 4(b), in which
the overall effect of runqueue-task state spill is relatively minor
because the cost of spawning a task dominates that of searching
runqueues to remove an exited task.

A.6.6 Heap microbenchmarks

In this experiment, we run the threadtest and shbench microbench-
marks to measure the performance of three different versions of
heap allocators that vary in their levels of safety and intralinguality,
as given in Table 2 of the paper. We provide pre-built images for
each configuration and instructions on how to build them manually.
Overall, the expected trend is that the unsafe heap is the fastest, fol-
lowed by the partially-safe heap and then the safe heap; the absolute
runtimes may change but the relative overhead should remain similar
to the paper.

A.6.7 LMBench microbenchmarks

In this experiment, we port a core subset of LMBench benchmarks
to safe Rust code and compare their execution times across three en-
vironments: as Linux userspace applications, as applications atop the
standard dynamically-loaded version of Theseus, and as applications
atop a statically-linked version of Theseus, as shown in Table 3. We
provide pre-built images for both configurations of Theseus as well
as the ported LMBench source code, plus scripts and instructions for
building and running it. In these microbenchmarks, we expect The-
seus to be generally faster than Linux due to its SAS/SPL design that
avoids extra boundary crossings (address spaces and privilege levels)
imposed by traditional hardware-protected systems like Linux.

A.7 Experiment customization

The test executables and scripts for each experiment in Theseus can
be customized with command-line parameters, e.g., the number of
iterations, the size of trial operations, etc. Running each test com-
mand with a solitary --help argument will output a help menu that
describes those parameters, along with in-source documentation at
the top of each test application.

A.8 AE Methodology

Submission, reviewing and badging methodology:

• https://www.usenix.org/conference/osdi20/call-for-artifacts

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 19

https://github.com/theseus-os/minix_osdi_ae
https://github.com/theseus-os/minix_osdi_ae
https://www.usenix.org/conference/osdi20/call-for-artifacts

RedLeaf: Isolation and Communication in a Safe Operating System

Vikram Narayanan
University of California, Irvine

Tianjiao Huang
University of California, Irvine

David Detweiler
University of California, Irvine

Dan Appel
University of California, Irvine

Zhaofeng Li
University of California, Irvine

Gerd Zellweger
VMware Research

Anton Burtsev
University of California, Irvine

Abstract
RedLeaf is a new operating system developed from scratch

in Rust to explore the impact of language safety on operat-
ing system organization. In contrast to commodity systems,
RedLeaf does not rely on hardware address spaces for isola-
tion and instead uses only type and memory safety of the Rust
language. Departure from costly hardware isolation mecha-
nisms allows us to explore the design space of systems that
embrace lightweight fine-grained isolation. We develop a
new abstraction of a lightweight language-based isolation
domain that provides a unit of information hiding and fault
isolation. Domains can be dynamically loaded and cleanly
terminated, i.e., errors in one domain do not affect the ex-
ecution of other domains. Building on RedLeaf isolation
mechanisms, we demonstrate the possibility to implement
end-to-end zero-copy, fault isolation, and transparent recov-
ery of device drivers. To evaluate the practicality of RedLeaf
abstractions, we implement Rv6, a POSIX-subset operating
system as a collection of RedLeaf domains. Finally, to demon-
strate that Rust and fine-grained isolation are practical—we
develop efficient versions of a 10Gbps Intel ixgbe network
and NVMe solid-state disk device drivers that match the per-
formance of the fastest DPDK and SPDK equivalents.

1 Introduction
Four decades ago, early operating system designs identified
the ability to isolate kernel subsystems as a critical mecha-
nism for increasing the reliability and security of the entire
system [12, 32]. Unfortunately, despite many attempts to in-
troduce fine-grained isolation to the kernel, modern systems
remain monolithic. Historically, software and hardware mech-
anisms remain prohibitively expensive for isolation of subsys-
tems with tightest performance budgets. Multiple hardware
projects explored the ability to implement fine-grained, low-
overhead isolation mechanisms in hardware [84,89,90]. How-
ever, focusing on performance, modern commodity CPUs
provide only basic support for coarse-grained isolation of
user applications. Similarly, for decades, overheads of safe
languages that can provide fine-grained isolation in software

remained prohibitive for low-level operating system code.
Traditionally, safe languages require a managed runtime, and
specifically, garbage collection, to implement safety. Despite
many advances in garbage collection, its overhead is high for
systems designed to process millions of requests per second
per core (the fastest garbage collected languages experience
20-50% slowdown compared to C on a typical device driver
workload [28]).

For decades, breaking the design choice of a monolithic ker-
nel remained impractical. As a result, modern kernels suffer
from lack of isolation and its benefits: clean modularity, infor-
mation hiding, fault isolation, transparent subsystem recovery,
and fine-grained access control.

The historical balance of isolation and performance is
changing with the development of Rust, arguably, the first
practical language that achieves safety without garbage col-
lection [45]. Rust combines an old idea of linear types [86]
with pragmatic language design. Rust enforces type and mem-
ory safety through a restricted ownership model allowing
only one unique reference to each live object in memory. This
allows statically tracking the lifetime of the object and deallo-
cating it without a garbage collector. The runtime overhead
of the language is limited to bounds checking, which in many
cases can be concealed by modern superscalar out-of-order
CPUs that can predict and execute the correct path around
the check [28]. To enable practical non-linear data structures,
Rust provides a small set of carefully chosen primitives that
allow escaping strict limitations of the linear type system.

Rust is quickly gaining popularity as a tool for development
of low-level systems that traditionally were done in C [4,
24, 40, 47, 50, 65]. Low-overhead safety brings a range of
immediate security benefits—it is expected, that two-thirds
of vulnerabilities caused by low-level programming idioms
typical for unsafe languages can be eliminated through the
use of a safe language alone [20, 22, 67, 69, 77].

Unfortunately, recent projects mostly use Rust as a drop-
in replacement for C. We, however, argue that true benefits
of language safety lie in the possibility to enable practical,
lightweight, fine-grained isolation and a range of mechanisms

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 21

that remained in the focus of systems research but remained
impractical for decades: fault isolation [79], transparent de-
vice driver recovery [78], safe kernel extensions [13,75], fine-
grained capability-based access control [76], and more.

RedLeaf1 is a new operating system aimed at exploring the
impact of language safety on operating system organization,
and specifically the ability to utilize fine-grained isolation
and its benefits in the kernel. RedLeaf is implemented from
scratch in Rust. It does not rely on hardware mechanisms for
isolation and instead uses only type and memory safety of the
Rust language.

Despite multiple projects exploring isolation in language-
based systems [6, 35, 39, 85] articulating principles of iso-
lation and providing a practical implementation in Rust re-
mains challenging. In general, safe languages provide mech-
anisms to control access to the fields of individual objects
(e.g., through pub access modifier in Rust) and protect point-
ers, i.e., restrict access to the state of the program transi-
tively reachable through visible global variables and explicitly
passed arguments. Control over references and communica-
tion channels allows isolating the state of the program on
function and module boundaries enforcing confidentiality and
integrity, and, more generally, constructing a broad range of
least-privilege systems through a collection of techniques
explored by object-capability languages [59].

Unfortunately, built-in language mechanisms alone are not
sufficient for implementing a system that isolates mutually
distrusting computations, e.g., an operating system kernel that
relies on language safety for isolating applications and kernel
subsystems. To protect the execution of the entire system, the
kernel needs a mechanism that isolates faults, i.e., provides
a way to terminate a faulting or misbehaving computation in
such a way that it leaves the system in a clean state. Specif-
ically, after the subsystem is terminated the isolation mech-
anisms should provide a way to 1) deallocate all resources
that were in use by the subsystem, 2) preserve the objects
that were allocated by the subsystem but then were passed
to other subsystems through communication channels, and
3) ensure that all future invocations of the interfaces exposed
by the terminated subsystem do not violate safety or block
the caller, but instead return an error. Fault isolation is chal-
lenging in the face of semantically-rich interfaces encouraged
by language-based systems—frequent exchange of references
all too often implies that a crash of a single component leaves
the entire system in a corrupted state [85].

Over the years the goal to isolate computations in language-
based systems came a long way from early single-user, single-
language, single-address space designs [9, 14, 19, 25, 34, 55,
71, 80] to ideas of heap isolation [6, 35] and use of linear
types to enforce it [39]. Nevertheless, today the principles of
language-based isolation are not well understood. Singular-
ity [39], which implemented fault isolation in Sing#, relied

1Forming in the leaf tissue Rust fungi turn it red.

on a tight co-design of the language and operating system to
implement its isolation mechanisms. Nevertheless, several re-
cent systems suggesting the idea of using Rust for lightweight
isolation, e.g., Netbricks [68] and Splinter [47], struggled to
articulate the principles of implementing isolation, instead
falling back to substituting fault isolation for information
hiding already provided by Rust. Similar, Tock, a recent oper-
ating system in Rust, supports fault isolation of user processes
through traditional hardware mechanisms and a restricted sys-
tem call interface, but fails to provide fault isolation of its
device drivers (capsules) implemented in safe Rust [50].

Our work develops principles and mechanisms of fault iso-
lation in a safe language. We introduce an abstraction of
a language-based isolation domain that serves as a unit of
information hiding, loading, and fault isolation. To encapsu-
late domain’s state and implement fault isolation at domain
boundary, we develop the following principles:

• Heap isolation We enforce heap isolation as an invari-
ant across domains, i.e., domains never hold pointers into
private heaps of other domains. Heap isolation is key for
termination and unloading of crashing domains, since
no other domains hold pointers into the private heap of a
crashing domain, it’s safe to deallocate the entire heap.
To enable cross-domain communication, we introduce a
special shared heap that allows allocation of objects that
can be exchanged between domains.

• Exchangeable types To enforce heap isolation, we in-
troduce the idea of exchangeable types, i.e., types that
can be safely exchanged across domains without leaking
pointers to private heaps. Exchangeable types allow us to
statically enforce the invariant that objects allocated on
the shared heap cannot have pointers into private domain
heaps, but can have references to other objects on the
shared heap.

• Ownership tracking To deallocate resources owned by
a crashing domain on the shared heap, we track owner-
ship of all objects on the shared heap. When an object
is passed between domains we update its ownership
depending on whether it’s moved between domains or
borrowed in a read-only access. We rely on Rust’s own-
ership discipline to enforce that domains lose ownership
when they pass a reference to a shared object in a cross-
domain function call, i.e., Rust enforces that there are no
aliases into the passed object left in the caller domain.

• Interface validation To provide extensibility of the sys-
tem and allow domain authors to define custom inter-
faces for subsystems they implement while retaining iso-
lation, we validate all cross-domain interfaces enforcing
the invariant that interfaces are restricted to exchange-
able types and hence preventing them from breaking the
heap isolation invariants. We develop an interface defini-
tion language (IDL) that statically validates definitions
of cross-domain interfaces and generates implementa-
tions for them.

22 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

• Cross-domain call proxying We mediate all cross-
domain invocations with invocation proxies—a layer
of trusted code that interposes on all domain’s inter-
faces. Proxies update ownership of objects passed across
domains, provide support for unwinding execution of
threads from a crashed domain, and protect future in-
vocations of the domain after it is terminated. Our IDL
generates implementations of the proxy objects from
interface definitions.

The above principles allow us to enable fault-isolation
in a practical manner: isolation boundaries introduce mini-
mal overhead even in the face of semantically-rich interfaces.
When a domain crashes, we isolate the fault by unwinding ex-
ecution of all threads that currently execute inside the domain,
and deallocate domain’s resources without affecting the rest
of the system. Subsequent invocations of domain’s interfaces
return errors, but remain safe and do not trigger panics. All
objects allocated by the domain, but returned before the crash,
remain alive.

To test these principles we implement RedLeaf as a mi-
crokernel system in which a collection of isolated domains
implement functionality of the kernel: typical kernel subsys-
tems, POSIX-like interface, device drivers, and user applica-
tions. RedLeaf provides typical features of a modern kernel:
multi-core support, memory management, dynamic loading
of kernel extensions, POSIX-like user processes, and fast de-
vice drivers. Building on RedLeaf isolation mechanisms, we
demonstrate the possibility to transparently recover crash-
ing device drivers. We implement an idea similar to shadow
drivers [78], i.e., lightweight shadow domains that mediate
access to the device driver and restart it replaying its initial-
ization protocol after the crash.

To evaluate the generality of RedLeaf abstractions, we im-
plement Rv6, a POSIX-subset operating system on top of
RedLeaf. Rv6 follows the UNIX V6 specification [53]. De-
spite being a relatively simple kernel, Rv6 is a good platform
that illustrates how ideas of fine-grained, language-based iso-
lation can be applied to modern kernels centered around the
POSIX interface. Finally, to demonstrate that Rust and fine-
grained isolation introduces a non-prohibitive overhead, we
develop efficient versions of 10Gbps Intel Ixgbe network and
PCIe-attached solid state-disk NVMe drivers.

We argue that a combination of practical language safety
and ownership discipline allows us to enable many classical
ideas of operating system research for the first time in an effi-
cient way. RedLeaf is fast, supports fine-grained isolation of
kernel subsystems [57, 61, 62, 79], fault isolation [78, 79], im-
plements end-to-end zero-copy communication [39], enables
user-level device drivers and kernel bypass [11, 21, 42, 70],
and more.

2 Isolation in Language-Based Systems
Isolation has a long history of research in language-based sys-
tems that were exploring tradeoffs of enforcing lightweight

isolation boundaries through language safety, fine-grained
control of pointers, and type systems. Early operating sys-
tems applied safe languages for operating system develop-
ment [9,14,19,25,34,55,71,80]. These systems implemented
an “open” architecture, i.e., a single-user, single-language,
single-address space operating system that blurred the bound-
ary between the operating system and the application it-
self [48]. These systems relied on language safety to pro-
tect against accidental errors but did not provide isolation of
subsystems or user-applications (modern unikernels take a
similar approach [2, 37, 56]).

SPIN was the first to suggest language safety as a mech-
anism to implement isolation of dynamic kernel exten-
sions [13]. SPIN utilized Modula-3 pointers as capabilities to
enforce confidentiality and integrity, but since pointers were
exchanged across isolation boundaries it failed to provide
fault isolation—a crashing extension left the system in an
inconsistent state.

J-Kernel [85] and KaffeOS [6] were the first kernels to
point out the problem that language safety alone is not suffi-
cient for enforcing fault isolation and termination of untrusted
subsystems. To support termination of isolated domains in
Java, J-Kernel developed the idea of mediating accesses to all
objects that are shared across domains [85]. J-Kernel intro-
duces a special capability object that wraps the interface of
the original object shared across isolated subsystems. To sup-
port domain termination, all capabilities created by a crashing
domain were revoked hence dropping the reference to the
original object that was garbage collected and preventing the
future accesses by returning an exception. J-Kernel relied
on a custom class loader to validate cross-domain interfaces
(i.e., generate remote-invocation proxies at run-time instead
of using a static IDL compiler). To enforce isolation, J-Kernel
utilized a special calling convention that allowed passing ca-
pability references by reference, but required a deep copy for
regular unwrapped objects. Without ownership discipline for
shared objects, J-Kernel provided a somewhat limited fault
isolation model: the moment the domain that created the ob-
ject crashed all references to the shared objects were revoked,
propagating faults into domains that acquired these objects
through cross-domain invocations. Moreover, lack of “move”
semantics, i.e., the ability to enforce that the caller lost access
to the object when it was passed to the callee, implied that
isolation required a deep copy of objects which is prohibitive
for isolation of modern, high-throughput device drivers.

Instead of mediating accesses to shared objects through
capability references, KaffeOS adopts the technique of “write
barriers” [88] that validate all pointer assignments throughout
the system and hence can enforce a specific pointer disci-
pline [6]. KaffeOS introduced separation of private domain
and special shared heaps designated for sharing of objects
across domains—explicit separation was critical to perform
the write barrier check, i.e., if assigned pointer belonged to a
specific heap. Write barriers were used to enforce the follow-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 23

ing invariants: 1) objects on the private heap were allowed to
have pointers into objects on the shared heap, but 2) objects
on the shared heap were constrained to the same shared heap.
On cross-domain invocations, when a reference to a shared
object was passed to another domain, the write barrier was
used to validate the invariants, and also to create a special
pair of objects responsible for reference counting and garbage
collecting shared objects. KaffeOS had the following fault
isolation model: when the creator of the object terminated,
other domains retained access to the object (reference count-
ing ensured that eventually objects were deallocated when all
sharers terminated). Unfortunately, while other domains were
able to access the objects after their creator crashed, it was
not sufficient for clean isolation—shared objects were poten-
tially left in an inconsistent state (e.g., if the crash happened
halfway through an object update), thus potentially halting
or crashing other domains. Similar to J-Kernel, isolation of
objects required a deep copy on a cross-domain invocation. Fi-
nally, performance overhead of mediating all pointer updates
was high.

Singularity OS introduced a new fault isolation model built
around a statically enforced ownership discipline [39]. Similar
to KaffeOS, in Singularity applications used isolated private
heaps and a special “exchange heap” for shared objects. A
pioneering design decision was to enforce single ownership of
objects allocated on the exchange heap, i.e., only one domain
could have a reference to an object on the shared heap at
a time. When a reference to an object was passed across
domains the ownership of the object was “moved” between
domains (an attempt to access the object after passing it to
another domain was rejected by the compiler). Singularity
developed a collection of novel static analysis and verification
techniques enforcing this property statically in a garbage
collected Sing# language. Single ownership was key for a
clean and practical fault isolation model—crashing domains
were not able to affect the rest of the system—not only their
private heaps were isolated, but a novel ownership discipline
allowed for isolation of the shared heap, i.e., there was no
way for a crashing domain to trigger revocation of shared
references in other domains, or leave shared objects in an
inconsistent state. Moreover, single ownership allowed secure
isolation in a zero-copy manner, i.e., the move semantics
guaranteed that the sender of an object was losing access to
it and hence allowed the receiver to update the object’s state
knowing that the sender was not able to access new state or
alter the old state underneath.

Building on the insights from J-Kernel, KaffeOS, and Sin-
gularity, our work develops principles for enforcing fault iso-
lation in a safe language that enforces ownership. Similar
to J-Kernel, we adopt wrapping of interfaces with proxies.
We, however, generate proxies statically to avoid the run-time
overhead. We rely on heap isolation similar to KaffeOS and
Singularity. Our main reason for heap isolation is to be able
to deallocate the domain’s private heap without any seman-

tic knowledge of objects inside. We borrow move seman-
tics for the objects on the shared heap to provide clean fault
isolation and at the same time support zero-copy commu-
nication from Singularity. We, however, extend it with the
read-only borrow semantics which we need to support trans-
parent domain recovery without giving up zero-copy. Since
we implement RedLeaf in Rust, we benefit from its ownership
discipline that allows us to enforce the move semantics for
objects on the shared heap. Building on a body of research on
linear types [86], affine types, alias types [18, 87], and region-
based memory management [81], and being influenced by
languages like Sing# [29], Vault [30], and Cyclone [43], Rust
enforces ownership statically and without compromising us-
ability of the language. In contrast to Singularity that heavily
relies on the co-design of Sing# [29] and its communication
mechanisms, we develop RedLeaf’s isolation abstractions—
exchangeable types, interface validation, and cross-domain
call proxying—outside of the Rust language. This allows us
to clearly articulate the minimal set of principles required
to provide fault isolation, and develop a set of mechanisms
implementing them independently from the language, that,
arguably, allows adapting them to specific design tradeoffs.
Finally, we make several design choices aimed at practicality
of our system. We design and implement our isolation mecha-
nisms for the most common, “migrating threads” model [31]
instead of messages [39] to avoid a thread context switch on
the critical cross-domain call path and allow a more natural
programming idiom, e.g., in RedLeaf domain interfaces are
just Rust traits.

3 RedLeaf Architecture
RedLeaf is structured as a microkernel system that relies on
lightweight language-based domains for isolation (Figure 1).
The microkernel implements functionality required to start
threads of execution, memory management, domain loading,
scheduling, and interrupt forwarding. A collection of isolated
domains implement device drivers, personality of an operat-
ing system, i.e., the POSIX interface, and user applications
(Section 4.5). As RedLeaf does not rely on hardware isolation
primitives, all domains and the microkernel run in ring 0. Do-
mains, however, are restricted to safe Rust (i.e., microkernel
and trusted libraries are the only parts of RedLeaf that are
allowed to use unsafe Rust extensions).

We enforce the heap isolation invariant between domains.
To communicate, domains allocate shareable objects from
a global shared heap and exchange special pointers, remote
references (RRef<T>), to objects allocated on the shared heap
(Section 3.1). The ownership discipline allows us to imple-
ment lightweight zero-copy communication across isolated
domains (Section 3.1).

Domains communicate via normal, typed Rust function
invocations. Upon cross-domain invocation, the thread moves
between domains but continues execution on the same stack.
Domain developers provide an interface definition for the

24 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Ixgbe
Driver

Trusted
crate

Proxy

C
o
m

p
ile

r-
e
n
fo

rc
e
d

p
ro

te
ct

io
n
 d

o
m

a
in

s

rv6
Core

Microkernel

NVMe
Driver

Trusted
crate

rv6
User

Shared Heap

RRef

Proxy

FS

Proxy Proxy

Net

Proxy

rv6
User

RedLeaf
User

rv6

Figure 1: RedLeaf architecture

domain’s entry point and its interfaces. The RedLeaf IDL
compiler automatically generates code for creating and ini-
tializing domains and checks the validity of all types passed
across domain boundaries (Section 3.1.5).

RedLeaf mediates all cross-domain communication with
trusted proxy objects. Proxies are automatically generated
from the IDL definitions by the IDL compiler (Section 3.1.5).
On every domain entry, the proxy checks if a domain is alive
and if so, it creates a lightweight continuation that allows us
to unwind execution of the thread if the domain crashes.

In RedLeaf references to objects and traits are capabilities.
In Rust, a trait declares a set of methods that a type must
implement hence providing an abstraction of an interface. To
expose their functionality, domains exchange references to
traits via cross-domain calls. We rely on capability-based
access control [76] to enforce the principle of least privilege
and enable flexible operating system organizations: e.g., we
implement several scenarios in which applications talk to
the device driver directly bypassing the kernel, and even can
link against device driver libraries leveraging DPDK-style
user-level device driver access.

Protection model The core assumptions behind RedLeaf
are that we trust (1) the Rust compiler to implement lan-
guage safety correctly, and (2) Rust core libraries that use
unsafe code, e.g., types that implement interior mutability,
etc. RedLeaf’s TCB includes the microkernel, a small set of

trusted RedLeaf crates required to implement hardware inter-
faces and low-level abstractions, device crates that provide
a safe interface to hardware resources, e.g., access to DMA
buffers, etc., the RedLeaf IDL compiler, and the RedLeaf
trusted compilation environment. At the moment, we do not
address vulnerabilities in unsafe Rust extensions, but again
speculate that eventually all unsafe code will be verified for
functional correctness [5, 8, 82]. Specifically, the RustBelt
project provides a guide for ensuring that unsafe code is en-
capsulated within a safe interface [44].

We trust devices to be non-malicious. This requirement
can be relaxed in the future by using IOMMUs to protect
physical memory. Finally, we do not protect against side-
channel attacks; while these are important, addressing them
is simply beyond the scope of the current work. We speculate
that hardware counter-measures to alleviate the information
leakage will find their way in the future CPUs [41].

3.1 Domains and Fault Isolation
In RedLeaf domains are units of information hiding, fault iso-
lation, and composition. Device drivers, kernel subsystems,
e.g., file system, network stack, etc., and user programs are
loaded as domains. Each domain starts with a reference to
a microkernel system-call interface as one of its arguments.
This interface allows every domain to create threads of exe-
cution, allocate memory, create synchronization objects, etc.
By default, the microkernel system call interface is the only
authority of the domain, i.e., the only interface through which
the domain can affect the rest of the system. Domains how-
ever can define a custom type for an entry function requesting
additional references to objects and interfaces to be passed
when it is created. By default, we do not create a new thread
of execution for the domain.

Every domain, however, can create threads from the init

function called by the microkernel when the domain is loaded.
Internally, the microkernel keeps track of all resources cre-
ated on behalf of each domain: allocated memory, registered
interrupt threads, etc. Threads can outlive the domain creating
them as they enter other domains where they can run indefi-
nitely. Those threads continue running until they return to the
crashed domain and it is the last domain in their continuation
chain.

Fault isolation RedLeaf domains provide support for fault-
isolation. We define fault isolation in the following manner.
We say that a domain crashes and needs to be terminated
when one of the threads that enters the domain panics. Panic
potentially leaves objects reachable from inside the domain
in an inconsistent state, making further progress of any of the
threads inside the domain impractical (i.e., even if threads
do not deadlock or panic, the results of the computation are
undefined). Then, we say that the fault is isolated if the follow-
ing conditions hold. First, we can unwind all threads running
inside the crashing domain to the domain entry point and
return an error to the caller. Second, subsequent attempts to

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 25

Microkernel

Dom B

dom_id: A

X
 y: RRef<Y>

Shared Heap

dom_id: _

Y

Heap Registry

Dom A
...
b.foo(x);
...

fn foo(x: RRef<X>)
 -> RpcResult<()>
{ ... };

Proxy

fn foo(x: RRef<X>)
 -> RpcResult<()> {
 ...
 x.move_to(B);
 ret = b.foo(x);
 ...
};

Figure 2: Inter-domain communication. Domain A invokes method
foo() of domain B. The proxy that interposes on the invocation
moves the ownership of the object pointed by x between domains.

invoke the domain return errors but do not violate safety guar-
antees or result in panics. Third, all resources of the crashed
domain can be safely deallocated, i.e., other domains do not
hold references into the heap of the crashed domain (heap
isolation invariant), and we can reclaim all resources owned
by the domain without leaks. Fourth, threads in other domains
continue execution, and can continue accessing objects that
were allocated by the crashed domain, but were moved to
other domains before the crash.

Enforcing fault isolation is challenging. In RedLeaf iso-
lated subsystems export complex, semantically rich interfaces,
i.e., domains are free to exchange references to interfaces and
hierarchies of objects. We make several design choices that
allow us to cleanly encapsulate domain’s state and yet support
semantically rich interfaces and zero-copy communication.

3.1.1 Heap Isolation and Sharing

Private and shared heaps To provide fault isolation across
domains and ensure safe termination of domains, we enforce
heap isolation across domains, i.e., objects allocated on the
private heap, stack, or global data section of the domain can
not be reached from outside of the domain. This invariant
allows us to safely terminate any domain at any moment
of execution. Since no other domain holds pointers into the
private heap of a terminated domain, it is safe to deallocate
the entire heap.

To support efficient cross-domain communication, we pro-
vide a special, global shared heap for objects that can be sent
across domains. Domains allocate objects on the shared heap
in a way similar to the normal heap allocation with the Rust
Box<T> type that allocates a value of type T on the heap. We
construct a special type, remote reference or RRef<T>, that allo-
cates a value of type T on the shared heap (Figure 2). RRef<T>
consists of two parts: a small metadata and the value itself.

The RRef<T> metadata contains an identifier of the domain
currently owning the reference, borrow counter, and type in-
formation for the value. The RRef<T> metadata along with the
value are allocated on the shared heap that allows RRef<T> to
outlive the domain that originally allocates it.

Memory allocation on the domain heap To provide encap-
sulation of domain’s private heap, we implement a two-level
memory allocation scheme. At the bottom, the microkernel
provides domains with an interface for allocating untyped
coarse-grained memory regions (larger than one page). Each
coarse-grained allocation is recorded in the heap registry. To
serve fine-grained typed allocations on the domain’s private
heap, each domain links against a trusted crate that provides
the Rust memory allocation interface, Box<T>. Domain heap
allocations follow the rules of the Rust’s ownership discipline,
i.e., objects are deallocated when they go out of scope. The
two-level scheme has the following benefit: allocating only
large memory regions, the microkernel records all memory
allocated by the domain without significant performance over-
heads. If the domain panics, the microkernel walks the registry
of all untyped memory regions allocated by the allocator as-
signed to the domain and deallocates them without calling
any destructors. Such untyped, coarse-grained deallocation is
safe as we ensure the heap isolation invariant: other domains
have no references into the deallocated heap.

3.1.2 Exchangeable Types

Objects allocated on the shared heap are subject to the fol-
lowing rule: they can be composed of only of exchangeable
types. Exchangeable types enforce the invariant that objects
on the shared heap cannot have pointers into private or shared
heaps, but can have RRef<T>s to other objects allocated on the
shared heap. RedLeaf’s IDL compiler validates this invariant
when generating interfaces of the domain (Section 3.1.5). We
define exchangeable types as the following set: 1) RRef<T>

itself, 2) a subset of Rust primitive Copy types, e.g., u32, u64,
but not references in the general case, nor pointers, 3) anony-
mous (tuples, arrays) and named (enums, structs) composite
types constructed out of exchangeable types, 4) references
to traits with methods that receive exchangeable types. Also,
all trait methods are required to follow the following call-
ing convention that requires them to return the RpcResult<T>

type to support clean abort semantics for threads returning
from crashing domains (Section 3.1). The IDL checks inter-
face definition and validates that all types are well-formed
(Section 3.1.5).

3.1.3 Ownership Tracking

In RedLeaf RRef<T>s can be freely passed between domains.
We allow RRef<T>s to be moved or borrowed immutably. How-
ever, we implement an ownership discipline for RRef<T>s that
is enforced on cross-domain invocations. Ownership track-
ing allows us to safely deallocate objects on the shared heap
owned by a crashing domain. The metadata section of the

26 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

RRef<T> keeps track of the owner domain and the number of
times it was borrowed immutably on cross-domain invoca-
tions.

Initially, RRef<T> is owned by the domain that allocates the
reference. If the reference is moved to another domain in
a cross-domain call, we change the owner identifier inside
RRef<T> moving ownership from one domain to another. All
cross-domain communication is mediated by trusted proxies,
so we can securely update the owner identifier from the proxy.
Rust’s ownership discipline ensures that there is always only
one remote reference to the object inside the domain, hence
when the reference is moved between domains on a cross-
domain call, the caller loses access to the object passing it
to the callee. If the reference is borrowed immutably in a
cross-domain call, we do not change the owner identifier
inside RRef<T>, but instead increment the counter that tracks
the number of times RRef<T> was borrowed.
Recursive references RRef<T>s can form hierarchies of ob-
jects. To avoid moving all RRef<T>s in the hierarchy recur-
sively on a cross-domain invocation, only the root of the
object hierarchy has a valid owner identifier (in Figure 2 only
object X has a valid domain identifier A, object Y does not).
Upon a cross-domain call, the root RRef<T> is updated by the
proxy which changes the domain identifier to move owner-
ship of the RRef<T> between domains. This requires a special
scheme for deallocating RRef<T>s in case of a crash: we scan
the entire RRef<T> registry to clean up resources owned by a
crashing domain. To prevent deallocation of children objects
of the hierarchy, we rely on the fact that they do not have a
valid RRef<T> identifier (we skip them during the scan). The
drop method of the root RRef<T> object walks the entire hier-
archy and deallocates all children objects (RRef<T>s cannot
form cycles). Note, we should carefully handle the case when
an RRef<T> is taken out of the hierarchy. To deallocate this
RRef<T> correctly we need to assign it a valid domain identi-
fier, i.e., Y gets a proper domain identifier when it is moved
out from X. We mediate RRef<T> field assignments with trusted
accessor methods. We generate accessor methods that pro-
vide the only way to take out an RRef<T> from an object field.
This allows us to mediate the move operation and update the
domain identifier for the moved RRef<T>. Note that accessors
cannot be enforced for the unnamed composite types, e.g.,
arrays and tuples. For these types we update ownership of all
composite elements upon crossing the domain boundary.
Reclaiming shared heap Ownership tracking allows us to
deallocate objects that are currently owned by the crashing do-
main. We maintain a global registry of all allocated RRef<T>s
(Figure 2). When a domain panics, we walk through the reg-
istry and deallocate all references that are owned by the crash-
ing domain. We defer deallocation if RRef<T> was borrowed
until the borrow count drops to zero. Deallocation of each
RRef<T> requires that we have a drop method for each RRef<T>

type and can identify the type of the reference dynamically.
Each RRef<T> has a unique type identifier generated by the

IDL compiler (the IDL knows all RRef<T> types in the system
as it generates all cross-domain interfaces). We store the type
identifier along with the RRef<T> and invoke the appropriate
drop method to correctly deallocate any, possibly, hierarchical
data structure on the shared heap.

3.1.4 Cross-Domain Call Proxying

To enforce fault isolation, RedLeaf relies on invocation prox-
ies to interpose on all cross-domain invocations (Figure 2).
A proxy object exposes an interface identical to the interface
it mediates. Hence the proxy interposition is transparent to
the user of the interface. To ensure isolation and safety, the
proxy implements the following inside each wrapped function:
1) The proxy checks if the domain is alive before perform-
ing the invocation. If the domain is alive, the proxy records
the fact that the thread moves between domains by updating
its state in the microkernel. We use this information to un-
wind all threads that happen to execute inside the domain
when it crashes. 2) For each invocation, the proxy creates a
lightweight continuation that captures the state of the thread
right before the cross-domain invocation. The continuation al-
lows us to unwind execution of the thread, and return an error
to the caller. 3) The proxy moves ownership of all RRef<T>s
passed as arguments between domains, or updates the bor-
row count for all references borrowed immutably. 4) Finally,
the proxy wraps all trait references passed as arguments: the
proxy creates a new proxy for each trait and passes the refer-
ence to the trait implemented by that proxy.

Thread unwinding To unwind execution of a thread from a
crashing domain, we capture the state of the thread right be-
fore it enters the callee domain. For each function of the trait
mediated by the proxy, we utilize an assembly trampoline that
saves all general registers into a continuation. The microker-
nel maintains a stack of continuations for each thread. Each
continuation contains the state of all general registers and a
pointer to an error handling function that has the signature
identical to the function exported by the domain’s interface.
If we have to unwind the thread, we restore the stack to the
state captured by the continuation, and invoke the error han-
dling function on the same stack and with the same values of
general registers. The error handling function returns an error
to the caller.

To cleanly return an error in case of a crash, we enforce the
following calling convention for all cross-domain invocations:
every cross-domain function must return RpcResult<T>, an
enumerated type that either holds the returned value or an
error (Figure 3). This allows us to implement the following
invariant: functions unwound from the crashed domain never
return corrupted data, but instead return an RpcResult<T> error.

3.1.5 Interface Validation

RedLeaf’s IDL compiler is responsible for validation of do-
main interfaces and generation of proxy code required for en-
forcing the ownership discipline on the shared heap. RedLeaf

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 27

pub trait BDev {
fn read(&self, block: u32, data: RRef<[u8; BSIZE]>)

-> RpcResult<RRef<[u8; BSIZE]>>;
fn write(&self, block: u32, data: &RRef<[u8; BSIZE]>)

-> RpcResult<()>;
}

#[create]
pub trait CreateBDev {
fn create(&self, pci: Box<dyn PCI>)
-> RpcResult<(Box<dyn Domain>, Box<dyn BDev>)>

}

Figure 3: BDev domain IDL interface definitions.

IDL is a subset of Rust extended with several attributes to
control generation of the code (Figure 3). This design choice
allows us to provide developers with the familiar Rust syntax
and also re-use Rust’s parsing infrastructure.

To implement an abstraction of an interface, we rely on
Rust’s traits. Traits provide a way to define a collection of
methods that a type has to implement to satisfy the trait,
hence defining a specific behavior. For example, the BDev trait
requires any type that provides it to implement two methods:
read() and write() (Figure 3). By exchanging references to
trait objects domains connect to the rest of the system and
establish communication with other domains.

Each domain provides an IDL definition for the create trait
that allows any domain that has access to this trait to create
domains of this type (Figure 3). Marked with the #[create]

attribute, the create trait both defines the type of the domain
entry function, and the trait that can be used to create the
domain. Specifically, the entry function of the BDev domain
takes the PCI trait as an argument and returns a pointer to
the BDev interface. Note that when the BDev domain is created
along with the BDev interface, the microkernel also returns the
Domain trait that allows creator of the domain to control it later.
The IDL generates Rust implementations of both the create
trait and the microkernel code used to create the domain of
this type.

Interface validation We perform interface validation as a
static analysis pass of the IDL compiler. The compiler starts
by parsing all dependent IDL files creating a unified abstract
syntax tree (AST), which is then passed to validation and
generation stages. During the interface validation pass, we
use the AST to extract relevant information for each type
that we validate. Essentially, we create a graph that encodes
information about all types and relationships between them.
We then use this graph to verify that each type is exchangeable
and that all isolation constraints are satisfied: methods of
cross-domain interfaces return RpcResult<T>, etc.

3.2 Zero-copy Communication
A combination of the Rust’s ownership discipline and the
single-ownership enforced on the shared heap allows us to
provide isolation without sacrificing end-to-end zero-copy
across the system. To utilize zero-copy communication, do-
mains allocate objects on the shared heap with using the

RRef<T> type. On every cross-domain invocation a mutable
reference (a reference that provides writable access to the
object) is moved between domains, or an immutable refer-
ence can be borrowed. If the invocation succeeds, i.e., the
callee domain does not panic, a set of RRef<T>s might be re-
turned by the callee moving the ownership to the caller. In
contrast to Rust itself, we do not allow borrowing of mutable
references. Borrowing of mutable references may result in an
inconsistent state in the face of a domain crash when damaged
objects are returned to the caller after the thread is unwound.
Hence, we require all mutable references to be moved and
returned explicitly. If a domain crashes, instead of a reference
an RpcResult<T> error is returned.

Zero-copy is challenging in the face of crashing domains
and the requirement to provide transparent recovery. A typical
recovery protocol re-starts the crashing domain and re-issues
the failing domain call, trying to conceal the crash from the
caller. This often requires that objects passed as arguments
in the re-started invocation are available inside the recovery
domain. It is possible to create a copy of each object before
each invocation, but this introduces significant overhead. To
recover domains without additional copies, we rely on sup-
port for immutable borrowing of RRef<T>s on cross-domain
invocations. For example, the write() method of the BDev in-
terface borrows an immutable reference to the data written
to the block device (Figure 3). If an immutable reference
is borrowed by the domain, Rust’s type system guarantees
that the domain cannot modify the borrowed object. Hence,
even if the domain crashes, it is safe to return the unmod-
ified read-only object to the caller. The caller can re-issue
the invocation as part of the recovery protocol providing the
immutable reference as an argument again. This allows imple-
menting transparent recovery without creating backup copies
of arguments on each invocation that can potentially crash.

4 Implementation
While introducing a range of novel abstractions, we guide the
design of RedLeaf by principles of practicality and perfor-
mance. To a degree, RedLeaf is designed as a replacement for
full-featured, commodity kernels like Linux.

4.1 Microkernel
The RedLeaf microkernel provides a minimal interface for
creating and loading isolated domains, threads of execution,
scheduling, low-level interrupt dispatch, and memory man-
agement. RedLeaf implements memory management mech-
anisms similar to Linux—a combination of buddy [46] and
slab [16] allocators provides an interface for heap allocation
inside the microkernel (the Box<T> mechanism). Each domain
runs its own allocator internally and requests regions of mem-
ory directly from the kernel buddy allocator.

We implement the low-level interrupt entry and exit code in
assembly. While Rust provides support for the x86-interrupt
function ABI (a way to write a Rust function that takes the

28 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

x86 interrupt stack frame as an argument), in practice, it is
not useful as we need the ability to interpose on the entry and
exit from the interrupt, for example, to save all CPU registers.

In RedLeaf device drivers are implemented in user domains
(the microkernel itself does not handle any device interrupts
besides timer and NMI). Domains register threads as interrupt
handlers for device-generated interrupts. For each external
interrupt, the microkernel maintains a list of threads waiting
for an interrupt. The threads are put back on the scheduler run
queue when the interrupt is received.

4.2 Dynamic Domain Loading
In RedLeaf domains are compiled independently from the
kernel and are loaded dynamically. Rust itself provides no
support for dynamic extensions (except Splinter [47], existing
Rust systems statically link all the code they execute [7, 50,
68]). Conceptually, the safety of dynamic extensions relies
on the following invariant: types of all data structures that
cross a domain boundary, including the type of the entry point
function, and all types passed through any interfaces reachable
through the entry function are the same, i.e., have identical
meaning and implementation, across the entire system. This
ensures that even though parts of the system are compiled
separately type safety guarantees are preserved across domain
boundaries.

To ensure that types have the same meaning across all
components of the system, RedLeaf relies on a trusted compi-
lation environment. This environment allows the microkernel
to check that domains are compiled against the same ver-
sions of IDL interface definitions, and with the same compiler
version, and flags. When a domain is compiled, the trusted
environment signs the fingerprint that captures all IDL files,
and a string of compiler flags. The microkernel verifies the
integrity of the domain when it is loaded. Additionally, we
enforce that domains are restricted to only safe Rust, and link
against a white-listed set of Rust libraries.

Code generation Domain creation and loading rely on the
code generated by the IDL compiler (Figure 4). IDL en-
sures safety at domain boundaries and allows support for
user-defined domain interfaces. From the definitions of do-
main interfaces (Figure 4, 1) and its create function (2) the
IDL generates the following code: 1) Rust implementations
of all interfaces (3) and the create (4) trait, 2) a trusted
entry point function (5) that is placed in the domain’s build
tree and compiled along with the rest of the domain to en-
sure that domain’s entry function matches the domain create
code, hence preserving safety on the domain boundary, 3) a
microkernel domain create function that creates domains with
a specific type signature of the entry point function (6), and
4) implementation of the proxy for this interface (7). By
controlling the generation of the entry point, we ensure that
the types of the entry function inside the microkernel and
inside the domain match. If a domain tries to violate safety by
changing the type of its entry function the compilation fails.

4.3 Safe Device Drivers
In RedLeaf device drivers are implemented as regular do-
mains with no additional privileges. Like other domains they
are restricted to the safe subset of Rust. To access the hard-
ware, we provide device drivers with a collection of trusted
crates that implement a safe interface to the hardware inter-
face of the device, e.g., access to device registers and its DMA
engines. For example, the ixgbe device crate provides access
to the BAR region of the device, and abstracts its submit and
receive queues with the collection of methods for adding and
removing requests from the buffers.

Device driver domains are created by the init domain when
the system boots. Each PCI device takes a reference to the
PCI trait that is implemented inside the pci domain. Similar to
other driver domains, the PCI driver relies on a trusted crate
to enumerate all hardware devices on the bus. The trusted
crate constructs BARAddr objects that contain addresses of PCI
BAR regions. We protect each BARAddr object with a custom
type, so it can only be used inside the trusted device crate
that implements access to this specific BAR region. The pci

domain probes device drivers with matching device identifiers.
The driver receives a reference to the BARAddr object and starts
accessing the device via its trusted crate.

4.4 Device Driver Recovery
Lightweight isolation mechanisms and clean domain inter-
faces allow us to implement transparent device driver recovery
with shadow drivers [78]. We develop shadow drivers as nor-
mal unprivileged RedLeaf domains. Similar to proxy objects,
the shadow driver wraps the interface of the device driver
and exposes an identical interface. In contrast to the proxy
which is relatively simple and can be generated from the IDL
definition, the shadow driver is intelligent as it implements
a driver-specific recovery protocol. The shadow driver inter-
poses on all communication with the driver. During normal
operation, the shadow passes all calls to the real device driver.
However, it saves all information required for the recovery
of the driver (e.g., references to PCI trait, and other parts of
the device initialization protocol). If the driver crashes, the
shadow driver receives an error from the proxy domain. The
proxy itself receives the error when the thread is unwound
through the continuation mechanism. Instead of returning an
error to its caller, the shadow triggers the domain recovery
protocol. It creates a new driver domain and replays its initial-
ization protocol, by interposing on all external communication
of the driver.

4.5 Rv6 Operating System Personality
To evaluate the generality of RedLeaf’s abstractions, we im-
plemented Rv6, a POSIX-subset operating system on top of
RedLeaf. At a high-level, Rv6 follows the implementation of
the xv6 operating system [73], but is implemented as a collec-
tion of isolated RedLeaf domains. Specifically, we implement
Rv6 as the following domains: the core kernel, file system,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 29

IDL

IDL IDL Compiler

Link

// Interface definition
pub trait BDev {...}

// Domain create trait
#[create]
pub trait CreateBDev{...}

pub trait BDev { ... }

Domain Create Function

Domain Entry Function

BDev Proxy

Domain code

Microkernel

pub trait CreateBDev{ ... }

Copy

Link

1

2

3

4

5

6

7

Figure 4: IDL code generation

network stack subsystem, network and disk device drivers,
and collection of user domains. User domains communicate
with the core kernel through the Rv6 system call interface.
The core kernel dispatches the system call to either the file
system or a network stack. The file system itself communi-
cates with one of the RedLeaf block device drivers to get
access to disk. We implemented three block device drivers:
in-memory, AHCI, and NVMe. The file system implements
journaling, buffer cache, inode, and naming layers. The net-
work subsystem implements the TCP/IP stack and connects
to the network device driver (we currently implement only
one driver that supports a 10Gbps Intel Ixgbe device). We do
not support the full semantics of the fork() system call as we
do not rely on address spaces and hence cannot virtualize and
clone the address space of the domain. Instead, we provide
a combination of create system calls that allow user appli-
cations to load and start new domains [10]. Rv6 boots into
a shell that supports pipes and I/O redirection and can start
other applications similar to a typical UNIX system.

5 Evaluation
We conduct all experiments in the openly-available CloudLab
network testbed [72].2 For network-based experiments, we
utilize two CloudLab c220g2 servers configured with two
Intel E5-2660 v3 10-core Haswell CPUs running at 2.6 GHz,
160 GB RAM, and a dual-port Intel X520 10Gb NIC. We
run our NVMe benchmarks on a CloudLab d430 node that is
configured with two 2.4 GHz 64-bit 8-Core E5-2630 Haswell
CPUs, and a PCIe-attached 400GB Intel P3700 Series SSD.
Linux machines run 64-bit Ubuntu 18.04 with a 4.8.4 kernel
configured without any speculative execution attack mitiga-
tions as recent Intel CPUs address a range of speculative
execution attacks in hardware. All RedLeaf experiments are
performed on bare-metal hardware. In all the experiments,
we disable hyper-threading, turbo boost, CPU idle states, and
frequency scaling to reduce the variance in benchmarking.

5.1 Overheads of Domain Isolation
Language based isolation versus hardware mechanisms
To understand the benefits of language-based isolation over
traditional hardware mechanisms, we compare RedLeaf’s

2RedLeaf is available at https://mars-research.github.io/
redleaf.

Operation Cycles

seL4 834
VMFUNC 169
VMFUNC-based call/reply invocation 396
RedLeaf cross-domain invocation 124
RedLeaf cross-domain invocation (passing an RRef<T>) 141
RedLeaf cross-domain invocation via shadow 279
RedLeaf cross-domain via shadow (passing an RRef<T>) 297

Table 1: Language-based cross-domain invocation vs hardware iso-
lation mechanisms.

cross-domain calls with the synchronous IPC mechanism im-
plemented by the seL4 microkernel [27], and a recent kernel-
isolation framework that utilizes VMFUNC-based extended
page table (EPT) switching [62]. We choose seL4 as it im-
plements the fastest synchronous IPC across several mod-
ern microkernels [58]. We configure seL4 without meltdown
mitigations. On the c220g2, server seL4 achieves the cross-
domain invocation latency of 834 cycles (Table 1).

Recent Intel CPU introduces two new hardware isolation
primitives—memory protection keys (MPK) and EPT switch-
ing with VM functions—provide support for memory iso-
lation with overheads comparable to system calls [83] (99-
105 cycles for MPK [38, 83] and 268-396 cycles for VM-
FUNC [38,58,62,83]). Unfortunately, both primitives require
complex mechanisms to enforce isolation, e.g., binary rewrit-
ing [58, 83], protection with hardware breakpoints [38], exe-
cution under control of a hypervisor [54, 58, 62]. Moreover,
since neither MPK nor EPT switching are designed to support
isolation of privileged ring 0 code, additional techniques are
required to ensure isolation of kernel subsystems [62].

To compare the performance of EPT-based isolation with
language-based techniques we use in RedLeaf, we configure
LVDs, a recent EPT-based kernel isolation framework [62] to
perform ten million cross-domain invocations and measure
the latency in cycles with the RDTSC instruction. In LVDs,
the cross-domain call relies on the VMFUNC instruction to
switch the root of the EPT and selects a new stack in the callee
domain. LVDs, however, require no additional switches of a
privilege level or a page-table. A single VMFUNC instruction
takes 169 cycles, while a complete call/reply invocation takes
396 cycles on the c220g2 server (Table 1).

In RedLeaf, a cross-domain call is initiated by invoking

30 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://mars-research.github.io/redleaf
https://mars-research.github.io/redleaf

the trait object provided by the proxy domain. The proxy
domain uses a microkernel system call to move the thread
from the callee to the caller domain, creates continuation to
unwind the thread to the entry point in case the invocation
fails, and invokes the trait of the callee domain. On the return
path, a similar sequence moves the thread from the callee
domain back into the caller. In RedLeaf, a null cross-domain
invocation via a proxy object (Table 1) introduces an overhead
of 124 cycles. Saving the state of the thread, i.e., creating
continuation, takes 86 cycles as it requires saving all general
registers. Passing one RRef<T> adds an overhead of 17 cycles
as RRef<T> is moved between domains. To understand the low-
level overhead of transparent recovery, we measure the latency
of performing the same invocation via a shadow domain. In
case of a shadow the invocation crosses two proxies and a user-
built shadow domain and takes 286 cycles due to additional
crossing of proxy and shadow domains.

Most recent Intel CPUs implement support for ring 0 en-
forcement of memory protection keys, protection keys su-
pervisor (PKS) [3], finally enabling low-overhead isolation
mechanism for the privileged kernel code. Nevertheless, even
with low-overhead hardware isolation mechanisms, a zero-
copy fault-isolation scheme requires ownership discipline for
shared objects that arguably requires support from the pro-
gramming language, i.e., either a static analysis [39] or a type
system that can enforce single-ownership.

Overheads of Rust Memory safety guarantees of Rust come
at a cost. In addition to the checks required to ensure safety
at runtime, some Rust abstractions have a non-zero runtime
cost, e.g., types that implement interior mutability, option
types, etc. To measure the overheads introduced by Rust lan-
guage itself, we develop a simple hash table that uses an
open-addressing scheme and relies on the Fowler–Noll–Vo
(FNV) hashing function with linear probing to store eight byte
keys and values. Using the same hashing logic, we develop
three implementations: 1) in plain C, 2) in idiomatic Rust (the
style encouraged by the Rust programming manual), and 3) in
C-style Rust that essentially uses C programming idioms but
in Rust. Specifically, in C-style Rust, we avoid 1) using higher-
order functions and 2) the Option<T> type that we utilize in
the idiomatic code to distinguish between the occupied and
unoccupied entries in the table. Without the Option<T> type
that adds at least one additional byte to the key-value pair, we
benefit from a tight, cache-aligned representation of key-value
pairs in memory to avoid additional cache misses. We vary
the number of entries in the hash table from 212 to 226 and
keep the hash-table 75% full. On most hash table sizes, our
implementation in idiomatic Rust remains 25% slower than
the one in plain C, whereas C-style Rust performs equal to or
even better than plain C, although by only 3-10 cycles (Fig-
ure 5). We attribute this to a more compact code generated by
the Rust compiler (47 instructions on the critical get/set path
in C-style Rust versus 50 instructions in C).

0

0.25

0.5

0.75

1

1.25

1.5

12 14 16 18 20 22 24 26T
S

C
 r

a
ti
o

 n
o

rm
a

liz
e

d
 t

o
 C

Number of elements in the hash table (power of two)

idiomatic-rust-set()
c-style-rust-set()

idiomatic-rust-get()
c-style-rust-get()

Figure 5: C vs Rust performance comparison

0

4

8

12

16

20

Tx-64-1 Tx-64-32 Rx-64-1 Rx-64-32

P
k
ts

/s
 (

M
ill

io
n

)

Linux
DPDK

redleaf-driver

redleaf-domain
redleaf-shadow

rv6-domain

rv6-shadow
line rate

Figure 6: Ixgbe driver performance

5.2 Device Drivers
One of the critical assumptions behind RedLeaf is that Rust’s
safety is practical for development of the fastest subsystems
of a modern operating system kernel. Today, operating with
latencies of low hundreds of cycles per I/O request, device
drivers that provide access to high-throughput I/O interfaces,
network adapters and low-latency non-volatile PCIe-attached
storage, have the tightest performance budgets among all
kernel components. To understand if overheads of Rust’s zero-
cost abstractions allow the development of such low-overhead
subsystems, we develop two device drivers: 1) an Intel 82599
10Gbps Ethernet driver (Ixgbe), and 2) an NVMe driver for
PCIe-attached SSDs.

5.2.1 Ixgbe Network Driver

We compare the performance of RedLeaf’s Ixgbe driver with
the performance of a highly-optimized driver from the DPDK
user-space packet processing framework [21] on Linux. Both
DPDK and our driver work in polling mode, allowing them
to achieve peak performance. We configure RedLeaf to run
several configurations: 1) redleaf-driver: the benchmark ap-
plication links statically with the driver (this configuration is
closest to user-level packet frameworks like DPDK; similarly,
we pass-through the Ixgbe interface directly to the RedLeaf);
2) redleaf-domain: the benchmark application runs in a sep-
arate domain, but accesses the driver domain directly via a
proxy (this configuration represents the case when the net-
work device driver is shared across multiple isolated applica-
tions [38]); 3) rv6-domain: the benchmark application runs as
an Rv6 program, it first enters the Rv6 with a system call and
then calls into the driver (this configuration is analogous to a
setup of a commodity operating system kernel in which user

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 31

0

20

40

60

80

100

tx-1 tx-32

P
k
ts

/s
 (

M
ill

io
n

)

redleaf-driver
redleaf-domain

redleaf-shadow
rv6-domain

rv6-shadow

Figure 7: Software-only nullnet driver performance

applications access I/O interfaces via a kernel network stack).
Further, we run the last two configurations with and with-
out the shadow driver (redleaf-shadow and rv6-shadow), which
introduces an additional domain crossing into the shadow
(these two configurations evaluate overheads of the transpar-
ent driver recovery). In all our tests, we pin the application
thread to a single CPU core.

We send 64 byte packets and measure the performance
on two batch sizes: 1 and 32 packets (Figure 6). For packet
receive tests, we use a fast packet generator from the DPDK
framework to generate packets at line-rate. On packet trans-
mit and receive tests, Linux achieves 0.89 Mpps due to its
overly general network stack and synchronous socket inter-
face (Figure 6). On a batch of one, DPDK achieves 6.7 Mpps
and is 7% faster than RedLeaf (6.5 Mpps) for both RX
and TX paths (Figure 6). On a batch of 32 packets, both
drivers achieve the line-rate performance of a 10GbE inter-
face (14.2 Mpps). To understand the impact of cross-domain
invocations, we run the benchmark application as a separate
domain (redleaf-domain) and as an Rv6 program (rv6-domain).
The overhead of domain crossings is apparent on a batch
size of one, where RedLeaf can send and receive packets
at the rate of 4 Mpps per-core with one domain crossing
(redleaf-domain) and 2.9 Mpps if the invocation involves
shadow domain (redleaf-shadow). With two domain cross-
ings, the performance drops to 2.8 Mpps (rv6-domain) and
2.4 Mpps if the driver is accessed via a shadow (rv6-shadow).
On a batch of 32 packets, the overhead of domain crossings
disappears as all configurations saturate the device.
Nullnet To further investigate the overheads of isolation
without the limits introduced by the device itself, we de-
velop a software-only nullnet driver that simply returns the
packet to the caller instead of queuing it to the device (Fig-
ure 7). On a batch of one, the overheads of multiple domain
crossings limit the theoretical performance of nullnet driver
from 29.5 Mpps per-core that can be achieved if the appli-
cation is linked statically with the driver (redleaf-driver) to
5.3 Mpps when nullnet is accessed from the Rv6 application
(rv6-domain). Adding a shadow driver lowers this number to
3.6 Mpps (rv6-shadow). Similarly, on a batch of 32 packets,
nullnet achieves 94 Mpps if the applicaiton is run in the same
domain as the driver. The performance drops to 67 Mpps when
the benchmark code runs as an Rv6 application (rv6-domain),
and to 55 Mpps if the Rv6 application involves a shadow
driver (rv6-shadow).

0

100

200

300

400

500

read-4k-1 read-4k-32 write-4k-1 write-4k-32

IO
P

S
 (

K
)

fio
SPDK

redleaf-driver

redleaf-domain
redleaf-shadow

rv6-domain

rv6-shadow

Figure 8: Performance of the NVMe driver

5.2.2 NVMe Driver

To understand the performance of RedLeaf’s NVMe driver,
we compare it with the multi-queue block driver in the Linux
kernel and a well-optimized NVMe driver from the SPDK
storage framework [42]. Both SPDK and RedLeaf drivers
work in polling mode. Similar to Ixgbe, we evaluate several
configurations: 1) statically linked (redleaf-driver); 2) requir-
ing one domain crossing (redleaf-domain); and 3) running as
an Rv6 user program (rv6-domain). We run the last two config-
urations with and without the shadow driver (redleaf-shadow
and rv6-shadow). All tests are limited to a single CPU core.

We perform sequential read and write tests with a block
size of 4KB on a batch size of 1 and 32 requests (Figure 8). On
Linux, we use fio, a fast I/O generator; on SPDK and RedLeaf,
we develop similar benchmark applications that submit a set
of requests at once, and then poll for completed requests.
To set an optimal baseline for our evaluation, we chose the
configuration parameters that can give us the fastest path to
the device. Specifically, on Linux, we configure fio to use the
asynchronous libaio library to overlap I/O submissions, and
bypass the page cache with the direct I/O flag.

On sequential read tests, fio on Linux achieves 13K IOPS
and 141K IOPS per-core on the batch size of 1 and 32 respec-
tively (Figure 8). On a batch size of one, the RedLeaf driver
is 1% faster (457K IOPS per-core) than SPDK (452K IOPS
per-core). Both drivers achieve maximum device read perfor-
mance. SDPK is slower as it performs additional processing
aimed at collecting performance statistics on each request. On
a batch size of 32, the RedLeaf driver is less than 1% slower
(453K IOPS versus 454K IOPS SPDK). On sequential write
tests with a batch size of 32, Linux is within 3% of the de-
vice’s maximum throughput of around 256K IOPS. RedLeaf
is less than one percent slower (255K IOPS). Since NVMe is
a slower device compared to Ixgbe, the overheads of domain
crossings are minimal for both batch sizes. With one domain
crossing, the performance even goes up by 0.7% (we attribute
this to a varying pattern of accessing the doorbell register of
the device that gets thrashed between the device and CPU).

5.3 Application Benchmarks
To understand the performance overheads of safety and iso-
lation on application workloads, we develop several applica-
tions that traditionally depend on a fast data plane of the op-

32 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Linux
DPDK

redleaf-driver
redleaf-domain

redleaf-shadow
rv6-domain
rv6-shadow

line rate

0

4

8

12

16

maglev-32

P
k
ts

/s
 (

M
ill

io
n

s
)

0

50

100

150

200

httpd

P
k
ts

/s
 (

T
h

o
u

s
a

n
d

s
)

Figure 9: Performance of Maglev and Httpd

0

4

8

8-8
-1

M

16-6
4-1

M

64-6
4-1

M

8-8
-1

6M

16-6
4-1

6M

64-6
4-1

6M

P
k
ts

/s
 (

M
ill

io
n
)

c-dpdk
redleaf-driver

Figure 10: Key-value store

erating system kernel: 1) Maglev load balancer (maglev) [26],
2) a network-attached key-value store (kv-store), and 3) a
minimal web server (httpd).

Maglev load-balancer Maglev is a load balancer developed
by Google to evenly distribute incoming client flows among
a set of backend servers [26]. For each new flow, Maglev se-
lects one of the available backends by performing a lookup
in a hash table, size of which is proportional to the number
of backend servers (65,537 in our experiments). Consistent
hashing allows even distribution of flows across all servers.
Maglev then records the chosen backend in a hash table, a flow
tracking table, that is used to redirect packets from the same
flow to the same backend server. The size of the flow tracking
table is proportional to the number of flows (we choose 1 M
flows for our experiments). Processing a packet requires a
lookup in the flow tracking table if it is an existing flow, or
a lookup of a backend server and an insertion into the flow
tracking table to record the new flow. To compare RedLeaf
performance with both a commodity and the fastest possible
setup, we develop C and Rust versions of the core Maglev
logic. Moreover, we evaluate two C versions: one to run as a
normal Linux program that uses the socket interface and an-
other developed to work as a network function for the DPDK
network processing framework [21]. In all versions we follow
the same code logic and, if possible, apply the same optimiza-
tions. Again, on all setups, we restrict execution to one CPU
core. Running as a Linux program, maglev is limited to 1 Mpps
per-core due to the synchronous socket interface of the Linux
kernel and a generic network stack (Figure 9). Operating on a
batch of 32 packets, the maglev DPDK function is capable of
achieving 9.7 Mpps per-core due to a well-optimized network
device driver. Linked statically against the driver, RedLeaf

application (redleaf-driver) achieves 7.2 Mpps per-core. Per-
formance drops with additional domain crossings. Running as
an Rv6 application, maglev can forward at 5.3 Mpps per-core
without and 5.1 Mpps with the shadow domain.
Key-value store Key-value stores are de facto standard build-
ing blocks for a range of datacenter systems ranging from
social networks [64] to key-value databases [23]. To eval-
uate RedLeaf’s ability to support the development of effi-
cient datacenter applications, we develop a prototype of a
network-attached key-value store, kv-store. Our prototype is
designed to utilize a range of modern optimizations similar to
Mica [52], e.g., a user-level device driver like DPDK, parti-
tioned design aimed at avoiding cross-core cache-coherence
traffic, packet flow steering to guarantee that request is di-
rected to the specific CPU core where the key is stored, no
locks and no allocations on the request processing path, etc.
Our implementation relies on a hash table that uses open
addressing scheme with linear probing and the FNV hash
function. In our experiments, we compare the performance
of two implementations: a C version developed for DPDK,
and a Rust version that executes in the same domain with the
driver (redleaf-driver), i.e., the configuration that is closest
to DPDK. We evaluate two hash table sizes: 1 M and 16 M en-
tries with three sets of key and value pairs (<8B,8B>, <16B,64B>,
<64B,64B>). The RedLeaf version is implemented in a C-style
Rust code, i.e., we avoid Rust abstractions that have run-time
overhead (e.g., Option<T>, and RefCell<T> types). This ensures
that we can control the memory layout of the key-value pair
to avoid additional cache misses. Despite our optimizations,
RedLeaf achieves only 61-86% performance of the C DPDK
version. The main reason for the performance degradation is
that being implemented in safe Rust, our code uses vectors,
Vec<T>, to represent packet data. To create a response, we need
to extend this vector thrice by calling the extend_from_slice()

function to copy the response header, key, and value into the
response packet. This function checks if the vector needs to be
grown and performs a copy. In contrast, the C implementation
benefits from a much lighter unsafe invocation of memcpy().
As an exercise, we implemented the packet serialization logic
with unsafe Rust typecast that allowed us to achieve 85-94%
of the C’s performance. However, we do not allow unsafe
Rust inside RedLeaf domains.
Web server The latency of web page loading plays a critical
role in both the user experience, and the rank of the page
assigned by a search engine [15, 66]. We develop a prototype
of a web server, httpd, that can serve static HTTP content. Our
prototype uses a simple run-to-completion execution model
that polls incoming requests from all open connections in a
round-robin fashion. For each request, it performs request
parsing and replies with the requested static web page. We
compare our implementation with one of the de facto industry
standard web servers, Nginx [63]. In our tests, we use the wrk

HTTP load generator [1], which we configure to run with one
thread and 20 open connections. On Linux, Nginx can serve

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 33

0

500

1000

1500

2000

0 2 4 6 8 10

0

200

400

600

800

R
e

a
d

 T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

W
ri
te

 T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Time (sec)

Read Write

Figure 11: Block device recovery (FS write).

70.9 K requests per second, whereas our implementation of
httpd achieves 212 K requests per second in a configuration
where the application is run in the same domain as the driver
(redleaf-driver) and network stack (Figure 9). Specifically,
we benefit from low-latency access to the network stack and
the network device driver. Running as an Rv6 domain, httpd
achieves the rate of 181.4 K packets per second (178.9 K if it
uses a shadow).

5.4 Device Driver Recovery
To evaluate the overheads introduced by the transparent de-
vice driver recovery, we develop a test in which an Rv6 pro-
gram accesses the Rv6 file system backed by an in-memory
block device. Running as an Rv6 program, the benchmark
application continuously reads and writes files in the Rv6 file
system using 4K blocks. The Rv6 file system accesses the
block device via a shadow driver that can perform recovery of
the block device in case of a crash. During the test, we trigger
a crash of the block device driver every second (Figure 11).
Automatic recovery triggers a small drop in performance. For
reads, the throughput with and without restarts averages at
2062 MB/s and 2164 MB/s respectively (a 5% drop in perfor-
mance). For writes, the total throughput averages at 356 MB/s
with restarts and 423 MB/s without restarts (a 16% drop in
performance).

6 Related Work
Several recent projects use Rust for building low-level high-
performance systems, including data storage [33, 47, 60], net-
work function virtualization [68], web engine [74], and sev-
eral operating systems [17, 24, 50, 51], unikernels [49] and
hypervisors [4, 36, 40]. Firecracker [4], Intel Cloud Hyper-
visor [40], and Google Chrome OS Virtual Machine Moni-
tor [36] replace Qemu hardware emulator with a Rust-based
implementation. Redox [24] utilizes Rust for development
of a microkernel-based operating system (both microkernel
and user-level device drivers are implemented in Rust, but are
free to use unsafe Rust). The device drivers run in ring 3 and
use traditional hardware mechanisms for isolation and system
calls for communication with the microkernel. By and large,
all these systems leverage Rust as a safe alternative to C, but
do not explore the capabilities of Rust that go beyond type
and memory safety.

Tock develops many principles of minimizing the use of
unsafe Rust in a hardware-facing kernel code [50]. Tock is
structured as a minimal core kernel and a collection of de-
vice drivers (capsules). Tock relies on Rust’s language safety
for isolation of the capsules (in Tock user applications are
isolated with commodity hardware mechanisms). To ensure
isolation, Tock forbids unsafe extensions in capsules but does
not restrict sharing of pointers between capsules and the main
kernel (this is similar to language systems using pointers as
capabilities, e.g., SPIN [13]). As a result, a fault in any of the
capsules halts the entire system. Our work builds on many
design principles aimed at minimizing the amount of unsafe
Rust code developed by Tock but extends them with support
for fault isolation and dynamic loading of extensions. Sim-
ilar to Tock, Netbricks [68] and Splinter [47] rely on Rust
for isolation of network functions and user-defined database
extensions. None of the systems provides support for deallo-
cating resources of crashing subsystems, recovery, or generic
exchange of interfaces and object references.

7 Conclusions

“A Journey, not a Destination” [39], Singularity OS laid the
foundation for many concepts that influenced the design of
Rust. In turn, by enabling the principles of fault isolation
in Rust itself, our work completes the cycle of this journey.
RedLeaf, however, is just a step forward, not a final design—
while guided by principles of practicality and performance,
our work is, first, a collection of mechanisms and an experi-
mentation platform for enabling future system architectures
that leverage language safety. Rust provides systems develop-
ers the mechanisms we were waiting for decades: practical,
zero-cost safety, and a type system that enforces ownership.
Arguably, the isolation that we implement is the most crit-
ical mechanism as it provides a foundation for enforcing a
range of abstractions in systems with faulty and mistrusting
components. By articulating principles of isolation, our work
unlocks future exploration of abstractions enabled by the iso-
lation and safety: secure dynamic extensions, fine-grained
access control, least privilege, collocation of computation and
data, transparent recovery, and many more.

Acknowledgments

We would like to thank USENIX ATC 2020 and OSDI 2020
reviewers and our shepherd, Michael Swift, for numerous in-
sights helping us to improve this work. Also, we would like
to thank the Utah CloudLab team, and especially Mike Hibler,
for his continuous support in accommodating our hardware re-
quests. We thank Abhiram Balasubramanian for helping with
RedLeaf device drivers and Nivedha Krishnakumar for assist-
ing us with low-level performance analysis. This research is
supported in part by the National Science Foundation under
Grant Numbers 1837051 and 1840197, Intel and VMWare.

34 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] wrk - a HTTP benchmarking tool. https://github.

com/wg/wrk.

[2] Erlang on Xen. http://erlangonxen.org/, 2012.

[3] Intel 64 and IA-32 Architectures Software Developer’s
Manual, 2020. https://software.intel.com/

content/www/us/en/develop/download/intel-64-

and-ia-32-architectures-sdm-combined-volumes-

1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html.

[4] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight Virtualiza-
tion for Serverless Applications. In Proceedings of the
17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’20), pages 419–434, 2020.

[5] Vytautas Astrauskas, Peter Müller, Federico Poli, and
Alexander J. Summers. Leveraging Rust Types for Mod-
ular Specification and Verification. In Proceedings of
the ACM on Programming Languages (OOPSLA), vol-
ume 3, pages 147:1–147:30.

[6] Godmar Back and Wilson C Hsieh. The KaffeOS
Java Runtime System. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 27(4):583–
630, 2005.

[7] Abhiram Balasubramanian, Marek S. Baranowski, An-
ton Burtsev, Aurojit Panda, Zvonimir Rakamarić, and
Leonid Ryzhyk. System Programming in Rust: Beyond
Safety. In Proceedings of the 16th Workshop on Hot Top-
ics in Operating Systems (HotOS ’17), pages 156–161,
2017.

[8] Marek Baranowski, Shaobo He, and Zvonimir Raka-
marić. Verifying Rust Programs with SMACK. In Pro-
ceedings of the 16th International Symposium on Auto-
mated Technology for Verification and Analysis (ATVA),
volume 11138 of Lecture Notes in Computer Science,
pages 528–535. Springer, 2018.

[9] Fred Barnes, Christian Jacobsen, and Brian Vinter.
RMoX: A Raw-Metal occam Experiment. In Com-
municating Process Architectures 2003, volume 61 of
Concurrent Systems Engineering Series, pages 182–196,
September 2003.

[10] Andrew Baumann, Jonathan Appavoo, Orran Krieger,
and Timothy Roscoe. A Fork() in the Road. In Pro-
ceedings of the Workshop on Hot Topics in Operating
Systems (HotOS ’19), page 14–22, 2019.

[11] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.

IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In Proceedings of the
11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’14), pages 49–65, October
2014.

[12] D. Bell and L. LaPadula. Secure computer system: Uni-
fied exposition and Multics interpretation. Technical
Report ESD-TR-75-306, MITRE Corp., March 1976.

[13] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex-
tensibility Safety and Performance in the SPIN Operat-
ing System. In Proceedings of the 15th ACM Sympo-
sium on Operating Systems Principles (SOSP ’95), page
267–283, 1995.

[14] Andrew P. Black, Norman C. Hutchinson, Eric Jul, and
Henry M. Levy. The Development of the Emerald Pro-
gramming Language. In Proceedings of the 3rd ACM
SIGPLAN Conference on History of Programming Lan-
guages (HOPL III), page 11–1–11–51, 2007.

[15] Google Webmaster Central Blog. Using
site speed in web search ranking. https:

//webmasters.googleblog.com/2010/04/using-

site-speed-in-web-search-ranking.html.

[16] Jeff Bonwick. The Slab Allocator: An Object-
Caching Kernel Memory Allocator. In Proceedings
of the USENIX Summer 1994 Technical Conference
(USTC’94), page 6, 1994.

[17] Kevin Boos and Lin Zhong. Theseus: A State Spill-Free
Operating System. In Proceedings of the 9th Workshop
on Programming Languages and Operating Systems
(PLOS’17), page 29–35, 2017.

[18] John Boyland. Alias burying: Unique variables without
destructive reads. Software: Practice and Experience,
31(6):533–553, 2001.

[19] Hank Bromley and Richard Lamson. LISP Lore: A
Guide to Programming the Lisp Machine. Springer
Science & Business Media, 2012.

[20] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou,
Nickolai Zeldovich, and M. Frans Kaashoek. Linux
Kernel Vulnerabilities: State-of-the-Art Defenses and
Open Problems. In Proceedings of the 2nd Asia-Pacific
Workshop on Systems (APSys ’11), pages 5:1–5:5, 2011.

[21] Intel Corporation. DPDK: Data Plane Development Kit.
http://dpdk.org/.

[22] Cody Cutler, M Frans Kaashoek, and Robert T Mor-
ris. The benefits and costs of writing a POSIX kernel
in a high-level language. In Proceedings of the 13th

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 35

https://github.com/wg/wrk
https://github.com/wg/wrk
http://erlangonxen.org/
 https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
 https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
 https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
 https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://webmasters.googleblog.com/2010/04/using-site-speed-in-web-search-ranking.html
https://webmasters.googleblog.com/2010/04/using-site-speed-in-web-search-ranking.html
https://webmasters.googleblog.com/2010/04/using-site-speed-in-web-search-ranking.html
http://dpdk.org/

USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’18), pages 89–105, 2018.

[23] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Avail-
able Key-Value Store. In Proceedings of the 21st ACM
SIGOPS Symposium on Operating Systems Principles
(SOSP ’07), page 205–220, 2007.

[24] Redox Project Developers. Redox - Your Next(Gen) OS.
http://www.redox-os.org/.

[25] Sean M Dorward, Rob Pike, David Leo Presotto, Den-
nis M Ritchie, Howard W Trickey, and Philip Winterbot-
tom. The Inferno operating system. Bell Labs Technical
Journal, 2(1):5–18, 1997.

[26] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In Proceedings of the
13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’16), pages 523–535, March
2016.

[27] Kevin Elphinstone and Gernot Heiser. From L3 to SeL4
What Have We Learnt in 20 Years of L4 Microkernels?
In Proceedings of the 24th ACM Symposium on Oper-
ating Systems Principles (SOSP ’13), page 133–150,
2013.

[28] Paul Emmerich, Simon Ellmann, Fabian Bonk, Alex Eg-
ger, Esaú García Sánchez-Torija, Thomas Günzel, Sebas-
tian Di Luzio, Alexandru Obada, Maximilian Stadlmeier,
Sebastian Voit, et al. The Case for Writing Network
Drivers in High-Level Programming Languages. In Pro-
ceedings of the 2019 ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems
(ANCS), pages 1–13. IEEE, 2019.

[29] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion
Hodson, Galen Hunt, James R. Larus, and Steven Levi.
Language Support for Fast and Reliable Message-Based
Communication in Singularity OS. In Proceedings of
the 1st ACM SIGOPS/EuroSys European Conference on
Computer Systems 2006 (EuroSys ’06), page 177–190,
2006.

[30] Manuel Fahndrich and Robert DeLine. Adoption and Fo-
cus: Practical Linear Types for Imperative Programming.
In Proceedings of the ACM SIGPLAN 2002 Conference
on Programming Language Design and Implementation
(PLDI ’02), pages 13–24, 2002.

[31] Bryan Ford and Jay Lepreau. Evolving Mach 3.0 to a
Migrating Thread Model. In Proceedings of the USENIX
Winter 1994 Technical Conference on USENIX Winter
1994 Technical Conference (WTEC ’94), pages 97–114,
1994.

[32] Lester J Fraim. Scomp: A Solution to the Multilevel
Security Problem. Computer, 16(07):26–34, July 1983.

[33] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens,
Lara Timbó Araújo, Martin Ek, Eddie Kohler, M. Frans
Kaashoek, and Robert Morris. Noria: Dynamic,
Partially-Stateful Data-Flow for High-Performance Web
Applications. In Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implementa-
tion (OSDI’18), page 213–231, 2018.

[34] Adele Goldberg and David Robson. Smalltalk-80: The
Language and its Implementation. Addison-Wesley
Longman Publishing Co., Inc., 1983.

[35] Michael Golm, Meik Felser, Christian Wawersich, and
Jürgen Kleinöder. The JX Operating System. In Pro-
ceedings of the General Track of the Annual Conference
on USENIX Annual Technical Conference (ATC ’02),
page 45–58, 2002.

[36] Google. Google Chrome OS Virtual Machine
Monitor. https://chromium.googlesource.com/

chromiumos/platform/crosvm.

[37] Haskell Lightweight Virtual Machine (HaLVM). http:
//corp.galois.com/halvm.

[38] Mohammad Hedayati, Spyridoula Gravani, Ethan John-
son, John Criswell, Michael L. Scott, Kai Shen, and
Mike Marty. Hodor: Intra-Process Isolation for High-
Throughput Data Plane Libraries. In Proceedings of the
2019 USENIX Annual Technical Conference (USENIX
ATC ’19), pages 489–504, July 2019.

[39] Galen C. Hunt and James R. Larus. Singularity: Re-
thinking the Software Stack. ACM SIGOPS Operating
Systems Review, 41(2):37–49, April 2007.

[40] Intel. Cloud Hypervisor VMM. https://github.com/
cloud-hypervisor/cloud-hypervisor.

[41] Intel. Side Channel Mitigation by Product CPU
Model. https://www.intel.com/content/www/us/

en/architecture-and-technology/engineering-

new-protections-into-hardware.html.

[42] Intel Corporation. Storage Performance Development
Kit (SPDK). https://spdk.io.

[43] Trevor Jim, J. Greg Morrisett, Dan Grossman,
Michael W. Hicks, James Cheney, and Yanling Wang.

36 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.redox-os.org/
https://chromium.googlesource.com/chromiumos/platform/crosvm
https://chromium.googlesource.com/chromiumos/platform/crosvm
http://corp.galois.com/halvm
http://corp.galois.com/halvm
https://github.com/cloud-hypervisor/cloud-hypervisor
https://github.com/cloud-hypervisor/cloud-hypervisor
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://spdk.io

Cyclone: A safe dialect of C. In Proceedings of
the General Track: 2002 USENIX Annual Technical
Conference (ATC ’02), pages 275–288, June 2002.

[44] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers,
and Derek Dreyer. RustBelt: Securing the Foundations
of the Rust Programming Language. In Proceedings
of the ACM on Programming Languages (POPL), vol-
ume 2, pages 1–34, 2017.

[45] Steve Klabnik and Carol Nichols. The Rust Program-
ming Language. No Starch Press, 2019.

[46] Kenneth C. Knowlton. A Fast Storage Allocator. Com-
munications of the ACM, 8(10):623–624, October 1965.

[47] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian
Zhang, Robert Ricci, and Ryan Stutsman. Splinter: Bare-
Metal Extensions for Multi-Tenant Low-Latency Stor-
age. In Proceedings of the 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
’18), pages 627–643, October 2018.

[48] Butler W. Lampson and Robert F. Sproull. An Open Op-
erating System for a Single-User Machine. In Proceed-
ings of the 7th ACM Symposium on Operating Systems
Principles (SOSP ’79), page 98–105. 1979.

[49] Stefan Lankes, Jens Breitbart, and Simon Pickartz. Ex-
ploring Rust for Unikernel Development. In Proceed-
ings of the 10th Workshop on Programming Languages
and Operating Systems (PLOS’19), page 8–15, 2019.

[50] Amit Levy, Bradford Campbell, Branden Ghena,
Daniel B. Giffin, Pat Pannuto, Prabal Dutta, and Philip
Levis. Multiprogramming a 64kB Computer Safely
and Efficiently. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles (SOSP ’17), page
234–251, 2017.

[51] Alex Light. Reenix: Implementing a Unix-like operating
system in Rust. Undergraduate Honors Theses, Brown
University, 2015.

[52] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. MICA: A Holistic Approach to Fast
In-Memory Key-Value Storage. In Proceedings of the
11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’14), pages 429–444, April
2014.

[53] John Lions. Lions’ commentary on UNIX 6th edition
with source code. Peer-to-Peer Communications, Inc.,
1996.

[54] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and
Yubin Xia. Thwarting Memory Disclosure with Efficient

Hypervisor-Enforced Intra-Domain Isolation. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’15), page
1607–1619, 2015.

[55] Peter W Madany, Susan Keohan, Douglas Kramer, and
Tom Saulpaugh. JavaOS: A Standalone Java Environ-
ment. White Paper, Sun Microsystems, Mountain View,
CA, 1996.

[56] Anil Madhavapeddy, Richard Mortier, Charalampos Rot-
sos, David Scott, Balraj Singh, Thomas Gazagnaire,
Steven Smith, Steven Hand, and Jon Crowcroft. Uniker-
nels: Library Operating Systems for the Cloud. ACM
SIGARCH Computer Architecture News, 41(1):461–472,
March 2013.

[57] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang,
Nickolai Zeldovich, and M. Frans Kaashoek. Software
Fault Isolation with API Integrity and Multi-Principal
Modules. In Proceedings of the 23rd ACM Sympo-
sium on Operating Systems Principles (SOSP ’11), page
115–128, 2011.

[58] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and
Haibo Chen. SkyBridge: Fast and Secure Inter-Process
Communication for Microkernels. In Proceedings of
the 14th EuroSys Conference 2019 (EuroSys ’19), 2019.

[59] Mark Samuel Miller. Robust Composition: Towards a
Unified Approach to Access Control and Concurrency
Control. PhD thesis, Johns Hopkins University, May
2006.

[60] Derek G. Murray, Frank McSherry, Michael Isard, Re-
becca Isaacs, Paul Barham, and Martin Abadi. Incre-
mental, Iterative Data Processing with Timely Dataflow.
Communications of the ACM, 59(10):75–83, September
2016.

[61] Vikram Narayanan, Abhiram Balasubramanian, Charlie
Jacobsen, Sarah Spall, Scott Bauer, Michael Quigley,
Aftab Hussain, Abdullah Younis, Junjie Shen, Moinak
Bhattacharyya, and Anton Burtsev. LXDs: Towards
Isolation of Kernel Subsystems. In Proceedings of the
2019 USENIX Annual Technical Conference (USENIX
ATC ’19), pages 269–284, July 2019.

[62] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent
Jaeger, and Anton Burtsev. Lightweight Kernel Isolation
with Virtualization and VM Functions. In Proceedings
of the 16th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments (VEE ’20),
page 157–171, 2020.

[63] Nginx. Nginx: High Performance Load Balancer, Web
Server, and Reverse Proxy. https://www.nginx.com/.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 37

https://www.nginx.com/

[64] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing Memcache at Facebook. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’13), pages 385–398, April 2013.

[65] Oreboot developers. Oreboot. https://github.com/

oreboot/oreboot.

[66] Addy Osmani and Ilya Grigorik. Speed is
now a landing page factor for Google Search
and Ads. https://developers.google.com/web/

updates/2018/07/search-ads-speed.

[67] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe
Calvès, Julia Lawall, and Gilles Muller. Faults in Linux:
Ten Years Later. In Proceedings of the 16th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS XVI),
page 305–318, 2011.

[68] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls,
Sylvia Ratnasamy, and Scott Shenker. NetBricks: Tak-
ing the V out of NFV. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’16), pages 203–216, November
2016.

[69] Matthew Parkinson. Digital Security by Design: Se-
curity and Legacy at Microsoft. https://vimeo.com/

376180843, 2019. ISCF Digital Security by Design:
Collaboration Development Workshop.

[70] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The Operating System is
the Control Plane. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI ’14), pages 1–16, October 2014.

[71] David D Redell, Yogen K Dalal, Thomas R Horsley,
Hugh C Lauer, William C Lynch, Paul R McJones, Hal G
Murray, and Stephen C Purcell. Pilot: An Operating
System for a Personal Computer. Communications of
the ACM, 23(2):81–92, 1980.

[72] Robert Ricci, Eric Eide, and CloudLab Team. Introduc-
ing CloudLab: Scientific Infrastructure for Advancing
Cloud Architectures and Applications. ; login:: the
magazine of USENIX & SAGE, 39(6):36–38, 2014.

[73] Robert Morris Russ Cox, Frans Kaashoek. Xv6, a simple
Unix-like teaching operating system. https://pdos.

csail.mit.edu/6.828/2019/xv6.html, 2019.

[74] Servo, the Parallel Browser Engine Project. http://

www.servo.org.

[75] Christopher Small and Margo I. Seltzer. VINO: An
Integrated Platform for Operating System and Database
Research. Technical Report TR 30-94, Harvard Uni-
versity, Division of Engineering and Applied Sciences,
1994.

[76] Marc Stiegler. The E Language in a Walnut, 2000. http:
//www.skyhunter.com/marcs/ewalnut.html.

[77] Jeff Vander Stoep. Android: protecting the kernel. Linux
Security Summit, 2016.

[78] Michael M Swift, Muthukaruppan Annamalai, Brian N
Bershad, and Henry M Levy. Recovering Device
Drivers. ACM Transactions on Computer Systems
(TOCS), 24(4):333–360, 2006.

[79] Michael M Swift, Steven Martin, Henry M Levy, and
Susan J Eggers. Nooks: An Architecture for Reliable
Device Drivers. In Proceedings of the 10th workshop
on ACM SIGOPS European workshop, pages 102–107,
2002.

[80] Daniel C Swinehart, Polle T Zellweger, Richard J Beach,
and Robert B Hagmann. A Structural View of the Cedar
Programming Environment. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 8(4):419–
490, 1986.

[81] Mads Tofte and Jean-Pierre Talpin. Region-Based
Memory Management. Information and Computation,
132(2):109–176, 1997.

[82] J. Toman, S. Pernsteiner, and E. Torlak. Crust: A
Bounded Verifier for Rust (N). In 2015 30th IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE), pages 75–80, November 2015.

[83] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: Secure, Efficient In-process Isolation with
Protection Keys (MPK). In Proceedings of the 28th
USENIX Security Symposium (USENIX Security ’19),
pages 1221–1238, August 2019.

[84] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and
M. Valero. CODOMs: Protecting Software with Code-
centric Memory Domains. In Proceedings of the 2014
ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), pages 469–480, June 2014.

[85] Thorsten von Eicken, Chi-Chao Chang, Grzegorz Cza-
jkowski, Chris Hawblitzel, Deyu Hu, and Dan Spoon-
hower. J-Kernel: A Capability-Based Operating System

38 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/oreboot/oreboot
https://github.com/oreboot/oreboot
https://developers.google.com/web/updates/2018/07/search-ads-speed
https://developers.google.com/web/updates/2018/07/search-ads-speed
https://vimeo.com/376180843
https://vimeo.com/376180843
https://pdos.csail.mit.edu/6.828/2019/xv6.html
https://pdos.csail.mit.edu/6.828/2019/xv6.html
http://www.servo.org
http://www.servo.org
http://www.skyhunter.com/marcs/ewalnut.html
http://www.skyhunter.com/marcs/ewalnut.html

for Java. In Secure Internet Programming: Security Is-
sues for Mobile and Distributed Objects, pages 369–393.
1999.

[86] Philip Wadler. Linear Types Can Change the World!
In IFIP TC 2 Working Conference on Programming
Concepts and Methods, pages 347–359, 1990.

[87] David Walker and Greg Morrisett. Alias Types for Re-
cursive Data Structures (Extended Version). Technical
Report TR2000-1787, Cornell University, March 2000.

[88] Paul R. Wilson. Uniprocessor Garbage Collection Tech-
niques. In Memory Management, pages 1–42, 1992.

[89] Emmett Witchel, Junghwan Rhee, and Krste Asanović.
Mondrix: Memory Isolation for Linux Using Mondriaan
Memory Protection. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP
’05), page 31–44, 2005.

[90] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore,
J. Anderson, B. Davis, B. Laurie, P. G. Neumann, R. Nor-
ton, and M. Roe. The CHERI capability model: Revisit-
ing RISC in an age of risk. In Proceedings of the 2014
ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), pages 457–468, 2014.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 39

Specification and verification in the field:
Applying formal methods to BPF just-in-time compilers in the Linux kernel

Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang
University of Washington

Abstract
This paper describes our experience applying formal meth-

ods to a critical component in the Linux kernel, the just-in-time
compilers (“JITs”) for the Berkeley Packet Filter (BPF) virtual
machine. We verify these JITs using Jitterbug, the first frame-
work to provide a precise specification of JIT correctness that
is capable of ruling out real-world bugs, and an automated
proof strategy that scales to practical implementations. Using
Jitterbug, we have designed, implemented, and verified a new
BPF JIT for 32-bit RISC-V, found and fixed 16 previously
unknown bugs in five other deployed JITs, and developed new
JIT optimizations; all of these changes have been upstreamed
to the Linux kernel. The results show that it is possible to
build a verified component within a large, unverified system
with careful design of specification and proof strategy.

1 Introduction

Downloading application code into the OS kernel is a general
approach to extensibility [26]. To extend the kernel, the applica-
tion submits a programwritten in a dedicated language, and the
kernel executes this program using an interpreter, or translates
it intomachine code for native execution via a just-in-time (JIT)
compiler [3]. Berkeley Packet Filter (BPF) [31] is one such lan-
guage, and it is used to implement a wide variety of extensions
for the Linux kernel, including networking [38], security [79],
and tracing [35], among many other services [18, 57].
Given the prevalence of BPF code and its execution in

the OS kernel, the correctness of BPF JIT compilers (or
simply “JITs”) is critical for the system. Compared to the
BPF interpreter, using the JITs is both more efficient and
more resistant to speculative attacks [84], leading major Linux
distributions to remove the BPF interpreter from the kernel
in favor of the JITs [9]. But the JITs are more susceptible to
subtle correctness bugs due to their complexity (§3).
This paper presents a formal approach to building JITs in

the kernel with high assurance of correctness. We develop
Jitterbug, a framework for writing JITs and proving them

correct. Using Jitterbug, we design, implement, and verify a
BPF JIT for RV32, the 32-bit RISC-V architecture [96]. We
also port the existing JITs for Arm32, Arm64, RV64, x86-32,
and x86-64 to Jitterbug, uncovering 16 previously unknown
bugs. We write patches that fix these bugs and introduce new
optimizations, all of which are verified to be correct. The
BPF JIT for RV32, bug fixes, and optimizations have been
upstreamed to the Linux kernel.

Jitterbug is designed to meet three competing requirements:
deployability of verified JITs with minimal changes to the
Linux kernel; proof automation to support rapid verification
of JITs; and separability of verified JITs from any verification
artifacts, making the resulting code auditable by kernel devel-
opers with no background in formal methods. Each of these
requirements comes with its own challenges and trade-offs.
First, BPF JITs and their generated code interact with a

monolithic kernel via an existing interface, which was not de-
signed for verification. As Jitterbug emphasizes deployability,
it cannot adopt the clean-slate design favored by previous
verification efforts [33, 65, 81, 94] or change this interface to
simplify verification. Therefore, it needs a correctness spec-
ification that is both capable of ruling out real-world bugs
and amenable to verification. Developing such a specification
is challenging even for clean-slate designs with strong sim-
plifying assumptions, and it is the core technical challenge
addressed by Jitterbug.
Second, verification needs to catch up with increasing

functionality and optimization of BPF JITs. Jitterbug thus
prioritizes proof automation to free developers from the burden
of writing manual proofs and to enable rapid verification in
the code review process. Prior work has shown success in
scaling automated verification to systems whose code does
not change in response to input [68, 70]. But verifying a JIT is
particularly challenging, because it requires reasoning about
not only the behavior of the JIT itself, but also that of the
machine code generated by the JIT for input BPF programs.
Third, kernel development emphasizes the efficiency and

clarity of source code, whereas formal development empha-
sizes managing code complexity to make verification tractable.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 41

Jitterbug must resolve the tension and make the two develop-
ment processes cleanly separable. While formal development
can use specific tools and artifacts such as specifications, the
final implementation of a JIT needs to be C code that can be
reviewed assuming no knowledge of formal methods, and can
be compiled using a standard toolchain.

To address these challenges, Jitterbug makes the following
contributions:

• A precise stepwise specification for JIT correctness (§4).
The specification models both BPF and target architectures
as abstract machines, and it formulates JIT correctness as the
behavioral equivalence of running the machines with a source
BPF instruction and the target instructions produced by the JIT,
respectively. The specification assumes that a JIT translates a
single source instruction at a time. This assumption matches
real-world BPF JIT implementations and obviates the need to
reason about translating entire programs.

• An automated proof strategy that scales to practical BPF
JITs (§5). Building on Serval [68], Jitterbug uses symbolic
evaluation [10, 89] to produce a satisfiability query that
encodes the semantics of a JIT implementation, the semantics
of source BPF code, and the semantics of target machine code
produced by the JIT. It then discharges the query using an
SMT solver [21]. Since Serval was designed to reason about
systems whose code is statically known, it cannot be used
to verify symbolic instructions (e.g., with symbolic fields, at
symbolic addresses) generated by the symbolic evaluation
of a JIT. Jitterbug addresses this challenge with a symbolic
evaluation strategy that can reason about such symbolic code.

• An approach to writing JITs in a domain-specific lan-
guage (DSL) based on C (§6). The Jitterbug DSL is a shallow
embedding of a structured subset of C in Rosette [88, 89],
which extends Racket [29] for symbolic reasoning. That is, the
Jitterbug DSL implements a subset of C as a Rosette library.
We write new JITs in the DSL, which simplifies verification
and enables synthesis of JIT optimizations [59, 82]. Jitterbug
automates the step of translating JITs written in the DSL to
C through an (unverified) extraction mechanism. We verify
existing JITs by manually translating their C code to Rosette.

• Experience with using Jitterbug to build a BPF JIT for
RV32, find and fix bugs in five existing BPF JITs, perform
code review, develop optimizations, and port a JIT for a stack
machine [65], all with low verification overhead (§7). One of
the bugs has led to a clarification in the RISC-V instruction-set
manual. We report on the iterative process of improving
Jitterbug and upstreaming JIT code to the Linux kernel.

To our knowledge, Jitterbug is the first to provide a specifi-
cation that rules out bugs in practical JIT implementations, and
a proof strategy that scales automated verification to a class of
compilers. It demonstrates the feasibility of building a verified
component (i.e., the BPF JIT) within a large, unverified system
under active development (i.e., the Linux kernel), through care-
ful design of specification and proof strategy. This paper de-
scribes our design decisions and the rationale behind them (§8).

2 Related work

Code downloading for extensible systems. The Xerox
Alto allows applications to customize and optimize the system
through microcode [51, 85]. It pioneered the use of packet
filters for demultiplexing, debugging, and monitoring.
The CMU/Stanford Packet Filter [62] introduced a stack-

based virtual machine into the 4.3BSD kernel to interpret
packet filters. To enable more efficient implementations, the
Berkeley Packet Filter (BPF) [61] adopts a register-based
virtual machine instead, which consists of two 32-bit registers
and a scratch memory. BPF has gained a wide adoption in
BSD and Linux kernels. Besides BPF, DTrace [12] and Lua
on NetBSD [90] are two other in-kernel virtual machines.
A redesign of BPF in the Linux kernel started in 2014,

first as an optimization of the internal representation of BPF
instructions for 64-bit architectures [83]. It has since grown
into a full RISC-like virtual machine, with 64-bit general-
purpose registers, flexible control flow (e.g., bounded loops
and BPF-to-BPF calls), and safe access to kernel memory. The
generality and expressiveness have led to an explosion of tools
and systems based on BPF, ranging from networking [38],
security [79], tracing [35], to storage [7], virtualization [1, 71],
and hardware offloading [43]. The new design is also called
“extendedBPF” or simply “BPF” in the Linux kernel,while the
original design is referred to as classicBPF to avoid ambiguity.
Unless otherwise noted, we follow this terminology and use
BPF to refer to the new design. This paper focuses on building
verified JITs for BPF.

More generally, the exokernels [26] demonstrate a diverse
set of mechanisms for code downloading, such as accelerating
packet filtering using JIT compilation [25], sandboxing ma-
chine code [92] using software-based fault isolation [77, 91],
and analyzing file-system metadata using an in-kernel virtual
machine [40]. Other extensibility mechanisms include using
safe languages [6, 28, 55] and proof-carrying code [67].

Correctness of JIT compilation. Just-in-time compilation
(JIT) is a well-studied dynamic code generation technique
dating back to Lisp [3, 42] and regular expressions in the QED
text editor [76, 87]. It has also been used for dynamically typed
languages [14], emulators [5], and specialization [60, 73].

This paper considers JITs that are realized as static compil-
ers, using static register allocation and performing no garbage
collection for memory management. In contrast to sophisti-
cated dynamic code generation systems such as those for Java
or JavaScript, this simplicity makes static JITs applicable to a
restricted environment such as the kernel [24].
There is a rich literature on compiler correctness. Read-

ers may refer to Young [98] and Leroy [54] for overviews.
Compilers, especially optimizing compilers, can have multiple
intermediate representations and translation passes, whereas
the JITs considered in this paper are much simpler and resem-
ble a one-pass compiler. On the other hand, compilers usually

42 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

output assembly code, relying on a separate assembler and
linker (e.g., GNU as and ld) to produce final machine code.
The JITs run in the kernel and directly produce machine code,
effectively combining a compiler, assembler, and linker.
The closest efforts in this area are the verified JITs by

Myreen [65] and Jitk [94]. The former translates code in a
simple stack-based instruction set to x86-32 (see §7), and
is verified using the HOL4 theorem prover [80]. The JIT is
implemented in HOL4 and translated to x86-32 machine code
by a separate compiler [66]. Jitk builds on the CompCert
verified compiler [53] to translate classic BPF to assembly,
and is verified using the Coq theorem prover [86]. The JIT is
implemented in Coq and extracted to OCaml code; it runs in
user space rather than in the kernel due to the dependency on
the OCaml runtime, an assembler, and a linker. Both efforts
employ clean-slate designs, require manual proofs, and do not
have a C implementation. Jitterbug is inspired by these efforts
and shares the goal of building verified JITs, but prioritizes
applicability to existing systems, proof automation, and imple-
mentation that can be reviewed independent of verification.

Compiler testing and fuzzing tools employ effective strate-
gies to randomly generate input programs and check for
miscompilation [58]. Csmith [97] and EMI fuzzers [52] have
been used to find hundreds of bugs in GCC and LLVM. Kernel
fuzzers such as syzkaller and trinity support generation of ran-
dom BPF programs [23]. Serval [68] implements a bug finder
for the compilation of BPF arithmetic and bitwise instructions.
These tools generally do not exhaust all execution paths, thus
providing no correctness guarantees for JITs.

Designing verified systems for deployment. Deployability
is a desirable goal for formally verified systems, but it requires
navigating an extra set of design trade-offs. As the first veri-
fied general-purpose microkernel, seL4 [46] pioneered many
aspects of the design and deployment processes. For instance,
it introduced a Haskell prototype as the bridge between formal
methods and kernel developers, separating verification arti-
facts from the C implementation [45]. It has been deployed as
a hypervisor to retrofit unverified, legacy software to power
safety-critical systems [37, 47]. Another example is CompCert,
the first verified C compiler. It has been integrated into the
development process of control software for safety-critical
systems [41, 53], replacing unverified compilers that were
configured to disable optimizations due to risk concerns.

Cryptographic libraries are an attractive target for verifica-
tion due to their essential role in security. For example, verified
code from EverCrypt/HACL∗ [75, 99] and Fiat-Crypto [27] is
used by Mozilla and Google, respectively. Amazon’s s2n TLS
implementation [16] is verified via a combination of manual
and automated proofs.

Jitterbug presents a case study in applying formal methods
to the BPF JITs in the Linux kernel. It shares these design
challenges and addresses them with a precise specification and
a proof strategy that scales to practical JIT implementations.

prologue

ALU/JMP/MEM instruction

EXIT epilogue

TAIL_CALL

. . .

CAL
Lpre

CA
LL
po
st

start end

Figure 1: Transitions during the execution of a BPF program.

3 Case study

This section presents a brief overview of BPF and a case
study of the BPF JIT bugs in the Linux kernel, which helped
motivate the design of Jitterbug.

3.1 An overview of BPF
TheBPF virtualmachine consists of 12 explicit 64-bit registers:
general-purpose registers R0–R9, a frame pointer R10 that points
to a stack memory region, and an internal register AX used
by the kernel for rewrites (e.g., constant blinding against JIT
spraying attacks [8]). It maintains a program counter PC and a
tail-call counter TCC; the latter bounds the number of tail calls
(to another BPF program without returning).

Currently, there are a total of 115 instruction opcodes,which
can be categorized into the following:
• ALU (arithmetic and bitwise) instructions,
• JMP (unconditional and conditional jump) instructions,
• MEM (1-, 2-, 4-, and 8-byte memory access, and 4- and 8-byte
atomic exchange-and-add) instructions,

• CALL to a kernel function or another BPF program; and
• TAIL_CALL and EXIT, which transfer control to another BPF
program and the kernel, respectively.

Figure 1 depicts the execution of a BPF program. The input
to a BPF program is provided by the kernel. Prologue and
epilogue refer to initialization and cleanup code, respectively,
for bridging the kernel. The BPF calling convention specifies
that R0 holds the return value, R1–R5 pass arguments, and
R6–R9 are preserved across the call.
User processes may share data with BPF programs by

creating BPF maps in the kernel, which are key/value stores
of different data types. Maps may be accessed concurrently by
BPF programs and user processes. Though there have been
discussions, BPF has so far chosen not to specify a memory
consistency model to avoid performance penalties [19].
Each BPF program consists of a sequence of instructions

in bytecode (GCC/LLVM can compile C code to BPF). Upon
receiving a BPF program from user space, the kernel invokes
a checker to analyze whether the program is safe (e.g., free of
division by zero, unbounded loops, and uninitialized register
accesses) [34]; we refer to it as the BPF checker (rather than
“BPF verifier” as by the Linux kernel to avoid ambiguity). If
the BPF checker deems the program safe, the kernel invokes
the JIT for compilation and attaches the resulting machine

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 43

/* rd[0]: upper 32 bits of the destination register
rd[1]: lower 32 bits of the destination register
tmp2[1]: a temporary register */

if (val < 32) {
/* tmp2[1] = rd[1] >> val */
emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
/* rd[1] = tmp2[1] | (rd[0] << (32 - val)) */
emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL,

32 - val), ctx);
/* rd[0] = rd[0] >> val */
emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);

} else if (val == 32) {
/* rd[1] = rd[0] */
emit(ARM_MOV_R(rd[1], rd[0]), ctx);
/* rd[0] = 0 */
emit(ARM_MOV_I(rd[0], 0), ctx);

} else {
/* rd[1] = rd[0] >> (val - 32) */
emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR,

val - 32), ctx);
/* rd[0] = 0 */
emit(ARM_MOV_I(rd[0], 0), ctx);

}

Figure 2: Incorrect result with zero val for RSH64_IMM (Arm32).

instructions to various hook points in the kernel for execution;
otherwise, the kernel rejects the program. The JIT therefore
considers safe programs only.

3.2 Bugs in BPF JITs
We manually inspected every commit to the BPF JITs in the
Linux kernel from May 2014 (when the new BPF design
was introduced) to April 2020, and categorized those that
fixed JIT correctness bugs for Arm32, Arm64, RV64, x86-32,
and x86-64; those for RV32 will be discussed in §7. We
consider “correctness bugs” as JITs producing erroneous
machine instructions, and exclude non-correctness bugs (e.g.,
memory leaks during JIT compilation) from the study. In total,
there are 41 commits that fixed 82 JIT correctness bugs during
this period. See §A.2 for a complete list.

Below we describe some representative bugs we have found
using Jitterbug. These bugs are difficult to find even for veteran
developers, and were not caught by the existing test suite. They
can lead to security vulnerabilities, since the resulting machine
instructions run in the kernel and may process input from
untrusted sources. For clarity, BPF instructions and registers
are in uppercase, while target machine ones are in lowercase.

Subtle architectural semantics. Figure 2 shows an excerpt
of the Arm32 JIT for RSH64_IMM, the BPF logical right shift
instruction of a 64-bit register by an immediate. Since the
target architecture is 32-bit, the JIT uses two machine registers,
represented by rd[0] and rd[1], to hold the upper and lower
32 bits of a 64-bit BPF register, respectively. The BPF checker
ensures that the shift amount val is within the range [0,63].
The emitted instructions work as follows:
• when the shift amount val is less than 32, the result of
the upper half is simply rd[0] >> val, and the result of the
lower half is rd[1] >> val combined with the bits shifted
from the upper half, rd[0] << (32 - val);

/* check if rvoff is in the range [−231,231 −1] */
if (!is_32b_int(rvoff))
return -ERANGE;

...
s64 upper = (rvoff + (1 << 11)) >> 12;
s64 lower = rvoff & 0xfff;
/* aupic t1,upper */
emit(rv_auipc(RV_REG_T1, upper), ctx);
/* jalr ra,lower(t1) */
emit(rv_jalr(RV_REG_RA, RV_REG_T1, lower), ctx);

Figure 3: Incorrect range check on rvoff for CALL (RV64).

• the result of the upper half is simply zero, as all the bits are
shifted out, and the result of the lower half holds the bits
shifted from the upper half.
One subtlety in Arm32 is that a zero immediate in the

lsr (logical shift right) instruction means right-shift by 32
bits (i.e., shifting all bits out) [2: §F5.1.103]. Therefore, when
the shift amount val is zero, the instructions produced by the
JIT incorrectly set the destination register to zero, instead of
behaving as a no-op. This is further complicated by inconsis-
tent semantics in Arm32: a zero immediate in the shift left
instruction means a no-op. We fixed the bug by changing the
JIT to emit no instructions when val is zero.

Figure 3 shows another subtle bug in the RV64 JIT. Using
a pair of auipc+jalr instructions is a standard way to support
pc-relative call with a 32-bit offset on RISC-V [96]:
• auipc t1,imm20 appends 12 low-order zero bits to a 20-bit
immediate, sign-extends the 32-bit value to 64 bits, adds
the sign-extended value to the address of the instruction,
and writes the result in register t1;

• jalr ra,imm12(t1) jumps to a target address obtained by
adding a sign-extended 12-bit immediate to the register
t1 and clearing the least-significant bit of the result for
alignment; the address of the instruction following jalr is
written to register ra.
One misconception is that auipc+jalr can reach any 32-bit

offset in the range [−231,231−1] on 64-bit RISC-V (RV64),
by using certain imm20 and imm12 values. Part of the confusion
stems from the “RV32I base integer instruction set” chapter in
the RISC-V instruction-set manual indicating that auipc+jalr
“can jump anywhere in a 32-bit pc-relative address range.”
But the same does not hold on RV64: both auipc and jalr

sign-extend their results to 64 bits, causing the reachable offset
range to shift by −211. Therefore, the range check on rvoff

in the JIT is incorrect, which can lead to an off-target jump.
Our report prompted the RISC-V instruction-set manual to

add the following clarification: “Note that the set of address
offsets that can be formed by pairing LUIwithLD,AUIPCwith
JALR,etc. in RV64I is [−231−211,231−211−1].”Wefixed the
bug in the JIT by using the clarified range for checking rvoff.

Subtle machine state. Figure 4 shows an excerpt of the
x86-32 JIT for compiling BPF’s JSET64_REG and JSET32_REG

(in the form BPF_JMP[32]|BPF_JSET|BPF_X in C). The seman-
tics of “JSET64_REG DST,SRC,OFF” is to perform a conditional

44 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

case BPF_JMP | BPF_JSET | BPF_X:
case BPF_JMP32 | BPF_JSET | BPF_X:
bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
u8 sreg_lo = sstk ? IA32_ECX : src_lo;
u8 sreg_hi = sstk ? IA32_EBX : src_hi;

if (dstk) {
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),

STACK_VAR(dst_lo)); /* eax <- dst_lo */
if (is_jmp64)
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),

STACK_VAR(dst_hi)); /* edx <- dst_hi */
}

if (sstk) {
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),

STACK_VAR(src_lo)); /* ecx <- src_lo */
if (is_jmp64)
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX),

STACK_VAR(src_hi)); /* ebx <- src_hi */
}
/* and dreg_lo,sreg_lo */
EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo));
/* and dreg_hi,sreg_hi */
EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi));
/* or dreg_lo,dreg_hi */
EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi));
goto emit_cond_jmp; /* emit conditional jump */

Figure 4: Incorrect eflags value for JSET32_REG (x86-32).

jump when DST&SRC (“bitwise and” of two 64-bit BPF regis-
ters) is non-zero and fall through otherwise; the semantics of
“JSET32_REG DST,SRC,OFF” is similar, using only the lower 32
bits of both DST and SRC.
Due to the limited number of registers on x86-32, the JIT

spills some BPF registers on the stack. For simplicity, suppose
that both DST and SRC are on the stack (i.e., both dstk and sstk

are true). In this case, the JIT emits instructions to load the
lower 32 bits of DST and SRC to eax and ecx, respectively. It also
emits instructions to load the upper 32 bits to edx and ebx for
JSET64_REG; the two registers are uninitialized for JSET32_REG.

One way to implement JSET32_REG is to emit a bitwise and

of eax and ecx, followed by a conditional jump if the result is
non-zero (i.e., the zf bit in the eflags register is clear). But
the JIT emits extra and and or instructions that also use edx

and ebx, which are uninitialized for JSET32_REG, incorrectly
modifying eflags. The bugwas not caught by the BPF selftests
suite because none of the tests “polluted” edx and ebx with
values that would cause the behavior to change. We fixed the
bug by moving the last two EMIT2 statements under a condition
that is_jmp64 is true.

There are other bugs in the excerpt: when DST is mapped to
x86 registers and not spilled on the stack (i.e., dstk is false), the
emitted instructions incorrectly clobber the registers, while the
semantics of the BPF instructions requires DST not to change.
We fixed the bugs by loading DST to eax and ecx, regardless
of whether DST is on the stack.

Subtle instruction encoding. Below is an encoding bug in
the x86-32 JIT for the BPF LDXB instruction,which loads a byte
from memory. As its semantics requires the result to be zero-

extended to 64 bits, the JIT attempts to emit “mov dst_hi,0”
to clear the upper 32 bits, using the following C code:

EMIT3(0xC7, add_1reg(0xC0, dst_hi), 0);

Notice that EMIT3 emits 3 bytes, but a correct “mov dst_hi,0”
expects 6 bytes: the opcode 0xC7, the ModR/M byte formed
by add_1reg(0xC0, dst_hi), followed by 4 bytes of zeros as
the immediate. The consequence is not merely an incorrect
mov: it also “swallows” 3 bytes from the next instruction,
breaking the instruction stream and altering the meaning of
the subsequent instructions. We fixed the bug by emitting
“xor dst_hi,dst_hi” instead, which is also shorter (2 bytes).

3.3 Summary
Compared to the bugs in classic BPF JITs [15, 94], those
in today’s BPF JITs are more sophisticated due to the in-
creased power of the BPF virtual machine. On the other hand,
architecture-independent checks for BPF programs such as
division by zero are now performed by the BPF checker,
eliminating the need for the JITs to consider such cases.
While the Arm and RISC-V JITs emit instructions using

well-defined macros (e.g., Figure 2) or functions (e.g., Fig-
ure 3), the x86 JITs directly emits raw bytes (e.g., Figure 4),
partly due to the lack of a uniform instruction format on x86.
Jitterbug therefore needs to model the semantics of their target
architectures precisely; for x86, this means reasoning at the
level of raw instruction bytes.

4 Specification

Jitterbug aims to rule out subtle bugs in BPF JITs through a
formal specification, which is the focus of this section.
We begin with an intuitive description of what it means

for a JIT to be correct. At a high level, running the machine
code emitted by a JIT for a given source program should
be equivalent to running a BPF interpreter with that source
program. For example, both should compute the same return
value and invoke the same kernel functions with the same
arguments; any deviation indicates a bug. Jitterbug captures
this intuition as a JIT correctness specification (§4.1).

Specifications like this are usually proved by induction, and
the key to carrying out the proof is finding the right inductive
invariant—a property preserved by the JIT translation of each
individual source instruction. Inspired by the structure of the
existing BPF JITs in the Linux kernel, Jitterbug introduces a
stepwise specification that serves as our inductive invariant.
As shown in Figure 5, this specification consists of a set of
properties satisfied by individual translation steps, such as
the generation of machine code for a single BPF instruction.
Using the Lean theorem prover [22], we prove that any JIT
that satisfies the stepwise specification implies our intuitive
notion of correctness. This proof serves as the metatheory for

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 45

JIT
assumptions
(Definition 2)

prologue
correctness
(Definition 3)

per-instruction
correctness
(Definition 4)

epilogue
correctness
(Definition 5)

JIT correctness
(Definition 1)

Figure 5: Jitterbug’s stepwise specification (rounded-corner
boxes) implies JIT correctness, shown by Theorem 1.

Jitterbug (§4.2). The stepwise specification itself is proved
automatically for each JIT.
To illustrate how to apply the stepwise specification to

prevent bugs, we use the BPF JIT for RV32 as an example. We
also analyze alternative JIT implementations to demonstrate
the generality of the specification (§4.3).

We end this section with a discussion of the limitations of
Jitterbug’s specification and how it relates to prior compiler
correctness specifications (§4.4).

4.1 JIT correctness
Formalizing JIT correctness requires formalizing the behavior
of the JIT, source BPF programs, and target machine programs,
as follows.
First, we model a JIT as a function JITCompile. It takes

a source program code(and JIT context ctx as input, and
returns either a target program code) on success, denoted as
JITCompile(code(,ctx) = code) ; or⊥, indicating compilation
error. Both source and target programs are represented as
partial maps from addresses to instructions; some addresses
may be unmapped. We define code ⊆ code′ to mean that any
address that maps to some instruction in code maps to the
same instruction in code′.

The JIT context ctx is an implementation-defined data struc-
ture. It usually contains compiler configurations (e.g., the base
address of the target program allocated by the kernel, denoted
by ctx[base]) and analysis results of the source program,which
are used by the JIT for code generation. We assume that the
JIT context is well-formed with respect to the source program;
this assumption is captured using a predicate wf(code(,ctx)
specified by JIT developers. For example, one may specify
that ctx[base] is properly aligned.
Next, we model the execution of both source and target

programs as abstract machines, described by a set of states Σ
and a state transition function step. Given a state f ∈ Σ, we
write f[·] to refer to a specific component of the state. For
example, f[pc] is the value of the program counter.

The step function takes as input a state f, a program code,
and an oracle denoted by nd. The oracle nd is an infinite
sequence of nondeterministically chosen bytes, which are
used for modeling external interactions with the kernel (e.g.,
values loaded from BPF maps or returned by calls to kernel

functions). Given these inputs, the step function produces the
next state and a trace of externally visible events generated by
executing the instruction at the program counter, code[f[pc]].
The execution gets stuck if it triggers undefined behavior (e.g.,
the address f[pc] is unmapped in code). As shorthands, we
write 〈f,code,nd〉 =⇒ 〈f′, tr〉 to mean step(f,code,nd) =
〈f′, tr〉, and 〈f,code,nd〉 =⇒∗ 〈f′, tr〉 to mean that state f′
is reachable from zero or more applications of step starting
from state f, with concatenated trace tr.
The exact content of events is defined by each machine.

For example, consider the BPF machine in Jitterbug. It de-
fines the following events: load(addr,val), store(addr,val),
call(addr,args,val), atomic_begin, and atomic_end. It mod-
els each memory load as returning a fresh value provided by
the oracle and producing a load event in the trace, since BPF
maps may be modified outside the execution of a BPF pro-
gram (§3.1). Each step may produce zero or more events. For
example, the execution of XADD32 (32-bit atomic exchange-and-
add) produces atomic_begin, load, store, and atomic_end.
This model assumes read-only code, which prohibits JITs

that produce self-modifying code [65]. It also assumes that
the execution of a program is deterministic [53: §2.1], since
the next state is uniquely determined by the current state, code,
and oracle. Both assumptions match the BPF JITs in Linux.

In order to reason about the start and end of execution, each
machine defines two predicates:
• initial(G,ctx,f), where f is an initial state for input G and
JIT context ctx; and

• final(f′, E), where f′ is a final state with return value E.
Recall that the JIT considers only safe source programs.

For example, the Linux kernel rejects BPF programs that the
BPF checker deems unsafe (§3.1). We capture this guarantee
with a predicate safe(code), which specifies that executing
code always reaches a final state (i.e., the execution terminates
without triggering any undefined behavior):

∀ G,f,nd. initial(G,ctx,f) →
∃ f′, tr, E. 〈f,code,nd〉 =⇒∗ 〈f′, tr〉 ∧ final(f′, E).

In addition, since a target program generated by the JIT
runs within the kernel, it must behave like a regular function
and preserve the corresponding calling convention: for ex-
ample, stack pointer and callee-saved registers must hold the
same values before and after the execution. We capture these
requirements in the architectural safety predicateA(f) ,f′)),
which constrains the initial and final values of all preserved
target registers A to be the same, i.e., f) [A] = f′) [A].
Using our model, we define JIT correctness as follows.

Definition 1 (JIT correctness). A JIT is correct if for
any safe source program code(, well-formed JIT context
ctx, and target program code) generated by the JIT such
that safe(code() ∧wf(code(,ctx) ∧JITCompile(code(,ctx) =
code) , the following two conditions hold:

46 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1. The execution of source program code(and that of target
program code) produce the same trace and return value.
∀ G,f(,f) ,nd, tr, E.
initial((G,ctx,f() ∧ initial) (G,ctx,f)) →((
∃ f′

(
. 〈f(,code(,nd〉 =⇒∗ 〈f′

(
, tr〉 ∧ final((f′(, E)

)
↔(

∃ f′) . 〈f) ,code) ,nd〉 =⇒∗ 〈f′) , tr〉 ∧ final) (f
′
) , E)

))
.

2. Any final state reachable by executing target program
code) satisfies architectural safety.
∀ G,f) ,f′) ,nd, tr, E. initial) (G,ctx,f)) ∧ final) (f′) , E) ∧
〈f) ,code) ,nd〉 =⇒∗ 〈f′) , tr〉 → A(f) ,f

′
)).

The first property can be viewed as a bisimulation between
source and target machines [54: §2]: the JIT produces a target
program that preserves the behavior of the source program,
and any behavior of the target program is permitted by the
source program. Additionally, given that the source program
is safe, this property implies that the target program produced
by the JIT is safe (i.e., terminates without undefined behavior).
The second property further requires the target program to
correctly save and restore the corresponding architectural state.
Both guarantees are critical for in-kernel execution.

4.2 Stepwise specification
Given Definition 1, our goal is to devise a stepwise speci-
fication (i.e., an inductive invariant) that both implies JIT
correctness and is amenable to automated verification. We
achieve this goal by imposing structure on the JIT compila-
tion process so that we can reason about the correctness of
individual compilation steps, as follows.

Inspired by the existingBPF JITs in the Linux kernel,we sup-
pose that the JIT generates a target program in a per-instruction
fashion. Specifically, the target program consists ofmachine in-
structions for the prologue, each source instruction, and the epi-
logue (Figure 1). We do not assume any particular code layout.
For example, one may produce the target program sequentially:

code) = EmitPrologue(ctx)
for i in [0, |code(| −1]:

code) += EmitInstruction(ctx, i,code([i])
code) += EmitEpilogue(ctx)

We formalize our assumptions about the JIT below.

Definition 2 (JIT assumptions). We assume that for any safe
source program code(, well-formed JIT context ctx, and target
program code) produced by a JIT such that safe(code() ∧
wf(code(, 2CG) ∧ JITCompile(code(,ctx) = code) , the target
program code) contains the machine instructions produced
by each translation step:
• ∃ ?. EmitPrologue(ctx) = ?∧ ? ⊆ code) .
• ∀ i, insn. code([i] = insn→
∃ ?. EmitInstruction(ctx, i, insn) = ?∧ ? ⊆ code) .

• ∃ ?. EmitEpilogue(ctx) = ?∧ ? ⊆ code) .

With these assumptions, the stepwise specification boils
down to the correctness of each translation step: EmitPrologue,
EmitInstruction, and EmitEpilogue. Jitterbug allows devel-
opers to provide two relations as invariants maintained by
their JIT implementations:

• f(∼ctx f) relates source state f(and target state f)
with respect to JIT context ctx. For example, it may specify
that the value of a BPF register in f(is equal to that of the
machine register the JIT uses to realize the BPF register in f) .

• Ictx (f)0 ,f)) relates initial target state f)0 and non-final
target statef) with respect to JIT context ctx. For example, the
prologue usually saves callee-saved registers to a designated
memory region;Ictx may specify that the values of callee-saved
registers in f)0 are equal to those in that region in f) .

Below we describe the correctness definition for each trans-
lation step. We denote the empty trace as n .

Definition 3 (Prologue correctness). A JIT emits a correct
prologue if executing the prologue results in a target state that
establishes the invariants, and produces an empty trace:
∀ code(,ctx, ?, G,f(,f) ,nd. wf(code(,ctx) ∧
EmitPrologue(ctx) = ? ∧
initial((G,ctx,f() ∧ initial) (G,ctx,f)) →
∃ f′) . 〈f) , ?,nd〉 =⇒∗ 〈f′) , n〉 ∧ (f(∼ctx f

′
)) ∧Ictx (f) ,f′)).

Definition 4 (Per-instruction correctness). A JIT emits correct
target instructions for a given source instruction if executing
the emitted instructions results in a target state that preserves
the invariants, and produces the same trace as executing the
source instruction:
∀ code(,ctx, i, insn, ?,f(,f) ,f)0 ,nd, tr. wf(code(,ctx) ∧

code([i] = insn∧f([pc] = i ∧
EmitInstruction(ctx, i, insn) = ? ∧
〈f(,code(,nd〉 =⇒ 〈f′

(
, tr〉 ∧ (f(∼ctx f)) ∧Ictx (f)0 ,f)) →

∃ f′) . 〈f) , ?,nd〉 =⇒∗ 〈f′) , tr〉 ∧ (f
′
(
∼ctx f

′
)) ∧Ictx (f)0 ,f

′
)).

Definition 5 (Epilogue correctness). A JIT emits a correct
epilogue if executing the epilogue results in a final target state
that satisfies architectural safety, and produces the same return
value as in the source final state and an empty trace:
∀ code(,ctx, ?,f(, E,f) ,f)0 ,nd. wf(code(,ctx) ∧
EmitEpilogue(ctx) = ? ∧
final((f(, E) ∧ (f(∼ctx f)) ∧Ictx (f)0 ,f)) →
∃ f′) . 〈f) , ?,nd〉 =⇒∗ 〈f′) , n〉 ∧ final) (f

′
) , E) ∧A(f)0 ,f

′
)).

Together, these three properties imply JIT correctness given
the JIT assumptions. We prove the following theorem in Lean:

Theorem 1 (Stepwise soundness). JIT assumptions ∧ pro-
logue correctness ∧ per-instruction correctness ∧ epilogue
correctness→ JIT correctness.

With Theorem 1 as a metatheory, Jitterbug proves the cor-
rectness of a JIT implementation by proving the properties in

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 47

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 AX TCC PC

fp sp s1 a0 a1 a2 a3 a4 a5 a6 a7 s2 s3 s4 s5 s6 t6 pc argument BPF stack spilled registers saved registers

BPF stack BPF maps

← low address high address→

Figure 6: Mapping from BPF state (upper half) to RV32 state (lower half). Rounded-corner boxes denote registers and rectangular
boxes denote memory. Shaded regions are memory accessible by BPF programs and crosshatched regions for internal use.

Definitions 3, 4, and 5 via automated verification (see §5). The
JIT context well-formedness wf and assumptions are assumed
to be correct and trusted. The invariants (∼ctx and Ictx) are un-
trusted: if incorrect invariants are provided, verification fails.

4.3 Applying the stepwise specification
The stepwise specification is parameterized by assumptions
(well-formedness of JIT context wf) and invariants (∼ctx and
Ictx), which reflect how JIT developers intend to establish cor-
rectness. We illustrate how to apply the stepwise specification
to the BPF JIT for RV32 by specifying the assumptions and
invariants regarding registers, program counters, and memory.
We also describe how one may specify them for the alternative
JIT implementations we have considered.
Figure 6 shows the design of the BPF JIT for RV32. The

upper half denotes the BPF state, including registers (R0–R10,
AX), counters (tail-call counter TCC and program counter PC),
a stack memory region, and maps of shared data (§3.1). The
lower half denotes the RV32 state, including registers (fp,
sp, a0–a7, s1–s6, t6; those not mapped to BPF registers are
omitted), a machine program counter pc, and memory.

Registers. Since BPF registers are 64-bit and RV32 is a
32-bit architecture, the JIT realizes each BPF register using
either a pair of RV32 registers (e.g., R1 using a0 and a1) or 64
bits in the “spilled registers” memory region (e.g., R6). This
register mapping is static and pre-determined, eliminating the
need for register allocation at compilation time. Other BPF
JITs in the Linux kernel use similar register mappings.

The register mapping is handcrafted to achieve good perfor-
mance. For instance, recall that BPF designates R1–R5 to pass
function-call arguments, while the RISC-V calling convention
uses a0–a7, plus the stack if needed [20]. To minimize register
save and restore, the JIT realizes R1–R4 using a0–a7. For R5,
the JIT emits instructions to push the corresponding s3, s4 to
the “argument” memory region before the call.

To specify the relationf(∼ctx f) between source and target
states, letireg (ctx,f) , A) denote the value stored at the target lo-
cation(s) to which a BPF register A is mapped (e.g., R1mapped
to a0, a1) with respect to JIT context ctx. A strawman approach
is to require a strict equivalence: f([A] = ireg (ctx,f) , A) for
every BPF register A . With this relation, the stepwise specifica-
tion would require that if every BPF register and the mapped

locations contain equivalent values initially, their values re-
main equivalent after executing a BPF instruction and the
emitted machine instructions, respectively. One such example
is the partial specification used by the BPF bug finder in
Serval [68: §7]; the specification is partial because it does not
support reasoning about control flow (e.g., program counters)
or memory and cannot be used to prove JIT correctness.
While it is useful for finding bugs, the strawman relation

is too restrictive for verification. First, if a BPF program does
not use a certain register, it should be safe for the JIT to
skip emitting code for initializing the corresponding target
locations, but doing so violates the strict equivalence. Second,
the relation is difficult to establish in the presence of calls. To
see why, consider the BPF register R1, which is not preserved
across a BPF CALL instruction (§3.1). R1 is thus considered
uninitialized after the call as per the BPF semantics (the BPF
checkerensures thatR1will bewritten to before any furtheruse).
On the otherhand,R1 ismapped to a0,a1, both ofwhichhold the
return value after the call as per the RISC-V calling convention
(the JIT emits instructions to further copy their values to s1,
s2 to match the BPF calling convention for R0). Therefore, R1
and the corresponding a0, a1 do not hold equivalent values
after the call, which violates the strict equivalence.

To relax the strict equivalence andgive the JITmore freedom
regarding uninitialized BPF registers, we augment the state of
the BPF machine with an initialized set, which represents
the set of registers that are initialized at this point; the set is
updated based on the semantics of each BPF instruction. For
example, DST is added to the set after “MOV64_IMM DST,IMM,” as
it is written to by the instruction. Similarly, R1–R5 are removed
from the set after CALL, as they are not preserved across the call
and become uninitialized. In doing so, it suffices to require
equivalence f([A] = ireg (ctx,f) , A) for every BPF register
A ∈ f([initialized], effectively excluding uninitialized ones.

Program counters. Let ipc (ctx, 8) denote the target address
to which the 8-th BPF instruction is mapped in JIT context ctx.
This is useful for a JIT to implement the compilation of jump
instructions. It also allows us to relate program counters in BPF
and machine states as an invariant ipc (ctx,f([pc]) = f) [pc].
To define ipc, one simple approach is to require the JIT

to emit a fixed number of machine instructions for each
BPF instruction (e.g., by padding with NOPs) [33]. In this
case, we have ipc (ctx, 8) = ctx[base] + 8×# , where ctx[base]

48 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

is the starting address of the emitted machine instructions
determined by JIT context and # is a pre-determined number
of machine instructions large enough to compile any BPF
instruction. This is simple to specify and implement, but the
emitted code wastes space and CPU cycles.
A more efficient approach is to emit a variable number of

machine instructions for each BPF instruction. For example,
the BPF JITs in the Linux kernel maintain an offset table in the
JIT context to map each BPF instruction index to an offset into
the emitted code; in this case ipc (ctx, i) is defined by simply
consulting the offset table. The JITs construct the offset table
by repeating the compilation process until the table converges,
or fail if an upper bound on the number of iterations is reached
(e.g., 16 in the BPF JIT for RV32).

For flexibility, we choose not to specify how to construct the
offset table in the JIT context. Instead, we specify the property
a valid JIT context should satisfy. A key observation is that
such JITs emit consecutive blocks of machine instructions,
one block for each BPF instruction. As a result, the difference
between the target addresses for a BPF instruction code([8]
and its successor code([8 +1] must be equal to the number of
bytes emitted for code([8]. We capture the observation using
the well-formedness predicate wf over source program code(
and JIT context ctx for any i-th BPF instruction:

EmitInstruction(ctx, 8,code([8]) = ?→
|? | = ipc (ctx, 8 +1) −ipc (ctx, 8).

Here |? | denotes the length ofmachine instructions ? (in bytes).
This allows for both NOP-padding and the more sophisticated
JIT implementations such as those in the Linux kernel. Note
that this is an assumption on the validity of the JIT context,
which does not rule out bugs in the construction of the offset
table (see §4.4). A JITmay validate the offset table by checking
that this predicate holds at compilation time.

Memory. One approach to relating the memory state of
source and target machines, denoted by f([mem] and f) [mem],
respectively, is to require f([mem] (0) = f) [mem] (0) for every
address 0 [65], where memory is modeled as a map from
addresses to values. But this approach assumes a closed system
(see §7 for such a JIT) and does not fit BPF. For example,
both user processes and other BPF programs may concurrently
modifymemory to which a BPF program has access; therefore,
consecutive loads from the same address in the BPF program
may return different values. A further complication is that
BPF does not specify a memory consistency model (§3.1),
effectively assuming that of the underlying architecture.
We observe that a BPF JIT does not need to reason about

the behavior of concurrent memory accesses [13, 56]. Instead,
the goal is to faithfully translate BPF memory accesses to
ones in the target machine, which is a simpler task. Based on
this observation, we employ a hybrid approach to specify the
invariants for BPF JITs using traces and maps, as follows.

Each target machine models memory as consisting of two
disjoint parts, one corresponding to shared memory and the
other for internal use (Figure 6). The memory layout used by a
JIT determineswhich target addresses are shared andwhich are
internal. The internal memory is simply a map from addresses
to values, since it is private to each execution and the effects are
not externally visible. The shared memory captures memory-
related effects using events in a trace (§4.1). Since the BPF
machine adopts the memory model of the underlying architec-
ture, Jitterbug relates the traces of the BPF and target machines
by using the same memory model for both; i.e., the BPF and
target traces are drawn from the same set of all possible mem-
ory events. Given this correspondence, it suffices to require the
traces produced by the BPF and target machines to be identical.
The requirement of having identical traces suffices for the

BPF JITs. One exception is that older versions of the BPF JIT
for Arm64 use Arm’s exclusive access instructions in a busy
loop [2: §B2], which violates the requirement. Newer versions
of the JIT have switched to using atomic instructions,which sat-
isfies the requirement. We decide not to relax the requirement
of having identical traces to keep the specification simple.

4.4 Discussion and limitations

Jitterbug’s JIT correctness (Definition 1), especially the use
of traces, is inspired by the specification of CompCert [54].
Jitterbug’s specification differs in the following ways. First,
in-kernel execution imposes stricter requirements on the
source program (e.g., determinism, termination, and absence
of undefined behavior), allowing us to prove stronger prop-
erties. Second, Jitterbug uses fine-grained models of target
architectures to precisely reason about low-level state (e.g.,
program counter and stack pointer), whereas CompCert uses
a more abstract semantics for assembly [64: §5] and relies
on a separate assembler and linker. Third, the per-instruction
compilation process of such JITs enables us to develop a
stepwise specification amenable to automated verification.

Jitterbug trusts the correctness of the assumptions (§4.2).
Therefore, it cannot catch bugs in the JIT context (e.g., offset-
table construction) or layout of the target program. We man-
ually examine the existing BPF JIT correctness bugs in the
Linux kernel (§3.2), and determine that out of the 82 bugs, the
specification can catch all but two bugs, both in offset-table
construction. This shows the effectiveness of the specification.
Jitterbug’s specification permits “null” JIT implementations

that fail on all source programs; we use existing test suites (e.g.,
the BPF selftests) to assess the feature completeness of JITs. It
focuses on the JIT and cannot rule out bugs in the BPF checker,
memory management for code images, or how the kernel uses
the JIT. It does not model the instruction cache or memory
permissions, relying on the kernel to correctly flush the cache
and set up permissions. It does not provide any guarantees
against microarchitectural timing channels [32, 48].

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 49

source
instruction

source
interpreter

assumptions
(wf)

JIT
implementation

stepwise
specification

target
instructions

target
interpreter

invariants
(∼ctx and Ictx)

Figure 7: Jitterbug’s verification pipeline. Shaded boxes de-
note inputs provided by JIT developers.

5 Proving JIT correctness

Jitterbug extends automated verification to JIT correctness, a
form of compiler correctness tailored for in-kernel execution.
This section describes how Jitterbug achieves the automation.

As shown in Figure 7, Jitterbug provides the stepwise
specification and the executable semantics (i.e., interpreters)
for BPF and various architectures. It asks JIT developers for a
JIT implementation, and assumptions and invariants regarding
the implementation. All the inputs are written in the Rosette
language (the JIT is written in the DSL described in §6).

Jitterbug builds on Serval for automated verification [68]. It
invokes Rosette to reduce all the inputs to symbolic constraints
via symbolic evaluation, and an SMT solver to check the
satisfiability of these constraints. For symbolic evaluation to
terminate, the JIT implementation and the execution of both
interpreters must be free of unbounded loops [88]. The BPF
JITs satisfy this requirement.

Below we highlight three key challenges in automated veri-
fication of JITs and how Jitterbug addresses these challenges.

Instantiation of existential quantifiers. To prove the step-
wise specification, Jitterbug has to construct some execution
of target instructions emitted by the JIT and show that the
execution exhibits the same behavior as that of a source
instruction. Automating the construction is challenging.
To see why, consider the specification for per-instruction

correctness (§4.2). Letting ®G stand for the universally quantified
variables in Definition 4, the specification says that the target
machine executes some finite number of steps, : , to produce
a state f′

)
that satisfies the inductive invariant %. Making

the number of steps : explicit, we can write the correctness
formula as∀®G.∃:. %(®G, :), or equivalently,∃ 5 .∀®G. %(®G, 5 (®G)),
where 5 is a Skolem function that computes the right : for
each combination of the variables ®G. The verification problem
that Jitterbug solves therefore involves constructing 5 . In other
words, Jitterbug must determine the number of steps to run
symbolic evaluation with emitted instructions, and this value
5 (®G) may depend on the source program, JIT context, source
and target states, etc.

In a restricted setting where the JIT emits straight-line code
without any branches, 5 (®G) is simply the number of emitted
instructions. The BPF bug finder in Serval and synthesis-
based superoptimizers [72] all assume this setting and use the
corresponding basic realization of 5 . But Jitterbug considers
JITs that can emit codewith branches, andwhen executing such
code, the target machine can take a different number of steps
depending on the input state. This rules out the straightforward
realization of 5 that counts the number of emitted instructions.
To illustrate the challenge of computing 5 in our setting,

consider the instructions emitted by the RV32 JIT for the BPF
instruction “JNE64_REG DST,SRC,OFF” (jump to offset OFF if
the values in DST and SRC differ). The JIT may emit different
blocks of RV32 instructions, conditioned on whether it spills
the registers (requiring lw to load from stack) or the offset
requires a far jump (jal or auipc+jalr). Figure 8 shows
three examples of these blocks and the 5 (®G) values for
executing them, which vary depending on the register state
and instructions. In general, constructing 5 requires human
insight [63, 98], so Jitterbug allows JIT developers to provide
a manually constructed 5 . In practice, however, Jitterbug can
automate the construction of 5 for BPF JITs as follows.
To compute 5 , Jitterbug requires the target interpreter

to maintain the symbolic program counter in the form
base+ offset, where base is the (symbolic) starting address
of instructions. Maintaining this form is straightforward for
most instructions. For instructions with subtler semantics, the
interpreter achieves this by rewriting the program counter
via symbolic optimization [68, 74]. For example, RISC-V’s
jalr sets the least-significant bit of the program counter to
zero (§3.2), causing it to take the form (base+offset) & mask.
The interpreter rewrites this expression by dropping the mask
and checking that the resulting expression is equivalent (i.e.,
that the program counter is properly aligned).

Given a program counter of the form base+offset, Jitterbug
provides a reusable procedure for constructing 5 through
symbolic evaluation. It extracts the offset from the program
counter expression and applies a simple rule: stop symbolic
evaluation either if the offset is concrete but leaves the block
of emitted instructions, or if the offset becomes symbolic.
The intuition is that branching with a symbolic offset likely
leaves the block, because the JIT generally produces such
branching instructions by consulting the offset table in the JIT
context (§4.3), which is considered symbolic for verification.
Internal branching tends to have a concrete offset, for which
symbolic evaluation continues.
This procedure guesses an 5 for verifying that the target

machine reaches a desired state after taking 5 (®G) steps. It
does not guarantee to find the right 5 if one exists, though it
is sufficient for all the JITs we have studied and works well
in practice. The procedure is untrusted: choosing a wrong 5
causes the target machine to either get stuck or enter a state
that violates the inductive invariant, but it does not cause an
erroneous JIT implementation to pass verification.

50 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

bne a1,a3,=+4 bne a0,a2,=(a)

lw t5,-40(fp) lw t4,-44(fp) bne a1,t5,8 beq a0,t4,8 jal x0,=(b)

lw t3,-40(fp) lw t2,-44(fp) lw t5,-48(fp) lw t4,-52(fp) bne t3,t5,8 beq t2,t4,12 auipc t1,=hi jalr x0,t1,=lo(c)

1

2

2

internal

6

7/8

internal

4

4/5

Figure 8: Emitted RV32 instruction blocks for BPF’s JNE64_REG with registers (a) R1, R2; (b) R1, R6; and (c) R6, R7 and with an
offset of different ranges. R1 and R2 are realized using RV32 registers, and R6 and R7 are spilled on the stack (Figure 6). Straight
and elbow arrows denote falling through and branching, respectively; those leaving the blocks are labeled with values of 5 (®G).

Symbolic evaluation of symbolic instructions. As shown
in Figure 8, the JIT may emit different blocks of target instruc-
tions for a given source instruction opcode. When Jitterbug
symbolically evaluates a JIT implementation, it produces a
symbolic representation of all of these instruction blocks.
This representation takes the form of symbolic instructions
that may contain symbolic values in register and immediate
fields. To verify the JIT, Jitterbug must then evaluate the target
interpreter on both a symbolic input state and a symbolic
program. This is in contrast to prior work on verifying systems
code such as Serval, where the input state is symbolic but
the program itself is concrete (e.g., all register and immediate
fields are concrete bytes). Reasoning about symbolic programs
both magnifies existing challenges to scaling verification and
creates new ones. We discuss one example of each.

The first challenge is path explosion. While common to all
tools based on symbolic evaluation, this problem becomes
exponentially worse in the presence of symbolic code. For ex-
ample, the BPF JIT for RV64 compiles LD64_IMM to a variable
number of instructions to load a 64-bit immediate in chunks,
selecting each instruction based on the chunk value and des-
tination register. This amounts to reasoning about a total of
2,181 types of blocks of RV64 instructions for downstream
stages, out of which 307 are feasible, applied to all possible
input instructions (roughly, 264). Symbolic execution [17, 44],
which explores individual paths separately, is thus not a good
fit for this verification pipeline.

Jitterbug instead adopts Rosette’s strategy for symbolic eval-
uation [89: §4] to merge the program state at each control-flow
join, but it forces a split on every possible (concrete) opcode
of symbolic instructions. The intuition is that both the JIT and
interpreters tend to handle each opcode separately; splitting
on the opcode enables opportunities for concrete evaluation.
This strategy works well in practice: it avoids path explosion
and leads to easier-to-solve constraints.
The second challenge is that Jitterbug interpreters, unlike

those in Serval, must be designed to work on both symbolic
state and symbolic instructions. Failing to do so both causes
state explosion and produces constraints difficult for SMT
solving. For example, the interpreters in Serval represent
the CPU state using a vector of bitvectors (one bitvector per
register), and encode accessing register A8 as indexing into the

vector using integer 8. This is suitable for concrete instructions,
where 8 is concrete and the generated constraints are restricted
to the theory of bitvectors. But with symbolic instructions,
a symbolic register index 8 causes symbolic evaluation to
produce constraints that also use the theory of (mathematical)
integers. Mixing integers and bitvectors is expensive for
solving and can lead to verification bottlenecks [39: §3].
We develop interpreters that account for symbolic instruc-

tions and thus can work with Jitterbug. For example, we
carefully avoid integers in instruction semantics to restrict
resulting constraints to the theories of equality with unin-
terpreted functions and bitvectors, a decidable fragment of
first-order logic. Additionally, recall that the BPF JITs for x86
emit raw bytes (§3.2) and thus require a decoder for verifica-
tion. We implement an x86 decoder that works on symbolic
bytes. The development process is guided by using symbolic
profiling to identify verification performance bottlenecks [10]
and applying symbolic optimization to fine-tune symbolic
evaluation [68: §4].

Axiomatization of expensive SMT operations. Both BPF
and machine interpreters provide arithmetic instructions for
multiplication, division, and remainder. Reasoning about these
operations is expensive for SMT solvers [4, 49], and has been
a source of timeouts in verification practice [30, 36].
To avoid such expensive reasoning, Jitterbug takes a stan-

dard axiomatization approach [50: §3.2] by replacing these
bitvector operations with uninterpreted functions mul=, div=,
and rem= (= = 32,64) in instruction semantics. For example,
the BPF JIT for RV32 translates BPF’s DIV32_REG into using
RISC-V’s divu; both instructions are encoded using uninter-
preted function div32 (with variations for handling division
by zero). Proving the correctness of this translation does not
require the semantics of division, thereby scaling verification.
This approach is less general than using SMT’s built-in

bitvector operations, because it ignores the semantics of these
operations and might reject valid JIT implementations. For
example, the JIT may reorder the operands of a multiplication
in emitted instructions; for target architectures lacking native
instructions for remainder or 64-bit multiplication, the JIT may
emit instructions that emulate the behavior. Proving such a
JIT correct requires additional properties about the operations.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 51

Jitterbug captures these properties using the following axioms,
which are sufficient to verify all the JITs we have studied:
• commutativity of mul: mul= (G, H) = mul= (H, G);
• remainder: rem= (G, H) = G− mul= (div= (G, H), H);
• commutativity of mulhu: mulhu= (G, H) = mulhu= (H, G); and
• decomposition of mul64: mul64 (G, H) = (mulhu32 (Glo, Hlo) +
mul32 (Ghi, Hlo) + mul32 (Glo, Hhi)) ⊕ mul32 (Glo, Hlo).

Here G and H are bitvectors; subscripts “lo” and ”hi” denote
the lower and upper half bits, respectively; ⊕ denotes bitvector
concatenation; and mulhu is an auxiliary uninterpreted function
for modeling the upper bits of a product. For example, x86’s
32-bit unsigned multiplication instruction stores a 64-bit
product in registers edx and eax; the x86 interpreter encodes
their values using mulhu32 and mul32, respectively.
These axioms are shared by the verification of the BPF

JITs across architectures. As a sanity check, we formalize and
manually prove them using Lean [22].

6 Implementing a JIT

DSL. Figure 9 shows an excerpt of the BPF JIT for RV32,
written in the Jitterbug DSL. The DSL is implemented as a
Rosette library and reflects a structured subset of C: booleans,
(machine) integers, array accesses (“@”), as well as conditional
and switch statements. This subset is minimal and sufficient to
support the development of the BPF JIT for RV32. It does not
support address-of, dereference, or unstructured constructs
(e.g., goto or fallthrough in switch).

Jitterbug extracts the final C code from JIT fragments
written in the DSL, a code template (including glue code not
covered by theDSL), and a typemapping (not shown here; both
array accesses to bpf2rv32 and calls to bpf_get_reg64 return
a value of type “const s8 *”). Jitterbug does not perform any
type checking for the C code.

Using the DSL simplifies verification by avoiding the need
to model the C semantics. One can also “escape” from the DSL
to use the full Rosette language, though in that case Jitterbug
is unable to perform C code extraction; we leverage this to
simplify porting the existing BPF JITs from C to Jitterbug.

Synthesis. As an application of Jitterbug’s specification and
verification, we use Rosette’s support for program synthesis to
optimize the BPF JIT for RV32 [59]. We do so by synthesizing
JIT fragments written in (a subset of) the DSL, where each
fragment takes as input a BPF instruction with a given opcode
(e.g., ADD64_REG) and emits a short sequence of RV32 instruc-
tions with equivalent behavior. We use the standard approach
of writing program sketches [11, 82] to compactly define a
space of JIT fragments for compiling ALU instructions. The
synthesizer searches this space for the shortest fragment that
satisfies per-instruction correctness (Definition 4), according
to the Jitterbug verifier.

(func (emit_alu_r64 dst src ctx op)
(var [tmp1 (@ bpf2rv32 TMP_REG_1)]

[tmp2 (@ bpf2rv32 TMP_REG_2)]
[rd (bpf_get_reg64 dst tmp1 ctx)]
[rs (bpf_get_reg64 src tmp2 ctx)])

(switch op
[(BPF_ADD)

(cond
[(equal? rd rs)

(emit (rv_srli RV_REG_T0 (lo rd) 31) ctx)
(emit (rv_slli (hi rd) (hi rd) 1) ctx)
(emit (rv_or (hi rd) RV_REG_T0 (hi rd)) ctx)
(emit (rv_slli (lo rd) (lo rd) 1) ctx)]

[else
(emit (rv_add (lo rd) (lo rd) (lo rs)) ctx)
(emit (rv_sltu RV_REG_T0 (lo rd) (lo rs)) ctx)
(emit (rv_add (hi rd) (hi rd) (hi rs)) ctx)
(emit (rv_add (hi rd) (hi rd) RV_REG_T0) ctx)])]

...))

(a) JIT implementation written in the DSL.

void emit_alu_r64(const s8 *dst, const s8 *src,
struct rv_jit_context *ctx, const u8 op)

{
// clang-format on
@|emit_alu_r64|
// clang-format off
}

(b) C code template, where @|...| expands to generated code.

void emit_alu_r64(const s8 *dst, const s8 *src,
struct rv_jit_context *ctx, const u8 op)

{
const s8 *tmp1 = bpf2rv32[TMP_REG_1];
const s8 *tmp2 = bpf2rv32[TMP_REG_2];
const s8 *rd = bpf_get_reg64(dst, tmp1, ctx);
const s8 *rs = bpf_get_reg64(src, tmp2, ctx);

switch (op) {
case BPF_ADD:

if (rd == rs) {
emit(rv_srli(RV_REG_T0, lo(rd), 31), ctx);
emit(rv_slli(hi(rd), hi(rd), 1), ctx);
emit(rv_or(hi(rd), RV_REG_T0, hi(rd)), ctx);
emit(rv_slli(lo(rd), lo(rd), 1), ctx);

} else {
emit(rv_add(lo(rd), lo(rd), lo(rs)), ctx);
emit(rv_sltu(RV_REG_T0, lo(rd), lo(rs)), ctx);
emit(rv_add(hi(rd), hi(rd), hi(rs)), ctx);
emit(rv_add(hi(rd), hi(rd), RV_REG_T0), ctx);

}
break;

...
}

(c) Final (extracted) JIT implementation in C.

Figure 9: Excerpt of the BPF JIT for RV32 for compiling the
“ADD64_REG DST,SRC” instruction.

Using this approach,we found two JIT fragments better than
ourmanual implementation for compiling ADD64_REG (Figure 9)
and SUB64_REG. In each case, the synthesized fragment emitted
four instructions, whereas our manual implementation emitted
five. We adopted the synthesized fragments in the JIT.

7 Experience

Figure 10 shows the code size of the Jitterbug framework and
the interpreters for verifying JITs, all written in Rosette. We
wrote the interpreters in an idiomatic way [36: §3.3], adding
instructions as needed. We borrowed part of the BPF andRV64
semantics from Serval [68], but rewrote the interpreters to
support symbolic instructions (§5); we wrote the others from
scratch. We developed the metatheory for JIT correctness and
the bitvector axiomatization using 1,492 lines of Lean code.

52 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Component (in Rosette) Lines of code

Jitterbug framework 1,825
BPF interpreter 471
Arm32 interpreter 1,265
Arm64 interpreter 1,166
RISC-V interpreter (32- and 64-bit) 1,571
x86 interpreter (32- and 64-bit) 2,299

Figure 10: Line counts of Jitterbug’s components.

JIT impl. Spec. Per-opcode verification time

C DSL Min Max Mean Median

RV32 1,964 1,420 336 16 401 73 55
RV64 1,862 1,225 284 4 7,542 116 24
Arm32 1,620 839 192 23 925 130 99
Arm64 1,025 653 163 4 110 26 23
x86-32 1,683 1,074 185 24 488 122 109
x86-64 1,382 644 182 5 170 33 27

Figure 11: Line counts and per-opcode verification time (in
seconds) of the BPF JITs for six architectures.

The primary application of Jitterbug is a new BPF JIT
for RV32, which we wrote in the DSL, proved against the
stepwise specification, and extracted to a C implementation.
To validate the generality of Jitterbug, we ported the existing
BPF JITs for RV64, Arm32, Arm64, x86-32, and x86-64 in
the Linux kernel to Jitterbug for verification. Each port was
line-by-line transcription from C to the DSL (and Rosette),
emitting the same instructions as the original JIT. These ports
did not cover the support for legacy instruction sets (e.g., those
lacking atomic instructions mentioned in §4.3), compiling
TAIL_CALL, or optimizing register saving.

Figure 11 lists the line counts for each BPF JIT. The speci-
fication effort comprises writing assumptions and invariants
for the implementation (§5). Since Jitterbug performs veri-
fication for each source instruction opcode individually, we
measured the per-opcode verification time, using an Intel Core
i7-7700K CPU at 4.5 GHz, with Boolector 3.2.1 as the SMT
solver [69]. Verification time across the JITs depends on many
factors (e.g., the JIT implementation or solver), though archi-
tectural differences are a contributing factor. For example, the
most time-consuming case is verifying the JIT for RV64 with
BPF’s LD64_IMM (loading a 64-bit immediate), which emits
307 types of blocks of RISC-V instructions; the JIT for x86-64
emits six types for the same opcode.
Below we describe our experience using Jitterbug for the

BPF JITs and a previously verified JIT for a stackmachine [65].

The BPF JIT for RV32. We chose to implement a BPF JIT
for RV32 because there was not one in the Linux kernel. The
development took five iterations of code reviews.
The first two iterations occurred in June 2019. We sent an

initial implementation to kernel developers to gather feedback
and gauge interest. The implementation was written in Rosette

andmanually translated to C, andwas unverified. The feedback
was positive, with suggestions to add support for eliminating
zero extensions [93], an optimization BPF had just introduced.

We submitted the third implementation in February 2020. It
was switched to using the DSL (§6), which was less prone to
errors in manual translation. It passed the BPF selftests suite,
and was verified against an early version of the specification.
One of the suggestions from kernel developers was to factor
out the common code to be shared among the JITs, such as the
per-instruction structure (§4.2). We addressed the suggestions
in the next two iterations, after which the JIT was accepted
into the Linux kernel (see §A.1.1).

Throughout this process, we refined both the specification
and the implementation. The early version of the specification
missed two bugs that were also missed by testing. The first bug
was an off-by-one error for TAIL_CALL: the emitted instructions
limited the TCC (tail-call counter) to 32, rather than the correct
value 33. The second bug was that the JIT did not maintain
16-byte alignment of the stack as per the calling convention.
We found the two bugs once we completed the specification.

Automated verification supported this development process
in two ways. First, it minimized the proof burden for develop-
ing the JIT, which must be feature-complete for deployability.
Second, it enabled us to catch up with new features being
introduced (e.g., support for eliminating zero extensions) and
address code reviews by kernel developers in a timely manner.

Code review. As listed in §A.1.2, we found 16 new bugs in
the existing BPF JITs, wrote patches that fix these bugs, and
verified the fixed code. In addition, we found two new bugs
in the Arm64 instruction encoding library, a core component
shared by BPF and other kernel subsystems (e.g., KVM). We
wrote new test cases to be included in the BPF selftests suite.
This is useful for catching similar bugs across the JITs, as
various “bots” are running selftests continuously for the Linux
kernel. Finding subtle bugs in well-tested code shows the
effectiveness of the specification and verification.
The main effort for porting and verifying these JITs was

in writing the target interpreters for Jitterbug. Verifying the
JITs for Arm32 and Arm64 took one week each. Verifying
the JITs for x86-32 and x86-64 took three weeks in total,
due to the complexity of the x86 interpreter (e.g., instruction
decoding). Translating C code to Rosette was mechanical
and straightforward, though mistakes in manual translation
might hide bugs; extending Jitterbug to work on C code is
future work. For specification,we adopted the assumptions and
invariants for the JIT for RV32 and adjusted them accordingly.
In our experience, automated verification is key to rapid

code review using formal methods. As an example, in Decem-
ber 2019, the developer of the BPF JIT for RV64 submitted
patches to add support for far jumps. We ported the patches
to Jitterbug and verified their correctness within days of the
patch submission.We reported the verification results to kernel
developers; the patches were accepted with our review.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 53

Optimization. Another advantage of verification is that it
enables developing complex optimizations by providing a
high degree of confidence in their correctness. As listed in
§A.1.3, we developed 12 patches optimizing the existing BPF
JITs. Like code review, we verified the correctness of these
optimizations by manually translating the C code to Rosette.
One of the optimizations adds support for RISC-V com-

pressed instruction-set extension (RVC) to the BPF JIT for
RV64. RVC improves code density and reduces instruction
cache misses by adding short 2-byte instructions for common
operations [95: §5], but it poses a challenge to verification:
the JIT may choose either base (4-byte) or RVC (2-byte) for
emitting each instruction, depending on the immediate value
or registers. This leads to an exponential increase in the num-
ber of paths in the JIT, emitted instructions, and machine state
(e.g., variable code lengths causing the program counter to
take different values). Developing and verifying this optimiza-
tion took approximately 3 weeks, following the proof strategy
described in §5 to scale verification.

Beyond BPF JITs. While Jitterbug focuses on the BPF JITs,
we also applied it to a JIT for a stack machine to x86-32. We
ported the “version 1” JIT described by Myreen [65] to the
Jitterbug DSL and extracted it to C code; the port emitted the
same x86-32 instructions andwas able to run the example as in
the paper (Jitterbug does not support the “version 2” JIT that
emits self-modifying code). For specification, we excluded
registers from the invariants, since the stack machine had no
registers; and modeled memory as a map from addresses to
values without using traces, since the stack machine had no
sharedmemory (§4.3). For verification,wewrote an interpreter
for the stack machine and reused the x86 interpreter provided
by Jitterbug. This process took one day.

Jitterbug reported two bugs in the JIT implementation: the
offsets for two conditional jump instructions are given as 5
in the original paper, but we concluded that the correct value
should be 8. We fixed the offsets and verification succeeded.
We believe that both are typos in the paper, as our (fixed) JIT
is consistent with the paper’s HOL4 code and proof.

8 Reflection and conclusion

Our work on Jitterbug was inspired by an earlier effort, started
in 2015, to use the Coq theorem prover to develop a verified
BPF JIT for x86-64. We chose to implement the JIT itself
in x86-64 so as to minimize the trusted computing base. In
hindsight, this was a mistake: doing so required reasoning
about low-levelmachine state for both the compiler and emitted
code, which hindered the completion of the proof; and the JIT
implementation was impractical to audit and deploy due to
the lack of C code and the optimizations seen in the Linux
kernel. We suspended this effort two years later, in 2017.

Our interest in BPF JITs was revived with the development
of symbolic profiling [10] and optimization [68, 74], which
together demonstrated a systematic approach for scaling
automated verification of low-level code. As an experiment,
we wrote a bug finder for BPF JITs in Serval, which checked
for strict equivalence of registers (§4.3) over straight-line
instructions (§5). It enabled us to find 15 bugs regarding ALU

instructions in two BPF JITs, although it was insufficient for
verification or finding the bugs described in §3.2 due to the
lack of a correctness specification and proof strategy (e.g.,
support for symbolic instructions).

For Jitterbug, we spent most of our effort devising a speci-
fication of JIT correctness that is general enough to cover a
broad range of in-kernel JITs (e.g., without requiring padding
emitted instructions), expressive enough to catch real bugs,
and amenable to automated verification. We found the use of
the Lean theorem prover valuable for navigating this trade-off,
developing several iterations of the stepwise specification and
a proof that implies the correctness of compiling entire pro-
grams. It also improved our confidence in the axiomatization
of bitvector operations.
A key lesson from Jitterbug is that deciding what not

to verify is as important as deciding what to verify. For
instance, while ideally we would write and verify the BPF
JIT for RV32 in C directly, the use of the DSL enabled us to
fine-tune symbolic evaluation, which was critical for scaling
verification. If we could not scale verification to JITs written
in the DSL, verifying JITs written in C would surely be out of
reach. Inspired by seL4 [78] and Ironclad [36], we bridged the
resulting gap through validation, separately verifying that the
instruction encoding functions in C emitted the same bytes as
their original DSL code.

Through this paper, we presented our experience with spec-
ifying and verifying BPF JITs, a critical and rapidly evolving
component in the Linux kernel. Our experience demonstrates,
for the first time, the feasibility of extending automated verifica-
tion to a restricted but practically important class of compilers.
The source code of Jitterbug and the JITs is publicly available
at https://github.com/uw-unsat/jitterbug.

Acknowledgments

We thankAnishAthalye,Tej Chajed,GernotHeiser,Zhihao Jia,
NoahMoroze, JaredRoesch,Zach Tatlock,Nickolai Zeldovich,
the anonymous reviewers, and our shepherd, Bryan Parno, for
feedback that improved this paper. We also thank Andrew
Waterman and Claire Wolf for discussion on RISC-V, and
H. Peter Anvin, Daniel Borkmann, Will Deacon, Brian Gerst,
Song Liu, Andy Shevchenko, Alexei Starovoitov, Björn Töpel,
Jiong Wang, Yanqing Wang, and Marc Zyngier for reviewing
our patches to the Linux kernel. This work was supported by
NSF awardsCCF-1651225,CCF-1836724,andCNS-1844807,
and by a gift from the VMware University Research Fund.

54 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/uw-unsat/jitterbug

References

[1] Nadav Amit and Michael Wei. The design and imple-
mentation of hyperupcalls. In Proceedings of the 2018
USENIX Annual Technical Conference, pages 97–111,
Boston, MA, July 2018.

[2] Arm. Arm Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, March 2020.

[3] John Aycock. A brief history of just-in-time. ACM
Computing Surveys, 35(2):97–113, June 2003.

[4] Paul Beame and Vincent Liew. Towards verifying non-
linear integer arithmetic. In Proceedings of the 29th
International Conference on Computer Aided Verifica-
tion (CAV), pages 238–258, Heidelberg, Germany, July
2017.

[5] Fabrice Bellard. QEMU, a fast and portable dynamic
translator. In Proceedings of the 2005 USENIX Annual
Technical Conference, pages 41–46, Anaheim, CA, April
2005.

[6] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak,
Emin Gün Sirer, Marc E. Fiuczynski, David Becker,
Craig Chambers, and Susan Eggers. Extensibility, safety
and performance in the SPIN operating system. In
Proceedings of the 15th ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 267–284, Copper
Mountain, CO, December 1995.

[7] Ashish Bĳlani and Umakishore Ramachandran. Ex-
tension framework for file systems in user space. In
Proceedings of the 2019 USENIX Annual Technical
Conference, pages 121–134, Renton, WA, July 2019.

[8] DionBlazakis. Interpreter exploitation: Pointer inference
and JIT spraying. In Black Hat DC, Arlington, VA,
February 2010.

[9] Daniel Borkmann. bpf, x86, arm64: Enable jit by default
when not built as always-on. Commit 81c22041d9f1,
Linux kernel, December 2019.

[10] James Bornholt and Emina Torlak. Finding code that ex-
plodes under symbolic evaluation. In Proceedings of the
2018 Annual ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOP-
SLA), Boston, MA, November 2018.

[11] James Bornholt, Emina Torlak, Dan Grossman, and Luis
Ceze. Optimizing synthesis with metasketches. In
Proceedings of the 43rd ACM Symposium on Principles
of Programming Languages (POPL), pages 775–788, St.
Petersburg, FL, January 2016.

[12] Bryan M. Cantrill, Michael W. Shapiro, and Adam H.
Leventhal. Dynamic instrumentation of production sys-
tems. In Proceedings of the 2004 USENIX Annual
Technical Conference, pages 15–28, Boston, MA, June–
July 2004.

[13] Tej Chajed, M. Frans Kaashoek, Butler Lampson, and
Nickolai Zeldovich. Verifying concurrent software using
movers in CSPEC. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI), pages 307–322, Carlsbad, CA, October
2018.

[14] Craig Chambers and David Ungar. Customization: Op-
timizing compiler technology for Self, a dynamically-
typed object-oriented programming language. In
Proceedings of the 10th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion (PLDI), pages 46–160, Portland, OR, June 1989.

[15] Haogang Chen,Cody Cutler, Taesoo Kim,YandongMao,
Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek.
Security bugs in embedded interpreters. In Proceedings
of the 4th Asia-Pacific Workshop on Systems, Singapore,
July 2013. 6 pages.

[16] Andrey Chudnov, Nathan Collins, Byron Cook, Joey
Dodds, Brian Huffman, Colm MacCárthaigh, Stephen
Magill, EricMertens, EricMullen, Serdar Tasiran,Aaron
Tomb, and Eddy Westbrook. Continuous formal ver-
ification of Amazon s2n. In Proceedings of the 30th
International Conference on Computer Aided Verifica-
tion (CAV), pages 430–446, Oxford, United Kingdom,
July 2018.

[17] Lori A. Clarke. A system to generate test data and
symbolically execute programs. IEEE Transactions on
Software Engineering, 2(3):215–222, 5 1976.

[18] Jonathan Corbet. BPF at Facebook (and beyond). https:
//lwn.net/Articles/801871/, October 2019.

[19] Jonathan Corbet. Concurrency management in BPF.
https://lwn.net/Articles/779120/, February 2019.

[20] Palmer Dabbelt, Stefan O'Rear, Kito Cheng, AndrewWa-
terman, Michael Clark, Alex Bradbury, David Horner,
MaxNordlund,KarstenMerker, andSamElliott. RISC-V
ELF psABI specification. https://github.com/riscv/
riscv-elf-psabi-doc/blob/master/riscv-elf.md, Au-
gust 2020.

[21] Leonardo de Moura and Nikolaj Bjørner. Satisfiability
modulo theories: Introduction and applications. Com-
munications of the ACM, 54(9):69–77, September 2011.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 55

https://git.kernel.org/linus/81c22041d9f1
https://lwn.net/Articles/801871/
https://lwn.net/Articles/801871/
https://lwn.net/Articles/779120/
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md

[22] Leonardo de Moura, Soonho Kong, Jeremy Avigad,
Floris van Doorn, and Jakob von Raumer. The Lean
theorem prover. In Proceedings of the 25th International
Conference on Automated Deduction (CADE), pages
378–388, Berlin, Germany, August 2015.

[23] Jake Edge. A trio of fuzzers. https://lwn.net/

Articles/705937/, November 2016.

[24] Dawson R. Engler. VCODE: A retargetable, extensible,
very fast dynamic code generation system. In Proceed-
ings of the 17th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
pages 160–170, Philadephia, PA, May 1996.

[25] Dawson R. Engler and M. Frans Kaashoek. DPF: Fast,
flexible message demultiplexing using dynamic code
generation. In Proceedings of the 1996 ACM SIGCOMM
Conference, pages 53–59, Stanford, CA, August 1996.

[26] Dawson R. Engler, M. Frans Kaashoek, and James W.
O’Toole. Exokernel: An operating system architecture
for application-level resource management. In Proceed-
ings of the 15th ACM Symposium on Operating Systems
Principles (SOSP), pages 251–266, Copper Mountain,
CO, December 1995.

[27] Andres Erbsen, Jade Philipoom, Jason Gross, Robert
Sloan, and Adam Chlipala. Simple high-level code for
cryptographic arithmetic – with proofs, without compro-
mises. In Proceedings of the 40th IEEE Symposium on
Security and Privacy, pages 73–90, San Francisco, CA,
May 2019.

[28] Manuel Fähndrich,Mark Aiken, Chris Hawblitzel, Orion
Hodson, Galen Hunt, James R. Larus, and Steven Levi.
Language support for fast and reliable message-based
communication in Singularity OS. In Proceedings of the
1st ACM EuroSys Conference, pages 177–190, Leuven,
Belgium, April 2006.

[29] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt,
Shriram Krishnamurthi, Eli Barzilay, Jay McCarthy, and
Sam Tobin-Hochstadt. A programmable programming
language. Communications of the ACM, 61(3):62–71,
March 2018.

[30] Andrew Ferraiuolo,AndrewBaumann,Chris Hawblitzel,
and Bryan Parno. Komodo: Using verification to dis-
entangle secure-enclave hardware from software. In
Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP), pages 287–305, Shanghai,
China, October 2017.

[31] Matt Fleming. A thorough introduction to eBPF. https:
//lwn.net/Articles/740157/, December 2017.

[32] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser.
Time protection: The missing OS abstraction. In Pro-
ceedings of the 14th ACM EuroSys Conference, Dresden,
Germany, March 2019.

[33] Jacob Van Geffen, Luke Nelson, Isil Dillig, Xi Wang,
and Emina Torlak. Synthesizing JIT compilers for in-
kernel DSLs. In Proceedings of the 32nd International
Conference on ComputerAidedVerification (CAV), pages
564–586, Los Angeles, CA, July 2020.

[34] ElazarGershuni,NadavAmit,Arie Gurfinkel,Nina Naro-
dytska, Jorge A. Navas, Noam Rinetzky, Leonid Ryzhyk,
and Mooly Sagiv. Simple and precise static analysis of
untrusted Linux kernel extensions. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
1069–1084, Phoenix, AZ, June 2019.

[35] Brendan Gregg. BPF Performance Tools: Linux System
and Application Observability. Addison Wesley, 2020.

[36] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun
Narayan, Bryan Parno, Danfeng Zhang, and Brian Zill.
Ironclad Apps: End-to-end security via automated full-
system verification. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI), pages 165–181, Broomfield, CO, October
2014.

[37] Gernot Heiser, Gerwin Klein, and June Andronick. seL4
in Australia: From research to real-world trustworthy
systems. Communications of the ACM, 63(4):72–75,
April 2020.

[38] TokeHøiland-Jørgensen,JesperDangaardBrouer,Daniel
Borkmann, John Fastabend, Tom Herbert, David Ahern,
and David Miller. The eXpress Data Path: Fast pro-
grammable packet processing in the operating system
kernel. In Proceedings of the 14th International Con-
ference on Emerging Networking Experiments and Tech-
nologies (CoNEXT), pages 54–66, Heraklion, Greece,
December 2018.

[39] Jingmei Hu,Eric Lu,David AHolland,MingKawaguchi,
Stephen Chong, and Margo I. Seltzer. Trials and tribula-
tions in synthesizing operating systems. In Proceedings
of the 10th Workshop on Programming Languages and
Operating Systems, pages 67–73, Huntsville, Ontario,
Canada, October 2019.

[40] M. Frans Kaashoek, Dawson R. Engler, Gregory R.
Ganger, Héctor M. Briceño, Russell Hunt, David Maz-
ières, Thomas Pinckney, Robert Grimm, John Jannotti,
and Kenneth Mackenzie. Application performance and
flexibility on exokernel systems. In Proceedings of the

56 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://lwn.net/Articles/705937/
https://lwn.net/Articles/705937/
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/

16th ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 52–65, Saint-Malo, France, October
1997.

[41] Daniel Kästner, Jörg Barrho, Ulrich Wünsche, Marc
Schlickling, Bernhard Schommer, Michael Schmidt,
Christian Ferdinand, Xavier Leroy, and Sandrine Blazy.
CompCert: Practical experience on integrating and qual-
ifying a formally verified optimizing compiler. In Pro-
ceedings of the 9th European Congress Embedded Real-
Time Software and Systems, pages 1–9, Toulouse, France,
January 2018.

[42] David Keppel, Susan J. Eggers, and Robert R. Henry.
A case for runtime code generation. Technical Report
91-11-04, University of Washington, November 1991.

[43] Jakub Kicinski and Nicolaas Viljoen. eBPF hardware
offload to SmartNICs: cls_bpf and XDP. In the 3rd
TechnicalConference on LinuxNetworking,Tokyo,Japan,
October 2016.

[44] James C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, July 1976.

[45] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Michael Norrish, Rafal Kolanski,
Thomas Sewell, Harvey Tuch, and Simon Winwood.
seL4: Formal verification of an OS kernel. In Pro-
ceedings of the 22nd ACM Symposium on Operating
Systems Principles (SOSP), pages 207–220, Big Sky,
MT, October 2009.

[46] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby
Murray, Thomas Sewell, Rafal Kolanski, and Gernot
Heiser. Comprehensive formal verification of an OS
microkernel. ACM Transactions on Computer Systems,
32(1):2:1–70, February 2014.

[47] Gerwin Klein, June Andronick,Matthew Fernandez, Ihor
Kuz, Toby Murray, and Gernot Heiser. Formally verified
software in the real world. Communications of the ACM,
61(10):68–77, October 2018.

[48] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
DanielGruss,WernerHaas,MikeHamburg,Moritz Lipp,
StefanMangard,Thomas Prescher,Michael Schwarz,and
Yuval Yarom. Spectre attacks: Exploiting speculative
execution. In Proceedings of the 40th IEEE Symposium
on Security and Privacy, pages 19–37, San Francisco,
CA, May 2019.

[49] Gergely Kovásznai, Andreas Fröhlich, and Armin Biere.
Complexity of fixed-size bit-vector logics. Theory of
Computing Systems, 59(2):323–376, August 2016.

[50] Daniel Kroening and Ofer Strichman. Decision Proce-
dures: An Algorithmic Point of View. Springer-Verlag,
2008.

[51] Butler W. Lampson and Robert F. Sproull. An open
operating system for a single-user machine. In Proceed-
ings of the 7th ACM Symposium on Operating Systems
Principles (SOSP), pages 98–105, Pacific Grove, CA,
December 1979.

[52] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler
validation via equivalence modulo inputs. In Proceed-
ings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
pages 216–226, Edinburgh, United Kingdom, June 2014.

[53] Xavier Leroy. Formal verification of a realistic compiler.
Communications of the ACM, 52(7):107–115, July 2009.

[54] Xavier Leroy. A formally verified compiler back-end.
Journal of Automated Reasoning, 43(4):363–446, De-
cember 2009.

[55] Amit Levy, Bradford Campbell, Branden Ghena,
Daniel B. Giffin, Pat Pannuto, Prabal Dutta, and Philip
Levis. Multiprogramming a 64kB computer safely and
efficiently. In Proceedings of the 26th ACM Sympo-
sium on Operating Systems Principles (SOSP), pages
234–251, Shanghai, China, October 2017.

[56] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan
Parno, Shaz Qadeer, Upamanyu Sharma, James R.
Wilcox, and Xueyuan Zhao. Armada: Low-effort ver-
ification of high-performance concurrent program. In
Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion (PLDI), pages 197–210, London, United Kingdom,
June 2020.

[57] Marek Majkowski. Cloudflare architec-
ture and how BPF eats the world. https:

//blog.cloudflare.com/cloudflare-architecture-

and-how-bpf-eats-the-world/, May 2019.

[58] Michaël Marcozzi, Qiyi Tang, Alastair Donaldson, and
Cristian Cadar. Compiler fuzzing: Howmuch does itmat-
ter? In Proceedings of the 2019 Annual ACMConference
on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), Athens, Greece, October
2019.

[59] Henry Massalin. Superoptimizer: A look at the small-
est program. In Proceedings of the 2nd International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
122–126, Palo Alto, CA, October 1987.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 57

https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-eats-the-world/
https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-eats-the-world/
https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-eats-the-world/

[60] HenryMassalin andCalton Pu. Threads and input/output
in the Synthesis kernel. In Proceedings of the 12th ACM
Symposium on Operating Systems Principles (SOSP),
pages 191–201, Litchfield Park, AZ, December 1989.

[61] Steven McCanne and Van Jacobson. The BSD packet
filter: A new architecture for user-level packet capture.
In Proceedings of the Winter 1993 USENIX Technical
Conference, pages 259–270, San Diego, CA, January
1993.

[62] Jeffrey C. Mogul, Richard F. Rashid, and Michael J.
Accetta. The packet filter: An efficient mechanism for
user-level network code. In Proceedings of the 11th ACM
Symposium on Operating Systems Principles (SOSP),
pages 39–51, Austin, TX, November 1987.

[63] J Strother Moore. Piton: A verified assembly level
language. Technical Report 22, Computational Logic,
Inc., September 1988.

[64] Eric Mullen, Daryl Zuniga, Zachary Tatlock, and
Dan Grossman. Verified peephole optimizations for
CompCert. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), pages 448–461, Santa Barbara,
CA, June 2016.

[65] Magnus O. Myreen. Verified just-in-time compiler on
x86. In Proceedings of the 37th ACM Symposium on
Principles of Programming Languages (POPL), pages
107–118, Madrid, Spain, January 2011.

[66] Magnus O. Myreen, Konrad Slind, and Michael J. C.
Gordon. Extensible proof-producing compilation. In
Proceedings of the 18th International Conference on
Compiler Construction, pages 2–16, York, United King-
dom, March 2009.

[67] George C. Necula and Peter Lee. Safe kernel extensions
without run-time checking. In Proceedings of the 2nd
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 229–243, Seattle, WA,
October 1996.

[68] Luke Nelson, James Bornholt, Ronghui Gu, Andrew
Baumann,Emina Torlak, andXiWang. Scaling symbolic
evaluation for automated verification of systems code
with Serval. In Proceedings of the 27th ACM Symposium
onOperating Systems Principles (SOSP), pages 225–242,
Huntsville, Ontario, Canada, October 2019.

[69] Aina Niemetz, Mathias Preiner, and Armin Biere.
Boolector 2.0. Journal on Satisfiability, Boolean Model-
ing and Computation (JSAT), 9:53–58, 2015.

[70] Jan Nordholz. Design of a symbolically executable
embedded hypervisor. In Proceedings of the 15th ACM
EuroSys Conference, Heraklion, Greece, April 2020.

[71] Justin Pettit, Ben Pfaff, Joe Stringer, Cheng-Chun Tu,
Brenden Blanco, and Alex Tessmer. Bringing platform
harmony to VMware NSX. ACM SIGOPS Operating
Systems Review, 52(1):123–128, August 2018.

[72] Phitchaya Mangpo Phothilimthana, Aditya Thakur,
Rastislav Bodik, and Dinakar Dhurjati. Scaling up super-
optimization. In Proceedings of the 21st International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
297–310, Atlanta, GA, April 2016.

[73] Rob Pike, Bart N. Locanthi, and John Reiser. Hardware/-
software trade-offs for bitmap graphics on the Blit. Soft-
ware: Practice andExperience, 15(2):131–151,February
1985.

[74] Sorawee Porncharoenwase, James Bornholt, and Emina
Torlak. Fixing code that explodes under symbolic evalua-
tion. In Proceedings of the 21st International Conference
on Verification, Model Checking, and Abstract Interpre-
tation (VMCAI), New Orleans, LA, January 2020.

[75] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz,
Chris Hawblitzel, Marina Polubelova, Karthikeyan Bhar-
gavan, Benjamin Beurdouche, Joonwon Choi, Antoine
Delignat-Lavaud, Cédric Fournet, Natalia Kulatova,
Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy,
Christoph Wintersteiger, and Santiago Zanella-Beguelin.
EverCrypt: A fast, verified, cross-platform cryptographic
provider. In Proceedings of the 41st IEEE Symposium on
Security and Privacy, pages 983–1002, San Francisco,
CA, May 2020.

[76] Dennis M. Ritchie. An incomplete history of the QED
text editor. https://www.bell-labs.com/usr/dmr/www/

qed.html, February 2004.

[77] Margo I. Seltzer, Yasuhiro Endo, Christopher Small,
and Keith A. Smith. Dealing with disaster: Surviving
misbehaved kernel extensions. In Proceedings of the 2nd
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 213–227, Seattle, WA,
October 1996.

[78] Thomas Sewell, Magnus Myreen, and Gerwin Klein.
Translation validation for a verified OS kernel. In
Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion (PLDI), pages 471–482, Seattle, WA, June 2013.

[79] KP Singh. MAC and Audit policy using eBPF (KRSI).
https://lkml.org/lkml/2020/3/28/479, March 2020.

[80] Konrad Slind and Michael Norrish. A brief overview
of HOL4. In Proceedings of the 21st International

58 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.bell-labs.com/usr/dmr/www/qed.html
https://www.bell-labs.com/usr/dmr/www/qed.html
https://lkml.org/lkml/2020/3/28/479

Conference on Theorem Proving in Higher Order Log-
ics (TPHOLs), pages 28–32, Montreal, Canada, August
2008.

[81] Louis Sobel. eJitk: Extending Jitk to eBPF. https://css.
csail.mit.edu/6.888/2015/papers/ejitk_sobel.pdf,
May 2015.

[82] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik,
Sanjit Seshia, and Vĳay Saraswat. Combinatorial sketch-
ing for finite programs. In Proceedings of the 12th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), pages 404–415, San Jose, CA, October 2006.

[83] Alexei Starovoitov. net: filter: rework/optimize internal
bpf interpreter’s instruction set. Commit bd4cf0ed331a,
Linux kernel, March 2014.

[84] Alexei Starovoitov. bpf: introduce BPF_JIT_ALWAYS_ON

config. Commit 290af86629b2, Linux kernel, January
2018.

[85] Chuck P. Thacker, Edward M. McCreight, Butler W.
Lampson, Robert F. Sproull, and David R. Boggs. Alto:
A personal computer. Technical Report CSL-79-11,
Xerox Palo Alto Research Center, August 1979.

[86] The Coq Development Team. The Coq Proof Assistant,
version 8.12.0, July 2020. URL https://doi.org/10.

5281/zenodo.4021912.

[87] Ken Thompson. Regular expression search algorithm.
Communications of the ACM, 11(6):419–422, June 1968.

[88] Emina Torlak andRastislav Bodik. Growing solver-aided
languages with Rosette. In Onward!, pages 135–152,
Boston, MA, October 2013.

[89] Emina Torlak and Rastislav Bodik. A lightweight sym-
bolic virtual machine for solver-aided host languages.
In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion (PLDI), pages 530–541, Edinburgh, United King-
dom, June 2014.

[90] Lourival Vieira Neto, Roberto Ierusalimschy, Ana Lú-
cia de Moura, and Marc Balmer. Scriptable operating
systems with Lua. In Proceedings of the 10th Dynamic
Languages Symposium, pages 2–10, Portland, OR, Oc-
tober 2014.

[91] Robert Wahbe, Steven Lucco, Thomas E. Anderson,
and Susan L. Graham. Efficient software-based fault
isolation. In Proceedings of the 14th ACMSymposium on
Operating Systems Principles (SOSP), pages 203–216,
Asheville, NC, December 1993.

[92] Deborah A. Wallach, Dawson R. Engler, and M. Frans
Kaashoek. ASHs: Application-specific handlers for high-
performance messaging. In Proceedings of the 1996
ACM SIGCOMM Conference, pages 40–52, Stanford,
CA, August 1996.

[93] Jiong Wang. bpf: eliminate zero extensions
for sub-register writes. https://lore.kernel.

org/bpf/1558736728-7229-1-git-send-email-

jiong.wang@netronome.com/, May 2019.

[94] Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chli-
pala, and Zachary Tatlock. Jitk: A trustworthy in-kernel
interpreter infrastructure. In Proceedings of the 11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 33–47, Broomfield, CO,
October 2014.

[95] Andrew Waterman. Design of the RISC-V Instruction
Set Architecture. PhD thesis, University of California,
Berkeley, January 2016.

[96] Andrew Waterman and Krste Asanović, editors. The
RISC-V Instruction Set Manual, Volume I: Unprivileged
ISA. RISC-V Foundation, December 2019.

[97] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and understanding bugs in C compilers. In
Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion (PLDI), pages 283–294, San Jose, CA, June 2011.

[98] William D. Young. A verified code generator for a subset
of Gypsy. Technical Report 33, Computational Logic,
Inc., October 1988.

[99] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan,
Jonathan Protzenko, andBenjamin Beurdouche. HACL*:
A verified modern cryptographic library. In Proceedings
of the 24th ACMConference on Computer and Communi-
cations Security (CCS), Dallas, TX, October–November
2017.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 59

https://css.csail.mit.edu/6.888/2015/papers/ejitk_sobel.pdf
https://css.csail.mit.edu/6.888/2015/papers/ejitk_sobel.pdf
https://git.kernel.org/linus/bd4cf0ed331a275e9bf5a49e6d0fd55dffc551b8
https://git.kernel.org/linus/290af86629b2
https://doi.org/10.5281/zenodo.4021912
https://doi.org/10.5281/zenodo.4021912
https://lore.kernel.org/bpf/1558736728-7229-1-git-send-email-jiong.wang@netronome.com/
https://lore.kernel.org/bpf/1558736728-7229-1-git-send-email-jiong.wang@netronome.com/
https://lore.kernel.org/bpf/1558736728-7229-1-git-send-email-jiong.wang@netronome.com/

A Artifact appendix

A.1 Patches to the Linux kernel developed using Jitterbug
The following tables list the upstreamed patches to the Linux kernel that we have developed using Jitterbug.

A.1.1 Development of the BPF JIT for RV32

Commit Architecture Description

5f316b65e99f RV32 Add RV32G eBPF JIT
ca6cb5447cec RV32 Factor common RISC-V JIT code
745abfaa9eaf RV32 Fix tail call count off by one in RV32 BPF JIT
91f658587a96 RV32 Fix stack layout of JITed code on RV32

A.1.2 Bug fixes and new test cases

Commit Architecture Description

bb9562cf5c67 Arm32 Fix bugs with ALU64 RSH, ARSH BPF_K shift by 0
4178417cc535 Arm32 Fix offset overflow for BPF_MEM BPF_DW
579d1b3faa37 Arm64 Fix two bugs in encoding 32-bit logical immediates
1e692f09e091 RV64 Clear high 32 bits for ALU32 add/sub/neg/lsh/rsh/arsh
489553dd13a8 RV64 Fix offset range checking for auipc+jalr on RV64
6fa632e719ee x86-32 Fix bug with ALU64 LSH, RSH, ARSH BPF_K shift by 0
68a8357ec15b x86-32 Fix bug with ALU64 LSH, RSH, ARSH BPF_X shift by 0
80f1f8503635 x86-32 Fix bug with JMP32 JSET BPF_X checking upper bits
5fa9a98fb103 x86-32 Fix incorrect encoding in BPF_LDX zero-extension
50fe7ebb6475 x86-32 Fix clobbering of dst for BPF_JSET
aee194b14dd2 x86-64 Fix encoding for lower 8-bit registers in BPF_STX BPF_B
d2b6c3ab70db – Add test for BPF_STX BPF_B storing R10
93e5fbb18cec – Add test for JMP32 JSET BPF_X with upper bits set
ac8786c72eba – Add tests for shifts by zero

A.1.3 Optimizations for existing BPF JITs

Commit Architecture Description

cf48db69bdfa Arm32 Optimize ALU64 ARSH X using orrpl conditional instruction
c648c9c7429e Arm32 Optimize ALU ARSH K using asr immediate instruction
fd49591cb49b Arm64 Optimize AND,OR,XOR,JSET BPF_K using arm64 logical immediates
fd868f148189 Arm64 Optimize ADD,SUB,JMP BPF_K using arm64 add/sub immediates
46dd3d7d287b RV64 Enable zext optimization for more RV64G ALU ops
0224b2acea0f RV64 Enable missing verifier_zext optimizations on RV64
21a099abb765 RV64 Optimize FROM_LE using verifier_zext on RV64
ca349a6a104e RV64 Optimize BPF_JMP BPF_K when imm == 0 on RV64
073ca6a0369e RV64 Optimize BPF_JSET BPF_K using andi on RV64
bfabff3cb0fe RV64 Modify JIT ctx to support compressed instructions
804ec72c68c8 RV64 Add encodings for compressed instructions
18a4d8c97b84 RV64 Use compressed instructions in the rv64 JIT

60 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://git.kernel.org/linus/5f316b65e99f
https://git.kernel.org/linus/ca6cb5447cec
https://git.kernel.org/linus/745abfaa9eaf
https://git.kernel.org/linus/91f658587a96
https://git.kernel.org/linus/bb9562cf5c67
https://git.kernel.org/linus/4178417cc535
https://git.kernel.org/linus/579d1b3faa37
https://git.kernel.org/linus/1e692f09e091
https://git.kernel.org/linus/489553dd13a8
https://git.kernel.org/linus/6fa632e719ee
https://git.kernel.org/linus/68a8357ec15b
https://git.kernel.org/linus/80f1f8503635
https://git.kernel.org/linus/5fa9a98fb103
https://git.kernel.org/linus/50fe7ebb6475
https://git.kernel.org/linus/aee194b14dd2
https://git.kernel.org/linus/d2b6c3ab70db
https://git.kernel.org/linus/93e5fbb18cec
https://git.kernel.org/linus/ac8786c72eba
https://git.kernel.org/linus/cf48db69bdfa
https://git.kernel.org/linus/c648c9c7429e
https://git.kernel.org/linus/fd49591cb49b
https://git.kernel.org/linus/fd868f148189
https://git.kernel.org/linus/46dd3d7d287b
https://git.kernel.org/linus/0224b2acea0f
https://git.kernel.org/linus/21a099abb765
https://git.kernel.org/linus/ca349a6a104e
https://git.kernel.org/linus/073ca6a0369e
https://git.kernel.org/linus/bfabff3cb0fe
https://git.kernel.org/linus/804ec72c68c8
https://git.kernel.org/linus/18a4d8c97b84

A.2 Bug-fixing commits in BPF JITs in the Linux kernel (May 2014–April 2020)
The following table lists bug-fixing commits in the BPF JITs in the Linux kernel for Arm32, Arm64, RV64, x86-32, and x86-64.
The superscripts � and (mark those for fixing bugs found using Jitterbug and the BPF bug finder in Serval, respectively.

Commit Architecture Year Description

ALU:
bb9562cf5c67� Arm32 2020 Fix bugs with alu64 rsh, arsh bpf_k shift by 0
14e589ff4aa3 Arm64 2015 Fix mod-by-zero case
251599e1d690 Arm64 2015 Fix div-by-zero case
d63903bbc30c Arm64 2015 Fix endianness conversion bugs
1e4df6b72081 Arm64 2015 Fix signedness bug in loading 64-bit immediate
1e692f09e091(RV64 2019 Clear high 32 bits for alu32 add/sub/neg/lsh/rsh/arsh
fe121ee531d1 RV64 2019 Clear target register high 32-bits for and/or/xor on alu32
6fa632e719ee(x86-32 2019 Fix bug with alu64 lsh, rsh, arsh bpf_k shift by 0
68a8357ec15b(x86-32 2019 Fix bug with alu64 lsh, rsh, arsh bpf_x shift by 0
b9aa0b35d878 x86-32 2019 Fix bug for bpf_alu64 | bpf_neg
343f845b3759 x86-64 2015 Fix from_be16 and from_le16/32 instructions

JMP:
2b589a7e2bd3 Arm32 2018 Correct check_imm24
ddc665a4bb4b Arm64 2017 Fix jit branch offset related to ldimm64
8eee539ddea0 Arm64 2015 Fix out-of-bounds read in bpf2a64_offset()
50fe7ebb6475� x86-32 2020 Fix clobbering of dst for bpf_jset
80f1f8503635� x86-32 2020 Fix bug with jmp32 jset bpf_x checking upper bits
711aef1bbf88 x86-32 2019 Fix bug for bpf_jmp | bpf_jsgt, bpf_jsle, bpf_jslt, bpf_jsge
7c2e988f400e x86-64 2019 Fix x64 jit code generation for jmp to 1st insn

MEM:
4178417cc535� Arm32 2020 Fix offset overflow for bpf_mem bpf_dw
ec19e02b343d Arm32 2018 Fix ldx instructions
8968c67a82ab Arm64 2019 Remove prefetch insn in xadd mapping
7005cade1bdb Arm64 2017 Use separate register for state in stxr
5ca1ca01fae1 x86-32 2020 Fix logic error in bpf_ldx zero-extension
5fa9a98fb103� x86-32 2020 Fix incorrect encoding in bpf_ldx zero-extension
aee194b14dd2� x86-64 2020 Fix encoding for lower 8-bit registers in bpf_stx bpf_b

CALL:
8c11ea5ce13d Arm64 2018 Fix getting subprog addr from aux for calls
489553dd13a8� RV64 2020 Fix offset range checking for auipc+jalr on rv64

TAIL_CALL and EXIT:
02088d9b392f Arm32 2018 Fix register saving
f4483f2cc1fd Arm32 2018 Fix tail call jumps
51c9fbb1b146 Arm64 2014 Lift restriction on last instruction
16338a9b3ac3 Arm64 2018 Fix out of bounds access in tail call
a2284d912bfc Arm64 2018 Fix stack_depth tracking in combination with tail calls
d8b54110ee94 Arm64 2017 Fix faulty emission of map access in tail calls
96bc4432f5ad RV64 2019 Limit to 33 tail calls
769e0de6475e x86-64 2014 Fix epilogue generation for ebpf programs
90caccdd8cc0 x86-64 2017 Fix bpf_tail_call() x64 jit
2482abb93ebf x86-64 2015 Fix general protection fault when tail call is invoked

Prologue and epilogue:
d1220efd2348 Arm32 2018 Fix stack alignment
f1003b787c00 RV64 2019 Fix broken bpf tail calls
9e4e5b5c8666 x86-32 2018 Fix regression caused by commit 24dea04767e6
fe8d9571dc50 x86-64 2019 Fix stack layout of jited bpf code

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 61

https://git.kernel.org/linus/bb9562cf5c67
https://git.kernel.org/linus/14e589ff4aa3
https://git.kernel.org/linus/251599e1d690
https://git.kernel.org/linus/d63903bbc30c
https://git.kernel.org/linus/1e4df6b72081
https://git.kernel.org/linus/1e692f09e091
https://git.kernel.org/linus/fe121ee531d1
https://git.kernel.org/linus/6fa632e719ee
https://git.kernel.org/linus/68a8357ec15b
https://git.kernel.org/linus/b9aa0b35d878
https://git.kernel.org/linus/343f845b3759
https://git.kernel.org/linus/2b589a7e2bd3
https://git.kernel.org/linus/ddc665a4bb4b
https://git.kernel.org/linus/8eee539ddea0
https://git.kernel.org/linus/50fe7ebb6475
https://git.kernel.org/linus/80f1f8503635
https://git.kernel.org/linus/711aef1bbf88
https://git.kernel.org/linus/7c2e988f400e
https://git.kernel.org/linus/4178417cc535
https://git.kernel.org/linus/ec19e02b343d
https://git.kernel.org/linus/8968c67a82ab
https://git.kernel.org/linus/7005cade1bdb
https://git.kernel.org/linus/5ca1ca01fae1
https://git.kernel.org/linus/5fa9a98fb103
https://git.kernel.org/linus/aee194b14dd2
https://git.kernel.org/linus/8c11ea5ce13d
https://git.kernel.org/linus/489553dd13a8
https://git.kernel.org/linus/02088d9b392f
https://git.kernel.org/linus/f4483f2cc1fd
https://git.kernel.org/linus/51c9fbb1b146
https://git.kernel.org/linus/16338a9b3ac3
https://git.kernel.org/linus/a2284d912bfc
https://git.kernel.org/linus/d8b54110ee94
https://git.kernel.org/linus/96bc4432f5ad
https://git.kernel.org/linus/769e0de6475e
https://git.kernel.org/linus/90caccdd8cc0
https://git.kernel.org/linus/2482abb93ebf
https://git.kernel.org/linus/d1220efd2348
https://git.kernel.org/linus/f1003b787c00
https://git.kernel.org/linus/9e4e5b5c8666
https://git.kernel.org/linus/fe8d9571dc50

Cobra: Making Transactional Key-Value Stores Verifiably Serializable

Cheng Tan, Changgeng Zhao, Shuai Mu?, and Michael Walfish
NYU Department of Computer Science, Courant Institute ?Stony Brook University

Abstract. Today’s cloud databases offer strong properties,
including serializability, sometimes called the gold standard
database correctness property. But cloud databases are compli-
cated black boxes, running in a different administrative domain
from their clients. Thus, clients might like to know whether
the databases are meeting their contract. To that end, we intro-
duce cobra; cobra applies to transactional key-value stores.
It is the first system that combines (a) black-box checking, of
(b) serializability, while (c) scaling to real-world online trans-
actional processing workloads. The core technical challenge
is that the underlying search problem is computationally ex-
pensive. Cobra tames that problem by starting with a suitable
SMT solver. Cobra then introduces several new techniques,
including a new encoding of the validity condition; hardware
acceleration to prune inputs to the solver; and a transaction
segmentation mechanism that enables scaling and garbage col-
lection. Cobra imposes modest overhead on clients, improves
over baselines by 10× in verification cost, and (unlike the base-
lines) supports continuous verification. Our artifact can handle
2000 transactions/sec, equivalent to 170M/day.

1 Introduction and motivation

A new class of cloud databases has emerged, including Ama-
zon DynamoDB and Aurora [2, 4, 133], Azure CosmosDB [7],
CockroachDB [9], YugaByte DB [36], and others [16, 17, 21,
22, 69]. Compared to earlier generations of NoSQL databases
(such as Facebook Cassandra, Google Bigtable, and Amazon
S3), members of the new class offer the same scalability, avail-
ability, replication, and geo-distribution but in addition offer
serializable transactions [55, 110]: all transactions appear to
execute in a single, sequential order.
Serializability is the gold-standard isolation level [48, 77],

and the correctness contract that many applications and pro-
grammers implicitly assume: their code would be incorrect if
the database provided a weaker contract [137]. Note that serial-
izability encompasses weaker notions of correctness, like basic
integrity: if a returned value does not read from a valid write,
that will manifest as a non-serializable result. Serializability
also implies that the database handles failures robustly: non-
tolerated server failures, particularly in the case of a distributed
database, are a potential source of non-serializable results.

However, a user of a cloud database can legitimately wonder
whether the database in fact provides the promised contract. For
one thing, users often have no visibility into a cloud database’s
implementation. In fact, even when the source code is avail-
able [9, 16, 17, 36], that does not necessarily yield visibility: if
the database is hosted by someone else, you can’t really be sure

of its operation. Meanwhile, any internal corruption—as could
happen from misconfiguration, operational error, compromise,
or adversarial control at any layer of the execution stack—can
cause a serializability violation. Beyond that, one need not
adopt a paranoid stance (“the cloud as malicious adversary”)
to acknowledge that it is difficult, as a technical matter, to pro-
vide serializability and geo-distribution and geo-replication
and high performance under various failures [40, 78, 147].
Doing so usually involves a consensus protocol that inter-
acts with an atomic commit protocol [69, 96, 103]—a com-
plex combination, and hence potentially bug-prone. Indeed,
today’s production systems have exhibited serializability vio-
lations [1, 18, 19, 25, 26] (see also §6.1).
This leads to our core question: how can clients verify the

serializability of a black-box database? To be clear, related
questions have been addressed before. The novelty in our prob-
lem is in combining three aspects:

(a) Black box, unmodified database. In our setting, the
database does not “know” it’s being checked; the input to the
verification machinery will be only the inputs to, and outputs
from, the database. This matches the cloud context (even when
the database is open source, as noted above), and contrasts
with work that checks for isolation or consistency anomalies by
using “inside information” [62, 86, 109, 123, 130, 141, 143],
for example, access to internal scheduling choices. Also, we
target production workloads and standard key-value APIs (§2).

(b) Serializability. We focus on serializability, in contrast to
weaker isolation levels. Serializability has a strict variant and a
non-strict variant [56, 110]; in the former, the effective transac-
tion order must be consistent with real time. We attend to both
variants in this paper. However, the weight is on the non-strict
variant, as it poses a more difficult computational problem;
the strict variant is “easier” because the real-time constraint
diminishes the space of potentially-valid execution schedules.
On the one hand, the majority of databases that offer seri-

alizability offer the strict variant. On the other hand, check-
ing non-strict serializability is germane, for two reasons. First,
some databases claim to provide the non-strict variant (in
general [11], or under clock skew [35], or for read-only work-
loads [32]), while others don’t specify the variant [3, 5]. Sec-
ond, the strict case can degenerate to the non-strict case. Heavy
concurrency, for example, means few real-time constraints, so
the difficult computational problem re-enters. As a special
case, clock drift causes otherwise ordered transactions to be
concurrent (§3.5, §6.1).

(c) Scalability. This means, first, scaling to real-world online
transactional processing workloads at reasonable cost. It also

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 63

means incorporating mechanisms that enable a verifier to work
incrementally and to keep up with an ever-growing history.
However, aspects (a) and (b) set up a challenge: check-

ing black-box serializability has long been known to be
NP-complete [54, 110]. Recent work of Biswas and Enea
(BE) [59] lowered the complexity to polynomial time, under
natural restrictions (which hold in our context); see also pio-
neering work by Sinha et al. [124] (§7). However, these two
approaches don’t meet our goal of scalability. For example,
in BE, the number of clients appears in the exponent of the
algorithm’s running time (§6, §7) (e.g., 14 clients means the
algorithm is O(n14)). Furthermore, even if there were a small
number of clients, BE does not include mechanisms for han-
dling a continuous and ever-growing history.

Despite the computational complexity, there is cause for
hope: one of the remarkable developments in the field of formal
verification has been the use of heuristics to “solve” problems
whose general form is intractable. This owes to major advances
in solvers (advanced SAT and SMT solvers) [49, 57, 64, 73, 84,
99, 107, 128], coupled with an explosion of computing power.
Thus, our guiding intuition is that it ought to be possible to
verify serializability in many real-world cases. This paper de-
scribes a system called cobra, which starts from this intuition,
and provides a solution to the problem posed by (a)–(c).

Cobra applies to transactional key-value stores (everywhere
in this paper it says “database”, this is what we mean). Cobra
consists of a third-party, unmodified database that is not as-
sumed to “cooperate”; a set of legacy database clients that
cobra modifies to link to a library; one or more history col-
lectors that are assumed to record the actual requests to and
responses from the database; and a verifier that comprehen-
sively checks serializability, in a way that “keeps up” with the
database’s (average) load. The database is untrusted while the
clients, collectors, and verifier are all in the same trust domain
(for example, deployed by the same organization). Section 2
further details the setup and gives example scenarios. Cobra
solves two main problems:
1. Efficient witness search (§3). A brute-force way to vali-

date serializability is to demonstrate the existence of a graph
G whose nodes are transactions in the history and whose edges
meet certain constraints, one ofwhich is acyclicity (§2.3). From
our starting intuition and the structure of the constraints, we
are motivated to use a SAT or SMT solver [34, 50, 73, 127].
But complications arise. To begin with, encoding acyclic-
ity in a SAT instance brings overhead [79, 80, 91] (we see
this too; §6.1). Instead, cobra uses a recent SMT solver,
MonoSAT [52], that is well-suited to checking graph proper-
ties (§3.4). However, using MonoSAT alone on the aforemen-
tioned brute-force search problem is still too expensive (§6.1).

To address this issue, cobra develops domain-specific prun-
ing techniques and reduces the search problem size. First, co-
bra introduces a new encoding that exploits common patterns
in real workloads, such as read-modify-write transactions, to

efficiently infer ordering relationships from a history (§3.1–
§3.2). (We prove that cobra’s encoding is a valid reduction in
Appendix B [132].) Second, cobra uses parallel hardware (our
implementation uses GPUs; §5) to compute all-pairs reach-
ability over a graph whose nodes are transactions and whose
edges are known precedence relationships; then, cobra re-
solves some of the constraints efficiently, by testing whether a
candidate edge would generate a cycle with an existing path.
2. Scaling to a continuous and ever-growing history (§4).

Online cloud databases run in a continuous fashion, where the
corresponding history is uninterrupted and grows unbound-
edly. To support online databases, cobra verifies in rounds.
From round-to-round, the verifier checks serializability on a
portion of the history. However, the challenge is that the verifier
seemingly needs to involve all history, because serializability
does not respect real-time ordering, so future transactions can
read from values that (in a real-time view) have been over-
written. To solve this problem, clients issue periodic fence
transactions (§4.2). The epochs impose coarse-grained syn-
chronization, creating a window from which future reads, if
they are to be serializable, are permitted to read. This allows
the verifier to discard transactions prior to the window.
We implement cobra (§5) and experiment with it on pro-

duction databases with various workloads (§6). Cobra detects
all serializability violations we collect from real systems’ bug
reports. Cobra’s core (single-round) verification improves on
baselines by 10× in the problem size it can handle for a given
time budget. For example, cobra finishes checking 10k trans-
actions in 14 seconds, whereas baselines can handle only 1k
or less in the same time budget. For an online database with
continuous traffic, cobra achieves a sustainable verification
throughput of 2k txn/sec on the workloads that we experiment
with (this corresponds to a workload of 170M/day; for com-
parison, Apple Pay handles 33M txn/day [6], and Visa handles
150M txn/day [33], admittedly for a slightly different notion
of “transaction”). Cobra imposes modest overhead.

Cobra has several limitations (§8). First, there is no guar-
antee that cobra terminates in reasonable time (though our
experiments on real workloads do). Second, cobra supports
only a key-value API, and thus does not handle range queries
and SQL operations such as “join” and “sum” (though one
can translate these queries and operations to a key-value API,
as commonly done in research on transactional key-value
stores [100, 108, 129, 136, 140, 144]). Third, cobra does not
yet support async (event-driven) I/O patterns in clients (only
multithreading). Fourth, cobra mostly punts fault-tolerance
of the verifier and collectors (though modular solutions exist).
Finally, we have not identified serializability violations in the
wild. Of course, that does not mean that databases unfailingly
execute correctly. Indeed, cobra gives us a way, for the first
time, to get confidence in the observed executions of these
black box databases.

64 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

trust
domain client

verifier

database

accept/
reject

…

history
collectors

client

history

Figure 1: Cobra’s architecture. The dashed rectangle is a trust domain.
The verifier is off the critical path but must keep up on average.

2 Overview and technical background

2.1 Setup and scenarios

Figure 1 depicts cobra’s architecture. Clients issue requests to
a database (a transactional key-value store) and receive results.
The database is untrusted: the results can be arbitrary.

Each client request is one of five operations: start, commit,
abort (which refer to transactions), and read and write (which
refer to keys).

History collectors sit between clients and the database, cap-
turing the requests that clients issue and the (possibly wrong)
results delivered by the database. This capture is a fragment of
a history. A history is a set of operations; it is the union of the
fragments from all collectors.
A verifier retrieves history fragments from collectors and

attempts to verify whether the history is serializable; we make
this term precise below (§2.2).
The verifier proceeds in rounds; each round consists of a

witness search, the input to which is logically the output of the
previous round and new history fragments. The verifier must
work against an online and continuously available database;
however, the verifier performs its work in the background, off
the critical path.

The verifier requires the full history including all requests to,
and responses from, the database. Cobra assumes that neither
the verifier nor the collectors crash (we revisit in §8).
Clients issue operations to a database through sessions; a

client can have multiple simultaneous sessions. Within a ses-
sion, transactions do not overlap (requests are blocking). Thus,
a client can be multithreaded but not event-driven.
Clients, history collectors, and the verifier are in the same

trust domain. This architecture is relevant in real-world scenar-
ios. Consider for example an enterprise web application whose
end-users are geo-distributed employees of the enterprise. The
application servers run on the enterprise’s hardware while
the back-end of the web application is a cloud database [27].
Note that our clients are the application servers, as clients of
the database. A similarly structured example is online gam-
ing, where the main program runs on company-owned servers
while the user data is stored in a cloud database [24].

In these scenarios, the verifier runs on hardware belonging
to the trust domain. There are several options, meanwhile, for
the collectors. Collectors can be middleboxes situated at the

edge of the enterprise or gaming company, allowing them to
capture the requests and responses between the database clients
and the cloud database. Another option is to run the collector
in an untrusted cloud, using a Trusted Execution Environment
(TEE), such as Intel’s SGX. Recent work has demonstrated
such a collector [46], as a TLS proxy that logs inbound and
outbound messages, thereby ensuring (via the fact that clients
expect the server to present a valid SSL/TLS certificate) that
clients’ requests and responses are indeed logged.
Verifier’s performance requirement. The verifier’s perfor-
mance will be reported as capacity (transactions/sec); this ca-
pacity must be at least the average offered load seen by the
database over some long interval, for example a day. Note that
the verifier’s capacity need not match the database’s peak load:
because the verifier is off the critical path, it can catch up.

2.2 Verification problem statement

Preliminaries. We work within Adya’s canonical framework
for specifying isolation levels [38], as summarized below.
First, assume that each database write creates a unique ver-

sion for the given key, and each transaction reads and writes
a key at most once; thus, any read can be associated with the
transaction that issued the corresponding write. Cobra dis-
charges this assumption in the client library (§5),which embeds
a unique id in each write and consumes the id on a read.
In Adya’s formalism, a history is a set of operations per-

formed by transactions (as in cobra, §2.1), together with a
version order [38, §3.1.2]: for each key, a total order of commit-
ted versions. The version order comes from within the database
and is not exposed externally. In cobra, history is collected out-
side the database so doesn’t contain a version order. (Cobra’s
history is also known as a multi-version log [54], as discussed
in Appendix B [132]).
A history is serializable, if there exists a total order on the

committed transactions such that executing transactions in this
order produces the same result as in the history (in Adya’s for-
malism, an additional requirement for serializability is that the
aforementioned total order is consistent with the given version
order). Strictly serializable [110] is the same as serializable,
except that the total order must also obey real time: if a transac-
tion Ti commits before Tj starts in real time, Ti appears earlier
than Tj in the total order.
A history imposes dependencies. Specifically, a history

(without a version order) induces read-dependencies (a trans-
action Tj reads the value written by transaction Ti, denoted
Ti → Tj). Adding a version order yields two other kinds of
dependencies: write-dependency (Ti writes a key, and Tj over-
writes it, so Ti→ Tj), and anti-dependency (Ti reads a value
that is overwritten by Tj, so Ti→ Tj).

A serialization graph (of a history and a given version order)
is a graph whose vertices are all transactions in the history and
edges are all dependencies described above. Note that aborted
and ongoing transactions are not in the serialization graph.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 65

verifier round i
from round (i-1)

accept
or rejecthistory

collectors

g

create the
known graph

coalescing
constraints

combining
writes

pruning
constraints garbage collection

MonoSAT

Figure 2: The verifier’s process, within a round and across rounds.

The core problem. An important fact is that a history H is
serializable iff there exists a version order such that the serializa-
tion graph arising from H and that version order is acyclic [54].
Based on this fact, the core problem is to identify such a seri-
alization graph (that arises from H and some version order),
or assert that none exists.
Notice that this problem would be straightforward if the

database revealed its internal ordering, thus deciding a version
order and all dependencies: one could construct the correspond-
ing serialization graph, and test it for acyclicity. Indeed, that is
a well-established family of techniques [65, 138]. But the ver-
sion order is unavailable in our context, so we have to consider
all possible version orders, and test whether any of the implied
sets of dependencies yields an acyclic serialization graph.

2.3 Starting point: intuition and brute force
This section describes a brute-force solution, which serves as
the starting point for cobra and gives intuition. The approach
relies on a data structure called a polygraph [110], which cap-
tures unknown dependencies.
In a polygraph, vertices (V) are transactions and edges (E)

are read-dependencies. Note that read-dependencies are evi-
dent from the history because values are unique, by assump-
tion (§2.2). There is a set, C, which we call constraints, that
captures possible (but unknown) dependencies. Here is an
example polygraph:

W2(x=2)

W1(x=1) R3(x):1
T1

T2

T3

It has three vertices V = {T1,T2,T3}, one known edge in
E = {(T1,T3)} from the known read-dependency W1(x)−→
R3(x), and one constraint 〈(T3, T2), (T2, T1)〉 which is shown
as two dashed arrows connected by an arc. This constraint
captures the fact that T2 cannot happen in between T1 and T3,
because otherwise T3 should have read x from T2 instead of
from T1. Hence T2 has to happen either after T3 or before T1,
but it is unknown which option is the truth.
Formally, a polygraph P = (V , E, C) is a directed graph

(V , E) which we call the known graph, together with a set of
bipaths, C; that is, pairs of edges—not necessarily in E—of the
form 〈(v, u), (u, w)〉 such that (w, v)∈ E. A bipath of that form
can be read as “either u happened after v, or else u happened
before w”. Now, define the polygraph (V , E, C) associated with
a history, as follows [138]:
• V are all committed transactions in the history

• E = {(Ti, Tj) |Tj reads from Ti}. Notation: Ti
wr(x)−−−→ Tj, for

some x.
• C = {〈(Tj, Tk), (Tk, Ti)〉 | (Ti

wr(x)−−−→ Tj) ∧
(Tk writes to x)∧Tk 6= Ti∧Tk 6= Tj}.

The edges inE capture all read-dependencies,which as noted
are evident from the history. C captures how uncertainty is en-
coded into constraints. Specifically, for each read-dependency
in the history, all other transactions that write the same key
happen either after the given read or before the given write.

A directed graph is called compatiblewith a polygraph if the
graph has the same nodes and known edges in the polygraph,
and the graph chooses one edge out of each constraint; one can
think of such a graph as a solution to the constraint satisfaction
problem posed by the polygraph. Formally, a graph (V ′,E′) is
compatible with a polygraph (V , E, C) if: V = V ′, E ⊆ E′, and
∀〈e1, e2〉 ∈ C, (e1 ∈ E′∧ e2 /∈ E′)∨ (e1 /∈ E′∧ e2 ∈ E′).

A crucial fact (proved in Appendix B [132]) is: there exists
an acyclic directed graph that is compatible with the polygraph
associated to a history H, iff there exists an acyclic serialization
graphG ofH. Furthermore, we have seen that if there is such an
acyclic serialization graph for H, then H is serializable (§2.2).
Putting these facts together yields a brute-force approach for
verifying serializability: first, construct a polygraph from a
history; second, search for a compatible graph that is acyclic.
However, not only does this approach need to consider |C|
binary choices (2|C| possibilities) but also |C| is massive: it is a
sum of quadratic terms, specifically ∑k∈K rk · (wk−1), where
K is the set of keys in the history, and each rk and wk are the
number of reads and writes of key k.

3 Verifying serializability in cobra

Figure 2 depicts the major components of verification. This
section covers one round of verification. As a simplification,
assume that the round runs in a vacuum; Section 4 discusses
how rounds are linked.

Cobra uses the MonoSAT SMT solver [52], which is geared
to graph properties (§3.4). Nevertheless, the brute-force encod-
ing (§2.3) would overwhelm even MonoSAT (§6.1).

Cobra refines that encoding in several ways. It introduces
write combining (§3.1) and coalescing (§3.2). These tech-
niques are motivated by common patterns that impose restric-
tions on the search space. Cobra’s verifier also does its own
inference (§3.3) before invoking the solver. This is motivated
by observing that (a) all-pairs reachability information (in the
“known edges”) yields quick resolution of many constraints,

66 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1: procedure ConstructEncoding(history)
2: g, readfrom, wwpairs← CreateKnownGraph(history)
3: con← GenConstraints(g, readfrom, wwpairs)
4: con, g← Prune(con, g) // §3.3, executed one or more times
5: return con, g
6:
7: procedure CreateKnownGraph(history)
8: g← empty Graph // the known graph
9: wwpairs←Map {〈Key,Tx〉 → Tx} // consecutive writes
10: readfrom←Map {〈Key,Tx〉→ Set〈Tx〉} // maps a write to its readers
11: for transaction tx in history:
12: g.Nodes+= tx
13: for read operation rop in tx:
14: g.Edges+= (rop.read_from_tx, tx) // read-dependencies
15: readfrom[〈rop.key, rop.read_from_tx〉] += tx
16:
17: // detect RMW (read-modify-write) transactions
18: for all Keys key that are both read and written by tx:
19: rop← the operation in tx that reads key
20: if wwpairs[〈key, rop.read_from_tx〉] 6= null:
21: reject // multiple consecutive writes, not serializable
22: wwpairs[〈key, rop.read_from_tx〉]← tx
23:
24: add session order edges to g // §4.2
25: return g, readfrom, wwpairs
26:
27: procedure GenConstraints(g, readfrom, wwpairs)
28: // each key maps to set of chains; each chain is an ordered list
29: chains← empty Map {Key→ Set〈List〉}
30: for transaction tx in g:
31: for write wrop in tx:
32: chains[wrop.key] += [tx] // one-element list
33:
34: CombineWrites(chains, wwpairs) // §3.1
35: InferRWEdges(chains, readfrom, g) // infer anti-dependency
36:
37: con← empty Set
38: for 〈key,chainset〉 in chains:
39: for every pair {chaini, chainj} in chainset:
40: con+= Coalesce(chaini, chainj, key, readfrom) // §3.2
41:
42: return con

43: procedure CombineWrites(chains, wwpairs)
44: for 〈key, tx1, tx2〉 in wwpairs:
45: // By construction of wwpairs, tx1 is the write immediately
46: // preceding tx2 on key. Thus, we can sequence all writes
47: // prior to tx1 before all writes after tx2, as follows:
48: chain1← the list in chains[key] whose last elem is tx1
49: chain2← the list in chains[key] whose first elem is tx2
50: chains[key] \= {chain1, chain2}
51: chains[key] += concat(chain1,chain2)

52:
53: procedure InferRWEdges(chains, readfrom, g)
54: for 〈key,chainset〉 in chains:
55: for chain in chainset:
56: for i in [0, length(chain)−2]:
57: for rtx in readfrom[〈key,chain[i]〉]:
58: if (rtx 6= chain[i+1]): g.Edges+= (rtx, chain[i+1])
59:
60: procedure Coalesce(chain1, chain2, key, readfrom)
61: edge_set1← GenChainToChainEdges(chain1, chain2, key, readfrom)
62: edge_set2← GenChainToChainEdges(chain2, chain1, key, readfrom)
63: return 〈edge_set1, edge_set2〉
64:
65: procedure GenChainToChainEdges(chaini, chainj, key, readfrom)
66: if readfrom[〈key, chaini.tail〉] = /0:
67: edge_set←{(chaini.tail, chainj.head)}
68: return edge_set
69:
70: edge_set← empty Set
71: for rtx in readfrom[〈key, chaini.tail〉]:
72: edge_set+= (rtx, chainj.head)
73: return edge_set
74:
75: procedure Prune(con, g)
76: // tr is the transitive closure (reachability of every two nodes) of g
77: tr← TransitiveClosure(g) // standard algorithm; see [70, Ch.25]
78: for c =〈edge_set1, edge_set2〉 in con:
79: if ∃(txi, txj) ∈ edge_set1 s.t. txj txi in tr:
80: g.Edges← g.Edges∪ edge_set2
81: con−= c
82: else if ∃(txi, txj) ∈ edge_set2 s.t. txj txi in tr:
83: g.Edges← g.Edges∪ edge_set1
84: con−= c
85: return con, g

Figure 3: Cobra’s procedure for converting a history into a constraint satisfaction problem (§3). After this procedure, cobra feeds the results
(a graph of known edges G and set of constraints C) to a constraint solver (§3.4), which searches for a graph that includes the known edges from
G, meets the constraints in C, and is acyclic. We prove the algorithm’s validity in Appendix B [132].

and (b) computing that information is amenable to acceleration
on parallel hardware such as GPUs (§5).

Figure 3 depicts the algorithm that constructs cobra’s encod-
ing and shows how the techniques combine. Note that cobra
relies on a generalized notion of constraints. Whereas previ-
ously a constraint was a pair of edges, now a constraint is a pair
of sets of edges. Meeting a constraint 〈A,B〉means including all
edges in A and excluding all in B, or vice versa. More formally,
we say that a graph (V ′,E′) is compatible with a known graph
G = (V ,E) and generalized constraints C if: V = V ′, E ⊆ E′,
and ∀〈A, B〉 ∈C,(A⊆ E′∧B∩E′ = /0)∨(A∩E′ = /0∧B⊆ E′).

We prove the validity of cobra’s encoding in Appx B [132].
Specifically we prove that there exists an acyclic graph that
is compatible with the constraints constructed by cobra on a
given history if and only if the history is serializable.

3.1 Combining writes

Cobra exploits the read-modify-write (RMW) pattern, in
which a transaction reads a key and then writes the same key.
The pattern is common in real-world scenarios, for example
shopping: in one transaction, get the number of an item in stock,
decrement, and write back the number. Cobra uses RMWs
to impose order on writes; this reduces the orderings that the
verification procedure would otherwise have to consider. Here
is an example:

W3

W1 R2 W2

R4 W4 W3

W1 R2 W2

R4 W4

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 67

There are four transactions, all operating on the same key. Two
of the transactions are RMW,namelyR2,W2 andR4,W4. On the
left is the basic polygraph (§2.3). It has four constraints (each
in a different color), derived from the two read-dependencies.

Cobra goes further, inferring chains. A single chain com-
prises a sequence of transactions whose write operations are
consecutive; in the figure, a chain is indicated by a shaded area.
Notice that the only ordering possibilities exist at the granu-
larity of chains (rather than individual writes); in the example,
the two possibilities of course are [W1, W2]→ [W3, W4] and
[W3, W4]→ [W1, W2]. This is a reduction in the possibility
space; for instance, the original version considers the possi-
bility that W3 is immediately prior to W1 (the upward dashed
black arrow), but cobra “recognizes” the impossibility of that.

To construct chains, cobra initializes every write as a one-
element chain (Figure 3, line 32). Then, cobra consolidates
chains: for each RMW transaction t and the transaction t′ that
contains the prior write, cobra concatenates the chain contain-
ing t′ and the chain containing t (lines 22 and 44–51).

If a transaction t, which is not an RMW, reads from a transac-
tion u, then t requires an anti-dependency edge to u’s successor
(call it v); otherwise, t could appear in the graph downstream
of v, which would mean t actually read from v (or even from
a later write), which does not respect history. Cobra creates
the needed edge t→ v in InferRWEdges (Figure 3, line 53).
Note that in the brute-force approach (§2.3), analogous edges
appear as the first component in a constraint.

3.2 Coalescing constraints
This technique exploits the fact that, in many real-world work-
loads, there are far more reads than writes. At a high level,
cobra combines all reads that read-from the same write. We
give an example and then generalize.

W2

W1 R3

R4

R5 W2

W1 R3

R4

R5

A AB

three constraints one coalesced constraint

In the above figure, there are five single-operation transactions,
to the same key. On the left is the basic polygraph (§2.3), which
contains three constraints; each is in a different color. Notice
that all three constraints involve the question: which write
happened first, W1 or W2?
One can represent the possibilities as a constraint

〈A′, B′〉 where A′ = {(W1,W2),(R3, W2), (R4, W2)} and B′ =
{(W2,W1),(R5, W1)}. In fact, cobra does not include
(W1,W2) because there is a known edge (W1,R3), which, to-
gether with (R3,W2) in A′, implies the ordering W1→ R3→
W2, so there is no need to include (W1,W2). Likewise, co-
bra does not include (W2,W1) on the basis of the known
edge (W2,R5). So cobra includes the constraint 〈A,B〉 =
〈{(R3, W2), (R4, W2)},{(R5, W1)}〉 in the figure.

To construct constraints using the above reductions, cobra
does the following. Whereas the brute-force approach uses all
reads and their prior writes (§2.3), cobra considers particular
pairs of writes, and creates constraints from these writes and
their following reads. The particular pairs of writes are the first
and last writes from all pairs of chains pertaining to that key. In
more detail, given two chains, chaini,chainj, cobra constructs
a constraint c by (i) creating a set of edges ES1 that point
from reads of chaini.tail to chainj.head (Figure 3, lines 71–72);
this is why cobra does not include the (W1,W2) edge above.
If there are no such reads, ES1 is chaini.tail→ chainj.head
(Figure 3, line 67); (ii) building another edge set ES2 that is
the other way around (reads of chainj.tail point to chaini.head,
etc.), and (iii) setting c to be 〈ES1,ES2〉 (Figure 3, line 63).

3.3 Pruning constraints
Our final technique mines information that is encoded in paths
in the known graph, to cull irrelevant possibilities en masse.
The underlying logic is almost trivial. The interesting aspect is
that the technique is enabled by a design decision to accelerate
the computation of reachability on parallel hardware (§5 and
Figure 3, line 77); this can be done since the computation is
iterated (Boolean) matrix multiplication. Here is an example:

W2

W1 R3

The constraint is 〈(R3,W2),(W2,W1)〉. Having precomputed
reachability, cobra knows that the first choice cannot hold,
as it creates a cycle with the path W2 R3; cobra thereby
concludes that the second choice holds. Generalizing, if cobra
determines that an edge in a constraint generates a cycle, cobra
throws away both components of the entire constraint and adds
all the other edges to the known graph (Figure 3, lines 78–84).
In fact, cobra prunes multiple times, if necessary (§5).

3.4 Solving
The remaining step is to search for an acyclic graph that is
compatible with the known graph and constraints, as computed
in Figure 3. Cobra does this with a constraint solver. However,
traditional solvers do not perform well on this task because
encoding graph acyclicity as a set of SAT formulas is expensive
(a claim by Janota et al. [91], which we also observed; §6.1).

Cobra instead uses MonoSAT, which is a particular kind
of SMT solver [57] that includes SAT modulo monotonic the-
ories [52]. This solver efficiently encodes and checks graph
properties, such as acyclicity.

Cobra represents a verification problem instance (a graph
G and constraints C) as follows. Cobra creates a Boolean vari-
able E(i,j) for each vertex-vertex pair; True (resp., False) means
the searched-for compatible graph has (resp., does not have)
the given edge. For each edge in the known graph G, Cobra
sets the corresponding Boolean variable to be True. For the

68 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

constraints C, recall that each constraint 〈A,B〉 is a pair of sets
of edges, and represents a mutually exclusive choice to include
either all edges in A or else all edges in B. Cobra encodes this
in the natural way: ((∀ea ∈ A,ea)∧ (∀eb ∈ B,¬eb))∨ ((∀ea ∈
A,¬ea)∧ (∀eb ∈ B,eb)). (By abuse of notation, we have used
ea and eb to refer to the corresponding Ei,j variable.) Finally,
cobra enforces the acyclicity of the searched-for compatible
graph (that is, the graph whose edges are given by the Ei,j
that are set to True); Cobra does so by invoking a primitive
provided by the solver.
Cobra vs. MonoSAT. One might ask: if cobra’s encoding
makes MonoSAT faster, why use MonoSAT? Can we take
the domain knowledge further? Indeed, in the limiting case,
cobra could re-implement the solver! However, MonoSAT,
as an SMT solver, leverages many prior optimizations. One
way to understand cobra’s decomposition of function is that
cobra’s preprocessing exploits some of the structure created
by the problem of verifying serializability, whereas the solver is
exploiting residual structure common to many graph problems.

3.5 On strict serializability
Cobra’s verifier checks strict serializability [56, 110] by
adding real-order edges [38]—which capture the order of non-
overlapping transactions in real time—to the known graph. The
verifier then performs the serializability checking algorithm of
Figure 3; as a result, the serialization order (in the searched-for
compatible graph) respects the real-time order.
To get real-order edges, the verifier needs timestamps for

each operation. The verifier can get them either from the
database if it exposes the relevant interface (for example,
Google Spanner [69]) or else from cobra’s collectors. A naive
way to go from timestamps to real-order edges is to examine
every pair of transactions, and create a real-order edge when
one transaction’s commit timestamp is less than another’s start
timestamp. But this approach runs in time quadratic in the
number of transactions. Instead, cobra borrows a prior algo-
rithm [131, Fig. 6], which materializes the time precedence
partial order in time O(n+z), where n is the number of transac-
tions and z is the minimum number of real-order edges needed.

A challenge is that clock drift in collectors makes it unsafe
to infer real-time precedence relationships from timestamps.
To tackle this problem, cobra introduces a clock drift thresh-
old (100ms [15] by default). Cobra assumes that clock differ-
ences among collectors do not exceed this threshold; if they
do, cobra may falsely reject a serializable history. With this
assumption, cobra increases transactions’ commit timestamps
by the threshold. Thus, if two transactions have a real-order
edge, one’s original commit timestamp is earlier than the other
transaction’s start timestamp by at least the clock drift threshold.
As a consequence, all transactions within a clock drift thresh-
old are concurrent. Within such an interval, the verifier faces
the computational expense that exists when there are no real-
order edges, which calls for cobra’s techniques (§3.1–§3.3)
to accelerate verification (see §6.1 for relevant experiments).

4 Garbage collection and scaling

Cobra verifies in rounds. There are twomotivations for rounds.
First, new history is continually produced, of course. Second,
there are limits on the maximum problem size (number of
transactions) that the verifier can handle (§6.2); breaking the
task into rounds keeps each solving task manageable.
In the first round, a verifier starts with nothing and creates

a graph from CreateKnownGraph, then does verification.
After that, the verifier receives more client histories; it reuses
the graph from the last round (the g in ConstructEncoding,
Figure 3, line 5), and adds new nodes and edges to it from the
new history fragments received (Figure 2).
The technical problem is to keep the input to verification

bounded. So the question cobra must answer is: which trans-
actions can be deleted safely from history? Below, we describe
the challenge (§4.1), the core mechanism of fence transac-
tions (§4.2), and how the verifier deletes safely (§4.3). In this
section, we describe the general rules and insights; a complete
specification and correctness proof are in Appendix C [132].

4.1 The challenge
The core challenge is that past transactions can be relevant
to future verifications; specifically, deleting a past transaction
could cause the verifier to overlook future cycles.

W3(y)W1(x) R2(x) W2(x)

R4(x) R4(y)

W3(y)W1(x)

R4(x) R4(y)

before deletion after deletion

T1 T2
T3

T4

T1
T3

T4

Suppose a verifier saw three transactions (T1, T2, T3) and
wanted to remove T2 (the shaded transaction) from consid-
eration in future rounds. Later, the verifier observes a new
transaction T4 that violates serializability (and a fortiori, strict
serializability) by reading from T1 and T3. To see the violation,
notice that T2 is logically subsequent to T4, which generates
a cycle (T4→ T2 T3→ T4). Yet, if we remove T2, there is
no cycle. Hence, removing T2 is not safe: future verifications
would fail to detect certain kinds of serializability violations.

Note that this example does not require malicious or exotic
behavior. For example, consider a geo-replicated database: a
client can retrieve a stale version from a local replica.

4.2 Epochs and fence transactions
Cobra addresses this challenge by creating epochs that im-
pose a coarse-grained ordering on transactions; the verifier
can then discard information from older epochs. To avoid con-
fusion, note that epochs are a separate notion from rounds: a
verification round includes multiple epochs.

To memorialize epoch boundaries in history, clients issue
fence transactions. A fence transaction is a transaction that
reads-and-writes a single key named “EPOCH” (a dedicated

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 69

key that is used by fence transactions only). Each client issues
fence transactions periodically (for example, every 20 transac-
tions).
What prevents the database from defeating the point of

epochs by placing all of the fence transactions at the beginning
of a notional serial schedule? Cobra leverages a property of
practical serializable databases: preserved session order. That
is, the serialization order must obey the execution order within
each session (defined in §2.1). Many production databases (for
example, PostgreSQL, Azure Cosmos DB, and Google Cloud
Datastore) provide this property; for those which do not, co-
bra requires clients to build the session order, for example, by
mandating that all transactions from the same session include
a read-modify-write to a distinguished (per-session) key. Since
transactions’ serialization order obeys the session order, the
epoch ordering intertwines with the workload. Indeed, the ver-
ifier adds to the known graph session-order edges (Figure 3,
line 24), which capture the transaction issuing order in each
session; the verifier gets that per-session order from collectors,
which observe it directly.

The verifier also assigns an epoch number to each trans-
action. To do so, the verifier traverses the known graph (g),
locates all the fence transactions, chains them into a list based
on the RMW relation (§3.1), and assigns their position in the
list as their epoch numbers. Then, the verifier scans the graph
again, and for each normal transaction in a session that is be-
tween fences with epoch i and epoch j (j≥ i+1), the verifier
assigns epoch number j−1.

During the scan, the verifier keeps track of the largest epoch
number that has been seen or surpassed by every session, called
epochagree. Then we have the following guarantee.

Guarantee. For any transaction Ti whose epoch ≤
(epochagree−2), and for any transaction (including future ones)
Tj whose epoch ≥ epochagree, the known graph g contains a
path Ti Tj.
To see why the guarantee holds, consider the path in three

parts. First, for the fence transaction with epoch number
epochagree (denoted Fea), g must have a path Fea Tj, through
session-order edges. Similarly, for the fence transaction after Ti
issued by the same session (denoted Fea−∆), g has Ti Fea−∆.
Finally, Ti has epoch ≤ (epochagree−2), so Fea−∆ must have
epoch ≤ (epochagree−1). Thus, Fea−∆ Fea in g.

4.3 Garbage collection
Cobra takes a conservative approach. A transaction T can be
safely deleted, if
(i) T has been superseded, meaning that no future transac-

tions can precede T or directly succeed T in the known
graph; and

(ii) T is not involved in any potential cycle that includes edges
from constraints whose resolution could be affected by
future transactions.

Below, we delve into condition (i), then motivate condition (ii),
and finally describe cobra’s procedure for garbage collection.

Identifying superseded transactions. Define the frontier as
the set of transactions that contain the most recent writes to
keys among transactions with epoch number ≤ (epochagree−
2). The frontier captures the earliest transactions that future
transactions can possibly read. A transaction T is superseded if:
(1) T does not belong to the frontier, (2) T has epoch number≤
(epochagree−2), and (3) for any transaction T ′ that has a path to
T in the known graph, T ′ has epoch number≤ (epochagree−2).
Note that condition (2) does not subsume condition (3): we
could have T ′ T with T ′ having a larger epoch than T (the
Guarantee in §4.2 does not apply to transactions whose epochs
differ by one).

At a high level, if a transaction T is superseded, the verifier
can conclude that no future transactions should read from T;
such a future transaction would have to be ordered before some
frontier transaction, which makes a cycle by having a path back
to the future transaction, per the Guarantee (§4.2). Thus T
is a candidate to delete. However, being superseded is not a
sufficient condition for safe deletion, as we illustrate next.

Superseded does not imply disposable. Here is an example:

W2(d) W2(a) R3(a) W3(b)

R5(b) W5(c)

W1(d) W1(a)
W4(b) W4(c) R7(d)

R8(c)

 ≤ epochagree - 2 > epochagree

W6(b)

The shaded transaction (T3) is superseded (T3 and its predeces-
sor T2 have epochs≤ epochagree−2, and T3 does not belong to
the frontier). Now consider the effect of future transactions T7
andT8. T8 operates on key c; the other operations on this key are
W4(c) and W5(c). By the guarantee (§4.2), both T4 and T5 hap-
pen before T8. Plus,R8(c) reads fromW5(c), henceW4(c)must
happen before W5(c) (otherwise, R8(c) should have read from
W4(c)). Consequently, the constraint 〈(T5,T4), (T4,T3)〉,which
arises from key b, is solved: T4→ T3 is chosen. Similarly, be-
cause ofR7(d), the other constraint (concerning key a) is solved
and T3→ T1. Thus, there is a cycle (T1 T4→ T3→ T1). Yet,
deleting T3 would make the cycle undetectable.

The core issue here is that future transactions can affect the
resolution of constraints among “old” transactions.

Identifying safe transactions. To garbage collect, the verifier
clones the known graph (g in Fig. 3) into g′. Then, for each
constraint (con in Fig. 3), the verifier adds all edges in both
edge sets to g′. Finally, for each superseded transaction T , if
T does not belong to any cycles in g′ or belongs to cycles
consisting only of superseded transactions, the verifier deletes
T . This approach meets conditions (i) and (ii), as argued in
Appendix C [132].

70 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Cobra component LOC written/changed

Cobra client library
history recording 620 lines of Java
database adapters 900 lines of Java

Cobra verifier
data structures and algorithms 2k lines of Java
GPU optimizations 550 lines of CUDA/C++
history parser and others 1.2k lines of Java

Figure 4: Components of cobra implementation.

5 Implementation

Figure 4 lists the components of cobra’s implementation.
Cobra’s client library wraps other database libraries: JDBC,
Google Datastore library, and RocksJava. It enforces the as-
sumption of uniquely written values (§2.2), by adding a unique
id to a client’s writes, and stripping them out of reads. It also
issues fence transactions (§4.2). Finally, we implement history
collection (§2.1) in this library (the library writes operations
to disk before sending them to the database); a better imple-
mentation would place this function in a proxy.
The verifier iterates the pruning logic within a round, stop-

ping when it finds nothing more to prune or when it reaches
a configurable maximum number of iterations (to bound the
verifier’s work); a better implementation would stop when the
cost of the marginal pruning iteration exceeds the improvement
in the solver’s running time brought by this iteration.

Another aspect of pruning is GPU acceleration. Recall that
pruningworks by computing the transitive closure of the known
edges (Figure 3, line 77). Cobra uses the standard algorithm:
repeated squaring of the Boolean adjacency matrix [70, Ch.25]
as long as the matrix keeps changing, up to log |V| matrix
multiplications. (log |V| is the worst case and occurs when two
nodes are connected by a (≥ |V|/2+1)-step path; at least in
our experiments, this case does not arise much.) The execution
platform is cuBLAS [12] (a dense linear algebra library on
GPUs) and cuSPARSE [13] (a sparse linear algebra library on
GPUs), which contain matrix multiplication routines.

Cobra includes several optimizations. It invokes a special-
ized routine for triangular matrix multiplication (after testing
the graph for acyclicity and then indexing the vertices accord-
ing to a topological sort, creating a triangular matrix). Cobra
also exploits sparse matrix multiplication (cuSPARSE), and
moves to ordinary (dense) matrix multiplication when the den-
sity exceeds a threshold (namely, “5% of the matrix elements
are non-zero”, the empirical cross-over point that we observed).
When cobra’s verifier detects a serializability violation,

it creates a certificate with problematic transactions: either a
cycle in the known graph (detected by cobra’s algorithms) or
else a set of unsatisfiable clauses (produced by MonoSAT).

 0

 2

 4

 6

 8

 10

 12

 14

0 2k 4k 6k 8k 10k

v
er

if
ic

at
io

n
 t

im
e

(s
)

 (
lo

w
er

 i
s

b
et

te
r)

number of transactions

MiniSAT-BE
nonSAT
Z3-arith
MonoSAT-polygraph
Cobra

Figure 5: Cobra’s running time is shorter than other baselines’ on
the BlindW-RW workload. The same holds on the other benchmarks
(not depicted). Verification runtime grows superlinearly.

6 Experimental evaluation

We answer three questions:
• What are the verifier’s costs and limits, and how do these
compare to baselines?

• What is the verifier’s end-to-end, round-to-round sustain-
able capacity? This determines the offered load (on the
actual database) that the verifier can support.

• How much runtime overhead (in terms of throughput and
latency) does cobra impose for clients? And what are co-
bra’s storage and network overheads?

Benchmarks and workloads. We use four benchmarks:
• TPC-C [31] is a standard. A warehouse has 10 districts
with 30k customers. There are five types of transactions
(frequencies in parentheses): new order (45%), payment
(43%), order status (4%), delivery (4%), and stock level
(4%). In our experiments, we use one warehouse, and clients
issue transactions based on the frequencies.

• C-Twitter [8] is a simple clone of Twitter, according to
Twitter’s own description [8]. Users can tweet a new post,
follow/unfollow other users, and show a timeline (the latest
tweets from followed users). Our experiments include 1000
users. Each user tweets 140-word posts and follows/unfol-
lows other users based on a Zipfian distribution (α = 100).

• C-RUBiS [30, 41] simulates bidding systems like eBay [30].
Users can register accounts, register items, bid for items,
and comment on items. We initialize the market with 20k
users and 200k items.

• BlindW measures cobra’s performance in extreme scenar-
ios, specifically those with many blind writes (that is, writes
not preceded by a read of the same key in the same transac-
tion); this pattern is the fundamental source of uncertainty in
constraints (§3). This benchmark creates 10k keys, and runs
read-only and write-only transactions, each with eight oper-
ations. It has three variants: (1) BlindW-RM (Read Mostly),
with 90% read-only transactions; (2) BlindW-RW (Read-
Write), evenly divided between read-only and write-only
transactions; and (3) BlindW-WM (Write Mostly), with 90%
write-only transactions.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 71

Violation Database #Txns Time

G2-anomaly [19] YugaByteDB 1.3.1.0 37.2k 66.3s
Disappearing writes [1] YugaByteDB 1.1.10.0 2.8k 5.0s
G2-anomaly [18] CockroachDB-beta 20160829 446 1.0s
Read uncommitted [26] CockroachDB 2.1 20? 1.0s
Read skew [25] FaunaDB 2.5.4 8.2k 11.4s

Figure 6: Serializability violations that cobra checks. “Violation”
describes the phenomenon that clients experience. “Database” is the
database (with version number) that causes the violation. “#Txns” is
the size of the violation history. “Time” is the runtime for cobra to
detect the violation.
? The bug report only contains a small fragment of the history.

Databases and setup.We evaluate cobra on Google Cloud
Datastore [21], RocksDB [29, 74] (both provide a key-value
API), and PostgreSQL [28, 114] (which only supports the SQL
interface, cobra translates SQL queries to key-value opera-
tions). In our experimental setup, clients interact with Google
Cloud Datastore through the wide-area Internet, and connect
to a PostgreSQL server through a local 1 Gbps network. One
client starts one session.
Database clients run on two machines with a 3.3GHz Intel

i5-6600 (4-core) CPU, 16GB memory, a 250GB SSD, and
Ubuntu 16.04. For PostgreSQL, a database instance runs on
a machine with a 3.8GHz Intel Xeon E5-1630 (8-core) CPU,
32GB memory, a 1TB disk, and Ubuntu 16.04. For RocksDB,
the samemachine hosts the client threads andRocksDB threads,
which all run in the same process. We use a p3.2xlargeAmazon
EC2 instance as the verifier, with an NVIDIA Tesla V100 GPU,
a 8-core CPU, and 64GB memory.

6.1 One-shot verification
In this section, we consider “one-shot verification”: a verifier
gets a history and decides whether that history is serializable.
In our setup, clients record history fragments and store them
as files; a verifier reads them from the local file system. In this
section, the database is RocksDB (PostgreSQL and Google
Cloud Datastore give similar results).
Baselines. We have four baselines:
• A non-SAT serializability-checking algorithm
(“nonSAT”): To the best of our knowledge, the most
efficient work for checking serializability that is not based
on SAT or SMT solving is Biswas and Enea [59]. In our
experiments, we use their Rust implementation [58].

• SAT solver (“MiniSAT-BE”): We use the same solving
baseline that Biswas and Enea use for their own compar-
isons [59]: encoding serializability verification into SAT
formulas, and feeding this encoding to MiniSAT [76], a
popular SAT solver.

• Cobra, subtracted (“MonoSAT-polygraph”):We imple-
ment the original polygraph (§2.3), directly encode the con-
straints (without the techniques of §3), and feed them to the
MonoSAT SMT solver [52].

• SMT solver (“Z3-arith”): An alternative use of SMT, and

314

318

 0

 4

 8

 12

TPC-C

C-Twitte
r

C-RUBiS

BlindW-RM

BlindW-RW

BlindW-W
M

v
er

if
ic

at
io

n
 t

im
e

(s
)

 (
lo

w
er

 i
s

b
et

te
r)

constructing
pruning
solving

Figure 7: Decomposition of cobra runtime, on 10k-transaction work-
loads. Pruning dominates for read-mostly workloads, whereas solving
dominates for workloads with many writes.

a natural baseline, is a linear arithmetic encoding: each node
is assigned a distinct integer index, with read-from relation-
ships creating inequality constraints, and writes inducing
additional constraints (for a total of O(|V|2) constraints, as
in §2.3). The solver is then asked to map nodes to integers,
subject to those constraints [80, 91]. We use Z3 [73] as the
solver (experiments below use Z3’s default configuration;
we also experimented with all four builtin linear integer
arithmetic tactics, which produce similar results).
As a special case, there is an alternative baseline for TPC-

C that has the same performance as cobra and beats other
baselines. Namely, for RMW transactions, add inferred read-
dependency and write-dependency edges to a candidate graph
(without constraints, so potentially missing dependency infor-
mation), topologically sort it, and check whether the result
matches history; if not, repeat. This process has even worse
order complexity than the brute-force approach (§2.3). How-
ever, it works for TPC-C because that workload has only RMW
transactions. Effectively, all of history coalesces to a single,
correctly-ordered chain (§3.1), yielding a serialization graph.
In the experiments below, the baselines and cobra make

use of session order edges (§4.2; also called program order in
BE [59] and its implementation [58]).
Verification runtime vs. number of transactions. We com-
pare cobra to other baselines, on the various workloads. We
use 24 clients. We vary the number of transactions in the work-
load, and measure the verification time. Figure 5 depicts the
results on the BlindW-RW benchmark. On all five benchmarks,
Cobra does better than MonoSAT-polygraph and Z3-arith,
which do better than MiniSAT-BE and nonSAT.
Detecting serializability violations.We investigate cobra’s
performance on unsatisfiable instances: does cobra search
for an unacceptably long time on real-world workloads? We
consider five workloads that are known to have serializability
violations [1, 18, 19, 25, 26]. We experiment by downloading
the reported histories from their bug repositories and feeding
them to cobra’s verifier. Figure 6 shows the results. Cobra
detects all violations and finishes in reasonable time.

72 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 1

 10

 100

 600

TPC-C C-Twitter BlindW-RW

v
e
ri

fi
c
a
ti

o
n

 t
im

e
(s

)
 (

lo
w

e
r

is
 b

e
tt

e
r)

Cobra
Cobra w/o P

Cobra w/o PC
MonoSAT

2

446

2

4

13

2

34

Figure 8: Differential analysis on several workloads, log-scale, with
runtime above bars. Experiments time out at 10min (dotted line); no
runtime is shown for timed-out experiments. On TPC-C, combining
writes exploits the RMW pattern and solves all the constraints. On
C-Twitter, each of cobra’s components contributes meaningfully. On
BlindW-RW, pruning is essential, because the workload has many
blind writes which cannot benefit from the other two techniques.

 0

 20

 40

 60

 80

 100

0 20 40 60 80 100

v
er

if
ic

at
io

n
 t

im
e

(s
)

 (
lo

w
er

 i
s

b
et

te
r)

clock drift threshold (ms)

Z3-arith
MonoSAT-polygraph
Cobra

Figure 9: Cobra’s running time is shorter than other baselines’ on
checking strict serializability under clock drift. The workload is 2,000
transactions of BlindW-RW (clock drift threshold of 100 ms).

Decomposition of cobra’s verification runtime. We mea-
sure the wall clock time of cobra’s verification, broken into
stages: constructing, which includes creating the known graph,
combining writes, and creating constraints (§3.1–§3.2); prun-
ing (§3.3), which includes the time taken by the GPU; and
solving (§3.4), which includes the time spent within MonoSAT.
We experiment with all benchmarks, with 10k transactions.

Figure 7 depicts the results. In benchmarks with RMWs only
(the left one), there are no constraints, so cobra doesn’t prune
(see also the special case baseline, §6.1). In benchmarks with
many reads and RMWs (the second to fourth bars), the domi-
nant component is pruning not solving, because cobra’s own
logic identifies concrete dependencies. In benchmarks with
many blind writes (the last two), solving is a much larger con-
tributor because cobra cannot eliminate as many constraints,
leading to a larger search space, an effect that grows more pro-
nounced as the fraction of blind writes increases. On the other
hand, a majority of writes is not consistent with the patterns
in common online transaction processing workloads (OLTP),
where reads dominate.
Differential analysis. We experiment with four variants: co-
bra itself; cobra without pruning (§3.3); cobra without prun-
ing and coalescing (§3.2), which is equivalent to MonoSAT
plus write combining (§3.1); and the MonoSAT baseline.

 0

 500

 1000

 1500

 2000

 2500

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

v
er

if
ic

at
io

n
 t

h
ro

u
g

h
p

u
t

(t
x

n
/s

ec
)

 (

h
ig

h
er

 i
s

b
et

te
r)

number of transactions per round (#tx
r
)

BlindW-RM
C-RUBiS

Figure 10: Verification throughput vs. round size (#txr). The verifica-
tion capacity for BlindW-RM (the dashed line) is 2.3k txn/sec when
#txr is 5k; the capacity for C-RUBiS (the solid line) is 1.2k txn/sec
when #txr is 2.5k.

90%

95%

100%

p
ea

k
 c

li
en

t
 t

h
ro

u
g
h
p
u
t

normalized client throughput

 1k

 3k

 5k

 1 10 20 30 40 50 60

v
er

if
ie

r
 t

h
ro

u
g
h
p
u
t

#transactions between fences for each client

verifier throughput

Figure 11: Client and verifier throughputs with different fence frequen-
cies. Client throughput (the solid line) is normalized to the workload
without fence transactions. In BlindW-RM, each normal transaction
has 8 operations (§6), and fence transactions have 1–2 operations.

We experiment with three benchmarks, with 10k transactions.
Figure 8 depicts the results.
Checking strict serializability under clock drift. Clock drift
adds complexity to strict serializability (§1,§3.5). To measure
this effect, we experiment with cobra, MonoSAT-polygraph,
and Z3-arith, under different clock drifts, on the same work-
load. The workload has eight clients running BlindW-RW on
1k keys for one second with a throughput of 2k transaction/sec.
To control computational overhead, the clients issue 20 trans-
actions every 10ms. The maximum clock drift threshold is 100
ms [15]; similar thresholds can be found elsewhere [10, 37].
Figure 9 depicts the results; cobra outperforms the baselines
by 45× and 107× in verification time.

6.2 Scaling
What offered load (to the database) can cobra support on
an ongoing basis? To answer this question, we must quantify
cobra’s verification capacity, in txns/second. This depends on
the characteristics of the workload, the number of transactions
one round (§4) verifies (#txr), and the average time for one
round of verification (tr). Note that the variable here is #txr; tr
is a function of that choice. So the verification capacity for a
particular workload is defined as: max#txr(#txr/tr).
To investigate this quantity, we run all our benchmarks on

RocksDB with 24 concurrent clients, each configured to issue

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 73

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 20k 40k 60k 80k

la
te

n
cy

 (
m

s)

throughput (txn/sec)

Original
Cobra

(a) RocksDB

 0

 10

 20

 30

 40

 50

0 2k 4k 6k 8k 10k 12k 14k

la
te

n
cy

 (
m

s)

throughput (txn/sec)

Original
Cobra

(b) PostgreSQL

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300

la
te

n
cy

 (
m

s)

throughput (txn/sec)

Original
Cobra

(c) Google Datastore

Figure 12: Throughput and latency, for C-Twitter benchmark. For our RocksDB setup, 90th percentile latency increases by 2×, with 50%
throughput penalty, an artifact of history collection (disk bandwidth contention between clients and the DB). cobra imposes minor overhead
for our PostgreSQL. For Google Datastore, the throughput penalty reflects a ceiling (a maximum number of operations per second) imposed by
the cloud service and the extra operations caused by fence transactions.

fence transactions every 20 transactions. We generate a 100k-
transaction history ahead of time. For that same history, we
vary #txr, plot #txr/tr, and choose the optimum.

Figure 10 depicts the results for two benchmarks (C-RUBiS
and BlindW-RM); C-Twitter and TPC-C have similar results
(not depicted), but BlindW-RW and BlindW-WM run out of
memory (we elaborate below). When #txr is smaller, cobra
does not have enough transactions to garbage collect, hence
wastes cycles on redundantly analyzing transactions from prior
rounds; when #txr is larger, cobra suffers from a problem
size that is too large (recall that verification time increases
superlinearly; §6.1).
History eventually exceeds GPU memory on the BlindW-

RW and BlindW-WM benchmarks because blind writes limit
cobra’s ability to garbage collect transactions: blind writes
cannot benefit from combining writes (§3.1), hence many con-
straints remain, causing transactions to be involved in uncertain
constraints, and thus not collectible (§4.3). Addressing this is-
sue is future work (§8).
Fence frequency. The choice of fence frequency trades off ver-
ification capacity and peak client-side throughput. To quantify,
we do the same BlindW-RM experiments as in Figure 10, this
time fixing round size (at 5k transactions) and varying fence
frequency.

Figure 11 depicts the results. The verifier has better through-
put if clients issue fence transactions more frequently. The
reason is that more fence transactions result in smaller epoch
sizes, hence transactions can be garbage collected earlier, and
the problem size for the verifier in each round is smaller. More-
over, with more fence transactions, the problem in each round
is easier to solve because fence transactions add ordering con-
straints, which further reduce the number of possibly-valid ex-
ecution schedules. However, more frequent fence transactions
sacrifices peak client-side throughput because more resources
are occupied by fence transactions.
The right setting of fence frequency depends on client of-

fered load, peak:average throughput ratio, database capacity,
and tolerance for latency. If the frequency is set too high (to-
ward the left side of the x-axis), clients will no longer be able
to offer the original workload with acceptable latency. On the

workload network overhead history
traffic percentage size

BWrite-RW 227.4 KB 7.28% 245.5 KB
C-Twitter 292.9 KB 4.46% 200.7 KB
C-RUBiS 107.5 KB 4.53% 148.9 KB
TPC-C 78.2 KB 2.17% 1380.8 KB

Figure 13: Network and storage overheads per 1k transactions. The
network overheads comes from fence transactions and the metadata
(transaction ids and write ids) added by cobra’s client library.

other hand, for too-low frequencies (toward the right side of
the x-axis), the verifier will not be able to keep up with the
database’s average load. Of course, if client load is constant, the
fence frequency should be chosen as the point where verifier
throughput equals client offered load.

6.3 Online overheads
The baseline in this section is the legacy system; that is, clients
use the unmodified database library (for example, JDBC), with
no recording of history.
Latency-versus-throughput. We evaluate cobra’s client-
side throughput and latency in the three setups, tuning the
number of clients (up to 256) to saturate the databases. Fig-
ure 12 depicts the results. (Although these results include the
overhead of collecting histories in the client library (§5), that
overhead is negligible, as the log size is small and disk latency
is lower than network latency.)
Network cost and history size.We evaluate the network traffic
on the client side by tracking the number of bytes sent over
the NIC. We measure the history size by summing sizes of the
history files. Figure 13 summarizes.

6.4 Summary of experimental evaluation
cobra improves by at least 10× on baselines in verification
cost (Figure 5), detects real-world issues (Figure 6), gains from
its techniques versus the baseline (Figures 7 and 8), and im-
poses tolerable overhead (Figures 12 and 13).
Furthermore, its sustained throughput of 2k txn/sec (Fig-

ure 10) corresponds to large-scale real-world workloads. While
2k/sec might not sound large, recall that the verifier’s perfor-

74 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

mance requirement is to match average database load (§2.1).
An average of 2k/sec corresponds to 170M/day, sufficient to
handle Apple Pay [6] (33M txn/day), Visa [33] (150M txn/-
day), and others. Of course, a “transaction”, in the sense of a
payment, might translate to several database transactions, so
the comparison is inexact.

7 Related work

As stated earlier (§1), cobra is the first system that verifies the
executions of (a) black box databases, for (b) serializability,
under (c) workloads of realistic scale.

Three works that we are aware of tackle (a) and (b) together.
Biswas and Enea [59] was covered in Section 1 and compared
in Section 6. Sinha et al. [124] use SMT solvers to analyze
all possible interleavings for a concurrent program, to search
for serializability violations. Finally, Gretchen [23] is an ex-
perimental checker that verifies the non-strict serializability
of a cobra-style history. Gretchen encodes the history as con-
straints [67] (similar to our MiniSAT-BE baseline; §6.1) and
solves them with the fzn-gecode [20] solver.
A recent work that deserves special mention is Elle [94],

which tests for isolation anomalies, and has found many isola-
tion bugs in production databases. (Elle is part of the impactful
Jepsen [14] project, which we discuss later in this section.)
Elle has two modes for testing serializability. In one, it verifies
Adya’s serializability (PL-3 [38]), the same goal as cobra. But
Elle in this mode requires a workload that makes the version
order (§2.2) manifest; for example, clients invoke “append”,
and writes become appends to a list (Elle in this mode also
supports counters and sets). In relying on a specific API and
a specific workload for testing, this mode does not meet our
notion of black box (§1).

In the second mode, Elle works over arbitrary observations
of key-value input/output, the same setup as cobra. Without
a determined version order, it applies heuristics to identify
bugs. These heuristics are useful but not comprehensive, so
this is not verification. For example, if a history contains a
set of concurrent transactions that form a cycle through anti-
dependencies, Elle’s current heuristics do not detect the non-
serializability.
Checking consistency. Serializability is a particular isolation
level in a transactional system—the I in ACID transactions.
In shared memory systems and systems that offer replication
(but do not necessarily support transactions), there is an analo-
gous correctness contract, namely consistency. (Confusingly,
the “C(onsistency)” in ACID transactions refers to something
else [47].) Example consistency models are linearizability [88],
sequential consistency [97], and eventual consistency [112].
Testing adherence to these models is an analogous problem
to ours. In both cases, one searches for a total order of op-
erations that fits the ordering constraints of both the model
and the history [82]. As in checking serializability, the com-

putational complexity of checking consistency decreases if a
stronger model is targeted (for example, linearizability vs. se-
quential consistency) [81], or if more ordering information can
be (intrusively) acquired (by opening black boxes) [123, 139].
Concerto [43] uses deferred verification, allowing it to ex-

ploit offline memory checking [60] to check online the se-
quential consistency of a highly concurrent key-value store.
Concerto’s design achieves orders-of-magnitude performance
improvement compared to Merkle tree-based approaches [60,
106], but it also requires modifying the storage layer. (See
elsewhere [75, 98] for algorithms related to Concerto.)
A body of work examines cloud storage consistency [39,

42, 83, 101, 102, 115, 135, 142]. These works rely on extra
ordering information obtained through techniques like loosely-
or well-synchronized clocks [39, 42, 82, 83, 93, 102, 115, 135,
142], or client-to-client communication [101, 122], or by guess-
ing [143] (which risks falsely rejecting honest executions). As
another example, a gateway that sequences the requests can
ensure consistency by enforcing ordering [90, 113, 122, 125],
thereby dramatically reducing concurrency.

Some of cobra’s techniques are reminiscent of these works,
such as its use of serialization graphs [42, 82]. However, a
substantial difference is that cobra neither modifies the “mem-
ory” (the database) to get information about the actual internal
schedule nor depends on external synchronization. Cobra of
course exploits epochs (§4.2), but this is for scaling, not core to
the verification task, and invokes standard database interfaces.
Execution integrity. Our problem relates to the broad cate-
gory of execution integrity—ensuring that a module in another
administrative domain is executing as expected.
One approach is to use trusted components. For example,

Byzantine fault tolerant (BFT) replication [66] (where the
assumption is that a super-majority is not faulty) and TEEs
(trusted execution environments, comprising TPM-based sys-
tems [68, 87, 104, 105, 111, 117, 119, 126] and SGX-based
systems [44, 45, 51, 89, 95, 118, 121, 125]) ensure that the
right code is running. However, this does not ensure that the
code itself is right; concretely, if a database violates serializ-
ability owing to a bug, neither BFT nor SGX hardware helps.
Other examples are Verena [92], Orochi [131], AVM [85],

and Ripley [134]. These systems provide end-to-end assurance
that a whole stack is executing as it should, but they are not
black box. Cobra is the other way around: it treats the database
as a black box, but its purview is limited to the database.
A class of systems uses complexity-theoretic and crypto-

graphic mechanisms [61, 120, 145, 146]. None of these works
handle systems of realistic scale, and only one of them [120]
handles concurrent workloads. An exception is Obladi [71],
which remarkably provides ACID transactions atop an ORAM
abstraction by exploiting a trusted proxy that carefully manages
the interplay between concurrency control and the ORAM pro-
tocol; its performance is surprisingly good (as cryptographic-
based systems go) but still pays 1-2 orders of magnitude over-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 75

head in throughput and latency.
Detecting application anomalies caused by weak consis-
tency. Several works [63, 109, 116] detect anomalies for ap-
plications deployed on weakly consistent storage. Like cobra,
these works use SAT/SMT solvers on graph-related problems.
But the similarities end there: these works analyze applica-
tion behavior, taking the storage layer as trusted input. As a
consequence, the technical mechanisms are very different.
Testing distributed systems. There is a line of research on
testing the correctness of distributed systems under various
failures, including network partition [40], power failures [147],
and storage faults [78]. Among these, Jepsen [14] is a very
successful testing framework (the aforementioned Elle is one
of Jepsen’s checkers) with active, ongoing innovation, which
has detected large numbers of correctness bugs in production
distributed systems. Cobra is complementary (and intended to
be complimentary) to these works. Indeed, cobra uses several
of Jepsen’s traces in Figure 6 (§6.1).
Definitions and interpretations of isolation levels. Cobra
of course uses dependency graphs, which are a common tool
for reasoning about isolation levels [38, 56, 110]. However,
isolation levels can be interpreted via other means such as
excluding anomalies [53] and client-centric observations [72];
an open and intriguing question is whether the other definitions
yield a more intuitive or more easily-implemented encoding
and algorithm than the one in cobra.

8 Discussion, future work, and conclusion

Applicability. Cobra cannot preventmisbehavior, only detect
it. On the other hand, no system that we are aware of can detect
and prevent serializability violations online. Meanwhile,cobra
could contribute to recovery: given a certificate (§5), the user
could supply a candidate serialization order, enabling roll back
and replay. See also Concerto’s eloquent case for deferred
verification [43, §1.1].

Who would use cobra? We covered some scenarios in Sec-
tion 2.1. Another is to use cobra as the checker of a testing
framework (for example, Jepsen [14], §7). Then one could in-
sert malfunctions into various layers of the system (OS, storage,
network) and avoid instrumenting the database.
One might assume that the verifier needs to be at least as

powerful as the database, so why have the database? While they
must match in long-term average transactions/sec (§2.1), the
two do different kinds of work per transaction. The database
provides geo-replication, concurrency control, crash-atomicity,
durability, load-balancing, and more; the verifier is a single
machine and purely algorithmic.

Limitations and future work. cobra can be slow for certain
workloads (for example, when there are many unconstrained
writes, as in the BlindW-WM benchmark; §6.1). In fact, co-
bra’s worst-case running time is in principle exponential; fu-

ture work is to investigate whether there are real-world work-
loads that induce this behavior, or does it just happen under
contrived problem instances as in the NP-reduction?
Consistent with our experiments, we expect “real-world”

workloads not to trigger this behavior. For intuition, low con-
tention on each key yields a relatively small number of con-
straints and a small search space; the extreme is that each key
is touched once, yielding no dependencies. If there is high
contention with sufficient reads, there are more dependencies
among transactions, which imposes more ordering. An extreme
case is that there is only one key, and transactions read and
write this key, so that all transactions are ordered accordingly.

We have assumed that the verifier and the collectors oper-
ate fault-free. Future work is to make them fault-tolerant. To
that end, cobra could use standard techniques (for example,
transparent state machine replication) or extend its protocols
to handle failures. Note that even if some history fragments are
lost, cobra can (with minor modifications) produce meaning-
ful results: a cyclic dependency (serializability violation) in a
partial history is also a violation against the full history. An-
other idea is to use cobra to infer what the missing transactions
would have to be in order to ensure serializability.

Cobra focuses on serializability and strict serializability;
future work is extending to other isolation levels. Relatedly,
cobra does not support range queries and other high-level
operators (for example, sum and join); if applications want
them, they have to rewrite queries (§1). Handling these queries
“natively” would require the verifier to analyze both keys that
are returned and keys that are not returned.

Making garbage collection more aggressive is another area
of potential improvement, for example, by allowing the verifier
to query the database to resolve certain constraints.

Conclusion. A final critique is that we lack a sensational head-
line, as we did not identify novel serializability violations. How-
ever, validation doesn’t always produce a gotcha: from our
perspective, it’s equally significant to be able to report on a
system that gives us confidence that cloud databases do meet
serializability. This was something we used to have to trust;
cobra, however imperfect, helps us be sure.

Acknowledgments

Sebastian Angel, Miguel Castro, Pete Chen, Byron Cook, An-
dreas Haeberlen, Dennis Shasha, Ioanna Tzialla, ThomasWies,
and Lingfan Yu made helpful comments and gave useful point-
ers. We thank the anonymous reviewers (including at SOSP
and NSDI) for careful and constructive comments, and like-
wise our shepherd Chris Hawblitzel. We thank the anonymous
artifact evaluators for their patience and attention to detail.
This work was supported by NSF grants CNS-1423249 and
CNS-1514422, ONR grant N00014-16-1-2154, AFOSR grants
FA9550-15-1-0302 and FA9550-18-1-0421, andDARPA under
Agreement HR00112020022.

76 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Acknowledged inserts can be present in reads for tens of seconds, then

disappear.
https://github.com/YugaByte/yugabyte-db/issues/824.

[2] Amazon Aurora. https://aws.amazon.com/rds/aurora/.

[3] Amazon Aurora MySQL Reference.
https://docs.aws.amazon.com/AmazonRDS/latest/
AuroraUserGuide/AuroraMySQL.Reference.html.

[4] Amazon DynamoDB. https://aws.amazon.com/dynamodb/.

[5] Amazon DynamoDB Transactions.
https://docs.aws.amazon.com/amazondynamodb/latest/
developerguide/transaction-apis.html.

[6] Apple pay transaction volume and new user growth outpacing paypal,
tim cook says. https://9to5mac.com/2019/07/30/apple-pay-
transactions-users-paypal/.

[7] Azure Cosmos DB.
https://azure.microsoft.com/en-us/services/cosmos-db/.

[8] Big data in real time at Twitter. https://www.infoq.com/
presentations/Big-Data-in-Real-Time-at-Twitter.

[9] CockroachDB: Distributed SQL. https://www.cockroachlabs.com.

[10] CockroachDB: What happens when node clocks are not properly
synchronized? https://www.cockroachlabs.com/docs/stable/
operational-faqs.html#what-happens-when-node-clocks-
are-not-properly-synchronized.

[11] CockroachDB’s consistency model.
https://www.cockroachlabs.com/blog/consistency-model/.

[12] cuBLAS: Dense Linear Algebra on GPUs.
https://developer.nvidia.com/cublas.

[13] cuSPARSE: Sparse Linear Algebra on GPUs.
https://developer.nvidia.com/cusparse.

[14] Distributed system safety research. https://jepsen.io/.

[15] Executive summary: Computer network time synchronization.
https://www.eecis.udel.edu/~mills/exec.html.

[16] FaunaDB. https://fauna.com.

[17] FoundationDB. https://www.foundationdb.org.

[18] G2: anti-dependency cycles.
https://github.com/cockroachdb/cockroach/issues/10030.

[19] G2-item anomaly with master kills.
https://github.com/YugaByte/yugabyte-db/issues/2125.

[20] Gecode: Flatzinc. https://www.gecode.org/flatzinc.html.

[21] Google Cloud Datastore. https://cloud.google.com/datastore/.

[22] Google Cloud Spanner. https://cloud.google.com/spanner/.

[23] Gretchen: Offline serializability verification, in clojure.
https://github.com/aphyr/gretchen.

[24] How Halo 5 implemented social gameplay using Azure Cosmos DB.
https:
//azure.microsoft.com/en-us/blog/how-halo-5-guardians-
implemented-social-gameplay-using-azure-documentdb/.

[25] Jepsen: Faunadb 2.5.4.
http://jepsen.io/analyses/faunadb-2.5.4.

[26] Lessons learned from 2+ years of nightly jepsen tests. https:
//www.cockroachlabs.com/blog/jepsen-tests-lessons/.

[27] Norwegian electronics giant scales for sales, sets record with
cloud-based transaction processing.
https://customers.microsoft.com/en-us/story/elkjop-
retailers-azure.

[28] PostgreSQL. https://www.postgresql.org/.

[29] RocksDB. https://rocksdb.org/.

[30] RUBiS. https://rubis.ow2.org/.

[31] TPC-C. http://www.tpc.org/tpcc/.

[32] Transactions, cloud Spanner.
https://cloud.google.com/spanner/docs/transactions.

[33] Visa: Small business retail. https://usa.visa.com/run-your-
business/small-business-tools/retail.html.

[34] The Yices SMT solver. http://yices.csl.sri.com/.

[35] YugaByte db 1.3.1, undercounting counter.
http://jepsen.io/analyses/yugabyte-db-1.3.1.

[36] YugaByte DB: Home. https://www.yugabyte.com.

[37] yugabyte source code. https://github.com/yugabyte/yugabyte-
db/blob/3b90e8560b8d8bc81fba6ba9b9f2833e83e2244e/src/
yb/util/physical_time.cc#L36.

[38] A. Adya. Weak consistency: a generalized theory and optimistic
implementations for distributed transactions. PhD thesis,
Massachusetts Institute of Technology, 1999.

[39] A. S. Aiyer, E. Anderson, X. Li, M. A. Shah, and J. J. Wylie.
Consistability: Describing usually consistent systems. In Proc.
HotDep, Dec. 2008.

[40] A. Alquraan, H. Takruri, M. Alfatafta, and S. Al-Kiswany. An analysis
of network-partitioning failures in cloud systems. In Proc. OSDI, Oct.
2018.

[41] C. Amza, E. Cecchet, A. Chanda, A. L. Cox, S. Elnikety, R. Gil,
J. Marguerite, K. Rajamani, and W. Zwaenepoel. Specification and
implementation of dynamic web site benchmarks. In Proc. IEEE
WWC, Nov. 2002.

[42] E. Anderson, X. Li, M. A. Shah, J. Tucek, and J. J. Wylie. What
consistency does your key-value store actually provide? In Proc.
HotDep, Oct. 2010. Full version: Technical Report HPL-2010-98,
Hewlett-Packard Laboratories, 2010.

[43] A. Arasu, K. Eguro, R. Kaushik, D. Kossmann, P. Meng, V. Pandey,
and R. Ramamurthy. Concerto: a high concurrency key-value store
with integrity. In Proc. SIGMOD, May 2017.

[44] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’keeffe, M. L. Stillwell, et al. SCONE:
Secure Linux containers with Intel SGX. In Proc. OSDI, Oct. 2016.

[45] P.-L. Aublin, F. Kelbert, D. O’Keeffe, D. Muthukumaran, C. Priebe,
J. Lind, R. Krahn, C. Fetzer, D. Eyers, and P. Pietzuch. LibSEAL:
Revealing service integrity violations using trusted execution. In Proc.
EuroSys, Apr. 2018.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 77

https://github.com/YugaByte/yugabyte-db/issues/824
 https://aws.amazon.com/rds/aurora/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Reference.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Reference.html
 https://aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/transaction-apis.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/transaction-apis.html
https://9to5mac.com/2019/07/30/apple-pay-transactions-users-paypal/
https://9to5mac.com/2019/07/30/apple-pay-transactions-users-paypal/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://www.infoq.com/presentations/Big-Data-in-Real-Time-at-Twitter
https://www.infoq.com/presentations/Big-Data-in-Real-Time-at-Twitter
https://www.cockroachlabs.com
https://www.cockroachlabs.com/docs/stable/operational-faqs.html#what-happens-when-node-clocks-are-not-properly-synchronized
https://www.cockroachlabs.com/docs/stable/operational-faqs.html#what-happens-when-node-clocks-are-not-properly-synchronized
https://www.cockroachlabs.com/docs/stable/operational-faqs.html#what-happens-when-node-clocks-are-not-properly-synchronized
https://www.cockroachlabs.com/blog/consistency-model/
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cusparse
https://jepsen.io/
https://www.eecis.udel.edu/~mills/exec.html
https://fauna.com
https://www.foundationdb.org
https://github.com/cockroachdb/cockroach/issues/10030
https://github.com/YugaByte/yugabyte-db/issues/2125
https://www.gecode.org/flatzinc.html
https://cloud.google.com/datastore/
https://cloud.google.com/spanner/
https://github.com/aphyr/gretchen
https://azure.microsoft.com/en-us/blog/how-halo-5-guardians-implemented-social-gameplay-using-azure-documentdb/
https://azure.microsoft.com/en-us/blog/how-halo-5-guardians-implemented-social-gameplay-using-azure-documentdb/
https://azure.microsoft.com/en-us/blog/how-halo-5-guardians-implemented-social-gameplay-using-azure-documentdb/
http://jepsen.io/analyses/faunadb-2.5.4
https://www.cockroachlabs.com/blog/jepsen-tests-lessons/
https://www.cockroachlabs.com/blog/jepsen-tests-lessons/
https://customers.microsoft.com/en-us/story/elkjop-retailers-azure
https://customers.microsoft.com/en-us/story/elkjop-retailers-azure
https://www.postgresql.org/
https://rocksdb.org/
https://rubis.ow2.org/
http://www.tpc.org/tpcc/
https://cloud.google.com/spanner/docs/transactions
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://usa.visa.com/run-your-business/small-business-tools/retail.html
http://yices.csl.sri.com/
http://jepsen.io/analyses/yugabyte-db-1.3.1
https://www.yugabyte.com
https://github.com/yugabyte/yugabyte-db/blob/3b90e8560b8d8bc81fba6ba9b9f2833e83e2244e/src/yb/util/physical_time.cc#L36
https://github.com/yugabyte/yugabyte-db/blob/3b90e8560b8d8bc81fba6ba9b9f2833e83e2244e/src/yb/util/physical_time.cc#L36
https://github.com/yugabyte/yugabyte-db/blob/3b90e8560b8d8bc81fba6ba9b9f2833e83e2244e/src/yb/util/physical_time.cc#L36

[46] A. Awad and B. Karp. Execution integrity without implicit trust of
system software. In ACM Workshop on System Software for Trusted
Execution (SysTEX), 2019.

[47] P. Bailis. Linearizability versus serializability.
http://www.bailis.org/blog/linearizability-versus-
serializability/, Sept. 2014.

[48] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica. Highly available transactions: virtues and limitations.
PVLDB, Sept. 2014.

[49] T. Balyo, M. J. Heule, and M. Jarvisalo. SAT competition 2016:
Recent developments. In Proc. AAAI, Feb. 2017.

[50] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovi’c,
T. King, A. Reynolds, and C. Tinelli. CVC4. In Proc. CAV, July 2011.

[51] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from
an untrusted cloud with Haven. In Proc. OSDI, Oct. 2014.

[52] S. Bayless, N. Bayless, H. H. Hoos, and A. J. Hu. SAT modulo
monotonic theories. In Proc. AAAI, Jan. 2015.

[53] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
A critique of ANSI SQL isolation levels. In Proc. SIGMOD, May
1995.

[54] P. A. Bernstein and N. Goodman. Multiversion concurrency
control—theory and algorithms. ACM Transactions on Database
Systems (TODS), 8(4):465–483, 1983.

[55] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control
and recovery in database systems. Addison-Wesley Longman
Publishing Co., Inc., 1987.

[56] P. A. Bernstein, D. W. Shipman, and W. S. Wong. Formal aspects of
serializability in database concurrency control. TSE, SE-5(3), May
1979.

[57] A. Biere, M. Heule, and H. van Maaren. Handbook of satisfiability,
volume 185. IOS press, 2009.

[58] R. Biswas and C. Enea. dbcop source code.
https://zenodo.org/record/3367334.

[59] R. Biswas and C. Enea. On the complexity of checking transactional
consistency. In Proc. OOPSLA, Oct. 2019.

[60] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking
the correctness of memories. Algorithmica, 12(2-3), Sept. 1994.

[61] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and
M. Walfish. Verifying computations with state. In Proc. SOSP, Nov.
2013.

[62] L. Brutschy, D. Dimitrov, P. Müller, and M. Vechev. Serializability for
eventual consistency: criterion, analysis, and applications. In Proc.
POPL, Jan. 2017.

[63] L. Brutschy, D. Dimitrov, P. Müller, and M. Vechev. Static
serializability analysis for causal consistency. In Proc. PLDI, 2018.

[64] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani.
The MathSAT 4 SMT solver. In Proc. CAV, July 2008.

[65] M. A. Casanova. The concurrency control problem for database
systems. Number 116. Springer Science & Business Media, 1981.

[66] M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proc.
OSDI, Feb. 1999.

[67] A. Cerone, G. Bernardi, and A. Gotsman. A framework for
transactional consistency models with atomic visibility. In 26th
International Conference on Concurrency Theory (CONCUR 2015),
Sept. 2015.

[68] C. Chen, P. Maniatis, A. Perrig, A. Vasudevan, and V. Sekar. Towards
verifiable resource accounting for outsourced computation. In Proc.
VEE, Mar. 2013.

[69] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, et al. Spanner:
Google’s globally distributed database. TOCS, 31(3), June 2013.

[70] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, third edition. The MIT Press, 2009.

[71] N. Crooks, M. Burke, E. Cecchetti, S. Harel, L. Alvisi, and R. Agarwal.
Obladi: Oblivious serializable transactions in the cloud. In Proc.
OSDI, Oct. 2018.

[72] N. Crooks, Y. Pu, L. Alvisi, and A. Clement. Seeing is believing: a
client-centric specification of database isolation. In Proc. PODC, July
2017.

[73] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc.
TACAS, Mar. 2008.

[74] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and
M. Strum. Optimizing space amplification in RocksDB. In Proc.
CIDR, Jan. 2017.

[75] C. Dwork, M. Naor, G. N. Rothblum, and V. Vaikuntanathan. How
efficient can memory checking be? In Proc. TCC, Mar. 2009.

[76] N. Eén and N. Sörensson. An extensible sat-solver. In International
conference on theory and applications of satisfiability testing.
Springer, 2003.

[77] A. Fekete, S. N. Goldrei, and J. P. Asenjo. Quantifying isolation
anomalies. Proceedings of the VLDB Endowment, 2(1):467–478,
2009.

[78] A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Redundancy does not imply fault tolerance: Analysis
of distributed storage reactions to single errors and corruptions. In
Proc. FAST, Feb. 2017.

[79] M. Gebser, T. Janhunen, and J. Rintanen. Answer set programming as
SAT modulo acyclicity. In Proc. ECAI, 2014.

[80] M. Gebser, T. Janhunen, and J. Rintanen. SAT modulo graphs:
acyclicity. In Proc. JELIA, 2014.

[81] P. B. Gibbons and E. Korach. Testing shared memories. SIJC, 26(4),
Aug. 1997.

[82] W. Golab, X. Li, and M. Shah. Analyzing consistency properties for
fun and profit. In Proc. PODC, June 2011.

[83] W. Golab, M. R. Rahman, A. AuYoung, K. Keeton, and I. Gupta.
Client-centric benchmarking of eventual consistency for cloud storage
systems. In Proc. ICDCS, June 2014.

[84] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver.
In Proc. DATE, Mar. 2002.

[85] A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel. Accountable
virtual machines. In Proc. OSDI, Oct. 2010.

[86] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic detection of
atomic-set-serializability violations. In Proc. ICSE, May 2008.

78 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.bailis.org/blog/linearizability-versus-serializability/
http://www.bailis.org/blog/linearizability-versus-serializability/
https://zenodo.org/record/3367334

[87] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill. Ironclad apps: end-to-end security via automated
full-system verification. In Proc. OSDI, Oct. 2014.

[88] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. TOPLAS, 12(3), July 1990.

[89] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan: a distributed
sandbox for untrusted computation on secret data. In Proc. OSDI, Oct.
2016.

[90] R. Jain and S. Prabhakar. Trustworthy data from untrusted databases.
In Proc. ICDE, Apr. 2013.

[91] M. Janota, R. Grigore, and V. M. Manquinho. On the quest for an
acyclic graph. CoRR, abs/1708.01745, Aug. 2017.

[92] N. Karapanos, A. Filios, R. A. Popa, and S. Capkun. Verena:
End-to-end integrity protection for Web applications. In Proc. S&P,
May 2016.

[93] B. H. Kim and D. Lie. Caelus: Verifying the consistency of cloud
services with battery-powered devices. In Proc. S&P, May 2015.

[94] K. Kingsbury and P. Alvaro. Elle: Inferring isolation anomalies from
experimental observations. arXiv preprint arXiv:2003.10554, 2020.

[95] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bhatotia,
and C. Fetzer. Pesos: Policy enhanced secure object store. In Proc.
EuroSys, Apr. 2018.

[96] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete. MDCC:
Multi-data center consistency. In Proc. EuroSys, Apr. 2013.

[97] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. TC, C-28(9), Sept. 1979.

[98] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic
authenticated index structures for outsourced databases. In Proc.
SIGMOD, June 2006.

[99] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki. Exponential
recency weighted average branching heuristic for SAT solvers. In Proc.
AAAI, Feb. 2016.

[100] H. Lim, M. Kaminsky, and D. G. Andersen. Cicada: Dependably fast
multi-core in-memory transactions. In Proc. SIGMOD, May 2017.

[101] Q. Liu, G. Wang, and J. Wu. Consistency as a service: Auditing cloud
consistency. TNSM, 11(1), Mar. 2014.

[102] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song, W. Tobagus,
S. Kumar, and W. Lloyd. Existential consistency: measuring and
understanding consistency at Facebook. In Proc. SOSP, Oct. 2015.

[103] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and A. El Abbadi.
Low-latency multi-datacenter databases using replicated commit.
PVLDB, 6(9), July 2013.

[104] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig. TrustVisor: Efficient TCB reduction and attestation. In
Proc. S&P, May 2010.

[105] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.
Flicker: An execution infrastructure for TCB minimization. In Proc.
EuroSys, Apr. 2008.

[106] R. C. Merkle. A digital signature based on a conventional encryption
function. In Proc. Crypto, Aug. 1987.

[107] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In Proc. DAC, June 2001.

[108] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting more
concurrency from distributed transactions. In Proc. OSDI, Oct. 2014.

[109] K. Nagar and S. Jagannathan. Automated detection of serializability
violations under weak consistency. arXiv preprint arXiv:1806.08416,
2018.

[110] C. H. Papadimitriou. The serializability of concurrent database
updates. JACM, 26(4), Oct. 1979.

[111] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping trust in modern
computers. Springer, 2011.

[112] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J.
Demers. Flexible update propagation for weakly consistent replication.
In Proc. SOSP, Oct. 1997.

[113] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang.
Enabling security in cloud storage SLAs with CloudProof. In Proc.
USENIX ATC, June 2011.

[114] D. R. Ports and K. Grittner. Serializable snapshot isolation in
PostgreSQL. PVLDB, 5(12), Aug. 2012.

[115] M. R. Rahman, W. Golab, A. AuYoung, K. Keeton, and J. J. Wylie.
Toward a principled framework for benchmarking consistency. In
Proc. HotDep, Oct. 2012.

[116] K. Rahmani, K. Nagar, B. Delaware, and S. Jagannathan. Clotho:
directed test generation for weakly consistent database systems. In
Proc. OOPSLA, Oct. 2019.

[117] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn. Design and
implementation of a TCG-based integrity measurement architecture.
In Proc. USENIX Security, Aug. 2004.

[118] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich. VC3: Trustworthy data analytics
in the cloud using SGX. In Proc. S&P, May 2015.

[119] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. Van Doorn, and P. Khosla.
Pioneer: Verifying integrity and guaranteeing execution of code on
legacy platforms. In Proc. SOSP, Oct. 2005.

[120] S. Setty, S. Angel, T. Gupta, and J. Lee. Proving the correct execution
of concurrent services in zero-knowledge. In Proc. OSDI, Oct. 2018.

[121] S. Shinde, D. Le Tien, S. Tople, and P. Saxena. Panoply: Low-TCB
Linux applications with SGX enclaves. In Proc. NDSS, Feb. 2017.

[122] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, and
D. Shaket. Venus: Verification for untrusted cloud storage. In Proc.
CCSW, Oct. 2010.

[123] A. Sinha and S. Malik. Runtime checking of serializability in software
transactional memory. In Proc. IPDPS, Apr. 2010.

[124] A. Sinha, S. Malik, C. Wang, and A. Gupta. Predicting serializability
violations: SMT-based search vs. DPOR-based search. In Haifa
Verification Conference, 2011.

[125] R. Sinha and M. Christodorescu. VeritasDB: High throughput
key-value store with integrity. IACR Cryptology ePrint Archive, 2018.

[126] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh,
D. Williams, and F. B. Schneider. Logical attestation: an authorization
architecture for trustworthy computing. In Proc. SOSP, Oct. 2011.

[127] M. Soos, K. Nohl, and C. Castelluccia. Extending SAT solvers to
cryptographic problems. In Proc. SAT, June 2009.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 79

[128] A. Stump, C. W. Barrett, and D. L. Dill. CVC: a cooperating validity
checker. In Proc. CAV, July 2002.

[129] C. Su, N. Crooks, C. Ding, L. Alvisi, and C. Xie. Bringing modular
concurrency control to the next level. In Proceedings of the 2017 ACM
International Conference on Management of Data, May 2017.

[130] W. N. Sumner, C. Hammer, and J. Dolby. Marathon: Detecting
atomic-set serializability violations with conflict graphs. In Proc. RV,
Sept. 2011.

[131] C. Tan, L. Yu, J. Leners, and M. Walfish. The efficient server audit
problem, deduplicated re-execution, and the web. In Proc. SOSP, Oct.
2017.

[132] C. Tan, C. Zhao, S. Mu, and M. Walfish. Cobra: Making transactional
key-value stores verifiably serializable (extended version).
arXiv:1912.09018, https://arxiv.org/abs/1912.09018, Dec.
2019.

[133] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta,
R. Mittal, S. Krishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao.
Amazon Aurora : Design considerations for high throughput
cloud-native relational databases. In Proc. SIGMOD, May 2017.

[134] K. Vikram, A. Prateek, and B. Livshits. Ripley: automatically securing
web 2.0 applications through replicated execution. In Proc. CCS, Nov.
2009.

[135] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu. Data consistency
properties and the trade-offs in commercial cloud storage: the
consumers’ perspective. In Proc. CIDR, Jan. 2011.

[136] Z. Wang, S. Mu, Y. Cui, H. Yi, H. Chen, and J. Li. Scaling multicore
databases via constrained parallel execution. In Proc. SIGMOD, June
2016.

[137] T. Warszawski and P. Bailis. ACIDRain: Concurrency-related attacks
on database-backed web applications. In Proc. SIGMOD, May 2017.

[138] G. Weikum and G. Vossen. Transactional information systems: theory,
algorithms, and the practice of concurrency control and recovery.
Elsevier, 2001.

[139] J. M. Wing and C. Gong. Testing and verifying concurrent objects.
JPDC, 17(1-2), Jan. 1993.

[140] C. Xie, C. Su, C. Littley, L. Alvisi, M. Kapritsos, and Y. Wang.
High-performance acid via modular concurrency control. In Proc.
SOSP, Oct. 2015.

[141] M. Xu, R. Bodík, and M. D. Hill. A serializability violation detector
for shared-memory server programs. SIGPLAN Notices, 40(6), 2005.

[142] K. Zellag and B. Kemme. How consistent is your cloud application?
In Proc. SoCC, Oct. 2012.

[143] K. Zellag and B. Kemme. Consistency anomalies in multi-tier
architectures: automatic detection and prevention. The VLDB Journal,
23(1), Feb. 2014.

[144] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R. K.
Ports. Building consistent transactions with inconsistent replication.
In Proc. SOSP, Oct. 2015.

[145] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou.
vSQL: Verifying arbitrary SQL queries over dynamic outsourced
databases. In Proc. S&P, May 2017.

[146] Y. Zhang, J. Katz, and C. Papamanthou. IntegriDB: Verifiable SQL
for outsourced databases. In Proc. CCS, Oct. 2015.

[147] M. Zheng, J. Tucek, D. Huang, F. Qin, M. Lillibridge, E. S. Yang,
B. W. Zhao, and S. Singh. Torturing databases for fun and profit. In
Proc. OSDI, Oct. 2014.

A Artifact Appendix

This artifact contains two parts: a cobra verifier and cobra
clients. The cobra verifier checks serializability of a set of
transactions (called a history). Cobra clients include database
clients and cobra’s client library. Database clients are bench-
mark programs that interact with a black-box database (not
part of cobra) and generate histories. Cobra’s client library
wraps database libraries, encodes and decodes values to and
from the database, and records histories to logs.

Cobra’s artifact, including source code and comprehensive
instructions for running the code and reproducing results, is re-
leased at: https://github.com/DBCobra/CobraHome. Co-
bra’s verifier requires an NVIDIA GPU to run, and cobra de-
pends on Linux (tested on Ubuntu 18.04), Java (1.8 or higher),
CUDA (tested on 10.0.130), and MonoSAT (1.6.0).

80 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://arxiv.org/abs/1912.09018
https://github.com/DBCobra/CobraHome

Determinizing Crash Behavior with a
Verified Snapshot-Consistent Flash Translation Layer

Yun-Sheng Chang Yao Hsiao Tzu-Chi Lin Che-Wei Tsao Chun-Feng Wu
Yuan-Hao Chang Hsiang-Shang Ko Yu-Fang Chen

Institute of Information Science, Academia Sinica, Taiwan

Abstract
This paper introduces the design of a snapshot-consistent
flash translation layer (SCFTL) for flash disks, which has a
stronger guarantee about the possible behavior after a crash
than conventional designs. More specifically, the flush opera-
tion of SCFTL also has the functionality of making a “disk
snapshot.” When a crash occurs, the flash disk is guaranteed
to recover to the state right before the last flush. The major
benefit of SCFTL is that it allows a more efficient design of
upper layers in the storage stack. For example, the file system
built on SCFTL does not require the use of a journal for crash
recovery. Instead, it only needs to perform a flush operation
of SCFTL at the end of each atomic transaction. We use a
combination of a proof assistant, a symbolic executor, and an
SMT solver, to formally verify the correctness of our SCFTL
implementation. We modify the xv6 file system to support
group commit and utilize SCFTL’s stronger crash guarantee.
Our evaluation using file system benchmarks shows that the
modified xv6 on SCFTL is 3 to 30 times faster than xv6 with
logging on conventional FTLs, and is in the worst case only
two times slower than the state-of-the-art setting: the ext4 file
system on the Physical Block Device (pblk) FTL.

1 Introduction
In modern computer systems, data storage usually needs to go
through multiple layers, starting from a specific application,
going through the file system, and eventually reaching the
physical device. Usually, we refer to those layers as the stor-
age stack. The design of a correct storage stack is non-trivial.
For instance, in order to maintain efficiency, I/O operations
sending from one layer can be reordered to reduce the overall
waiting time. More importantly, under a sudden power loss
or a system crash, a storage system should correctly recover
the stored data. Due to the high complexity of the system de-
sign, in recent years, a significant amount of research effort is
devoted to applying formal methods to provide rigorous cor-
rectness guarantees about storage stacks. Among those, one
crucial direction is proving crash safety [3, 9, 10, 12, 13, 42].

Crash recovery is a critical issue; no one wants to lose
important data after one accidental power loss. In the state-
of-the-art system design, each component in the storage stack
has its crash recovery mechanism and usually makes only
minimal assumptions about its lower layers. For instance, the

file system usually assumes the underlying physical device
follows the asynchronous disk model. The model provides
only minimal guarantees about its possible behavior when the
system crashes. As a result, the file system needs to implement
a heavyweight crash recovery mechanism.

The more recent design of physical devices offers much
stronger guarantees while maintaining similar performance.
For instance, the prefix-preserving disk model [11] guarantees
to recover to some state after the last flush operation without
operation reordering. The snapshot-consistent disk model we
propose in this paper provides an even stronger guarantee.
The advance in the physical device design provides us with
an excellent opportunity to rethink the design of the entire
storage stack. The stronger guarantees of the physical device
enable a cleaner and more efficient design of file systems,
database systems, and applications built on top of them. For
instance, the upper layer can remove some write barriers and
data replication to achieve higher performance.

In this paper, we introduce the snapshot-consistent flash
translation layer (SCFTL). The flash translation layer (FTL)
is the interface between flash memory and upper layers in the
storage stack, providing operations such as write, read, and
flush. As the name suggests, SCFTL implements the snapshot-
consistent disk model, which ensures that a crashed disk will
recover to the state right before the last flush operation.

Our snapshot-consistent disk model has the benefit that the
flush operation can be used to take a “disk snapshot.” The
feature is particularly useful for upper layers to implement
atomic operations/transactions—they only need to invoke a
flush at the end of each operation/transaction. Upper-layer
systems can utilize this feature to obtain a more efficient
design, e.g., removing the journal from a file system.

Next, we compare the snapshot-consistent disk model with
other disk models used in the literature. At first glance, one
might think that the synchronous disk model can provide a
similar crash guarantee, as it also confines the number of post-
crash states to one. The synchronous disk model, however,
can ensure only the atomicity of a single disk write, whereas
our proposed snapshot-consistent disk model guarantees the
atomicity of multiple writes between two consecutive flushes.

The asynchronous disk model guarantees only that writes
before a flush are durable. For those after the last flush op-
eration, even the order is not guaranteed. In the worst case,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 81

it might have 2n post-crash states, where n is the number of
writes after the last flush. The prefix-preserving disk model
guarantees that writes after the last flush will not be reordered,
so the possible post-crash states reduce to, in the worst case,
n. The post-crash states of the two disk models are “non-
deterministic,” and the upper layers have to consider all pos-
sible scenarios in their crash recovery mechanisms.

Our SCFTL allows an efficient implementation (§3) utiliz-
ing the out-of-place update feature of FTLs. An FTL usually
maintains an in-memory logical-to-physical address transla-
tion table (or L2P for short). On a write of data d to a logical
address l, due to the physical constraint of the flash memory,
the FTL cannot just update the value pointed to by l to d.
Instead, it finds a new physical location, puts d there, and
updates L2P to remap l to that new location. The old data
pointed to by l remains there. The main idea of our imple-
mentation is to remember the L2P right before the last flush
operation, which we refer to as the stable L2P. When the
system crashes, we use the stable L2P to recover to the state
before the last flush. Writing the entire L2P to the flash mem-
ory is an expensive operation, so we design a mechanism to
store only the changes to the last stored L2P table, and store
the full L2P to the flash memory only occasionally. We also
designed a mechanism to ensure that the garbage collector
will not erase the data pointed by the stable L2P.

We have formally verified the correctness of our SCFTL
implementation using a combination of a proof assistant, a
symbolic executor, and an SMT solver, which achieves a good
balance between the degree of automation and the expressive
power for stating and proving desired properties. The formal
framework is set up manually using an interactive proof as-
sistant, while the proof obligations involving the detail of
SCFTL are discharged automatically with an SMT solver.

In the formal framework, we start with a simple mathemati-
cal specification of the snapshot-consistent disk model, which
we briefly illustrate here using Figure 1. The state of the
specification has two sector arrays, stable and volatile. The
flush() operation copies volatile to stable; then the opera-
tion write(0,x9) changes volatile[0] to x9 and nothing else,
while the read(2) operation returns volatile[2]; finally, the
recovery() operation overwrites volatile with stable. In con-
trast to the specification, the SCFTL implementation stores
the two arrays using more sophisticated data structures to
achieve better performance and to satisfy the constraints of
the flash memory. For instance, the stable array is imple-
mented as an in-flash L2P and a list of L2P changes. Using a
proof assistant, we reduce a behavioral correctness property
over multiple FTL operations—which asserts that the SCFTL
implementation behaves as the specification describes—to
simpler per-operation correctness properties about each FTL
operation (§4). We also prove that the behavioral correctness
of SCFTL implies its snapshot consistency.

We then use more automatic tools to prove per-operation
correctness (§5). More specifically, the relationship between

x8 y6 z0 x8 y6 z0 x9 y6 z0 x8 y6 z0volatile

Original state
write(0,x9) read(2)

flush() recovery()

x0 y2 z0 x8 y6 z0x8 y6 z0 x8 y6 z0stable

Figure 1. Illustration of the SCFTL operations.

the two arrays in the specification and the data structures in
our implementation is described as a logical formula called
the abstraction relation, and one type of the per-operation
correctness formulae has the form “if the abstraction relation
holds for the states before executing an operation, the relation
will remain true for the states after executing the operation.”
We use a symbolic executor [8, 32] to translate the C program
of our SCFTL implementation to logical formulae describing
how the states change after executing an SCFTL operation.
Then we use an SMT solver to ensure that our implementation
does satisfy the per-operation correctness formulae.

Our experimental results (§7) show that when a workload
does not flush the disk too frequently, SCFTL is as efficient
as an FTL implementing the asynchronous disk model. To
understand the usefulness of SCFTL, we modify the xv6 [16]
file system to support group commit and utilize the stronger
crash guarantee granted by SCFTL. By changing less than
30 lines of code, we show that the modified xv6 on SCFTL
outperforms xv6 with logging on conventional FTLs by 3 to
30 times using our file system benchmarks; the performance
improvement is less obvious for workloads that frequently
flush the disk (e.g., smallfiles repeatedly creates a file, writes
100 bytes of data to it, and calls fsync), and more obvious for
workloads with lower flush frequency (e.g., largefile writes
4 MB of data to a file and calls fsync for every 1 MB). This
observation suggests an important guideline for building sys-
tems and applications on top of SCFTL: reducing the flush
frequency to extract more benefits from SCFTL. Finally, we
use the same file system benchmarks to compare the perfor-
mance of the modified xv6 on SCFTL with the state-of-the-art
setting: the ext4 file system on the pblk [6] FTL. The result
is encouraging. Although xv6 is a file system known to be
simple but slow, our xv6 on SCFTL is in the worst case only
two times slower than ext4 on pblk. Moreover, xv6 on SCFTL
has a stronger crash guarantee than that of ext4 on pblk.

In summary, the main contributions of this paper are the
design, specification, and verification of SCFTL:
• The design exploits the out-of-place update feature of FTLs

and uses an efficient checkpointing algorithm to provide a
stronger crash guarantee at the disk level (§3). We validate
its efficiency with disk and file system benchmarks (§7).

• The specification is simple and useful as it involves only the
manipulation of two arrays and a counter, and it naturally
ensures the atomicity of multiple disk writes. We formal-
ize snapshot consistency and show that the specification
satisfies the property with a proof assistant (§4).

82 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

• We verify that our implementation of SCFTL meets its
specification using automatic verification tools. To scale
the verification of SCFTL, we propose a novel approach to
model crash behavior and describe some techniques to sim-
plify the proof obligations, including using ghost variables
to craft efficient SMT encodings, categorizing invariants to
remove unnecessary conditions, and partitioning the proofs
to avoid non-determinism (§5).
SCFTL has several limitations. First, SCFTL does not al-

low concurrent SCFTL operations, although it does allow
flash operations to be executed concurrently (more detail in
§6.2). Second, SCFTL assumes the underlying flash memory
is free of error. Finally, SCFTL does not implement standard
optimizations of FTLs, such as hot-cold data separation and
wear leveling, although its design does not prohibit them.

2 Related Work
We first discuss the recent advance of disk models; in par-
ticular, we will focus on transactional and order-preserving
models. To the best of our knowledge, our work is the first to
address the verification of the crash safety issue at the physical
device layer. Most previous work on crash safety verification
assumes a correct asynchronous disk is given and put their
focus on other layers in the storage stack, e.g., the file system.
We will discuss some recent work in this direction.

The transactional models [15, 17, 25, 38, 41] guarantee
the atomicity of multiple write operations. They provide a
non-standard disk interface, which has two consequences:
(i) their semantics (e.g., isolated concurrent transactions and
transaction abortion) is hard to formally specify or verify, and
(ii) system developers have to learn a new interface, increasing
the burden of porting existing or developing new software.

The order-preserving disk models [11, 45] guarantee the
preservation of operation orders across a crash. They expose
the standard read-write-flush disk interface, but with fewer
possible post-crash states than the asynchronous disk model.
Upper layers in the storage stack can utilize this feature to
reduce the number of flushes invoked in their crash recovery
mechanisms (e.g., copy-on-write and journaling).

Compared with the transactional models, the snapshot-
consistent model uses the standard read-write-flush interface.
It, moreover, guarantees the atomicity of multiple writes be-
tween two consecutive flushes and thus provides a stronger
guarantee than the order-preserving models.

Recent research work has discovered many crash vulner-
abilities in widely used applications such as LevelDB and
Git [36], as well as ACID violations in many relational
database systems [46].These vulnerabilities mainly stem from
the vague and weak crash guarantees provided by the under-
lying file systems. File systems themselves, even for mature
ones such as ext4, btrfs [39] and F2FS [28], also contain bugs
that may result in severe consequences [24, 27, 31].

In the past decades, a significant amount of research effort

is devoted to the development of a verified crash-safe storage
stack. To name a few, the verified file systems Yxv6 [42],
FSCQ [13], and DFSCQ [12] assume an asynchronous disk
model and use a log-based design to guarantee crash safety.
Instead of the asynchronous disk model, both the BilbyFS [3]
and Flashix [19] file systems assume the underlying layer is a
raw flash device (without an FTL) and implement an atomic
transaction mechanism to ensure crash safety.

SCFTL differs from previous work on verifying the storage
stack in that it targets the physical device layer. This approach
has three notable benefits: First, the code and the data struc-
ture of an FTL are usually simpler and more manageable than
that of a file system; thus it is easier to develop an efficient yet
verifiable layer. Second, providing the standard disk interface
is more modular than directly building file systems on a raw
flash device; developers can build their own systems with var-
ious features and optimizations, and leave crash safety to the
underlying verified disk. Finally, this approach allows us to
exploit useful device characteristics (e.g., the out-of-place up-
date feature of FTLs); it enables SCFTL to provide a stronger
crash guarantee without compromising the performance.

Regarding the verification methodology and framework,
the closest work to ours is Yggdrasil [42], which establishes
a forward simulation and discharges the proof obligations
using an SMT solver, achieving a high degree of automation.
Compared with Yggdrasil, we have additionally formalized
our simulation argument, snapshot consistency, and relevant
theorems using a proof assistant, providing more correctness
guarantees. The proof obligations have to be manually mas-
saged into a form that can be handled by an SMT solver;
strictly speaking, this leaves a gap in our formal proof (but
we bridge the gap by pen-and-paper reasoning).

By contrast, there has been work on storage system ver-
ification [9, 10, 13, 19] where the entire proof is formally
verified with a proof assistant and does not have any gaps, al-
though their verification cost is also significantly higher since
the whole proof structure has to be carefully designed and
constructed by programmers. Our framework is not as sophis-
ticated as Argosy [9], which treats layered storage systems,
or Perennial [10], which supports concurrency; extending our
framework to support these features are interesting future
directions. There are also differences in modeling decisions
between our framework and the others—for example, in Ar-
gosy a crash is modeled as an individual event whereas we
incorporate crashes into operations, and in Yggdrasil the ef-
fect of a lower-level operation may not be visible at a higher
level whereas we always relate such an operation to a corre-
sponding higher-level operation that is specified not to change
the state. These differences in modeling decisions do not lead
to vital differences in correctness guarantees, however.

3 SCFTL Design and Implementation
SCFTL is designed with high performance, strong crash guar-
antees, and provable correctness in mind. Below we give an

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 83

delta
pairs

C
Yes

delta
pairs

T
Yes

delta
pairs

C
Yes

delta
pairs

T
No

Visible to the recovery procedure?
No No Yes No

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow
host
data

Delta region Full checkpoint region Data region

Figure 2. Flash memory layout of SCFTL.

overview of flash disks and describe the techniques we use
that set SCFTL apart from traditional FTLs.

3.1 Flash disk overview
Usually, a flash disk contains two main components, a fast
dynamic random-access memory (DRAM) to store temporary
data and a slower flash memory to store permanent data. In this
paper, we use the keywords in-memory or buffer to mean the
data is stored in the DRAM and in-flash to mean it is stored
in the flash memory. Flash memory is usually structured as
a list of blocks, each of which consists of multiple pages. A
page further contains one or multiple sectors, the basic unit
the upper layers (e.g., the file system) use to access data. One
can access flash memory through commands such as READ
and WRITE a page, ERASE a block, and SYNC to wait for the
completion of all ongoing flash commands. Due to physical
limitations, flash commands need to follow several intricate
constraints. For instance, a page must be erased before being
written. However, the basic unit for ERASE is a block, while
that for WRITE is a page. It would be inefficient if we erase
the entire block whenever we write to a page within it.

In order to free users from handling the intricate device
characteristics of flash memory, a flash disk usually comes
with a flash translation layer (FTL) to hide the complexity.
Typical operations supported by an FTL include a write and
a read operation to store and retrieve a sector of data, a flush
operation to wait until all unprocessed changes is made to
the flash memory, a recovery procedure that will be invoked
after a crash, and a garbage collection (GC) procedure gc that
will only be invoked by its internal garbage collector. Every
FTL should at least support the main functionalities, namely
address translation, crash recovery, and garbage collection.
Below we introduce how SCFTL implements those functions.

3.2 Address translation
To comply with the erase-before-write constraint of flash
memory, SCFTL maintains an in-memory logical-to-physical
table (L2P) and writes data in a log-structured manner [40]
to avoid in-place updates. Address translation can be done
at the granularity of sectors, pages, blocks, or a mixture of
them [26]. Often finer granularity leads to better performance,
but at the cost of higher memory usage due to a larger L2P.
SCFTL uses a sector-level L2P to achieve better performance.

SCFTL handles the request write(la,d), i.e., writing a sec-
tor of data d to the logical sector address la, as follows. It
first stores d into a page-sized merge buffer employed to re-
solve the size mismatch between a sector and a page. Then

SCFTL finds a new location pa for placing d using the triplet
(blk,pg,sec), called an active pointer, where the first two to-
gether point to the next free page to be written, and the last
one points to the next free slot in the merge buffer. We call
the block blk the active block. Then SCFTL also updates the
in-memory L2P with the entry la 7→ pa.

When the merge buffer is full, SCFTL invokes the com-
mand WRITE(blk,pg,d) to write the buffered data to the flash
memory, where d is the content of the merge buffer. Then
SCFTL increases pg by one to follow the sequential write
constraint (within one block) of flash memory, unless pg is
already the last page in a block, in which case blk is assigned
a new block address dequeued from the free block queue and
pg is reset to 0. The free block queue is an in-memory data
structure that SCFTL uses to track currently available blocks.

Finally, SCFTL would have to remember that the address
storing old data (if any) is no longer valid, and the one for
the new data is now valid. The garbage collector needs this
information to relocate all valid data before erasing a block. In
SCFTL, this is realized by an in-memory physical-to-logical
table (P2L), which is the “reverse” mapping of L2P. Flash
disks usually have more available physical locations than
logical locations. So it can happen that a mapping p 7→ l is
in P2L, but l 7→ p is not in L2P. In such a case, we know that
this physical address p is invalid. We also use an in-memory
table, called the valid count table, to remember the number of
valid sectors in each block. The valid count table will be used
by the garbage collector to select the victim block to recycle.

Handling a read(la) request is simpler: SCFTL first checks
if the requested data is still stored in the merge buffer; if so,
it directly returns the data in the merge buffer. Otherwise,
SCFTL performs an L2P lookup to find the corresponding
physical address p, followed by a READ(p) command to re-
trieve the requested data stored in the flash memory. For a
flush() request, SCFTL first stores the buffered data in the
flash memory and advances the active pointer in the same way
as handling a write request. Then it issues a SYNC command
to ensure all data written before this point is persistent.

SCFTL maintains another L2P (the stable L2P) to reflect
the state of the in-memory L2P right before the last flush for
ensuring snapshot consistency. To distinguish the two kinds
of L2P, we will call the in-memory L2P the volatile L2P. The
cost of physically storing the stable L2P in the flash memory
can be prohibitively high. Thus, SCFTL logically maintains
the stable L2P through checkpointing in an efficient way.

Figure 2 shows the flash memory layout of SCFTL, includ-
ing a delta region that records L2P differences, and a full

84 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Store new L2P
in the shadow

Commit the
new L2P

Uncommit
the old L2P

Erase the
old L2P

Erase the first
delta block

Erase the remaining
delta blocks

Store a committed
dummy delta page

1 2 3 4 5

Figure 3. Full checkpoint protocol. The occurrence of crashes is partitioned to stages 1 - 5 .

checkpoint region that stores an entire L2P. SCFTL can cre-
ate two kinds of checkpoints: a lightweight delta checkpoint
and a heavyweight full checkpoint. SCFTL always creates
a delta checkpoint when a flush is invoked. Under rare cir-
cumstances where the delta region nearly runs out of space,
SCFTL creates a full checkpoint and clears the delta region.

Delta checkpoint Whenever a volatile L2P entry is modified
due to a write or a gc operation, SCFTL also inserts a delta
pair, which consists of a logical and a physical address, into
the page-sized delta buffer. When the delta buffer is full,
SCFTL invokes a WRITE command to store all buffered pairs
along with a tentative tag into the in-flash delta region in
a sequential manner and clears the buffer. We illustrate this
operation in Figure 2.

On receiving a flush request, SCFTL first makes sure host
data is safely stored in the flash memory. It then follows the
same procedure above to store the buffered pairs in the flash
memory, except here the delta page is tagged as committed. A
committed delta page activates previous tentative delta pages,
i.e., all delta pages before a committed one are treated as
committed. When the committed delta page is safely kept in
the flash memory, a delta checkpoint is successfully created.

Full checkpoint A full checkpoint of SCFTL consists of
a complete L2P table and a commit flag. When making a
full checkpoint, i.e., storing the volatile L2P together with
a commit flag to the flash memory, we employ a shadow to
prevent modification to the old L2P before the new one is
settled. The detailed steps can be found in Figure 3. In short,
we first store the new (volatile) L2P to the flash memory
and start to erase the old L2P and the delta region only after
the new L2P is committed. To ensure the correctness of our
recovery procedure, we allow only flush operations to create
a full checkpoint; write and gc operations are not allowed to
create a full checkpoint. One potential issue is that the delta
region might become full after a write or a gc operation. We
address this issue by imposing upper bounds on the number of
write and gc invocations (hence the number of created delta
pairs) within an epoch, i.e., between two consecutive flushes.
To ensure these bounds are respected, SCFTL uses a write
counter and a GC counter to keep track of the number of
write and gc invocations in the current epoch, respectively,
and resets both counters on a flush or a recovery. If the upper
layer calls a write after the write counter exceeds the bound,
SCFTL simply treats that write as a no-op.

Systems that use SCFTL to implement atomic transactions
should be aware of the write bound, to make sure an opera-
tion can fit into the current epoch before executing it. If an
operation is too large to fit into an entire epoch (e.g., writing
a large amount of data to a file), then it should be broken into
multiple smaller ones. We believe that this requirement is not

too restrictive, given that some systems also face a similar sit-
uation; for example, because of the log size limit, ext4 always
checks that the current running transaction has sufficient ca-
pacity left before atomically updating its metadata [35, §3.1].
Similarly, systems built on SCFTL can record the number of
writes issued to SCFTL since the last flush, and before exe-
cuting an operation, calculate the number of writes required
to complete the operation. If the operation does not fit into
the current epoch, then the system should call a flush to form
a new epoch. This avoids calling a flush in the middle of an
operation, which may expose intermediate states on a crash.

3.3 Crash recovery
The recovery procedure first recovers the volatile L2P with
full and delta checkpoints. To explain how to reconstruct the
L2P, we begin by specifying what is visible to the recovery
procedure. A full checkpoint is visible if and only if it is
committed. For the delta region, we treat its first page specially
to ensure we can erase the entire delta region atomically. The
only important information on the first page is the commit
flag. All delta pairs on the first page are dummy delta pairs
that will be ignored in the recovery procedure. Visibility of
delta pairs can be determined by examining the commit flag
of the first page of the delta region and, if the commit flag is
on, performing a sequential scan over the entire delta region
to find the last committed page.

In most cases, the recovery procedure simply restores a
base L2P from a full checkpoint and applies all visible delta
pairs in sequential order. The only exception is when a crash
occurs during a full checkpoint. Below we analyze the behav-
ior of the recovery procedure against each crash point during
a full checkpoint, as shown in Figure 3:
1 : The old L2P and all delta pairs are visible. Restoring the

old L2P and applying each delta pair yields the new L2P.
2 : Both the old and new L2P, and all delta pairs are visi-

ble. Although we do not leave other information (e.g., a
timestamp) to distinguish the old L2P from the new one,
our checkpoint design ensures that starting from either
L2P and applying each delta pair restores the new L2P.

3 : The new L2P and all delta pairs are visible. For the same
reasoning in 2 , it restores the new L2P and applies each
delta pair, yielding the new L2P.

4 : The new L2P is visible and all delta pairs are invisible. It
simply restores the new L2P.

5 : The new L2P and the dummy pairs are visible. It restores
the new L2P and ignores all dummy delta pairs.

Selective persistence The idea of selective persistence [34]
is to persistently keep only primary data, which is the mini-
mal set of data structures required for correct crash recovery,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 85

and rebuild non-primary data from the primary one. This way,
the protocol to correctly maintain consistency between multi-
ple data structures can be greatly simplified. In SCFTL, the
primary data is simply the L2P. After restoring the volatile
L2P, the recovery procedure proceeds to rebuild the block
queues (explained later), P2L table, and valid counts table.

3.4 Garbage collection
The GC procedure of standard FTLs consists of the following
steps: (i) find a victim block, (ii) relocate all valid sectors
(those pointed to by the volatile L2P) in the victim block
similarly to the write operation (the relocation phase), and
(iii) erase the victim block (the erasure phase). In SCFTL, the
standard GC procedure cannot be used, as the data pointed to
by the stable L2P might be erased by a garbage collector.

To prevent such an issue, one design option is to keep ad-
ditional information on what is allowed to be erased. This
approach is taken by TxFlash [38, §3.3] to prevent back point-
ers from being erased. The downside of this approach is that
it can incur notable memory and performance overhead.

Another approach, adopted by OPTR [11, §3.4], is to in-
voke an internal flush (i.e., a flush operation issued by the
FTL) before GC is activated. While an internal flush is al-
lowed by the prefix-preserving guarantee that OPTR offers, it
is not allowed by the snapshot consistency SCFTL is trying
to achieve, as otherwise SCFTL might rollback to the state
right before an internal flush on a recovery.

Two-phase garbage collection Instead, we use a simple pro-
tocol called two-phase garbage collection (2PGC), which de-
lays the erasure phase until a flush is invoked. This is correct
because after a flush operation, the old stable L2P will be
discarded and hence all the previously selected victim blocks
can be safely erased. To implement this idea, in the 2PGC
mechanism, we use two functions gcrl and gces to handle the
relocation and erasure phases, respectively. We, moreover,
maintain four queues to remember the status of blocks. Ini-
tially, all blocks are in the free block queue, except the active
block, which does not belong to any of the state queues. When
the active block is fully written, we add it to the used block
queue and pick another block from the free block queue as
the new active block.

When the garbage collector invokes the gcrl function, it first
removes a victim block from the used queue and performs the
relocation of valid sectors. After all valid sectors are removed
from the victim block, the gcrl function adds the victim block
to the invalid block queue. As the name suggests, all blocks in
the invalid queue do not have any valid sector. Nevertheless,
those blocks might still contain sectors pointed to by the stable
L2P and hence cannot be immediately erased. All blocks in
the invalid queue will be moved to the erasable block queue
at the end of a flush operation. After a flush, the stable L2P
will be updated, and all invalid blocks are no longer pointed
to by the new stable L2P and are now erasable. All blocks
in the erasable block queue can be safely erased. When the

garbage collector invokes the gces function, it finds a block b
in the erasable queue, performs an ERASE(b) command, and
puts b in the free block queue.

The remaining problem of 2PGC is that garbage collected
blocks cannot be immediately reused in the current epoch. To
address this issue, SCFTL exploits the upper bounds on the
number of write and gcrl allowed in one epoch to ensure that
there is sufficient space for newly written data and relocated
data. These two bounds already exist to avoid overflowing
the delta region (§3.2). Below we describe the constraints
that need to be satisfied when picking the values for the two
bounds, W (for write, in terms of sectors) and K (for gcrl, in
terms of blocks).

The first constraint ensures that write and gcrl do not con-
sume space more than what gcrl can produce in one epoch:

W︸︷︷︸
consumed by write

+ KN︸︷︷︸
consumed by gcrl

≤ KS︸︷︷︸
produced by gcrl

(1)

where N is the maximum number of valid sectors in every
victim block (we will explain how to obtain this bound later);
S is the number of sectors per block. Each write occupies
one sector and each gcrl relocates at most N sectors; thus at
most W +KN sectors will be consumed in one epoch. Each
gcrl also turns one used block into one invalid block, which
becomes an erasable block in the next epoch; thus at most KS
sectors can be produced in one epoch.

To obtain the bound N, we introduce a GC threshold U : gcrl
can be activated only when the number of used blocks is larger
than or equal to U . Let L be the number of entries of L2P (i.e.,
the number of logical sectors). Recall that a valid sector is a
physical sector mapped by the volatile L2P. The pigeonhole
principle states that there exists a used block (i.e., the hole)
whose number of valid sectors (i.e., the pigeons) is no more
than bL/Uc. One design choice is to force gcrl to always pick
the block with the least number of valid sectors as the victim
block (i.e., the greedy policy). A more flexible alternative
allows gcrl to pick any block providing the block has no more
than bL/Uc valid sectors; the pigeonhole principle ensures the
existence of such block. Either way, we obtain N = bL/Uc.

The threshold may disable gcrl before there is enough space
for the next epoch; SCFTL would fail to proceed to the next
epoch in this situation. To avoid such a situation, we can
choose a proper U , W , and K such that gcrl must be enabled
when there is not enough space for the next epoch:

U︸︷︷︸
GC threshold

≤ P−1−d(W +KN)/Se︸ ︷︷ ︸
lower bound of used blocks when not enough space

(2)

where P is the number of data blocks. First observe that
free, erasable, and invalid blocks are all available to the next
epoch as all invalid blocks become erasable after a flush.
The condition of “not enough space” essentially means that
the total number of these three kinds of blocks is less than
d(W +KN)/Se. Given that the total number of free, erasable,
invalid, and used blocks is equal to P− 1 (we always have

86 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

one active block), we know that the number of used blocks is
more than P−1−d(W +KN)/Se when there is not enough
space for the next epoch.

We demonstrate a configuration that satisfies the above
constraints: A 4-GB flash disk has 220 logical sectors (L =
220); suppose each block has 512 sectors (S = 512) and we
have 6 GB of flash memory for storing data, then the number
of data blocks will be 3072 (P = 3072). We can set the GC
threshold at 2500 (U = 2500) and we know the number of
valid sectors in every victim block would not exceed 419
(bL/Uc= b220/2500c= 419). Next we pick suitable values
for W and K. Let W = 4000 and K = 50 and check whether
they satisfy the above two constraints:

24950 =W +KN ≤ KS = 25600
2500 =U ≤ P−1−d(W +KN)/Se= 3022

Both constraints are satisfied.

Recovery of block queues After the recovery procedure
reconstructs the volatile L2P, it proceeds to reconstruct other
data structures, including the aforementioned block queues.
The recovery procedure simply scans through the blocks. If
a block contains some sectors pointed to by the L2P, then it
is a used block; otherwise, the recovery procedure treats it
as an erasable block. Note that after the reconstruction of the
volatile L2P, the stable and volatile L2Ps are identical and
hence we do not have any invalid blocks. We do not have any
free blocks after the recovery procedure; we do not have the
information whether a block was in the erasable or free block
queue before the crash. So we have to play it safe and put
them in the erasable queue to follow the erase-before-write
flash constraint.

4 Formal Verification Framework
The design of SCFTL (§3) is fairly sophisticated; to provide a
strong guarantee of its reliability, we have formally verified its
correctness. Our formal verification framework starts with the
definition of a disk model S (similar to Figure 1) that specifies
the intended disk behavior. S is defined as a particular kind
of state transition system (§4.1) on which snapshot consis-
tency can be formulated and proven (§4.2). As opposed to S,
which is merely an abstract, mathematical specification that
is meant to be understood easily, the SCFTL implementation
constitutes a more realistic transition system P. We prove that
P is behaviorally correct with respect to S, and moreover, this
behavioral correctness is strong enough to imply the snapshot
consistency of P (§4.3). Behavioral correctness is a compli-
cated property about sequences of state transitions, which
cannot be easily verified with automatic verification tools.
We can, however, reduce its proof to one about the behavior
of individual operations (§4.4), the latter of which is more
amenable to automatic verification (§5). The content of this
section is formally verified with the Agda proof assistant [33],
but here we provide only a high-level sketch.

4.1 Specification of disk behavior
To model the behavior of a disk as a state transition system, we
should define the possible states of a disk and the operations
that can be performed on the disk states. In S, which is our
abstract disk model that acts as a definition of intended behav-
ior, a state t of a disk is a pair of arrays t .volatile and t .stable
representing the volatile and stable copies of disk data respec-
tively and a number t .wcnt that counts the number of writes
since the last flush. There is a set N S of states that represent
the possible contents of a new disk, where only the stable
array is initialized to some default value. Reading a disk state
is just retrieving the data at a given address in the volatile
part; since the operation does not change the disk state, we
simply define it as a function read(t,a), t .volatile[a] rather
than a kind of state transition.

Mirroring the FTL operations except read, the operations
of S are shown in Figure 4: they are classified as regular, flush,
and recovery operations, and have a successfully executed
version and a crashed version. Writing t op−→ t ′ to mean that
there is a transition from t to t ′ through the operation op, that
is, t ′ is the state resulting from applying the operation op to
the state t, we define the effect of an operation by specifying
how t and t ′ are related: A write operation wa,d , which writes
the piece of data d to the address a in the volatile part, is
defined by saying that t wa,d−−→ t ′ amounts to
• t ′ .volatile = t .volatile[a 7→ d], where the right-hand side is

the array whose values are the same as t .volatile except at
the address a, where the value is d,

• t ′ .stable= t .stable, meaning that the stable data is not mod-
ified, and

• t ′ .wcnt = t .wcnt+1, meaning that wcnt, the write counter
mentioned at the end of §3.2, is incremented by one

when a and t .wcnt are within bounds, or otherwise t ′ = t.
The garbage-collecting operations rl and es do not change
the (abstract) disk state. The flush operation f copies the
volatile data to the stable part, and the recovery operation r
does the opposite; both operations reset the write counter to 0.
The crashed operations wc

a,d , rlc, esc, and rc may disrupt the
volatile data arbitrarily, and thus their definitions only specify
that the stable data remains the same (and the transitions
become non-deterministic); for fc there are two kinds of post-
crash state because the update to the flash disk may have
finished, in which case the system behaves as if the flush
operation is successfully executed.

4.2 Snapshot consistency
Snapshot consistency is essentially a property about execu-
tion fragments (or fragments for short), which are consec-
utive sequences of transitions t1

op1−−→ t2
op2−−→ ·· · opn−−→ tn+1;

we often omit unimportant intermediate states and write
t1

op1,op2, ...,opn−−−−−−−−→ tn+1. Informally, snapshot consistency says
that when recovered from a crash, reading the state after the
recovery operation will be the same as reading the state right

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 87

Regular Flush Recovery
Write Relocate/Erase (GC) Flush Recover

Su
cc

es
sf

ul t wa,d−−−→ t ′ ,

(InBounds(a, t.wcnt) ∧ t ′ .volatile = t .volatile[a 7→ d]

∧ t ′ .stable = t .stable ∧ t ′ .wcnt = t .wcnt+1)

∨ (¬InBounds(a, t.wcnt) ∧ t ′ = t)

t rl/es−−−→ t ′ ,

t ′ = t

t f−−−→ t ′ ,

t ′ .volatile = t .volatile

∧ t ′ .stable = t .volatile

∧ t ′ .wcnt = 0

t r−−−→ t ′ ,

t ′ .volatile = t .stable

∧ t ′ .stable = t .stable

∧ t ′ .wcnt = 0

C
ra

sh
ed t wc

a,d−−−→ t ′ ,

t ′ .stable = t .stable

t rlc/esc−−−→ t ′ ,

t ′ .stable = t .stable

t fc−−−→ t ′ ,

t ′ .stable = t .volatile

∨ t ′ .stable = t .stable

t rc−−−→ t ′ ,

t ′ .stable = t .stable

Figure 4. Definitions of operations in S. GC stands for Garbage Collection. The definition of the predicate InBounds(a,wcnt) is
a≤ amax∧wcnt ≤ wcntmax where amax and wcntmax are the upper bounds on the addresses and the write counter respectively.
Note that in the definitions a write operation has no effect (t ′ = t) when the write counter exceeds the bound (wcnt > wcntmax).

before the last flush operation prior to the crash. More pre-
cisely, the disk may have operated normally for some time
before the crash happens, and the recovery may fail several
times before it succeeds. This whole behavior is described as
a one-recovery fragment of the form

t1
a1, ...,ak−1−−−−−−→ t2

ak(= f),b1, ...,b`−−−−−−−−−→ t3
c,(rc)m, r−−−−−→ t4

where a1, . . . , ak are a sequence of successful regular or flush
operations ending with f (that is, ak = f), b1, . . . , b` are suc-
cessful regular operations, c is a crashed regular or flush op-
eration, and (rc)m is the crashed recovery operation repeated
m times; this is abbreviated to t1 t4 later on. Writing t ≈ t ′

to mean that read(t,a) = read(t ′,a) for all addresses a within
bounds, snapshot consistency of a one-recovery fragment of
the above form is defined as follows:
• if c is a crashed regular operation, then t2 ≈ t4;
• if c is the crashed flush operation fc, then either t2 ≈ t4 or

t3 ≈ t4.
Note that in the definition k can be 0, in which case no flush
is performed before the crash c, and the definition requires,
for instance in the first case, that the disk be reverted to the
first state t1 (which equals t2) observationally.

We can now formulate snapshot consistency of a disk
model. The typical way of using a disk can be represented as
a multi-recovery fragment of the form

t0
(rc)`, r−−−→ t1 t2 · · · tn tn+1

a1, ...,am−−−−−→ tn+2

which starts with performing the recovery operation on a
state t0 ∈N S (until it succeeds) to bring the disk to a usable
state, and continues with an arbitrary number of one-recovery
fragments and some trailing regular and flush transitions rep-
resenting uses of the disk. We say that a multi-recovery frag-
ment of this form is snapshot-consistent if all the one-recovery
sub-fragments t1 t2, . . . , tn tn+1 are snapshot-consistent,
and that a disk model is snapshot-consistent if its every multi-
recovery fragment is snapshot-consistent. With the definitions
in place, we can now state our first result (whose proof is
straightforward and omitted here).

Lemma 1. S is snapshot-consistent.

Note that the definitions of snapshot consistency make

sense for any disk model that has the same structure as S, in
particular for the model P that we will describe next.

4.3 Behavioral correctness and
snapshot consistency of SCFTL

S is a simplistic transition system: it gives a concise definition
of the intended disk behavior, but is unsuitable for direct
implementation. In SCFTL (§3), we use more practical states
that consist of various in-memory and in-flash data structures,
and sophisticated operations implemented in C. All these give
rise to another transition system P, which has the same set
of operations as S (as well as a read function for reading the
states of P) and also a set N P of possible states of a new disk
(where only the in-flash part is initialized). The definition
of P is a formal version of what has been presented in §3; the
exact definition is not needed in this section though, and will
be described later in §5.

We have proven that P is behaviorally correct with respect
to S: if we perform a legitimate sequence of operations in P
to obtain a fragment and read the normal states, which are
states that immediately follow a successful operation, the
results will be the same as performing the same sequence of
operations in S and reading the corresponding states. This
property allows the behavior of P to be understood in terms
of S. More formally, we have the following theorem.

Theorem 1 (behavioral correctness of P). For every multi-
recovery fragment s0

(rc)m,r−−−−→ s1
op1−−→ . . .

opn−−→ sn+1 in P, there
exists a fragment t0

(rc)m,r−−−−→ t1
op1−−→ . . .

opn−−→ tn+1 in S (which
has the same sequence of operations) such that si ≈ ti for
every corresponding pair of normal states si and ti.

We will see how Theorem 1 is proven in §4.4 and §5.
Before we do so, we show that the behavioral correctness of P
is strong enough to allow P to inherit snapshot consistency
from S.

Theorem 2. P is snapshot-consistent.

Proof. We must show that any multi-recovery fragment in P
is snapshot-consistent, that is, the results of reading the states
mentioned by the definitions of snapshot consistency are the
same. Observe that all these states are normal, so reading
these states in the fragment (in P) is the same as reading the

88 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

corresponding states in the fragment in S that is guaranteed to
exist by the behavioral correctness of P. This means that the
P-fragment is snapshot-consistent if the S-fragment is, and
the latter is indeed the case because S is snapshot-consistent
(Lemma 1).

4.4 Per-operation correctness
Theorem 1 is proven with a forward simulation argument [30],
which, though fairly standard, is described below for the sake
of completeness. Given a multi-recovery fragment in P, we
construct a fragment in S with the same sequence of opera-
tions while ensuring that every corresponding pair of normal
states in the two fragments is related by an abstraction re-
lation AR (to be described below) such that AR(s, t) implies
s≈ t for all s and t, and moreover, any corresponding pair of
abnormal states is related by a weaker abstraction relation CR.
This forms a stepwise relationship between the two fragments,
as illustrated, for example, in

s0 s1 s2 s3 s4 s5 s6

t0 t1 t2 t3 t4 t5 t6

CR

r

r
AR

wa,d

wa,d

AR

f

f
AR

wc
a′ ,d′

wc
a′ ,d′

CR

rc

rc
CR

r

r
AR · · · (3)

Intuitively, the abstraction relation AR captures how a normal
state in P is interpreted as a state in S. For example, one part
of AR describes where the current data at a logical address—
i.e., an entry in the volatile array of an S-state—can be found
in a P-state. On the other hand, for abnormal states in P,
only the in-flash data are reliable, and the crash abstraction
relation CR describes only how the in-flash part of a P-state is
interpreted as the stable part of an S-state. Back to diagram (3):
The in-memory part of s0 (∈N P) is not yet initialized, and
thus s0 only satisfies CR with some t0 (∈N S). A successful
recovery operation brings the disk to a normal P-state that
satisfies AR with an S-state. This AR relationship is preserved
by successful regular and flush operations, but deteriorates
to CR when a regular or flush operation crashes. Recovery
attempts may fail but CR is preserved, and the relationship is
restored to AR after the recovery succeeds, from which point
we can resume using the disk.

The stepwise relationship is established inductively by
showing (i) that initially CR holds for all s ∈N P and t ∈N S
(to establish, for example, the leftmost CR(s0, t0) in dia-
gram (3)), and (ii) that each operation preserves AR or CR, or
transforms AR into CR or vice versa (giving rise to each of
the squares in diagram (3)). The inductive cases (ii) are called
type A per-operation correctness. For example, the type A
per-operation correctness formula for the crashed flush opera-
tion fc is

∀s, t,s′. AR(s, t) ∧ RI(s) ∧ s fc−→ s′

=⇒ ∃t ′. t fc−→ t ′ ∧ CR(s′, t ′) (4)

where RI is the representation invariant describing properties
that should be satisfied by the various data structures in a

P-state, and is needed in the antecedent to make per-operation
correctness provable. For example, a part of RI states that
the in-memory L2P should agree with the in-flash L2P in
addition to all the delta pairs. Like AR and CR, there is also a
weaker version of RI called CI that describes only the prop-
erties about the in-flash part of a P-state, and is used in the
relevant per-operation correctness formulae. Note that per-
operation correctness is about the behavior of an operation
in general, not about its effect on particular states. We have
thus reduced reasoning about fragments, of which there is a
myriad possibilities, to reasoning about operations, of which
there is only a handful.

Finally, to make the induction go through, we need to es-
tablish RI on all normal states and CI on all abnormal states
so that the RI and CI premises in the type A per-operation
correctness formulae are satisfied. This is done by showing
that the invariants are suitably preserved or transformed by
each operation, for example,

∀s,s′. RI(s) ∧ s f−→ s′ =⇒ RI(s′) (5)

These formulae are called type B per-operation correctness.
Up to this point, what we have proven is that P is behav-

iorally correct if (i) AR(s, t) implies s ≈ t for all s and t,
(ii) CR(s, t) for all s∈N P and t ∈N S and CI(s) for all s∈N P,
and (iii) (type A and type B) per-operation correctness holds
for each operation. The three conditions are discharged using
automatic verification techniques described next in §5.

5 Verifying the SCFTL Implementation
We use the SMT solver Z3 [18] to prove the correctness of
the aforementioned three conditions. The first two conditions
are easy to check: once we have the formulae describing the
invariants RI and CI and the abstraction relations AR and CR,
we can easily construct the corresponding formulae and let
Z3 prove their validity automatically. For the third condition,
i.e., the per-operation correctness, we need to construct the
formulae s op−→ s′ in P from the C implementation for all
operations op. We use the symbolic executor Serval [32] to
build these formulae (§5.1). If we naively construct the per-
operation correctness formulae, often the generated formulae
would be too difficult for Z3 to solve. We explain in §5.2–§5.4
how to simplify the formulae so that Z3 can handle them.

5.1 Modeling flash states and crashes
To perform symbolic execution for SCFTL, we need to trans-
late C statements into formulae describing how they update
the P-states. A P-state includes a memory state and a flash
state. The memory state is a mapping from variable names
to their in-memory value. For example, it maps L2P to an
in-memory table. Serval can handle the update of memory
states and produce the corresponding formula automatically.
We model a flash state as a function content(bk,pg) that maps
a flash location, which is a pair (bk,pg) where bk is a block
address and pg is a page address, to the data stored in that

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 89

page, and modify Serval to support the flash commands SYNC,
ERASE, READ, and WRITE. More concretely, we need to tell
Serval how those commands update flash states.

The WRITE(bk, pg,d) command updates the flash state
content(b, p) to ite(bk = b∧ pg= p, d, content(b, p)), where
ite(g, e1, e2) is a shorthand for “if g then e1 else e2.” The
ERASE(bk) command updates the flash state content(b, p)
to ite(bk = b, empty, content(b, p)), where empty is a page
(which can be modeled as, e.g., an array) with all cells val-
ued −1. Neither the READ(bk,pg) nor the SYNC commands
change content(b, p) in the flash state.
Handling asynchronous flash operations The flash com-
mands are asynchronous, i.e., the invoked commands first
wait in a queue and start to update the flash memory only
when the scheduler selects them. Updates to the same page
will be executed in the same order in which they come into the
queue, but there is no restriction regarding when the updates
happen for different pages. If the system crashes, it will lose
all commands in the queue.

The flash command SYNC blocks the system until the queue
becomes empty. If the system crashes right after a SYNC
command, there will be only one possible flash state. However,
when it happens between two SYNC commands, there can be
multiple possibilities, because we do not know which of those
queued commands are processed.

Example 1. Suppose the content at the location (b1, p1)
is empty before invoking the sequence of flash commands
WRITE(b1, p1,d1), ERASE(b1, p1), WRITE(b1, p1,d2), SYNC.
If the system crashes right before SYNC, the content at (b1, p1)
can be either empty, d1, or d2.

One way to model crash behavior is to use crash sched-
ules [42, §3.1], which are a set of boolean variables represent-
ing the occurrence of crash events during the execution of an
operation. A special case where all the boolean variables are
true indicates a successful execution, in which all the WRITEs
invoked by the operation are synchronized. If we adopted this
approach, then SCFTL would have to issue a SYNC at the
end of each operation, limiting concurrency within a single
operation. However, in our SCFTL implementation, it often
happens that a SYNC is invoked only after multiple operations.
Thus, this modeling would reduce performance significantly.

An alternative approach represents each flash page as a
history of values [13, §3.2], which are the values written asyn-
chronously to the flash page since the last SYNC. The history
can be implemented as a list, and a crash non-deterministically
chooses a value from the list. This modeling does not require
synchronization at the end of an operation, and therefore does
not limit concurrency. However, lists are not well supported
by SMT solvers.

We propose a novel approach to model crash behavior,
which does not limit concurrency and is amenable to SMT
reasoning. The main idea is to “over-approximate” possi-
ble flash states when they are affected by asynchronous up-

dates. We implement the idea by adding to the flash state
a mapping sync(b, p) that maps a flash location (b, p) to a
boolean value denoting whether the page is synchronized,
i.e., it is not affected by asynchronous updates since the last
SYNC. The WRITE(bk, pg,d) command updates sync(b, p) to
ite(bk = b∧ pg = p, false, sync(b, p)) and the ERASE(bk)
command updates it to ite(bk = b, false, sync(b, p)). The
READ(b, p) command does not change sync(b, p) and always
returns content(b, p) no matter sync(b, p) is true or not. The
SYNC command remaps all locations of sync to true.

If op is a successfully executed operation, we collect all
P-states produced after executing op symbolically and use
them to construct the formula for s op−→ s′.

If op is a crashed operation, we collect all possible crash
states in two steps. We first collect all flash states (i) right
before every SYNC command and (ii) after executing op. We
then update the content(b, p) function of the collected states
to ite(sync(b, p), content(b, p), any), where any means the
content can be any value. We model any with fresh variables,
whose values can be arbitrarily assigned. The formula s op−→ s′

can then be constructed from all the content(b, p) functions of
the collected states. We also designed a suitable crash repre-
sentation invariant CI for SCFTL operations that records flash
disk information that is just sufficient for the recovery oper-
ation. For instance, it states that “at least one of the two full
checkpoints is committed.” The CI can be guaranteed even
with the over-approximated flash state we just introduced.

As said, the formulae produced with the approach we just
described may be too difficult for SMT solvers to solve. Below
(§5.2–§5.4) we introduce the techniques we use to simplify
the formulae and make automatic verification feasible. These
techniques are very general and should be usable by other
automatic verification projects.

5.2 Crafting the abstraction relations and
representation invariants

To avoid overwhelming the SMT solvers, care must be taken
to put the abstraction relations and representation invariants
in a suitable form. Below we look at a concrete example. A
part of the abstraction relations asserts that the stable L2P in
S should agree with its concrete representation in P, which
is the in-flash L2P stored in a committed full checkpoint, in
addition to all the committed delta pairs stored in the delta
region (Figure 2). As opposed to representing the assertion
as a relation, we could define a function that computes the
physical address for a given logical address la from a P-
state by starting with the in-flash L2P and then sequentially
applying the delta pairs, and assert that the stable L2P in S
agrees with the results of the function. Serval compiles the
assertion to the following constraint (assuming for simplicity
that there are only two delta pairs (la0,pa0) and (la1,pa1)):

∀la. L2Pstable[la]

= ite(la = la1, pa1, ite(la = la0, pa0, L2Pflash[la]))

90 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The number of ites is the same as the number of delta pairs,
which in the implementation is set to be large enough to avoid
frequent full checkpointing. The resultant formula turns out
to be too large for the SMT solvers to handle, though.

We thus choose to represent the assertion as a relation,
which is divided into two disjoint parts. The first part consid-
ers logical addresses that appear in the delta region, and the
second part considers those that do not. In more detail:

• For every (∀) logical address la that appears in the re-
gion, there exists (∃) a pair (la,pa) in the region such that
L2Pstable[la] = pa. Moreover, this pair should be the last
one about la in the sense that for any (∀) subsequent pair
(la′,pa′) we have la′ 6= la.

• For every (∀) logical address la that does not appear in the
region, we have L2Pstable[la] = L2Pflash[la].

The first part of the relation is still not amenable to effi-
cient SMT solving as it contains quantifier alternation of
the form ∀x.∃y.∀z. . . . , which is often too hard for the SMT
solvers [4, 44] to deal with. The key observation is that the
existential quantifier ∃ can be avoided with the ghost variable
technique [20]: because pa is determined by la and the P-state,
we can extend the S-states with an auxiliary array aux (along
with some other ghost variables required to determine pa) and
modify the transition relation of S to keep track of the last
pa associated with each la; the formula can then simply use
aux[la] (instead of an existentially quantified variable) wher-
ever it needs to refer to the last pa associated with la. Note
that the transitions of the non-ghost variables (i.e., volatile,
stable, and wcnt) must not depend on the ghost variables (e.g.,
aux), so that the specification of interest (Figure 4) is essen-
tially a projection of the S-states, in which ghost variables are
removed from the state space.

5.3 Categorizing the invariants

We use the observation that, usually, the invariants and ab-
straction relations can be grouped into different categories and
handled separately in verification. For example, the RI may
include constraints for different components of SCFTL, e.g.,
checkpoint and garbage collection. To simplify the presenta-
tion, here we assume RI(s) = RIchk(s)∧ RIgc(s)∧RIother(s),
where RIchk(s) are invariants related to checkpoints, RIgc(s)
are those related to garbage collection, and RIother(s) are
other invariants. Now we can divide Formula 5 into three
simpler formulae: ∀s,s′. RI(s) ∧ s op−→ s′ =⇒ RIx(s′), where
x ∈ {chk,gc,other}, and prove their correctness separately.
We can further simplify the formulae by using only a subset
of the constraints in RI to show the preservation of invariants.
The reason is that to show RIx(s′) holds after the execution of
op, we usually do not need the starting state s to also satisfy
the invariants related to other components. Hence we can use
the formula ∀s,s′. RIx(s) ∧ s op−→ s′ =⇒ RIx(s′) instead.

5.4 Partitioning the proofs
Both the implementation and specification of SCFTL involve
“non-determinism” when a flush operation crashes. In the
implementation, we collect multiple flash states to produce
the formula s fc−→ s′. In the specification (Figure 4), when
a flash operation crashes, the stable data may remain un-
changed (t ′ .stable = t .stable) or change to the volatile data
(t ′ .stable = t .volatile). We found that such non-determinism
induces verification bottlenecks. We tried to prove the cor-
rectness of flush using Z3 with the presence of such non-
determinism, but the solver failed to solve it given a few
days of time budget. In our experience, this usually means
the problem is too difficult for Z3 and needs to be simpli-
fied. For SCFTL, such non-determinism can be avoided by
partitioning the proofs. We need to figure out (i) which
flash states of the implementation correspond to the spec-
ification t ′ .stable = t .stable and (ii) which correspond to
t ′ .stable = t .volatile. More concretely, assuming that we col-
lect two flash states, represented as f1(s) and f2(s), during
the execution of the crashed flush operation, we can substitute
the transition relations in Formula 4 properly to obtain:

∀s, t,s′. AR(s, t) ∧ RI(s) ∧ (s′ = f1(s) ∨ s′ = f2(s))

=⇒ ∃t ′.
(

t ′ .stable = t .stable
∨ t ′ .stable = t .volatile

)
∧ CR(s′, t ′) (6)

Instead of directly proving Formula 6, which involves non-
determinism (∨), we can use Z3 to prove the following two
sufficient conditions separately—if we know that the first
flash state corresponds to t ′ .stable = t .stable, and the second
corresponds to t ′ .stable = t .volatile:

∀s, t,s′. AR(s, t) ∧ RI(s) ∧ s′ = f1(s)

=⇒ ∃t ′. t ′ .stable = t .stable ∧ CR(s′, t ′) (7)

∀s, t,s′. AR(s, t) ∧ RI(s) ∧ s′ = f2(s)

=⇒ ∃t ′. t ′ .stable = t .volatile ∧ CR(s′, t ′) (8)

Although this technique requires manual inspection of each
crash state generated during an operation, it significantly im-
proves the scalability of the verification of SCFTL.

6 Discussion
Using an SMT solver has the advantage that once the formu-
lae are constructed, their proofs are done fully automatically.
If some of the constructed formulae cannot be solved in a
reasonable time, we apply the techniques mentioned above
to simplify them systematically. In total, the representation
invariant (RI) and the abstraction relation (AR) contain 98
conditions; their weaker versions (CI and CR, respectively)
contain 17 conditions. We also use loop invariants and an
inductive proof rule [23] to handle large loops. With these, all
but three conditions can be proven correct.

The three unverified conditions are: (i) after a successful
recovery, the L2P table is an one-to-one mapping except for

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 91

invalid entries; (ii) after a successful recovery, there is suffi-
cient space to accommodate the follow-up writes and gcrls;
(iii) after a successful flush, there is sufficient space to accom-
modate the follow-up writes and gcrls. For the three unverified
conditions, we use the validation technique [37] to ensure
their correctness. The validator itself is formally verified (ex-
plained in §6.1) and will notify the user when our SCFTL
implementation violates the property. Such notification never
occurs in all of our experiments.

The Z3 verification time is 4640 seconds for a 8 GB flash
disk and 6302 seconds for a 256 GB flash disk. We choose
to verify a particular flash disk size at a time (rather than
for all sizes) to reduce the number of quantifiers and thus
improve the verification time. We also tried to change other
parameters (e.g., several write bounds ranging from 2048 to
20480), the verification time ranges from 1 hour to 2 hours;
interestingly, a larger value does not imply a longer time.

Table 1. Lines of code for SCFTL.

Component Lines of code

SCFTL implementation 950 (C)

Snapshot consistency theorems 652 (Agda [33])

SCFTL specification 22 (Rosette [43])
Invariants & Relations 2010 (Rosette)
Ghost variables 538 (Rosette)
Proof partitions 96 (Rosette)
Flash memory model 232 (Rosette)
Core framework 1048 (Rosette)
Total 3946 (Rosette)

Table 1 shows the lines of code for SCFTL. We count the
specification, loop invariants, representation invariants, ab-
straction relations, ghost variables, and proof partitions as our
proof, resulting in a proof-to-implementation ratio of 2.8:1.
The total development effort is about 6 person-months; a sig-
nificant part is devoted to finding (an efficient SMT encoding
of) the required invariants and scaling the verification with
the techniques we introduced in §5. For the trusted computing
base, we assume that (i) the flash memory is free of error, (ii)
the verification tools Z3, Agda, and Serval are correct, (iii)
the translation from LLVM to machine code is correct, and
(iv) the LightNVM [6] Linux kernel module, which we used
to host our SCFTL, is correct.

6.1 Validating unverified conditions
For each of the unverified conditions, we implement a val-
idator to monitor if the condition is indeed satisfied during
runtime. More specifically, we add to the P-states a set of
validation variables, including a flag indicating whether the
validation fails or succeeds. The validators are not allowed to
modify the P-states other than the validation variables. We
prove that the validator establishes the following postcon-
dition: if the flag indicates a successful validation, then the

condition holds. Although the validation approach is not as
useful for storage systems as for compilers, we regard the
approach as a last resort to circumvent the limitation of auto-
matic verification.

Validation can also be used to incorporate unverified com-
ponents into SCFTL. For example, an unverified block alloca-
tor may keep track of the block usage and allocate the block
with the least amount of usage for wear leveling. A valida-
tor can then validate whether the allocated block is actually
in the free block queue, and if so, returns the block. Other-
wise, SCFTL falls back to the default verified behavior, e.g.,
allocating the first block in the free block queue.

6.2 Support for concurrency
Our verification methodology does not support concurrent
SCFTL operations, and our specification has a sequential na-
ture. However, both of them do not limit an implementation
from exploiting the high degree of hardware parallelism com-
monly seen in modern flash disks (e.g., multiple channels and
flash chips). More specifically, executing a single step (e.g.,
a write operation) in the specification corresponds to per-
forming a top-level C function in the SCFTL implementation.
The C function usually uses asynchronous flash commands to
avoid waiting for slow flash operations to finish. This design
allows multiple flash operations to be executed concurrently
until a SYNC. Reordering due to the concurrency of flash
operations can only be observed when a crash occurs. We
describe our technique to capture reordering in §5.1.

7 Evaluation
To evaluate SCFTL, we conducted experiments designed to
answer the following questions:

• Is SCFTL actually correct? (§7.1)
• How does SCFTL perform compared to other FTLs imple-

menting different disk models? (§7.2)
• Is the guarantee of snapshot consistency provided by

SCFTL useful to its upper layers? (§7.3)

All experiments were done on a host machine with a 12-core
3.2 GHz Intel i7-8700 CPU and 16 GB of DRAM. To emulate
the flash memory, we run experiments on Linux 4.15 hosted
by FEMU [29], a QEMU-based emulator that can emulate an
Open-Channel SSD (OCSSD). We used liblightnvm [2] with
the libaio [1] backend to access the underlying OCSSD in an
asynchronous way. The original version of FEMU supports la-
tency emulation for OCSSD commands, but as libaio can only
issue NVMe base commands, we followed FEMU’s approach
to emulate latency for NVMe base commands. We validated
that the results produced by the two sets of commands are
consistent. The OCSSD has 4 channels, 4 dies per channel,
and a total of 8 GB flash memory. We reserved 16 MB of
flash memory for the full checkpoint region, 256 MB for the
delta region, and set the write bound to 2048.

92 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

WI = 2048 WI = 256 WI = 16 WI = 10

5

10

15

20

25
Th

ro
ug

hp
ut

 (K
 IO

PS
)

pblk (4 thrds) pblk (1 thrd) async sync scftl

Figure 5. Throughput of FTLs under random writes with
different write intervals (WI).

7.1 Stress testing and crash state simulation
To validate the correctness of SCFTL, we designed a testing
framework that allows fast stress testing and crash state simu-
lation. The framework hosts SCFTL by emulating the flash
memory with DRAM, and simulates a crash by overwriting
all pages affected by asynchronous WRITE or ERASE since the
last SYNC with garbage data. The framework uses a workload
generator to issue a sequence of writes and flushes to SCFTL,
and simulates a crash based on a given probability. We set a
higher probability for configurations that are more likely to
result in corner cases (e.g., crashes during recovery).

The framework maintains a pair of arrays, volatile and
stable, as golden results, and changes their states according
to Figure 4. A result checker is then periodically activated to
read every sector of SCFTL and check whether the results
produced by SCFTL is consistent with the volatile array. To
speed up testing, the checker only compares the first few
bytes of the read data. We ran the test with 4 configurations
for about 8 hours. In total, the workload generator wrote more
than 1.4 TB of data, issued about 12 millions of flushes and
simulated about 10 thousands of crashes. SCFTL successfully
recovered from every crash state and passed all checks.

7.2 Comparing SCFTL with other FTLs
Besides SCFTL, we implemented two additional FTLs with
different crash guarantees. The two FTLs implement the asyn-
chronous (denoted by async) and synchronous (denoted by
sync) disk models respectively. async is implemented in a way
similar to SCFTL, except async (i) does not do checkpointing,
(ii) does not comply with 2PGC (i.e., victim blocks are erased
immediately after all valid data is relocated), and (iii) has no
write count constraint. sync is the same as async, except sync
always uses synchronous operations to access the underlying
flash memory. We assume the one-page merge buffer of sync
is backed by a battery (i.e., data copied to the buffer is guar-
anteed to be persistent); thus sync can safely ignore any flush
request. We also used the state-of-the-art FTL pblk [6], which
has similar features to async (e.g., both of them implement
the asynchronous disk model and use a sector-level L2P), to
understand the quality of our FTL implementation.

We wrote a small program to randomly issue 4 KB writes to
a disk, and periodically flush the disk after a fixed number of
writes. We call this period the write interval. For pblk, we also
used a concurrent version (employing 4 threads) of the same

128 256 384 512
Size of Delta Region (MB)

0

5

10

15

20

B
oo

t
Ti

m
e

(s
)

256-GB flash disk
128-GB flash disk
4-GB flash disk

Figure 6. Boot time of SCFTL.

program as a way to identify the limitation of SCFTL’s sequen-
tial nature. Figure 5 shows the average throughput. We first
draw two conclusions: (i) Our baseline FTL, async (3rd bars),
has a performance characteristic similar to pblk (2nd bars).
(ii) Concurrent workloads (1st bars), in general, have higher
total throughput than sequential workloads (2nd bars); but
the improvement is less obvious when the write interval is
higher (e.g., WI = 2048 and WI = 256) because the underlying
flash memory has fewer idle resources to serve the concurrent
requests. Next, we compare SCFTL with async and sync.

When the write interval is set to 2048, SCFTL throughput
is within 5% of async on average; with the write interval
set to 256, SCFTL throughput is still within 11%. In both
settings, SCFTL outperforms sync by more than 14x. With
the write interval set to 16, SCFTL throughput drops to 53%
of async, but still outperforms sync by 3.8x. When the write
interval is reduced to 1, SCFTL throughput is only one half
of async and one quarter of sync, because SCFTL writes one
additional delta page on receiving a flush. Note that the last
setting is not a reasonable usage of SCFTL, but it shows the
overhead of SCFTL under the worst-case scenario.

We also analyze the write and flush latency and make the
following observations: (i) SCFTL has a slightly higher aver-
age flush latency (12 ms) than async (10 ms) because SCFTL
writes an additional delta page during a flush. (ii) SCFTL
has a higher maximum flush latency (398 ms) due to full
checkpointing; we can reduce the latency with a hybrid set-
ting (similarly to the WAFL file system [22] which puts a
log of requests on non-volatile memory and other data on
slower disks), in which the full checkpoints go to memory
technologies with a lower latency (e.g., SLC flash and 3D
XPoint memory [21]), and other data stays in ones with a
higher latency but a lower cost (e.g., MLC and TLC flash).

Finally, Figure 6 shows the boot time of SCFTL. We have
not yet implemented optimizations for recovery to reduce the
boot time, so the boot time is nearly the same regardless of
whether there is a graceful shutdown or where a crash occurs.
In general, the boot time is directly proportional to the size of
the delta region and the size of the logical address space.

7.3 Modifying xv6 with SCFTL
To understand the usefulness of snapshot consistency guar-
anteed by SCFTL, we used xv6 [16], a simple log-based file
system, as our example. In order to prevent any file system
inconsistency (e.g., a directory entry pointing to a free inode)

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 93

SQLite smallfiles largefile mailbench0

3

6

9

12
R

el
at

iv
e

Pe
rf

or
m

an
ce

9
tx

n/
s

77
 fi

le
/s

0.
6

M
B

/s

16
 m

sg
/s

11
 t

xn
/s

77
 fi

le
/s

1.
2

M
B

/s

17
 m

sg
/s

11
 t

xn
/s

68
 fi

le
/s

1.
2

M
B

/s

14
 m

sg
/s

61
 t

xn
/s

26
4

fil
e/

s

39
 M

B
/s

12
3

m
sg

/s

xv6/async xv6/sync xv6-xlog xv6-group

Figure 7. Performance of xv6 on different FTLs. SQLite
generates 1K insert transactions followed by 1K update trans-
actions; smallfiles repeatedly creates a file, writes 100 bytes
of data to it, and calls fsync; largefile writes 4 MB of data
to a file and calls fsync for every 1 MB; mailbench models
a mail server running on the sv6 operating system [14]. To
ensure durability, mailbench invokes an fsync for each mes-
sage. We ran each workload 5 times and reported the average.
The standard deviation is less than 8%.

due to a crash occurring in the middle of a system call, xv6
uses a write-ahead log for atomically writing multiple sectors
of data to its underlying disk. Such atomicity, however, can be
easily achieved with SCFTL. We thus modified xv6 to bypass
its log so that data does not need to be written twice, once to
the log and once to its actual location. We further modified
xv6 to support a common optimization known as group com-
mit, which groups multiple system calls into one transaction,
to reduce the number of flushes. With group commit, xv6 only
issues a flush when a transaction is full or on receiving an
fsync. The implementation is rather easy with SCFTL; we
changed less than 30 lines of code of xv6. We compared the
two modified versions of xv6 on SCFTL (denoted by xv6-
xlog and xv6-group, respectively) with the original xv6 on the
asynchronous and synchronous disks used in §7.2 (denoted
by xv6/async and xv6/sync, respectively). We used existing
file system benchmarks [14, 40] to evaluate the performance.

Figure 7 shows the results. The performance of xv6-xlog is
only on par with that of xv6/async and xv6/sync. Although
xv6-xlog has reduced the use of writes and flushes via by-
passing the log, issuing a flush at the end of each system call
would inevitably result in a small write interval, for which
SCFTL does not perform very well as shown in Figure 5.
xv6-group performs much better than the other three as the
write interval becomes larger when multiple system calls are
grouped together. The performance difference is particularly
obvious for largefile, where fsyncs are less frequent.

Note that while xv6/async, xv6/sync, and xv6-xlog guaran-
tee immediate durability, that is, the result of a system call
is successfully stored in the disk after the call returns, xv6-
group only guarantees system calls before the last fsync are
persisted, and system calls after the last fsync will not be
reordered. This property is also known as sequential crash
consistency [7]. In practice, sequential crash consistency is a
very strong property and is what most application developers
actually require [35].

Finally we compare our group commit version of xv6 with

SQLite smallfiles largefile mailbench0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e
Pe

rf
or

m
an

ce

93
 t

xn
/s

51
2

fil
e/

s

63
 M

B
/s

13
2

m
sg

/s14
2

tx
n/

s

46
9

fil
e/

s

27
 M

B
/s

15
3

m
sg

/s

61
 t

xn
/s

26
4

fil
e/

s

39
 M

B
/s

12
3

m
sg

/s

ext4-metadata ext4-data xv6-group

Figure 8. xv6 on SCFTL vs. ext4 on pblk. When running
mailbench on ext4-metadata that does not guarantee the or-
dering between data and metadata, we invoked one additional
fdatasync on the temporary file [12, Figure 1].

the state-of-the-art storage stack: ext4 on pblk. We mounted
ext4 with two configurations: The default metadata journal-
ing mode data=ordered (denoted by ext4-metadata), and the
data journaling mode data=journal,journal_async_commit

(denoted by ext4-data). ext4-metadata does not journal data
but it issues one more flush than ext4-data when committing
an ext4 transaction.

Figure 8 shows the results. xv6-group performance is 7%
to 49% lower than ext4-metadata. Compared with ext4-data,
the performance difference is more divergent. For SQLite,
xv6-group performance is only 43% of ext4-data; but for
largefile, xv6-group is more than 1.4x of ext4-data. Such
divergence can be explained by the behavior of the workloads:
SQLite frequently issues fsyncs and causes the performance
of SCFTL to degrade; on the other hand, largefile issues much
less fsyncs and a huge amount of data is written in the journal
of ext4-data. We believe the performance difference between
our modified xv6 and ext4 is mainly owing to the simplicity
of xv6. This can be improved by, e.g., optimizing xv6 with
in-memory representations for file system operations [5].

8 Conclusion
We believe that our verified SCFTL brings new opportunities
for the design of the storage stack. We demonstrate that
starting at a lower-level of abstraction can make verifying
crash safety easier while still resulting in an efficient system.
Formal specification and verification give the user a clear
picture and strong confidence of what he/she can assume
while designing the upper layers of the storage stack. Our
experimental results show that SCFTL can provide a strong
crash guarantee without compromising its performance if
upper layers can carefully reduce the flush frequency.

There are several avenues for future work. For instance, we
would like to extend the work to cover upper layers, such as
file systems or database systems, of the storage stack. With
a careful design that fully utilizes the advantage of SCFTL,
we believe it is likely that we can obtain a verified and yet
efficient upper-layer system. The FTLs used in commercial
products usually come with several optimizations, e.g., hot-
cold data separation and wear leveling. We plan to extend
SCFTL to use those optimizations.

94 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Acknowledgments

We thank our shepherd, Frans Kaashoek, and the anony-
mous reviewers for their valuable feedback. This work was
supported in part by Academia Sinica under grant no. AS-
CDA-107-M05 and the Ministry of Science and Technol-
ogy (MOST) of Taiwan under grant nos. 109-2628-E-001-
001-MY3, 109-2222-E-001-002-MY3, 107-2923-E-001-001-
MY3, 108-2221-E-001-001-MY3, and 108-2221-E-001-004-
MY3.

References

[1] Aio. http://man7.org/linux/man-pages/man7/aio.7.html.

[2] liblightnvm. http://lightnvm.io/liblightnvm/.

[3] Sidney Amani, Alex Hixon, Zilin Chen, Christine
Rizkallah, Peter Chubb, Liam O’Connor, Joel Beeren,
Yutaka Nagashima, Japheth Lim, Thomas Sewell,
Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin
Klein, and Gernot Heiser. Cogent: Verifying high-
assurance file system implementations. In Proceedings
of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’16, page 175–188, New York,
NY, USA, 2016. Association for Computing Machinery.

[4] Peter Backeman, Philipp Rummer, and Aleksandar
Zeljic. Bit-vector interpolation and quantifier elimina-
tion by lazy reduction. In Formal Methods in Computer
Aided Design, FMCAD ’18, pages 1–10, 2018.

[5] Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements,
M. Frans Kaashoek, and Nickolai Zeldovich. Scaling
a file system to many cores using an operation log. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, page 69–86, New York, NY,
USA, 2017. Association for Computing Machinery.

[6] Matias Bjørling, Javier González, and Philippe Bonnet.
LightNVM: The linux open-channel SSD subsystem. In
Proceedings of the 15th Usenix Conference on File and
Storage Technologies, FAST ’17, page 359–373, USA,
2017. USENIX Association.

[7] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind
Krishnamurthy, Emina Torlak, and Xi Wang. Specify-
ing and checking file system crash-consistency mod-
els. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’16, page
83–98, New York, NY, USA, 2016. Association for Com-
puting Machinery.

[8] Cristian Cadar, Daniel Dunbar, and Dawson Engler.
KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Pro-
ceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI ’08, page
209–224, USA, 2008. USENIX Association.

[9] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Argosy: Verifying layered storage
systems with recovery refinement. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’19, page
1054–1068, New York, NY, USA, 2019. Association for
Computing Machinery.

[10] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Verifying concurrent, crash-safe
systems with perennial. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 243–258, New York, NY, USA, 2019. Association
for Computing Machinery.

[11] Yun-Sheng Chang and Ren-Shuo Liu. OPTR: Order-
preserving translation and recovery design for SSDs
with a standard block device interface. In Proceedings
of the 2019 USENIX Conference on Usenix Annual Tech-
nical Conference, USENIX ATC ’19, page 1009–1023,
USA, 2019. USENIX Association.

[12] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie
Wang, Atalay İleri, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. Verifying a high-performance
crash-safe file system using a tree specification. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, page 270–286, New York, NY,
USA, 2017. Association for Computing Machinery.

[13] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
pala, M. Frans Kaashoek, and Nickolai Zeldovich. Using
crash hoare logic for certifying the FSCQ file system.
In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP ’15, page 18–37, New York,
NY, USA, 2015. Association for Computing Machinery.

[14] Austin T. Clements, M. Frans Kaashoek, Nickolai Zel-
dovich, Robert T. Morris, and Eddie Kohler. The scal-
able commutativity rule: Designing scalable software
for multicore processors. ACM Trans. Comput. Syst.,
32(4), January 2015.

[15] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh
Gupta, and Steven Swanson. From ARIES to MARS:
Transaction support for next-generation, solid-state
drives. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles, SOSP ’13,
page 197–212, New York, NY, USA, 2013. Association
for Computing Machinery.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 95

[16] Russ Cox, M. Frans Kaashoek, and Robert Morris. Xv6,
a simple unix-like teaching operating system, 2020.
https://pdos.csail.mit.edu/6.828/2020/xv6.html.

[17] Wiebren de Jonge, M. Frans Kaashoek, and Wilson C.
Hsieh. The logical disk: A new approach to improving
file systems. In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles, SOSP ’93,
page 15–28, New York, NY, USA, 1993. Association
for Computing Machinery.

[18] Leonardo De Moura and Nikolaj Bjørner. Z3: An ef-
ficient SMT solver. In Proceedings of the Theory and
Practice of Software, 14th International Conference on
Tools and Algorithms for the Construction and Analy-
sis of Systems, TACAS ’08/ETAPS ’08, page 337–340,
Berlin, Heidelberg, 2008. Springer-Verlag.

[19] Gidon Ernst, Jörg Pfähler, Gerhard Schellhorn, and Wolf-
gang Reif. Inside a verified flash file system: Trans-
actions and garbage collection. In Revised Selected
Papers of the 7th International Conference on Verified
Software: Theories, Tools, and Experiments - Volume
9593, VSTTE ’15, page 73–93, Berlin, Heidelberg, 2015.
Springer-Verlag.

[20] Jean-Christophe Filliâtre, Léon Gondelman, and Andrei
Paskevich. The spirit of ghost code. Formal Methods in
System Design, 48(3):152–174, oct 2016.

[21] F. T. Hady, A. Foong, B. Veal, and D. Williams. Plat-
form storage performance with 3D XPoint technology.
Proceedings of the IEEE, 105(9):1822–1833, 2017.

[22] Dave Hitz, James Lau, and Michael Malcolm. File sys-
tem design for an NFS file server appliance. In Proceed-
ings of the USENIX Winter 1994 Technical Conference
on USENIX Winter 1994 Technical Conference, WTEC
’94, page 19, USA, 1994. USENIX Association.

[23] Charles Antony Richard Hoare. An axiomatic basis for
computer programming. Communications of the ACM,
12(10):576–580, 1969.

[24] Ben Hutchings. [patch 3.2 027/115] jbd2: fix fs cor-
ruption possibility in jbd2_journal_destroy() on umount
path. April 2016. https://lkml.org/lkml/2016/4/26/1230.

[25] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-
Hwan Oh, and Changwoo Min. X-FTL: Transactional
FTL for SQLite databases. In Proceedings of the 2013
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’13, page 97–108, New York,
NY, USA, 2013. Association for Computing Machinery.

[26] Jesung Kim, Jong Min Kim, S. H. Noh, Sang Lyul Min,
and Yookun Cho. A space-efficient flash translation
layer for compactflash systems. IEEE Trans. on Consum.
Electron., 48(2):366–375, May 2002.

[27] Greg Kroah-Hartman. [patch 4.14 138/267] jbd2: Fix
possible overflow in jbd2_log_space_left(). December
2019. https://lkml.org/lkml/2019/12/16/1638.

[28] Changman Lee, Dongho Sim, Joo-Young Hwang, and
Sangyeun Cho. F2FS: A new file system for flash stor-
age. In Proceedings of the 13th USENIX Conference on
File and Storage Technologies, FAST ’15, page 273–286,
USA, 2015. USENIX Association.

[29] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swami-
natahan Sundararaman, Matias Bjørling, and Haryadi S.
Gunawi. The case of FEMU: Cheap, accurate, scal-
able and extensible flash emulator. In Proceedings of
the 16th USENIX Conference on File and Storage Tech-
nologies, FAST ’18, page 83–90, USA, 2018. USENIX
Association.

[30] Nancy Lynch and Frits Vaandrager. Forward and back-
ward simulations: I. untimed systems. Information and
Computation, 121(2):214–233, 1995.

[31] Jayashree Mohan, Ashlie Martinez, Soujanya Ponna-
palli, Pandian Raju, and Vijay Chidambaram. Finding
crash-consistency bugs with bounded black-box crash
testing. In Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementation,
OSDI ’18, page 33–50, USA, 2018. USENIX Associa-
tion.

[32] Luke Nelson, James Bornholt, Ronghui Gu, Andrew
Baumann, Emina Torlak, and Xi Wang. Scaling sym-
bolic evaluation for automated verification of systems
code with serval. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles, SOSP ’19,
page 225–242, New York, NY, USA, 2019. Association
for Computing Machinery.

[33] Ulf Norell. Dependently typed programming in Agda.
In Advanced Functional Programming, volume 5832
of Lecture Notes in Computer Science, pages 230–266.
Springer, 2009.

[34] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas
Willhalm, and Wolfgang Lehner. FPTree: A hybrid
SCM-DRAM persistent and concurrent b-tree for stor-
age class memory. In Proceedings of the 2016 Interna-
tional Conference on Management of Data, SIGMOD
’16, page 371–386, New York, NY, USA, 2016. Associ-
ation for Computing Machinery.

[35] Thanumalayan Sankaranarayana Pillai, Ramnatthan Ala-
gappan, Lanyue Lu, Vijay Chidambaram, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Appli-
cation crash consistency and performance with CCFS.
ACM Trans. Storage, 13(3), September 2017.

96 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[36] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-Kiswany,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. All file systems are not created equal: On
the complexity of crafting crash-consistent applications.
In Proceedings of the 11th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI ’14,
page 433–448, USA, 2014. USENIX Association.

[37] Amir Pnueli, Michael Siegel, and Eli Singerman. Trans-
lation validation. In Proceedings of the 4th International
Conference on Tools and Algorithms for Construction
and Analysis of Systems, TACAS ’98, page 151–166,
Berlin, Heidelberg, 1998. Springer-Verlag.

[38] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Li-
dong Zhou. Transactional flash. In Proceedings of the
8th USENIX Conference on Operating Systems Design
and Implementation, OSDI ’08, page 147–160, USA,
2008. USENIX Association.

[39] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS:
The linux b-tree filesystem. ACM Trans. Storage, 9(3),
August 2013.

[40] Mendel Rosenblum and John K. Ousterhout. The design
and implementation of a log-structured file system. ACM
Trans. Comput. Syst., 10(1):26–52, February 1992.

[41] Ji-Yong Shin, Mahesh Balakrishnan, Tudor Marian, and
Hakim Weatherspoon. Isotope: ACID transactions for
block storage. ACM Trans. Storage, 13(1), February
2017.

[42] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak,
and Xi Wang. Push-button verification of file sys-
tems via crash refinement. In Proceedings of the
12th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI ’16, page 1–16, USA,
2016. USENIX Association.

[43] Emina Torlak and Rastislav Bodik. A lightweight sym-
bolic virtual machine for solver-aided host languages.
In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI ’14, page 530–541, New York, NY, USA, 2014.
Association for Computing Machinery.

[44] Christoph M. Wintersteiger, Youssef Hamadi, and
Leonardo Moura. Efficiently solving quantified bit-
vector formulas. Form. Methods Syst. Des., 42(1):3–23,
February 2013.

[45] Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joontaek
Oh, Seongbae Son, Jooyoung Hwang, and Sangyeun
Cho. Barrier-enabled IO stack for flash storage. In
Proceedings of the 16th USENIX Conference on File

and Storage Technologies, FAST ’18, page 211–226,
USA, 2018. USENIX Association.

[46] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin,
Mark Lillibridge, Elizabeth S. Yang, Bill W. Zhao, and
Shashank Singh. Torturing databases for fun and profit.
In Proceedings of the 11th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI ’14,
page 449–464, USA, 2014. USENIX Association.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 97

Storage Systems are Distributed Systems
(So Verify Them That Way!)

Travis Hance, Carnegie Mellon University
Andrea Lattuada, ETH Zurich

Chris Hawblitzel, Microsoft Research
Jon Howell, VMware Research

Rob Johnson, VMware Research
Bryan Parno, Carnegie Mellon University

Abstract
To verify distributed systems, prior work introduced a method-
ology for verifying both the code running on individual ma-
chines and the correctness of the overall system when those
machines interact via an asynchronous distributed environ-
ment. The methodology requires neither domain-specific logic
nor tooling. However, distributed systems are only one in-
stance of the more general phenomenon of systems code that
interacts with an asynchronous environment. We argue that the
software of a storage system can (and should!) be viewed sim-
ilarly. We evaluate this approach in VeriBetrKV, a key-value
store based on a state-of-the-art Bεtree.

In building VeriBetrKV, we introduce new techniques to
scale automated verification to larger code bases, still without
introducing domain-specific logic or tooling. In particular,
we show a discipline that keeps the automated verification
development cycle responsive. We also combine linear types
with dynamic frames to relieve the programmer from most
heap-reasoning obligations while enabling them to break out
of the linear type system when needed. VeriBetrKV exhibits
similar query performance to unverified databases. Its inser-
tion performance is 24× faster than unverified BerkeleyDB
and 8× slower than RocksDB.

1 Introduction
Software verification promises a fundamentally better way
of constructing critical systems: Instead of relying on the
spotty coverage provided by run-time testing, verification can
mathematically guarantee the functional correctness and even
the reliability of software at compile time.

In the context of distributed systems, prior work on Iron-
Fleet [29] shows how to combine Hoare logic [23, 31], to
reason modularly about the behavior of a single program, with
TLA-based [40] state-machine reasoning to show that a col-
lection of nodes running that program behaves according to a
high-level functional spec when executing in a failure-prone,
asynchronous distributed environment. Both techniques em-
ploy general-purpose logic, unlike other work in the area that
relies on custom languages or logic [17, 18, 58]. The approach

is compatible with a reasonable level of automation, modest-
scale implementations (2-3K LoC), and performance within a
factor of 2 of unverified code.

We observe that the abstraction of a system as a program
interacting with a failure-prone, asynchronous environment
applies beyond the domain of distributed systems. Indeed, we
argue that a very different domain – storage systems – fits quite
naturally into this same abstraction, capturing the asynchrony
and nondeterminism of crash safety in such systems. Hence
we generalize the IronFleet methodology to this new domain,
without introducing a domain-specific logic [12], creating
a custom language [2], or changing our system’s API and
implementation to accomodate verification [54].

We evaluate the success of this generalization by construct-
ing VeriBetrKV, a key-value store based on a Bεtree [7], a com-
plex but asymptotically-compelling write-optimized data struc-
ture. Modern persistent key-value stores use write-optimized
data structures, such as LSM-trees [19, 20, 26, 37, 43, 53] and
Bεtrees [50], in order to efficiently handle random-insertion
workloads, which are common in many key-value-store ap-
plications. Write-optimized data structures outperform older
key-value data structures, such as B-trees, by orders of magni-
tude. However, these performance gains come at the cost of a
significant increase in code complexity.

TLA-based reasoning lets us prove VeriBetrKV’s correct be-
havior under process crashes and under disk sector corruptions,
while Hoare logic allows us to reason independently about the
implementation-level optimizations needed for performance.

The resulting system is significantly more complex than the
closest prior work, a verified in-memory key-value store [29].
The implementation is over 3× larger, and proving it function-
ally correct and crash safe requires a multi-level (vs. single-
level) refinement proof.

Hence, an important contribution of this work are the tech-
niques we developed to apply automated verification at this
new scale. To make verification practical for large-scale soft-
ware development, we need to balance between exploiting
automation and controlling it. Ideally, we want decisive au-
tomation; i.e., automation that quickly tells us whether our

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 99

code and proofs are correct or incorrect. Decisive automation
keeps developers engaged and efficient. Unfortunately, since
general-purpose verification is undecidable, most automation
tools can also “time out”. This pessimal outcome takes longer
(by definition) and provides less direction to the developer,
harming morale and productivity [21, §9.1][29, §6.3.2].

To escape the plague of time outs, we present a concrete
development discipline that rapidly squashes time-out prone
code. This ensures developers spend the majority of their
time in a tight verification development cycle. For example,
98.3% of the definitions in VeriBetrKV verify in less than 10s,
enabling development of larger code bases with less effort.

Many verification frameworks reason only about code oper-
ating on immutable data structures [11, 49], leaving optimized
code generation to a compiler such as Haskell’s. Most real
systems code relies on explicit in-place updates for good per-
formance to avoid data copies. Some verification frameworks
enable reasoning about heap-manipulating code using vari-
ous methodologies from the PL literature, from separation
logic [12, 52] to dynamic frames [29, 30, 32]. These tech-
niques rely on both programmer annotations and relatively
heavy-weight automation (e.g., SMT solvers [16]) to deter-
mine whether a modification to one portion of the heap may
have affected other objects on the heap. Despite our time-out-
prevention discipline, we encountered challenges with such
automation: while it works well in small instances, as the sys-
tem grows more complex, the automation slows significantly,
reducing developer productivity (in line with prior reports [29,
§6.2]).

Drawing on ideas from commercial (Rust [33]) and re-
search [2, 51, 59] languages, we integrate a lightweight linear
type system that gives dramatic automation improvements
with dynamic frames when additional flexibility is needed. We
rewrote some core components of VeriBetrKV from dynamic
frames into linearity, reducing our proof burden by 31–37%
without impacting performance. We also leverage linear types
to emit optimized C++ code.

Ultimately, our evaluation (§7) shows that VeriBetrKV is
able to deliver much of the performance gains promised by
sophisticated key-value store data structures. On insertions us-
ing a hard disk, it outperforms BerkeleyDB by 24×. However,
there is still work to be done. Insertions in VeriBetrKV are
about 8× slower than RocksDB, a highly-tuned commercial
key-value store.

As with any research prototype, VeriBetrKV comes with
limitations. One limitation of VeriBetrKV is that it is presently
single-threaded; it can exploit I/O pipelining but not CPU
concurrency. Second, the guarantees of verification are limited
by the Trusted Computing Base (TCB): the top-level spec
of a crash-robust key-value store, the spec of VeriBetrKV’s
interface to the OS and runtime, and the verifier and compiler
(Dafny [41] and Z3 [16]). Finally, we focus on safety and
functional correctness: we guarantee that the system does not
return incorrect results, but liveness (i.e., the guarantee that an

operation will complete in finite time) is out of scope.
In summary, this paper makes the following contributions:

1. A method of specifying crash safety in a clean and exten-
sible way that generalizes a verification methodology for
distributed systems. As a demonstration of its extensibil-
ity, we enhance the specification to include robustness to
disk corruption.

2. A discipline for managing automation that supports scal-
able system development.

3. The integration of a lightweight linear type system within
a general-purpose verification language, and a large-scale
concrete case study quantifying the impact of the type
system as compared to previous approaches.

4. A prototype key-value store demonstrating that our veri-
fication methodolgy can scale to handle the complexities
of modern key-value-store data structures.

2 Assumptions and Background
We summarize the assumptions underpinning our verification
results (§2.1), the verification techniques we employ (§2.2-
2.3), and the prior work from which we take inspiration (§2.4).

2.1 Assumptions

Every verified system makes a guarantee that is predicated on
a set of assumptions which can be divided into three categories.
First, the user must trust the top-level application-facing speci-
fication of the contract provided by the system. We provide a
succinct (283 lines) specification for VeriBetrKV in terms of a
dictionary that, when it crashes, reverts to its state at the most
recent client sync (§3.1.2).

Second, the system must specify an interface to the envi-
ronment (i.e., the rest of the world) the codifies assumptions
about how that environment behaves. VeriBetrKV’s interface
is an asynchronous I/O bus that reorders but does not dupli-
cate or, except during a crash, drop messages. VeriBetrKV’s
environment models a block-level disk and the possibility of
arbitrary crashes and torn writes (§3.1)

Finally, we assume the correctness of our verification tools,
including the build system that runs our verifier, Dafny [41],
on each file. We modify Dafny to emit C++ code (§5.2), so
we also rely on the correctness of the C++ toolchain used to
produce an executable. These trusted tools are comparable
to those in other systems verification efforts; e.g., systems
verified in Coq [15] trust Coq, Coq’s extraction to, say, OCaml,
and the OCaml compiler and runtime. Prior research indicates
that each element in such a toolchain can itself be verified [6,
35, 42, 44, 56].

Despite all of these assumptions, several studies indicate
that verification is a qualitatively better way of developing
software [22, 24, 63], compared with current state-of-the-art
code development techniques. These studies found numerous
defects in traditional software, but none in verified software,
only in the (unverified) trusted components.

100 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2.2 TLA+-Style State-Machine Refinement

State machine refinement is an important tool in verifying
asynchronous systems [1, 25, 38]. A high-level, abstract state
machine models the desired behavior of a system (say, a key-
value dictionary) capturing essential features (inserts update
the dictionary; queries probe it) and abstracting away irrelevant
details (e.g., efficient indexing and data representation). A
concrete state machine adds more details, showing one way
to instantiate the abstract machine (e.g., using a hash table
to implement the dictionary). A safety proof then shows that
the concrete state machine refines the abstract state machine,
meaning that every execution of the concrete state machine
can be mapped to a possible execution of the abstract one.
Hence, reviewing the abstract state machine tells the consumer
what to expect from the concrete state machine’s behavior.

A strength of this approach is that the high-level machine
can abstract over asynchrony. If the concrete machine has
many concurrently-moving parts, but one can show a refine-
ment (because most transitions in the concrete model do not
change its abstract interpretation), then we know the concur-
rency is irrelevant to the abstract behavior.

2.3 Floyd-Hoare Verification

Floyd-Hoare reasoning [23, 31] is a popular technique for
reasoning about the correctness of single-threaded imperative
programs. The developer annotates the program’s functions
with pre-/post-conditions about the program’s state when en-
tering/leaving the function, and a verifier checks that these
claims hold for all possible inputs and outputs.

Verification tools based on Floyd-Hoare reasoning typically
do not consider asynchronous interactions with an environ-
ment, which makes it difficult to reason directly about, e.g.,
program crashes that might occur at arbitrary points during ex-
ecution. Hence, prior work in storage-system verification intro-
duced a novel version of Floyd-Hoare reasoning, Crash-Hoare
logic, to cope with this particular flavor of asynchrony [12].

2.4 Verifying Distributed Systems

In their IronFleet work [29], Hawblitzel et al. show how to
compose Hoare logic and TLA+-style state-machine refine-
ment to reason about the safety and liveness of distributed
systems. They use Hoare logic to reason locally about a single
program’s behavior, showing that it conforms to an abstract
state machine. They then model the distributed system as
another state machine whose state consists of N replicas of the
program state machine, along with a network represented as
a set of in-flight messages. The system transitions by nonde-
terministically choosing to allow either one of the N program
state machines to advance a step, or the network’s state to
advance (e.g., by delivering a message). The model captures
nodes that can fail-stop and a network that can duplicate, drop,
and reorder messages. The top-level verification theorem
proves that if the program (e.g., a sharded key-value store)
runs in a distributed system as modeled, then its behavior

program
state mach.

program
state mach.
program

state mach.

io ifc

program
state mach.

network

DistributedIOSystem

application
spec

StorageIOSystem

application
spec

disk

io ifc

impl.
code

impl.
code

env. environment

Figure 1: System and environment state machines express how
a program interacts with the world to implement an application
in IronFleet (left) and VeriBetrKV (right). Shaded shapes are
trusted; unshaded shapes are untrusted code and proof.

matches a concise app spec – a centralized map.

3 Verifying Storage Systems
To verify storage systems, we observe that embedded within
prior work on verifying distributed systems (§2.4) is a general-
purpose framework for verifying code that interacts with an
asynchronous environment, such as a storage system. This is
exciting because it suggests we can use a common method-
ology to solve a broader class of systems verification prob-
lems, and it obviates the need to develop a specialized logic
or proof framework for each environment. In this paper, we
showcase an instantiation of this general methodology for an
asynchronous environment with a single disk and a single
processing node. However, we conjecture that the approach
generalizes to a variety of systems including multi-node, multi-
disk storage systems; indeed, our predecessor, IronFleet [29],
has already shown how to model multiple nodes connected by
an asyncronous network. Further systems applications might
include heterogeneous hardware or device drivers.

In this general framework (Figure 1), the developer uses
Hoare logic to prove that their optimized imperative program
code, when run synchronously and without crashing, complies
with an abstract program state machine (e.g., in prior work,
this was the code running on each node in the distributed
system). The program code uses a trusted API (e.g., for the
network) to interact with the outside world, and an impor-
tant aspect of the refinement proof is showing that the code’s
interactions with this API match those specified by the pro-
gram state machine. A second state machine, the environment,
encodes assumptions about the rest of the world – the parts
the program does not control (e.g., the network). A final
state machine, the IOSystem, composes these two state ma-
chines (the program and the environment) and dictates how
they interact (e.g., prior work composes N programs running
asynchronously, communicating only via the environment’s
network). The developers prove a top-level theorem showing

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 101

that the IOSystem state machine refines a simple, high-level
application spec (e.g., the distributed key-value store behaves
like a centralized map). This theorem guarantees correct exe-
cution in practice if the environment behaves as modeled, if
the hosts run an executable matching the program, and if the
combined elements interact as assumed by the system.

In this work, we instantiate this general framework to rea-
son about storage systems by modeling an environment that
contains a disk and in which crashes may occur.

3.1 An Environment Model with Crashes

Our model of a storage system is a special case of the IOSys-
tem as described above. It contains two parts: (i) the program,
which models the executable VeriBetrKV, and (ii) the environ-
ment: a model of the disk with an I/O bus. Together, these two
components form a StorageIOSystem (Figure 1).

The state machine representing this StorageIOSystem can
transition in three ways. First, the program state machine can
transition forward a step, possibly interacting with the I/O bus.
Second, the environment can transition, e.g., by having the
disk process a read- or write-command from the I/O bus.

Third and finally (and unlike IronFleet DistributedIOSys-
tems), the StorageIOSystem as a whole can perform a crash,
which models, e.g., a power failure or a kernel panic. Crash-
ing results in a disk state that remembers every write it has
acknowledged, but the data at the address of any unacknowl-
edged write may reflect the old value, the newly written value,
or a corrupt value (§3.1.1). For the program, a crash simply
resets its state machine to its initial (boot-up) condition.

Our top-level proof shows that the StorageIOSystem is a
refinement of the application spec (§3.1.2), demonstrating
that VeriBetrKV’s top-level guarantees are maintained despite
an arbitrary number of crashes occurring at nondeterministic
times (outside the program’s control).

3.1.1 Corruption

Our disk model allows the disk to corrupt its data at any
time (i.e., not just during a system crash). There is only one
constraint: corruption cannot produce a block with a valid
checksum.1 When VeriBetrKV detects an invalid checksum,
it aborts the current query. This ensures correctness, since
VeriBetrKV will not return an incorrect query result. This
assumption about the disk’s behavior is what checksummed
storage systems already (informally) assume. We formalize
this assumption and make use of it in our correctness proof.

Using checksums means that VeriBetrKV protects against
“torn writes”, where a block of the disk is changed to have
neither its old value nor the value written, as well as random
media corruptions. Of course, some disks do violate our check-
sum assumption. An adversarially-controlled disk could easily
return corrupted data yet with valid checksums. Likewise,
a disk which returns stale blocks would also not satisfy our

1Therefore, our checksum routine, CRC32C [8], exists within our TCB,
so that it can be referenced by our disk model.

checksum assumption. In either case, it would be impossi-
ble for any implementation to meet our application spec as
written.

However, our methodology provides flexibility in specify-
ing the precise assumptions made about the disk. In principle,
an engineer could provide a weaker disk model, and in ad-
dition, either provide a cleverer implementation or a weaker
application spec to match.

3.1.2 Application Specification

To achieve good performance, a practical storage system can-
not afford synchronous writes. Instead, the application calls
sync when it requires durability; data not synced is permitted
to be lost during a crash. The nondeterministic relationship
between nondeterministic crash and the application sync
API must appear in the theorem; each is a transition in the
application spec state machine.

Intuitively, the application spec of VeriBetrKV says that in
the absence of crashes or block corruption, VeriBetrKV acts
exactly like a dictionary, always returning the most-recently-
written value. In the presence of a crash, VeriBetrKV is al-
lowed to forget data, but no farther back than the most recent
sync. Furthermore, “forgetting” is equivalent to the entire
dictionary reverting to a consistent, previous snapshot; fu-
ture crash-free operations proceed forward from this snapshot.
Contrast this promise with a filesystem with crash-corrupted
metadata: the data may appear complete and valid, but future
operations may result in behaviors that violate the filesystem’s
contract.

Our storage system specification is easy to state, clean, and
easy to utilize from a client application. In contrast, contem-
porary file systems, for performance reasons, decouple sync
operations on metadata from sync on file data. Such guar-
antees are very difficult to utilize from a client, and in fact
difficult to even state precisely; much of DFSCQ is dedicated
to stating such a guarantee precisely [11].

3.2 Refinement Verification Techniques

Our methodology requires a proof of a TLA-style state-
machine refinement (§2.2) between a StorageIOSystem and
our application spec. Due to the complexity of this proof, we
break the refinement into a sequence of smaller refinements
(§6.2.1). We use the following techniques to organize the
proof, separating concerns between the caching subsystem,
the journal subsystem, and Bεtree manipulations.
State-machine composition. In many cases, we define a tem-
plated state machine S〈T 〉 in terms of an abstract subcompo-
nent T . A refinement T ′ of the subcomponent T can be lifted
to a refinement S〈T ′〉 of the larger state machine S〈T 〉. This
allows us to build up our refinement in terms of refinement
proofs for the subcomponents. For example, a Bεtree tree
refines a simple dictionary spec; therefore, a crash-safe Bεtree
refines a crash-safe dictionary spec.
IOSystem Refinement. Our proof re-uses the concept of an

102 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

IOSystem at several layers of abstraction. For example, at the
lowest layer, we model the disk as storing sequences of bytes,
but at higher layers, we model the disk in a “type-safe” way,
as a collection of nodes. But at all layers, the overall system
follows the rules of an IOSystem state machine.
Transposition. High in the abstraction stack, the disk is used
in different ways by different modules. For example, the jour-
nal models the disk as an array of journal entries, whereas
the Bεtree models the disk as storing nodes. At a low level,
all the modules together interact with a single, byte-oriented
disk. Transposition arguments enable us to split up one Stor-
ageIOSystem into multiple, so each can be reasoned about
independently.

4 Disciplined Automation
A productive verification workflow uses the developer’s time
efficiently. This has two aspects: how much tedious typing the
developer has to do, and how quickly the verifier replies to the
developer’s proof attempts.

Functional verification of arbitrary software is undecidable,
and hence requires either a limit to expressivity [49, 54, 64]
or some degree of manual guidance. In interactive theorem
provers [15, 47], developers manually use tactics to tell the
prover which steps to take next.

A large verified system has a large number of definitions,
such as invariants and state-machine transition relations. An
automated program verifier is a great fit for systems verifi-
cation because so much of the verification work is tedium
amenable to automation. Exposing all the definitions to the
theorem prover, however, gives the theorem prover a large
search space, which can take a long time to explore.

The development cycle is a balance between exploiting
automation and controlling it. Faced with a verification failure,
the developer must first supply any guidance not provided by
automation. That process terminates when the proof passes
(because the failure was a weakness of the automation) or the
developer discovers an actual flaw. If automation is too weak,
the developer burns time tediously typing in the missing proof
guidance. If the automation heuristics are too aggressive, the
developer burns time waiting for replies from the verifier.

As the system grows, the risk of timeouts grows. We have
found it essential to resolve timeouts as soon as they crop up,
before there are so many they are difficult to sort out. If a
developer observes a > 20s response time, they are expected
to stop work and instead resolve the timeout,

The key technique to remedy timeouts is to control how
much information the prover has when trying to verify a
method or lemma, typically by making fewer definitions visi-
ble to the theorem prover. Developers can mark Dafny defini-
tions opaque, for example, so that the definitions are hidden
by default, except where the developer chooses to explicitly
reveal the definitions. We use a command-line SMT pro-
filer to pinpoint problematic definitions, i.e., those the solver
instantiates too many times in its attempts to construct a proof.

Table 7.1 shows that we have followed this discipline with
some consistency, and timeouts in VeriBetrKV remain rare.

5 Language Improvements

Verifying low-level systems software means verifying stateful
code with in-place updates. Unfortunately, reasoning about
updates is painful in the presence of aliasing. Traditional veri-
fication tools like Dafny and VCC [13] rely on an SMT solver
to reason about aliasing and ownership. For example, Dafny
uses dynamic frames [32], where programmers annotate meth-
ods with modifies clauses to specify which objects each
method may modify. With dynamic frames, programmers can
write arbitrarily complex expressions to compute the set of
modified objects. Programmers can also write arbitrarily com-
plex preconditions and postconditions to specify non-aliasing,
usually by specifying the disjointness of various sets of objects
used in various modifies clauses. The SMT solver must then
reason about these arbitrarily complex expressions, which pro-
vides programmers with great flexibility, but painfully slows
verification [29, §6.2]. Furthermore, this reasoning is mixed
with reasoning about functional correctness properties, often
making it confusing for the developer to diagnose errors: does
a verification failure indicate something deep about the invari-
ants and states, or just a missing non-aliasing requirement?

Recent work on low-level type-safe languages like Rust [33]
point to an alternate strategy, where the language’s type
checker quickly takes care of memory safety and ensures
non-aliasing. Full tools for verifying Rust-like programs [3]
are still under development and are not yet as mature as tools
like Dafny, Coq, and VCC. Therefore, we use Dafny as a start-
ing point and extend it in a more Rust-like direction in two
ways. First, rather than using Dafny’s existing high-level code-
generation backends, we wrote a C++ backend for Dafny that
generates efficient C++ code that does not require a garbage
collector (§5.2). Second, we extended Dafny’s static type
checker to support linear variables (§5.1), which allow us to
reason purely functionally about data that can be mutated and
manually deallocated. This extended type checking needs
no SMT solving and therefore places no burden on the SMT
solver. Section 6.1 describes the use of linearity in our imple-
mentation. Section 7 quantifies the dramatic reduction in proof
code it produces and confirms that our use of linear reasoning
has a negligible impact on run-time performance.

Our approach to linearity combines ideas from linear type
systems [59] like Cogent [2], linear variables in CIVL [36, 51],
and Rust’s ownership borrowing. Crucially, our extended type
system integrates with Dafny’s existing dynamic frames, so
that we can use linearity to speed verification where possible
and fall back to dynamic frames when we need more flexibility.
This allows us to verify the safety of highly-aliased code that
would require run-time checks or unsafe code in Rust, or
would fall outside Cogent’s linearity restrictions.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 103

function method seq get<A>(shared s:seq<A>, i:uint64) : (a:A)
function method seq set<A>(linear s1:seq<A>, i:uint64, a:A)

: (linear s2:seq<A>)
function method seq free<A>(linear s:seq<A>)

method M(a:array<uint64>, o:seq<uint64>,
linear l:seq<uint64>, shared s:seq<uint64>) ... {

linear var l2:seq<uint64> := l; // ok: consumes l
linear var l3:seq<uint64> := l; // error: l already consumed
var n:uint64 := seq get(l2, 10); // ok: borrows l2
l2 := seq set(l2, 10, 20); // ok: consumes l2, then restores l2
seq free(l2); // ok: consumes l2
seq free(l2); // error: l2 already consumed

}

class BoxedLinear<A> {
function Has():bool
method Give(linear a:A)

modifies this; requires !Has(); ensures Has(); ...
method Take() returns(linear a:A)

modifies this; requires Has(); ensures !Has(); ...
function method{:caller must be pure} Borrow() : (shared a:A)

requires Has(); ...
}

Figure 2: Using linearity in extended Dafny

5.1 Linear Variables

Since aliasing and mutation are expensive to reason about, we
use linearity to express non-aliasing or non-mutation. Specif-
ically, we extend Dafny with a keyword linear to express
non-aliased, mutable values, and a keyword shared to ex-
press aliased, immutable values.

Figure 2 shows example code written in our extended ver-
sion of Dafny. Dafny can express both purely functional
code, with no heap modification, and imperative code that
allocates and modifies heap data. A Dafny method can
perform both functional and imperative operations, while a
function method can perform only purely functional op-
erations. The method M demonstrates various kinds of Dafny
variables. The variables a and o use existing Dafny fea-
tures: a is an ordinary pointer to a mutable array in the
heap, and o is an ordinary immutable sequence. a and o
rely on garbage collection (in C#) or reference counting (in
C++) for memory management. The variables l and s use
our extensions to Dafny: l is a linear (non-aliased) mutable
sequence, and s is a shared (potentially aliased) immutable
sequence temporarily borrowed from a linear sequence. l
and s do not rely on garbage collection or reference counting.
(The declarations linear l:seq<uint64> and shared
s:seq<uint64> are similar in spirit to Rust’s declarations
l:&mut[u64] and s:&[u64], although in Rust’s seman-
tics, l and s are references to sequences, while in Dafny’s
semantics, l and s are sequence values, not references.)

The static type checker flags any attempt to duplicate or
discard a linear variable like l as a type error. In Figure 2,
for example, the attempts to assign l to both l2 and l3 is
a type error, as is the attempt to free l2 twice. The lack of
duplication allows efficient in-place updates at run-time, as
shown in the call to seq set, which sets one element of a
sequence. Despite its efficient implementation, though, the
verifier can reason about the call to seq set in a purely func-
tional way [2, 59], without worrying about aliasing and the
state of the heap. Like Rust and Cogent, our extension to
Dafny allows temporary immutable borrowing from a linear
variable, as shown in the call to seq get. Borrowed val-
ues are tagged as shared, and shared variables cannot be
returned out of the scope of borrowing.

We also extended Dafny to support linear fields in data struc-
tures and linear elements in sequences. In contrast to purely
linear systems [2], our system can verify the interoperation
between the linear data structures and ordinary heap data (like
array). First, it supports linear-to-ordinary references: linear
data structures can hold ordinary fields and sequence elements,
such as Dafny heap pointers and arrays.

Second, to support ordinary-to-linear references, our ex-
tension provides a novel trusted class BoxedLinear<A>,
shown in Figure 2, which stores linear values in ordinary ob-
jects. Each BoxedLinear object is an ordinary heap object,
and references to the object can be freely duplicated, allowing
complex aliasing. However, to take the linear value out of
a BoxedLinear object, the program must prove that the
object currently has the linear value. Taking the linear value
sets Has to false, so that a program can’t take the same linear
value more than once. This prevents the linear value from be-
ing duplicated. In addition, pure functional code (function
methods) can Borrow directly from BoxedLinear with-
out modifying Has. Restricting the scope of the borrowed
value to functional code ensures that no imperative method
can make Has false during the borrow. This approach shows
the power of combining SMT solving with type system linear-
ity: linear variables bring economy and clarity to the common
cases, while SMT reasoning allows greater flexibility (e.g.
using lemmas to prove Has() == true) when needed.

5.2 Compiling to C++

Dafny compiles its code to C#, Java, JavaScript, and Go. When
building a storage system, however, we want more control over
memory layout and management than what these high-level,
garbage-collected languages offer.

Hence, we have added a new C++ backend to Dafny. We
compile Dafny’s immutable datatypes to C++ structs, and
Dafny’s classes and arrays to reference-counted pointers to
their C++ equivalents. We implement Dafny’s immutable
sequences using a C++ struct that contains a shared pointer
to the underlying values, along with an offset and length into
those values. This allows us to optimize operations that extract
portions of a sequence; because sequences are immutable, it is

104 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

safe to implement such operations by returning a new struct
pointing at the same underlying values but with a different
offset and length, rather than copying the values.

When compiling linear variables, we perform updates in-
place, rather than copying. Since linear variables cannot be
silently discarded, we can rely on explicit deallocation (e.g.,
seq free) and do not need to reference count them.

Finally, the backend deliberately does not compile Dafny’s
mathematical integers; it expects the programmer to use
Dafny’s refinement types to define machine integers that can
be (provably) safely compiled to standard C++ integer types.

6 VeriBetrKV: A High-Performance, Verified
Key-Value Store

We present a high-level overview of VeriBetrKV’s implemen-
tation (§6.1) and the structure of its safety proof (§6.2).

6.1 VeriBetrKV’s Implementation

VeriBetrKV implements a copy-on-write Bεtree with a logical
journal for efficient syncs.

6.1.1 BεTree Background

A Bεtree [7] is a write-optimized structure that combines ideas
from B-trees and LSM-trees to dramatically improve insertion
performance versus a B-tree.

For our purposes, Bεtrees have two key properties:
• They support random insertions an order of magnitude

faster than B-trees. They achieve this speedup by accu-
mulating newly inserted key-value pairs high in tree and
“flushing” items from parent to child in large batches.

• They typically use much larger nodes than a B-tree.
Bεtree nodes are often in the range of 1-4MiB, whereas
B-tree nodes are in the range of 4-64KiB. This is because
Bεtrees perform node updates in batch, and hence can
afford to update large nodes without incurring high write
amplification. As a consequence, queries in an “off-the-
shelf” Bεtree are slower than in a B-tree, since each cache
miss must read a larger node. Production Bεtrees contain
optimizations to overcome this problem.

See Bender, et al. [4, 5] for a full exposition of Bεtrees and
an analytical framework for analyzing their performance.

In VeriBetrKV, we use 2MiB nodes on hard disk, 128KiB
nodes on flash, and a fanout of 8.

6.1.2 Node-Buffer Data Structures

Each node in a Bεtree contains a buffer of key-value pairs.
VeriBetrKV has two representations for in-memory nodes: a
serialized format and an in-memory search-tree format. The
former avoids marshaling and demarshaling costs for nodes
low in the tree, which are updated through batch flushes. We
use the search-tree representation only for the root node, which
must support single insertions of new key-value pairs from the
user.

The in-memory search tree is one of the VeriBetrKV’s most
performance-critical components. Thus, we originally wrote

it using Dafny’s dynamic-frames heap reasoning, making it
one of the most difficult pieces of code in our implementation.

We then rewrote it using our linear type system (§5). From
the verifier’s perspective, this eliminated all heap-mutating
code. Furthermore, the type system gave immediate feedback
on linear typing errors, enabling rapid development. Section 7
quantifies the reduction in proof code and shows that the shift
to linear reasoning had no noticeable impact on performance.

The in-memory search tree also demonstrates the utility of
the integration between our linear type system and Dafny’s
builtin Floyd-Hoare reasoning. Each node in our in-memory
search tree maintains a linear sequence of linear (pointers to)
children. When we split a node, we need to copy half of those
child pointers to the new left-hand node, and half of them to
the new right-hand node. In a standard linear type system,
such as in Rust, we cannot “take” a subset of the values out of
a linear array, and we would have to resort to unsafe code or
incur the run-time overhead of using an Optional type for
each array element.

With our linear type system, each linear sequence s
has an associated boolean ghost2 sequence, lseq has(s),
that serves the same purpose as the Has predicate of the
BoxedLinear class in Figure 2. When we remove the
child pointers for the new left-hand node the ghost se-
quence becomes false for each index i that we take.
However, this does not prevent taking the remaining chil-
dren for the right-hand node, since Dafny infers that
lseq has(children)[i] is still true for those indices.

6.1.3 Caching, Copy-on-Write, and Indirection Tables

VeriBetrKV maintains a cache (BlockCache) of recently ac-
cessed nodes, using an LRU eviction policy. The cache is free
to write back a node at any time, which is safe because Veri-
BetrKV uses copy-on-write. The BlockCache is oblivious to
the data structure it caches. It resembles a kernel buffer-cache,
except (a) its allocation unit is a type parameter so we can
allocate tree nodes, (b) it tracks inter-block references and
garbage collects blocks.

VeriBetrKV implements crash safety by maintaining three
copy-on-write Bεtrees: a persistent tree, a frozen tree, and an
ephemeral tree. New inserts go into the ephemeral tree, the
frozen tree is in the process of being made durable, and the
persistent tree is the previous tree that was made durable.

Each tree is defined by an indirection table, which maps
logical node IDs to physical disk addresses. Parents refer
to children by logical node ID, and the cache is indexed by
logical ID. Since nodes are large, the indirection table is small.
For example, the indirection table for a 1TiB disk is only
24MiB.

To sync the tree to disk, we write out all dirty nodes, write
the indirection table, and then write a superblock pointing
to the indirection table. VeriBetrKV keeps two superblocks,

2i.e., a data structure used for proof purposes only, not compiled code

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 105

alternating between them, and using a counter to detect which
one is newer. We call this process a checkpoint.

VeriBetrKV ensures that checkpoints capture a point-in-
time-snapshot as follows. When we begin a checkpoint, all
dirty nodes in the live indirection table are marked as “write-
back-before-editing”. Since these nodes are now also refer-
enced by the indirection table of the in-progress checkpoint,
we must write them to disk before modifying them in cache.
Note that we need not wait for the write to complete: if the
system crashes before the write completes, then the system
will boot from the previous checkpoint.

The indirection table in VeriBetrKV is implemented as a
linear-probing hash table. As with the in-memory search tree,
we initially implemented this using Dafny’s dynamic frames.
In order to isolate the complexities of heap reasoning, we
essentially wrote the hash table twice. The first version used
immutable data structures, and served as a precise, low-level
description of the hash table’s behavior. We then wrote it a sec-
ond time using mutable arrays, proving that each step exactly
followed the algorithm in the functional model. This approach
separated the proof of functional correctness from the proof
of correct heap manipulation, but it meant implementing the
hash table twice.

We then reimplemented this hash table using our linear
Dafny extensions. In this version, the low-level functional
model of the algorithm, suitably annotated with linear and
shared keywords, is the implementation, cutting the amount
of code substantially (§7).

6.1.4 Optimizing Syncs with a Journal

When applications perform frequent syncs, writing out every
dirty node for each sync becomes expensive. For example, if
an app performs a sync after every insert, then each sync must
write out the root node (2MiB) to persist a single insertion.

We solve this problem with a journal of logical operations.
Each insertion is recorded in an in-memory journal as well as
inserted into the Bεtree. When the application requests a sync,
we simply write the in-memory journal to disk.

Journal space is reclaimed as part of a checkpoint.

6.2 VeriBetrKV’s Proof

VeriBetrKV weaves several modularity techniques together to
manage the complexity of the code and its correctness argu-
ment. We use modular Hoare logic to reason about implemen-
tation code and reusable templated state machine models and
IOSystem composition (§3.2) to reason about how that code
behaves in an asynchronous environment. IOSystems gener-
alize well to this new context of storage systems, and reuse
well as we develop a correctness argument up through layers
of abstraction. Overall, this blend of techniques is sufficient
to modularize the complexity of a modern high-performance
storage architecture.

6.2.1 VeriBetrKV’s Refinement Proof

Below, we describe how simple state-machine refinement suf-
fices to reason about the correctness of our Bεtree assuming it
existed in memory on a crash-free machine (§6.2.2).

To manage complexity, we modularize our proof by sep-
arating the reasoning about the journal subsystem and the
crash-safe Bεtree storage subsystem. We further modular-
ize the Bεtree proof by separating caching logic from Bεtree
manipulation logic.

6.2.2 Simple State-Machine Refinement

State-machine refinement enables designers to organize high-
level correctness arguments in isolation from its low-level
details, and then ignore abstract concerns when writing im-
plementation code [40]. For example, suppose we want to
prove that a single, unfailing process correctly implements an
in-memory Bεtree (1© in Figure 3).

• The application spec is a Map that updates and queries a
key-value relation.

• An abstract Bεtree inserts messages into nodes arranged
in a tree, where each node is an infinite map. This model
has enough detail to define query semantics over that
tree, but the (unimplementable) nodes elide detail that is
addressed below.

• The Bεtree defines the node data structure that clumps
the infinite key range into finite buckets at pivot keys.

• ImplBεtree is compilable real imperative code, organized
with Hoare logic, with details like mutable data structures
and 64-bit integer overflow (gray in the diagram because
VeriBetrKV does not have a purely in-memory Bεtree).

The refinement arrow between the Bεtree and the abstract
Bεtree concerns only the relationship between pivot nodes
and infinite-map nodes; it ignores higher-level concerns (the
tree shape) and lower-level concerns (efficient data structures).
This application of refinement gives the developer the freedom
to modularize the correctness argument.

6.2.3 VeriBetrKV’s IOSystem Refinement

Of course, VeriBetrKV’s Bεtree does not necessarily run with-
out crashing, and it interacts with an asynchronous byte-level
disk, so that the full data structure is stored on disk but cached
in memory. Hence, to prove its safety, we repeatedly apply
the techniques from §3.2 to prove that the storage IOSys-
tem state machine (§3), when instantiated with VeriBetrKV’s
program state machine, refines the application-facing specifi-
cation (§3.1.2).

A good specification of a crash-safe system needs to be able
to describe how data is recovered upon crash. Our specification
has an ephemeral state and a persistent state. All user opera-
tions (e.g., queries and inserts) are applied to the ephemeral
state; if there are no crashes, the user will observe the behavior
of a simple dictionary. On a crash, the ephemeral state reverts
to the persistent state; the persistent state therefore represents
the state made persistent to disk. Background operations can

106 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

AbstractBεtree

Bεtree

CrashSafe
〈Bεtree〉

CrashSafe〈〉

BlockCache〈〉

BlockCache
<Bεtree>

PartitionedDisk

JournalCache Disk<Journal>

BothCache

Disk<Bεtree>

Map JournalViewMap

CompositeViewMap

BlockCache
<Bεtree>

Disk<Bεtree>

BεtreeIOSystem

ConcreteIOSystem

ConcreteCache

JournalCache

Disk<Journal>

JournalIOSystem

BlockCache
<Bεtree>

JournalCache

host machine

actual disk

Disk<byte>

Bεtree
code

impl.
code

imperative module

refines relation

trusted (specification)
component

IOsystem
composition

template
instantiation

model of environment
disk

real hardware running
compiled executable

state machine

CrashSafe
〈Map〉

BεtreeJournalIOSystem

CrashSafe
〈Map〉

same state machines,
transposed positions

1

2

3

4

8

5

67

Figure 3: Structure of VeriBetrKV’s correctness argument.

update the persistent state to a newer state. Two transitions,
sync start and sync end are defined such that, when
sync end runs, the persistent state will have updated to the
ephemeral state from the sync start (or a newer version).
We call this generic specification CrashSafe〈T〉, parameterized
over a state machine T. In our case, the top-level specification
will be CrashSafe〈Map〉.

The CrashSafe〈T〉 template is an abstraction of our
BlockCache〈T〉 template state machine, which interacts with
a disk but is oblivious to the data structure it caches. We prove
generically that if concrete type Tconc refines an abstract type
Tabs, then an IOSystem containing a BlockCache〈Tconc〉 and a
disk refines a CrashSafe〈Tabs〉.

We apply this generic result at the next level down 3©, where
we instantiate the type-oblivious BlockCache〈T〉 template
with the IO-oblivous Bεtree (§6.2.2). Leveraging refinement
1©, this proves that BεtreeIOSystem refines CrashSafe〈Bεtree〉

and hence CrashSafe〈Map〉.
In a sibling library, we prove that the JournalIOSystem

refines JournalViewMap, an abstract summary of journal be-
havior, including components for journal entries persisted to
disk, journal entries being written, and journal entries in mem-
ory. Ordinary state machine composition pulls those together
into the CompositeViewMap, an abstract summary of the
state-machine composition BεtreeJournalIOSystem. The Com-
positeViewMap is shown to implement a CrashSafe〈Map〉:
an abstraction function applies updates in JournalViewMap’s
journals to the map states in CrashSafe〈Map〉 to obtain the
application-spec CrashSafe〈Map〉.

Thus, we have refined from the application spec to a model
3© of the VeriBetrKV’s two main components, each modeled
as separate systems, each of which uses a high-level “disk”
that stores its client’s internal datatype representation.

One layer down, the ConcreteIOSystem 4© introduces a real
byte-level disk-IO interface. The program component of this
IOSystem is the ConcreteCache, which includes marshaling
and demarshaling functions on top of the JournalCache and
BlockCache〈Bεtree〉. The ConcreteCache refines 5© the Both-
Cache. The disk component of the ConcreteIOSystem is our
low-level disk model, the Disk〈byte〉, which refines 6© Parti-
tionedDisk via the same marshaling functions. This refinement
relies on an invariant that Disk〈Journal〉 and Disk〈Bεtree〉 ac-
cess mutually-disjoint regions of the disk. With these two
refinements in place, we transpose the four subcomponents
(dashed green arrows) and obtain a refinement 7© from Con-
creteIOSystem to BεtreeJournalIOSystem. This rearrange-
ment is crucial to allow us to reason about BetreeIOSystem
and JournalIOSystem separately.

ConcreteCache is the lowest-level model of the program,
including all of the components (Bεtree, journal, indirection
table, byte-level IO interface). It remains to show that our
imperative heap-mutating code 8© refines ConcreteCache. To
do so, we show that each handler invocation in the code cor-
responds to a Next transition in the ConcreteCache state
machine. Because ConcreteCache is a low-level model, this
task decomposes nicely along Hoare-logic call-graph bound-
aries: calls to update the journal advance the JournalCache
sub-component, leaving the Bεtree unchanged, and vice versa.

6.2.4 VeriBetrKV’s Floyd-Hoare Proof

The top-level API methods of VeriBetrKV’s implementation
(8©) use Floyd-Hoare logic to show that their operations corre-
spond to transitions of the ConcreteCache state machine. Of
course, the ConcreteCache is only one component of the Con-
creteIOSystem (4©), and likewise, the implementation code
interacts with the disk only via a trusted interface.

At the implementation level, we do not reason about the
disk itself—we reason only about interactions via the trusted
interface. Transitions of the ConcreteCache state machine are
labeled with disk ops. Each disk op is either a no-op (i.e.,
no disk interaction), an I/O request, or an I/O response. The
disk-op labels are “visible” to the ConcreteIOSystem: the
ConcreteIOSystem state machine is defined in terms of the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 107

Major component spec impl proof
Map, CrashSafe〈Map〉 283 82 818
AbstractBεtree 0 70 2024
Bεtree 0 137 7079
CompositeViewMap 0 26 823
BεtreeIOSystem 0 246 6510
ConcreteIOSystem 270 68 2887
implementation code 180 5380 21697
libraries 477 364 2847
total 1210 6373 44685

Table 1: Line counts [60] by major components in Figure 3.

hash table search tree
Aliasing reasoning impl proof impl proof
Dynamic frames 289 1678 289 2220
Linear type system 289 1063 373 1531

Table 2: Line counts [60] of two subcomponents, compar-
ing dynamic-frame implementations with our linear type sys-
tem.3 Linear typing reduces the proof burden by 31–37%

ConcreteCache’s interaction with the disk via disk ops.
Thus, the Floyd-Hoare logic in our implementation does

not need to reason about the disk proper. Rather, it only needs
to show that each interaction with the trusted disk interface
corresponds to a disk op which is valid according to the Con-
creteCache state machine.

Overall, our proof shows that an executable built from our
implementation’s code, if run on a real host with a real disk that
meets our assumptions, will behave as the ConcreteSystem
does, and hence as a CrashSafe〈Map〉. We have connected not
just code, but a system with a disk and the possibility of the
code crashing, up to the app spec.

7 Evaluation
Our evaluation addresses two main questions:

1. Do our automation-control techniques (§4) and language
improvements (§5) improve the developer experience?

2. Can our verification methodology scale to the complexity
of a modern key-value-store data structure, and can we
deliver the performance gains of write optimization?

7.1 Developer Experience

Measuring Tedium. We estimate the amount of tedium (or
conversely, the efficacy of automation) by the ratio of the lines
of proof (e.g., lemmas, pre-/post-conditions, loop invariants)
to the lines of executable implementation code. This is not a
precise model, since it measures a completely verified artifact,
where the developers may have cleaned up temporary lines of
tedium that were typed in the course of resolving verification
failures. However, the proof text in the “cleaned up” code at
least reflects the tedium needed to bridge what automation
could not manage by itself.

Table 1 gives line counts for VeriBetrKV, organized by

0 20 40 60 80 100 120 140
time to verify definition, method or lemma (s)

0.0

0.9

0.99

0.999

cu
m

ul
at

iv
e

fra
c.

(lo
g

sc
al

e)

99.0% faster than 20s
98.3% faster than 10s

Figure 4: Cumulative distribution of verification times of func-
tion definitions, implementation methods, and proof lemmas.
Most definitions–99.0%–verify in less than 20s, and 98.3%–
verify in less than 10s.

the major components shown in Figure 3. We see that the
proof ratio for the implementation code is 4:1, which grows
to 7:1 when including all system refinement proofs (“total”).
This is comparable to the distributed, in-memory key-value
store verified in previous work [29], which also reports a 7:1
ratio. However, VeriBetrKV’s implementation is 3× larger,
indicating that automated verification techniques can scale to
larger systems without super-linear effort.

The results also show that VeriBetrKV’s implementation is
more than 5× larger than its specification, giving us reason
to hope that the specification is less likely to contain bugs
than an unverified implementation. We have observed no
correctness or data loss bugs at runtime; we have seen liveness
and performance bugs.

Table 2 compares two VeriBetrKV components that we
wrote using both dynamic frames and linear reasoning. The
results show that switching to linear reasoning saves tedium,
reducing proof overhead by 31–37%. Our qualitative expe-
rience was that development of linear code was much more
pleasant than dynamic frames because the linear typechecker
quickly and unambiguously identifies aliasing problems.

One interesting datum for tedium is the effort develop-
ers spend on test infrastructure in conventional development.
RocksDB has a 0.99:1 ratio between test and production code
(measuring its db, java, utilities, third-party,
and tools directories). BerkeleyDB’s ratio is 0.45.
Measuring Proof-Attempt Latency. To assess the success
of our discipline for keeping automation under control (§4),
we measure the time to verify individual proof units (e.g.,
definitions, methods, or lemmas) where developers spend most
of their time waiting for verification results. This estimates
the developer’s perception of the latency of the verification-
development cycle.

Figure 4 demonstrates that VeriBetrKV almost always ex-
hibits interactive verification times, with 98.3% of definitions
verifying in under 10 seconds, and 99.0% in under 20 seconds.
This suggests that our timeout-averse development policy is

3The implementation of the hash table (with dynamic frames and the
linear type system) and search tree (with dynamic frames) coincidentally have
identical line counts, despite being unrelated.

108 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 20 40 60
number of times manually revealed

0

25

50

75

co
un

t o
f

op
aq

ue
 d

ef
in

iti
on

s

0.0

0.5

1.0

cu
m

. f
ra

c.
 o

f
op

aq
ue

 d
ef

in
iti

on
s

Figure 5: VeriBetrKV manually hides 308 definitions (18% of
all system definitions), revealing them 1403 times. This metric
reflects the effort involved in explicitly managing automation.

effective. The figure reveals that we did not apply our policy
with perfect consistency, as 37 proofs do take longer than 20s
to verify. Of those, 54% involve dynamic frames.

It is difficult to capture every place we applied the policy.
As a proxy, we can count places where we explicitly hid a
definition. This both overestimates the cost of the policy
(because sometimes we hid a definition based on intuition,
before observing a timeout) and underestimates it (because
automation can be controlled with other techniques).

These approximations aside, Figure 5 gives an idea of the
burden of controlling automation. We hid 308 definitions, 18%
of all definitions in the system. These hidden definitions are
manually revealed 1403 times. Of the 308, 52 were never
revealed: the salient properties of the definition could be ex-
ported as a postcondition without causing timeouts. 74% of
hidden definitions are revealed no more than five times; their
essential features are captured in lemmas or wrapped into
higher-level definitions.

One of the motivations for introducing linear types into
Dafny (§5) is to remedy slow verification of dynamic frames.
For the fragment of VeriBetrKV we converted to linear reason-
ing, we compared interactive verification times (as in Figure 4)
against the original dynamic frames code. The maximum
method-level interactive verification time dropped 10s to 32s,
and the 99th percentile dropped 1.3s to 4.8s.

Developers are typically less sensitive to the latency of
continuous-integration builds that check that the system as a
whole still verifies. For VeriBetrKV, these take 1.8 hours of
CPU time, but thanks to the inherent parallelism of modular
verification, complete in 11 minutes on 32 cloud machines.

7.2 Performance

Our performance evaluation addresses two questions:
1. Does VeriBetrKV demonstrate the insertion-performance

gains of write-optimized data structures?
2. Does our linear extension produce code with performance

comparable to hand-written code using dynamic frames?
All experiments were run on cloud instances with directly

attached physical storage. The HDD experiments and sub-
component microbenchmarks are run on AWS EC2 d2.xlarge
instances, with 4x hardware hyperthreads on a 2.4 GHz Intel

Xeon E5-2676 v3. The SSD experiments are run on AWS EC2
i2.xlarge instances, with 4x hardware hyperthreads on a 2.5
GHz Intel E5-2670 v2 and a SATA SSD.

7.2.1 YCSB

Figure 6 shows throughput for VeriBetrKV, BerkeleyDB, and
RocksDB on the YCSB benchmarks [14] on hard drive and
SSD, including the load phase for workload A, and a uni-
formly random query workload (labeled as workload “U”).
All systems are limited to a single core.

There are three main take-aways from these measurements.
First, VeriBetrKV demonstrates the performance gains of us-
ing a write-optimized data structure. For the load phase on
hard drive, which consists of a pure random insertion work-
load, VeriBetrKV is over 25× faster than BerkeleyDB. Even
on SSD, where random I/O is much cheaper, VeriBetrKV
modestly outperforms BerkeleyDB on insertions.

In contrast, VeriBetrKV is roughly 8× slower than
RocksDB on hard disk and 4× slower on SSD. Investigation
identified three contributing factors: First, where Rocks relies
on the kernel buffer cache, VeriBetrKV manages its own cache
memory. Its effective cache size is reduced due to malloc frag-
mentation and conservative allocation to avoid violating the
cgroup. Simulating an efficiently-allocated 1.8GiB Bεtree
node cache improves performance to over 13K insertions per
second on HDD. Second, VeriBetrKV fails to overlap CPU
with flush I/O: a twelve-minute run spends four minutes in
CPU and eight minutes waiting for I/O, accounting for roughly
a 2/3× slowdown. Third, VeriBetrKV performs 1.5× more
I/O than Rocks in YCSB-Load; about half of the extra I/O is
due to a suboptimal checkpointing policy.

The second main take-away is that queries in VeriBetrKV
are about 4× slower than on RocksDB. The fragmentation
penalty again explains a 2× factor; with a simulated 1.8GiB
cache, VeriBetrKV and Rocks both perform 300K I/Os in
serving 1M YCSB-C queries. Furthermore, we observed
most Rocks I/Os are 4-8KiB (one or two buffer cache pages),
whereas most VeriBetrKV I/Os are 1.5MiB (an entire Bεtree
node). This I/O size difference combined with the measured
seek and read bandwidth of our hard drives explains the re-
maining gap. We plan to change our marshalling strategy to
enable reading fields without fetching the entire node.

The final take-away is that at a macro-level our linear imple-
mentation has essentially the same performance as the version
with hand-tuned code using dynamic frames reasoning.

Overall, we conclude that VeriBetrKV demonstrates that a
verified system can achieve the performance gains of a write-
optimized storage system, but it needs further optimization to
match highly-tuned commercial implementations.

7.2.2 Linear Data Structures

Figure 7 shows the performance of our linear and dynamic-
frames-based hash-table and search-tree implementations. The
main take-away from both experiments is that, even in mi-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 109

(a) HDD

Load

103

104

105

23
3

5,
64

9
5,

57
9

44
,6

70

(from YCSB A)

O
pe

ra
tio

ns
/S

ec
on

d

A B C D F U
0

200

400

600

800

30
3

20
0

34
7 37

7

73
8

39
7

99

58

10
2

98

34
8

10
3

99

57

10
0

95

35
5

10
317

5

35

40
0

39
2 44

2 52
1

YCSB Workload

O
pe

ra
tio

ns
/S

ec
on

d BerkeleyDB
VeriBetrKV-DF

VeriBetrKV
RocksDB

(b) SSD

Load

104

105

6,
66

4 9,
23

4
8,

98
6

72
,6

45

(from YCSB A)

O
pe

ra
tio

ns
/S

ec
on

d

A B C D F U

5,000

10,000

15,000

20,000

8,
27

2

5,
54

8

9,
24

5

9,
61

6

16
,7

18

10
,0

95

1,
67

4

82
81,

74
9

1,
69

2 4,
19

4

1,
78

9

1,
50

3

80
81,
54

0

1,
46

9 3,
73

4

1,
62

53,
74

1

95
4

4,
66

2

4,
49

3 6,
29

2

4,
47

2

YCSB Workload

O
pe

ra
tio

ns
/S

ec
on

d

Figure 6: Median throughput of YCSB workloads values running on an HDD (a) and SSD (b) and 2GiB of RAM. VeriBetrKV-DF
is a version of our system with hand-tuned code using dynamic frames reasoning. Load is 10M operations (≈ 5GiB of data) and
runs are 10000 operations each. Error bars indicate min/max of 6 runs. Higher is better. On an HDD (a), VeriBetrKV insertions
are over 25× faster than in BerkeleyDB, but lag RocksDB, by about 9×. VeriBetrKV queries are are about 4× slower than both.
On an SSD (b), VeriBetrKV still beats BerkleyDB on random insertions, but VeriBetrKV queries are slower than BerkeleyDB.

Dynamic Frames Linear

In
se

rt

Po
s.

Q
ue

ry

N
eg

.Q
ue

ry

D
el

et
e

0

2M

4M

6M

8M

2,
04

1,
66

3

4,
62

9,
63

0

4,
39

6,
20

8

4,
35

9,
37

6

2,
13

8,
60

9

4,
95

7,
39

7

5,
96

4,
02

9

3,
93

1,
44

5

O
pe

ra
tio

ns
/S

ec
on

d

(a) Hash table

In
se

rt

Q
ue

ry

0

1 ·105

2 ·105

3 ·105

18
4,

27
2

26
6,

09
0

16
2,

62
5

29
3,

88
0

O
pe

ra
tio

ns
/S

ec
on

d

(b) Search tree

Figure 7: Median throughput of subcomponent microbench-
marks. Higher is better. Error bars are min/max of 6 runs.

crobenchmarks, the linear and non-linear implementations
have very comparable performance.

The hash table benchmark inserts 64 million key-value pairs,
performs 64 million positive and 64 million negative queries,
and then deletes everything in the hash table. The keys are
selected pseudo-randomly and are distributed uniformly in
the 64-bit key space. The linear version is slightly faster than

the non-linear version, except for deletes, which are slightly
slower. We suspect the speedup comes primarily from the lack
of shared pointer overhead.

The search-tree benchmark measures the time to insert 8
million key-value pairs in pseudo-random order and then query
them all in the same order. Performance for the linear version
is close to the non-linear version, but slightly faster for queries
and slightly slower for inserts. We believe queries are faster
due to the elimination of shared pointer overheads, and the
insertions are slower due to the overheads of destructing nodes
on the way down the tree and reconstructing them on the way
back up.

Our modifications to add linear types to Dafny consist of
1900 lines (3%); the C++ backend changes, which include
linear features, add another 3100 lines (7.5%).

Overall, our linear type system enables us to construct per-
formant code without the challenges of dynamic frame reason-
ing.

8 Related Work
IronFleet [29], VeriBetrKV’s most direct intellectual ancestor,
verifies distributed systems of fail-stop nodes. Its verification
strategy uses a refinement hierarchy with just two layers: one
from imperative code to a protocol state machine, another
from there to application spec. VeriBetrKV’s implementation
contains more components (an in-memory B-tree and hash ta-

110 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ble, a block cache, and a journal), and the Bεtree, its core data
structure, is substantially more complicated. Hence VeriBe-
trKV’s implementation is 3× larger than IronFleet’s sharded
distributed key-value in-memory-only store.

8.1 Verified Storage Systems

FSCQ’s Crash Hoare Logic[12] modifies Hoare logic to explic-
itly reason about crashes, enabling crash reasoning to follow
Hoare clauses up the implementation call graph. It does not
employ refinement reasoning. FSCQ reasons about potentially
repeated crashes during the recovery procedure; VeriBetrKV
avoids such reasoning by virtue of a design whose recovery
procedure requires no disk writes. FSCQ’s implementation is
functional code extracted to Haskell, so the framework gives
the developer less low-level control than VeriBetrKV.

DFSCQ [11] contributes an application spec for how crashes
interplay with the separate fsync and fdatasync opera-
tions. Production file systems like ext4 provide these opera-
tions to offer greater performance at the cost of an application
spec even more relaxed than the general sync operation that
covers all updates (as in VeriBetrKV). DFSCQ’s implementa-
tion exploits this freedom to defer writes.

Yggdrasil uses refinement to show implementation func-
tional correctness relative to a specification [54]. Crashes in
the environment are implicit, and the app spec only promises
linearity, requiring the implementation to sync on every mutat-
ing client operation (or group commit). It cannot exploit the
performance benefit of deferring writes until an application-
specified sync. Its disk model includes asynchronous I/O
but has no concept analogous to an IOSystem. Its pushbut-
ton approach to verification constrains the structure of the
implementation and proof, but in exchange produces a very
favorable proof:code ratio, reported at 1:300.

As discussed in §5, our linear extensions to Dafny are in-
spired by multiple sources [2, 33, 36, 51, 59]. Most relevant
to systems verification is the Cogent language [2], which is a
restricted functional language that certifiably compiles to C
code. Amani et al. use Cogent to develop two file systems,
each about 4K lines of native C. They verify two functional
correctness properties of one of the file systems, with the aim
of eventually proving both functional correctness and crash
safety. The Cogent language is an impressive foundational
effort and its certifying compiler provides a stronger guar-
antee than our simple but trusted changes to Dafny’s type
system. Our type system’s linear variables are similar in spirit
to Cogent’s linear types, but our work also integrates linearity
directly with Dafny’s dynamic frames, enabling us to move
smoothly back and forth between linear and non-linear reason-
ing about memory.

It is difficult to make meaningful performance comparisons
between our durable key-value store and file systems: File sys-
tems provide richer semantics, such as bulk directory rename.

8.1.1 Concurrent Storage

AtomFS [66] is a compute-concurrent file system with fine-
grained (per-inode) locks, but it does not reason about crash
safety. CSPEC [9] verifies a compute-concurrent mail server
absent crash safety. It verifies 215 lines of Coq implemen-
tation with 4,050 lines of proof. Perennial [10] verifies a
compute-concurrent, crash-safe mail server. Perennial extends
a capability separation logic with crash-safety-specific con-
cepts, with which it builds a refinement argument. Perennial
verifies 159 lines of concurrent Go with 3,360 lines of proof.
Drawing on techniques from these systems would allow Veri-
BetrKV to scale further via parallelism.

8.2 Automation Strategies

A line of work on “push-button” verification [45, 46, 54, 55,
64, 65] accepts constraints on system structure in exchange
for maximizing automation. The developer constrains their
imperative code to bounded executions and writes invariants
to span independent handler invocations. Such handlers could
not walk down a tree of arbitrary depth, as happens in Veri-
BetrKV’s Bεtree and search tree. Supporting longer bounded
executions requires framework improvements [45] rather than
creating a modularization job for the developer.

Taube et al. [57] employ a restricted fragment of logic [49]
to verify distributed system implementations, including
Raft [48] and Multi-Paxos [39]. By restricting the descrip-
tion of the protocol and its properties to a decidable logic, this
approach guarantees that a solver can always return either a
decisive answer. While the developer still must supply invari-
ants, the remaining proof work is entirely automatic. The cost
of this approach is that it force the developer to restate defini-
tions unnaturally, and decidable verification is still subject to
combinatorial slowdown as the scope of definitions grows.

The exploration of extreme points in the automation space
is promising, but limitations on expressiveness and design
motivate us to stick with developer-guided proofs, and instead
use automation to make it as cheap as possible.

8.3 Additional Verified Systems

The seL4 verified microkernel is the seminal systems verifi-
cation project [34], demonstrating the feasibility of verifying
software at the scale of thousands of lines. C code refines a
Haskell functional model of the implementation, which refines
a high-level specification for the behavior of system calls.

CertiKOS [27] proves a concurrent microkernel implemen-
tation correct using refinement of state machines it calls “lay-
ers” expressed in a side-effect free subset of C. It introduces
the notion of contextual refinement to reason about concurrent
state machines in isolation [28].

Verdi [61] uses Coq to verify distributed systems by proving
the correctness of a series of “system transformers” that take
a high-level protocol description running in a friendly envi-
ronment and transform it into a protocol that is safe in a more
hostile environment (e.g., where packets can be dropped). The

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 111

signature transformer is a verified implementation of Raft [62].
In a sense, Verdi is a distributed systems analog to correctness-
preserving compiler transforms.

9 Conclusion
In this work, we extracted a general methodology for veri-
fying asynchronous systems from prior work and applied it
to storage systems. In doing so, we developed a verification
discipline and a novel integration of linearity with dynamic
frame reasoning to reduce the burden of verifying systems
code. Because we applied a generic methodology, we expect
these improvements to apply equally well to the verification
of other asynchronous systems. In future work, we would like
to extend the methodology to also support thread-concurrent
systems with shared memory, utilizing our linear type system
to manage memory ownership.

Ultimately, our implementation and proof of crash safety
for VeriBetrKV, a complex, modern storage system, show
that automated verification techniques can scale to larger code
bases without increasing the proof burden relative to simpler
systems.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Gernot
Heiser, for useful feedback on the paper. Work at CMU was
supported, in part, by grants from a Google Faculty Fellowship,
the Alfred P. Sloan Foundation, and the NSF/VMware Partner-
ship on Software Defined Infrastructure as a Foundation for
Clean-Slate Computing Security (SDI-CSCS) program under
Award No. CNS-1700521. Andrea Lattuada is supported by a
Google PhD Fellowship.

A Artifact Appendix
A.1 Abstract

The evaluated artifact is provided as Docker images that con-
tain the source code to VeriBetrKV, build instructions to run
the verification as well as run the performance experiments
and draw the graphs corresponding to those in §7 with the
generated data.

A.2 Artifact check-list
• Algorithm: A verified Bεtree-based key-value store.

• Program: VeriBetrKV as described in this paper.

• Compilation: Dafny/C++ compiler, included in Docker image.

• Data set: YCSB generated workload

• Run-time environment: Docker

• Hardware: Any x64; provide a data store directory on HDD
or SSD as desired

• Run-time state: KV store backing files

• Output: PDFs containing graphs corresponding to §7

• Required disk space: 20GiB

• Expected experiment run time: Several hours

• Public link: https://github.com/
secure-foundations/veribetrkv-osdi2020/
blob/master/README.md

A.3 Description

A.3.1 How to access
Follow the README at https://github.com/
secure-foundations/veribetrkv-osdi2020/blob/
master/README.md. You can either run the binary Docker
distribution, or build it yourself.

A.3.2 Hardware dependencies
You will need any x86 CPU, plus HDD and/or SSD storage devices
for the performance measurements.

A.3.3 Software dependencies
All required dependencies are included in the Docker image.

A.3.4 Data sets
Performance experiments use the YCSB benchmark, for which the
source and configuration are included in the Docker image.

A.4 Installation
You can either download the GitHub release,
veribetrkv-artifact-hdd, and load the image with
docker load -i veribetrkv-artifact-hdd.tgz

or build it yourself with
cd docker-hdd
docker build -t veribetrkv-artifact-hdd .

A.5 Experiment workflow
The README explains how to launch the experiments by running
scripts from outside Docker. The scripts will generate PDFs that
reproduce the results from the paper.

A.6 Evaluation and expected result
The graphs in the output PDFs should correspond to those in §7,
modulo variation in the experimental hardware.

A.7 Experiment customization
The README at the link above provides details on how to modify
the experiment scripts in the Docker container.

A.8 AE Methodology
Submission, reviewing and badging methodology:

• https://www.usenix.org/conference/osdi20/
call-for-artifacts

References
[1] ABADI, M., AND LAMPORT, L. The existence of refinement

mappings. Theoretical Computer Science 82, 2 (May 1991).

[2] AMANI, S., HIXON, A., CHEN, Z., RIZKALLAH, C., CHUBB,
P., O’CONNOR, L., BEEREN, J., NAGASHIMA, Y., LIM, J.,
SEWELL, T., TUONG, J., KELLER, G., MURRAY, T., KLEIN,
G., AND HEISER, G. Cogent: Verifying high-assurance file
system implementations. In Proceedings of the ACM Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2016).

112 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/secure-foundations/veribetrkv-osdi2020/blob/master/README.md
https://github.com/secure-foundations/veribetrkv-osdi2020/blob/master/README.md
https://github.com/secure-foundations/veribetrkv-osdi2020/blob/master/README.md
https://github.com/secure-foundations/veribetrkv-osdi2020/blob/master/README.md
https://github.com/secure-foundations/veribetrkv-osdi2020/blob/master/README.md
https://github.com/secure-foundations/veribetrkv-osdi2020/blob/master/README.md
https://www.usenix.org/conference/osdi20/call-for-artifacts
https://www.usenix.org/conference/osdi20/call-for-artifacts

[3] ASTRAUSKAS, V., MÜLLER, P., POLI, F., AND SUMMERS,
A. J. Leveraging Rust types for modular specification and veri-
fication. In Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA) (2019).

[4] BENDER, M., PANDEY, P., PORTER, D., YUAN, J., ZHAN, Y.,
CONWAY, A., FARACH-COLTON, M., JANNEN, W., JIAO, Y.,
JOHNSON, R., KNORR, E., MCALLISTER, S., AND MUKHER-
JEE, N. Small refinements to the DAM can have big conse-
quences for data-structure design. In Proceeding of the 31st
ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA) (2019).

[5] BENDER, M. A., FARACH-COLTON, M., JANNEN, W., JOHN-
SON, R., KUSZMAUL, B. C., PORTER, D. E., YUAN, J., AND

ZHAN, Y. An introduction to Bε-trees and write-optimization.
;login: The USENIX Magazine 40, 5 (Oct. 2015), 22–28.

[6] BÖHME, S., AND WEBER, T. Fast LCF-style proof reconstruc-
tion for Z3. In Proceedings of Interactive Theorem Proving
(2010).

[7] BRODAL, G. S., AND FAGERBERG, R. Lower bounds for
external memory dictionaries. In Proceedings of the 13th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA)
(Baltimore, MD, USA, 2002), pp. 39–48.

[8] CASTAGNOLI, G., BRAUER, S., AND HERRMANN, M. Op-
timization of cyclic redundancy-check codes with 24 and 32
parity bits. IEEE Transactions on Communications 41, 6 (1993),
883–892.

[9] CHAJED, T., KAASHOEK, M. F., LAMPSON, B., AND ZEL-
DOVICH, N. Verifying concurrent software using movers in
CSPEC. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation (2018).

[10] CHAJED, T., TASSAROTTI, J., KAASHOEK, M. F., AND ZEL-
DOVICH, N. Verifying concurrent, crash-safe systems with
Perennial. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP) (Hunstville, ON, Canada,
Oct. 2019).

[11] CHEN, H., CHAJED, T., KONRADI, A., WANG, S., ILERI,
A., CHLIPALA, A., KAASHOEK, M. F., AND ZELDOVICH, N.
Verifying a high-performance crash-safe file system using a tree
specification. In Proceedings of the 26th ACM Symposium on
Operating Systems Principles (SOSP) (Shanghai, China, Oct.
2017).

[12] CHEN, H., ZIEGLER, D., CHAJED, T., CHLIPALA, A.,
KAASHOEK, M. F., AND ZELDOVICH, N. Using Crash Hoare
Logic for certifying the FSCQ file system. In Proceedings of
the 25th ACM Symposium on Operating Systems Principles
(SOSP 2015) (Monterey, California, Oct. 2015).

[13] COHEN, E., DAHLWEID, M., HILLEBRAND, M., LEINEN-
BACH, D., MOSKAL, M., SANTEN, T., SCHULTE, W., AND

TOBIES, S. VCC: A practical system for verifying concurrent
C. In Proceedings of the Conference on Theorem Proving in
Higher Order Logics (2009).

[14] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISH-
NAN, R., AND SEARS, R. Benchmarking cloud serving sys-
tems with YCSB. In Proceedings of the 1st ACM Symposium
on Cloud Computing (2010).

[15] COQ DEVELOPMENT TEAM. The Coq Proof Assistant
https://coq.inria.fr/.

[16] DE MOURA, L. M., AND BJØRNER, N. Z3: An efficient
SMT solver. In Proceedings of the Conference on Tools and
Algorithms for the Construction and Analysis of Systems (2008).

[17] DESAI, A., GUPTA, V., JACKSON, E., QADEER, S., RAJA-
MANI, S., AND ZUFFEREY, D. P: Safe asynchronous event-
driven programming. In Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation (2013).

[18] DRĂGOI, C., HENZINGER, T. A., AND ZUFFEREY, D. Psync:
A partially synchronous language for fault-tolerant distributed
algorithms. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(2016).

[19] FACEBOOK, INC. MyRocks: A RocksDB Storage Engine with
MySQL. http://myrocks.io/.

[20] FACEBOOK, INC. RocksDB: A persistent key-value store for
fast storage environments. https://rocksdb.org/.

[21] FERRAIUOLO, A., BAUMANN, A., HAWBLITZEL, C., AND

PARNO, B. Komodo: Using verification to disentangle secure-
enclave hardware from software. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP) (Oct.
2017).

[22] FISHER, K., LAUNCHBURY, J., AND RICHARDS, R. The
HACMS program: Using formal methods to eliminate ex-
ploitable bugs. Philosophical Transactions A, Math Phys Eng
Sci. 375, 2104 (Sept. 2017).

[23] FLOYD, R. Assigning meanings to programs. In Proceedings
of Symposia in Applied Mathematics (1967).

[24] FONSECA, P., KAIYUAN ZHANG, X. W., AND KRISHNA-
MURTHY, A. An empirical study on the correctness of formally
verified distributed systems. In Proceedings of ACM EuroSys
Conference (Apr. 2017).

[25] GARLAND, S. J., AND LYNCH, N. A. Using I/O automata
for developing distributed systems. Foundations of Component-
Based Systems 13 (2000).

[26] GOOGLE, INC. LevelDB. https://github.com/
google/leveldb.

[27] GU, R., KOENIG, J., RAMANANANDRO, T., SHAO, Z., WU,
X. N., WENG, S.-C., ZHANG, H., AND GUO, Y. Deep spec-
ifications and certified abstraction layers. In Proceedings of
the ACM Symposium on Principles of Programming Languages
(POPL) (2015).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 113

http://myrocks.io/
https://rocksdb.org/
https://github.com/google/leveldb
https://github.com/google/leveldb

[28] GU, R., SHAO, Z., CHEN, H., WU, X., KIM, J., SJÖBERG,
V., AND COSTANZO, D. Certikos: An extensible architecture
for building certified concurrent os kernels. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and
Implementation (2016).

[29] HAWBLITZEL, C., HOWELL, J., KAPRITSOS, M., LORCH,
J. R., PARNO, B., ROBERTS, M. L., SETTY, S., AND ZILL,
B. IronFleet: Proving practical distributed systems correct.
In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP) (Oct. 2015).

[30] HAWBLITZEL, C., HOWELL, J., LORCH, J. R., NARAYAN,
A., PARNO, B., ZHANG, D., AND ZILL, B. Ironclad apps:
End-to-end security via automated full-system verification. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI) (October 2014).

[31] HOARE, T. An axiomatic basis for computer programming.
Communications of the ACM 12 (1969).

[32] KASSIOS, I. T. Dynamic frames: Support for framing, depen-
dencies and sharing without restrictions. In FM 2006: Formal
Methods (2006).

[33] KLABNIK, S., NICHOLS, C., AND RUST COMMUNITY. The
Rust Programming Language https://doc.rust-lang.org/book/.

[34] KLEIN, G., ANDRONICK, J., ELPHINSTONE, K., MURRAY,
T., SEWELL, T., KOLANSKI, R., AND HEISER, G. Com-
prehensive formal verification of an OS microkernel. ACM
Transactions on Computer Systems 32, 1 (2014).

[35] KUMAR, R., MYREEN, M. O., NORRISH, M., AND OWENS,
S. CakeML: a verified implementation of ML. In Proceed-
ings of the ACM Symposium on Principles of Programming
Languages (POPL) (Jan. 2014).

[36] LAHIRI, S. K., QADEER, S., AND WALKER, D. Linear maps.
In Proceedings of the 5th ACM Workshop on Programming
Languages Meets Program Verification (2011).

[37] LAKSHMAN, A., AND MALIK, P. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating Systems
Review 44, 2 (Apr. 2010), 35–40.

[38] LAMPORT, L. The temporal logic of actions. ACM Transactions
on Programming Languages and Systems 16, 3 (May 1994).

[39] LAMPORT, L. The part-time parliament. ACM Trans. Comput.
Syst. 16, 2 (May 1998), 133–169.

[40] LAMPORT, L. Specifying Systems: The TLA+ Languange and
Tools for Hardware and Software Engineers. Addison-Wesley,
2002.

[41] LEINO, K. R. M. Dafny: An automatic program verifier for
functional correctness. In Proceedings of the Conference on
Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR) (2010).

[42] LEROY, X. Formal verification of a realistic compiler. Commu-
nications of the ACM (CACM) 52, 7 (2009), 107–115.

[43] MONGODB, INC. The WiredTiger Storage Engine. http:
//www.wiredtiger.com/.

[44] MULLEN, E., PERNSTEINER, S., WILCOX, J. R., TATLOCK,
Z., AND GROSSMAN, D. Œuf: Minimizing the Coq extraction
TCB. In Proceedings of the ACM Conference on Certified
Programs and Proofs (CPP) (2018).

[45] NELSON, L., BORNHOLT, J., GU, R., BAUMANN, A., TOR-
LAK, E., AND WANG, X. Scaling symbolic evaluation for
automated verification of systems code with serval. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems
Principles (2019).

[46] NELSON, L., SIGURBJARNARSON, H., ZHANG, K., JOHN-
SON, D., BORNHOLT, J., TORLAK, E., AND WANG, X. Hy-
perkernel: Push-button verification of an OS kernel. In Proceed-
ings of the 26th Symposium on Operating Systems Principles
(2017).

[47] NIPKOW, T., PAULSON, L., AND WENZEL, M. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic. Springer, 2002.

[48] ONGARO, D., AND OUSTERHOUT, J. In search of an under-
standable consensus algorithm. In Proceedings of the USENIX
Annual Technical Conference (ATC) (June 2014).

[49] PADON, O., MCMILLAN, K. L., SAGIV, M., PANDA, A., AND

SHOHAM, S. Ivy: Safety verification by interactive generaliza-
tion. In Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI) (2016).

[50] PERCONA LLC. The PerconaFT Storage Engine. https:
//github.com/percona/PerconaFT.

[51] QADEER, S., TASIRAN, S., AND HAWBLITZEL, C. Automated
and modular refinement reasoning for concurrent programs. In
Computer Aided Verification (CAV) (2015).

[52] REYNOLDS, J. C. Separation logic: A logic for shared muta-
ble data structures. In Proceedings of the 17th Annual IEEE
Symposium on Logic in Computer Science (2002).

[53] SCYLLA, INC. ScyllaDB: The real-time big data database.
https://www.scylladb.com.

[54] SIGURBJARNARSON, H., BORNHOLT, J., TORLAK, E., AND

WANG, X. Push-button verification of file systems via crash
refinement. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI) (Nov.
2016).

[55] SIGURBJARNARSON, H., NELSON, L., CASTRO-KARNEY,
B., BORNHOLT, J., TORLAK, E., AND WANG, X. Nickel: A
framework for design and verification of information flow con-
trol systems. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (2018).

[56] SWAMY, N., HRIŢCU, C., KELLER, C., RASTOGI, A.,
DELIGNAT-LAVAUD, A., FOREST, S., BHARGAVAN, K.,
FOURNET, C., STRUB, P.-Y., KOHLWEISS, M., ZINZINDO-
HOUÉ, J.-K., AND ZANELLA-BÉGUELIN, S. Dependent types
and multi-monadic effects in F*. In Principles of Programming
Languages (2016).

114 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.wiredtiger.com/
http://www.wiredtiger.com/
https://github.com/percona/PerconaFT
https://github.com/percona/PerconaFT
https://www.scylladb.com

[57] TAUBE, M., LOSA, G., MCMILLAN, K. L., PADON, O.,
SAGIV, M., SHOHAM, S., WILCOX, J. R., AND WOOS, D.
Modularity for decidability of deductive verification with ap-
plications to distributed systems. In Proceedings of the ACM
Conference on Programming Language Design and Implemen-
tation (PLDI) (2018).

[58] V. GLEISSENTHALL, K., KICI, R. G., BAKST, A., STEFAN,
D., AND JHALA, R. Pretend synchrony: Synchronous verifica-
tion of asynchronous distributed programs. vol. 3, Association
for Computing Machinery.

[59] WADLER, P. Linear types can change the world! In Proceed-
ings of the IFIP TC 2 Working Conference on Programming
Concepts and Methods (1990).

[60] WHEELER, D. A. SLOCCount. Software distribution. http:
//www.dwheeler.com/sloccount/.

[61] WILCOX, J. R., WOOS, D., PANCHEKHA, P., TATLOCK, Z.,
WANG, X., ERNST, M. D., AND ANDERSON, T. Verdi:
A framework for implementing and formally verifying dis-
tributed systems. In Proceedings of the ACM Conference on
Programming Language Design and Implementation (PLDI)
(June 2015).

[62] WOOS, D., WILCOX, J. R., ANTON, S., TATLOCK, Z.,
ERNST, M. D., AND ANDERSON, T. Planning for change in a
formal verification of the raft consensus protocol. In ACM Con-
ference on Certified Programs and Proofs (CPP) (Jan. 2016).

[63] YANG, X., CHEN, Y., EIDE, E., AND REGEHR, J. Finding
and understanding bugs in C compilers. In PLDI (June 2011).

[64] ZAOSTROVNYKH, A., PIRELLI, S., IYER, R., RIZZO, M.,
PEDROSA, L., ARGYRAKI, K., AND CANDEA, G. Verifying
software network functions with no verification expertise. In
Proceedings of the 27th ACM Symposium on Operating Systems
Principles (2019).

[65] ZHANG, K., ZHUO, D., AKELLA, A., KRISHNAMURTHY,
A., AND WANG, X. Automated verification of customizable
middlebox properties with Gravel. In 17th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2020,
Santa Clara, CA, USA, February 25-27, 2020 (2020).

[66] ZOU, M., DING, H., DU, D., FU, M., GU, R., AND CHEN, H.
Using concurrent relational logic with helpers for verifying the
AtomFS file system. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles (SOSP 2019) (Hunstville,
ON, Canada, Oct. 2019).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 115

http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/

Fast RDMA-based Ordered Key-Value Store using Remote Learned Cache

Xingda Wei, Rong Chen, Haibo Chen
Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Abstract

RDMA (Remote Direct Memory Access) has gained con-

siderable interests in network-attached in-memory key-value

stores. However, traversing the remote tree-based index in or-

dered stores with RDMA becomes a critical obstacle, caus-

ing an order-of-magnitude slowdown and limited scalabil-

ity due to multiple roundtrips. Using index cache with con-

ventional wisdom—caching partial data and traversing them

locally—usually leads to limited effect because of unavoid-

able capacity misses, massive random accesses, and costly

cache invalidations.

We argue that the machine learning (ML) model is a per-

fect cache structure for the tree-based index, termed learned

cache. Based on it, we design and implement XSTORE, an

RDMA-based ordered key-value store with a new hybrid

architecture that retains a tree-based index at the server to

perform dynamic workloads (e.g., inserts) and leverages a

learned cache at the client to perform static workloads (e.g.,

gets and scans). The key idea is to decouple ML model re-

training from index updating by maintaining a layer of indi-

rection from logical to actual positions of key-value pairs. It

allows a stale learned cache to continue predicting a correct

position for a lookup key. XSTORE ensures correctness using

a validation mechanism with a fallback path and further uses

speculative execution to minimize the cost of cache misses.

Evaluations with YCSB benchmarks and production work-

loads show that a single XSTORE server can achieve over

80 million read-only requests per second. This number out-

performs state-of-the-art RDMA-based ordered key-value

stores (namely, DrTM-Tree, Cell, and eRPC+Masstree) by

up to 5.9× (from 3.7×). For workloads with inserts, XS-

TORE still provides up to 3.5× (from 2.7×) throughput

speedup, achieving 53M reqs/s. The learned cache can also

reduces client-side memory usage and further provides an ef-

ficient memory-performance tradeoff, e.g., saving 99% mem-

ory at the cost of 20% peak throughput.

1 Introduction

Network-attached in-memory key-value stores have become

the foundation of many datacenter applications, including

databases [47, 55], distributed file systems [7], web ser-

vices [4, 37], and serverless computing [23, 42, 28], to name

a few. With the prevalence of affordable high-performance

networks in modern datacenters [46, 17, 20], such as Infini-

Band, RoCE, or OmniPath, CPU quickly becomes the per-

formance bottleneck and limits the scalability with the in-

crease of clients [31]. RDMA (Remote Direct Memory Ac-

cess) has recently generated considerable interests in opti-

mizing network-attached in-memory key-value stores (aka

RDMA-based KVs) in both academia [34, 25, 52] and in-

dustry [16, 55, 31], as it enables direct access to the memory

of remote machines with low latency and CPU/kernel bypass-

ing. However, leveraging RDMA to ordered key-value stores

encounters a significant obstacle—traversing tree-based in-

dex with one-sided RDMA primitives is costly and complex

(e.g., 11× slowdown in Fig. 2c). This is because it usually

requires multiple network round trips (e.g., O(logN)) and

rapidly saturates bandwidth.

Many recent academic and industrial efforts [57, 17, 35]

therefore proposed index caching to reduce RDMA op-

erations. Yet, the conventional wisdom on implementing

cache—replicating partial data and accessing them locally—

does not work well with the tree-based index, and the draw-

backs are amplified by maintaining the tree-based cache with

RDMA primitives. First, the tree-based index can be large,

so that the cache would suffer from unavoidable capacity

misses. Second, the cache would aggravate random memory

accesses and further increase the end-to-end latency. Third,

updating the tree-based index may recursively invalidate the

cache and cause false invalidation due to path sharing.

Inspired by recent research [29]—using machine learning

(ML) models as an alternative index structure, we propose to

leverage ML models as the (client-side) RDMA-based cache

for the (server-side) tree-based index, termed learned cache.

Specifically, the client uses learned cache to predict a small

range of positions for a lookup key and then fetches them

using one RDMA READ. After that, the client uses a local

search (e.g., scanning) to find the actual position and fetches

the value using another RDMA READ. Although using ML

models as the index seems efficient (a few floating/int opera-

tions) and cheap (a small memory footprint) for static work-

loads (e.g., gets), it is also notoriously slow (frequently re-

training ML models) and costly (keeping data in order) for

dynamic workloads (e.g., inserts).

To address the above challenges, we propose a hybrid ar-

chitecture that retains a tree-based index at the server to

perform dynamic workloads (e.g., inserts) and leverages a

learned cache at the client to perform static workloads (e.g.,

gets and scans). The hybrid architecture not only provides

separate and appropriate execution paths for both workloads,

but also simplifies the mechanism to guarantee the correct-

ness of concurrent local and remote operations.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 117

Based on this architecture, we further introduce a layer of

indirection (i.e., a translation table) between the ML model

and the tree-based index, which maps the logical position to

the actual position of key-value pairs in the leaf-node granu-

larity. The translation table decouples model retraining from

index updating (e.g., node splits) and allows a stale learned

cache (a combination of ML model and translation table) to

continue predicting a correct position for a lookup key, as

long as it is not overlapped with a leaf node split. It im-

plies that the tree-based index can be concurrently updated

in-place. Meanwhile, the ML model associated with its trans-

lation table can be retrained in the background and indepen-

dently pulled by the clients on demand.

We have implemented XSTORE by extending a concur-

rent B+tree [50] with a well-tuned RDMA framework [51].

We evaluate XSTORE using the YCSB benchmarks [13]

with two synthetic and one real-world [2] datasets, as well

as two production workloads from Nutanix [30]. Our ex-

perimental results show that a single XSTORE server can

achieve over 80 million read-only requests per second.

This number outperforms state-of-the-art RDMA-based or-

dered key-value stores (i.e., DrTM-Tree [11], Cell [35],

and eRPC+Masstree [24]) by up to 5.9× (from 3.7×). For

workloads with inserts, XSTORE still provides up to 3.5×

(from 2.7×) throughput speedup, achieving 53M reqs/s. The

learned cache also reduces client-side memory usage signifi-

cantly and further provides an efficient memory-performance

tradeoff. For example, it can save 99% memory at the cost of

20% peak throughput, compared to caching the whole index.

In summary, this paper makes four contributions:

• The idea of learned cache that leverages machine learning

(ML) models as index cache for RDMA-based, tree-

backed KV stores;

• A hybrid architecture that combines (client-side) learned

cache and (server-side) tree-based index to embrace static

and dynamic workloads;

• A layer of indirection (translation table) that decouples

ML model retraining from index updating and allows a

stale learned cache to predict a correct position;

• A prototype implementation and an evaluation that

demonstrates the advantage and efficacy of XSTORE.

2 RDMA-based Key-Value Store

In this paper, we focus on in-memory key-value (KV) stores

that adopt the client-server model (network-attached) [34, 32,

25, 8] and range index structures (tree-backed) [33, 35, 57].

The server hosts both key-value pairs and indexes in main

memory and handles requests from multiple clients concur-

rently. The client interacts with the server through a library

that provides basic key-value interfaces, including GET(K),

UPDATE(K,V), SCAN(K,N)1, INSERT(K,V), and DELETE(K),

as well as more complex operations built atop them.

1SCAN(K,N) provides a form of range query that retrieves first (up to) N key-

value pairs, where their keys are larger than or equal to K.

RNIC

Value

Server

Index

CPURNICCPU

Client

GET(k)

pos v

polling RNIC

Value

Server

Index

CPURNICCPU

Client

GET(k)

Cache

(a) Server-centric RKV (b) Client-direct RKV

tr
a
v
e
rs
in
g

N
e

tw
o

rk

N
e

tw
o

rk

v
RDMA

DMA/
MMIO

k

k pos

pos

RPC

Fig. 1. The architecture of RDMA-based key-value stores: (a)

server-centric RKV and (b) client-direct RKV.

RDMA (Remote Direct Memory Access) is an emerg-

ing feature—appearing in affordable high-performance net-

works (e.g., InfiniBand, RoCE, or OmniPath)—that enables

direct access to the memory of remote machines with low

latency and CPU/kernel bypassing. It has generated consid-

erable interest in deploying the network in modern data-

centers [17, 46, 20] and optimizing key-value stores (aka

RDMA-based KVs) [34, 25, 16, 9, 8]. However, few prior

systems consider ordered key-value stores that rely on tree-

based indexes to handle range queries (i.e., SCAN(K,N)).

Server-centric design (S-RKV) [52, 26, 24]. An obvious

design is to take a traditional KV store and reimplement the

communication layer (e.g., RPC) using RDMA primitives.

As shown in Fig. 1a, the clients ship their requests to the

server via RDMA network using one round trip for each;

the server traverses the tree-based index and performs the re-

quest locally. The server-centric design allows access to the

server-side store with only two RDMA operations (one for

sending and one for receiving), no matter how complex the

index structures are, thereby avoiding multiple round trips

and message size amplification [26]. However, this design

exploits only high performance (low latency and high band-

width) but not CPU efficiency (remote CPU bypassing) of

RDMA network at the server, which limits the scalability of

these KV stores with the increase of clients.

Client-direct design (C-RKV) [35, 17, 57]. The adoption

of RDMA makes it practical to allow clients to access data

hosted on the server directly, thereby permitting an alterna-

tive (client-direct) design that relaxes the burden on server

CPUs. To simplify the mechanism for consistency, this de-

sign is restricted to read-only requests (i.e., GET and SCAN)

in most systems [34, 16, 35]. This common choice is also mo-

tivated by the read-dominated nature of most applications [6].

As shown in Fig. 1b, the clients use one-sided RDMA oper-

ations to traverse the tree-based index and fetch the value

directly for read-only requests; the server still needs to per-

form the rest of requests (i.e., UPDATE, INSERT, and DELETE)

locally. The client-direct design can shift the CPU load on

the server to the clients, which would alleviate the bottleneck

(from CPU to network), especially on high-bandwidth net-

works (e.g., 100Gbps). However, it may consume extra net-

work round trips for traversing the tree-based index due to

the lack of richness of RDMA primitives, causing an order-

118 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

1 50 100 150 200

C
P

U
 u

ti
liz

a
ti
o

n
 (

%
)

Number of client processes

S-RKV

C-RVS

YCSB C

 0

 40

 80

 120

 160

 200

1 50 100 150 200

B
a

n
d

w
id

th
 (

G
b

p
s
)

Network Limit

YCSB C

 0 20 40 60 80
Throughput (M reqs/s)

e.g., DrTM-Tree

e.g., Cell

7M vs. 78M

YCSB C

All (optimal)

6 levels

5 levels

4 levels

3 levels

2 levels

1 level

No cache
C-RKV

S-RKV

 0 10 20 30 40
Median Latency (µs)

NIC IDX

CPU IDX

NIC VAL

CPU

NIC

YCSB C

All (optimal)

6 levels

5 levels

4 levels

3 levels

2 levels

1 level

No cache
C-RKV

S-RKV

 0

 10

 20

 30

 0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(M

 r
e

q
s
/s

)

Time (s)

No

1L

2L

3L
4L

5L
6L

All

S-RKV C-RKV

YCSB D

Fig. 2. A comparison of server-side (a) CPU and (b) network bandwidth utilization, (c) peak throughput, (d) end-to-end median latency at low

load, and (e) throughput timeline for state-of-the-art server-centric (S-RKV) and client-direct (C-RKV) RDMA-based KV stores. Workload:

YCSB C (100% read) and YCSB D (95% read and 5% insert), using 100M keys with a uniform distribution. Testbed: The server has two

12-core CPUs and two 100Gbps RNICs.

of-magnitude slowdown (e.g., 11× slowdown in Fig. 2c). For

example, recent work [35, 57] uses RDMA READs to tra-

verse remote B+tree index and invariably incurs multiple net-

work round trips (O(logN) [3]).

Recently, index caching has been proposed to reduce net-

work round trips for index traversal by RDMA-based sys-

tems [52, 48, 17, 35, 38], namely, the client caches the server-

side index locally. It aims at reducing RDMA READs for

fetching the position of the value (aka lookup), instead of

caching the value directly.2 Thus, an optimal result with in-

dex caching only needs two RDMA operations per request

(one for lookup and one for read).

3 Analysis of RDMA-based Ordered KVs

CPU is the primary scalability bottleneck in the server-

centric design. Fig. 2 compares hardware resource utiliza-

tion between S-RKV and C-RKV with the increase of clients.

For S-RKV, the server rapidly saturates all CPUs (24 cores)

but just consumes 11% of network bandwidth. It implies that

CPU first becomes the performance bottleneck and limits

the scalability with the increase of clients, especially when

deploying fast networks. This also runs counter to the re-

cent trend of building servers in modern datacenters with

CPU-bypassing networks [17, 46, 20]. As shown in Fig. 2c,

S-RKV reaches the peak throughput of around 24M reqs/s.

Traversing tree-based index occupies most of CPU time, as it

involves massive random memory accesses. On our testbed,

we measured that one CPU core can perform 43 million 64-

byte random reads per second at full speed. Thus, each core

can only process up to 1.8M reqs/s for traversing a (8-level)

B+tree with 100M keys, even putting other CPU and network

costs aside.

Costly RDMA-based traversal is the key obstacle in the

client-direct design. C-RKV allows the client to traverse

the server-side index directly by using one-sided RDMA

READs, which can thoroughly bypass server CPUs (see

Fig. 2a). However, RDMA-based index traversal usually re-

quires multiple network round trips (e.g., O(logN) for tree-

2Considering RDMA performance degradation with increasing payload

size [25], the client will only cache internal nodes [35, 38] and not di-

rectly fetch a batch of keys and (inline) values to avoid bandwidth amplifi-

cation [35, 3].

based index) and saturates the network bandwidth quickly.

As shown in Fig. 2c, RDMA-based traversal limits the peak

throughput of C-RKV to 7 million requests per second, even

much lower than that of S-RKV. Using index caching at

the clients can reduce RDMA operations by traversing in-

dex nodes locally. On our testbed, the throughput of C-

RKV with index caching, similar to state-of-the-art design

(Cell [35]), peaks at 14.5M reqs/s, as each request takes 4

RDMA READs (down from 8) for traversal.

Tree is not a proper structure for RDMA-based index cache.

To our knowledge, existing RDMA-based index caches use

homogeneous structures to store partial index nodes, similar

to the conventional design. For example, each client repli-

cates tree nodes and traverses them locally before accessing

the tree-based index hosted on the server [17, 35, 57].

First, the tree-based index can be large [56, 18, 26], and

the traversal demands multiple random accesses from the

root to the leaf node. Thus, each client can only cache nodes

near the root (e.g., top four levels [35]) to minimize thrashing

and maximize hits [35, 17]. Yet, the index cache still suffers

from unavoidable capacity misses (bottom node levels). In

Fig. 2c, for a read-only workload, the effect of RDMA-based

caching for tree-based index is dominated by inner node lev-

els cached. The optimal throughput (a whole-index cache)

reaches 78M reqs/s using one RDMA READ for each traver-

sal (fetch the position of value), 3.3× better than S-RKV.

Second, traversing tree-based index is a memory-intensive

but low-compute operation. The homogeneous index cache

can just alter the type of memory accesses (i.e., remote and

local), instead of reducing the number of memory accesses

(O(logN)). Hence, despite the index cache, traversing tree-

based index would still incur massive random accesses and

suffer from CPU cache misses, TLB misses, and RNIC’s

page translation cache misses. As shown in Fig. 2d, even

caching the whole index, the end-to-end latency of C-RKV

is still 80% higher than S-RKV, and the CPU cost on index

cache (CPU_IDX) occupies close to 30%.

Third, updates to the tree-based index (i.e., inserts and

deletes) might propagate the changes from the leaf level to

the root node, so that the index updates would probably inval-

idate the cache recursively [57] and cause false invalidations

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 119

pos

key

CDF

LR0 LRM-1

min_err

max_err

Model
-min_err

pos

+max_err

actual

K (sorted)

(sorted)

2-level

Recursive
Model

key

key

pos

NN

Fig. 3. An example of using ML models to predict the position

within a sorted array for a given key.

(path sharing). It would result in frequent cache misses and

RDMA READs to retrieve updated index nodes. Worse yet,

the more tree nodes cached, the more performance degrades.

Further, preserving traversal consistency for dynamic work-

loads demands sophisticated detection schemes (e.g., fence

keys [19, 41]) and incurs additional overhead. In Fig. 2e, the

optimal throughput significantly drops to 25M reqs/s with

severe performance fluctuations, just because of 5% inserts.

4 Approach and Overview

Opportunity: ML Models. Our work is motivated by an at-

tractive observation from the learned index [29]—a range in-

dex (e.g., B+tree) that finds the position of a given key in-

side a sorted array approximates the cumulative distribution

function (CDF) of the keys in the index. As shown in Fig. 3,

suppose the values have been sorted according to the lookup

keys, the CDF (the red curve) is a mapping from the (sorted)

keys to the (sorted) positions of their values, namely CDF(K)

returns the actual position of the value corresponding to K.

Prior work [29] proposes to approximate the shape of a CDF

using machine learning (ML) models, like neural nets (NN)

and linear regression (LR), since they are able to learn a wide

variety of distributions. As an alternative range index, the ML

model is trained with every key to record the worst over- and

under-prediction of a position (i.e., min- and max-error). In

Fig. 3, given a lookup key (K), the model (the black curve)

can predict a position (pos) with a min- and max-error (min_-

err and max_err), and a local search (e.g., scanning) around

the prediction is used to get the actual position. To further re-

duce the prediction error, a hierarchy of simple models (e.g.,

recursive-model index [29]) is used to partition the key space,

where the model at level L picks the model at level L+1 based

on the key.

Our approach: Learned Cache. The key idea behind XS-

TORE is to leverage machine learning (ML) models as (client-

side) RDMA-based cache for the (server-side) tree-based

index, termed “learned cache”. The unique features of

machine learning models can fundamentally overcome the

drawbacks in the conventional wisdom for RDMA-based in-

dex caching (see §3). First, instead of using a homogeneous

structure to cache a partial index, the ML model can cache

the whole index at the cost of accuracy. Therefore, using

the learned cache can completely avoid capacity misses, and

each lookup only needs one RDMA READ. Further, the ML

RNIC

Value

Server

XTree

CPURNICCPU

Client

GET(k)

XCache

N
e
tw
o
rk

v

Models

[-,+]

k

[-,+]

pos

N
e
tw
o
rk

training

RNIC RNIC CPU

XCacheModels

INSERT(k,v)

k

Client

v

RDMA

DMA/MMIO

bkgdModels

polling

k

Key

Fig. 4. The hybrid architecture behind XSTORE: client-direct op-

erations (left) and server-centric operations (right).

model is also famously memory-efficient (e.g., two parame-

ters per LR model). Thus, the learned cache can match the

optimal throughput of conventional design (a whole-index

cache) but with practical memory consumption.

Second, instead of finding the actual position by travers-

ing a tree-based index with O(logN) random memory ac-

cesses, the ML model can approximately predict a range of

positions for a lookup key by performing a single multiplica-

tion and addition (e.g., linear regression). It implies that the

learned cache might also reduce the end-to-end latency, even

compared to a whole-index cache, due to fewer CPU cache

and TLB misses at the clients.

Finally, instead of fine-grained and recursive invalidation

in the tree-based cache for accurate predictions, the ML

model can reduce and delay cache invalidations since it only

needs to provide approximate predictions. Updates to the in-

dex might only decrease the accuracy of the (partial) ML

model. Thus, the learned cache can significantly save inval-

idation cost in terms of network round trips and bandwidth

usage, especially compared to a whole-index cache.

Challenge: Dynamic Workloads. Dynamic workloads (e.g.,

inserts and deletes) would violate an (unrealistic) assump-

tion of ML-based approach that all key-value pairs are stored

in sorted order by key [29]. However, retraining ML mod-

els and keeping data in order are slow and costly, which

is hard to match the high performance of in-memory key-

value stores (tens of millions of requests per second). An

intuitive solution is to maintain a delta index (e.g., B+tree)

for (in-place or buffer-based) inserts and then periodically

compact it with the learned index (data merging and model

retraining) [44, 18]. Unfortunately, it cannot work well with

RDMA-based index caching. First, additional RDMA-based

lookups on the delta index would incur more network round

trips and severely increase the latency. Second, it is also

hard to cache a fast-changing (tree-based) delta index at the

clients. Finally, the data and model compaction definitely

interrupts (RDMA-based) remote accesses and completely

invalidates the learned cache. Hence, how to make learned

cache keep pace with dynamic workloads at low cost be-

comes a key challenge.

Overview of XStore. XSTORE is an in-memory ordered key-

value store using a client-server model, where the server and

the clients are connected with a high-speed, low-latency net-

120 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

work with RDMA.3 Using ML models as the index (aka

learned index) is famously efficient and cheap for static

workloads (e.g., gets and scans), while it is notoriously

slow and costly for dynamic workloads (e.g., inserts and

deletes). It is because the inserts would amplify the pre-

diction error and incur model retraining frequently. Prior

work [29, 44, 15] relies more on the profit from efficiently

handling static workloads to amortize the negative influence

on dynamic workloads. We argue that the learned cache

opens the opportunity to solve this dilemma. Unlike prior

work [29, 44, 15, 14], which replaces or augments the tree-

based index with the learned index, we propose a hybrid ar-

chitecture that retains the tree-based index at the server to

handle dynamic workloads and uses the learned cache at the

clients to handle static workloads.

The architecture of XSTORE is shown in Fig. 4. The

server hosts a B+tree index (XTREE) in the main mem-

ory and stores key-value pairs at the leaf level physically,

like the common practice. Each client interacts with the

server through a library, which hosts a local learned cache

(XCACHE). XSTORE uses the client-direct design for read-

only requests (i.e., GET(K) and SCAN(K,N)) and the server-

centric design for the rest (i.e., UPDATE(K,V), INSERT(K,V),

and DELETE(K)). For client-direct operations, like GET(K) in

Fig. 4, the client first predicts a range of positions for the key

K using XCACHE and then fetches them using one RDMA

READ. Finally, the client uses a local search to find the

actual position and fetches the value using another RDMA

READ. For server-centric operations, like INSERT(K,V) in

Fig. 4, the client uses RPC over RDMA to ship the request to

the server. The server searches the lookup key K by travers-

ing the B+tree index first and then inserts the new KV pair

(K,V). XSTORE will partially retrain ML models for updated

tree nodes in the background, and each client will individu-

ally fetch the models for XCACHE on demand.

5 Design and Implementation

5.1 Data Structures

XTree. At the server, XSTORE retains a B+tree index

(XTREE) and stores key-value pairs at the leaf level physi-

cally, like the common practice, as illustrated in the left part

of Fig. 5. XTREE follows the basic design of a concurrent

B+tree [33, 50], except that the leaf node (LN) adopts the

structure optimized for remote reads. The leaf node consists

of a 24-bit incarnation (INCA), an 8-bit counter (CNT), a 32-

bit right-link pointer to next sibling (NXT), keys with N slots

(K0..KN−1) and values with N slots (V0..VN−1).

Every leaf node is allocated from an RDMA-registered

memory region using a slab allocator and can store at most

N key-value pairs in sorted order. For brevity, we assume

fixed-length key-value pairs here.4 To save the size of RDMA

3The client may not be the end user but the computation node or the front-

end of RDMA-based datacenter applications [34, 35, 16, 17, 25, 55, 57].
4Similar to prior RDMA-enabled KVS [16, 52, 35], XSTORE currently al-

B+Tree

Client

LN LN

CNTINCA K0..KN-1 V0..VN-1

Leaf
Node

valueskeys

key

Trans.

Table

LR0 LRM-1

NN

TT Entry

0316364

LLN:

valid

Server

XModel

TT
INCAALN1

XTree XCache

POS[..]

POS[..]Logical

Actual

CNT
7

NXT

LN

Fig. 5. The main structures in XSTORE: XTREE and XCACHE.

READ for lookup, XSTORE stores keys and values sepa-

rately but continuously. It can avoid storing the address of

the value. The client can fetch N keys from the leaf node and

calculate the (remote) address of expected value locally (a

fixed offset from its key). Moreover, XSTORE uses incarna-

tion checks [16, 52] to guarantee the consistency of remote

accesses. The incarnation in the leaf node is initially zero

and is monotonically increased when the leaf node is reused

(e.g., split or free). The number of slots (N) can be tuned for

RDMA performance (e.g., 16).

XCache. Each client hosts a local learned cache (XCACHE),

which consists of a 2-level recursive ML model (XMODEL)

and a translation table (TT). As illustrated in the right part

of Fig. 5, given a lookup key, XMODEL is used to predict

a range of positions (POS[..]) within a sorted array (logi-

cally stitching together all leaf nodes of XTREE). Currently,

XMODEL uses a linear multi-variate regression model at

level 0 (top-model) and simple linear regression models at

level 1 (sub-model), a common setup recommended in prior

work [15, 29, 44].

The ML model demands the positions (virtual address) of

leaf nodes are always sorted by the keys. It is almost impossi-

ble for dynamic workloads, since the insertion of key-value

pairs may insert a new node at the leaf level and break the

sorted order of leaf nodes. The server maintains an additional

translation table (TT) for leaf nodes, from logical to actual

positions, and each client caches a part of the table on de-

mand. The entry of TT is located by the logical leaf-node

number (LLN) and consists of a valid bit, a 31-bit actual leaf-

node number (ALN), a 24-bit expected incarnation (INCA),

and an 8-bit counter, as shown in Fig. 5. The client can cal-

culate the (host) virtual address of the target leaf node using

ALN and the base address of an RDMA-registered memory

region. Further, the match of incarnation between TT’s en-

try and target leaf node guarantees that the leaf node has not

been reused.

Training models and TT. The server (re-)trains a 2-level

ML model (XMODEL) with a translation table (TT) over

XTREE’s leaf nodes in the background, and each client (re-

)fills the learned cache (XCACHE) on demand. Fig. 6 shows

lows fixed-length key and fixed/variable-length value. For variable-length

value, the leaf node should store a 64-bit fat pointer [16, 53] (the size

and the position of value) instead of the value. We discuss how to support

variable-length key in §6 and leave it to future work.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 121

✁ M: Max. number of sub-models

✁ N: Max. number of keys in each leaf node

TRAIN_XMODEL(xmodel)

✁ train top-model

1 cdf = [] ✁ training set

2 pos = 0

3 foreach k in xtree ✁ in sorted order

4 cdf.add(k, pos++)

5 xmodel.top = new LR trained on cdf

✁ assign keys to sub-models

6 kset = [][] ✁ key set for each sub-model

7 foreach k in xtree

8 mid = xmodel.top.predict(k) × M

9 kset[mid].add(k)

✁ train sub-models

10 for i in [0:M)

11 TRAIN_SUBMODEL(xmodel.subs[i]

MIN(kset[i]), MAX(kset[i]))

TRAIN_SUBMODEL(model, min, max)

12 cdf = [] ✁ training set

13 LLN = 0 ✁ logic leaf-node number

14 start = xtree.find_lnode(min)

15 end = xtree.find_lnode(max)

16 for lnode in [start:end]

17 pos = LLN × N

18 foreach k in lnode.keys ✁ key-sorted order

19 cdf.add(k, pos++)

20 model.tt[LLN++] = {1, ALN(lnode),

lnode.inca, lnode.cnt}

21 model = new LR trained on cdf

22 model.calc_err(cdf) ✁ calculate min/max_err

XModel {

Model top ✁ LR: k → [0,1)

Model[M] subs ✁ LR: k → [0,pos) w/ min/max_err

}

Fig. 6. Pseudo-code of training XMODEL and TT over XTREE.

the pseudo-code of training a complete XMODEL and TT.

Starting from a sorted array of keys with logical positions

(line 4), we first train the top model. Based on the predic-

tion of the top model, we then evenly partition keys into

M sub-models (line 9). Finally, we train each sub-model on

a sorted array of its keys with a private logical position at

a leaf node granularity (line 12-21) and calculate min- and

max-error for every sub-model (line 22). Note that the keys

in the leaf node across sub-models will be trained by both of

sub-models. Moreover, each sub-model has independent log-

ical positions and an own translation table, making it easy to

retrain a sub-model individually when necessary.

In practice, training XMODEL is fast and low-cost, since

(1) all of the models in XMODEL are simple linear/multi-

variate regression models, can be efficiently trained; (2)

XMODEL can be partially retrained at a sub-model granular-

ity; and (3) the top model can be trained over a sampled data.

As an example, for 100M keys, XMODEL with 500K sub-

models takes about 4 seconds to train the top-model and 8

microseconds for each sub-model using a single thread. Fur-

ther, the client can fill a 500K sub-models XCACHE from

scratch in less than one second.

LOOKUP(key, &addr)
1 mid = xmodel.top.predict(key) x M

2 model = xmodel.subs[mid]

3 pos = model.predict(key) � prediction

4 start = (pos - model.min_err)/N � lnode ID

5 end = (pos + model.max_err)/N � lnode ID

6 rdma_doorbell = []

7 for n in [start:end] � from LLN to ALN

8 entry = model.tt[n] � TT entry

9 if entry.valid == 0 then

10 return invalid � fallback

11 ra = RA(entry.ALN) � remote address

12 rdma_doorbell.add(ra)

� one RDMA to read disjoint memory regions

13 lnodes = RDMA_READ(rdma_doorbell)

14 for n in [start:end]

15 lnode = lnodes[n-start]

16 entry = model.tt[n]

17 if entry.inca != lnode.inca then

18 entry.valid = 0 � invalidation

19 return invalid � fallback

20 for i in [0:lnode.cnt) � local search

21 if key == lnode.keys[i] then

22 addr = calc remote addr of ith value

23 return found

24 return not_found � non-existent key

Fig. 7. Pseudo-code of LOOKUP operation based on XCACHE.

A memory-performance trade-off. The ML model is fa-

mously memory-efficient. In XMODEL, the basic sub-

models are 14B large and consist of two 32-bit floating-

point model parameters 5, two 8-bit min- and max-error, and

a 32-bit TT size. Thus, XMODEL with 500K sub-models

only needs less than 6.7MB. In contrast, TT might domi-

nate the memory usage of XCACHE. For 100M keys, sup-

pose each leaf node has 16 slots (N) and is half-full, TT re-

quires nearly 100MB (15% of the tree-based index). In prac-

tice, each client could cache sub-models and TT entries on

demand, and even just cache XMODEL to save 99% memory

at the cost of 20% performance (using one RDMA READ to

fetch a few TT entries).

5.2 Client-direct Operations

In the left part of Fig. 4, XSTORE uses the client-direct de-

sign for read requests, namely GET(K) and SCAN(K,N).

5.2.1 GET

Given a key, the client uses XCACHE to lookup the remote

position of value using one RDMA READ commonly, re-

placing RDMA-based traversal in a tree-based index. As

shown in Fig. 7, the client first uses XMODEL to predict

leaf nodes that cover the lookup key (from start to end)

and then calculates the actual (remote) address of these leaf

nodes with TT (line 11). The client can use one RDMA

READ with doorbell batching to fetch disjoint memory re-

gions if necessary (line 13).6 Note that the unit of remote

5LR may use more floating-points for prediction.
6One RDMA READ can only read a continuous memory region. Yet, we

can use an RDMA-aware optimization called doorbell batching [27] to read

122 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

read is a leaf node (N keys with a 64-bit header); it is the

most likely to read just one leaf node due to the low predic-

tion error of XMODEL. Next, the client uses a local search

(e.g., scanning) to find the key from leaf nodes retrieved (line

20-23) and calculates the remote address of the value if it

is found (line 22). Finally, the client uses another RDMA

READ to fetch the value. Note that any invalid TT entry (line

9 and 17) would result in a fallback path, which ships the

GET operation to the server and fetches updated models and

TT entries using a single request (i.e., server-centric design).

5.2.2 SCAN

SCAN(K,N) implements a form of range query that returns

first (up to) N key-value pairs (in order by key), starting with

the next key at or after K. The client first uses the lookup

operation with K to determine the remote address of the first

key-value pair (larger than or equal to K) and then predicts

the leaf nodes that contain the next N key-value pairs, with

the help of TT. The translation table provides the number of

key-value pairs (CNT) and the actual remote address (ALN)

of adjacent leaf nodes (LLN) in sorted order by key. Thus,

the client can use one RDMA READ with doorbell batching

to fetch these leaf nodes, including keys and values. In gen-

eral, XSTORE only requires two RDMA READs for each

range query. In the rare case, the unexpected result, such as

an invalid leaf node (incarnation mismatch) due to dynamic

workloads, would cause a fallback path, similar to GET. Note

that the range query in XSTORE is also not atomic with re-

spect to updates and inserts as usual [33, 35]; it could be

implemented by applications (e.g., transaction [17, 38]).

5.2.3 Non-existent Keys

Intuitively, the ML model guarantees to find all keys have

been trained since it stores the worst over- and under-

prediction for a CDF (i.e., min- and max-error). However,

for non-existent keys, the model should be monotonic to

guarantee the correct upper and lower bound of a predic-

tion [21, 54], so that a local search could make sure the

lookup key does not exist (see line 24 in Fig. 7). Hence,

XMODEL adopts monotonic models (e.g., linear regression).

As shown in Fig. 8, for a non-existent key (KEY=6), the sub-

model LR0 can provide a proper prediction (LR0(6)=[3,4])

that covers the non-existent key (KEYS={5,7}).

However, a hierarchy of models might leave a gap of non-

existent keys between neighboring models. Consequently, it

still might provide a wrong prediction for these non-existent

keys, even if every model is monotonic. For example, the top

model selects LR0 for KEY=10 (non-existent), and then LR0

will return a wrong prediction (LR0(10)=[6,7]) that cannot

determine whether the key does not exist or the model is out

of date from the results (KEYS={17,18}). Worse yet, the non-

existent key is common in the range query (e.g., SCAN(K,N)),

which demands to retrieve first (up to) N keys larger than or

equal to K. As illustrated in Fig. 8, the lookup (LR0(10)) for

multiple disjoint memory regions in one network roundtrip.

4 75 8 13 171 18 20113

0

1

2

3

4

5

6

7

9

LR0(6):[3,4]=>{5,7}

max

LR0(2):[0,1]=>{1,2}

pos

min

12 14 15

8

LR1(19):[7,8]=>{18,20}

key

{1,2,4,5,7} LR0 LR1 {13,17,18,20}

keys={1,2,4,5,7,13,17,18,20}

min

max

LR1

LR0

Non-existent

NN

16 196

CDF

LR0(10):[6,7]=>{17,18}

102

Augmentation

Examples:

Fig. 8. An example of the prediction for non-existent keys.

a range query SCAN(10,3) will miss a key (KEY=13), so the

result (KEYS={17,18,20}) is also wrong.

Data augmentation. To remedy this, we augment the train-

ing set of sub-models to cover the gap of non-existent

keys between neighboring models. However, data augmen-

tation would increase the prediction error. We thus carefully

add a boundary key to both sub-models, which can fill the

gaps with minimal overlap between models. For example, in

Fig. 8, we add a non-existent key in the gap (KEY=10) with

the position of a previous KEY=4 into both sub-models (LR0

and LR1). After that, the lookup of non-existent keys would

always return a correct prediction. Further, since the keys in

the leaf node across sub-models have been trained by both,

there is no need for data augmentation in most cases.

5.3 Server-centric Operations

As shown in the right part of Fig. 4, clients communicate

with the server to perform UPDATE(K,V), INSERT(K,V), and

DELETE(K) operations; the server updates XTREE concur-

rently and retrains XMODEL in the background.

Correctness. The correctness condition in XSTORE follows

no lost keys [33]: the reader must return a correct value for a

given key, regardless of concurrent writers. More specifically,

when a reader and a writer run concurrently, the reader can

return either the old or the new value, while both of them

should be atomic.

Concurrency. The hybrid architecture behind XSTORE not

only provides separate and appropriate execution paths for

static and dynamic workloads (see Fig. 4), but also simplifies

the mechanism to guarantee the correctness of concurrent op-

erations. It is critical to the performance of RDMA-based

systems due to the lack of richness of RDMA primitives [51].

In Fig. 9a, by using the learned cache (XCACHE), XSTORE

restricts (client-direct) remote accesses to the leaf nodes (the

dotted red arrow). Thus, we can avoid using sophisticated

mechanisms to retrofit a concurrent tree-based index [35].

XTREE reuses an HTM-based concurrent B+tree [50]7

to support concurrent index updates (e.g., node splits) and

7The implementation is based on Intel’s restricted transactional memory

(RTM) that is available as a mature feature in Intel’s CPUs (e.g., Skylake).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 123

RDMA

LN

GET(k)

INSERT(k,v)

B+Tree

Client

LN

Server

SCAN(k,n)

read

UPDATE(k,v)
DELETE(k)

LN

XCache
w
r
i
t
e

Network

r
e
a
d

K..K K..K

Client

LLN:

Server

0 1

KKK K..K

2 3 9

KKKK

0 1 2 8

1001 1011 3271 1021 1041

LLN:

100 101 102 104ALN:

I

I

INCA I

I

I

IINCA

1001 1010 1021 1081I INCA I I

INCA

INCA

327

Leaf Nodes:

re-training LR8

XTree

LR0

NN

TT

LR8

TT

RDMA
SPECULATIVE

EXECUTION

split

sub-model

KA

KB

ALNINCA

valid

GET(KA)

Fig. 9. (a) The access types of different operations for the main components in XSTORE. Red and blue arrows denote read and write accesses.

(b) An example of model retraining for LR8 due to a split of LN101. The leaf node is named by its actual leaf-node number (ALN).

lookups on internal nodes, without the concern of RDMA-

based remote accesses. For leaf nodes, XSTORE follows the

technique proposed in DrTM+R [11]. Each tree operation at

the server is enclosed within an HTM region, that provides

strong atomicity in a single machine [5]. In addition, the

strong consistency feature of RDMA (where an RDMA op-

eration will abort an HTM transaction that accesses the same

memory location [52]) further extends the atomicity when

encountering remote accesses. Moreover, as the RDMA op-

eration is only cache-coherent within a cache line, XSTORE

adopts versioning [16] for consistent remote reads across

multiple cache lines. For the data stored in the leaf node

across multiple cache lines, a 16-bit version number is stored

both in the header of data and at the start of each cache line.

The remote reader matches these versions to detect inconsis-

tent read and must retry if the versions differ. Note that XS-

TORE hides these versions to applications by automatically

converting the data on reads and writes. Finally, the key is

also stored in the header of its value, which guarantees con-

sistent remote reads to the key and the value separately.

5.3.1 UPDATE

For UPDATE(K,V), the server first traverses XTREE to the

leaf node and updates the value with V if the key (K) exists.

Note that the update to the value will not change the index, so

that it will also not influence the learned cache and belongs

to static workloads.

Optimization: position hint. Although UPDATE(K,V) is a

server-side operation, it can still benefit from the learned

cache, especially when the server CPU becomes a bottle-

neck. The client could use XCACHE to predict a position

(the remote address of leaf nodes) for the key (see line 1-12

in Fig. 7) and then ship the update request together with the

position hint to the server. The server first checks the leaf

nodes (by matching incarnation) according to the hint and

updates the value if successful. It might skip index traver-

sal and relax the burden on server CPUs. The optimization

would increase the performance of update-heavy workloads,

like YCSB A (50% update and 50% read).

5.3.2 INSERT and DELETE

INSERT(K,V) and DELETE(K) are shipped to the server and

performed on XTREE, as is usual on B+tree. The in-place in-

serts and deletes require moving many key-value pairs within

a leaf node to preserve the order of keys. Thus, XTREE

chooses not to keep key-value pairs sorted within a leaf node,

which can avoid moving key-value pairs and reduces work-

ing set in the HTM region. Note that the lookup based on

the learned cache will not be affected since it fetches all keys

(N) of a leaf node. For DELETE(K), we always overwrite the

key and value slot for K with the last key-value pair in the

leaf node and update the counter (CNT). Further, the empty

leaf node will not be reclaimed to avoid thrashing and model

retraining. For INSERT(K,V), we directly append K and V to

the key and value slots in the leaf node if K does not exist

(see KA in Fig. 9b). Inserting a key-value pair into a full leaf

node will result in a node split (see KB in Fig. 9b). A new

leaf node is allocated, and all key-value pairs (plus the new

one) are evenly assigned to two leaf nodes in sorted order by

key. The original leaf node should increment its incarnation,

which makes the clients realize the split. The rest of the split

process will execute on the tree index as well as usual.

Retraining and invalidation. The insert of a new leaf node

(aka a split) will break the sorted (logical) order of leaf nodes

and cause model retraining. An interesting observation be-

hind our solution is that TT decouples model retraining from

index updating and allows a stale combination of XMODEL

and TT to provide a correct prediction for the lookup key

as long as it is not overlapped with a split. This is because

any insert will not cause data movement across leaf nodes,

except the split node. For example, LR8 initially maps KA

to logical node number LN2, which stores the leaf’s physical

address 102. After leaf node LN1 splits due to inserts (a new

leaf node with physical address 327), the latest logical node

number for KA is LN3 after retraining. Yet, the stale TT still

maps KA to physical address 102, the correct position of KA.

Thus, the client can still use a combination of stale models

and TTs to find the keys as long as they are not overlapped

with split leaf nodes.

Based on this, after a split, the server will individually

retrain the sub-model and its translation table in the back-

ground (see TRAIN_SUBMODEL in Fig. 6) and perform all

kinds of operations as usual based on XTREE. Meanwhile,

the clients can still directly perform read-only operations

based on XCACHE. The incorrect prediction can be detected

124 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

by incarnation mismatch between the leaf node and cached

TT entry (line 17 in Fig. 7) and results in a fallback, which

ships the operation to the server. The client will update

XCACHE with a retrained model and its translation table

fetched by the fallback. Noted that concurrent splits will not

affect model retraining in progress and just make it stale.

The new incarnation of the split leaf node ensures the client

with this new (stale) model to realize the change of concur-

rent splits. Each split will issue a retraining task. The train-

ing thread currently does not merge or optimize the pending

tasks to the same sub-model since it happens very rarely.

Optimization: speculative execution. A split of leaf node just

moves the second half of key-value pairs (sorted by key) to

its new sibling leaf node. Therefore, the prediction to the split

node must still be mapped to this node or its new sibling, like

LN101 and LN327 in Fig. 9b. Based on this observation, specu-

lative execution is enabled to handle the lookup operation on

a stale TT entry (i.e., incarnation check is failed). The client

will still find the lookup key in the keys fetched from the

split leaf node. If not found, the client will use its right-link

pointer to fetch (the second half) keys from its sibling (one

more RDMA READ). It means there is roughly half of the

chance to avoid incurring a performance penalty. Currently,

we only consider one sibling before using a fallback since

a cascading split happens rarely. This optimization is impor-

tant for insert-dominate workloads (e.g., YCSB D) since in-

sert operations and retraining tasks might keep server CPUs

busy; the fallbacks will also take server CPU time.

Model expansion. The growing size of key-value pairs in the

ML model will likely increase the prediction error, resulting

in performance degradation. Prior work [44] uses a sophisti-

cated model split to adapt its learned structure for dynamic

workloads, which demands physical data moving and atomic

top-model replacement. In response to this problem, XS-

TORE supports model expansion that increases the number of

sub-models in XMODEL at once (e.g., doubling) when neces-

sary (e.g., exceeding a threshold of min- and max-error). The

model expansion requires a complete training (see Fig. 6) on

XTREE to build a new version of XMODEL and TT. Note

that model expansion will not affect any requests performed

by both the server and the client for several reasons. First,

training models will not change or move data. Second, the

top model can be trained over incomplete data. Third, the

conflicting sub-model retraining could be made up later. Fi-

nally, the client can use the originally learned cache during

model expansion. Moreover, after deleting a large number of

key-value pairs, XSTORE can also resize XMODEL to shrink

the number of sub-models using a similar process.

5.4 Durability

XSTORE should log writes (updates, inserts, and deletes) to

log files stored in reliable storage for persistence and failure

recovery (e.g., server’s local disk). As RDMA-based remote

accesses are restricted to reads (lookups, gets, and scans),

they will not involve in logging and recovery. In addition,

XMODEL and TT are tightly associated with XTREE (e.g.,

virtual address). Thus, they should be rebuilt after recovery.

To ensure correct recovery from a machine failure, XS-

TORE can reuse the existing durability mechanism in the con-

current tree-based index extended by XTREE, like version

numbers [50, 33]. Each worker thread at the server appends

the log (key, value, and version) to its in-memory log buffer.

A corresponding logging thread, sharing the same core with

the worker thread, writes out the log buffer to its log file in

the background. The logger batches the log entries to avoid

the storage backend becoming the bottleneck. During recov-

ery, XSTORE scans log files to sort logs of the same key by

its version number and applies the latest log of keys in paral-

lel. Finally, XSTORE rebuilds XMODEL and TT by training

over recovered XTREE.

5.5 Scaling out XSTORE

XSTORE follows a coarse-grained scheme [57], the domi-

nant solution, to distribute an ordered key-value store span

multiple servers (scale-out). XSTORE first assigns key-value

pairs to the servers based on a range-based partitioning func-

tion for the keys. Then each server constructs XTREE indi-

vidually for its assigned key-value pairs and further trains

a corresponding XMODEL and TT. Note that the boundary

keys should be added to the training set to cover the gap of

non-existent keys between neighboring servers.

The client maintains a separate learned cache for each

server and uses the same partitioning function to decide

which server should perform a given request. Based on it, the

client can perform requests as mentioned in §5.2 and §5.3,

with one exception—SCAN(K,N) reads a range of key-value

pairs span multiple servers. After the lookup of K on a speci-

fied server, the client might find that the expected number (N)

exceeds the remaining key-value pairs in this server. Starting

from the first logical leaf node on the next server, the client

can predict the leaf nodes that contain the rest of key-value

pairs. Finally, the client uses one RDMA READ for each

server involved to fetch these leaf nodes.

6 Discussion

Support variable-length keys. XSTORE currently supports

fixed-length key and variable/fixed-length value. To support

variable-length key, XSTORE should store a fat pointer in

the leaf node of XTREE (instead of the actual key), which

encodes the size and position of the key. This scheme can

traverse variable-length key locally by CPUs (i.e., server-

centric design), while it would be hard to do it efficiently by

using one-sided RDMA READs (i.e., client-direct design).

XSTORE has to retrieve the actual keys using an additional

RDMA READ for each (Line 21 in Fig. 7). Therefore, XS-

TORE further stores a fixed hash code of the key within the fat

pointer. Consequently, the client could directly compare the

hash codes instead of keys, after fetching the leaf node for a

given key. Note that the actual (variable-length) key should

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 125

Table 1: YCSB workload description. R, U, I, M, and S denote

read, update, insert, read-modify-update, and scan, respectively.

Scan accesses N values, where N is uniformly distributed in [1,100].

YCSB A B C D E F

Type R : U R : U R R : I S : I R : M

Ratio (%) 50 : 50 90 : 10 100 95 : 5 95 : 5 50 : 50

be checked to avoid a hash collision. For example, the client

can fetch the value associated with the key. We plan to extend

XSTORE to support variable-length keys in future work.

Data distribution. XSTORE assumes machine learning (ML)

models can effectively learn various data distributions (e.g.,

log-normal [29, 44, 15]). Based on it, we believe there is a

trade-off among the memory consumption of XCACHE, the

retraining costs of XMODEL, and the performance of XS-

TORE. When using simple models (e.g., linear regression)

for fast model retraining, XSTORE has to use many models

to achieve high accuracy for irregular data distributions. For

such a scenario, clients can only cache partial sub-models

due to the increased model memory consumptions. On the

other hand, XSTORE could use complex models (e.g., neu-

ral network (NN)) to achieve high accuracy with few models.

Yet, NN is slow on model retraining and may impact the per-

formance under dynamic workloads (e.g., inserts), since the

client may fall back more often due to stale XCACHE.

7 Evaluation

7.1 Experimental Setup

Testbed. Without explicit mention, we use one server ma-

chine and (up to) 15 client machines. Each machine has

two 12-core Intel Xeon CPUs, 128GB of RAM, and two

ConnectX-4 100Gbps IB RNICs. Each RNIC is used by

threads on the same socket and connected to a Mel-

lanox 100Gbps IB Switch. The server registers the memory

with huge pages to reduce RNIC’s page translation cache

misses [16].

Workloads. We use YCSB [13] and two production work-

loads from Nutanix [30]. We mainly focus on YCSB as it

contains various types of workloads [12]: update heavy (A),

read mostly (B), read only (C), read latest (D), short ranges

(E), and read-modify-write (F). Table 1 shows a summary

of YCSB workloads (A-F). Since small requests dominate

in real-life workloads [4], we evaluate KV stores with 100

million KV pairs initially (a 7-level tree-based index and a

leaf level), where 8-byte key and 8-byte value are used, simi-

lar to prior work [33, 35, 24, 44]. Both Uniform and Zipfian

key distributions are evaluated for all YCSB workloads. Note

that YCSB D only has Uniform and Latest key distributions;

the client is likely to query its recently inserted keys in Latest

distribution. In addition, each client generates their insert key

uniformly and randomly in YCSB D and E. The two produc-

tion workloads both have a profile of 57:41:2 write:read:scan

ratio, while the access patterns of them are relatively uniform

(Prod1) and skewed (Prod2), respectively. Both of them have

500 million KV pairs with 8-byte key and 64-byte value. Fi-

Table 2: Data distribution description for evaluating datasets.

Name Description Workloads

L Linear YCSB[13], Nutanix[30]

NL Noised linear YCSB[13]

OSM Longitude location Open Street Map[2]

nally, besides the default data distribution of the above work-

loads, we also use two synthetic and one real-life datasets

(see Table 2) to study the behavior of learned cache in depth.

Comparing targets. We compare XSTORE to three state-of-

the-art RDMA-based ordered KV stores: DrTM-Tree [11]

and eRPC+Masstree [24] (server-centric design), as well

as Cell [35] (client-direct design). eRPC+Masstree (EMT)

adopts eRPC [24] (RDMA-based RPC library) to extend

Masstree [33] (in-memory ordered KV store). We implement

DrTM-Tree and Cell in the same framework to provide an

apple-to-apple comparison with two typical designs, but also

because DrTM-Tree uses similar B+tree [50] and RDMA

library [51] with XSTORE, and Cell is not open-source.8

We further consider RDMA-Memcached v0.9.6 [22] (RMC)

in our experiments, which is an RDMA version of mem-

cached [1], a widely used network-attached KV in industry.

All systems fully utilize all of the 24 CPU cores (with hy-

perthreading disabled) and two RNICs. As EMT and RMC

cannot use multiple NICs simultaneously, we deploy two

instances at the server on different sockets, and each in-

stance uses the RNIC attached to that socket. This actually

makes them faster during experiments since it avoids cross-

socket synchronizations. XSTORE uses (up to) two auxil-

iary threads to train ML models in the background for dy-

namic workloads. XTREE is configured with a fanout of 16.

XMODEL uses 500K sub-models for static workloads and

2M models for dynamic workloads to avoid model expan-

sion during evaluation (because XSTORE can insert more

than 150M KV pairs in 60s). In addition, logging is disabled

in all systems, and the server hosts all data in main memory.

7.2 YCSB Performance

Fig. 10 compares the peak throughput of various RDMA-

based key-value stores for YCSB with Uniform and Zip-

fian distributions, where all systems are saturated by up

to 15 client machines. Note that RMC performs poorly in

all experiments as it is bottlenecked by CPU synchroniza-

tions [43, 31]. Due to space limitations, we skip detailed dis-

cussion of experimental results on it.

Read-only workload (YCSB C). For Uniform distribution,

XSTORE can achieve 82 million requests per second, even

a little higher than the optimal throughput (a whole-index

8For DrTM-Tree, our experimental results were confirmed by the authors.

For Cell, we follow the same caching strategy—the client caches nodes

at least four levels above the leaf node at the clients with LRU policy to

minimize churn and maximize hits. Based on a comparison against pub-

lished numbers, we believe that the large performance difference between

XSTORE and other systems (e.g., 27M reqs/s from our implementation vs.

0.95M reqs/s from Cell [35] for YCSB A with Zipfian distribution) offsets

performance variations due to system and implementation details.

126 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

YCSB-A YCSB-B YCSB-C YCSB-D YCSB-E YCSB-F

7
.5

6
.7

1
0

.2

Uniform

5
.7

P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

DrTM-Tree

Cell

XStore

EMT

RMC

 0

 20

 40

 60

 80

 100

YCSB-A YCSB-B YCSB-C YCSB-D YCSB-E YCSB-F

7
.3

6
.7

1
0

.3

Zipf/Latest

5
.7

P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

DrTM-Tree

Cell

XStore

EMT

RMC

Fig. 10. Comparison of throughput on various RDMA-based KVs

using YCSB. Note that RMC does not support range queries.

cache), since it only uses one RDMA READ to fetch one

leaf node per lookup; the payload is 16B smaller by avoid-

ing a sophisticated mechanism for consistency (i.e., min-max

fence keys [35]). The prediction error of XCACHE is just

0.74. This number outperforms EMT, DrTM-Tree, and Cell

by 3.9×, 3.7×, and 5.9×, respectively. Both DrTM-Tree and

EMT are bottlenecked by server CPUs, while Cell is bottle-

necked by RDMA amplifications; it still needs four RDMA

READs to traverse tree nodes even index caching is enabled.

For Zipfian distribution, XSTORE can still outperform

EMT, DrTM-Tree, and Cell by 2.4×, 2.5×, and 4.6×, re-

spectively. The systems with server-centric design perform

better due to better CPU cache locality. However, the peak

throughput of XSTORE drops by 18% since RDMA has rel-

atively poor performance when massive clients read a small

range of memory simultaneously. We suspect that our cur-

rent RNIC (ConnectX-4) checks conflicts between one-sided

RDMA operations based on request’s address [27], so that

these operations may compete for NIC’s internal processing

resources, even if there is no conflict.

Static read-write workloads (YCSB A, B, and F). For

update-heavy workloads (YCSB A), XSTORE is still bottle-

necked by server CPUs for handling updates. However, com-

pared to server-centric KVs (e.g., DrTM-Tree and EMT), the

clients in XSTORE can directly perform read requests with

the help of learned cache, which completely bypasses server

CPUs. Therefore, XSTORE can still provide up to 2.2× and

2.3× (from 1.5× and 2.0×) throughput improvements for

Uniform and Zipfian distributions, respectively, compared

to other KVs. For read-mostly workloads (YCSB B), the

speedup of throughput in XSTORE further reaches up to

5.3× (from 3.1×). There are two reasons: (1) the read re-

quests are less skewed interleaved with (10%) updates, com-

pared to read-only workloads (YCSB C); (2) the server of

XSTORE has not been saturated (less than 40% of CPU uti-

lizations); thus it is still sufficient to perform updates, com-

pared to update-heavy workloads (YCSB A). The perfor-

mance of XSTORE on YCSB F is somewhere in between

since it has about 75% reads.

 0

 20

 40

 60

 80

 0 10 20 30 40 50 60T
h

ro
u

g
h

p
u

t
(M

 t
x
n

s
/s

)

Time (s)

 0

 20

 40

 60

 80

 0 10 20 30 40 50 60T
h

ro
u

g
h

p
u

t
(M

 t
x
n

s
/s

)

Time (s)

DrTM-Tree

Cell

XStore

Optimal

Fig. 11. The performance timeline of YCSB D with (a) Uniform

and (b) Latest workloads.

Dynamic workloads (YCSB D and E). The throughput of ev-

ery system is impacted by dynamic workloads due to the con-

tention between reads and inserts. For DrTM-Tree and EMT,

the contention happens on the tree-based index. For XSTORE

and Cell, the performance slowdown is mainly due to cache

invalidations. However, Cell only caches the top four levels,

where node split is rare. The overhead in XSTORE mainly

comes from two parts: (1) cache invalidations would increase

RDMA operations due to fallbacks (RDMA-based RPC) and

speculative execution (50% one more RDMA READ); (2) a

dynamic dataset is always harder to learn than a static dataset

due to the randomly inserted new keys; the prediction error

would stably increase to 8.3 for YCSB D.9 Fortunately, the

clients can still use stale learned cache for most read requests,

and model retraining is also very fast. Thus, for YCSB D,

XSTORE can provide up to 3.5× and 3.2× (from 2.7× and

1.9×) speedup and achieve 53M and 48M reqs/s throughput

for Uniform and Latest distributions, respectively. For YCSB

E, the performance is dominated by scanning a large range of

KV pairs. Thereby the difference is relatively small, and XS-

TORE outperforms other systems by up to 1.8× (from 1.4×).

Fig. 11 further shows the timelines for YCSB D with Uni-

form and Latest workloads. The optimal throughput of tree-

based index cache can only achieve about 25M reqs/s, more

than 3× lower than its read-only throughput (78M reqs/s),

and suffers from severe performance fluctuations due to fre-

quent cache invalidations, especially for Uniform distribu-

tion. For Latest distribution, each client will focus on a small

range of KV pairs (latest inserted by itself), which signifi-

cantly reduces cache misses and invalidations due to access-

ing internal nodes split by other clients. XSTORE preserves

relatively high throughput and has steady cache invalidation

rates, 5% for Uniform, and 21% for Latest. It is mainly be-

cause stale learned cache can still provide a correct predic-

tion for most read requests. The speculative execution also

helps to halve the rate (from 10% to 5%). In addition, in Lat-

est distribution, each client will frequently access KV pairs

just inserted. If the insert incurs a node split, XSTORE might

not fetch a new model immediately (wait for model retrain-

ing) and would increase cache misses.

CPU utilizations of XSTORE. Note that XSTORE uses two

auxiliary threads to retrain XMODEL for dynamic work-

9The data distribution of dynamic workloads (i.e., YCSB D and E) is close

to noised linear (NL). Hence, XSTORE can only achieve 61M reqs/s for

YCSB D with 2M models even no inserts (see Fig. 14b and Fig. 15d).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 127

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

M
e

d
ia

n
 l
a

te
n

c
y
 (

µ
s
)

Throughput (M reqs/s)

DrTM-Tree

Cell

XStore

EMT

RMC

 0 5 10 15 20

Median Latency (µs)

NIC RPC

NIC IDX CPU IDX

NIC VAL

Optimal

RMC

EMT

XStore

Cell

DrTM-Tree

Fig. 12. Comparison of (a) throughput-latency and (b) end-to-end

median latency at low load for YCSB-C with a uniform distribution.

loads, causing increased server CPU usage. Yet, XSTORE

still saves server CPUs compared to server-centric KVs

(e.g., DrTM-Tree) due to handling read requests in the

clients. For example, DrTM-Tree saturates all CPUs (24 ×

100%) for YCSB D, while XSTORE just consumes under

half for serving insert requests and retraining sub-models.

End-to-end latency. Fig. 12a shows the throughput-latency

curves for YCSB C with a uniform distribution. Due to space

limitations, we omit other workloads that are similar. When

using few clients (low load), server-centric KVs have lower

latency, as one RPC round trip is faster than two one-sided

RDMA operations, namely DrTM-Tree (NIC_RPC) vs. XS-

TORE (NIC_IDX and NIC_VAL) in Fig. 12b. However, the

throughput of them (e.g., DrTM-Tree) is saturated by CPUs

much earlier (about 20M reqs/s), and the latency would

rapidly collapse. On the other hand, the latency of Cell is

limited by multiple RDMA READs for each lookup (NIC_-

IDX) even at low load. In contrast, XSTORE only needs one

RDMA READ, thanks to the learned cache. As a reference,

we provide the latency of using whole-index cache (Optimal)

that also takes just one RDMA READ. However, travers-

ing tree-based index locally still takes more time (2.14µs

in CPU_IDX) due to many random memory accesses, com-

pared to XSTORE (0.35µs). Moreover, XSTORE can keep

low latency at much high load (82M reqs/s with median la-

tency of 16µs) by eliminating CPU bottleneck at the server.

 0

 20

 40

 60

Prod1 Prod2

P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

DrTM-Tree

Cell

XStore

EMT

Nutanix

 0

 60

 120

 180

 0 1 2 3 4 5 6P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

Number of server RNICs

Uniform

Zipfian

YCSB C

Fig. 13. (a) Performance comparison with production workloads.

(b) Scalability of XSTORE on YCSB C with the increase of RNICs.

7.3 Production Workload Performance

Fig. 13a shows the peak throughput of XSTORE and other

systems on two write-intensive production workloads, simi-

lar to YCSB A. The performance is also mainly bottlenecked

by server CPUs due to 57% of writes. In the first workload

(Prod1), XSTORE outperforms DrTM-Tree, EMT, and Cell

by 1.44×, 1.55×, and 1.35×, respectively. The speedup in

the second workload (Prod2) increases to 1.75×, 1.80×, and

1.60× since this workload is more skewed.

 0

 300

 600

 900

 1200

 1500

 1800

5 10 20 100 200

S
p

e
e

d
 (

K
 m

o
d

e
ls

/s
)

Average keys per model

1 thread

2 threads

YCSB E invalidation

YCSB D invalidation

 0

 15

 30

 45

 60

 75

 90

 0 0.4 0.8 1.2 1.6 2 2.4 2.8

P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

Insertion speed (M reqs/s)

2 threads

1 thread

 0

 20

 40

 60

 80

-40 -30 -20 -10

#models: 100K
#keys: 10M

T
h

p
t

(M
 r

e
q

s
/s

)

-2 -1 0 1 2 3 4 5 6 7 8

training-start model-commit: 4s

#keys: 20M #models: 200K

Model Expansion

Time (s)
20 30 40

Fig. 14. (a) Comparison between sub-model retraining and invali-

dation speed. (b) Performance of XSTORE with the increase of in-

sertion speed. (c) Performance timeline with model expansion.

7.4 Scale-out Performance

Fig. 13b shows the scalability of XSTORE with up to 6

server RNICs (3 server machines). We scale XSTORE by

range-based partitioning a YCSB dataset with 600M keys

into different numbers of RNICs. The performance is mea-

sured using up to 13 client machines (26 RNICs) with a

read-only workload. For a uniform request distribution, XS-

TORE achieve a peak throughput of 145M reqs/s, which is

limited by the number of client machines. Note that, on our

testbed, XSTORE needs about eight client RNICs to saturate

one server RNIC. XSTORE scales to 1.97× and 2.81× by us-

ing 2 and 3 server RNICs, respectively. For a skewed request

distribution (Zipfian), XSTORE just reaches 92M reqs/s by

using 6 server RNICs since most requests (more than 35%)

are sent to one RNIC. It throttles the entire system.

7.5 Model (Re-)Training and Expansion

Fig. 14a shows the throughput of training models using one

or two threads and model invalidation speed for dynamic

workloads (YCSB D and E). Empirically, using two threads

for model retraining is sufficient for XSTORE to reach a

throughput of 53M reqs/s (YCSB D). XSTORE can retrain

sub-models individually and takes 8µs on average to retrain

a model with 200 keys. Note that the insertion speed reaches

about 2.65M reqs/s for YCSB D (5% inserts). For dynamic

workloads, the throughput of XSTORE would decrease when

stale sub-models can not retrained in time. To quantify the

performance overhead, we evaluate XSTORE with the in-

crease of insertion speed, similar to YCSB D (except that

one client is dedicated to insert key-value pairs with a given

speed, and the rest of clients still issue reads). As shown in

Fig. 14b, the throughout drops below 40% (61M vs. 37M

reqs/s) under the peak insertion speed (2.8M reqs/s, limited

by server CPUs) when using a single retraining thread. Fur-

ther, when using two threads, the performance degradation is

limited to 13%.

Finally, the growing size of KV pairs in the ML model

128 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 200

 400

 600

 800

 1000

500K 1M 5M 10M 20M

A whole-tree index
(optimal)

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

Number of models

TT

XModel

XCache

 0

 20

 40

 60

 80

 100

 0 30 60 90 120 150

Uniform

P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

Memory usage (MB)

Learned cache

Tree-based cache

 0

 20

 40

 60

 80

 100

 0 30 60 90 120 150

Zipfian

P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

Memory usage (MB)

Learned cache

Tree-based cache
 0

 20

 40

 60

 80

 100

500K 1M 5M 10M 20M

P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

Number of models

L

NL

OSM
 0

 2

 4

 6

 8

 10

500K 1M 5M 10M 20MM
e

d
ia

n
 L

a
te

n
c
y
 (

µ
s
)

Number of models

L

NL

OSM

Fig. 15. (a) Memory usage of learned cache (XCACHE). Comparison of peak throughput between learned cache and tree-based cache with

different memory footprint at the client for YCSB C using (b) Uniform and (c) Zipfian distributions. Comparison of (d) peak throughput and

(e) median latency on XSTORE with the increase of models for various data distributions (see Table 2).

will likely increase the prediction error, resulting in perfor-

mance degradation. XSTORE supports model expansion to

increase models in the background if needed. As shown in

Fig. 14c, starting from 10M keys and 100K models, several

clients continuously insert KV pairs, and the performance of

XSTORE slowly degrades for read requests. When the aver-

age number of keys per model exceeds 200 (a user-defined

threshold), the server starts to train a new XMODEL with

double sub-models (200K) in the background from 0s to 4s,

with negligible overhead. After that, the server will commit

the new model, and clients could individually fetch new sub-

models on demand. The performance resumes rapidly in 2s.

7.6 Memory Footprint of XCACHE

Fig. 15a presents the memory usage of XCACHE with the

increase of sub-models for 100M KV pairs. Note that the

entire XTREE has 654MB internal nodes. The size of TT

depends on the number of leaf nodes. Since each leaf node

has 16 slots for KV pairs, TT occupies around 98MB as the

tree-based index is half-full. Thus, TT would dominate the

memory usage for a small XMODEL since each sub-model

is 14B large. To achieve peak throughput, XMODEL with

500K sub-models is enough for read-only workloads (YCSB

C) with 100M KV pairs, while it needs 2M sub-models for

dynamic workloads (YCSB D) with 250M KV pairs.

As shown in Fig. 15b and Fig. 15c, compared to conven-

tional tree-based index cache, XSTORE can provide compet-

itive performance with much lower memory footprint at the

clients, even (almost) no memory footprint. XCACHE prefers

to store XMODEL, which may only occupy 1% memory

(6.8M vs. 654MB). It means that, for YCSB C with Uniform

and Zipfian distributions, XSTORE can achieve 74% and

87% of optimal throughput (a whole-index cache), where the

client uses one additional RDMA READ to fetch several 8-

byte TT entries for each lookup. Even if the client only stores

a 16-byte top model, XSTORE can still achieve about 40M

reqs/s by using one RDMA READ to fetch a 14-byte sub-

model first.

7.7 Data Distribution

We further evaluate XSTORE on a 100M-key dataset with

different data distributions in Table 2 using a read-only work-

load (YCSB C). The throughput of XSTORE is sensitive to

the prediction error due to bandwidth amplification for re-

trieving more keys. Thus, XSTORE requires more simple

sub-models (e.g., LR) to learn complex data distributions

(e.g., OSM) for the same prediction error. For example, as

shown in Fig. 15d, XSTORE requires about 20M sub-models

for OSM to achieve a peak throughput of 80M reqs/s. How-

ever, as shown in Fig. 15e, the median latency at a low load is

relatively stable for various data distributions, as the latency

of RDMA is insensitive to payload sizes when the network

is not saturated [39].

Table 3: The impact of durability on throughput (M reqs/s).

YCSB /Uniform A B C D E F

w/o logging 41 80 82 53 10.2 36

w logging 31 78 82 51 9.9 33

7.8 Durability

To study the overhead of logging for durability, we evalu-

ate the peak throughput of XSTORE for various YCSB work-

loads with logging to SSD enabled. As shown in Table 3,

the performance drops by up to 24% for update-heavy work-

loads (e.g., YCSB A) due to additional writes to SSD for

write operations (e.g., UPDATE). On the other hand, it does

not degrade the performance of read-heavy workloads much

(e.g., YCSB C). First, XSTORE executes read operations

(e.g., GET) using one-sided RDMA primitives, bypassing the

logging threads thoroughly. Second, XSTORE flushes the

logs in a batched manner [33], which hides the impact of

slow storage (§5.4).

7.9 Variable-length Value

By default, XSTORE directly stores the value in leaf nodes

(inline value). To support variable-length values, XSTORE

stores a 64-bit fat pointer (the size and the position of value)

in leaf nodes (indirect value). Consequently, the client needs

an additional RDMA READ to retrieve the variable-length

value (Line 13 in Fig. 7). Fig. 16a shows the performance of

XSTORE by using inline and indirect value. Using indirect

value causes up to 43% (from 8%) performance degradation,

compared to using inline value. The performance gap is clos-

ing with the increase of values (e.g., 1KB) since the cost of

one additional RDMA READ becomes trivial.

7.10 Application Performance

To demonstrate the effectiveness of XSTORE in application

workloads, we have integrated it into DrTM+H [51], a state-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 129

 0

 20

 40

 60

 80

 100

16 32 64 128 256 512 1K 2K

P
e

a
k
 T

h
p

t
(M

 r
e

q
s
/s

)

Value size (Bytes)

Inline value

Indirect value

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0 100 200 300 400 500 600

M
e

d
ia

n
 l
a

te
n

c
y
 (

m
s
)

Thpt per machine (K reqs/s)

DrTM+X

DrTM+H

Fig. 16. (a) Performance of XSTORE by using inline and indirect

value. (b) Comparison of DrTM+H on TPC-C w/ and w/o XSTORE.

of-the-art distributed OLTP system that leverages RDMA-

enabled KVS to store tuples. The vanilla DrTM+H only

performs unordered index lookups (hash table) by using

one-sided RDMA primitives [52]. DrTM+H with XSTORE

(called DrTM+X) can further perform ordered index lookups

(B+tree) through one-sided RDMA operations.

Experimental setup. We use TPC-C [45] to compare the per-

formance of DrTM+H and DrTM+X. Note that both of them

run in an asymmetric setting, which is widely adopted in

cloud databases [55, 47, 7].10 More specifically, we deploy

96 warehouses on four data servers and use the rest of the ma-

chines in our testbed as clients. Both DrTM+H and DrTM+X

rely on the data server to update tuples, while DrTM+X uses

one-sided RDMA READs to retrieve tuples from the data

server. Therefore, we use a read-heavy TPC-C workload in

the experiment, which consists of NEW-ORDER transactions

(10%) and ORDER-STATUS transactions (90%). NEWORDER

transaction inserts a new order with five to fifteen order lines;

ORDERSTATUS transaction retrieves the recently inserted or-

ders first and then scans related order lines.

Performance. As shown in Fig. 16b, XSTORE improves the

peak throughput of DrTM+H by 2.27×, reaching 490K re-

qs/s. DrTM+H is bottlenecked by server CPUs since the

data server traverses the index and performs the read request

locally. Consequently, the read requests of ORDERSTATUS

transactions would compete CPUs with the write requests of

NEWORDER transactions at the servers. Differently, DrTM+X

relies on RNICs at the clients to lookup and retrieve tu-

ples for ORDERSTATUS transactions. It relaxes the burden on

server CPUs and improves performance significantly.

8 Related Work

RDMA-enabled key-value stores. XSTORE continues the

line of research of RDMA-based in-memory key-value

stores [31, 34, 25, 16, 52, 35, 43, 57, 8, 48], but explores

a new design point, namely learned cache, that leverages

machine learning (ML) models as index cache for RDMA-

based, tree-backed key-value store. There have been many

efforts to investigate RDMA-based unordered in-memory

KVs which focus on such as improving the communication

layer (e.g.,RPC) [25, 24, 10], selecting appropriate hash ta-

bles [34, 16, 52], supporting index caching [52, 48], and en-

abling in-network processing [31, 40].

10Prior work [51] has shown that using (two-sided) RDMA-based RPC is a

better choice for GET operations in a symmetric setting [17].

There is an increasing interest in optimizing tree-backed

in-memory key-value stores with RDMA. Cell [35] allows

clients to traverse server’s B+Tree using RDMA READs and

caches the top three levels of tree index. FaRM B-Tree [17]

caches B-tree’s internal nodes at each server to accelerate

lookups using RDMA, while it is costly and error-prone for

dynamic workloads [38]. Ziegler et al. [57] studies differ-

ent RDMA-based design alternatives for tree-based index, in-

cluding how the tree should be distributed and the choices of

RDMA primitives for tree operations.

Learned indexes and their applications in systems. Kraska

et al. [29] argue that all existing index structures can be

replaced with machine learning (ML) models, which are

termed “learned index”, and further propose several example

learned indexes to replace various index structures, includ-

ing tree-based range index. There have been several recent

efforts of adapting learned indexes to handle dynamic work-

loads [44, 15, 36]. XIndex [44] adds a delta index to each

sub-model in a learned index and proposes a new concur-

rent compaction scheme to split models. ALEX [15] uses a

gapped array to accommodate new key-value pairs, similar to

the leaf node of XTREE. However, it is non-trivial to enable

the gapped array in a distributed system since it requires com-

plex coordinations when expanding the array upon full. Bour-

bon [14] is a log-structured merge (LSM) tree that leverages

the learned index to speedup lookups. FITING-TREE [18]

is a form of a learned index to balance prediction error and

memory cost. It uses extra sorted buffers to store inserts and

merges them back when reaching a threshold. SIndex [49]

is a concurrent learned index for variable-length string keys.

Differently, XSTORE proposes a hybrid architecture to lever-

age ML models as RDMA-based index cache, instead of re-

placing or augmenting traditional index structures.

9 Conclusion

This paper presents XSTORE, an RDMA-based in-memory

ordered key-value store with a new hybrid architecture to

leverage ML model as RDMA-based index cache. Our ex-

perimental results show the high performance of XSTORE.

10 Acknowledgment

We sincerely thank our shepherd Andrea C. Arpaci-Dusseau

and the anonymous reviewers for their insightful sugges-

tions. We also thank Zhaoguo Wang, Chuzhe Tang, Zhiyuan

Dong and Youyun Wang for sharing their experience on

learned index, and Xiating Xie for the valuable feedback.

This work was supported in part by the Key-Area Research

and Development Program of Guangdong Province (No.

2020B010164003), the National Natural Science Foundation

of China (No. 61772335, 61925206, 61732010), the High-

Tech Support Program from Shanghai Committee of Science

and Technology (No. 19511121100), and a research grant

from Huawei Technologies. Corresponding author: Rong

Chen (rongchen@sjtu.edu.cn).

130 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Memcached. https://memcached.org/.

[2] OpenStreetMap (OSM) on AWS. https://aws.amazon.

com/public-datasets/osm, 2020.

[3] AGUILERA, M. K., KEETON, K., NOVAKOVIC, S., AND

SINGHAL, S. Designing far memory data structures: Think

outside the box. In Proceedings of the Workshop on Hot Top-

ics in Operating Systems (New York, NY, USA, 2019), HotOS

’19, Association for Computing Machinery, p. 120–126.

[4] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S.,

AND PALECZNY, M. Workload analysis of a large-scale key-

value store. In Proceedings of the 12th ACM SIGMETRIC-

S/PERFORMANCE Joint International Conference on Mea-

surement and Modeling of Computer Systems (New York, NY,

USA, 2012), SIGMETRICS ’12, ACM, pp. 53–64.

[5] BLUNDELL, C., LEWIS, E. C., AND MARTIN, M. M. Sub-

tleties of Transactional Memory Atomicity Semantics. IEEE

Computer Architecture Letters 5, 2 (2006).

[6] BRONSON, N., AMSDEN, Z., CABRERA, G., CHAKKA,

P., DIMOV, P., DING, H., FERRIS, J., GIARDULLO, A.,

KULKARNI, S., LI, H. C., ET AL. Tao: Facebook’s dis-

tributed data store for the social graph. In USENIX Annual

Technical Conference (2013), pp. 49–60.

[7] CAO, W., LIU, Z., WANG, P., CHEN, S., ZHU, C., ZHENG,

S., WANG, Y., AND MA, G. Polarfs: an ultra-low latency

and failure resilient distributed file system for shared storage

cloud database. Proceedings of the VLDB Endowment 11, 12,

1849–1862.

[8] CASSELL, B., SZEPESI, T., WONG, B., BRECHT, T., MA, J.,

AND LIU, X. Nessie: A decoupled, client-driven key-value

store using rdma. IEEE Transactions on Parallel and Dis-

tributed Systems 28, 12 (2017), 3537–3552.

[9] CHEN, H., CHEN, R., WEI, X., SHI, J., CHEN, Y., WANG,

Z., ZANG, B., AND GUAN, H. Fast in-memory transaction

processing using rdma and htm. ACM Trans. Comput. Syst.

35, 1 (July 2017).

[10] CHEN, Y., LU, Y., AND SHU, J. Scalable rdma rpc on reli-

able connection with efficient resource sharing. In Proceed-

ings of the Fourteenth EuroSys Conference 2019 (New York,

NY, USA, 2019), EuroSys ’19, Association for Computing

Machinery.

[11] CHEN, Y., WEI, X., SHI, J., CHEN, R., AND CHEN, H. Fast

and general distributed transactions using rdma and htm. In

Proceedings of the Eleventh European Conference on Com-

puter Systems (2016), ACM, p. 26.

[12] COOPER, B. F. YCSB Core Workloads. https://

github.com/brianfrankcooper/YCSB/wiki/

Core-Workloads.

[13] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISH-

NAN, R., AND SEARS, R. Benchmarking cloud serving sys-

tems with YCSB. In Proceedings of the 1st ACM Symposium

on Cloud Computing (2010), SoCC’10, ACM, pp. 143–154.

[14] DAI, Y., XU, Y., GANESAN, A., ALAGAPPAN, R., KROTH,

B., ARPACI-DUSSEAU, A., AND ARPACI-DUSSEAU, R.

From wisckey to bourbon: A learned index for log-structured

merge trees. In 14th USENIX Symposium on Operating Sys-

tems Design and Implementation (2020), OSDI ’20, USENIX

Association.

[15] DING, J., MINHAS, U. F., YU, J., WANG, C., DO, J., LI,

Y., ZHANG, H., CHANDRAMOULI, B., GEHRKE, J., KOSS-

MANN, D., LOMET, D., AND KRASKA, T. Alex: An updat-

able adaptive learned index. In Proceedings of the 2020 ACM

SIGMOD International Conference on Management of Data

(New York, NY, USA, 2020), SIGMOD ’20, Association for

Computing Machinery, p. 969–984.

[16] DRAGOJEVIĆ, A., NARAYANAN, D., HODSON, O., AND

CASTRO, M. FaRM: Fast remote memory. In Proceedings of

the 11th USENIX Conference on Networked Systems Design

and Implementation (2014), NSDI’14, USENIX Association,

pp. 401–414.

[17] DRAGOJEVIĆ, A., NARAYANAN, D., NIGHTINGALE, E. B.,

RENZELMANN, M., SHAMIS, A., BADAM, A., AND CAS-

TRO, M. No compromises: Distributed transactions with con-

sistency, availability, and performance. In Proceedings of the

25th Symposium on Operating Systems Principles (New York,

NY, USA, 2015), SOSP’15, ACM, pp. 54–70.

[18] GALAKATOS, A., MARKOVITCH, M., BINNIG, C., FON-

SECA, R., AND KRASKA, T. Fiting-tree: A data-aware in-

dex structure. In Proceedings of the 2019 International

Conference on Management of Data (New York, NY, USA,

2019), SIGMOD ’19, Association for Computing Machinery,

p. 1189–1206.

[19] GRAEFE, G. Write-optimized b-trees. In Proceedings of the

Thirtieth International Conference on Very Large Data Bases

(2004), VLDB ’04, VLDB Endowment, p. 672–683.

[20] GUO, C., WU, H., DENG, Z., SONI, G., YE, J., PADHYE,

J., AND LIPSHTEYN, M. Rdma over commodity ethernet

at scale. In Proceedings of the 2016 ACM SIGCOMM Con-

ference (New York, NY, USA, 2016), SIGCOMM’16, ACM,

pp. 202–215.

[21] GUPTA, M., COTTER, A., PFEIFER, J., VOEVODSKI, K.,

CANINI, K., MANGYLOV, A., MOCZYDLOWSKI, W., AND

VAN ESBROECK, A. Monotonic calibrated interpolated look-

up tables. J. Mach. Learn. Res. 17, 1 (Jan. 2016), 3790–3836.

[22] HIGH-PERFORMANCE BIG DATA (HIBD). RDMA-based

Memcached (RDMA-Memcached). http://hibd.cse.

ohio-state.edu.

[23] JONAS, E., SCHLEIER-SMITH, J., SREEKANTI, V., TSAI,

C.-C., KHANDELWAL, A., PU, Q., SHANKAR, V., CAR-

REIRA, J., KRAUTH, K., YADWADKAR, N., ET AL. Cloud

programming simplified: A berkeley view on serverless com-

puting. arXiv preprint arXiv:1902.03383 (2019).

[24] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. Datacen-

ter rpcs can be general and fast. In 16th {USENIX} Sym-

posium on Networked Systems Design and Implementation

({NSDI} 19) (2019), pp. 1–16.

[25] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Us-

ing rdma efficiently for key-value services. In Proceedings

of the 2014 ACM Conference on SIGCOMM (2014), SIG-

COMM’14, ACM, pp. 295–306.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 131

[26] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Fasst:

fast, scalable and simple distributed transactions with two-

sided (rdma) datagram rpcs. In 12th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 16)

(2016), USENIX Association, pp. 185–201.

[27] KAMINSKY, A. K. M., AND ANDERSEN, D. G. Design

guidelines for high performance rdma systems. In 2016

USENIX Annual Technical Conference (2016), p. 437.

[28] KLIMOVIC, A., WANG, Y., STUEDI, P., TRIVEDI, A., PFEF-

FERLE, J., AND KOZYRAKIS, C. Pocket: Elastic ephemeral

storage for serverless analytics. In Proceedings of the 13th

USENIX Conference on Operating Systems Design and Im-

plementation (USA, 2018), OSDI’18, USENIX Association,

p. 427–444.

[29] KRASKA, T., BEUTEL, A., CHI, E. H., DEAN, J., AND

POLYZOTIS, N. The case for learned index structures. In

Proceedings of the 2018 International Conference on Man-

agement of Data (2018), ACM, pp. 489–504.

[30] LEPERS, B., BALMAU, O., GUPTA, K., AND ZWAENEPOEL,

W. Kvell: the design and implementation of a fast persistent

key-value store. In Proceedings of the 27th ACM Symposium

on Operating Systems Principles (2019), pp. 447–461.

[31] LI, B., RUAN, Z., XIAO, W., LU, Y., XIONG, Y., PUT-

NAM, A., CHEN, E., AND ZHANG, L. Kv-direct: High-

performance in-memory key-value store with programmable

nic. In Proceedings of the 26th Symposium on Operating Sys-

tems Principles (2017), ACM, pp. 137–152.

[32] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M.

Mica: A holistic approach to fast in-memory key-value stor-

age. In Proceedings of the 11th USENIX Conference on Net-

worked Systems Design and Implementation (Berkeley, CA,

USA, 2014), NSDI’14, USENIX Association, pp. 429–444.

[33] MAO, Y., KOHLER, E., AND MORRIS, R. T. Cache crafti-

ness for fast multicore key-value storage. In Proceedings

of the 7th ACM European Conference on Computer Systems

(2012), EuroSys’12, ACM, pp. 183–196.

[34] MITCHELL, C., GENG, Y., AND LI, J. Using one-sided rdma

reads to build a fast, cpu-efficient key-value store. In Proceed-

ings of the 2013 USENIX Conference on Annual Technical

Conference (2013), USENIX ATC’13, USENIX Association,

pp. 103–114.

[35] MITCHELL, C., MONTGOMERY, K., NELSON, L., SEN, S.,

AND LI, J. Balancing cpu and network in the cell distributed

b-tree store. In 2016 USENIX Annual Technical Conference

(USENIX ATC 16) (2016).

[36] NATHAN, V., DING, J., ALIZADEH, M., AND KRASKA, T.

Learning multi-dimensional indexes. In Proceedings of the

2020 ACM SIGMOD International Conference on Manage-

ment of Data (New York, NY, USA, 2020), SIGMOD ’20, As-

sociation for Computing Machinery, p. 985–1000.

[37] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI,

M., LEE, H., LI, H. C., MCELROY, R., PALECZNY, M.,

PEEK, D., SAAB, P., ET AL. Scaling memcache at facebook.

In nsdi (2013), vol. 13, pp. 385–398.

[38] SHAMIS, A., RENZELMANN, M., NOVAKOVIC, S., CHAT-

ZOPOULOS, G., DRAGOJEVIĆ, A., NARAYANAN, D., AND

CASTRO, M. Fast general distributed transactions with opac-

ity. In Proceedings of the 2019 International Conference on

Management of Data (New York, NY, USA, 2019), SIGMOD

’19, Association for Computing Machinery, p. 433–448.

[39] SHI, J., YAO, Y., CHEN, R., CHEN, H., AND LI, F. Fast

and concurrent rdf queries with rdma-based distributed graph

exploration. In Proceedings of the 12th USENIX Conference

on Operating Systems Design and Implementation (Berkeley,

CA, USA, 2016), OSDI’16, USENIX Association, pp. 317–

332.

[40] SIDLER, D., WANG, Z., CHIOSA, M., KULKARNI, A., AND

ALONSO, G. StRoM: Smart Remote Memory. In Proceed-

ings of the Fifteenth European Conference on Computer Sys-

tems (New York, NY, USA, 2020), EuroSys ’20, Association

for Computing Machinery.

[41] SOWELL, B., GOLAB, W., AND SHAH, M. A. Minuet: A

scalable distributed multiversion b-tree. Proc. VLDB Endow.

5, 9 (May 2012), 884–895.

[42] SREEKANTI, V., WU, C., LIN, X. C., SCHLEIER-SMITH, J.,

GONZALEZ, J. E., HELLERSTEIN, J. M., AND TUMANOV,

A. Cloudburst: Stateful functions-as-a-service. Proc. VLDB

Endow. 13, 12 (jul 2020), 2438–2452.

[43] SU, M., ZHANG, M., CHEN, K., GUO, Z., AND WU, Y. Rfp:

When rpc is faster than server-bypass with rdma. In Proceed-

ings of the Twelfth European Conference on Computer Sys-

tems (2017), ACM, pp. 1–15.

[44] TANG, C., WANG, Y., DONG, Z., HU, G., WANG, Z.,

WANG, M., AND CHEN, H. Xindex: A scalable learned index

for multicore data storage. In Proceedings of the 25th ACM

SIGPLAN Symposium on Principles and Practice of Parallel

Programming (New York, NY, USA, 2020), PPoPP ’20, Asso-

ciation for Computing Machinery, p. 308–320.

[45] THE TRANSACTION PROCESSING COUNCIL. TPC-C Bench-

mark V5.11. http://www.tpc.org/tpcc/.

[46] TSAI, S.-Y., AND ZHANG, Y. Lite kernel rdma support for

datacenter applications. In Proceedings of the 26th Sympo-

sium on Operating Systems Principles (New York, NY, USA,

2017), SOSP ’17, ACM, pp. 306–324.

[47] VERBITSKI, A., GUPTA, A., SAHA, D., BRAHMADESAM,

M., GUPTA, K., MITTAL, R., KRISHNAMURTHY, S., MAU-

RICE, S., KHARATISHVILI, T., AND BAO, X. Amazon au-

rora: Design considerations for high throughput cloud-native

relational databases. In Proceedings of the 2017 ACM Interna-

tional Conference on Management of Data (2017), pp. 1041–

1052.

[48] WANG, Y., MENG, X., ZHANG, L., AND TAN, J. C-hint: An

effective and reliable cache management for rdma-accelerated

key-value stores. In Proceedings of the ACM Symposium on

Cloud Computing (2014), SoCC’14, ACM, pp. 23:1–23:13.

[49] WANG, Y., TANG, C., WANG, Z., AND CHEN, H. Sindex: A

scalable learned index for string keys. In Proceedings of the

11th ACM SIGOPS Asia-Pacific Workshop on Systems (New

York, NY, USA, 2020), APSys ’20, Association for Comput-

ing Machinery, p. 17–24.

132 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[50] WANG, Z., QIAN, H., LI, J., AND CHEN, H. Using restricted

transactional memory to build a scalable in-memory database.

In Proceedings of the Ninth European Conference on Com-

puter Systems (2014), EuroSys’14, ACM, pp. 26:1–26:15.

[51] WEI, X., DONG, Z., CHEN, R., AND CHEN, H. Deconstruct-

ing rdma-enabled distributed transactions: Hybrid is better! In

13th USENIX Symposium on Operating Systems Design and

Implementation (2018), OSDI ’18, pp. 233–251.

[52] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast

in-memory transaction processing using rdma and htm. In

Proceedings of the 25th Symposium on Operating Systems

Principles (New York, NY, USA, 2015), SOSP ’15, ACM,

pp. 87–104.

[53] XIE, X., WEI, X., CHEN, R., AND CHEN, H. Pragh:

Locality-preserving graph traversal with split live migration.

In 2019 USENIX Annual Technical Conference (USENIX ATC

19) (Renton, WA, July 2019), USENIX Association, pp. 723–

738.

[54] YOU, S., DING, D., CANINI, K., PFEIFER, J., AND GUPTA,

M. Deep lattice networks and partial monotonic functions.

In Advances in neural information processing systems (2017),

pp. 2981–2989.

[55] ZAMANIAN, E., BINNIG, C., HARRIS, T., AND KRASKA, T.

The end of a myth: Distributed transactions can scale. Proc.

VLDB Endow. 10, 6 (Feb. 2017), 685–696.

[56] ZHANG, H., ANDERSEN, D. G., PAVLO, A., KAMINSKY,

M., MA, L., AND SHEN, R. Reducing the storage overhead

of main-memory oltp databases with hybrid indexes. In Pro-

ceedings of the 2016 International Conference on Manage-

ment of Data (2016), ACM, pp. 1567–1581.

[57] ZIEGLER, T., TUMKUR VANI, S., BINNIG, C., FONSECA,

R., AND KRASKA, T. Designing distributed tree-based index

structures for fast rdma-capable networks. In Proceedings of

the 2019 International Conference on Management of Data

(New York, NY, USA, 2019), SIGMOD ’19, ACM, pp. 741–

758.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 133

A Artifact Appendix

A.1 Abstract

This artifact provides the source code of XSTORE and scripts to

reproduce the main experimental results. XSTORE is an RDMA-

based ordered key-value store that adopts the client-server model

(network-attached) and range index structures (tree-backed). To re-

produce the results, we provide instructions to build binaries (§A.3)

and run experiments (§A.4). The source code of XSTORE can be

retrieved from a public open-source repository (§A.2.1). The repos-

itory also contains scripts to generate the main results in §7 (see

Table 4). Though the scripts target our testbed (§7.1), readers can

simply change them for other platforms (§A.6).

A.2 Artifact Check-list

• Program: fserver, ycsb, and micro.

• Compilation: g++ and cmake.

• Hardware: Intel CPU with RTM and Mellanox NIC with

RDMA.

• Execution: Python scripts.

• Metrics: Throughput and median latency.

• Expected experiment run time: 1 minute each experiment.

• Public link:

https://github.com/SJTU-IPADS/xstore.

• Code licenses: Apache License 2.0.

A.2.1 How to Access

The artifact is publicly available at our Github repository.

$ git clone https://github.com/SJTU-IPADS/xstore

$ git checkout c9f38188

A.2.2 Hardware Dependencies

To reproduce the experiment results, each machine must have at

least one Mellanox RDMA network card (e.g., Mellanox ConnectX-

4 MT27700 100Gbps InfiniBand NIC), and the server machine

must have Intel processors with Restricted Transactional Memory

(RTM) (e.g., Xeon E5-2650 v4). It should be noted that the through-

put of read operations (e.g., gets) is mainly bottlenecked by the

RDMA network, while the throughput of write operations (e.g., up-

dates) is mainly bottlenecked by the server CPU.

A.2.3 Software Dependencies

Operating system: Ubuntu ≥ 16.04.

Compile toolchain: g++ ≥ 5.4.4 and cmake ≥ 3.5.1.

Other software dependencies: Intel MKL, Mellanox OFED,

boost 1.6.1, and jemalloc.

A.3 Installation

Intel MKL (Math Kernel Library).

$ apt-get install -y intel-mkl-2019.1-053

Listing 1: A sample evaluating script (sample.toml).

[[pass]]

host = server_host ## host name of the server

path = /cock/fstore

cmd = "./fserver -db_type ycsb -model_config=

ycsb-model.toml"

[[pass]]

host = client_host ## host name of the client

path = /cock/fstore

cmd = "./ycsb -threads 1 -server_host

server_host"

[[pass]]

host = master_host ## host name of the client

path = /cock/fstore

cmd = "./master -client_config cs.toml -epoch 60

-nclients 1"

Mellanox OFED.

$ wget latest_ofed_for_the_OS.

$./mlnxofedinstall -without-iser-dkms

-without-srp-dkms -without-srptools -force

Boost and jemalloc.

$ cd path_to_xstore

$ pip3 install -r requirements.txt

$./magic.py config -f build-config.toml

$ cmake .

$ cd deps/jemalloc

$ autoconf

$ cd path_to_xstore

$ make boost jemalloc

XSTORE.

$ make fserver ycsb micro master

A.4 Experiment Workflow

Launch XSTORE server.

$ ssh server_host

$./fserver -db_type ycsb -model_-

config=ycsb-model.toml

Launch XSTORE clients.

$ ssh client_host

$./ycsb -threads 1 -server_host server_host

Launch a master to collect results from clients.

$ ssh master_host

$./master -client_config cs.toml -epoch 60

-nclients 1

Automatic experiment workflow. Optionally, readers could use

our script (bootstrap.py) to automate the above three steps.

It takes a configuration file (e.g., Listing 1) to execute the above

three steps required for the experiments. Specifically, the following

command should launch the server, the clients, and the master ac-

cordingly:

$./bootstrap.py -f sample.toml

134 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 4: The evaluating scripts to reproduce the results in §7. Note

that the scripts are in the ae_scripts folder in our repository.

Figure Description Evaluating script

Fig. 10 YCSB A ycsba.toml

Fig. 11 YCSB B ycsbb.toml

Fig. 12 YCSB C ycsbc.toml

YCSB D ycsbd.toml

YCSB E ycsbe.toml

Fig. 14c Model expansion expan.toml

Fig. 15d,e Data distribution ln.toml

Fig. 15b,c Memory footprint cached_ycsbc.toml

A.5 Evaluation and Expected Result

The experimental results mainly include throughput and meidan la-

tency. By default, the master is responsible for printing the results.

It should be noted that it is difficult to compare the performance

results across different machines. Therefore, we only show the re-

ported numbers on our testbed as an example here. For instance,

to evaluate YCSB C on XSTORE, readers could run the script as

follows:

$./bootstrap.py -f ae_scripts/ycsbc.toml

The master would print throughput (thpt) and median la-

tency (lat) per second:

...

At epoch 1 thpt: 79.4M/s, ..., lat: 19.5 us

At epoch 2 thpt: 79.3M/s, ..., lat: 19.6 us

At epoch 3 thpt: 79.8M/s, ..., lat: 19.4 us

...

A.6 Experiment Customization

Table 4 lists the configuration files used to produce the ex-

perimental results in our paper. However, the scripts mainly

target our testbed (§7.1). To execute them on other plat-

forms, readers need to make minor changes to the scripts.

The README in our repository provides detailed information

about how to customize them for the experiments.

A.7 Notes

The source code and scripts for the artifact evaluation are

used to reproduce the main results in XSTORE. To use XS-

TORE in your research, we recommend the main branch of

our repository (§A.2.1), which would be maintained by mem-

bers of the Institute of Parallel and Distributed Systems.

A.8 AE Methodology

Submission, reviewing and badging methodology:

• https://www.usenix.org/conference/osdi20/

call-for-artifacts

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 135

CrossFS: A Cross-layered Direct-Access File System

Yujie Ren
Rutgers University

yujie.ren@rutgers.edu

Changwoo Min
Virginia Tech

changwoo@vt.edu

Sudarsun Kannan
Rutgers University

sudarsun.kannan@rutgers.edu

Abstract
We design CrossFS, a cross-layered direct-access file sys-
tem disaggregated across user-level, firmware, and kernel
layers for scaling I/O performance and improving concur-
rency. CrossFS is designed to exploit host- and device-level
compute capabilities. For concurrency with or without data
sharing across threads and processes, CrossFS introduces
a file descriptor-based concurrency control that maps each
file descriptor to one hardware-level I/O queue. This design
allows CrossFS’s firmware component to process disjoint ac-
cess across file descriptors concurrently. CrossFS delegates
concurrency control to powerful host-CPUs, which convert
the file descriptor synchronization problem into an I/O queue
request ordering problem. To guarantee crash consistency in
the cross-layered design, CrossFS exploits byte-addressable
nonvolatile memory for I/O queue persistence and designs
a lightweight firmware-level journaling mechanism. Finally,
CrossFS designs a firmware-level I/O scheduler for efficient
dispatch of file descriptor requests. Evaluation of emulated
CrossFS on storage-class memory shows up to 4.87X con-
current access gains for benchmarks and 2.32X gains for
real-world applications over the state-of-the-art kernel, user-
level, and firmware file systems.

1 Introduction

We have finally entered an era where storage access latency is
transitioning from milliseconds to microseconds [3,52,62,68].
While modern applications strive to increase I/O parallelism,
storage software bottlenecks such as system call overheads,
coarse-grained concurrency control, and the inability to ex-
ploit hardware-level concurrency continues to impact I/O
performance. Several kernel-level, user-level, and firmware-
level file systems have been designed to benefit from CPU
parallelism [65, 66], direct storage access [22, 31, 40], or
computational capability in the storage hardware [33, 56].
However, these approaches are designed in isolation and fail
to exploit modern, ultra-fast storage hardware.

Kernel-level file systems (Kernel-FS) satisfy fundamental
file system guarantees such as integrity, consistency, durabil-
ity, and security. Despite years of research, Kernel-FS designs
continue to suffer from three main bottlenecks. First, ap-
plications must enter and exit the OS for performing I/O,
which could increase latency by 1-4µs [31, 68]. Recently
found security vulnerabilities have further amplified such
costs [25, 39, 47]. Second, even state-of-the-art designs en-
force unnecessary serialization (e.g., inode-level read-write
lock) when accessing disjoint portions of data in a file leading
to high concurrent access overheads [48]. Third, Kernel-FS
designs fail to fully exploit storage hardware-level capabilities
such as compute, thousands of I/O queues, and firmware-level
scheduling, ultimately impacting I/O latency, throughput, and
concurrency in I/O-intensive applications [5, 8, 9, 45, 69].

As an alternative design point, there is increasing focus
towards designing user-level file systems (User-FS) for di-
rect storage access bypassing the OS [17, 22, 31, 40, 52, 65].
However, satisfying the fundamental file system guarantees
from untrusted user-level is challenging [33]. While these
designs have advanced the state of the art, some designs
bypass the OS only for data-plane operations (without data
sharing) [17, 31, 52]. In contrast, others provide full direct
access by either sidestepping or inheriting coarse-grained
and suboptimal concurrency control across threads and pro-
cesses [22, 40], or even compromise correctness [65]. Im-
portantly, most User-FS designs fail to exploit the hardware
capabilities of modern storage.

At the other extreme is the exploration of firmware-level
file systems (Firmware-FS) that embed the file system into
the device firmware for direct-access [33, 56]. The Firmware-
FS acts as a central entity to satisfy fundamental file system
properties. Although an important first step towards utiliz-
ing storage-level computational capability, current designs
miss out on benefiting from host-level multi-core parallelism.
Additionally, these designs inherit inode-centric design for re-
quest queuing, concurrency control, and scheduling, leading
to poor I/O scalability.

In summary, current User-FS, Kernel-FS, and Firmware-FS

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 137

designs lack a synergistic design across the user, the kernel,
and the firmware layers, which is critical for achieving di-
rect storage access and scaling concurrent I/O performance
without compromising fundamental file system properties.

Our Approach - Cross-layered File System. To address
the aforementioned bottlenecks, we propose CrossFS, a cross-
layered direct-access file system that provides scalability,
high concurrent access throughput, and lower access latency.
CrossFS achieves these goals by disaggregating the file sys-
tem across the user-level, the device firmware, and the OS
layer, thereby exploiting the benefits of each layer. The
firmware component (FirmFS) is the heart of the file sys-
tem enabling applications to directly access the storage with-
out compromising fundamental file system properties. The
FirmFS taps into storage hardware’s I/O queues, computa-
tional capability, and I/O scheduling capability for improving
I/O performance. The user-level library component (LibFS)
provides POSIX compatibility and handles concurrency con-
trol and conflict resolution using the host-level CPUs (host-
CPUs). The OS component sets up the initial interface be-
tween LibFS and FirmFS (e.g., I/O queues) and converts
software-level access control to hardware security control.

Scalability. File system disaggregation alone is insufficient
for achieving I/O scalability, which demands revisiting file
system concurrency control, reducing journaling cost, and
designing I/O scheduling that matches the concurrency con-
trol. We observe that file descriptors (and not inode) are a
natural abstraction of access in most concurrent applications,
where threads and processes use independent file descriptors
to access/update different regions of shared or private files
(for example, RocksDB maintains 3.5K open file descrip-
tors). Hence, for I/O scalability, in CrossFS, we introduce file
descriptor-based concurrency control, which allows threads
or processes to update or access non-conflicting blocks of a
file simultaneously.

Concurrency Control via Queue Ordering. In CrossFS,
file descriptors are mapped to dedicated hardware I/O queues
to exploit storage hardware parallelism and fine-grained con-
currency control. All non-conflicting requests (i.e., requests
to different blocks) issued using a file descriptor are added
to a file descriptor-specific queue. In contrast, conflicting re-
quests are ordered by using a single queue. This provides an
opportunity for device-CPUs and FirmFS to dispatch requests
concurrently with almost zero synchronization between host
and device-CPUs. For conflict resolution and ordering up-
dates to blocks across file descriptors, CrossFS uses a per-
inode interval tree [7], interval tree read-write semaphore
(interval tree rw-lock), and global timestamps for concur-
rency control. However, unlike current file systems that must
hold inode-level locks until request completion, CrossFS only
acquires interval tree rw-lock for request ordering to FD-
queues. In short, CrossFS concurrency design turns the file
synchronization problem into a queue ordering problem.

CrossFS Challenges. Moving away from an inode-centric
to a file descriptor-centric design introduces CrossFS-specific
challenges. First, using fewer and wimpier device-CPUs for
conflict resolution and concurrency control impacts perfor-
mance. Second, mapping a file descriptor to an I/O queue (a
device-accessible DMA memory buffer) increases the number
of queues that CrossFS must manage, potentially leading to
data loss after a crash. Finally, overburdening device-CPUs
for serving I/O requests across hundreds of file descriptor
queues could impact performance, specifically for blocking
I/O operations (e.g., read, fsync).

Host Delegation. To overcome the challenge of fewer (and
wimpier) device-CPUs, CrossFS utilizes the cross-layered
design and delegates the responsibility of request ordering to
host-CPUs. The host-CPUs order data updates to files they
have access to, whereas FirmFS is ultimately responsible for
updating and maintaining metadata integrity, consistency, and
security with POSIX-level guarantees.

Crash-Consistency and Scheduler. To handle crash consis-
tency and protect data loss across tens and possibly hundreds
of FD-queues, CrossFS uses byte-addressable, persistent
NVMs as DMA’able and append-only FD-queues from which
FirmFS can directly fetch requests or pool responses. CrossFS
also designs low-cost data journaling for crash-consistency of
firmware file system state (§4.4). Finally, for efficient schedul-
ing of device-CPUs, CrossFS smashes traditional two-level
I/O schedulers spread across the host-OS and the firmware
into one FirmFS scheduler. CrossFS also equips the scheduler
with policies that enhance file descriptor-based concurrency.

Evaluation of our CrossFS prototype implemented as a
device-driver and emulated using Intel Optane DC mem-
ory [3] shows significant concurrent access performance gains
with or without data sharing compared to state-of-the-art
Kernel-FS [64, 66], User-FS [31, 40], and Firmware-FS [33]
designs. The performance gains stem from reducing system
calls, file descriptor-level concurrency, work division across
host and device-CPUs, low-overhead journaling, and im-
proved firmware-level scheduling. The concurrent access mi-
crobenchmarks with data sharing across threads and processes
show up to 4.87X gains. The multithreaded Filebench [59]
macrobenchmark workloads without data sharing show up
to 3.58X throughput gains. Finally, widely used real-world
applications such as RocksDB [9] and Redis [8] show up to
2.32X and 2.35X gains, respectively.

2 Background and Related Work

Modern ultra-fast storage devices provide high bandwidth
(8-16 GB/s) and two orders of lower access latency (<
20µsec) [15, 67] compared to HDD storage. The perfor-
mance benefits can be attributed to innovation in faster stor-
age hardware and access interface (e.g., PCIe support), in-
crease in storage-level compute (4-8 CPUs, 4-8 GB DRAM,

138 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

64K I/O queues) [27], fault protection equipped with capac-
itors [57, 58], and evolving support for storage programma-
bility. In recent years, file systems have evolved to exploit
high-performance modern storage devices. However, for ap-
plications to truly benefit from modern storage, file system
support for scalable concurrency and efficient data sharing is
critical [21, 26, 42]. Next, we discuss kernel, user-level, and
firmware-level file system innovations and their implications.

Kernel-level File Systems (Kernel-FS). Several new kernel
file systems have been designed to exploit the capabilities
of modern storage devices [15, 23, 43, 64, 66]. For exam-
ple, F2FS exploits multiple queues of an SSD and employs
a log-structured design [43]. LightNVM moves the FTL
firmware code to the host and customizes request schedul-
ing [15]. File systems such as PMFS [23], DAX [64], and
NOVA [66] exploit NVM’s byte-addressability; they support
block-based POSIX interface but replace block operations
with byte-level loads and stores. To improve concurrent ac-
cess performance, file systems such as ext4 introduce inode-
level read-write semaphores (rw-lock) for improving read
concurrency when sharing files [24]. Alternatively, user-level
storage access frameworks such as SPDK use NVMe-based
I/O command queues to provide direct I/O operations. How-
ever, these frameworks only support simple block operations
as opposed to a POSIX interface [29].

User-level File Systems (User-FS). There is a renewed fo-
cus to bypass the OS and directly access storage hardware
from a user-level library. However, managing a file system
from an untrusted library introduces a myriad of challenges,
which include atomicity, crash consistency, and security chal-
lenges [40, 52, 60]. Some prior designs bypass the OS for
data plane operations but enter the OS for control plane oper-
ations [31, 52, 60]. In contrast, approaches such as Strata [40]
and ZoFS [22] provide direct access for control and data plane
operations by managing data and metadata in a user-level li-
brary. For example, Strata [40] buffers data and metadata
updates to a per-process, append-only log, which is periodi-
cally committed to a shared area using a trusted file system
server. More recently, ZoFS, designed for persistent memory
technologies, uses virtual memory protection to secure ac-
cess to a user-level buffer holding data and metadata updates.
Unfortunately, all these approaches require high-overhead
concurrency control and use coarse-grained locks that do not
scale [31]. For example, in Strata, a process must acquire an
inode lease from the trusted file system server before access-
ing a file [40, 60].

Firmware File Systems (Firmware-FS). After two decades
of seminal work on programmable storage [17, 33, 54, 56],
prior research takes a radical approach of offloading either
the entire file system [33] or a part of it [17, 54] into the de-
vice firmware. The firmware approach allows applications
to bypass the OS for both control and data plane operations.
Firmware-FS acts as a central entity to coordinate updates to

ext4-DAX Strata DevFS CrossFS
21.38% 26.57% 27.06% 9.99%

Table 1: Time spent on inode-level lock.

file system metadata and data without compromising crash-
consistency by using the device-CPUs and the device-RAM
for per-inode I/O queues. For security and permission checks,
systems such as DevFS [33] rely on the host OS to update a
device-level credential table with process permissions. For
crash consistency, the power-loss capacitors could be used
to flush in-transit updates after a system failure. Insider [56]
explores the use of FPGAs for file system design, whereas
other efforts have focused on using FPGAs [70] to accelerate
key-value stores. Unfortunately, both DevFS and Insider han-
dle concurrency using inode-level locks, limiting file system
concurrency and scalability.
File System Scalability. Several kernel-level file sys-
tem scalability designs have been explored in the past.
SpanFS [32] shares files and directories across cores at a
coarse granularity, requiring developers to distribute I/O.
ScaleFS [13] decouples the in-memory file system from the
on-disk file system and uses per-core operation logs to achieve
high concurrency. FLEX [65] moves file operations to a user-
level library and modifies the Linux VFS layer. Fine-grained
locking mechanisms such as CST-semaphore [36] and range
lock [42] are applied to current kernel-level file systems to
improve concurrency. However, all the above approaches
either lack direct access or require inode-level locks and fail
to utilize host and device-level compute capabilities.

3 Motivation

Unfortunately, state-of-the-art Kernel-FS [64, 66], User-
FS [31, 40], and Firmware-FS [33] designs suffer from three
prominent limitations. First, they lack a synergistic design
that could benefit from the combined use of host and device
resources, such as host and device-level CPUs, and thousands
of hardware I/O queues. Second, the use of an inode-centric
design limits concurrent access scalability. Third, for file
sharing across processes, applications must trap into an OS
for control or data plane or both [60].

To briefly illustrate the poor concurrent access scalability
in state-of-the-art file system designs, we conduct an experi-
ment where readers and writers perform random-but-disjoint
block accesses on a 12GB file. For our analysis, we com-
pare User-FS Strata [40], Kernel-FS Linux ext4-DAX [64],
Firmware-FS DevFS [33], and the proposed CrossFS. Fig-
ure 1a shows the aggregate write throughput when multiple
writers concurrently update a shared file. The x-axis varies
the writer thread count. In Figure 1b, we restrict the number
of writers to 4 and increase readers in the x-axis.
Concurrent Write Performance: As shown in Figure 1a,
when sharing files across concurrent writers, the throughput
substantially reduces for all approaches except CrossFS. ext4-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 139

1 4 8 16
0

1

2

3

4

of Writer Threads

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

(a) Concurrent Writers

1 4 8 16
0

2

4

6

of reader threads (with 4 writer threads)

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

ext4-DAX

Strata

DevFS

CrossFS

(b) Concurrent Readers
Figure 1: Concurrent Write and Read Throughput. (a) shows
the aggregated write throughput when concurrent writers update
disjoint random blocks of a 12GB file; (b) shows aggregated read
throughput when there are 4-concurrent writers.

DAX and NOVA use inode-level rw-lock, which prevents
writers from updating disjoint blocks of a file. Strata does not
scale beyond four threads because it uses an inode-level mu-
tex. Additionally, Strata uses a private NVM log to buffer data
and metadata (inode) updates, and the log fills up frequently,
consequently stalling write operations.

Sharing across Reader and Writer Threads: Figure 1b
and Table 1 show the aggregated read throughput and the
execution time spent on an inode-level rw-lock. The read
performance does not scale (in the presence of writers) even
when accessing disjoint blocks, mainly due to the inode-level
rw-lock. For Strata, by the time readers acquire a mutex for
the private log, the log contents could be flushed, forcing
readers to access data using Kernel-FS. We see similar perfor-
mance bottlenecks when using concurrent processes instead
of threads for ext4-DAX and NOVA due to their inode-centric
concurrency control. For Strata, the performance degrades
further; the reader processes starve until writers flush their
private log to the shared area. These issues highlight the
complexities of scaling concurrent access performance in
Kernel-FS and User-FS designs. The observations hold for
other user-level file systems such as ZoFS [22]. Finally, as
shown in Figure 1a and Figure 1b, CrossFS outperforms other
file systems with its fine-grained file descriptor-based concur-
rency. We will next discuss the design details of CrossFS.

4 Design of CrossFS

CrossFS is a cross-layered design that disaggregates the file
system to exploit the capabilities of userspace, firmware,
and OS layers. CrossFS also achieves high end-to-end con-
currency in the user-level library, I/O request queues, and
firmware-level file system, with or without file sharing across
threads and processes. Finally, CrossFS reduces system call
cost, provides lightweight crash consistency, and efficient
device-CPU scheduling. We observe that applications that
perform conflicting updates to the same blocks of files, auto-
matically resort to protecting file descriptors with application-
level locking [2, 5, 9]. Hence, for concurrency and file shar-
ing, CrossFS uses file descriptors as a fundamental unit of
synchronization, enabling threads and processes with sepa-
rate file descriptors to update disjoint blocks of files concur-

Per-inode
Interval Tree

Op2 insert
Op3 lookup
Op6 insert

[0, 64k]

[0, 16k] [32k, 64k]

[0, 4k] [8k, 16k] [32k, 48k]

fd1 FD-queue fd2 FD-queue

App (Thread1)

create(File1) -> fd1
write(fd1, offset=8k, size=8k)
read(fd1, offset=8k, size=8k)

Op1
Op2
Op3

t1
t2
t3

I/O Scheduler

Device CPU Threads

Process #0 Process #1 … Process #N
cred_id : perm cred_id : perm … cred_id : perm

Credential Table (Transferred from OS)

TxB TxE
Meta-
data

NVM Data
Block Addr

Journal

Super
Block

Bitmap
Block

Inode
Block

Data
Block

On-Disk Structure

Super
Block

Inode
Cache

Dentry
Cache

Data
Cache

In-Mem Structure

App

LibFS

FirmFS

OS Kernel

Op1 and Op4:
Create FD-queue and
register FD-queue with
storage device

Data Buffer
head head

fdN FD-queue

Interval tree
lock

Interval tree
unlock

Op6 conflicts with Op2;
Op2 is added to fd1’s FD-queue;
Op2 is made no-op

Op1 create tree

Op5 insert

Op5Op2

Op6 NVM

App (Thread2)

open(File1) -> fd2
write(fd2, offset=32k, size=16k)
write(fd2, offset=8k, size=8k)

Op5
Op6 t6

no conflicts
conflicts

Op4
t5

t4

…

OS kernel only
responsible for
registering FD-queue
in DMA-able memory
region.

Figure 2: CrossFS Design Overview. The host-level LibFS con-
verts POSIX I/O calls into FirmFS commands, manages FD-queues,
and interval tree for checking block conflicts and ordering requests
in FD-queues. FirmFS implements the file system, journaling, and
scheduler and concurrently processes requests across FD-queues.
The OS component is responsible for the FD-queue setup and up-
dates the device credential table with host-level permission informa-
tion. We show a running example of two instances sharing a file;
Op1 to 6 show request execution with global timestamps t1 to t6.
Op6 conflicts with Op2, so Op6 is added to the same FD-queue as
Op2 using an interval tree.

rently. CrossFS assigns each file descriptor a dedicated I/O
queue (FD-queue) and adds non-conflicting (disjoint) block
requests across descriptors to their independent FD-queue,
whereas serializing conflicting block updates or access to a
single FD-queue. Consequently, CrossFS converts the file
synchronization problem to an I/O request ordering problem,
enabling device-CPUs to dispatch requests across FD-queues
concurrently. We outline the design principles and then follow
it up by describing the details of file descriptor-based concur-
rency mechanism, crash consistency support, I/O scheduling,
and security.

4.1 CrossFS Design Principles
CrossFS adapts the following key design principles:

Principle 1: For achieving high performant direct-I/O, disag-
gregate file system across user-level, firmware, and OS layers
to exploit host and device-level computing capabilities.
Principle 2: For fine-grained concurrency, align each file
descriptor to an independent hardware I/O queue (FD-queue),
and design concurrency control focused around the file de-
scriptor abstraction.
Principle 3: To efficiently use device-CPUs, merge software
and hardware I/O schedulers into a single firmware sched-
uler, and design scheduling policies to benefit from the file-
descriptor design.
Principle 4: For crash consistency in a cross-layered design,

140 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

protect the in-transit user data and the file system state by
leveraging persistence provided by byte-addressable NVMs.

4.2 CrossFS Layers

CrossFS enables unmodified POSIX-compatible applica-
tions to benefit from direct storage access. As shown in
Figure 2, CrossFS comprises of a user-level library (LibFS),
a firmware file system component (FirmFS), and an OS com-
ponent.

User-space Library Component (LibFS). Applications are
linked to LibFS, which intercepts POSIX I/O calls and con-
verts them to FirmFS I/O commands. As shown in Figure 2,
when opening a file, LibFS creates an FD-queue by request-
ing the OS to allocate a DMA’able memory region on NVM
and registering the region with FirmFS. Each I/O request is
added to a file descriptor-specific FD-queue when there are
no block-level conflicts. In the presence of block conflicts,
the conflicting requests are serialized to the same FD-queue.
To identify block conflicts, in CrossFS, we use a per-inode
interval tree with range-based locking. The conflict resolu-
tion using the interval tree is delegated to the host-CPU when
sharing data across multiple threads, and for inter-process file
sharing, interval tree updates are offloaded to FirmFS (and
the device-CPUs).

Firmware File System Component (FirmFS). FirmFS is
responsible for fetching and processing I/O requests from
FD-queues. Internally, FirmFS’s design is similar to a tra-
ditional file system with in-memory and on-disk metadata
structures, including a superblock, bitmap blocks, and inode
and data blocks. FirmFS also supports data and metadata jour-
naling using a dedicated journal space on the device, as shown
in Figure 2. FirmFS fetches I/O requests from FD-queues
and updates in-memory metadata structures (stored in the
device-level RAM). For crash-consistency, FirmFS journals
the updates to the storage and then checkpoints them (§4.4).
The mounting process for FirmFS is similar to a traditional
file system: finding the superblock, followed by the root di-
rectory. To schedule requests from FD-queues, FirmFS also
implements a scheduler (§4.5). Finally, FirmFS implements a
simple slab allocator for managing device memory.

OS Component. The OS component is mainly used for set-
ting up FD-queues by allocating DMA’able memory regions,
mounting of CrossFS, and garbage collecting resources. The
OS component also converts process-level access controls to
device-level credentials for I/O permission checks without
requiring applications to trap into the OS (§4.6).

4.3 Scaling Concurrent Access

We next discuss CrossFS’s file descriptor-based concur-
rency design that scales without compromising correctness
and sharply contrasts with prior inode-centric designs.

4.3.1 Per-File Descriptor I/O Queues

Modern NVMe devices support up to 64K I/O queues,
which can be used by applications to parallelize I/O re-
quests. To exploit this hardware-level I/O parallelism fea-
ture, CrossFS aligns each file descriptor with a dedicated I/O
queue (with a configurable limit on the maximum FD-queues
per inode). As shown in Figure 2, during file open (Op1),
LibFS creates an FD-queue (I/O request + data buffer) by
issuing an IOCTL call to the OS component, which reserves
memory for an FD-queue, and registers the FD-queue’s ad-
dress with FirmFS. For handling uncommon scenarios where
the number of open file descriptors could exceed the avail-
able I/O queues (e.g., 64K I/O queues in NVMe), supporting
FD-queue reuse and multiplexing could be useful. For reuse,
CrossFS must service pending requests in an FD-queue, and
clear its data buffers. For multiplexing, CrossFS must imple-
ment a fair queue sharing policy. While CrossFS currently
supports queue reuse after a file descriptor is closed, our fu-
ture work will address the support for FD-queue multiplexing.

4.3.2 Concurrency Constraints

CrossFS provides correctness and consistency guarantees
of a traditional kernel-level file system (e.g., ext4). We first
define the constraints that arise as a part of CrossFS’s file-
descriptor design, and then describe how CrossFS satisfies
these constraints.

• Constraint 1: Read requests (commands) entering a de-
vice at timestamp T must fetch the most recent version
of data blocks, which are either buffered in FD-queues or
stored in the storage. The timestamp refers to a globally
incrementing atomic counter added to an I/O command
in the FD-queues.

• Constraint 2: For concurrent writes to conflicting (same)
blocks across file descriptors, the most recent write at Tj
can overwrite a preceding write at Ti where i < j.

4.3.3 Delegating Concurrency Control to Host-CPUs

Handling conflict resolution across several threads that
concurrently update a shared file could be compute-heavy.
As a consequence, using fewer (or wimpier) device-CPUs
could pose a scalability challenge. Hence, in CrossFS, for
data sharing across multiple threads (a common scenario in
most applications), we exploit our cross-layered design and
delegate concurrency control to host-CPUs without impacting
file system correctness. In the case of data sharing across
processes, for simplicity and security, we offload concurrency
control to FirmFS (discussed in §4.6). We first discuss the
data structure support and then discuss CrossFS support for
concurrent reader and writer threads with host-delegated con-
currency control.

Request Timestamp. Before adding a request to an FD-
queue, LibFS tags each I/O request with a globally incre-
menting hardware TSC-based timestamp. The timestamp is
used to resolve ordering conflicts across writers and fetch the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 141

most recent data for readers. The use of TSC-based times-
tamp for synchronization has been widely studied by prior
research [35, 38, 46, 55].

Per-Inode Interval Tree. To resolve conflicts across con-
current writers and readers, we use a per-inode interval tree.
An interval tree is an augmented red-black tree, indexed by
interval ranges (low, high) and allows quick lookup for any
overlapping or exact matching block range [7, 28].

In CrossFS, an inode-level interval tree is used for conflict
resolution, i.e., to identify pending I/O requests in FD-queues
that conflict with a newly issued I/O request. The OS allocates
the interval tree in a DMA’able region during file creation
and returns interval tree’s address to LibFS. For each update
request, LibFS adds a new interval tree node indexed by
the request’s block range. The nodes store a timestamp and
a pointer to the newly added I/O request in the FD-queue.
The interval tree’s timestamp (TSC) is checked for following
cases: (1) for writes to identify conflicting updates to block(s)
across different FD-queues; (2) for reads to fetch the latest
uncommitted (in-transit) updates from an FD-queue; and (3)
for file commits (fsync). The interval tree items are deleted
after FD-queue entries are committed to the storage blocks
(discussed in 4.3.6).

Threads that share a file also share inode-level interval
tree. For files shared within a process, interval tree is updated
and accessed just by LibFS. The updates to interval tree are
protected using a read-write lock (rw-lock), held only at the
time request insertion to FD-queue.

4.3.4 Supporting Concurrent Readers and a Writer

CrossFS converts a file synchronization problem to a queue
ordering problem. Hence, the first step towards concurrent
write and read support for a file is to identify a file descriptor
queue to which a request must be added. To allow concurrent
readers and one writer to share a file, requests are ordered
using a global timestamp.

For each write request, LibFS acquires an inode’s inter-
val tree rw-lock and atomically checks the interval tree for
conflicts. A conflict exists if there are unprocessed prior FD-
queue write requests that update the same block(s). After
detecting a conflict, LibFS adds a global timestamp to the
write request and orders it in the same FD-queue of the prior
request. LibFS also updates the interval tree’s node to point
to the current request and releases the interval tree’s rw-lock.
For example, in Figure 2, for Op6, Thread 2’s write to offset
8k conflicts with Thread 1’s Op2 buffered in fd1’s queue with
an earlier timestamp. Hence, Thread 2’s request is added to
fd1’s FD-queue for ordering the updates.

Note that, while prior systems acquire the inode rw-lock
until request completion, CrossFS acquires inode-level in-
terval tree rw-lock only until a request is ordered to the
FD-queue. This substantially reduces the time to acquire in-
terval tree rw-lock compared to prior inode-centric designs
(see §6). To reduce the latency when reading block(s) from a

file, LibFS uses the interval tree to identify conflicting writes
to the same block(s) buffered in the FD-queue. If a conflict
exists, LibFS (i.e., the host-CPU) returns the requested blocks
from FD-queue, thereby reducing FirmFS work. For example,
as shown in Figure 2, for Thread 1’s Op3, LibFS checks the
file descriptors fd1’s FD-queue for a preceding write to the
same block and returns the read from the FD-queue. Read
operations also acquire interval tree rw-lock before lookup,
and do not race with an on-going write or a FD-queue cleanup
(which also acquires interval tree rw-lock).

4.3.5 Supporting Concurrent Writers

CrossFS supports concurrent writers to share files without
enforcing synchronization between host and device-CPUs.

Non-conflicting Concurrent Writes. When concurrent writ-
ers share a file, non-conflicting (disjoint) writes to blocks
across file descriptors are added to their respective FD-queues,
tagged with a global timestamp, and added to an interval tree
node for the corresponding block range. In Figure 2, non-
conflicting Op2 in fd1 and Op5 in fd2 are added to separate
FD-queues and can be concurrently processed by FirmFS.

Conflicting Concurrent Writes. The number of conflicting
blocks across concurrent writers could vary.
(1) Single-block conflict. A single-block conflict refers to
a condition where a conflict occurs for one block. When a
current writer updates one block (say block k) at a timestamp
(say j), the write request (WjBk) is atomically checked against
the interval tree for preceding non-committed writes. If an
earlier write (say WiBk, where i < j) exists, CrossFS adds the
request (WjBk) to the queue, marks the earlier request (WiBk)
as a no-op, and updates the interval tree to point to the new
request (WjBk), thereby avoiding an extra write operation.
For example, in Figure 2, the later request Op6 is added to
the FD-queue of Op2, and Op2 is made a no-op.

(2) Multi-block Write conflict. CrossFS must handle multi-
block conflicts for correctness, although uncommon in real-
world applications. First, when a writer’s request to update
one block (Wi+1Bk) conflicts with an earlier write that up-
dates multiple blocks (say WiBkBk+1Bk+2), the prior request
cannot be made a no-op. Hence, LibFS adds the new re-
quest (Wi+1Bk) to the same FD-queue of the prior request
(WiBkBk+1Bk+2) and inserts a child node (sub-tree) to the
interval tree (Bk,Bk+2 range) with a pointer to the newly
added FD-queue request. This technique is used even for
a multi-block request that conflicts with a prior single or
multi-block request or when conflicting small writes update
different ranges in the single block. Although this approach
would incur multiple writes for some blocks, it simplifies han-
dling multi-block conflicts that are uncommon. For rare cases,
where multiple blocks of the new request (WiBkBk+1Bk+2)
conflicts with blocks across multiple FD-queues (say WjBk
and WnBk +2 with j and n in different queues), we treat these
as an inode-level barrier operation, which we discuss next.

142 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(3) Multi-block Concurrent Reads. Concurrent readers al-
ways fetch the most recent blocks for each update using the
interval tree. For blocks with partial updates across requests,
LibFS patches these blocks by walking through the sub-tree
of an interval tree range.

Support for File Appends. Several classes of applications
(e.g., RocksDB [9] evaluated in this paper) extensively use
file appends for logging. In CrossFS, file appends are atomic
operation. To process appends, FirmFS uses an atomic trans-
action to allocate data blocks and update metadata blocks
(i.e., inode). We use and extend atomic transaction support
for O_APPEND from the prior NVM-based file system [23].

4.3.6 File Commit (fsync) as a Barrier

File commit (fsync) operations in POSIX guarantee that a
successful commit operation to a file descriptor commits all
updates to a file preceding the fsync across all file descrip-
tors. However, in CrossFS, requests across file descriptors
are added to their own FD-queue and processed in parallel by
FirmFS, which could break POSIX’s fsync guarantee. Con-
sider a scenario where a fsync request added to an empty
FD-queue getting dispatched before earlier pending writes in
other FD-queues. To avoid these issues, CrossFS treats file
commit requests as a special barrier operation. The fsync
request is tagged as a barrier operation and atomically added
to all FD-queues of an inode by acquiring an interval tree
rw-lock. The non-conflicting requests in FD-queues are con-
currently dispatched by multiple device-CPUs to reduce the
cost of a barrier. We study the performance impact of fsync
operations in §6.

4.3.7 Metadata-heavy Operations

CrossFS handles metadata-heavy operations with a file
descriptor (e.g., close, unlink, file rename) and without a file
descriptor (e.g., mkdir, directory rename) differently. We next
discuss the details.

Metadata Operations with a File Descriptor. Metadata-
heavy operations include inode-level changes, so adding these
requests to multiple FD-queues and concurrently processing
them could impact correctness. Additionally, concurrent pro-
cessing is prone to crash consistency bugs [18, 31, 53]. To
avoid such issues, CrossFS maintains a LibFS-level pathname
resolution cache (with files that were opened by LibFS). The
cache maintains a mapping between file names and the list of
open file descriptors and FD-queue addresses. CrossFS treats
these metadata-heavy operations as barrier operations and
adds them to all FD-queues of an inode after acquiring an in-
terval tree rw-lock. The requests in FD-queues preceding the
barrier are processed first, followed by atomically processing
a metadata request in one queue and removing others.

Metadata Operations without a File Descriptor. For
metadata operations without a file descriptor (e.g., mkdir),
CrossFS uses a global queue. Requests in the global queue
are processed in parallel with FD-queue requests (barring

some operations). Similar to kernel file systems, FirmFS
concurrently processes non-dependent requests fetched from
the global queue without compromising ordering. However,
for complex operations such as a directory rename prone to
atomicity and crash consistency bugs, CrossFS uses a system-
wide ordering as used in traditional file systems [48]. Our
current approach is to add a barrier request across all open
FD-queues in the system. However, this could incur high
latency when there are hundreds of FD-queues. Thus, we
only add the rename request to the global queue and maintain
a list of global barrier timestamps (barrier_TSC). Before dis-
patching a request, a device-CPU checks if request’s TSC <
barrier_TSC; otherwise, delays processing the request until
all prior requests before the barrier are processed and com-
mitted. CrossFS is currently designed to scale data plane
operations and our future work will explore techniques to
parallelize non-dependent metadata-heavy operations.

4.3.8 Block Cache and Memory-map Support.

For in-memory caching, CrossFS uses FD-queue buffers
(in NVM) as data cache for accessing recent blocks but does
not yet implement a shared main memory (DRAM) cache. We
evaluate the benefits of using FD-queue as data buffer in §6.
Implementing a shared page cache could be beneficial for
slow storage devices [23, 37]. Similarly, our future work will
focus on providing memory-map (mmap) support in CrossFS.

4.4 Cross-Layered Crash Consistency
A cross-layered file system requires a synergistic

lightweight crash consistency support at the host (LibFS)
and the device (FirmFS) layers. We describe the details next.

FD-queue Crash Consistency. The FD-queues buffer I/O
requests and data. For I/O-intensive applications with tens
of open file descriptors, providing persistence and crash con-
sistency for LibFS-managed FD-queues could be important.
Therefore, CrossFS utilizes system-level hardware capabil-
ity and uses byte-addressable persistent memory (Intel Op-
tane DC Persistent Memory [3]) for storing FD-queues. The
FD-queues are allocated in NVM as a DMA’able memory.
LibFS adds requests to persistent FD-queues using a well-
known append-only logging protocol for the crash consis-
tency [55,61], and to prevent data loss from volatile processor
caches, issues persistent writes using CLWB and memory
fence. A commit flag is set after a request is added to the FD-
queue. After a failure, during recovery, requests with an unset
commit flag are discarded. Note that the interval tree is stored
in the host or device RAM and is rebuilt using the FD-queues
after a crash. In the absence of NVM, CrossFS uses DRAM
for FD-queues, providing the guarantees of traditional kernel
file systems that can lose uncommitted writes.

Low-overhead FirmFS Crash Consistency. The FirmFS,
which is the heart of the CrossFS design, provides crash
consistency for the file system data and metadata state in
the device memory. FirmFS implements journaling using a

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 143

REDO journal maintained as a circular log buffer to hold data
and metadata log entries [23, 31]. When FirmFS dispatches
an update request, FirmFS initiates a new transaction, ap-
pends both data and metadata (e.g., inode) entries to the log
buffer, and commits the transaction. However, data journal-
ing is expensive; hence most prior NVM file systems only
enable metadata journaling [18, 23, 31]. In contrast, CrossFS
provides lightweight journaling by exploiting the persistent
FD-queues. Intuitively, because the I/O requests and data
are buffered in persistent FD-queues, the FirmFS journal can
avoid appending data to the journal and provide a reference
to the FD-queue buffer. Therefore, CrossFS dedicates a phys-
ical region in NVM for storing all FD-queues and buffers
using our in-house persistent memory allocator. LibFS, when
adding requests (e.g., read or write) to a persistent FD-queue,
tags the request with the virtual address and the relative offset
from the mapped FD-queue NVM buffer. FirmFS uses the off-
set to find the NVM physical address and stores it alongside
the journal metadata. For recovery, the physical address can
be used to recover the data. Consequently, CrossFS reaps the
benefits of data+metadata journaling at the cost of metadata-
only journaling. The journal entries are checkpointed when
the journal is full or after a two-second (configurable) interval
similar to prior file systems [23]. After a crash, during recov-
ery, the FirmFS metadata journal is first recovered, followed
by the data in the NVM FD-queues.

4.5 Multi-Queue File-Descriptor Scheduler
In traditional systems, applications are supported by an I/O

scheduler in the OS and the storage firmware. In CrossFS, ap-
plications bypass the OS and lack the OS-level I/O scheduler
support. As a consequence, when the number of FD-queues
increase, non-blocking operations (e.g., write) could bottle-
neck blocking operations (e.g., read, fsync), further exac-
erbated by the limited device-CPU count. To address these
challenges, CrossFS exploits its cross-layered design and
merges two-level I/O schedulers into a single multi-queue
firmware-level scheduler (FD-queue-scheduler). The FD-
queue-scheduler’s design is inspired by the state-of-the-art
Linux blk-queue scheduler that separates software and hard-
ware queues [14]. However, unlike the blk-queue scheduler,
the FD-queue-scheduler (and FirmFS in general) is agnostic
of process and thread abstractions in the host. Therefore,
FD-queue-scheduler uses FD-queues as a basic scheduling
entity and builds scheduling policies that decide how to map
device-CPUs to serve requests from FD-queues.

4.5.1 Scheduling Policies.

The FD-queue-scheduler currently supports a simple round-
robin policy and an urgency-aware scheduling policy.

Round-robin Scheduling. The round-robin scheduling
aims to provide fairness. We maintain a global list of FD-
queues, and the device-CPUs iterate through the global list
to pick a queue currently not being serviced and schedule an

I/O request from the FD-queue’s head. To reduce schedul-
ing unfairness towards files with higher FD-queue count, the
round-robin scheduler performs two-level scheduling: first to
pick an unserviced inode, and then across the FD-queues of
the inode.
Urgency-aware Scheduling. While the round-robin sched-
uler increases fairness, it cannot differentiate non-blocking
(e.g., POSIX write, pwrite return before persisting to disk)
and latency-sensitive blocking (e.g., read, fsync) I/O oper-
ations. In particular, non-blocking operations such as write
incur additional block writes to update metadata and data
journals in contrast to read operations. Hence, in FirmFS, we
implement an urgency-aware scheduling policy that priori-
tizes blocking operations without starving non-blocking op-
erations. The device-CPUs when iterating the FD-queue list,
pick and schedule blocking requests at the head. Optionally,
LibFS could also tag requests as blocking and non-blocking.
To avoid starving non-blocking operations, non-blocking I/O
requests from FD-queues that are either full or delayed be-
yond a threshold (100µsec by default, but configurable) are
dispatched. Our evaluation in §6 shows that urgency-aware
policy improves performance for read-heavy workloads with-
out significantly impacting write performance.

4.6 Security and Permission Checking
CrossFS matches the security guarantees provided by tra-

ditional and state-of-the-art user-level file systems [31, 40] by
satisfying the following three properties. First, in CrossFS,
the filesystem’s metadata is always updated by the trusted
FirmFS. Second, data corruptions are restricted to files for
which threads and processes have write permission. Third,
for files shared across processes, CrossFS allows only legal
writers to update a file’s data or the user-level interval tree.
File System Permissions. CrossFS aims to perform file
permission checks without trapping into the OS for data plane
operations. For permission management, CrossFS relies on
trusted OS and FirmFS. The FirmFS maintains a credential
table that maps a unique process ID to its credentials. During
the initialization of per-process LibFS, the OS generates a
random (128-bit) unique ID [1, 6] for each process and up-
dates the firmware credential table with the unique ID and the
process credentials [4] and returns the unique ID to LibFS.
FirmFS also maintains a FD-queue to per-process unique ID
mapping internally. When LibFS adds a request to its pri-
vate FD-queue, it also adds the request’s unique ID. Before
processing a request, FirmFS checks if a request’s unique ID
matches FD-queue’s unique ID (stored internally in FirmFS),
and if they match, the I/O request’s permission (e.g., write
access) is checked using the credentials in the firmware table.
Any mismatch between an I/O request and FD-queue IDs are
identified and not processed by FirmFS. As a consequence,
accidental (unintended) writes to FD-queue could be identi-
fied by FirmFS. Further, a malicious process that succeeds in
forging another process’s unique ID cannot use the ID in its

144 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

own FD-queue.

FD-queue Protection. First, FD-queues are privately
mapped to a process address space and cannot be updated by
other processes. Second, an untrusted LibFS with access per-
mission to a file could reorder or corrupt FD-queue requests,
but cannot compromise metadata. Finally, a malicious reader
could add a file update request to FD-queue, but would not
be processed by FirmFS.

Interval Tree. To reduce work at the device-CPUs, CrossFS
uses LibFS (and host-CPUs) to manage inode-level interval
tree and concurrency control. Because the interval tree is
shared across writers and readers, an issue arises where a
reader process (with read-only permission to a file) could
accidentally or maliciously corrupt updates in the interval
tree by legal writers (e.g., inserting a truncate("file", 0)).

To overcome such security complications, for simplicity,
CrossFS provides two modes of interval tree updates: (a)
FirmFS mode, and (b) LibFS delegation mode. In the FirmFS
mode (enabled by default), the host-CPUs add I/O requests
to FD-queues, but FirmFS and device-CPUs are responsi-
ble for updating the per-inode interval tree and managing
concurrency control. This mode is specifically useful for
cases where files are shared across multiple processes. As a
consequence, file updates (e.g., truncate("file", 0)) by a ma-
licious process with read-only access would be invalidated
by the trusted FirmFS. This approach marginally impacts per-
formance without compromising direct-I/O. In contrast, the
LibFS delegation mode (an optional mode, which can be en-
abled when mounting CrossFS) allows the use of host-CPUs
for interval tree updates but does not allow inter-process file
sharing. We observe that most I/O-intensive applications
(including RocksDB analyzed in the paper) without file shar-
ing could benefit from using host-CPUs. We evaluate the
trade-offs of both designs in §6.

Security Limitations. We discuss security limitations com-
mon to most User-FS designs [22, 33], and CrossFS.

Shared Data Structure Corruption. Sharing data
and data-structures using untrusted user-level library makes
CrossFS and other user-level file systems vulnerable to ma-
licious/buggy updates or even DoS attacks. For example, in
CrossFS, a user-level thread could corrupt the inode inter-
val tree, impacting data correctness. Prior byte-addressable
NVM designs such as ZoFS use hardware support such as
Intel MPK ([22, 50]) to isolate memory regions across the
file system library and application threads. Unfortunately, the
isolation only protects against accidental corruption but not
malicious MPK use [19].

Denial of Service (DoS) Attacks. CrossFS and most user-
level designs do not handle DoS attacks, where a malicious
LibFS could lock all intervals in the interval tree, perform
many small updates to blocks, or force long interval tree
merges for reads to those ranges. Recent studies have shown
that lock-based attacks are possible for kernel file systems

too [51]. One approach in CrossFS could be to use OS-level
monitors to revoke threads that hold interval tree locks beyond
a threshold (e.g., Linux hard/soft-lockup detector). However,
a more thorough analysis is required, which will be the focus
of our future work.

5 Implementation

Due to the lack of programmable storage hardware, we im-
plement and emulate CrossFS as a device driver. CrossFS is
implemented in about 13K lines of code spread across LibFS
(2K LOC), FirmFS with scheduler and journaling (9K LOC),
and the OS (300 LOC) components. For storage, we use Intel
Optane DC Persistent Memory attached to the memory bus.
To emulate device-CPUs, we use dedicated CPU cores, but
also consider related hardware metrics such as device-level
CPU speed, PCIe latency, and storage bandwidth (see §6).
For direct-I/O, unlike prior systems that use high-overhead
IOCTLs [33], the persistent FD-queues are mapped as shared
memory between LibFS and the driver’s address space.

LibFS. In addition to the details discussed in §4, LibFS
uses a shim library to intercept POSIX operations and con-
vert them to FirmFS compliant commands. We extend the
NVMe command format that supports simple block (read
and write) operations to support file system operations (e.g.,
open, read, write). The I/O commands are allocated using
NVM, and LibFS issues the commands and sets a doorbell
flag for FirmFS to begin processing. FirmFS processes a
command and sets an acknowledgment bit to indicate request
completion. Finally, for each file descriptor, LibFS main-
tains a user-level file pointer structure with a reference to
the corresponding FD-queue, the file name, the interval tree,
and information such as file descriptor offset. For persisting
FD-queues, as described in §4.4, data updates are appended
to NVM log buffers and persisted using CLWB and memory
fence instructions.

FirmFS. The device-CPUs are emulated using dedicated
(kernel) threads pinned to specific CPUs, whereas FirmFS
block management (superblock, bitmaps, inodes, and data
block management) and journaling structures implemented by
extending PMFS [23] ported to Linux 4.8.2 kernel. FirmFS
extends PMFS’s inode and dentry with a simplified dentry
structure and dentry cache for path resolution. In our file
descriptor-based design, path resolution involves mapping
a path to an inode containing a list of all FD-queues. For
FirmFS data + metadata journaling, we use REDO logs and
substitute actual data with the physical address of data in
NVM FD-queues.

OS Component. We primarily extend the OS for FD-queue
setup and credential management. For FD-queue setup, we
implement an IOCTL in the OS to allocate contiguous DMA-
able memory pages using NVM memory, mapping them to
process and FirmFS device driver address spaces. The OS

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 145

component also cleans up FD-queues after a file is closed.
Next, for credential management, we modify Linux process
creation mechanism in the OS to generate a per-process
unique ID. The OS also updates the firmware-level credential
table with this information.

6 Evaluation

We compare CrossFS with state-of-the-art User-FS, Kernel-
FS, and Firmware-FS using microbenchmarks, macrobench-
marks, and real-world applications to answer the following
questions.

• How effective is CrossFS in exploiting the cross-layered
design and file descriptor-based concurrency?

• How effective is CrossFS’s FD-queue scheduler?
• What is the impact of host configuration such as FD-

queue depth and device configurations such as storage
bandwidth, device-CPU frequency, and PCIe latency?

• Can CrossFS’s cross-layered design scale for metadata-
intensive workloads with no data sharing across threads?

• Does CrossFS benefit real-world applications?

6.1 Experimental Setup
We use a dual-socket, 64-core, 2.7GHz Intel(R) Xeon(R)

Gold platform with 32GB memory and a 512GB SSD. For
storage and FD-queues, we use a 512GB (4x128GB) Optane
DC persistent memory with 8GB/sec read and 3.8GB/sec
rand-write bandwidth [30]. To emulate the proposed cross-
layered file system, we reserve and use 2GB of DRAM for
maintaining FirmFS in-memory state.

Besides, to study the implications of CrossFS for different
storage bandwidths, PCIe latency, and device-CPU speeds,
we use a CloudLab-based Intel(R) Xeon(R) CPU E5-2660
server that allows memory bandwidth throttling. We reserve
80GB memory mounted in a NUMA node for an emulated
NVDIMM and vary bandwidth between 500MB/s to 10GB/s.
To emulate PCIe latency, we add a 900ns software delay [49]
between the time a request is added to the host’s FD-queue
and the time a request is marked ready for FirmFS processing.
To emulate and vary device-CPU speeds, we apply dynamic
voltage frequency scaling (DVFS). We enable persistence
of NVM-based FD-queues and our proposed FirmFS data +
metadata journaling that uses REDO logging.

For analysis, we compare CrossFS against state-of-the-art
file systems in three different categories: User-FS Strata [40]
and SplitFS [31], Kernel-FS ext4-DAX [64] and NOVA (a log
structure NVM file system [66]), and finally, Firmware-FS
DevFS [33]. To understand the benefits of avoiding system
calls, for CrossFS, we compare an IOCTL-mode implementa-
tion with kernel traps but without VFS cost (CrossFS-ioctl)
and a direct-mode without both kernel traps and VFS cost
(CrossFS-direct).

6.2 Microbenchmarks
We first evaluate CrossFS using two microbenchmarks and

then provide an in-depth analysis of how the host-side and
the device-side configurations affect CrossFS performance.

6.2.1 Concurrency Analysis

In Figure 3a and Figure 3b, we vary the number of concur-
rent readers in the x-axis setting the concurrent writer count
to four threads. For this multithreaded micro-benchmark, we
use LibFS-level interval tree updates. We compare CrossFS-
ioctl and CrossFS-direct against ext4-DAX, NOVA, DevFS,
SplitFS, and Strata, all using Intel Optane DC persistent mem-
ory for storage.

ext4-DAX. First, ext4-DAX, a Kernel-FS, suffers from high
system call and VFS cost, and locking overheads [31,63]. The
inode rw-lock (read-write semaphore) contention between
writers and readers increases with higher thread count. For
the four concurrent reader-writer configuration, the time spent
on locks is around 21.38%. Consequently, reader and writer
throughputs are significantly impacted (see Figure 3b).

NOVA. Second, NOVA, also a Kernel-FS, exploits per-CPU
file system data structures and log-structured design to im-
prove aggregated write throughput compared to ext4-DAX.
However, the use of inode-level rw-lock and system call costs
impact write and read scalability.

DevFS. DevFS, a Firmware-FS, provides direct-access and
avoids system calls, but uses per-inode I/O queues and inode-
level rw-lock. Further, DevFS uses two levels of inode syn-
chronization: first, when adding requests to an inode’s I/O
queue; second, when dispatching requests from the I/O queue
for Firmware-FS processing. Consequently, the throughput
does not scale with increasing thread count.

SplitFS. SplitFS, a User-FS, maps staging files to a process
address space and converts data plane operations like read(),
write() in the user-level library to memory loads and stores.
Therefore, SplitFS avoids kernel traps for data plane operation
(although metadata is updated in the kernel). As a result,
SplitFS shows higher read and write throughputs over ext4-
DAX, NOVA, and DevFS. However, for concurrent readers
and writers, SplitFS gains are limited by inode-level locks.

Strata. Strata’s low throughput is because of the following
reasons: first, Strata uses an inode-level mutex; second, Strata
uses a per-process private log (4GB by default as used in [40]).
When using concurrent writers, the private log frequently fills
up, starving readers to wait until the logs are digested to a
shared area. The starvation amplifies for concurrent reader
processes that cannot access private writer logs and must wait
for the logs to be digested to a shared area.

CrossFS. In contrast, the proposed CrossFS-ioctl and
CrossFS-direct’s cross-layered designs with file descriptor
concurrency allow concurrent read and write across FD-
queues. Even though fewer than 1% of reads are fetched

146 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 4 8 16
0

2000

4000

6000

of reader threads (with 4 writer threads)

T
h
ro

u
g
h
p
u
t
(M

B
/s

) ext4-DAX

NOVA

DevFS

SplitFS

Strata

CrossFS-ioctl

CrossFS-direct

(a) Aggregated Read Throughput

1 4 8 16
0

1000

2000

3000

of reader threads (with 4 writer threads)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

(b) Aggregated Write Throughput

4 8 16 32 64
0

2000

4000

6000

fsync frequency (every X writes)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

ext4-DAX

NOVA

DevFS

SplitFS

Strata

CrossFS-ioctl

CrossFS-direct

(c) fsync Efficiency
Figure 3: Microbenchmark. Throughput of concurrent readers and 4 writers sharing a 12GB file. For CrossFS and DevFS, 4 device-CPUs
are used. CrossFS-ioctl uses IOCTL commands bypassing VFS but with OS traps, whereas CrossFS-direct avoids OS traps and VFS. Figure 3a
and Figure 3b are random accesses. Figure 3c shows the impact on performance when varying the commit frequency with 4 concurrent writers.

1 2 4
0

2000

4000

6000

of writer processes (with 8 reader processes)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

ext4-DAX

NOVA

CrossFS-ioctl

CrossFS-direct-user-tree

CrossFS-direct-firm-tree

Figure 4: Process Sharing. Results show aggregated read through-
put (MB/s) of 8 reader processes when sharing a file varying number
of writer processes. CrossFS-direct-user-tree refers to using user-
level interval tree, and CrossFS-direct-firm-tree refers to FirmFS
managed interval tree, as discussed in §4.6.

directly from the FD-queue, the performance gains are high.
CrossFS-ioctl incurs kernel traps but avoids VFS overheads
and low overhead journaling, resulting in 3.64X and 2.34X
read performance gains over DAX and Strata, respectively.
CrossFS-direct also avoids kernel traps achieving 3.38X and
4.87X write and read throughput gains over ext4-DAX, re-
spectively. The read gains are higher because, for writes, the
inode-level interval tree’s rw-lock must be acquired (only)
for FD-queue ordering. In our experiments, this accounts for
only 9.9% of the execution time. Finally, as shown in Ta-
ble 2, CrossFS not only improves throughput but also reduces
latency for concurrent access.

6.2.2 Multi-Process Performance

Figure 4 shows CrossFS performance in the presence of
multiple writers and readers processes. We use the same
workload used earlier in Figure 3. For CrossFS-direct ap-
proach, we evaluate two cases: first, as discussed in §4.6,
with CrossFS-direct-user-tree, we maintain a shared interval
tree in the user-level, and LibFS updates the interval tree.
While this approach reduces work for device-CPUs, a buggy
or corrupted reader could accidentally or maliciously corrupt
interval tree updates. In contrast, the CrossFS-direct-firm-
tree approach avoids these issues by using FirmFS to update
the interval tree, without impacting direct-I/O. As the fig-
ure shows, both approaches provide significant performance

ext4-DAX NOVA DevFS CrossFS-ioctl CrossFS-direct
Readers 5.72 4.68 2.91 1.93 1.27
Writers 3.86 2.48 2.31 1.89 1.15

Table 2: Latency. Average per-thread random write and read la-
tency (µs) with 4 concurrent readers and writers.

2 4 8 16
1000

2000

3000

4000

of writers (w/ equal # of readers)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

(a) Aggregated read throughput.

2 4 8 16
1000

2000

3000

4000

of writers (w/ equal # of readers)

T
h
ro

u
g
h
p
u
t
(M

B
/s

) Round Robin Scheduling

Urgency-aware Scheduling

(b) Aggregated write throughput.
Figure 5: Urgency-aware Scheduler Impact. Results show aggre-
gated throughput for reader and writer threads. The x-axis varies the
number of reader and writer threads.

gains compared to other state-of-the-art designs. Besides,
CrossFS-direct-firm-tree shows only a marginal reduction in
performance due to an increase in device-CPU work.

6.2.3 Commit Frequency

To study the performance of CrossFS’s barrier-based com-
mits, in Figure 3c, we evaluate fsync performance by running
the random write benchmark with 4 concurrent writers. In
the x-axis, we gradually increase the interval between suc-
cessive fsyncs. As shown, compared to ext4-DAX, CrossFS
delivers 2.05X and 2.68X performance gains for fsyncs is-
sued at 4 write (worst-case) and 16 write (best-case) intervals,
respectively. Although CrossFS adds a commit barrier to all
FD-queues of an inode, device-CPUs can concurrently dis-
patch requests across FD-queues without synchronizing until
the barrier completion. Additionally, CrossFS avoids system
call cost for both fsync and write operations.

6.2.4 Urgency-aware Scheduler

CrossFS’s cross-layered design smashes traditional OS-
level I/O and firmware scheduler into a single firmware-level
scheduler. To understand the implication of a scheduler, we
evaluate two scheduling policies: (a) round-robin, which
provides fairness, and (b) urgency-aware, which prioritizes

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 147

Readers Writers
0

2000

4000

6000

4 writers, 16 readers

T
h

ro
u

g
h

p
u

t(
M

B
/s

)
CrossFS-ioctl-lock

Scalability Design

Kernel Bypass

Urgent-aware Scheduler

Figure 6: CrossFS Incremental Performance Breakdown. Re-
sults show aggregated throughput breakdown for 16 readers and 4
writers performing random access on a 12GB file. The baseline
CrossFS approach (CrossFS-ioctl-lock) uses IOCTLs and coarse-
grained inode-level lock.

blocking operations (e.g., read). We use the random-access
micro-benchmark (discussed earlier) with an equal number
of readers and writers performing random access on a shared
12GB file. Figure 5a and 5b show aggregated throughput
for concurrent writers and readers, while varying the reader
and writer count on the x-axis. First, the round-robin policy
does not differentiate blocking reads and non-blocking writes;
hence, it dispatches read and write requests with equal prior-
ity. Consequently, with 4 device-CPUs and the use of interval
tree rw-lock, blocking reads are delayed. The write through-
put does not scale beyond 8 threads. In contrast, CrossFS’s
urgency-aware scheduling prioritizes blocking reads without
starving writes beyond a threshold, thereby accelerating reads
by 1.22X.

6.2.5 CrossFS Performance Breakdown.

To decipher the source of CrossFS-direct performance
gains, in Figure 6, we show the throughput breakdown of
4 writers, 16 readers configuration. CrossFS-ioctl-lock repre-
sents the CrossFS baseline that suffers from IOCTL (system
call) cost and uses a coarse-grained inode rw-lock. Replacing
the inode-level lock with fine-grained FD-queue concurrency
(shown as Scalability Design) and eliminating system call
cost (Kernel Bypass) provides significant performance bene-
fits over the baseline. The urgency-aware scheduler improves
the read throughput further.

6.2.6 Sensitivity Analysis - Host-side Configuration

We next study the performance impact of host-side con-
figurations, which includes: (a) FD-queue depth (i.e., queue
length), (b) read hits that directly fetch data from FD-queue,
and (c) write conflicts with in-transit FD-queues requests.
The values over the bars in Figure 7a and 7b show read hits
and write conflicts (in percentage), respectively.
Read Hits. To understand the performance impact of FD-
queue read hits, we mimic sequential producer-consumer
I/O access patterns exhibited in multithreaded I/O-intensive
applications such as Map-Reduce [20] and HPC "Cosmic
Microwave Background (CMB)" [16]. The concurrent writ-
ers (producers) sequentially update specific ranges of blocks
in a file, whereas the consumers sequentially read from spe-
cific ranges. Note that both producers and consumers use

separate file descriptors. The consumers start at the same
time as producers. In Figure 7a, for CrossFS, we vary FD-
queue depths to 32 (CrossFS-direct-QD32, the default depth)
and 256 (CrossFS-direct-QD256) entries. For simplicity, we
only show the results for CrossFS-direct, which outperforms
CrossFS-ioctl. As expected, increasing the queue depth from
32 to 256 increases the read hit rate, enabling host threads to
fetch updates from FD-queues directly. Consequently, read
throughput for CrossFS-direct-QD256 improves by 1.12X
over CrossFS-direct-QD32, outperforming other approaches.

Write Conflicts. A consequence of increasing the queue
depth is the increase in write conflicts across concurrent
writers. To illustrate this, we only use concurrent writers
in the above benchmark, and the writers sequentially up-
date all blocks in a file. As shown in Figure 7b, an increase
in queue-depth increases write conflicts (27% for CrossFS-
direct-QD256 with 8 threads), forcing some requests to be
ordered to the same FD-queue. However, this does not ad-
versely impact the performance because of our optimized
conflict resolution and fewer host-CPU stalls with 256 FD-
queue entries.

6.2.7 Sensitivity Analysis - Device Configuration

A cross-layered file system could be deployed in storage
devices with different bandwidths, incur PCIe latency for host
and device interaction, and use wimpier CPUs. To under-
stand CrossFS’s performance sensitivity towards these device
configurations, we decipher the performance by varying the
storage bandwidth, adding PCIe latency, and reducing the
frequency of device-CPUs.

For varying the storage bandwidth, we use DRAM as a stor-
age device and vary the storage bandwidth between 0.5GB/s
to 10GB/s using thermal throttling. We use DRAM because
Optane NVM cannot be thermal-throttled, and its bandwidth
cannot be changed. In Figure 7c, we compare three CrossFS
approaches: (1) CrossFS-noPCIeLat-HighFreq - the default
approach without PCIe latency and high device-CPU fre-
quency (2.7GHz); (2) CrossFS-PCIeLat-HighFreq - an ap-
proach that emulates Gen 3 x8 PCIe’s latency of 900ns [49]
by adding software delays between the time a request is added
to a FD-queue and the time when the request is processed
by FirmFS; and finally, (3) CrossFS-PCIeLat-LowFreq - an
approach that reduces device-CPU frequency to 1.2GHz (the
minimum frequency possible) using DVFS [41] in addition to
added PCIe latency. The results show random write through-
put when four concurrent writers and readers share a 12GB
file. We also compare ext4-DAX, NOVA, and DevFS without
reducing CPU frequency or PCIe latency.

At lower storage bandwidths (e.g., 500MB/s), as expected,
CrossFS’s gains are limited by storage bandwidth. However,
even at 2GB/s bandwidth, CrossFS-noPCIeLat-HighFreq
shows 1.96X gains over ext4-DAX. Next, the impact of 900ns
PCIe latency (CrossFS-PCIeLat-HighFreq) is overpowered
by other software overheads such as file system metadata and

148 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 4 8 16
0

2000

4000

6000

8000

of reader threads (with 4 writer threads)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

10%

11%

9%

21%

15%

22%

18%

31%

ext4-DAX

NOVA

DevFS

SplitFS

Strata

CrossFS-direct-QD32

CrossFS-direct-QD256

(a) Read Hit Rate Impact

1 4 8 16
0

2000

4000

6000

8000

of writer threads

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

0%

9%

19%
13%

0%
20%

27%
26%

ext4-DAX

NOVA

DevFS

SplitFS

Strata

CrossFS-direct-QD32

CrossFS-direct-QD256

(b) Write Conflicts Impact

500 2000 10000
0

1000

2000

3000

Storage bandwidth (MB/s)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

ext4-DAX

NOVA

DevFS

SplitFS

Strata

CrossFS-noPCIeLat-HighFreq

CrossFS-PCIeLat-HighFreq

CrossFS-PCIeLat-LowFreq

(c) Sensitivity to Device Configurations.
Figure 7: Performance Sensitivity towards Host and Device Configuration. Figure 7a and Figure 7b host configuration (FD-queue depth)
sensitivity. Figure 7a shows read throughput with increasing in read hit rate for 32 and 256 entry FD-queue depth. Figure 7b shows write
throughput and write conflict (%) when varying FD-queue depth across concurrent writers sequentially updating a file. Figure 7c shows device
configuration sensitivity. The x-axis varies the storage bandwidth, and the graph shows write throughput for 4 concurrent writers when adding
PCIe latency and reducing device-CPU frequency.

1 2 4 8 12
0

400

800

1200

of Threads

T
h
ro

u
g
h
p
u
t(

k
o
p
s
/s

)

(a) Varmail

1 2 4 8 12
0

400

800

1200

of Threads

T
h
ro

u
g
h
p
u
t(

k
o
p
s
/s

) ext4-DAX

NOVA

DevFS

CrossFS-ioctl

CrossFS-direct

(b) Fileserver

1 2 4 8 12
0

500

1000

1500

of Threads

T
h
ro

u
g
h
p
u
t(

k
o
p
s
/s

)

(c) Webserver
Figure 8: Filebench Throughput. The evaluation uses 4 device-CPUs.

data management, journaling, and scheduling. While higher
CPU frequency, storage bandwidth, and low PCIe latency
would maximize gains when using a programmable storage,
even when using 2.5x slower CPUs and 900ns PCIe latency,
our cross-layered and concurrency-centric design provides
1.87X, 1.97X, 1.35X over ext4-DAX, NOVA, and DevFS
that use high-frequency CPUs without PCIe latency, respec-
tively.

6.3 Macrobenchmark: Filebench
Does CrossFS’s cross-layered design benefit multithreaded

workloads without file sharing? To understand the per-
formance, we evaluate well-known Filebench’s Varmail
(metadata-heavy), Fileserver (write-heavy), and Webserver
(read-heavy) workloads that represent real-world work-
loads [22, 23, 66]. The workloads are metadata-intensive
and perform operations such as file create, delete, directory
update, which contributes to 69%, 63%, and 64% in Var-
mail, Fileserver, and Webserver, respectively, of the overall
I/O. The data read to write ratios are 1:1, 1:2, and 10:1 in
Varmail, Fileserver, and Webserver, respectively.

We compare CrossFS-ioctl and CrossFS-direct against
ext4-DAX, NOVA, and DevFS. SplitFS does not yet sup-
port Filebench and RocksDB. Figure 8 shows the throughput
for three workloads. The x-axis shows the throughput when
increasing Filebench’s thread count. Without file sharing
across threads, DevFS (without system calls) performs better

than NOVA and ext4-DAX. In contrast, CrossFS-direct, for
Varmail and Fileserver, outperforms other approaches and
provides 1.47X and 1.77X gains over NOVA, respectively.
Varmail is metadata-intensive and (with 1:1 read-write ratio
for data operations), and fileserver is highly write-intensive.
For both these workloads, CrossFS-direct avoids system calls,
reduces VFS cost, and provides fast metadata journaling at
the cost of data journaling (aided by NVM-based FD-queues).
With just 4 device-CPUs and a metadata I/O-queue for op-
erations without file descriptors, CrossFS-direct gains flat-
ten. Finally, Webserver has a significantly higher read ratio.
While CrossFS-direct improves performance, the throughput
gains (1.71X) are restricted. First, blocking reads stress the
available four device-CPUs. Second, we notice OS sched-
uler overheads as a side-effect of emulating device-CPUs
with Linux kernel threads. The kernel threads in Linux pe-
riodically check and yield to the OS scheduler if necessary
(i.e., need_resched()); the periodic yields negatively impact
blocking random read operations for CrossFS and DevFS.

6.4 Real-World Applications

RocksDB. RocksDB [9] is a widely used LSM-based NoSQL
database used as a backend in several production systems and
frameworks [11, 12, 44]. RocksDB is designed to exploit
SSD’s parallel bandwidth and multicore parallelism. As dis-
cussed earlier, we observe around 40% of I/O accesses to
shared files across RocksDB’s foreground threads that share

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 149

1 2 4 8 16
0

100

200

300

400

of Rocksdb threads

T
h

ro
u

g
h

p
u

t(
k
o

p
s
/s

)

(a) Rocksdb random writes

1 2 4 8 16
0

700

1400

2100

2800

of Rocksdb threads

T
h

ro
u

g
h

p
u

t(
k
o

p
s
/s

) ext4-DAX

NOVA

DevFS

CrossFS-ioctl

CrossFS-direct

(b) Rocksdb random reads

1 2 4 8 16
0

500

1000

1500

2000

of Redis instances

K
 R

e
q

u
e

s
ts

/s

(c) Redis SET benchmark
Figure 9: Application throughput. Figure 9a and Figure 9b show random write and read performance for RocksDB by varying threads in
DBbench workload. RocksDB internally creates background compaction threads. Figure 9c shows the SET benchmark for Redis by varying
the number of Redis instances.

log files and background threads that compact in-memory data
across LSM levels in the SST (string sorted) files [34]. How-
ever, conflicting block updates are negligible. In Figure 9a
and Figure 9b, we vary the number of application (foreground)
threads along the x-axis and set the device-CPU count to four.
We compare ext4-DAX, NOVA, DevFS, CrossFS-ioctl, and
CrossFS-direct’s throughput for random write and read opera-
tions. Note that RocksDB, by default, uses three background
parallel compaction threads, which increases with increas-
ing SST levels [10]. We use widely used DBbench [2], with
100B keys, 1KB values, and a 32GB database size. We set
RocksDB’s memory buffer to 128MB [44].

CrossFS-direct and CrossFS-ioctl show up to 2.32X and
1.15X write and read throughput gains over ext4-DAX, re-
spectively. The read and write performance benefits over
DevFS are 1.33X and 1.21X, respectively. We attribute these
gains to the following reasons. First, RocksDB threads do
not update the same block (lower than 0.1% conflicts); hence,
unlike other approaches, CrossFS-ioctl and CrossFS-direct
avoid inode-level locks. Second, both CrossFS-ioctl and
CrossFS-direct avoid VFS overheads. Additionally, CrossFS-
direct also avoids system call costs. When increasing appli-
cation threads, the burden on four device-CPUs increases,
impacting performance for the 16 application thread config-
uration. The blocking reads are impacted due to the use of
kernel threads for device-CPU emulation (see §6.3).

Redis. Redis is a widely used storage-backed in-memory
key-value store [8], which logs operations to append-only-
files (AOF) and checkpoints in-memory key-values asyn-
chronously to backup files called RDB [40]. We run multiple
Redis instances and the instances do not share AOF or RDB
files. We use background write mode for Redis instances that
immediately persist key-value updates to the disk. Figure 9c
shows the Redis performance.

First, when increasing Redis instances, the number of con-
current writers increases. The server and the client (bench-
mark) instances run as separate processes, which increases
inter-process communication, system call, and VFS costs. Al-
though instances do not share files, CrossFS-direct provides
considerable performance gains mostly stemming from direct
storage access, avoiding VFS overheads, and lowering jour-

naling cost. Consequently, CrossFS provides 2.35X higher
throughput over ext4-DAX.

7 Conclusion

This paper proposes CrossFS, a cross-layered file system
design that provides high-performance direct-I/O and concur-
rent access across threads and applications with or without
data sharing. Four key ingredients contribute to CrossFS’s
high-performant design. First, our cross-layered approach
exploits hardware and software resources spread across the
untrusted user-level library, the trusted OS, and the trusted
device firmware. Second, the fine-grained file descriptor con-
currency design converts a file synchronization problem to the
I/O queue ordering problem, which ultimately scales concur-
rent access. Third, our lightweight data + metadata journaling
aided by NVM reduces crash consistency overheads. Finally,
our unified firmware-level scheduler complements the file de-
scriptor design, reducing I/O latency for blocking operations.
Our detailed evaluation of CrossFS against state-of-the-art
kernel-level, user-level, and firmware-level file system shows
up to 4.87X, 3.58X, 2.32X gains on microbenchmarks, mac-
robenchmarks, and applications.

Acknowledgements
We thank the anonymous reviewers and Emmett Witchel (our
shepherd) for their insightful comments and feedback. We
thank the members of the Rutgers Systems Lab for their valu-
able input. This material was supported by funding from NSF
grant CNS-1910593. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and may not reflect the views of NSF.

References

[1] A Universally Unique IDentifier (UUID) URN Names-
pace. https://www.ietf.org/rfc/rfc4122.txt.

[2] Google LevelDB . http://tinyurl.com/osqd7c8.

[3] Intel-Micron Memory 3D XPoint. http://intel.ly/
1eICR0a.

150 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.ietf.org/rfc/rfc4122.txt
http://tinyurl.com/osqd7c8
http://intel.ly/1eICR0a
http://intel.ly/1eICR0a

[4] Linux Credentials. https://www.kernel.org/doc/
html/latest/security/credentials.html.

[5] MySQL. https://www.mysql.com/.

[6] OpenSSL. https://www.openssl.org/docs/man1.
1.1/man1/openssl-genrsa.html.

[7] rbtree based interval tree as a prio_tree replacement.
https://lwn.net/Articles/509994/.

[8] Redis. http://redis.io/.

[9] RocksDB. http://rocksdb.org/.

[10] RocksDB Tuning Guide. https://
github.com/facebook/rocksdb/wiki/
RocksDB-Tuning-Guide/.

[11] Tensor Flow. https://www.tensorflow.org/.

[12] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark
Nelson, Gregory R. Ganger, and George Amvrosiadis.
File Systems Unfit as Distributed Storage Backends:
Lessons from 10 Years of Ceph Evolution. In Proceed-
ings of the 27th ACM Symposium on Operating Systems
Principles, SOSP ’19, pages 353–369, New York, NY,
USA, 2019. Association for Computing Machinery.

[13] Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements,
M. Frans Kaashoek, and Nickolai Zeldovich. Scaling
a File System to Many Cores Using an Operation Log.
In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, pages 69–86, New York,
NY, USA, 2017. ACM.

[14] Matias Bjørling, Jens Axboe, David Nellans, and
Philippe Bonnet. Linux Block IO: Introducing Multi-
queue SSD Access on Multi-core Systems. In Proceed-
ings of the 6th International Systems and Storage Con-
ference, SYSTOR ’13, pages 22:1–22:10, New York,
NY, USA, 2013. ACM.

[15] Matias Bjørling, Javier González, and Philippe Bonnet.
LightNVM: The Linux Open-channel SSD Subsystem.
In Proceedings of the 15th Usenix Conference on File
and Storage Technologies, FAST’17, Santa clara, CA,
USA, 2017.

[16] J. Borrill, J. Carter, L. Oliker, and D. Skinner. Itegrated
performance monitoring of a cosmology application on
leading HEC platform. In Proceedings of 2005 Inter-
national Conference on Parallel Processing (ICPP’05),
pages 119–128, 2005.

[17] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner,
Arup De, Joel Coburn, and Steven Swanson. Provid-
ing Safe, User Space Access to Fast, Solid State Disks.
SIGARCH Comput. Archit. News, 40(1), March 2012.

[18] Vijay Chidambaram, Thanumalayan Sankaranarayana
Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Optimistic Crash Consistency. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 228–243, New
York, NY, USA, 2013. ACM.

[19] R. Joseph Connor, Tyler McDaniel, Jared M. Smith,
and Max Schuchard. PKU Pitfalls: Attacks on PKU-
based Memory Isolation Systems. In Srdjan Capkun and
Franziska Roesner, editors, 29th USENIX Security Sym-
posium, USENIX Security 2020, August 12-14, 2020,
pages 1409–1426. USENIX Association, 2020.

[20] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. In OSDI’04:
Sixth Symposium on Operating System Design and Im-
plementation, pages 137–150, San Francisco, CA, 2004.

[21] Yang Deng, Arun Ravindran, and Tao Han. Edge Data-
store for Distributed Vision Analytics: Poster. In Pro-
ceedings of the Second ACM/IEEE Symposium on Edge
Computing, SEC ’17, pages 29:1–29:2, New York, NY,
USA, 2017. ACM.

[22] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and Protection in the ZoFS
User-Space NVM File System. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
SOSP ’19, pages 478–493, New York, NY, USA, 2019.
Association for Computing Machinery.

[23] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System Software for Persistent Mem-
ory. In Proceedings of the Ninth European Conference
on Computer Systems, EuroSys ’14, pages 15:1–15:15,
New York, NY, USA, 2014. ACM.

[24] Jake Edge. VFS parallel lookups. https://lwn.net/
Articles/685108/.

[25] Brendan Gregg. KPTI/KAISER Meltdown
Initial Performance Regressions. http:
//www.brendangregg.com/blog/2018-02-09/
kpti-kaiser-meltdown-performance.html.

[26] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. A File
is Not a File: Understanding the I/O Behavior of Apple
Desktop Applications. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Princi-
ples, SOSP ’11, pages 71–83, New York, NY, USA,
2011. ACM.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 151

https://www.kernel.org/doc/html/latest/security/credentials.html
https://www.kernel.org/doc/html/latest/security/credentials.html
https://www.mysql.com/
https://www.openssl.org/docs/man1.1.1/man1/openssl-genrsa.html
https://www.openssl.org/docs/man1.1.1/man1/openssl-genrsa.html
https://lwn.net/Articles/509994/
http://redis.io/
http://rocksdb.org/
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide/
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide/
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide/
https://www.tensorflow.org/
https://lwn.net/Articles/685108/
https://lwn.net/Articles/685108/
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html

[27] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. The Unwritten Contract
of Solid State Drives. In Proceedings of the Twelfth
European Conference on Computer Systems, EuroSys
’17, pages 127–144, New York, NY, USA, 2017. ACM.

[28] Mohammad Hedayati, Kai Shen, Michael L. Scott, and
Mike Marty. Multi-Queue Fair Queuing. In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 301–314, Renton, WA, July 2019. USENIX
Association.

[29] Intel. Storage Performance Development Kit. http:
//www.spdk.io/.

[30] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim,
Xiao Liu, Amirsaman Memaripour, Yun Joon Soh, Zix-
uan Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao,
and Steven Swanson. Basic Performance Measurements
of the Intel Optane DC Persistent Memory Module,
2019.

[31] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
SplitFS: Reducing Software Overhead in File Systems
for Persistent Memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP
’19, pages 494âĂŞ–508, New York, NY, USA, 2019.
Association for Computing Machinery.

[32] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren Yu,
Lian Du, Shuai Ma, and Jinpeng Huai. SpanFS: A
Scalable File System on Fast Storage Devices. In Pro-
ceedings of the 2015 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’15, pages
249–261, Berkeley, CA, USA, 2015. USENIX Associa-
tion.

[33] Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, Yuangang Wang, Jun Xu, and
Gopinath Palani. Designing a True Direct-access File
System with DevFS. In Proceedings of the 16th USENIX
Conference on File and Storage Technologies, FAST’18,
pages 241–255, Berkeley, CA, USA, 2018. USENIX
Association.

[34] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing LSMs for Nonvolatile Memory with Nov-
eLSM. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 993–1005, Boston, MA, July
2018. USENIX Association.

[35] Sanidhya Kashyap, Changwoo Min, Kangnyeon Kim,
and Taesoo Kim. A Scalable Ordering Primitive for
Multicore Machines. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys 2018, Porto, Portugal,
April 23-26, 2018, pages 34:1–34:15. ACM, 2018.

[36] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim.
Scalable NUMA-aware Blocking Synchronization Prim-
itives. In Proceedings of the 2017 USENIX Confer-
ence on Usenix Annual Technical Conference, USENIX
ATC ’17, pages 603–615, Berkeley, CA, USA, 2017.
USENIX Association.

[37] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim.
NVMeDirect: A User-space I/O Framework for
Application-specific Optimization on NVMe SSDs.
In 8th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 16), Denver, CO, 2016.
USENIX Association.

[38] Jaeho Kim, Ajit Mathew, Sanidhya Kashyap, Mad-
hava Krishnan Ramanathan, and Changwoo Min. MV-
RLU: Scaling Read-Log-Update with Multi-Versioning.
In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 2019, Prov-
idence, RI, USA, April 13-17, 2019, pages 779–792.
ACM, 2019.

[39] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploit-
ing Speculative Execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[40] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A Cross Media File System. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
2017.

[41] Etienne Le Sueur and Gernot Heiser. Dynamic Volt-
age and Frequency Scaling: The Laws of Diminish-
ing Returns. In Proceedings of the 2010 International
Conference on Power Aware Computing and Systems,
HotPower’10, page 1âĂŞ8, USA, 2010. USENIX Asso-
ciation.

[42] Chang-Gyu Lee, Hyunki Byun, Sunghyun Noh,
Hyeongu Kang, and Youngjae Kim. Write Optimiza-
tion of Log-structured Flash File System for Parallel
I/O on Manycore Servers. In Proceedings of the 12th
ACM International Conference on Systems and Storage,
SYSTOR ’19, pages 21–32, New York, NY, USA, 2019.
ACM.

[43] Changman Lee, Dongho Sim, Joo-Young Hwang, and
Sangyeun Cho. F2FS: A New File System for Flash
Storage. In Proceedings of the 13th USENIX Confer-
ence on File and Storage Technologies, FAST’15, Santa
Clara, CA, 2015.

152 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.spdk.io/
http://www.spdk.io/

[44] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. KVell: The Design and Implementation of
a Fast Persistent Key-Value Store. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
SOSP ’19, pages 447–461, New York, NY, USA, 2019.
Association for Computing Machinery.

[45] Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert
Ross, Rajeev Thakur, William Gropp, Rob Latham, An-
drew Siegel, Brad Gallagher, and Michael Zingale. Par-
allel netCDF: A High-Performance Scientific I/O Inter-
face. In Proceedings of the 2003 ACM/IEEE Conference
on Supercomputing, SC ’03, pages 39–, New York, NY,
USA, 2003. ACM.

[46] Hyeontaek Lim, Michael Kaminsky, and David G.
Andersen. Cicada: Dependably Fast Multi-Core In-
Memory Transactions. In Proceedings of the 2017 ACM
International Conference on Management of Data, SIG-
MOD Conference 2017, Chicago, IL, USA, May 14-19,
2017, pages 21–35. ACM, 2017.

[47] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Mem-
ory from User Space. In 27th USENIX Security Sympo-
sium (USENIX Security 18), pages 973–990, Baltimore,
MD, August 2018. USENIX Association.

[48] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and
Taesoo Kim. Understanding Manycore Scalability of
File Systems. In Ajay Gulati and Hakim Weatherspoon,
editors, 2016 USENIX Annual Technical Conference,
USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016,
pages 71–85. USENIX Association, 2016.

[49] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W.
Moore. Understanding PCIe Performance for End Host
Networking. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communica-
tion, SIGCOMM’18, pages 327–341, New York, NY,
USA, 2018. Association for Computing Machinery.

[50] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon,
and Taesoo Kim. libmpk: Software Abstraction for
Intel Memory Protection Keys (Intel MPK). In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 241–254, Renton, WA, July 2019. USENIX
Association.

[51] Yuvraj Patel, Leon Yang, Leo Arulraj, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, and Michael M.
Swift. Avoiding Scheduler Subversion Using Scheduler-
Cooperative Locks. In Proceedings of the Fifteenth Eu-
ropean Conference on Computer Systems, EuroSys ’20,
New York, NY, USA, 2020. Association for Computing
Machinery.

[52] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The Operating System is
the Control Plane. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Imple-
mentation, OSDI’14, Broomfield, CO, 2014.

[53] Thanumalayan Sankaranarayana Pillai, Ramnatthan Ala-
gappan, Lanyue Lu, Vijay Chidambaram, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Appli-
cation Crash Consistency and Performance with CCFS.
In Proceedings of the 15th Usenix Conference on File
and Storage Technologies, FAST’17, Santa clara, CA,
USA, 2017.

[54] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Li-
dong Zhou. Transactional Flash. In Proceedings of the
8th USENIX Conference on Operating Systems Design
and Implementation, OSDI’08, San Diego, California,
2008.

[55] Madhava Krishnan Ramanathan, Jaeho Kim, Ajit
Mathew, Xinwei Fu, Anthony Demeri, Changwoo Min,
and Sudarsun Kannan. Durable Transactional Memory
Can Scale with Timestone. In ASPLOS ’20: Architec-
tural Support for Programming Languages and Operat-
ing Systems, Lausanne, Switzerland, March 16-20, 2020
[ASPLOS 2020 was canceled because of COVID-19],
pages 335–349. ACM, 2020.

[56] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER:
Designing In-Storage Computing System for Emerging
High-Performance Drive. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19), pages 379–394,
Renton, WA, July 2019. USENIX Association.

[57] Samsung. NVMe SSD 960 Polaris Controller.
http://www.samsung.com/semiconductor/
minisite/ssd/downloads/document/NVMe_SSD_
960_PRO_EVO_Brochure.pdf.

[58] Y. Son, J. Choi, J. Jeon, C. Min, S. Kim, H. Y. Yeom,
and H. Han. SSD-Assisted Backup and Recovery for
Database Systems. In 2017 IEEE 33rd International
Conference on Data Engineering (ICDE), pages 285–
296, April 2017.

[59] Tarasov Vasily. Filebench. https://github.com/
filebench/filebench.

[60] Haris Volos, Sanketh Nalli, Sankarlingam Panneersel-
vam, Venkatanathan Varadarajan, Prashant Saxena, and
Michael M. Swift. Aerie: Flexible File-system Inter-
faces to Storage-class Memory. In Proceedings of the
Ninth European Conference on Computer Systems, Eu-
roSys ’14, Amsterdam, The Netherlands, 2014.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 153

http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/NVMe_SSD_960_PRO_EVO_Brochure.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/NVMe_SSD_960_PRO_EVO_Brochure.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/NVMe_SSD_960_PRO_EVO_Brochure.pdf
https://github.com/filebench/filebench
https://github.com/filebench/filebench

[61] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
Mnemosyne: Lightweight Persistent Memory. In Pro-
ceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVI, Newport Beach, Cal-
ifornia, USA, 2011.

[62] Michael Wei, Matias Bjørling, Philippe Bonnet, and
Steven Swanson. I/O Speculation for the Microsecond
Era. In Proceedings of the 2014 USENIX Conference
on USENIX Annual Technical Conference, USENIX
ATC’14, Philadelphia, PA, 2014.

[63] Zev Weiss, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. DenseFS: a Cache-Compact Filesys-
tem. In 10th USENIX Workshop on Hot Topics in Stor-
age and File Systems (HotStorage 18), Boston, MA,
July 2018. USENIX Association.

[64] Matthew Wilcox and Ross Zwisler. Linux DAX.
https://www.kernel.org/doc/Documentation/
filesystems/dax.txt.

[65] Jian Xu, Juno Kim, Amirsaman Memaripour, and
Steven Swanson. Finding and Fixing Performance
Pathologies in Persistent Memory Software Stacks. In
Proceedings of the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’19, pages
427–439, New York, NY, USA, 2019. Association for
Computing Machinery.

[66] Jian Xu and Steven Swanson. NOVA: A Log-structured
File System for Hybrid Volatile/Non-volatile Main

Memories. In Proceedings of the 14th Usenix Con-
ference on File and Storage Technologies, FAST’16,
Santa Clara, CA, 2016.

[67] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh,
Tameesh Suri, Manu Awasthi, Zvika Guz, Anahita
Shayesteh, and Vijay Balakrishnan. Performance Analy-
sis of NVMe SSDs and Their Implication on Real World
Databases. In Proceedings of the 8th ACM International
Systems and Storage Conference, SYSTOR ’15, Haifa,
Israel, 2015.

[68] Jisoo Yang, Dave B. Minturn, and Frank Hady. When
Poll is Better Than Interrupt. In Proceedings of the 10th
USENIX Conference on File and Storage Technologies,
FAST’12, San Jose, CA, 2012.

[69] Yongen Yu, Douglas H. Rudd, Zhiling Lan, Nickolay Y.
Gnedin, Andrey V. Kravtsov, and Jingjin Wu. Improving
Parallel IO Performance of Cell-based AMR Cosmology
Applications. 2012 IEEE 26th International Parallel
and Distributed Processing Symposium, pages 933–944,
2012.

[70] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu,
Nanlong Yu, Gui Huang, Tieying Zhang, Dengcheng
He, Feifei Li, Wei Cao, Zhongdong Huang, and Jianling
Sun. FPGA-Accelerated Compactions for LSM-based
Key-Value Store. In 18th USENIX Conference on File
and Storage Technologies (FAST 20), pages 225–237,
Santa Clara, CA, February 2020. USENIX Association.

154 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt

From WiscKey to Bourbon: A Learned Index for Log-Structured Merge Trees

Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth†,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

University of Wisconsin – Madison † Microsoft Gray Systems Lab

Abstract. We introduce BOURBON, a log-structured merge
(LSM) tree that utilizes machine learning to provide fast
lookups. We base the design and implementation of
BOURBON on empirically-grounded principles that we derive
through careful analysis of LSM design. BOURBON employs
greedy piecewise linear regression to learn key distributions,
enabling fast lookup with minimal computation, and applies
a cost-benefit strategy to decide when learning will be worth-
while. Through a series of experiments on both synthetic
and real-world datasets, we show that BOURBON improves
lookup performance by 1.23×-1.78× as compared to state-
of-the-art production LSMs.

1 Introduction
Machine learning is transforming how we build computer ap-
plications and systems. Instead of writing code in the tradi-
tional algorithmic mindset, one can instead collect the proper
data, train a model, and thus implement a robust and gen-
eral solution to the task at hand. This data-driven, empirical
approach has been called “Software 2.0” [26], hinting at a
world where an increasing amount of the code we deploy is
realized in this manner; a number of landmark successes over
the past decade lend credence to this argument, in areas such
as image [32] and speech recognition [24], machine transla-
tion [46], game playing [44], and many other areas [7,15,17].

One promising line of work, for using ML to improve
core systems is that of the “learned index” [31]. This ap-
proach applies machine learning to supplant the traditional
index structure found in database systems, namely the ubiq-
uitous B-Tree [9]. To look up a key, the system uses a learned
function that predicts the location of the key (and value);
when successful, this approach can improve lookup perfor-
mance, in some cases significantly, and also potentially re-
duce space overhead. Since this pioneering work, numerous
follow ups [13, 20, 30] have been proposed that use better
models, better tree structures, and generally improve how
learning can reduce tree-based access times and overheads.

However, one critical approach has not yet been trans-
formed in this “learned” manner: the Log-structured Merge

Tree (LSM) [37, 39, 42]. LSMs were introduced in the
late ’90s, gained popularity a decade later through work at
Google on BigTable [8] and LevelDB [22], and have be-
come widely used in industry, including in Cassandra [33],
RocksDB [18], and many other systems [21,38]. LSMs have
many positive properties as compared to B-trees and their
cousins, including high insert performance [11, 37, 40].

In this paper, we apply the idea of the learned index to
LSMs. A major challenge is that while learned indexes are
primarily tailored for read-only settings, LSMs are optimized
for writes. Writes cause disruption to learned indexes be-
cause models learned over existing data must now be updated
to accommodate the changes; the system thus must re-learn
the data repeatedly. However, we find that LSMs are well-
suited for learned indexes. For example, although writes
modify the LSM, most portions of the tree are immutable;
thus, learning a function to predict key/value locations can
be done once, and used as long as the immutable data lives.
However, many challenges arise. For example, variable key
or value sizes make learning a function to predict locations
more difficult, and performing model building too soon may
lead to significant resource waste.

Thus, we first study how an existing LSM system, Wisc-
Key [37], functions in great detail (§3). We focus on Wisc-
Key because it is a state-of-the-art LSM implementation that
is significantly faster than LevelDB and RocksDB [37]. Our
analysis leads to many interesting insights from which we
develop five learning guidelines: a set of rules that aid an
LSM system to successfully incorporate learned indexes. For
example, while it is useful to learn the stable, low levels in
an LSM, learning higher levels can yield benefits as well be-
cause lookups must always search the higher levels. Next,
not all files are equal: some files even in the lower levels
are very short-lived; a system must avoid learning such files,
or resources can be wasted. Finally, workload- and data-
awareness is important; based on the workload and how the
data is loaded, it may be more beneficial to learn some por-
tions of the tree than others.

We apply these learning guidelines to build BOURBON, a

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 155

learned-index implementation of WiscKey (§4). BOURBON

uses piece-wise linear regression, a simple but effective
model that enables both fast training (i.e., learning) and in-
ference (i.e., lookups) with little space overhead. BOURBON

employs file learning: models are built over files given
that an LSM file, once created, is never modified in-place.
BOURBON implements a cost-benefit analyzer that dynam-
ically decides whether or not to learn a file, reducing un-
necessary learning while maximizing benefits. While most
of the prior work on learned indexes [13, 20, 31] has made
strides in optimizing stand-alone data structures, BOURBON

integrates learning into a production-quality system that is
already highly optimized. BOURBON’s implementation adds
around 5K LOC to WiscKey (which has ∼20K LOC).

We analyze the performance of BOURBON on a range of
synthetic and real-world datasets and workloads (§5). We
find that BOURBON reduces the indexing costs of WiscKey
significantly and thus offers 1.23× – 1.78× faster lookups
for various datasets. Even under workloads with significant
write load, BOURBON speeds up a large fraction of lookups
and, through cost-benefit, avoids unnecessary (early) model
building. Thus, BOURBON matches the performance of an
aggressive-learning approach but performs model building
more judiciously. Finally, most of our analysis focuses on
the case where fast lookups will make the most difference,
namely when the data resides in memory (i.e., in the file-
system page cache). However, we also experiment with
BOURBON when data resides on a fast storage device (an Op-
tane SSD) or when data does not fit entirely in memory, and
show that benefits can still be realized.

This paper makes four contributions. We present the first
detailed study of how LSMs function internally with learning
in mind. We formulate a set of guidelines on how to integrate
learned indexes into an LSM (§3). We present the design and
implementation of BOURBON which incorporates learned in-
dexes into a real, highly optimized, production-quality LSM
system (§4). Finally, we analyze BOURBON’s performance in
detail, and demonstrate its benefits (§5).

2 Background
We first describe log-structured merge trees and explain how
data is organized in LevelDB. Next, we describe WiscKey, a
modified version of LevelDB that we adopt as our baseline.
We then provide a brief background on learned indexes.

2.1 LSM and LevelDB
An LSM tree is a persistent data structure used in key-value
stores to support efficient inserts and updates [39]. Unlike
B-trees that require many random writes to storage upon up-
dates, LSM trees perform writes sequentially, thus achieving
high write throughput [39].

An LSM organizes data in multiple levels, with the size
of each level increasing exponentially. Inserts are initially
buffered in an in-memory structure; once full, this structure

key2
key1

immutable
memtable

. . .

. . .

L6

ss
ta

bl
es

memtable

di
sk

m
em

or
y

. . .

(a) LevelDB

L2

L1

L0

1 FindFiles

index block

data-block 1
data-block 2

data-block n

. . .
filter block

candidate-1
candidate-2

3 SearchIB 7 ReadValue

sstable
value-log

. . .

. . .

(b) WiscKey

candidate-3

2 LoadIB+FB

5
 L

oa
dD

B

6 SearchDB
4 SearchFB

IB FB DB

. . .

Figure 1: LevelDB and WiscKey. (a) shows how data is
organized in LevelDB and how a lookup is processed. The
search in in-memory tables is not shown. The candidate ssta-
bles are shown in bold boxes. (b) shows how keys and values
are separated in WiscKey.

is merged with the first level of on-disk data. This procedure
resembles merge-sort and is referred to as compaction. Data
from an on-disk level is also merged with the successive level
if the size of the level exceeds a limit. Note that updates do
not modify existing records in-place; they follow the same
path as inserts. As a result, many versions of the same item
can be present in the tree at a time. Throughout this paper,
we refer to the levels that contain the newer data as higher
levels and the older data as lower levels.

A lookup request must return the latest version of an item.
Because higher levels contain the newer versions, the search
starts at the topmost level. First, the key is searched for in
the in-memory structure; if not found, it is searched for in
the on-disk tree starting from the highest level to the lowest
one. The value is returned once the key is found at a level.

LevelDB [22] is a widely used key-value store built us-
ing LSM. Figure 1(a) shows how data is organized in Lev-
elDB. A new key-value pair is first written to the memtable;
when full, the memtable is converted into an immutable table
which is then compacted and written to disk sequentially as
sstables. The sstables are organized in seven levels (L0 being
the highest level and L6 the lowest) and each sstable corre-
sponds to a file. LevelDB ensures that key ranges of different
sstables at a level are disjoint (two files will not contain over-
lapping ranges of keys); L0 is an exception where the ranges
can overlap across files. The amount of data at each level
increases by a factor of ten; for example, the size of L1 is
10MB, while L6 contains several 100s of GBs. If a level ex-
ceeds its size limit, one or more sstables from that level are
merged with the next level; this is repeated until all levels are
within their limits.
Lookup steps. Figure 1(a) also shows how a lookup request
for key k proceeds. 1 FindFiles: If the key is not found
in the in-memory tables, LevelDB finds the set of candidate
sstable files that may contain k. A key in the worst case

156 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

may be present in all L0 files (because of overlapping ranges)
and within one file at each successive level. 2 LoadIB+FB:
In each candidate sstable, an index block and a bloom-filter
block are first loaded from the disk. 3 SearchIB: The in-
dex block is binary searched to find the data block that may
contain k. 4 SearchFB: The filter is queried to check if k is
present in the data block. 5 LoadDB: If the filter indicates
presence, the data block is loaded. 6 SearchDB: The data
block is binary searched. 7 ReadValue: If the key is found
in the data block, the associated value is read and the lookup
ends. If the filter indicates absence or if the key is not found
in the data block, the search continues to the next candidate
file. Note that blocks are not always loaded from the disk;
index and filter blocks, and frequently accessed data blocks
are likely to be present in memory (i.e., file-system cache).

We refer to these search steps at a level that occur as part
of a single lookup as an internal lookup. A single lookup
thus consists of many internal lookups. A negative internal
lookup does not find the key, while a positive internal lookup
finds the key and is thus the last step of a lookup request.

We differentiate indexing steps from data-access steps; in-
dexing steps such as FindFiles, SearchIB, SearchFB, and
SearchDB search through the files and blocks to find the
desired key, while data-access steps such as LoadIB+FB,
LoadDB, and ReadValue read the data from storage. Our
goal is to reduce the time spent in indexing.

2.2 WiscKey

In LevelDB, compaction results in large write amplification
because both keys and values are sorted and rewritten. Thus,
LevelDB suffers from high compaction overheads, affecting
foreground workloads.

WiscKey [37] (and Badger [1]) reduces this overhead by
storing the values separately; the sstables contain only keys
and pointers to the values as shown in Figure 1(b). With this
design, compaction sorts and writes only the keys, leaving
the values undisturbed, thus reducing I/O amplification and
overheads. WiscKey thus performs significantly better than
other optimized LSM implementations such as LevelDB and
RocksDB. Given these benefits, we adopt WiscKey as the
baseline for our design. Further, WiscKey’s key-value sepa-
ration enables our design to handle variable-size records; we
describe how in more detail in §4.2.

The write path of WiscKey is similar to that of LevelDB
except that values are written to a value log. A lookup in
WiscKey also involves searching at many levels and a final
read into the log once the target key is found. The size of
WiscKey’s LSM tree is much smaller than LevelDB because
it does not contain the values; hence, it can be entirely cached
in memory [37]. Thus, a lookup request involves multiple
searches in the in-memory tree, and the ReadValue step per-
forms one final read to retrieve the value.

2.3 Optimizing Lookups in LSMs
Performing a lookup in LevelDB and WiscKey requires
searching at multiple levels. Further, within each sstable,
many blocks are searched to find the target key. Given that
LSMs form the basis of many embedded key-value stores
(e.g., LevelDB, RocksDB [18]) and distributed storage sys-
tems (e.g., BigTable [8], Riak [38]), optimizing lookups in
LSMs can have huge benefits.

A recent body of work, starting with learned indexes [31],
makes a case for replacing or augmenting traditional index
structures with machine-learning models. The key idea is to
train a model (such as linear regression or neural nets) on the
input so that the model can predict the position of a record
in the sorted dataset. The model can have inaccuracies, and
thus the prediction has an associated error bound. During
lookups, if the model-predicted position of the key is correct,
the record is returned; if it is wrong, a local search is per-
formed within the error bound. For example, if the predicted
position is pos and the minimum and maximum error bounds
are δ min and δ max, then upon a wrong prediction, a local
search is performed between pos−δ min and pos+δ max.

Learned indexes can make lookups significantly faster. In-
tuitively, a learned index turns a O(log-n) lookup of a B-tree
into a O(1) operation. Empirically, learned indexes provide
1.5× – 3× faster lookups than B-trees [31]. Given these ben-
efits, we ask the following questions: can learned indexes for
LSMs make lookups faster? If yes, under what scenarios?

Traditional learned indexes do not support updates be-
cause models learned over the existing data would change
with modifications [13, 20, 31]. However, LSMs are attrac-
tive for their high performance in write-intensive workloads
because they perform writes only sequentially. Thus, we ex-
amine: how to realize the benefits of learned indexes while
supporting writes for which LSMs are optimized? We answer
these two questions next.

3 Learned Indexes: a Good Match for LSMs?
In this section, we first analyze if learned indexes could be
beneficial for LSMs and examine under what scenarios they
can improve lookup performance. We then provide our in-
tuition as to why learned indexes might be appropriate for
LSMs even when allowing writes. We conduct an in-depth
study based on measurements of how WiscKey functions in-
ternally under different workloads to validate our intuition.
From our analysis, we derive a set of learning guidelines.

3.1 Learned Indexes: Beneficial Regimes
A lookup in LSM involves several indexing and data-access
steps. Optimized indexes such as learned indexes can reduce
the overheads of indexing but cannot reduce data-access
costs. In WiscKey, learned indexes can thus potentially re-
duce the costs of indexing steps such as FindFiles, SearchIB,
and SearchDB, while data-access costs (e.g., ReadValue)

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 157

 0

 20

 40

 60

 80

 100

InMemory SATA NVMe Optane

3 µs 13.1 µs 9.3 µs 3.8 µs

data
access

index
-ingP

er
ce

n
ta

g
e

(%
)

FindFiles
SearchIB+SearchDB

SearchFB

LoadIB+FB
LoadDB

ReadValue

Other

Figure 2: Lookup Latency Breakdown. The figure shows
the breakdown of lookup latency in WiscKey. The first bar
shows the case when data is cached in memory. The other
three bars show the case where the dataset is stored on dif-
ferent types of SSDs. We perform 10M random lookups on
the Amazon Reviews dataset [5]; the figure shows the break-
down of the average latency (shown at the top of each bar).
The indexing portions are shown in solid colors; data access
and other portions are shown in patterns.

cannot be significantly reduced. As a result, learned in-
dexes can improve overall lookup performance if indexing
contributes to a sizable portion of the total lookup latency.
We identify scenarios where this is the case.

First, when the dataset or a portion of it is cached in mem-
ory, data-access costs are low, and so indexing costs become
significant. Figure 2 shows the breakdown of lookup la-
tencies in WiscKey. The first bar shows the case when the
dataset is cached in memory; the second bar shows the case
where the data is stored on a flash-based SATA SSD. With
caching, data-access and indexing costs contribute almost
equally to the latency. Thus, optimizing the indexing por-
tion can reduce lookup latencies by about 2×. When the
dataset is not cached, data-access costs dominate and thus
optimizing indexes may yield smaller benefits (about 20%).

However, learned indexes are not limited to scenarios
where data is cached in memory. They offer benefit on fast
storage devices that are currently prevalent and can do more
so on emerging faster devices. The last three bars in Figure 2
show the breakdown for three kinds of devices: flash-based
SSDs over SATA and NVMe, and an Optane SSD. As the
device gets faster, lookup latency (as shown at the top) de-
creases, but the fraction of time spent on indexing increases.
For example, with SATA SSDs, indexing takes about 17% of
the total time; in contrast, with Optane SSDs, indexing takes
44% and thus optimizing it with learned indexes can po-
tentially improve performance by 1.8×. More importantly,
the trend in storage performance favors the use of learned
indexes. With storage performance increasing rapidly and
emerging technologies like 3D Xpoint memory providing
very low access latencies, indexing costs will dominate and
thus learned indexes will yield increasing benefits.
Summary. Learned indexes could be beneficial when the
database or a portion of it is cached in memory. With fast
storage devices, regardless of caching, indexing contributes

to a significant fraction of the lookup time; thus, learned in-
dexes can prove useful in such cases. With storage devices
getting faster, learned indexes will be even more beneficial.

3.2 Learned Indexes with Writes
Learned indexes provide higher lookup performance com-
pared to traditional indexes for read-only analytical work-
loads. However, a major drawback of learned indexes (as
described in [31]) is that they do not support modifications
such as inserts and updates [13, 20]. The main problem with
modifications is that they alter the data distribution and so
the models must be re-learned; for write-heavy workloads,
models must be rebuilt often, incurring high overheads.

At first, it may seem like learned indexes are not a good
match for write-heavy situations for which LSMs are opti-
mized. However, we observe that the design of LSMs fits
well with learned indexes. Our key realization is that al-
though updates can change portions of the LSM tree, a large
part remains immutable. Specifically, newly modified items
are buffered in the in-memory structures or present in the
higher levels of the tree, while stable data resides at the lower
levels. Given that a large fraction of the dataset resides in
the stable, lower levels, lookups to this fraction can be made
faster with no or few re-learnings. In contrast, learning in
higher levels may be less beneficial: they change at a faster
rate and thus must be re-learned often.

We also realize that the immutable nature of sstable files
makes them an ideal unit for learning. Once learned, these
files are never updated and thus a model can be useful until
the file is replaced. Further, the data within an sstable is
sorted; such sorted data can be learned using simple models.
A level, which is a collection of many immutable files, can
also be learned as a whole using simple models. The data in
a level is also sorted: the individual sstables are sorted, and
there are no overlapping key ranges across sstables.

We next conduct a series of in-depth measurements to vali-
date our intuitions. Our experiments confirm that while a part
of our intuition is indeed true, there are some subtleties (for
example, in learning files at higher levels). Based on these
experimental results, we formulate a set of learning guide-
lines: a few simple rules that an LSM that applies learned
indexes should follow.
Experiments: goal and setup. The goal of our experiments
is to determine how long a model will be useful and how of-
ten it will be useful. A model built for a sstable file is useful
as long as the file exists; thus, we first measure and analyze
sstable lifetimes. How often a model will be used is deter-
mined by how many internal lookups it serves; thus, we next
measure the number of internal lookups to each file. Since
models can also be built for entire levels, we finally mea-
sure level lifetimes as well. To perform our analysis, we run
workloads with varying amounts of writes and reads, and
measure the lifetimes and number of lookups. We conduct
our experiments on WiscKey, but we believe our results are

158 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

10
0

10
1

10
2

10
3

10
4

 0.1 1 10 100A
v

er
ag

e
li

fe
ti

m
e

(s
)

Write percentage (%)

L4
L3

L2
L1

L0

 0

 20

 40

 60

 80

 100

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

Lifetime (s)

L4 L1

 0

 20

 40

 60

 80

 100

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
D

F

Lifetime (s)

1%
5%

10%
20%

50%

 0

 20

 40

 60

 80

 100

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

Lifetime (s)

1%
5%

10%
20%

50%

(i) Level 1 (ii) Level 4
(a) Average lifetimes with varying write % (b) Lifetime distribution with 5% writes (c) Lifetime distributions with varying write %

Figure 3: SSTable Lifetimes. (a) shows the average lifetime of sstable files in levels L4 to L0. (b) shows the distribution of
lifetimes of sstables in L1 and L4 with 5% writes. (c) shows the distribution of lifetimes of sstables for different write percentages
in L1 and L4.

10
0

10
2

10
4

10
6

10
8

 0.1 1 10 100

A
v
g

.
in

te
rn

al
 l

o
o

k
u
p

s/
fi

le

Write percentage (%)

L4
L3

L2
L1

L0

10
0

10
2

10
4

10
6

10
8

 0.1 1 10 100

A
v
g
.
n
eg

at
iv

e
lo

o
k
u

p
s/

fi
le

Write percentage (%)

L4
L3

L2
L1

L0

10
0

10
2

10
4

10
6

10
8

 0.1 1 10 100

A
v
g
.
p

o
si

ti
v

e
lo

o
k
u

p
s/

fi
le

Write percentage (%)

L4
L3

L2
L1

L0

10
0

10
2

10
4

10
6

10
8

 0.1 1 10

A
v
g

.
in

te
rn

al
 l

o
o

k
u
p

s/
fi

le

Write percentage (%)

L4
L3

L2
L1

L0

10
0

10
2

10
4

10
6

10
8

 0.1 1 10 100

A
v
g
.
in

te
rn

al
 l

o
o

k
u
p

s/
fi

le

Write percentage (%)

L4 L3 L2

(i) Total (ii) Negative (iii) Positive (iv) Positive (Zipfian)
(a) Randomly loaded dataset (b) Sequentially loaded dataset

Figure 4: Number of Internal Lookups Per File. (a)(i) shows the average internal lookups per file at each level for a
randomly loaded dataset. (b) shows the same for sequentially loaded dataset. (a)(ii) and (a)(iii) show the negative and positive
internal lookups for the randomly loaded case. (a)(iv) shows the positive internal lookups for the randomly loaded case when
the workload distribution is Zipfian.

applicable to most LSM implementations. We first load the
database with 256M key-value pairs. We then run a workload
with a single rate-limited client that performs 200M opera-
tions, a fraction of which are writes. Our workload chooses
keys uniformly at random.
Lifetime of SSTables. To determine how long a model will
be useful, we first measure and analyze the lifetimes of ssta-
bles. To do so, we track the creation and deletion times of all
sstables. For files created during the load phase, we assign
the workload-start time as their creation time; for other files,
we record the actual creation times. If the file is deleted dur-
ing the workload, then we calculate its exact lifetime. How-
ever, some files are not deleted by the end of the workload
and we must estimate their lifetimes.†

Figure 3(a) shows the average lifetime of sstable files at
different levels. We make three main observations. First, the
average lifetime of sstable files at lower levels is greater than
that of higher levels. Second, at lower percentages of writes,
even files at higher levels have a considerable lifetime; for
example, at 5% writes, files at L0 live for about 2 minutes
on an average. Files at lower levels live much longer; files
at L4 live about 150 minutes. Third, although the average
lifetime of files reduces with more writes, even with a high

†If the files are created during load, we assign the workload duration as
their lifetimes. If not, we estimate the lifetime of a file based on its creation
time (c) and the total workload time (w); the lifetime of the file is at least
w− c. We thus consider the lifetime distribution of other files that have a
lifetime of at least w−c. We then pick a random lifetime in this distribution
and assign it as this file’s lifetime.

amount of writes, files at lower levels live for a long period.
For instance, with 50% writes, files at L4 live for about 60
minutes. In contrast, files at higher level live only for a few
seconds; for example, an L0 file lives only about 10 seconds.

We now take a closer look at the lifetime distribution. Fig-
ure 3(b) shows the distributions for L1 and L4 files with 5%
writes. We first note that some files are very short-lived,
while some are long-lived. For example, in L1, the lifetime
of about 50% of the files is only about 2.5 seconds. If files
cross this threshold, they tend to live for much longer times;
almost all of the remaining L1 files live over five minutes.

Surprisingly, even at L4, which has a higher average life-
time for files, a few files are very short-lived. We observe
that about 2% of L4 files live less than a second. We find
that there are two reasons why a few files live for a very
short time. First, compaction of a Li file creates a new file in
Li+1 which is again immediately chosen for compaction to
the next level. Second, compaction of a Li file creates a new
file in Li+1, which has overlapping key ranges with the next
file that is being compacted from Li. Figure 3(c) shows that
this pattern holds for other percentages of writes too. We ob-
served that this holds for other levels as well. From the above
observations, we arrive at our first two learning guidelines.
Learning guideline - 1: Favor learning files at lower levels.
Files at lower levels live for a long period even for high write
percentages; thus, models for these files can be used for a
long time and need not be rebuilt often.
Learning guideline - 2: Wait before learning a file. A few

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 159

files are very short-lived, even at lower levels. Thus, learning
must be invoked only after a file has lived up to a threshold
lifetime after which it is highly likely to live for a long time.
Internal Lookups at Different Levels. To determine how
many times a model will be used, we analyze the num-
ber of lookups served by the sstable files. We run a work-
load and measure the number of lookups served by files at
each level and plot the average number of lookups per file at
each level. Figure 4(a) shows the result when the dataset is
loaded in an uniform random order. The number of internal
lookups is higher for higher levels, although a large fraction
of data resides at lower levels. This is because, at higher
levels, many internal lookups are negative, as shown in Fig-
ure 4(a)(ii). The number of positive internal lookups is as
expected: higher in lower levels as shown in Figure 4(a)(iii).
This result shows that files at higher levels serve many nega-
tive lookups and thus are worth optimizing. While bloom fil-
ters may already make these negative lookups faster, the in-
dex block still needs to be searched (before the filter query).

We also conduct the same experiment with another work-
load where the access pattern follows a zipfian distribution
(most requests are to a small set of keys). Most of the re-
sults exhibit the same trend as the random workload except
for the number of positive internal lookups, as shown in Fig-
ure 4(a)(iv). Under the zipfian workload, higher level files
also serve numerous positive lookups, because the workload
accesses a small set of keys which are often updated and thus
stored in higher levels.

Figure 4(b) shows the result when the dataset is sequen-
tially loaded, i.e., keys are inserted in ascending order. In
contrast to the randomly-loaded case, there are no negative
lookups because keys of different sstable files do not overlap
even across levels; the FindFiles step finds the one file that
may contain the key. Thus, lower levels serve more lookups
and can have more benefits from learning. From these obser-
vations, we arrive at the next two learning guidelines.
Learning guideline - 3: Do not neglect files at higher lev-
els. Although files at lower levels live longer and serve many
lookups, files at higher levels can still serve many negative
lookups and in some cases, even many positive lookups.
Thus, learning files at higher levels can make both internal
lookups faster.
Learning guideline - 4: Be workload- and data-aware. Al-
though most data resides in lower levels, if the workload does
not lookup that data, learning those levels will yield less ben-
efit; learning thus must be aware of the workload. Further,
the order in which the data is loaded influences which levels
receive a large fraction of internal lookups; thus, the system
must also be data-aware. The amount of internal lookups acts
as a proxy for both the workload and load order. Based on
the amount of internal lookups, the system must dynamically
decide whether to learn a file or not.
Lifetime of Levels. Given that a level as a whole can also be
learned, we now measure and analyze the lifetimes of levels.

 0

 0

 1 L-1

 0

 1 L-2

 0

 1 L-3

 0
 1

 0 500 1000 1500 2000

L-4burst interval = 330s#
ch

an
g
es

/#
fi

le
s

Time (s)

(a) Timeline of changes

10
0

10
1

10
2

10
3

 1 10 100

T
im

e
b
/w

 b
u
rs

ts
 (

s)

Write percentage (%)

(b) Time between bursts for L4

Figure 5: Changes at Levels. (a) shows the timeline
of file creations and deletions at different levels. Note that
#changes/#files is higher than 1 in L1 as there are more cre-
ations and deletions than the number of files. (b) shows the
time between bursts for L4 for different write percentages.

Level learning cannot be applied at L0 because it is unsorted:
files in L0 can have overlapping key ranges. Once a level
is learned, any change to the level causes a re-learning. A
level changes when new sstables are created at that level, or
existing ones are deleted. Thus, intuitively, a level would
live for an equal or shorter duration than the individual ssta-
bles. However, learning at the granularity of a level has the
benefit that the candidate sstables need not be found in a sep-
arate step; instead, upon a lookup, the model just outputs the
sstable and the offset within it.

We examine the changes to a level by plotting the timeline
of file creations and deletions at L1, L2, L3, and L4 in Fig-
ure 5(a) for a 5%-write workload; we do not show L0 for the
reason above. On the y-axis, we plot the number of changes
divided by the total files present at that level. A value of
0 means there are no changes to the level; a model learned
for the level can be used as long as the value remains 0. A
value greater than 0 means that there are changes in the level
and thus the model has to re-learned. Higher values denote a
larger fraction of files are changed.

First, as expected, we observe that the fraction of files that
change reduces as we go down the levels because lower lev-
els hold a large volume of data in many files, confirming our
intuition. We also observe that changes to levels arrive in
bursts. These bursts are caused by compactions that cause
many files at a level to be rewritten. Further, these bursts
occur at almost the same time across different levels. The
reason behind this is that for the dataset we use, levels L0
through L3 are full and thus any compaction at one layer
results in cascading compactions which finally settle at the
non-full L4 level. The levels remain static between these
bursts. The duration for which the levels remain static is
longer with a lower amount of writes; for example, with 5%
writes, as shown in the figure, this period is about 5 minutes.
However, as the amount of writes increases, the lifetime of a
level reduces as shown in Figure 5(b); for instance, with 50%
writes, the lifetime of L4 reduces to about 25 seconds. From
these observations, we arrive at our final learning guideline.

Learning guideline - 5: Do not learn levels for write-heavy
workloads. Learning a level as a whole might be more appro-

160 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

priate when the amount of writes is very low or if the work-
load is read-only. For write-heavy workloads, level lifetimes
are very short and thus will induce frequent re-learnings.
Summary. We analyzed how LSMs behave internally by
measuring and analyzing the lifetimes of sstable files and
levels, and the amount of lookups served by files at different
levels. From our analysis, we derived five learning guide-
lines. We next describe how we incorporate the learning
guidelines in an LSM-based storage system.

4 Bourbon Design
We now describe BOURBON, an LSM-based store that uses
learning to make indexing faster. We first describe the model
that BOURBON uses to learn the data (§4.1). Then, we discuss
how BOURBON supports variable-size values (§4.2) and its
basic learning strategy (§4.3). We finally explain BOURBON’s
cost-benefit analyzer that dynamically makes learning deci-
sions to maximize benefit while reducing cost (§4.4).

4.1 Learning the Data
As we discussed, data can be learned at two granularities:
individual sstables or levels. Both these entities are sorted
datasets. The goal of a model that tries to learn the data is to
predict the location of a key in such a sorted dataset. For ex-
ample, if the model is constructed for a sstable file, it would
predict the file offset given a key. Similarly, a level model
would output the target sstable file and the offset within it.

Our requirements for a model is that it must have low
overheads during learning and during lookups. Further, we
would like the space overheads of the model to be small. We
find that piecewise linear regression (PLR) [4, 27] satisfies
these requirements well; thus, BOURBON uses PLR to model
the data. The intuition behind PLR is to represent a sorted
dataset with a number of line segments. PLR constructs a
model with an error bound; that is, each data point d is guar-
anteed to lie within the range [dpos − δ , dpos + δ], where
dpos is the predicted position of d in the dataset and δ is the
error bound specified beforehand.

To train the PLR model, BOURBON uses the Greedy-PLR
algorithm [47]. Greedy-PLR processes the data points one
at a time; if a data point cannot be added to the current line
segment without violating the error bound, then a new line
segment is created and the data point is added to it. At the
end, Greedy-PLR produces a set of line segments that repre-
sents the data. Greedy-PLR runs in linear time with respect
to the number of data points.

Once the model is learned, inference is quick: first, the
correct line segment that contains the key is found (using
binary search); within that line segment, the position of the
target key is obtained by multiplying the key with the line’s
slope and adding the intercept. If the key is not present in
the predicted position, a local search is done in the range
determined by the error bound. Thus, lookups take O(log-
s) time, where s is the number of segments, in addition to a

Workload Baseline
time (s)

File model Level model
Time(s) % model Time(s) % model

Mixed:
Write-heavy 82.6 71.5

(1.16 ×) 74.2 95.1
(0.87 ×) 1.5

Mixed:
Read-heavy 89.2 62.05

(1.44 ×) 99.8 74.3
(1.2 ×) 21.4

Read-only 48.4 27.2
(1.78 ×) 100 25.2

(1.92 ×) 100

Table 1: File vs. Level Learning. The table compares the
time to perform 10M operations in baseline WiscKey, file-
learning, and level-learning. The numbers within the paren-
theses show the improvements over baseline. The table also
shows the percentage of lookups that take the model path;
remaining take the original path because the models are not
rebuilt yet.

constant time to do the local search. The space overheads of
PLR are small: a few tens of bytes for every line segment.

Other models or algorithms such as RMI [31], PGM-
Index [19], or splines [29] may also be suitable for LSMs
and may offer more benefits than PLR. We leave their explo-
ration within LSMs for future work.

4.2 Supporting Variable-size Values
Learning a model that predicts the offset of a key-value pair
is much easier if the key-value pairs are the same size. The
model then can multiply the predicted position of a key by
the size of the pair to produce the final offset. However,
many systems allow keys and values to be of arbitrary sizes.

BOURBON requires keys to be of a fixed size, while val-
ues can be of any size. We believe this is a reasonable de-
sign choice because most datasets have fixed-size keys (e.g.,
user-ids are usually 16 bytes), while value sizes vary signif-
icantly. Even if keys vary in size, they can be padded to
make all keys of the same size. BOURBON supports variable-
size values by borrowing the idea of key-value separation
from WiscKey [37]. With key-value separation, sstables in
BOURBON just contain the keys and the pointer to the values;
values are maintained in the value log separately. With this,
BOURBON obtains the offset of a required key-value pair by
getting the predicted position from the model and multiply-
ing it with the record size (which is keysize + pointersize.)
The value pointer serves as the offset into the value log from
which the value is finally read.

4.3 Level vs. File Learning
BOURBON can learn individual sstables files or entire levels.
Our analysis in the previous section showed that files live
longer than levels under write-heavy workloads, hinting that
learning at the file granularity might be the best choice. We
now closely examine this tradeoff to design BOURBON’s ba-
sic learning strategy. To do so, we compare the performance
of file learning and level learning for different workloads.
We initially load a dataset and build the models. For the read-
only workload, the models need not be re-learned. In the
mixed workloads, the models are re-learned as data changes.
The results are shown in Table 1.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 161

For mixed workloads, level learning performs worse than
file learning. For a write-heavy (50%-write) workload, with
level learning, only a small percentage of internal lookups
are able to use the model because with a steady stream of in-
coming writes, the system is unable to learn the levels. Only
a mere 1.5% of internal lookups take the model path; these
lookups are the ones performed just after loading the data
and when the initial level models are available. We observe
that all the 66 attempted level learnings failed because the
level changed before the learning completed. Because of the
additional cost of re-learnings, level learning performs even
worse than the baseline with 50% writes. On the other hand,
with file models, a large fraction of lookups benefit from the
models and thus file learning performs better than the base-
line. For read-heavy mixed workload (5%), although level
learning has benefits over the baseline, it performs worse
than file learning for the same reasons above.

Level learning can be beneficial for read-only settings: as
shown in the table, level learning provides 10% improve-
ments over file learning. Thus, deployments that have only
read-only workloads can benefit from level learning. Given
that BOURBON’s goal is to provide faster lookups while sup-
porting writes, levels are not an appropriate choice of granu-
larity for learning. Thus, BOURBON uses file learning by de-
fault. However, BOURBON supports level learning as a con-
figuration option that can be useful in read-only scenarios.

4.4 Cost vs. Benefit Analyzer
Before learning a file, BOURBON must ensure that the time
spent in learning is worthwhile. If a file is short-lived, then
the time spent learning that file wastes resources. Such a
file will serve few lookups and thus the model would have
little benefit. Thus, to decide whether or not to learn a file,
BOURBON implements an online cost vs. benefit analysis.

4.4.1 Wait Before Learning
As our analysis showed, even in the lower levels, many files
are short-lived. To avoid the cost of learning short-lived files,
BOURBON waits for a time threshold, Twait , before learning a
file. The exact value of Twait presents a cost vs. performance
tradeoff. A very low Twait leads to some short-lived files
still being learned, incurring overheads; a large value causes
many lookups to take the baseline path (because there is no
model built yet), thus missing opportunities to make lookups
faster. BOURBON sets the value of Twait to the time it takes
to learn a file. Our approach is never more than a factor of
two worse than the optimal solution, where the optimal solu-
tion knows apriori the lifetime and decides to either immedi-
ately or never learn the file (i.e., it is two-competitive [25]).
Through measurements, we found that the maximum time to
learn a file (which is at most ∼4MB in size) is around 40 ms
on our experimental setup. We conservatively set Twait to be
50 ms in BOURBON’s implementation.

4.4.2 To Learn a File or Not
BOURBON waits for Twait before learning a file. However,
learning a file even if it lives for a long time may not be ben-
eficial. For example, our analysis shows that although lower-
level files live longer, for some workloads and datasets, they
serve relatively fewer lookups than higher-level files; higher-
level files, although short-lived, serve a large percentage of
negative internal lookups in some scenarios. BOURBON, thus,
must consider the potential benefits that a model can bring,
in addition to considering the cost to build the model. It is
profitable to learn a file if the benefit of the model (Bmodel)
outweighs the cost to build the model (Cmodel).
Estimating Cmodel. One way to estimate Cmodel is to assume
that the learning is completely performed in the background
and will not affect the rest of the system; i.e., Cmodel is 0.
This is true if there are many idle cores which the learning
threads can utilize and thus do not interfere with the fore-
ground tasks (e.g., the workload) or other background tasks
(e.g., compaction). However, BOURBON takes a conservative
approach and assumes that the learning threads will interfere
and slow down the other parts of the system. As a result,
BOURBON assumes Cmodel to be equal to Tbuild . We define
Tbuild as the time to train the PLR model for a file. We find
that this time is linearly proportional to the number of data
points in the file. We calculate Tbuild for a file by multiplying
the average time to a train a data point (measured offline) and
the number of data points in the file.
Estimating Bmodel. Estimating the potential benefit of learn-
ing a file, Bmodel , is more involved. Intuitively, the bene-
fit offered by the model for an internal lookup is given by
Tb−Tm, where Tb and Tm are the average times for the lookup
in baseline and model paths, respectively. If the file serves
N lookups in its lifetime, the net benefit of the model is:
Bmodel = (Tb−Tm) ∗N. We divide the internal lookups into
negative and positive because most negative lookups termi-
nate at the filter, whereas positive ones do not; thus,

Bmodel = ((Tn.b−Tn.m)∗Nn)+((Tp.b−Tp.m)∗Np)

where Nn and Np are the number of negative and positive in-
ternal lookups, respectively. Tn.b and Tp.b are the time in the
baseline path for a negative and a positive lookup, respec-
tively; Tn.m and Tp.m are the model counterparts.

Bmodel for a file cannot be calculated without knowing the
number of lookups that the file will serve or how much time
the lookups will take. The analyzer, to estimate these quanti-
ties, maintains statistics of files that have lived their lifetime,
i.e., files that were created, served many lookups, and then
were replaced. To estimate these quantities for a file F , the
analyzer uses the statistics of other files at the same level as
F ; we consider statistics only at the same level because these
statistics vary significantly across levels.

Recall that BOURBON waits before learning a file. Dur-
ing this time, the lookups are served in the baseline path.
BOURBON uses the time taken for these lookups to estimate

162 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Tn.b and Tp.b. Next, Tn.m and Tp.m are estimated as the aver-
age negative and positive model lookup times of other files
at the same level. Finally, Nn and Np are estimated as fol-
lows. The analyzer first takes the average negative and pos-
itive lookups for other files in that level; then, it is scaled
by a factor f = s/s̄l , where s if the size of the file and s̄l is
the average file size at this level. While estimating the above
quantities, BOURBON filters out very short-lived files.

While bootstrapping, the analyzer might not have enough
statistics collected. Therefore, initially, BOURBON runs in an
always-learn mode (with Twait still in place.) Once enough
statistics are collected, the analyzer performs the cost vs.
benefit analysis and chooses to learn a file if Cmodel < Bmodel ,
i.e., benefit of a model outweighs the cost. If multiple files
are chosen to be learned at the same time, BOURBON puts
them in a max priority queue ordered by Bmodel−Cmodel , thus
prioritizing files that would deliver the most benefit.

Our cost-benefit analyzer adopts a simple scheme of us-
ing average statistics of other files at the same level. While
this approach has worked well in our initial prototype, us-
ing more sophisticated statistics and considering workload
distributions (e.g., to account for keys with different popu-
larity) could be more beneficial. We leave such exploration
for future work.

4.5 Bourbon: Putting it All Together
We describe how the different pieces of BOURBON work to-
gether. Figure 6 shows the path of lookups in BOURBON. As
shown in (a), lookups can either be processed via the model
(if the target file is already learned), or in the baseline path
(if the model is not built yet.) The baseline path in BOURBON

is similar to the one shown in Figure 1 for LevelDB, except
that BOURBON stores the values separately and so ReadValue
reads the value from the log.

Once BOURBON learns a sstable file, lookups to that file
will be processed via the learned model as shown in Fig-
ure 6(b). 1 FindFiles: BOURBON finds the candidate ssta-
bles; this step required because BOURBON uses file learning.
2 LoadIB+FB: BOURBON loads the index and filter blocks;

these blocks are likely to be already cached. 3 Model-
Lookup: BOURBON performs a look up for the desired key
k in the candidate sstable’s model. The model outputs a pre-
dicted position of k within the file (pos) and the error bound
(δ). From this, BOURBON calculates the data block that con-
tains records pos− δ through pos+ δ .† 4 SearchFB: The
filter for that block is queried to check if k is present. If
present, BOURBON calculates the range of bytes of the block
that must be loaded; this is simple because keys and pointers
to values are of fixed size. 5 LoadChunk: The byte range
is loaded. 6 LocateKey: The key is located in the loaded
chunk. The key will likely be present in the predicted po-

†Sometimes, records pos−δ through pos+δ span multiple data blocks;
in such cases, BOURBON consults the index block (which specifies the
maximum key in each data block) to find the data block for pos.

memtables
<pos, error>

7
 R

ea
dV

al
ue

2 LoadIB+FB

. . .

di
sk

m
em

or
y

. . .

1 FindFiles

IB

Model

3 ModelLookup

FB

5 LoadChunk

4 SearchFB

6 LocateKey

value-log

. . .

. .
.

k

→ <offset, len>

δ δ

Model
Lookup

Search
IB

Find
Files

Load
IB+FB

Search
FB

Load
Chunk

Locate
Key

Load
DB

Search
DB

Read
Value

(b) Lookup via model - detailed steps

(a) Lookup paths

model exists

no model
(baseline)

Figure 6: BOURBON Lookups. (a) shows that lookups
can take two different paths: when the model is available
(shown at the top), and when the model is not learned yet
and so lookups take the baseline path (bottom); some steps
are common to both paths. (b) shows the detailed steps for
a lookup via a model; we show the case where models are
built for files.

sition (the midpoint of the loaded chunk); if not, BOURBON

performs a binary search in the chunk. 7 ReadValue: The
value is read from the value log using the pointer.
Possible improvements. Although BOURBON’s implemen-
tation is highly-optimized and provides many features com-
mon to real systems, it lacks a few features. For example,
in the current implementation, we do not support string keys
and key compression (although we support value compres-
sion). For string keys, one approach we plan to explore is to
treat strings as base-64 integers and convert them into 64-bit
integers, which could then adopt the same learning approach
described herein. While this approach may work well for
small keys, large keys may require larger integers (with more
than 64 bits) and thus efficient large-integer math is likely es-
sential. Also, BOURBON does not support adaptive switching
between level and file models; it is a static configuration. We
leave supporting these features to future work.

5 Evaluation
To evaluate BOURBON, we ask the following questions:
• Which portions of lookup does BOURBON optimize?

(§5.1)
• How does BOURBON perform with models available and

no writes? How does performance change with datasets,
load orders, and request distributions? (§5.2)

• How does BOURBON perform with range queries? (§5.3)

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 163

Key
0

0.5

1
Po

sit
io
n

(a) Linear

Key

(b) Seg10%

Key

(c) Normal

Key

(d) OSM

Figure 7: Datasets. The figure shows the cumulative distri-
bution functions (CDF) of three synthetic datasets (linear,
segmented-10%, and normal) and one real-world dataset
(OpenStreetMaps). Each dataset is magnified around the
15% percentile to show a detailed view of its distribution.

• In the presence of writes, how does BOURBON’s cost-
benefit analyzer perform compared to other approaches
that always or never re-learn? (§5.4)

• Does BOURBON perform well on real benchmarks? (§5.5)
• Is BOURBON beneficial when data is on storage? (§5.6)
• Is BOURBON beneficial with limited memory? (§5.7)
• What are the error and space tradeoffs of BOURBON?

(§5.8)
Setup. We run our experiments on a 20-core Intel Xeon
CPU E5-2660 machine with 160-GB memory and a 480-
GB SATA SSD. We use 16B integer keys and 64B values,
and set the error bound of BOURBON’s PLR as 8. Unless
specified, our workloads perform 10M operations. We use a
variety of datasets. We construct four synthetic datasets: lin-
ear, segmented-1%, segmented-10% , and normal, each with
64M key-value pairs. In the linear dataset, keys are all con-
secutive. In the seg-1% dataset, there is a gap after a con-
secutive segment of 100 keys (i.e., every 1% causes a new
segment). The segmented-10% dataset is similar, but there
is a gap after 10 consecutive keys. We generate the normal
dataset by sampling 64M unique values from the standard
normal distribution N(0,1) and scale to integers. We also use
two real-world datasets: Amazon reviews (AR) [5] and New
York OpenStreetMaps (OSM) [2]. AR and OSM have 33.5M
and 21.9M key-value pairs, respectively. These datasets vary
widely in how the keys are distributed. Figure 7 shows the
distribution for a few datasets. Most of our experiments fo-
cus on the case where the data resides in memory; however,
we also analyze cases where data is present on storage.

5.1 Which Portions does BOURBON Optimize?
We first analyze which portions of the lookup BOURBON op-
timizes. We perform 10M random lookups on the AR and
OSM datasets and show the latency breakdown in Figure 8.
As expected, BOURBON reduces the time spent in index-
ing. The portion marked Search in the figure corresponds
to SearchIB and SearchDB in the baseline, versus Model-
Lookup and LocateKey in BOURBON. The steps in BOURBON

have lower latency than their baseline counterparts. Inter-
estingly, BOURBON reduces data-access costs too, because
BOURBON loads a smaller byte range than the entire block
loaded by the baseline.

 0

 1

 2

 3

 4

WiscKey Bourbon WiscKey Bourbon

AR OSM

2.9x 2.4x

2.2x 2x

A
v
g

.
la

te
n

cy
 (

 µ
s)

FindFiles
LoadIB+FB

Search
SearchFB

LoadData
ReadValue

Other

Figure 8: Latency Breakdown. The figure shows la-
tency breakdown for WiscKey and BOURBON. Search de-
notes SearchIB and SearchDB in WiscKey; the same denotes
ModelLookup and LocateKey in BOURBON. LoadData de-
notes LoadDB in WiscKey; the same denotes LoadChunk in
BOURBON. These two steps are optimized by BOURBON and
are shown in solid colors; the number next to a step shows
the factor by which it is made faster in BOURBON.

0

1

2

3

4

5

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

u
s
)

Dataset

Linear Seg1% NormalSeg10% AR OSM

1.78x 1.43x 1.35x 1.23x 1.61x 1.61x

WiscKey Bourbon Bourbon-level

(a) Average lookup latency

Dataset #segs latency
(µs)

Linear 900 2.72
Seg1% 640K 3.11
Normal 705K 3.3
Seg10% 6.4M 3.64

AR 129K 2.66
OSM 295K 2.65

(b) Number of segments

Figure 9: Datasets. (a) compares the average lookup laten-
cies of BOURBON, BOURBON-level, and WiscKey for different
datasets; the numbers on the top show the improvements of
BOURBON over WiscKey. (b) shows the number of segments
for different datasets in BOURBON.

5.2 Performance under No Writes
We next analyze BOURBON’s performance when the models
are already built and there are no updates. For each exper-
iment, we load a dataset and allow the system to build the
models; during the workload, we issue only lookups.

5.2.1 Datasets
To analyze how the performance is influenced by the dataset,
we run the workload on all six datasets and compare
BOURBON’s lookup performance against WiscKey. Figure 9
show the results. As shown in 9(a), BOURBON is faster than
WiscKey for all datasets; depending upon the dataset, the im-
provements vary (1.23× to 1.78×). BOURBON provides the
most benefit for the linear dataset because it has the smallest
number of segments (one per model); with fewer segments,
fewer searches are needed to find the target line segment.
From 9(b), we observe that latencies increase with the num-
ber of segments (e.g., latency of seg-1% is greater than that
of linear). We cannot compare the number of segments in
AR and OSM with others because the size of these datasets
is significantly different.
Level learning. Given that level learning is suitable for read-
only scenarios, we configure BOURBON to use level learn-

164 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

2

4

6

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

u
s
)

seq seqrand rand

AR OSM

1.61x 1.61x1.47x 1.50x

WiscKey Bourbon

(a) Average latency

Dataset Positive Negative
Speedup # Speedup

AR 10M 2.15× 23M 1.83×
OSM 10M 1.99× 22M 1.82×

(b) Positive vs. negative internal lookups
for randomly loaded case

Figure 10: Load Orders. (a) shows the performance
for AR and OSM datasets for sequential (seq) and random
(rand) load orders. (b) compares the speedup of positive and
negative internal lookups.

ing and analyze its performance. As shown in Figure 9(a),
BOURBON-level is 1.33× – 1.92× faster than the baseline.
BOURBON-level offers more benefits than BOURBON because
a level-model lookup is faster than finding the candidate ssta-
bles and then doing a file-model lookup. This confirms that
BOURBON-level is an attractive option for read-only scenar-
ios. However, since level models only provide benefits for
read-only workloads and give at most 10% improvement
compared to file models, we focus on BOURBON with file
learning for our remaining experiments.

5.2.2 Load Orders
We now explore how the order in which the data is loaded af-
fects performance. For this experiment, we use the AR and
OSM datasets and load them in two ways: sequential (keys
are inserted in ascending order) and random (keys are in-
serted in an uniformly random order). With sequential load-
ing, sstables do not have overlapping key ranges even across
levels; whereas, with random loading, sstables at one level
can overlap with sstables at other levels.

Figure 10 shows the result. First, regardless of the load or-
der, BOURBON offers significant benefit over baseline (1.47×
– 1.61×). Second, the average lookup latencies increase in
the randomly-loaded case compared to the sequential case
(e.g., 6µs vs. 4µs in WiscKey for the AR dataset). This is
because while there are no negative internal lookups in the
sequential case, there are many (23M) negative lookups in
the random case (as shown in 10(b)). Thus, with random
load, the total number of internal lookups increases by 3×,
increasing lookup latencies.

Next, we note that the speedup over baseline in the random
case is less than that of the sequential case (e.g., 1.47× vs.
1.61× for AR). Although BOURBON optimizes both positive
and negative internal lookups, the gain for negative lookups
is smaller (as shown in 10(b)). This is because most negative
lookups in the baseline and BOURBON end just after the fil-
ter is queried (filter indicates absence); the data block is not
loaded or searched. Given there are more negative than posi-
tive lookups, BOURBON offers less speedup than the sequen-
tial case. However, this speedup is still significant (1.47×).

5.2.3 Request Distributions
Next, we analyze how request distributions affect
BOURBON’s performance. We measure the lookup la-

0

2

4

6

8

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

u
s
)

AR AR AR AR AR AROSM OSM OSM OSM OSM OSM

Sequential Zipfian HotSpot Exponential Uniform Latest

1.6x 1.5x 1.5x 1.7x 1.5x 1.6x1.6x 1.5x 1.6x 1.8x 1.6x 1.6x

WiscKey Bourbon

Figure 11: Request Distributions. The figure shows the
average lookup latencies of different request distributions
from AR and OSM datasets.

0.0

0.5

1.0

1.5

2.0

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

AR AR AR AR AR AROSM OSM OSM OSM OSM OSM

1 5 10 50 100 500

1.90x 1.53x 1.43x 1.18x 1.15x 1.10x1.93x 1.57x 1.39x 1.19x 1.14x 1.04x

WiscKey Bourbon

Figure 12: Range Queries. The figure shows the normal-
ized throughput of range queries with different range lengths
from AR and OSM datasets.

tencies under six request distributions: sequential, zipfian,
hotspot, exponential, uniform, and latest. We first randomly
load the AR and OSM datasets and then run the workloads;
thus, the data can be segmented and there can be many
negative internal lookups. As shown in Figure 11, BOURBON

makes lookups faster by 1.54× – 1.76× than the baseline.
Overall, BOURBON reduces latencies regardless of request
distributions.
Read-only performance summary. When the models are
already built and when there are no writes, BOURBON pro-
vides significant speedup over baseline for a variety of
datasets, load orders, and request distributions.

5.3 Range Queries
We next analyze how BOURBON performs on range queries.
We perform 1M range queries on the AR and OSM datasets
with various range lengths. Figure 12 shows the through-
put of BOURBON normalized to that of WiscKey. With short
ranges, where the indexing cost (i.e., the cost to locate the
first key of the range) is dominant, BOURBON offers the most
benefit. For example, with a range length of 1 on the AR
dataset, BOURBON is 1.90× faster than WiscKey. The gains
drop as the range length increases; for example, BOURBON

is only 1.15× faster with queries that return 100 items. This
is because, while BOURBON can accelerate the indexing por-
tion, it follows a similar path as WiscKey to scan subsequent
keys. Thus, with large range lengths, indexing accounts for
less of the total performance, resulting in lower gains.

5.4 Efficacy of Cost-benefit Analyzer with Writes
We next analyze how BOURBON performs in the presence
of writes. Writes modify the data and so the models must
be re-learned. In such cases, the efficacy of BOURBON’s
cost-benefit analyzer (cba) is critical. We thus compare

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 165

 0

 100

 200

 300

 400

 500

 1 10 100

T
im

e
(s

)

Write percentage (%)

WiscKey
offline

always
cba

 0

 30

 60

 90

 120

 150

 1 10 100

T
im

e
(s

)

Write percentage (%)

WiscKey
offline

always
cba

 0

 200

 400

 600

 800

 1 10 100

T
im

e
(s

)

Write percentage (%)

WiscKey
offline

always
cba

 0

 20

 40

 60

 80

 100

 1 10 100

%
 b

as
el

in
e

lo
o

k
u
p

s

Write percentage (%)

WiscKey
offline

always
cba

(a) Foreground time (b) Learning time (c) Total time (d) Baseline-path internal lookups (%)

Figure 13: Mixed Workloads. (a) compares the foreground times of WiscKey, BOURBON-offline (offline), BOURBON-always
(always), and BOURBON-cba (cba); (b) and (c) compare the learning time and total time, respectively; (d) shows the fraction
of internal lookups that take the baseline path.

0
100
200
300
400

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

e
c
)

default default default default defaultAR AR AR AR AROSM OSM OSM OSM OSM

A:write-heavy B:read-heavy C:read-only D:read-heavy F:write-heavy

1.06x 1.38x 1.64x 1.34x 1.18x1.08x 1.31x 1.62x 1.44x 1.1x1.11x 1.24x 1.61x 1.33x 1.11x

WiscKey Bourbon

0
10
20
30
40

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

e
c
)

default AR OSM

E:range-heavy

1.17x 1.16x 1.19x

Figure 14: Macrobenchmark-YCSB. The figure compares the throughput of BOURBON against WiscKey for six YCSB work-
loads across three datasets.

BOURBON’s cba against two strategies: BOURBON-offline and
BOURBON-always. BOURBON-offline performs no learning
as writes happen; models exist only for the initially loaded
data. BOURBON-always re-learns the data as writes happen;
it always decides to learn a file without considering cost.
BOURBON-cba re-learns as well, but it uses the cost-benefit
analysis to decide whether or not to learn a file.

We run a workload that issues 50M operations with vary-
ing percentages of writes on the AR dataset. To calculate the
total amount of work performed for each workload, we sum
together the time spent on the foreground lookups and inserts
(Figure 13(a)), the time spent learning (13(b)), and the time
spent on compaction (not shown); the total amount of work
is shown in Figure 13(c). The figure also shows the fraction
of internal lookups that take the baseline path (13(d)).

First, as shown in 13(a), all BOURBON variants reduce
the workload time compared to WiscKey. The gains are
lower with more writes because BOURBON has fewer lookups
to optimize. Next, BOURBON-offline performs worse than
BOURBON-always and BOURBON-cba. Even with just 1%
writes, a significant fraction of internal lookups take the
baseline path in BOURBON-offline as shown in 13(d); this
shows re-learning as data changes is crucial.

BOURBON-always learns aggressively and thus almost no
lookups take the baseline path even for 50% writes. As
a result, BOURBON-always has the lowest foreground time.
However, this comes at the cost of increased learning time;
for example, with 50% writes, BOURBON-always spends
about 134 seconds learning. Thus, the total time spent in-
creases with more writes for BOURBON-always and is even
higher than baseline WiscKey as shown in 13(c). Thus, ag-

gressively learning is not ideal.
Given a low percentage of writes, BOURBON-cba decides

to learn almost all the files, and thus matches the charac-
teristics of BOURBON-always: both have a similar fraction
of lookups taking the baseline path, both require the same
time learning, and both perform the same amount of work.
With a high percentage of writes, BOURBON-cba chooses not
to learn many files, reducing learning time; for example,
with 50% writes, BOURBON-cba spends only 13.9 seconds in
learning (10× lower than BOURBON-always). Consequently,
many lookups take the baseline path. BOURBON-cba takes
this action because there is less benefit to learning as the data
is changing rapidly and there are fewer lookups. Thus, it al-
most matches the foreground time of BOURBON-always. But,
by avoiding learning, the total work done by BOURBON-cba
is significantly lower.
Summary. Aggressive learning offers fast lookups but with
high costs; no re-learning provides little speedup. Neither is
ideal. In contrast, BOURBON provides high benefits similar
to aggressive learning while lowering total cost significantly.

5.5 Real Macrobenchmarks
We next analyze how BOURBON performs under two real
benchmarks: YCSB [10] and SOSD [28].

5.5.1 YCSB
We use six workloads that have different read-write ratios
and access patterns: A (w:50%, r:50%), B (w:5%, r:95%),
C (read-only), D (read latest, w:5%, r:95%), E (range-heavy,
w:5%, range:95%), F (read-modify-write:50%, r:50%). We
use three datasets: YCSB’s default dataset (created using

166 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

2

4

6

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

u
s
)

Dataset

amzn32 face32 logn32 norm32 uden32 uspr32

1.48x 1.62x 1.68x 1.66x 1.74x 1.55x

WiscKey Bourbon

Figure 15: Macrobenchmark-SOSD. The figure compares
lookup latencies from the SOSD benchmark. The numbers on
the top show BOURBON’s improvements over the baseline.

Dataset
WiscKey

latency (µs)
BOURBON

Latency(µs) Speedup
Amazon Reviews (AR) 3.53 2.75 1.28×

NewYork OpenStreetMaps (OSM) 3.14 2.51 1.25×

Table 2: Performance on Fast Storage. The table shows
BOURBON’s lookup latencies when the data is stored on an
Optane SSD.

ycsb-load [3]), AR, and OSM, and load them in a random
order. Figure 14 shows the results.

For the read-only workload (YCSB-C), all operations ben-
efit and BOURBON offers the most gains (about 1.6×). For
read-heavy workloads (YCSB-B and D), most operations
benefit, while writes are not improved and thus BOURBON

is 1.24× – 1.44× faster than the baseline. For write-heavy
workloads (YCSB-A and F), BOURBON improves perfor-
mance only a little (1.06× – 1.18×). First, a large fraction
of operations are writes; second, the number of the inter-
nal lookups taking the model path decreases (by about 30%
compared to the read-heavy workload because BOURBON

chooses not to learn some files). YCSB-E consists of range
queries (range lengths varying from 1 to 100) and 5% writes.
BOURBON reaches 1.16× – 1.19× gain. In summary, as ex-
pected, BOURBON improves the performance of read opera-
tions; at the same time, BOURBON does not affect the perfor-
mance of writes.

5.5.2 SOSD
We next measure BOURBON’s performance on the SOSD
benchmark designed for learned indexes [28]. We use the
following six datasets: book sale popularity (amzn32), Face-
book user ids (face32), lognormally (logn32) and normally
(norm32) distributed datasets, uniformly distributed dense
(uden32) and sparse (uspr32) integers. Figure 15 shows the
average lookup latency. As shown, BOURBON is about 1.48×
– 1.74× faster than the baseline for all datasets.

5.6 Performance on Fast Storage
Our analyses so far focused on the case where the data re-
sides in memory. We now analyze if BOURBON will offer
benefit when the data resides on a fast storage device. We run
a read-only workload on sequentially loaded AR and OSM
datasets on an Intel Optane SSD. Table 2 shows the result.
Even when the data is present on a storage device, BOURBON

offers benefit (1.25× – 1.28× faster lookups than WiscKey).

0
100
200
300
400

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

e
c
)

Workload

A:write-heavy B:read-heavy D:read-heavy F:write-heavy

1.05x 1.19x 1.16x 1.06x
WiscKey Bourbon

Figure 16: Mixed Workloads on Fast Storage. The figure
compares the throughput of BOURBON against WiscKey for
four read-write mixed YCSB workloads. We use the YCSB
default dataset for this experiment.

Workload WiscKey
latency (µs)

BOURBON
Latency(µs) Speedup

Uniform 98.6 94.4 1.04×
Zipfian 18.8 15.1 1.25×

Table 3: Performance with Limited Memory. The ta-
ble shows BOURBON’s average lookup latencies from the AR
dataset on a machine with a SATA SSD and limited memory.

Figure 16 shows the result for read-write mixed YCSB work-
loads on the same device with the default YCSB datasest. As
expected, while BOURBON’s benefits are marginal for write-
heavy workloads (YCSB-A and YCSB-F), it offers consid-
erable speedup (1.16× – 1.19×) for read-heavy workloads
(YCSB-B and YCSB-D). With the emerging storage tech-
nologies (e.g., 3D XPoint memory), BOURBON will offer
even more benefits.

5.7 Performance with Limited Memory
We further show that, even with no fast storage and lim-
ited available memory, BOURBON can still offer benefit with
skewed workloads, such as zipfian. We experiment on a ma-
chine with a SATA SSD and memory that only holds about
25% of the database. We run a uniform random workload,
and a zipfian workload with consecutive hotspots where 80%
of the requests access about 25% of the database. Table 3
shows the result. With the uniform workload, BOURBON is
only 1.04× faster because most of the time is spent loading
the data into the memory. With the zipfian workload, in con-
trast, indexing time instead of data-access time dominates
because a large number of requests access the small portion
of data that is already cached in memory. BOURBON is able
to reduce this significant indexing time and thus offers 1.25×
lower latencies.

5.8 Error Bound and Space Overheads
We finally discuss the characteristics of BOURBON’s ML
model, specifically its error bound (δ) and space overheads.
Figure 17(a) plots the error bound (δ) against the average
lookup latency (left y-axis) for AR dataset. As δ increases,
fewer line segments are created, leading to fewer searches,
thus reducing latency. However, beyond δ = 8, although the
time to find the segment reduces, the time to search within
a segment increases, thus increasing latency. We find that
BOURBON’s choice of δ = 8 is optimal for other datasets too.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 167

 2.65

 2.7

 2.75

 2.8

 2.85

 2.9

 2 4 8 16 32
 0

 5

 10

 15

 20

 25

 30

A
v
er

ag
e

la
te

n
cy

 (
u
s)

M
em

o
ry

 o
v
er

h
ea

d
 (

M
B

)

Error Bound (δ)

latency
Space (MB)

(a) Error-bound tradeoff

Dataset Space Overheads
MB %

Linear 0.02 0.0
Seg1% 15.38 0.21

Seg10% 153.6 2.05
Normal 16.94 0.23

AR 3.09 0.08
OSM 7.08 0.26

(b) Space overheads

Figure 17: Error-bound Tradeoffs and Space Overheads.
(a) shows how the PLR error bound affects lookup latency
and memory overheads; (b) shows the space overheads for
different datasets.

Figure 17(a) also shows how space overheads (right y-axis)
vary with δ . As δ increases, fewer line segments are created,
leading to low space overheads. Table 17(b) shows the space
overheads for different datasets. As shown, for a variety of
datasets, the overhead compared to the total dataset size is
little (0% – 2%).

6 Related Work
Learned indexes. The core idea of our work, replacing in-
dexing structures with ML models, is inspired from the pi-
oneering work on learned indexes [31]. However, learned
indexes do not support updates, an essential operation that
an storage-system index must support. Recent research tries
to address this limitation. For instance, XIndex [45], FITing-
Tree [20], and AIDEL [35] support writes using an additional
array (delta index) and with periodic re-training, whereas
Alex [13] uses gapped array at the leaf nodes of a B-tree
to support writes.

Most prior efforts optimize B- tree variants, while our
work is the first to deeply focus on LSMs. Further, while
most prior efforts implement learned indexes to stand-alone
data structures, our work is the first to show how learning
can be integrated and implemented into an existing, opti-
mized, production-quality system. While SageDB [30] is
a full database system that uses learned components, it is
built from scratch with learning in mind. Our work, in con-
trast, shows how learning can be integrated into an exist-
ing, practical system. Finally, instead of “fixing” new read-
optimized learned index structures to handle writes (like pre-
vious work), we incorporate learning into an already write-
optimized, production-quality LSM.

LSM optimizations. Prior work has built many LSM op-
timizations. Monkey [11] carefully adjusts the bloom filter
allocations for better filter hit rates and memory utilization.
Dostoevsky [12], HyperLevelDB [16], and bLSM [42] de-
velop optimized compaction policies to achieve lower write
amplification and latency. cLSM [23] and RocksDB [18] use
non-blocking synchronization to increase parallelism. We
take a different yet complimentary approach to LSM opti-

mization by incorporating models as auxiliary index struc-
tures to improve lookup latency, but each of the others are
orthogonal and compatible to our core design.

Model choices. Duvignau et al. [14] compare a variety
of piecewise linear regression algorithms. Greedy-PLR,
which we utilize, is a good choice to realize fast lookups,
low learning time, and small memory overheads. Neural
networks are also widely used to approximate data distri-
butions, especially datasets with complex non-linear struc-
tures [34]. However, theoretical analysis [36] and exper-
iments [43] show that training a complex neural network
can be prohibitively expensive. Similar to Greedy-PLR, re-
cent work proposes a one-pass learning algorithm based on
splines [29] and identifies that such an algorithm could be
useful for learning sorted data in LSMs; we leave their ex-
ploration within LSMs for future work.

7 Conclusion
In this paper, we examine if learned indexes are suitable for
write-optimized log-structured merge (LSM) trees. Through
in-depth measurements and analysis, we derive a set of
guidelines to integrate learned indexes into LSMs. Using
these guidelines, we design and build BOURBON, a learned-
index implementation for a highly-optimized LSM system.
We experimentally demonstrate that BOURBON offers signif-
icantly faster lookups for a range of workloads and datasets.

BOURBON is an initial work on integrating learned indexes
into an LSM-based storage system. More detailed stud-
ies, such as more sophisticated cost-benefit analysis, general
string support, and different model choices, could be promis-
ing for future work. In addition, we believe that BOURBON’s
learning approach may work well in other write-optimized
data structures such as the Bε -tree [6] and could be an inter-
esting avenue for future work. While our work takes initial
steps towards integrating learning into production-quality
systems, more studies and experience are needed to under-
stand the true utility of learning approaches.

Acknowledgements
We thank Alexandra Fedorova (our shepherd) and the anony-
mous reviewers of OSDI ’20 for their insightful comments
and suggestions. We thank the members of ADSL for their
excellent feedback. We also thank CloudLab [41] for pro-
viding a great environment to run our experiments and re-
produce our results during artifact evaluation. This material
was supported by funding from NSF grants CNS-1421033,
CNS-1763810 and CNS-1838733, Intel, Microsoft, Seagate,
and VMware. Aishwarya Ganesan is supported by a Face-
book fellowship. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and may not reflect the views of NSF or any other
institutions.

168 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] BadgerDB. https://github.com/dgraph-
io/badger.

[2] Open Street Maps. https://www.
openstreetmap.org/#map=4/38.01/-
95.84.

[3] Running a Workload. https://github.com/
brianfrankcooper/YCSB/wiki/Running-
a-Workload.

[4] Jayadev Acharya, Ilias Diakonikolas, Jerry Li, and
Ludwig Schmidt. Fast Algorithms for Segmented Re-
gression. arXiv preprint arXiv:1607.03990, 2016.

[5] Amazon. Amazon Customer Reviews Dataset.
https://registry.opendata.aws/
amazon-reviews/.

[6] Michael A. Bender, Martin Farach-Colton, William
Jannen, Rob Johnson, Bradley C. Kuszmaul, Donald E.
Porter, Jun Yuan, and Yang Zhan. An introduction to
bε -trees and write-optimization. ;login: Operating Sys-
tems and Sysadmin, (5):23–28, Oct 2015.

[7] Mariusz Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat Flepp, Pra-
soon Goyal, Lawrence D Jackel, Mathew Monfort, Urs
Muller, and Jiakai Zhang. End to End Learning for
Self-driving Cars. arXiv preprint arXiv:1604.07316,
2016.

[8] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Michael Burrows, Tushar
Chandra, Andrew Fikes, and Robert Gruber. Bigtable:
A Distributed Storage System for Structured Data. In
Proceedings of the 7th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’06), pages
205–218, Seattle, WA, November 2006.

[9] Douglas Comer. The Ubiquitous B-Tree. ACM Com-
puting Surveys, 11(2), June 1979.

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking
Cloud Serving Systems with YCSB. In Proceedings
of the ACM Symposium on Cloud Computing (SOCC
’10), Indianapolis, IA, June 2010.

[11] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal Navigable Key-value Store. In
Proceedings of the 2017 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’17),
Chicago, IL, May 2017.

[12] Niv Dayan and Stratos Idreos. Dostoevsky: Better
Space-time Trade-offs for LSM-tree based Key-value
Stores via Adaptive removal of Superfluous Merging.
In Proceedings of the 2018 International Conference
on Management of Data, pages 505–520, 2018.

[13] Jialin Ding, Umar Farooq Minhas, Hantian Zhang, Yi-
nan Li, Chi Wang, Badrish Chandramouli, Johannes
Gehrke, Donald Kossmann, and David Lomet. ALEX:
An Updatable Adaptive Learned Index. arXiv preprint
arXiv:1905.08898, 2019.

[14] Romaric Duvignau, Vincenzo Gulisano, Marina Pa-
patriantafilou, and Vladimir Savic. Piecewise linear
approximation in data streaming: Algorithmic imple-
mentations and experimental analysis. arXiv preprint
arXiv:1808.08877, 2018.

[15] Sarah M Erfani, Sutharshan Rajasegarar, Shanika
Karunasekera, and Christopher Leckie. High-
dimensional and Large-scale Anomaly Detection using
a Linear One-class SVM with Deep Learning. Pattern
Recognition, 58:121–134, 2016.

[16] Robert Escriva, Sanjay Ghemawat, David Grogan,
Jeremy Fitzhardinge, and Chris Mumford. Hyper-
LevelDB. https://github.com/rescrv/HyperLevelDB,
2013.

[17] Andre Esteva, Alexandre Robicquet, Bharath Ramsun-
dar, Volodymyr Kuleshov, Mark DePristo, Katherine
Chou, Claire Cui, Greg Corrado, Sebastian Thrun, and
Jeff Dean. A Guide to Deep Learning in Healthcare.
Nature medicine, 25(1):24–29, 2019.

[18] Facebook. RocksDB. http://rocksdb.org/.

[19] Paolo Ferragina and Giorgio Vinciguerra. The
pgm-index. Proceedings of the VLDB Endowment,
13(10):11621175, Jun 2020.

[20] Alex Galakatos, Michael Markovitch, Carsten Bin-
nig, Rodrigo Fonseca, and Tim Kraska. FITing-
Tree: A Data-Aware Index Structure. In Proceedings
of the 2019 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’19), Amsterdam,
Netherlands, June 2019.

[21] Lars George. HBase: The Definitive Guide: Random
Access to Your Planet-size Data. OReilly Media, Inc.,
2011.

[22] Sanjay Ghemawhat, Jeff Dean, Chris Mumford,
David Grogan, and Victor Costan. LevelDB.
https://github.com/google/leveldb, 2011.

[23] Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel,
and Idit Keidar. Scaling concurrent log-structured data

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 169

stores. In Proceedings of the Tenth European Confer-
ence on Computer Systems, pages 1–14, 2015.

[24] Alex Graves, Abdel rahman Mohamed, and Geoffrey
Hinton. Speech Recognition with Deep Recurrent Neu-
ral Networks. In 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, 2013.

[25] Anna R Karlin, Kai Li, Mark S Manasse, and Susan
Owicki. Empirical Studies of Competitve Spinning for
a Shared-memory Multiprocessor. ACM SIGOPS Op-
erating Systems Review, 25(5):41–55, 1991.

[26] Andrej Karpathy. Software 2.0.
https://medium.com/@karpathy/software-2-0-
a64152b37c35, November 2017.

[27] Eamonn Keogh, Selina Chu, David Hart, and Michael
Pazzani. An Online Algorithm for Segmenting Time
Series. In Proceedings 2001 IEEE international con-
ference on data mining, 2001.

[28] Andreas Kipf, Ryan Marcus, Alexander van Renen,
Mihail Stoian, Alfons Kemper, Tim Kraska, and
Thomas Neumann. SOSD: A Benchmark for Learned
Indexes, 2019.

[29] Andreas Kipf, Ryan Marcus, Alexander van Re-
nen, Mihail Stoian, Alfons Kemper, Tim Kraska,
and Thomas Neumann. RadixSpline: A Single-Pass
Learned Index. arXiv preprint arXiv:2004.14541, may
2020.

[30] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H.
Chi, Ani Kristo, Guillaume Leclerc, Samuel Madden,
Hongzi Mao, and Vikram Nathan. SageDB: A Learned
Database System. In Proceedings of 9th Biennial Con-
ference on Innovative Data Systems Research, Asilo-
mar, CA, January 2019.

[31] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and
Neoklis Polyzotis. The Case for Learned Index Struc-
tures. In Proceedings of the 2018 ACM SIGMOD In-
ternational Conference on Management of Data (SIG-
MOD ’18), Houston, TX, June 2018.

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. ImageNet Classification with Deep Convolutional
Neural Networks. In Advances in Neural Information
Processing Systems 25 (NIPS 2012), Lake Tahoe, NV,
December 2012.

[33] Avinash Lakshman and Prashant Malik. Cassandra – A
Decentralized Structured Storage System. In The 3rd
ACM SIGOPS International Workshop on Large Scale
Distributed Systems and Middleware, Big Sky Resort,
Montana, Oct 2009.

[34] Stéphane Lathuilière, Pablo Mesejo, Xavier Alameda-
Pineda, and Radu Horaud. A comprehensive analysis
of deep regression. IEEE transactions on pattern anal-
ysis and machine intelligence, 2019.

[35] Pengfei Li, Yu Hua, Pengfei Zuo, and Jingnan Jia. A
Scalable Learned Index Scheme in Storage Systems.
arXiv preprint arXiv:1905.06256, 2019.

[36] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir.
On the computational efficiency of training neural net-
works. In Advances in neural information processing
systems, pages 855–863, 2014.

[37] Lanyue Lu, Thanumalayan Sankaranarayana Pillai,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. WiscKey: Separating Keys from Values in
SSD-conscious Storage. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies
(FAST ’16), Santa Clara, CA, February 2016.

[38] Mathias Meyer. The Riak Handbook, 2012.

[39] Patrick ONeil, Edward Cheng, Dieter Gawlick, and
Elizabeth ONeil. The Log-Structured Merge-Tree
(LSM-Tree). Acta Informatica, 33(4), 1996.

[40] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. PebblesDB: Building Key-Value
Stores using Fragmented Log-Structured Merge Trees.
In Proceedings of the 26th ACM Symposium on Oper-
ating Systems Principles (SOSP ’17), Shangai, China,
October 2017.

[41] Robert Ricci, Eric Eide, and CloudLab Team. Introduc-
ing CloudLab: Scientific infrastructure for advancing
cloud architectures and applications. USENIX ;login:,
39(6), 2014.

[42] Russell Sears and Raghu Ramakrishnan. bLSM: A
General Purpose Log Structured Merge tree. In Pro-
ceedings of the 2012 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’12),
Scottsdale, AZ, May 2012.

[43] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen
Chu. Benchmarking state-of-the-art deep learning soft-
ware tools. In 2016 7th International Conference on
Cloud Computing and Big Data (CCBD), pages 99–
104. IEEE, 2016.

[44] David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe,
John Nham, Nal Kalchbrenner, Ilya Sutskever, Timo-
thy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. Mastering the

170 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Game of Go With Deep Neural Networks and Tree
Search. 529(7587), January 2016.

[45] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen
Hu, Zhaoguo Wang, Minjie Wang, and Haibo Chen.
XIndex: A Scalable Learned Index for Multicore Data
Storage. In Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming, pages 308–320, 2020.

[46] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, ukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Ja-
son Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.
Google’s Neural Machine Translation System: Bridg-
ing the Gap between Human and Machine Translation.
https://arxiv.org/abs/1609.08144, September 2016.

[47] Qing Xie, Chaoyi Pang, Xiaofang Zhou, Xiangliang
Zhang, and Ke Deng. Maximum Error-bounded Piece-
wise Linear Representation for Online Stream Approx-
imation. The VLDB journal, 23(6), 2014.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 171

LinnOS: Predictability on Unpredictable Flash Storage

with a Light Neural Network

Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim†,

Henry Hoffmann, and Haryadi S. Gunawi

University of Chicago †Surya University

Abstract

This paper presents LinnOS, an operating system that lever-

ages a light neural network for inferring SSD performance

at a very fine—per-IO—granularity and helps parallel stor-

age applications achieve performance predictability. Lin-

nOS supports black-box devices and real production traces

without requiring any extra input from users, while outper-

forming industrial mechanisms and other approaches. Our

evaluation shows that, compared to hedging and heuristic-

based methods, LinnOS improves the average I/O latencies

by 9.6-79.6% with 87-97% inference accuracy and 4-6µs in-

ference overhead for each I/O, demonstrating that it is pos-

sible to incorporate machine learning inside operating sys-

tems for real-time decision-making.

1 Introduction

Predictable performance is an important requirement for to-

day’s and future systems [19, 51, 55, 65]. For data-center

systems serving web search, email, and many other types of

interactive services, predictable latency is even more impor-

tant. On the bright side, faster and faster SSDs are available

and becoming a dominant factor in the storage market [10].

On the negative side, SSD internal complexity continues to

grow, and achieving highly predictable latency on modern

flash devices remains an open challenging problem.

Due to the intrinsic NAND idiosyncrasies, modern flash

devices behave like an “operating system,” managing all of

its internal resources with background operations such as

garbage collection, buffer flushing, wear leveling, and read

repairs. While important, these are the kinds of operations

that pose a threat to latency predictability [15, 25, 27, 30, 49,

53, 71, 76], which is still a fresh problem faced by many stor-

age industries in recent years [4, 31, 50, 57]. Furthermore,

with a report that flash devices contribute to more than 19%

of the total response time for some online applications [76],

more solutions should be explored.

Because the device itself cannot mask the unpredictable

latency, a vast amount of research has been devoted to this

space. “White-box” approaches—that re-architect device in-

ternals [17, 33, 34, 36, 47, 61, 68, 71]—are powerful, but

face a high barrier to adoption unless SSD vendors imple-

ment the recommendations. In the middle ground, “gray-

box” methods suggest partial device-level modification com-

bined with OS or application-level changes working together

in taming the latency unpredictability [38, 39, 40, 58, 76, 77].

However, they also depend on the vendors’ willingness to

modify the device interface. Finally, more adoptable “black-

box” techniques attempt to mask the unpredictability with-

out modifying the underlying hardware and its level of ab-

straction. Some of them optimize the file systems or storage

applications specifically for SSD usage [18, 37, 41, 42, 43,

54, 59, 69, 70], while some others simply use speculative

execution [1, 5] but pay the cost of extra I/Os due to being

oblivious to storage behaviors. Among all the approaches

above, arguably, the most popular solution is speculative ex-

ecution given its simplicity and capability to mitigate ev-

ery slow I/O. For example, “hedged requests” [21], a form

of speculative execution, is supported in many widely-used

key-value stores today [1, 5, 8].

We take a new approach: let the device be the device

(black-box) and do not redesign the file systems or applica-

tions, but learn the device behavior (i.e., not be storage obliv-

ious). The key to our approach is learning. Can we learn the

behavior of the underlying device in a black-box way and

use the results of the learning to increase predictability, so

applications can know in advance whether their performance

expectations can be fulfilled? This is a domain that machine

learning can likely help. We introduce LinnOS, an operat-

ing system that has the capability of learning and inferring

per-I/O speed with high accuracy and minimal overhead us-

ing a lightweight neural network. We show how LinnOS

helps storage applications, in particular storage arrays/clus-

ters with built-in failover logic (e.g., flash RAID, Cassandra,

MongoDB), achieve extreme latency predictability on unpre-

dictable flash storage.

The biggest challenge for LinnOS is to be as effective and

fine-grained as the popular approach, speculative execution,

which can mitigate every slow I/O by sending a duplicate I/O

to another node or device. Speculative execution’s success in

increasing predictability comes at the cost of poor resource

utilization. The key to avoiding this cost is to know the cur-

rent activities going on inside the devices and always sched-

ule I/Os to those devices that will provide faster responses.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 173

However, because keeping the abstraction barrier is a funda-

mental constraint, we need to learn to infer latency and make

the inference highly usable. Achieving this requires learning

and inferring on a very fine, per-I/O scale in a live fashion.

To the best of our knowledge, there is no existing learning

approach for I/O scheduling that supports such fine-grained

learning due to the challenges of achieving per-I/O accuracy

and fast online inference. To address this, LinnOS introduces

three technical contributions.

First, LinnOS converts the hard latency inference problem

into a simple binary inference (“fast” or “slow” speed). We

take advantage of the typical latency distributions in system

deployments, specifically, a behavior that forms a Pareto dis-

tribution with a high alpha number. In other words, most

of the time (e.g., >90%), the latency is very stable, but oc-

casionally (e.g., <10% of the time), the latency exhibits a

long-tail behavior [16, 21, 45, 53]. The behavior of flash

storage reflects the same distribution [15, 26]. In this simple

view where users only want “slow” I/Os to become “fast,”

inferring the exact latencies is overkill. With this intuition,

LinnOS comes with an algorithm that monitors the latency

distribution of the current workload running on the flash de-

vice and computes a roughly optimal threshold that separates

the slow and fast speed ranges.

Second, with the binary model, LinnOS employs a simple

admission control for clustered storage applications. LinnOS

makes a binary inference on every incoming I/O using a light

neural network model that infers the I/O speed in advance in

a black-box manner without any guide from the device nor

application. If the I/O is inferred to be fast, LinnOS will

submit it to the flash device; otherwise it will revoke the I/O

and inform the application. With this timely and straightfor-

ward binary information, the storage application can quickly

failover the I/O to another node or device that holds the same

replica. Furthermore, resources are efficiently utilized be-

cause the original slow I/O has been revoked.

Third, LinnOS balances the accuracy and performance of

the neural network. High accuracy but high inference time

will lead to a significant per-I/O overhead, especially for

modern SSDs. On the other hand, lowering inference time

by lowering accuracy will lead to many false inferences that

make storage performance hard to reason about.

For high accuracy, LinnOS profiles the latency of millions

of I/Os submitted to the device (a natural “data lake”), which

will be used to train the neural network. Furthermore, as we

convert regression to a simple binary classification, the out-

put accuracy is significantly improved (akin to the simplicity

of “cat or dog” image classification). The next challenge is

to decide the input features that matter most to improving

accuracy. We will present our surprising findings. For ex-

ample, “important-looking” features such as block offsets,

read/write flags, or long history of writes do not play a sig-

nificant role. In the end, the input features become tractable

with only two types of information: the latencies of a few re-

p50

p75

p90
p95

 0 5 10 15 20

Latency (Millisecond)

(a) Latency CDF - FIO Workload

Model A
Model B
Model C

read-only

read/write
 devices

Latency

(b) Latency CDF - Production

Figure 1: Latency distribution. The figures show CDFs of

block-level read latencies, as discussed in Section 2. For the left

figure, we ran one FIO workload on five different SSD models (the

five CDF lines). For the right figure, we plot the latencies of seven

block-level traces obtained from four read-write servers (colored

lines) and two read-only servers (bold gray lines) in Azure, Bing,

and Cosmos clusters. The x-axis is anonymized for proprietary

reasons. The traces are available from Microsoft with NDA.

cently completed I/Os and the number of pending I/Os when

those I/Os and the current, to-be-inferred I/O arrived.

For performance, the challenge is to make an inference

(admission decision) in sub-10µs, which is crucial as we tar-

get fine-grained live inference for fast storage devices. While

using deeper models with more features can improve accu-

racy, it will hurt inference latency and would be too expen-

sive for usage in the I/O layer. Through several design itera-

tions, we cut the inference time to 4-6µs with minor accuracy

loss, achieved with several methods: a 3-layer light neural

network, weight quantization, and (optional) 2-threaded/2-

core matrix multiplication.

Our evaluation shows that LinnOS supports a wide variety

of black-box devices (10 device models tested) and works

on real production traces without requiring any extra input

from users (e.g., hints about traces/devices or latency dead-

lines etc.), outperforms industrial approaches such as pure

hedging, and beats simple and “advanced” heuristics that we

design. Compared to these methods, LinnOS, complemented

by hedging based on the learning outcome, further improves

the average I/O latencies by 9.6-79.6% with 87-97% accu-

racy and only 4-6µs inference overhead for every I/O.

Overall, we show that it is plausible to adopt machine

learning methods for operating systems to learn black-box

devices. We conclude with many interesting discussions to

explore in the future. LinnOS code is made public.

2 Background

Unpredictability. To motivate the problem, the colored lines

in Figure 1a show read latency distribution in a read-write

workload running on five different SSD models ranging from

consumer SATA and NVMe SSDs to new data-center ones.

Model A delivers fast and stable latencies up to about “p98”

(the 98th percentile), but models B and C exhibit larger la-

174 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

tency tails starting at p90 and p75, respectively. However,

when the write operations are converted into read I/Os, the

performance becomes highly stable without much latency

tail (not shown in the figure). Figure 1b also confirms this in

real production scenarios in Microsoft SSD-backed servers.

The colored lines show block-level read latencies of read-

write servers (more variability), and the gray lines for read-

only servers (more predictability). All of these confirm how

write-triggered garbage collection (GC), buffer flushing, and

other internal operations are contending with user read I/Os.

We only address read performance unpredictability because

we found write latencies to be (surprisingly) stable as they

are absorbed by the internal memory buffer on the device,

hence not affected by internal contentions. Write latency

spikes only happen when the buffer is full (rarely happened

due to internal periodic flush).

Internal complexities. Inferring when a flash drive is ex-

hibiting tail latency is hard given the internal complexities

that factor into latency behavior. As a couple of examples,

I/Os contend with each other if they fall into the same chip or

channel, which depends on the hidden striping and partition-

ing logic; two user I/Os that go to separate channels might

have different fates when one channel is occupied by GC data

transfers between the chips in the channel. Our internal find-

ings show that SSDs can have wide layouts (e.g., 32 channels

with four chips per channel) or deep layouts (e.g., four chan-

nels with 16 chips per channel), where the latter will cause

more channel contention. Some SSDs employ large write

buffers from 256MB to as small as 12 MB and can period-

ically flush from every 3ms to as high as one second. As

shown in Figure 1, this internal contention can affect from

1% to 25% of all read requests.

In this context, modern storage applications usually ap-

ply a “wait-then-speculate” approach that is agnostic about

the device’s internal complexities. For example, with hedg-

ing, applications wait for a timeout (e.g., the p95 latency),

then issue extra speculative I/Os, and use whichever is the

faster response. Speculative execution works well for coarse-

grained tasks (tens to hundreds of seconds), but is ineffective

for flash storage since the waiting is costly when the expected

response time is less than a few milliseconds (§5.3).

Machine learning. Before we tried machine learning

techniques such as neural networks, we asked whether sim-

ple heuristics would be accurate enough in inferring per-I/O

speed. For example, one might assume that a long I/O queue

length implies longer latencies—a heuristic that works well

for spinning disks [13, 62, 64]. However, for SSDs, due to

the internal complexities, queue length is not highly corre-

lated with delay (we did not find a high Pearson’s corre-

lation or Spearman’s correlation between queue length and

I/O latency). We also created a more “advanced” heuristic,

but it did not yield a satisfying result (more in the evalua-

tion section). While it is possible to keep crafting the right

a LC=true
ret=read(…,LC)

fast

slow revoke

submit

if(ret==slow)
 failover()

d

c

e

failover()

f

b

Figure 2: Usage scenario. This usage scenario is explained in

Section 3.1. “LC” implies latency critical.

heuristic that can adapt to different workloads and device

models, we decided to resort to machine learning. Recent

operating and distributed systems research successfully em-

ployed machine learning for resource allocation and schedul-

ing [22, 23, 24, 28, 48, 51, 52, 60]. A similar exploration

targeting the I/O layer can lead to a powerful result, as we

show in this paper.

3 Overview

We now give the overview of LinnOS, its usage scenario,

architecture, and challenges, followed by its design (§4).

3.1 Usage Scenario

LinnOS is beneficial for parallel, redundant storage such as

flash arrays (cluster-based or RAID) that maintain multiple

replicas of the same block, as illustrated in Figure 2. (a) With

LinnOS, when a storage application performs an I/O via OS

system calls, it can add a one-bit flag, hinting to LinnOS that

the I/O is latency-critical (LC=true), e.g., for interactive ser-

vices. Such tagging of critical operations has been proposed

many times [73, 76], but in our case, the bit is used to trigger

LinnOS to infer the I/O latency. (b) Before submitting the

I/O to the underlying SSD, LinnOS inputs the I/O informa-

tion to the neural network model that it has trained, which

will make a binary inference: fast or slow. (c) If the output is

“fast,” LinnOS submits the I/O down to the device. (d) Oth-

erwise, if it is “slow,” LinnOS revokes the I/O (not entered to

the device queue) and returns a “slow” error code. (e) Upon

receiving the error code, the storage application can failover

the same I/O to another replica. (f) In the worst case where

the application must failover to the last replica, this last retry

will not be tagged as latency-critical so that the I/O will com-

plete and not be revoked.

3.2 Overall Architecture

Figure 3 shows LinnOS’s overall architecture, which consists

of five main components.

(a) The model. At the center of LinnOS is the speedy in-

ference model (Section 4.3) with a light neural network. The

model’s input features are information about the current out-

standing I/Os and recently completed ones. The model infers

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 175

Blk# Sz Lat

.... .. 85
.... .. 510
.... .. 350
.... .. 45

Upload

Blk# Sz Lat

.... .. Fast
.... .. SLOW
.... .. SLOW
.... .. Fast

LinnApp

Label Train

1.7

8.4

0.4

9.2

4.3

0.3

5.1

3.1

c

Storage
Userse

b a Off

LinnOS

d

1.7

8.4

0.4

9.2

4.3

0.3

5.1

3.1

Tracing

Storage
Users

ON

Figure 3: LinnOS architecture. The figure displays LinnOS

architecture including LinnApp, as summarized in Section 3.2. The

two SSD pictures represent the same SSD instance; the left one de-

picts tracing/training and the right one live inference on the SSD.

the speed of every incoming I/O individually. The model’s

output is the binary inference about the I/O (fast/slow).

(b) Tracing. To train the model, LinnOS uses the current

live workload that the SSD is serving. To have a rich repre-

sentative dataset, this can be done during normal busy hours.

The I/O metadata (block offset, size, read/write) and their re-

sulting latencies are recorded using blktrace. With millions

of I/Os collected, this naturally forms the “data lake” of our

model. The training data (the collected trace) is expected to

be different than the “test data” (the I/Os that will be inferred

when the model is activated).

(c) Labeling with inflection point analysis. The col-

lected trace is then supplied to LinnApp, a supporting user-

level application. LinnApp has three main jobs: labeling,

training, and uploading trained weights to LinnOS. Because

the model is designed to produce a binary output, the model

must be trained with two labels, “fast” and “slow.” Hence,

given a latency distribution in the trace, LinnApp runs an al-

gorithm (§4.2.1) that finds the “inflection point,” a latency

value that divides the fast and slow latency ranges.

(d) Training. With this inflection point, LinnApp labels

the traced I/Os with “fast” and “slow” labels and proceeds

with the training phase (using TensorFlow). We emphasize

the labeling is done automatically without human input. This

training phase can be run anywhere, on GPU or CPU nodes.

(e) Uploading weights. The training phase generates the

weights for the neurons in the model that will be uploaded to

LinnOS. Because using floating points is not well supported

in OS kernel, the weights are converted to integers by quan-

tization. The model is then activated, and LinnOS is ready to

make inferences and revoke “slow” I/Os.

3.3 Challenges

Using a machine learning approach for making online, fine-

grained inferences on I/O speed requires us to solve the fol-

lowing fundamental challenges.

L
in
n
A
p
p

L
in
n
O
S1.7

8.4

0.4

9.2

4.3

0.3

5.1

3.1Blk# Lat

.... 85
.... 510
.... 350
.... 45

Blk# Lat

.... 490
.... 80
.... 95
.... 670

9.2

7.3

0.3

8.9

3.7

0.9

4.3

5.4

per load-device pairTracing

Uploading unique weights

Figure 4: Anticipating heterogeneity. The figure shows

heterogeneous trained models, as mentioned in Section 3.3.

High accuracy. The inference must be accurate. We

should not revoke I/Os that can be served fast (“false re-

voke”) or submit those that will be slow (“false submit”).

Accuracy depends on careful output labeling and input fea-

tures selection. If the label classification is too complicated,

high accuracy is hard to achieve, e.g., we find that classi-

fication by linear bucketing (0-10, 10-20µs, etc.) or expo-

nential bucketing (0-1, 2-4µs, etc.) is hard to make accurate

and should remain as a future work. However, the simple

two-class approach (fast or slow) simplifies the output into a

binary format, which helps the model achieve high accuracy.

Fast inference. For modern SSDs, while the raw NAND

read latency is advertised to be below 100µs, we see that for

typical production workload on data-center SSDs (Section

5), the actual user-perceived latency is above 200µs more

than 50% of the time. Given this observation, we believe the

challenge is to do decision-making in around 5µs, a <3%

overhead per I/O. Fast inference depends on input prepro-

cessing, the depth of the layers, neuron complexity, and fea-

ture representation. Using deep layers that tend to improve

accuracy is not attractive in our problem domain. The input

features must be minimized to include only the features that

matter. Hence, we must balance accuracy and performance.

Moreover, considering that operating systems run on CPUs,

the models must be CPU-friendly [67].

Anticipating heterogeneity. In flash arrays (RAID or

cluster-based), the user load is not always balanced, and all

the flash hardware might not be homogeneous. Because this

heterogeneity can lead to different latency distributions ob-

served on different devices, we should not use one global

latency value (e.g., 1ms inflection point) to differentiate fast

and slow speed for all the devices. For example, 3ms per-

haps could be considered fast enough on slower SSDs or the

ones with heavier user load. While we do not expect that the

heterogeneity will be extreme (e.g., a good storage system

typically balances the load very well), heterogeneity is still

important to address. For this reason, LinnApp collects per-

device traces and trains the model for every load-device pair

in the array (Figure 4). After the training phase completes,

LinnApp supplies the model weights to all instances of Lin-

nOS in a cluster-based array or to one instance of LinnOS in

a RAID-based array. In the latter, LinnOS carries N trained

176 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

models for the N drives in the RAID. Furthermore, to an-

ticipate workload changes over time, LinnApp occasionally

recollects traces (e.g., every few hours) to check if the inflec-

tion point has shifted significantly such that the model must

be retrained.

4 LinnOS Design

In this section, we describe our solution to the challenges

mentioned above. To the best of our knowledge, LinnOS is

the first operating system that successfully infers I/O speed

in a fast, accurate, live, fine-grained, and general fashion.

The key to this is the “lightness” of the neural network model

that LinnOS employs. This section presents the final design

and the principal intuitions about how we get there. We will

explain LinnOS design chronologically, from data collection

(§4.1), labeling via inflection point analysis (§4.2), the model

design (§4.3), and how to improve its accuracy (§4.4) and

performance (§4.5), and summarize its advantages (§4.6).

4.1 Training Data Collection

This project started with a simple question: can we infer the

performance of every I/O accurately? Since we use machine

learning, accuracy depends on the amount of true-signal data

available, the more, the better. Fortunately, I/O systems in-

herently can collect a large amount of data. Given low-

overhead tracing tools and hundreds of KIOPS of workload

that modern SSDs can serve, collecting a large amount of

data for training is not an issue (a large “I/O data lake”).

For every load-SSD pair to model, LinnApp collects traces

of the real workload running on the drive. For example, for

inferring a production workload performance on a particular

SSD in deployment, an online trace will be collected. For

every I/O, we collect five raw fields, the submission time,

block offset, block size, read/write, and most importantly,

the I/O completion time. Because the model input (Section

4.3) does not necessarily take the same raw fields, in this

phase, we also convert the fields to the input feature format.

The main challenge here is to decide how long the trace

should be. If the behavior of the training data (the latency

distribution) is very different from that of the “test” data (the

to-be-inferred I/Os), the inference accuracy will drop. In this

work, we take a simple approach where we use a busy-hour

trace (e.g., midday). In the evaluation (§5.2), we show that

for production workloads, a busy-hour trace well represents

the other hours, i.e., the inflection point does not deviate

much. As mentioned above, to anticipate a dramatic shift

in workload behavior, retracing and retraining can be done.

4.2 Labeling (with Inflection Point)

As we employ a supervised classification approach, the

model must be trained with labels. If we label every I/O

p90

small
speedup

larger
“boost
area”more

overhead

(a)

IP=?

p80

(b) (c) (d)

p95

semi-
opt
IP

(too low)

(too

high)

slow

fa
s
t

Figure 5: Inflection point (fast/slow threshold). The fig-

ures show the results of using a higher, lower, or semi-optimum in-

flection point (IP) for the fast/slow threshold as explained in Section

4.2. The figure format is latency CDF, as in Figure 1.

with the actual µs-level latency, there will be too many la-

bels for our problem domain; a user might not care if the I/O

is delayed by 1µs. Another option is to use a linear (0-10µs,

10-20µs, and so on) or exponential labeling (2-4µs, 4-8µs,

and so on). While these fit better, the model is still hard

to make accurate and fast after many design iterations. The

accuracy only reached 60-70% because many times, an I/O

that should fall into a specific group (e.g., 128-256µs) is of-

ten mis-inferred to the neighbor groups (e.g., 256-512µs)—

“a Lhasa Apso dog can easily be misidentified as a Shih Tzu

dog.” This is perhaps why prior successes in auto-learning

storage performance were only done at a coarse-grained level

such as average latency or throughput aggregated for many

requests [29, 66, 74].

With all this mind and an understanding of how perfor-

mance variance behaves in the field [15, 21, 26, 45, 49], we

observe that latencies often form a Pareto distribution with

a high alpha number [7]. As an example shown in Figure

5a, 90% of the time, the latency is likely stable, but in the

other 10% of the time, it starts forming a long tail. Such

a Pareto distribution clearly contrasts the fast and slow re-

gions. Hence, a simple conjecture can be made that users

only worry about the tail behavior, not the precise latency.

To separate the two regions, we need to find the “best”

inflection point (marked with “IP=?” in Figure 5a) for max-

imizing the latency reduction. Setting the inflection point too

relaxed (e.g., the p95 latency in Figure 5b) will make LinnOS

treat the relatively slow I/Os between p90 and p95 as “fast”

(no failover), reducing the scope for effective retries, hence

failing to cut many tail latencies, as highlighted by the small

shaded area between the original and projected distributions

(more in §4.2.1) in Figure 5b. On the other hand, setting the

inflection point too low (e.g., the p80 latency in Figure 5c)

will make LinnOS revoke too many I/Os, including those

that are supposed to be fast, which will induce unnecessary

retry overhead as shown in Figure 5c.

An optimum inflection point implies that for every slow

I/O that will be revoked, it is likely that the other replicas can

serve it fast within the same time frame. Likewise, for every

fast I/O, it should not be failed over. Finding this optimum

point will deliver the maximum gap between the original

tail-heavy and tail-free distributions, as shown by the large

shaded area in Figure 5d. Finding an optimum value how-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 177

3-digit queue length
when the N-th to last

I/O arrived 3 x 4 neurons

4-digit latency
of the N-th to last I/O

4 x 4 neurons N=1…4

The current
queue length

3 neurons

256 neurons
ReLU activation functions

……

Linear activation functions
(argmax)fast? slow?2 output neurons

Input layer

Hidden layer

Figure 6: Light neural network. The figure depicts LinnOS

3-layer neural network explained in Section 4.3.

ever is hard in practice, fundamentally because of the many

unknowns: we do not know which replica the request will

be failed over to (application dependent); the training data

is only an approximation of the future unknown test data;

other variability such as CPU or network contention can fac-

tor into unknown retry overhead. The next section describes

our best-effort algorithm in finding a semi-optimum inflec-

tion point for every workload-device pair.

4.2.1 Inflection Point Algorithm

First, during data collection, we collect t workload traces (T1

to Tt) running on d devices (D1 to Dd), respectively, where

t==d. Every trace Ti gives us the latency distribution of the

workload running on the device (as in Figure 5a). To find the

unique inflection point (IP) value for every Ti−Di pair, we

run a user-space simulation based on random replica selec-

tion, with the assumption that latency delay is independent

across the SSDs. For illustrative purposes, we use specific

device numbers (e.g., D1) in our explanation below.

(1) For every Ti−Di pair, we pick a starting IP value

where the slope of the CDF is one (likely entering the tail

area). For example, if for D1, T1’s 45-degree slope is at

y=p90.5 and x=1ms, then the IP value is initially set to

1ms. (2) For the currently simulated device, D1, we run a

simulation of one million I/Os, (ri=0..1000000) where each

I/O request ri takes a random latency value from T1’s real

latency distribution. We then simulate LinnOS admission

control: if the chosen latency is smaller than 1ms (the cur-

rent IP), the ri’s new latency is set to be the same; else, if it

is larger than 1ms, it will be revoked and failed over to an-

other randomly selected node (e.g., D4) where a new random

latency is picked from its trace, T4, and the admission con-

trol is repeated (submit or revoke). We assume three replicas

(configurable), hence a request can only be revoked a max-

imum of two times. (3) The simulation produces the new,

optimized latencies for all the ri in workload trace T1 that

previously went to only one device, D1, but now can be redi-

rected as if LinnOS admission control is activated. These op-

timized ri latencies form the new CDF (as in the bold blue

line in Figure 5d). Using the original and new CDFs, we

can calculate the area difference (the shaded “boost area” in

Figure 5d), which represents the latency gain if 1ms (p90.5)

is used as the IP value. (4) Still, for D1, we repeat all the

steps above by moving +/−0.1 percentile within the +/−10
percentile ranges from the initial IP value. For every new IP

value, the simulation gives a new boost area. We now can

pick the IPmax, the IP value that gives us the largest (posi-

tive) boost area, which will be used as the fast-slow thresh-

old in training the model for device D1. (5) We repeat all the

steps for other devices (D2, D3, etc.). At the end, for every

Ti−Di pair, our algorithm generates a unique IPmax

i
value.

All these steps are repeated upon recalibration (§4.4).

4.3 Light Neural Network Model

Before we decided to build a light neural network model, we

explored various learning methods such as logistic regres-

sion, decision trees, and random forests. We found that the

accuracy only ranges from 17-84%, while a basic neural net-

work can reach a better accuracy. Although it is possible to

continue optimizing each of these methods to its full poten-

tial, we decided to start from an acceptable baseline that our

initial neural model delivered. Below, we describe our final

model (Figure 6), from input features, their representation,

to the neural layers. We will emphasize how we use storage

intuitions to design the model, as opposed to brute-force.

Input features. To infer the speed of every I/O, our model

takes three inputs: (a) the number of pending I/Os when an

incoming I/O arrives (in the number of 4KB pages, including

the incoming I/O), (b) the latency of the R most-recently

completed I/Os, where we set R as 4, and (c) the number of

pending I/Os at the time when each of the R completed I/Os

arrived. We now reason about these necessary inputs.

Deciding the first feature is straightforward—an I/O la-

tency typically correlates with how many I/Os are currently

pending. The unit we use here is the number of 4KB pending

pages, and the reason is that the lowest granularity of strip-

ing inside SSDs is typically at the page level and the main

contention is at channel and chip level.

While for disks, the first feature might be sufficient for in-

ferring single-spindle performance, for SSDs, the other two

features are required. In essence, to speculate whether the

SSD is currently busy internally, we need to record a small

piece of historical information, the latencies of the last four

I/Os, as well as how many pending I/Os existed when those

I/Os arrived. Put simply, if recent I/Os experienced a long

delay without many pending I/Os, then the model could learn

that there is likely an internal contention due to device-level

activities such as GC, internal flushing, or wear leveling. In

this case, the model will suggest revoking incoming I/Os un-

til the number of pending I/Os drops substantially so that the

device can provide fast responses despite heavy internal ac-

tivity. Once the device resumes serving I/Os, the model can

tell whether the device-level contention is over from the re-

turned latency values.

Our features above look simple because we have removed

178 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

unnecessary features after many design iterations. For exam-

ple, we surprisingly found that important-looking features

such as block offsets, read/write flags, or long history of

writes do not significantly improve accuracy. We make sev-

eral conjectures. First, on read/write flags, although NAND-

level read/write latencies differ, almost all medium/high-end

SSDs employ write buffering. Thus, the problem of read-

behind-write is no longer observable. More likely observ-

able is read-behind-buffer-flush delays, which can be learned

from our input features. Second, on block offsets, because

we target production workloads and the fact that SSDs typi-

cally stripe incoming I/Os uniformly across all channels and

chips (or with some bounded partitioning), the workload is

likely to be evenly scattered, hence block offsets do not really

matter for learning. In other words, scenarios where a batch

of incoming I/Os with block offsets that simultaneously hit

only one chip rarely happen in the field. Third, on history

of writes, internal activities such as GC and buffer flush of-

ten happen in a short burst, hence they can be sensed by just

observing the speed of the last four I/Os. These are surpris-

ing but fortunate findings because using just a small set of

features will reduce the model’s overhead.

Input format. The next challenge is to choose the right

input format to be fed to the neurons. First, for the R value,

if accuracy is the only important metric, we should record

more completed I/Os (the higher R, the better), but it would

prolong inference time as the number of neurons would in-

crease. We found that R=4 suffices for balancing perfor-

mance and accuracy.

In another simplification, we format the number of pend-

ing I/Os into three decimal digits. For example, the format

for 15 pending I/Os is three integers {0,1,5}. Three digits

suffice as device queue length of over 1,000 is rarely heard

of. Similarly, for the latencies of the recent completed I/Os,

we break the µs latency value into four digits. For exam-

ple, a latency of a recent I/O that completed in 240µs will be

formatted as four features {0,2,4,0}. Latencies larger than

9,999µs will be capped to {9,9,9,9}. In total, our model

takes 31 input features, each a one-digit decimal number.

Reformatting the original integers into decimal digits is an

effective trade-off. If we use bits and supply every bit to ev-

ery neuron, there will be too many neurons that increase the

model size and hurt inference time. On the other extreme, if

every neuron takes a raw integer value, the neurons need to

learn over a wide input range, which makes learning/train-

ing harder (e.g., latency value can range from 1µs to over

9,999µs). With decimal digits, we make the neuron learning

bounded within a small range of 0 to 9.

The network. The final model is a fully-connected neural

network with only three layers (“light”), including one in-

put/preprocess layer, one hidden layer, and one output layer,

as shown in Figure 6. All the neurons are regular linear neu-

rons (y=wx+b).

The input layer is supplied with the 31 features described

above. The raw information from the block layer is con-

verted to the feature format, in an offline way for training

and an online way for live inference. For the latter, with

some programming optimization, we can achieve O(1) pre-

processing overhead. Next, the hidden layer consists of 256

regular neurons. This layer uses RELU activation functions

for its low computation cost and ability to support non-linear

modeling. More neurons will cause longer inference time

and fewer neurons less accuracy. Lastly, the output layer

has two neurons with linear activation functions. We use an

argmax operator to convert the output to a binary decision

(e.g., {0.4,0.6} to {0,1}). Overall, this design makes the net-

work lightweight and easy to integrate into the OS, while

balancing inference accuracy and performance.

Preceding design iterations. Here we briefly describe

how we reach the current design. We started by using the I/O

offsets in binary format (32-bit) as the input features since

the device FTL mapping basically uses I/O offsets to decide

where the I/Os go, which defines the resource contention.

This setting allows the learning models to achieve higher ac-

curacies (up to 99% for some traces), however it has a heavy

model and high inference overhead, which is impractical for

real-time usage. We further trimmed the heavy model but

could not find a reasonable tradeoff between generality and

inference overhead. As a result, we took a step back from the

fine-grained features and switched to more aggregate ones,

and finally reached the current design.

4.4 Improving Accuracy

To further improve the model accuracy, we perform false-

submit reduction via biased training, model recalibration

via retracing/retraining, and inaccuracy masking with high-

percentile hedging.

Reducing false submits. An accurate inference means

LinnOS submits I/Os that will be fast (true negative) and

revokes those that will be slow (true positive). Reversely,

inaccurate cases can be categorized into (a) “false submit”

(false negative) wherein the model believes the request will

be served fast, making LinnOS submit the request to the

device, but the request will take longer than the fast-slow

threshold, or (b) “false revoke” (false positive) where the I/O

is revoked, but in fact, it can be served fast by the device.

Using the same system intuition on typical latency dis-

tributions in the field (Section 4.2), we found that reducing

false submits is far more important, while false revokes are

more tolerable. When the storage devices of a cluster exhibit

similar tail behavior (high-alpha Pareto), the probability that

peer devices are simultaneously busy is relatively small. For

example, with three replicas and P% busyness, the proba-

bility that all the replicas are busy around the same time is

(P/100)3 (e.g., 0.000125 with 5% busyness). Another factor

is that, with faster networks, a failover cost can be as low

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 179

as 1-6µs for flash arrays across PCIe or Fiber Channel or

5-40µs across Ethernet [3] (plus some negligible software

overhead).

To summarize, the wrong inference penalty is small for

false revokes but high for false submits. In the latter, the I/O

will be “stuck” in the device and cannot be revoked. This

motivates us to use biased training for reducing false submits

by allowing more false revokes. We do this by customiz-

ing the categorical hinge loss function with a multiplier that

puts more penalty weights for false submits, which makes

the trained models favor false revokes.

Recalibrating. Another source of inaccuracy happens

when the inflection point computed over the training data

does not represent the same threshold of the “test” data (the

workload during live inference). This can happen under sig-

nificant workload changes that cause shifts in the latency dis-

tributions of the nodes in the cluster. Fortunately, our eval-

uation of production traces shows that latency distributions

do not widely shift across hours (§5.2). However, to antici-

pate this scenario, re-tracing and re-computation of inflection

point analysis can be done periodically every few hours. If in

the new workload-device pair, the inflection point has shifted

by five percentiles, LinnApp will retrain the model using the

newly collected trace and re-upload the new trained weights

to the device. Running blktrace during the busiest hour in

the production workloads we use only generates 300 MB of

data (85 KB/s of trace writes) and increases CPU overhead

by 0.5% (only relevant parameters are traced).

Masking small inaccuracy. Our methods above managed

to increase accuracy up to 98%. Just like other neural net-

works, achieving 100% accuracy is fundamentally hard and

usually implies a lack of generality. Within the small inac-

curacy, the long latency tail due to false submits still needs

to be circumvented. This is where we marry learning and

hedging [21]. When the false submit rate1 (Section 5.4) is

significant (e.g., >5%), we use the rate as an indicator for

the hedging percentile value. For example, if 6% of the in-

ferences produce false submits, then p94 hedging will be ap-

plied. When the false submit rate is lower, we round up to

conventional p95 hedging. Though sometimes this design

issues extra I/Os, we show that it can further improve the

performance (§5.3).

4.5 Improving Inference Time

A large part of deep neural network (DNN) research mainly

focuses on how to structure even larger networks to achieve

the highest possible accuracy [11]. Strict latency is often

not a constraint. However, putting a neural network into the

storage layer poses a unique challenge. Our goal is to reach

1To clarify, different from conventional way of calculating false pos-

itive/negative, in this paper, the false submit rate is based on the submit

decision and the actual resulting latency.

around 5µs of inference time (as discussed in §3.3), and al-

though the 3-layer design is fundamental to reach the goal,

we made further optimizations.

Quantization. First, neuron weights are by default in

floating points for improving accuracy, but it is an overkill

for our purpose. Some of the major storage functionalities

that define contention are striping and partitioning using mod

operations over integers, which does not require ultra-high

precision. Besides, floating point calculations are expen-

sive and hard to manage inside the OS. Hence, we adopt

DNN quantization by maintaining precision of three decimal

points; the trained floating-point weights are converted to in-

tegers with precision of three decimal points. DNN quanti-

zation is a popular technique to reduce the space, power, and

computation cost of DNN on mobile-platform and IoT de-

vices, albeit some loss on accuracy [20, 32, 72]. In our case,

the accuracy loss from quantization is less than 0.1%.

Co-processors. Second, using additional accelerators

such as GPUs and TPUs may be possible in the future, but

currently, they are optimized towards throughput and do not

easily interact with host kernel code. If we move the in-

ference to GPUs, the cross-communication would add more

overhead. Furthermore, technology trends suggest that 100-

200x improvement on inference latency can be foreseen in

the near future with more advanced hardware [6]. This may

make LinnOS faster in the future, especially as storage de-

vices are also getting faster. However, until this technology

arrives, we show that LinnOS can opportunistically use co-

processors (if available) to reduce the average inference time

from 6 to 4µs with 2-threaded optimized matrix multiplica-

tion using one additional CPU core.

4.6 Summary of Advantages

With all of the techniques, LinnOS delivers advantages in

various dimensions, which we show in the evaluation.

• Performance predictability. The most important advan-

tage is that LinnOS helps storage applications achieve pre-

dictable performance on flash arrays, outperforming other

popular methods.

• Automation. LinnOS infers I/O operation latency by learn-

ing from millions of I/Os and automatically trains and pro-

duces neuron weights for different workloads and devices.

Storage developers do not have to tweak and configure

heuristics manually.

• Generality. To achieve predictability, LinnOS does not re-

quire device-level modification nor a heavy redesign of file

systems or applications. Storage applications simply need

to tag latency-critical I/Os. Failover/retry logic is already

standard in many storage applications with data replicas.

• Timeliness. With fast inference, the application can

failover as soon as the slow error code is returned, with-

out the need to wait for a timeout.

180 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

• Efficiency. With auto-revocation, LinnOS eliminates du-

plicate I/Os suffered in hedging. Some production sys-

tems do not use hedging for the same reason and instead

use a more efficient method such as “tied requests,” where

clones are sent but when one of them is served, the dupli-

cate is canceled [21]. Similar to this “clone-then-cancel”

method, our “revoke-then-failover” also avoids duplicates.

Furthermore, while some implementation of tied requests

burdens the application layer [21], LinnOS supports I/O

revocation inside the kernel.

• Simplicity. We do not require applications to supply an

SLO value such as a deadline [14, 25, 63, 75]. I/O system

calls today do not accept SLO info, arguably because set-

ting the proper SLO is not easy [35, 46]. LinnOS simplifies

this with an auto-tuned fast/slow binary classification.

4.7 Implementation Complexity

LinnOS extends Linux v5.4.8 in 2170 LOC within the block

layer, mostly for the neural network model (written in C)

and the simple revocation mechanism. The memory space

needed for one neural network model (in total 8706 weights

and biases) is 68 KB of kernel memory. LinnApp is written

in 3820 LOC including data collection, analysis, labeling,

training (using TensorFlow), and quantization. We make the

source code public (Section A).

5 Evaluation

In this section, we first describe our evaluation setup (Sec-

tion 5.1) and then present the results that answer the follow-

ing important questions:

- Stability (Section 5.2): Is our inflection point algorithm

stable enough for production workloads?

- Latency predictability (Section 5.3): Does LinnOS suc-

cessfully deliver more predictable latencies compared

to other methods?

- Model accuracy (Section 5.4): How accurate is the Lin-

nOS neural network in inferring per-I/O speed?

- Trade-offs (Section 5.5): What are the performance and

accuracy trade-offs in LinnOS?

- Others (Section 5.6): How does LinnOS work on other

public traces? Can LinnOS support full-stack storage

applications? What is the CPU overhead?

5.1 Setup

We present the evaluation workloads, devices, experiments,

and methods to which we compare.

Workloads. Our ultimate goal is to evaluate whether Lin-

nOS can help real production scenarios. We use SSD-level

traces from Microsoft Azure (AZ), Bing Index (BingI/BI),

Bing Select (BingS/BS), and Cosmos (CO) servers. Each

server type contains I/O traces for six devices. The average

trace contains 36 hours of I/O operations.2 For training data,

from each of the four server types, we pick the three busi-

est device traces and then pick the busiest hour (same three

hours); we limit to three due to the number of (expensive) en-

terprise SSDs that we have (more below). For the “test data”

that is dedicated for live experiments, we pick a random time

slice from other busy hours, hence training and test data do

not overlap. Overall, the training and test data do not occupy

the entire available traces.

SSD devices. For performance evaluation, we show how

much LinnOS helps flash arrays deliver predictable latencies.

We prepared two flash arrays with consumer (“C”) and en-

terprise (“E”) configurations. The former connects an array

of three homogeneous SM951 consumer-level SSDs, and the

latter forms three heterogeneous enterprise-level SSDs, Intel

P4600, Samsung PM1725a, and WD Ultrastar DC SN200.

We assume every block is replicated three times across the

devices, a typical setup for consumer-facing storage servers.

For both configurations, the machine has a 2.6GHz 18-core

(36-thread) Intel i9-7980XE CPU with 128GB DRAM. Un-

less otherwise stated, we do not use accelerators (§4.5). The

overhead for failing over revoked I/Os is 15µs. For accu-

racy evaluation, beyond these four flash models, we also use

Intel SSDSC1BG40, Intel SSDSC2BX01, Intel P3700, Intel

P4510, Intel S3700, and Samsung 960 EVO, for a total of 10

models. Prior to this evaluation, all devices have been used

for months with many workloads that reach the devices’ full

capacities, hence mimicking devices in the field.

The experiments. For performance evaluation, the ex-

periments are performed with a storage application that ex-

ecutes the traces on the flash arrays, where all the devices

serve read/write workloads. For example, in one experi-

ment, the application simultaneously executes three different

Azure traces on three separate SM951 devices in the con-

sumer flash array and records the latencies of completed read

I/Os. The application has a failover capability to complete

revoked I/Os at other devices (as shown earlier in Figure 2).

All read I/Os are marked as latency-critical.3 We are also

aware that the traces were collected on medium-end devices

at Microsoft (in 2016). Hence, for our high-end flash array

configuration, we have to mimic a heavier workload by re-

rating the traces to be more intensive. Our methodology is

that for each re-rated trace, the resulting baseline latency dis-

tribution (after running it on the high-end device) should be

similar to the latency distribution in the original trace.

Table 1 shows the I/O characteristics of the re-rated traces.

Typically, running these re-rated traces on our drives shows

a low slack (<5% of all I/Os), where SSDs see no pend-

2The traces are available from Microsoft to the academic community

with NDA.
3We assume that no write I/Os are latency critical as they are usually

absorbed by write buffers. However, if needed, our techniques can be eas-

ily integrated with kernels/applications that support write re-routing (e.g.,

AutoRAID, RAID+).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 181

Test Avg Max R:W Avg I/O Size Max I/O Size

Trace IOPS IOPS Ratio Read/Write Read/Write

AZ/C 745 4.9K 27:73 24K/18K 64K/64K

BI/C 361 1.8K 17:83 57K/30K 64K/1M

BS/C 114 1.1K 22:78 163K/73K 2M/9M

CO/C 113 623 32:68 479K/121K 6M/32M

AZ/E 13K 31K 25:75 25K/17K 64K/64K

BI/E 2.4K 9.2K 23:77 55K/30K 512K/1M

BS/E 1.3K 4.3K 27:73 196K/73K 2M/9M

CO/E 2.5K 7.2K 22:78 430K/107K 7M/32M

Table 1: I/O characteristics of re-rated traces (§5.1). The

upper part (first four rows) is for the consumer-level flash array and

the lower is for the enterprise-level one. Every max-IOPS value is

measured within a 10-second window.

ing I/Os for a few milliseconds, and noticeable burstiness (5-

30%), where I/Os need to wait in the OS as the SSD queues

are full. We believe this accurately emulates the slack and

tail behaviors seen in real deployments. Also, the work-

load bursts across devices are highly correlated, which, in

some cases, can cause inevitable long-tail behaviors that no

failover can handle. However, in real runs we find that the

internal busyness of the devices is not necessarily correlated

due to device-level complexities, as LinnOS shows great im-

provement by evading the underlying device idiosyncrasies

(§5.3). All the experiments are repeated three times, and no

significant variance was observed.

Methods compared. We perform an extensive eval-

uation that compares eight methods: baseline, cloning,

constant-percentile hedging (e.g., at p95 latency), inflection-

point hedging (with our algorithm), simple heuristic, ad-

vanced heuristic, LinnOS (by itself), and LinnOS with high-

percentile hedging. Comparing LinnOS with white-box ap-

proaches [25, 30, 44, 56] is out of the scope of the paper be-

cause LinnOS targets black-box devices and we do not have

access to an array of programmable devices.

5.2 Inflection Point (IP) Stability

One of the contributions

 0

 4

 8

 12

 0 5 10 15 20

M
a
x
 I
P

 D
e
v
.

Hours

1hrW

2hrW

30minW
15minW

Figure 7: IP stability.

in this paper is finding the

semi-optimal fast/slow inflec-

tion point (IP) that brings

a balance between timeliness

and overhead (Figure 5 in Sec-

tion 4.2). Table 2 shows

the IP values our algorithm

computed for every workload-

device pair. The three num-

bers in every cell represent three different traces (from the

same server type), each running on one of the SSDs in the

flash array. As shown, the IP values widely range from p72

to p98, which highlights why a constant timeout value is not

optimal and hurts performance. These IP values will be used

for fast/slow labeling and training, which then generates a

Consumer Enterprise

Azure p73.3, p77.0, p91.4 p91.0, p93.2, p97.8

BingIndex p80.0, p94.5, p98.5 p80.1, p83.3, p97.0

BingSelect p72.0, p76.9, p87.2 p75.3, p83.7, p86.8

Cosmos p73.4, p82.5, p84.1 p83.2, p84.8, p95.1

Table 2: Inflection point (IP) settings. This table, as ex-

plained in Section 5.2, shows the IP values that our algorithm in

Section 4.2.1 computed for every workload-device pair.

unique set of weights for each device.

We chose a busy hour (T=1hr Window) to collect the train-

ing data and calculate the IP values in that time slice. Fig-

ure 7 shows the stability of our methodology by plotting the

max IP deviations in percentile (y-axis) within the next 20

hours (x-axis) for various T window values. For example,

if the chosen hour exhibits p85 IP, but a subsequent hour

exhibits p75 or p95 IP, then the deviation is 10 percentiles

(y=10). The graph shows that if T=1hrWindow, the deviation

is bounded within five percentiles in the next 15 hours, indi-

cating that frequent retraining is unnecessary. If T is shorter

(e.g., 15minWindow), the deviation is more apparent (needs

frequent retraining, which typically converges within 15-20

minutes on CPUs, due to LinnOS’s light model). If T is

larger (2hrWindow), the gain is not significant. For general-

ity, the figure is the result of our algorithm simulation on all

the datasets (36 hours per trace, 24 traces, four server types).

The cost of delayed retraining depends on the deviation.

Let us take an example of a model trained for p95 (5ms),

but then the workload deviates such that the real IP is at p90

(10ms) because the workload becomes more write-intense.

In this case, LinnOS (still using 5ms) will over-revoke many

IOs that could have finished before 10ms (more false re-

vokes). If the failover overhead is negligible, this will not

cause much harm. Another scenario is when the workload

deviates such that the IP moves up to p99 (3ms). Here, Lin-

nOS would over-accept (more false submits) because 3-5ms

latency is inaccurately considered “fast,” but actually can be

made faster. This is where LinnOS without retraining hurts.

5.3 Latency Predictability

We now evaluate LinnOS’s success in achieving extreme la-

tency predictability. Figure 8 shows the average I/O laten-

cies (user-perceived) on the two flash arrays (consumer and

enterprise) across the eight methods. In more detail, Figure

9 shows the latencies at specific percentiles (p80 to p99.99 in

the x-axis). Below we dissect the strengths and weaknesses

of every method. We start from the baseline, then we jump

to “LinnOS+HL” (the best outcome), followed by the others.

Baseline. The Base lines in Figure 9 confirm unpre-

dictability of flash storage with latencies that spike almost

exponentially in between p95 to p99.99, increasing the av-

erage latencies to 1.3–6.5 times compared to our best cases

182 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 2

 4

Azure BingIndex

on Consumer

LinnOS+HL,
 best result

R
e

a
d

 L
a

t.
 (

m
s
)

Clone
Base

HeurSim
HeurAdv

 0

 15

 30

BingSelect Cosmos

on Consumer

Hedge95
HedgeIP

LinnOS-Raw
LinnOS+HL

0

.3

.6
on Enterprise

R
e

a
d

 L
a

t.
 (

m
s
)

 0

 1

 2 on Enterprise

Figure 8: Average latencies. The figures show that LinnOS

consistently outperforms all other methods, as explained in Section

5.3. The top and bottom graphs represent experiments on the con-

sumer and enterprise arrays, respectively.

(Figure 8). Clearly, flash arrays with data redundancy should

adopt tail-cutting methods to achieve higher predictability.

LinnOS+HL. This label represents the LinnOS method

combined with high-percentile hedging for masking the

small inaccuracy that is intrinsically hard to eliminate in a

neural network (Section 4.4). That is, to compensate for the

inaccuracies that cause false submits, our application sends

a duplicate I/O after pX latency time has elapsed, where X

is the smaller of 95 and (1 – false submit rate)×100. We use

the false submit rates from the training process (Figure 10 in

Section 5.4).

[Key outcome] → The average latencies in Figure 8 show

that LinnOS+HL consistently outperforms all other methods

across different workloads and platforms. On average,

LinnOS+HL reduces latency by 9.6-79.6% compared

to p95 hedging (Hedge95), 14.2-49.5% to hedging

with our IP algorithm (HedgeIP), and 10.7-71.2%

to an advanced heuristic (HeurAdv). These speed-

ups are a product of the stable latencies; in Figure 9,

LinnOS+HL lines exhibit stable latencies even at extremely

high percentiles, p99 to 99.99. These results bring a positive

conclusion that the downsides of LinnOS (a 15µs failover

overhead including a 6µs per-I/O inference cost and the in-

accuracies) are outweighed by its effectiveness in delivering

predictable latencies.

LinnOS (Raw). Here we show LinnOS efficiency even

without hedging (i.e., revoke+failover without I/O duplica-

tion). The LinnOS-Raw bars in Figure 8 shows that Lin-

nOS by itself is effective enough, only 1.3-45.7% worse than

LinnOS+HL, and compared to p95 hedging, LinnOS-Raw re-

duces latency by 0.3-62.3%, and to an advanced heuristic,

by 3.0-60.7%. Figure 9 details why adding hedging is use-

ful. At high percentiles, above p99, LinnOS-Raw starts ex-

 2

 4

 6

 8

(a) AZ/C

R
e
a
d
 L

a
t.
 (

m
s
)

Clone
Base

HeurSim
HeurAdv

 2

 4

 6

(e) AZ/E

Hedge95
HedgeIP

LinnOS-Raw
LinnOS+HL

 10

 20

 30

 40

(b) BI/C

R
e
a
d
 L

a
t.
 (

m
s
)

 2

 4

 6

(f) BI/E

 Stability
even at p99.99!

100

200

300

400

(c) BS/C

R
e
a
d
 L

a
t.
 (

m
s
)

10

20

30

40

50

(g) BS/E

 50

100

150

200

80 90 95 99 99.9 99.99

(d) CO/C

R
e
a
d
 L

a
t.
 (

m
s
)

20

40

60

80

80 90 95 99 99.9 99.99

(h) CO/E

Figure 9: Percentile latencies. Explained in Section 5.3,

the figures show that LinnOS +HL delivers the most predictable

latencies (y-axis) across all percentiles (x-axis), even at p99.99. In

Figure (a), “AZ/C” means Azure running on consumer array.

hibiting high latencies (due to false submits). Learning from

the “small-tail” behavior of hedging (e.g., the Hedge95 lines),

we combined the best of the two in LinnOS+HL.

Hedging at p95. Sending a duplicate I/O after a p95-

latency timeout has elapsed is a popular method used in the

field [12, 21]. Figure 9 shows that, in general, this method is

effective in cutting latency tail but generally incurs higher

latencies than LinnOS+HL. This is because Hedge95 needs

to wait for the timeout to happen before sending the du-

plicate I/Os, while LinnOS returns a timely revocation that

allows the application to failover quickly. As the implica-

tion, Hedge95, on average, is slower than LinnOS+HL or even

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 183

LinnOS-Raw (Figure 8).

Hedging at IP. Many of the IP values shown in Table 2

are below p95, which raises the question of whether hedg-

ing at IP would be better than at p95. The average values

in Figure 8 show a mixed result. On the consumer devices,

HedgeIP improves upon Hedge95 by 2x for heavy workloads

BingS and Cosmos, but loses by up to 15% in light workloads

Azure and BingI. Similarly, on enterprise devices, HedgeIP

wins in BingS while slightly losing in the others. Upon fur-

ther investigation, we see that, for example, in consumer de-

vices, Azure and BingI latencies are generally fast (<2 and

10ms respectively, as shown by the y-axis in Figure 9a-b),

hence are sensitive to the extra load from duplicate I/Os;

HedgeIP in our experiments are sending more duplicates than

Hedge95. Nevertheless, our experiments show that for most

of the workloads, HedgeIP is more effective than Hedge95,

hence systems with hedging can adopt our IP algorithm.

Simple heuristic. The first heuristic we wrote, “HeurSim,”

is based on a popular heuristic for spinning disks: if the de-

vice queue length (the number of outstanding I/Os) is larger

than a threshold, the incoming I/O should be retried else-

where [13, 62, 64]. For the threshold, we use a similar

method as HedgeIP, but instead of using IP latency value, we

use IP queue length. That is, we first profile the queue length

distribution during tracing and then select the queue length

at the IP percentile as the threshold for revoking. Figure 8

shows that HeurSim only gives a small improvement over the

baseline and is far from the best case. In short, it is not smart

enough to infer device-internal disruptions.

Advanced heuristic. We extend HeurSim to a more “ad-

vanced” heuristic, HeurAdv. For comparison fairness, we

reuse the same intuition we had in building LinnOS and ap-

ply it to HeurAdv. An additional task that HeurAdv performs

is scanning the last N completed I/Os (N=4, same as in Lin-

nOS) and if this history shows a slow I/O (“slow” as defined

in §4.2) but with a low queue length (less than the median), it

will mark the drive as “internally busy.” In this state, incom-

ing I/Os will not be admitted unless the queue length drops

to a low value (less than the lower-quartile queue length).

The state will not be changed from “busy” to “normal” until

it sees recent I/Os become fast (“fast” as defined in §4.2).

[2nd key outcome] → Figure 8 shows that HeurAdv im-

proves upon HeurSim in most cases, but still loses from other

methods. We would like to note that we spent several weeks

tuning the heuristic to the “best” outcome we can achieve.

Continued expansion and tuning of the heuristic is possible.

However, the main difficulty that will arise is the large design

space of parameters (normal/busy states, median and lower-

quartile queue lengths, etc.) that must be optimally and man-

ually configured for different workloads and devices. This is

where we show that machine learning helps. The use of a

lightweight neural network allows us to focus on deciding

what features matter, but at the same time letting the model

 0

 2

 4

 6

 8

 10

 12

AZ/C BI/C BS/C CO/C AZ/E BI/E BS/E CO/E AZ/P BI/P BS/P CO/P

Inaccuracy (%): original

P
e
rc

e
n
ta

g
e
 (

%
)

False Submit False Revoke

 0

 2

 4

 6

 8

 10

 12

AZ/C BI/C BS/C CO/C AZ/E BI/E BS/E CO/E AZ/P BI/P BS/P CO/P

Inaccuracy (%): with biased training

 Lower
false submits

Higher (but acceptable)
 false revokes

P
e
rc

e
n
ta

g
e
 (

%
)

Figure 10: Low inaccuracy. The figure shows the percentage

of false submits and false revokes. Note that only false submits

really matter (see Section 5.4). Additionally, “P” represents other

device models that we can access from a public cloud. For graph

readability, here for “P” we only show the results for one device

model, while the observations stand across the rest. In total, the

accuracy evaluation covers 10 device models (1C+3E+6P).

learn and reverse-engineer SSD behaviors. In our case, Lin-

nOS neural network auto-trains all the 8706 weights for dif-

ferent devices and workloads.

Cloning. This method is essentially p00 hedging, sending

a duplicate I/O for every I/O on the outset. Although SSDs

are fast and have internal parallelism, Figure 8 shows that

Clone is mostly worse than the baseline due to the 2x load.

5.4 (Low) Inaccuracy

We now measure LinnOS inaccuracy by counting the num-

ber of false submits and false revokes (Section 4.4). The live

experiments can only measure the former but not the latter.

This is because revoked I/Os are never submitted to the de-

vice, hence we never know whether the revoke is accurate

or not. Thus, for this evaluation, we measure inaccuracy in

an offline way using TensorFlow, just like the training phase.

However, note that both the training and test data were col-

lected from running the workloads on real flash arrays (i.e.,

not simulated data). Just like before, we use 1-hour data sets

for training and then pick three different 1-hour data sets for

testing accuracy, and measure the average inaccuracy.

Figure 10 shows the inaccuracies before and after we use

biased training. To recap Section 4.4, false submits are more

dangerous than false revokes. Without bias, the top graph

shows that the false submit rates (red bars) are high, between

1.3% to 10.8%. With biased training, as shown in the bottom

graph, we successfully lower the false submit rates to 0.7-

5.7%, by shifting the inaccuracies to false revokes, which are

more tolerable as explained in Section 4.4. For example, let

us assume an inferior scenario of p80 inflection point (i.e.,

184 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Model: A B C D E

Acc. (%) −(3-12) −(1-4) +(1-2) +(4-5) +(8-12)

Perf. (µs) −4 −1 +40 +94 +1670

Table 3: Trade-offs balance. This table is explained Section

5.5. All the +/− of accuracy and performance values are com-

pared to our final neural network model described in §4.

20% slowness), which means the probability that all three

replicas are slow is 0.008 ((20/100)3). Thus, although we

have spiked up the false revokes to 2.8-9.7% in Figure 10b,

only 0.008 of these false revokes probabilistically will result

in slow I/Os. Finally, as mentioned before, for masking the

dangerous low inaccuracy (the 0.7-5.7% false submits), com-

bining LinnOS with high-percentile hedging (LinnOS+HL) led

to a powerful result.

5.5 Trade-offs

Table 3 shows some possible trade-offs between inference

overhead and accuracy (models A-E, with accuracy involv-

ing both false submits and false revokes). On one hand, if

lower overhead is preferred and some accuracy loss is ac-

ceptable, then one option is to trim the input features and the

model. For example, in model B with R=3 (i.e., including

fewer history I/Os instead of R=4) can reduce the number of

input features from 31 to 24 and lower inference overhead,

−1µs, but it will bring some accuracy loss, −(1-4%), due to

fewer inputs. Or, if even lower overhead is favorable, then in

model A we can further cut the input features (R=2, 17 fea-

tures) and use a slimmer hidden layer (from 256 neurons to

128), resulting in a lower inference time,−4µs, while bring-

ing larger accuracy loss, −(3-12%).

If higher accuracy is needed, then we can bring in more

features and heavier models. For example, in model C, by

adding one more hidden layer to the model, we can gain+(1-

2%) higher accuracy, while the inference overhead rises by

+40µs. Taking a step further, we can involve more features

(up to R=10 and 73 features) and more hidden layers (three

layers with 256-512-256 neurons) to push the accuracy gain

by +(4-5%), but an increased overhead, +94µs. The ex-

treme model E includes block offsets in the input features

(2048 features in total) and applies a model with five hidden

layers (with 512 neurons each). For some traces, this model

improves the accuracy by +(8-12)%, but its inference over-

head, +1670µs, is extremely high for live inference.

5.6 Other Evaluations

5.6.1 Additional Performance Evaluations

Other possible manually-tuned heuristics. To get a sense

of how much performance a heuristic can ultimately reach,

we pick several 10-min slices from the traces and manu-

ally tweak the adjustable parameters of HeurSim and HeurAdv

with various thresholds until an optimal outcome is achieved.

In a nutshell, we start with the generic HeurSim and HeurAdv,

evaluate them with the sliced traces, track the high-latency

I/Os that are not revoked, update the thresholds to catch these

I/Os without causing too many false revokes (e.g., >15%),

re-evaluate and repeat the entire process until an approxi-

mate optimum is observed. This approach is indeed capa-

ble of granting heuristics a further stretch. For example,

we see a few cases where tweaked heuristics can outperform

LinnOS-Raw by up to 20% at p95. However, this tuning pro-

cedure is onerous and impractical in real runs as the repeated

manual tweaking is too slow to catch up with the fluctuation

of incoming workloads.

LinnOS+H99. We also

p90

p95

p99

 0 2 4 6 8

Lat. (ms)H
ig

h
e

r
P

e
rc

e
n

ti
le

s

LinnOS+H99
 longer tailsL

in
n
O

S
+

H
L

p40

p50

p60

 0.4 0.6 0.8

Lat. (ms)L
o

w
e

r
P

e
rc

e
n

ti
le

s LinnOS+H99
 less I/Os

Li
nn

O
S

+
H

L

Figure 11: LinnOS+H99.

try LinnOS+H99, which

employs p99 hedging that

only generates 1% extra

I/Os. Figure 11a shows

one of its comparisons

with LinnOS+HL. Generally,

LinnOS+H99 encounters a

larger tail area due to longer

waiting, but responds faster

at lower percentiles due

to less extra I/Os. With

that, sometimes LinnOS+HL

can show slightly worse

average latencies (up to 3%)

than LinnOS+H99 (Figure

11b). However, in a large

majority of our bench-

marks, LinnOS+HL achieves

1.7-39.2% better average latencies than LinnOS+H99.

5.6.2 On Public Traces

Beyond our evaluation with Microsoft traces, Figure 12

shows a quick evaluation with the latest SSD traces pub-

lished on the SNIA website [9] run on our consumer flash

array. The result confirms that LinnOS also exhibits low in-

accuracy (Figure 12a) and substantial latency improvement

(Figure 12b).

5.6.3 MongoDB on Different Filesystems

To see how data applications can benefit from LinnOS, we

set up a local MongoDB replica set on top of our three en-

terprise drives with homogeneous filesystem settings. For

each type of filesystem, MongoDB receives 120K random

read requests, and all drives run Microsoft traces as back-

ground noise when serving MongoDB requests as latency-

critical I/Os. Here, we focus on high-percentile latency (e.g.,

p99 latency) since the average latency is largely impacted by

filesystem buffering, while the tail latency reflects the raw

performance from the devices.

Figure 13 shows that with LinnOS, MongoDB achieves

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 185

 0

 2

 4

 6

Without
Bias

With
Bias

(a) Inacc.

P
e

rc
e

n
ta

g
e

 (
%

)

False Submit
False Revoke

p90

p95

p99

 0 1 2

Lat. (ms)

(b) Lat. CDF

LinnOS
Base

Figure 12: On public traces. As explained in §5.6.2.

much more predictable performance. For example, with all

underlying devices formatted with f2fs, LinnOS reduces the

p99 latency by 76.7%. Moreover, LinnOS only requires mi-

nor changes to MongoDB and filesystems: 50 additional

LOC. For example, the filesystems should directly return

LinnOS’s error code to the applications instead of conduct-

ing unnecessary self-checking, and MongoDB needs to be

slightly modified to reuse its built-in failover logic.

5.6.4 Computation Overhead/Optimization

CPU overhead. A reasonable concern is that if the en-

tire OS has many neural networks, then it will be CPU-

intensive. Across all the benchmarks and SSDs, paired with

a lightweight neural network, each device only costs 0.3-

0.7% of the host CPU resource, making LinnOS practical

for large-scale deployments.

Co-processors for acceleration. As mentioned in Section

4.5, additional processors can be utilized to speed up the in-

ference. By utilizing one more CPU core, LinnOS can re-

duce the inference overhead by 36% (to 4µs), with the max-

imal CPU usage increased up to 1.4% per device.

6 Conclusion and Discussion

We have presented LinnOS, to the best of our knowledge, the

first operating system capable of inferring the speed of every

I/O to flash storage. We have shown the feasibility of using a

light neural network in the operating system for making fre-

quent, fine-grained, black-box live inferences. LinnOS out-

performs many other methods and successfully brings pre-

dictability on unpredictable flash storage. We also believe

that LinnOS’s success leads to exciting discussions and ques-

tions that can spur future work:

On performance. Though LinnOS inference overhead (4-

6µs) is less noticeable compared with the access latency of

current SSDs (e.g., 80µs), it could become problematic as

SSDs march to 10µs latency range. Also, the consumption

of computation resources can increase substantially as the

IOPS grow. How to further lower the inference cost (e.g., to

1µs) to support faster devices and higher throughput? Can

advanced accelerators help accelerate OS kernel operations?

Can near-storage/data processing help? Can we skip the in-

ference when the outcome is highly assured (e.g., the queue

length is very low)? Can we cache the approximation results

for popular predictions?

 0

 1

 2

 3

btrfs ext4 f2fs FAT32 xfsP
9

9
 R

e
a

d
 L

a
t.

 (
m

s
)

LinnOS
Base

p95

p99

1 2 3 4 50
Read Lat. (ms) on Ext4

LinnOS
Base

Figure 13: MongoDB on different filesystems. This figure

shows that LinnOS can easily help data applications achieve more

predictable latency (§5.6.3).

On masking the inaccuracy of machine learning. As

machine learning (e.g., LinnOS) can never achieve 100%

accuracy, how should “ML-for-system” solutions mask the

cases that machine learning fails to catch, while still bene-

fiting from its generality? Is marrying learning and heuristic

(e.g., as in LinnOS+HL) a powerful option that exploits the

advantages of both worlds?

On other integrations and extensions. One interest-

ing question raised by LinnOS is why the latency behav-

ior of SSDs—devices with complex idiosyncrasies—can

be learned by the block layer with a few observable fea-

tures. Understanding this can help other higher layers such

as RAID, direct device access (SPDK), user/device-level

filesystems, or distributed storage adopt our concept. Like-

wise, in lower layers, it is also a possibility in the future to

have SSDs with latency inference capability built in. Al-

though, arguably, one can say that the device already has full

knowledge of its internals and does not need a black-box pre-

diction, an argument can be made that SSD vendors can use

the same machine learning method across different internal

architectures. Hence, they do not need to re-develop the in-

ference logic every time they modify the internal hardware,

logic, and policies. Alternatively, SSD vendors can employ

“gray-box” learning that incorporates some of the internal

knowledge.

On precision. Can fast/slow inference be converted to a

more precise latency inference, such as latency ranges (e.g.,

2-4µs, 4-8µs, ...), percentile buckets (e.g., p0-p10, ..., p90-

p100), or precise latency with high accuracy? Can model

permutation or other machine learning techniques help?

7 Acknowledgments

We thank Tom Anderson, our shepherd, and the anony-

mous reviewers for their tremendous feedback and helpful

comments. We also thank the Azure CSI group for pro-

viding the traces. This material was supported by funding

from NSF (grant Nos. CCF-2028427, CNS-1405959,

CNS-1526304, CNS-1764039, and CNS-1823032), ARO

(W911NF1920321), DOE (DESC00141950003) and

UChicago CERES Center, as well as generous donations

from Dell EMC, Google, and NetApp.

186 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Cassandra - Speculative Execution for Reads / Eager Retries.

https://issues.apache.org/jira/browse/

CASSANDRA-4705.

[2] Chameleon. https://www.chameleoncloud.org.

[3] Ethernet: The High Bandwidth Low-Latency Data Center

Switching Fabric. http://www.force10networks.com/

whitepapers/pdf/F10_wp_Ethernet.pdf.

[4] GreyBeards on Storage. https://silvertonconsulting.

com/gbos2/tag/tail-latency/.

[5] MongoDB - Basic Support for Operation Hedging in

NetworkInterfaceTL. https://jira.mongodb.org/

browse/SERVER-45432.

[6] New GraphCore IPU BenchMarks. https://www.

graphcore.ai/posts/

new-graphcore-ipu-benchmarks .

[7] Pareto Distribution. https://en.wikipedia.org/wiki/

Pareto_distribution.

[8] Rapid Read Protection in Cassandra 2.0.2. https://www.

datastax.com/blog/2013/10/

rapid-read-protection-cassandra-202 .

[9] SNIA I/O Trace Data Files. http://iotta.snia.org/

traces.

[10] The Data Center Flash Storage Market Is Expected to Grow

at a CAGR of Nearly About 17% during 2018-2024.

https://prn.to/2z58q4L.

[11] The Evolution of Image Classification Explained. https://

stanford.edu/~shervine/blog/

evolution-image-classification-explained .

[12] Tuning Speculative Retries to Fight Latency. https://www.

youtube.com/watch?v=uRJSuQofJWQ, 2016.

[13] Irfan Ahmad. Easy and Efficient Disk I/O Workload

Characterization in VMware ESX Server. In IEEE

International Symposium on Workload Characterization

(IISWC), 2007.

[14] Ganesh Ananthanarayanan, Michael Chien-Chun Hung,

Xiaoqi Ren, Ion Stoica, Adam Wierman, and Minlan Yu.

GRASS: Trimming Stragglers in Approximation Analytics.

In Proceedings of the 11th Symposium on Networked Systems

Design and Implementation (NSDI), 2014.

[15] Zhen Cao, Vasily Tarasov, Hari Prasath Raman, Dean

Hildebrand, and Erez Zadok. On the Performance Variation

in Modern Storage Stacks. In Proceedings of the 15th

USENIX Symposium on File and Storage Technologies

(FAST), 2017.

[16] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and

Thomas F. Wenisch. The Mystery Machine: End-to-end

Performance Analysis of Large-scale Internet Services. In

Proceedings of the 11th Symposium on Operating Systems

Design and Implementation (OSDI), 2014.

[17] Chanwoo Chung, Jinhyung Koo, Junsu Im, Arvind, and

Sungjin Lee. LightStore: Software-defined Network-attached

Key-value Drives. In Proceedings of the 24th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2019.

[18] John Colgrove, John D. Davis, John Hayes, Ethan L. Miller,

Cary Sandvig, Russell Sears, Ari Tamches, Neil

Vachharajani, and Feng Wang. Purity: Building Fast,

Highly-Available Enterprise Flash Storage from Commodity

Components. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data

(SIGMOD), 2015.

[19] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark

Russinovich, Marcus Fontoura, and Ricardo Bianchini.

Resource Central: Understanding and Predicting Workloads

for Improved Resource Management in Large Cloud

Platforms. In Proceedings of the 26th ACM Symposium on

Operating Systems Principles (SOSP), 2017.

[20] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran

El-Yaniv, and Yoshua Bengio. BinaryNet: Training Deep

Neural Networks with Weights and Activations Constrained

to +1 or -1. CoRR, abs/1602.02830, 2016.

[21] Jeffrey Dean and Luiz Andre Barroso. The Tail at Scale.

Communications of the ACM (CACM), 56(2), 2013.

[22] Christina Delimitrou and Christos Kozyrakis. Paragon:

QoS-Aware Scheduling for Heterogeneous Datacenters. In

Proceedings of the 18th International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2013.

[23] Christina Delimitrou and Christos Kozyrakis. Quasar:

Resource-Efficient and QoS-Aware Cluster Management. In

Proceedings of the 19th International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2014.

[24] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi

Gilad, P. Brighten Godfrey, and Michael Schapira. PCC

Vivace: Online-Learning Congestion Control. In

Proceedings of the 15th Symposium on Networked Systems

Design and Implementation (NSDI), 2018.

[25] Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chrisma

Pakha, Riza O. Suminto, Cesar A. Stuardo, Andrew A.

Chien, and Haryadi S. Gunawi. MittOS: Supporting

Millisecond Tail Tolerance with Fast Rejecting SLO-Aware

OS Interface. In Proceedings of the 26th ACM Symposium on

Operating Systems Principles (SOSP), 2017.

[26] Mingzhe Hao, Gokul Soundararajan, Deepak

Kenchammana-Hosekote, Andrew A. Chien, and Haryadi S.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 187

https://issues.apache.org/jira/browse/CASSANDRA-4705
https://issues.apache.org/jira/browse/CASSANDRA-4705
https://www.chameleoncloud.org
http://www.force10networks.com/whitepapers/pdf/F10_wp_Ethernet.pdf
http://www.force10networks.com/whitepapers/pdf/F10_wp_Ethernet.pdf
https://silvertonconsulting.com/gbos2/tag/tail-latency/
https://silvertonconsulting.com/gbos2/tag/tail-latency/
https://jira.mongodb.org/browse/SERVER-45432
https://jira.mongodb.org/browse/SERVER-45432
https://www.graphcore.ai/posts/new-graphcore-ipu-benchmarks
https://www.graphcore.ai/posts/new-graphcore-ipu-benchmarks
https://www.graphcore.ai/posts/new-graphcore-ipu-benchmarks
https://en.wikipedia.org/wiki/Pareto_distribution
https://en.wikipedia.org/wiki/Pareto_distribution
https://www.datastax.com/blog/2013/10/rapid-read-protection-cassandra-202
https://www.datastax.com/blog/2013/10/rapid-read-protection-cassandra-202
https://www.datastax.com/blog/2013/10/rapid-read-protection-cassandra-202
http://iotta.snia.org/traces
http://iotta.snia.org/traces
https://prn.to/2z58q4L
https://stanford.edu/~shervine/blog/evolution-image-classification-explained
https://stanford.edu/~shervine/blog/evolution-image-classification-explained
https://stanford.edu/~shervine/blog/evolution-image-classification-explained
https://www.youtube.com/watch?v=uRJSuQofJWQ
https://www.youtube.com/watch?v=uRJSuQofJWQ

Gunawi. The Tail at Store: A Revelation from Millions of

Hours of Disk and SSD Deployments. In Proceedings of the

14th USENIX Symposium on File and Storage Technologies

(FAST), 2016.

[27] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. The Unwritten Contract of Solid

State Drives. In Proceedings of the 2017 EuroSys Conference

(EuroSys), 2017.

[28] Henry Hoffmann. JouleGuard: energy guarantees for

approximate applications. In Proceedings of the 25th ACM

Symposium on Operating Systems Principles (SOSP), 2015.

[29] Chin-Jung Hsu, Rajesh K Panta, Moo-Ryong Ra, and

Vincent W. Freeh. Inside-Out: Reliable Performance

Prediction for Distributed Storage Systems in the Cloud. In

The 35th Symposium on Reliable Distributed Systems

(SRDS), 2016.

[30] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath,

Sudipta Sengupta, Bikash Sharma, and Moinuddin K.

Qureshi. FlashBlox: Achieving Both Performance Isolation

and Uniform Lifetime for Virtualized SSDs. In Proceedings

of the 15th USENIX Symposium on File and Storage

Technologies (FAST), 2017.

[31] Amber Huffman. Addressing IO Determinism Challenges at

Scale with NVM Express Part 2: Renegotiating the

Host/Device Contract. In Proceedings of the 2017

Non-Volatile Memory Workshop (NVMW), 2017.

[32] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew G. Howard, Hartwig Adam, and

Dmitry Kalenichenko. Quantization and Training of Neural

Networks for Efficient Integer-Arithmetic-Only Inference. In

2018 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018.

[33] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and

Steven Swanson. KAML: A Flexible, High-Performance

Key-Value SSD. In Proceedings of the 23rd International

Symposium on High Performance Computer Architecture

(HPCA-23), 2017.

[34] Myoungsoo Jung, Wonil Choi, Miryeong Kwon, Shekhar

Srikantaiah, Joonhyuk Yoo, and Mahmut Kandemir. Design

of a Host Interface Logic for GC-Free SSDs. IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), 8(1), May 2019.

[35] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,

Shravan Matthur Narayanamurthy, Alexey Tumanov,

Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru

Krishnan, Janardhan Kulkarni, and Sriram Rao. Morpheus:

Towards Automated SLOs for Enterprise Clusters. In

Proceedings of the 12th Symposium on Operating Systems

Design and Implementation (OSDI), 2016.

[36] Bryan S. Kim, Hyun Suk Yang, and Sang Lyul Min.

AutoSSD: an Autonomic SSD Architecture. In Proceedings

of the 2018 USENIX Annual Technical Conference (ATC),

2018.

[37] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin Lee,

Changwoo Min, and Sam H. Noh. Alleviating Garbage

Collection Interference Through Spatial Separation in All

Flash Arrays. In Proceedings of the 2019 USENIX Annual

Technical Conference (ATC), 2019.

[38] Taejin Kim, Duwon Hong, Sangwook Shane Hahn,

Myoungjun Chun, Sungjin Lee, Jooyoung Hwang, Jongyoul

Lee, and Jihong Kim. Fully Automatic Stream Management

for Multi-Streamed SSDs Using Program Contexts. In

Proceedings of the 17th USENIX Symposium on File and

Storage Technologies (FAST), 2019.

[39] Youngjae Kim, Junghee Lee, Sarp Oral, David A. Dillow,

Feiyi Wang, and Galen M. Shipman. Coordinating Garbage

Collection for Arrays of Solid-State Drives. IEEE

Transactions on Computers (TC), 63(4), April 2014.

[40] Youngjae Kim, Sarp Oral, Galen M. Shipman, Junghee Lee,

David A. Dillow, and Feiyi Wang. Harmonia: A Globally

Coordinated Garbage Collector for Arrays of Solid-state

Drives. In Proceedings of the 27th IEEE Symposium on

Massive Storage Systems and Technologies (MSST), 2011.

[41] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. ReFlex:

Remote Flash ≈ Local Flash. In Proceedings of the 22nd

International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS),

2017.

[42] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter,

Emmett Witchel, and Thomas Anderson. Strata: A Cross

Media File System. In Proceedings of the 26th ACM

Symposium on Operating Systems Principles (SOSP), 2017.

[43] Changman Lee, Dongho Sim, Joo-Young Hwang, and

Sangyeun Cho. F2FS: A New File System for Flash Storage.

In Proceedings of the 13th USENIX Symposium on File and

Storage Technologies (FAST), 2015.

[44] Sungjin Lee, Ming Liu, SangWoo Jun, Shuotao Xu, Jihong

Kim, and Arvind. Application-Managed Flash. In

Proceedings of the 14th USENIX Symposium on File and

Storage Technologies (FAST), 2016.

[45] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D.

Gribble. Tales of the Tail: Hardware, OS, and

Application-level Sources of Tail Latency. In Proceedings of

the 5th ACM Symposium on Cloud Computing (SoCC), 2014.

[46] Ning Li, Hong Jiang, Dan Feng, and Zhan Shi. PSLO:

Enforcing the Xth Percentile Latency and Throughput SLOs

for Consolidated VM Storage. In Proceedings of the 2016

EuroSys Conference (EuroSys), 2016.

[47] Chun-Yi Liu, Jagadish B. Kotra, Myoungsoo Jung,

Mahmut T. Kandemir, and Chita R. Das. SOML Read:

Rethinking the Read Operation Granularity of 3D NAND

SSDs. In Proceedings of the 24th International Conference

on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2019.

188 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[48] Martin Maas, David G. Andersen, Michael Isard,

Mohammad Mahdi Javanmard, Kathryn S. McKinley, and

Colin Raffel. Learning-based Memory Allocation for C++

Server Workloads. In Proceedings of the 25th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2020.

[49] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos

Maltzahn, Ryan Stutsman, and Robert Ricci. Taming

Performance Variability. In Proceedings of the 13th

Symposium on Operating Systems Design and

Implementation (OSDI), 2018.

[50] Amirhossein Mirhosseini, Akshitha Sriraman, and Thomas F.

Wenisch. Hiding the Microsecond-Scale Latency of

Storage-Class Memories with Duplexity. In Proceedings of

the 2019 Non-Volatile Memory Workshop (NVMW), 2019.

[51] Nikita Mishra, Connor Imes, John D. Laferty, and Henry

Hoffmann. CALOREE: Learning Control for Predictable

Latency and Low Energy. In Proceedings of the 23rd

International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS),

2018.

[52] Nikita Mishra, John D. Lafferty, and Henry Hoffmann. ESP:

A Machine Learning Approach to Predicting Application

Interference. In The 14th International Conference on

Autonomic Computing (ICAC), 2017.

[53] Pulkit A. Misra, Mara F. Borge, Iigo Goiri, Alvin R. Lebeck,

Willy Zwaenepoel, and Ricardo Bianchini. Managing Tail

Latency in Datacenter-Scale File Systems Under Production

Constraints. In Proceedings of the 2019 EuroSys Conference

(EuroSys), 2019.

[54] Mihir Nanavati, Jake Wires, and Andrew Warfield. Decibel:

Isolation and Sharing in Disaggregated Rack-Scale Storage.

In Proceedings of the 14th Symposium on Networked Systems

Design and Implementation (NSDI), 2017.

[55] Kay Ousterhout, Christopher Canel, Sylvia Ratnasamy, and

Scott Shenker. Monotasks: Architecting for Performance

Clarity in Data Analytics Frameworks. In Proceedings of the

26th ACM Symposium on Operating Systems Principles

(SOSP), 2017.

[56] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong

Wang, and Yuanzheng Wang. SDF: Software-Defined Flash

for Web-Scale Internet Storage System. In Proceedings of

the 19th International Conference on Architectural Support

for Programming Languages and Operating Systems

(ASPLOS), 2014.

[57] Chris Petersen. Addressing IO Determinism Challenges at

Scale with NVM Express. In Proceedings of the 2017

Non-Volatile Memory Workshop (NVMW), 2017.

[58] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran,

Trevor Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven

Swanson. Willow: A User-Programmable SSD. In

Proceedings of the 11th Symposium on Operating Systems

Design and Implementation (OSDI), 2014.

[59] Dimitris Skourtis, Dimitris Achlioptas, Noah Watkins, Carlos

Maltzahn, and Scott Brandt. Flash on Rails: Consistent Flash

Performance through Redundancy. In Proceedings of the

2014 USENIX Annual Technical Conference (ATC), 2014.

[60] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and

Gernot Heiser. Koala: a platform for OS-level power

management. In Proceedings of the 2009 EuroSys

Conference (EuroSys), 2009.

[61] Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose,

Jeremie S. Kim, Yixin Luo, Yaohua Wang, Nika Mansouri

Ghiasi, Lois Orosa, Juan Gmez-Luna, and Onur Mutlu.

FLIN: Enabling Fairness and Enhancing Performance in

Modern NVMe Solid State Drives. In Proceedings of the

45th Annual International Symposium on Computer

Architecture (ISCA), 2018.

[62] Toby J. Teorey and Tad B. Pinkerton. A Comparative

Analysis of Disk Scheduling Policies. Communications of

the ACM (CACM), 15(3), 1972.

[63] Balajee Vamanan, Jahangir Hasan, and T. N. Vijaykumar.

Deadline-Aware Datacenter TCP. In Proceedings of the

ACM Special Interest Group on Data Communication

(SIGCOMM), 2012.

[64] Elizabeth Varki, Arif Merchant, Jianzhang Xu, and Xiaozhou

Qiu. Issues and Challenges in the Performance Analysis of

Real Disk Arrays. IEEE Transactions on Parallel and

Distributed Systems (TPDS), 15(6), 2004.

[65] Shivaram Venkataraman, Zongheng Yang, Michael Franklin,

Benjamin Recht, and Ion Stoica. Ernest: Efficient

Performance Prediction for Large-Scale Advanced Analytics.

In Proceedings of the 13th Symposium on Networked Systems

Design and Implementation (NSDI), 2016.

[66] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, Anthony

Brockwell, Christos Faloutsos, and Gregory R. Ganger.

Storage Device Performance Prediction with CART Models.

In Proceedings of the IEEE International Symposium on

Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS), 2004.

[67] Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training

and Inference with Integers in Deep Neural Networks. In 6th

International Conference on Learning Representations

(ICLR), 2018.

[68] Suzhen Wu, Haijun Li, Bo Mao, Xiaoxi Chen, and

Kuan-Ching Li. Overcome the GC-induced Performance

Variability in SSD-based RAIDs with Request Redirection.

IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), 38(5), May 2019.

[69] Suzhen Wu, Weidong Zhu, Guixin Liu, Hong Jiang, and

Bo Mao. GC-aware Request Steering with Improved

Performance and Reliability for SSD-based RAIDs. In

Proceedings of the 32th IEEE International Parallel and

Distributed Processing Symposium (IPDPS), 2018.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 189

[70] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha

Gangadharaiah, Amit Borase, Tamires Brito Da Silva, Andy

Rudoff, and Steven Swanson. NOVA-Fortis: A

Fault-Tolerant Non-Volatile Main Memory File System. In

Proceedings of the 26th ACM Symposium on Operating

Systems Principles (SOSP), 2017.

[71] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong,

Swaminathan Sundararaman, Andrew A. Chien, and

Haryadi S. Gunawi. Tiny-Tail Flash: Near-Perfect

Elimination of Garbage Collection Tail Latencies in NAND

SSDs. In Proceedings of the 15th USENIX Symposium on

File and Storage Technologies (FAST), 2017.

[72] Haojin Yang, Martin Fritzsche, Christian Bartz, and

Christoph Meinel. BMXNet: An Open-Source Binary

Neural Network Implementation Based on MXNet. In

Proceedings of the 2017 ACM on Multimedia Conference

(ACMMM), 2017.

[73] Ting Yang, Tongping Liu, Emery D. Berger, Scott F. Kaplan,

and J. Eliot B. Moss. Redline: First Class Support for

Interactivity in Commodity Operating Systems. In

Proceedings of the 8th Symposium on Operating Systems

Design and Implementation (OSDI), 2008.

[74] Li Yin, Sandeep Uttamchandani, and Randy Katz. An

Empirical Exploration of Black-Box Performance Models for

Storage Systems. In Proceedings of the IEEE International

Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems (MASCOTS),

2006.

[75] Hong Zhang, Kai Chen, Wei Bai, Dongsu Han, Chen Tian,

Hao Wang, Haibing Guan, and Ming Zhang. Guaranteeing

Deadlines for Inter-Datacenter Transfers. In Proceedings of

the 2015 EuroSys Conference (EuroSys), 2015.

[76] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon

Koh, Changlim Lee, Mohammad Alian, Myoungjun Chun,

Mahmut Taylan Kandemir, Nam Sung Kim, Jihong Kim, and

Myoungsoo Jung. FlashShare: Punching Through Server

Storage Stack from Kernel to Firmware for Ultra-Low

Latency SSDs. In Proceedings of the 13th Symposium on

Operating Systems Design and Implementation (OSDI),

2018.

[77] Yiying Zhang, Leo Prasath Arulraj, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

De-indirection for Flash-based SSDs with Nameless Writes.

In Proceedings of the 10th USENIX Symposium on File and

Storage Technologies (FAST), 2012.

A Artifact Appendix

A.1 Abstract

We assemble an executable LinnOS workflow that runs

on Chameleon Cloud Research Platform [2]. This self-

contained artifact contains the major components and step-

by-step instructions.

A.2 Artifact check-list

• Program: LinnOS with preprocess scripts 4.

• Data set: Example I/O traces.

• Run-time environment: Chameleon’s shared Jupyter

experiment environment.

• Hardware: A flash array with at least three SSDs.

• Output: Trained models for I/O prediction and latency

CDF lines.

• Experiments: LinnOS workflow.

• Expected experiment run time: Several hours.

• Public link: https://www.

chameleoncloud.org/experiment/share/15?

s=409ab137f20e4cd38ae3dd4e0d4bfa7c

A.3 Description

A.3.1 How to access

Access the public link provided above and click the

“Launch on Chameleon” botton (account required to access

Chameleon resources), then see Readme.txt for a high-level

description and LinnOS.ipynb for step-to-step instructions.

A.3.2 Hardware dependencies

Evaluating LinnOS requires a flash array with at least three

SSDs, which are provided by the storage-hierarchy instances

from Chameleon Testbed.

A.3.3 Data sets

The artifact contains some example I/O traces, which are

used in the workflow for testing purposes.

A.4 Installation

Step-by-step installation instructions are available in the ar-

tifact.

A.5 Evaluation and expected result

Upon successful running, the workflow should produce a

trained model, the accuracy outcome, and the I/O latency

distribution of LinnOS and baseline. Please see readme.txt

in the artifact for further details.

4Excluding the data collection and analysis code that may reveal sensi-

tive information in Microsoft traces

190 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.chameleoncloud.org/experiment/share/15?s=409ab137f20e4cd38ae3dd4e0d4bfa7c
https://www.chameleoncloud.org/experiment/share/15?s=409ab137f20e4cd38ae3dd4e0d4bfa7c
https://www.chameleoncloud.org/experiment/share/15?s=409ab137f20e4cd38ae3dd4e0d4bfa7c

A large scale analysis of hundreds of in-memory cache clusters at Twitter

Juncheng Yang
Carnegie Mellon University

Yao Yue
Twitter

K. V. Rashmi
Carnegie Mellon University

Abstract
Modern web services use in-memory caching extensively
to increase throughput and reduce latency. There have been
several workload analyses of production systems that have
fueled research in improving the effectiveness of in-memory
caching systems. However, the coverage is still sparse consid-
ering the wide spectrum of industrial cache use cases. In this
work, we significantly further the understanding of real-world
cache workloads by collecting production traces from 153
in-memory cache clusters at Twitter, sifting through over 80
TB of data, and sometimes interpreting the workloads in the
context of the business logic behind them. We perform a com-
prehensive analysis to characterize cache workloads based
on traffic pattern, time-to-live (TTL), popularity distribution,
and size distribution. A fine-grained view of different work-
loads uncover the diversity of use cases: many are far more
write-heavy or more skewed than previously shown and some
display unique temporal patterns. We also observe that TTL
is an important and sometimes defining parameter of cache
working sets. Our simulations show that ideal replacement
strategy in production caches can be surprising, for example,
FIFO works the best for a large number of workloads.

1 Introduction
In-memory caching systems such as Memcached [14] and

Redis [16] are heavily used by modern web applications to
reduce accesses to storage and avoid repeated computations.
Their popularity has sparked a lot of research, such as reduc-
ing miss ratio [26, 28, 36, 37], or increasing throughput and
reducing latency [43, 52, 53, 56]. On the other hand, the ef-
fectiveness and performance of in-memory caching can be
workload dependent. And several important workload analy-
ses against production systems [24,59] have guided the explo-
rations of performance improvements with the right context
and tradeoffs in the past decade [43, 56].

Nonetheless, there remains a significant gap in the under-
standing of current in-memory caching workloads. Firstly,
there has been a lack of comprehensive studies covering the
wide range of use cases in today’s production systems. Sec-
ondly, there have been new trends in in-memory caching
usage since the publication of previous work [24]. Thirdly,
some aspects of in-memory caching received little attention
in the existing studies, but are known as critical to practition-

ers. For example, TTL is an important aspect of configuring
in-memory caching, but it has largely been overlooked in
research. Last but not least, unlike other areas where open-
source traces [62, 63, 68, 70] or benchmarks [38] are avail-
able, there has been a lack of open-source in-memory caching
traces. Researchers have to rely on storage caching traces [26],
key-value database benchmarks [43, 56] or synthetic work-
loads [39, 57] to evaluate in-memory caching systems. Such
sources either have different characteristics or do not cap-
ture all the characteristics of production in-memory caching
workloads. For example, key-value database benchmarks and
synthetic workloads don’t consider how object size distribu-
tion changes over time, which impacts both miss ratio and
throughput of in-memory caching systems.

In this work, we bridge this gap by collecting and analyzing
workload traces from 153 Twemcache [6] clusters at Twitter,
one of the most influential social media companies known
for its real-time content. Our analysis sheds light on several
vital aspects of in-memory caching overlooked in existing
studies and identifies areas that need further innovations. The
traces used in this paper are made available to the research
community [1]. To the best of our knowledge, this is the first
work that studied over 100 different cache workloads covering
a wide range of use cases. We believe these workloads are
representative of cache usage at social media companies and
beyond, and hopefully provide a foundation for future caching
system designs. Here’s a summary of our discoveries:

1. In-memory caching does not always serve read-heavy
workloads, write-heavy (defined as write ratio > 30%)
workloads are very common, occurring in more than
35% of the 153 cache clusters we studied.

2. TTL must be considered in in-memory caching because
it limits the effective (unexpired) working set size. Effi-
ciently removing expired objects from cache needs to be
prioritized over cache eviction.

3. In-memory caching workloads follow approximate Zip-
fian popularity distribution, sometimes with very high
skew. The workloads that show the most deviations tend
to be write-heavy workloads.

4. The object size distribution is not static over time. Some
workloads show both diurnal patterns and experience
sudden, short-lived changes, which pose challenges for
slab-based caching systems such as Memcached.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 191

5. Under reasonable cache sizes, FIFO often shows similar
performance as LRU, and LRU often exhibits advantages
only when the cache size is severely limited.

These findings provide a detailed new look into production
in-memory caching systems, while unearthing some surpris-
ing aspects not conforming to the folklore and to the com-
monly used assumptions.

2 In-memory Caching at Twitter
2.1 Service Architecture and Caching

Twitter started its migration to a service-oriented archi-
tecture, also known as microservices, in 2011 [8]. Around
the same time, Twitter started developing its container solu-
tion [2, 3] to support the impending wave of services. Fast
forward to 2020, the real-time serving stack is mostly service-
oriented, with hundreds of services running inside containers
in production. As a core component of Twitter’s infrastruc-
ture, in-memory caching has grown alongside this transition.
Petabytes of DRAM and hundreds of thousands of cores are
provisioned for caching clusters, which are containerized.

At Twitter, in-memory caching is a managed service, and
new clusters are provisioned semi-automatically to be used
as look-aside cache [59] upon request. There are two in-
memory caching solutions deployed in production, Twem-
cache, a fork of Memcached [14], is a key-value cache pro-
viding high throughput and low latency. The other solution,
named Nighthawk, is Redis-based and supports rich data struc-
tures and replication for data availability. In this work, we
focus on Twemcache because it serves the majority of cache
traffic.

Cache clusters at Twitter are considered single-tenant1

based on the service team requesting them. This setup is very
beneficial to workload analysis, because it allows us to tag use
cases, collect traces, and study the properties of workloads
individually. A multi-tenant setup will make similar study
extremely difficult, as researchers have to tease out individual
workloads from the mixture, and somehow connect them to
their use cases. In addition, smaller but distinct workloads can
easily be overlooked or mis-characterized due to low traffic.

Unlike other cache cluster deployments, such as social
graph caching [19, 30] or CDN caching [47, 69], Twemcache
is mostly deployed as a single-layer cache, which allows us
to analyze the requests directly from clients without being
filtered by other caches. Previous work [47] has shown that
layering has an impact on properties of caching workloads,
such as popularity distribution. This single-tenant, single-
layer design provides us the perfect opportunity to study the
properties of the workloads.

2.2 Twemcache Provisioning
There are close to 200 Twemcache clusters in each data

center as of writing. Twemcache containers are highly homo-
geneous and typically small, and a single host can run many

1Although each cluster is single-tenant, each tenant might cache multiple
types of objects of different characteristics.

Slab header metadata Object Object eviction

Bounded internal memory fragmentation

LRU list

…

Slab eviction

Figure 1: Slab-based memory management for bounded memory
fragmentation. While Memcached uses object eviction, Twemcache
uses slab eviction, which evicts all objects in one slab and returns
the slab to global pool.

of them. The number of instances provisioned for each cache
cluster is computed from user inputs including throughput,
estimated dataset sizes, and fault tolerance. The number of
instances of each cluster is automatically calculated first by
identifying the correct bottleneck and then applying other
constraints, such as number of connections to support. Size
of production cache clusters ranges from 20 to thousands of
instances.

2.3 Overview of Twemcache
Twemcache forked an earlier version of Memcached with

some customized features. In this section, we briefly describe
some of the key aspects of its designs.

Slab-based memory management Twemcache often
stores small and variable-sized objects in the range of a few
bytes to 10s of KB. On-demand heap memory allocators such
as ptmalloc [45], jemalloc [13] can cause large and unbounded
external memory fragmentation in such a scenario, which
is highly undesirable in production environment, especially
when using smaller containers. To avoid this, Twemcache in-
herits the slab-based memory management from Memcached
(Figure 1). Memory is allocated as fixed size chunks called
slabs, which default to 1 MB. Each slab is then evenly divided
into smaller chunks called items. The class of each slab de-
cides the size of its items. By default, Twemcache grows item
size from a configurable minimum (default to 88 bytes) to just
under a whole slab. The growth is typically exponential, con-
trolled by a floating point number called growth factor (default
to 1.25), though Twemcache also allows precise configuration
of specific item sizes. Higher slab classes correspond to larger
items. An object is mapped to the slab class that best fits it,
including metadata. In Twemcache, this per-object metadata
is 49 bytes. By default, a slab of class 12 has 891 items of
1176 bytes each, and each item stores up to 1127 bytes of
key plus value. Slab-based allocator eliminates external mem-
ory fragmentation at the cost of bounded internal memory
fragmentation.

Eviction in slab-based cache To store a new object,
Twemcache first computes the slab class by object size. If
there is a slab with at least one free item in this slab class,
Twemcache uses the free item. Otherwise, Twemcache tries
to allocate a new slab into this class. When memory is full,

192 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

#cluster
request rate

cache size
cpu cores0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 u

se
 c

as
e

storage computation transient

Figure 2: Resources consumed for the three cache use cases.

slab eviction is needed for allocation.
Some caching systems such as Memcached primarily per-

forms item-level eviction, which happens in the same slab
class as the new object. Memcached uses an approximate
LRU queue per slab class to track and evict the least recently
used item. This works well as long as object size distribution
remains static. However, this is often not true in reality. For
example, if all keys start with small values that grow over
time, new writes will eventually require objects to be stored
in a higher slab class. However, if all memory has been allo-
cated when this happens, there will be effectively no memory
to give out. This problem is called slab calcification and is
further explored in Section 4.6.2. Memcached developed a
series of heuristics to move memory between slab classes,
and yet they have been shown as non-optimal [10, 11, 17, 46]
and error prone [9].

To avoid slab calcification, Twemcache uses slab eviction
only (Figure 1). This allows the evicted slab to transition into
any other slab class. There are three approaches to choose the
slab to evict: choosing a slab randomly (random slab), choos-
ing the least recently used slab (slabLRU), and choosing the
least recently created slab (slabLRC). In addition to avoiding
slab calcification, slab-only eviction removes two pointers
from object metadata compared to Memcached. We further
compare object eviction and slab eviction in Section 6.

2.4 Cache Use Cases
At Twitter, it is generally recognized that there are three

main use cases of Twemcache: caching for storage, caching
for computation, and caching for transient data. We remark
that there is no strict boundary between the three categories,
and production clusters are not explicitly labeled. Thus the
percentages given below are rough estimates based on our
understanding of each cache cluster and their corresponding
application.

2.4.1 Caching for Storage
Using cache to facilitate reading from storage is the most

common use case. Backend storage such as databases usually
has a longer latency and a lower bandwidth than in-memory
cache. Therefore, caching these objects reduce access latency,
increases throughput, and shelters the backend from excessive
read traffic. This use case has received the most attention
in research. Several efforts have been devoted to reducing

miss ratio [26–28, 36, 37,41, 47, 72] , redesigning for a denser
storage device to fit larger working sets [19,42,65], improving
load balancing [33, 34, 39] and increasing throughput [43, 56].

As shown in Figure 2, although only 30% of the clusters
fall into this category, they account for 65% of the requests
served by Twemcache, 60% of the total DRAM used, and
50% of all CPU cores provisioned.

2.4.2 Caching for Computation
Caching for computation is not new — using DRAM to

cache query results has been studied and used since more
than two decades ago [20,58]. As real-time stream processing
and machine learning (ML) become increasingly popular, an
increasing number of cache clusters are devoted to caching
computation related data, such as features, intermediate and
final results of ML prediction, and so-called object hydra-
tion, — populating objects with additional data, which often
combines storage access and computation.

Overall, caching for computation accounts for 50% of all
Twemcache clusters in cluster count, 26%, 31% and 40% of
request rate, cache sizes and CPU cores.

2.4.3 Transient data with no backing store
The third typical cache usage evolves around objects that

only live in cache, often for short periods of time. It is not
caching in the strict sense, and therefore has received little
attention. Nonetheless, in-memory caching is often the only
production solution that meets both the performance and scal-
ability requirements of such use cases. While data loss is still
undesirable, these use cases really prize speed, and tolerate
occasional data loss well enough to work without a fallback.

Some notable examples are rate limiters, deduplication
caches, and negative result caches. Rate limiters are counters
associated with user activities. They track and cap user re-
quests in a given time window and prevent denial-of-service
attacks. Deduplication caches are a special case of rate lim-
iters, where the cap is 1. Negative result caches store keys
from a larger database that are known to be misses against
a smaller, sparsely populated database. These caches short-
circuit most queries with negative results, and drastically re-
duce the traffic targeting the smaller database.

In our measurements, 20% of Twemcache clusters are un-
der this category. Their request rates and cache sizes account
for 9% and 8% of all Twemcache request rates and cache
sizes, meanwhile, they account for 10% of all CPU cores of
Twemcache clusters.

3 Methodology
3.1 Log Collection

Twemcache has a built-in non-blocking request logging
utility called klog that can keep up with designed throughput
in production. While it logs one out of every 100 requests
by default, we dynamically changed the sampling ratio to
100% and collected week-long unsampled traces from two
instances of each Twemcache cluster. Collecting unsampled

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 193

1 2 3 4 5 6 7 8 9 10
Top ten caches

1

0.1

0.01

0.001

M
iss

 ra
tio

(a) Production miss ratio

10 3 10 2 10 1 100

Miss ratio

1.0

1.5

2.0

2.5

M
iss

 ra
tio

 m
ax

/m
in

(b) Miss ratio variation

Figure 3: a) Production miss ratio of the top ten Twemcache clusters
ranked by request rates, the bar shows the max and min miss ratio
across one week. Note that the Y-axis is in log scale. b) The ratio
between max and min miss ratio is small for most caches.

traces allows us to avoid drawing potentially biased conclu-
sions caused by sampling. Moreover, we chose to collect
traces from two instances instead of one to prevent possible
cache failure during log collection and to compare results
between instances for higher fidelity. Barring cache failures,
the two instances have no overlapping keys.

3.2 Log Overview
We collected around 700 billion requests (80 TB in raw

file size) from 306 instances of 153 Twemcache clusters,
which include all clusters with per-instance request rate more
than 1000 queries-per-sec (QPS) at the time of collection. To
simplify our analysis and presentation, we focused on the 54
largest caches, which account for 90% of aggregated QPS and
76% of allocated memory. In the following sections, we use
Twemcache workloads to refer to the workloads from these
54 Twemcache clusters. Although we only present the results
of these 54 caches, we did perform the same analysis on the
smaller caches, and they don’t change our conclusions.

4 Production Stats and Workload Analysis
In this section, we start by describing some common pro-

duction metrics to provide a foundation for our discussion,
and then move on to workload analyses that can only be per-
formed with detailed traces.

4.1 Miss Ratio
Miss ratio is one of the key metrics that indicate the ef-

fectiveness of a cache. Production in-memory caches usually
operate at a low miss ratio with small miss ratio variation.

We present the miss ratios of the top ten Twemcache clus-
ters ranked by request rates in Figure 3a where the dot shows
the mean miss ratio over a week, and the error bars show
the minimum and maximum miss ratio. Eight out of the ten
Twemcache clusters have a miss ratio lower than 5%, and
six of them have a miss ratio close to or lower than 1%. The
only exception is a write-heavy cache cluster, which has a
miss ratio of around 70% (see Section 4.3.2 for details about
write-heavy workloads). Compared to CDN caching [47],
in-memory caching usually has a lower miss ratio.

Besides a low miss ratio, miss ratio stability is also very
important. In production, it is the highest miss ratio (and

Figure 4: The number of requests and objects being accessed every
second for two cache nodes.

request rate) that decides the QPS requirement of the backend.
Therefore, a cache with a low miss ratio most of the time, but
sometimes a high miss ratio is less useful than a cache with
a slightly higher but stable miss ratio. Figure 3b shows the
ratios of mrmax

mrmin
over the course of a week for different caches,

where mr stands for miss ratio. We observe that most caches
have this ratio lower than 1.5. In addition, the caches that have
larger ratios usually have a very low miss ratio.

Low miss ratios and high stability in general illustrate the
effectiveness of production caches. However, extremely low
miss ratios tend to be less robust, which means the corre-
sponding backends have to be provisioned with more margins.
Moreover, cache maintenance and failures become a major
source of disruption for caches with extremely low miss ratios.
The combination of these factors indicate there’s typically a
limit to how much cache can reduce read traffic or how little
traffic backends need to provision for.

4.2 Request Rate and Hot Keys
Similar to previously observed [24], request rates show

diurnal patterns (Figure 4). Besides, spikes in request rate are
also very common because cache is the first responder to any
change from the frontend services and end users.

When a request rate spike happens, a common belief is
that hot keys cause the spikes [33, 48]. Indeed, load spikes
often are the results of hot keys. However, we notice it is not
always true. As shown in Figure 4, at times, when the request
rate (top blue curve) spikes, the number of objects accessed
in the same time interval (bottom red curve) also has a spike,
indicating that the spikes are triggered by factors other than
hot keys. Such factors include client retry requests, external
traffic surges, scan-like accesses, and periodic tasks.

In addition to request rate spikes, caches often show other
irregularities. For example, in Section 4.6.2, we show that it
is common to see sudden changes in object size distribution.
These irregularities can happen for various reasons. For in-
stance, users change their behavior due to a social event, the
frontend service adds a new feature (or bug), or an internal
load test is started.

As a critical component in the infrastructure, caches stop
most of the requests from hitting the backend, and they should
be designed to tolerate these workload changes to absorb the
impact.

194 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ge
t

ge
ts se
t

ad
d

re
pla

ce
ap

pe
nd

pr
ep

en
d

ca
s

de
let

e
inc

r
de

cr

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 re

qu
es

ts

(a) Relative use of each operation

0.00 0.25 0.50 0.75 1.00
Write ratio

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

(b) Write ratio

Figure 5: a) Ratio of operation in each Twemcache cluster, box
shows the 25th and 75th percentile, red bar inside the box shows the
mean ratio, and whiskers are 10th and 90th percentile. b) write ratio
distribution CDF across Twemcache clusters.

4.3 Types of Operations
Twemcache supports eleven different operations, of which

get and set are the most heavily used by far. In addition,
write-heavy cache workloads are very common at Twitter.

4.3.1 Relative usage comparison
We begin from the operations used by Twemcache work-

loads. Twemcache supports eleven operations get, gets,
set, add, cas (check-and-set), replace, append, prepend,
delete, incr and decr2. As shown in Figure 5a, get and
set are the two most common operations, and average get
ratio is close to 90% indicating most of the caches are serving
read-heavy workloads. Apart from get and set, operations
gets, add, cas, delete, incr are also frequently used in
Twemcache clusters. However, compared to get and set,
these operations usually account for a smaller percentage of
all requests. Nonetheless, these operations serve important
roles in in-memory caching. Therefore, as suggested by the
author of Memcached, they should not be ignored [15].

4.3.2 Write ratio
Although most caches are read dominant, Figure 5a shows

that both get and set ratios have a large range across caches.
We define a workload as write-heavy if the percentage sum of
set, add, cas, replace, append, prepend, incr and decr
operations exceeds 30%. Figure 5b shows the distribution of
write ratio across caches. More than 35% of all Twemcache
clusters are write-heavy, and more than 20% have a write
ratio higher than 50%. In other words, in addition to the well-
known use case of serving read-heavy workloads, a substantial
number of Twemcache clusters are used to serve write-heavy
workloads. We identify the main use cases of write-heavy
caches below.

Frequently updated data Caches under this category
mostly belong to cache for computation or transient data (Sec-
tion 2.4.2 & 2.4.3). Updates are accumulated in cache before
they get persisted, or the keys eventually expire.

2See https://github.com/memcached/memcached/wiki/Commands
for details about each command.

Opportunistic pre-computation Some services contin-
uously generate data for potential consumption by itself or
other services. One example is the caches storing recent user
activities, and the cached data are read when a query asks for
recent events from a particular user. Many services choose
not to fetch relevant data on demand, but instead opportunisti-
cally pre-compute them for a much larger set of users. This is
feasible because pre-computation often has a bounded cost,
and in exchange read queries can be quickly fulfilled by pre-
computed results partially or completely. Since this is a trade-
off mainly for user experience, the caches under this category
see objects with fewer reuse. Therefore, the write ratio is of-
ten higher (>80%), and object access (read+write) frequency
is often lower. In one case, we saw one cluster with a mean
object frequency close to 1.

4.4 TTL
Two important features that distinguish in-memory caching

from a persistent key-value store are TTL and cache eviction.
While evictions have been widely studied [26, 28], TTL is
often overlooked. Nonetheless, TTL has been routinely used
in production. Moreover, as a response to GDPR [5], the
usage of caching TTL has become mandatory at Twitter to
enforce data retention policies. TTL is set when an object is
first created in Twemcache, and decides its expiration time.
Request attempts to access an expired object will be treated as
misses, so keeping expired objects in the cache is not useful.

We observe that in-memory caching workloads often use
short TTLs. This usage comes from the dynamic nature of
cached objects and the usage for implicit deletion. Under
this condition, effectively and efficiently removing expired
objects from the cache becomes necessary and important,
which provides an alternative to eviction in achieving low
miss ratios.

4.4.1 TTL Usages
We measure the mean TTLs used in each Twemcache clus-

ter and show the TTL distribution in Figure 6a. The figure
shows that TTL ranges from minutes to days. More than 25%
of the workloads use a mean TTL shorter than twenty minutes,
and less than 25% of the workloads have a mean TTL longer
than two days. Such a TTL range is longer than DNS caching
(minutes) [51], but shorter than common CDN object caching
(days to weeks). If we divide caches into short-TTL caches
(TTL ≤ 12 hours) and long-TTL caches (TTL > 12 hours).
Figure 6a shows 66% of all Twemcache clusters have a short
mean TTL.

In addition to mean TTL distribution, we have also mea-
sured the number of TTL used in each cache. Figure 6b shows
that only 20% of the Twemcache workloads use a single TTL,
while the rest majority use more than one TTL. In addition,
we observe that over 30% of the workloads use more than ten
TTLs and there are a few workloads using more than 1000
TTLs. In the last case, some clients intentionally scatter TTLs
over a pre-defined time range to avoid objects expiring at the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 195

https://github.com/memcached/memcached/wiki/Commands

102 103 104 105 106

Mean TTL (s)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

<20 min

 >2 day

(a) Mean TTL distribution

100 101 102 103

#TTL used

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

(b) Number of TTL in each cache

102 104 106

The smallest TTL (s)
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

<5 min

 >6 hour

(c) The smallest TTL distribution

100 101 102 103 104

TTL range
0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

TTLmax
TTLmin

(d) TTL range distribution

Figure 6: a) More than half of caches have mean TTL shorter than one day. b) Only 20% of caches use single TTL. c) The smallest TTL in
each cache can be very long. d) TTLs ranges in workloads are often large.

same time. This technique is called TTL jitter. In another case,
the clients seek the opposite effect — computing TTLs so
that a group of objects will expire at the same, predetermined
time.

Besides the number of TTLs used, the smallest TTL and
the TTL range, defined as the ratio between T T Lmax and
T T Lmin, are also important for designing algorithms that re-
move expired objects (see Section 7). Figure 6c shows that
the smallest TTL in each cache varies from 10s of seconds to
more than half day. In detail, around 30 to 35% of the caches
have their smallest TTL shorter than 300 seconds, and over
25% of caches have the smallest TTL longer than 6 hours.
Figure 6d shows the CDF of each workload’s TTL range. We
observe that fewer than 40% of the workloads have a rela-
tively small TTL range (< 2× difference), while almost 25%
of the caches have T T Lmax

T T Lmin
over 100.

Below we present the three main purposes of TTL to better
explain how TTL settings relate to the usages of the caches.

Bounding inconsistency Objects stored in Twemcache
can be highly dynamic. Because cache updates are best-effort,
and failed cache writes are not always retried, it is possible
that objects stored in in-memory cache are stale. Therefore,
applications often use TTL to bound inconsistency, which is
also suggested in the AWS Redis documentation [7]. TTLs
for this purpose usually have relative large values, in the
range of days. Some Twitter services further developed soft
TTL to achieve a better tradeoff between data consistency

0 40 80 120 160
Time (hour)

0

5000

10000

15000

20000

W
or

ki
ng

 se
t s

ize
 (M

B) no-ttl
ttl

(a)

0 40 80 120 160
Time (hour)

0

3000

6000

9000

12000

W
or

ki
ng

 se
t s

ize
 (M

B)

no-ttl
ttl

(b)

Figure 7: The working set size grows over time when TTL is not
considered. However, when TTL is considered, the working set size
is capped.

and avaiilability. The main idea of soft TTL is to store an
additional, often shorter TTL as part of the object value. When
application decodes the value of a cached object and notices
that the soft TTL has expired, it will refresh the cached value
from its corresponding source of truth in the background.
Meanwhile, the application continues to use the older value to
fulfill current requests without waiting. Soft TTL is typically
designed to increase with each background refresh, based on
the assumption that newly created objects are more likely to
see high volume of updates and therefore inconsistency.

Implicit deletion In some caches, TTL reflects the intrin-
sic life span of stored objects. One example is the counters
used for API rate limiting, which are declared as maximum
number of requests allowed in a time window. These counters
are typically stored in cache only, and their TTLs match the
time windows declared in the API specification. In addition
to rate limiters, GDPR required TTL would also fall into this
category, so no data would live in cache beyond the duration
permitted under the law.

Periodic refresh TTL is also used to promote data fresh-
ness. For example, a service that calculates how much a user’s
interest matches a cluster/community using ML models can
make "who-to-follow" type of recommendations with the
results. The results are cached for a while because user char-
acteristics tend to be stable in the very short term, and the cal-
culation is relatively expensive. Nonetheless, as users engage
with the site, their portraits can change over time. Therefore
such a service tends to recompute the results for each user pe-
riodically, using or adding the latest data since last update. In
this case, TTL is used to pace a relatively expensive operation
that should only be performed infrequently. The exact value
of the TTL is the result of a balance between computational
resources and data freshness, and can often be dynamically
updated based on circumstances.
4.4.2 Working Set Size and TTL

Having the majority of caches use short TTLs indicate
that the effective working set size (WSSE) — the size of all
unexpired objects should be loosely bounded. In contrast, the
total working set size (WSST), the size of all active objects
regardless of TTL, can be unbounded.

In our measurements, we identify two types of workloads

196 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

shown in Figure 7. The first type (Figure 7a) has a con-
tinuously growing WSST , and it is usually related to user-
generated content. With new content being generated every
second, the total working set size keeps growing. The second
type of workload has a large growth rate in WSST at first, and
then the growth rate decreases after this initial fast-growing
period, as shown in Figure 7b. This type of workloads can be
users related, the first quick increase corresponds to the most
active users, the slow down corresponds to less active users.
Although the two workloads show different growth patterns
in total working set size, the effective working set size of both
arrive at a plateau after reaching its TTL. Although the WSSE
may fluctuate and grow in the long term, the growth rate is
much slower compared to WSST .

Bounded WSSE means that, for many caches, there exists a
cache size that the cache can achieve compulsory miss ratio,
if an in-memory caching system can remove expired objects
in time. This suggest the importance of quickly removing
expired object from cache, especially for workloads using
short TTLs. Unfortunately, while eviction has been widely
studied [26, 28, 54], expiration has received little attention.
And we will show in Section 7.2, existing solutions fall short
on expiration.

4.5 Popularity Distribution
Object popularity is another important characteristic of a

caching workload. Popularity distribution is often used to
describe the cachebility of a workload. A popular assumption
is that cache workloads follow Zipfian distribution [29], and
the frequency-rank curve plotted in log-log scale is linear. A
large body of work optimizes system performance under this
assumption [33, 39, 44, 50, 57, 61]. However, a recent work
from Facebook [19] suggested that in-memory caching work-
loads may not follow Zipfian distribution. Here we present
the popularity of the caching workloads at Twitter.

Measuring all Twemcache workloads, we observe major-
ity of the cache workloads still follow Zipfian distribution.
However, some workloads show deviations in two ways. First,
unpopular objects appear significantly less than expected (Fig-
ure 8a) or the most popular objects are less popular than ex-
pected (Figure 8b). The first deviation happens when objects

101 103 105 107

Object rank

101

103

105

Fr
eq

ue
nc

y

(a)

101 103 105 107

Object rank

101

103

105

Fr
eq

ue
nc

y

(b)

Figure 8: Some workloads showing small deviations from Zipfian
popularity. a) The least popular objects are less popular than ex-
pected. b) The most popular objects are less popular than expected.

0.2 0.4 0.6 0.8 1.0
R2

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

(a) R2 in Zipfian fitting

1.0 1.5 2.0 2.5
zipf alpha

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

(b) Zipfian parameter α

Figure 9: a) Most of workloads follow Zipfian popularity distri-
bution with large confidence R2. b) The parameter α in Zipfian
distribution is large, and the popularity of most workloads are highly
skewed (α > 1).

are always accessed multiple times so that there are few ob-
jects with frequency smaller than some value. The second
deviation happens when the client has an aggressive client-
side caching strategy so that the most popular objects are
often cached at client. In this case, the cache is no longer
single-layer.

Although these deviations happen, they are rare, and we
believe it is still reasonable to assume in-memory caching
workloads follow Zipfian distribution. Since most part of the
frequency-rank curves are linear in the log-log scale, we use
linear fitting3 confidence R2 [12] as the metric for measuring
the goodness of fit. Figure 9a shows the results of fitting. 80%
of all workloads have R2 larger than 0.8, and more than 50%
of workloads have R2 larger than 0.9. These results indicate
that the popularity of most in-memory caching workloads at
Twitter follows Zipfian distribution. We further measure the
parameter α of the Zipfian distribution shown in Figure 9b.
The figure shows that most of the α values are in the range
from 1 to 2.5, indicating the workloads are highly skewed.

4.6 Object Size
One feature that distinguishes in-memory caching from

other types of caching is the object size distribution. We ob-
serve that similar to previous observations [24], the majority
of objects stored in Twemcache are small. In addition, size
distribution is not static over time, and both periodic distri-
bution shifts and sudden changes are observed in multiple
workloads.

4.6.1 Size Distribution
We measure the mean key size and value size in each Twem-

cache cluster, and present the CDF of the distributions in Fig-
ure 10. Figure 10a shows that around 85% of Twemcache
clusters have a mean key size smaller than 50 bytes, with
a median smaller than 38 bytes. Figure 10b shows that the
mean value size falls in the range from 10 bytes to 10 KB, and
25% of workloads show value size smaller than 100 bytes,
and median is around 230 bytes. Figure 10c shows that CDF

3We remark that linear regression is not the correct way to modelling Zipf
distribution from the view of statistics, we perform this to align with existing
works [29].

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 197

25 50 75 100 125
Key size (byte)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

(a) Key size

101 102 103 104

Value size (byte)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

(b) Value size

102 103 104 105

Key+value size (byte)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

(c) Object size

10 1 100 101 102 103

Value/key size ratio

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 c

lu
st

er
s (

CD
F)

(d) Value/key size ratio

Figure 10: Mean key, value, object size distribution and mean value
key size ratio across all caches.

0 24 48 72 96 120 144
Time (hour)

38

55

79

114

Re
qu

es
t s

ize
 (b

yt
e)

0.0

0.1

0.2

0.3

0.4

(a)

0 24 48 72 96 120 144
Time (hour)

410

2540

15726

97369

Re
qu

es
t s

ize
 (b

yt
e)

0.0

0.1

0.2

0.3

(b)

0 24 48 72 96 120 144
Time (hour)

95

237

591

1470

3657

Re
qu

es
t s

ize
 (b

yt
e)

0.00

0.05

0.10

0.15

0.20

(c)

0 24 48 72 96 120 144
Time (hour)

32

198

1225

7584

46956

Re
qu

es
t s

ize
 (b

yt
e)

0.0

0.2

0.4

0.6

(d)

Figure 11: Heatmap showing request size distribution over time for four typical caches. X-axis is time, Y-axis is the object size using slab
class size as bins, and the color shows the fraction of requests that fall into a slab class in that time window.

distribution of the mean object size (key+value), which is very
close to the value size distribution except at small sizes. Value
size distribution starts at size 1, while object size distribution
starts from size 16. This indicates that for some of the caches,
value size is dramatically smaller than the key size. Figure 10d
shows the ratio of mean value and key sizes. We observe that
15% of workloads have the mean value size smaller than or
equal to the mean key size, and 50% of workloads have value
size smaller than 5× key size.

4.6.2 Size Distribution Over Time
In the previous section, we investigated the static size distri-

bution of all objects accessed in the one week’s time of each
Twemcache cluster. However, the object size distribution of
workloads are usually not static over time. In Figure 11, we
show how the size distribution changes over time. The X-
axis shows the time, and the Y-axis shows the size of objects
(using slab class size as bins), the color shows how much of
the objects in one time window fall into each slab class. We
observe that some of the workloads show diurnal patterns
(Figure 11a, 11b), while others show changes without strict
patterns.

Periodic/diurnal object size shifts can come from the fol-
lowing sources, a) value for the same key grows over time.
and b) size distribution correlates with temporal aspects of key
access. For example, text content generated by users in Japan
are shorter/smaller than those by users in Germany. In this
case, it is the geographical locality that drives the temporal
pattern. On the other hand, we do not yet have a good under-
standing of how most sudden, non-recurring changes happen.
Current guesses include user behavior changes during events,

Table 1: Correlation between write ratio and other properties

Property Pearson coefficient with write ratio

log(TTL) -0.6336
log(Frequency) -0.7414
Zipf fitting R2 -0.7690

Zipf alpha -0.7329

and a temporary change in production settings.
Both short-term and long-term size distribution shifts pose

additional challenges to memory management in caching sys-
tems. They make it hard to control or predict external frag-
mentation in caches that use heap memory allocators directly,
such as Redis. For slab-based caching systems, they can cause
slab calcification. In Section 7.5, we discuss why existing
techniques do not completely address the problem.

5 Further Analysis of Workload Properties
We have shown the properties of the in-memory caching

workloads at Twitter. In this section, we show the relationship
between the properties, and how they relate to major caching
use cases.

5.1 Correlations between Properties
Throughout the analysis in previous sections, we observe

some workload characteristics have strong correlations with
the write ratio. For example, write-heavy workloads usually
use short TTLs. Presented in Figure 12a, the dashed red curve
shows the mean TTL distribution of write-heavy workloads,
and the solid blue curve shows the mean TTL distribution

198 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

101 102 103 104 105 106

Mean TTL (sec)
0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

(C
DF

)

Read-heavy
Write-heavy

(a) TTL distribution

100 101 102 103

Mean frequency
0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

(C
DF

)

Read-heavy
Write-heavy

(b) Object frequency distribution

0.60 0.75 0.90
r2 in Zipfian popularity

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

(C
DF

)

Read-heavy
Write-heavy

(c) R2 in fitting Zipfian

0.6 1.2 1.8 2.4
 in Zipfian popularity

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

(C
DF

)

Read-heavy
Write-heavy

(d) α of Zipfian distribution

Figure 12: Write-heavy workloads tend to show short TTL, small object access frequency, relatively large deviations from Zipfian popularity
distribution and are usually less skewed (small α).

of read-heavy workloads. Around 50% of the write-heavy
workloads have mean TTL shorter than 10 minutes, while for
read-heavy workloads, this is 15 hours. Further, the Pearson
coefficient between write ratio and log 4 of mean TTL (Ta-
ble. 1) is -0.63 indicating a negative correlation, confirming
that large write ratio workloads usually have short TTLs.

Besides TTL, write-heavy workloads also show low ob-
ject frequencies. We present the mean object frequency (in
terms of the number of accesses in the traces) of read-heavy
and write-heavy workloads in Figure 12b. It shows that read-
heavy workloads have a mean frequency mostly in the range
from 6 to 1000, with 75% percentile above 200. Meanwhile,
write-heavy workloads have a mean frequency mostly be-
tween 1 and 100, with 75% percentile below 10. We further
confirm this relationship with the Pearson coefficient between
write ratio and log of frequency, which is -0.7414 (Table. 1),
suggesting the low object access frequency in write-heavy
caches.

In addition, the popularity of write-heavy workloads has
relatively larger deviations from Zipfian distribution, and the
fitting confidence R2 is usually much smaller than that of read-
heavy workloads (Figure 12c). Moreover, the α parameter of
Zipfian distribution in write-heavy workloads is usually small,
as shown in Figure 12d. It shows the write-heavy workloads
have a median α around 0.9, and the median of read-heavy
workloads have an α around 1.4. This correlation is also
backed up by the Pearson coefficient (Table 1).

5.2 Properties of Different Cache Use Cases
Here we further explore common properties exhibited by

each of the three major caching use cases as described in
Section 2.4.

5.2.1 Caching for Storage
Caches for storage usually serve ready-heavy workloads,

and their popularity distributions typically follow Zipfian dis-
tribution with a large parameter α in the range of 1.2 to 2.2.
While this type of workload is highly skewed, they are easier
to cache, and in production, 95% of these clusters have miss
ratios of around or less than 1%. Being more cacheable and
having smaller miss ratios do not indicate they have small

4We choose to use log of TTL and frequency because of their wide ranges
in different workloads.

working set sizes. In our observation, 7 of the top 10 caches
(ranked by cache size) belong to this category.

Because these caches store objects persisted in the backend
storage, any modifications to the objects are explicitly written
to both the backend and the cache. Therefore the TTLs used
in these caches are usually large, in the range of days. There
is no specific pattern about object size in this type of caches,
and the value can be as large as tens of KB, or as small as
a few bytes. For example, the number of favorites a tweet
received is persisted in the backend database and sometimes
cached.

5.2.2 Caching for Computation
Caches under this category serve both read-heavy and write-

heavy traffic depending on the workloads. For example, ma-
chine learning feature workloads are usually read-heavy show-
ing a good fit of Zipfian popularity distribution. While inter-
mediate computation workloads are normally write-heavy
and show deviations from Zipfian. Compared to caching for
storage, workloads under this category use shorter TTLs, usu-
ally determined by the application requirement. For example,
caches storing intermediate computation data usually have
TTLs no more than minutes because other services will con-
sume the data in a short time. For features and prediction
results, the TTLs are usually in the range of minutes to hours
(some up to days) depending on how fast the underlying data
change and how expensive the computation is. The mean
TTLs we observe for caches under this category is 9.6 hours.
There are no particular patterns about object sizes in these
caches.

Since objects stored in these caches are indirectly related
to users and contents, the workloads usually have large key
spaces and total working set sizes. For example, a cache stor-
ing the distance between two users will require a N2 cache
size where N denotes the number of users. However, because
these caches have short TTLs, the effective working set sizes
are usually much smaller. Thus removing expired objects can
be more important than eviction for these caches.

As real-time stream processing becomes more popular,
we envision there will be more caches being provisioned
for caching computation results. Because the characteristics
are different from caching for storage, they may not ben-
efit equally from optimizations that only aim to make the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 199

read path fast and scalable, such as optimistic cuckoo hash-
ing [43]. Therefore, including evaluation against caching-
for-computation workloads that are write-heavy and more
ephemeral will paint a more complete picture of the capabili-
ties of any caching system.

5.2.3 Transient Data with No Backing Store
There are two characteristics associated with this type of

caches: Caches under this category usually have short TTLs,
and the TTLs are often used to enforce implicit object dele-
tion (Section 4.4). In addition, objects in these caches are
usually tiny and we observe an average object size of 54
bytes. Although caches of this type only contribute 9% of to-
tal Twemcache cluster request rate and 8% of total cache sizes,
they currently play an irreplaceable role in site operations.

6 Eviction Algorithms
We have shown the characteristics of in-memory cache

workloads in the previous sections. In this section, we use
the same cache traces to investigate the impact of eviction
algorithms. This evaluation considers production algorithms
offered by Twemcache and other production systems.

6.1 Eviction algorithm candidates
Object LRU and object FIFO LRU and FIFO are the

most common algorithms used in production caching sys-
tems [4, 18]. However, they cannot be applied to systems
using slab-based memory management such as Twemcache
without modification. Therefore, we evaluate LRU and FIFO
assuming the workloads are served using a non-slab based
caching system, while ignoring memory inefficiency caused
by external fragmentation. As a result, we expect that the re-
sults to have a bias toward the effectiveness of LRU and FIFO
compared to the three slab-based algorithms. Production re-
sults for these two algorithms might be worse than what is
suggested in this section, depending on the workloads.

slabLRU and slabLRC These two algorithms are part
of eviction algorithms offered in Twemcache. slabLRU and
slabLRC are equivalent to LRU and FIFO but executed at a
level much coarser granularity of slabs rather than a single
object. Twitter employs these algorithms to alleviate the effect
of slab calcification and also to reduce the size of per-object
metadata.

Random slab eviction Besides slabLRU and slabLRC,
Twemcache also offers Random slab eviction, which globally
picks a random slab to evict. This algorithm is workload-
agnostic with robust behavior, and therefore used as the de-
fault policy in production. However, it is rarely the best of
all algorithms and are non-deterministic, therefore we do not
include it in comparison.

Memcached-LRU Memcached adapted LRU by creating
one LRU queue per slab class. We call the resulted eviction
algorithm Memcached-LRU, which does not enable Mem-
cached’s slab auto-move functionality. We did, however, eval-
uate Memcached-LRU with slab auto-move turned on, and

most of the results are somewhere between LRU and slabLRU.
The rest of the paper omits this combination.

6.2 Simulation Setup
We built an open-source simulator called libCacheSim [71]

to study the steady-state miss ratio of the different eviction
algorithms. Specifically, we use five-day traces to warm up
the caches, then use one-day traces to evaluate cache miss
ratios. Each algorithm is applied against all traces, and then
grouped by results.

In terms of cache sizes, our simulation always starts with
64MB of DRAM, and chooses the maximum as 2× their
current memory in production. We stop increasing the size
for a particular workload when all algorithms have reached
the compulsory miss ratio. Note that when plotting, the size
range is truncated to better present the trend.

6.3 Miss Ratio Comparison
The outcome of our comparison can be grouped into four

types, and representatives of each are shown in Figure 13.
The first group shows comparable miss ratios for all al-

gorithms in the cache sizes we evaluated. For this type of
workload, the choice of eviction algorithms has a limited
impact on the miss ratio. Production deployments may very
well favor simplicity or decide based on other operational
considerations such as memory fragmentation. Twemcache
uses random slab eviction by default because random eviction
is simple and requires less metadata.

The second type of result shows that for some workloads
LRU works better than others. Such a result is often expected
because LRU protects recently accessed objects and is well-
known for its miss ratio performance in workloads with strong
temporal locality.

The third type of result shows that FIFO is the best eviction
algorithm (Figure 13c). This result is somewhat surprising
since it does not conform to what is typically observed in
caching of other scenarios such as CDN caching. We give our
suspected reasons below. Figure 14 shows the inter-arrival
time distribution of the two workloads in Figure 13b and Fig-
ure 13c respectively. The inter-arrival time is the number of
requests between two accesses to the same object. Figure 14a
shows a smooth inter-arrival time curve, while Figure 14b
shows a curve with multiple segments. For workloads with
inter-arrival time like Figure 14a, LRU can work better than
FIFO because it promotes recently accessed objects, which
have a higher chance of being reused soon. This promotion
protects the recently accessed objects but demotes other ob-
jects that are not reused recently. Demoting non-recently used
objects can be an unwise decision if some of the demoted
objects will be reused after 106 requests, such as the ones
shown in Figure 14b. In contrast, FIFO treats each stored
object equally; in other words, it protects the objects with a
large inter-arrival gap. Therefore, for workloads similar to the
one in Figure 14b, FIFO can perform better than LRU. Such

200 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

500 MB 2 GB 8 GB
Cache size

0.005

0.010

0.015

0.020

0.025

M
iss

 ra
tio

LRU
FIFO

slabLRU
Memcached-LRU

(a) Similar miss ratio

100 MB 1 GB 8 GB
Cache size

0.025

0.050

0.075

0.100

M
iss

 ra
tio

LRU
FIFO

slabLRU
Memcached-LRU

(b) LRU is better

500 MB 2 GB 8 GB
Cache size

0.24

0.32

0.40

0.48

M
iss

 ra
tio

LRU
FIFO

slabLRU
Memcached-LRU

(c) FIFO is better

100 MB 1 GB 8 GB
Cache size

0.15

0.30

0.45

0.60

0.75

M
iss

 ra
tio

LRU
FIFO

slabLRU
Memcached-LRU

(d) slabLRU is better

Figure 13: Four typical miss ratio results: a) all algorithms have similar performance, b) LRU is slightly better than others, c) FIFO is better
than others, d) slabLRU is much better than others.

102 105 108

#Request since last access

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 re

qu
es

t (
CD

F)

(a)

102 105 108

#Request since last access

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 re

qu
es

t (
CD

F)

(b)

Figure 14: The inter-arrival gap distribution corresponding to the
workloads in Figure 13b and Figure 13c respectively.

workloads may include scan type of requests such as a service
that periodically sends emails.

The last type of result show that in some workloads,
slabLRU performs much better than any other algorithms.
The main reason is that the workloads showing this type of
result have periodic/diurnal changes. Figure 11b shows the
object size distribution over time of the workload correspond-
ing to Figure 13d. We suspect this is due to the following
reason, but we leave the verification as future work. Although
LRU and FIFO are not affected by any change in object size
distribution, they cannot respond to workload change instantly.
In contrast, slabLRU can quickly adapt to a new workload
when the new workload uses a different slab class because
it prioritizes the slabs that have more recent access. From
another view, slabLRU gives a larger usable cache size for
the new workloads (slab class). Figure 13d shows that the
difference between algorithms reduces at larger cache sizes,
this is because the benefit of having a large usable cache size
diminishes as cache size increases. Moreover, in these work-
loads, Memcached-LRU sometimes has better performance
than LRU, but for most of the workloads, Memcached-LRU
is worse (not shown in the figure) because of the missing
capability of moving slabs. Thus it has a smaller usable cache
size. When Memcached-LRU has better performance at small
cache sizes, we suspect that the changing workloads cause
thrashing for LRU and FIFO [27]. Since Memcached-LRU
can only evict objects within from the same slab class as the
new object, it protects the objects in other slab classes from
thrashing, thus showing better performance.

very small small
medium large

Cache size

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 w

or
kl

oa
ds

LRU
FIFO

slabLRU
Memcached-LRU

(a)

0.6 0.3 0.0 0.3 0.6
Relative miss ratio difference

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 w

or
kl

oa
ds

 (C
DF

)

very small
small
medium
large

(b)

Figure 15: a) The best eviction algorithms under different sizes. b)
The relative miss ratio difference between FIFO and LRU under
different sizes. Positive region shows FIFO is worse.

In most cases, both miss ratio and the difference between
algorithms decrease as cache capacity increases. We observe
that within our simulation configuration, which stops at or
before 2× current size, the difference between algorithms
eventually disappears. This suggests that to achieve low miss
ratio in real life, it can be quite effective to create imple-
mentations that increase the effective cache capacity, such as
through metadata reduction, adopting higher capacity media,
or data compression.

Given there are more than a couple of workloads showing
each of the four result types, we would like to explore whether
there is one algorithm that is often the best or close to the best
most of the time.

In the next section, we explore how often each algorithm is
the best with a special focus on LRU and FIFO.

6.4 Aggregated Statistics
In this section, we evaluate the same set of algorithms as in

Section 6.3, focusing on four distinct cache sizes and present
the aggregated statistics. Because different workloads have
different working set sizes and compulsory miss ratios, we
choose the four cache sizes in the following way. We define
the ultimate cache size su to be the size where LRU achieves
compulsory miss ratio for a workload. However, if LRU can
not achieve compulsory miss ratio at 2× production cache
size, we use 2× production cache size as su. We choose large
cache size to be 90% of su, and medium, small and very small

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 201

cache sizes to be 60%, 20% and 5% of su respectively. We
remark that, at Twitter, 76% of the caches have cache sizes
larger than the large cache size category, and 34% of the rest
have cache sizes within 10% of the large cache size.

We show the miss ratio comparison in Figure 15a, where
each bar shows the fraction of workloads for which a particu-
lar algorithm is the best. We see that at the large cache size
slabLRU is the best for around 10% of workloads, and this
fraction gradually increases as we reduce cache size. This
increase is because for smaller cache sizes, quickly adapting
to workload change is more valuable. Besides this, FIFO has
similar performance compared to LRU at small, medium and
large size categories. And only at very small cache sizes, LRU
becomes significantly better than FIFO. This is because at rel-
atively large cache sizes, promoting recently accessed objects
is less crucial. Instead, not demoting other objects is more
helpful in improving the miss ratio, especially for workloads
having multiple segments in inter-arrival time like the one
shown in Figure 14b.

Figure 15a suggests that for close to half of the work-
loads, FIFO is as good as LRU at reasonably large cache
sizes. Now we explore the magnitude by which FIFO is better
or worse compared to LRU on each workload. Figure 15b
shows the relative miss ratio difference between FIFO and
LRU:

(
mrFIFO−mrLRU

mrLRU

)
, where mr stands for miss ratio, for

each workload at different cache sizes. When the value on X-
axis is positive, it indicates that FIFO has a higher miss ratio,
and LRU has better performance, while a negative value indi-
cates the opposite. We observe that all the curves except the
one for very small cache size are all close to being symmetric
around x-axis value 0. This indicates that across workloads,
FIFO and LRU have similar performance for small, medium
and large cache sizes. For the very small size category, we
observe LRU being significantly better than FIFO, this is
because for workloads with temporal locality, promoting re-
cently accessed objects becomes crucial at very small cache
sizes. In production, most of the caches are running at cache
sizes larger than or close to the large category. We believe
that for most in-memory caching workloads, FIFO and LRU
have a similar performance at reasonably large cache sizes.

The fact that FIFO and LRU often exhibit similar perfor-
mance in production-like settings is important because using
LRU usually incurs extra computational and memory over-
head compared to FIFO [55, 56]. For example, implementing
LRU in Memcached requires extra metadata and locks, some
of which can be removed if FIFO is used.

7 Implications
In this section, we show how our observations differ from

previous work, and what the takeaways are for informing
future in-memory caching research.

7.1 Write-heavy Caches
Although 70% of the top twenty Twemcache clusters serve

read-heavy workloads (Section 4.3.2), write-heavy workloads

are also common for in-memory caching. This is not unique to
Twitter. Previous work [24] from Facebook also pointed out
the existence of write-heavy workloads, although the preva-
lence of them were not discussed due to the limited number
of workloads. Furthermore, write-heavy workloads are ex-
pected to increase in prominence as the use case of caching
for computation increases (Section 2.4.2). However, most of
the existing systems, optimizations and research assume a
read-heavy workload.

Write-heavy workloads in caching systems usually have
lower throughput and higher latency, because the write path
usually involves more work and can trigger more expensive
events such as eviction. In Twitter’s production, we observe
that serving write-heavy workloads tend to have higher tail
latencies. Scaling writes with many threads tends to be more
challenging as well. In addition, as discussed in Section 5,
write-heavy workloads have shorter TTLs with less skewed
popularity, which are in sharp contrast to read-heavy work-
loads. This calls for future research on designing systems
and solutions that consider performance on write-heavy work-
loads.

7.2 Short TTLs
In Section 4.4.1, we show that in-memory caching work-

loads frequently use short TTLs, and the usage of short TTLs
reduces the effective working set size. Therefore, removing
expired objects from the cache is far more important than
evictions in some cases. In this section, we show that existing
techniques for proactively removing expired objects (termed
proactive expiration) are not sufficient. This calls for future
work on better proactive expiration designs for in-memory
caching systems.

Transient object cache An approach employed for proac-
tive expiration (especially for handling short TTLs), proposed
in the context of in-memory caches at Facebook [59], is to
use a separate memory pool (called transient object pool) to
store short-lived objects. The transient object cache consists
of a circular buffer of size t with the element at index i being a
linked list storing objects expiring after i seconds. Every sec-
ond, all objects in the first linked list expire and are removed
from the cache, then all other linked lists advance by one.

This approach is effective only when the cache user uses a
mix of very short and long TTLs with the short TTL usually
in the range of seconds. Since objects in the transient pool
are never evicted before expiration, the size of transient pool
can grow unbounded and cause objects in the normal pool to
be evicted . In addition, the TTL threshold of admitting into
transient object pool is non-trivial to optimize.

As we show in Figure 6b, 20% of the Twemcache work-
loads use a single TTL. For these workloads, transient object
pool does not apply. For the workloads using multiple TTLs,
we observe that fewer than 35% have their smallest TTL
shorter than 300 seconds, and over 25% of caches have the
smallest TTL longer than 6 hours (Figure 6c). This indicates

202 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

that the idea of transient object cache is not applicable to a
large fraction of Twemcache clusters.

Background crawler Another approach for proactive ex-
piration, which is employed in Memcached, is to use a back-
ground crawler that proactively removes expired objects by
scanning all stored objects.

Using a background crawler is effective when TTLs used
in the cache do not have a broad range. While scanning is
effective, it is not efficient. If the cache scans all the objects
every Tpass, an object of TTL t can be scanned up to 1+d t

Tpass
e

times before removal, and can overstay in the system by up
to Tpass. The cache operator therefore has to make a tradeoff
between wasted space and the additional CPU cycles and
memory bandwidth needed for scanning. This tradeoff gets
harder if a cache has a wide TTL range, which is common
as observed in Section 4.4. While the Twemcache workloads
are single tenant, wide TTL range issue would be further
exacerbated for multi-tenant caches.

Figure 6d shows that TTLs used within each workload have
a wide range. Close to 60% of workloads have the maximum
TTL more than twice as long as the minimum, and 25% of
workloads show a ratio at or above 100. This indicates that
for the 25% of caches, if we want to ensure all objects are
removed within 2× their TTLs, objects with the longest TTL
will be scanned 100 times before expiration.

The combination of transient object cache with background
crawler could extend the coverage of workloads that can be
efficiently expired. However, the tradeoff between wasted
space and the additional CPU cycles and memory bandwidth
consumed for scanning would still remain. Hence, future inno-
vation is necessary to fundamentally address use cases where
TTLs exhibit a broad range.

7.3 Highly Skewed Object Popularity

Our work shows that the object popularity of in-memory
caching can be far more skewed than previously shown [19],
or compared to studies on web proxy workloads [29] and
CDN workloads [47]. We suspect this has a lot to do with the
nature of Twitter’s product, which puts great emphasis on the
timeliness of its content. It remains to be seen whether this is
a widespread pattern or trend. Cache workloads are also more
skewed compared to NoSQL database such as RocksDB [38],
which is not surprising because database traffic is often al-
ready filtered by caches, and has the most skewed portion
removed via cache hits. In other words, in-memory caching
and NoSQL database often observe different traffic even for
the same application. Besides these two reasons, sampling
sometimes results in bias in the popularity modelling, and we
avoid this by collecting unsampled traces. Our observation
that the workloads still follow Zipfian distribution with large
alpha value emphasizes the importance of addressing load
imbalance [44, 57, 61].

7.4 Object Size
Similar to previously reported [24], we observe that objects

cached in in-memory caching are often tiny (Section 4.6). As
a result, in-memory caches are not always bound by memory
size; instead, close to 20% of the Twemcache clusters are
CPU-bound.

On the other hand, small objects signifies the relative large
overhead of metadata. Memcached stores 56-byte with each
object, and Twitter’s current production cache uses 38-byte
metadata with each object. Reducing object metadata further
can yield substantial benefits for caching tiny objects.

In addition, we observe that compared to value size, the
key size can be large in some workloads. For 60% of the
workloads, the mean key size and mean value size are in
the same order of magnitude. This indicates that reducing
key size can be very important for these workloads. Many
workloads we observed have namespaces as part of the object
keys, such as NS1:NS2:...:id. This format is commonly
used to mirror the naming in a multi-tenant database, which is
also observed at Facebook [32]. Namespaces thus can occupy
large fractions of precious cache space while being highly
repetitive within a single cache cluster. However, there is no
known techniques to “compress” the keys. To encourage and
facilitate future research on this, we keep the original but
anonymized namespace in our open sourced traces.

Several recent works [26, 28] on reducing miss ratio (im-
proving memory efficiency) focused on improving eviction
algorithms and often add more metadata. Given our observa-
tions here, we would like to call more attention to the opti-
mization of cache metadata and object keys.

7.5 Dynamic Object Size Distribution
In Section 4.6.2, we show that the object size distribution

is not static, and the distribution shifts over time can cause
out-of-memory (OOM) exceptions for caching systems using
external allocators, or slab calcification for those using slab-
based memory management. In order to solve this problem,
one solution, employed by Facebook, is to migrate slabs be-
tween slab classes by balancing the age of the oldest items in
each class [59]. Earlier versions of Memcached approached
this problem by balancing the eviction rate of each slab class.
Since version 1.6.6, Memcached has also moved to using the
solution of balancing the age as mentioned above.

Besides efforts in production systems, slab assignment and
migration has also been a hot topic in recent research [31, 35,
36, 46]. However, to the best of our knowledge, the problem
has only been studied under a “semi-static” request sequence.
Specifically, the research so far assumes that the miss ratio
curve or some other properties of each slab class hold steady
for =certain amount of time, which often precludes periodic
and sudden changes in object size distribution.

In general, the temporal properties of object sizes in cache
are not well understood or quantified. As presented in Fig-
ure 11c and Figure 11d, it is not rare to see unexpected

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 203

changes in size distribution only lasting for a few hours. Some-
times it is hard to pinpoint the root cause of such changes.
Nonetheless, we believe that temporal changes related to
object size, whether recurring or as a one-off, usually have
drivers with roots beyond the time dimension. For example,
the tweet size drift throughout the day may very well depend
on the locales or geo-location of active users. Some caches
may be shared by datasets which differ in size distribution
and access cycles, resulting in different distributions dominat-
ing the access pattern at different instants of the day. In this
sense, studying the object size distribution over time could
very well provide deeper insights into characteristics of the
datasets being cached. Considering the increasing interest in
using machine learning and other statistical tools to study and
predict caching behavior, we think object size dynamics might
provide a good proxy to evaluate the relationship between
basic dataset attributes and their behavior in cache, allowing
caching systems to make smarter decisions over time.

8 Related Work
Due to the nature of this work, we have discussed related

works in detail throughout the paper.
Multiple caching and storage system traces were collected

and analyzed in the past [24, 25, 32, 47, 48, 59]; however,
only a limited number of reports focus on in-memory caching
workloads [24,48,59]. The closet work to our analysis is Face-
book’s Memcached workload analysis [24], which examined
five Memcached pools at Facebook. Similar to the observa-
tions in this work [24], we observe the sizes of objects stored
in Twemcache are small, and diurnal patterns are common
in multiple characteristics. After analyzing 153 Twemcache
clusters at Twitter, in addition to previous observations [24],
we show that write-heavy workloads are popular. Moreover,
we focus on several aspects of in-memory caching which have
not been studied to the best of our knowledge , including TTL
and cache dynamics. Although previous work [24] proposed
analytical models on the key size, value size, and inter-arrival
gap distribution, the models do not fully capture all the di-
mensions of production caching workloads such as changing
working set and dynamic object size distribution. Compared
to synthetic workload models, the collection of real-world
traces that we collected and open sourced provide a detailed
picture of various aspects of the workloads of production
in-memory caches. .

Besides workload analysis on Memcached, there have been
several workload analysis on web proxy [21–23, 49, 64] and
CDN caching [47, 67]. The photo caching and serving in-
frastructure at Facebook has been studied [47], with a focus
on the effect of layering in caching along with the relation-
ship between content popularity, age, and social-networking
metrics.

In addition to caching in web proxies and CDNs, the ef-
fectiveness of caching is often discussed in workload stud-
ies [25,60,66] of file systems. However, these works primarily

studied the cache to the extent that of its effectiveness in re-
ducing traffic to the storage system rather than on aspects
that affect the design of the cache itself. Besides, file system
caching is different from distributed in-memory caches due
to a variety of reasons. For example, file system caches usu-
ally stores objects of fixed-sized chunks (512 bytes, 4 KB
or larger), while in-memory caches store objects of a much
wider range (Section 4.6), and scan is common in file systems,
while rare in in-memory caches.

Because of the similarities in the interface, in-memory
caching is sometimes discussed together with key-value
databases. Three different RocksDB workloads [32] at Face-
book has been studied in depth, with a focus on the distribu-
tion of key and value sizes, locality, and diurnal patterns in
different metrics. Although Twemcache and RocksDB have
a similar key-value interface, they are fundamentally differ-
ent because of their design and usage. RocksDB stores data
for persistence, while Twemcache stores data to provide low
latency and high throughput without persistence. In addition,
compared to RocksDB, TTL and evictions are unique to in-
memory caching.

9 Conclusion
We studied the workloads of 153 in-memory cache

clusters at Twitter and discovered five important facts
about in-memory caching. First, although read-heavy
workloads account for more than half of the resource
usages, write-heavy workloads are also common. Second,
in-memory caching clients often use short TTLs, which
limits the effective working set size. Thus, removing expired
objects needs to be prioritized before evictions. Third,
read-heavy in-memory caching workloads follow Zipfian
popularity distribution with a large skew. Fourth, the object
size distributions of most workloads are not static. Instead,
it changes over time with both diurnal patterns and sudden
changes, highlighting the importance of slab migration
for slab-based in-memory caching systems. Last, for a
significant number of workloads, FIFO has similar or lower
miss ratio performance as LRU for in-memory caching
workloads. We have open sourced the traces collected at
https://github.com/twitter/cache-trace.

Acknowledgements We thank our shepherd Andrea Arpaci-
Dusseau and the anonymous reviewers for their valuable feed-
back. We thank our colleagues Jack Kosaian and Rebecca
Isaacs for their extensive reviews and comments that improved
this work. We also want to thank the Cache team and IOP
team at Twitter for their support in collecting and analyzing
the traces, and Daniel Berger for his comments in the early
stage of the project. Moreover, we thank CloudLab [40] in
helping us process the open-sourced traces, and Geoff Kuen-
ning from SNIA in helping hosting and sharing the traces.
This work was supported in part by NSF grants CNS 1901410
and CNS 1956271.

204 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/twitter/cache-trace

References
[1] Anonymized twitter production cache traces. https:

//github.com/twitter/cache-trace.

[2] Apache aurora. http://aurora.apache.org/. Ac-
cessed: 2020-05-06.

[3] Apache mesos. http://mesos.apache.org/. Ac-
cessed: 2020-05-06.

[4] Apache traffic server. https://trafficserver.
apache.org/. Accessed: 2020-05-06.

[5] Art. 17 gdpr right to erasure (‘right to be forgotten’).
https://gdpr-info.eu/art-17-gdpr/. Accessed:
2020-05-06.

[6] Caching with twemcache. https://blog.
twitter.com/engineering/en_us/a/2012/
caching-with-twemcache.html. Accessed:
2020-10-10.

[7] database caching strategy using redis. https:
//d0.awsstatic.com/whitepapers/Database/
database-caching-strategies-using-redis.
pdf. Accessed: 2020-05-06.

[8] Decomposing twitter: Adventures in service-
oriented architecture. https://www.infoq.com/
presentations/twitter-soa/. Accessed: 2020-09-
25.

[9] Do not join lru and slab maintainer threads if they
do not exist. https://github.com/memcached/
memcached/pull/686. Accessed: 2020-08-06.

[10] Enhance slab reallocation for burst of evictions. https:
//github.com/memcached/memcached/pull/695.
Accessed: 2020-08-06.

[11] Experiencing slab ooms after one week of uptime.
https://github.com/memcached/memcached/
issues/689. Accessed: 2020-08-06.

[12] How to interpret r-squared and goodness-of-fit in regres-
sion analysis. https://www.datasciencecentral.
com/profiles/blogs/regression-analysis-\
how-do-i-interpret-r-squared-and-assess-the.
Accessed: 2020-09-28.

[13] jemalloc. http://jemalloc.net/. Accessed: 2020-
05-06.

[14] memcached - a distributed memory object caching sys-
tem. http://memcached.org/. Accessed: 2020-05-
06.

[15] Paper review: Memc3. https://memcached.org/
blog/paper-review-memc3/. Accessed: 2020-05-06.

[16] Redis. http://redis.io/. Accessed: 2020-05-06.

[17] slab auto-mover anti-favours slab 2. https://github.
com/memcached/memcached/issues/677. Accessed:
2020-08-06.

[18] Varnish cache. https://varnish-cache.org/. Ac-
cessed: 2020-05-06.

[19] The cachelib caching engine: Design and experiences
at scale. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), Banff,
Alberta, November 2020. USENIX Association.

[20] Mehmet Altinel, Christof Bornhoevd, Chandrasekaran
Mohan, Mir Hamid Pirahesh, Berthold Reinwald, and
Saileshwar Krishnamurthy. System and method for adap-
tive database caching, July 1 2008. US Patent 7,395,258.

[21] Martin Arlitt, Rich Friedrich, and Tai Jin. Workload
characterization of a web proxy in a cable modem envi-
ronment. ACM SIGMETRICS Performance Evaluation
Review, 27(2):25–36, 1999.

[22] Martin Arlitt and Tai Jin. A workload characterization
study of the 1998 world cup web site. IEEE network,
14(3):30–37, 2000.

[23] Martin F Arlitt and Carey L Williamson. Internet web
servers: Workload characterization and performance im-
plications. IEEE/ACM Transactions on networking,
5(5):631–645, 1997.

[24] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international con-
ference on Measurement and Modeling of Computer
Systems, pages 53–64, 2012.

[25] Mary G Baker, John H Hartman, Michael D Kupfer,
Ken W Shirriff, and John K Ousterhout. Measurements
of a distributed file system. In Proceedings of the thir-
teenth ACM symposium on Operating systems princi-
ples, pages 198–212, 1991.

[26] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. Lhd
: Improving cache hit rate by maximizing hit density. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 389–403, 2018.

[27] Nathan Beckmann and Daniel Sanchez. Talus: A simple
way to remove cliffs in cache performance. In 2015
IEEE 21st International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 64–75.
IEEE, 2015.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 205

https://github.com/twitter/cache-trace
https://github.com/twitter/cache-trace
http://aurora.apache.org/
http://mesos.apache.org/
https://trafficserver.apache.org/
https://trafficserver.apache.org/
https://gdpr-info.eu/art-17-gdpr/
https://blog.twitter.com/engineering/en_us/a/2012/caching-with-twemcache.html
https://blog.twitter.com/engineering/en_us/a/2012/caching-with-twemcache.html
https://blog.twitter.com/engineering/en_us/a/2012/caching-with-twemcache.html
https://d0.awsstatic.com/whitepapers/Database/database-caching-strategies-using-redis.pdf
https://d0.awsstatic.com/whitepapers/Database/database-caching-strategies-using-redis.pdf
https://d0.awsstatic.com/whitepapers/Database/database-caching-strategies-using-redis.pdf
https://d0.awsstatic.com/whitepapers/Database/database-caching-strategies-using-redis.pdf
https://www.infoq.com/presentations/twitter-soa/
https://www.infoq.com/presentations/twitter-soa/
https://github.com/memcached/memcached/pull/686
https://github.com/memcached/memcached/pull/686
https://github.com/memcached/memcached/pull/695
https://github.com/memcached/memcached/pull/695
https://github.com/memcached/memcached/issues/689
https://github.com/memcached/memcached/issues/689
https://www.datasciencecentral.com/profiles/blogs/regression-analysis-\ how-do-i-interpret-r-squared-and-assess-the
https://www.datasciencecentral.com/profiles/blogs/regression-analysis-\ how-do-i-interpret-r-squared-and-assess-the
https://www.datasciencecentral.com/profiles/blogs/regression-analysis-\ how-do-i-interpret-r-squared-and-assess-the
http://jemalloc.net/
http://memcached.org/
https://memcached.org/blog/paper-review-memc3/
https://memcached.org/blog/paper-review-memc3/
http://redis.io/
https://github.com/memcached/memcached/issues/677
https://github.com/memcached/memcached/issues/677
https://varnish-cache.org/

[28] Aaron Blankstein, Siddhartha Sen, and Michael J Freed-
man. Hyperbolic caching: Flexible caching for web
applications. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), pages 499–511, 2017.

[29] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott
Shenker. Web caching and zipf-like distributions: Ev-
idence and implications. In IEEE INFOCOM’99, vol-
ume 1, pages 126–134. IEEE, 1999.

[30] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, et al. Tao: Face-
book’s distributed data store for the social graph. In
Presented as part of the 2013 USENIX Annual Techni-
cal Conference (USENIX ATC 13), pages 49–60, 2013.

[31] Daniel Byrne, Nilufer Onder, and Zhenlin Wang. Faster
slab reassignment in memcached. In Proceedings of the
International Symposium on Memory Systems, pages
353–362, 2019.

[32] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC
Du. Characterizing, modeling, and benchmarking
rocksdb key-value workloads at facebook. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 209–223, 2020.

[33] Jiqiang Chen, Liang Chen, Sheng Wang, Guoyun Zhu,
Yuanyuan Sun, Huan Liu, and Feifei Li. Hotring: A
hotspot-aware in-memory key-value store. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 239–252, Santa Clara, CA, February
2020. USENIX Association.

[34] Yue Cheng, Aayush Gupta, and Ali R. Butt. An in-
memory object caching framework with adaptive load
balancing. In Proceedings of the Tenth European Con-
ference on Computer Systems, EuroSys ’15, New York,
NY, USA, 2015. Association for Computing Machinery.

[35] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Dynacache: Dynamic cloud caching. In
7th USENIX Workshop on Hot Topics in Cloud Comput-
ing (HotCloud 15), 2015.

[36] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Cliffhanger: Scaling performance cliffs in
web memory caches. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
16), pages 379–392, 2016.

[37] Asaf Cidon, Daniel Rushton, Stephen M Rumble, and
Ryan Stutsman. Memshare: a dynamic multi-tenant
key-value cache. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 321–334, 2017.

[38] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,
2010.

[39] Diego Didona and Willy Zwaenepoel. Size-aware shard-
ing for improving tail latencies in in-memory key-value
stores. In 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 19), pages 79–
94, 2019.

[40] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and
operation of cloudlab. In Proceedings of the USENIX
Annual Technical Conference (ATC), jul 2019.

[41] Gil Einziger, Roy Friedman, and Ben Manes. Tinylfu:
A highly efficient cache admission policy. ACM Trans-
actions on Storage (ToS), 13(4):1–31, 2017.

[42] Assaf Eisenman, Asaf Cidon, Evgenya Pergament,
Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,
and Sachin Katti. Flashield: a hybrid key-value cache
that controls flash write amplification. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 65–78, 2019.

[43] Bin Fan, David G Andersen, and Michael Kamin-
sky. Memc3: Compact and concurrent memcache with
dumber caching and smarter hashing. In Presented as
part of the 10th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 13), pages 371–
384, 2013.

[44] Bin Fan, Hyeontaek Lim, David G Andersen, and
Michael Kaminsky. Small cache, big effect: Provable
load balancing for randomly partitioned cluster services.
In Proceedings of the 2nd ACM Symposium on Cloud
Computing, pages 1–12, 2011.

[45] Wolfram Gloger. ptmalloc. http://www.malloc.de/
en/. Accessed: 2020-05-06.

[46] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Ying-
wei Luo, Chen Ding, Song Jiang, and Zhenlin Wang.
Lama: Optimized locality-aware memory allocation for
key-value cache. In 2015 USENIX Annual Technical
Conference (USENIX ATC 15), pages 57–69, 2015.

[47] Qi Huang, Ken Birman, Robbert Van Renesse, Wyatt
Lloyd, Sanjeev Kumar, and Harry C Li. An analysis of

206 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.malloc.de/en/
http://www.malloc.de/en/

facebook photo caching. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Princi-
ples, pages 167–181, 2013.

[48] Qi Huang, Helga Gudmundsdottir, Ymir Vigfusson,
Daniel A Freedman, Ken Birman, and Robbert van Re-
nesse. Characterizing load imbalance in real-world
networked caches. In Proceedings of the 13th ACM
Workshop on Hot Topics in Networks, pages 1–7, 2014.

[49] Sunghwan Ihm and Vivek S Pai. Towards understand-
ing modern web traffic. In Proceedings of the 2011
ACM SIGCOMM conference on Internet measurement
conference, pages 295–312, 2011.

[50] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, pages 121–136,
2017.

[51] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert
Morris. Dns performance and the effectiveness of
caching. In Proceedings of the 1st ACM SIGCOMM
Workshop on Internet Measurement, pages 153–167,
2001.

[52] Ankita Kejriwal, Arjun Gopalan, Ashish Gupta, Zhihao
Jia, Stephen Yang, and John Ousterhout. Slik : Scal-
able low-latency indexes for a key-value store. In 2016
USENIX Annual Technical Conference (USENIX ATC
16), pages 57–70, 2016.

[53] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and
Lintao Zhang. Kv-direct: High-performance in-memory
key-value store with programmable nic. In Proceedings
of the 26th Symposium on Operating Systems Principles,
pages 137–152, 2017.

[54] Conglong Li and Alan L Cox. Gd-wheel: a cost-aware
replacement policy for key-value stores. In Proceedings
of the Tenth European Conference on Computer Systems,
pages 1–15, 2015.

[55] Sheng Li, Hyeontaek Lim, Victor W Lee, Jung Ho Ahn,
Anuj Kalia, Michael Kaminsky, David G Andersen,
O Seongil, Sukhan Lee, and Pradeep Dubey. Architect-
ing to achieve a billion requests per second throughput
on a single key-value store server platform. In Proceed-
ings of the 42nd Annual International Symposium on
Computer Architecture, pages 476–488, 2015.

[56] Hyeontaek Lim, Dongsu Han, David G Andersen, and
Michael Kaminsky. Mica : A holistic approach to fast

in-memory key-value storage. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), pages 429–444, 2014.

[57] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion
Stoica. Distcache: Provable load balancing for large-
scale storage systems with distributed caching. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), pages 143–157, 2019.

[58] Qiong Luo, Sailesh Krishnamurthy, C Mohan, Hamid
Pirahesh, Honguk Woo, Bruce G Lindsay, and Jeffrey F
Naughton. Middle-tier database caching for e-business.
In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 600–611,
2002.

[59] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In Presented as part of the 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), pages 385–398, 2013.

[60] John K Ousterhout, Herve Da Costa, David Harrison,
John A Kunze, Mike Kupfer, and James G Thompson. A
trace-driven analysis of the unix 4.2 bsd file system. In
Proceedings of the tenth ACM symposium on Operating
systems principles, pages 15–24, 1985.

[61] K. V. Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion
Stoica, and Kannan Ramchandran. Ec-cache: Load-
balanced, low-latency cluster caching with online era-
sure coding. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages
401–417, Savannah, GA, November 2016. USENIX As-
sociation.

[62] Charles Reiss, Alexey Tumanov, Gregory R. Ganger,
Randy H. Katz, and Michael A. Kozuch. Heterogeneity
and dynamicity of clouds at scale: Google trace analysis.
In ACM Symposium on Cloud Computing (SoCC), San
Jose, CA, USA, October 2012.

[63] Charles Reiss, John Wilkes, and Joseph L. Hellerstein.
Google cluster-usage traces: format + schema. Technical
report, Google Inc., Mountain View, CA, USA, Novem-
ber 2011. Revised 2014-11-17 for version 2.1. Posted
at https://github.com/google/cluster-data.

[64] Weisong Shi, Randy Wright, Eli Collins, and Vijay
Karamcheti. Workload characterization of a person-
alized web site and its implications for dynamic con-
tent caching. In Proceedings of the 7th International
Workshop on Web Caching and Content Distribution
(WCW’02). Citeseer, 2002.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 207

https://github.com/google/cluster-data

[65] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar,
and Kai Li. Ripq : Advanced photo caching on flash
for facebook. In 13th USENIX Conference on File and
Storage Technologies (FAST 15), pages 373–386, 2015.

[66] Werner Vogels. File system usage in windows nt 4.0.
ACM SIGOPS Operating Systems Review, 33(5):93–109,
1999.

[67] Patrick Wendell and Michael J Freedman. Going viral:
flash crowds in an open cdn. In Proceedings of the 2011
ACM SIGCOMM conference on Internet measurement
conference, pages 549–558, 2011.

[68] wikimedia. Analytics/data lake/traffic/caching.
https://wikitech.wikimedia.org/wiki/
Analytics/Data_Lake/Traffic/Caching. Ac-
cessed: 2020-05-06.

[69] Wikimedia. caching overview - wikitech.
https://wikitech.wikimedia.org/wiki/
Caching_overview. Accessed: 2020-05-06.

[70] John Wilkes. More Google cluster data. Google
research blog, November 2011. Posted at
http://googleresearch.blogspot.com/2011/
11/more-google-cluster-data.html.

[71] Juncheng Yang. libcachesim. https://github.com/
1a1a11a/libCacheSim. Accessed: 2020-09-28.

[72] Juncheng Yang, Reza Karimi, Trausti Sæmundsson,
Avani Wildani, and Ymir Vigfusson. Mithril: mining
sporadic associations for cache prefetching. In Proceed-
ings of the 2017 Symposium on Cloud Computing, pages
66–79, 2017.

208 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://wikitech.wikimedia.org/wiki/Analytics/Data_Lake/Traffic/Caching
https://wikitech.wikimedia.org/wiki/Analytics/Data_Lake/Traffic/Caching
https://wikitech.wikimedia.org/wiki/Caching_overview
https://wikitech.wikimedia.org/wiki/Caching_overview
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
https://github.com/1a1a11a/libCacheSim
https://github.com/1a1a11a/libCacheSim

Generalized Sub-Query Fusion for Eliminating Redundant I/O
from Big-Data Queries

Partho Sarthi, Kaushik Rajan, Akash Lal
Microsoft Research India

Abhishek Modi, Prakhar Jain, Mo Liu, Ashit Gosalia
Microsoft

Saurabh Kalikar∗

Intel

Abstract
SQL is the de-facto language for big-data analytics. Despite
the cost of distributed SQL execution being dominated by
disk and network I/O, we find that state-of-the-art optimizers
produce plans that are not I/O optimal. For a significant frac-
tion of queries (25% of popular benchmarks like TPCDS), a
large amount of data is shuffled redundantly between different
pairs of stages. The fundamental reason for this limitation
is that optimizers do not have the right set of primitives to
perform reasoning at the map-reduce level that can potentially
identify and eliminate the redundant I/O.

This paper proposes RESIN, an optimizer extension that
adds first-class support for map-reduce reasoning. RESIN uses
a novel technique called Generalized Sub-Query Fusion that
identifies sub-queries computing on overlapping data, and
fuses them into the same map-reduce stages. The analysis
is general; it does not require that the sub-queries be syntac-
tically the same, nor are they required to produce the same
output. Sub-query fusion allows RESIN to sometimes also
eliminate expensive binary operations like Joins and Unions
altogether for further gains.

We have integrated RESIN into SPARKSQL and evaluated
it on TPCDS, a standard analytics benchmark suite. Our re-
sults demonstrate that the proposed optimizations apply to
40% of the queries and speed up a large fraction of them by
1.1−6×, reducing the overall execution time of the bench-
mark suite by 12%.

1 Introduction

SQL is the de-facto language for performing big-data analyt-
ics. As there are many alternative ways to express the same
query in SQL, query optimizers employ SQL-to-SQL rewrite
rules to find equivalent queries that are likely to run faster.
The rewritten query is compiled down to an executable plan
that consists of many map or reduce stages. Each stage in the
plan then runs in a data-parallel manner on many machines.

∗Work was done while the author was at Microsoft

Data is materialized to disk at the end of each stage and trans-
ferred between stages using an all-to-all network shuffle (also
referred to as an exchange). In practice, shuffles that involve
very large amount of data require multiple rounds of I/O in
order to incrementally aggregate data [15,27]. It is not surpris-
ing therefore, that the cost of running a query is dominated
by disk and network I/O [15].

Despite the bottleneck on I/O, we find that state-of-the-art
query optimizers [4, 5, 18, 21, 22] produce execution plans
that read or shuffle the same data redundantly multiple times.
In fact, on a standard benchmark like TPCDS, the SPARK
query optimizer produces plans where 40% of queries incur
redundant I/O (Section 6). A large fraction of these spend
at-least half their time in stages with redundant I/O.

A standard big-data query optimizer (Figure 1) performs
query optimization using a sequence of tree-rewrite rules. It
applies logical rules to substitute operator trees with equiva-
lent trees. Then it uses implementation strategies (also called
physical rules) to transform an optimized operator tree into a
tree of physical operators. Each physical operator has a pre-
defined map-reduce implementation. As shown in the figure,
a standard optimizer only performs SQL-to-SQL rewrite rules
at the logical level and the physical operators just provide
data-parallel implementations of SQL operators.

Performing optimization at the SQL level is not optimal for
a runtime that can execute arbitrary data-parallel operators.
A previous system called BLITZ [10, 19] shows evidence of
this opportunity for further optimization. BLITZ [19] uses
program synthesis to identify single-input single-output sub-
queries that can be implemented by a single imperative map-
reduce program. Through program synthesis, it finds map-
reduce implementations of queries where a query optimizer
produces inefficient execution plans. Subsequent work [10]
added some of the newly discovered operators (referred to as
super-operators) back into the optimizer along with rewrite-
rules that target them. They showed that queries that use a
super-operator can run up to 2× faster.

A key limitation of BLITZ, however, is that it only optimizes
single-input sub-queries, and further it only targets optimiza-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 209

Logical
rewrites

Physical
rewrites,
codegen

Execution
Plan

SQL

Implementations
of RESIN

operators

SQL+MR→SQL+MR
Rewrites, global

fusion transforms

RESIN
exchange

reuse

RESIN

SQL → SQL rewrite,
Local tree

transforms

MR
implementations
of SQL operators

+ unary SQL →
super-operator

rewrites

+implementations
of super-operators

Exchange
addition, Exact
exchange reuse

Standard
optimizer

Prior work:
BLITZ

Figure 1: Key components of a big-data query optimizer.
RESIN performs map-reduce reasoning starting at the logical
level, when prior work only considers it late in the process.

tions that produce a single map-reduce program. The logical
rewrite rules in BLITZ (as in a standard optimizer) only make
local transformations. They substitute a connected set of oper-
ators with a single super-operator. As a result, BLITZ can only
eliminate redundant I/O from specific types of sub-queries
with self-joins or self-unions. This turned out to be insufficient
on a standard benchmark suite like TPCDS where BLITZ only
applies to a small fraction (2%) of queries.

This paper introduces RESIN, an optimizer extension that
eliminates redundant I/O from complex multi-stage multi-
input queries. This fundamentally requires new techniques.
As shown in Figure 1, RESIN performs map-reduce reasoning
right from the beginning. It introduces two generic logical
operators, a parameterized mapper (RESINMAP) and a pa-
rameterized reducer (RESINREDUCE) that are each capable
of implementing complex sub-queries. RESIN introduces new
rules that fuse operators from different parts of the query
tree that are processing overlapping sets of data. The fusion
relies on the additional expressiveness of RESINMAP and
RESINREDUCE. The fusion further enables the elimination of
binary operators from the query. Binary operators are particu-
larly expensive as they typically induce multiple shuffles [10].
Compared to BLITZ, we significantly broaden the optimiza-
tion opportunities: RESIN applies to 38% of TPCDS.

We integrated RESIN with SPARK [5, 26], a popular open-
source big-data system, and evaluated on the entire TPCDS
suite. Our results demonstrate that RESIN optimizations apply
to 40 of the 104 queries in the suite, and speed up 25% of the
queries by a significant fraction (average 1.4×). RESIN brings
down the cumulative execution time for the entire benchmark
suite by 12%.

The rest of the paper is organized as follows. Section 2
gives an overview of optimizations performed by RESIN. Sec-
tion 3 formally defines the query language and introduces
RESIN operators. Section 4 describes the core optimizations,
sub-query fusion and binary operator elimination. Section 5
presents some key features of our implementation. Section 6
reports our evaluation and Section 7 discusses related work.

2 Overview

This section provides an overview of RESIN. Consider a
(fictitious) IoT application that collects readings from multiple
sensors deployed all over the world and derives intelligence
from it through SQL queries. Each device emits a single
message every few hours with two readings corresponding
to two different times. The message has the following fields,
〈id,hr1,signal1,hr2,signal2〉 where id is the device identifier,
hr1 is the hour at which the first reading was taken, signal1
is the value of the first reading. Similarly, hr2 and signal2
are the hour and value of the second reading. The collective
log, which can reach Billions of entries across all devices,
is processed once a month using SQL queries. We describe
RESIN optimizations on two example queries.

Example 1 The query is shown in Figure 2(a)1. The
query separates the subset of columns 〈id,hr1,signal1〉 and
〈id,hr2,signal2〉 of each row of the rawLogs table to get in-
termediate tables V 1 and V 2, and then performs a Union to
put them together. The Union operator performs a multi-set
union, i.e., it does not remove duplicate rows from the output.
(In general, all our queries operate with multi-set semantics.)
Each of V 1 and V 2 additionally requires a filter to check for
the validity of the input (hr fields are in the expected ranges
and the signal fields are valid). Figure 2(b) shows a small
input table with 5 rows and the result of executing the query
on that input. Each of V 1 and V 2 will contain 4 rows each and
the final output signals has 8 rows. For a production-sized
execution, imagine scaling each table by a factor of a Billion.

Figure 2(c) shows the execution plan for this query gener-
ated by SPARK. The plan employs duplicate scan operators,
thus, it reads the same input twice. Even if there is an index
on the input (in fact, we are going to assume a perfect in-
dex that can filter out irrelevant rows), many rows (R2,R3,R5)
would still be read twice (because they are needed for both V 1
and V 2) and processed independently. Unfortunately, SQL’s
relational operators provide no better way of expressing the
query because there is no way to produce multiple output
rows for each input row, other than by using a Union operator
as in this example. When the inputs to the Union have a com-
mon source, the binary operator induces redundant I/O. This
example shows a case where input data is read redundantly,
however in general a Union could induce redundant shuffles
as well.

There is a better way to implement the query directly using
map-reduce operators. Consider the mapper shown in Fig-
ure 3. It reads and processes each input row once, producing
up to two output rows per input row. The mapper applies the
filters (Line 4 and Line 7) one after the other and outputs
the relevant columns. (We operate in the standard multi-set

1We show queries as a sequence of statements for the ease of illustration.
They could have instead be written as a single nested query; our optimizations
still apply in the same manner.

210 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

V1 = SELECT 𝑖𝑑, ℎ𝑟 ← ℎ𝑟1,
𝑠𝑖𝑔𝑛𝑎𝑙 ← 𝑠𝑖𝑔𝑛𝑎𝑙1

FROM rawLogs
WHERE ℎ𝑟1 ≥ 0 ∧ ℎ𝑟1 <

24 ∧ 𝑠𝑖𝑔𝑛𝑎𝑙1 ≥ 0

signals = SELECT * FROM V1
UNION ALL

SELECT * FROM V2

Id hr1 Signal1 hr2 Signal2

d1 -1 v1 13 v2

d2 3 v3 15 v4

d1 6 v5 16 v6

d2 9 v7 23 -1

d3 1 v9 18 v10

ra
w

Lo
gs

Union

Project

Id hr Signal

d1 13 v2

d2 15 v4

d1 16 v6

d3 18 v10

Id Hr Signal

d2 3 v3

d1 6 v5

d2 9 v7

d3 1 v9

V1

V2

Si
gn

al
s

rawLogs : (𝑖𝑑, ℎ𝑟1, 𝑠𝑖𝑔𝑛𝑎𝑙1, ℎ𝑟2, 𝑠𝑖𝑔𝑛𝑎𝑙2)

V2 = SELECT 𝑖𝑑, ℎ𝑟 ← ℎ𝑟2,
𝑠𝑖𝑔𝑛𝑎𝑙 ← 𝑠𝑖𝑔𝑛𝑎𝑙2

FROM rawLogs
WHERE ℎ𝑟2 ≥ 0 ∧ ℎ𝑟2 <

24 ∧ 𝑠𝑖𝑔𝑛𝑎𝑙2 ≥ 0 𝑅1, 𝑹𝟐, 𝑹𝟑, 𝑹𝟓

ResinMap[
/*1*/{Filter(ℎ𝑟1 ≥ 0 ∧ ℎ𝑟1 < 24 ∧
𝑠𝑖𝑔𝑛𝑎𝑙1 ≥ 0)), Cols(id, ℎ𝑟 ← ℎ𝑟1,

𝑠𝑖𝑔𝑛𝑎𝑙 ← 𝑠𝑖𝑔𝑛𝑎𝑙1)},
/*2*/{Filter(ℎ𝑟2 ≥ 0 ∧ ℎ𝑟2 < 24 ∧
𝑠𝑖𝑔𝑛𝑎𝑙2 ≥ 0), Cols(id, ℎ𝑟 ← ℎ𝑟2,

𝑠𝑖𝑔𝑛𝑎𝑙 ← 𝑠𝑖𝑔𝑛𝑎𝑙2)}

(a) SQL Query (b) Input-output example
(c) Standard
execution plan

(d) Optimized
execution plan

signals

signals

𝑅1
𝑅2
𝑅3
𝑅4
𝑅5

𝑹𝟐, 𝑹𝟑, 𝑅4, 𝑹𝟓

Index
scan

rawLogs

Index
scan

rawLogs

Filter
Project
Filter

Index
scan

rawLogs

Figure 2: A SQL query, example input-outputs, execution plan showing redundant I/O and an optimized plan produced by RESIN.

1 //Mapper m processes a partition rawlogs[m]
2 method exampleResinMap(m){
3 foreach 〈id,hr1,signal1,hr2,signal2〉 ∈ rawLogs[m] {
4 if (hr1 ≥ 0∧hr1 < 24∧ signal1 ≥ 0) {
5 hr = hr1;signal = signal1; output(id,hr,signal);
6 }
7 if (hr2 ≥ 0∧hr2 < 24∧ signal2 ≥ 0) {
8 hr = hr2;signal = signal2; output(id,hr,signal);
9 } } }

Figure 3: A mapper that implements the query Figure 2.

semantics of SQL, so the order of rows in an output table is
immaterial.) The mapper is sufficient to implement our exam-
ple query. The reason current optimizers do not consider this
option is that they do not reason at the level of mappers (or
reducers) during optimization. They only reason about SQL
operators and perform SQL-to-SQL query rewrites.

RESIN extends the optimizer with a generic map operator
RESINMAP and a generic reduce operator RESINREDUCE
(used in the next example). RESINMAP is a row-wise operator
that may produce zero or more output rows for each input
row. The generated plan with RESIN for our example query
is shown in Figure 2(d). The plan uses a RESINMAP operator.
(The code generated for this operator is essentially the one in
Figure 3.) RESINMAP consists of multiple entries (two in the
example, marked 1 and 2 in the Figure), each with a filter and
associated expressions to produce output. The RESINMAP
operator is quite powerful. It can implement any single-input
single-output sub-query containing arbitrary combinations of
Select, Project and Union operators.

Example 2 As a second example, consider the more com-
plex query shown in Figure 4. The query has two inputs, the
signals table, which comes from the output of the previous ex-
ample, and another table called dInfo that has device-specific

J1 = SELECT 𝑐𝑖𝑡𝑦, 𝑠𝑖𝑔𝑛𝑎𝑙
FROM rawLogs JOIN dInfo

ON 𝑖𝑑 = 𝑑𝑖𝑑
WHERE ℎ𝑡 ≤ 2 ∧ ℎ𝑟 ≥

5 ∧ ℎ𝑟 ≤ 19

Id hr Signal

d2 3 v3
d1 13 v5
. . .

d1 23 v6
d3 17 v10

Si
gn

al
s

signals :
(𝑖𝑑, ℎ𝑟, 𝑠𝑖𝑔𝑛𝑎𝑙)

J2 = SELECT 𝑐𝑖𝑡𝑦, 𝑠𝑖𝑔𝑛𝑎𝑙
FROM rawLogs JOIN dInfo

ON 𝑖𝑑 = 𝑑𝑖𝑑
WHERE ℎ𝑡 ≥ 11 ∧ (ℎ𝑟 ≤

7 ∨ ℎ𝑟 ≥ 17)

(a) SQL Query

dInfo :
(𝑑𝑖𝑑 , 𝑐𝑖𝑡𝑦, ℎ𝑡, 𝑎𝑟𝑒𝑎)

Agg1 = SELECT 𝑐1 ← 𝑐𝑖𝑡𝑦,
𝑠1 ← 𝑚𝑎𝑥 𝑠𝑖𝑔𝑛𝑎𝑙

FROM J1
GROUP BY city

Agg2 = SELECT 𝑐2 ← 𝑐𝑖𝑡𝑦,
𝑠2 ← 𝑚𝑎𝑥 𝑠𝑖𝑔𝑛𝑎𝑙

FROM J2
GROUP BY city

summary = SELECT 𝑐1, 𝑠1, 𝑠2
FROM Agg1 JOIN Agg2

ON 𝑐1 = 𝑐2

id City ht
d1 a 1
d2 b 11
d3 a 18

c1 Id Signal

d1 a v5
d1 a v2
d1 a v6

c2 agg2

a Max(v9,v10)

b Max(v3)

c1 Agg1

a Max(v2,v5,v6)

d
In

fo

J1 J2

A
gg

1

A
gg

2

city Agg1 agg2

a Max(v2,v5,v6) Max(v9,v10)

su
m

m
ar

y

c2 Id Signal

d2 b v3
d3 a v9
d3 a v10

(b) Input-output example

Figure 4: A SQL query with an input-output example.

information. Each row of dInfo contains a device identifier
did , the city of deployment of the device, and the height ht
at which the device is installed. The query works as follows.
Its result is the Join of two intermediate tables Agg1 and
Agg2. The table Agg1 contains the maximum day-time read-
ing (5 ≤ hr ≤ 19) per city among all devices deployed at
ground level (ht ≤ 2). This itself requires a join on the signals
and dInfo tables. The table Agg2 similarly is the maximum
night-time (hr ≥ 17∨hr ≤ 7) reading for devices deployed at
a height above the ground level (ht ≥ 11).

A Join operator is parameterized by a predicate in the ON
clause. It takes all combinations of pairs of rows from its input
tables, concatenates them and filters according to the ON
condition. A common usage of Join is an Equi-Join, where
the ON clause equates the values of one (or more) columns
in the first argument table with one (or more) columns in the
second argument table. The query contains three equi-joins,
two on the device identifier (for J1 and J2) and one on the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 211

Figure 5: Query execution plans before and after RESIN optimization.

city (for the final output summary).
Aggregation happens via the GroupBy operator; it parti-

tions its input table on unique values of the grouping key
and performs an aggregation on each partition. It necessarily
produces only one output row per partition. For instance, the
computation of Agg1 partitions the table J1 on city, and for
each partition it computes the maximum signal value using
the aggregation max.

Figure 5 shows the execution plan generated by SPARK for
this query (solid lines indicate I/O). As before, there is an
index scan used each time the query references an input table.
The implementation of an equi-join requires its inputs to be
partitioned on equated columns, so shuffles are introduced
along both arguments for all of the joins. Standard predicate
push-down rules in a query optimizer will push the filters on
hr and ht below join and into the respective scans in order
to reduce the amount of data shuffled. Similarly, a GroupBy
requires that its inputs be partitioned by the grouping key. So
a shuffle is introduced before each GroupBy. In total, the plan
has 9 stages; four for scanning input tables (S1, S2, S3, S4),
three for the Join operators (S5, S6, S9), and a further two for
the GroupBy operators (S7, S8).

This plan has many sources of redundant I/O. First, some
rows of the signals table (e.g., with signal values v5 and v10)
are redundantly scanned. Note that the redundant scan hap-
pens despite having the best possible indices because some
rows can satisfy both the filters on hr. The scanned tables are
then partitioned on the same column (id) and shuffled to the
respective join operators (J1 and J2). A shuffle is a partition-
ing operator, it takes as input a partitioning key and a partition
count, and partitions the input rows according to the key. We
say two shuffle operators redundantly shuffle a row if (a) the
key column for the two shuffles has the same value, and (b)
all the columns of the row are derived from a common set

of source tables. For our example, the two rows correspond-
ing to v5 and v10, are redundantly shuffled before the join
because they come from the same input row in signals table.
Furthermore, as the left and right aggregates are computed
separately, the aggregated results for the same city (city a for
our example) are computed and shuffled redundantly.

Figure 5(b) is the optimized plan generated by RESIN. It
has only 4 stages, each table is scanned once and no redundant
shuffles. On a real dataset, a query with this structure (TPCDS
Q90 for example) would speedup by 2×.

RESIN eliminates redundant I/O through two key tech-
niques: sub-query fusion and binary operator elimination.
Sub-query fusion merges operators from different parts of
the query if they process the same data. More formally,
given two sub-queries Q1 and Q2, the fusion rule attempts
to construct a triple 〈Q,ResinMap1,ResinMap2〉 such that
Q1 = ResinMap1(Q) and Q2 = ResinMap2(Q).

For our example query, RESIN first merges the filters and
projects applied on each of the input tables. S1 and S2 is
merged into a single RESINMAP operator to obtain S112.
Similarly, S3 and S4 are merged into a single RESINMAP
operator S12. Notice that the filters are combined with a dis-
junction and projected columns are unioned, so that all of the
data required by the query is read in one go.

The fusion process then recursively moves up the tree and
the two joins (J1 and J2) are merged together into a single join
(J) that computes both the results. An additional RESINMAP
is added right after to ensure that only rows required by either
J1 or J2 are retained. A salient feature of the fusions rules
is that they ensure that the computation of the fused query
Q does not shuffle more rows than the individual queries.

2All the light shaded Filter, Project chains in Figure 5 actually repre-
sent RESINMAP. We do not show the RESINMAP explicitly, as we did in
Figure 2(d), for ease of exposition.

212 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 // ps ∈ partition(J, [city,signal,ht,hr]);
2 max1 = max2 = ∞;
3 rc1 = rc2 = 0;
4 foreach (〈city,signal,ht〉 in ps.group) {
5 if (hr ≤ 19∧hr ≥ 5∧ht ≤ 2 {
6 max1=max(max1 ,signal); rc1 = rc1 +1;
7 }
8 if ((hr ≥ 17∨hr ≤ 7)∧ht ≥ 11) {
9 max2=max(max2 ,signal); rc2 = rc2 +1;

10 }
11 }
12 output (city , max1 , max2 , rc1,rc2);

Figure 6: A reducer for the query plan in Figure 5.

Note once again that the output of the individual joins J1
and J2 can be separated out by applying appropriate filters
on J. The reader can verify that J1 = Select(hr ≤ 19∧hr ≥
5∧ht ≤ 2) from J and J2 = Select((hr≥ 17∨hr≤ 7)∧ht ≥
11) from J.

Finally, the two aggregations are fused together. Note that
the aggregates need to be applied on different filtered sub-
sets of J. It turns out that fusion of aggregation operations
cannot be done with standard SQL operators, neither with
RESINMAP alone. RESIN introduces a generic reduce op-
erator RESINREDUCE that makes the optimization process
much more expressive by directly considering map-reduce
plans. As seen in Figure 5, the two GroupBy are fused into
a RESINREDUCE operator. The RESINREDUCE operator is
parameterized by a (partition) key (in this case, city) and a list
with two entries. Each entry contains the filter that determines
a subset of rows to be aggregated as well as the aggregation
function. In addition, each entry has a count(∗) aggregation
for reasons described below.

Figure 6 shows the code that implements the reducer, ap-
plied to each partition of J (partitioned on city) independently.
The reducer maintains variables max1,max2,rc1,rc2 for com-
puting four aggregations. It then iterates over the partition,
and for each row, it updates the aggregation variable if the row
satisfies the corresponding predicate. The reducer outputs one
row per partition, with five columns: the grouping key city
and the four aggregated values.

The variables rc1 and rc2 are used to check if an aggre-
gation was even applied for a partition. This is necessary
to obtain back the output of the original GroupBys. For our
example, the output of the reducer3 will contain 2 rows cor-
responding to cities a and b, however for city = b, rc1 = 0,
indicating that Agg1 has no output for city = b.

Once the aggregations are fused, RESIN performs binary
operator elimination to get rid of the final Join (S7) altogether.
RESIN figures out that the join was doing nothing more than
putting together the aggregates from the two sub-queries,
which is already done in the output of the RESINREDUCE

3We have not shown the output of the fused query; its output is the union
of the original fused queries (with extra columns).

operator. RESIN replaces the Join with a simple filter that
ensures that a row is output only if both aggregates produce
an output, as is dictated by the semantics of a join.

In summary, RESIN introduces a class of optimizations that
target map-reduce operators to eliminate redundant I/O.

3 Preliminaries

We use a query language based on SPARKSQL [5] to present
our analysis formally. We define a table as a multi-set of rows
that each follow the same schema. A schema S is a set of pairs
of column name and data type: {〈a1, t1〉〈a2, t2〉 · · · ,〈an, tn〉}.
A row r that follows schema S is a tuple of form {a1 :
v1, · · · ,an : vn} that assigns a value vi of type ti to column
ai of the schema. In this case, we say r.ai = vi. We will not
explicitly refer to the data-types of columns in the rest of this
paper because it is not relevant to our analysis.

3.1 SQL Operators
This section defines the core SQL operators of our query lan-
guage. We assume a generic syntax for expressions that can be
evaluated over a row to produce a scalar data value. A predi-
cate is simply an expression that evaluates to a Boolean value.
Our implementation supports all SPARKSQL expressions and
predicates.

Select T2 = σ[φ](T1)

A Select operator discards rows of T1 that do not satisfy the
filter predicate φ.

Project T2 = π[map(ci← ei)](T1)

A Project is parameterized by a map of 〈ci,ei〉 pairs, where
ci is a column name and ei are expressions. Project is a row-
wise operator. It iterates over all the rows of the input table
T1 and for each row, it applies the expressions ei to compute
data values of output columns ci. Note that Project can be
used to create aliases of existing columns. For instance, the
operator π[cnew← cold] renames input column cold to the
output column cnew. We sometimes write this operator as
π[C← E] where C is a list of column names and E is a list
of expressions and ‖C‖= ‖E‖.

GroupBy T2 = γ[K,map(ci← aggi(coli))](T1)

A GroupBy partitions the input table T1 by unique val-
ues of columns K and applies aggregations aggi over each
partition. A partition is also referred to as a group. Each
aggregation aggi applies a commutative and associative
function (e.g., sum, min, max, etc.) over a single column
coli of T1. Each column of the output table is either the
result of an aggregation or a key column. We sometimes
write a GroupBy as γ[K,C ← A(Col)] where C and Col
are lists of column names, A is a list of aggregations, and
‖C‖= ‖A‖= ‖Col‖.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 213

1 method ResinMapOperator(T, µ[L]) {
2 foreach(row in T) {
3 foreach(〈φ,C← E〉 in L) {
4 if(φ(row)){
5 for(i in 1..|E|) out.C[i]← E[i](row)
6 output(out)
7 }
8 }
9 }

10 }

Figure 7: RESINMAP Operator

Join (equi-join) T2 = ./ [ψ, jt](Tleft,Tright)

A Join is a binary operator that matches rows from Tleft with
rows from Tright on a conjunction of equality predicates
ψ of the form (a1 = b1 ∧ a2 = b2. . . ∧ an = bn), where
ai are columns of Tleft and bi are columns of Tright. The
operator requires that the columns names of the two input
arguments be distinct. Parameter jt is a join type and can
be any of inner (i), leftOuter (lo), rightOuter (ro), leftSemi
(ls), or rightSemi (rs) with the standard semantics [5]. For
simplicity we only define rules for inner joins in this paper.
Our implementation handles other types as well.

Union T2 =](Tleft,Tright)

A Union is a binary operator that unions the rows of Tleft
and Tright. It performs a multi-set union, i.e., it does not
remove duplicate rows from the output. The two tables
need to have the same number of columns and their types
must match. The output table T2 retains the schema from
the left input. We note that different SQL dialects tend to
pick different ways of assigning the output schema of a
Union. We choose one particular style that is closest to
SPARKSQL.

A query is a sequence of assignments that each produce a
new table from existing ones using one the operators de-
scribed above. Formally, let T0,T1, · · · ,Tn be a sequence of
input tables. A query is a sequence of assignments of the form
Ti = uop(Tj) (for unary operators uop) or Ti = bop(Tj,Tk)
(for binary operators bop) such that i > n, j < i,k < i. We
sometimes refer to a table Ti by the query that computes it.

3.2 RESIN operators
RESIN introduces two operators, RESINMAP and RESINRE-
DUCE that are used during the optimization process.

RESINMAP T2 = µ[List(φ,C← E)](T1)

A RESINMAP is a row-wise unary operator. It is param-
eterized by a list L of pairs 〈φ,C← E〉. Its semantics is
defined by the imperative code shown in Figure 7. For each
input row, the operator can produce up to ‖L‖ output rows.
The operator iterates over L (Line 3), and if the predicate

1 method ResinReduceOperator(G, ρ[K,L]) {
2 foreach (〈φi,ci,aggi(coli)〉 in L)
3 out.ci← init(aggi)
4 foreach(row in G.rows) {
5 foreach (〈φi,ci,aggi(coli)〉 in L)
6 if (φi) out.ci = agg(out.ci,row.coli)
7 }
8 output(G.keys ,out)
9 }

Figure 8: RESINREDUCE Operator

φ is satisfied (Line 4) then it applies expressions in E to
compute data values of output columns C (Line 5). In other
words, RESINMAP applies different chains of Select (σ[φ])
followed by Project[C← E] operators, to produce multiple
output rows for each input row. This operator requires that
for each map C← E in its list, the set of output columns
C be the same (which is also the schema of the output ta-
ble). The expressions in E can, however, be different. For
example, µ[(φ1,a← e1,b← e2),(φ2,a← e3,b← e4)] is
a valid operator, whereas the following is not: µ[(φ1,a←
e1),(φ2,c← e3)].

RESINREDUCE T2 = ρ[K,List(φ,c← agg(col))](T1)

A RESINREDUCE operator first partitions the input into
groups on input columns K, and processes each group in-
dependently in a streaming manner. The operator is param-
eterized by a list L of triples 〈φ,c,agg(col))〉. Figure 8 de-
scribes the per-group computation. It takes a single group G
as input, represented as the partition key G.key and a multi-
set of rows G.rows. It first initializes all the aggregations
(Line 3) and then iterates over the rows in G (Line 4). For
each row, it applies the filter φi (Line 6) and then updates
the corresponding aggregate aggi (Line 6). Once the entire
group is processed, we get a single row containing the keys
and the computed aggregates. As notational convenience,
we use init(agg) to denote the identity value for an aggre-
gation agg. For instance, init(sum) would be 0, init(max)
would be −∞ and init(min) would be ∞.

RESINSIMPLEMAP T2 = λ[φ,C← E](T1)

RESINSIMPLEMAP is a simplified version of RESINMAP
that produces at-most one output row per input row. It ap-
plies a single predicate φ and if a row satisfies the predicate,
it computes output columns C by applying expressions E.
Its semantics is as in Figure 7 with L having a single ele-
ment. It represents the most basic form of a mapper that
still subsumes a Select and a Project.

4 RESIN optimizations

RESIN integrates new rules into an existing query optimizer. It
leverages the existing rules to perform certain normalizations

214 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

that increase the scope of the newly introduced rules. We
begin this section by stating rule ordering assumptions and
then describe the two core optimizations of RESIN, namely
sub-query fusion and binary operator elimination.

4.1 Assumptions
RESIN assumes that the following two rules are applied before
further optimizations are attempted. These assumptions are
not fundamental to the analysis, they are only required to
simplify the presentation.

Column name normalization The query language allows
the reuse of column names within a query. For example, T ′ =
γ[a,b← sum(b)](T) assigns the column name b to the result
of an aggregation in T ′, even though b is already a column in
T . We assume that a normalization pre-pass assigns unique
names to new columns produced in the query. For example,
the above would be rewritten to T ′ = γ[a,b#1← sum(b)](T).
Such a pre-pass is commonly applied by all query optimizers.
In addition to aggregations, a Project operator can also pro-
duce new columns. We require that for any projection map
map(ci← ei), either ei is just ci or ci is a fresh column name.
In other words, either a column is just passed through or the
output table must use a fresh column name.

Predicate pushdown The optimizer pushes Select opera-
tors to apply before Project operators. Such a rewriting is
always possible, and in fact, standard optimizers have many
rules that ensure Select operators apply on the input data as
soon as possible. In particular, RESIN assumes that a Select
operator is never a parent of a Project.

We also define some standard functions. The function
cols(e) takes as input an expression e and returns the set of
column names used in the expression. For example, cols(b1 +
b3 > 0) is {b1,b3}. We also define a function f resh() that
returns a fresh (globally unique) column name each time.
Finally, as the output of a Union operator inherits column
names from the left argument, we assume the availability of an
expression-renaming function α(](Tle f t ,Tright),e) that given
an expression e over columns of Tright , returns an expression
over the corresponding columns of Tle f t . For example, if Tle f t
has columns (a1,a2,a3) and Tright has columns (b1,b2,b3),
then α(](Tle f t ,Tright),b1 + b3 > 0) is a1 + a3 > 0. We drop
the first argument of α when it it clear from the context.

4.2 Generalized sub-query fusion
The goal of sub-query fusion is to combine two queries Q1
and Q2 that operate on the same set of input tables, but may
produce different outputs. Fusion produces a common query
Q and two residual RESINSIMPLEMAP operators λr1 and λr2
such that Q1 = λr1(Q) and Q2 = λr2(Q). This ensures that
the any redundant computation across Q1 and Q2 is captured

T

𝜆1[𝜙1,
𝐶1 ← 𝐸1]

FUSE
𝜆𝑐𝑜𝑚𝑚𝑜𝑛[𝜙1 ∨ 𝜙2,
𝐶1 ← 𝐸1 ∪ 𝐶2 ← 𝐸2
∪ 𝐼 𝑐𝑜𝑙𝑠 𝜙1 ∪ 𝐼 𝑐𝑜𝑙𝑠 𝜙2]

𝜆2[𝜙2,
𝐶2 ← 𝐸2]

𝜆𝑟1[𝜙1, 𝐼 𝐶1] 𝜆𝑟2[𝜙2, 𝐼 𝐶2]

T

Figure 9: Basic query fusion.

in one single query Q, and only simple map operators (via
the residual operators) are needed to get back the original
outputs. Furthermore, as would be evident from the way we
fuse operators, we ensure that the computation of Q itself does
not require more stages than what is required for computing
just one of the sub-queries. Finally, we ensure that Q does not
output any row that is not needed by either Q1 or Q2. This
kind of fusion is, of course, not always possible. The rules
below define the conditions under which it is possible and
how to combine the queries when possible.

Identity Invariant. Given a RESINSIMPLEMAP operator
λ[φ,map(ci← ei)], we say that it satisfies the identity invari-
ant if ei is simply ci for all indices i. This means that the
operator carries a subset of the input columns unmodified to
the output table. For a set of columns C, we use the shorthand
λ[φ, I(C)] to represent such operators, where I(C) is the iden-
tity function on C: {c← c | c ∈C}. We will ensure that all
residual operators produced as a result of fusion satisfy the
identity invariant.

4.2.1 Base rule

The rule for fusing two RESINSIMPLEMAP operators ap-
plied on the same table is shown in Figure 9. The RESIN-
SIMPLEMAP operators λ1 and λ2 apply different filters and
projections to the same input table. Fusing these operators is
simple, except that we must take care to establish the identity
invariant for the residual operators. This is important for re-
cursively fusing more operators up the query tree. The fusion
first applies a disjunction of the filters and a union of the pro-
jections (λcommon). This ensures that the necessary rows and
columns are carried forward. Next, all the residual operators
λ1 and λ2 need to do is to apply the specific filters for Q1 and
Q2, respectively.

Note that column-name normalization (Section 4.1) guar-
antees that for any column c, if c ∈ C1 and c ∈ C2 then the
column must be passed through from T , i.e., both λ1 and λ2
apply the projection c← c. This ensures that the projection
map of λcommon is well-defined, i.e., it does not include two
different mappings for the same output column.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 215

Q

𝜆𝑟1

𝑜𝑝1

𝜆𝑟2

𝑜𝑝2

FUSE

Q

𝜆𝑟2
′

op′

𝑄1 𝑄2

𝜆𝑟1
′

𝐹𝑈𝑆𝐸 𝑜𝑝1(𝑄1), 𝑜𝑝2(𝑄2) ≔ ⟨𝑜𝑝′(𝑄), 𝜆𝑟1
′ , 𝜆𝑟2

′ ⟩
Given 𝐹𝑈𝑆𝐸 𝑄1, 𝑄2 ≔ ⟨𝑄, 𝜆𝑟1, 𝜆𝑟2⟩

Figure 10: Recursive fusion of unary operators. Given two
fusible queries Q1 and Q2, shown in dotted circles, the figure
shows how to fuse op1(Q1) and op2(Q2). The shaded circles
depict the output of the fusion.

𝜆𝑟1[𝜙𝑟1,
𝐼 𝐶𝑟1]

𝜆𝑟2[𝜙𝑟2,
𝐼 𝐶𝑟2]

𝜆1[𝜙1,
𝐶1 ← 𝐸1]

𝜆2[𝜙2,
𝐶2 ← 𝐸2]

Q

Rewrite
𝜆[𝜙1 ∧ 𝜙𝑟1,
𝐶1 ← 𝐸1]

Q

𝜆[𝜙2 ∧ 𝜙𝑟2,
𝐶2 ← 𝐸2]

Figure 11: RESINSIMPLEMAP query fusion.

4.2.2 Recursive fusion of unary operators

Fusion proceeds recursively. For this section, fix the fact that
FUSE (Q1,Q2) := 〈Q,λr1,λr2〉. As described in Figure 10,
our goal is to construct FUSE(op1 (Q1) ,op2(Q2)), where
op1 and op2 are one of RESINSIMPLEMAP (λ), GroupBy (γ)
or RESINREDUCE (ρ). For ease of notation, an operator λx
always expands to λ[φx,Cx← Ex].

Recursive fusion of two RESINSIMPLEMAP operators,
which subsumes the fusion of Select and Project operators, is
shown in Figure 11. Observe that predicates φr1 and φr2 are
applied on the output of Q. Further, as the residual operators
satisfy the identity invariant, the columns referred in the pred-
icates φ1 and φ2 also come from the result of Q. Therefore,
the identity projections in λr1 and λr2 can be dropped and the
filters φ1 and φr1 can be conjoined together, and so can φ2 and
φr2. Fusion then follows by applying the rule in Figure 9.

The rule for fusing two GroupBy operators is shown in
Figure 12. The figures shows two aggregations on the same
table, which is the output of Q, except that they first apply
their own filter sλr1 and λr2, respectively. (For simplicity, we
have shown a single aggregation in each of the GroupBy oper-
ators. The case for multiple aggregations extends easily.) The
GroupBy operators are on the same key, so we can fuse them
into a single RESINREDUCE operator that does the aggrega-
tions conditionally as shown in the figure. In addition, the

𝜆𝑟1[𝜙𝑟1,
𝐼 𝐶𝑟1]

𝜌[𝑘,
{(𝜙𝑟1, 𝑔1 ← agg1 𝑐1),

𝜙𝑟1, 𝑟𝑐1 ← 𝑐𝑜𝑢𝑛𝑡 ∗ ,

(𝜙𝑟2, 𝑔2 ← agg2 𝑐2),
(𝜙𝑟2, 𝑟𝑐2 ← 𝑐𝑜𝑢𝑛𝑡 ∗)}]

𝜆𝑟1′[𝑟𝑐1 > 0,
𝐼 𝑘, 𝑔1]

𝜆𝑟2′[𝑟𝑐2 > 0,
𝐼 𝑘, 𝑔2]

Q

𝜆𝑟2[𝜙𝑟2,
𝐼 𝐶𝑟2]

𝛾1[𝑘, 𝑔1 ←
agg1(𝑐1)]

𝛾2[𝑘, 𝑔2 ←
agg2(𝑐2)]

Q

FUSE

Figure 12: GroupBy query fusion. Both rc1 and rc2 are fresh
column names.

FUSE

𝜆𝑟2
′

op′

𝜆𝑟1
′

𝐹𝑈𝑆𝐸 𝑜𝑝1(𝑄1, 𝑄3), 𝑜𝑝2(𝑄2, 𝑄4) ≔ ⟨𝑜𝑝′(𝑄𝑙𝑡, 𝑄𝑟𝑡), 𝜆𝑟1
′ , 𝜆𝑟2

′ ⟩
given 𝐹𝑈𝑆𝐸 𝑄1, 𝑄2 ≔ 𝑄𝑙𝑡, 𝜆𝑟1, 𝜆𝑟2

and 𝐹𝑈𝑆𝐸 𝑄3, 𝑄4 ≔ ⟨𝑄𝑟𝑡, 𝜆𝑟3, 𝜆𝑟4⟩

𝑄𝑙𝑡

𝜆𝑟1

𝑜𝑝1

𝑄𝑟𝑡

𝜆𝑟3𝜆𝑟2 𝜆𝑟4

𝑜𝑝2

𝑄1 𝑄2 𝑄3
𝑄4

𝑄𝑙𝑡 𝑄𝑟𝑡

Figure 13: Recursive fusion of binary operators. The figure
shows how to extend fusion of two pairs of fusible queries
Q1,Q3 and Q2,Q4 (shown in dotted circles), by additional
binary operators op1 and op2. The shaded circles depict the
output of such recursive fusion.

fusion requires two new aggregations rc1 and rc2 that count
how often the predicates are satisfied. For the left (respec-
tively, right) group-by to produce any output for a grouping
key, at least some rows in the group should satisfy the filter of
λr1 (respectively, λr2). Thus, we need to guard the left (right)
output of the fused query with a predicate that ensures that
at least one row in the group satisfied the predicate. The new
residual operators λ′r1 and λ′r2 apply the filters rc1 > 0 and
rc2 > 0 to only output groups that have at least some rows
that satisfy the predicates. The rule extends directly to the
fusion of two RESINREDUCE operators as well.

Column Aliasing Our implementation relaxes the rule’s
precondition that grouping keys be exactly the same; even
aliasing columns are allowed. That is, columns can be
renamed versions of the same column in an earlier table. The
same relaxation also applies to the join rule that follows later.

216 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

⋈𝐾1=𝐾2⋈𝐾1=𝐾2

𝜆𝑟3[𝜙𝑟3,
𝐼 𝐶𝑟3]

𝜆𝑟4[𝜙𝑟4,
𝐼 𝐶𝑟4]

𝜆𝑟1[𝜙𝑟1,
𝐼 𝐶𝑟1]

𝜆𝑟2[𝜙𝑟2,
𝐼 𝐶𝑟2]

𝑄𝑟𝑡𝑄𝑙𝑡

FUSE

𝑄𝑟𝑡𝑄𝑙𝑡

⋈𝐾1=𝐾2

𝜆𝑟1′[𝜙𝑟1 ∧ 𝜙𝑟3,
𝐼 𝐾1 ∪ 𝐶𝑟1 ∪ 𝐶𝑟3]

𝜆𝑟2′[𝜙𝑟2 ∧ 𝜙𝑟4,
𝐼 𝐾2 ∪ 𝐶𝑟2 ∪ 𝐶𝑟4]

Figure 14: Join query fusion

⊎⊎

𝜆𝑟3[𝜙𝑟3,
𝐼 𝐶𝑟3]

𝜆𝑟4[𝜙𝑟4,
𝐼 𝐶𝑟4]

𝜆𝑟1[𝜙𝑟1,
𝐼 𝐶𝑟1]

𝜆𝑟2[𝜙𝑟2,
𝐼 𝐶𝑟2]

𝑄𝑟𝑡𝑄𝑙𝑡

FUSE

𝑄𝑟𝑡𝑄𝑙𝑡

⊎

𝜆𝑟1′[𝜙𝑟1 ∧ 𝜙𝑟3 ∧
𝑠𝑖𝑑𝑒 = 0, 𝐼 𝐶𝑙𝑡]

𝜆𝑟2′[𝛼(𝜙𝑟2 ∧ 𝜙𝑟4) ∧
𝑠𝑖𝑑𝑒 = 1, 𝐼 𝐶𝑟𝑡]

𝜆𝑙𝑡′ [𝑡𝑟𝑢𝑒,
𝐼 𝐶𝑙𝑡) ∪ (𝑠𝑖𝑑𝑒 ← 0]

𝜆𝑟𝑡′[𝑡𝑟𝑢𝑒,
𝐼 𝐶𝑟𝑡) ∪ (𝑠𝑖𝑑𝑒 ← 1]

Figure 15: Union query fusion. The column side is a fresh name.

4.2.3 Binary operator fusion

Binary operator fusion is depicted in Figure 13. It defines
FUSE(op1(Q1,Q3),op2(Q2,Q4)) using FUSE(Q1,Q2) and
FUSE(Q3,Q4).

Figure 14 shows the rule for fusing two Join operators.
The rule simply pulls up the residual predicates from before
the join to after. Next, it conjoins the residual predicates that
are relevant to (Q1 ./ Q3), namely φr1 and φr3, to obtain λ′r1.
Similarly, φ′r2 = φr2∧φr4. The residual predicates satisfy the
identity invariant. However, we still apply the base fusion rule
(Figure 9) to push down the common predicate (φr1∧φr3)∨
(φr2∧φr4). This would eliminate rows that are not needed by
either Q1 ./ Q3 or Q2 ./ Q4, potentially before a shuffle.

Figure 15 shows the rule for fusing two Union operators.
We only describe a simplified version of the rule where we
assume that Qlt and Qrt are union-compatible, i.e., they have
the same number of columns and their types match. This
version is enough to cover the core ideas.

In order to fuse two unions, we need to be able to pull up
filters above a union. This poses a challenge as the output
has rows from both sides and we want to apply different
predicates to the rows from each side. To enable this pull
up, we add an additional (fresh) column side that tags rows
with the side that generated them. This additional column
is added by applying λ′lt and λ′rt to Qlt and Qrt , respectively.
The new residual predicates do an additional check to match
rows from the appropriate sides. As the union result renames
the columns from the right input, λ′r2 additionally applies the

renaming function α (defined in Section 4.1).

4.2.4 Operator alignment and exact fusion

The fusion rules described so far only fuse operators of the
same type. RESIN also has an auxiliary rule that enables
fusion of operators that are preceded by a RESINSIMPLEMAP
on one side but not on the other. Given Q1 and Q2 are fusible,
we enable the fusion of op1(λ(Q1)) and op2(Q2), where op1
and op2 are fusible according to rules 1-6 above. We do so by
adding an empty lambda λe = λ[true, I(∗)] as a child of op2.

We have described the fusion of core SQL operators. Our
implementation handles all SPARKSQL operators, but fusion
of other operators is only possible if they have the exact same
parameters and apply on the exact same query. We define this
exact fusion rule as FUSE(op1(Q1),op2(Q2)) = op1(Q1)
only if op1 = op2 and Q1 = Q2. Finally, note that the rules
above define the fusion of two sub-queries. Through repeated
application of the rules we can fuse any number of sub-queries
(say, n) into a single query with n residual operators.

4.3 Binary operator elimination
When the two arguments of a binary operators can be fused,
RESIN can sometimes eliminate the binary operator altogether.
The two elimination rules are defined below.
UNION ELIMINATION RULE

Given a Union query](Q1,Q2) where Q1 and Q2 can
be fused such that FUSE(Q1,Q2) := 〈Q,λr1,λr2〉 then we

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 217

⊎

𝜆𝑟1[𝜙𝑟1,
𝐼 𝐶𝑟1]

𝜆𝑟2[𝜙𝑟2,
𝐼 𝐶𝑟2]

𝑄

Elim.

𝜇 𝜙𝑟1, 𝐼(𝐶𝑟1 ,

𝛼(𝜙𝑟2 , 𝐶𝑟1 ← 𝐶𝑟2)]

𝑄

Figure 16: Union elimination rule.

⋈𝐾1=𝐾2

𝜆𝑟1[𝜙𝑟1,
𝐼 𝐶𝑟1]

𝜆𝑟2[𝜙𝑟2,
𝐼 𝐶𝑟2]

𝜌[𝐾, 𝐿]

Elim.

𝜆[𝜙𝑟1 ∧ 𝜙𝑟2, 𝐼 𝐶𝑟1 ∪ 𝐶𝑟2]

𝑄

𝜌[𝐾, 𝐿]

𝑄

Figure 17: Join elimination rule. The rule requires that each
of K1 and K2 alias with K.

can eliminate the Union altogether using the rule shown in
Figure 16. The rule follows directly from the definition of
RESINMAP. Recall that a RESINMAP operator µ[List(φ,C←
E)] can produce multiple outputs per input row. This sufficient
to implement the Union operator of the form above. The
resulting RESINMAP operator has one entry for each input
that applies the filter φri. The right expressions are renamed
using α and assigned to the column names from the left (C1) to
conform to the semantics of a Union. Figure 2 is an example
application of this rule.

RESIN rules show that any single-input query consisting of
Select, Project and Union operators can be implemented by a
single RESINMAP operator.
JOIN ELIMINATION RULE The goal of this rule is to substi-
tute a binary join operator with a mapper, which is a row-wise
unary operator. This is only possible if the output of the join
has already been computed in the fused query. This holds
when the join combines the results of a RESINREDUCE query
ρ[K,L] and is equi-join on K (modulo aliasing). The rule is
shown in Figure 17. Figure 5 shows an example application
of this rule.

5 Implementation

We integrated RESIN into a popular state-of-the-art big-data
system SPARK [26]. Our optimizations are general and can
be applied to other big-data systems [22, 30] as well. We
chose SPARK because it is easier to extend [5], has rich code-

gen support as well as competitive performance. Moreover,
SPARK already performs some low-level I/O optimizations.
For instance, it implements exchange reuse [1, 2] that deter-
mines if two exchanges are exactly equivalent and skips the
duplicate computation. It also implements store-predicate
pushdown that pushes down filters and projections to the
storage layer [3].

SPARK makes use of the Catalyst query optimizer [5]. Op-
timization rules in Catalyst are organized into batches. As is
standard, logical rules are applied before physical rules. Each
physical operator has a pre-defined map-reduce implementa-
tion based on a low-level resilient distributed dataset (RDD)
API [25]. SPARK uses a whole-stage code generator [23] to
efficiently compile all operators in a single stage. We describe
key details of our implementation.

Initiation and termination of RESIN rules We added all
RESIN rules in a batch that executes after the standard opti-
mizations are applied. These rules apply in a single (pre-order)
traversal of the query tree. RESIN initiates fusion starting from
input table scans. It then moves up the tree fusing operators
recursively. The fusion process terminates when none of the
fusion rules apply. At this point, RESIN applies the operator
elimination rules in cases where the consumers of a fused
query share a common parent. After elimination, the resulting
query could have zero or more fused sub-queries whose output
is consumed more than once, requiring the use of exchange
operators, as described next.

RESIN exchange reuse The only operator in SPARK whose
output can be consumed more than once is an exchange oper-
ator. Thus, RESIN introduces an exchange at the reuse points.
An exchange is parameterized by a partitioning column. To
decide on the partition column, RESIN traverses up along
each of the consumers Ci until it hits an operator that requires
partitioning (RESINREDUCE, Join, GroupBy), and identifies
a partitioning column pi for each consumer. Next, it picks
the column pi that is required by most consumers (we use
random choice to break ties).

RESIN operators We added three new logical operators
with the structure defined in Section 3. We also add their corre-
sponding physical operators. The physical operator for RESIN-
SIMPLEMAP is just a combination of Select and Project. We
added a new physical operator that implements RESINMAP
with appropriate whole-stage code-generation support. The
physical operator for RESINREDUCE is implemented by care-
fully extending existing aggregation iterators in SPARK. This
allowed us to delegate the handling of different column types
and the various associated subtleties in the application of
aggregation functions (e.g., null values, type-casting, over-
flow/underflow, etc.) to routines already present in SPARK.
Finally, we added implementation strategies for our opera-

218 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 18: Fraction of time spent in stages with redundant I/O.

tors. The strategies analyze the logical operators, construct
partial aggregates and introduce partitioning operators (for
RESINREDUCE), and substitute the logical operators with
corresponding physical operators.

6 Evaluation

We evaluated RESIN using the TPCDS benchmark suite, con-
sisting of 104 queries, at scale factors of 1TB and 10TB. The
evaluation was done on two different SPARK clusters. We
used a cluster with 120 cores and roughly 480GB memory,
spread over 10 nodes for evaluating at 1TB scale. For eval-
uating at 10TB we used a cluster with 480 cores and 1.6TB
memory, spread over 34 nodes. The input tables were stored
in parquet format. We ran each query 5 times, discarded the
first run and took average of the rest. Among the 104 queries,
we found that 40 queries have redundant I/O. As mentioned
before, the baseline already has basic I/O optimizations. It
pushes predicates and projects to the store for all these queries.
And it is able to reuse exchanges (usually right after a map
stage) even without RESIN optimizations in about half of these
queries. In the rest of this section, we focus on these queries
alone. We begin by presenting detailed results at 1TB scale
and present summary results at 10TB scale in Section 6.4.

6.1 Optimization opportunity
For each query, we identified stages that perform redundant
I/O. This was done post-facto by comparing baseline and
optimized plans, and determining the baseline stages that
were fused together by RESIN. Figure 18 shows the fraction
of time spent in these stages relative to the total execution
time of the query. The larger the fraction, the greater the
optimization opportunity. We find that 40% of the queries
spend at least 50% of the time in stages with redundant I/O.
We mark these queries as high-impact queries as they have
significant potential for improvement. Another 25% spend at
least 10% of their time in stages with redundant I/O, and we
mark them as medium-impact queries. The remaining (low-

impact) queries may have some redundant I/O but eliminating
it is unlikely to affect the overall query execution time.

TPCDS queries are over multiple (fact and dimension) in-
put tables. There are 6 large fact tables and several small
dimension tables. A deeper inspection of our results revealed
that the fraction of time spent in redundant sub-queries is sig-
nificantly influenced by whether one of these large tables was
redundantly processed or not. All queries that have medium or
high impact were processing at least one such table multiple
times (sometimes even after joining with few other tables).

6.2 Speedup from RESIN optimizations

Figure 19 reports the performance improvements from RESIN
on high and medium impact queries. These cover 25% of
the entire benchmark suite. As can be seen, RESIN improves
the execution time of most of the queries. It achieves an
average (geomean) speedup of 1.4× across these queries.
RESIN performs particularly well on high-impact queries
where it achieves a geomean speedup of 1.6× with some
queries speeding up by 6×.

The queries that benefit most (Q9, Q28, Q88, Q75, Q31,
Q90) are also ones where RESIN was able to apply bi-
nary operator elimination. All the other queries benefit
only from generalized sub-query fusion. Some of these
(Q65,Q61,Q81,Q1,Q30,Q59) had multiple exchanges after
fusion on the reuse exchange column and they see moderate
gain. A few queries (Q92, Q32, Q16,Q41) had reuses close
to input scans. These are the queries that see the least benefit
because the baseline already performs some basic I/O opti-
mizations (exchange reuse and store-predicate pushdown; see
Section 5).

In two queries (Q74,Q41) the data overlap between the
sub-queries that were fused was very low. However, fusion
still helps produce execution plans with fewer stages, and
does so while guaranteeing that the number of rows shuffled
after fusion is no more than the baseline. We find that, in Q74,
simplifying the plan has some second order system effects
(see Section 6.3), and fusion improves performance. In Q41,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 219

Figure 19: Overall execution time speedup for high and medium impact
queries. Each bar is labeled with the execution time of the baseline query
(in seconds).

Figure 20: For low impact queries we plot the
speedup in sub-query with redundant I/O alone.
Along the x-axis we report the execution time of the
entire query (in seconds) with and without RESIN.

the reuse is close to the input and hence fusion only eliminates
one map stage. As a result, we see a small 3% degradation.

Comparison with BLITZ We evaluated BLITZ on these
queries and found that it only optimizes two of the queries:
Q9 and Q28. Both these queries perform a chain of joins at the
end. BLITZ was only able to eliminate the first of these joins
and therefore was only able to get speedups of 1.6× and 1.9×,
respectively. This limitation has also been acknowledged in
prior work [10]. RESIN eliminates multiple joins and achieves
a speedup of 2.4× and 3.3×, respectively, on these queries.

Speedup on low impact queries Figure 20 reports
speedups for low impact queries. We report the execution
time of the entire query along the x-axis. As can be seen
RESIN optimizations have no significant gains or degradation
on any of these queries. To isolate the effects of RESIN
optimizations, we plot the speedup for the sub-query that was
optimized. RESIN achieves a moderate speedup on several
of these sub-queries. RESIN optimizations show a small
degradation in a few of these sub-queries (Q2, Q5, Q95). In
Q5 the amount of redundant I/O is too small to matter. In
Q2,Q95, the baseline already performs an exchange reuse.
RESIN fuses one additional operator, but once again the
additional I/O is too small to matter.

Overall, RESIN reduces the total time to run all the 104 queries
by 12%. Note that RESIN has a negligible impact on query
optimization time; the overall compilation time for the entire
benchmark increased from 42 to 45 seconds.

6.3 Impact of RESIN optimizations
on systems resources

Figure 21 - Figure 24 plot the impact of RESIN optimizations
on disk, network, memory and CPU for medium and high
impact queries (we see no discernible impact on low impact
queries). For disk, we report the cumulative bytes of data
accessed from disk. For network, we report the cumulative
number of packet transfers performed. Note that data sizes
transferred over the network follow the same trend as disk
I/O, as most I/O in a big-data setting is over the network. For
memory, we plot the cumulative memory footprint. For CPU,
we plot the total CPU time spent by all tasks on all machines.
This is a measure of the total CPU work done to evaluate a
set of queries and is largely independent of cluster size [19].
We infer the following conclusions from these plots.

First RESIN reduces the cumulative CPU, network and disk
footprint, consuming 24%, 25% and 19% fewer resources
respectively. The savings in-terms of CPU are slightly higher
than disk because RESIN not only saves on I/O but also on
I/O induced processing (compression, serialization etc) which
have a significant compute cost [14].

Second, RESIN achieves these benefits while incurring the
same overall memory cost (Figure 23) as the baseline. A
few queries (Q64,Q31,Q61) see a slight increase in memory
requirement, while a few others (Q4,Q75,Q88) need lesser
memory. However, all these queries see significant reduction
in execution time. Overall even if fusion increases the amount
of data processed by each operator, it does not impact the
overall memory footprint of the workload (see Figure 19).

Third, the gap between RESIN and the baseline widens as
we move to the right. Queries on the right usually have deeper
operator trees and this graph demonstrates that RESIN is able
to fuse deep and complex queries.

Finally, the plots indicate that RESIN optimizations

220 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 21: Cumulative disk I/O Figure 22: Cumulative network packets

Figure 23: Cumulative memory footprint Figure 24: Cumulative CPU time of tasks

Figure 25: Speedup for 10TB TPCDS. Each bar is labeled with the execution time of the baseline query (in seconds).

are fairly robust, even the worst performing queries
(Q92,Q32,Q41) do not show any discernible degradation on
any of the system metrics. In Q74 RESIN fusion does not
reduce the amount of disk I/O, but it still reduces the CPU
and network load, and hence sees an execution time benefit.

6.4 Impact on larger scale data

We report the impact of RESIN on TPCDS at 10TB scale.
Figure 25 shows the speedup’s obtained for the 40 affected
queries. We see that RESIN does somewhat better at larger

scale. It obtains higher speedup on a few medium and high
impact queries (Q64,Q39a,Q39b,Q28) while achieving sim-
ilar speedups for the other queries (except Q59). We find that
the average (geomean) speedup for high and medium impact
queries goes up to 1.5× (was 1.4× at 1TB). Once again, the
optimizations have no significant improvement or degrada-
tion on the low-impact queries. Figure 26 reports the I/O
savings. The total disk I/O saved went up to 31% (was 19%
at 1TB). Overall, RESIN reduces the execution time of the
entire workload (104 queries) by 17%.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 221

Figure 26: Cumulative disk I/O for 10TB TPCDS.

7 Related Work

We discuss three broad lines of work related to this paper.
Advances in big-data query optimization Big-data query

optimizers borrow and build upon rewrite rules from the
database literature. Several big-data-specific optimizations
have also been used [8, 9, 15, 16, 28–30]. However, none of
these logically fuse multiple operators or eliminate binary
operators. The work that is most closely related to RESIN
is BLITZ [10], which presented an extension to the query
optimizer to find and substitute sub-queries that can be imple-
mented by a streaming operator. BLITZ added new rules that
optimize three specific query patterns. Two of these patterns
were self-joins and self-unions that followed a GroupBy on
the same input table. The third pattern was a specialized im-
plementation of a min aggregation followed by a Join. The
BLITZ rules can perform some of the operator eliminations
that RESIN can perform. However, we find that BLITZ pat-
terns cover a very small fraction of queries in standard bench-
marks. Only one of the patterns applies to TPCDS queries and
that too only on two queries. Furthermore, BLITZ operators
do not compose with each other and therefore do not even
eliminate redundant shuffles from multi-way self-joins and
self-unions. RESIN introduces the ability to fuse multi-input
sub-queries and eliminate unnecessary shuffles. This fusion
facilitates more join and union elimination.

Multi-query optimization Multi-query optimization
(MQO) is a well studied problem in classical database lit-
erature [11,17,20,31]. The goal of MQO is to optimize many
concurrently submitted queries together, and is typically done
by reusing results of common sub-queries. Such optimizations
are typically performed in a single scale-up database setting
and trade-off latency for throughput. The goal of RESIN is
very different. RESIN looks for intra-query redundancy in
the big-data setting, and eliminates it while ensuring no ad-
ditional rows are shuffled. Thus, it simultaneously improves
both latency and throughput.

The fusion techniques proposed here are also significantly
different than MQO. MQO is typically limited to Select-
Project-Join (SPJ) queries, whereas RESIN supports com-

posible fusion for all SparkSQL operators. Such support is
necessary to eliminate redundancy from deep queries. Our
evaluation reveals that optimization of the high and medium
impact queries in TPCDS requires fusion of a large num-
ber of operators: 21 of 25 queries have 10 to 30 operators.
We show that fusion and elimination are not always possible
without having new operators and propose RESINMAP and
RESINREDUCE operators to enable this. For example, Union
elimination is only possible with RESINMAP and GroupBy
fusion is only possible with RESINREDUCE. Finally, our bi-
nary operator elimination rules are not part of any multi-query
or database optimizer.

Code generation techniques for query processing.
There is a long line of work on compilation techniques to
generate efficient single-machine code for a chain of SQL
operators [6, 12, 13, 23]. Such compilers target low level inef-
ficiencies such as virtual call overheads and computation of
common sub-expressions across operators. This is an active
area of research, and includes recent efforts like FLARE [6]
that target the compilation of SPARK to single machine sys-
tems. Such compilers have limited scope in the big-data set-
ting because they only optimize the code within a single
stage [6]; determining what operators constitute a stage is
still decided by the query optimizer. SPARK makes use of one
such code-generation engine [23] that builds upon HyPer [13].
The physical operators that we add are whole-stage code-gen
enabled and benefit directly from such techniques.

Recent literature has seen advance techniques that optimize
mixed-mode queries: queries that embed non-SQL functions
and expressions into SQL [7, 16, 24]. This line of work is
orthogonal to RESIN.

8 Conclusions

The cost of running big-data queries is dominated by I/O.
This paper proposes RESIN, a system that helps identify and
eliminate redundant I/O. The system proposes extensions to
big-data query optimizers that enable first class map-reduce
reasoning during query compilation. We show how these
can be used to fuse operators processing overlapping data
into a single stage of computation, and sometimes eliminate
expensive binary operators altogether. We demonstrate that
the optimizations are useful for 40% of queries in TPCDS,
and bring significant gains (average 1.4×) to a quarter of the
benchmark queries.

Acknowledgements

We would like to thank the anonymous reviewers and our
shepherd Wenguang Chen for their valuable feedback and
suggestions. We would also like to thank Ajith Shetty, Srinivas
T, Shahid K, Lev Novik and Tomas Talius for code and design
reviews.

222 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Reuse Query Fragments. https://issues.apache.
org/jira/browse/SPARK-13756, 2016.

[2] Reuse the exchanges in a query. https://issues.
apache.org/jira/browse/SPARK-13523, 2016.

[3] Parquet Predicate Pushdown improvement. https://
issues.apache.org/jira/browse/SPARK-25419,
2018.

[4] Amazon red-shift. https://docs.aws.amazon.com/
redshift/index.html, 2020.

[5] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin
Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng,
Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei Zaharia. Spark sql: Relational data processing
in spark. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’15, pages 1383–1394, New York, NY, USA, 2015.
ACM.

[6] Gregory Essertel, Ruby Tahboub, James Decker, Kevin
Brown, Kunle Olukotun, and Tiark Rompf. Flare: Opti-
mizing apache spark with native compilation for scale-
up architectures and medium-size data. In OSDI, pages
799–815, 2018.

[7] X. Fan, Z. Guo, H. Jin, X. Liao, J. Zhang, H. Zhou,
S. McDirmid, W. Lin, J. Zhou, and L. Zhou. Spot-
ting code optimizations in data-parallel pipelines
through periscope. IEEE Transactions on Parallel and
Distributed Systems, 26(6):1718–1731, June 2015.

[8] Zhenyu Guo, Xuepeng Fan, Rishan Chen, Jiaxing Zhang,
Hucheng Zhou, Sean McDirmid, Chang Liu, Wei Lin,
Jingren Zhou, and Lidong Zhou. Spotting code opti-
mizations in data-parallel pipelines through periscope.
In OSDI, pages 121–133, 2012.

[9] Yin Huai, Ashutosh Chauhan, Alan Gates, Gunther
Hagleitner, Eric N. Hanson, Owen O’Malley, Jitendra
Pandey, Yuan Yuan, Rubao Lee, and Xiaodong Zhang.
Major technical advancements in apache hive. In
Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’14,
pages 1235–1246, New York, NY, USA, 2014. ACM.

[10] Jyoti Leeka and Kaushik Rajan. Incorporating super-
operators in big-data query optimizers. PVLDB,
13(3):348–361, 2019.

[11] Darko Makreshanski, Georgios Giannikis, Gustavo
Alonso, and Donald Kossmann. Mqjoin: Efficient shared
execution of main-memory joins. Proc. VLDB Endow.,
9(6):480–491, January 2016.

[12] Derek Gordon Murray, Michael Isard, and Yuan Yu.
Steno: Automatic optimization of declarative queries.
In PLDI, pages 121–131, 2011.

[13] Thomas Neumann. Efficiently compiling efficient query
plans for modern hardware. PVLDB, 4(9), 2011.

[14] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott
Shenker, and Byung-Gon Chun. Making sense of
performance in data analytics frameworks. In 12th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15), pages 293–307, Oak-
land, CA, May 2015. USENIX Association.

[15] Shi Qiao, Adrian Nicoara, Jin Sun, Marc Friedman,
Hiren Patel, and Jaliya Ekanayake. Hyper dimension
shuffle: Efficient data repartition at petabyte scale in.
PVLDB, 12(10):1113–1125, 2019.

[16] Veselin Raychev, Madanlal Musuvathi, and Todd
Mytkowicz. Parallelizing user-defined aggregations us-
ing symbolic execution. In SOSP, pages 153–167, 2015.

[17] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh
Bhobe. Efficient and extensible algorithms for multi
query optimization. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’00, page 249–260, New York, NY,
USA, 2000. Association for Computing Machinery.

[18] Bart Samwel, John Cieslewicz, Ben Handy, Jason Govig,
Petros Venetis, Chanjun Yang, Keith Peters, Jeff Shute,
Daniel Tenedorio, Himani Apte, Felix Weigel, David G
Wilhite, Jiacheng Yang, Jun Xu, Jiexing Li, Zhan Yuan,
Craig Chasseur, Qiang Zeng, Ian Rae, Anurag Biyani,
Andrew Harn, Yang Xia, Andrey Gubichev, Amr El-
Helw, Orri Erling, Allen Yan, Mohan Yang, Yiqun Wei,
Thanh Do, Colin Zheng, Goetz Graefe, Somayeh Sar-
dashti, Ahmed Aly, Divy Agrawal, Ashish Gupta, and
Shivakumar Venkataraman. F1 query: Declarative
querying at scale. pages 1835–1848, 2018.

[19] Matthias Schlaipfer, Kaushik Rajan, Akash Lal, and
Malavika Samak. Optimizing big-data queries using pro-
gram synthesis. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, pages 631–
646, New York, NY, USA, 2017. ACM.

[20] Timos K. Sellis. Multiple-query optimization. ACM
Trans. Database Syst., 13(1):23–52, March 1988.

[21] Srinath Shankar, Rimma Nehme, Josep Aguilar-Saborit,
Andrew Chung, Mostafa Elhemali, Alan Halverson, Eric
Robinson, Mahadevan Sankara Subramanian, David
DeWitt, and César Galindo-Legaria. Query optimiza-
tion in microsoft sql server pdw. In Proceedings of
the 2012 ACM SIGMOD International Conference on

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 223

https://issues.apache.org/jira/browse/SPARK-13756
https://issues.apache.org/jira/browse/SPARK-13756
https://issues.apache.org/jira/browse/SPARK-13523
https://issues.apache.org/jira/browse/SPARK-13523
https://issues.apache.org/jira/browse/SPARK-25419
https://issues.apache.org/jira/browse/SPARK-25419
https://docs.aws.amazon.com/redshift/index.html
https://docs.aws.amazon.com/redshift/index.html

Management of Data, SIGMOD ’12, page 767–776,
New York, NY, USA, 2012. Association for Computing
Machinery.

[22] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng
Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete
Wyckoff, and Raghotham Murthy. Hive: A warehousing
solution over a map-reduce framework. Proc. VLDB
Endow., 2(2):1626–1629, August 2009.

[23] Reynold Xin and Josh Rosen. Project Tungsten: Bring-
ing Apache Spark Closer to Bare Metal. https://
tinyurl.com/mzw7hew, 2015.

[24] Guoqing Harry Xu, Margus Veanes, Michael Barnett,
Madan Musuvathi, Todd Mytkowicz, Ben Zorn, Huan
He, and Haibo Lin. Niijima: Sound and automated com-
putation consolidation for efficient multilingual data-
parallel pipelines. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP
’19, pages 306–321, New York, NY, USA, 2019. ACM.

[25] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design
and Implementation, NSDI’12, pages 2–2, Berkeley,
CA, USA, 2012. USENIX Association.

[26] Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark: Clus-

ter computing with working sets. In Proceedings of
the 2Nd USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’10, pages 10–10, Berkeley, CA,
USA, 2010. USENIX Association.

[27] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching,
and Michael J. Freedman. Riffle: Optimized shuffle
service for large-scale data analytics. In Proceedings of
the Thirteenth EuroSys Conference, EuroSys ’18, pages
43:1–43:15, New York, NY, USA, 2018. ACM.

[28] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching,
and Michael J. Freedman. Riffle: Optimized shuffle
service for large-scale data analytics. In Proceedings of
the Thirteenth EuroSys Conference, EuroSys ’18, pages
43:1–43:15, New York, NY, USA, 2018. ACM.

[29] J. Zhou, P. Larson, and R. Chaiken. Incorporating parti-
tioning and parallel plans into the scope optimizer. In
ICDE, pages 1060–1071, 2010.

[30] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Ake
Larson, Ronnie Chaiken, and Darren Shakib. Scope:
Parallel databases meet mapreduce. The VLDB Journal,
21(5):611–636, October 2012.

[31] Jingren Zhou, Per-Ake Larson, Johann-Christoph Frey-
tag, and Wolfgang Lehner. Efficient exploitation of simi-
lar subexpressions for query processing. In Proceedings
of the 2007 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’07, page 533–544,
New York, NY, USA, 2007. Association for Computing
Machinery.

224 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://tinyurl.com/mzw7hew
https://tinyurl.com/mzw7hew

A Simpler and Faster NIC Driver Model for Network Functions
 Solal Pirelli and George Candea, EPFL

Abstract
The advent of software network functions calls for stronger
correctness guarantees and higher performance at every
level of the stack. Current network stacks trade simplicity
for performance and flexibility, especially in their driver
model. We show that performance and simplicity can co-
exist, at the cost of some flexibility, with a new NIC driver
model tailored to network functions. The key idea behind
our model is that the driver can efficiently reuse packet
buffers because buffers follow a single logical path.

We implement a driver for the Intel 82599 network card
in 550 lines of code. By merely replacing the state-of-the-
art driver with our driver, formal verification of the entire
software stack completes in 7x less time, while the verified
functions’ throughput improves by 160%. Our driver also
beats, on realistic workloads, the throughput of drivers that
cannot yet be formally verified, thanks to its low variability
and resource use.

Our code is available at github.com/dslab-epfl/tinynf.

1. Introduction
The networking world is moving from hardware network
functions to software ones to gain flexibility. This brings
new problems to light in the network stacks of mainstream
operating systems, which were not designed for this use
case. In response to this move, the kernel-bypass model for
software networking appeared, designed for low latency
and high throughput. However, one area of the stack that
remains under-explored is network drivers. We present the
state of network functions, stacks and drivers in Section 2.

Modern network cards contain powerful and complex
hardware offloads, but their core features are conceptually
simple. Network cards fetch requests and return responses
to software using data structures named descriptors. The
main complexity for packet reception and transmission is
the descriptor ownership mechanism. We present the basics
of modern network cards in Section 3.

The current network driver model is too flexible for the
needs of common network functions, which must pay the
complexity costs of modern drivers without reaping their
benefits. This is mainly because the current driver model
allows network functions to process packets out of order, a
powerful feature that is not needed in many of the core
functions making up the Internet’s backbone. We formalize
the current driver model for network cards and propose our
conceptually simplified version in Section 4.

We implement our new driver model for the Intel 82599, a
modern 10 Gb/s Ethernet controller. Our implementation
uses the model's insights and stays as simple as possible: it
is only 550 lines of C code. Its key features are a minimal
number of operations thanks to the driver design and to
modern network card features, as well as some simple but
powerful scheduling algorithms. We present our driver,
which we call “TinyNF”, in Section 5.

This paper’s core hypotheses are that our simpler model
(1) makes network functions easier to formally verify, (2) is
faster than the current most complex driver model that can
be formally verified, (3) provides competitive performance
against the fastest state-of-the-art drivers regardless of
complexity, and (4) is applicable to most network functions
that are deployed today.

We show that hypotheses (1) and (2) hold in Section 6.
Our driver has exponentially fewer code paths than current
drivers and can thus be used to formally verify network
functions in 7x less time than with a state-of-the-art driver
while offering 2.5x the throughput, as well as lower median
and tail latency.

We show that hypothesis (3) holds in Section 7, with the
surprising observation that our driver outperforms the state
of the art using real network functions even though it loses
on a synthetic “no-op” function. This is because our driver
slows down less when running real functions due to having
room to grow in instruction-level parallelism and cache use.

We provide evidence for hypothesis (4) in Section 8,
showing that our model is applicable to most of the low-
level network infrastructure, either running on bare metal
or as virtualized network functions.

We believe that the separation in common use between
“drivers” and other software is blurry, and we argue that it
hinders progress. This situation is worse in networking due
to the lack of good baselines for benchmarks, leading to
driver optimizations that increase complexity but may not
increase performance in the real world. Our minimal driver
also highlights opportunities in hardware documentation.
We discuss these issues in Section 9.

In summary, we make the following contributions: (1) a
simplified driver model for network functions that process
packets in order, (2) a formally verified driver based on our
model that is easier to reason about and faster on realistic
workloads than existing drivers, and (3) evidence that the
current standard of benchmarking for network drivers
leads to suboptimal performance in the real world.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 225

https://github.com/dslab-epfl/tinynf

2. Background on network functions
In this section, we introduce network functions: packet-
processing appliances performing tasks such as routing,
rate limiting, access control or caching.

Hardware network functions are the traditional way
to implement network functions for high-traffic networks.
They are physical boxes with custom hardware that are part
of the network, distinct from standard computers.

They are typically robust because fixing hardware bugs
after deployment is not possible, thus engineers must test
them extensively before deployment. However, they are not
flexible because they cannot be modified after deployment.
Changing a network’s policies can require replacing the
hardware entirely.

Software network functions run on general-purpose
hardware such as x86 and mainstream operating systems
such as Linux, communicating with network cards through
a software stack that includes drivers and implementations
of protocols such as IP and TCP.

The networking world is moving to software network
functions to increase flexibility. Software network functions
are flexible since they have low deployment costs. This
means correctness guarantees, while important, are not a
hard requirement for deployment.

Verifying the correctness of software network functions
is an open problem, with recent work showing it is easier
than the intractable problem of general software verifica-
tion. The Vigor [33] project verifies network functions
without human interaction, but cannot deal with common
optimizations such as parallelism or batch processing.

The other key concern of software network function is
performance. This includes variability, since worst-case
performance determines the guarantees network operators
can offer. These guarantees turn into business concerns
such as Service Level Agreements.

To illustrate how crucial performance is, consider the
time budget for processing a 64-byte packet and its 20-byte
Ethernet header at 10 Gb/s: (64+20) ∗ 8 / (10∗109) = 67.2ns.
This is the same order of magnitude as a memory read; a
network function will exceed its time budget if it needs data
outside the CPU cache.

Software network stacks in modern operating systems
are not adapted to network functions for three reasons.

First, traditional stacks use a push model: hardware uses
interrupts to notify software of packet reception. If packets
are infrequent, this is efficient. But in network functions,
packets are frequent thus interrupt overheads dominate.
The pull model, in which software continuously polls for
packets, better fits network functions because it is efficient
if most polls succeed, as is the case under high load.

Second, traditional stacks only access hardware through
the operating system to provide isolation. Going through
the operating system is an expensive operation, especially
given the low time budget for each packet. But network
functions typically run alone, paying the performance cost
of isolation without the associated benefits. Systems such
as netmap [28] have shown this cost can be amortized by
processing packets in batches.

Third, traditional stacks allow to manage packet buffers
with complete flexibility. This is convenient for general-
purpose programs but hinders optimizations in the network
stack. Network functions have restricted and well-defined
behavior, yet they pay the performance cost of flexibility.
Systems such as Windows Registered I/O [24] have shown
that decreasing flexibility can increase performance.

Kernel-bypass stacks, which allow programs to access
hardware directly instead of going through the operating
system, arose from the need for different tradeoffs. These
stacks also focus on polling instead of interrupts, on tighter
control of packet buffers, and on processing packets in
batches. The de facto standard kernel-bypass stack is DPDK,
the Data Plane Development Kit [5].

Drivers, network or otherwise, have a poor reputation
among software developers because of the challenges of
hardware interactions and the lack of documentation.

Developers can only rely on specifications released by
manufacturers to know how hardware behaves, and these
specifications are not always public. Reverse-engineering
hardware is infeasible without special equipment, unlike
software. Since drivers are often exclusively maintained by
hardware manufacturers, driver developers do not need to
publicly document their code. Bug-finding efforts have
shown that driver code is far from bug-free [21, 25].

These problems lead developers to think of drivers as
mystical black boxes. But drivers are a fundamental part of
the network stack; their correctness and performance are
upper bounds on the entire stack.

As an example of driver complexity, the network drivers
in DPDK, which supports many different types of hardware,
all have at least 1,000 lines of code, as we show in Figure 1,
with the largest one being over 66,000 lines of code.

Emmerich et al. [10] showed that network drivers can
fit in under 1,000 lines of code, though their driver focuses
on educational value and not performance or correctness.

Figure 1. Number of lines of C code in the network drivers
included with DPDK 20.02.

226 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3. Background on network cards
In this section, we summarize the architecture of modern
Network Interface Controllers, or “NICs” for short, which
is necessary to understand network driver design.

While NICs are diverse, the core concepts are similar.
We estimate that, out of the 44 families of physical or virtual
NICs supported by DPDK 20.02, this section applies to 40 of
them. The remaining ones are three FPGA-based cards and
one proprietary virtual NIC.

Communication between CPU and NIC uses three
channels: PCI registers, NIC registers, and RAM.

PCI registers are stored on the NIC and accessed by the
CPU using port-mapped I/O. The CPU only uses them for
the first stage of NIC initialization.

NIC registers are stored on the NIC and accessed by the
CPU using memory-mapped I/O. Their latency is an order
of magnitude higher than RAM [19], making them a perfor-
mance bottleneck.

RAM is the main shared storage. The CPU accesses it as
usual, and the NIC uses Direct Memory Access, or “DMA”
for short, to transfer data into it. RAM holds packet buffers
and metadata. The CPU and the NIC are not notified when
the other has modified RAM; if they want to be aware of
changes, they must poll RAM or use a side channel.

The packet descriptor is the main NIC data structure,
containing a pointer to a data buffer and some metadata.
The metadata typically contains required fields such as the
packet length, and optional fields such as whether to use
advanced hardware offloading features.

Software chooses the total number of descriptors when
initializing hardware. Descriptors are given from the CPU
to the NIC to issue commands, such as packet transmission,
and given by the NIC back to the CPU when the associated
command has finished. Different NICs have different ways
to manage descriptor ownership, such as flags in metadata.

Software can change the buffer pointer before giving a
descriptor to the NIC. This lets developers implement buffer
pools, to reuse descriptors without losing received data.
This is useful for cases such as TCP, where packets must be
kept until an entire message has arrived.

Reception and transmission are the core operations
of network cards, and work in symmetric ways.

To receive packets, the CPU gives descriptors to the NIC
indicating where to deposit packets in memory. The NIC
gives descriptors back when it has received packets. The
NIC sets descriptor metadata to indicate the packet length
and other such information.

To transmit packets, the CPU gives descriptors to the
NIC indicating where packets are in memory, and the NIC
gives descriptors back once it has transmitted packets. The
metadata is set by the CPU, to inform the NIC of the packet
length and other such information.

Descriptor rings are the main mechanism for descriptor
ownership in modern cards. We present here their inner
workings in Intel’s 82599 NIC as a concrete example.

A descriptor ring is composed of a region of memory, a
head pointer, and a tail pointer. The memory is in RAM,
while the pointers are NIC registers. Descriptors between
the head, inclusive, and the tail, exclusive, belong to the
NIC. Other descriptors belong to the CPU. If the head and
tail are equal, the CPU owns all descriptors. We present an
example ring in Figure 2.

Since descriptors start in an unknown state, descriptor
metadata has a “Descriptor Done” flag to let the CPU know
whether a descriptor has been processed by the NIC or was
just never initialized.

The CPU gives descriptors to the NIC by clearing their
“Descriptor Done” flag and incrementing the tail pointer.
Since the tail pointer is a NIC register, the NIC immediately
notices the change. The NIC gives descriptors back to the
CPU by setting the “Descriptor Done” flag in metadata and
incrementing the head pointer. To know when a descriptor
has been given back, the CPU polls the metadata.

The head and tail can only be incremented, though they
can be incremented by more than 1 to give descriptors in
batches. Decrementing is forbidden since it would logically
be an attempt to steal descriptors.

NIC queues are a hardware mechanism to allow for
parallel packet processing. A queue consists of a descriptor
ring and some configuration. The NIC places all received
packets in the first reception queue by default; developers
can configure the NIC to route packets to a queue based on
packet headers, such that packets belonging to the same
logical flow are routed to the same queue.

For transmission, all queues behave in the same way,
without flow tracking: packets added to any transmission
queue are sent to the wire regardless of which queue it is.

Queues allow multiple CPU cores to handle packets
without having to synchronize NIC accesses, increasing
software scalability.

0

1

2

34

5

6

7
Head

Tail

Owned
by HW

Owned
by SW

Figure 2. A descriptor ring with 8 elements; the head is 1
and the tail is 5, thus hardware owns elements 1, 2, 3 and 4.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 227

4. Simplifying the driver model
In this section, we present the existing kernel-bypass driver
model, and our proposed simplification of it for common
network functions.

The driver model in modern frameworks such as
DPDK is based around reusing a fixed set of packet buffers,
in order to avoid the overheads of memory allocation. We
formalize this model as a diagram in Figure 3, where the
overall system is a set of first-in-first-out buffer queues.
Each conceptual “step” of the system is performed by one
of three actors: the NIC, the driver, or the network function.
In the initial state, all buffers are in the “Free” state, which
represents unused buffers in the buffer pool.

The driver typically takes the first steps, by “allocating”
buffers from the pool and giving them to the NIC for recep-
tion. This “allocation” refers to taking buffers from the pool,
not creating new ones. If there are buffers in the “receiving”
state, the NIC can transition them to the “received” state
once it gets data from the network. The network function
typically runs a polling loop to move buffers into the “pro-
cessing” step. From there, the network function can choose
to transmit the buffer, possibly after modifying it. The NIC
will then send out the buffer contents to the network and
move the buffer to the “transmitted” state. The driver moves
transmitted buffers back to the “free” state at well-defined
points, for instance when there are too few free buffers left.
The network function can also choose to keep the buffer for
later, or to “drop” it and return it to the pool. The network
function can also allocate buffers from the pool and process
them like received buffers.

Unlike classical driver models found in mainstream
operating systems and exposed to programmers in libraries
such as BSD sockets [29], the system is closed: none of the
actors can insert buffers into the system from the outside,
such as by asking the operating system for memory. Actors
cannot remove buffers either, though the network function
is allowed to keep buffers indefinitely by using its “keep”
transition to reorder buffers in the “processing” state.

The reason for a closed system is performance: buffer
allocation and deallocation are expensive. This is not only
due to general software issues such as the overheads of
keeping a “free list” of memory blocks, or the cost of asking
the operating system for more memory, but also to an issue
specific to drivers: memory pinning. The driver gives phys-
ical memory addresses to the network card when specifying
buffer addresses. If the operating system were to change
which physical page backs a virtual page used by the driver,
the network card would not see the change and write to the
wrong page. Thus, the operating system has to be informed
of which memory is used for buffers and give it special
treatment. While modern hardware can use I/O memory
management units to allow devices to address virtual
memory, there is a cost to changing I/O memory mappings.

This model provides flexibility to network functions:
they can keep buffers aside to reassemble messages from
high-level protocols such as TCP, and can allocate buffers
from the pool in response to non-network events such as
timers indicating a request needs to be retried.

The model also lends itself well to concurrency: the
“free” queue is the central element shared by any number
of reception, transmission or processing queues. A network
function can receive and transmit packets from multiple
NICs, and it can use multiple processing queues that each
communicate with different reception and transmission
queues on the same NIC to process packets concurrently
and increase overall throughput.

But this flexibility comes at a cost: the steps that the
network function can perform besides transmission intro-
duce forks in the path of packet buffers. This requires buffer
management within the “free” queue, including support for
concurrent accesses. It also requires the driver to imple-
ment a policy for buffer freeing and allocation, adding com-
plexity to the overall system.

The model additionally introduces a failure case that is
not fundamental to the concept of a network function. If
there is a state within the processing logic in which any
buffer is kept, and the only way to get out of that state is to
receive new data, the system will only make progress if
there are buffers outside of the processing queue, which is
not guaranteed. Reasoning about the existence of such a
state requires reasoning about the invariants that hold in
the network function code across packets.

This flexibility is not always needed: some of the
network functions that power the backbone of the Internet,
such as IP routers or Ethernet bridges, process packets one
by one, never keep buffers aside, and never allocate buffers.
Overall, they are conceptually simpler than the general case
of a network function, yet they must currently pay the price
of driver flexibility they do not use.

TXing

TXed

RXing

RXed

Proc

NF
drop

NF
transmit

NF
fetch

Driver
free

NIC
transmit

NIC
receive

Free
NF

allocate

NF
keep

Driver
allocate

Figure 3. Diagram of the kernel-bypass driver model. Each
box is a queue, each arrow is a step moving one packet from
one queue to another. Steps are annotated with their actor
and their name. “RX” is reception, “TX” is transmission,
“Proc” is processing, and “NF” is network function.

228 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

We propose a new driver model designed for common
network functions that do not need the flexibility provided
by existing models. It is based on two key insights: we can
remove the buffer pool altogether, and we can implement
buffer drops on modern NICs without the theoretical
branch they introduce, minimizing the amount of state that
the driver must keep track of.

Our model is designed to be as simple as possible, thus
improving correctness and performance. Its simplicity
makes it easier to formally or informally reason about and
requires less code and simpler code to implement.

Our model is a subset of the existing model: as shown
in Figure 4: the core differences are that it has no pool of
free buffers, and does not allow network functions to keep
buffers. The driver moves transmitted buffers directly to the
reception queue, and the network function must choose to
either transmit or drop received packets. This simplifies the
driver by giving it only one choice when transmitting a
packet: recycling transmitted buffers to the receiving queue
now or later. Removing the buffer pool also makes progress
easier to reason about: the software can only halt if the
driver does not recycle buffers when the receiving queue is
empty, or if the network function halts. While termination
is impossible to prove in the general case due to the halting
problem [31], network functions have strict performance
requirements, thus their code is unlikely to have loops
whose termination is not obvious because such loops could
be performance bugs.

Our model minimizes state by combining reception,
processing, and transmission into a single logical descriptor
ring containing all buffers, without the need for any other
data structure. While it is implemented using one reception
ring and one transmission ring, the driver mirrors the head
of the transmission ring to the tail of the reception ring,
thus ensuring that buffers that have finished transmitting
are reused for reception without any intermediate steps.

The key hardware feature that allows this is called “null
transmit descriptors”: as its name implies, it allows some
descriptors in a transmission ring to have no effect. Packet
drop is thus a special case of packet transmission, which
removes the fork in buffers’ paths and allows for a regular
buffer flow. For instance, a network card can implement this
by dropping packets whose length in metadata is zero.

The driver’s job consists of three tasks: move buffers
from the “received” queue to the “processing” queue when
the network function asks for a packet, move buffers from
the “processing” queue to the “transmitting” queue when
the network function asks to transmit or drop its current
packet, and recycle buffers from the “transmitted” queue to
the “receiving” queue to ensure the “receiving” queue is
never empty. Since this last operation is not a response to a
specific input, the driver must choose when to perform it,
for instance once every few transmitted packets.

Our model supports multiple outputs by using multiple
transmission rings and making the driver synchronize their
state. That is, the driver must set the tails of all transmission
rings at the same time and use the earliest head in all rings
as the head to mirror to the reception tail. Transmitting a
packet when the driver has multiple outputs conceptually
maps to transmitting it on some outputs and dropping it on
all others; all rings still have a descriptor pointing to the
buffer, but that descriptor is null in some of the rings. This
may cause packet drops if an output link is too slow, in
which case the entire ring will be used for transmission
with no space left for reception. The same could happen in
a traditional model if all buffers in the pool were used for
transmission due to a slow output.

Multiple inputs can be handled concurrently: while
the same processing queue cannot have multiple inputs,
since it is not possible to synchronize the state of reception
rings, the entire system can be duplicated so that there is
one reception queue per input, one associated processing
queue, and any number of synchronized transmission
queues. Modern NICs have hundreds of queues, thus it is
not a problem to use one transmission queue per input.

This does not mean our model requires parallelism: a
single thread of execution can implement many instances,
which are thus concurrent but not parallel.

Our model is amenable to parallelism: multiple
threads of execution can run in parallel, each implementing
any number of instances, without having to synchronize
any state. Only the state of the rings within an instance
needs to be kept in sync. This is similar to existing models.

The key limitation of our model is the flip side of its
strength: since network functions must process buffers one
by one without keep any aside, they cannot reconstruct
multi-packet messages without copying buffers that arrive
out of order. Thus, while core functions such as routing and
network address translation can be implemented with our
model, one cannot terminate TCP connections or otherwise
reassemble fragments without copying buffers, which is an
expensive operation given modern network speeds.

TXing

TXed

RXing

RXed

ProcNF
drop

NF
transmit

NF
fetch

Driver
recycle

NIC
transmit

NIC
receive

Figure 4. Diagram of our proposed driver model. Semantics
are the same as in Figure 3.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 229

5. Implementing our new model
In this section, we describe an implementation of our driver
model for the Intel 82599 NIC [12] which we call “TinyNF”,
short for “Tiny Network Function”.

TinyNF’s goals are to be easy to reason about and fast.
The former is different from “correct” because it is hard to
tell whether a driver operates as expected without hard-
ware schematics, since the data sheet may be incorrect.
However, we want to make it simple enough that it is not a
bottleneck in network function verification efforts.

For simplicity, TinyNF processes buffers one at a time:
there is always at most one buffer in the processing queue.
One key hypothesis in this project was that TinyNF could
be fast without explicitly processing packets in batches.

The keys to TinyNF’s performance the avoidance of any
operation that is not absolutely required, and the use of a
few small but surprisingly effective scheduling algorithms
for synchronizing queue state.

TinyNF avoids unneeded work, even metadata copy.
Because each buffer always belongs to exactly one queue,
and because queues are ordered, it is enough to set the
buffer pointers at initialization time and never change them
afterwards. Moving a buffer from one queue to another only
requires writing to the source head and destination tail.

There are fewer delimiters in practice than in theory
since some of them are implicit, as shown in Figure 5. The
“transmitted” head and tail are the “receiving” tail and
“transmitting” head, respectively. Similarly, the “received”
head and tail are the “processing” tail and “receiving” head.
While there is technically a “processed” queue that does not
exist in the conceptual model, its head and tail are the
“transmitting” tail and “processing” head respectively. The
“processing” tail does not need explicit tracking, because it
is always either one buffer ahead of the head or equal to it,
due to the one-packet-at-a-time constraint.

TinyNF avoids reading from NIC registers entirely after
initialization. To check for received buffers, the “descriptor
done” metadata flag of the descriptor at the processing tail
is enough. To check for transmitted buffers, the 82599 NIC
provides a “transmit head write-back” feature: software can
request hardware to write the transmit head to RAM after
hardware has finished transmitting a buffer.

TinyNF cannot avoid updating the receive and transmit
tails, which are NIC registers and thus slower than RAM,
but it can avoid doing so after every packet. Updating the
receive tail, which moves buffers to the “receiving” queue,
is only necessary once every few transmitted buffers since
reception continues working as long as there are buffers in
the queue, even if there are less than there theoretically
could be. Updating the transmit tail is necessary for buffers
to be transmitted to the network, but this can be done once
every few transmissions, or when there are no packets to
receive and thus no other work to do.

TinyNF carefully schedules operations to minimize the
amount of communication between software and hardware.
This improves overall latency and reduces the fraction of
PCIe throughput used for metadata.

Two operations can be scheduled together: asking the
NIC to update the transmission tail and checking for such
updates to recycle buffers. The request is made with a bit in
transmission metadata, and the check is made by reading
the value that the NIC wrote to RAM via DMA. TinyNF
schedules both operations once every 64 packets. The check
will thus see the update that was requested 64 packets ago.

The most important scheduling decision is updating the
transmission tail: frequent updates decrease latency by
making the NIC aware of packets sooner, but they increase
throughput by performing less book-keeping. Networking
stacks such as DPDK solve this with adaptive batching: they
check for multiple received buffers at a time up to a limit,
let the network function process them all, then update the
transmission tail. This theoretically allows drivers to make
better scheduling decisions because they have more data:
they know how many packets have arrived, rather than
whether there is at least one packet.

TinyNF’s one-packet-at-a-time model is incompatible
with batching, thus we chose an algorithm based on past
data instead. TinyNF updates the transmission tail either
once every few transmitted packets, or as soon as there are
no packets to receive since this likely indicates there is time
to perform this expensive operation. This keeps the period
short under low load, avoiding latency spikes, but allows
for longer periods under high load, avoiding throughput
drops, without looking at packets beyond the current one.

Overall, TinyNF is around 550 lines of C code, and its
only dependency is a 300-line environment abstraction. It
runs entirely in user mode, without kernel dependencies.

TX head

RX
tail

Proc
head

Proc tail

TX
tail

RX
head

0

1

2

34

5

6

7

Figure 5. Logical ring composed of reception, processing
and transmission queues. “In progress” queues are light,
“done” ones are dark and shaded. Heads and tails refer to
“in progress” queues, but implicitly delimit the others.

230 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

6. Evaluation: TinyNF for verification
In this section, we evaluate two hypotheses about TinyNF:
its simplicity should (1) make it easier to reason about and
(2) make it faster than other verified drivers.

We evaluate TinyNF by using it in the formally verified
network functions of the Vigor [33] project. Vigor verifies
the entire software stack, including the network function
code and the network card driver.

Vigor does not need DPDK’s flexibility: it is focused on
network functions that form the Internet’s backbone, such
as Ethernet bridges and IP load balancers. This makes Vigor
network functions good candidates to evaluate TinyNF.

Vigor uses DPDK for performance, but it cannot take
full advantage of DPDK’s optimizations either. Vigor’s use
of DPDK allows its network functions to outperform those
written using traditional networking APIs that go through
the kernel to receive and transmit packets. However, some
DPDK optimizations such as batching and vectorization are
currently out of the reach of automated formal verification.
Thus, the driver formally verified by Vigor is the subset of
the DPDK driver that can be automatically verified, not all
of the driver.

TinyNF makes Vigor network functions 8x faster
to verify, as we show in Table 1. We ran verification on
two Intel Xeon E5-2690 CPUs at 2.90 GHz, totaling 32 cores.

Vigor verification has two steps: first Vigor symbolically
executes the network function code to find all paths, then it
validates each path using a theorem prover, which can be
done in parallel. Both parts of Vigor verification are faster
with TinyNF for the same main reason: symbolic execution
does not need to explore DPDK’s complex stack, thus it
takes 1/5th the time and yields 1/7th the number of paths.
Individual paths are also faster to validate since they have
less code, though this is less pronounced since validation
focuses on network function code, not driver code.

The most drastic change is in the load-balancer, due to
its more complex paths that involve more data structures:
its total verification time on our machine goes down from
~1h45min to ~14min. This allows full-stack verification to
be used as part of development, such as verifying every
code change, as opposed to being for special occasions.

TinyNF is 1/11th the code of the DPDK driver and has
exponentially fewer paths, as we show in Table 2, which
explains why the improvements in verification time are so
drastic. We measured the code complexity of TinyNF and of
the verified subset of DPDK’s driver. We manually counted
paths, so that we could define them in terms of the public
parameters: the arguments passed in the code, and the
choices made at DPDK build time when picking a data
structure implementation. Automating this using symbolic
execution would have only found the number of paths
given a concrete configuration. When counting paths, we
assume that NIC hardware behaves as per its data sheet.

To show the effect of a change in driver model and not
only in implementation, we also included the “Ixy” driver
by Emmerich et al. [10], a simplified implementation of
DPDK’s design for educational purposes that does not aim
for comparable performance. As expected, TinyNF and Ixy
use similar amounts of code to initialize, since they both use
a limited set of NIC hardware features. However, TinyNF
has less code and exponentially fewer paths than Ixy in the
reception and transmission functions that form the core of
the driver, providing more evidence in favor of our model.

We note that the number of paths can change based on
programmer decisions: using Boolean expressions rather
than conditionally executed code can lower the number of
paths, such as writing x = c ? y : x; instead of if (c) { x = y; }
in C. We could have used this to bring down the number of
paths in TinyNF’s transmission function to 4, without any
exponent regardless of the number of output links, but
chose not to as such code is compiled to conditional move
instructions which have poor tail latency on our machines.

 Init. Reception Transmission

 #funs #LoCs #funs #LoCs #paths #funs #LoCs #paths

DPDK 115 3204 5 136 1 + AF + 288AS 5 122 (8 + 14(FFT + P((FS + FF)T – FFT))O

Ixy 14 279 1 63 1 + AF + AS 1 53 14O

TinyNF 4 245 1 17 3 1 29 2 + 2O
AS, AF and FS, FF: Number of success and failure paths in packet allocation and freeing respectively; Ixy’s freeing cannot fail
P: Number of paths in the “put buffers back” operation of the DPDK memory pool in use
T: DPDK parameter for the transmit descriptors write-back threshold, must be >0 O: Number of output links

Table 2. Number of functions, lines of code and paths in DPDK, Ixy and TinyNF drivers for the Intel 82599.

 DPDK TinyNF

 Sym. ex. Validation Sym. ex. Validation

NAT 337s 149 × 83s 63s 20 × 73s

Bridge 527s 312 × 89s 104s 39 × 77s

LB 731s 297 × 620s 161s 51 × 425s

Policer 392s 190 × 90s 75s 25 × 76s

FW 323s 140 × 83s 61s 20 × 68s

Table 1. Verification time statistics for the Vigor network
functions using DPDK and TinyNF.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 231

TinyNF makes fewer assumptions on its environment
than DPDK. Vigor makes assumptions about the behavior
of two components: DPDK data structures and operating
system functions.

One fundamental issue with DPDK’s driver, even in the
verified version, is its need for a data structure to hold free
packet buffers. This leaves two options for verification: use
a simpler but slower data structure that can be verified or
assume that a faster but unverified data structure is correct.
Unlike DPDK and TinyNF, there is no evidence that simpler
data structures can match their more complex counterparts
in performance. In fact, the opposite is true: data structure
contracts are already simple yet popular implementations
become more complex with time, such as a 2500-line
change in Java 8 to make the hash map more resilient to
collisions [15]. By comparison, Vigor’s verified map has less
than 300 lines of code in its entirety.

Another issue with DPDK’s driver is in the amount of
assumptions it makes about operating system functions.
When verifying network functions running on Linux, Vigor
replaces these functions during symbolic execution with
custom models. This ensures DPDK calls operating system
functions correctly according to Linux’s documentation,
such as by validating the order and arguments of function
calls. The models then return symbolic values that cover the
range of documented behaviors. But there is no formal
specification for these functions, much less a formal proof
that the Linux implementation is correct. Thus, Vigor needs
to assume the correctness of dozens of models for its proof
on Linux. This can be avoided by using a custom operating
system, at the cost of losing Linux tools and features such
as multitenancy and scheduling. TinyNF needs much less
from its environment, drastically reducing the number of
assumptions even on Linux.

TinyNF is easier to analyze than DPDK, since it only
needs standard C. DPDK uses non-standard extensions to
give hints to the CPU and compiler, such as prefetching
memory and vectorizing loops. TinyNF does not need any
such hints; the driver does not even use the standard library
directly, going through a small environment abstraction
layer instead.

This standards compliance makes TinyNF analyzable
“out of the box” with most tools and allows future tools to
support TinyNF without special treatment. This includes
symbolic execution engines such as KLEE [4], which Vigor
uses and extended to support DPDK code, and manual
provers such as VeriFast [14], also used by Vigor. We think
this will accelerate networking research in drivers and
functions by making it easier to develop new techniques
and tools. For instance, TinyNF’s simplicity and small size
makes it amenable to a proof of functional correctness
given a hardware specification, which would improve upon
Vigor’s proof of memory safety through hardware models.

TinyNF improves the throughput of Vigor network
functions by 160%, with 2% less median latency, as we
show in Table 3. 99th percentile latency decreases by 7%.

To measure performance, we used two machines in a
setup based on RFC 2544 [26], with a “device under test”
running a network function and a “tester” running the
MoonGen packet generator [9], which can measure latency
using NIC timestamps. Both machines run Ubuntu 18.04 on
two Intel Xeon E5-2667 v2 CPUs at 3.60GHz with power-
saving features disabled and have two Intel 82599ES NICs,
using only one port per card to ensure PCIe bandwidth is
not a bottleneck. We measure throughput using minimally
sized packets. Our workload fills the internal flow table of
the network functions to 90% of their capacity. Measuring
latency with MoonGen instead of on the device under test
allows us to capture the latency of NIC register writes as
well as the effects of drivers’ NIC configuration. This setup
is similar to the one used to originally evaluate Vigor, and
can replicate Intel’s DPDK performance numbers [7].

We replicate Vigor’s benchmark setting: measuring the
max throughput that a Vigor network function can achieve
with less than 0.1% loss, in a single direction, as well as the
latency with 1 Gb/s of background load.

Vigor’s NAT gets the lowest throughput improvement;
this is because its bottleneck is not the driver but computing
packet checksums since it has to modify packet headers. To
confirm this, we tried modifying the DPDK version of the
NAT to use batching: this results in the same throughput as
the TinyNF version of the NAT, confirming that the driver
is unlikely to be the bottleneck.

In summary, both of our hypotheses are validated:
TinyNF is easier to reason about in terms of code quantity
and code complexity, and network functions using TinyNF
are faster than the same functions using DPDK’s verified
subset. Thus, TinyNF allows developers to formally verify
their network functions in less time, get more correctness
guarantees, more than double the functions’ throughput,
and lower the functions’ median and tail latency.

DPDK TinyNF

Tput Latency (μs) Tput Latency (μs)
(Gb/s) 50% 99% (Gb/s) 50% 99%

NAT 1.99 4.04 4.77 3.69 3.92 4.25

Bridge 2.65 3.97 4.50 5.82 3.93 4.23

LB 2.22 4.01 4.63 6.66 3.90 4.24

Policer 2.96 3.88 4.32 9.53 3.83 4.24

FW 2.65 3.97 4.49 8.14 3.88 4.24

Table 3. Single-link throughput and latency with 1 Gb/s
background load of Vigor functions on DPDK and TinyNF.

232 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

7. Evaluation: TinyNF in general
In this section, we compare the performance of TinyNF and
DPDK for general purpose network functions, regardless of
verifiability.

We use the same benchmark setup as in the previous
section, but this time use both directions for throughput, for
a maximum of 20 Gb/s. We keep throughput symmetric
during the benchmarks, i.e., if a function cannot handle a
given load, we reduce the load of both directions by the
same amount and retry. We then measure the latency at
load increments of 1 Gb/s to paint a clear picture of the
function’s overall performance profile.

TinyNF can outperform a fully optimized DPDK
setup, as we show in Figures 6 and 7 using a traffic policer
as an example. We compare the Vigor policer using TinyNF
as its driver to the same code using either “unbatched”
DPDK, which is the simpler version used by Vigor, or
“batched” DPDK, which is the standard way to use DPDK
that enables optimizations such as adaptive batching and
vectorization. We also implemented a 2-core parallelization
of the policer for all three variants. We chose the policer
because, by design, traffic in one direction is independent
of traffic in the other, which means it admits a trivial 2-core
parallelization for our experiments. We are not proposing a
new way to parallelize network functions, but merely
showing that TinyNF can be parallelized in a similar way to
existing drivers. This also shows how much improvement
parallelization can bring compared to batching.

Using TinyNF, the policer achieves better throughput
than using batched DPDK, with an even starker difference
when using two cores. The bottleneck that prevents the
dual-core TinyNF version of the policer from reaching line
rate is the frequent reads from the CPU time, which it needs
for flow expiration.

 TinyNF leads to better latency at low and high loads but
worse latency in the middle, especially the 99th percentile
latency. Looking at individual data points, which we show
in Figure 8, the TinyNF-based policer has lower latency in
some cases, but this advantage is lost in the tail latency. We
believe this is a case where DPDK’s batching shines: it can
detect “gaps” between packets, in which updates to the
transmission tail do not compete with packet processing, by
looking at how many packets there are in the queue.

Finally, since we had to modify the policer code to use
TinyNF, we wanted to see whether the same performance
benefits could be obtained without code changes. We wrote
a compatibility layer that implements some of the DPDK
API on top of TinyNF. The layer cannot implement all of the
DPDK API, by design, but can replace DPDK for functions
that fit the TinyNF model by changing an environment var-
iable at compile time. The compatibility layer allows for 1%
more maximum throughput than batched DPDK, at the cost
of increased latency.

Figure 6. Throughput and median latency of a traffic policer
using DPDK with and without batching, TinyNF, and 2-
core versions of all three.

Figure 7. 99th percentile latency version of Figure 6.

Figure 8. Complementary cumulative latency distributions
of a traffic policer using the same alternatives as Figure 6,
with 1 Gb/s background load.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 233

A no-op function can handle more throughput with
DPDK than with TinyNF, even though the opposite holds
with real functions. We reached this surprising conclusion
by benchmarking DPDK’s “testpmd” built-in application,
which DPDK developers use in performance reports [7] to
benchmark driver speed. We configured testpmd to update
packets’ MAC address to provide some realism. Using our
setup, both TinyNF and DPDK in its batched mode could
saturate two 10 Gb/s links, as we show in Figure 9. We also
included the Ixy driver [10], which performed admirably
given its educational purpose but could not sustain line rate
even with batching.

Since our setup was bottlenecked by link capacity, we
chose to lower the CPU frequency to 2 GHz and re-run the
benchmark. In this setup, DPDK can reach 97.5% of line rate
while TinyNF peaks at around 92.5% of line rate, as we show
in Figure 10, though its latency is lower.

We believe the bump around 11 Gb/s is due to hardware
issues, since it appears in three independently written
drivers and in both a no-op and a nontrivial function.

This result is interesting, since the no-op benchmark is
the one used by DPDK developers to measure their progress
when optimizing DPDK’s performance. If this benchmark
does not accurately represent driver performance on real
network functions, the DPDK developers may believe they
are improving DPDK’s performance but do the opposite.

To explain this finding, we started by plotting the no-op
function’s latency in more detail. We did this because of an
observation we made while running the other benchmarks:
TinyNF’s performance appeared more stable than DPDK’s,
yielding more consistent results across runs, such as never
dropping packets under high loads whereas DPDK would
sometimes drop a few packets per million.

As expected, TinyNF has a more stable latency profile
than DPDK: without background load, TinyNF’s latency
remains low up until the 99.9th percentile, whereas DPDK’s
latency starts jittering before this, as show in Figure 11. We
stop at the 99.99th percentile because Primorac et al. showed
that NIC timestamping is not accurate after that point [23].

This measurement highlights a key issue with DPDK’s
driver model: the driver has to manage buffers explicitly
instead of merely moving them from one queue to the next,
which leads to a distinct bump in latency before the 99th
percentile. The same holds for Ixy, since it uses the same
driver model as DPDK.

We used the toplev microarchitectural measurement
tool [22] to investigate bottlenecks in DPDK’s driver when
running the Vigor policer. While the tool indicates that the
policer is bottlenecked on memory writes, there is no single
write that dominates. Some of the memory writes that take
the most time are fundamental to DPDK’s design, such as
moving buffer pointers to and from the buffer pool, while
others could be removed at the cost of some functionality,
such as writes to packet buffer metadata.

Figure 9. Throughput and median latency of DPDK’s no-op
function with and without batching, a port of it on TinyNF,
and a port of it on Ixy with and without batching.

Figure 10. Same benchmark as Figure 9 but with the CPU
capped to 2 GHz. We do not show Ixy since it could not
sustain line rate even at full CPU speed.

Figure 11. Complementary cumulative latency distributions
of the no-ops from Figure 9 without background load.

234 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

TinyNF slows down less when running real functions
because its instruction-level parallelism has room to
grow and it interferes less with the CPU’s caches. We
reached this conclusion after measuring low-level CPU
counters using libPAPI [30], in particular the number of
cycles, instructions, and cache hits per packet at 20 Gb/s.

Before going further, we must caution against over-
interpreting our results, in particular absolute numbers of
cycles. To measure low-level CPU metrics, we instrumented
network functions with code that copies counter values for
later processing. This has overhead: reading performance
counters uses cycles, and copying their values touches the
CPU caches. Furthermore, due to the out-of-order nature of
modern CPUs, accurately measuring cycle counts requires
inserting serializing instructions to ensure past instructions
have completed. Thus, measuring the cycle count increases
it as it prevents the CPU from reordering some instructions.
The measurement overhead is stable, so we measure it and
subtract it from the measurements, but we cannot fully
account for cache changes due to storing counter values, or
for the effects of serialization. Because of this, cycle counts
can only be compared to other functions on the same driver.
Instruction counts and cache use can be compared globally.

We collected data by running network functions ten
times collecting ten million packets each time. We intended
to collect data in a single run, but noticed that some runs
have a lower cache miss rate than others, despite using the
same executable run in the same way on a CPU not
otherwise used by the operating system.

We used four functions: a no-op function that does not even
touch packets, one that writes a constant to the destination
MAC address, one that sets the destination MAC address
using a lookup table based on the source MAC address, and
the Vigor policer. In our setup, the write function is faster
on DPDK but the lookup one is faster on TinyNF. We report
the measured cycles, instructions and cache hits in Table 4.
We do not report main memory hits as they are negligible,
around one in a million packets.

Two results stand out: the increase in instructions per
cycle for TinyNF when running more realistic functions,
and TinyNF’s low cache use compared to DPDK.

TinyNF has low instruction-level paralelism in a no-op
because the CPU is waiting for operations on descriptors
and NIC registers, which cannot be executed out of order.
On a more realistic function, the CPU executes the function
instructions out of order, increasing efficiency, thus the
slowdown is not linear. This is consistent with TinyNF’s
low latency in the reduced frequency benchmark: the
frequency makes little difference when waiting for the NIC.

Batched DPDK, on the other hand, can execute multiple
instructions per cycle even in no-ops, due to instructions
for metadata and buffer management. Its use of vector
instructions also helps keep a high instruction count per
cycle by waiting for multiple descriptors in parallel without
reordering. The slowdown when executing a real function
is thus linear in the number of instructions, unlike TinyNF.

TinyNF also has a lower memory footprint than DPDK,
thus realistic functions have fewer cache misses, an effect
that cannot be observed in no-ops.

 IPC Cycles Instrs L1d hits L2 hits L3 hits

 50% 50% 99% 50% 99% 50% 99% 50% 99% 50% 99%

DPDK unbatched

 No-op 0.39 664 2140 258 3780 101 1300 8.94 103 1.00 82.0

 MAC write 0.37 725 2220 267 3790 107 1300 10.3 102 2.00 85.0

 MAC lookup 0.39 746 2180 287 3810 116 1310 10.4 96.1 3.00 96.0

 Policer 0.66 866 2540 669 4130 331 1500 4.94 94.4 3.00 95.0

DPDK batched

 No-op 1.70 58.1 64.3 99.0 99.1 32.3 33.0 4.81 5.83 1.41 2.50

 MAC write 1.68 63.9 70.1 107 107 36.3 37.0 4.74 5.65 2.66 3.62

 MAC lookup 1.53 84.4 93.1 129 129 46.6 47.3 5.01 6.07 5.12 5.94

 Policer 1.65 298 333 511 512 265 269 4.33 5.52 4.47 5.53

TinyNF

 No-op 0.12 289 683 35.0 53.0 7.87 16.7 4.51 11.0 0.00 1.00

 MAC write 0.13 339 717 45.0 63.0 13.8 22.2 5.11 12.8 1.00 3.00

 MAC lookup 0.18 360 734 65.0 83.0 19.7 29.7 8.99 14.9 2.00 4.00

 Policer 0.49 490 883 297 308 125 144 11.0 23.0 2.00 4.00

Table 4. Low-level metrics. IPC is Instructions Per Cycle. Cycles and IPC are only comparable within the same driver, as
explained in the main text. DPDK batched uses batches of size 32. Main memory hits are negligible and not shown.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 235

8. Applicability
In this section, we evaluate the applicability of our model
to real-world network function deployment. Did we strike
a good tradeoff choosing not to support some functions to
simplify the model? And is our model useful in the context
of network function virtualization?

As previously explained, the core limitation of our
driver model is that network functions cannot keep buffers
aside for later use. For instance, they cannot reconstruct
messages in TCP or other higher-level protocols. Our model
targets network functions that do not need to do so because
they logically handle packets one at a time.

Our model supports many well-known functions,
though there is no standard list of network functions.
Despite their increased importance in modern networking,
there is no consensus on what is a “network function” and
what is not. There have been attempts such as RFC
3234 [27] to classify “middleboxes”, which are functions
that are not crucial to the network, but to the best of our
knowledge there is no commonly accepted list of network
functions. We chose to use the list of functions from the
ClickOS [18] paper, which were also used by the authors of
Vigor [33] to estimate the applicability of their verification
technique. We complement this list with our own
knowledge, for lack of a more standard source.

Our driver model supports 13 of the 14 types of network
functions listed in ClickOS: load balancing, DPI, NAT, fire-
walls, tunnel, multicast, BRAS, monitoring, DDoS preven-
tion, IP proxies, congestion control, IDS, and IPS. The only
one that our model cannot support without compromises is
a traffic shaper, because shaping requires keeping packets
to send them later in the desired traffic shape. Among the
network functions not mentioned by ClickOS, our model
can be used for Ethernet bridges, ARP clients and servers,
DNS proxies, statistics collectors, traffic policers, and
Google’s Maglev [8] load-balancer.

However, our driver model cannot efficiently support
functions based on entire TCP messages, since this requires
keeping IP packets around to reorder and merge them into
logical messages. Such functions include proxies and HTTP
servers. While one could implement reordering by copying
buffers before giving descriptors back to the hardware, this
would hinder performance.

We believe our model is a good fit for network functions
that form the backbone of networks, such as routing, load-
balancing, NAT and DNS, access control and statistics.
However, it is not suited to high-level functions that deal
with entire connections or protocols that fragment packets.

Some requirements are orthogonal to our model. For in-
stance, offloading checksums to hardware would remove
the main bottleneck in the NAT we benchmarked. Any such
feature that can be used by providing metadata to the NIC
can be implemented in a driver using our model.

TinyNF can be used for virtualization, which is a key
tool for the practical deployment of network functions [35].
Virtualization allows operators to deploy multiple network
functions on the same physical machine, instead of having
to dedicate an entire machine to a single function. They also
provide an easier way to manage network functions, in the
same way virtual machines ease software management.

We experimented with virtualization using Single-Root
I/O Virtualization, or “SR-IOV” for short, a PCIe standard
with which network cards can expose virtual network cards
with the same packet-processing features as the physical
card. The virtual machine monitor can let virtual machines
access virtual devices directly, without surrendering control
over the physical card. The physical card includes hardware
to route packets to virtual cards based on packet headers,
for instance by Ethernet address. The physical card can limit
the rate at which each virtual card transmits packets and
can prevent virtual cards from transmitting packets with a
different source address than their own. Virtual machines
thus gain the benefits of direct access without the ability to
monopolize the link or lie about their network identity.

The Intel 82599’s virtual cards do not support some of
the physical features. Notably, using transmit head write-
back causes virtual cards to hang, a problem not mentioned
in the card’s data sheet but already reported by the authors
of Arrakis [20]. Another missing feature is legacy packet
descriptors, which are simpler to use, though the data sheet
calls this out. We wrote a version of TinyNF that does not
use these features, making it slightly slower. The Arrakis
authors estimated that the lack of transmit head write-back
causes a 5% performance penalty

We used the same physical setup as before, but with 16
virtual functions on each of the two network cards, for a
total of 32 virtual cards. Each virtual card has an Ethernet
address, and physical cards route packets to virtual cards
based on these addresses. The only code changes are due to
the missing features mentioned above, as well as a few
dozen lines of configuration. The functions forward each
packet using a virtual card on the physical card opposite the
one whose virtual card received the packet.

The Vigor policer handles 12.2 Gb/s of minimally-sized
packets without loss when using TinyNF in this setup. A
no-op function reaches 14 Gb/s. Both are bottlenecked by
reading packet descriptors for packet fetches, as the data
from packets and descriptors no longer fits in the L2 cache.

This experiment is only intended to show that our driver
model is applicable to virtualized environments. With this
number of devices, other concerns arise such as load skew
across devices and non-uniform memory accesses, which
we do not capture here. We believe TinyNF is as sensitive
to these concerns as other stacks. In particular, the order in
which the function checks virtual cards for packets matters.
For instance, if packets mostly arrive on one card, checking
the other cards for packets will limit performance.

236 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

9. Discussion
In this section, we present our main takeaways from this
project, in the form of actionable recommendations for both
researchers and practitioners.

Drivers are not a special category of software, and
the line currently drawn between drivers and other kinds
of software is neither well-defined nor helpful. Drivers
should be considered just another kind of software system,
one that is more focused on hardware than usual. The same
techniques used in systems that handle requests can and
should be scaled down to “drivers”, instead of creating new
vocabulary for one kind of software.

The common meaning of “driver” is a piece of code that
has exclusive access to hardware and exposes a software
API to programs who want to use it. However, software that
does this is not always called a driver. Operating systems
allows programs to access CPUs, including isolation and
high-level APIs to access features such as clocks, but they
are not commonly referred to as “CPU drivers”, with the
notable exception of Barrelfish [1]. The same can be said of
higher-level frameworks such as Java or .NET, which offer
an abstraction over low-level CPU details yet are not called
drivers. This applies to other kinds of devices as well: code
that lets programs run GPU shaders is called a driver, but
code that lets programs to draw windows and buttons on
the screen is not, even though it is also a way for programs
to draw. The internal architecture of some systems does rely
on “drivers” as an indirection to access hardware, but this
is not relevant from users’ point of view.

An example of overly specific vocabulary is “batching”
in network drivers: a feature that improves performance by
amortizing costs. It is really composed of three independent
features: (1) getting multiple packets at a time from the NIC,
gaining information about network load, (2) processing
multiple packets at a time, allowing for vectorized code, and
(3) giving multiple packets at a time to the NIC, amortizing
the cost of NIC register writes. TinyNF shows that only (3)
is required for high throughput, though (1) may be required
to get consistently low latency. In fact, any developer that
uses batching but does not explicitly keep track of network
load or use vector operations is already implicitly aware of
this. Amortizing NIC writes is similar to existing techniques
such as buffering reads and coalescing writes in disk I/O.

The idea that drivers are a special kind of software is
hindering research. Most systems for fast networking, such
as ClickOS [18], DPDK [5], netmap [28], SoftNIC [11], and
IX [2], reuse existing drivers, which are bottlenecks on their
performance. Arrakis [20] uses custom drivers but focuses
on interrupt-driven I/O, which strikes a different tradeoff.
Ixy [10], is the only research driver we know of besides
ours. It is odd to have more research operating systems than
drivers: the former are by definition more complex as they
contain at least one driver.

Isolation is required for low-level performance, just as
modularity is required for high-level correctness. The best-
effort approach of shared caches is no longer enough when
interferences that cause even a low number of cache misses
cause a noticeable performance difference, as is the case
with fast networking.

One way to provide performance modularity is to run
each part of a system on physically separate hardware, as
in TAS [16]. This eliminates interference in per-core caches,
at the cost of increasing resource use. It also increases the
cost of communication between modules, in the same way
protection rings eliminate functional interference between
user and kernel mode at the cost of an expensive boundary
between the two modes.

However, the current way to measure low-level metrics
through special CPU registers cannot be isolated from the
code under measurement. This is not an issue for most code,
because the overhead of measurement is low, but it becomes
an issue with nanosecond-scale code such as TinyNF.

One way to avoid measurement overhead is to use static
instead of dynamic analysis, but this requires a hardware
model. TiML [32] includes performance reasoning in a type
system, and Bolt [13] infers performance metrics from the
source code of network functions written in C. However,
predicting cycle counts requires accurate hardware models.
For instance, Bolt predicts instruction counts within a few
percent of ground truth but is 300% off the true cycle count
for typical workloads. Since hardware optimizations are
considered a competitive advantage, perfectly accurate
hardware models are unlikely to be made publicly available.

Standard benchmarks would improve the state of
network function research. Other areas of research use
benchmarks such as SPEC [3] to measure improvements on
a widely-accepted scale. There is no equivalent for network
functions, not even non-standard ones.

We chose to explore a new point in the design space of
networking code based on our experience with networking
research, but the main threat to this paper’s validity is that
we have no way to validate the usefulness of this design. It
may be that real-world traffic looks more like the one used
to benchmark Arrakis [20], for instance, in which Peter et
al. came to the conclusion that handling operations in user
mode entirely eliminates the need for even transmission tail
update coalescing.

Unlike other domains in which one can substitute
benchmarks with well-known publicly available targets,
such as compiling the compiler itself to show optimization
improvements, network functions are generally not public.

This problem is getting worse as hardware gets faster.
With 100 Gb/s Ethernet becoming more popular, should we
focus on handling minimally sized packets, with a budget
of 6ns per packet, or should we assume that traffic is made
up of packets in the hundreds of bytes, as Pigasus [34] does?
We do not know.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 237

Any benchmark, even if unrealistic, would improve
the situation, which is that both industry and academia
use no-op functions as a de facto standard. DPDK’s
performance reports [6] from Intel, Mellanox, and
Broadcom all exclusively use no-ops, and research such as
netmap [28] or SoftNIC [11] mostly use no-ops. But no-ops
are not representative of either general or specific cases.
Even overly specific benchmark suite would at least result
in systems optimized for a real use case, instead of systems
optimized for no-ops which are not useful to anyone.

Since the performance of infrastructure code interferes
with the performance of application code in non-obvious
ways, extrapolations from no-ops are not representative of
actual performance. We believe that using any real network
function as a standard benchmark would provide a data
point from which one can extrapolate more credibly to
other real functions. The chosen function would be closer
to any other function than a no-op is in terms of how the
infrastructure code influences its performance, regardless
of how close it is in terms of functionality.

We started this project with the goal to close the gap
between unverified and verified performance using the
Vigor network functions as benchmarks. Had we measured
no-op performance for TinyNF first, under the belief that it
was representative, we would have come to the conclusion
that it was worse than DPDK. This could have led us to
make TinyNF more complex to “fix” its no-op performance,
accidentally lowering performance for real functions in the
process.

More formal hardware data sheets could speed up
software development and reduce bugs, without the
need to change the hardware. TinyNF’s complexity mainly
comes from the number of assumptions it makes about
hardware. These are due to missing or incorrect data, which
is a natural consequence of free-form data sheets.

Most of the data sheet errors could be avoided using the
same kind of analysis performed by compilers today. For
instance, the Intel 82599 NIC’s data sheet [12] has typos in
register names and even in the size of some register fields;
these could be caught by consistency checks ensuring all
referenced names are declared and all registers contain the
right number of bits. Some registers are only documented
within the list of registers and not in the explanations of the
operations they are used for, requiring developers to read
the entire data sheet to learn about them; these could be
caught by a check for unused declarations.

It would be unreasonable to expect hardware engineers
to always provide perfect data sheets or design bug-free
hardware, in the same way that it would be unreasonable
to expect software engineers to always write bug-free code.
However, our experience is that most current bugs are low-
hanging fruit that could be caught without inventing new
analysis techniques, if data sheets written in a machine-
readable format first.

Using the basic features of a modern NIC does not
have to be complicated, despite the belief that hardware
has become inherently harder to deal with than in the past.
We examined the oldest driver we could find for a NIC of
the Intel 8259x family, which is the so-called “apricot”
driver [17] for the Intel 82596, released with Linux 1.1 in
1994. It contains 450 lines of code not including debug code,
which is close to TinyNF’s 550.

Most lines of code in TinyNF come from unused features
that must be initialized anyway. For instance, software must
clear packet filters and virtualization-related registers after
resetting the hardware, unlike some other features that are
left in a clean state by the hardware reset. This kind of issues
is not a fundamental source of complexity but a hardware
implementation detail. If the hardware could be fully reset
in a single operation, TinyNF would have fewer lines of
code than the old “apricot” driver. This overhead is not as
visible in a driver such as DPDK’s, whose complexity comes
from the amount of features it supports.

We hope this paper serves as evidence that developing
code that interacts with network cards is both interesting
and rewarding, and that it is not as complex or difficult as
is often believed. On the contrary, we found that developing
our own driver made the development and verification of
network functions easier, by removing all dependencies on
complex external stacks and kernel-mode drivers.

Acknowledgements
We thank our shepherd Simon Peter for his useful feedback
and guidance; the anonymous reviewers for their useful
and detailed reviews; the anonymous artifact evaluators for
their useful feedback on the code and experiments; Arseniy
Zaostrovnykh, Akvilė Valentukonytė, Blagovesta Kostova,
Katerina Argyraki, Lei Yan, Rishabh Iyer, Samuel Chassot,
and Yassmine Abdrabo, for providing feedback on the ideas,
paper, and code.

Availability
Our code is available at github.com/dslab-epfl/tinynf, and
described further in the Artifact Appendix below. The code
obtained the “Artifact Available”, “Artifact Functional” and
“Results Reproduced” badge from artifact evaluation and
can thus be reused by others with confidence.

In particular, the TinyNF code can be used as a simpler
and faster base for any network function that fits its model,
or as a baseline to evaluate low-level networking code. The
benchmarking scripts are independent of TinyNF and can
be reused to measure the performance of network functions
that use any framework or driver.

238 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/dslab-epfl/tinynf

References
[1] Baumann, A., Barham, P., Dagand, P.-E., Harris, T.,

Isaacs, R., Peter, S., Roscoe, T., Schüpbach, A. and
Singhania, A. 2009. The Multikernel: A New OS Ar-
chitecture for Scalable Multicore Systems. Proceed-
ings of the ACM SIGOPS 22nd Symposium on Operat-
ing Systems Principles (New York, NY, USA, 2009), 29–
44.

[2] Belay, A., Prekas, G., Primorac, M., Klimovic, A.,
Grossman, S., Kozyrakis, C. and Bugnion, E. 2016. The
IX Operating System: Combining Low Latency, High
Throughput, and Efficiency in a Protected Dataplane.
ACM Trans. Comput. Syst. 34, 4 (Dec. 2016).
DOI:https://doi.org/10.1145/2997641.

[3] Bucek, J., Lange, K.-D. and v. Kistowski, J. 2018. SPEC
CPU2017: Next-Generation Compute Benchmark.
Companion of the 2018 ACM/SPEC International Con-
ference on Performance Engineering (New York, NY,
USA, 2018), 41–42.

[4] Cadar, C., Dunbar, D. and Engler, D. 2008. KLEE: Un-
assisted and Automatic Generation of High-coverage
Tests for Complex Systems Programs. Proceedings of
the 8th USENIX Conference on Operating Systems De-
sign and Implementation (Berkeley, CA, USA, 2008),
209–224.

[5] Data Plane Development Kit: https://www.dpdk.org/.
Accessed: 2020-01-21.

[6] DPDK - Performance reports:
http://core.dpdk.org/perf-reports/. Accessed: 2020-05-
26.

[7] DPDK Intel NIC Performance Report Release 20.02:
https://fast.dpdk.org/doc/perf/DPDK_20_02_In-
tel_NIC_performance_report.pdf. Accessed: 2020-05-
27.

[8] Eisenbud, D.E., Yi, C., Contavalli, C., Smith, C.,
Kononov, R., Mann-Hielscher, E., Cilingiroglu, A.,
Cheyney, B., Shang, W. and Hosein, J.D. 2016. Maglev:
A Fast and Reliable Software Network Load Balancer.
13th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 16) (Santa Clara, CA,
2016), 523–535.

[9] Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart,
F. and Carle, G. 2015. MoonGen: A Scriptable High-
Speed Packet Generator. Proceedings of the 2015 Inter-
net Measurement Conference (New York, NY, USA,
2015), 275–287.

[10] Emmerich, P., Pudelko, M., Bauer, S., Huber, S.,
Zwickl, T. and Carle, G. 2019. User Space Network
Drivers. 2019 ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (ANCS)
(Los Alamitos, CA, USA, Sep. 2019), 1–12.

[11] Han, S., Jang, K., Panda, A., Palkar, S., Han, D. and
Ratnasamy, S. 2015. SoftNIC: A Software NIC to

Augment Hardware. Technical Report #UCB/EECS-
2015-155. EECS Department, University of California,
Berkeley.

[12] Intel 82599 10 Gigabit Ethernet Controller Technical
Library: https://www.intel.com/content/www/us/en/de-
sign/products-and-solutions/networking-and-io/82599-
10-gigabit-ethernet-controller/technical-library.html.
Accessed: 2020-01-21.

[13] Iyer, R., Pedrosa, L., Zaostrovnykh, A., Pirelli, S., Ar-
gyraki, K. and Candea, G. 2019. Performance Con-
tracts for Software Network Functions. 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19) (Boston, MA, Feb. 2019), 517–
530.

[14] Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Pen-
ninckx, W. and Piessens, F. 2011. VeriFast: A Power-
ful, Sound, Predictable, Fast Verifier for C and Java.
Proceedings of the Third International Conference on
NASA Formal Methods (Berlin, Heidelberg, 2011), 41–
55.

[15] JDK-8023463: Improvements to HashMap /
LinkedHashMap use of bins/buckets and trees:
https://bugs.openjdk.java.net/browse/JDK-8023463.
Accessed: 2020-09-08.

[16] Kaufmann, A., Stamler, T., Peter, S., Sharma, N.Kr.,
Krishnamurthy, A. and Anderson, T. 2019. TAS: TCP
Acceleration as an OS Service. Proceedings of the
Fourteenth EuroSys Conference 2019 (New York, NY,
USA, 2019).

[17] Linux 1.1.23. The “apricot” driver is in driv-
ers/net/apricot.c.:
https://mirrors.edge.kernel.org/pub/linux/kernel/v1.1/.
Accessed: 2020-01-21.

[18] Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda,
M., Bifulco, R. and Huici, F. 2014. ClickOS and the Art
of Network Function Virtualization. Proceedings of
the 11th USENIX Conference on Networked Systems
Design and Implementation (USA, 2014), 459–473.

[19] Neugebauer, R., Antichi, G., Zazo, J.F., Audzevich, Y.,
López-Buedo, S. and Moore, A.W. 2018. Understand-
ing PCIe Performance for End Host Networking. Pro-
ceedings of the 2018 Conference of the ACM Special In-
terest Group on Data Communication (New York, NY,
USA, 2018), 327–341.

[20] Peter, S., Li, J., Zhang, I., Ports, D.R.K., Woos, D.,
Krishnamurthy, A., Anderson, T. and Roscoe, T. 2015.
Arrakis: The Operating System Is the Control Plane.
ACM Trans. Comput. Syst. 33, 4 (Nov. 2015).
DOI:https://doi.org/10.1145/2812806.

[21] Pirelli, S., Zaostrovnykh, A. and Candea, G. 2018. A
Formally Verified NAT Stack. Proceedings of the 2018
Afternoon Workshop on Kernel Bypassing Networks,
KBNets@SIGCOMM 2018, Budapest, Hungary, August
20, 2018 (2018), 8–14.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 239

[22] pmu-tools GitHub repository:
https://github.com/andikleen/pmu-tools. Accessed:
2020-09-11.

[23] Primorac, M., Bugnion, E. and Argyraki, K. 2017. How
to Measure the Killer Microsecond. Proceedings of the
Workshop on Kernel-Bypass Networks (New York, NY,
USA, 2017), 37–42.

[24] Registered Input/Output (RIO) API Extensions:
https://docs.microsoft.com/en-us/previous-ver-
sions/windows/it-pro/windows-server-2012-r2-and-
2012/hh997032(v=ws.11). Accessed: 2020-01-21.

[25] Renzelmann, M.J., Kadav, A. and Swift, M.M. 2012.
SymDrive: Testing Drivers without Devices. Pre-
sented as part of the 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 12)
(Hollywood, CA, 2012), 279–292.

[26] RFC 2544 - Benchmarking Methodology for Network
Interconnect Devices: 1999.
https://www.ietf.org/rfc/rfc2544.txt. Accessed: 2020-
05-26.

[27] RFC 3234 - Middleboxes: Taxonomy and Issues:
https://tools.ietf.org/html/rfc3234. Accessed: 2020-01-
21.

[28] Rizzo, L. 2012. Netmap: A Novel Framework for Fast
Packet I/O. Proceedings of the 2012 USENIX Conference
on Annual Technical Conference (USA, 2012), 9.

[29] sys/socket.h - main sockets header: https://pubs.open-
group.org/onlinepubs/9699919799/basedefs/sys_socket.
h.html.

[30] Terpstra, D., Jagode, H., You, H. and Dongarra, J. 2010.
Collecting Performance Data with PAPI-C. Tools for
High Performance Computing 2009 (Berlin, Heidel-
berg, 2010), 157–173.

[31] Turing, A.M. 1937. On Computable Numbers, with an
Application to the Entscheidungsproblem. Proceed-
ings of the London Mathematical Society. s2-42, 1
(1937), 230–265. DOI:https://doi.org/10.1112/plms/s2-
42.1.230.

[32] Wang, P., Wang, D. and Chlipala, A. 2017. TiML: A
Functional Language for Practical Complexity Anal-
ysis with Invariants. Proc. ACM Program. Lang. 1,
OOPSLA (Oct. 2017).
DOI:https://doi.org/10.1145/3133903.

[33] Zaostrovnykh, A., Pirelli, S., Iyer, R., Rizzo, M., Ped-
rosa, L., Argyraki, K. and Candea, G. 2019. Verifying
Software Network Functions with No Verification Ex-
pertise. Proceedings of the 27th ACM Symposium on
Operating Systems Principles (New York, NY, USA,
2019), 275–290.

[34] Zhao, Z., Sadok, H., Atre, N., Hoe, J., Sekar, V. and
Sherry, J. 2020. Achieving 100Gbps Intrusion Preven-
tion on a Single Server. Proceedings of the 14th USE-
NIX Symposium on Operating Systems Design and Im-
plementation (OSDI) (Berkeley, CA, USA, 2020).

[35] 2012. Network Functions Virtualisation: An Introduc-
tion, Benefits, Enablers, Challenges & Call for Action.
Issue 1. ETSI.

240 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Artifact Appendix

Abstract
The artifact of this paper contains the code of the “TinyNF”
prototype, as well as scripts to run the various experiments
used in this paper. The benchmarking scripts can be used
for any network function, not only TinyNF.

Checklist
Program: driver and network functions
Metrics: throughput, latency, code complexity
Output: compiled network function including the driver
Experiments: as described in Sections 6, 7, and 8
Required disk space: 80 GB for low-level metrics, a few
MBs for everything else
Expected run time: around half a day to run all available
experiments, almost all of which is spent waiting
Public link: github.com/dslab-epfl/tinynf
Code license: MIT

Description
How to access: Use the link above.
Hardware dependencies: Two machines with Intel 82599
NICs, as mentioned in experiments/ReadMe.md.
Software dependencies: TinyNF currently supports Linux
only. A few standard packages are required to compile and
run experiments, as described in experiments/ReadMe.md.

Installation
There is no explicit installation step, cloning the repository
is enough. The artifact is fully self-contained and does not
install files to the rest of the machine, except for benchmark
scripts copied to a configurable directory on the machine
that runs them.

Experiment workflow
All experiments are run using scripts. Manual work is not
needed beyond executing the scripts with some parameters
and setting up a configuration file once.

Evaluation and expected result
The scripts produce tables and figures that correspond to
those in this paper. Tables are produced as tab-separated
output on the command line, while figures are produced as
vector images.

Experiment customization
The benchmarking scripts are reusable for any experiment
even not including TinyNF. They are designed to measure
the throughput and latency of any network function, with
special treatment for ones that require DPDK-compatible
kernel drivers.

Notes
We elaborate here on the environment abstraction library
mentioned in Section 5, which is the only dependency of
the TinyNF driver. The driver itself does not depend on any
kernel-mode driver and only needs “freestanding” features
of the C library, i.e., it only uses a few headers and types but
no C functions from the standard library.

The abstraction contains 5 groups of functions: memory
allocation and deallocation, translation between virtual and
physical addresses, PCI register reads and writes, endian-
ness conversion, and sleep.

We believe these 5 groups are all necessary to write NIC
drivers without compromises, though some of these could
be modified or removed under certain conditions. Sleeping
could be replaced by a clock function combined with busy-
waiting in the driver, but this would be less efficient and no
less complex. Memory deallocation could be omitted if the
software uses a crash-only failure mode. Translating virtual
to physical addresses may not be necessary in the presence
of an IOMMU, if memory allocation also configured the
IOMMU. In systems that use the Enhanced Configuration
Access Mechanism for PCI registers, or “ECAM” for short,
the functions to read and write PCI registers could instead
be a single function providing the memory address at which
this space is accessible for a given device.

Notably, the abstraction does not expose non-uniform
memory access: implementations are expected to provide
sane defaults. The current Linux implementation allocates
memory on the same node as the current CPU and does not
allow for PCI operations on devices on other nodes. This
would need to change in a more production-ready version,
in which various strategies can be used when dealing with
devices on multiple nodes, but those strategies are beyond
the scope of this paper.

AE Methodology
Submission, reviewing and badging methodology:
usenix.org/conference/osdi20/call-for-artifacts

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 241

https://github.com/dslab-epfl/tinynf
https://www.usenix.org/conference/osdi20/call-for-artifacts

PANIC: A High-Performance Programmable NIC for Multi-tenant Networks

Jiaxin Lin
University of Wisconsin-Madison

Kiran Patel
University of Illinois at Chicago

Brent E. Stephens
University of Illinois at Chicago

Anirudh Sivaraman
New York University (NYU)

Aditya Akella
University of Wisconsin-Madison

Abstract
Programmable NICs have diverse uses, and there is a need for
a NIC platform that can offload computation from multiple
co-resident applications to many different types of substrates,
including hardware accelerators, embedded FPGAs, and em-
bedded processor cores. Unfortunately, there is no existing
NIC design that can simultaneously support a large number of
diverse offloads while ensuring high throughput/low latency,
multi-tenant isolation, flexible offload chaining, and support
for offloads with variable performance.

This paper presents PANIC, a new programmable NIC.
There are two new key components of the PANIC design that
enable it to overcome the limitations of existing NICs: 1) A
high-performance switching interconnect that scalably con-
nects independent engines into offload chains, and 2) A new
hybrid push/pull packet scheduler that provides cross-tenant
performance isolation and low-latency load-balancing across
parallel offload engines. From experiments performed on an
100 Gbps FPGA-based prototype, we find that this design
overcomes the limitations of state-of-the-art programmable
NICs.

1 Introduction
The gap between network line-rates and the rate at which a
CPU can produce and consume data is widening rapidly [71,
66]. Emerging programmable (“smart”) NICs can help over-
come this problem [32]. There are many different types of
offloads that can be implemented on a programmable NIC.
These offloads, which accelerate computation across all of
the different layers of the network stack, can reduce load
on the general purpose CPU, reduce latency, and increase
throughput [32, 48, 59, 69, 13].

Many different cloud and datacenter applications and use
cases have been shown to benefit from offloading computation
to programmable NICs [13, 48, 59, 42, 32, 37, 49, 46, 62,
47, 30, 36, 70, 69, 35, 55, 45]. However, there is no single
“silver bullet” offload that can improve performance in all
cases. Instead, we anticipate that different applications will
specify their own chains of offloads, and that the operator will
then merge these chains with infrastructure-related offloads
and run them on her programmable NICs. To realize this
vision, this paper presents PANIC, a new scalable and high-
performance programmable NIC for multi-tenant networks

that supports a wide variety of different types of offloads and
composes them into isolated offload chains.

To enable cloud operators to provide NIC offload chains as
a service to tenants, a programmable NIC must support: 1) Of-
fload variety: some offloads like cryptography are best suited
for hardware implementations, while an offload providing a
low-latency bypass for RPCs in an application is better suited
for an embedded core [51]; 2) Offload chaining: to minimize
wasted chip area on redundant functions, the NIC should fa-
cilitate composing independent hardware offload units into
a chain as needed, with commonly-needed offloads shared
across tenants; 3) Multi-tenant isolation: tenants should not
be able to consume more than their allocation of a shared
offload; 4) Variable-performance offloads: there are useful
offloads that are not guaranteed to run at line-rate, as well as
important offloads that run with low latency and at line-rate.

There exist many different programmable NICs [32, 12,
75, 31, 58, 72, 23, 24, 11, 57, 53, 54, 52, 76], but, there is no
programmable NIC that is currently able to provide all of the
above properties. Existing NIC designs can be categorized as
follows, with each category imposing key limitations:

• Pipeline-of-Offloads NICs place multiple offloads in a
pipeline to enable packets to be processed by a chain of
functions [52, 32]. Chaining can be modified in these
NICs today but requires a significant amount of time and
developer effort for FPGA synthesis, and slow offloads
cause packet loss or head-of-line (HOL) blocking.

• Manycore NICs load balance packets across many em-
bedded CPU cores, with the CPU core then control-
ling the processing of packets as needed for different
offloads [23, 24, 53, 54, 57, 72, 58]. These designs suffer
from performance issues because embedded CPU cores
add tens of microseconds of additional latency [32]. Also,
no existing manycore NICs provide performant mecha-
nisms to isolate competing tenants. Further, performance
on manycore NICs can degrade significantly if the work-
ing set does not fit within the core’s cache.

• RMT NICs use on-NIC reconfigurable match+action
(RMT) pipeline to implement NIC offloads. The types
of offloads that can be supported by RMT pipelines are
limited because each pipeline stage must be able to handle
processing a new packet every single clock cycle.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 243

This paper presents the design, implementation and evalua-
tion of PANIC, a new NIC that overcomes the key limitations
of existing NIC designs. PANIC draws inspiration from recent
work on reconfigurable (RMT) switches [21, 67, 68, 27, 16].
PANIC’s design leverages three key principles:

1. Offloads should be self-contained. The set of potentially
useful offloads is diverse and vast, spanning all of the
layers of the network stack. As such, a programmable
NIC should be able to support both hardware IP cores and
embedded CPUs as offloads.

2. Packet scheduling, buffering, and load-balancing should
be centralized for the best performance and efficiency
because decentralized decisions and per-offload queuing
can lead to poor tail response latencies and poor buffer
utilization due to load imbalances.

3. Because the cost of small/medium-sized non-blocking fab-
rics is small relative to the NIC overall, the offloads should
be connected by a non-blocking/low-oversubscribed
switching fabric to enable flexible chaining of offloads.

Following these design principles, this paper makes three
key contributions: 1) A novel programmable NIC design
where diverse offloads are connected to a non-blocking
switching fabric, with chains orchestrated by a programmable
RMT pipeline, 2) A new hybrid push/pull scheduler-and-load
balancer with priority-aware packet dropping, and 3) An anal-
ysis of the costs of on-NIC programmable switching and
scheduling that finds them to be low relative to the NIC as a
whole.

The PANIC NIC has four components: 1) an RMT switch
pipeline, 2) a switching fabric, 3) a central scheduler, and 4)
self-contained compute units. The RMT pipeline provides
programmable chain orchestration. A high performance in-
terconnect enables programmable chaining at line-rate. The
central scheduler provides isolation, buffer management, and
load-balancing. Self-contained compute units may be either
hardware accelerators or embedded cores and are not required
to run at line-rate.

To evaluate the feasibility of PANIC, we have performed
both ASIC analysis and experiments with an FPGA proto-
type. Our ASIC analysis demonstrates the feasibility of the
PANIC architecture and shows that the crossbar interconnect
topology scales well up to 32 total attached compute units.
Our FPGA prototype can perform dynamic offload chaining
at 100 Gbps, and achieves nanosecond-level (<0.8 µs) packet
scheduling and load-balancing under a variety of chaining
configurations. We empirically show that PANIC can handle
multi-tenant isolation and below line-rate offloads better than
a state-of-the-art pipeline-based design. Our end-to-end ex-
periments in a small scale testbed demonstrate that PANIC
can achieve dynamic bandwidth allocation and prioritized
packet scheduling at 100 Gbps. In total, the components of
PANIC, which includes an 8 * 8 crossbar, only consume a
total of 11.27% of the total logic area (LUTs) available on the

Tput
Offload Config (Gbps) Delay

Data Processing
Compression (Lzrw1) HW@300MHz 3.6 0.05-3.3µs
Cryptography (AES-256) HW@300MHz 38.4 407ns
Cryptography (AES-256) CPU@1.5GHz 0.154 −
Network Processing
Authentication (SHA1) HW@220MHz 113.0 0.47-10.8µs
Authentication (SHA1) CPU@1.5GHz 0.192 −
Application Processing
Inference (3-layer-NN) HW@200MHz 120 66ns

Table 1: A breakdown of the performance of different offloads
when implemented in either hardware or software.

Xilinx UltraScale Plus FPGA that we used. The Verilog code
for our FPGA prototype is publicly available 1.

2 Motivation
We discuss in detail the requirements that we envision pro-
grammable NICs in multi-tenant networks ought to meet. We
then explain why existing NICs designs fail to meet them.

2.1 Requirements
1. Offload Variety: There are a large variety of network
offloads, and different types of offloads have different needs.
Not all offloads are best implemented on the same type of
underlying engine. For example, a cryptography offload can
provide much better performance if implemented with a hard-
ware accelerator built from a custom IP core instead of an
embedded processor core. To shed light on this, we experi-
mented with a few different types of offloads using an Alpha
Data ADM-PCIE-9V3 Programmable NIC [12] to evaluate
the behavior of different hardware IP cores that could be used
as on-NIC accelerators, and the Rocket Chip Generator [14]
to perform cycle-accurate performance measurements of a
RISC V CPU to understand the costs of running these offload
with an on-NIC embedded processor. Our results in Table 1
indeed show that offloads for encryption/decryption and au-
thentication are a poor fit for embedded CPU designs and
should be implemented in hardware.

In contrast, an application-specific offload to walk a hash
table that is resident in main memory is better suited for an
embedded processor core because a hardware offload may
not provide enough flexibility [51]. Thus, a programmable
NIC should ideally provide support for both hardware and
software offloads.
2. Dynamic Offload Chaining: In the case of hardware ac-
celerators, it is important to be able to compose independent
offload functionality into a chain/pipeline to avoid wasted
area on redundant functionality. For example, using a pro-
grammable NIC to implement a secure remote memory access
for a tenant may require the tenant to compose cryptography,
congestion control, and RDMA offload engines.

1PANIC artifact: https://bitbucket.org/uw-madison-
networking-research/panic_osdi20_artifact

244 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact

Further, as tenants come and go, and as a given applica-
tion’s traffic patterns change, the on-NIC offload chains will
also need to be dynamically updated. This is because differ-
ent network transfers benefit from different sets of offloads.
Further, not every application packet needs every offload. For
example, for a key-value store that serves requests from both
within-DC and WAN-distributed clients, IPSec and/or com-
pression could be offloaded, but only the packets sent over
the WAN may need IPSec authentication and/or compression.

Thus, an ideal programmable NIC should not restrict the
type of offloads that may be simultaneously used, and should
instead support dynamic offload chaining, i.e., switching and
scheduling packets as needed between independent offloads.
3. Dynamic Isolation: Today’s data center servers colocate
applications from different competing tenants [50, 39, 15,
61, 32]. Each tenant may have its own offload chains that
may need to run on a programmable NIC, so it is necessary
for a programmable NIC to provide performant low-level
isolation mechanisms. For example, consider the case that
two tenants A and B are running offload chains where packets
are first uncompressed and then sent to an embedded CPU
for further processing, and packet contents are such that the
workload for tenant B runs at half the rate of that of tenant
A. To support this, the NIC’s mechanisms must ensure fair
packet scheduling at the shared compression offload and that
the slow chain does not cause head-of-line (HOL) blocking
for the other chain. Further, if a third tenant C were to start,
packet processing load across chains may shift. To handle
this, the scheduling policy may need to be reprogrammed.
4. Support for offloads with variable and below line-rate
performance: Some offloads may not run at line-rate. Of
the compression, cryptography, authentication, and inference
offloads that we ran on hardware, only inference was able to
run at 100 Gbps (Table 1), and others ran well below line-
rate. Also, offload performance is variable and sometimes
workload-dependent, incurring significant delay for certain
requests; see, for example, compression and authentication,
whose performance depends on packet size.

These results also show the need for an approach to load-
balancing that can accommodate offloads with variable per-
formance. Slow offloads can be duplicated across multiple
engines (e.g., 3 AES-256 engines) for line-rate operation.
5. High-Performance Interconnect: It is important for a
programmable NIC to be able to provide high throughput
for line-rate offloads. In the case where no offloads or only
low-latency offloads are used, a programmable NIC should
not incur any additional latency. Achieving high performance
is complicated by bidirectional communication, multi-port
NICs, and chaining. An offload that is used for TX and RX
on a dual port NIC needs to operate at four times line-rate to
prevent becoming a bottleneck. When offloads are chained,
a single packet may traverse the on-NIC network multiple
times. Effectively, the NIC must be able to emulate creating
a line-rate connection between each hop in an offload chain.

NIC Offload Multi-Tenant Variable High Offload
Design Chaining Isolation Perf Perf Variety

Pipeline 7 7 7 X 7
Manycore X 7 X 7 X

RMT 7 X 7 X 7

Table 2: Programmable NIC designs compared w.r.t. the
requirements in Section 2.1.

2.2 Limitations of Existing Designs
We argue below that programmable NIC designs today (Fig-
ure 1) lag behind these requirements (Table 2).

2.2.1 Pipeline Designs

Figure 1a illustrates the pipelined programmable NIC design.
In this design, the offloads are arranged in a linear sequence,
i.e., a pipeline. Effectively, each offload looks as though it
is an independent device attached in the middle of the wire
connecting the NIC to a TOR switch. Most existing NICs
with on-board FPGAs located as a “bump-in-the-wire” use
this design [52, 32, 31], and other NICs use this design for
fixed function offloads for TCP checksums and IPSec [6, 38].
Chaining: Chaining offloads is difficult in pipelined designs
because of their static offload topology; the offloads are ar-
ranged in a line. Although packets can be recirculated through
the pipeline as needed, this wastes on-NIC bandwidth and
hurts line-rate performance.
Variable Performance Offloads: A slow offload that does
not run at line-rate can cause HOL blocking in the pipeline
of offloads if the pipeline is stalled, and packet loss if the
pipeline is not. This can be avoided with routing logic to
bypass offloads, but this requires additional buffer memory at
each offload: packet arrivals in Ethernet are bursty [41, 17],
and it common for tens of packets to arrive back-to-back at
line-rate. There would be significant packet loss if offloads
that are not guaranteed to run at line-rate are not allocated
buffer resources. For offloads where running at line-rate is
workload or configuration dependent, the chip area allocated
to per-offload buffers would be wasted under some traffic
patterns.
Multi-tenant Isolation: In a pipeline, packets are forwarded
through offloads that do not need to process the packet. Even
if every offload runs at full line-rate, a high latency offload
used by Tenant A but not by Tenant B will unnecessarily
lead to increased latency for Tenant B. This can be avoided
with routing logic to bypass offloads, but this also requires
additional buffer memory at each offload to avoid pipeline
stalls or packet drops. It is only possible to bypass an offload
without stalling the pipeline if there is somewhere else to put
the packets that it is currently processing.

Multi-tenant isolation is more problematic if not all of-
floads are guaranteed to run at line-rate. In this case, if tenant
A has already consumed all of the packet buffers allocated
for an offload, then tenant B will experience HOL-blocking
and possibly packet loss. Although per-offload scheduling

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 245

… Offload
N

Offload
1

P1

PN

… to CPU

(a) A pipeline-of-offloads architecture

Core 1,1
P1

PN

… to CPU

Core M,1

…

Core 1,N…

Core M,N…

… …

(b) A tiled manycore NIC architecture

RMT
Pipeline

P1

PN

…

P1

PN

… Egress RMT
PipelineDMA

Queues

to CPU

(c) A NIC with RMT pipeline [42]
Figure 1: Illustrations of existing programmable NIC architectures.

logic could be used to overcome this limitation, this has area
overheads, and, as with per-offload packet buffers, this logic
may be unutilized in some workloads.
Offload Variety: Pipeline-of-offloads designs are typically
used for programmable NICs that only support hardware of-
floads. The limitations of pipeline designs are best avoided
with low-latency offloads that run at line-rate. Because embed-
ded CPU cores may not run at full line-rate and can incur high
processing latency, this makes them a poor fit for pipeline de-
signs. To overcome this limitation, the Azure SmartNIC [32]
onloads computation from the programmable NIC to a core
on the main CPU for certain tasks. This approach is costly,
especially in cloud environments where servers are leased to
customers on a per-core basis.

Some FPGA NICs implement all NIC functionality on an
FPGA, including the Ethernet MAC and PCIe engines [12,
75, 76, 31]. Such NICs do not have many inherent limitations
as a platform. With the right design, such NICs can meet all
of our requirements, but no such design currently exists.

2.2.2 Manycore Designs

Figure 1b illustrates a manycore programmable NIC de-
sign [24, 53, 72, 73]. These designs implement network
offloads by parallelizing flow processing across a large num-
ber of embedded processors that are arranged into a multi-
hop on-chip tiled topology. Some manycore NICs addition-
ally contain hardware engines for cryptography and compres-
sion [72, 58]. This supports chaining and a variety of different
offloads, but performance and isolation are poor.
Performance: Manycore NICs use an embedded CPU core
to orchestrate the processing of a packet across offloaded
functions [34]. This is because the on-chip network cannot
parse complex packet headers to determine the appropriate on-
NIC addresses for the packet’s destination. As a result of this
design choice, manycore NICs have throughput and latency
problems that prevent high-performance chaining. Further,
manycore NICs even struggle to drive 100 Gbps and faster
line-rates [32]. Because a single embedded processor is not
enough to saturate line-rate, manycore NICs require packet
load-balancing and buffering to scale performance.

Manycore NICs struggle to provide high-throughput chain-
ing because manycore interconnects typically only provide
enough throughput for a received packet to be sent to one
embedded core before being sent via DMA to main mem-
ory. As applications become complex, state and caching
limitations can require that different offloads be implemented

as microservices distributed across cores instead of parallel
monoliths. Current manycore NIC designs are not able to
provide high performance for such a usecase.

Similarly, involving a CPU in a manycore NIC adds sig-
nificant packet processing latency that otherwise could be
avoided for packets that only need to be processed by a hard-
ware accelerator. For example, Firestone et al. [32] report
that processing a packet in one of the cores on a manycore
NIC adds a latency of 10 µs or more.
Multi-Tenant Isolation: Because manycore NICs must
buffer packets and load-balance them across parallel embed-
ded cores [48], the extent to which tenants are isolated is deter-
mined by how buffer resources are managed, and how packets
are load balanced. Unfortunately, existing manycore NIC de-
signs do not provide explicit control over packet scheduling
and buffering [48]. They use FIFO packet queuing and drop-
tail buffer management; without any other isolation mecha-
nisms, this can lead to HOL blocking, and drop-tail packet
buffers can allow one tenant to unfairly consume buffers.

However, some level of isolation is possible in manycore
NICs by (1) statically partitioning CPU resources across dif-
ferent tenants [48], which is inefficient, and (2) then using
NIC-provided SDN mechanisms for steering tenants’ flows to
different cores. Additionally, some NICs such as the Broad-
com Stingray allow running an OS to provide software-based
isolation through a Linux operating system [22], but this can
exacerbate the NICs’ performance issues.

2.2.3 Reconfigurable Match+Action (P4) Designs

Figure 1c shows an RMT NIC design; these are built using an
ASIC substrate with a programmable match+action (RMT)
pipeline [42, 60]. In this model, incoming packets are first
parsed by a programmable parser and then sent through a
pipeline of M+A tables. Unfortunately, RMT NICs cannot
support many interesting offloads (e.g., compression, encryp-
tion, or any offload that must wait on the completion of a
DMA from main memory) because the actions that are possi-
ble at each stage of the pipeline are limited to relatively simple
atoms that can execute within 1-2 clock cycles [67, 60, 21].
However, RMT NICs do not suffer from multi-tenant per-
formance isolation problems because each offload runs at
line-rate with extremely low latency.

3 PANIC Overview
PANIC is a new programmable NIC design that meets the
aforementioned requirements (Section 2.1). The core idea be-

246 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Packet Buffer

Compute
Unit 1

Compute
Unit 2

Compute
Unit 3

Central
SchedulerOn-chip

Memory

DMA
Engine

DRAM Controller

port0

port1

port0 port1

Switching Fabric

RMT
MAC
PHY

MAC
PHY

DDR 4PCIe Gen4 x8

QSFP28 QSFP28

port0 port1

Figure 2: PANIC Architecture

hind the design of PANIC is that programmable NICs should
be implemented as four logical components (Figure 2): 1) A
programmable RMT pipeline, which provides programmable
offload chaining on a per-packet basis; 2) A switching fabric,
which interconnects all other components in PANIC and en-
ables dynamic chaining at line-rate; 3) A central scheduler,
which achieves high-performance packet scheduling, traffic
prioritization and traffic isolation; 4) Compute units, each of
them running a single offload. This system architecture is
shown in Figure 2. We show that this design is suitable for
both ASIC and FPGA implementations.
Operational overview: Figure 2 illustrates how PANIC op-
erates when packets are received. In this example, there are
three compute units 1, 2, and 3 running services A, B, and
C respectively. When packets are received in PANIC in Step
1, they are first processed by the RMT pipeline. The RMT
pipeline parses the packet headers and matches on them to
identify the chain of offloads that the packet should be for-
warded to, and then it generates a PANIC descriptor that
contains this offload chain information. In this example, the
offload chain that is found will first send the packet to service
B and then to service A.

Next, the packet is injected into the switching fabric. If the
packet does not need to be processed by any offloads, it will
be forwarded straight to the DMA engine of the NIC, which
is connected to the interconnect in the same manner as all of
the compute units used to implement offloads. Otherwise, it
is sent to the central packet scheduler (Step 2).

The scheduler then buffers the packet and orchestrates
scheduling and load-balancing the request across its offload
chain. When there is no load, packets are chained with a
source route that takes them from offload to offload with-
out stopping at the packet scheduler. In this example, the
scheduler first buffers this packet until Unit 2 is idle. Then,
in Step 3, it steers this packet to Unit 2, and, in Step 4, the
packet is directly pushed to Unit 1. Finally, in Step 5, after
Unit 1 finishes the computation of service A, the source route
steers this packet to the DMA engine, which is responsible

for transferring packets over the PCIe bus into main memory
on the host.

When load is high (not shown), the loaded unit (say Unit
1) detours a packet that was pushed to it (by Unit 2) off to
the buffer in the central scheduler. From there, the packet
can be pulled later for processing by either Unit 1 when it
has finished processing a packet or by another parallel unit
running the same logic as Unit 1 entirely.

Transmitting packets is similar to receiving packets in re-
verse, except that the main CPU can associate offload chains
with transmit queues beforehand so that the RMT pipeline
does not need to process packets before they can be sent to
offloads. After the main CPU enqueues packet descriptors,
they will be read by the DMA engine, forwarded through an
offload chain and managed by the central packet buffer as
needed, and then forwarded to the appropriate Ethernet MAC.

PANIC makes it possible to meet all of our requirements:
1. Offload Variety: Each offload in PANIC is an independent
tile attached to the high-performance interconnect, and the
RMT pipeline builds the packet headers necessary to enable
hardware offloads to process packet streams without any addi-
tional routing or packet handling logic. This allows for a large
variety of different types of computation to be performed by
the offload engine, including hardware IP cores, embedded
processors, and even embedded FPGAs [74].
2. Dynamic Offload Chaining: Installing a new chain in
the RMT pipeline for received packets involves programming
lookup tables, and installing a new chain for a transmit queue
can be done by issuing MMIO writes from the main CPU.
3. Policies for Dynamic Multi-Tenant Isolation: Perfor-
mance isolation is provided by the central packet scheduler,
which performs packet scheduling across the packets buffered
for groups of parallel offloads that provide the same service.
The scheduling algorithm determines both how chains com-
peting for a service are isolated and how chains share packet
buffers. Similar to prior work [68, 70], packet scheduling
policies in PANIC are programmable. Further, PANIC im-
proves upon prior work by also providing policy-aware packet
dropping to enable cross-tenant memory isolation.

PANIC supports any scheduling algorithm that can be im-
plemented by assigning an integer priority to a packet, and
this includes a wide range of different policies, including strict
priority, weighted fair queuing (WFQ), least slack time first
(LSTF), and leaky bucket rate limiting [56, 68]. Although
strict priorities lead to starvation, this is intended—if there
is enough mission-critical traffic to consume all available re-
sources, then it is acceptable for competing best-effort traffic
to starve. If starvation is undesirable, it can be avoided by
using WFQ and rate-limiting.

PANIC can support a hierarchical composition of different
scheduling algorithms, e.g., fair sharing across tenants with
prioritization of flows for each tenant, although this comes
with additional hardware costs. More complex scheduling
algorithms are also possible in PANIC because priorities for

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 247

PK_LEN BUF_ADDR SERVICE_CHAIN

0 16 32 36

CHAIN_LEN

variable

Figure 3: PANIC Descriptor

later services in a chain can be dynamically computed by
an earlier chain stage. Similarly, each group of offloads that
form a service can have its own custom scheduling algorithm,
which is useful when different chains start with different
offloads and then converge and share the same service.
4. Support for offloads with variable and below line-rate
performance: The central packet scheduler supports offloads
that have variable performance. Packets for slow offloads will
be buffered at the central scheduler. As loads shift, packet
buffers can be dynamically allocated to different offload
groups. PANIC’s hybrid push/pull load balancing scheme out-
lined in the example above load-balances packets across par-
allel offloads, ensuring precise load control, low tail latency,
and minimal and efficient on-chip network use. Similar to the
packet scheduler, the load balancer is also programmable.
5. High Performance: PANIC uses an on-chip network
inspired by network routers to provide a high-performance
interconnect between different offload tiles and the tiles for
DMA and the Ethernet MACs. PANIC uses non-blocking
high-bisection topologies like the crossbar making it possible
to guarantee line-rate performance even if every offload in a
chain sends/receives at line-rate over the on-chip network.

4 Design
This section discusses the design of the individual compo-
nents of PANIC in more detail.

4.1 RMT Pipeline
The RMT pipeline in PANIC is used to provide programmable
chaining and to look up scheduling metadata as part of pro-
viding programmable scheduling. The design of the RMT
pipelines is borrowed from the design used in programmable
switches [21, 67]. When a packet is received by the NIC,
the RMT pipeline first parses incoming packets and then
processes them with a sequence of match-action tables (MA
tables). Each MA table matches specified packet header fields
and then performs a sequence of actions to modify or forward
the packet. Via these actions, the RMT pipeline 1) performs
simple, line-rate packet processing (e.g., IP checksum calcula-
tion) and 2) generates a PANIC descriptor for each packet that
contains the appropriate chaining and scheduling metadata
given the configuration that was programmed by the opera-
tor/user. Additionally, the RMT pipeline can maintain state
on a per-traffic-class or per-flow basis if needed to support
programmable scheduling or flow affinity.

Figure 3 shows the PANIC descriptor added by the RMT
pipeline. It includes the packet length, the allocated buffer
address, and the service chain for this packet, which is a
list of services to send the packet to along with per-service
metadata from the RMT. Because multiple compute units

Central Scheduler

Logic
PIFO
Array

On-Chip
Memory

(Packet Buffer)

…

Sw
itch

in
g Fab

ric

Credit
Manager

Packet Data

Descriptor

RAM
Writer

RAM
Reader

Service 1
PIFO

Service N
PIFO

Figure 4: Architecture of the multi-ported central scheduler

may implement the same service (offload), this means that
the RMT pipeline does not specify the exact unit a packet will
be sent to in advance. This enables the scheduler to perform
dynamic load balancing across multiple computation units
implementing the same service in parallel.

In addition to specifying a list of services, the offload chain
also contains metadata. For example, per-hop scheduling
metadata like traffic class and priority allows a chain to have
different priorities and weights across different services. Sim-
ilarly, the descriptor may also contain service-specific meta-
data to allow the RMT pipeline to perform pre-processing to
speed-up or simplify different compute units. Examples of
this type of metadata include pointers to fields in a parsed
packet and a pre-computed hash of an IP address.

The RMT pipeline directly connects to the switching fabric.
To ensure low latency, the pipeline directly steers packets that
are not processed by any service to the DMA engine.

4.2 High Performance Interconnect
To enable dynamic service chaining, PANIC use an on-chip
interconnect network to switch packets, providing high-speed
communication between the scheduler and on-NIC units.

Because it is necessary to forward packets between of-
floads at line-rate, it is important to build a high-performance
network. PANIC utilizes a non-blocking, low latency, and
high throughput crossbar interconnect network, which, for the
scale of our design, still has a low area and power overhead.
The crossbar can be configured to connect any input node to
any output node with no intermediate stages, and each port
runs at line-rate. As a result, every offload can simultaneously
send and receive at line-rate, which enables line-rate dynamic
chaining regardless of which offloads a chain uses.

Although economical in small configurations, crossbar in-
terconnects unfortunately do not scale well with an increase
in the number of cores. Most of these problems arise from
the delay and area cost associated with long interior wires
because the number of these wires increases significantly
with the number of cores. Fortunately, with PANIC, we are
able to choose between different interconnect topologies with-
out having to change other parts of the design. If there is

248 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

a need to scale beyond the limits of a single crossbar, we
can switch to a more scalable (but higher-latency) flattened
butterfly topology [43].

4.3 Centralized Scheduler
The centralized scheduler buffers packets, schedules the order
in which competing packets are processed by a service, and
load-balances packets across the different compute units in a
service. The scheduler architecture is shown in Figure 4. The
scheduler uses a new hybrid scheduling algorithm to support
low-latency chaining while avoiding load imbalance, and it
uses a new hardware-based priority queue (i.e., PIFO [68])
to schedule and drop packets according to a programmable
inter-tenant isolation policy.

An overview of the operation of the central scheduler is as
follows: When a packet and its descriptor arrive, the scheduler
writes the packet data into high-speed on-chip memory and
stores the packet descriptor into the appropriate logical PIFO
queue given the next destination service of this packet. Each
logical PIFO queue corresponds to a service and sorts buffered
descriptors by rank, which enables the scheduler to drop
packets according to the same policy as they are scheduled by
dropping the lowest-rank packet currently enqueued for the
service if needed. Then, whenever any of the parallel compute
units for a service have available “credits” at the scheduler,
the credit manager (Figure 4) chooses the compute unit with
most credits, dequeues the head element of the corresponding
logical PIFO queue, and sends the packet data and descriptor
along with the packet data across the on-chip interconnect to
the chosen unit.

4.3.1 Hybrid Push/Pull Scheduling and Load Balancing

When one service cannot achieve line-rate with a single unit,
PANIC uses multiple parallel units to improve bandwidth. To
support load-balancing across variable performance offloads,
PANIC provides load-aware steering. Specifically, PANIC
introduces a new hybrid pull/push scheduler and load bal-
ancer that overcomes the limitations of either push or pull
scheduling to provide both precise request scheduling and
high utilization.

Pull-based scheduling provides the most precise control
over scheduling because decisions are delayed until each unit
is able to perform work. However, pull-based scheduling
can lead to utilization inefficiencies because each unit must
wait for a pull to complete before it can start work on a new
packet, and busy-polling can lead to increased interconnect
load. In contrast, push-based scheduling can lead to load-
imbalance and increased tail latencies when packets have
variable processing times. In this scenario, it is not possible
to know how much work is enqueued at each unit at the time
that load-balancing decisions must be made.

The hybrid scheduler used in PANIC provides the best
properties of both pull and push scheduling. In this scheduler,

during periods of high load, the central scheduler uses pull-
based load balancing to provide effective load balancing and
packet scheduling. During low load, the scheduler pushes
packets to all of the units in a service chain with low latency.
To accomplish this, the scheduler uses credits to monitor the
load at different units. Next, we describe the two modes of
operation, pull and push, and the use of credits.
Credit Management: The credit manager tracks credits to
measure load and dynamically switch between push-based
and pull-based scheduling. The credit manager initially stores
C credits for each compute unit. After sending a packet out,
it decreases the credit number for that unit by one. When a
compute unit is done processing a packet, it returns credit
back to the credit manager.

The central scheduler operates in push mode as long as
any of the parallel compute units in a service have credits
available. If flow affinity is not needed, the scheduler steers
packets to the unit which has the maximum number of pull
credits to avoid load imbalance.

In contrast, if no unit has credit when a packet arrives, the
scheduler buffers packets until credit is available. In this case,
the central scheduler provides pull scheduling. Because the
decision on which replica to use is made lazily, the number
of packets queued at each unit will never exceed C.

By default, the number of initial credits C is set to two
to avoid a stop-and-wait problem. However, it is possible to
configure different credit numbers for each unit if needed. For
example, ClickNP [47] uses a SHA1 engine that can process
64 packets in parallel, and PANIC can support this level of
parallelism by giving 64 or more credits to the SHA1 engine.
Push-based Chaining: Push scheduling provides low-
latency offload chaining. When a packet needs to traverse
multiple offloads (e.g., from A to B to C), the packet will be
directly pushed to B when it finishes the computation in A
rather than going back to the central scheduler. If B accepts
the pushed packets, it will send a cancel message to the cen-
tral scheduler to decrease its credit by one. In the case that
there are multiple parallel units providing a service, the push
destination is precalculated in the central scheduler. By push-
ing the packet directly to the next destination unit, PANIC
reduces interconnect traversal latency and reduces on-chip
network bandwidth demands. Furthermore, this reduces the
load on the central scheduler as chain lengths grow.
Detour Routing: Push mode chaining may cause a packet to
be pushed to a busy downstream unit that has no buffer space
to accept packets. In this case, we use detour routing: when
local buffer is occupied, the downstream unit redirects the
packet back to the central scheduler, where it is buffered until
it can be scheduled to another idle unit.

4.3.2 Packet Scheduling

To achieve priority scheduling and performance isolation,
every packet stored in the packet buffer has its descriptor en-
queued in a PIFO [68]. PANIC uses this PIFO-based priority

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 249

Hardware
Accelerator

Cache

Credit
Manager

Scratchpad
Packet Buffer

Traffic
Manager

Sw
itch

in
g Fab

ric

Offload Engine

Figure 5: Accelerator-Based
Compute Unit Design

Doorbell
Register

Array

Credit
Manager

Per-Core
MemoryTraffic

Manager

Sw
itch

in
g Fab

ric

RISC-V
CoreL1

B
u

s

Offload Engine

Figure 6: Core-Based Compute
Unit Design

scheduler to provide both performance and buffer isolation
across tenants.
Isolation Policy and Rank Computation: When a packet
arrives, the central scheduler uses stateful atoms (ALUs) [67]
to take metadata about the packet, look it up in the RMT
pipeline, and compute an integer priority that is used to en-
queue a descriptor for the packet into a PIFO block. This
enables PANIC to provide multi-tenant isolation, ensuring
traffic from high-priority tenants has low latency. Addition-
ally, if multiple PIFO blocks are used inside the scheduler, it
is possible to support hierarchical policies. Because the on-
chip network ports are bidirectional, there is enough network
throughput to forward incoming packets back out regardless
of which logical queue the packets use.
Prioritized Dropping: PANIC’s PIFO scheduler performs
prioritized packet dropping. Specifically, PANIC ensures
that when the NIC is overloaded, the lowest priority packets
will be dropped. To achieve prioritized dropping, PANIC
reuses the priority-sorted descriptor queue already used for
scheduling in the PIFO. When the free space in the packet
buffer for a logical PIFO is smaller than a threshold, the
scheduler will remove the least-priority descriptor from the
logical PIFO and drop this packet.

4.3.3 Performance Provisioning:

It is important to ensure that the central scheduler does not
become a performance bottleneck and can forward packets
across chains at full line-rate. To ensure that the scheduler
has sufficient throughput, PANIC uses multiple ports to attach
the scheduler to the on-chip network. Because the switching
fabric is designed to forward between arbitrary ports at line-
rate, increasing the number of ports used by the scheduler is
sufficient to scale the network performance of the scheduler.

The speed of the PIFO block used to schedule packets can
also become a performance bottleneck. The PIFO block that
we use can schedule one packet per cycle, e.g., 1000Mpps
when operating at a 1GHz frequency when implemented in an
ASIC design. Although this is sufficient to schedule packets
in both transmit and receive directions in our current design,
in the case that this number is greater than the performance
of a single PIFO block, multiple parallel PIFO blocks need to
be used to scale up performance.
Provisioning for Compute Unit Performance: The design

of the on-chip network and the scheduler can also ensure
that offloads may be fully utilized despite complications from
chaining. Specifically, when an offload O1 in a chain (Chain
A=O1–O2–O3) runs at a slower rate than the rest of the
offloads (O2–O3), it will become a bottleneck and cause O2–
O3 to be not fully utilized. However, this does not lead to
resource stranding. A second chain B that does not use O1 can
still use O2–O3 and benefit from the remaining capacity of
these offloads. The scheduler can ensure that the contending
chains fairly share capacity.

4.4 Compute Unit
To support offload variety, PANIC utilizes compute units to
attach offloads to the switching fabric. These compute units
are self-contained, meaning that hardware offloads can be
designed without needing to understand the packet switch-
ing fabric and without having to issue pull requests to the
hybrid scheduler. The interfacing with the switching fabric is
handled by the traffic manager (Figures 5 and 6). This both
reduces offload complexity by avoiding duplicating packet
processing functionality and reduces packet processing la-
tency by avoiding incurring the overheads of processing a
packet with a CPU.

An offload engine in PANIC can either be a hardware accel-
erator or a core, and Figure 5 and Figure 6 presents the design
of an ASIC accelerator-based and CPU-based compute unit
in PANIC, respectively. In both of these designs, the offload
functionality is encapsulated as an offload engine. Both per-
form packet processing by reading a packet once it arrives
from the network and has been placed in a local scratchpad
buffer. The traffic manager is responsible for communicating
with the switching fabric. This component includes logic for
sending and receiving packets as well as logic for updating
PANIC descriptors as needed for push-based chaining. The
compute unit’s local credit manager interfaces with the cen-
tral scheduler and is responsible for returning credits (when
a packet’s processing is done) and sending cancel messages
that decrement credits (when accepting a pushed packet).

The primary difference between an accelerator-based de-
sign and CPU-based design is that there is additional logic in
the CPU-based design that is used to interface with the mem-
ory subsystem of the embedded CPU core. As Figure 6 shows,
the compute unit utilizes memory-mapped I/O (MMIO) to
connect an embedded CPU core as follows: 1) The traffic
manager (TM) writes network data directly to a pinned re-
gion of the per-core memory. 2) Then the TM writes to an
input doorbell register to notify the core that data is ready.
3) After the core finishes processing, it writes data back to
the pinned memory region if needed and then writes to an
output doorbell register that is used to notify the TM of a new
outgoing packet. To make sure the packet data is written back
to memory, the core needs to flush the cache lines for the
pinned memory region. 4) The TM collects the output data
and sends it back to the switching fabric.

250 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5 ASIC Analysis

We expect an eventual implementation of PANIC to use an
application-specific integrated circuit (ASIC), although we
have also prototyped PANIC in the context of an FPGA plat-
form for expediency. This is because relative to an FPGA, an
ASIC provides higher performance, consumes less power and
area, and is cheaper when produced in large volumes [44].
While an ASIC implementation is beyond the scope of this
work, in this section we briefly discuss the feasibility of im-
plementing different components of PANIC in an ASIC.
RMT: The implementation of an RMT pipeline in ASIC
has already been proven feasible [21]. The Barefoot Tofino
chip [16] is a concrete realization of the RMT architecture.
PIFO: PANIC uses a hardware priority queue to provide pro-
grammable scheduling. Our current design was borrowed
from the ASIC-based flow scheduler design of the PIFO pa-
per [68]. While this design is conceptually simple and easy
to implement because it maintains a priority queue as a sorted
array, it is less scalable relative to other priority queue de-
signs, e.g., PIEO [64], which uses two levels of memory or
pHeap [20], which uses a pipelined heap. For better scala-
bility, we can replace our current design with such scalable
hardware designs of priority queues at the expense of greater
design and verification effort.
Interconnect: One of the biggest potential scalability limi-
tations of a PANIC implementation is the on-chip switching
fabric. While crossbar interconnects are conceptually sim-
ple, the sheer number of wires in a crossbar might become
a physical design and routing bottleneck, causing both an
increase in area as well as an inability to meet timing beyond
a certain scale. Fortunately, prior work has already demon-
strated that it is feasible to build crossbars on an ASIC that
are larger than are needed in PANIC. Specifically, Chole et
al. built a 32 * 32 crossbar with a bit width of 640 bits [28,
Appendix C] at a 1 GHz clock rate. As another data point,
the Swizzle-Switch supports a 64 * 64 crossbar with a bit
width of 128 bits using specialized circuit design techniques
at 559 MHz in a relatively old 45 nm technology node [63].
For comparison, to provide 32 compute units each a 128 Gbps
connection to the switching interconnect, PANIC only needs
a 32 * 32 crossbar with a bit width of 128 bits and 256 bits at
1 GHz and 500 MHz clock frequencies, respectively.

At the same time, we anticipate a crossbar becoming no
longer viable at some point as the number of offloads contin-
ues to increase. At this point, we anticipate switching to other
more scalable topologies such as a flattened butterfly at the
cost of increased latency and reduced bisection bandwidth.
Compute Units: The PANIC offload engine can be a hard-
ware accelerator or a CPU core. There are several ASIC-based
RISC-V implementations which can used as a CPU core for
the offload engine [25, 26, 8]. Several functions important
to networking, such as compression, encryption, and check-
sums are available as hardware accelerators, which can be

reused for PANIC. Our own AES and SHA implementations
(Section 6) are based on open-source hardware accelerator
blocks [1, 7].

6 FPGA Prototype
We implement an FPGA prototype of PANIC in ∼6K lines
of Verilog code, including a single-stage RMT pipeline, the
central scheduler, the crossbar, the packet buffer, and compute
units. Also, we built a NIC driver, DMA Engine, Ethernet
MAC, and physical layer (PHY) using Corundum [33]. Al-
though the PANIC architecture supports both the sending path
and receiving path, in our current implementation, we mainly
focus on the receive path.
RMT pipeline: We implemented a single-stage RMT
pipeline in our FPGA prototype. We configure the RMT
pipeline in our prototype by programming the FPGA. The
RMT pipeline maintains a flow table, in which each flow is
assigned an offload chain and scheduling metadata. In the
match stage, the RMT module matches the flow table with
the IP address fields and port fields in the packet header. In
the action stage, the RMT module calculates scheduling meta-
data and generates the PANIC descriptor (Figure 3). The
frequency of the RMT pipeline is 250 MHz.
FPGA-based Crossbar: We have implemented an 8 * 8 fully
connected crossbar in our FPGA prototype. The frequency
for this crossbar is 250 MHz, and the data width is 512 bits.
This leads to a per-port throughput of 128 Gbps.
Central Scheduler and Packet Buffer: The architecture of
the scheduler is shown in Figure 4. The scheduler is con-
nected with two crossbar ports to ensure a sufficiently high
throughput connection to the on-chip network. In our im-
plementation, the PIFO block runs at 125 MHz frequency
with a queue size of 256 packets; all other components in
the scheduler run at 250 MHz, with a 512 bit data width,
and we add a cross-domain clocking module between other
components and the PIFO. We use lower frequency for the
PIFO because it suffers from a scalability issue when imple-
mented on the FPGA (we explain this further in Section 7.5).
The packet buffer is implemented with dual-channel high-
speed BRAM, where each BRAM channel supports concur-
rent reads and writes. The packet buffer size in our implemen-
tation is 256 KB with a 512 bit data width and a 250 MHz
frequency. For ease of implementation, our current prototype
uses a separate physical PIFO for each logical PIFO at the
cost of increasing the relative resource consumption of PIFOs.
Compute Units: As Figure 5 shows, our implementation of
a compute unit includes a traffic manager, a credit manager,
and a scratchpad packet buffer. We choose the AXI4-Stream
interface [2] as the common interface between the offload
engine and scratchpad buffer. We have included two types
of accelerator-based offload engines in our FPGA prototype.
One is the AES-256-CTR encryption engine [1], and the other
is the SHA-3-512 hash engine [7].

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 251

We have also implemented a RISC-V core engine based on
the open-source CPU core generator [9]. Figure 6 shows how
the RISC-V core is connected to PANIC’s traffic manager,
credit manager, and per-core memory. The RV32I RISC-V
core we use has a five-stage pipeline with a single level of
cache. The data cache and instruction cache are 2 KB each,
and the local memory size is 32 KB. The frequency for this
CPU is 250 MHz, and the per-core memory data width is
512 bits.

7 Evaluation
This section evaluates our FPGA prototype to show that it
meets the design requirements put forth in Section 2.1. In
Section 7.2, we use microbenchmarks to show that PANIC
achieves high throughput and low latency under different
offload chaining models. In Section 7.3, we compare PANIC’s
performance with a pipeline-of-offloads NIC. Section 7.4
measures the I/O performance of a RISC-V core in PANIC,
and Section 7.5 measures the hardware resource usage of
our FPGA prototype. Finally, in Section 7.6, we implement
different offload engines, and test PANIC end-to-end; these
results demonstrate that PANIC can isolate and prioritize
traffic efficiently under multi-tenant settings.

7.1 Testbed and methodology
For our microbenchmarks, we implemented our FPGA proto-
type in the ADM-PCIE-9V3 network accelerator [12], which
contains a Xilinx Virtex UltraScale Plus VU3P-2 FPGA. For
this evaluation, we also implemented a delay unit, a packet
generator, and a packet capture agent on the FPGA. The delay
unit emulates various compute units by delaying packets in
a programmable fashion, which allows us to flexibly control
per-packet service time and chaining models. This enables us
to run microbenchmarks that systematically study PANIC’s
performance limits. The packet generator generates traffic
of various packet sizes at different rates. The packet capture
agent receives packets and calculates different flows’ through-
put and latency. We calculate packet processing latency by
embedding a send timestamp in every generated packet.

For our end-to-end experiments, we evaluate PANIC in a
small testbed of 2 Dell PowerEdge R640 servers. One server
is equipped with a Mellanox Connectx-5 NIC, and the other
server is equipped with the ADM-PCIE-9V3 network accel-
erator carrying our PANIC prototype. The Mellanox NIC and
ADM-PCIE-9V3 card are directly connected. We program the
VU3P-2 FPGA on the network accelerator using our Verilog
implementation of PANIC. We use DPDK to send customized
network packets and use PANIC to receive packets and run
offloads. Because of a performance bottleneck in the kernel-
based FPGA NIC driver [33], we use the packet capture agent
on the FPGA to report PANIC’s receive throughput instead
of capturing packets on the host machine.

7.2 PANIC System Microbenchmarks
We microbenchmark PANIC’s performance using the differ-
ent chaining models shown in Figure 7. Our results demon-
strate that PANIC can both achieve high throughput and low
latency for various common offload chaining models.
Model 1 (“Pipelined Chain”): In model 1 (Figure 7a),
we attach N delay units in sequence. Each unit emulates a
different service, and all of them process packets at X Gbps
with fixed delay. We then configure a service chain that sends
packets through all N units in numerical order.

First, we measure the throughput and latency overhead
of PANIC when N = 3 and X = 100. Figure 8a shows the
overall throughput under different packet sizes. With MTU-
sized packets, PANIC can schedule packets at full line-rate.
When the initial number of credits in PANIC is small, we
see a nonlinear performance downgrade with small packets.
This is because throughput for small packets is bounded by
the scheduling round trip time in PANIC, which is 14 clock
cycles. If we increase the initial credit number for each unit,
we see a performance increase for small packets. When the
credit number is greater than 8, the small packet performance
is no longer bounded by the scheduling round trip, instead,
it is bounded by the small packet performance of our delay
unit. These results also demonstrate the benefits of PANIC’s
flexibility in per-unit credit allocation. Setting different credit
numbers for each unit can improve performance.

Next, Figure 8b shows the latency of different packet sizes
in the same experiment. In this pipelined chain, packets can
be scheduled through three units within 0.5 microseconds.
This low latency performance also arises from PANIC’s push
scheduling which helps PANIC avoid extra packet traversals
between units and the scheduler.

Next, Figure 9 shows PANIC’s throughput as a function of
the chain length when push scheduling is disabled. Without
push scheduling, the packet needs to go back to the scheduler
at every hop, and the total traffic that goes into the sched-
uler is the ingress traffic from the RMT pipeline plus the de-
toured traffic from units, which is: Ttotal = TRMT +Tdetour =
TRMT +(N −1)∗X = N ∗X . As Figure 9 shows, when Ttotal
exceeds the dual-ported scheduler’s maximum bandwidth
(250 MHz * 512 bits * 2 ports = 256 Gbps), the chaining
throughput downgrades. For example, when N = 3, X = 70,
Ttotal = 210 Gbps < 256 Gbps, thus PANIC can schedule this
chain at full speed even when push scheduling is disabled.
When N = 3, X = 90, Ttotal = 270 Gbps > 256 Gbps, the
chaining throughput downgrades since the scheduler band-
width becomes the bottleneck.
Model 2 (“Parallelized Chain”): In model 2 (Figure 7b), we
attach three delay units running in parallel. These three units
run the same service, and each unit has an average 34 Gbps
throughput but variable latency. PANIC load-balances pack-
ets across these units. Figure 8c shows the throughput under
different packet sizes and service time variance (the service
time follows uniform distribution). We see that even when

252 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

𝑂1 …

X GbpsX Gbps

Input Output𝑂𝑁𝑂1

(a) Chaining Model 1

34Gbps * 3

Input OutputA (𝐴1, 𝐴2, 𝐴3)

(b) Chaining Model 2

50Gbps * 252Gbps * 2

Input OutputA (𝐴1, 𝐴2) B (𝐵1, 𝐵2)

(c) Chaining Model 3

A

60GbpsInput Flow 1
prio = high

(30%)

Input Flow 2
prio = low

(70%)

B

80Gbps

Output

(d) Chaining Model 4
Figure 7: The different chaining models used in experiments.

0

20

40

60

80

100

64 128 256 512 1024 1500

Th
ro

u
gh

p
u

t
(G

b
p

s)

Packet Size (B)

1 credit
2 credits
4 credits
6 credits
8 credits

(a) Model 1 throughput

0

0.15

0.3

0.45

0.6

64 128 256 512 1024 1500

La
te

n
cy

 (
μ

s)

Packet Size (B)

(b) Model 1 latency

0

20

40

60

80

100

64 128 256 512 1024 1500

Th
ro

u
gh

p
u

t
(G

b
p

s)

Packet Size (B)

 Variance: ± 20%

 Variance: ± 40%

(c) Model 2 throughput

0

0.2

0.4

0.6

0.8

0.4 0.5 0.6 0.7 0.8 0.9 1

Sc
h

e
d

u
le

 L
at

e
n

cy
 (

u
s)

Load

(d) Model 2 latency

0

0.05

0.1

0.15

0.2

50

60

70

80

90

100

256 512 1024 1500

D
et

o
u

r
R

at
e

Th
ro

u
gh

p
u

t
(G

b
p

s)

Packet Size (B)

Detour Rate (Var ± 40%) Detour Rate (Var ± 60%)

Throughput (Var ± 40%) Throughput (Var ± 60%)

(e) Model 3 detour rate and
throughput.

0

4

8

12

16

0.4 0.5 0.6 0.7 0.8 0.9 1

La
te

n
cy

 (
μ

s)

Load

Pipeline F1

Pipeline F2

PANIC F1

PANIC F2

(f) Different flow’s latency in
the pipeline design and

PANIC
Figure 8: PANIC performance under different chaining

models
the processing latency variance increases from 20% to 40%,
PANIC can still efficiently load-balance packets between the
parallel units without impacting throughput. In this experi-
ment, small packet performance is better than model 1 be-
cause model 2 has multiple units running in parallel. Overall
throughput is no longer bounded by the delay of a single unit.

Figure 8d shows PANIC scheduling latency under different
loads with MTU sized packets and 40% service time variance.
The error bars in this figure represent 5%-ile and 99%-ile
latency. Scheduling latency reveals how long the incoming
packets wait before being processed by an idle unit; we calcu-
late it by subtracting the unit processing time from the total
latency. When the NIC load is much smaller than 1, schedul-
ing tail latency grows slowly, and is under 0.4 µs. When
the load approaches 1, queueing occurs in the packet buffer,
which causes tail latency to grow, but it still stays < 0.8 µs.
This shows that our credit-based scheme keeps latency low
even at high load, and most latency is due to queueing.
Model 3 (“Hybrid Chain”): Model 3 (Figure 7c) is a hybrid
chaining model where packets are not only load-balanced
between parallel units but also go through multiple services.

0

20

40

60

80

100

1 2 3 4

Th
ro

u
gh

p
u

t
(G

b
p

s)

N: Chain Length

X =70 X = 80 X = 90 X = 100

Figure 9: Model 1
throughput when push is

disabled.

0.125

0.25

0.5

1

2

4

8

16

No_Touch Memcpy NAT Swap_OvS

P
e

r
P

ac
ke

t
La

te
n

cy
 (

u
s)

Network IO Flush Cache Computation

61.4 Gbps

1.2 Gbps

21.3 Gbps 20.2 Gbps

Figure 10: Performance of a
single RISC-V core with

MTU-sized packets.

Throughput Total

Flow 1 (Pipeline Design) 18.7 Gbps 60.6 GbpsFlow 2 (Pipeline Design) 41.9 Gbps
Flow 1 (PANIC) 30.7 Gbps 59.8 GbpsFlow 2 (PANIC) 29.1 Gbps

Table 3: Throughput of the pipeline design and PANIC.

Packets need to be processed first by service A and then
by service B, and both services have multiple parallel com-
pute units. Each compute unit for service A has an average
throughput of 52 Gbps, while each compute unit for service
B has an average throughput of 50 Gbps. Compute units for
both service A and B have variable latency.

Figure 8e shows the throughput and detour rate in this
hybrid model. When the packet size is bigger than 256 bytes,
the detour rate is high. This is because the downstream B
units have lower throughput than the upstream A units. As
a result, the B units are always busy because they are the
throughput bottleneck in this system. Busy units are likely
to have no space to accept pushed packets: if A unit tries to
push packets to a busy downstream B unit, then the B units
will more often than not detour the pushed packets back to
the central scheduler.

Figure 8e also shows that detour routing does not degrade
throughput. This is because the maximum bandwidth of
our dual-ported scheduler is 256 Gbps, and in this hybrid
model, the ingress traffic from the RMT pipeline will take up
100 Gbps bandwidth in the scheduler, thus there is more than
100 Gbps bandwidth left for the detoured traffic.

However, detour routing can increase packet latency. In
order to mitigate this, the central scheduler increases the pri-
ority for each detoured packet, to help them get rescheduled
first. Thus, the latency incurred by detoured packets is the
RTT between the compute unit and the scheduler, which is
< 0.5 µs.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 253

7.3 Comparison with the Pipeline Design
To demonstrate that PANIC handles multi-tenant isolation
and below line-rate offloads better than state-of-the-art, we
build and compared against the pipeline-of-offloads NIC as
our baseline. We choose model 4 (Figure 7c) as the offload
chain for this comparison. The difference between model 4
and model 1 is that the delay unit emulates a below-line-rate
offload in model 4. We assume two flows are competing:
Flow 1 has a higher priority, and takes up 30% of the total
traffic. Flow 2 has a lower priority, and takes up 70% of the
total traffic.

We implemented a pipeline-of-offloads NIC in the ADM-
PCIE-9V3 network accelerator. In this NIC, all incoming
packets are first buffered in a FIFO (First-In-First-Out) queue
before entering unit A. Unit A and unit B are directly con-
nected using the AXI4-stream interface [2]. We configured
the pipeline-of-offloads NIC and PANIC to have the same
buffer size (64 KB), same frequency (250 MHz), and same
bit-width (512 bits).

Figure 8f presents a comparison of the latency of both
the pipeline design and PANIC in this experiment. When
the NIC load is low, Unit A is not the bottleneck, and both
NICs have low latency. The pipeline design has slightly
better latency since units are directly connected in it, while
scheduling packets in PANIC has some overhead. When load
increases, Unit A becomes the bottleneck, and both NICs
start to buffer and drop packets. With high load, Flows 1
and 2 have the same latency in the pipeline design, since
packets are scheduled in First-Come-First-Served order and
can experience HOL blocking. In PANIC, the high priority
packets have fixed low latency due to the central scheduler
sorting buffered packet descriptors and serving high priority
packets first.

We compare the throughput between the pipeline design
and PANIC in Table 3. The total throughput is bounded by
Unit A (60 Gbps). In the pipeline design, the low priority
flow 2 has a higher throughput than flow 1, because the high-
volume flow 2 steals on-chip bandwidth by taking up most of
the on-chip buffer. PANIC preferably allocates buffer to high
priority packets and always drops the lowest priority ones.
Thus flow 1 can always achieve full throughput in PANIC.

Overall, PANIC achieves good isolation: 1) PANIC
achieves comparable throughput and latency with the pipeline
design when there is no HOL blocking. 2) When HOL block-
ing occurs, PANIC ensures that the high priority flows have a
fixed low latency. 3) PANIC allocates bandwidth according
to a flow’s priority.

7.4 RISC-V Core Performance
To investigate the I/O overhead of using an embedded NIC
core to send/receive network packets from PANIC, we per-
formed experiments with a single RISC-V CPU core as the
only offload engine in a chain. We measure the system

throughput and per-packet latency using four example C pro-
grams:
No-Touch: After receiving the packet from PANIC, this pro-
gram will send the packet back to PANIC immediately. This
program does not make any changes to the packet data.
Memcpy: This program will copy the received packet to
another memory address and then send the copied packet
back to PANIC.
NAT: The Network Address Translation (NAT) program
uses the embedded CPU core to lookup a <Translated IP,
Port>pair for a given 5-tuple, and then replace the IP address
and port header fields using the lookup results. The lookup
table is stored in the local memory inside the offload engine.
The RMT pipeline will pre-calculate the hash value for each
packet, and the hash value is stored as per-service metadata
in the PANIC descriptor. Thus the CPU core can directly read
the pre-calculated hash value from the descriptor.
Swap OvS: This program swaps the Ethernet and IP source
and destination addresses.

Figure 10 shows the RISC-V core throughput and per-
packet latency with MTU sized packets. We breakdown the
latency number into three different parts: 1) Network I/O: the
time that is spent on pulling/writing the input/output doorbell
register, 2) Flush Cache: the time spent on flushing the L1
cache, 3) Computation: the time spent on computation, in-
cluding the data exchange time between the L1 cache and the
per-core memory. The results of this experiment show that
the overhead of the NIC to CPU core interface is low, and, for
those low-throughput applications, the I/O time introduced
by PANIC is negligible.

For example, the throughput of the No-Touch program
is 61.4 Gbps, and all the time is spent in network I/O. The
throughput of the NAT and Swap OvS programs is 21.3 Gbps
and 20.2 Gbps, respectively. ∼20% of the time is spent
in flushing the cache, ∼27% in network I/O, and ∼50% in
computation. Cache flushing is costly in our current prototype:
to synchronize the data between the cache and memory, the
whole L1 cache is flushed before processing the next packet.
If needed, this performance could be improved by modifying
the CPU to support an instruction that only flushes the cache
lines for the pinned memory region used by the packet.

The throughput of Memcpy is only 1.2 Gbps, and 97% of
the time is spent in computation. This is due to the limitations
of the performance of the FPGA based RISC-V core. With
a faster core and a higher clock frequency, this performance
can be improved.

7.5 Hardware Resource Usage
Our UltraScale VU3P-2 FPGA has 3 MB BRAM, and 394k
LUTs in total. Table 4 shows different components’ resource
usage under different settings. In our end-to-end experiments
(Section 7.6), the crossbar has 8 ports, total queue size in the
PIFO array is 256 packets, and packet buffer size is 256 KB.
Under this setting, we find that PANIC’s design will only

254 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Module Setting LUTs(%) BRAM(%)

Crossbar 8 ports 5.5 0.00
16 ports 13.64 0.00

Scheduler (PIFO) PIFO = 256 5.18 (4.9) 0.07 (0.01)
PIFO = 512 9.95 (9.42) 0.07 (0.01)

Packet Buffer 256 KB 0.16 8.94
Simple RMT / 0.27 0.00

Table 4: FPGA resource usage for different components.

cost 11.27% logic area (LUTs) in our middle-end FPGA.
Total BRAM usage is 8.94% due to the limited BRAM in our
FPGA.

The crossbar and PIFO occupy most of the on-chip logic
resources in PANIC. When the crossbar uses 8 ports, it costs
around 5.5% logic area, and for 16 ports, the logic area cost
is 13.64%. When the total PIFO size is 256, it will cost 4.9%
logic area, and when the size is 512, it will cost 9.42%. PIFO
suffers from high logic area cost because its hardware design
does not access BRAM at all; it only uses the logic unit to
compare and shift elements. This design causes PIFO to be
less scalable in the FPGA since it cannot benefit from the
FPGA’s memory hierarchy to efficiently distribute storage
and processing across SRAM and LUTs. Recent advance-
ments [64] can be used to address this (Section 5). Overall,
we find that PANIC can easily fit on any middle-end FPGA
without utilization or timing issues.

7.6 End-to-End Performance
In this section, we measure PANIC’s end-to-end performance
in our cluster. Because of the performance bottleneck of the
kernel-based FPGA NIC driver, we use hardware counters
to measure PANIC’s receiving throughput. We implement
two FPGA-based offload engines in PANIC: a SHA-3-512
engine and an AES-256 engine. Our end-to-end experiment
demonstrates that: 1) PANIC can schedule network traffic at
full line-rate, 2) PANIC can precisely prioritize traffic when
different flows are competing for computation resources at
the offloads, and 3) PANIC can support different isolation
policies, including strict priority and weighted fair queueing.

The AES-256-CTR encryption engine [29] encrypts input
plain text into ciphered text or decrypts ciphered text to yield
plain text. The fully pipelined AES-256 engine can accept
128-bit input per cycle, and it can run at 250 MHz frequency
with 32 Gbps throughput. The SHA-3-512 engine [19] per-
forms SHA-3, a newest cryptographic hash which uses permu-
tation as a building block [18]. The FPGA-based SHA-3-512
engine that we use runs at 150 MHz with 6 Gbps throughput.

Since the throughput of a single SHA engine is low, we
put 4 SHA engines into a single hash unit, and set the initial
credit number for the hash unit to 4. Thus, the hash unit can
use 4 SHA engines to process these packets in parallel. We
connect two decryption units and two hash units with PANIC.
Thus, the bandwidth of hash computation is (6 * 4) * 2 = 24 *
2 = 48 Gbps, and that for decryption is 32 * 2 = 64 Gbps.

In our experiment, we assume there are two types of traffic

Traffic IPSec Video Background

Drop Rate 0% 33.1% 0%

Table 5: Packet dropping rate in phase 1 in Figure 11a.

competing for the computation resource in PANIC. One is
high-volume multimedia traffic, which uses AES offload to
decrypt video streams. Another is low-volume IPSec traffic,
which first uses SHA to ensure the integrity of the data and
then uses AES to decrypt IP payload. The IPSec traffic has
higher priority than video stream traffic, and each of these traf-
fic streams contains multiple flows. Also, we add background
traffic that does not need to be processed by any compute unit.
The offload chains are shown in Figure 12.

In the first experiment, we use the strict priority policy,
which means all the IPSec packets have higher priority than
the video packets. Figure 11a shows different traffic’s receiv-
ing throughput under different traffic patterns. In phase 1,
the sending throughput is 30 Gbps for IPSec and is 50 Gbps
for video. We can see the receiving throughput for IPSec is
30 Gbps, which is the same as the sending throughput. The
receiving throughput for the video stream is only 34 Gbps.
This is because IPSec and video stream share the AES offload.
However, the available peak bandwidth for the AES offload
is only 64 Gbps. Thus, PANIC will first satisfy the high pri-
ority IPSec traffic requirement, which only leaves 34 Gbps
(64 - 30) of bandwidth for the video stream. Table 5 shows
the dropping rate under phase 1. Due to prioritized packet
dropping, PANIC only drops low priority video packets. Over-
all, when a below-line-rate offload becomes the bottleneck,
PANIC always first satisfies high priority traffic’s bandwidth
demands.

In phase 2, the DPDK sender switches to the next traf-
fic pattern, in which the IPSec traffic sending rate drops to
10 Gbps, and video traffic sending rate grows to 50 Gbps.
Since the IPSec sending rate drops, the video stream can get
more bandwidth, but it will still lose some bandwidth and
experience packet drops because of the AES bottleneck. In
phase 3, the DPDK sender switches to the last pattern, in
which the AES offload is no longer the bottleneck; no packet
drops occur, and the total throughput can reach 100 Gbps.
Another noteworthy aspect in Figure 11a is that no matter
what computation happens, background traffic performance
is unaffected.

In the second experiment, we use a weighted fair queueing
(WFQ) scheduling policy where the AES offload’s capacity
is divided across IPSec traffic and video traffic in 2 : 1 ra-
tio. Figure 11b shows the throughput of the different traffic
types under the WFQ policy for different traffic patterns. In
phase 1, the sending throughput for IPSec is 70 Gbps, and
for the video stream is 30 Gbps. We can see the receiving
throughput for IPSec is exactly twice of the video stream, and
the total throughput is 64 Gbps. If the IPSec sending rate
drops to 50 Gbps (phase2), the receiving throughput remains
unchanged. This result proves PANIC can shape the traffic

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 255

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25

Th
ro

u
gh

p
u

t
(G

b
p

s)

Time (s)

IPSEC VIDEO BG TOTAL
Tr

af
fi

c
P

at
te

rn

50Gbps
IPSec
Video
BG

30Gbps

20Gbps

10Gbps
60Gbps
30Gbps

30Gbps
30Gbps
40Gbps

Phase 1 Phase 2 Phase 3

(a) Strict Priority Policy

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25

Th
ro

u
gh

p
u

t
(G

b
p

s)

Time (s)

IPSEC VIDEO BG TOTAL

30Gbps
IPSec
Video
BG

70Gbps

0Gbps

50Gbps
50Gbps
0Gbps

30Gbps
30Gbps
40GbpsTr

af
fi

c
P

at
te

rn

Phase 1 Phase 2 Phase 3

(b) Weighted Fair Queueing Policy
Figure 11: Receiving throughput with different traffic patterns. Figure a uses strict priority policy: all the IPSec packets have
higher priority than the video packets. Figure b uses WFQ policy: the offload capacity is divided across IPSec traffic and video

traffic in the ratio 2:1. The table in Figure a and Figure b shows how the sending traffic pattern changes with time.

IPSec traffic
SHA

(S1,S2)

Video
traffic

AES
(A1,A2)

32Gbps * 2

24Gbps * 2

Background
traffic

Prio = Low

Prio = High

DMA
Engine

Figure 12: Offload chains; end-to-end experiment

precisely, regardless of the sending rate.
In phases 1 and 2, the scheduler switches to pull-based

scheduling since the AES offload is always congested. As
a result, the egress packet of the SHA offload goes directly
back to the scheduler instead of the congested AES offload.
The scheduler then shapes the video traffic and the detoured
IPSec traffic into a desired rate using WFQ.

In phase 3, the AES offload is no longer the bottleneck.
Thus, the central scheduler operates in push mode: the egress
packet of the SHA offload can bypass the scheduler and be
directly pushed to the AES offload. As shown in Figure 11b,
both IPSec and video’s receiving throughput can reach the
sending rate, which is 30 Gbps. Overall, this shows that
PANIC can shape the traffic precisely with the WFQ policy.

8 Related Work
Several projects introduce new offloads that utilize pro-
grammable NICs and new frameworks for deploying these
offloads [13, 48, 59, 42, 32, 37, 49, 65, 46, 62, 47, 40, 30, 36,
70, 69, 35, 55, 45]. PANIC is orthogonal to these projects.

The Pensando DSC-100 NIC [58] is similar to PANIC in
that it has an RMT pipeline and supports both hardware and
software offloads. However, the DSC-100 requires cores to
achieve offload chaining instead of a hardware scheduler.

The Fungible Data Processing Unit (DPU) is a NIC de-
sign that was recently announced in August 2020 [3]. Based
on publicly available documents [4, 5], it has a hardware
architecture that shares a few similarities with PANIC (e.g.,
processing cores, accelerators, a hardware work scheduler,
and a customized on-chip network). A head-to-head compari-

son of PANIC to the Fungible DPU would be an interesting
avenue for future work once the DPU is generally available.

PANIC is also similar to FairNIC [34], which improves
fairness between competing applications running on a com-
modity manycore NIC. However, PANIC provides features
not possible in FairNIC like chaining without involving a
CPU. Further, FairNIC helps motivate the need for PANIC
detailing the non-trivial costs of isolation on manycore NICs.
Adopting PANIC’s scheduler and non-blocking crossbar inter-
connect can solve these fundamental problems with manycore
NICs.

9 Conclusions
Programmable NICs are an enticing option for bridging the
widening gap between network speeds and CPU performance
in multi-tenant datacenters. But, existing designs fall short
of supporting the rich and high-performance offload needs
of co-resident applications. To address this need, we pre-
sented the design, implementation, and evaluation of PANIC,
a new programmable NIC. PANIC synthesizes a variety of
high-performance hardware blocks and data structures within
a simple architecture, and couples them with novel schedul-
ing and load balancing algorithms. Our analysis shows that
PANIC is amenable to an ASIC design. We also built a 100G
PANIC prototype on an FPGA, and conducted detailed exper-
iments that show that PANIC can isolate tenants effectively,
ensure high throughput and low latency, and support flexible
and dynamic chaining.
Acknowledgements: We thank our shepherd, Costin Raiciu,
and the anonymous OSDI reviewers for their feedback that
significantly improved the paper. We thank Suvinay Sub-
ramanian and Tushar Krishna for discussions on crossbar
designs and Tao Wang for his assistance with the artifact
evaluation. Brent E. Stephens and Kiran Patel were funded
by a Google Faculty Research Award and NSF Award CNS-
1942686. Aditya Akella and Jiaxin Lin were funded by NSF
Awards CNS-1717039 and CNS-1838733 and a gift from
Google.

256 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] AES Hardware Accelerator. https://opencores.org/

projects/tiny_aes.

[2] Axi reference guide. https://www.xilinx.com/support/
documentation/ip_documentation/ug761_axi_
reference_guide.pdf.

[3] Fungible DPU: A New Class of Microprocessor Power-
ing Next Generation Data Center Infrastructure. https:
//www.fungible.com/news/fungible-dpu-a-
new-class-of-microprocessor-powering-next-
generation-data-center-infrastructure/.

[4] Fungible F1 Data Processing Unit. https://www.fungible.
com/wp-content/uploads/2020/08/PB0028.01.
02020820-Fungible-F1-Data-Processing-Unit.pdf.

[5] Fungible S1 Data Processing Unit. https://www.fungible.
com/wp-content/uploads/2020/08/PB0029.00.
02020811-Fungible-S1-Data-Processing-Unit.pdf.

[6] Intel ethernet switch fm10000 datasheet. https://www.intel.
com/content/dam/www/public/us/en/documents/
datasheets/ethernet-multi-host-controller-
fm10000-family-datasheet.pdf.

[7] SHA-3 Hardware Accelerator. https://opencores.org/
projects/sha3.

[8] Silicon at the speed of software. https://www.sifive.com.
Accessed: 2020-05-25.

[9] Vexriscv. https://spinalhdl.github.io/SpinalDoc-
RTD/SpinalHDL/Libraries/vexriscv.html.

[10] Vivado design suite. https://www.xilinx.com/products/
design-tools/vivado.html.

[11] ACCOLADE TECHNOLOGY. Accolade ANIC. https:
//accoladetechnology.com/whitepapers/ANIC-
Features-Overview.pdf.

[12] ALPHA DATA. ADM-PCIE-9V3 - High-Performance Network Accel-
erator. https://www.alpha-data.com/pdfs/adm-pcie-
9v3.pdf.

[13] ARASHLOO, M. T., LAVROV, A., GHOBADI, M., REXFORD, J.,
WALKER, D., AND WENTZLAFF, D. Enabling programmable trans-
port protocols in high-speed NICs. In Symposium on Networked Sys-
tems Design and Implementation (NSDI) (2020).

[14] ASANOVIĆ, K., AVIZIENIS, R., BACHRACH, J., BEAMER, S.,
BIANCOLIN, D., CELIO, C., COOK, H., DABBELT, D., HAUSER,
J., IZRAELEVITZ, A., KARANDIKAR, S., KELLER, B., KIM, D.,
KOENIG, J., LEE, Y., LOVE, E., MAAS, M., MAGYAR, A., MAO,
H., MORETO, M., OU, A., PATTERSON, D. A., RICHARDS, B.,
SCHMIDT, C., TWIGG, S., VO, H., AND WATERMAN, A. The rocket
chip generator. Tech. Rep. UCB/EECS-2016-17, EECS Department,
University of California, Berkeley, Apr 2016.

[15] BALLANI, H., COSTA, P., KARAGIANNIS, T., AND ROWSTRON, A.
Towards predictable datacenter networks. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM) (2011).

[16] BAREFOOT. Barefoot Tofino. https://www.
barefootnetworks.com/technology/#tofino, 2017.

[17] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network traffic
characteristics of data centers in the wild. In IMC (2010).

[18] BERTONI, G., DAEMEN, J., PEETERS, M., AND ASSCHE, G. The
keccak reference, version 3.0. NIST SHA3 Submission Document
(January 2011) (2011).

[19] BERTONI, G., DAEMEN, J., PEETERS, M., AND VAN ASSCHE, G.
Keccak sponge function family main document. Submission to NIST
(Round 2) (2009).

[20] BHAGWAN, R., AND LIN, B. Fast and scalable priority queue architec-
ture for high-speed network switches. In Proceedings IEEE INFOCOM
2000. Conference on Computer Communications. Nineteenth Annual
Joint Conference of the IEEE Computer and Communications Societies
(Cat. No. 00CH37064) (2000).

[21] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCKEOWN,
N., IZZARD, M., MUJICA, F. A., AND HOROWITZ, M. Forwarding
metamorphosis: fast programmable match-action processing in hard-
ware for SDN. In Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM) (2013).

[22] BROADCOM. Stingray SmartNIC Adapters and IC.
https://www.broadcom.com/products/ethernet-
connectivity/smartnic.

[23] CAVIUM CORPORATION. Cavium CN63XX-NIC10E. http:
//cavium.com/Intelligent_Network_Adapters_
CN63XX_NIC10E.html.

[24] CAVIUM CORPORATION. Cavium LiquidIO. http:
//www.cavium.com/pdfFiles/LiquidIO_Server_
Adapters_PB_Rev1.2.pdf.

[25] CELIO, C., CHIU, P.-F., ASANOVIĆ, K., NIKOLIĆ, B., AND PATTER-
SON, D. Broom: an open-source out-of-order processor with resilient
low-voltage operation in 28-nm cmos. IEEE Micro (2019).

[26] CELIO, C., CHIU, P.-F., NIKOLIC, B., PATTERSON, D., AND
ASANOVIC, K. Boom v2, 2017.

[27] CHOLE, S., FINGERHUT, A., MA, S., SIVARAMAN, A., VARGAFTIK,
S., BERGER, A., MENDELSON, G., ALIZADEH, M., CHUANG, S.-T.,
KESLASSY, I., ORDA, A., AND EDSALL, T. dRMT: Disaggregated
programmable switching. In Proceedings of the ACM Special Interest
Group on Data Communication (SIGCOMM) (2017).

[28] CHOLE, S., FINGERHUT, A., MA, S., SIVARAMAN, A., VARGAFTIK,
S., BERGER, A., MENDELSON, G., ALIZADEH, M., CHUANG, S.-T.,
KESLASSY, I., ORDA, A., AND EDSALL, T. dRMT: Disaggregated
programmable switching - extended version. https://cs.nyu.
edu/˜anirudh/sigcomm17_drmt_extended.pdf, 2017.

[29] DAEMEN, J., AND RIJMEN, V. The design of Rijndael: AES-the
advanced encryption standard. 2013.

[30] DRAGOJEVIĆ, A., NARAYANAN, D., HODSON, O., AND CASTRO,
M. FaRM: Fast remote memory. In Symposium on Networked Systems
Design and Implementation (NSDI) (2014).

[31] EXABLAZE. ExaNIC V5P. https://exablaze.com/
/exanic-v5p.

[32] FIRESTONE, D., PUTNAM, A., MUNDKUR, S., CHIOU, D., DABAGH,
A., ANDREWARTHA, M., ANGEPAT, H., BHANU, V., CAULFIELD,
A., CHUNG, E., CHANDRAPPA, H. K., CHATURMOHTA, S.,
HUMPHREY, M., LAVIER, J., LAM, N., LIU, F., OVTCHAROV,
K., PADHYE, J., POPURI, G., RAINDEL, S., SAPRE, T., SHAW,
M., SILVA, G., SIVAKUMAR, M., SRIVASTAVA, N., VERMA, A.,
ZUHAIR, Q., BANSAL, D., BURGER, D., VAID, K., MALTZ, D. A.,
AND GREENBERG, A. Azure accelerated networking: SmartNICs in
the public cloud. In Symposium on Networked Systems Design and
Implementation (NSDI) (2018).

[33] FORENCICH, A., SNOEREN, A. C., PORTER, G., AND PAPEN, G.
Corundum: An open-source 100-Gbps NIC. In 28th IEEE Interna-
tional Symposium on Field-Programmable Custom Computing Ma-
chines (2020).

[34] GRANT, S., YELAM, A., BLAND, M., AND SNOEREN, A. C. Smart-
NIC performance isolation with FairNIC: Programmable networking
for the cloud. In Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM) (2020).

[35] GUO, C., WU, H., DENG, Z., SONI, G., YE, J., PADHYE, J., AND
LIPSHTEYN, M. RDMA over commodity Ethernet at scale. In Pro-
ceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM) (2016).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 257

https://opencores.org/projects/tiny_aes
https://opencores.org/projects/tiny_aes
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.fungible.com/news/fungible-dpu-a-new-class-of-microprocessor-powering-next-generation-data-center-infrastructure/
https://www.fungible.com/news/fungible-dpu-a-new-class-of-microprocessor-powering-next-generation-data-center-infrastructure/
https://www.fungible.com/news/fungible-dpu-a-new-class-of-microprocessor-powering-next-generation-data-center-infrastructure/
https://www.fungible.com/news/fungible-dpu-a-new-class-of-microprocessor-powering-next-generation-data-center-infrastructure/
https://www.fungible.com/wp-content/uploads/2020/08/PB0028.01.02020820-Fungible-F1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2020/08/PB0028.01.02020820-Fungible-F1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2020/08/PB0028.01.02020820-Fungible-F1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2020/08/PB0029.00.02020811-Fungible-S1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2020/08/PB0029.00.02020811-Fungible-S1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2020/08/PB0029.00.02020811-Fungible-S1-Data-Processing-Unit.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
https://opencores.org/projects/sha3
https://opencores.org/projects/sha3
https://www.sifive.com
https://spinalhdl.github.io/SpinalDoc-RTD/SpinalHDL/Libraries/vexriscv.html
https://spinalhdl.github.io/SpinalDoc-RTD/SpinalHDL/Libraries/vexriscv.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://accoladetechnology.com/whitepapers/ANIC-Features-Overview.pdf
https://accoladetechnology.com/whitepapers/ANIC-Features-Overview.pdf
https://accoladetechnology.com/whitepapers/ANIC-Features-Overview.pdf
https://www.alpha-data.com/pdfs/adm-pcie-9v3.pdf
https://www.alpha-data.com/pdfs/adm-pcie-9v3.pdf
https://www.barefootnetworks.com/technology/#tofino
https://www.barefootnetworks.com/technology/#tofino
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.broadcom.com/products/ethernet-connectivity/smartnic
http://cavium.com/Intelligent_Network_Adapters_CN63XX_NIC10E.html
http://cavium.com/Intelligent_Network_Adapters_CN63XX_NIC10E.html
http://cavium.com/Intelligent_Network_Adapters_CN63XX_NIC10E.html
http://www.cavium.com/pdfFiles/LiquidIO_Server_Adapters_PB_Rev1.2.pdf
http://www.cavium.com/pdfFiles/LiquidIO_Server_Adapters_PB_Rev1.2.pdf
http://www.cavium.com/pdfFiles/LiquidIO_Server_Adapters_PB_Rev1.2.pdf
https://cs.nyu.edu/~anirudh/sigcomm17_drmt_extended.pdf
https://cs.nyu.edu/~anirudh/sigcomm17_drmt_extended.pdf
https://exablaze.com//exanic-v5p
https://exablaze.com//exanic-v5p

[36] HUMPHRIES, J. T., KAFFES, K., MAZIÈRES, D., AND KOZYRAKIS,
C. Mind the Gap: A case for informed request scheduling at the NIC.
In ACM Workshop on Hot Topics in Networks (ACM HotNets) (2019).

[37] IBANEZ, S., SHAHBAZ, M., AND MCKEOWN, N. The case for a
network fast path to the CPU. In ACM Workshop on Hot Topics in
Networks (ACM HotNets) (2019).

[38] INTEL. Intel 82599 10 GbE controller datasheet. http:
//www.intel.com/content/dam/www/public/us/en/
documents/datasheets/82599-10-gbe-controller-
datasheet.pdf.

[39] JANG, K., SHERRY, J., BALLANI, H., AND MONCASTER, T. Silo:
Predictable message latency in the cloud. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM) (2015).

[40] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Datacenter rpcs
can be general and fast. In Symposium on Networked Systems Design
and Implementation (NSDI) (2019).

[41] KAPOOR, R., SNOEREN, A. C., VOELKER, G. M., AND PORTER, G.
Bullet trains: A study of NIC burst behavior at microsecond timescales.
In Conference on Emerging Networking Experiments and Technologies
CoNEXT (2013).

[42] KAUFMANN, A., PETER, S., SHARMA, N. K., ANDERSON, T., AND
KRISHNAMURTHY, A. High performance packet processing with
FlexNIC. In ASPLOS (2016).

[43] KIM, J., DALLY, W. J., AND ABTS, D. Flattened butterfly: a cost-
efficient topology for high-radix networks. In Proceedings of the 34th
annual International Symposium on Computer Architecture (ISCA)
(2007).

[44] KUON, I., AND ROSE, J. Measuring the gap between fpgas and asics.
In Proceedings of the 2006 ACM/SIGDA 14th International Symposium
on Field Programmable Gate Arrays (2006).

[45] LE, Y., CHANG, H., MUKHERJEE, S., WANG, L., AKELLA, A.,
SWIFT, M. M., AND LAKSHMAN, T. V. UNO: Uniflying host and
smart NIC offload for flexible packet processing. In SoCC (2017).

[46] LI, B., RUAN, Z., XIAO, W., LU, Y., XIONG, Y., PUTNAM, A.,
CHEN, E., AND ZHANG, L. KV-Direct: High-performance in-memory
key-value store with programmable NIC. In SOSP (2017).

[47] LI, B., TAN, K., LUO, L., LUO, R., PENG, Y., XU, N., XIONG,
Y., AND CHENG, P. ClickNP: Highly flexible and high-performance
network processing with reconfigurable hardware. In Proceedings of
the ACM Special Interest Group on Data Communication (SIGCOMM)
(2016).

[48] LIU, M., CUI, T., SCHUH, H., KRISHNAMURTHY, A., PETER, S.,
AND GUPTA, K. Offloading distributed applications onto smartnics
using IPipe. In Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM) (2019).

[49] LIU, M., PETER, S., KRISHNAMURTHY, A., AND
PHOTHILIMTHANA, P. M. E3: Energy-efficient microservices
on SmartNIC-accelerated servers. In Usenix Annual Technical
Conference (ATC) (2019).

[50] LO, D., CHENG, L., GOVINDARAJU, R., RANGANATHAN, P., AND
KOZYRAKIS, C. Heracles: Improving resource efficiency at scale. In
International Symposium on Computer Architecture (ISCA) (2015).

[51] MARTY, M., DE KRUIJF, M., ADRIAENS, J., ALFELD, C., BAUER,
S., CONTAVALLI, C., DALTON, M., DUKKIPATI, N., EVANS, W. C.,
GRIBBLE, S., KIDD, N., KONONOV, R., KUMAR, G., MAUER, C.,
MUSICK, E., OLSON, L., RYAN, M., RUBOW, E., SPRINGBORN, K.,
TURNER, P., VALANCIUS, V., WANG, X., AND VAHDAT, A. Snap: a
microkernel approach to host networking. In SIGOPS (2019).

[52] MELLANOX TECHNOLOGIES. Innova - 2 Flex Programmable
Network Adapter. http://www.mellanox.com/related-
docs/prod_adapter_cards/PB_Innova-2_Flex.pdf.

[53] MELLANOX TECHNOLOGIES. Mellanox BlueField Smart-
NIC. http://www.mellanox.com/related-docs/prod_
adapter_cards/PB_BlueField_Smart_NIC.pdf.

[54] MELLANOX TECHNOLOGIES. NVIDIA Mellanox BlueField-2 DPU.
https://www.mellanox.com/products/bluefield2-
overview.

[55] MELLETTE, W. M., DAS, R., GUO, Y., MCGUINNESS, R., SNO-
EREN, A. C., AND PORTER, G. Expanding across time to deliver
bandwidth efficiency and low latency. In Symposium on Networked
Systems Design and Implementation (NSDI) (2020).

[56] MITTAL, R., AGARWAL, R., RATNASAMY, S., AND SHENKER, S.
Universal packet scheduling. In Symposium on Networked Systems
Design and Implementation (NSDI) (2016).

[57] NETRONOME. NFP-6xxx flow processor. https://netronome.
com/product/nfp-6xxx/.

[58] PENSANDO. DSC-100. https://pensando.io/wp-
content/uploads/2020/03/Pensando-DSC-100-
Product-Brief.pdf.

[59] PHOTHILIMTHANA, P. M., LIU, M., KAUFMANN, A., PETER, S.,
BODIK, R., AND ANDERSON, T. Floem: A programming system for
NIC-accelerated network applications. In Symposium on Operating
Systems Design and Implementation (OSDI) (2018).

[60] PONTARELLI, S., BIFULCO, R., BONOLA, M., CASCONE, C.,
SPAZIANI, M., BRUSCHI, V., SANVITO, D., SIRACUSANO, G.,
CAPONE, A., HONDA, M., HUICI, F., AND SIRACUSANO, G. Flow-
Blaze: Stateful packet processing in hardware. In Symposium on
Networked Systems Design and Implementation (NSDI) (2019).

[61] POPA, L., KUMAR, G., CHOWDHURY, M., KRISHNAMURTHY, A.,
RATNASAMY, S., AND STOICA, I. FairCloud: Sharing the network in
cloud computing. In Proceedings of the ACM Special Interest Group
on Data Communication (SIGCOMM) (2012).

[62] RADHAKRISHNAN, S., GENG, Y., JEYAKUMAR, V., KABBANI, A.,
PORTER, G., AND VAHDAT, A. SENIC: Scalable NIC for end-host
rate limiting. In Symposium on Networked Systems Design and Imple-
mentation (NSDI) (2014).

[63] SEWELL, K., DRESLINSKI, R. G., MANVILLE, T., SATPATHY, S.,
PINCKNEY, N., BLAKE, G., CIESLAK, M., DAS, R., WENISCH,
T. F., SYLVESTER, D., ET AL. Swizzle-switch networks for many-
core systems. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems 2, 2 (2012), 278–294.

[64] SHRIVASTAV, V. Fast, scalable, and programmable packet scheduler in
hardware. In Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM) (2019).

[65] SHU, R., CHENG, P., CHEN, G., GUO, Z., QU, L., XIONG, Y.,
CHIOU, D., AND MOSCIBRODA, T. Direct universal access: Making
data center resources available to FPGA. In Symposium on Networked
Systems Design and Implementation (NSDI) (2019).

[66] SINGH, A., ONG, J., AGARWAL, A., ANDERSON, G., ARMISTEAD,
A., BANNON, R., BOVING, S., DESAI, G., FELDERMAN, B., GER-
MANO, P., KANAGALA, A., PROVOST, J., SIMMONS, J., TANDA, E.,
WANDERER, J., HÖLZLE, U., STUART, S., AND VAHDAT, A. Jupiter
rising: A decade of clos topologies and centralized control in google’s
datacenter network. In Proceedings of the ACM Special Interest Group
on Data Communication (SIGCOMM) (2015).

[67] SIVARAMAN, A., CHEUNG, A., BUDIU, M., KIM, C., ALIZADEH,
M., BALAKRISHNAN, H., VARGHESE, G., MCKEOWN, N., AND
LICKING, S. Packet transactions: High-level programming for line-
rate switches. In Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM) (2016).

[68] SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M., CHOLE, S.,
CHUANG, S.-T., AGRAWAL, A., BALAKRISHNAN, H., EDSALL, T.,
KATTI, S., AND MCKEOWN, N. Programmable packet scheduling at
line rate. In Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM) (2016).

258 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://www.mellanox.com/products/bluefield2-overview
https://www.mellanox.com/products/bluefield2-overview
https://netronome.com/product/nfp-6xxx/
https://netronome.com/product/nfp-6xxx/
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-100-Product-Brief.pdf
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-100-Product-Brief.pdf
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-100-Product-Brief.pdf

[69] STEPHENS, B., AKELLA, A., AND SWIFT, M. Your programmable
NIC should be a programmable switch. In ACM Workshop on Hot
Topics in Networks (ACM HotNets) (2018).

[70] STEPHENS, B., AKELLA, A., AND SWIFT, M. Loom: Flexible and
efficient nic packet scheduling. In Symposium on Networked Systems
Design and Implementation (NSDI) (2019).

[71] THOMAS, S., MCGUINNESS, R., VOELKER, G. M., AND PORTER,
G. Dark packets and the end of network scaling. In ANCS (2018).

[72] TILERA. Tile Processor Architecture Overview For the TILE-
GX Series. http://www.mellanox.com/repository/
solutions/tile-scm/docs/UG130-ArchOverview-
TILE-Gx.pdf.

[73] WENTZLAFF, D., GRIFFIN, P., HOFFMANN, H., BAO, L., EDWARDS,
B., RAMEY, C., MATTINA, M., MIAO, C.-C., BROWN III, J. F.,
AND AGARWAL, A. On-chip interconnection architecture of the tile
processor. IEEE Micro, 5 (Sept. 2007).

[74] WILTON, S. J. E., HO, C. H., LEONG, P. H. W., LUK, W., AND
QUINTON, B. A synthesizable datapath-oriented embedded FPGA
fabric. In Proceedings of the 2007 ACM/SIGDA 15th International
Symposium on Field Programmable Gate Arrays (FPGA) (2007).

[75] XILINX. Xilinx Alveo: Adaptable Accelerator Cards for Data Center
Workloads. https://www.xilinx.com/products/boards-
and-kits/alveo.html.

[76] ZILBERMAN, N., AUDZEVICH, Y., COVINGTON, G., AND MOORE,
A. NetFPGA SUME: Toward 100 Gbps as research commodity.

A Artifact Appendix

A.1 Abstract
This artifact contains the source code and test benches for
PANIC’s 100Gbps FPGA-based prototype. Our FPGA pro-
totype is implemented in pure Verilog. Features of the proto-
type include: the hybrid push/pull packet scheduler, the high-
performance switching interconnect, self-contained compute
units, and the lightweight RMT pipeline.

This artifact provides two test benches to reproduce the
results in Figure 8c and Figure 11a in the Vivado HDL simu-
lator.

A.2 Artifact check-list
• Compilation: Running this artifact requires Vivado Design

Suite [10]. Vivado v2019.x and v2020.1 WebPack are verified.

• Hardware: This artifact does not requires any specific hard-
ware.

• Metrics: This artifact measures PANIC’s receiving through-
put under different chaining models and traffic patterns.

• Output: The result will be printed to the console and log
files.

• Experiments: This artifact includes testbenches and running
scripts to replay Figure 8c and Figure 11a.

• Public link: https://bitbucket.org/uw-
madison-networking-research/panic_
osdi20_artifact

A.3 Description
A.3.1 How to access

This artifact is publicly available at https://bitbucket.
org/uw-madison-networking-research/panic_
osdi20_artifact.

A.3.2 Software dependencies

Running this artifact requires Vivado [10]. Vivado WebPack version
is license-free, and it has simulation capabilities to recreate our
results. Since installing the Vivado WebPack requires plenty of disk
space (>20GB), you can choose to instance an FPGA Developer
AMI in AWS (https://aws.amazon.com/marketplace/
pp/B06VVYBLZZ) to run this artifact. The FPGA Developer AMI
has pre-installed the required Vivado toolchain.

A.4 Experiment workflow
1. Check Vivado is Installed Correctly

$ v iv ad o −mode t c l
/ / E n t e r t h e Vivado Command P a l e t t e
Vivado% v e r s i o n
/ / v2019 . x and v2020 . 1 i s v e r i f i e d
Vivado% q u i t

2. Clone the Repo and Make Run

$ g i t c l o n e [A r t i f a c t R e p o]
$ cd p a n i c o s d i 2 0 a r t i f a c t
$ make t e s t p a r a l l e l
$ make t e s t s h a a e s

The make command first compiles the source code, then runs the
simulation tasks in Vivado. The test parallel test replays Figure 8c
and the test shaaes test replays Figure 11a.

A.5 Evaluation and expected result
The result will be printed to the console. The output will also be
logged in ./build/export sim/xsim/simulate.log. For the expected
output and analysis please reference Figure 8c and Figure 11a.

A.6 Notes
For more details about the code structure, please reference
https://bitbucket.org/uw-madison-networking-
research/panic_osdi20_artifact/src/master/
README.md

A.7 AE Methodology
Submission, reviewing and badging methodology:

• https://www.usenix.org/conference/osdi20/
call-for-artifacts

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 259

http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact
https://aws.amazon.com/marketplace/pp/B06VVYBLZZ
https://aws.amazon.com/marketplace/pp/B06VVYBLZZ
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact/src/master/README.md
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact/src/master/README.md
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact/src/master/README.md
https://www.usenix.org/conference/osdi20/call-for-artifacts
https://www.usenix.org/conference/osdi20/call-for-artifacts

Semeru: A Memory-Disaggregated Managed Runtime

Chenxi Wang† Haoran Ma† Shi Liu† Yuanqi Li† Zhenyuan Ruan‡ Khanh Nguyen§

Michael D. Bond∗ Ravi Netravali† Miryung Kim† Guoqing Harry Xu†

UCLA† MIT‡ Texas A&M University§ Ohio State University∗

Abstract
Resource-disaggregated architectures have risen in popularity

for large datacenters. However, prior disaggregation systems

are designed for native applications; in addition, all of them

require applications to possess excellent locality to be effi-

ciently executed. In contrast, programs written in managed

languages are subject to periodic garbage collection (GC),

which is a typical graph workload with poor locality. Al-

though most datacenter applications are written in managed

languages, current systems are far from delivering acceptable

performance for these applications.

This paper presents Semeru, a distributed JVM that can

dramatically improve the performance of managed cloud ap-

plications in a memory-disaggregated environment. Its design

possesses three major innovations: (1) a universal Java heap,

which provides a unified abstraction of virtual memory across

CPU and memory servers and allows any legacy program

to run without modifications; (2) a distributed GC, which

offloads object tracing to memory servers so that tracing is

performed closer to data; and (3) a swap system in the OS

kernel that works with the runtime to swap page data effi-

ciently. An evaluation of Semeru on a set of widely-deployed

systems shows very promising results.

1 Introduction
The idea of resource disaggregation has recently attracted

a great deal of attention in both academia [16, 45, 49, 87]

and industry [3, 33, 39, 52, 65]. Unlike conventional data-

centers that are built with monolithic servers, each of which

tightly integrates a small amount of each type of resource (e.g.,
CPU, memory, and storage), resource-disaggregated datacen-

ters contain servers dedicated to individual resource types.

Disaggregation is particularly appealing due to three major

advantages it provides: (1) improved resource utilization: de-

coupling resources and making them accessible to remote

processes make it much easier for a job scheduler to achieve

full resource utilization; (2) improved failure isolation: any

server failure only reduces the amount of resources of a par-

ticular type, without affecting the availability of other types

of resources; and (3) improved elasticity: hardware-dedicated

servers make it easy to adopt and add new hardware.

State of the Art. Architecture [10, 22, 23, 58] and network-

ing [7, 30, 46, 55, 72, 83, 86, 88] technologies have matured

to a point at which data transfer between servers is fast enough

for them to execute programs collectively. LegoOS [87] pro-

vides a new OS model called splitkernel, which disseminates

traditional OS components into loosely coupled monitors,

each of which runs on a resource server. InfiniSwap [49]

is a paging system that leverages RDMA to expose mem-

ory to applications running on remote machines. FaRM [37]

is a distributed memory system that uses RDMA for both

fast messaging and data access. There also exists a body of

work [12, 28, 38, 60, 61, 64, 65, 73, 77, 94, 96, 97, 105] on

storage disaggregation.

1.1 Problems

Although RDMA provides efficient data access among remote

access techniques, fetching data from remote memory on a

memory-disaggregated architecture, is time consuming, incur-

ring microsecond-level latency that cannot be handled well

by current system techniques [20]. While various optimiza-

tions [37, 38, 49, 84, 87, 105] have been proposed to reduce

or hide fetching latency, such techniques focus on the low-

level system stack and do not consider run-time semantics of

a program, such as locality.

Improving performance for applications that exhibit good
locality is straightforward: the CPU server runs the program,

while data are located on memory servers; the CPU server has

only a small amount of memory used as a local cache1 that

stores recently fetched pages. A cache miss triggers a page

fault on the CPU server, making it fetch data from the memory

server that hosts the requested page. Good locality reduces

cache misses, leading to improved application performance.

As a result, a program itself needs to possess excellent spa-
tial and/or temporal locality to be executed efficiently under

current memory-disaggregation systems [7, 8, 49, 87].

This high requirement of locality creates two practical

challenges for cloud applications. First, typical cloud appli-

cations are written in managed languages that execute atop a

managed runtime. The runtime performs automated memory

management using garbage collection (GC), which frequently

traces the heap and reclaims unreachable objects. GC is a

typical graph workload that performs reachability analysis

over a huge graph of objects connected by references. Graph

traversal often suffers from poor locality, so GC running on

the CPU server potentially triggers a page fault as it follows

each reference. As shown in §2, memory disaggregation can

increase the duration of GC pauses by >10×, significantly

degrading application performance.

1In this paper, “cache” refers to local memory on the CPU server.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 261

Second, to make matters worse, unlike native programs

whose data structures are primarily array-based, managed

programs make heavy use of object-oriented data struc-

tures [74, 100, 101], such as maps and lists connected via

pointers without good locality. To illustrate, consider a Spark

RDD — it is essentially a large list that references a huge

number of element objects, which can be distributed across

memory servers. Even a sequential scan of the list needs to ac-

cess arbitrarily located elements, incurring high performance

penalties due to frequent remote fetches.

In essence, managed programs such as Spark, which are

typical cloud workloads that resource disaggregation aims

to benefit, have not yet received much support from existing

resource-disaggregated systems.

1.2 Our Contributions
Goal and Insight. The goal of this project is to design a

memory-disaggregation-friendly managed runtime that can

provide superior efficiency to all managed cloud applications

running in a memory-disaggregated datacenter. Our major

drive is an observation that shifting our focus from low-level,

semantics-agnostic optimizations (as done in prior work) to

the redesign of the runtime that improves data placement,

layout, and usage, can unlock massive opportunities.

To achieve this goal, our insights are as follows. To exploit

locality for GC, most GC tasks can be offloaded to memory

servers where data is located. As GC tasks are mostly mem-

ory intensive, this offloading fits well into a memory server’s

resource profile: weak compute and abundant memory. Mem-

ory servers can perform some offloaded GC tasks — such as

tracing objects — concurrently with application execution.

Similarly, other GC tasks — such as evacuating objects and

reclaiming memory — can be offloaded to memory servers,

albeit while application execution is paused. Furthermore,

evacuation can improve application locality by moving ob-

jects likely to be accessed together to contiguous memory.

Semeru. Following these insights, we develop Semeru,2 a

distributed Java Virtual Machine (JVM) that supports efficient

execution of unmodified managed applications. As with prior

work [49, 87], this paper assumes a setting where processes

on each CPU server can use memory from multiple memory

servers, but no single process spans multiple CPU servers.

Semeru’s design sees three major challenges:

The first challenge is what memory abstraction to provide.

A reachability analysis over objects on a memory server

requires the server to run a user-space process (such as a

JVM) that has its own address space. As such, the same

object may have different virtual addresses between the CPU

server (that runs the main process) and its hosting memory

server (that runs the tracing process). Address translation for

each object can incur large overheads.

To overcome this challenge, Semeru provides a memory

abstraction called the universal Java heap (UJH) (§3.1). The

2Semeru is the highest mountain on the island of East Java.

execution of the program has a main compute process running

on the CPU server as well as a set of “assistant” processes,

each running on a memory server. The main and assistant

processes are all JVM instances, and servers are connected

with RDMA over InfiniBand. The main process executes

the program while each assistant process only runs offloaded

memory management tasks. The heap of the main process

sees a contiguous virtual address space partitioned across the

participating memory servers, each of which sees and man-

ages a disjoint range of the address space. Semeru enables an

object to have the same virtual address on both the CPU server

and its hosting memory server, making it easy to separate an

application execution from the GC tasks.

The second challenge is what to offload. An ideal ap-

proach is to run the entire GC on memory servers while the

CPU server executes the program, so that memory manage-

ment tasks are performed (1) near data, providing locality ben-

efits, and (2) concurrently without interrupting the main exe-

cution. However, this approach is problematic because some

GC operations — notably evacuating (moving) and compact-

ing objects into a new region — must coordinate extensively

with application threads to preserve correctness. As a result,

many GC algorithms — including the high-performance GC

that our work extends — trace live objects concurrently with

application execution, but move objects only while applica-

tion execution is paused (i.e., stop-the-world collection).

We develop a distributed GC (§4) that selectively offloads

tasks and carefully coordinates them to maximize GC per-

formance. Our idea is to offload tracing to memory servers

concurrently with application execution. Tracing computes a

transitive closure of live objects from a set of roots. It does

nothing but pointer chasing, which would be a major bottle-

neck if performed at the CPU server. To avoid this bottleneck,

Semeru lets each memory server trace its own objects, as

opposed to bringing them into the CPU server for tracing.

Tracing is a memory-intensive task that does not need

much compute [27] but benefits greatly from being close to

data. To leverage memory servers’ weak compute, memory

servers trace their local objects continuously while the CPU

server executes the main threads. Tracing also fits well into

various hardware accelerators [69, 85], which future memory

servers may employ. The CPU server periodically stops the

world for memory servers to evacuate live objects (i.e., copy

them from old to new memory regions) to reclaim memory.

Object evacuation provides a unique opportunity for Semeru
to relocate objects that may potentially be accessed together

into a contiguous space, improving spatial locality.

The third challenge is how to efficiently swap data. Exist-

ing swap systems such as InfiniSwap [49] and FastSwap [11]

cannot coordinate with the language runtime and have bugs

when running distributed frameworks such as Spark (§2). Mel-

lanox provides an NVMe-over-fabric (NVMe-oF) [1] driver

that allows the CPU server to efficiently access remote stor-

age using RDMA. A strawman approach here is to mount

262 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1.0 1.0 1.0 1.0

2.7

1.3 1.2 1.4

3.8

2.8
2.0 2.3

0

1

2

3

4

Young GC Full GC Mutator Total Time

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e
GraphX TriangleCounting

No Swap 50% 25%

1.0 1.0 1.0 1.03.9

57.1

2.0 8.4
6.9

126.1

5.3
18.9

0

50

100

150

Young GC Full GC Mutator Total Time

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

MLlib KMeans

No Swap 50% 25%
Figure 1: Slowdowns of two representative Spark applications under disaggregated memory; NVMe-oF was used for data swapping. Spark

was executed over OpenJDK 12 with its default (Garbage First) GC. The four groups for each program report the slowdowns of the nursery

(young) GC, full-heap GC, mutator, and end-to-end execution. Each group contains three bars, reporting the execution times under three cache

configurations: 100%, 50%, and 25%. Each configuration represents a percentage of the application’s working set that can fit into the CPU

server’s local DRAM. Execution times of the 50% and 25% configurations are normalized to that of 100%.

remote memory as RAMDisks and use NVMe-oF to swap

data. However, this approach does not work in our setting

where remote memory is subject to memory-server tracing

and compaction, precluding it from being used as RAMDisks.

To this end, we modify the NVMe-oF implementation (§5) to

provide support for remote memory management. InfiniBand

gather/scatter is used to efficiently transfer pages. We also de-

velop new system calls that enable effective communications

between the runtime and the swap system.

Results. We have evaluated Semeru using two widely-

deployed systems – Spark and Flink – each with a represen-

tative set of programs. Our results demonstrate that Semeru
improves the end-to-end performance of these systems by an

average of 2.1× and 3.7× when the cache size is 50% and

25% of the heap size, application performance by an average

of 1.9× and 3.3×, and GC performance by 4.2× and 5.6×,

respectively, compared to running these systems directly on

NVM-oF where remote accesses incur significant latency

overheads. These promising results suggest that Semeru re-

duces the gap between memory disaggregation and managed

cloud applications, taking a significant step toward efficiently

running such applications on disaggregated datacenters.

Semeru is publicly available at https://github.com/

uclasystem/Semeru.

2 Motivation
We conducted experiments to understand the latency penal-

ties that managed programs incur on existing disaggregation

systems. We first tried to use existing disaggregation systems

including LegoOS [87], InfiniSwap [49], and FastSwap [11].

However, LegoOS does not yet support socket system calls

and cannot run socket-based distributed systems such as

Spark. Under InfiniSwap and FastSwap, the JVM was fre-

quently stuck — certain remote fetches never returned.

Background of G1 GC. To collect preliminary data, we

set up a small cluster with one CPU and two memory servers,

using Mellanox’s NVMe-over-fabric (NVMe-oF) [1] protocol

for data swapping, mounting remote memory as a RAMDisk.

On this cluster, we ran two representative Spark applications:

Triangle Counting (TC) from GraphX and KMeans from

MLib with the Twitter graph [63] as the input. We used

OpenJDK 12 with its high-performance Garbage First (G1)
GC, which is the default GC recommended for large-scale

processing tasks, with a 32GB heap. G1 is a region-based,
generational GC that most frequently traces the young genera-

tion (i.e., nursery GC) and occasionally traces both young and

old generations (i.e., full-heap GC). This is based on the gen-
erational hypothesis that most objects die young and hence

the young generation contains a larger fraction of garbage

than the old generation [93].

Under G1, the memory for both the young and old genera-

tions is divided into regions, each being a contiguous range

of address space. Objects are allocated into regions. Each

nursery GC traces a small number of selected regions in the

young generation. After tracing, live objects in these regions

are evacuated (i.e., moved) into new regions. Objects that

have survived a number of nursery GCs will be promoted to

the old generation and subject to less frequent tracing. Each

full-heap GC traces the entire heap, and then evacuates and

compacts a subset of regions.

Performance. The performance of these applications is re-

ported in Figure 1. In particular, we measured time spent on

nursery and full-heap collections, as well as end-to-end execu-

tion time. Three cache configurations (shown in three bars of

each group) were considered, each representing a particular

percentage of the application’s working set that can fit into

the CPU server’s local DRAM.

Despite the many block-layer optimizations in the NVMe-

oF swap system, performance penalties from remote fetching

are still large. Under the 25% cache configuration, the average

slowdown for these applications is 10.6×. Note that for a

typical Big Data application with a large working set (e.g., 80–

100GB), 25% of the working set means that the CPU server

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 263

Memory Servers
Java heap LJVM #1

Memory Server #1
LJVM #2

Memory Server #2
LJVM #3

Memory Server #3

CPU-Server Main JVM
Universal Java heap

Virtual Address

Local RAM (cache)

Physical Memory
Addresses Aligned

Semeru Block Device

Page SwapRDMA Messages

RDMA over InfiniBand

(a) Universal Java Heap (b) State machine of a virtual page

Init

Cached-Dirty Evicted

Allocate Swap out

Cached-Clean

Free (unmap)

Figure 2: Semeru’s heap and virtual page management.

needs at least 20–25GB DRAM for a single application to

have a ∼10× slowdown. Considering a realistic setting where

the CPU server runs multiple applications, there is a much

higher DRAM requirement for the CPU server, posing a

practical challenge for disaggregation.

Takeaway. Disaggregated memory incurs a higher slow-

down for the GC than the main application threads (i.e., mu-
tator threads in GC literature terminology) — this is easy

to understand because compared to the mutator (which, for

example, manipulates large Spark RDD arrays), the GC has

much worse locality. Moreover, KMeans suffers much more

from remote memory than TC due to significantly increased

full-heap GC time. This is because KMeans uses a number

of persisted RDDs (that are held in memory indefinitely).

Although TC also persists RDDs, those RDDs are too large

to be held in memory; as such, Spark releases them and re-

constructs them when they are needed. This increases the

amount of computation but reduces the GC effort under dis-

aggregation. However, since memoization is an important

and widely used optimization, it is not uncommon for data

processing applications to hold large amounts of data in mem-

ory. As a result, these applications are expected to suffer from

large-working-set GC as well.

These results call for a new managed runtime that can de-

liver good performance under disaggregated memory without

requiring developers to be aware of and reason about the

effects of disaggregation during development.

3 Semeru Heap and Allocator
This section discusses the design of Semeru’s memory ab-

straction. In order to support legacy applications developed

for monolithic servers and to hide the complexity of data

movement, we propose the universal Java heap (UJH) mem-

ory abstraction. We first describe this abstraction, and then

discuss object allocation and management.

3.1 Universal Java Heap

The main process (i.e., a JVM instance) running on the CPU

server sees a large contiguous virtual address space, which

we refer to as the universal Java heap. The application can

access any part of the heap regardless of the physical loca-

tions. This contiguous address space is partitioned across

memory servers, each of which provides physical memory

that backs a disjoint region of the universal heap. The CPU

server also has a small amount of memory, but this memory

will serve as a software-managed, inclusive cache and hence

not be dedicated to specific virtual addresses. Mutator (i.e.,
application) threads run on the CPU server. When they access

pages that are uncached on the CPU server, a page fault is trig-

gered, and the paging system swaps pages that contain needed

objects into the CPU server’s local memory (cache). When

the cache is full, selected pages are swapped out (evicted) to

their corresponding memory servers, as determined by their

virtual addresses.

Figure 2(a) provides an overview of the UJH. In addition

to the main process running on the CPU server, Semeru also

runs a lightweight JVM (LJVM) process on each participat-

ing memory server that performs tracing over local objects.

This LJVM3 is specially crafted to contain only the modules

of object tracing and memory compaction, with support for

RDMA-enabled communication with the CPU server. Due

to its simplicity (i.e., the modules of compiler, class loader,

and runtime as well as much of the GC are all eliminated),

the LJVM has a very short initialization time (e.g., millisec-

onds) and low memory footprint (e.g., megabytes of memory

for tracing metadata). Hence, a memory server can easily

run many LJVMs despite its weak compute (i.e., each for a

different CPU-server process).

When the LJVM starts, it aligns the starting address of its

local heap with that of its corresponding address range in the

UJH. As a result, each object has the same virtual address

on the CPU and memory servers, enabling memory servers

to trace their local objects without address translation. All

physical memory required at each memory server is allocated

when the LJVM is launched and pinned down during the

entire execution of the program.

Coherency. This memory abstraction is similar in spirit

to distributed shared memory (DSM) [66], which has been

studied for decades. However, different from DSM, which

needs to provide strong coherency between servers, Semeru’s

coherency protocol is much simpler because memory servers,

which collectively manage the address space, do not execute

3It is technically no longer a JVM since it does not execute Java programs.

264 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

any mutator code. The CPU server has access to the entire

UJH, but each memory server can only access data in the

address range it manages. In Semeru, each non-empty virtual

page is in one of two high-level states, cached (in the CPU

server) or evicted (to a memory server). When the CPU server

accesses an evicted virtual page, it swaps the page data into

its cache and changes the page’s state to cached.

3.2 Allocation and Cache Management

Object allocation is performed at the CPU server. Allocation

finds a virtual space that is large enough to accommodate

the object being allocated. We adopt G1’s region-based heap

design where the heap is divided into regions, which are con-

tiguous segments of virtual memory. The region-based design

enables modular tracing and reclamation — each memory

server hosts a set of regions; a memory server can trace any

region it hosts independently of other regions, thereby en-

abling memory servers to perform tracing in parallel (while

the CPU server executes the program). Modular tracing is

enabled by using remembered sets, discussed shortly in §4.

When an object in a region is requested by the CPU server,

the page(s) containing the object are swapped in. At this point,

the region is partially cached and registered at the CPU server

into an active region list. Semeru uses a simple LRU-based

cache management algorithm to evict pages. The region is

removed from this list whenever all its pages are evicted.

Upon an allocation request, the Semeru allocator finds the

first region from this list that has enough space for the new ob-

ject. If none of these regions can satisfy the request, Semeru
creates a new region and allocates the object there. Allocation

is based upon an efficient bump pointer algorithm [57], which

places allocated objects contiguously and in allocation or-

der. Bump pointer allocation maintains a position pointer for

each region, pointing to the starting address of the free space.

Bump pointer allocation maintains a position pointer for each

region that points to the starting address of the region’s free

space. For each allocation, the pointer is simply “bumped

up” by the size of the allocated object. Very large objects are

allocated to a special heap area called the humongous space.

1 struct region {
2 uint64_t start; // start address
3 uint64_t bp; // bump pointer
4 uint64_t num_obj; // total # objects
5 uint64_t cached_size; // size of pages in CPU cache
6 uint16_t survivals; // # evacuations survived
7 remset* rem_set; // remembered set (Section 4)
8 ...
9 }

Figure 3: A simplified definition for a region descriptor in Semeru.

The CPU server maintains, for all regions, their state de-
scriptors. Each region descriptor is a struct, illustrated in

Figure 3. Descriptors are used in both allocation and garbage

collection. For example, start and bp are used for alloca-

tion; they can also be used to calculate the size of allocated

objects. survivals indicates the total number of evacuation

phases that the regions’ objects have survived. It can be used,

together with num_obj, to compute an age measurement for

the region. rem_set is used as the tracing roots, which will

be discussed shortly in §4.2.

Cache Management. Semeru employs a lazy write-back

technique for allocations. Each allocated object stays in the

CPU server’s cache and Semeru does not write the object

back to its corresponding memory server until the pages con-

taining the object are evicted. For efficiency, only dirty pages

are written back. Figure 2(b) shows the state machine of a

virtual page. Each virtual page is initially in the Init state.

Upon an object allocation on a page, the object is placed in

the cache of the CPU server and its virtual page is marked

as Cached, indicating that the object is currently being ac-

cessed by the CPU server. Evicted pages are swapped out to

memory servers. Virtual pages freed by the GC are unmapped
from their physical pages (their corresponding page table en-

tries are not freed) and have their states reset to Init. This

state machine is managed solely by the CPU server; memory

servers do not run application code and hence do not need to

know the state of each page (although they need to know the

state of regions for tracing).

4 Semeru Distributed Garbage Collector
Semeru has a distributed GC that offloads tracing — the most

memory-intensive operation in the GC (as it visits every live

object) — to memory servers. Tracing is a task that fits well

into the capabilities of a memory server with limited compute.

That is, traversing an object graph by chasing pointers does

not need strong compute, but benefits greatly from being

close to data. In addition to memory-server tracing that runs

continuously, Semeru periodically conducts a highly parallel

stop-the-world (STW) collection phase to free cache space

on the CPU server and reclaim memory on memory servers

by evacuating live objects.

Design Overview. Although regions have been used in

prior heap designs [36, 79], there are two unique challenges

in using regions efficiently for disaggregated memory.

The first challenge is how to enable modular tracing for
regions. Prior work such as Yak [79] builds a remembered set
(remset) for each region that records references coming into

objects in the region from other regions. These references,

which are recorded into the set by instrumentation code called

a write barrier, when the mutator executes each object write
of a non-null reference value, can be used as additional roots
to traverse the object graph for the region. However, none of

the existing techniques consider a distributed scenario, where

region tracing is done on memory servers, while their remsets

are updated by mutator threads on the CPU server. We pro-

pose a new distributed design of the remset data structure to

minimize the communication between the CPU and memory

servers. Our remset design is discussed in §4.1.

The second challenge is how to split the GC tasks between
servers. Our distributed GC has two types of collections:

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 265

Figure 4: Semeru GC overview: the MSCT (on memory servers)

traces evicted regions; the CSSC (coordinated between CPU and

memory servers) traces cached regions and reclaims all regions.

Memory Server Concurrent Tracing (MSCT, §4.2):
Each memory server performs intra-region tracing over re-
gions for which most pages are evicted, as a continuous task.

Tracing runs concurrently on memory servers by leveraging

their cheap but idle CPU resources. One can think of this

as a background task that does not add any overhead to the

application execution. The goal of MSCT is to compute a

live object closure for each region at memory servers without

interfering with the main execution at the CPU server. As a

result, by the time a STW phase (i.e., CSSC) runs, much of

the tracing work is done, minimizing the STW pauses.

CPU Server Stop-The-World Collection (CSSC, §4.3):
The CSSC is the main collection phase, coordinated between

the CPU and memory servers to reclaim memory. During this

phase, memory servers follow the per-region object closure

computed during the MSCT to evacuate (i.e., move out) live

objects. Old regions are then reclaimed as a whole. Also

during this phase, the CPU server traces and reclaims regions

for which most pages are cached. Such regions are not traced

by the MSCT. For evacuated objects, pointers pointing to

them need to be updated in this phase as well.

Figure 4 shows an overview of these two types of collec-

tions. While the CPU server runs mutator threads, memory

servers run the MSCT that continuously traces their hosted

regions. When the CPU server stops the world and runs the

CSSC, memory servers suspend the MSCT and coordinate

with the CPU server to reclaim memory.

4.1 Design of the Remembered Set

The remset is a data structure that records, for each region, the

references coming into the region. The design of the remset

is much more complicated under a memory-disaggregated

architecture due to the following two challenges. First, in a

traditional setting, to represent an inter-region reference (e.g.,
from field o.f to object p), we only need its source location —

the address of o.f . This is because p can be easily obtained by

following the reference in o.f . However, in our setting, both

o.f and p need to be recorded for efficiency. This is because

o and p can be on different servers and naïvely following the

reference in o.f can trigger a remote access.

The second challenge is that the remset of each region

is updated by the write barrier executed on the CPU server,

while the region may be traced by a memory server. As a

result, the CPU server has to periodically send the remsets to

Figure 5: Semeru’s remset design; the source and target queues are

implemented as bitmaps for space efficiency.

memory servers for them to concurrently trace their regions.

In addition, after memory servers evacuate objects, they need

to send update addresses for the remsets back to the CPU

server for it to update the sources of references (e.g., o.f may

point to a moved object p).

Figure 5 shows our remset. To represent the source of a

reference, we leverage OpenJDK’s card table, which groups

objects into fixed-sized buckets (i.e., cards) and tracks which

buckets contain references. A card’s ID can be easily com-

puted (i.e., via a bit shift) from a memory address and yet we

can enjoy the many space optimizations already implemented

in OpenJDK (e.g., for references on hot cards that contain

references going to the same region [36], their sources need

to be recorded only once). As such, each incoming reference

is represented as a pair 〈card, tgt〉 where card is the (8-

byte) index of the card representing the source location of the

reference, and tgt is the (8-byte) address of the target object.

Shown on the left side of Figure 5 are inter-region refer-

ences recorded by the write barrier of each mutator thread. To

reduce synchronization costs, each mutator thread maintains

a thread-local queue storing its own inter-region references.

The CPU-server JVM runs a daemon (transfer) thread that pe-

riodically moves these references into the remsets of their cor-

responding regions (i.e., determined by the target addresses).

For each region, a pointer to its remset is saved in the region’s

descriptor (Figure 3), which can be used to retrieve the remset

by the CPU server. When a reference is recorded in a remset,

its card and tgt are decoupled and placed separately into a

source and a target queue.

Target queues are sent (together with stack references)

— during each CSSC via RDMA — to their corresponding

memory servers, which use them as roots to compute a closure

over live objects. Source queues stay on the CPU server and

are used during each CSST to update references if their target

objects are moved during evacuation. The benefit of using

a transfer thread is that mutator threads simply dump inter-

region references, while the work of separating sources and

targets and deduplicating queues (based on a simple hash-

based data structure) is done by the transfer thread, which

does not incur overhead on the main (application) execution.

4.2 Memory Server Concurrent Tracing (MSCT)

The MSCT brings significant efficiency benefits because (1)

tracing computation runs where data is located, avoiding

266 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

high swapping costs, and (2) tracing regions concurrently on

multiple memory servers has zero impact on the execution of

the main application on the CPU server.

The MSCT continuously traces regions (until the CSSC

starts) in the order of a region’s age (i.e., the smaller the value

of survivals, the younger a region) and the percentage of

evicted pages. That is, younger regions with more evicted

pages are traced earlier. This is because (1) younger regions

are likely to contain more garbage (according to the genera-

tional hypothesis), and (2) evicted pages are not touched by

the CPU server. Regions with a low ratio of evicted pages are

not traced since cached objects may be frequently updated

by the CPU server. Tracing such regions would be less prof-

itable because these updates can change pointer structures

frequently, making the tracing results stale.

Identifying Roots. There are two types of roots for the

MSCT to trace a region: (1) objects referenced by stack vari-

ables and (2) cross-region references recorded in the region’s

remset. Both types of information come from the CPU server

— during each CSSC (§4.3), the CPU server scans its stacks,

identifies objects referenced by stack variables, and sends

this information, together with each region’s remset, to its

corresponding memory server via RDMA.

Live Object Marking. The MSCT computes a closure of

reachable objects in each region by traversing the object sub-

graph (within the region) from its roots. When live objects

are traversed, we remember them in a per-region bitmap

live_bitmap where each bit represents a contiguous range

of 8 bytes (because the size of an object is always a multiple

of 8 bytes), and the bit is set if these bytes host a live object.

Furthermore, since live objects will be eventually evacuated,

we compute a new address for a live object as soon as it is

marked. The new address indicates where this object will be

moved to during evacuation. New addresses are recorded in

a forward table (i.e., a key–value store) where keys are the

indexes of the set bits in live_bitmap and values are the

new addresses of the live objects represented by these bits.

Each new address is represented as an offset. At the start

of the MSCT, it is unclear where these objects will be moved

to (since evacuation will not be performed until a CSSC). As

a result, rather than using absolute addresses, we use offsets

to represent their relative locations. Their actual addresses

can be easily computed using these offsets once the starting

address of the destination space is determined.

Offset computation is in traversal order. For example, the

first object reached in the graph traversal receives an offset 0;

the offset for the second object is the size of the first object.

This approach dictates that objects that are contiguous in
traversal will be relocated to contiguous space after evacu-
ation. Hence, the traversal order, which determines which

objects will be contiguously placed after evacuation, is critical

for improving data locality and prefetching effectiveness.

For instance, if the traversal algorithm uses DFS, objects
connected by pointers will be relocated to contiguous memory

(based on an observation that such objects are likely in the

same logical data structure and hence accessed contiguously).

As another example, if we use BFS to traverse the graph,

objects at the same level of a data structure (such as elements

of an array) will be relocated to contiguous memory; this

can be useful for streaming applications that may do a quick

linear scan of all such element objects (i.e., BFS) rather than

fully exploring each element (i.e., DFS). To support these

different heuristics, Semeru allows the user to customize the

traversal algorithm for different workloads.

Tracing Correctness. There are two potential concerns in

tracing safety. First, if a region has a cached page, can the

memory server safely trace the region (given that the CPU

server may update the cached page)? For example, if an

update happens after tracing completes, would the tracing

results still be valid? Second, the root information may be out

of date when a region is traced because the CPU server may

have updated certain inter-region references or stack variables

since the previous CSSC (where roots are computed and sent).

Is it safe to trace with such out-of-date roots?

The answer to both questions is that it is still valid for

a memory server to trace a region over an out-of-date ob-

ject graph. An important safety property is that objects un-
reachable in any snapshot of the object graph will remain
unreachable in any future snapshots (i.e., “once garbage, al-

ways garbage”). Thus the transitive closure may include dead

objects (due to pointer changes the memory server is not

aware of), but objects not in the closure are guaranteed to be

dead (except for newly allocated objects, discussed next).

However, tracing using an out-of-date object graph may

lead to two issues. First, the CPU server may allocate new

objects into a region after the region is traced on a memory

server. These new objects are missed by the closure com-

putation. To solve this problem, we identify all objects that

have been allocated into the region since the last CSSC; such

objects are all marked live at the time the region is reclaimed

in the next CSSC so that no live object is missed. Newly

allocated objects can be identified by remembering the value

of the bump pointer (bp in Figure 3) at the the last CSSC and

comparing it with the current value of bp — the difference

between them captures objects allocated since the last CSSC.

Such handling is conservative, because some of the objects

may be dead already but are still included in the closure.

The second issue is that some objects in the region may lose

their references and become unreachable after tracing is done.

These dead objects are still in the closure. For this issue, we

take a passive approach by not doing anything — we simply

let these dead objects stay in the closure and be moved during

evacuation. These dead objects will be identified in that next

MSCT and collected during the next CSSC. Essentially, we

delay the collection of these objects by one CSSC cycle. Note

that datacenter applications are often not resource strapped;

hence, delaying memory reclamation by one GC cycle is a

better choice than an aggressive alternative that retraces the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 267

region before reclamation (which can increase the length of

each CSSC pause).

Handling CPU Evictions. A significant challenge is that

concurrent tracing of a region can potentially race with the

CPU server evicting a page into the region. To complicate

matters, memory servers are not aware of remote reads/writes

due to Semeru’s use of one-sided RDMA (for efficiency).

Although recent RDMA libraries (such as LITE [91]) pro-

vide rich synchronization support, our use of RDMA at the

block layer has many specific needs that are not met by these

libraries, which were developed for user-space applications.

To overcome this challenge, we develop a simple

workaround: each memory server reserves the first 4 bytes of
each region to store two tags 〈dirty , ver〉. The first 2 bytes

encode a boolean dirty tag and the second 2 bytes encode

an integer version tag. These two tags are updated by the

CPU server both before and after evicting pages into a region,

and checked by the memory server both before and after the

region is traced. Figure 6 shows this logic.

if

else

Figure 6: Detection of evictions at a memory server.

Before evicting pages, the CPU server assigns 1 to the dirty

tag and a new version number v1 to the version tag (Line 1).

This 4-byte information is written atomically by the RDMA

network interface controller (RNIC) into the target region.

After eviction, the CPU server clears the dirty tag and writes

another version number v2 (Line 3). The memory server reads

these 4 bytes atomically and checks the dirty tag (Line 4). If

it is set, this indicates a potential eviction; the memory server

skips this region and moves on to tracing the next region

(Line 10). Otherwise, the region is traced (Line 6). After

tracing, this metadata is retrieved again and the new version

tag is compared with the pre-tracing version tag. A difference

means that an eviction may have occurred and the tracing

results are discarded (Line 8).

The algorithm is sufficient to catch all concurrent evictions.

The correctness can be easily seen by reasoning about the

following three cases. (1) If Line 1 comes before Line 4

(which comes before Line 3), tracing will not be performed.

(2) If Line 1 comes after Line 4 but before Line 8, the version

check at Line 8 will fail. (3) If Line 1 comes after Line 7, the

eviction has no overlap with the tracing and thus the tracing

results are legitimate.

This algorithm introduces overheads due to extra write-

backs. However, by batching pages from the same region and

employing InfiniSwap’s gather/scatter, we manage to reduce

this overhead to about 5%, which can be easily offset by the

savings achieved by tracing objects on memory servers (see

§6.4). Concurrent CPU-server reads are allowed. Similar

to tracing out-of-date object graphs, fetching a page into the

CPU server can potentially lead to new objects and pointer

updates to the page. However, our aforementioned handling

is sufficient to cope with such scenarios.

4.3 CPU Server Stop-The-World Collection (CSSC)
CSSC Overview. As the major collection effort, the CSSC

runs when (1) the heap usage exceeds a threshold, e.g., N%

of the heap size, or (2) Semeru observes large amounts of

swapping. The CPU server suspends all mutator threads and

collaborates with memory servers to perform a collection.

Our goal is to (1) reclaim cache memory at the CPU server

and (2) provide a STW phase for memory servers to safely

reclaim memory by evacuating live objects in the traced re-

gions. Figure 7 overviews the CSSC protocol; edges represent

communications of GC metadata between CPU and memory

servers. The CSSC has four major tasks.

Task 1: The CPU server prepares information for memory

servers to reclaim regions. Such information includes which

regions to reclaim at each memory server (1) and newly

allocated objects for each region to be reclaimed (2). As

discussed in §4.2, newly allocated objects need to be marked

live for safety and are identified by differencing the current

value of bp and its old value (old_bp) captured in the last

CSSC. This information is sent to memory servers (2 → 10)

before they reclaim regions. Before evacuation happens, each

memory server must ensure that regions to be evacuated have

all their pages evicted, to avoid inconsistency. To this end,

the CPU server evicts all pages for each selected region (1).

Task 2: Memory servers reclaim selected regions by mov-

ing out their live objects (10 – 14). For these regions, their

tracing (i.e., closure computation) is already performed dur-

ing the MSCT, and hence, reclamation simply follows the

closure to copy out live objects (i.e., object evacuation) from

old regions into new ones. Object evacuation is done using a

region’s forward table, which is computed in traversal order

to improve locality, as discussed earlier in §4.2. Live objects

from multiple old regions can be compacted into a new re-

gion to reduce fragmentation. Moreover, each memory server

attempts to coalesce regions connected by pointers, again, to

improve locality — if region A has references from region B,

Semeru attempts to copy live objects from A and B into the

same (new) region. The new addresses of these objects can

be computed easily by adding their offsets from the forward

tables onto the base addresses of their target spaces (which

may be brand-new or half-filled regions).

Since objects are moved, their addresses have changed

and hence pointers (stack variables or fields of other objects)

referencing the objects must be updated. Pointer updates,

however, must be done through the CPU server, because

pointers can be scattered across the cache and other memory

servers. Thus after reclaiming regions, each memory server

268 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

CSSC at CPU Server
Select regions for evacuation on mem
servers; evict all their cached pages

1

2 Notify memory servers of these
regions and their bp-old_bp

3 Find regions where most pages
are cached and trace them

4 Evacuate their objects and write
new regions back to mem servers

6 Update stack ref. and propagate
pointer updates to mem servers

5 old_bp = bp

CSSC at Memory Server

Suspend MSCT 9

Evacuate their live objects 11
Send updated addresses to CPU
Server 12

regions
bp diffs

Update local pointers whose
targets have changed 13

Identify newly allocated objects
for these regions 10

Scan stacks/RemSet and send root
info to memory servers

Send CPU server dead sources 14
7 Remove dead entries from RemSets

dead
source

8
Reset each region to be traceable 15

roots Resume MCST 16

Figure 7: Semeru’s CSSC protocol: edges represent communications

in the RDMA control path; bp−old_bp represents the difference

between the current bp and the value of bp captured at the last CSSC.

sends the updated addresses of moved objects back to the CPU

server (12). If a cached object references a moved object, the

CPU server updates the pointer directly; the CPU server must

also propagate these update requests to other memory servers

(6 → 13), which may host objects referencing moved objects.

Task 3: While memory servers reclaim their regions, the

CPU server reclaims regions where most objects are cached.

Since these regions have not been traced during the MSCT,

the CPU server has to trace them to build the closure and

then reclaim them using the same object evacuation algorithm

(3 and 4). Unlike memory-server region reclamation, the

CPU server has to additionally write new regions back to their

respective memory servers after object evacuation to ensure

consistency (4). Next, the CPU server remembers the current

value of bp into old_bp (5) for use in the next CSSC.

Task 4: Since most dead objects have already been re-

claimed, the CPU server scans the remsets to remove dead
entries (7). This is important since otherwise remsets can

keep growing and dead entries would become memory leaks.

Removing dead entries at the CPU server requires memory

servers to provide information about which objects are dead

(14 → 7) because most regions are traced and reclaimed at

memory servers. The CPU server then scans each reference

in each region’s remset and removes those references with

dead targets. Finally, the CPU server scans its stacks and the

updated remset of each region to compute new roots, which

are sent to memory servers for the next round of MSCT (8).

Memory servers reset the metadata (e.g., live_map and for-

ward table) so that the next round of MSCT can trace each

region from scratch (15 and 16).

Since each CSSC only collects selected regions, it may not

reclaim enough memory for the application to run. In such

rare cases (e.g., one or two in our experiments with each Spark

application), Semeru runs a full-heap scan (i.e., the same as

a regular full-heap GC in G1), which brings all objects into

the cache for tracing and collection. Since CSSC relies on

remset-based modular tracing, it cannot reclaim dead objects

that are (1) in different regions and (2) form cycles. Such

objects have to be reclaimed at a full-heap GC.

5 The Semeru Swap System
We build Semeru’s swap system by piggybacking on Mel-

lanox’s NVMe-oF implementation [1]. This section briefly

describes our modifications. During booting, the CPU server

sends JVM metadata (such as metadata of loaded classes) in

its native heap to memory servers, which use such informa-

tion to launch LJVMs. On each memory server, the LJVM

receives these native objects and reconstructs their virtual

tables for function calls to execute correctly on these objects.

Block Layer. We modify NVMe-oF’s block layer to add

support for remote memory management. The remote physi-

cal memory that backs the Java heap on all memory servers

is registered as a whole as an RDMA buffer and pinned down

throughout the execution. As a simple optimization, we re-

move block-layer staging queues and merge several block I/O

(BIO) requests into a single I/O request, turning them directly

into RDMA messages.

Merging BIOs enables the use of InfiniBand’s gather-

scatter for data transfer. For each BIO request generated

by the block layer, it often contains multiple physical pages

to be transferred to a memory server. These physical pages

are not necessarily contiguous. One optimization here is in-

stead of generating multiple RDMA messages separately for

these physical pages, we amortize per-message overhead by

leveraging the scatter-gather technique so that these pages

can be processed using a single RDMA message. We also

develop thread-local RDMA message pools so that multiple

threads can perform their own RDMA message creation and

initialization without needing synchronization.

RDMA Management. All communications between the

CPU and memory servers are through reliable one-sided

RDMA. We distinguish these communications based on data

types: (1) page fetching and evictions, which dominate the

communications, go through a data path inside the kernel

(to provide transparency to applications); (2) signals and

GC information (e.g., all messages in Figure 7), are passed

through a control path implemented as a user-space library

for efficiency. A user-space implementation benefits from

efficiency from raw RDMA (e.g., no overhead from system

calls); since the control path does not overlap with the data

path and transfers small amounts of information (i.e., only

inside each CSSC), our implementation can deliver good

performance for both control and data paths.

6 Evaluation
To implement Semeru, we wrote/modified 58,464 lines of

(non-comment) C/C++ code, including 43,838 lines for the

LJVM (based upon OpenJDK version 12.0.2) on memory

servers, 7,406 lines for the CPU-server JVM, and 7,220 lines

for the Linux kernel (4.11-rc8). Our kernel support contains

4,424 lines of C code for the paging system and RDMA

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 269

management (based upon NVMe-oF), and 2,796 lines for the

modified block layer and memory management part as well

as new system calls.

Setup and Methodology. We ran Semeru in a cluster with

one CPU server and three memory servers. Each server has

two Xeon(R) CPU E5-2640 v3 processors, 128GB memory,

one 200GB SSD, and one 40 Gbps Mellanox ConnectX-3

InfiniBand network adapter. Servers are connected by one

Mellanox 100 Gbps InfiniBand switch. To emulate the weak

compute of memory servers, we let the LJVM on each mem-

ory server use only one core. All our experiments used a

32GB heap, 512MB regions, and 4K pages. The default swap

prefetching mechanism in Linux was used.

Unfortunately, we were only able to gain exclusive use of

a small cluster with four machines when evaluating Semeru.

Despite running on this small cluster, our experiments used

large-scale applications involving multiple memory servers,

representing a real-world use of Semeru. Adding more mem-

ory servers would not change the results because (1) memory

servers perform modular collection — they do not commu-

nicate with each other and hence not have scalability issues;

and (2) the CPU server only communicates with memory

servers during each CSSC — more memory servers would

only increase the control-path communication, which is mini-

mal. Adding CPU servers and running more processes would

increase the amount of tracing work on each memory server.

However, as shown in §6.3, tracing for a large Spark applica-

tion can only utilize 13% of each memory server’s compute

— one single core on each server can support simultaneous

tracing for ∼8 Spark applications.

Name Dataset Size
GraphX-ConnectedComponents (GCC)

Wikipedia English [5] 2GB
GraphX-PageRank (GPR)

Naïve-PageRank (NPR) Wikipedia Polish [5] 1GB

Naïve TriangleCounting Synthetic 2.5K points
1GB

(NTC) 10K edges

MLlib-Bayes Classifiers (MBC) KDD 2012 [4] 5GB

Table 1: Description of five Spark programs.

Name Dataset Size
Word Count (FWC) Wikipedia English [5] 2GB

KMeans (KMS)
Wikipedia English [5] 2GB

Connected Components (FCC)

Table 2: Description of three Flink batch-processing programs.

We evaluated Semeru with two widely deployed data analyt-

ics systems: Apache Spark (3.0.0) and Apache Flink (1.10.1).

Spark was executed under Hadoop 3.2.1 and Scala 2.12.11, us-

ing a set of five programs (listed in Table 1): PageRank (GPR)

and ConnectedComponents (GCC) from the GraphX [48] li-

braries, as well as Bayes Classifier (MBC) from the MLlib

libraries. We also included naïve PageRank (NPR) and naïve

TriangleCounting (NTC), implemented directly atop Spark.

Flink also ran on top of Hadoop version 3.2.1. Flink has

both streaming and batch-processing models. In this experi-

ment, we focused on the batch-processing model, in particular,

Map/Reduce programs. The programs and their datasets are

summarized in Table 2. These programs are selected based

on their popularity and usefulness, covering a spectrum of

text analytics, graph analytics, and machine learning tasks.

6.1 Overall Semeru Performance

We compared Semeru and the original OpenJDK 12 that runs

the G1 GC — the default GC in the JVM since OpenJDK

9. G1 is a concurrent GC that runs concurrent tracing as

the mutator thread executes and stops the world for memory

reclamation. G1 is designed for short latency (i.e., GC pauses)

at the cost of reduced throughput (i.e., concurrent tracing

slows down the mutator as it competes resources with the

mutator). We have tested other GCs as well and found that

G1 consistently outperforms all others in latency.

We ran G1 with two swap mechanisms: a local RAMDisk

and NVMe-oF, which connects the CPU server to remote

memory on the three memory servers. To use NVMe-oF, we

configured remote memory as remote RAMDisks, which host

data objects without supporting memory management. Se-
meru ran on our own swap system built on top of NVMe-oF

with added support for the remote heap and memory man-

agement. Each memory server hosts around one-third of

the 32GB Java heap. There are three cache configurations:

100%, 50%, and 25%. The 100% configuration is our base-

line, which represents the original OpenJDK’s performance

without any swapping.

Running Time. Figure 8 shows performance comparison

between these systems, for our eight programs, under the

three cache configurations. There is only one bar under the

100% cache configuration, representing the original perfor-

mance of G1 that does not perform swapping.

50% Cache 25% Cache

System Mutator GC All Mutator GC All
G1-RD 1.82× 2.79× 1.87× 3.16× 4.59× 3.23×

G1-NVMe 2.00× 4.44× 2.24× 3.85× 14.13× 4.58×
Semeru 1.06× 1.42× 1.08× 1.22× 2.67× 1.32×

Table 3: Overhead summary: overheads are calculated using the G1

performance under the 100% cache configuration as the baseline.

Table 3 summarizes the time overheads incurred by mem-

ory disaggregation on these systems. The baseline used to

calculate these overheads is the G1 performance under the

100% cache ratio (without any kernel and JVM modification).

On average, G1 has 1.87× and 2.24× end-to-end overhead

under RAMDisk and NVMe-oF, respectively, for the 50%

cache configuration. When the cache ratio reduces to 25%,

these overheads increase to 3.23× and 4.58×, respectively.

By offloading tracing and evacuation to memory servers and

improving the locality for the mutator threads, Semeru re-

duces these overheads, by 3.23 times overall, to 1.08× and

1.32× for the two cache ratios, respectively.

Our first observation here is that disaggregation incurs a

much higher overhead on GC than the mutator for Spark

270 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0
50

100
150
200
250
300
350

100% 50% 25%

Spark GPR

0
50

100
150
200
250
300
350

100% 50% 25%

Spark NPR

0

100

200

300

400

500

100% 50% 25%

Spark NTC

0
50

100
150
200
250
300
350

100% 50% 25%

Spark MBC

0
300
600
900

1200
1500

100% 50% 25%

Flink FWC

0
50

100
150
200
250
300
350
400

100% 50% 25%

Flink KMS

0
50

100
150
200
250
300
350

100% 50% 25%

Flink FCC

Figure 8: Performance comparisons between G1 under NVMe-oF (left bar of each group), G1 under RAMDisk (middle bar), and Semeru

(right bar) for three cache configurations: 100%, 50%, and 25%; each bar is broken down into mutator (bottom) and GC (top) time (second).

applications, and it is consistent with our motivating data

reported in §2. This is because GC algorithms inherently do

not possess good locality and, as a result, pay a higher penalty

for remote memory fetching than the mutator. This overhead

grows significantly when the cache size decreases. It is also

easy to see that accessing remote memory (via NVMe-oF)

incurs a higher overhead than accessing the local RAMDisk.

The second observation is that for Flink, which has much

less GC than Spark, Semeru can still considerably improve

its performance. An inspection found that Flink stores data

in the serialized form and implements operators that can pro-

cess data without creating objects for them. Flink allocates

long-lived data items directly in native memory and/or re-

served space in the old generation. Nevertheless, Semeru’s

optimizations are still effective. This is because the G1 GC

uses a disaggregation-agnostic policy to dynamically tune the

size of young generation. Since most objects in Flink die

in the young generation, the pause time of each young GC

is extremely short (e.g., less than 10 ms) and always meets

G1’s pause-time target. As such, G1 keeps increasing the

young generation size to reduce the GC frequency, making

the young generation quickly reach the size of the CPU cache.

However, the problem here is the young generation con-

tains large amounts of garbage, cached on the CPU server,

leaving little cache space for long-lived data. This causes

hot, long-lived data (e.g., in native memory) to be frequently

swapped in and out. In contrast, under Semeru’s region de-

sign, a CSSC is triggered when Semeru observes frequent

swapping. The CSSC reclaims garbage and compacts regions,

freeing up cache space for accommodating other hot data.

The third observation is that applications have different

levels of tolerance to fetching latency. For example, GCC and

GPR have an exceedingly high GC overhead because they

create large RDDs and persist them in memory. These RDDs

50% Cache 25% Cache

System Mutator GC All Mutator GC All
G1-RD 1.73× 2.31× 1.75× 2.65× 2.35× 2.56×

G1-NVMe 1.91× 4.20× 2.10× 3.31× 5.61× 3.69×

Table 4: Summary of performance improvements achieved by Se-
meru: improvements are computed with a

b
where a is the (mutator,

GC, or end-to-end) time under a system and cache configuration,

and b is Semeru’s time under the same configuration.

and their elements quickly become old and get promoted

to the old generation. G1 cannot reclaim much memory in

nursery GCs and, as such, most GCs scan the entire heap,

requiring many remote fetches. For other applications such

as Spark NPR, their GC performance is not as significantly

degraded because their executions generate many temporary

objects that die young (rather than old objects) — when a

nursery GC runs, most young objects are garbage cached

locally on the CPU server, and hence, they can be easily

reclaimed without triggering many remote fetches.

To make Semeru’s improvements clear, Table 4 reports

detailed improvement ratios under each configuration. It is

easy to see that Semeru improves the performance of both the

mutator and GC. On the mutator side, Semeru eliminates G1’s

concurrent marking — which runs on the CPU server in paral-

lel with application execution, competing for resources with

mutator threads and polluting the cache — and dynamically

improves locality (discussed in §4.3) by relocating objects

likely to be accessed to contiguous memory. On the GC side,

Semeru significantly reduces pause time by letting memory

servers perform tracing and evacuation, all of which used to

be done on the CPU server.

Memory. To understand Semeru’s ability to reclaim mem-

ory, we collected post-GC memory footprints for Spark NPR

and Spark KMS under three GCs: Semeru, G1, and Parallel

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 271

(a) Memory: NPR, 50% cache (b) Memory: KMS, 25% cache (c) Mem/time: NPR, w/ and w/o cont. tracing

Figure 9: Memory footprints under Semeru, G1, and Parallel Scavenge for NPR (a) and KMS (b); (c) shows the memory footprint and GC

pause time with and without continuous tracing for NPR.

Scavenge (PS). PS is a non-concurrent GC designed for high

throughput. We added PS because it often can reclaim more

memory at each GC than G1 at the cost of higher latency.

PS’s strong memory reclamation capabilities are clearly seen

in Figure 9(a) where PS has the lowest memory footprint

throughout the execution. Semeru outperforms G1 — G1

uses concurrent tracing to estimate a garbage ratio for each

region; with this information, when each STW phase runs, the

GC can selectively reclaim regions with the highest garbage

ratios. Under memory disaggregation, however, concurrent

tracing runs slowly due to frequent remote fetches. It cannot

finish tracing the heap at the time a STW starts; as a result,

garbage ratios are not available for most regions.

As a result, at each STW phase, there is not much informa-

tion about which regions have the most garbage, and thus, the

GC selects arbitrary regions to collect. Many such regions

do not have much garbage, which explains why G1 reclaims

less memory than Semeru and PS. Note that Semeru does not

suffer from this problem because tracing is done locally on

memory servers; hence, it runs efficiently and can trace many

regions between two consecutive CSSCs.

Figure 9(b) shows the memory footprint for Spark KMS

running under the 25% cache configuration. In this case, Se-
meru’s collection performance is close to that of PS — for

both of them, the program’s memory consumption becomes

stabilized after about 400 seconds. Under G1, however, the

memory footprint fluctuates, again due to the (semi-random)

selection of regions to collect. If regions with large garbage

ratios happen to be in the cache, G1 is able to quickly identify

them during concurrent marking and collect them in a subse-

quent STW phase. However, if they are remotely resident on

memory servers, G1 would lack sufficient information in a

STW phase to collect the right regions.

6.2 Effectiveness of Continuous Tracing

To understand the usefulness of continuous tracing on mem-

ory servers, we compared Semeru with a variant that does

not perform continuous tracing but rather traces regions in

each CSSC. In this variant, tracing is still done on memory

servers but combined with other memory management tasks

such as object evacuation in each STW phase. Without con-

tinuous tracing, which uses idle resources on memory servers

to trace local regions, Semeru suffers from the same problem

as G1 — when a CSSC runs, Semeru does not know which

regions have the most garbage and thus should be reclamation

targets. To minimize the GC latency, each CSSC has to be

extremely short, leaving memory servers insufficient time to

trace many regions. As a result, memory servers can only

trace and reclaim regions based on their age without the more

useful information of their garbage ratio.

To illustrate this problem, Figure 9(c) shows the post-GC

memory footprint (i.e., y-axis on the left) and the pause time

of each CSSC (i.e., y-axis on the right). The two lines rep-

resent the memory footprints of Semeru with and without

continuous tracing while the short bars report the GC pauses.

We make two important observations here. First, Semeru
with continuous tracing consistently reclaims more memory

than the version without continuous tracing, because it knows

the right regions to reclaim in each CSSC. Second, since the

version without continuous tracing cannot reclaim enough

memory, it triggers a full-heap scan at the 484th second, which

is extremely time consuming (i.e., 65 seconds).

A modern generational GC achieves its efficiency by scan-

ning only the young nursery generation in most of its GC

runs. As soon as it needs to scan the entire heap, its perfor-

mance degrades significantly. This is especially the case with

memory disaggregation where a full-heap scan fetches most

objects from memory servers to the CPU server, incurring an

extremely long pause, as shown in the figure. The full-heap

GC reclaims much space and reduces memory consumption.

In contrast, with continuous tracing, Semeru does not en-

counter any full-heap GC throughout the execution. Although

it does not reclaim as much memory as a full-heap GC, it

avoids long pauses and yet is still able to give the application

enough memory to run.

6.3 Tracing Performance

Memory servers are expected to possess weak compute power.

To understand how tracing performs under different levels of

compute, we used one single core on each memory and varied

its frequency with DVFS. Table 5 summarizes the impact of

each frequency on the tracing performance, GC and mutator

performance, and end-to-end performance of NPR. We also

obtained the same measurements when tracing is performed

on the CPU server with a dedicated core. As shown, even with

a single core at 1.2GHz, tracing on memory servers still yields

272 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Tracing Performance Overall Performance
Configuration Thruput CUtil AT AIT GC Mutator Overall

(Memory Server) single core, 1.2 GHz 418.3 MB/s 29.0% 6.5 secs 4.6 secs 59.4 secs 180.2 secs 239.6 secs

(Memory Server) single core, 2.6 GHz 922.2 MB/s 12.4% 5.7 secs 5.0 secs 59.3 secs 173.9 secs 233.2 secs

(CPU Server) single core, 2.6 GHZ, dedicated to GC 93.9 MB/s N/A 38.8 secs N/A 126.0 secs 218.9 secs 344.9 secs

Table 5: Performance of NPR when tracing is performed under different core frequencies at memory servers: reported are the configurations

(Configuration) of memory-server cores, tracing throughput (Thruput), memory-server CPU utilization (CUtil), average time between two

consecutive CSSCs (AT), average idle CPU time between two consecutive CSSCs (AIT), total GC (GC) and mutator time (Mutator), and

end-to-end run time (Overall).

(a) (b)

Figure 10: Comparisons between Semeru’s swap system and local

RAMDisk: (a) shows Spark running times when the size of the

cache is 50% of the heap size; the first bar reports performance of the

baseline (cache ratio = 100%); (b) shows normalized performance

(i.e., slowdowns) for the two cache configurations (50% and 25%).

a throughput 4.5× higher than doing so on the CPU server

with a dedicated 2.6GHz core. This is easy to understand:

the bottleneck of a memory-disaggregated system is at (1)

the poor locality, which triggers many on-demand swaps, and

(2) racing for network resource between the mutator and GC

threads, not the lack of compute power.

Another important observation is on the low CPU utiliza-

tion on memory servers. Even with a 1.2GHz core, continuous

tracing between consecutive CSSCs has only 29% CPU uti-

lization — this is because (1) tracing only follows pointers,

(2) dead objects are not traced and hence, for each region,

only a small fraction needs to be traced, and (3) not all re-

gions need to be traced (i.e., those with a high rate of cached

objects are not traced). These results demonstrate that sup-

porting multiple processes, with weak compute on memory

servers, should not be a concern.

6.4 Swap Performance

To evaluate our swap system’s performance, we turned off

the Semeru runtime (i.e., all memory management tasks on

memory servers) and ran the original G1 GC on top of our

swap system. We tried to run InfiniSwap [49], but its execu-

tions were frequently stuck, even on native programs. This

subsection focuses on comparisons of swap performance be-

tween local RAMDisk and Semeru’s swap system (with and

without using InfiniSwap’s gather/scatter).

The results of Spark NPR are reported in Figure 10. We

used two cache configurations: 50% and 25%. Figure 10(a)

shows actual running times when the cache ratio is 50% be-

tween four versions of the system: in-memory (i.e., cache

ratio is 100%), RAMDisk, Semeru-no-gs (i.e., gather/scatter

is not used), and Semeru-gs (which uses gather/scatter). For

ease of comparison, Figure 10(b) shows normalized times.

 B
an

dw
dt

Figure 11: A comparison of the combined swap read/write through-

put between Semeru-gs, Semeru-no-gs, and RAMDisk.

Under the 50% cache configuration, using RAMDisk as

the swap partition incurs a 1.5× and 1.6× overhead in the

mutator and GC, respectively, compared with the in-memory

baseline. Semeru-no-gs increases the overheads to 1.6× and

2.2×. Merging BIO requests and using gather/scatter brings

the overheads down to 1.5× and 1.7×, which are on par with

those of the RAMDisk. Similar observations can be made

for the 25% cache rate. Across all programs, gather/scatter

improves the swap performance overall by 14%.

Figure 11 compares the read/write throughput between

Semeru-gs, Semeru-no-gs, and RAMDisk when Spark LRG

is executed under the 25% cache configuration. As shown,

gather/scatter helps Semeru achieve a higher peak read/write

bandwidth than Semeru-no-gs (especially when pages con-

tiguously swapped come from / go to the same region).

0 100 200 300 400

Read Write

Semeru-gs

Semeru-no-gs

RAMDisk

Throughput (MB/s)

Figure 12: Average read/write throughput.

A comparison on the average read/write throughput be-

tween the three systems is shown in Figure 12. Semeru-gs’s

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 273

1

10

100

1000

10000

100000

200 220 240 260 280

On

-D
em

an
d

Sw
ap

s

Elapsed Time (s)
Semeru GC Semeru Mutator G1 GG G1 Mutator

Figure 13: Numbers of on-demand swap-ins between G1 and Semeru
under the 25% cache configuration for Spark MBC.

overall read/write throughput is 13% higher than that of Se-
meru-no-gs and is on par with that of RAMDisk. Clearly,

additional gains can be obtained by merging BIO requests

and using gather-scatter.

6.5 Locality Improvement

To understand how Semeru improves locality for application

execution, we measured the number of on-demand swap-ins

performed by the swap system under G1 and Semeru when

Spark MBC was executed with a 25% cache ratio. Figure 13

reports how such numbers change as the execution progresses

for both the mutator and GC. Both Semeru-muator and Se-
meru-GC need significantly fewer on-demand swap-ins due

to improved locality. On average, Semeru reduces the number

of on-demand swap-ins by 8.76×. Note that both G1 and

Semeru ran under the default swap prefetcher in Linux, which

relies on the pages swapped in during the last two page faults:

if they are contiguous, Linux continues to bring in several

contiguous pages into the page cache; otherwise, it assumes

that there are no patterns and reduces or stops prefetching.

Despite the recent development of more advanced prefetchers

(such as Leap [71]) for remote memory, Semeru already per-

forms well under the default prefetcher in Linux. We expect

it to continue to work well when other prefetchers are used.

The average ratio between the sizes of data swapped in the

data and control path is 29.8 across the programs.

7 Related Work
Resource Disaggregation. Due to rapid technological ad-

vances in network controllers, it has become practical to reor-

ganize resources into disaggregated clusters [21, 29, 45, 51].

A disaggregated cluster can increase the hardware resource

utilization and has the potential to overcome fundamen-

tal hardware limits, such as the critical “memory capacity

wall” [9, 13, 17, 58, 67, 68, 95]. A good number of systems

have been developed in the past to take advantage of this ar-

chitecture [7, 35, 41, 42, 44, 54, 62]. However, almost all of

them treat remote memory as fast storage. When the network

connection only has microseconds of latency and hundreds of

gigabits of bandwidth [55, 72], applications can suffer from

significant delays in memory access. Despite many optimiza-

tions [7, 11, 49, 84, 87–89] developed to reduce this latency,

they all focus on low-level system stacks and do not con-

sider run-time characteristics of programs. They do not work

well for managed cloud applications such as [6, 14, 15, 24–

26, 31, 32, 50, 56, 75, 76, 81, 82, 92, 102–104, 106]. Semeru
co-optimizes the runtime and the swap system, unlocking

opportunities unseen by existing techniques.

Garbage Collection for Modern Systems. GC is a

decades-old topic. In order to meet the requirements of

low latency and high throughput, many concurrent GC al-

gorithms have been proposed, including the Garbage-First

(G1) GC [36], Compressor [59], ZGC [2], the Shenandoah

GC [43], Azul’s pauseless GC [34], and C4 [90], as well as

several real-time GCs [18, 19]. These GC algorithms can

run in the background with short pauses for mutator threads.

However, none of them can work directly in the resource-

disaggregated environment, which has a unique resource pro-

file — data are all located on memory servers, the CPU server

has a small cache, and memory servers have weak compute.

Efficiently using memory is important especially for appli-

cations running on the cloud [40]. Yak [79] is a region-based

GC developed for such applications. Taurus [70] coordinates

GC efforts in a distributed setting for cloud systems. Fa-

cade [80] uses region-based memory management to reduce

GC costs for Big Data applications. Gerenuk [78] develops a

compiler analysis and runtime system that enable native repre-

sentation of data for managed analytics systems such as Spark

and Hadoop. Espresso [99] and Panthera [95] are designed

for systems with non-volatile memory. Platinum [98] is a GC

that aims to reduce tail latency for interactive applications.

NUMAGiC [47] is a GC developed for the NUMA architec-

ture. However, NUMAGiC assumes that NUMA nodes are

completely symmetric (with the same CPU, the same amount

of local memory, and the same GC algorithm) — which is

not the case for disaggregated clusters. DMOS [53] is a dis-

tributed GC algorithm that has not been implemented and

whose performance in a real-world setting is unclear.

8 Conclusions
Semeru is a managed runtime designed for efficiently running

managed applications with disaggregated memory. It achieves

superior efficiency via a co-design of the runtime and swap

system as well as careful coordination of different GC tasks.

Acknowledgments
We thank the OSDI reviewers for their valuable and thor-

ough comments. We are grateful to our shepherd Yiying

Zhang for her feedback, helping us improve the paper substan-

tially. This work is supported by NSF grants CCF-1253703,

CCF-1629126, CNS-1703598, CCF-1723773, CNS-1763172,

CCF-1764077, CNS-1907352, CNS-1901510, CNS-1943621,

CNS-2007737, CNS-2006437, and ONR grants N00014-16-

1-2913 and N00014-18-1-2037, and a grant from the Alexan-

der von Humboldt Foundation.

274 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A Artifact Appendix
A.1 Artifact Summary

Semeru is a managed runtime built for a memory-

disaggregated cluster where each managed application uses

one CPU server and multiple memory servers. When

launched on Semeru, the process runs its application code

(mutator) on the CPU server, and the garbage collector on

both the CPU server and memory servers in a coordinated

manner. Due to task offloading and moving computation close

to data, Semeru significantly improves the locality for both

the mutator and GC and, hence, the end-to-end performance

of the application.

A.2 Artifact Check-list

• Hardware: Intel servers with InfiniBand
• Run-time environment: OpenJDK 12.02, Linux-4.11-rc8,

CentOS 7.5(7.6) with MLNX-OFED 4.3(4.5)
• Public link: https://github.com/uclasystem/
Semeru

• Code licenses: The GNU General Public License (GPL)

A.3 Description

A.3.1 Semeru’s Codebase

Semeru contains the following three components:

• the Linux kernel, which includes a modified swap system,

block layer and a RDMA module,

• the CPU-server Java Virtual Machine (JVM),

• the Memory-server lightweight Java Virtual Machine

(LJVM).

These three components and their relationships are illustrated

in Figure 14.

CPU-Server JVM Memory Server#0
Lightweight JVM

Memory Server#1
Lightweight JVM

RDMA on InfiniBand

MSCT

Mutator

Linux Kernel

Block Layer

Swap System

RDMA Module

CSSC
Launcher

MSCT
Launcher

Memory Compactor

Memory Compactor

Control Path Data Path
Figure 14: Overview of Semeru’s codebase.

A.3.2 Deploying Semeru

To build Semeru, the first step is to download its source code:

git clone

git@github.com:uclasystem/Semeru.git

When deploying Semeru, install the three components in

the following order: the kernel on the CPU server, the Semeru
JVM on the CPU server, and the LJVM on each memory

server. Finally, connect the CPU server with memory servers

before running applications.

Kernel Installation. We first discuss how to build and in-

stall the kernel.

• Modify grub and set transparent_hugepage to

madvise:

sudo vim /etc/default/grub

+ transparent_hugepage=madvise

• Install the kernel and restart the machine:

cd Semeru/Linux-4.11-rc8

sudo ./build_kernel.sh build

sudo ./build_kernel.sh install

• Build the Semeru RDMA module:

Add the IP of each memory server into

Semeru/linux-4.11-rc8/include/

linux/swap_global_struct.h

e.g., the Infiniband IPs of the 2 memory servers

are 10.0.0.2 and 10.0.0.4.

char* mem_server_ip[][] = {"10.0.0.2",

"10.0.0.4"};

uint16_t mem_server_port = 9400;

Then build the Semeru RDMA module

make

Install the CPU-Server JVM. We next discuss the steps

to build and install the CPU-server JVM.

• Download Oracle JDK 12 to build Semeru JVM:

Assume jdk 12.02 is under path

${home_dir}/jdk12.0.2

Or change the path in shell script

Semeru/CPU-Server/build_cpu_server.sh

boot_jdk="${home_dir}/jdk12.0.2"

• Build the CPU-server JVM:

${build_mode} can be one of the three modes:

slowdebug, fastdebug, or release.

We recommend fastdebug to debug the JVM code

and release to test the performance.

Please make sure both the CPU server and

memory servers use the same build mode.

cd Semeru/CPU-Server/

./build_cpu_server.sh ${build_mode}

./build_cpu_server.sh build

Take fastdebug mode as example — the compiled

JVM will be in:

Semeru/CPU-Server/build

/linuxx86_64serverfastdebug/jdk

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 275

Install the Memory-Server LJVM. The next step is to

install the LJVM on each memory server.

• Download OpenJDK 12 and build the LJVM:

Assume OpenJDK12 is under the path

#${home_dir}/jdk-12.0.2

Or you can change the path in the script

Semeru/Memory-Server/build_mem_server.sh

boot_jdk="${home_dir}/jdk-12.0.2"

• Change the IP addresses:

E.g., mem-server #0’s IP is 10.0.0.2, ID is 0.

Change the IP address and ID in file:

Semeru/Memory-Server/src/hotspot/share/

utilities/globalDefinitions.hpp

#@Mem-server #0

#define NUM_OF_MEMORY_SERVER 2

#define CUR_MEMORY_SERVER_ID 0

static const char cur_mem_server_ip[] =

"10.0.0.2";

static const char cur_mem_server_port[]

= "9400";

• Build and install the LJVM:

Use the same ${build_mode} as the CPU-server

JVM.

cd Semeru/CPU-Server/

./build_memory_server.sh ${build_mode}

./build_memory_server.sh build

./build_memory_server.sh install

The compiled Java home will be installed under:

{home_dir}/jdk12u-self-build/jvm/

openjdk-12.0.2-internal

Set JAVA_HOME to point to this folder.

A.3.3 Running Applications

To run applications, we first need to connect the CPU server

with memory servers. Next, we mount the remote memory

pools as a swap partition on the CPU server. When the appli-

cation uses more memory than the limit set by cgroup, its

data will be swapped out to the remote memory via RDMA.

• Launch memory servers:

Use the shell script to run each memory server.

#${execution_mode} can be execution or gdb.

#@Each memory server

cd Semeru/ShellScrip

run_rmem_server_with_rdma_service.sh

Case1 ${execution_mode}

• Connect the CPU server with memory servers:

#@CPU server

cd Semeru/ShellScript/

install_semeru_module.sh semeru

To close the swap partition, do the following:

#@CPU server

cd Semeru/ShellScript/

install_semeru_module.sh close_semeru

• Set a cache size limit for an application:

E.g., Create a cgroup with 10GB memory limita-

tion.

#@CPU server

cd Semeru/ShellScript

cgroupv1_manage.sh create 10g

• Add a Spark executor into the created cgroup:

Add a Spark worker into the cgroup, memctl.
Its sub-process, executor, falls into the same cgroup.

Modify the function start_instance under

Spark/sbin/start-slave.sh

#@CPU server

cgexec -sticky -g memory:memctl

"${SPARK_HOME}/sbin" /sparkdaemon.sh

start $CLASS $WORKER_NUM -webui-port

"$WEBUI_PORT" $PORT_FLAG $PORT_NUM

$MASTER "$@"

• Launch a Spark application:

Some Semeru JVM options need to be added for both CPU-

server JVM and LVJMs. CPU-server JVM and memory

server LJVMs should use the value for the same JVM

option.

E.g., under the configuration of 25% local memmory

512MB Java heap Region

#@CPU server

-XX:+SemeruEnableMemPool

-XX:EnableBitmap -XX:-UseCompressedOops

-Xnoclassgc -XX:G1HeapRegionSize=512M

-XX:MetaspaceSize=0x10000000

-XX:SemeruLocalCachePercent=25

#@Each memory server

${MemSize}: the memory size of current memory

server

${ConcThread}: the number of concurrent threads

-XX:SemeruEnableMemPool

-XX:-UseCompressedOops

-XX:SemeruMemPoolMaxSize=${MemSize}

-XX:SemeruMemPoolInitialSize=${MemSize}

-XX:SemeruConcGCThreads=${ConcThread}

More details of Semeru’s installation and deployment can

be found in Semeru’s code repository.

276 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] NVMe over fabrics. http://

community.mellanox.com/s/article/
what-is-nvme-over-fabrics-x.

[2] The Z garbage collector. https://wiki.
openjdk.java.net/display/zgc/Main.

[3] SeaMicro Technology Overview. https:
//data.tiger-optics.ru//download/
seamicro/SM_TO02_v1.4.pdf, 2010.

[4] Libsvm data: Classification. https://www.
csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets, 2012.

[5] Wikipedia networks data. http://konect.
uni-koblenz.de/networks/, 2020.

[6] P. Agrawal, D. Kifer, and C. Olston. Scheduling shared

scans of large data files. Proceedings of VLDB Endow.,
1(1):958–969, 2008.

[7] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard,

J. Gandhi, S. Novakovic, A. Ramanathan, P. Subrah-

manyam, L. Suresh, K. Tati, R. Venkatasubramanian,

and M. Wei. Remote regions: A simple abstraction

for remote memory. In USENIX ATC, pages 775–787,

2018.

[8] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard,

J. Gandhi, P. Subrahmanyam, L. Suresh, K. Tati,

R. Venkatasubramanian, and M. Wei. Remote memory

in the age of fast networks. In SoCC, pages 121–127,

2017.

[9] M. K. Aguilera, K. Keeton, S. Novakovic, and S. Sing-

hal. Designing far memory data structures: Think

outside the box. In HotOS, pages 120–126, 2019.

[10] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. Pim-enabled in-

structions: A low-overhead, locality-aware processing-

in-memory architecture. In ISCA, pages 336–348,

2015.

[11] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ouster-

hout, M. K. Aguilera, A. Panda, S. Ratnasamy, and

S. Shenker. Can far memory improve job throughput?

In EuroSys, 2020.

[12] Amazon. Amazon EC2 root device volume.

https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/RootDeviceStorage.
html#RootDeviceStorageConcepts, 2019.

[13] S. Angel, M. Nanavati, and S. Sen. Disaggregation

and the application. In HotCloud, 2020.

[14] Hadoop: Open-source implementation of MapReduce.

http://hadoop.apache.org.

[15] Apache Flink. http://flink.apache.org/.

[16] K. Asanovic. Firebox: A hardware building block for

2020 warehouse-scale computers. In FAST, 2014.

[17] K. Asanović, R. Bodik, B. C. Catanzaro, J. J. Gebis,

P. Husbands, K. Keutzer, D. A. Patterson, W. L.

Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.

The landscape of parallel computing research: A

view from berkeley. Technical Report UCB/EECS-

2006-183, EECS Department, University of California,

Berkeley, Dec 2006.

[18] J. Auerbach, D. F. Bacon, P. Cheng, D. Grove, B. Biron,

C. Gracie, B. McCloskey, A. Micic, and R. Sciampa-

cone. Tax-and-spend: Democratic scheduling for real-

time garbage collection. In EMSOFT, pages 245–254,

2008.

[19] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time

garbage collector with low overhead and consistent

utilization. In POPL, pages 285–298, 2003.

[20] L. Barroso, M. Marty, D. Patterson, and P. Ran-

ganathan. Attack of the killer microseconds. Commun.
ACM, 60(4):48–54, 2017.

[21] L. A. Barroso. Warehouse-scale computing: Entering

the teenage decade. In ISCA, 2011.

[22] M. N. Bojnordi and E. Ipek. PARDIS: A pro-

grammable memory controller for the DDRx inter-

facing standards. In ISCA, pages 13–24, 2012.

[23] M. N. Bojnordi and E. Ipek. A programmable memory

controller for the DDRx interfacing standards. ACM
Trans. Comput. Syst., 31(4):11:1–11:31, 2013.

[24] V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and

R. Vernica. Hyracks: A flexible and extensible foun-

dation for data-intensive computing. In ICDE, pages

1151–1162, 2011.

[25] Y. Bu, V. Borkar, G. Xu, and M. J. Carey. A bloat-

aware design for big data applications. In ISMM, pages

119–130, 2013.

[26] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst.

HaLoop: Efficient iterative data processing on large

clusters. PVLDB, 3(1):285–296, 2010.

[27] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKin-

ley. The yin and yang of power and performance for

asymmetric hardware and managed software. In ISCA,

pages 225–236, 2012.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 277

[28] W. Cao, Z. Liu, P. Wang, S. Chen, C. Zhu, S. Zheng,

Y. Wang, and G. Ma. PolarFS: An ultra-low latency and

failure resilient distributed file system for shared stor-

age cloud database. Proc. VLDB Endow., 11(12):1849–

1862, 2018.

[29] A. Carbonari and I. Beschasnikh. Tolerating faults

in disaggregated datacenters. In HotNets-XVI, pages

164–170, 2017.

[30] CCIX. Cache coherent interconnect for accelerators.

https://www.ccixconsortium.com/, 2018.

[31] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,

D. Shakib, S. Weaver, and J. Zhou. SCOPE: easy

and efficient parallel processing of massive data sets.

Proc. VLDB Endow., 1(2):1265–1276, 2008.

[32] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R.

Henry, R. Bradshaw, and N. Weizenbaum. FlumeJava:

easy, efficient data-parallel pipelines. In PLDI, pages

363–375, 2010.

[33] I.-H. Chung, B. Abali, and P. Crumley. Towards a

composable computer system. In HPC Asia, pages

137–147, 2018.

[34] C. Click, G. Tene, and M. Wolf. The pauseless gc

algorithm. In VEE, pages 46–56, 2005.

[35] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A.

Patterson. Cooperative caching: Using remote client

memory to improve file system performance. In OSDI,
1994.

[36] D. Detlefs, C. Flood, S. Heller, and T. Printezis.

Garbage-first garbage collection. In ISMM, pages 37–

48, 2004.

[37] A. Dragojević, D. Narayanan, M. Castro, and O. Hod-

son. FaRM: Fast remote memory. In NSDI, pages

401–414, 2014.

[38] Facebook. Introducing Lightning: A flex-

ible NVMe JBOF. https://code.fb.
com/data-center-engineering/
introducing-lightning-a-flexible-nvme-jbof,

2019.

[39] Facebook and Intel. Facebook and intel col-

laborate on future data center rack technologies.

http://goo.gl/6h2Ut, 2013.

[40] L. Fang, K. Nguyen, G. Xu, B. Demsky, and S. Lu.

Interruptible tasks: Treating memory pressure as in-

terrupts for highly scalable data-parallel programs. In

SOSP, pages 394–409, 2015.

[41] M. J. Feeley, W. E. Morgan, E. P. Pighin, A. R. Kar-

lin, H. M. Levy, and C. A. Thekkath. Implementing

global memory management in a workstation cluster.

In SOSP, pages 201–212, 1995.

[42] E. Felten and J. Zahorjan. Issues in the implementation

of a remote memory paging system. In University of
Washington CSE TR CSE TR, 1991.

[43] C. H. Flood, R. Kennke, A. Dinn, A. Haley, and

R. Westrelin. Shenandoah: An open-source concurrent

compacting garbage collector for openjdk. In PPPJ,

pages 13:1–13:9, 2016.

[44] M. D. Flouris and E. P. Markatos. The network

ramdisk: Using remote memory on heterogeneous

nows. Cluster Computing, 2(4), Dec 1999.

[45] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira,

S. Han, R. Agarwal, S. Ratnasamy, and S. Shenker.

Network requirements for resource disaggregation. In

OSDI, pages 249–264, 2016.

[46] GenZ. Genz consortium. http://
genzconsortium.org/, 2019.

[47] L. Gidra, G. Thomas, J. Sopena, M. Shapiro, and

N. Nguyen. NumaGiC: A garbage collector for big

data on big NUMA machines. In ASPLOS, pages 661–

673, 2015.

[48] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.

Franklin, and I. Stoica. GraphX: Graph processing in

a distributed dataflow framework. In OSDI, pages

599–613, 2014.

[49] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.

Efficient memory disaggregation with infiniswap. In

NSDI, pages 649–667, 2017.

[50] Z. Guo, X. Fan, R. Chen, J. Zhang, H. Zhou,

S. McDirmid, C. Liu, W. Lin, J. Zhou, and L. Zhou.

Spotting code optimizations in data-parallel pipelines

through periscope. In OSDI, pages 121–133, 2012.

[51] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and

S. Shenker. Network support for resource disaggrega-

tion in next-generation datacenters. In HotNets, pages

10:1–10:7, 2013.

[52] Hewlett-Packard. The machine: A new kind of

computer. https://www.hpl.hp.com/research/systems-

research/themachine/.

[53] R. L. Hudson, R. Morrison, J. E. B. Moss, and D. S.

Munro. Garbage collecting the world: One car at a

time. In OOPSLA, pages 162–175, 1997.

278 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[54] L. Iftode, K. Li, and K. Petersen. Memory servers for

multicomputers. In Digest of Papers. Compcon Spring,

pages 538–547, Feb 1993.

[55] Intel. Intel high performance com-

puting fabrics. https://www.
intel.com/content/www/us/en/
high-performance-computing-fabrics/,

2019.

[56] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.

Dryad: distributed data-parallel programs from sequen-

tial building blocks. In EuroSys, pages 59–72, 2007.

[57] R. Jones, A. Hosking, and E. Moss. The Garbage Col-
lection Handbook: The Art of Automatic Memory Man-
agement. Chapman & Hall/CRC, 1st edition, 2011.

[58] K. Keeton. The Machine: An architecture for memory-

centric computing. In ROSS, 2015.

[59] H. Kermany and E. Petrank. The Compressor: Concur-

rent, incremental, and parallel compaction. In PLDI,
pages 354–363, 2006.

[60] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and

S. Kumar. Flash storage disaggregation. In EuroSys,

pages 29:1–29:15, 2016.

[61] A. Klimovic, H. Litz, and C. Kozyrakis. ReFlex: Re-

mote flash ≈ local flash. In ASPLOS, pages 345–359,

2017.

[62] S. Koussih, A. Acharya, and S. Setia. Dodo: a user-

level system for exploiting idle memory in workstation

clusters. In HPDC, pages 301–308, Aug 1999.

[63] H. Kwak, C. Lee, H. Park, and S. Moon. What is

twitter, a social network or a news media? In WWW,

pages 591–600, 2010.

[64] E. K. Lee and C. A. Thekkath. Petal: Distributed

virtual disks. In ASPLOS, pages 84–92, 1996.

[65] S. Legtchenko, H. Williams, K. Razavi, A. Donnelly,

R. Black, A. Douglas, N. Cheriere, D. Fryer, K. Mast,

A. D. Brown, A. Klimovic, A. Slowey, and A. Row-

stron. Understanding rack-scale disaggregated storage.

In HotStorage, 2017.

[66] K. Li and P. Hudak. Memory coherence in shared

virtual memory systems. ACM Trans. Comput. Syst.,
7(4):321–359, Nov. 1989.

[67] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K.

Reinhardt, and T. F. Wenisch. Disaggregated memory

for expansion and sharing in blade servers. In ISCA,

pages 267–278, 2009.

[68] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang,

P. Ranganathan, and T. F. Wenisch. System-level im-

plications of disaggregated memory. In HPCA, pages

1–12, 2012.

[69] M. Maas, K. Asanović, and J. Kubiatowicz. A hard-

ware accelerator for tracing garbage collection. In

ISCA, pages 138–151, 2018.

[70] M. Maas, T. Harris, K. Asanović, and J. Kubiatowicz.

Taurus: A holistic language runtime system for coordi-

nating distributed managed-language applications. In

ASPLOS, pages 457–471, 2016.

[71] H. A. Maruf and M. Chowdhury. Effectively prefetch-

ing remote memory with Leap. In USENIX ATC, pages

843–857, 2020.

[72] Mellanox. Connectx-6 single/dual-port adapter

supporting 200gb/s with vpi. http://www.
mellanox.com/page/products_dyn?
product_family=265&mtag=connectx_6_
vpi_card, 2019.

[73] J. Mickens, E. B. Nightingale, J. Elson, K. Nareddy,

D. Gehring, B. Fan, A. Kadav, V. Chidambaram, and

O. Khan. Blizzard: Fast, cloud-scale block storage for

cloud-oblivious applications. In NSDI, pages 257–273,

2014.

[74] N. Mitchell and G. Sevitsky. The causes of bloat, the

limits of health. In OOPSLA, pages 245–260, 2007.

[75] D. G. Murray, M. Isard, and Y. Yu. Steno: automatic

optimization of declarative queries. In PLDI, pages

121–131, 2011.

[76] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,

P. Barham, and M. Abadi. Naiad: A timely dataflow

system. In SOSP, pages 439–455, 2013.

[77] M. Nanavati, J. Wires, and A. Warfield. Decibel: Iso-

lation and sharing in disaggregated rack-scale storage.

In NSDI, pages 17–33, 2017.

[78] C. Navasca, C. Cai, K. Nguyen, B. Demsky, S. Lu,

M. Kim, and G. H. Xu. Gerenuk: Thin computation

over big native data using speculative program trans-

formation. In SOSP, pages 538–553, 2019.

[79] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu,

S. Alamian, and O. Mutlu. Yak: A high-performance

big-data-friendly garbage collector. In OSDI, pages

349–365, 2016.

[80] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and G. Xu.

FACADE: A compiler and runtime for (almost) object-

bounded big data applications. In ASPLOS, pages

675–690, 2015.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 279

[81] C. Olston, B. Reed, A. Silberstein, and U. Srivastava.

Automatic optimization of parallel dataflow programs.

In USENIX ATC, pages 267–273, 2008.

[82] C. Olston, B. Reed, U. Srivastava, R. Kumar, and

A. Tomkins. Pig latin: a not-so-foreign language for

data processing. In SIGMOD, pages 1099–1110, 2008.

[83] OpenCAPI. Open coherent accelerator processor inter-

face. https://opencapi.org/, 2018.

[84] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and

H. Balakrishnan. Shenango: Achieving high CPU

efficiency for latency-sensitive datacenter workloads.

In NSDI, pages 361–378, 2019.

[85] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,

K. Constantinides, J. Demme, H. Esmaeilzadeh,

J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck,

S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus,

E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao,

and D. Burger. A reconfigurable fabric for accelerating

large-scale datacenter services. In ISCA, pages 13–24,

2014.

[86] S. M. Rumble. Infiniband verbs performance.

https://ramcloud.atlassian.net/
wiki/display/RAM/Infiniband+Verbs+
Performance, 2010.

[87] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS:

A disseminated, distributed OS for hardware resource

disaggregation. In OSDI, pages 69–87, 2018.

[88] V. Shrivastav, A. Valadarsky, H. Ballani, P. Costa, K. S.

Lee, H. Wang, R. Agarwal, and H. Weatherspoon.

Shoal: A network architecture for disaggregated racks.

In NSDI, pages 255–270, 2019.

[89] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and

G. Alonso. StRoM: Smart remote memory. In Eu-
roSys, 2020.

[90] G. Tene, B. Iyengar, and M. Wolf. C4: The contin-

uously concurrent compacting collector. In ISMM,

pages 79–88, 2011.

[91] S.-Y. Tsai and Y. Zhang. LITE kernel RDMA support

for datacenter applications. In SOSP, pages 306–324,

2017.

[92] Storm: dstributed and fault-tolerant realtime compu-

tation. https://github.com/nathanmarz/
storm.

[93] D. Ungar. Generation scavenging: A non-disruptive

high performance storage reclamation algorithm. In

PSDE, pages 157–167, 1984.

[94] VMware. Virtual SAN. https://www.vmware.
com/products/vsan.html, 2019.

[95] C. Wang, H. Cui, T. Cao, J. Zigman, H. Volos,

O. Mutlu, F. Lv, X. Feng, and G. H. Xu. Panthera:

Holistic memory management for big data processing

over hybrid memories. In PLD, pages 347–362, 2019.

[96] W.-H. Wang, J.-L. Baer, and H. M. Levy. Readings in

computer architecture. chapter Organization and Per-

formance of a Two-level Virtual-real Cache Hierarchy,

pages 434–442. 2000.

[97] Wen-Hann Wang, J. Baer, and H. M. Levy. Organiza-

tion and performance of a two-level virtual-real cache

hierarchy. In ISCA, pages 140–148, 1989.

[98] M. Wu, Z. Zhao, Y. Yang, H. Li, H. Chen, B. Zang,

H. Guan, S. Li, C. Lu, and T. Zhang. Platinum: A cpu-

efficient concurrent garbage collector for tail-reduction

of interactive services. In USENIX ATC, 2020.

[99] M. Wu, Z. Ziming, L. Haoyu, L. Heting, C. Haibo,

Z. binyu, and G. Haibing. Espresso: Brewing Java for

more non-volatility. In ASPLOS, pages 70–83, 2018.

[100] G. Xu. Finding reusable data structures. In OOPSLA,

pages 1017–1034, 2012.

[101] G. Xu, M. Arnold, N. Mitchell, A. Rountev, E. Schon-

berg, and G. Sevitsky. Finding low-utility data struc-

tures. In PLDI, pages 174–186, 2010.

[102] G. H. Xu, M. Veanes, M. Veanes, M. Musuvathi,

T. Mytkowicz, B. Zorn, H. He, and H. Lin. Niijima:

Sound and automated computation consolidation for

efficient multilingual data-parallel pipelines. In SOSP,

pages 306–321, 2019.

[103] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson,

P. K. Gunda, and J. Currey. DryadLINQ: a system for

general-purpose distributed data-parallel computing

using a high-level language. In OSDI, pages 1–14,

2008.

[104] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,

and I. Stoica. Spark: Cluster computing with working

sets. HotCloud, page 10, Berkeley, CA, USA, 2010.

[105] Q. Zhang, G. Yu, C. Guo, Y. Dang, N. Swanson,

X. Yang, R. Yao, M. Chintalapati, A. Krishnamurthy,

and T. Anderson. Deepview: Virtual disk failure diag-

nosis and pattern detection for Azure. In NSDI, pages

519–532, 2018.

[106] J. Zhou, P.-Å. Larson, and R. Chaiken. Incorporating

partitioning and parallel plans into the SCOPE opti-

mizer. In ICDE, pages 1060–1071, 2010.

280 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Caladan: Mitigating Interference at Microsecond Timescales

Joshua Fried, Zhenyuan Ruan, Amy Ousterhout†, Adam Belay
MIT CSAIL, †UC Berkeley

Abstract
The conventional wisdom is that CPU resources such as cores,
caches, and memory bandwidth must be partitioned to achieve
performance isolation between tasks. Both the widespread
availability of cache partitioning in modern CPUs and the rec-
ommended practice of pinning latency-sensitive applications
to dedicated cores attest to this belief.

In this paper, we show that resource partitioning is nei-
ther necessary nor sufficient. Many applications experience
bursty request patterns or phased behavior, drastically chang-
ing the amount and type of resources they need. Unfortunately,
partitioning-based systems fail to react quickly enough to keep
up with these changes, resulting in extreme spikes in latency
and lost opportunities to increase CPU utilization.

Caladan is a new CPU scheduler that can achieve signifi-
cantly better quality of service (tail latency, throughput, etc.)
through a collection of control signals and policies that rely
on fast core allocation instead of resource partitioning. Cal-
adan consists of a centralized scheduler core that actively
manages resource contention in the memory hierarchy and
between hyperthreads, and a kernel module that bypasses
the standard Linux Kernel scheduler to support microsecond-
scale monitoring and placement of tasks. When colocating
memcached with a best-effort, garbage-collected workload,
Caladan outperforms Parties, a state-of-the-art resource parti-
tioning system, by 11,000×, reducing tail latency from 580
ms to 52 µs during shifts in resource usage while maintaining
high CPU utilization.

1 Introduction

Interactive, data-intensive web services like web search, social
networking, and online retail commonly distribute requests
across thousands of servers. Minimizing tail latency is critical
for these services because end-to-end response times are de-
termined by the slowest individual response [4,14]. Efforts to
reduce tail latency, however, must be carefully balanced with
the need to maximize datacenter efficiency; large-scale data-
center operators often pack several tasks together on the same
machine to improve CPU utilization in the presence of vari-
able load [22, 57, 66, 71]. Under these conditions, tasks must
compete over shared resources such as cores, memory band-
width, caches, and execution units. When shared resource con-
tention is high, latency increases significantly; this slowdown
of tasks due to resource contention is called interference.

The need to manage interference has led to the development
of several hardware mechanisms that partition resources. For

example, Intel’s Cache Allocation Technology (CAT) uses
way-based cache partitioning to reserve portions of the last
level cache (LLC) for specific cores [21]. Many systems use
these partitioning mechanisms to improve performance isola-
tion [8,12,28,38,62,73]. They either statically assign enough
resources for peak load, leaving significant CPU utilization
on the table, or else make dynamic adjustments over hundreds
of milliseconds to seconds. Because each adjustment is incre-
mental, converging to the right configuration after a change
in resource usage can take dozens of seconds [8, 12, 38].

Unfortunately, real-world workloads experience changes
in resource usage over much shorter timescales. For example,
network traffic was observed to be very bursty in Google’s
datacenters, sometimes consuming more than a dozen cores
over short time periods [42], and a study of Microsoft’s Bing
reports highly bursty thread wakeups on the order of microsec-
onds [27]. Phased resource usage is also common. For exam-
ple, we found that tasks that rely on garbage collection (GC)
periodically consume all available memory bandwidth (§2).
Detecting and reacting to such sudden changes in resource
usage is not possible with existing systems.

Our goal is to maintain both high CPU utilization and strict
performance isolation (for throughput and tail latency) under
realistic conditions in which resource usage, and therefore
interference, changes frequently. A key requirement is faster
reaction times, as even microsecond delays can impact la-
tency after an abrupt increase in interference (§2). There are
two challenges toward achieving microsecond reaction times.
First, there are many types of interference in a shared CPU
(hyperthreading, memory bandwidth, LLC, etc.), and obtain-
ing the right control signals that can accurately detect each of
them over microsecond timescales is difficult. Second, exist-
ing systems face too much software overhead to either gather
control signals or adjust resource allocations quickly.

To overcome these challenges, we present an interference-
aware CPU scheduler, called Caladan. Caladan consists of
a centralized, dedicated scheduler core that collects control
signals and makes resource allocation decisions, and a Linux
Kernel module, called KSCHED, that efficiently adjusts re-
source allocations. Our scheduler core distinguishes between
high-priority, latency-critical (LC) tasks and low-priority, best-
effort (BE) tasks. To avoid the reaction time limitations im-
posed by hardware partitioning (§3), Caladan relies exclu-
sively on core allocation to manage interference.

Caladan uses a carefully selected set of control signals
and corresponding actions to quickly and accurately detect
and respond to interference over microsecond timescales. We

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 281

observe that interference has two interrelated effects: first,
interference slows down the execution speed of cores (more
cache misses, higher memory latency, etc.), impacting the ser-
vice times of requests; second, as cores slow down, compute
capacity drops; when it falls below offered load, queueing
delays increase dramatically.

Caladan’s scheduler targets these effects. It collects fine-
grained measurements of memory bandwidth usage and re-
quest processing times, using these to detect memory band-
width and hyperthreading interference, respectively. It then
restricts cores from the antagonizing BE task(s), eliminating
most of the impact on service times. For LLC interference,
Caladan cannot eliminate service time overheads directly, but
it can still prevent a decrease in compute capacity by allowing
LC tasks to steal extra cores from BE tasks.

The KSCHED kernel module accelerates scheduling opera-
tions such as waking tasks and collecting interference metrics.
It does so by amortizing the cost of sending interrupts, of-
floading scheduling work from the scheduler core to the tasks’
cores, and providing a non-blocking API that allows the sched-
uler core to handle many inflight operations at once. These
techniques eliminate scheduling bottlenecks, allowing Cal-
adan to react quickly while scaling to many cores and tasks,
even under heavy interference.

To the best of our knowledge, Caladan is the first system
that can maintain both strict performance isolation and high
CPU utilization under frequently changing interference and
load. To achieve these benefits, Caladan imposes two new re-
quirements on applications: the adoption of a custom runtime
system for scheduling and the need for LC tasks to expose
their internal concurrency (§8). In exchange, Caladan is able
to converge to the right resource configuration 500,000×
faster than the typical speed reported for Parties, a state-of-
the-art resource partitioning system [12]. We show that this
speedup yields an 11,000× reduction in tail latency when
colocating memcached with a BE task that relies on garbage
collection. Moreover, we show that Caladan is highly general,
scaling to multiple tasks and maintaining the same benefits
while colocating a diverse set of workloads (memcached, an
in-memory database, a flash storage service, an x264 video
encoder, a garbage collector, etc.). Caladan is available at
https://github.com/shenango/caladan.

2 Motivation

In this section, we demonstrate how performance can degrade
when interference is not quickly mitigated. Many workloads
exhibit phased behavior, drastically changing the types and
quantities of resources they use at sub-second timescales.
Examples include compression, compilation, Spark compute
jobs, and garbage collectors [49, 59]. The request rates issued
to tasks can also change rapidly, with bursts occurring over
microsecond timescales [5, 27, 42]; these bursts in load can
cause bursts of resource usage. In both cases, abrupt changes

0

50

100

M
em

. B
/W

 (%
)

GC Init Mark Phase Sweep Phase

0 1 2 3 4 5 6
Time (s)

102
103
104
105

99
.9

%
 L

at
. (
μs

)

memcached

Figure 1: Periodic GC in a background task (shaded regions) in-
creases memory bandwidth usage (top), causing severe latency
spikes for a colocated memcached instance (bottom). Note the log-
scaled y-axis in the bottom graph.

in resource usage can abruptly increase interference. This
degrades request service times and causes request queues to
grow when the rate of arriving requests exceeds the rate at
which a task can process them.

To better understand the challenges associated with time-
varying interference, we consider what happens when we
colocate an LC task, memcached [43], with a BE workload
that exhibits phased behavior due to garbage collection. In
this example, we use the Boehm GC (see §7), which employs
the mark-sweep algorithm to reclaim dead heap objects [10].
We have observed similar problems with more sophisticated,
incremental GCs, such as the Go Language Runtime [60].

In this experiment, we offer a fixed load to memcached and
statically partition cores between the two tasks. memcached
is given enough cores to keep its 99.9th percentile tail latency
below 50 µs when run in isolation. As shown in Figure 1, this
allocation is sufficient to protect tail latency when the GC is
not running but it fails when the GC starts. The GC pauses
normal execution of the BE task for 100–200 ms and scans
the entire heap using all cores available to the BE task, which
saturates memory bandwidth. During this brief period, each
memcached request experiences a higher rate of cache misses
and larger memory access latencies, causing the rate at which
memcached can service requests to drop by about half and
queues to build up. As a result, memcached’s queueing delay
increases at a rate of 5 µs every 10 µs, eventually reaching a
tail latency that is 1000× higher than normal.

This example illustrates that fixed core partitioning is in-
sufficient, and also indicates what core reallocation speed
is necessary in order to effectively mitigate interference. If
changes in interference can instantaneously reduce the re-
quest service rate by half, then in order to keep latencies from
increasing by X , the CPU scheduler must detect and respond
to interference within 2X . Thus, preventing a latency increase
of 50 µs requires reaction times within 100 µs. Unfortunately,
existing systems are not designed to respond this quickly
(§3), forcing datacenter operators to either tolerate severe tail
latency spikes, or else isolate these tasks on different servers.

282 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/shenango/caladan

System Decision
Interval

Typical Con-
vergence

Requires
CAT

Supports
HT

Heracles [38] 2–15 s 30 s 3 7
Parties [12] 500 ms 10–20 s 3 7
Caladan 10–20 µs 20 µs 7 3

Table 1: A comparison of Caladan to state-of-the-art systems that
use partitioning to manage interference. Caladan can converge to the
right resource configuration 500,000× faster.

3 Background

Throughout this paper, we discuss three forms of interference
that can occur when sharing a CPU: hyperthreading interfer-
ence, memory bandwidth interference, and LLC interference.
Hyperthreading interference is usually present at a baseline
level whenever tasks are running on sibling cores because
the CPU divides certain physical core resources (e.g., the
micro-op queue), but it can become more severe depending
on whether shared resources (L1/L2 caches, prefetchers, exe-
cution units, TLBs, etc.) are contended. Memory bandwidth
and LLC interference, on the other hand, can vary in intensity,
but impact all cores that share the same physical CPU. As
memory bandwidth usage increases, memory access latency
slowly increases due to interference, until memory bandwidth
becomes saturated; access latency then increases exponen-
tially [62]. LLC interference is determined by the amount of
cache each application uses: when demand exceeds capacity,
LLC miss rates increase.

In this section, we discuss why existing systems are unable
to manage abrupt changes in interference (§3.1) and explore
the limitations imposed on them by the hardware extensions
available in commercial CPUs (§3.2).

3.1 Existing Approaches to Interference

State-of-the-art systems such as Heracles [38] and Parties [12]
handle interference by dynamically partitioning resources,
such as cores and LLC partition sizes. However, both Hera-
cles and Parties make decisions and converge to new resource
allocations too slowly to manage bursty interference (Table 1).
There are two main reasons. First, both systems detect interfer-
ence using application-level tail latency measurements, which
must be measured over hundreds of milliseconds in order to
obtain stable results; the Parties authors found that shorter
intervals produced “noisy and unstable results” [12]. Second,
both systems make incremental adjustments to resource al-
locations, gradually converging to a configuration that can
meet latency objectives. These systems lack the ability to
identify the source of interference (application and contended
resource) directly, so convergence can involve significant trial-
and-error as different resources are throttled, requiring sec-
onds to converge to a new resource allocation. During the
adjustment period, latency often continues to suffer because
the LC task must wait to be given enough resources to reduce
its queueing delay buildup.

Thus, both Heracles and Parties take at least 50× as long to
adapt to changes in interference as the duration of a GC cycle
in our example. As a result, operators must make tradeoffs
based on tunable parameters: either tail latency tolerances
(e.g., 99.9th percentile tail latency) can be set higher, causing
the GC interference to be tolerated without resource realloca-
tions, or they can be set lower, causing the GC workload to be
throttled continuously. Because the GC workload causes min-
imal interference during the majority of its execution (while
not collecting garbage), faster reaction times are needed to
keep cores busy without compromising tail latency.

In addition to convergence speed, existing systems suffer
from scalability limitations. For example, a typical datacen-
ter server must handle several LC and BE tasks simultane-
ously [66, 71], but Heracles is limited to only a single LC
task (and many BE tasks). Parties can support multiple LC
and BE tasks, but because it can only guess at which task is
causing interference, its convergence time increases with each
additional task.

The hardware mechanisms on which these systems rely
also impose limitations. For example, hyperthreads lack con-
trol over resource partitioning, so Heracles and Parties turn
them off entirely. Using both hyperthreads on a core simul-
taneously can yield up to 30% higher throughput than using
a single hyperthread [40, 44, 45, 54], so this lowers system
throughput significantly. Furthermore, the available hardware
partitioning mechanisms that can be controlled constrain both
reaction speeds and scalability. We discuss this problem next.

3.2 Limitations of Hardware Extensions
Intel has added several extensions to its server CPUs that are
designed to partition and monitor the LLC and memory band-
width. These extensions are optimized for scenarios where
resource demand changes slowly, but as shown in our study
of the GC workload, this assumption does not always hold.
To better understand these limitations, we discuss each com-
ponent in more detail.

The most commonly used extension is CAT, a technology
that divides portions of the LLC between tasks to increase
performance determinism [21]. CAT’s way-based hardware
implementation suffers from two limitations. First, changes
to the partition configuration can take considerable time to
have an effect; Intel cautions that “a reduction in the per-
formance of [CAT] may result if [tasks] are migrated fre-
quently” [26, sec. 17.19.4.2]. Appropriately sizing a partition,
however, is challenging under time-varying demand because
it must be large enough to accommodate peak usage. Sec-
ond, CAT must divide a finite number of set-associative ways
between partitions, reducing associativity within each parti-
tion. Unfortunately, performance can degrade significantly as
associativity decreases [56, 67]; KPart avoids this by group-
ing complementary tasks together in the same partition, but
it relies on frequent online profiling to identify groupings,
resulting in high tail latency [18].

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 283

Another extension called Memory Bandwidth Allocation
(MBA) applies a per-core rate limiter to DRAM accesses to
throttle bandwidth consumption. MBA is necessary for sys-
tems that statically assign cores because it is the only method
they can use to limit bandwidth consumption. Unfortunately,
it is at odds with our goal of achieving high CPU utilization:
a core that is heavily rate-limited by MBA will spend the ma-
jority of its time stalling. Instead, we found it is more efficient
to allocate fewer cores, achieving the same throughput for a
task, but with higher per-core utilization.

Finally, configuring partitioning mechanisms effectively
requires the attribution of resource usage to specific tasks.
To help with this goal, Intel introduced Cache Monitoring
Technology (CMT) and Memory Bandwidth Monitoring
(MBM) [72]. Unfortunately, these mechanisms are unable
to detect changes in system conditions quickly. For example,
when monitoring a streaming task with CMT, it takes 112
ms for its cache occupancy measurement to stabilize [21].
Similarly, we discovered experimentally that MBM requires
milliseconds to accurately estimate memory bandwidth usage.

4 Challenges and Approach

Our overarching goal is to maintain performance isolation
while maximizing CPU utilization. Achieving this goal is
difficult because managing changes in interference requires
microsecond-scale reaction times. Partitioning resources in
hardware is too slow for these timescales (§3.2), so Caladan’s
approach is to instead manage interference by controlling
how cores are allocated to tasks. Prior systems have adjusted
cores as part of their strategy for managing interference [12,
28, 38, 70], but Caladan is the first system to rely exclusively
on core allocation to manage multiple forms of interference.
To mitigate interference quickly enough, we had to overcome
two key challenges:

1. Sensitivity: For fast and targeted reactions, Caladan re-
quires control signals that can identify the presence of in-
terference and its source—task and contended resource—
within microseconds. Commonly used performance met-
rics like CPI [71] or tail latency [12,38] (as well as hard-
ware mechanisms like MBM and CMT) are too noisy to
be useful over short timescales. Metrics like queueing
delay [8, 42, 47, 68] can be measured over microsecond
timescales, but cannot identify the source of interference,
only that a task’s performance is degrading.

2. Scalability: Existing systems depend heavily on the
Linux Kernel in order to gather control signals and adjust
resource allocations (e.g., using sched_setaffinity()
to adjust core allocations) [8,12,20,38,47,52,68]. Unfor-
tunately, Linux adds overhead to these operations, and
these overheads increase in the presence of interference
and as the number of cores and tasks increase.

We address the challenge of sensitivity by carefully select-
ing control signals that enable fast detection of interference

Caladan’s Actions to Mitigate Interference

Impact of Interference
Contended Resource ↑ Service Times ↓ Compute Capacity

Hyperthreads idle sibling core add victim cores
Memory Bandwidth throttle antagonist add victim cores
LLC none add victim cores

Table 2: When a resource (left) becomes contended, Caladan takes
action to avoid increased service times (middle). When this is in-
sufficient to maintain compute capacity, Caladan takes additional
action (right).

and by dedicating a core to monitor these signals and take
action to mitigate interference as it arises. We address the
challenge of scalability with a Linux Kernel module named
KSCHED. We describe these in more detail below.

4.1 Caladan’s Approach

Caladan dedicates a single core, called the scheduler, to con-
tinuously poll and gather a set of control signals over mi-
crosecond timescales. The scheduler uses these signals to
detect interference and then reacts by adjusting core alloca-
tions. The scheduler is designed to manage several forms of
interference (§3), using control signals tailored to each. For
hyperthreads, we assume interference is always present when
both siblings are active (because some physical core resources
are partitioned) and focus on reducing interference for the
requests that will impact tail latency—that is, the longest run-
ning requests [70]. We measure request processing times to
identify these requests. For memory bandwidth, we measure
global memory bandwidth usage to detect DRAM saturation
and measure per-core LLC miss rates to attribute usage to a
specific task. For cases like the LLC where we cannot directly
measure or infer interference, we can still measure a key side
effect of interference: increased queueing delays, caused by
reductions in compute capacity. By focusing on interference-
driven control signals, Caladan can detect problems before
quality of service is degraded.

Table 2 summarizes the actions Caladan takes to mitigate
interference. We first try to prevent service time increases
by reducing interference directly. For example, Caladan re-
duces hyperthreading interference by controlling which log-
ical cores (hyperthreads) may be used, idling a logical core
when its sibling exceeds a request processing time threshold.
In addition, it reduces memory bandwidth interference by
limiting how many cores each task may use; this is effective
because reducing the number of cores allocated to a task re-
duces its memory bandwidth usage. However, reducing LLC
interference is more difficult: the magnitude of LLC inter-
ference is determined primarily by how much LLC capacity
a task uses, but reducing a task’s number of cores reduces
its LLC access rate rather than its LLC capacity. Therefore,
Caladan compensates for LLC interference—and any remain-
ing hyperthreading and memory bandwidth interference—by
granting extra cores to victim tasks, allowing them to recoup

284 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Scheduler

Core 1 Core 2 Core 3 Core 5 Core 6Core 4

{Work Stealing}

{Core Allocation}

Unallocated

ksched

Runtime

kschedkschedksched ksched

Runtime

ksched

Task 1 Task 2

Shared Memory

DRAM
Controller

(PCIe)

Core 0

ksched

ioctl()

Figure 2: Caladan’s system architecture. Caladan relies on a sched-
uler core to gather control signals from shared memory regions
(provided by KSCHED, runtimes, and the DRAM controller). It uses
these control signals to adjust core allocations via KSCHED.

the compute capacity lost to interference. Although this can-
not fully protect service times, it can prevent queueing delays.

Finally, Caladan introduces a Linux Kernel module called
KSCHED. KSCHED performs scheduling functions across
many cores at once in a matter of microseconds, even in the
presence of interference. KSCHED achieves these goals with
three main techniques: (1) it runs on all cores managed by
Caladan and shifts scheduling work away from the scheduler
core to cores running tasks; (2) it leverages hardware support
for multicast interprocessor interrupts (IPIs) to amortize the
cost of initiating operations on many cores simultaneously;
and (3) it provides a fully asynchronous scheduler interface
so that the scheduler can initiate operations on remote cores
and perform other work while waiting for them to complete.

5 Design

5.1 Overview
Figure 2 presents the key components of Caladan and
the shared memory regions between them. Caladan shares
some architectural and implementation building blocks with
Shenango [47]: each application is linked with a runtime sys-
tem, and a dedicated scheduler core (run with root privileges)
busy polls shared memory regions to gather control signals
and make core allocations. Both systems are designed to inter-
operate in a normal Linux environment, potentially managing
a subset of available cores.

Despite these commonalities, Caladan adopts a radically
different approach to scheduling and relies on different
scheduling mechanisms. Shenango uses queueing delay as its
only control signal to manage changes in load; Caladan uses
multiple control signals to manage several types of interfer-
ence as well as changes in load. Moreover, Shenango’s sched-
uler core combines network processing with CPU scheduling;
Caladan’s scheduler core is only responsible for CPU schedul-
ing, eliminating packet processing bottlenecks (§6). Finally,
Shenango relies on standard Linux system calls to allocate
cores, limiting its scalability; Caladan uses KSCHED to more
efficiently perform its scheduling functions, including pre-

empting tasks, assigning cores to tasks, detecting when tasks
have yielded voluntarily, and reading performance counters
from remote cores.

Caladan’s runtimes share many properties with those of
Shenango. Applications managed by Caladan run inside nor-
mal Linux processes, which we refer to as tasks. Within each
task, the runtime provides “green” threads (light-weight, user-
level threads) and kernel-bypass I/O (networking and storage).
Runtimes use work stealing to balance load across the cores
that are allocated to them—a best practice for minimizing tail
latency [51]—and yield cores when they run out of work to
steal. Handling threading and I/O in userspace makes manag-
ing interference easier in two ways. First, by performing all
processing inside the task that needs it, we can better manage
the resource contention it generates. By contrast, the Linux
Kernel handles I/O on behalf of its tasks, making it difficult to
attribute resource usage or interference to a specific task. Sec-
ond, we can easily instrument the runtime system to export
the right per-task control signals (discussed further in §5.2).
Provisioning cores: Users provision each task with a discrete
number of guaranteed cores (zero or more) that are always
available when needed. They can also allocate tasks additional
burstable cores beyond the number guaranteed, allowing them
to make use of any idle capacity. Additionally, each task is
designated as LC or BE. BE tasks operate at a lower priority:
they are only allocated burstable cores when LC tasks do not
need them, they are always provisioned zero guaranteed cores,
and they are throttled as needed to manage interference.

In some configurations, it may not be possible to manage
interference without harming the performance of LC tasks.
To prevent these cases, we recommend a configuration that
leaves a small number of cores that are not guaranteed to
any task, providing enough slack to manage interference. Cal-
adan can also detect when provisioning constraints prevent it
from mitigating interference. As a last resort, this information
could be reported back to the cluster scheduler so that it could
migrate tasks to other machines. A rich body of prior work
has explored adding similar types of interference coordina-
tion, as well as identifying complementary workloads, at the
cluster scheduler layer [12, 15, 16, 41, 69, 71].

5.2 The Caladan Scheduler
Figure 3 shows the scheduler’s key components, the control
signals they each use, and their interactions. Separate con-
troller modules detect memory bandwidth and hyperthreading
interference, each placing constraints on how cores can be
allocated and revoking cores as necessary. The memory band-
width controller restricts how many cores can be assigned
to a task, while the hyperthread controller bans cores within
sibling pairs. A top-level core allocator incorporates these re-
strictions and decides when to grant additional cores to tasks.
It tries to minimize queueing delay (to manage changes in load
and any unmitigated interference), allocating cores to tasks in
a way that respects constraints from the controllers and each

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 285

Top-level
Core AllocatorMemory

Bandwidth
Controller

Hyperthread
Controller

Banned Cores

Core Limits

Processing
Times

Memory
Bandwidth

LLC Miss
Rates

Queueing
Delays

Idle
Notices

runtimes

DRAM
controller

ksched

Figure 3: The flow of information through Caladan’s scheduler. Con-
trol signals flow from runtimes, the DRAM controller, and KSCHED

to the controllers and top-level allocator. The hyperthread and mem-
ory bandwidth controllers impose constraints on which and how
many cores the top-level allocator may grant.

task’s resource configuration (the number of guaranteed cores,
BE vs. LC, etc.). The controllers and core allocator run once
every 10 µs on the scheduler’s dedicated core. Because the
scheduler can reallocate cores so quickly, it is possible to allo-
cate fractional cores to tasks on average over time (e.g., when
less than a full core is needed to accommodate load). This is
made efficient through KSCHED’s scheduling optimizations
(§5.3).

The scheduler gathers control signals from three sources.
First, runtimes provide information about request processing
times and about queueing delays. Second, the DRAM con-
troller provides information about global memory bandwidth
usage. Third, KSCHED provides information about per-core
LLC miss rates and notifies the scheduler core when a task
has yielded voluntarily. We now discuss each component in
more detail. We present each algorithm as synchronous code
for clarity, but to handle many tasks concurrently without
delaying the scheduler, all code is asynchronous in practice.
Each algorithm relies on one tunable parameter; these are
described in more detail in Appendix A.

5.2.1 The Top-level Core Allocator

The goal of the top-level core allocator is to grant more cores
to tasks that are experiencing queueing delays, whether these
delays are due to lingering interference (as shown in the
rightmost column of Table 2) or due to changes in load. Algo-
rithm 1 shows its basic operation. The core allocator periodi-
cally checks the queueing delay of each task, and, when per-
mitted by the memory bandwidth controller, tries to add cores
to the tasks that have delays above a configurable per-task
threshold (THRESH_QD). Queueing can occur in each runtime
core’s green thread runqueue, network ingress queue, stor-
age completion queue, and timer heap. Each queued element
contains a timestamp of its arrival time, and all queues are
placed in shared memory. QueueingDelay() computes the
delay for each core by summing the delays experienced by
the oldest element in each of its queues. It then reports the
maximum delay observed across the task’s cores.

When a task’s delay exceeds its THRESH_QD, the allocator

1 while True:
2 for each task T :
3 if QueueingDelay(T) < THRESH_QD[T]:
4 continue;
5 if T is limited by BW controller:
6 continue;
7 // try to allocate a core
8 for each core C:
9 if C is banned by HT controller:

10 continue;
11 if task_on_core[C] has priority over T :
12 continue;
13 score[C] = CalculateScore(C, T);
14 find core C with highest score;
15 allocate C to T (if found);
16 sleep(10 µs);

Algorithm 1: The top-level core allocator.

loops over all cores, checking which cores are allowed by the
hyperthread controller and checking which tasks are running
on each core. An idle core can be allocated to any task, but
a busy core can only be preempted if the core provisioning
configuration allows it. For example, if an LC task is only
using guaranteed cores, it cannot be preempted by another
task. Moreover, a BE task can never preempt an LC task.

Finally, CalculateScore() assigns a score to each core,
and the core allocator picks the allowed core with the highest
score (if one is found). Our scoring function is based on
three factors (in order of priority). First, we prefer sibling
pairs that are both idle because they have no hyperthreading
interference. Second, we prefer hyperthread pairings between
different tasks because hyperthreading is most efficient when
tasks have different performance bottlenecks [31, 45]. Finally,
we optimize for temporal locality: Caladan keeps track of the
time each task last used each core, and gives the most recent
timestamp the highest score. Timestamps are shared between
hyperthread siblings, reflecting their shared cache resources.

The core allocator also receives notifications from KSCHED
whenever a runtime yields a core voluntarily (not shown in Al-
gorithm 1). When this happens, it updates the task_on_core
array and immediately tries to grant the core to another task,
reducing the cycles the core spends idling.

5.2.2 The Memory Bandwidth Controller

Algorithm 2 shows our memory bandwidth controller. Our
aim is to use the majority of available memory bandwidth
while avoiding saturation. The memory bandwidth controller
periodically polls the DRAM controller’s global memory
bandwidth usage counter, calculating the access rate since
the last polling interval, and triggers when it crosses a satura-
tion threshold (THRESH_BW). It then attributes memory band-
width usage to a specific task by relying on KSCHED to effi-
ciently sample LLC misses from the performance monitoring
unit (PMU) [25] of each scheduled core. We found that LLC
misses are a good indicator of overall memory bandwidth

286 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 while True:
2 if GlobalMemBandwidth() < THRESH_BW:
3 increment the core limit on the most limited task;
4 sleep(10 µs);
5 continue;
6 for each core C:
7 start[C] = ReadLLCMisses(C);
8 sleep(10 µs);
9 for each core C:

10 end = ReadLLCMisses(C);
11 misses[task_on_core[C]] += end - start[C];
12 find task T that is BE and has the highest misses;
13 decrement task T ’s core limit and revoke a core;

Algorithm 2: The memory bandwidth controller.

1 while True:
2 for each core C:
3 T = task_on_core[C]
4 if T is LC and now - GetRequestStartTime(C) ≥
5 THRESH_HT[T]:
6 ban sibling of C;
7 else:
8 unban sibling of C;
9 sleep(10 µs);

Algorithm 3: The hyperthread controller.

usage, with the exception that they exclude non-temporal
memory accesses, which don’t allocate lines in the cache. For-
tunately, these are rarely used, but we recommend they be
counted in future CPUs. Waiting 10 µs between samples is
enough to accurately estimate LLC misses. The bandwidth
controller revokes one core from the worst offending task
every time it runs until memory bandwidth is no longer satu-
rated. When one task is throttled, another task (that consumes
less memory bandwidth) can still use the throttled core.

While Algorithm 2 summarizes this controller’s basic be-
havior, we had to take extra steps to improve its accuracy. First,
because ReadLLCMisses() initiates PMU counter reads with
IPIs (see §5.3), there can be timing skew. Therefore, KSCHED
includes the local timestamp counter (TSC), which is stable
across cores, when it stores PMU results. This allows us to
calculate an LLC miss rate instead of a raw miss count. Sec-
ond, we discard samples from tasks that have yielded or have
been preempted during the measurement interval.

5.2.3 The Hyperthread Controller

Caladan’s hyperthread controller detects hyperthread interfer-
ence and then bans use of the sibling hyperthread until the cur-
rent request completes (Algorithm 3). Runtimes place times-
tamps in shared memory to indicate when each hyperthread
begins handling a green thread. The hyperthread controller
then uses GetRequestStartTime() to retrieve these times-
tamps and check if the current thread has been running for
more than a per-task processing time threshold (THRESH_HT).

When the threshold has been exceeded, the controller bans

use of the sibling hyperthread via KSCHED. The sibling’s run-
time receives a request from KSCHED to preempt the core and
places the current green thread back into its runqueue. The
top-level core allocator can detect this as an increase in queue-
ing delay and add back a different (not banned) core. Then
KSCHED places the sibling in the shallow C1 idle state us-
ing the mwait instruction; mwait parks the local hyperthread
and reallocates shared physical core resources to the sibling,
increasing its performance.

Caladan’s hyperthread controller benefits from global
knowledge. First, it will only ban a sibling that is handling
an LC task if that LC task can be allocated another core, to
avoid degrading throughput under high load. Second, if there
are not enough cores available, it will prioritize speeding up
the green threads that have spent the most time processing
a request, keeping tail latency as low as available compute
capacity permits. The hyperthread controller can also unban
cores, respecting the same priority, when the top-level core
allocator needs to allocate a guaranteed core, but none are
available due to bans.

Caladan’s approach to managing hyperthread interference
was inspired by Elfen Scheduling [70]. Our policy for identi-
fying interference is similar to Elfen’s refresh budget policy,
and both use mwait to idle hyperthreads. However, Caladan’s
approach differs in two key ways. First, Elfen relies on trusted
BE tasks to measure interference and yield voluntarily, while
Caladan’s scheduler makes and enforces these decisions, lever-
aging the benefits of global knowledge. Second, Elfen can
only support pinning one LC task and one BE task to each
hyperthread pair. Instead, we allow any pairing (even self
pairings) and can handle interference between LC tasks. This
enables significantly higher throughput because all logical
cores are available for use by any task (§7.3).

5.2.4 An Example: Reacting to Garbage Collection

As an example, we explain how Caladan’s scheduler responds
when a GC cycle begins, causing memory bandwidth interfer-
ence for an LC task (the workload depicted in Figure 1). As
soon as global memory bandwidth usage exceeds THRESH_BW,
the memory bandwidth controller will revoke cores from the
GC task, revoking one core every 10 µs until total memory
bandwidth usage falls below THRESH_BW (Algorithm 2). In
the meantime, the LC task may suffer from interference, in-
creasing its queueing delay. This will cause the top-level
core allocator to grant it additional cores, beginning with any
idle cores, but preempting additional cores from the GC task
if necessary. It will add one core every 10 µs until the LC
task’s queueing delay falls below its THRESH_QD again (Al-
gorithm 1). Once the GC interference has been successfully
mitigated, the LC task will yield the extra cores.

5.3 KSCHED: Fast and Scalable Scheduling
KSCHED’s goal is to efficiently expose control over CPU
scheduling to the userspace scheduler core. A scheduler core

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 287

that relies on the current Linux Kernel system call interface is
subject to its limitations; KSCHED must overcome these. First,
Linux system calls, like sched_set_affinity(), perform
computationally expensive work (e.g., locking runqueues) on
the core that calls them. Second, Linux system calls block
and reschedule while waiting for their operation to complete,
preventing the scheduler core from performing other work.
Third, Linux system calls can only perform one operation at
a time, squandering any opportunity to amortize costs across
multiple operations and cores. Finally, cores may only directly
read their own performance counters and Linux provides no
efficient mechanism to query those on other cores.

KSCHED adopts a radically different approach from Linux’s
existing mechanisms, supporting direct communication be-
tween the scheduler core and kernel code running on other
cores via per-core, shared-memory regions. The scheduler
core writes commands into these regions and then uses an
ioctl() to kick the remote cores by sending them IPIs.
KSCHED then executes the commands (in kernelspace on
the remote cores) and writes back results.

KSCHED supports three commands: waking tasks (poten-
tially preempting the current task), idling cores, and reading
performance counters. Before preempting a task or idling a
core, KSCHED delivers a signal to the runtime to give it a
few microseconds to yield cleanly, saving the current green
thread’s register state and placing it back in the runqueue.
Then, to wake a new task on a core, KSCHED locks the task’s
affinity so that Linux cannot migrate it to another core and
calls into the Linux scheduler. To idle a core instead, KSCHED
calls mwait. Finally, KSCHED can sample any performance
counter on any core, and includes the TSC in the response.

When the scheduler kicks a core, the IPI handler immedi-
ately processes any pending commands. Commands can also
be processed without IPIs by cores that are idle through effi-
cient polling. To achieve this, KSCHED bypasses the standard
Linux idle handler, setting a flag that notifies the scheduler
core that the current task has yielded voluntarily. KSCHED
then checks for new commands; if none are available, it runs
the monitor instruction, telling the core to watch the cache
line containing the shared region. Finally, it parks the core
with the mwait instruction, placing it in the shallow C1 idle
state. mwait monitors cache coherence messages and imme-
diately resumes execution when the shared region is written
to by the scheduler core.

One of the most expensive operations that both Linux and
KSCHED must perform is sending IPIs. When there are mul-
tiple operations, KSCHED leverages the multicast capability
of the interrupt controller to send multiple IPIs at once, sig-
nificantly amortizing costs. To facilitate this, the scheduler
core writes all pending operations to shared memory and
then passes a list of cores to kick to an ioctl() that initi-
ates IPIs. In addition, all of KSCHED’s commands are issued
asynchronously, so that the scheduler core can perform other
work while waiting for them to complete. Finally, KSCHED

performs expensive operations such as sending signals and
affinitizing tasks to cores on the targeted cores rather than
on the scheduler core. In combination, these three properties
allow KSCHED to perform scheduling operations with low
overhead, enabling Caladan to support high rates of core real-
location and performance counter sampling even with many
concurrent tasks (§7.3).

6 Implementation

Caladan is derived from the open-source release of
Shenango [61], but we implemented a completely new sched-
uler and the KSCHED kernel module, which are 3,524 LOC
and 533 LOC, respectively. Shenango was a good starting
point for our system because of its feature-rich runtime with
support for green threads and TCP/IP networking. Moreover,
Shenango’s runtime is already designed to handle signals to
cleanly preempt cores [47].

We modified Shenango’s runtime in two important ways.
First, Shenango relies on its scheduler core to forward packets
in software to the appropriate runtime over shared memory
queues. Instead, we linked the libibverbs library directly
into each runtime, providing fast, kernel-bypass access to
networking. This implementation strategy allowed us to com-
pletely eliminate the packet forwarding bottlenecks imposed
by Shenango and also reduced our scheduler core’s exposure
to interference, by reducing its memory and computational
footprint. Our scheduler core measures packet queueing de-
lay by mapping the NIC’s RX descriptor queues (for each
task) over shared memory and accessing the packet arrival
timestamps encoded in the descriptors by the NIC. Second,
we augmented the runtime with support for NVMe storage us-
ing Intel’s SPDK library to bypass the kernel. These changes
required us to add 2,943 new LOC to the runtime, primarily
to add integration with libibverbs and SPDK.

To support idling in KSCHED, each per-core shared mem-
ory region uses a single cache line (64 bytes) because mwait
can only monitor regions of this size. We packed these cache
lines into a contiguous array so that our scheduler core could
take advantage of hardware prefetching to speed up polling.
KSCHED allows the scheduler core to control which idle state
mwait enters, but we have not yet explored power manage-
ment. We also modified the Linux Kernel source to accelerate
multicast IPIs; although the Linux Kernel provides an API
called smp_call_function_many() that supports this fea-
ture, it imposes additional software overhead, especially under
heavy memory bandwidth interference.

7 Evaluation

We evaluate Caladan by answering the following questions:
1. How does Caladan compare to previous systems (§7.1)?
2. Can Caladan colocate different tasks while maintaining

low tail latency and high CPU utilization (§7.2)?

288 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3. How do the individual components of Caladan’s design
enable it to perform well (§7.3)?

Experimental setup: We evaluate our system on a server
with two 12 physical core (24 hyperthread) Xeon Broadwell
CPUs and 64 GB of RAM running Ubuntu 18.04 with kernel
5.2.0 (modified to speed up multicast IPIs). We do not con-
sider NUMA, and direct all interrupts, memory allocations,
and threads to the first socket. The server is equipped with
a 40 Gb/s ConnectX-5 Mellanox NIC and a 280 GB Intel
Optane NVMe device capable of performing random reads at
550,000 IOPS. To generate load, we use a set of quad-core ma-
chines with 10 Gb/s ConnectX-3 Mellanox NICs connected
to our server via a Mellanox SX1024 non-blocking switch.
We tune the machines for low latency in accordance with rec-
ommended practices, disabling TurboBoost, CPU idle states,
CPU frequency scaling, and transparent hugepages [37]. We
also disable Meltdown [2] and MDS [24] mitigations, since
these vulnerabilities have been fixed by Intel in recent CPUs.
When evaluating Linux’s performance, we run BE tasks with
low-priority using SCHED_IDLE and use kernel version 5.4.0
to take advantage of recent improvements to SCHED_IDLE.
We use loadgen, an open-loop load generator, to generate
requests with Poisson arrivals over TCP connections [61]. Un-
less stated otherwise, we configure all Caladan experiments
with 22 guaranteed cores for LC tasks, leaving one physical
core for the scheduler.
Evaluated applications: We evaluate three LC tasks. First,
memcached (v1.5.6) is a popular in-memory, key-value store
that has been extensively studied [43]. We generate a mix
of reads and writes based on Facebook’s USR request distri-
bution [6] (service times of about 1 µs). Second, silo is a
state-of-the-art, in-memory, research database [64]. We feed
it the TPC-C request pattern, which has high service time
variability (20 µs median; 280 µs 99.9%-ile) [63]. Silo is
only a library, so we integrated it with a server that can han-
dle RPCs, performing one transaction per request. Finally,
we built a new NVMe block storage server inspired by Re-
Flex [34], that we call storage. We added compression (using
Snappy [1]) and encryption (using AES-NI [46]) to study
the hyperthreading effects of RPC frameworks that rely on
vector processing. We preload the SSD with XML-formatted
data from Wikipedia [39], and issue requests for blocks of
varying lengths (99% 4KB, 1% 44KB) to evaluate service
time variability (35 µs and 250 µs for each respective size).

For BE tasks, we use workloads from the PARSEC bench-
mark suite [9]. In particular, we evaluate x264, an H.264/AVC
video encoder, swaptions, a portfolio pricing tool, and stream-
cluster, an online clustering algorithm. We modified swap-
tions to use the Boehm garbage collector to allocate its mem-
ory objects [10], allowing us to study the interference caused
by garbage collection; we call this version swaptions-GC.
All three workloads exhibit phased behavior, changing their
resource usage over regular intervals (some have much larger
variance than others). Finally, we evaluate a synthetic antago-

nist that continuously reads and writes arrays of memory in
two configurations: stream-L2 displaces the L2 cache, while
stream-DRAM displaces the LLC and consumes all available
memory bandwidth.

All applications run in our modified Shenango runtime,
which supports standard abstractions such as TCP sockets and
the pthread interface (via a shim layer), making it relatively
straightforward to port and develop applications (§8).

Parameter tuning: Caladan has three parameters that are
user-tunable and can make tradeoffs between latency and
CPU efficiency. Appendix A explains how to tune these pa-
rameters and shows how sensitive Caladan’s performance is to
particular choices of these parameters. In our evaluation, we
tuned all three for low latency. First, we set THRESH_QD (the
queueing delay threshold) to 10 µs for all tasks. Second, we
set THRESH_BW (the memory bandwidth threshold) to 25 GB/s.
Finally, we set a THRESH_HT (the processing time threshold)
for each LC task (not supported for BE tasks). We set it to
25 µs for silo, 40 µs for storage, and infinite for memcached.

Comparison with Parties: Parties [12] is the most relevant
prior work for mitigating interference. It builds upon Hera-
cles [38] by adding support for multiple LC tasks. Ideally,
we would compare directly to Parties, but its source code
is not publicly available, and we were unable to obtain it
from the Parties authors. Instead, we reimplemented Parties
in accordance with the details described in its paper.

By implementing Parties ourselves, we were able to use
the same runtime system for both Caladan and Parties, so
they could benefit equally from kernel-bypass I/O, allowing
us to evaluate only differences in scheduling policy. We did
not implement some components in Parties that were not
relevant to our experiments. Specifically, our workloads do not
contend over disk, network, or memory capacity. Managing
these resources is important but unrelated to our focus on CPU
interference. Moreover, we did not include the CPU frequency
scaling controller, as reducing energy consumption is outside
the scope of our work. We did implement all of Parties’ key
mechanisms, including core allocation, CAT, and an external
measurement client that samples tail latencies over 500 ms
periods. We also invested considerable effort in tuning Parties’
latency thresholds to yield the best possible performance.

Normally, Parties leaves hyperthreads disabled because it is
unable to manage this form of interference, reducing its CPU
throughput. Instead, we enabled hyperthreads with a policy
that prefers self pairings. For specifically memcached—the
workload we evaluated—this forms a complementary pairing
that has minimal effect on latency, but allowed us to conduct
a direct comparison with the same number of cores. The
addition of kernel-bypass networking and hyperthread pairing
enable our version of Parties to significantly outperform the
reported performance of the original, so we refer to it as
Parties*.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 289

101
102

104

106

99
.9

%
 L

at
.

(μ
s)

Parties *

0

50

100

BE
 O

p/
s

(%
)

0
20

Co
re

s

0 5 10 15
0

20

LL
C

W
ay

s
Caladan

memcached (LC)
swaptions-GC (BE)

0 5 10 15
Time (s)

Figure 5: Timeseries of memcached colocated with a garbage-collected BE task for Parties* (left) and Caladan (right). Gray bars indicate GC
cycles in the BE task. The Parties* resource controller algorithm is unable to provide performance isolation and high CPU utilization when
tasks have dynamic resource demands, while Caladan maintains both. Top graphs have log-scaled y-axes.

0 2 4 6 8 10
Requests Per Second (Million)

101

102

103

104

105

106

99
.9

%
 L

at
. (
μs

)

Linux
Linux + stream-DRAM
Shenango
Shenango + stream-DRAM
Parties *

Parties * + stream-DRAM
Caladan
Caladan + stream-DRAM

Figure 4: Constant memory bandwidth interference degrades mem-
cached performance for Linux and Shenango, but Caladan and Par-
ties* can mitigate it. Note the log-scaled y-axis.

7.1 Comparison to Other Systems

Constant interference: To demonstrate the necessity of man-
aging interference, we first compare Parties* and Caladan to
systems that do not explicitly manage interference. We evalu-
ate a relatively less challenging scenario, where an LC task
(memcached) is colocated with stream-DRAM, a BE task that
generates constant memory bandwidth interference.

Figure 4 illustrates that, as expected, both Linux and
Shenango suffer significant increases in tail latency in the
presence of colocation, reaching tail latencies up to 235× and
6× higher than without interference, respectively. Shenango’s
throughput also decreases by 75% in the presence of inter-
ference, because its scheduler core becomes overloaded with
packet processing, due to higher cache miss rates and memory
access latency caused by stream-DRAM. In contrast, Caladan
and Parties* are both able to maintain similar tail latency with
and without interference, because they manage it explicitly.
Both also achieve much higher throughput than Linux and
Shenango because runtime cores send and receive packets
directly using our runtime’s kernel-bypass network stack (§6),

preventing the Linux network stack or the scheduler core from
becoming a bottleneck. While adapting Shenango to use our
runtime’s kernel-bypass network stack would eliminate this
throughput bottleneck, it would not improve the tail latency
of LC tasks suffering from interference.

Phased interference: We now focus on interference caused
by phased behavior, a more difficult and realistic case that
Caladan is designed to solve. We revisit the garbage collec-
tion experiment from Section §2, colocating an instance of
memcached with swaptions-GC. We issue 800,000 requests
per second to memcached for a period of 120 seconds and
measure its tail latency over 20 ms windows. We show the first
20 seconds of the experiment in Figure 5, which we found to
be representative of the behavior during the entire experiment.

Caladan throttles the BE task’s cores as soon as each GC
cycle starts, preventing latency spikes, and it gives back cores
to the BE task as soon as the GC cycle ends, maintaining
high BE throughput. Parties* attempts to find an allocation of
cores and cache ways that minimizes latency and maximizes
resources for the BE task, but it is unable to converge when
resource demands are shifting at timescales much smaller
than its 500 ms adjustment interval. Often Parties* grants
additional cores in response to GC cycles, but these adjust-
ments happen too slowly to prevent latency spikes. As a result,
Parties* experiences 99.9% latency that is 11,000× higher
than Caladan during GC cycles. In addition, Parties* also
harms BE throughput, achieving an average of 5% less than
Caladan because it punishes swaptions-GC by too much and
for too long. These results show that faster reaction times are
essential when handling tasks with phased behaviors.

7.2 Diverse Colocations

Two tasks: To understand if Caladan can maintain its benefits
in diverse situations, we evaluate 15 colocations between pairs
of LC and BE tasks with different resource usages, service

290 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

400

800

99
.9

%
 L

at
. (
μs

)

storage

0

50

100
memcached

x264 streamcluster swaptions-GC stream-DRAM stream-L2 No Colocation

0

200

400

600
silo

0.0 0.2 0.4
0

50

100

BE
 T

pu
t (

%
)

0.0 2.5 5.0 7.5 10.0
Requests Per Second (Million)

0

50

100

0.0 0.2 0.4 0.6
0

50

100

Figure 6: Caladan can colocate many combinations of LC and BE applications with only modest latency penalties for LC tasks (top), while
maintaining excellent throughput for BE tasks (bottom).

250
500
750

swaptions-GC streamcluster
storage memcached silo

50

100

99
.9

%
 L

at
en

cy
 (μ

s)

250

500

0
10
20

LC
 R

PS
 (%

)

0 5 10 15 20 25
Time (s)

0

5

10

Co
re

s

0
25
50

BE
 O

p/
s (

%
)

Figure 7: Caladan can colocate multiple LC and BE apps while
providing performance isolation and high utilization. Gray bars
indicate GC cycles in swaptions-GC.

time distributions, and throughputs. 9 out of 15 pairings in-
clude BE tasks with phased behaviors. We consider the impact
on each LC task’s tail latency and the amount of throughput
the BE task can achieve by using burstable cores.

In this experiment (Figure 6), each data point represents a
different fixed average load offered to an LC task (columns),
while it is paired with a BE task (colors/linetypes). Caladan is
highly effective at mitigating interference: storage and mem-

cached achieve nearly the same tail latency as they do without
colocation. Silo experiences a small increase in tail latency at
low load because it is sensitive to LLC interference, leading to
service time but not queueing delay increases. At higher load,
silo generates self interference, so it experiences similar tail
latency with and without colocation. Overall, Caladan can eas-
ily maintain microsecond-level tail latency under challenging
colocation conditions.

At the same time, Caladan yields excellent BE task through-
put. The exact BE throughput depends on the degree of
resource contention with the LC task. For example, x264,
swaptions-GC, and stream-L2 use less memory bandwidth
(on average), so they can linearly trade CPU time with the LC
task. Streamcluster and stream-DRAM both consume a larger
amount of memory bandwidth, so they are throttled by our
memory bandwidth controller. However, they also pair well
with LC tasks as siblings (especially memcached) because
they use different physical core resources. At higher LC load,
these BE tasks are given fewer cores so they use less memory
bandwidth and are then throttled less. Overall, BE throughput
depends on the specific interactions between the BE and LC
tasks, and varies with LC load. To the best of our knowledge,
Caladan is the first system to achieve both microsecond-level
LC tail latency and high BE throughput under such a broad
range of conditions.

Many tasks: To demonstrate Caladan’s ability to manage
many tasks simultaneously, we colocate all 3 of the LC tasks
along with swaptions-GC and streamcluster (each LC task
is configured with 6 guaranteed cores). Figure 7 shows a 30-
second trace from this experiment, during which the load of
each of the LC apps changes multiple times (4th graph) and
swaptions-GC performs garbage collection three times (gray
bars). When load or interference changes, Caladan converges
nearly instantly. When GC is not running, the combination of
streamcluster and swaptions-GC does not saturate memory
bandwidth. However, when GC begins, both tasks together
saturate DRAM bandwidth and are throttled by Caladan. Cal-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 291

0 5 10 15 20
Cores Reallocated

0

20

40

60

80

100

Sc
he

du
lin

g
Ti

m
e

(μ
s) Linux Lat.

Linux Work
ksched Lat.
ksched Work

(a) Scheduling Scalability

0 1 2 3
Requests Per Second (Million)

0

50

100

150

200

250

99
.9

%
 L

at
en

cy
 (μ

s) Linux
ksched
pinned

(b) Aggregated Latency of 11 LC Apps

0 100 200 300 400 500
Requests Per Second (Thousand)

0

200

400

600

800

1000

99
.9

%
 L

at
en

cy
 (μ

s)

No Ctrlrs
B/W

B/W + HT
No Colocation

(c) Contribution of Sub-controllers

Figure 8: (a) KSCHED dramatically increases scheduling scalability over Linux. (b) Aggregated latency for 11 LC apps scheduled using
KSCHED vs. Linux mechanisms. (c) The impact of each Caladan sub-controller on tail latency for storage paired with stream-DRAM.

adan’s fast reactions (up to 230,000 core reallocations per
second) enable all three LC tasks to maintain low tail latency
(top three graphs) throughout constantly shifting load and
interference.

7.3 Microbenchmarks

KSCHED: To evaluate the benefits of KSCHED’s faster
scheduling operations, we run a simple microbenchmark
where we continuously rotate tasks to different cores. To
measure scalability, we migrate different numbers of tasks
together in groups. We run the benchmark both with KSCHED
and with a variant that uses standard Linux system calls such
as sched_setaffinity(), tgkill(), and eventfd().

Figure 8a shows both the scheduling work (time spent by
the scheduler core) and the scheduling latency (time until
the migration completes) per migration. Both metrics benefit
tremendously from KSCHED’s multicast IPIs, allowing it to
amortize the cost of multiple simultaneous migrations. By
contrast, Linux’s system call interface suffers from overhead
and because it cannot support batching; operations must be
serialized, increasing scheduling work by 43× and scheduling
latency by 5× when moving 22 tasks. In addition, KSCHED
maintains low scheduling work even with many tasks by of-
floading expensive operations such as sending signals to re-
mote cores.

We demonstrate the value of these improvements in an
experiment with 11 synthetic LC tasks and 2 synthetic non-
interfering BE tasks. The LC tasks have 5 µs average service
times that are exponentially distributed and each is config-
ured with 2 guaranteed cores. We compare against an earlier
version of Caladan that employed the Linux scheduling mech-
anisms evaluated above. In Figure 8b, we show that Caladan
is able to maintain much lower tail latency for the LC tasks
(close to that of running with cores pinned). In this exper-
iment, Caladan performs up to 560,000 core reallocations
per second at its peak (at a load of 0.65 million RPS), while
the version using Linux mechanisms bottlenecks at around
285,000 allocations per second. KSCHED provides similar
benefits for sampling performance counters (not shown).

Controllers: We found that both the memory bandwidth and
hyperthread controllers were necessary in order to ensure

0 200 400
0

200

400

600

800

99
.9

%
 L

at
. (
μs

)
0 200 400

0

50

100

BE
 O

p/
s (

%
)

Requests Per Second (Thousand)

Elfen Borrow Idle
Elfen Refresh Budget

Caladan
No HT Controller

Figure 9: Caladan enables higher LC throughput than Elfen by
allowing arbitrary tasks to co-run on a physical core (including the
same LC task).

isolation across a variety of tasks and loads. To provide one
concrete example, Figure 8c evaluates the contribution of each
controller module to the storage LC task when colocated with
the stream-DRAM BE task. At very low loads, the bandwidth
controller is sufficient to provide low tail latency. This is
because as Caladan revokes cores from the BE task, it leaves
the hyperthread pair cores of the LC task idle, rendering the
hyperthread controller unnecessary. However, at higher LC
loads, both controllers are necessary in order for the storage
task to achieve nearly the same tail latency as it would have
without colocation.

Next we focus on the hyperthread controller and evaluate
the benefits of allowing any two tasks to co-run on a physical
core (e.g., two LC tasks or even two hyperthreads in the same
task). Figure 9 compares Caladan to two modified versions
of Caladan that implement Elfen’s [70] scheduling policies,
when colocating storage and stream-L2. Elfen’s borrow idle
policy disallows co-running, only allowing the BE to run on a
physical core when it is not being used by the LC; this yields
low tail latency for the LC task but also low BE through-
put. Elfen’s refresh budget policy, which Caladan generalizes
(§5.2.3), yields higher BE throughput at the cost of a slight in-
crease in tail latency, demonstrating the benefits of using both
hyperthreads simultaneously. Caladan achieves 37% more
LC throughput than Elfen by enabling the LC task to co-run
with itself. Similarly, at low LC loads, Caladan is able to
achieve 5% higher BE throughput than Elfen since BE tasks
can use both hyperthread lanes. Finally, running Caladan with
the hyperthread controller disabled yields slightly higher BE

292 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

throughput but at a cost of up to 117 µs higher tail latency,
highlighting the need to explicitly manage hyperthread inter-
ference to achieve both high throughput and low tail latency.

8 Discussion

Compatibility: Caladan requires applications to use its run-
time system because it depends on it to export control signals
to the scheduler, and to rapidly map threads and packet pro-
cessing work across a frequently changing set of available
cores. Our runtime is not fully Linux compatible, but it pro-
vides a realistic, concurrent programming model (inherited
from Shenango) that includes threads, mutexes, condition vari-
ables, and synchronous I/O [47]. Caladan also includes a par-
tial compatibility layer for system libraries (e.g., libpthread)
that can support PARSEC [9] without modifications, giving
us some confidence our design is flexible enough to support
unmodified Linux applications in the future. Applications that
do not use our runtime can coexist on the same machine, but
they must run on cores that are not managed by Caladan, and
they cannot be throttled if they cause interference.

The more fundamental requirement for Caladan is the need
for LC tasks to expose their internal concurrency to the run-
time (e.g., by spawning green threads), potentially requiring
changes to existing code. If there is insufficient concurrency,
a task will be unable to benefit from additional cores, hinder-
ing Caladan’s ability to manage shifts in load or interference.
In general, we recommend that tasks expose concurrency by
spawning either a thread per connection or a thread per request.
For example, normally memcached multiplexes multiple TCP
connections per thread, but we modified it to instead spawn a
separate thread to handle each TCP connection.

On the other hand, Caladan can support BE tasks that do not
expose their internal concurrency, as it can still throttle them
if they cause too much interference. For example, if a BE task
is single-threaded (i.e., has no concurrency), and it consumes
too much memory bandwidth, Caladan will oscillate between
giving it one and zero cores, effectively time multiplexing its
memory bandwidth usage. However, BE tasks can optionally
achieve higher performance by exposing their internal con-
currency: load will be more evenly balanced and they will be
able to take advantage of burstable cores.

Limitations: Our current implementation of Caladan has two
limitations. First, it is unable to manage interference across
NUMA nodes. NUMA introduces additional shared resources
that are vulnerable to interference, including an inter-socket
interconnect and separate memory controllers per node. For-
tunately, high-precision performance counters are available
for these resources, and we plan to explore NUMA-aware in-
terference mitigation strategies in the future, such as revoking
cores or migrating tasks between nodes. Second, our schedul-
ing policies do not minimize the threat of transient execution
attacks across hyperthread siblings [3, 11, 65]. Ideally, only
mutually-trusting tasks should be allowed to run on sibling

cores. At the time of writing, a similar capability is under
development for the Linux Kernel [13].
Future work: One promising opportunity for future work
is to incorporate hardware partitioning back into Caladan’s
design. For example, if a BE task uses high memory band-
width and lacks temporal locality, many of the cache lines it
occupies in the LLC will be wasted. Under these conditions,
Caladan is still effective at preventing latency increases, but
it must allocate extra cores to victim tasks. If future hardware
partitioning mechanisms could be designed to accommodate
frequently shifting LLC usage—or if static LLC usage could
be identified and managed through existing mechanisms—
CPU efficiency could be further improved.

9 Related Work

Interference management: Many prior systems manage in-
terference between LC and BE tasks by statically partitioning
resources [19, 28, 50, 62]. While this approach can reduce
interference, it sacrifices CPU utilization because each task
must be provisioned enough resources to accommodate peak
load. Heracles [38], Parties [12], and PerfIso [27] instead ad-
just partitions dynamically. However, unlike Caladan, these
systems cannot manage changes in interference while main-
taining microsecond latency and high utilization.

Efforts to isolate the network [35, 36, 53] or storage [34]
are complementary to Caladan. We do not currently focus on
power management [32, 58] or TurboBoost [23], because we
optimize for the setting in which all cores are fully utilized,
but it should be possible to integrate power management with
Caladan to improve its CPU efficiency at lower utilization.
User-level core allocators: To enable low latency in the
face of fluctuating load, systems like IX [8], PerfIso [27],
Shenango [47], and Arachne [52] introduce user-level core
allocators that estimate load and reallocate cores to BE tasks
when they are not needed by LC tasks. Similarly, TAS [33] and
Snap [42] adjust cores in response to changes in packet pro-
cessing load. Like these systems, Caladan manages changes
in load through core allocations, but it goes a step further by
using core allocation to manage interference too.
Scheduling optimizations: Shinjuku [30] proposes fine-
grained preemption to reduce tail latency, using Dune [7]
to provide fast, direct access to IPIs in userspace. KSCHED
includes kernel optimizations that allow for similar perfor-
mance when sending an IPI to a single core, but it speeds up
IPIs over Shinjuku’s reported speeds when sending more than
one IPI at a time because of its multicast IPI optimization.
Dataplane systems: There has also been significant work
on optimizing OS networking for throughput and latency [8,
29, 33, 48, 52, 55]. ZygOS proposes work stealing as a tech-
nique to reduce tail latency under variable service times [51].
Arachne [52] and Shenango [47] build a similar latency reduc-
tion strategy on top of green threads to improve programma-
bility. Caladan builds upon all of these ideas to eliminate

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 293

0 100 200 300 400 500
0

50

100

BE
 O

p/
s (

%
)

0 100 200 300 400 500
Requests Per Second (Thousand)

0 100 200 300 400 500

0
200
400
600
800

99
.9

%
 L

at
. (
μs

)

5μs
10μs
100μs
500μs

20μs
40μs
200μs
400μs

23 GB/s
25 GB/s
31 GB/s
33 GB/s

(a) THRESH_QD (b) THRESH_HT (c) THRESH_BW

Figure 10: Parameter sensitivity for the storage LC task; the parameters used in our evaluation appear in bold. (a) THRESH_QD allows an
operator to achieve better tail latencies at the expense of BE throughput. (b) THRESH_HT reins in the latency of long requests, but setting it too
low reduces BE throughput. (c) THRESH_BW is set to avoid exponential increases in memory access latencies.

network processing and queueing bottlenecks, allowing it to
manage interference unperturbed by software overheads or
load imbalances.

10 Conclusion

This paper presented Caladan, an interference-aware CPU
scheduler that significantly improves performance isolation
while maintaining high CPU utilization. Caladan’s effective-
ness comes from its speed: by matching control signals and
actions to the same timescale that interference affects perfor-
mance, Caladan can mitigate interference before it can harm
quality of service. Caladan relies on a carefully selected set
of control signals to manage multiple forms of interference
in a coordinated fashion, and combines a wide range of op-
timizations to rapidly gather control signals and make core
allocations faster. These contributions allow Caladan to de-
liver microsecond-level tail latency and high CPU utilization
while colocating multiple tasks with phased behaviors.

11 Acknowledgments

We thank our shepherd Kathryn S. McKinley, the anony-
mous reviewers, Frans Kaashoek, Malte Schwarzkopf, Ak-
shay Narayan, and other members of PDOS for their use-
ful feedback. We thank CloudLab [17] and Eitan Zahavi at
Mellanox for providing equipment used to test and evaluate
Caladan. This work was funded by the DARPA FastNICs
program under contract #HR0011-20-C-0089, by a Facebook
Research Award, and by a Google Faculty Award.

A Parameter Tuning and Sensitivity

In this Appendix, we describe how to set Caladan’s three
user-tunable parameters and show how sensitive Caladan’s
performance is to particular choices of these parameters. To il-
lustrate the behavior of THRESH_QD and THRESH_HT, we colo-

cate the storage workload with stream-L2. For THRESH_BW,
we colocate the storage workload with stream-DRAM. In
each case, we vary a single parameter, while fixing other pa-
rameters to the values used in our evaluation.
THRESH_QD represents the per-task queueing delay limit

before the top-level core allocator tries to grant another
core. As shown in Figure 10a, an operator can trade some
LC tail latency for higher BE throughput using a value of
THRESH_QD larger than Caladan’s default 10 µs. For example,
a THRESH_QD of 100 µs enables 7% more BE throughput at
the cost of 54 µs higher LC tail latency for these workloads.
We chose to optimize for tail latency, and found that values be-
low 10 µs degraded BE throughput without further improving
LC tail latency.
THRESH_HT places a worst-case limit on how long a request

can be delayed by a task generating interference on its hyper-
thread sibling. If it is set too low (i.e., most request processing
requires a dedicated physical core), BE throughput will suffer
and LC latency will degrade at high load due to insufficient
compute capacity. For a skewed service time distribution, like
our storage workload, choosing a value above the median is a
good heuristic. Figure 10b illustrates that setting THRESH_HT
below the median of 35 µs significantly lowers BE throughput,
while values that are slightly above the median yield increased
BE throughput and good tail latency. For workloads with ser-
vice times less than 5 µs (e.g., memcached), we recommend
setting THRESH_HT to infinite because mwait requires a few
microseconds to park a hyperthread.

Finally, THRESH_BW represents the global maximum al-
lowed memory bandwidth usage before Caladan begins to
throttle tasks. THRESH_BW should be set once per machine to a
bandwidth just low enough to avoid the exponential increase
in memory access latency that occurs close to memory band-
width saturation. We use 25 GB/s for our machine (70–80% of
its capacity), which keeps memory latency low for any access
pattern. Figure 10c shows this setting trades a small amount
of BE throughput in exchange for predictable latency.

294 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

B Artifact

Caladan’s source code, ported applications, and experiment
scripts can be found at https://github.com/shenango/
caladan-all.

References

[1] Snappy. https://github.com/google/snappy.

[2] Intel analysis of speculative execution side channels.
Technical report, January 2018.

[3] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. García,
and N. Tuveri. Port contention for fun and profit. In
IEEE S&P, 2019.

[4] I. Arapakis, X. Bai, and B. B. Cambazoglu. Impact of
response latency on user behavior in web search. In
SIGIR, 2014.

[5] D. Ardelean, A. Diwan, and C. Erdman. Performance
analysis of cloud applications. In NSDI, 2018.

[6] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-
value store. In SIGMETRICS, 2012.

[7] A. Belay, A. Bittau, A. J. Mashtizadeh, D. Terei, D. Maz-
ières, and C. Kozyrakis. Dune: Safe user-level access to
privileged CPU features. In OSDI, 2012.

[8] A. Belay, G. Prekas, M. Primorac, A. Klimovic, S. Gross-
man, C. Kozyrakis, and E. Bugnion. The IX operating
system: Combining low latency, high throughput, and
efficiency in a protected dataplane. TOCS, 2017.

[9] C. Bienia. Benchmarking Modern Multiprocessors. PhD
thesis, Princeton University, January 2011.

[10] H. Boehm, A. J. Demers, and S. Shenker. Mostly parallel
garbage collection. In PLDI, 1991.

[11] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx. Foreshadow: Extracting the
keys to the Intel SGX kingdom with transient out-of-
order execution. In USENIX Security, 2018.

[12] S. Chen, C. Delimitrou, and J. F. Martínez. PARTIES:
QoS-aware resource partitioning for multiple interactive
services. In ASPLOS, 2019.

[13] J. Corbet. Completing and merging core scheduling.
https://lwn.net/Articles/820321/, Sept. 2020.

[14] J. Dean and L. A. Barroso. The tail at scale. Communi-
cations of the ACM, 2013.

[15] C. Delimitrou and C. Kozyrakis. QoS-aware schedul-
ing in heterogeneous datacenters with Paragon. TOCS,
2013.

[16] C. Delimitrou and C. Kozyrakis. Quasar: resource-
efficient and QoS-aware cluster management. In AS-
PLOS, 2014.

[17] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig,
E. Eide, L. Stoller, M. Hibler, D. Johnson, K. Webb,
A. Akella, K. Wang, G. Ricart, L. Landweber, C. Elliott,
M. Zink, E. Cecchet, S. Kar, and P. Mishra. The design
and operation of CloudLab. In USENIX ATC, 2019.

[18] N. El-Sayed, A. Mukkara, P. Tsai, H. Kasture, X. Ma,
and D. Sánchez. KPart: A hybrid cache partitioning-
sharing technique for commodity multicores. In HPCA,
2018.

[19] S. Grant, A. Yelam, M. Bland, and A. C. Snoeren.
SmartNIC performance isolation with FairNIC: Pro-
grammable networking for the cloud. In SIGCOMM,
2020.

[20] T. Harris, M. Maas, and V. J. Marathe. Callisto: co-
scheduling parallel runtime systems. In EuroSys, 2014.

[21] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gi-
anos, R. Singhal, and R. Iyer. Cache QoS: From concept
to reality in the Intel R© Xeon R© processor E5-2600 v3
product family. In HPCA, 2016.

[22] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. H. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing in
the data center. In NSDI, 2011.

[23] C. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner,
T. F. Wenisch, J. Mars, L. Tang, and R. G. Dreslinski.
Adrenaline: Pinpointing and reining in tail queries with
quick voltage boosting. In HPCA, 2015.

[24] Intel. Microarchitectural data sampling.
https://software.intel.com/security-software-
guidance/deep-dives/deep-dive-intel-analysis-
microarchitectural-data-sampling.

[25] Intel Corporation. Intel 64 and IA-32 Architectures
Performance Monitoring Events, December 2017.

[26] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual - Volume 3B, April 2020.

[27] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety, M. Sya-
mala, V. R. Narasayya, H. Herodotou, P. Tomita,
A. Chen, J. Zhang, and J. Wang. PerfIso: Performance
isolation for commercial latency-sensitive services. In
USENIX ATC, 2018.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 295

https://github.com/shenango/caladan-all
https://github.com/shenango/caladan-all
https://lwn.net/Articles/820321/

[28] S. A. Javadi, A. Suresh, M. Wajahat, and A. Gandhi.
Scavenger: A black-box batch workload resource man-
ager for improving utilization in cloud environments. In
SoCC, 2019.

[29] E. Jeong, S. Woo, M. A. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. mTCP: a highly scalable user-
level TCP stack for multicore systems. In NSDI, 2014.

[30] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Maz-
ières, and C. Kozyrakis. Shinjuku: Preemptive schedul-
ing for µsecond-scale tail latency. In NSDI, 2019.

[31] S. Kanev, J. P. Darago, K. M. Hazelwood, P. Ran-
ganathan, T. Moseley, G. Wei, and D. M. Brooks. Pro-
filing a warehouse-scale computer. IEEE Micro, 2016.

[32] H. Kasture, D. B. Bartolini, N. Beckmann, and
D. Sanchez. Rubik: Fast analytical power management
for latency-critical systems. In MICRO, 2015.

[33] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Kr-
ishnamurthy, and T. Anderson. TAS: TCP acceleration
as an OS service. In EuroSys, 2019.

[34] A. Klimovic, H. Litz, and C. Kozyrakis. Reflex: Remote
flash ≈ local flash. In ASPLOS, 2017.

[35] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasi-
nadhuni, E. C. Zermeno, C. S. Gunn, J. Ai, B. Carlin,
M. Amarandei-Stavila, M. Robin, A. Siganporia, S. Stu-
art, and A. Vahdat. BwE: Flexible, hierarchical band-
width allocation for WAN distributed computing. In
SIGCOMM, 2015.

[36] P. Kumar, N. Dukkipati, N. Lewis, Y. Cui, Y. Wang, C. Li,
V. Valancius, J. Adriaens, S. Gribble, N. Foster, et al.
PicNIC: predictable virtualized NIC. In SIGCOMM.
2019.

[37] J. Leverich and C. Kozyrakis. Reconciling high server
utilization and sub-millisecond quality-of-service. In
EuroSys, 2014.

[38] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis. Heracles: improving resource efficiency
at scale. In ISCA, 2015.

[39] M. Mahoney. Large text compression benchmark.
http://www.mattmahoney.net/text/text.html, 2011.

[40] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Ko-
ufaty, J. A. Miller, and M. Upton. Hyper-threading
technology architecture and microarchitecture. Intel
Technology Journal, 6(1), 2002.

[41] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa.
Bubble-up: increasing utilization in modern warehouse
scale computers via sensible co-locations. In MICRO,
2011.

[42] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer,
C. Contavalli, M. Dalton, N. Dukkipati, W. C. Evans,
S. Gribble, N. Kidd, R. Kononov, G. Kumar, C. Mauer,
E. Musick, L. E. Olson, E. Rubow, M. Ryan, K. Spring-
born, P. Turner, V. Valancius, X. Wang, and A. Vahdat.
Snap: a microkernel approach to host networking. In
SOSP, 2019.

[43] Memcached community. memcached – a distributed
memory object caching system. https://memcached.org/.

[44] Michael Larabel. Intel hyper threading perfor-
mance with a Core i7 on Ubuntu 18.04 LTS.
https://www.phoronix.com/scan.php?page=
article&item=intel-ht-2018&num=4, 2018.

[45] J. Nakajima and V. Pallipadi. Enhancements for hyper-
threading technology in the operating system: Seeking
the optimal scheduling. In WIESS, 2002.

[46] OpenSSL. OpenSSL cryptography and SSL/TLS toolkit.
https://openssl.org/.

[47] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Bal-
akrishnan. Shenango: Achieving high CPU efficiency
for latency-sensitive datacenter workloads. In NSDI,
2019.

[48] J. K. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,
C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,
M. Rosenblum, S. M. Rumble, R. Stutsman, and S. Yang.
The RAMCloud storage system. TOCS, 2015.

[49] K. Ousterhout, C. Canel, S. Ratnasamy, and S. Shenker.
Monotasks: Architecting for performance clarity in data
analytics frameworks. In SOSP, 2017.

[50] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Kr-
ishnamurthy, T. E. Anderson, and T. Roscoe. Arrakis:
The operating system is the control plane. In OSDI,
2014.

[51] G. Prekas, M. Kogias, and E. Bugnion. ZygOS: Achiev-
ing low tail latency for microsecond-scale networked
tasks. In SOSP, 2017.

[52] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. K. Ousterhout.
Arachne: Core-aware thread management. In OSDI,
2018.

[53] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani,
G. Porter, and A. Vahdat. SENIC: scalable NIC for
end-host rate limiting. In NSDI, 2014.

[54] S. Ren, Y. He, S. Elnikety, and K. S. McKinley. Exploit-
ing processor heterogeneity in interactive services. In
ICAC, 2013.

296 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.phoronix.com/scan.php?page=article&item=intel-ht-2018&num=4
https://www.phoronix.com/scan.php?page=article&item=intel-ht-2018&num=4

[55] L. Rizzo. netmap: A novel framework for fast packet
I/O. In USENIX ATC, 2012.

[56] D. Sánchez and C. Kozyrakis. Scalable and efficient fine-
grained cache partitioning with Vantage. IEEE Micro,
2012.

[57] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: flexible, scalable schedulers for large
compute clusters. In EuroSys, 2013.

[58] E. Sharafzadeh, S. A. S. Kohroudi, E. Asyabi, and
M. Sharifi. Yawn: A CPU idle-state governor for data-
center applications. In APSys, 2019.

[59] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and
B. Calder. Discovering and exploiting program phases.
IEEE Micro, 2003.

[60] The Go Community. The go programming language.
https://golang.org.

[61] The Shenango Authors. Shenango’s open-source release.
https://github.com/shenango/shenango.

[62] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. J. Ar-
gyraki, S. Ratnasamy, and S. Shenker. ResQ: Enabling
SLOs in network function virtualization. In NSDI, 2018.

[63] TPC. TPC-C benchmark. http://www.tpc.org/tpcc/.

[64] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases.
In SOSP, 2013.

[65] S. van Schaik, A. Milburn, S. Österlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida.
RIDL: rogue in-flight data load. In IEEE S&P, 2019.

[66] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes. Large-scale cluster management
at Google with Borg. In EuroSys, 2015.

[67] R. Wang and L. Chen. Futility scaling: High-
associativity cache partitioning. In MICRO, 2014.

[68] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: an
architecture for well-conditioned, scalable internet ser-
vices. In SOSP, 2001.

[69] H. Yang, A. D. Breslow, J. Mars, and L. Tang. Bubble-
flux: precise online QoS management for increased uti-
lization in warehouse scale computers. In ISCA, 2013.

[70] X. Yang, S. M. Blackburn, and K. S. McKinley.
Elfen scheduling: Fine-grain principled borrowing from
latency-critical workloads using simultaneous multi-
threading. In USENIX ATC, 2016.

[71] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale,
and J. Wilkes. CPI2: CPU performance isolation for
shared compute clusters. In EuroSys, 2013.

[72] L. Zhao, R. R. Iyer, R. Illikkal, J. Moses, S. Makineni,
and D. Newell. CacheScouts: Fine-grain monitoring of
shared caches in CMP platforms. In PACT, 2007.

[73] H. Zhu and M. Erez. Dirigent: Enforcing QoS for
latency-critical tasks on shared multicore systems. In
ASPLOS, 2016.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 297

Overload Control for μs-Scale RPCs with Breakwater

Inho Cho Ahmed Saeed Joshua Fried Seo Jin Park Mohammad Alizadeh Adam Belay
MIT CSAIL

Abstract

Modern datacenter applications are composed of hundreds of

microservices with high degrees of fanout. As a result, they

are sensitive to tail latency and require high request through-

puts. Maintaining these characteristics under overload is dif-

ficult, especially for RPCs with short service times. In this

paper, we consider the challenging case of microsecond-scale

RPCs, where the cost of communicating information and drop-

ping a request is similar to the cost of processing a request. We

present Breakwater, an overload control scheme that can pre-

vent overload in microsecond-scale services through a new,

server-driven admission control scheme that issues credits

based on server-side queueing delay. Breakwater contributes

several techniques to amortize communication costs. It en-

gages in demand speculation, where it assumes clients have

unmet demand and issues additional credits when the server is

not overloaded. Moreover, it piggybacks client-side demand

information in RPC requests and credits in RPC responses.

To cope with the occasional bursts in load caused by demand

speculation, Breakwater drops requests when overloaded us-

ing active queue management. When clients’ demand spikes

unexpectedly to 1.4× capacity, Breakwater converges to sta-

ble performance in less than 20 ms with no congestion col-

lapse while DAGOR and SEDA take 500 ms and 1.58 s to

recover from congestion collapse, respectively.

1 Introduction
Modern datacenter applications are composed of a set of mi-

croservices [15, 16, 36], which use Remote Procedure Calls

(RPCs) to interact. To satisfy the low latency requirements of

modern applications, microservices often have strict Service

Level Objectives (SLOs), some measured in microseconds.

Examples of microsecond-scale microservices include ser-

vices that operate on memory-resident data, such as key-value

stores [2, 25] or in-memory databases [41, 47]. Achieving

microsecond-scale SLOs is possible under normal loads due

to recent advances in operating systems [40] and network

hardware [1]. However, maintaining tight SLOs remains a

challenge during overload, when the load on a server ap-

proaches or exceeds its capacity.

Server overload can cause receive livelock [33], where the

server builds up a long queue of requests that get starved be-

cause the server is busy processing new packet arrivals instead

of completing pending requests. This scenario is especially

challenging for microsecond-scale RPCs because small de-

lays or bottlenecks can cause SLO violations. Further, the

small resource requirements of a short RPC allows a single

server to process millions of requests per second, potentially

from thousands of clients [10, 35, 50]. Thus, server overload

can be caused by “RPC incast” [39, 48], where a large num-

ber of clients make requests simultaneously, leading to large

queue build-up at the server.

The goal of overload control is to shed excess load to ensure

both high server utilization and low latency. Existing over-

load control schemes broadly fall into two categories. One

class of approaches drop requests at an overloaded server or

proxy [11, 32, 38]. Other schemes throttle the sending rate of

requests at clients [4, 29, 46]. Neither of these approaches per-

forms well for short, microsecond-scale RPCs. Dropping very

short requests at the server is not practical as the overhead is

comparable to the service time of the request. On the other

hand, client-based rate limiting requires clients to know the

state of congestion at the server to accurately configure their

rate limit, but it takes at least a network round-trip time (RTT)

to obtain this information. For requests with service times

comparable to the RTT, the delay in reacting to congestion

can hurt performance significantly.

A further challenge is to scale the overload control system

to large numbers of clients. In a large-scale system, many

clients have sporadic demand for a specific server, sending

it requests infrequently. Determining the right rate limit for

such clients is difficult since they have a stale view of the

extent of congestion at the server when making a request.

One solution is to explicitly probe the server before sending

a request. However, exchanging messages per request to ob-

tain congestion information can impose a high overhead for

microsecond-scale RPCs.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 299

In this paper, we present Breakwater, an overload control

system for μs-scale RPCs. Breakwater relies on a server-

driven admission control scheme where clients are allowed to

send requests only when they receive credits from the server.

It uses queuing delay at the server as the overload signal. If

queuing delay is below an SLO-dependent threshold, Break-

water issues more credits to clients. Otherwise, it reduces the

number of credits it issues.

Breakwater minimizes the overhead of coordination (i.e.,

the communication overhead for the server to know which

clients need credits) using demand speculation. In particu-

lar, a Breakwater server only receives demand information

from clients when such information can be piggybacked on

requests. When all known demand is satisfied, the server dis-

tributes credits randomly to clients. This approach does not

require coordination messages to determine demand in clients.

However, demand speculation can lead to issuing credits to

clients who do not need them at that moment. These unused

credits lower server utilization. Thus, Breakwater issues extra

credits to ensure high utilization. Such overcommitment in-

troduces the potential for queue buildup at the server if many

clients with credits send requests simultaneously (i.e., RPC

incast). To mitigate the negative side effects of incast, Break-

water employs delay-based AQM to drop requests that arrive

in bursts.

We implemented Breakwater as an RPC library on top of

the TCP transport layer. Our extensive evaluation of vari-

ous workloads demonstrates that Breakwater achieves higher

goodput with lower tail latency compared to SEDA [48] and

DAGOR [51], the best available overload control systems. For

example, Breakwater achieves 6.6% more goodput and 1.9×
lower 99%-ile latency with clients’ demand of 2× capacity,

compared to DAGOR with a synthetic workload. In addition,

Breakwater scales to a large number of clients without de-

grading its benefits. For example, when serving 10,000 clients

with memcached, Breakwater achieves 14.3% more goodput

and 2.9× lower 99%-ile latency than DAGOR. Compared to

SEDA for the same workload, Breakwater achieves 5% more

goodput and 1.8× lower 99%-ile when the clients’ demand is

2× capacity.

Breakwater is available as open-source software at https:
//inhocho89.github.io/breakwater/.

2 Motivation and Background
2.1 Problem Definition and Objectives
Overload control is key to ensuring that backend services

remain operational even when processing demand exceeds

available capacity. Overload was identified as the main cause

of cascading failures in large services [11]. Transient overload

can occur for a variety of reasons. For example, it may not

be cost-effective to provision enough capacity for maximum

load [51]. Services can also experience unexpected overload

conditions (faulty slow nodes, thermal throttling, hashing hot

spots, etc.) despite capacity planning.

Without proper overload control, a system could experience

livelock [33], where incoming requests are starved because

the server is busy processing interrupts for new packet ar-

rivals, producing no useful work as the majority of requests

fail to meet their SLOs. Even when the average of clients’ de-

mand is less than the capacity, short-timescale bursty request

arrival can degrade latency for short requests. Microsecond-

timescale RPCs are much more prone to performance degra-

dation due to short-lived congestion than RPCs with longer

service times [45].

RPCs with microsecond-scale execution time are prevalent

in modern datacenters. Such RPCs span a variety of oper-

ations on data residing in memory or fast storage like M.2

NVMe SSDs (e.g., key-value stores [2, 25] or in-memory

databases [41, 47]). The move towards microservice archi-

tectures has only increased the prevalence of such RPCs

[15, 16, 36]. Further, a single server must process μs-scale

requests at very high rates, possibly from thousands of

clients [10, 35, 50]. To cope with μs-scale RPCs, an ideal

overload control mechanism should provide the following

properties:

1. No loss in throughput. An RPC server should be processing

requests at its full capacity regardless of overload, avoiding

livelock scenarios. Further, the overhead of performing the

overload control must be minimal.

2. Low latency. An ideal overload control scheme should en-

sure that any request that gets processed spends minimal time

queued at the server. Low queuing latency ensures that pro-

cessed RPCs meet their SLOs, and is particularly important

for μs-scale RPCs which tend to have tight SLOs.

3. Scaling to a large number of clients. For such short RPCs,

clients with sporadic demand consume very little resources

at the server. Thus, high server utilization requires scaling to

a large number of clients. The ideal overload control system

should be resilient to “incast” scenarios when a large number

of clients send requests within a short period of time. In par-

ticular, overload control should prevent queue build-ups that

result from incast without harming throughput.

4. Low drop rate. Dropping requests wastes resources at the

server because it must spend time processing and parsing

packets that will eventually be dropped. Furthermore, drop-

ping requests harms the tail latency of RPCs, especially when

network round-trip time (RTT) is comparable to RPC exe-

cution time, making retries more expensive. Thus, overload

control should minimize the drop rate at the server.

5. Fast feedback. Clients have more flexibility to decide the

next action if they can discover when a request is unlikely

to be served within its SLO. Thus, if a server expects a re-

quest will violate its SLO, it should notify the client as soon

as possible so that it can decide an alternative action with-

out having to wait for the request to timeout (e.g., giving up

on the request, sending it to another replica, issuing a sim-

300 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0
200
400
600
800

1,000

0 0.5 1 1.5 2G
oo

dp
ut

 (k
re

qs
/s

)

Clients' demand (Mreqs/s)

CoDel win-based RL ideal

(a) Goodput vs. clients’ demand

with 1,000 clients

0
200
400
600
800

1,000

100 1k 10kG
oo

dp
ut

 (k
re

qs
/s

)

The Number of Clients

CoDel win-based RL ideal

(b) Goodput vs. # clients with

clients’ demand of 2M reqs/s

Figure 1: Goodput of CoDel and window-based rate limiting

with different clients’ demands and different numbers of clients

pler alternative request, degrading the quality of the service,

etc. [18]).

Next, we examine existing overload control mechanisms,

which were developed for RPCs with relatively long execution

times. Our goal is to understand the challenges of designing

an overload control system for μs-scale RPCs.

2.2 Overload Control in Practice

The fundamental concept in overload control is to shed excess

load before it consumes any resources [33]. This is typically

achieved by either dropping excess load at the server or throt-

tling the sending rate of requests at the client. We look at

the performance impairments of these two popular overload

control approaches, developed for RPCs with long execution

times, when used for μs-scale RPCs.

Active Queue Management (AQM). Such approaches op-

erate as circuit breakers, dropping requests at a server or at a

separate proxy under certain conditions of congestion. The

simplest approach maintains a specific number of outstanding

requests in the queue at the server, typically manually tuned

by the server operator [11,32,37]. More advanced algorithms

can improve performance and avoid the need for manual tun-

ing. For example, CoDel maintains the queuing delay within

a specific target value, dropping requests if the queuing delay

exceeds the target [11, 32, 38]. RPC servers are typically re-

quired to report on success and on failure to avoid expensive

timeouts [2, 37, 51]. This means that packets are processed,

and failure messages are generated for dropped requests. This

overhead is trivial when the message rate is low with a long

execution time. However, it becomes a significant overhead

in the case of μs-scale RPCs.

To demonstrate the limitations of the AQM approach, we

implemented an RPC server that uses CoDel for AQM. Our

main evaluation metric is the goodput of the server, defined

as the throughput of requests whose response time is less

than the SLO. Figures 1 (a) and (b) demonstrate the good-

put of CoDel with different clients’ demands and different

numbers of clients. This experiment uses a synthetic work-

load of requests with exponentially-distributed service time,

with a mean of 10 μs. The drop threshold parameter is tuned

to achieve the highest goodput given an SLO of 200 μs. As

the clients’ demand increases, more CPU is used for packet

processing even though majority of requests are dropped at

server. As a result, less CPU can be used for RPC execution,

which leads to goodput degradation. The goodput degrada-

tion gets worse with more number of clients. The reason is

that the overhead of sending failure messages increases with

more clients since fewer messages can be coalesced with the

increased number of clients.

Client-side Rate limiting. In order to eliminate the over-

head caused by dropping requests at the server, some over-

load control mechanisms limit the sending rate at the clients.

With client-side rate limiting, clients probe the server, detect

its capacity, and adjust their rate to avoid overloading the

server [4, 29, 46, 49]. The reaction of clients to overload is

delayed by a network RTT, which can lead to long delays

when the execution time of RPCs is comparable to or less

than the RTT. Further, the delay in getting feedback increases

with the number of clients; consider the impact this has on

overload control performance.

When the number of clients is small, the load generated

by each individual client is large and each client exchanges

messages with the server at a high frequency. This means

that each client has a fresh view of the state of the server,

allowing it to react quickly and accurately to overload. In this

case, client-based approaches outperform AQM approaches

because they have fresh enough information to prevent over-

load at the server.

As the number of clients increases, the load generated by

each client becomes more sporadic and messages are ex-

changed at a lower frequency between any individual client

and the server. This means that in the presence of a large

number of clients, each client will have a stale or inaccurate

estimate of server overload, leading to clients undershooting

or overshooting the available capacity at the server. When

many clients overshoot server capacity, it can lead to incast

congestion, causing large queueing delays. AQM avoids high

tail latency by dropping excess load at the server, leading to

AQM outperforming client-based approach for a large number

of clients, despite having less than ideal goodput.

To illustrate the limitation of client-side rate limiting with

μs-scale execution time, we implement window-based rate

limiting used in ORCA [29]. The mechanism is similar to

TCP congestion control. The client maintains a window size

representing the maximum number of outstanding requests.

Upon receiving a response, if the response time is less than

the SLO, it additively increases the window size; otherwise,

it multiplicatively decreases the window size. Figure 1 (a)

and (b) depict the goodput of window-based rate limiting

for exponentially-distributed service time of 10 μs (SLO =

200 μs) on average. We optimized the parameters (i.e. addi-

tive factor and multiplicative factor) to achieve the highest

goodput. Window-based schemes typically support a mini-

mum of one open slot in the window (i.e., a minimum of

one outstanding request at the server). This is problematic

when there is a large number of clients as each client can

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 301

always send one request, leading to incast and overwhelming

the server. Rate-based rate limiting [4, 49] overcomes this

limitation, but it still suffers from incast with a larger number

of clients which results in high latency and low goodput.

Hybrid approaches that combine client-side rate limiting

and AQM have also been proposed. We provide a more com-

prehensive evaluation of rate-based rate limiting and hybrid

approaches in §5.

2.3 Challenges
Existing overload control schemes, developed for long RPCs,

suffer significant performance degradation when handling

μs-scale RPCs. The fundamental challenge facing existing

schemes is the need for coordination of clients in order to

schedule access to the server under very tight timing con-

straints. This challenge is exacerbated by the following char-

acteristics of short RPCs:

1. Short average service times. We aim to support execution

times for RPCs on the order of microseconds. This requires

devising an overload control scheme that can react at mi-

crosecond granularity while keeping coordination overheads

significantly less than request service times. Achieving this

compromise is challenging, and any errors in devising or im-

plementing the overload control scheme can lead to either

long queues and overload, or underutilization of the server.

2. Variability in service times. RPC execution times typically

follow a long-tailed distribution [11,17,18]. The stochastic na-

ture of RPC service times limits the accuracy of any coordina-

tion or scheduling at the client or server. Accurate scheduling

requires knowledge of the execution time of each request in

advance, which is not possible in the presence of long-tailed

variability of execution times. Further, this variability creates

ambiguity for overload detection because a single request can

be long enough to cause significant queueing delay.

3. Variability in demand. Scheduling the access of clients

to the server requires some knowledge of both the demand

of clients and the capacity of the server. RPCs have various

arrival patterns, and clients can have sporadic demand with

periods of inactivity [10, 50]. Variability in demand can lead

to low utilization because clients that are granted access to

server capacity might not have enough demand to utilize it.

4. Large numbers of clients. All previous challenges are exac-

erbated as the number of clients increases: accurate coordina-

tion becomes more challenging and overheads become higher

(§5.2). Furthermore, a larger number of clients increases de-

mand variability because it makes the system more suscepti-

ble to bursts (i.e., many clients generating demand simultane-

ously).

The challenges a server overload control system faces bear

some similarities to those observed in network congestion

control. At a surface level, network and compute congestion

can be managed by similar mechanisms, but they each have

fundamentally different requirements. Both are necessary to

achieve good performance. Network congestion control aims

to maintain short packet queues at switches while maximizing

network link utilization. By contrast, overload control aims to

maintain short request queues at the RPC server while max-

imizing CPU utilization. There are two critical differences

between these problems: (a) RPC processing often has high

dispersion in request service times while packet processing

times are constant, and (b) client-side demand can fluctuate

more significantly at the RPC layer because clients may give

up after a timeout or choose to send an RPC to a backup

server. On the other hand, once a network flow starts, it gener-

ally completes. With such high variability in processing time

and demand, designing an overload control system requires

overcoming different challenges than a network congestion

control system.

2.4 Our Approach
Our work begins with insights from receiver-driven mech-

anisms proposed in recent work on datacenter congestion

control. In receiver-driven congestion control, a receiver is-

sues explicit credits to senders for controlling their packet

transmissions, which provides better performance than con-

ventional sender-based schemes [14, 24, 34]. Inspired by this

line of work, our design has the following components:

1. Explicit server-based admission control: A client is only

allowed to send a request if it receives explicit permission

from the server. A server-based scheme allows for coordi-

nation that is based on the accurate estimation of the state

of the server. Explicit admission control means that the load

received by the server is completely controlled by the server

itself. This allows for more accurate control that maintains

high utilization and low latency. Server-based admission con-

trol can add an extra RTT for a client to request admission. We

avoid this through piggybacking and overcommitting credits,

as detailed later.

2. Demand speculation with overcommitment: The server

requires knowledge of clients’ demand in order to decide

which client should be permitted to send requests. This is

comparable to the need for clients to know about the state of

the server in client-based schemes. Exchanging such informa-

tion introduces significant overhead as the number of clients

increases. Furthermore, as the execution time of RPCs de-

creases, the frequency of exchanging the demand information

increases, further increasing overhead. The key difference

between server-based schemes and client-based schemes is

that we can relax the need for the server to have full infor-

mation about clients’ demand without harming performance.

In particular, we allow the server to speculate about clients’

demand and avoid lowering server utilization by allowing the

server to overcommit, issuing more credits than its capacity.

3. AQM: Due to overcommitment, the server can occasionally

receive more load than its capacity. Thus, we rely on AQM

to shed the excess load. In our scheme, the need for AQM

to drop requests is rare, as credits are only issued when the

server is not overloaded.

302 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Client Server
request + demand

With credit

response + credit

Admission
Controller

AQM

Worker

Assign credit

① ② ③④⑤⑥

Figure 2: Breakwater overview

3 System Design
We present Breakwater, a scalable overload control system for

μs-scale RPCs. Figure 2 depicts an overview of the interaction

between a Breakwater client and server pair. A new client

joining the system sends a register message to the server,

indicating the number of requests it has in its queue. The

client piggybacks its first request to the registration message.

The server adds the client to its client list, and if it is not

overloaded it executes the request. The server then replies to

the client with the execution result or a failure message. The

server piggybacks with the response any credits it issued to

the client depending on the demand indicated by the client.

The client issues more requests depending on the number of

credits it received. When the client has no further requests, it

sends a deregister message to the server returning back any

unused credits.

For the rest of the section, we present how Breakwater

detects overload and how it reacts to it. In particular, we

present how a server determines the number of credits it can

issue, how to distribute them among clients, and how clients

react to credits or the lack thereof.

3.1 Overload Detection
There are multiple signals we can utilize to determine whether

a server is congested. CPU load is a popular congestion

signal—it is often used to make auto-scaling decisions in

cloud computing [5]. However, CPU utilization indicates only

one type of resource contention that can affect RPC latency.

For instance, requests contending for a hard disk can have high

latency, but CPU utilization will remain low [22]. Moreover,

using CPU utilization as a signal does not allow an overload

controller to differentiate between the ideal scenario of 100%

utilization with no delayed RPCs and a livelock state.

Another potential congestion signal is queue length at the

server. A similar signal is widely used in network congestion

control [8, 52]. Unfortunately, when RPC service times have

high dispersion, queue length is a poor indicator of request la-

tency. A more reliable signal is queuing delay, as it is accurate

even under RPC service time variability. Furthermore, it is

intuitive to map a target SLO to a target queueing delay at the

server. Thus, Breakwater uses queuing delay as its congestion

signal.

Effective overload control requires accurate measurement

of the queuing delay signal. In particular, the signal should

account for the sum of each of the queueing delay stages

a request experiences, ignoring non-overload induced de-

lays. This ensures that the system only curbs incoming re-

quests when it is overloaded. This is especially critical for

microsecond-scale RPCs, as they leave little room for error.

Breakwater has two stages of queueing. Packets are queued

while they await processing to create a request. Then, threads

created to process requests are queued awaiting execution.

Breakwater tracks and sums queuing delay at both of these

stages. In particular, for every queue in the system, each item

(e.g., a packet or a thread) is timestamped when it is enqueued.

Each queue maintains the oldest timestamp of enqueued ele-

ments in a shared memory region, and this timestamp is up-

dated on every dequeue. When the delay of a queue needs to

be calculated, Breakwater computes it by taking the difference

between the current time and the queue’s oldest timestamp.

We use this approach instead of measuring explicit delays

of each request (i.e., the timestamp difference between re-

quest arrival and the request execution) because we must keep

track of the total queueing delay as a request moves from one

queueing stage to another.

There are multiple sources of delay that are not caused by

high utilization or overload. For example, long delays due to

head-of-line blocking do not indicate a thread is waiting for

resources, but rather it is a sign of poor load balancing. Accu-

rate queueing delay measurement requires the system to avoid

such delays. We find that the biggest source of such delays is

the threading model used by the system. Our initial approach

for developing Breakwater relied on the in-line threading

model [19, 25] where a single thread handles both packet

processing and request processing. This choice was made as

the in-line model provides the lowest CPU cost. However, it

leads to head-of-line blocking as a single request with a large

execution time can block other requests waiting at the same

core. The alternative is relying on the dispatcher threading

model [41] where a dispatcher thread processes packets and

spawns a new thread for request processing incurring inter-

thread communication overhead. However, this overhead is

minimal when the dispatcher model is implemented using

lightweight threads in recently proposed low-latency stacks

(e.g., Shenango [40] and Arachne [43]). Thus, Breakwater

employs the dispatcher model for request processing.

3.2 Overload Control
During overload, the system has to decide which requests to

admit for processing and which requests to drop or possibly

queue at the client. In this section, we explain our design for

Breakwater’s approach to overload control.

3.2.1 Server-driven Credit-based Admission Control
A Breakwater server controls the admission of incoming re-

quests through a credit-based scheme. Server-driven admis-

sion control avoids the need for clients to probe the server to

know what rate to send at. It also allows the server to receive

the exact load it can handle. A credit represents availability

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 303

at the server to process a single request by the client that

receives the credit. A Breakwater server manages a global

pool of credits (Ctotal) that is then distributed to individual

clients. Ctotal represents the load the server can handle while

maintaining its SLO. This is achieved by controlling Ctotal
such that the measured queuing delay (dm) remains close to a

target queuing delay (dt), which is set based on the SLO of

the RPC.

Every network RTT, Breakwater updates Ctotal based on the

measured queuing delay (dm). If dm is less than dt , Breakwater

increases Ctotal additively.

Ctotal ←Ctotal +A (1)

Otherwise, it decreases Ctotal multiplicatively, proportional to

the level of overload.

Ctotal ←Ctotal ·max(1.0−β · dm −dt

dt
,0.5) (2)

Note that A controls the overcommitment and aggressiveness

of the generation of credits. On the other hand, β controls the

sensitivity of Breakwater to queue build-up. We explain how

we select A and β in the next section.

Once Ctotal is decided, credits are distributed to clients.

When Ctotal increases, new credits are issued to clients by

piggybacking the issued credits to response messages sent to

the clients. Explicit credit messages are only generated when

piggybacking is not possible (i.e., server has no messages

bound for the client). When Ctotal decreases, the server does

not issue additional credits to the clients, or if the clients have

unused credits, the server sends negative credits to revoke the

credits issued earlier. The server can tell how many unused

credits each client has by keeping track of the number of

credits issued and the number of requests received. In the

following section, we explain how Breakwater decides which

client should be issued credits.

3.2.2 Demand Speculation with Overcommitment
There is a tradeoff between accurate credit generation and

messaging overhead. Choosing which client should receive

a credit can be simply determined based on the demand at

the client. This requires clients to inform the server whenever

their number of pending requests changes. The server can

then select which clients to send a credit to based on demand.

This ensures that all issued credits are used, allowing the

server to generate credits that accurately represent its capacity.

However, as we scale the number of clients, the overhead of

exchanging demand messages overwhelms the capacity of the

server.

In our design of Breakwater, we choose to eliminate the

messaging overhead completely. A client notifies the server

of its demand only if the demand information can be piggy-

backed on a request (i.e., the client already has a credit and

can send a request to the server). The server therefore does

not have accurate information about clients with sporadic de-

mand as they can’t update the server as soon as their demand

changes. Thus, Breakwater speculatively issues credits based

on the latest demand information even though it may be stale.

Speculative generation of credits means that some clients that

receive credits will not be able to use them immediately. If

credits are generated to exactly match capacity, the server may

experience underutilization because some credits are left un-

used when they are issued to clients with no queued requests.

To achieve high utilization, speculative demand estimation is

coupled with credit overcommitment to ensure that enough

clients receive credits to keep the server utilized.

Overcommitment is achieved by setting the A and β pa-

rameters of the admission control algorithm. In particular, we

set A to be proportional to the number of clients (nc).

A = max(α ·nc,1) (3)

where α controls the aggressiveness of the algorithm. Further,

each client is allowed to have more credits than its latest

demand. The number of overcommitted credits per client

(Coc) is based on the number of clients (nc), the total number

of credits in the credit pool (Ctotal), and the total number of

credits presently issued to clients (Cissued).

Coc = max(
Ctotal −Cissued

nc
,1) (4)

The server makes sure that each client does not have unused

credits more than its (latest) demand plus Coc by revoking

already issued credits if necessary.

Further, Breakwater attempts to avoid generating explicit

credit messages whenever possible. This means that a new

credit will be given to a client to whom the server is about to

send a response unless that client has reached the maximum

number of credits it can receive. Explicit credit messages are

only generated when piggybacking a credit on a response is

not possible. In the current version of Breakwater, the client

that receives an explicit credit message is selected randomly,

but we expect the selection could be smarter with per-client

statistics. For example, the server can choose a client based

on its average request rate to increase the likelihood of the

client using the credit immediately.

3.2.3 AQM

The drawback of credit overcommitment is that the server

may occasionally receive a higher load than its capacity, lead-

ing to long queues. To ensure low tail latency at all times,

Breakwater relies on delay-based AQM to drop requests if

the queueing delay exceeds an SLO-derived threshold. In our

results, we find that drops are rare because our credit-based

admission control scheme avoids creating bursts. Drops can

be further reduced with by setting a large SLO budget. In

particular, a system administrator can set a large threshold for

AQM to reduce the drop rate at the expense of having a looser

SLO.

304 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3.3 Breakwater Client
Breakwater allows a client to queue requests if it does not

have a credit for it. Client-side queuing is critical in a server-

driven system as the client has to wait for the server to admit

a request before it can send it. However, if the client queue is

too long, the request will experience high end-to-end latency.

In Breakwater, in order to achieve high throughput and low

end-to-end latency, we allow requests to expire at the client.

The request expiration time is set based on its SLO.

When a client receives credits, it can immediately consume

them if its queue length is equal to or larger than the number

of credits it receives. Due to overcommitment, a client can

receive credits which it cannot immediately consume (cunused).

When a client receives negative credits with decreased Ctotal
at the server, the client decrements cunused . However, if a client

has already consumed all of its credits (i.e., cunused = 0), no

action is taken by the client.

4 Implementation
Breakwater requires a low-latency network stack in order

to ensure accurate estimation of the queuing delay signal.

This requires minimal variability in packet processing and no

head-of-line-blocking between competing requests. We use

Shenango [40], an operating system designed to provide low

tail latency for μs-scale applications with fast core allocations,

lightweight user-level threads, and an efficient network stack.

Shenango achieves low latency by dedicating a busy-spinning

core to reallocate cores between applications every 5 μs to

achieve high utilization and minimize the latency of packets

arriving into the server.

We implement Breakwater as an RPC library on top of

the TCP transport layer. Breakwater handles TCP connection

management, admission control with credits, and AQM at the

RPC layer. Breakwater abstracts connections and provides

a simple individual RPC-oriented interface to applications,

leaving applications to only specify request processing logic.

Breakwater provides a single RPC layer per application (i.e.,

overload signal, credit pool, etc.) regardless of the number of

cores allocated to the application and the number of clients

of that application. A request arriving at a Shenango server

is first queued in a packet queue. Then a Shenango kernel

thread processes packets and moves the payload to the socket

memory buffer of the connection. Once all the payload of a

request is prepared in the memory buffer, a thread in Break-

water parses the payload to a request and creates a thread to

process it. Threads are queued pending execution, and when

they execute, they execute to completion.

Threading model. As explained earlier, Breakwater relies

on a dispatcher threading model for accurate queueing delay

measurement. A Breakwater server has a listener thread and

the admission controller thread running. When a new connec-

tion arrives, the listener thread spawns a receiver thread and a

sender thread per connection. Receiver threads read incoming

packets and parse them to create requests. After parsing a

request, AQM is performed, dropping requests if the current

queueing delay is greater than the AQM drop threshold. If

a request is not dropped, the receiver thread spawns a new

thread for the request. The new thread is enqueued to the

thread queue. The sender thread is responsible for sending

responses (either success or reject) back to the clients. If there

are multiple responses, the sender thread coalesces them to

reduce the messaging overhead. For all threads in Breakwater,

we use lightweight threads provided by Shenango’s runtime

library.

Queueing Delay Measurement. With a separate receiver

thread minimizing the delay from the socket memory buffer,

the two main sources of queueing delay in Shenango are

packet queueing delay (i.e., time between when a packet ar-

rives till it is processed by a Shenango kernel thread) and

thread queueing delay (i.e., time between when a thread is cre-

ated to process a request until it starts executing). In Shenango,

each core has a packet queue and a thread queue shared with

IOKernel. We instrumented packet queues and thread queues

so that each queue maintains the timestamp of the oldest item,

and we modified Shenango’s runtime library to export the

queueing delay signal to the RPC layer. When Shenango’s

runtime is asked for the queueing delay, it returns the maxi-

mum of the packet queue’s delays plus the maximum of the

thread queue’s delays.

Lazy credit distribution. The admission controller updates

Ctotal every RTT. Once the credit pool size is updated, the

admission controller can re-distribute credits to clients to

achieve max-min fairness based on the latest demand infor-

mation. However, this requires the admission controller to

scan the demand information of all clients, requiring O(N)
steps. To reduce the credit distribution overhead, Breakwater

approximates max-min fair allocation with lazy credit dis-

tribution. In particular, Breakwater delays determining the

number of credits a client can receive until it has a response to

send to that client. The sender thread, responsible for sending

responses to a client, decides whether to issue new credits,

not to issue any credits, or to revoke credits based on Cissued ,

Ctotal , and the latest demand information. It first calculates

the total number of credits the server should grant to client x
(cnew

x). If Cissued is less than Ctotal , cnew
x becomes

cnew
x = min(demandx +Coc,cx +Cavail) (5)

where demandx is the latest demand of client x, cx is the

number of unused credits already issued to client x and Cavail
is the number of available credits the server can issue (Cavail =
Ctotal −Cissued). If Cissued is greater than Ctotal , cnew

x becomes

cnew
x = min(demandx +Coc,cx −1) (6)

The sender thread then piggybacks the number of credits

newly issued for client x (cnew
x − cx) to the response. It also

updates cx to cnew
x and Cissued accordingly.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 305

5 Evaluation
Our evaluation answers the following questions:

• Does Breakwater achieve the objectives of overload con-

trol defined in §2 even given tight SLOs?

• Can Breakwater maintain its advantages regardless of load

characteristics (i.e., average RPC service time and service

time distribution)?

• Can Breakwater scale to large numbers of clients?

• Can Breakwater react quickly to a sudden load shift?

• What is the impact of Breakwater’s key design decisions:

demand speculation and credit overcommitment?

• How sensitive is Breakwater’s performance to different

parameters?

5.1 Evaluation Setup
Testbed: We use 11 nodes from the Cloudlab xl170 clus-

ter [20]. Each node has a ten-core (20 hyper-thread) Intel

E5-2640v4 2.4 GHz CPU, 64 GB ECC RAM, and a Mellanox

ConnectX-4 25 Gbps NIC. Nodes are connected through a

Mellanox 2410 25 Gbps switch. The RTT between any two

nodes is 10μs. We use one node as the server and ten nodes as

clients. The server application uses up to 10 hyper-threads (5

physical cores) for processing requests, and the client applica-

tion uses up to 16 hyper-threads (8 physical cores) to generate

load. All nodes dedicate a hyper-thread pair for Shenango’s

IOKernel.

Baseline. We compare Breakwater to DAGOR [51] and

SEDA [48]. DAGOR is a priority-based overload control sys-

tem used for WeChat microservices. Priorities are assigned

based on business requirements across applications and at

random across clients. We only consider a single application

in our evaluation. DAGOR uses queueing delay to adjust the

priority threshold at which a server drops incoming requests

(i.e., requests with a priority lower than the threshold are

dropped). To reduce the overhead of dropped requests, the

server advertises its current threshold to clients, piggybacked

it in responses. Clients use that threshold to drop the requests.

Note that DAGOR does not drop its threshold to zero, mean-

ing that a request with the highest priority value (i.e., a priority

of one) will never be dropped. SEDA uses a rate-based rate

limiting algorithm. It sets rates based on the 90%-ile response

time. Since we evaluate the performance of Breakwater using

the 99%-ile latency metric, we modified SEDA’s algorithm

so that it adjusts rates based on 99%-ile response time. We

implement DAGOR and SEDA as an RPC layer in Shenango

with the same dispatcher model as Breakwater.

Setting end-to-end SLO. We set tight SLOs to support low-

latency RPC applications. We budget SLOs based on the

server-side request processing time and the network RTT. An

SLO is set as 10× the sum of the average RPC service time

measured at the server and the network RTT; the multiplica-

tive factor of 10 was inspired by recent work on μs-scale RPC

work [17, 42]. The RTT in our setting is 10μs, leading to

SLOs of 110μs, 200μs, and 1.1ms for workloads with 1μs,

10μs, and 100μs average service times, respectively. These

are comparable with SLO values used in practice [30].

Evaluation metrics: We report goodput, 99%-ile latency,

drop rate, and reject message delay. Goodput represents the

number of requests processed per second that meet their SLO.

Reported latency captures all delays faced by a request from

the moment it is issued till its response is received by the client.

This includes any queuing delay at the client, communication

delay, and all delays at the server. We report drop rate at the

server only, as it is the factor the directly impact overall system

performance. Note that SEDA does not support any AQM at
the server and has zero drop rate in all experiments. Reject

message delay represents the delay between the departure of

a request from a client and the arrival of a reject message back

to the client when that request is dropped at the server.

Parameter tuning. We tune the parameters of all systems

so that they achieve the highest possible goodput. We re-tune

the parameters when we change the average service time,

service time distribution, and the number of clients. Note that

Breakwater and DAGOR do not require parameter re-tuning

for a different number of clients while SEDA does. Specifi-

cally, we need to scale ad ji parameter in SEDA based on the

number of clients to get the best goodput. For Breakwater, we

set α = 0.1%, β = 2%, dt to 40% of SLO, and AQM thresh-

old to 2 ·dt (e.g., dt = 80μs and AQM threshold = 160μs for

exponential service time distribution with 10μs average and

200 μs SLO). For DAGOR and SEDA, which are devised for

ms-scale RPCs, we scale down the hyperparameters from the

default values. For DAGOR, we update the priority threshold

every 1ms (instead of 1 s) or every 2,000 requests and use

α = 5% and β = 1%. We assign random priority for each

request ranging from 1 to 128, which is the default priority

setting with one type of service in DAGOR [51]. We tune

DAGORq for each workload (e.g., DAGORq = 70μs for ex-

ponential service time distribution with 10μs on average).

For SEDA, we used the same default parameter from [48]

except for timeout, ad ji, and ad jd . We set timeout = 1ms

(instead of 1 s) and tune ad ji and ad j j for each workload

(e.g., ad ji = 40, ad jd = 1.04 for exponential workload with

10μs average with 1,000 clients). AQM in Breakwater and

DAGOR drops requests right after parsing packets to requests,

following the drop-as-early-as-possible principle [33]. We

run all the experiments for four seconds. We measure steady

state performance with converged adaptive parameters by

collecting data two seconds after an experiment starts.

5.2 Performance for Synthetic Workload
Workload: We run 1,000 clients divided equally between the

ten nodes in our CloudLab setup. We generate the workload

with exponential, constant, and bimodal service time distri-

butions with 1μs, 10μs, and 100μs average where each client

generates the load with an open-loop Poisson process. We

change the demand by varying the average arrival rate of

requests at the server between 0.1× to 2× of server capac-

306 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0
200
400
600
800

0 0.4 0.8 1.2 1.6G
oo

dp
ut

 (k
re

qs
/s

)

Clients' demand (Mreqs/s)

Breakwater DAGOR SEDA

(a) Goodput

0
100
200
300
400
500

0 0.4 0.8 1.2 1.6

99
%

-il
e

L
at

en
cy

(u

s)

Clients' demand (Mreqs/s)

SLO

(b) 99%-ile Latency

0%

1%

2%

3%

4%

0 0.4 0.8 1.2 1.6

D
ro

p
R

at
e

Clients' demand (Mreqs/s)
(c) Drop Rate

Figure 3: Performance of Breakwater, DAGOR, and SEDA for synthetic workloads with the exponential distribution of 10μs average

0
200
400
600
800

G
oo

dp
ut

 (k
re

qs
/s

) Breakwater DAGOR SEDA
+1.7% +3.0% +1.6%

0%
1%
2%
3%

Constant Exponential Bimodal

D
ro

p
R

at
e

Service Time Distribution

(a) demand = 0.9× capacity

0

200

400

600

800

G
oo

dp
ut

 (k
re

qs
/s

) +4.0% +4.2% +4.7%

0%
1%
2%
3%

Constant Exponential Bimodal

D
ro

p
R

at
e

Service Time Distribution

(b) demand = 1.2× capacity

0

200

400

600

800

G
oo

dp
ut

 (k
re

qs
/s

) +4.7% +6.2% +7.0%

0%
1%
2%
3%

Constant Exponential Bimodal

D
ro

p
R

at
e

Service Time Distribution
(c) demand = 2× capacity

Figure 4: Goodput and drop rate with different service time distribution of 10μs average with 1,000 clients (The label represents the

goodput gain compared to the worst of baselines.)

ity. Exponential service time distribution models applications

waiting for a shared resource while busy-spinning; constant

distribution models applications with a fixed amount of la-

tency such as fetching value from memory or flash drive; bi-

modal distribution models applications that caches frequently

requested values, which will have shorter execution time com-

pared non-cached results. In particular, 20% of the requests

take four times the average service time, and 80% of the re-

quests take one fourth of the average following the Pareto

principle.

Overall performance: Figure 3 shows the performance for

a workload whose service time follows an exponential distri-

bution with 10μs average. The capacity of the server in this

case is around 850k requests per second.

When the clients’ demand is less than the capacity, all three

systems perform comparably in terms of goodput, latency,

and drop rate. The only noticeable difference among them is

that, at 700k reqs/s, SEDA has a 15% higher 99%-ile latency

than Breakwater or DAGOR. This is because SEDA doesn’t

drop requests at servers.

When the clients’ demand is around the capacity of the

server, Breakwater achieves 801k requests per second for

goodput (or 808k reqs/s of throughput), which is around 5%

overhead when compared to the maximum throughput with

no overload control. Other systems have higher overhead than

Breakwater.

When the demand exceeds the capacity, incast becomes the

dominant factor impacting performance. Breakwater handles

incast well by preventing clients from sending requests unless

they have credits, limiting the maximum queue size. Thus,

Breakwater achieves higher goodput with lower and bounded

tail latency. On the other hand, SEDA experiences high tail

latency because clients do not coordinate their rate increase,

making multiple clients increase their rate simultaneously

and overwhelm the server. Delayed reaction to overload does

not allow SEDA to react quickly to incast. DAGOR’s high

tail latency is also explained by delayed reaction as it up-

dates its priority threshold every 1 ms or every 2,000 requests.

Breakwater is also impacted by incast due to the overcom-

mitted credits, which lead to increased tail latency and higher

drop rate with overload. However, Breakwater relies on delay-

based AQM which effectively bounds the tail latency while

maintaining a comparable drop rate to DAGOR.

Impact of Workload Characteristics: To verify that Break-

water’s performance benefits are not confined to a specific

workload, we repeat the experiments with different service

time distributions and different average service time values.

Figure 4 shows goodput and drop rate with three different

distributions of the service time whose average is 10μs, where

the load generated by 1,000 clients is 0.9×capacity, 1.2× ca-

pacity, and 2× capacity. The service time distributions are

aligned over the x-axis in ascending order of variance. Break-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 307

0

1

2

3

G
oo

dp
ut

 (M
re

qs
/s

)
Breakwater DAGOR SEDA

0%
3%
6%
9%

0 1 2 3 4 5 6D
ro

p
R

at
e

Clients' demand (Mreqs/s)

(a) 1 μs

0
200
400
600
800

G
oo

dp
ut

 (k
re

qs
/s

)

0%
3%
6%
9%

0 0.4 0.8 1.2 1.6D
ro

p
R

at
e

Clients' demand (Mreqs/s)
(b) 10 μs

0
20
40
60
80

100

G
oo

dp
ut

 (k
re

qs
/s

)

0%
3%
6%
9%

0 60 120 180D
ro

p
R

at
e

Clients' demand (kreqs/s)

(c) 100 μs

Figure 5: Goodput and drop rate with different average service time with 1,000 clients

water achieves the highest goodput regardless of the load and

service time distribution. All three systems experience small

goodput reduction with a higher variance, especially when

the load is 2× the server capacity. The goodput reduction

of DAGOR and SEDA comes from their poor reaction to in-

cast, whose size increases as the load increases. As a result,

Breakwater’s goodput benefit becomes larger as the clients’

demand increases. Breakwater achieves 5.7% more goodput

compared to SEDA and 6.2% more goodput compared to

DAGOR with exponential distribution at a load of 2× capac-

ity. With a higher variance of the service time distribution, the

drop rate of the Breakwater tends to increase because a larger

number of credits are overcommitted with higher variance,

but it is still comparable to DAGOR.

Figure 5 depicts performance with an exponential service

time distribution and different average service times with

1,000 clients. Breakwater outperforms DAGOR and SEDA re-

gardless of the clients’ demand and the average service time.

As the average service time increases, clients and servers

exchange messages less frequently, exposing the delayed re-

action problem in SEDA and DAGOR. With short service

times (i.e., 1μs), clients and servers exchange messages very

frequently, giving clients a fresh view of the state of the

server in case of DAGOR and SEDA, allowing clients to react

quickly to overload. With high demand, the size of incast gets

larger which is poorly handled by SEDA and DAGOR. With

clients’ demand of 2× capacity with 100μs (i.e., 180k reqs/s),

Breakwater achieves 17.5% more goodput than SEDA and

10.2% more goodput with a comparable drop rate compared

to DAGOR.

Scalability to a Large Number of Clients: We vary the

number of clients from 100 to 10,000 with synthetic work-

load whose service time follows exponential service time

distribution of 10μs average. Note that the server capacity is

around 850k requests per second. Figure 6 depicts the good-

put with different numbers of clients. As clients’ demand

nears and exceeds the capacity, the goodput of all systems

degrades as the number of clients increases. As the number

of clients increases, the size of incast increases, leading to

0
200
400
600
800

1000

100 1k 10kG
oo

dp
ut

 (k
re

qs
/s

)

The number of clients

Breakwater DAGOR SEDA

(a) demand = capacity

0
200
400
600
800

1000

100 1k 10k

G
oo

dp
ut

 (k
re

qs
/s

)

The number of clients
(b) demand = 2× capacity

Figure 6: Goodput with different numbers of clients for expo-

nential workload with 10 μs average service time

performance degradation. This is problematic for Breakwater

as well since overcommitment can occasionally result in large

bursts of incoming requests. The performance of DAGOR and

SEDA drops more than Breakwater as the number of clients

increases. This is because each client exchanges messages

with the server less frequently as the number of clients in-

creases. The stale view of the server status leads clients to

overwhelm the server. Note that for SEDA’s best performance,

we scale the additive rate increase factor (ad ji) to the number

of clients. This helps mitigate any bursty behavior that can

result from multiple clients sharply increasing their rate simul-

taneously. A small increase factor is not practical for a small

number of clients as it will lead to slow ramp-up of rates after

an overload, leading to lower utilization of the server. Because

of this issue, SEDA has a much slower convergence time to

the right rate, making it impractical for load shift scenarios as

we show next.

Further, it is hard to tune SEDA dynamically. The rate

control algorithm in SEDA is implemented at the client, and

dynamic tuning requires each client to know the total num-

ber of active clients. Such a dynamic approach will lead to

performance degradation as the client will retune its param-

eter to at least an RTT after the number of clients changes.

The drawbacks of such a delayed reaction can be seen in the

behavior of DAGOR. Further, exchanging such information

might not feasible in practice due to messaging overhead as

well as privacy concerns (e.g., a FaaS cloud provider will not

want any of its clients to know the total number of clients).

Note that even though Breakwater also scales the number

308 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of newly issued credits to the number of clients (Equation 1

and 3), Breakwater is server-driven, and the server has per-

fect knowledge of the number of active clients at all times

with no need to expose this information outside. In SEDA,

by contrast, each client cannot have perfect knowledge of the

number of active clients. Each client would have to guess or

receive feedback from the server to scale the increment factor.

Reaction to Sudden Shifts in Demand: An RPC server may

experience sudden shifts in demand for many reasons, such

as load imbalance, packet bursts, unexpected user traffic, or

redirected traffic due to server failure. To verify Breakwater’s

ability to converge after a shift in demand, we measure its

performance with a shifting load pattern. We use a workload

whose service time follows an exponential distribution with

10μs average and calculate goodput, 99%-ile latency, and

mean reject message delay every 20 ms. When the experiment

starts, 1,000 clients generate requests at 400k reqs/s (0.5×
capacity). Then, clients double their request rate to 800k reqs/s

(0.9× capacity) at time = 2 s, then triple their demand to

1.2M reqs/s (1.4× capacity) at time = 4 s. Clients sustain their

demand at 1.2M reqs/s for 2 seconds. Then, clients reduce

their demand back to 800k reqs/s at time = 6 s and finally

to 400k reqs/s at time = 8 s. Figure 7 depicts a time series

behavior of all systems.

When the clients’ demand is far less than the capacity, all

three overload control schemes maintain comparable goodput

and tail latency at a steady state. When demand increases to

near server capacity, Breakwater converges fast, exhibiting

a stable behavior in terms of both goodput and tail latency.

On the other hand, DAGOR and SEDA experience higher tail

latency because of the poor reaction to the transient server

overload. As the server becomes persistently overloaded with

a sudden spike at time = 4 s, Breakwater converges quickly

while DAGOR and SEDA suffer from congestion collapse.

Breakwater experiences a momentary tail latency increase

(reaching 1.4× the SLO) with the sudden increase of clients’

demand due to more incast caused by overcommitted credits.

However, credit revocation and AQM rapidly limit the impact

of any further incast. When demand returns back below the

capacity at time = 6 s, Breakwater doesn’t show a noticeable

goodput drop while the DAGOR and SEDA experience a

temporary goodput drop down to 77.5% and 82.6% of the

converged goodput, respectively.

SEDA reacts slowly to the demand spike since each client

needs to wait for a hundred responses or 1 ms to adjust its

rate. After the demand spikes beyond the capacity, the server

builds up long queues, and the latency goes up beyond SLO,

resulting in almost zero goodput. SEDA takes around 1.6 s

to recover its goodput. DAGOR also has the delayed reac-

tion problem, but its goodput converges more quickly than

SEDA thanks to AQM, taking 500 ms to recover its goodput.

During the congestion collapse period, the 99%-ile latency

of DAGOR soars up to 300 ms and its mean delay of reject

message reaches 220 ms. This is problematic as clients cannot

0
200
400
600
800

1000
1200

G
oo

dp
ut

 (k
re

qs
/s

)

SEDADagorBreakwater
Demand Ideal

0.01
0.1

1
10

100
1000

99
%

-il
e

L
at

en
cy

 (m
s)

SLO

0.01
0.1

1
10

100
1000

0 2 4 6 8 10

M
ea

n
R

ej
ec

t
D

el
ay

 (m
s)

Time (s)

SLO

Figure 7: Goodput, 99%-ile latency, and mean rejection delay

with a sudden shift in demand with 1,000 clients

receive the feedback in a timely manner, making them rely

on expensive timeout.

The Value of Demand Speculation: To quantify the per-

formance benefits of demand speculation, we compare the

two strategies for collecting demand information: demand

synchronization and demand speculation. With demand syn-

chronization, clients notify the server whenever their demand

changes using explicit demand messages, and the server gen-

erates explicit credit messages to clients if it cannot be pig-

gybacked to responses. With demand speculation, the server

speculatively estimates client demands based on the latest

demand information and piggybacks credits to the responses

as much as possible. The load is generated by 1,000 clients

where the service time per request follows an exponential

distribution with an average of 10μs. The message overhead

is measured by the number of packets received (RX) and sent

(TX) at the server. With demand synchronization, both RX

and TX message overhead increase as the clients’ demand

increases, leading to goodput degradation (Figure 8 (a)). In

particular, explicit demand and credit messages doubles RX

and TX message overhead below and at the capacity (i.e.,

850k requests per second). As the system gets overloaded,

the overhead of demand messages keeps increasing because

per-client demand changes more frequently with increased

clients’ demand. Further, the overhead of generating credits

contributes to the cost of synchronization. The server sends

more credit messages during low demand as they cannot be

piggybacked on responses due to low request rates. As load

increases beyond capacity, more credits can be piggybacked

to the responses, which results in the reduction of TX over-

head. Demand synchronization has a smaller number of over-

committed credits, leading to a lower drop rate than demand

speculation (Figure 8 (c)). Overall, the cost of synchroniza-

tion between the clients and the server is high in terms of

goodput degradation and network overhead, with the small

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 309

0
200
400
600
800

0 0.4 0.8 1.2 1.6G
oo

dp
ut

 (k
re

qs
/s

)

Clients' demand (Mreqs/s)

Demand spec. Demand sync.

(a) Goodput

0
1
2
3
4

0 0.4 0.8 1.2 1.6

M
sg

 O
ve

rh
ea

d
(M

pp
s)

Clients' demand (Mreqs/s)

Demand spec. (RX) Demand spec. (TX)
Demand sync. (RX) Demand sync. (TX)

(b) Message Overhead

0%
1%
2%
3%
4%

0 0.4 0.8 1.2 1.6

D
ro

p
R

at
e

Clients' demand (Mreqs/s)

Demand spec. Demand sync.

(c) Drop Rate

Figure 8: Goodput, message overhead, and drop rate with demand speculation and demand synchronization in Breakwater

0
200
400
600
800

0 0.4 0.8 1.2 1.6

T
hr

ou
gh

pu
t

(k
re

qs
/s

)

Clients' demand (Mreqs/s)

No control
Credit + Demand spec.

(a) Throughput

0
200
400
600
800

1,000

0 0.4 0.8 1.2 1.6

99
%

-il
e

L
at

en
cy

(u

s)

Clients' demand (Mreqs/s)

Credit
Credit + Demand spec. + AQM

(b) 99%-ile Latency

Figure 9: Breakwater performance breakdown

benefit of lowering the drop rate at the server.

Performance Breakdown: To quantify the contribution of

each component of Breakwater to its overall performance, we

measure the throughput and 99%-ile latency after incremen-

tally activating its three major components: credit-based ad-

mission control, demand speculation, and delay-based AQM.

The results are shown in Figure 9. We use the synthetic work-

load whose service time is exponentially distributed with

10 μs average (SLO = 200 μs). With no overload control at all,

throughput starts to degrade, and tail latency soars, making al-

most all requests violate their SLO as demand becomes higher

than server capacity. Credit-based admission control effec-

tively lowers and bounds the tail latency, but throughput still

suffers due to the messaging overhead. Demand speculation

with message piggybacking reduces the messaging overhead,

but it worsens tail latency due to incast caused by credit over-

commitment. By employing delay-based AQM, Breakwater

effectively handles incast, leading to high throughput and low

tail latency.

Parameter Sensitivity: Breakwater parameters are set ag-

gressively to maximize the goodput, resulting in a relatively

high drop rate. With less aggressive parameters, Breakwater

can drop fewer requests sacrificing goodput. Figure 10 demon-

strates the trade-off between the goodput and the drop rate

for the workload with exponential service time distribution

with 10μs average with 1M reqs/s demand from 1,000 clients.

The values of pairs of α and β are aligned in descending order

of aggressiveness over the x-axis. Breakwater achieves 0.7%

of drop rate by sacrificing 2.2% of goodput (with α = 0.1%,

β= 8%) and 0.4% of drop rate by sacrificing 5.1% of goodput

(with α = 0.05%, β = 10%).

In practice, it is not easy to find the best parameter con-

0.0%
0.4%
0.8%
1.2%
1.6%
2.0%

0
200
400
600
800

1,000

0.1% 0.1% 0.1% 0.05% 0.05%

D
ro

p
R

at
e

G
oo

dp
ut

 (k
re

qs
/s

)

Goodput Drop Rate

:: 2% 4% 8% 8% 10%

-0.9% -2.2% -4.3% -5.1%

More aggressive Less aggressive
Figure 10: Goodput and drop rate with different aggressive

parameters of Breakwater

figuration for an operational system. It is even more difficult

when traffic patterns change over time because parameter

adjustments could be required to achieve the best possible

performance. Thus, it is desirable to develop systems that are

robust to parameter misconfiguration and changes in traffic

patterns, providing consistently good performance even with

small errors in parameter settings. Breakwater is robust. In

particular, it provides high throughput and low tail latency

despite parameter misconfiguration. We compare it against

DAGOR and SEDA, measuring their performance for the

same workload while varying their parameters. Specifically,

we measure the throughput and 99%-ile latency after recon-

figuring the three most sensitive parameters for each system:

target delay, increment factor, and decrement factor (dt ,α,β
for Breakwater; threshold of the average queueing time, α,β
for DAGOR; and target,ad ji,ad jd for SEDA). Given the set

of parameters producing best goodput, we measure 27 data

points with -10, 0, +10 μs of target queueing delay, 0.5×, 1×,

2× of the increment factor, and 0.5×, 1×, 2× of the decre-

ment factor. We use a synthetic workload with exponentially

distributed service times with 10 μs average with 1,000 clients.

The results are shown in Figure 11 where the circles filled

with light color indicate the performance with the parameters

tuned for the best goodput. All configurations of Breakwater

achieve comparable performance in terms of both throughput

and tail latency, achieving better throughput and latency trace-

offs and more consistent performance with different sets of

parameters. DAGOR tends to provide high throughput, but

its tail latency is as high as four times the SLO in the worst

case. SEDA’s worst case tail latency is lower than DAGOR,

310 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0
100
200
300
400
500
600
700
800

0 200 400 600 800 1000

99
%

-il
e

L
at

en
cy

 (u
s)

Throughput (kreqs/s)

Breakwater DAGOR SEDA

Ideal latency

Id
ea

lt
hr

ou
gh

pu
t

Figure 11: Throughput and 99%-ile latency trade-off with dif-

ferent sets of parameters (circle with light color indicates the

point producing best goodput)

but it suffers from severe throughput degradation when its

parameters are too conservative.

5.3 Performance under Realistic Workload
To evaluate Breakwater in a more realistic scenario, we cre-

ate a scenario where one memcached instance serves 10,000

clients. We use the USR workload from [9] where 99.8% of

the requests are GET, and other 0.2% are SET. Each client

generates the load according to an open-loop Poisson pro-

cess. We set an SLO of 50μs considering that the latency of

GET operation of memcached is less than 1μs. Figure 12

shows goodput, median latency, 99%-ile latency, and drop

rate of Breakwater, DAGOR, and SEDA. Breakwater achieves

steady goodput, low latency, and low drop rate, whereas both

DAGOR and SEDA suffer from goodput degradation with

high tail latency caused by incast when the server becomes

overloaded. With clients’ demand of 2× capacity, Breakwater

achieves 5% more goodput and 1.8× lower 99%-ile latency

than SEDA; and 14.3% more goodput and 2.9× lower 99%-

ile latency than DAGOR. Because of bimodally distributed

service time with a mix of GET and SET requests, Breakwater

shows around 25 μs higher 99%-ile latency than its SLO and

about 1.5% point higher drop rate than DAGOR.

6 Discussion and Future Work
Auto-scaling. We do not consider auto-scaling [5, 23, 31]

in this paper, where more resources are provisioned as load

increases, as a potential solution for overload control. Auto-

scaling can allocate enough capacity over time, but because

it operates at the timescale of minutes, it is too slow to

resolve microsecond-scale imbalances. Furthermore, over-

provisioning resources can be cost-inefficient if used to han-

dle transient spikes in demand, such as those that occur during

temporary failures [3].

Fairness. When the server has a sufficient number of credits,

it tries to approximate max-min fairness when distributing

credits to clients. However, when the number of available

credits is less than the number of clients, Breakwater does not

provide fairness to clients. Instead, it favors clients for which

it is currently processing requests. This allows the server to

piggyback credits to the responses and avoid sending explicit

0

1

2

3

0 1 2 3 4 5 6G
oo

dp
ut

 (M
re

qs
/s

)

Clients' demand (Mreqs/s)

Breakwater DAGOR SEDA

(a) Goodput

0

10

20

30

0 1 2 3 4 5 6M
ed

ia
n

L
at

en
cy

(u

s)

Clients' demand (Mreqs/s)

(b) Median Latency

0

100

200

300

0 1 2 3 4 5 6

99
%

-il
e

L
at

en
cy

(u

s)

Clients' demand (Mreqs/s)

SLO

(c) 99%-ile Latency

0%

2%

4%

6%

8%

0 1 2 3 4 5 6

D
ro

p
R

at
e

Clients' demand (Mreqs/s)

(d) Drop Rate

Figure 12: Memcached performance for USR workload with

10,000 clients (SLO = 50μs)

credit messages. This preference toward a subset of clients

is common in production services [51]. If a service operator

wants to provide fairness among clients, the clients receiving

the most credits could be timed-out over a longer timescale,

so clients starved of credits can get a chance to send instead.

Overload control for multi-layer services. In this paper, we

only consider a single-layer, single-server overload control

scenario. Breakwater’s receiver-driven, credit-based approach

can be applied to multiple layers of microservices, preventing

overload at each individual layer. However, when an overload

occurs in an intermediate layer of a multi-layer service, the

work performed in earlier layers is wasted. We leave prop-

agating overload signals and coordinating overload control

across several layers of microservices for future work.

7 Related Work
Receiver-driven transport protocols. Homa [34],

NDP [24], and ExpressPass [14] schedule network packets

with a receiver-driven mechanism to achieve high throughput

and low latency. While Homa and Breakwater share some

similarities including a credit-based, receiver-driven scheme

and credit overcommitment, they are different in three

significant aspects. First, Homa handles network congestion,

whereas Breakwater handles server overload, which means

that Breakwater must handle the additional challenges posed

by overload control discussed in §2.3. Second, Homa relies

on full knowledge of clients’ demand, whereas Breakwater

does not. Instead, the Breakwater server speculates clients’

demand based on the latest demand information, the number

of clients, and the number of available credits to minimize

the message overhead. Third, both the motivation and

the mechanism of overcommitment are different. Homa

overcommits a fixed number of credits to handle an all-to-all

workload, where a sender may get credits from multiple

receivers and therefore not be able to send to all of them

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 311

simultaneously. In Breakwater, however, the server does

not know which clients have demand. Thus, it dynamically

increases the amount of overcommitted credits until it

receives sufficient requests to keep itself busy with demand

speculation.

Transport protocol for μs-scale RPCs. R2P2 [28] is a

request/response-aware transport protocol designed for μs-

scale RPCs. It implements JBSQ inside a programmable

switch to better load balance requests among multiple servers.

R2P2 limits the number of requests in a server’s queue by

explicitly pulling the requests from the switch. Through this

mechanism, R2P2 provides bounded request queueing and

low tail latency when the clients’ demand is less than the

servers’ capacity. However, R2P2 does not provide any server

overload control mechanism. If the clients’ demand exceeds

the servers’ capacity, the request queue will build up at the

switch, causing requests to violate their SLO. SVEN [27]

builds upon R2P2 by adding a server overload control mecha-

nism. Specifically, it drops requests at the switch if sampled

tail latency exceeds an SLO-derived threshold. SVEN avoids

the cost of request drops at the server by dropping requests

early at the switch. However, unlike Breakwater, message

overhead increases as clients’ demand increases.

Circuit breaker in proxy. Envoy [6], HAProxy [7], NG-

INX [44], and GateKeeper [21] provide circuit breaker mech-

anisms to prevent back-end server overload. These proxies sit

in front of a back-end server and stop forwarding requests to

the server when one of the load metrics (e.g., the number of

connections, the number of outstanding requests, the response

time, estimated load) exceeds a threshold. However, since

those thresholds must be set manually, it’s challenging to find

the right threshold value that maximizes resource utilization

while keeping latency low.

Server overload control. Session-based admission con-

trol [12, 13] prevents web server overloads by limiting the

creation of new sessions based on the number of successfully

completed sessions or QoS metrics. However, they are not

compatible with request-response models as they cannot pre-

vent server overloads caused by a single session from a proxy

that forwards requests from multiple clients. CoDel [38] con-

trols the queuing delay of a server to prevent server overloads.

Still, if the incoming packet rate is high and CPU is used

more for packet processing, the server becomes less CPU

efficient and degrades throughput. ORCA [29], SEDA [48],

and Doorman [4] rate limit clients so that their sending rates

do not exceed the server capacity. Doorman requires man-

ually setting of the server capacity threshold. Both ORCA

and SEDA may suffer from long queueing delays or under-

utilization if clients make mistakes on their sending rate with

stale congestion information from the server. DAGOR [51]

takes a hybrid approach using both AQM and client-side rate

limiting using adaptive parameter based on queueing delay.

However, as DAGOR server updates congestion status with

responses, clients still can undershoot or overshoot the server

capacity with stale information on server congestion when

client demand is sporadic.

Flow control. TCP flow control prevents the sender from

transmitting more bytes than the receiver can accommodate.

The objective of TCP flow control is to avoid memory overrun

at the server, not to prevent server overload or SLO viola-

tions. More recently, an SLO-aware TCP flow control mech-

anism [26] was proposed where the server adjusts receive

window size in TCP header based on SLO and the queueing

delay at the server. This approach limits the “bytes” of the

incoming requests to prevent server overload, but it’s challeng-

ing to decide the appropriate receive window size, especially

when the request size is variable.

8 Conclusion
In this paper, we presented Breakwater, a server-driven, credit-

based overload control system for microsecond-scale RPCs.

Breakwater achieves high throughput and low latency regard-

less of the RPC service time, the load at the server, and the

number of clients generating the load. Breakwater generates

credits based on queueing delay at the server, maintaining

high utilization by targeting non-zero queueing delay while

avoiding queue buildup. To minimize the overhead of co-

ordination between the clients and the server, we propose

demand speculation and credit overcommitment to realize

the credit-based design for overload control with minimal

overhead. By estimating clients’ demand and issuing more

credits than their capacity, Breakwater eliminates the extra

messaging cost which is often required with a credit-based

approach. Additionally, Breakwater reduces its remaining

messaging overhead significantly by piggybacking demands

and credits to requests and responses, respectively. Our evalu-

ation of Breakwater shows that it outperforms state-of-the-art

overload control systems. In particular, Breakwater achieves

25× faster convergence with 6% higher converged goodput

than DAGOR and 79× faster convergence with 3% higher

converged goodput than SEDA when the clients’ demand

suddenly spikes to 1.4× capacity.

Acknowledgments
We thank our shepherd Rachit Agarwal and the anonymous

reviewers for their valuable feedback, and Cloudlab [20] for

providing us with infrastructure for development and evalu-

ation. We also thank the anonymous artifact evaluators for

verifying our artifacts. This work was supported by the Cisco

Research Center Award, NSF grants (CNS-1563826, CNS-

1751009, and CNS-1910676), a Facebook Research Award, a

Microsoft Faculty Fellowship, and a VMWare Systems Re-

search Award.

References
[1] High-performance, feature-rich netxtreme®

e-series dual-port 100g pcie ethernet nic.

https://www.broadcom.com/products/

312 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ethernet-connectivity/network-adapters/
100gb-nic-ocp/p2100g.

[2] Memcached. http://memcached.org/.

[3] More on today’s gmail issue, 2009.

https://gmail.googleblog.com/2009/09/
more-on-todays-gmail-issue.html.

[4] Doorman: Global distributed client side rate limiting.,

2016. https://github.com/youtube/doorman.

[5] AWS Auto Scaling, 2020. https://aws.amazon.com/
autoscaling/.

[6] Envoy Proxy, 2020. https://www.envoyproxy.io/.

[7] HAProxy, 2020. http://www.haproxy.org/.

[8] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,

P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.

Data center tcp (DCTCP). In SIGCOMM, 2010.

[9] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and

M. Paleczny. Workload analysis of a large-scale key-

value store. In SIGMETRICS, 2012.

[10] T. Benson, A. Akella, and D. A. Maltz. Network traffic

characteristics of data centers in the wild. In IMC, 2010.

[11] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy. Site
Reliability Engineering: How Google Runs Production
Systems. O’Reilly Media, Inc., 2016.

[12] H. Chen and P. Mohapatra. Session-based overload

control in qos-aware web servers. In INFOCOM, 2002.

[13] L. Cherkasova and P. Phaal. Session-based admission

control: A mechanism for peak load management of

commercial web sites. IEEE Transactions on Comput-
ers, 51(6):669–685, 2002.

[14] I. Cho, K. Jang, and D. Han. Credit-scheduled delay-

bounded congestion control for datacenters. In SIG-
COMM, 2017.

[15] J. Cloud. Decomposing twitter: Adventures in service-

oriented architecture. In QCon New York, 2013.

[16] A. Cockroft. Microservices workshop:

Why, what, and how to get there. http:
//www.slideshare.net/adriancockcroft/
microservices-workshop-craft-conference.

[17] A. Daglis, M. Sutherland, and B. Falsafi. RPCValet: Ni-

driven tail-aware balancing of μs-scale rpcs. In ASPLOS,

2019.

[18] J. Dean and L. A. Barroso. The tail at scale. Communi-
cations of the ACM, 2013.

[19] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson.

Farm: Fast remote memory. In NSDI, 2014.

[20] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig,

E. Eide, L. Stoller, M. Hibler, D. Johnson, K. Webb, et al.

The design and operation of cloudlab. In ATC, 2019.

[21] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel.

A method for transparent admission control and request

scheduling in e-commerce web sites. In International
conference on World Wide Web, 2004.

[22] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi,

N. Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jackson,

et al. An open-source benchmark suite for microservices

and their hardware-software implications for cloud &

edge systems. In ASPLOS, 2019.

[23] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang.

Adaptive, model-driven autoscaling for cloud applica-

tions. In ICAC, 2014.

[24] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W.

Moore, G. Antichi, and M. Wójcik. Re-architecting

datacenter networks and stacks for low latency and high

performance. In SIGCOMM, 2017.

[25] A. Kalia, M. Kaminsky, and D. G. Andersen. Using

rdma efficiently for key-value services. In SIGCOMM,

2014.

[26] M. Kogias and E. Bugnion. Flow control for latency-

critical rpcs. In KBNets, 2018.

[27] M. Kogias and E. Bugnion. Tail-tolerance as a systems

principle not a metric. In APNet, 2020.

[28] M. Kogias, G. Prekas, A. Ghosn, J. Fietz, and

E. Bugnion. R2p2: Making rpcs first-class datacenter

citizens. In ATC, 2019.

[29] B. C. Kuszmaul, M. Frigo, J. M. Paluska, and A. S.

Sandler. Everyone loves file: File storage service (FSS)

in oracle cloud infrastructure. In ATC, 2019.

[30] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and

C. Kozyrakis. Heracles: Improving resource efficiency

at scale. In ISCA, 2015.

[31] M. Mao, J. Li, and M. Humphrey. Cloud auto-scaling

with deadline and budget constraints. In GridCom, 2010.

[32] B. Maurer. Fail at scale. Queue, 2015.

[33] J. C. Mogul and K. Ramakrishnan. Eliminating receive

livelock in an interrupt-driven kernel. ACM Transac-
tions on Computer Systems, 1997.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 313

[34] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout.

Homa: A receiver-driven low-latency transport protocol

using network priorities. In SIGCOMM, 2018.

[35] Y. Moon, S. Lee, M. A. Jamshed, and K. Park. Acceltcp:

Accelerating network applications with stateful TCP

offloading. In NSDI, 2020.

[36] D. Namiot and M. Sneps-Sneppe. On micro-services

architecture. International Journal of Open Information
Technologies, 2014.

[37] NGINX Documentation: Limiting Access to Proxied

HTTP Resources, 2020. https://docs.nginx.
com/nginx/admin-guide/security-controls/
controlling-access-proxied-http.

[38] K. Nichols and V. Jacobson. Controlling queue delay.

Communications of the ACM, 2012.

[39] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,

H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,

P. Saab, et al. Scaling memcache at facebook. In NSDI,
2013.

[40] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Bal-

akrishnan. Shenango: Achieving high CPU efficiency

for latency-sensitive datacenter workloads. In NSDI,
2019.

[41] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,

C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,

M. Rosenblum, et al. The RAMCloud storage system.

ACM Transactions on Computer Systems, 2015.

[42] G. Prekas, M. Kogias, and E. Bugnion. Zygos: Achiev-

ing low tail latency for microsecond-scale networked

tasks. In SOSP, 2017.

[43] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout.

Arachne: core-aware thread management. In OSDI,
2018.

[44] W. Reese. Nginx: the high-performance web server and

reverse proxy. Linux Journal, 2008.

[45] A. Sriraman and T. F. Wenisch. μtune: Auto-tuned

threading for OLDI microservices. In OSDI, 2018.

[46] L. Suresh, P. Bodik, I. Menache, M. Canini, and F. Ciucu.

Distributed resource management across process bound-

aries. In SoCC, 2017.

[47] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.

Speedy transactions in multicore in-memory databases.

In SOSP, 2013.

[48] M. Welsh and D. Culler. Overload management as a

fundamental service design primitive. In SIGOPS Euro-
pean Workshop, 2002.

[49] M. Welsh and D. E. Culler. Adaptive overload control

for busy internet servers. In USENIX Symposium on
Internet Technologies and Systems, 2003.

[50] T. Zhang, J. Wang, J. Huang, J. Chen, Y. Pan, and G. Min.

Tuning the aggressive tcp behavior for highly concurrent

http connections in intra-datacenter. Transactions on
Networking, 2017.

[51] H. Zhou, M. Chen, Q. Lin, Y. Wang, X. She, S. Liu,

R. Gu, B. C. Ooi, and J. Yang. Overload control for

scaling wechat microservices. In SoCC, 2018.

[52] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,

Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and

M. Zhang. Congestion control for large-scale rdma

deployments. In SIGCOMM, 2015.

314 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

AIFM: High-Performance, Application-Integrated Far Memory

Zhenyuan Ruan Malte Schwarzkopf † Marcos K. Aguilera ‡ Adam Belay
MIT CSAIL †Brown University ‡VMware Research

Abstract. Memory is the most contended and least elas-
tic resource in datacenter servers today. Applications can
use only local memory—which may be scarce—even though
memory might be readily available on another server. This
leads to unnecessary killings of workloads under memory
pressure and reduces effective server utilization.

We present application-integrated far memory (AIFM),
which makes remote, “far” memory available to applications
through a simple API and with high performance. AIFM
achieves the same common-case access latency for far mem-
ory as for local RAM; it avoids read and write amplification
that paging-based approaches suffer; it allows data structure
engineers to build remoteable, hybrid near/far memory data
structures; and it makes far memory transparent and easy to
use for application developers.

Our key insight is that exposing application-level semantics
to a high-performance runtime makes efficient remoteable
memory possible. Developers use AIFM’s APIs to make allo-
cations remoteable, and AIFM’s runtime handles swapping
objects in and out, prefetching, and memory evacuation.

We evaluate AIFM with a prototypical web application
frontend, a NYC taxi data analytics workload, a memcached-
like key-value cache, and Snappy compression. Adding AIFM
remoteable memory to these applications increases their avail-
able memory without performance penalty. AIFM outper-
forms Fastswap, a state-of-the-art kernel-integrated, paging-
based far memory system [6] by up to 61×.

1 Introduction
Memory (RAM) is the most constrained resource in today’s
datacenters. For example, the average memory utilization
on servers at Google [73] and Alibaba [46] is 60%, with
substantial variance across servers, compared to an average
CPU utilization of around 40%. But memory is also the most
inelastic resource: once a server runs out of available memory,
some running applications must be killed. In a month, 790k
jobs at Google had at least one instance killed, in many cases
due to memory pressure [73]. A killed instance’s work and
accumulated state are lost, wasting both time and energy. This
waste happens even though memory may be available on
other servers in the cluster, or even locally: around 30% of
server memory are “cold” and have not been accessed for
minutes [41], suggesting they could be reclaimed.

Operating systems today support memory elasticity primar-
ily through swap mechanisms, which free up RAM by pushing
unused physical memory pages to a slower tier of memory,

Throughput [accesses/sec] 64B object 4KB object
Paging-based (Fastswap [6]) 582K 582K

AIFM 3,975K 1,059K

Figure 1: AIFM achieves 6.8× higher throughput for 64B
objects and 1.81× higher throughput for 4KB objects, com-
pared to Fastswap [6], a page-granular, kernel-integrated far
memory approach. AIFM performs well since it (i) avoids IO
amplification and (ii) context switches while waiting for data.

such as disks or remote memory. But OS swap mechanisms
operate at a fixed and coarse granularity and incur substantial
overheads. To swap in a page, the OS must handle a page
fault, which requires entering the kernel and waiting until the
data arrives. Figure 1 shows the throughput a recent page-
based far memory system (viz., Fastswap [6]) achieves when
accessing remote objects using up to four CPU cores. Ker-
nel swapping happens at the granularity of 4KB pages, so
page-based far memory suffers read/write amplification when
accessing small objects, as at least 4KB must always be trans-
ferred. Moreover, the Linux kernel spins while waiting for
data from swap to avoid the overheads of context switch and
interrupt handling. That means the wait time (about 15–20k
cycles with Fastswap’s RDMA backend) is wasted.

We describe a fundamentally different approach:
application-integrated far memory (AIFM), which ties
swapping to individual application-level memory objects,
rather than the virtual memory (VM) abstraction of pages.
Developers write remoteable data structures whose backing
memory can be local and “far”—i.e., on a remote server—
without affecting common-case latency or application
throughput. When AIFM detects memory pressure, its
runtime swaps out objects and turns all pointers to the objects
into remote pointers. When the application dereferences a
remote pointer, a lightweight green threads runtime restores
the object to local memory. The runtime’s low context switch
cost permits other green threads to make productive use
of the wait cycles, which hides remote access latency and
maintains high throughput. Due to these fast context switches,
AIFM achieves 81% higher throughput than page-based
approaches when accessing 4KB objects, and because AIFM
avoids amplification, it achieves 6.8× higher throughput for
small objects (Figure 1).

AIFM’s programming interface is based on four key ideas:
a fast, low-overhead remoteable pointer abstraction, a pause-
less memory evacuator, runtime APIs that allow data struc-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 315

tures to convey semantic information to the runtime, and a
remote device interface that helps offload light computations
to remote memory. These AIFM APIs allow data structure en-
gineers to build hybrid local/remote data structures with ease,
and provide a developer experience similar to C++ standard
library data structures. The pauseless memory evacuator en-
sures that application threads never experience latency spikes
due to swapping. Because data structures convey their seman-
tics to the runtime, AIFM supports custom prefetching and
caching policies—e.g., prefetching remote data in a remote-
able list and streaming of remote data that avoids polluting the
local memory cache. Finally, AIFM’s offloading reduces data
movement and alleviates the network bottleneck that most
far-memory systems experience.

The combination of these ideas allows AIFM to achieve
object access latencies bounded only by hardware speed: if an
object is local, its access latency is comparable to an ordinary
pointer dereference; when it is remote, AIFM’s access latency
is close to the hardware device latency.

We evaluate AIFM with a real-world data analytics work-
load built on DataFrames [16], a synthetic web application
frontend that uses several remoteable data structures, as well
as a memcached-style workload, Snappy compression, and mi-
crobenchmarks. Our experiments show that AIFM maintains
high application request throughput and outperforms a state-
of-them-art, page-based remote memory system, Fastswap,
by up to 61×. In summary, our contributions are:

1. Application-integrated far memory (AIFM), a new de-
sign to extend a server’s effective memory size using
“far” memory on other servers or storage devices.

2. A realization of AIFM with convenient APIs for devel-
opment of applications and remoteable data structures.

3. A high-performance runtime design using green threads
and a pauseless memory evacuator that imposes minimal
overhead on local object accesses and avoids wasting
cycles while waiting for remote object data.

4. Evaluation of our AIFM prototype on several workloads,
and microbenchmarks that justify our design choices.

Our prototype is limited to unshared far memory objects on a
single memory server. Future work may add multi-server sup-
port, devise strategies for dynamic sizing of remote memory,
or investigate sharing.

2 Background and Related Work
OS swapping and far memory. Operating systems to-
day primarily achieve memory elasticity by swapping phys-
ical memory pages out into secondary storage. Classically,
secondary storage consisted of disks, which are larger and
cheaper but slower than DRAM. The use of disk-based swap
has been rare in datacenters, since it incurs a large perfor-
mance penalty. More recent efforts consider swapping to a
faster tier of memory or far memory, such as the remote mem-
ory of a host [3, 6, 21, 27, 28, 31, 40, 45, 48, 67] or a com-
pression cache [24, 41, 81, 82]. Since swapping is integrated

with the kernel virtual memory subsystem, it is transparent
to user-space applications. But this transparency also forces
swapping granularity to the smallest virtual memory primitive,
a 4KB page. Combined with memory objects smaller than
4KB, this leads to I/O amplification: when accessing an object,
the kernel must swap in a full 4KB page independent of the
object’s actual memory size. Moreover, supplying application
semantic information, such as the expected memory access
pattern, the appropriate prefetch strategy, or memory hotness,
is limited to coarse and inflexible interfaces like madvise.

AIFM uses far memory in a different way from swap-
ping, by operating at object granularity rather than page-
granularity—an idea that we borrow from prior work on
distributed shared memory (see below), memory compres-
sion [75], and SSD storage [1]. These investigations all point
to page-level I/O amplification as a key motivation.

AIFM provides transparent access to far memory using
smart pointers and dereference scopes inspired by C++ weak
pointers [69], and Folly RCU guards [26].

Disaggregated and distributed shared memory. Disag-
gregated memory [58] refers to a hardware architecture where
a fast fabric connects hosts to a pool of memory [29, 33],
which is possibly managed by a cluster-wide operating sys-
tem [33, 66]. Disaggregated memory requires new hardware
that has not yet made it to production. AIFM focuses on
software solutions for today’s hardware.

Distributed shared memory (DSM) provides an abstraction
of shared memory implemented over message passing [7, 10,
44, 50, 64, 65]. Like far memory, DSM systems can be page-
based or object-based. DSM differs from far memory both
conceptually and practically. Conceptually, DSM provides a
different abstraction, where data is shared across different
hosts (the “S” in DSM). Practically, this abstraction leads
to complexity and inefficiency, as DSM requires a cache co-
herence protocol that impairs performance. For instance, ac-
cessing data must determine if a remote cache holds a copy
of the data. By contrast, data in far memory is private to a
host—a stricter abstraction that makes it possible to realize
far memory more efficiently. Finally, DSM systems were de-
signed decades ago, and architectural details and constants of
modern hardware differ from their environments.

Technologies to access remote data. TCP/IP is the domi-
nant protocol for accessing data remotely, and AIFM currently
uses TCP/IP. Faster alternatives to TCP/IP exist, and could
be used to improve AIFM further, but these technologies are
orthogonal or complementary to AIFM’s key ideas.

RDMA is an old technology that has recently been com-
moditized over Ethernet [32], generating new interest. Much
work is devoted to using RDMA efficiently in general [39, 51,
76] or for specific applications, such as key-value stores (e.g.,
[38, 49]) or database systems [11]. Smart NICs use CPUs or
FPGAs [47, 52, 70] to provide programmable remote func-
tionality [18, 43, 68]. AIFM requires no specialized hardware.

316 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Abstractions for remote data. Remote Procedure Calls
(RPCs) [12] are widely used to access remote data, including
over RDMA [19, 71] or TCP/IP [37]. Memory-mapped files
can offer remote memory behind a familiar abstraction [2,
67], while data structure libraries for remote data [4, 15], offer
maps, sets, multisets, lists, and other familiar constructs to
developers. This is similar in spirit to data structure libraries
for persistent memory [59, 62]. AIFM offers a lower-level
service that helps programmers develop such data structures.

I/O amplification. As mentioned, page-based access leads
to I/O amplification, a problem studied extensively in the con-
text of storage systems [1, 61] and far-memory systems [17],
where hardware-based solutions can reduce amplification by
tracking accesses at the granularity of cache lines.

Garbage collection and memory evacuation. Moving ob-
jects to remote memory in AIFM (“evacuation”) is closely
related to mark-compact garbage collection (GC) in managed
languages. The main difference is that AIFM aims to increase
memory capacity by moving cold, but live objects to remote
memory, while GCs focus on releasing dead, unreferenced ob-
jects’ memory. AIFM uses referencing counting to free dead
objects, avoiding the need for a tracing stage. Instead of invent-
ing a new evacuation algorithm, AIFM borrows ideas from the
GC literature and adapts them to far-memory systems. Like
GCs, AIFM leverages a read/write barrier to maintain object
hotness [5, 14, 34], but AIFM uses a one-byte hotness counter
instead of a one-bit flag, allowing more fine-grained replace-
ment policies. Like AIFM, some copying collectors optimize
data locality by separating hot and cold data during GC, but
target different memory hierarchies; e.g., the cache-DRAM
hierarchy [34], the DRAM-NVM hierarchy [5, 79, 80], and
the DRAM-disk hierarchy [14]. Finally, memory evacuation
interferes with user tasks and impacts their performance. To
reduce the interference, AIFM adopts an approach similar to
the pauseless GC algorithms in managed languages [20], as
opposed to the stop-the-world GC algorithms [36].

3 Motivation
Kernel paging mechanisms impose substantial overheads over
the fundamental cost of accessing far memory.

Consider Figure 2, which breaks down the costs of Linux
(v5.0.0) retrieving a swapped-out page from an SSD. The
device’s hardware latency is about 6µs, but Linux takes over
15µs (2.5×) due to overheads associated with locking (P1,
P5), virtual memory management (P2, P3, P5), accounting
(P4), and read IO amplification (P3). Moreover, due to the
high cost of context switches, Linux spins while waiting for
data (P3), wasting 11.7µs of possible compute time.

AIFM, by contrast, provides low-overhead abstractions and
an efficient user-space runtime that avoid these costs, bringing
its latency (6.8µs) close to the hardware limit of 6µs. We
explain these concepts in the next two sections.

Phase Linux Kernel Swapping AIFM
P1 Page fault, trap to kernel Deref far pointer, issue I/O
P2 Lock, get PTE, allocate page

frame, allocate swap cache entry
Lightweight context-switch

P3 Issue read I/O, spin, insert PFN in
global LRU list

Run another green thread

P4 cgroup accounting, reclaim mem-
ory if past limit

I/O completion, context-
switch back

P5 Set page mapping, unlock —

0 5 10 15
Time [µs; median]

AIFM

Linux

HW limit P1 P2 P3 P4 P5

Figure 2: Linux kernel-based swapping has high overheads
over hardware I/O limits (blue line, 6µs). Both Linux and
AIFM use an SSD device backend in this experiment.

Application

Remoteable Datastructures (array, hashtable, ...)

AIFM Runtime

Local Memory
Memory
Evacuator

AIFM RT DS code

C++ STL API

RT API

Remote Server

Figure 3: Applications use remoteable data structures (gray),
and data structure developers rely on the AIFM runtime (yel-
low) to handle local memory management and interact with
remote memory. Data structures can have active remote com-
ponents (i.e., the “DS code” box) to offload light computation.

4 AIFM Design
The goal of Application-Integrated Far Memory (AIFM) is
to provide an easy-to-use, efficient interface for far memory
without the overheads of page-granular far memory.

4.1 Overview
AIFM targets two constituencies: application developers and
data structure developers. AIFM provides application devel-
opers with data structures with familiar APIs, allowing devel-
opers to treat these remoteable data structures mostly as black
boxes; and AIFM provides simple, but powerful APIs to data
structure engineers, allowing them to implement a variety of
efficient remoteable memory data structures. Figure 3 shows
a high-level overview of AIFM’s design: applications interact
with data structures (gray) implemented using primitives and
APIs provided by the AIFM runtime (yellow).

For an application developer, programming applications
that use far memory should feel almost the same as program-
ming with purely local data structures. In particular, the de-
veloper should not need to be aware of whether an object is
currently local or remote (i.e., far memory is transparent),
and remoteable memory data structures should offer the same

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 317

performance as local ones in the common case. For example,
idiomatic C++ code for reading several hash table entries and
an array element computed from them might look as follows:

std::unordered_map<key_t, int> hashtable;
std::array<data_t> arr;

void print_data(std::vector<key_t>& request_keys) {
int sum = 0;
for (auto key : request_keys) {
sum += hashtable.at(key);

}
std::cout << arr.at(sum) << std::endl;

}

The same code written using AIFM looks like this:

RemHashtable<key_t, int> hashtable;
RemArray<data_t> arr;

void print_data(std::vector<key_t>& request_keys) {
int sum = 0;
for (auto key : request_keys) {
DerefScope s1; // Explained in Section 4.2.2.
sum += hashtable.at(key, s1);

}
DerefScope s2;
std::cout << arr.at(sum, s2) << std::endl;

}

The remoteable memory data structures themselves
(RemHashtable and RemArray above) are written by data
structure engineers, who use AIFM’s runtime APIs to in-
clude remoteable memory objects in their data structures.
When memory becomes tight, AIFM’s runtime moves some
of these memory objects to remote memory; when the data
structure needs to access remote objects, the AIFM runtime
fetches them. Data structure engineers have substantial de-
sign freedom: they can rely entirely on AIFM to fetch remote
objects, or they can deploy custom logic on the remote side.

Remote servers store the actual remote data in their mem-
ory, and run a counterpart AIFM runtime, which may call
into custom data structure logic. This is helpful, e.g., if the
remoteable memory data structure needs to chase pointers,
which would otherwise require multiple round-trips.

4.2 Remoteable Memory Abstractions
AIFM is designed around four core abstractions: remoteable
pointers, dereference scopes, evacuation handlers, and remote
devices. We designed the abstractions such that they impose
minimal overheads (as low as three micro-ops) on “hot path”
access to local objects, and try to ensure that the “cold path”
remote access incurs little latency above hardware limits.

4.2.1 Remoteable Pointers

A remoteable pointer represents a memory object (i.e., an
allocation) that is currently either local, or remote (in “far”
memory). AIFM supports unique and shared remoteable point-
ers, whose interface makes them suitable for use in any place
where a data structure would use an ordinary, local pointer.

H P S D E Object Data Address (47b)

0· · ·4647· · ·535455· · ·63

(a) Local object. H: hot, P: present, S: shared, D: dirty, E: evacuating.

DS ID (8b) 1 S Object Size (16b) Object ID (38b)

0· · ·3738· · ·53545556· · ·63

(b) Remote (swapped-out) object. DS ID means data structure ID.

Figure 4: Remoteable unique pointer representations for local
and remote objects. AIFM inverts the H/P/D bit meaning (0 =
hot/present/dirty) for a more efficient hot path execution.

Memory representation. Unique remoteable pointers,
which correspond to C++’s std::unique_ptr, have the same
size as ordinary 64-bit pointers, while shared pointers are
128-bits wide (like std::shared_ptr). Figure 4 shows the
memory layout of a remoteable unique pointer. Depending
on whether a remoteable pointer is local or remote, we adopt
a different format. If the memory is local (Figure 4a), the
pointer contains a virtual memory address in its lower 47 bits
(enough to represent user-space addresses), and control bits in
the upper 17 bits, including standard dirty (D) and present (P)
bits (cf. page tables). It also contains bits to track whether the
pointer is hot (H) and whether it is being concurrently evac-
uated (E). For unique pointers, the shared (S) bit is set to 0.
We byte-align the D, E, and H bits, allowing each of them to
be accessed by mutators and runtime evacuators concurrently
and atomically, as a byte is the smallest read/write unit.

If the memory is remote (Figure 4b), it contains metadata to
assist in retrieving the object from remote memory, such as the
data structure ID, the object size, and the object ID. Each data
structure instance has a unique data structure ID managed by
the runtime. The object ID refers to a data structure-specific
object identifier (such as a key in a hash table), which is used
by the remote memory server to identify the object.

AIFM’s remoteable shared pointer, which allows pointer
aliasing and corresponds to C++’s std::shared_ptr differs
from the unique pointer in two ways. First, its S bit is set to 1;
and second, the pointer has an additional 8 bytes for chaining
the shared pointers to the same object. When AIFM’s runtime
evacuates the referred object or moves it locally (§5.3), it
traverses the chain to update all shared pointers.

API. Listing 1 shows the API of the remoteable unique
pointer (the shared pointer’s API is largely identical).
RemUniquePtr has two constructors: one for already-local
objects and one for currently remote objects. The second con-
structor allows data structures to form remoteable pointers
to objects that are currently remote. This helps data structure
engineers reference remote objects from their data structures
without having to fetch those objects.

To turn a remote pointer into a local one, the programmer
dereferences it via the deref and deref_mut API methods.

318 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

class RemUniquePtr<T> {
uint64_t metadata; // 64 bits, see Figure 4.
// Construct local object
RemUniquePtr(DSID, T* obj_addr);
// Construct remote object
RemUniquePtr(DSID, ObjID);
const T* deref(DerefScope& scope); // Immutable.
T* deref_mut(DerefScope& scope); // Mutable.

}

Listing 1: AIFM remoteable unique pointer API.

Dereferencing. When the dereferencing methods are
called, the runtime inspects the present bit of the remoteable
pointer. If the object is local, it sets the hot bit and returns the
address stored in the pointer. Otherwise, the runtime fetches
it from the remote server, sets the hot bit and dirty bit (in
deref_mut), and returns a local pointer to the data.

AIFM’s hot path for local access is carefully optimized
and takes five x86-64 machine instructions: one mov to load
the pointer, one andl to check present and evacuating bits,
a conditional branch to the cold path if neither is set, a shift
(shrq) to extract the object address, and a mov to return it.
Modern x86-64 processors macro-fuse the second and third
instructions (test and branch), so the hot path requires four
micro-ops, a three-micro-op overhead over an ordinary pointer
dereference. The cold path is slower, as it calls into the AIFM
runtime to potentially swap in a remote object.

One challenge to making this API work is managing the
local lifetime of the dereferenced data: while the application
holds a pointer returned from dereferencing a RemUniquePtr,
the runtime must never swap out the object. This is hard to
achieve in unmanaged languages like C/C++, since after get-
ting the raw address, application code could store it virtually
anywhere (e.g., on the heap, stack, or even in registers). The
runtime lacks sufficient information to detect whether any
such pointer continues to exist, and thus whether the data is
still being used. The Boehm garbage collector [13] tackles a
similar reference lifetime problem by scanning the whole ad-
dress space to find any possible references. Such scans would
impose an unacceptable performance overhead for AIFM.
Our solution is to instead leverage application semantics to
tie the lifetime of the local, dereferenced data to the lifetime
of the AIFM’s dereference scopes.

4.2.2 Dereference Scopes

Listing 2 demonstrates the usage of DerefScope. Before ac-
cessing the remoteable object, the developer must construct a
DerefScope. AIFM container’s API provides a compile-time
check by taking a DerefScope& argument. (This is also why
the remoteable pointer has its own dereferencing methods,
rather than overloading operator*.)

Under the hood, DerefScope’s constructor creates an evac-
uation fence, which blocks upcoming evacuations until it is
destructed. The lifetime of all local dereferenced data is there-
fore tied to the scope lifetime. Accessing dereferenced data

RemVector<value_t> vec;
// ...
for (uint64_t i = 0; i < vec.size(); i++) {
{

DerefScope scope;
auto& value = vec->at(i, scope);
// process value

}
// scope destroyed, can evacuate value’s object

}

Listing 2: AIFM dereference scope example.

outside the dereference scope is undefined behavior. In the
future, AIFM might leverage static analysis to catch lifetime
violations, as in the Rust compiler [78].

Our scope API is familiar to C/C++ programmers; it
shares similarity with C++11’s std::weak_ptr and, e.g., the
rcu_reader guard in Facebook’s RCU API [26]. Note that
the lifetime of the DerefScope is separate from the lifetime
of the remoteable pointer: a remoteable pointer may still be
alive even when its data has been swapped to the remote.
This is unlike, e.g., std::unique_ptr, where the pointer’s
destructor terminates the lifetime of the object data.

Dereference scopes require developers to modify the appli-
cation code. An alternative API might avoid the need for a
dereference scope at the cost of copying the object into local
memory on dereference. AIFM’s core APIs aim to achieve
maximum performance, so we avoid copying by default. The
overhead of a copying API is highly application-dependent;
our experiments suggest that 3–8% overhead are typical for
applications with high compute/memory access ratios.

4.2.3 Evacuation Handlers

When an object is not protected by a DerefScope, AIFM’s
runtime may evacuate it to far memory. Evacuation changes
the pointer to this object from local to remote status, and fu-
ture dereferences will cause AIFM to swap the object back
in. But some use cases may wish to implement custom be-
havior on evacuation. For example, when AIFM evacuates an
object contained in a hash table, the hash table may register
an evacuation handler to remove the key and object pointer
to save local space. (In this case, future lookup misses for
the key will reconstitute the key and pointer, and add them
to the hash table.) AIFM offers evacuation handlers for this
purpose, enabling developers to incorporate the data structure
semantics into the runtime evacuator.

Evacuation handlers are also critical for handling embed-
ded remoteable pointers inside objects. For example, data
structure engineers can use evacuation handlers to support
embedded remoteable unique pointers in objects that are them-
selves remoteable. When an object is remoted, any embedded
remoteable pointers must either be moved to the local heap, or
the object it references must be moved to remote memory, and
the remoteable pointer must be updated with an identifier to
later retrieve the remote object from a remote device (§4.2.4).
As a result, the evacuator never has to retrieve remote memory

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 319

// The AIFM runtime will invoke the handler on evacuating
// the object to the remote server (phase 4 in Section 5.3).
using EvacHandler = std::function<

void(Object&, const Runtime::CopyToRemoteFn&)>;
// Registers an evacuation handler for a data structure ID.
void Runtime::RegisterEvacHandler(DSID id, EvacHandler h);

Listing 3: AIFM evacuation handler API.

to update a remoteable pointer.
AIFM provides an evacuation handler API (Listing 3). The

evacuation handler gets invoked on evacuating the object to
the remote server (phase 4 in §5.3), right before the runtime
frees the object’s local memory. The runtime passes two argu-
ments to EvacHandler—the object to be evacuated and the
function that triggers the runtime to copy the object to the
remote side. The first argument allows the handler to mutate
the object data before copying (e.g., modify the state of its em-
bedded pointers) and further cleanup the local data structure
after copying (e.g., remove its pointer from the hash table in-
dex). The second argument offers the flexibility in the timing
of copying the object to remote.

Data structure developers register their evacuation handlers
by invoking RegisterEvacHandler. An evacuation handler
is tied to a unique data structure ID, which each data structure
allocates in its constructor, and which data structure engineers
must use consistently. This way, different data structures or
instances of the same data structure coexist in the same appli-
cation, while the runtime invokes the appropriate handler.

4.2.4 Remote Devices

AIFM’s RemDevice provides functionality at the remote mem-
ory server (Listing 4). The remote device, by default, uses a
key-value store abstraction: when the client dereferences a
remote pointer, the runtime sends the data structure ID and
object ID to the remote server, which looks up the object by
data structure ID and object ID, and sends the object data
back. When evacuating an object, the runtime sends IDs and
object data to the remote server, which inserts the object.

AIFM also gives datastructure engineers the flexibility to
override this default behavior to integrate custom active com-
ponents at the remote server. This is accomplished by register-
ing their implementation on their own data structure type to
the remote device (register_active_component). A cus-
tom active component is especially beneficial when the appli-
cation’s compute intensity is low, as this setting often makes
it more efficient to perform operations on remote memory
than paying the cost of bringing the objects into local mem-
ory. After registering the active component at the remote, data
structure engineers invoke RemDevice’s client-side bindings
to interact with the remote components. They use construct
and destruct to instantiate and destroy remote components.
If an object is not present when dereferencing a remote pointer,
the runtime invokes the read_obj to swap in the missing ob-
ject. On evacuation, the evacuator invokes write_obj to swap
out cold objects and delete_obj to release dead objects. In

class RemDevice {
void register_active_component(DSType, ActiveComponent&);
DSID construct(DSType, ByteArray params);
void destruct(DSID);
void read_obj(DSID, ObjID, ByteArray& obj_data);
void write_obj(DSID, ObjID, ByteArray obj_data);
bool delete_obj(DSID, ObjID);
void compute(DSID, OpCode, ByteArray in, ByteArray& out);

};

Listing 4: AIFM remoteable device API.

addition, the compute method invokes a custom function, ex-
ecuting a lightweight computation on the remote server. This
is useful, for example, for efficiently aggregating a sum across
objects in a data structure without wasting network bandwidth
to bring all objects into local memory first.

We implemented remote active components to improve the
performance of hashtables (§8.2.1) and DataFrames (§8.1.2).

4.2.5 Semantic Hints

AIFM’s APIs allow injecting information about application-
and object-specific semantics into the runtime.

Hotness tracking. To dereference a remoteable pointer, the
user invokes our library, which sets the hot bit of the pointer.
Under memory pressure, the memory evacuator uses this hot-
ness information to ensure that frequently accessed objects are
local. On evacuation, the evacuators clear the hot bit. AIFM
initialization allows developers to customize the number of
hot bits to use in the pointer (up to eight) and the replace-
ment policy by data structure ID. With several hot bits, AIFM
supports, e.g., a CLOCK replacement policy [72].

Prefetching. AIFM includes a library that data structures
can use to maintain a per-thread window of the history of
dereferenced locations and predict future accesses using a
finite-state machine (FSM). It updates the window and the
FSM on each dereference. The FSM detects patterns of se-
quential access and strided access. When a pattern is detected,
it starts prefetcher threads that swap in objects from the re-
mote server. With enough prefetching, application threads
always access local memory when dereferencing remoteable
pointers. The library estimates the prefetch window size con-
servatively using the network bandwidth-delay product. Data
structure engineers can also add custom prefetching policies.

Nontemporal Access1. For remoteable pointers to objects
without temporal locality, it makes sense to limit the local
memory used to store their object data. This avoids pollut-
ing local memory, which multiple data structures may share,
with data that a data structure engineer knows is unlikely
to be accessed again. To achieve this, AIFM’s pointer API
supports non-temporal dereferences (Listing 5). This im-
mediately marks the object pointed to by rmt_ptr as re-
claimable, though the actual evacuation happens only after the

1We use “nontemporal” in the sense of x86’s nontemporal load/store in-
structions [35], which conceptually bypass the CPU cache to avoid pollution.

320 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

DerefScope scope;
// non-temporal dereference ⇓ allows immediate reclaim
T* p1 = rmt_ptr1.deref_mut<true>(scope);
// temporal deref; deref_mut(scope) works too
T* p2 = rmt_ptr2.deref_mut<false>(scope);

Listing 5: Non-temporal and temporal dereferences.

DerefScope ends. Without a hint, a dereference is temporal
by default; §8.1.1 evaluates the benefit of the hint.

5 AIFM Runtime
AIFM’s runtime is built on “green” threads (light-weight,
user-level threading), a kernel-bypass TCP/IP networking
stack, and a pauseless memory evacuator. Applications link
the runtime into their user-space process. This allows us to
co-design the runtime with AIFM’s abstractions and provides
high-performance far memory without relying on any OS
kernel abstractions.

Two high-level objectives guide our runtime design: (i) the
runtime should productively use the cycles spent waiting dur-
ing the inevitable latency when fetching objects from remote
memory; and (ii) application threads should never have to
wait for the memory evacuator.

5.1 Hiding Remote Access Latency
We want to hide the latency of fetching data from far memory
by doing useful work during the fetch.

Existing OS kernel threads pay high context-switching
costs: e.g., on Linux, rescheduling a task takes around 500ns.
These costs are a nontrivial fraction of remote memory latency,
so Linux and Fastswap adopt a design where they busy-spin
while waiting for a network response [6]. This avoids context-
switch overheads, but also wastes several microseconds of
processing time. This approach also places tremendous pres-
sure on network providers to support even lower latency to
reduce the amount of wasted cycles [9, 28]. AIFM takes a
different approach: it relies on low-overhead green threads to
do application work while waiting for remote data fetches.

Consistent with literature on garbage collection (GC), we
refer to normal application threads as mutator threads in the
following. Each mutator thread accesses far memory, block-
ing whenever it needs to fetch a remote object. When that
happens, another mutator thread can run and make produc-
tive use of available CPU cycles. Moreover, AIFM’s runtime
spawns prefetcher threads to pull in objects that it predicts will
be dereferenced in the future, allowing it to avoid blocking
mutator threads when the predictions are correct.

Using green threads, AIFM tolerates network latency with-
out sacrificing application-level throughput, wasting fewer
cycles than systems that busy-poll for network completion.

5.2 Remoteable Memory Layout
For the local memory managed by AIFM, its runtime em-
braces the idea of log-structured memory [63], which splits

Core 0 Logs

...

Core 1 LogsPer-core

global
... Free Logs

......
Non-temporal Used logs Temporal Used Logs

 T

Core N Logs
hdr data

obj

DataHdr
Len

Head Ptr
Addr

First Remote-
able Ptr

 T T

... NT NT NT

Object ID

P
C
A
B

Data
Len

Figure 5: The layout of local remoteable memory in AIFM.
There are three global lists: a free list, a temporal used list, and
a non-temporal used list. Each list stores many logs, and each
log stores many objects. There is a per-core allocation buffer
(PCAB) that keeps two free logs to allocate new objects, one
log for temporal objects, the other for non-temporal ones.

and manages the local remoteable memory in the granularity
of logs (Figure 5). The log size is 2MB, which helps reduce
TLB misses by allocating huge pages. The runtime maintains
three global lists: a free list, a non-temporal used list, and a
temporal used list. Each list stores many logs. For core scala-
bility, each core owns two logs for new allocations: one log
for temporal objects, the other for non-temporal ones. The
logs are kept in a per-core allocation buffer (PCAB). To allo-
cate an object, the runtime first tries to allocate from a log in
the PCAB. If that log runs out of space, the runtime appends
the log to the global non-temporal or temporal used list, and
obtains a new log from the global free list. To free an object,
the runtime marks the object as free. AIFM leverages a mark-
compact evacuator to achieve a low memory fragmentation
ratio, as shown with other copying log allocators [63].

A log has a 1B header indicating whether it stores non-
temporal or temporal data. The remaining space stores ob-
jects. Each object has a Hdr Len bytes header and a Data
Len bytes data. The 6-byte Head Ptr Addr stores the ad-
dress of the remoteable pointer that points to the object. For
a unique pointer, Head Ptr Addr stores the address of the
only pointer; for a shared pointer, it stores the address of the
first shared pointer in the chain. Dead objects have Head Ptr
Addr set to nullptr. The variable-sized Object ID stores
the object’s unique identifier. The header is used on evacua-
tion, when the runtime passes the object ID to write/delete
endpoints on the remote device and the remoteable pointer ad-
dress to the evacuation handler, and when the runtime swaps
in an object and passes the object ID to the remote device.

5.3 Pauseless Memory Evacuator
Upon memory pressure, the runtime’s memory evacuator
moves cold objects to the remote server. Like with many
garbage collectors in managed languages, a key feature of
AIFM is to allow mutator threads to run concurrently while

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 321

the runtime evacuates local memory. The evacuator executes
four phases in sequence, described in the following para-
graphs. To ensure correctness under race conditions, the evac-
uator maintains an invariant: it only starts to move object
O after setting the mutator-side synchronization barrier on
accessing O. The evacuator sets the barrier by setting the
pointer evacuation bit (phase 2). The RCU writer wait (phase
3) ensures all mutators have observed the set bits to enforce
the timing order in the invariant.

1. Log Selection Phase. The goal of the evacuator is to
maintain the local free memory ratio above the min_free_ratio
(0.12 by default). The master thread of the evacuator picks
total_log_cnts ·(current_free_ratio−min_free_ratio) of logs
to be evacuated. The evacuator picks logs in FIFO order
from the global non-temporal used list, and then picks from
the global temporal used list if necessary, to prioritize non-
temporal objects. AIFM could also use more sophisticated
schemes, e.g., prioritizing logs by occupancy and age [23].

2. Concurrent Marking Phase. The master evacuation
thread spawns worker threads and divides the previously-
selected logs among them. Each worker thread iterates
through the objects in its logs to find live objects. For each
such object, the worker sets the evacuation bit of all remote-
able pointers of the object by traversing the pointer chain
starting from the head pointer address (i.e., the Head Ptr
Addr field). This marks the object for evacuation.

3. Evacuator Waiting Phase. The runtime can evacuate
objects only when they are not being dereferenced by mutator
threads. Rather than following a naive approach of having mu-
tators and the evacuator to acquire a per-object lock—which
would impose high overhead on the hot path of mutators ac-
cessing local objects—AIFM uses an approach inspired by
read-copy-update (RCU) synchronization. AIFM’s runtime
treats mutators as RCU readers and the evacuator master
thread as an RCU writer, thereby moving the synchronization
overhead to the evacuator. This choice makes sense because
(i) the mutators do application work, so AIFM should steer
overhead away from them; and (ii) evacuation is a rare event.
The result is that the evacuator master thread waits for a qui-
escent period to ensure all mutator threads have witnessed the
newly-set evacuation bits.

If a mutator thread subsequently dereferences a pointer to
an object that the runtime is evacuating, the mutator sees that
the evacuation bit is set. A naive approach would now block
the mutator thread while the evacuation bit is set. Instead,
AIFM opts for an approach that avoids such pauses: the mu-
tator copies the object to another log in its PCAB, and then
executes a compare-and-swap (CAS) on the head remoteable
pointer (which serves as a synchronization point) to simulta-
neously clear the evacuation bit, set the present bit, and set the
new data location. This CAS will race with the evacuator (see
next phase below). If the CAS succeeds, the mutator copied
an intact object, so it obtains a local reference. The mutator
then updates all pointers in the pointer chain with the head

pointer metadata and continues executing. If the CAS fails,
the evacuator has already changed the remoteable pointer to
remote status, so the mutator’s copy of the object may be
corrupt. Consequently, the mutator frees the copy it made and
obtains a remote reference.

4. Concurrent Evacuation Phase. The master thread
spawns more worker threads to evacuate objects and run
their evacuation handlers. Again, the master divides the previ-
ously selected logs among the workers. Each worker iterates
through each log and each object within the log. For each cold
object, the worker copies the object to the remote and executes
a CAS on the head remoteable pointer to simultaneously clear
the presence bit and set the remote pointer metadata. If the
CAS succeeds, the object has been evacuated, and the worker
updates all pointers in the pointer chain with the head pointer
metadata and invokes the evacuation handler. Otherwise, a
mutator thread succeeded with a racing CAS and has copied
the object to another location. Either way, the log entry is now
unused and reclaimable. For each hot object, the worker com-
pacts and copies it into a new log, updates the object address
in the remoteable pointers, and resets the hot bits.

5.4 Co-design with the Thread Scheduler
Evacuation is an urgent task when the runtime is under mem-
ory pressure. With a naive thread scheduler, evacuation can
be starved by mutator threads, leading to out-of-memory er-
rors and application crashes. There are two challenges that
we need to address. First, a large number of mutator threads
may allocate memory faster than evacuation can free memory.
Second, evacuation sometimes blocks on mutator threads in a
dereference scope, and this creates a dilemma. On one hand,
the scheduler needs to execute mutator threads so they can
unblock evacuation. On the other hand, executing mutator
threads may consume more memory.

To address these issues, we co-design the runtime’s green
thread scheduler with AIFM to prioritize the activities neces-
sary for evacuation, both in mutator threads and evacuation
threads. First, each thread keeps a status field that is set by the
AIFM runtime and read by the scheduler, which allows the
scheduler to know whether a thread is in a dereference scope.
The scheduler runs a multi-queue algorithm and assigns the
first priority to mutators in a dereference scope, second prior-
ity to evacuation threads, and third priority to other mutator
threads. Second, to avoid priority inversion [42] when the sys-
tem is short of memory, the allocation function in the AIFM
runtime triggers a signal to all running threads to force them
to yield their cores back to the scheduler for re-scheduling.

6 Remoteable Data Structure Examples
We implemented six remoteable AIFM data structures.

Array. The remoteable array consists of a native array of
RemUniquePtrs. Each pointer points to an array element to
enable fine-grained data placement decisions. Alternatively,
users can configure the pointed object as multiple consecutive

322 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

array elements to reduce the memory overhead of pointer
metadata. The object IDs of pointers are their remote-side
object addresses. The prefetcher records accessed indices at
all array access APIs; it starts prefetching when detecting a
strided access pattern.

Vector. The remoteable vector is similar to the remote-
able array except that it is dynamically sized, and uses a
std::vector to store RemUniquePtrs. Additionally, the
vector has an active remote component that supports offload-
ing operations like copies and aggregations, which are used
by the DataFrame application (§8.1.2).

List. The remoteable list is similar to the remoteable vector,
except that it uses a local list that stores RemUniquePtrs
to support efficient insert and erase operations. The list
supports traversals in forward and reverse directions, which
offers strong semantic hints to the prefetcher. When detecting
a direction, the prefetcher walks through the local list in the
same direction to prefetch remote list objects.

Stack and Queue. The remoteable stack and queue are
simple wrappers around remoteable lists.

Hashtable. The remoteable hashtable consists of a table
index (stored on the local heap) and key-value data (stored
in AIFM’s remoteable heap). In the index, each hash bucket
stores a RemUniquePtr to a key-value object. The object IDs
of pointers are their hashtable keys. The hashtable has an
active remote component that maintains a separate hashtable
in remote memory. In this architecture, the local hashtable is a
cache (inclusive or exclusive) of its remote counterpart. When
the referenced object is missing from the local cache, the ac-
tive remote component assists the chain lookup at the remote
hashtable to avoid multiple network round-trips. Data struc-
ture engineers might also realize different hashtable designs
via AIFM’s APIs.

7 Implementation
AIFM’s implementation consists of the core runtime library
(§5) and the data structure library (§6). The core runtime is
built on top of Shenango [55] to leverage its fast user-level
threading runtime and I/O stack. AIFM is written in C and
C++, with 6,451 lines in the core runtime, 5,535 lines in the
data structure library, and 750 lines of modifications to the
Shenango runtime. The system runs on unmodified Linux.

We integrated two far memory backends into AIFM: a re-
mote memory server based on a DPDK-based TCP stack, and
an NVMe SSD using an SPDK-based storage stack. Unlike
the remote memory backend, the SSD backend does not sup-
port active remote components (since the storage drive does
not have a general compute unit), and it has an inherent I/O
amplification because it is limited to a fixed block size. Our
evaluation focuses on the remote memory backend.

The current implementation has some limitations. First, we
do not support TCP offloading or RDMA, which would reduce
CPU overhead of our runtime. Second, a local compute server

connects to a single remote memory server, and the remote
memory cannot be shared by different clients. Finally, the
local and remote memory size cannot be changed at runtime.
We plan to address them in the future.

8 Evaluation
Our evaluation of AIFM seeks to answer three questions:

1. What performance does AIFM achieve for end-to-end
applications, including ones that combine multiple re-
moteable data structures? (§8.1)

2. How does AIFM’s performance compare to a state-of-
the-art far memory system, Fastswap [6]? (§8.1–§8.2)

3. What factors contribute to AIFM’s performance? (§8.3)

Setup. We run experiments on two xl170 nodes on Cloud-
Lab [25] with 10-core Intel Xeon E5-2640 v4 CPUs (2.40
GHz), 64GB RAM, and a 25 Gbits/s Mellanox ConnectX-4
Lx MT27710 NIC. We enabled hyper-threads, but disabled
CPU C-states, dynamic CPU frequency scaling, transparent
huge pages, and kernel mitigations for speculation attacks
in line with prior work [55]. We use Ubuntu 18.04.3 (ker-
nel v5.0.0) and DPDK 18.11.0, except for experiments with
Fastswap, which use Linux kernel v4.11, the latest version
Fastswap supports. All AIFM experiments use the default
configuration settings and the default built-in prefetchers of
remoteable data structures. We do not tune prefetching policy
specifically for evaluated applications.

8.1 End-to-end Performance
We evaluate AIFM’s end-to-end performance with two appli-
cations. First, we designed a synthetic application that mimics
a typical web service frontend to understand AIFM’s perfor-
mance with multiple remoteable data structures and the im-
pact of semantic hints. Second, we also ported an open-source
C++ DataFrame library [16] with an interface similar to Pan-
das [56] to AIFM, and use it to understand the porting effort
required and AIFM’s performance for an existing application.

8.1.1 Synthetic Web Service Frontend

In response to client requests, the application fetches struc-
tured data (e.g., a list of user IDs) from an in-memory key-
value store, and then uses the retrieved values to compute
an index into a large collection of 8KB objects (e.g., profile
pictures). Finally, the application fetches one 8KB object,
encrypts it, and compresses it for the response to the client.

This application uses our remoteable hashtable (for the key-
value pairs) and our remoteable array (for the 8KB objects).
Each client request looks up 32 keys in the hashtable and
fetches a single 8KB array element. We load the hashtable
with 128M key-value pairs (10GB total data, of which 6GB
are index data and 4GB are value data), and create an array of
2M objects of 8KB each (16GB total). The two data structures
share 5GB of available local memory, i.e., the local memory
size is 19% of the total data set size. We generate closed-loop
client requests from a Zipf distribution with parameter s: a uni-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 323

0.0 0.1 0.2 0.3 0.4
Offered load [Mops]

0

200

400

90
th

pe
rc

en
til

e
la

te
nc

y
[µ

s]
Fastswap
AIFM (T)

AIFM (NT)
Local Only

(a) Latency as a function of offered load.

0 50 100
Local Memory [% of 26GB]

0.0

0.5

1.0

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

Fastswap
Local Only

AIFM (NT)

(b) Throughput as a function of local memory.

0 50 100
Local Memory [% of 26GB]

0

50

100

M
is

s
R

at
e

[%
]

Array Hashtable

(c) AIFM miss rates in Figure 6b.

Figure 6: In a web frontend-like application with a hashtable and array, AIFM outperforms Fastswap by 20× (a) and achieves
90% of local memory performance with 5× less memory (b), as non-temporal array access avoids polluting local memory (c).
“AIFM(NT)”: non-temporal access; “AIFM(T)”: temporal access; “Local Only”: entire working set in local memory.

form distribution corresponds to s = 0, while values of s close
to 1 indicate high skew. Each request accesses Zipf-distributed
keys in the hashtable and uses their values to calculate an (also
Zipf-distributed) array index to access; the request then en-
crypts the array data via AES-CBC using crypto++ [22] and
compresses the result using Snappy [30]. We compare two
AIFM settings—with and without non-temporal dereferences
for array elements—against Fastswap [6] and an idealized
baseline with all 26GB in local memory. A good result for
AIFM would show improved performance over Fastswap, a
benefit to non-temporal array accesses, and performance not
much lower than keeping the entire data in local memory.

Figure 6a shows a throughput-latency plot for a Zipf pa-
rameter of s = 0.8 (i.e., a skewed distribution). The x-axis
shows the offered load in the system, and the y-axis plots
the measured 90th percentile latency. Each setup eventually
encounters a “hockey-stick” when it can no longer keep up
with the offered load. Fastswap tolerates a load of up to 19k
requests/second, but its overheads and the amplification for
the hashtable lookups quickly dominate. AIFM with a tem-
poral array dereference scales 7× further, but fails to keep
up beyond 140k requests/second because the 8KB array ac-
cesses pollute its local memory. To make room for an 8KB
array element, the runtime often evicts hundreds of hashtable
entries, causing a high miss rate on hashtable lookups. AIFM
with non-temporal access to the array, however, scales to
370k requests/second (20× Fastswap’s maximum through-
put). This is 16% lower throughput than the 440k request-
s/second achieved by an idealized setup with 26GB in local
memory. In other words, AIFM achieves 84% of the perfor-
mance of an entirely local setup with 5× less local memory.

Additional local memory helps bring AIFM performance
closer to the in-memory ideal. Figure 6b shows the percent-
age of the all-local memory throughput achieved by the non-
temporal version of AIFM when varying the local memory

size (on the x-axis, as a fraction of 26GB). While Fastswap’s
throughput starts near zero and grows roughly in proportion to
the local memory size, AIFM’s throughput starts at 30% of the
ideal and quickly reaches 85% of the in-memory throughput
at 5.0GB local memory (20% of 26GB).

Figure 6c illustrates why this happens. At the left-hand
side of the plot (5% local memory), AIFM sees high miss
rates in both hashtable (52%) and array (89%). But as local
memory grows, the hashtable miss rate quickly drops to near-
zero, since AIFM’s non-temporal dereferences for the array
ensure that most of the local memory is dedicated to hash
table entries. Correspondingly, the array miss rate drops more
slowly and in proportion to the local memory available. By
contrast, Fastswap (not shown here) has high miss rates in
both data structures, as its page-granular approach manages
local memory inefficiently.

8.1.2 DataFrame Application

The DataFrame abstraction, popularized in Pandas [56], pro-
vides a convenient set of APIs for data science and ML work-
loads. A DataFrame is a table-structured, in-memory datas-
tructure exposing various slicing, filtering, and aggregation
operations. DataFrames often have hundreds of columns and
millions of rows, and their full materialization in memory
often pushes the limits of available memory on a machine [54,
57, 60]. By making remote memory available, AIFM can
help data scientists interactively explore DataFrames without
worrying about running out of memory.

We ported a popular open-source C++ DataFrame li-
brary [16] to AIFM’s APIs. The primary data structure used
in the library is an std::vector storing DataFrame columns
and indexes, and we replaced this vector with the AIFM-
enabled equivalent. In addition, we also added support for
offloading key operations with low compute intensity but high
memory access frequency to the remote side. We achieve this
by offloading three operations using AIFM’s remote device

324 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Offloaded Rem. Dev. Operations
Copy Shuffle Aggregate

D
at

aF
ra

m
e

A
PI

Filter 3
Range extraction 3

Add column/index 3
Sort by column 3

GroupBy 3 3

Table 1: DataFrame APIs (rows) and the offloaded operations
they use via AIFM’s remote device API (columns). Copy
and Shuffle are memory-only operations, while Aggregate
performs light remote-side computation.

0 20 40 60 80 100
Local Memory [% of 31GB]

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t Local only AIFM AIFM w/o offload Fastswap

Figure 7: An AIFM-enabled DataFrame library [16] achieves
78–97% of in-memory throughput for a data analytics work-
load [53], outperforming Fastswap. Offloading operations
with low compute intensity is crucial to AIFM’s performance.

API (§4.2.4). The Copy and Shuffle operations copy a vector
(i.e., a DataFrame column), with shuffle also reordering rows
by index positions in another column; Aggregate computes
aggregate values (sums, averages, etc.). These three opera-
tions are used in five DataFrame API calls, including filters,
column creation, sorts, and aggregations (Table 1). To achieve
coverage sufficient to run the New York City taxi trip anal-
ysis workload [53], we modified 1,192 lines of code in the
DataFrame library (which has 24.3k lines), and wrote 233
lines of remote device code. These modifications took one
author about five days.

We benchmark our AIFM-enabled DataFrame with the
Kaggle NYC taxi trip analysis workload [53], which explores
trip dimensions including the number of passengers, trip dura-
tions, and distances, on the NYC taxi trip dataset [74] (16GB).
The workload’s full in-memory working set is 31GB. In the
experiment, we vary the size of available local memory be-
tween 1GB and 31GB. We compare AIFM with Fastswap and
a baseline with all data in local memory. In addition, we also
investigate the impact of offloading on this workload, which
consists of an operation with low compute intensity (Aggre-
gate in Table 1) and some pure memory-copy operations
(Copy and Shuffle). We would hope to find AIFM outperform
Fastswap and come close to the local memory baseline.

Figure 7 shows the results. AIFM achieves 78% of in-
memory throughput even with 1GB of local memory (3.2%)
and exceeds 95% of ideal performance from about 20% (6GB)
local memory. Fastswap, by contrast, achieves only 20% of in-
memory performance at 1GB and only comes close to it once

0 20 40 60 80 100
Local Memory [% of 31GB]

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

Offload copy+shuffle+agg
Offload copy+shuffle

Offload copy
No offload

Figure 8: Performance gains from offloading the operations
in Table 1. AIFM benefits most from offloading Copy, which
increases throughput by 18–38%.

over 90% of the working set are in local memory. AIFM’s
high performance comes from avoiding Fastswap’s page fault
overheads, and from reducing expensive data movements over
network by offloading operations with low compute inten-
sity. Without offloading, AIFM outperforms Fastswap until
60% of the working set are local, as Fastswap incurs fre-
quent minor faults. Beyond 60%, the fault rate in Fastswap
drops sufficiently for most memory accesses to outperform
AIFM’s dereference-time overhead for low compute intensity
operations (e.g., memory copies). Offloading these operations
to the remote side helps AIFM avoid this cost, while high
compute-intensity operations amortize the dereference cost
and happen locally. We also prototyped a batched API for
AIFM that amortizes the dereference overhead across groups
of vector elements when offloading is not possible, and found
that it improves AIFM’s throughput without offloading to 60–
80% of in-memory throughput. We believe this could make a
good future addition to AIFM’s API to speed up low compute
intensity operations if they must be performed locally.

Figure 8 breaks down the effect of offloading. Offloading
Copy contributes the largest throughput gains (18%–38%); of-
floading shuffle contributes 2.9%–13%; and offloading Aggre-
gate contributes 4.5%–12%. These results show that AIFM
achieves high performance with small local memory for a
real-world workload, and that AIFM’s operation offloading
is crucial to good performance when a workload includes
operations with low compute intensity.

8.2 Data Structures
We pick two representative data structures—the hashtable
and the array—from §6. We evaluate them in isolation, and
explore the impact of prefetching, non-temporal local storage,
and read/write amplification-reducing techniques.

8.2.1 Hashtable

Hash tables provide unordered maps that typically see ran-
dom accesses, often with high temporal locality. A remoteable
hash table should benefit from temporal caching of popular
key-value (KV) pairs in local memory. Note that with AIFM,
the caching policy is controlled by the data structure engi-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 325

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Zipf skew parameter (s)

0

100M

200M

T
hr

ou
gh

pu
t[

op
s/

se
c] All in local memory

AIFM
Fastswap

Figure 9: An AIFM hash table is competitive with local
memory when the access distribution is skewed (Zipf factors
≥ 0.8), and outperforms a hashtable in Fastswap by up to 61×
as Fastswap suffers from amplification and other overheads.

neer, while with Fastswap (or any swap-based far memory
system), the caching policy is determined by the kernel page-
reclamation policy, which in turn is based on page-granular
hotness information.

Comparison. We evaluate the hashtable over Fastswap and
AIFM with a memcached-style workload that issues GET re-
quests, with keys sampled from a Zipf distribution whose
parameter s we vary. Our key and value sizes are based on
those reported for Facebook’s USR memcached pool [8]. We
load the hash table with 128M KV pairs (10GB total data),
and compare performance to a baseline that keeps the entire
hash table in local memory. Fastswap and AIFM instead allow
a maximum of 5GB local data, split as follows. In Fastswap,
the OS manages the both hashtable index (6GB) and value
data (4GB) in swapable memory, with least recently used
(LRU) [77] eviction at page granularity to decide on remote
pages. In AIFM, we provision 3GB local memory region for
index data and the other 2GB local memory region for value
data; the runtime manages them separately. The hashtable’s
own object-granular CLOCK replacement algorithm guides
AIFM’s memory evacuator to pick KV pairs to evict to remote
memory. In this experiment, we use a hashtable configured as
an exclusive cache, i.e., the evacuation handler removes local
index entries for remote key-value pairs.

Figure 9 shows the throughput achieved as a function of
the Zipf parameter s, ranging from near-uniform at zero to
highly skewed at s = 1.35. AIFM achieves about 17M opera-
tions/second at low skew (≈ 60% miss rate at s = 0), about
one third of the 53M operations/second that a fully-local hash
table achieves. As skew increases and the miss rate drops,
AIFM comes closer to local-only performance: for example,
at s = 0.8 (1% miss rate), it reaches 57M operations/second;
and from s= 0.8, it matches the performance of the local-only
hashtable. Fastswap, by contrast, sees a throughput of 0.54M
operations/second at s = 0 (30× less than AIFM) and only
matches the local-only baseline beyond s = 1.3. At s = 0.8,
AIFM has its largest advantage over Fastswap (61×).

0% 50% 100%
Miss rate

0M

20M

40M

60M

T
hr

ou
gh

pu
t[

op
s/

se
c]

(a) GET throughput as a function of
the miss rate.

0 200 400
Number of threads

0M

4M

8M

12M

16M

T
hr

ou
gh

pu
t[

op
s/

se
c]

(b) GET throughput as a function
of thread count (80% miss rate).

Figure 10: AIFM hash table microbenchmarks.

This difference comes from three factors against Fastswap:
(i) amplification due to page-granular swapping, (ii) lack of
per-KV pair hotness information, and (iii) the overheads of
kernel paging. Since a page contains 128 key-value pairs,
page-granular swapping incurs up to 128× read and write
amplification. This amplification increases the network band-
width required and pollutes the local memory, increasing
Fastswap’s miss rate with identical memory available. For
example, at s = 1.25, Fastswap still uses 140MB/s of net-
work bandwidth, while AIFM’s bandwidth use rapidly drops
beyond s = 0.8. Fastswap also cannot swap out only cold
key-value pairs, as a page contains entries with varying hot-
ness, but the kernel tracks access only at page granularity.
Finally, Fastswap incurs the cost of kernel crossings, page
faults, identifying and reclaiming victim pages (38% of cy-
cles at s = 0.8) and wasted cycles waiting for I/O (49%).
AIFM’s overheads are limited to running the evacuator (0.8%
of cycles at s = 0.8), TCP stack overheads (1.7%), and thread
scheduler overhead (14%).

Microbenchmarks. Figure 10a shows how hash table per-
forms at different miss rates when requests are uniformly,
rather than Zipf-distributed. It achieves a best-case through-
put of 53M requests/second, reduced to 10M requests/second
when it is close to 100% miss rate. Figure 10b measures,
for the same uniform distribution and an 80% miss rate, the
throughput AIFM achieves with an increasing number of ap-
plication threads. Up to 160 threads, AIFM extracts more
throughput by scheduling additional requests while it waits
for requests to complete.

8.2.2 Array

Depending on the access pattern, an array may benefit from
caching (for random access with temporal locality), prefetch-
ing (for sequential access), and non-temporal storage (if there
is no temporal locality).

We evaluate our array with the Snappy library [30]. The
benchmark performs in-memory compression/decompression
by reading input files from a RemArray and writing output
files to another RemArray. For benchmarking compression,
we use 16 input files of 1GB each. For decompression, we use

326 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 50 100
Local Mem. [% of 16GB]

0.0

0.5

1.0

N
or

m
al

iz
ed

Pe
rf

.

All in local mem.
AIFM
Fastswap

(a) Compression.

0 50 100
Local Mem. [% of 16GB]

0.0

0.5

1.0

(b) Decompression.

Figure 11: AIFM achieves nearly identical performance to lo-
cal memory when compressing/decompressing an array with
Snappy [30] (sequential access), and outperforms Fastswap.

30 input files of 0.5GB each. The compression ratio is around
2. Both operations perform streaming, sequential access to
the array and never revisit any object. We compare Fastswap
and an ideal, completely local in-memory baseline.

AIFM’s array prefetcher captures application semantics
through the array access APIs and performs prefetching en-
tirely in user space. OS-based paging systems, by contrast,
must rely on page faults (major faults for unprefetched pages
and minor faults for prefetched pages) to pass application se-
mantics, which imposes high overheads. For each system, we
measure performance with different amounts of local memory
available (for Fastswap, we restrict memory via cgroups; for
AIFM, we set the local memory size). A good result would
avoid AIFM’s slow path, as every far pointer dereference
would find local data already.

Figure 11 shows the results. We see that AIFM achieves
performance close to the in-memory baseline, independent of
the local memory size, while Fastswap’s performance depends
on local memory size and only matches AIFM when nearly
all memory is local. This demonstrates the benefit of AIFM’s
non-temporal access and prefetching.

8.3 Design Drill-Down
We now evaluate specific aspects of the AIFM design using
microbenchmarks.

8.3.1 Fast/Slow Path Costs

AIFM seeks to provide access to local objects with latency
close to normal memory access. This means that AIFM’s
remoteable pointer must minimize overheads on the “fast
path”, when no remote memory access is required.

We measured the hot path latency of dereferencing a
RemUniquePtr and compared it to the latency for derefer-
encing a C++ unique_ptr, both when the pointer and data
pointed to are cached and uncached. Figure 12a shows that
AIFM offers comparable latency to an ordinary C++ smart
pointer. For an object in L1 cache, AIFM has a 4× latency
overhead: four micro-ops vs. a single pointer dereference oper-
ation. In practice, modern CPU’s instruction-level parallelism

90th percentile latency [cycles] read write
C++ unique_ptr (uncached) 570 408

AIFM object (uncached) 489 309

(a) Hot path (local object).

90th percentile latency [cycles] read write
Fastswap total 23,712 26,382

... of which
RDMA transfer (4KB) 16,521 16,521

Overheads 7,191 9,861
AIFM total (64B object) 18,582 18,369

... of which
TCP transfer (64B) 17,694 17,673

Overheads 888 696
AIFM total (4KB object) 27,183 27,279

... of which
TCP transfer (4KB) 26,055 26,121

Overheads 1,128 1,158

(b) Cold path (remote object).

Figure 12: AIFM is competitive with an ordinary pointer
dereference, and it has lower overheads than Fastswap.

hides some of this latency, and we observe a 2× throughput
overhead for L1 hits.

We also measured AIFM’s cold path latency, and com-
pared it to Fastswap’s. Fastswap always fetches at least 4KB
from the remote server, but its RDMA backend is faster
than AIFM’s TCP backend. This might amortize some of
the overheads associated with page-granular far memory that
Fastswap suffers from. A good result would show AIFM with
comparable latency to Fastswap for large objects (4KB), and
lower latency for small objects (64B).

Figure 12b shows the results. While Fastswap’s raw data
transfers are indeed faster than AIFM’s, AIFM achieves lower
latency for cache-line-sized (64B) objects due to its 10×
lower overheads. For 4KB objects, AIFM is close to Fastswap,
but has 10% higher latency on reads; AIFM with an RDMA
backend would come closer. In addition, AIFM can produc-
tively use its wait cycles, which yields a 1.8–6.8× throughput
increase over Fastswap (Figure 1).

8.3.2 Operating Point

AIFM is designed for applications that perform some compute
for each remoteable data structure access, as this compute
allows AIFM to hide the latency of far memory by prefetching.
But if an application has a huge amount of compute per data
structure access, AIFM will offer limited benefit over page-
granular approaches like Fastswap, despite their overheads.
We ran a sensitivity analysis with a synthetic application that
spins for a configurable amount of time in between sequential
accesses into a remoteable array. This should allow AIFM’s
prefetcher to run ahead and load successive elements before
they are dereferenced. We compare to Fastswap, which we
configure with the maximum prefetching window (32 pages).

Figure 13 shows the results, normalized to the benchmark
runtime against a purely in-memory array. AIFM becomes
competitive with local memory access from about 1.2µs of
compute between array accesses. Fastswap’s overheads amor-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 327

0 1 2 3 4 5 6 7 8 9 10 11 12
Microseconds of compute per far memory access

0

1

2

3

4
N

or
m

al
iz

ed
ru

nt
im

e Fastswap
AIFM
All in local memory

Figure 13: AIFM becomes competitive with local memory
access at around 1.2µs of compute per sequential far memory
access (4KB object) in a microbenchmark, while kernel-based
swapping mechanisms require higher compute ratios (ca. 50µs
per memory access; not shown) to compete.

0 25 50 75 100 125 150
Iteration

0

200

400

Ti
m

e
pe

ri
te

r.
[m

s]

STW Evacuator Pauseless Evacuator

Figure 14: Pauseless evacuation is essential for low latency
accesses: a stop-the-world (STW) evacuator frequently en-
counters 10× higher latency as it swaps out objects.

tize more slowly—its line converges with AIFM’s around
50µs of compute per array access. This demonstrates that
AIFM supports efficient remote memory in a wider range of
applications than page-granular approaches like Fastswap.

8.3.3 Memory Evacuator

We evaluate two key aspects of AIFM’s memory evacuator
design: the choice to never pause mutator threads (§5.3) and
the thread scheduler co-design (§5.4).

Pauseless Evacuation. In this experiment, we run 10 muta-
tor threads (the number of physical CPU cores in our machine)
that keep entering the dereference scope, dereferencing and
marking dirty 4MB of data each time. Therefore, the run-
time periodically triggers memory evacuation. We compare
AIFM’s pauseless evacuator design to a stop-the-world mem-
ory evacuator, and measure the latency per mutator iteration
(4MB write). Figure 14 shows that a stop-the-world evacuator
design causes periodic mutator latency spikes up to 340ms. By
contrast, AIFM’s pauseless evacuator consistently runs an iter-
ation in about 25ms. (The tiny spikes of the pauseless line are
mainly caused by hyperthread and cache contention between
evacuators and mutators.) This confirms that a pauseless evac-
uator is essential to consistent application performance.

0.0 0.5 1.0 1.5 2.0
Time [sec]

0%

10%

20%

Fr
ee

m
em

or
y Evac. threshold without prio. with prio.

Figure 15: Thread prioritization in the runtime is essential to
ensure that evacuation always succeeds. 12% free memory is
the threshold for AIFM to trigger evacuation.

Thread Scheduler Co-design. In this experiment, we run
100 mutator threads that each iterates to read 1MB of data
from a remoteable array and perform 20ms of computation.
We run AIFM with the scheduler’s thread prioritization (§5.4)
enabled and disabled, and measure the free local memory over
time. For a responsive system, local memory should never run
out entirely, and the evacuator should be able to free memory
fast enough to keep up with the mutators.

Figure 15 shows that the runtime without prioritization fails
to keep up and runs out of memory after around 0.7 seconds.
AIFM’s prioritizing scheduler, on the other hand, ensures that
sufficient memory remains available. This illustrates that the
benefit of co-locating thread scheduler and memory evacuator
in a user-space runtime.

9 Conclusion
We presented Application-Integrated Far Memory (AIFM),
a new approach to extending a server’s available RAM with
high-performance remote memory. Unlike prior, kernel-based,
page-granular approaches, AIFM integrates far memory with
application data structures, allowing for fine-grained partial
remoting of data structures without amplification or high over-
heads. AIFM is based on four key components: (i) the remote
pointer abstraction; (ii) the pauseless memory evacuator; (iii)
the data structure APIs with rich semantics; (iv) and the re-
mote device abstraction. All parts work together to deliver
high performance and convenient APIs for application devel-
opers and data structure engineers.

Our experiments show that AIFM delivers performance
close to, or on par with, local DRAM at operating points that
prior far memory systems could not efficiently support.

AIFM is available as open-source software at https://
github.com/aifm-sys/aifm.

Acknowledgements
We thank our shepherd Emmett Witchel, the anonymous re-
viewers, and members of the MIT PDOS group for their help-
ful feedback. We appreciate Cloudlab [25] for providing the
experiment platform used. This work was supported in part
by a Facebook Research Award and a Google Faculty Award.
Zhenyuan Ruan was supported by an MIT Robert J. Shillman
Fund Fellowship.

328 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/aifm-sys/aifm
https://github.com/aifm-sys/aifm

References
[1] Ahmed Abulila, Vikram Sharma Mailthody, Zaid

Qureshi, Jian Huang, Nam Sung Kim, Jinjun Xiong,
and Wen-mei Hwu. “FlatFlash: Exploiting the Byte-
Accessibility of SSDs within a Unified Memory-
Storage Hierarchy”. In: International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 2019.

[2] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Stanko Novaković, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-
ran Tati, Rajesh Venkatasubramanian, and Michael Wei.
“Remote regions: a simple abstraction for remote mem-
ory”. In: USENIX Annual Technical Conference (ATC).
2018.

[3] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Pratap Subrahmanyam,
Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian,
and Michael Wei. “Remote Memory in the Age of Fast
Networks”. In: ACM Symposium on Cloud Computing
(SoCC). 2017.

[4] Marcos K Aguilera, Kimberly Keeton, Stanko No-
vakovic, and Sharad Singhal. “Designing far memory
data structures: Think outside the box”. In: Workshop
on Hot Topics in Operating Systems (HotOS). 2019.

[5] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKin-
ley, and Lieven Eeckhout. “Write-Rationing Garbage
Collection for Hybrid Memories”. In: ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI). 2018.

[6] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K. Aguilera, Auro-
jit Panda, Sylvia Ratnasamy, and Scott Shenker. “Can
Far Memory Improve Job Throughput?” In: European
Conference on Computer Systems (EuroSys). 2020.

[7] Cristiana Amza, Alan L Cox, Sandhya Dwarkadas,
Pete Keleher, Honghui Lu, Ramakrishnan Rajamony,
Weimin Yu, and Willy Zwaenepoel. “Treadmarks:
Shared memory computing on networks of worksta-
tions”. In: Computer 29.2 (1996).

[8] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. “Workload Analysis of a
Large-Scale Key-Value Store”. In: ACM SIGMETRIC-
S/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems (SIG-
METRICS). 2012.

[9] Luiz André Barroso, Mike Marty, David A. Patterson,
and Parthasarathy Ranganathan. “Attack of the killer
microseconds”. In: Communications of the ACM 60.4
(2017).

[10] John K. Bennett, John B. Carter, and Willy
Zwaenepoel. “Munin: Distributed Shared Mem-
ory Based on Type-specific Memory Coherence”.
In: ACM Symposium on Principles and Practice of
Parallel Programming (PPoPP). 1990.

[11] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim
Kraska, and Erfan Zamanian. “The End of Slow Net-
works: It’s Time for a Redesign”. In: Proceedings of
the VLDB Endowment 9.7 (2016).

[12] Andrew D. Birrell and Bruce Jay Nelson. “Implement-
ing Remote Procedure Calls”. In: ACM Transactions
on Computer Systems (TOCS) 2.1 (1984).

[13] Hans-Juergen Boehm and Mark Weiser. “Garbage col-
lection in an uncooperative environment”. In: Software:
Practice and Experience 18.9 (1988).

[14] Michael D. Bond and Kathryn S. McKinley. “Tolerat-
ing Memory Leaks”. In: ACM SIGPLAN Notices 43.10
(2008).

[15] Benjamin Brock, Aydın Buluç, and Katherine Yelick.
“BCL: A cross-platform distributed container library”.
In: International Conference on Parallel Processing
(ICPP). 2019.

[16] “C++ DataFrame for statistical, Financial, and ML
analysis”. In: https : / / github . com /
hosseinmoein / DataFrame (last accessed on
10/15/2020).

[17] Irina Calciu, Ivan Puddu, Aasheesh Kolli, Andreas
Nowatzyk, Jayneel Gandhi, Onur Mutlu, and Pratap
Subrahmanyam. “Project PBerry: FPGA Acceleration
for Remote Memory”. In: Workshop on Hot Topics in
Operating Systems (HotOS). 2019.

[18] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam,
Hari Angepat, Jeremy Fowers, Michael Haselman,
Stephen Heil, Matt Humphrey Puneet Kaur, Joo-Young
Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov
Michael Papamichael, Lisa Woods, Sitaram Lanka,
Derek Chiou, and Doug Burger. “A cloud-scale ac-
celeration architecture”. In: IEEE/ACM International
Symposium on Microarchitecture (MICRO). 2016.

[19] Youmin Chen, Youyou Lu, and Jiwu Shu. “Scalable
RDMA RPC on Reliable Connection with Efficient
Resource Sharing”. In: European Conference on Com-
puter Systems (EuroSys). 2019.

[20] Cliff Click, Gil Tene, and Michael Wolf. “The pause-
less GC algorithm”. In: ACM/USENIX international
conference on Virtual execution environments (VEE).
2005.

[21] Douglas Comer and Jim Griffioen. “A New Design for
Distributed Systems: The Remote Memory Model”. In:
Summer USENIX Conference. 1990.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 329

https://github.com/hosseinmoein/DataFrame
https://github.com/hosseinmoein/DataFrame

[22] “Crypto++ Library 8.2”. In: https : / / www .
cryptopp.com/ (last accessed on 10/15/2020).

[23] David Detlefs, Christine Flood, Steve Heller, and Tony
Printezis. “Garbage-First Garbage Collection”. In:
International Symposium on Memory Management
(ISMM). 2004.

[24] Fred Douglis. “The compression cache: Using on-line
compression to extend physical memory”. In: Winter
USENIX Conference. 1993.

[25] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb,
Aditya Akella, Kuangching Wang, Glenn Ricart, Larry
Landweber, Chip Elliott, Michael Zink, Emmanuel
Cecchet, Snigdhaswin Kar, and Prabodh Mishra. “The
Design and Operation of CloudLab”. In: USENIX An-
nual Technical Conference (ATC). 2019.

[26] “Facebook Folly RCU Library”. In: https : / /
github . com / facebook / folly / blob /
master/folly/synchronization/Rcu.h
(last accessed on 10/15/2020).

[27] Michail D. Flouris and Evangelos P. Markatos. “The
Network RamDisk: Using Remote Memory on Hetero-
geneous NOWs”. In: Cluster Computing 2.4 (1999).

[28] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao
Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. “Network Requirements
for Resource Disaggregation”. In: Symposium on Op-
erating Systems Design and Implementation (OSDI).
2016.

[29] “Gen-Z: hardware architecture for disaggregated mem-
ory”. In: https://genzconsortium.org (last
accessed on 10/15/2020).

[30] “Google’s fast compressor/decompressor”. In:
https://github.com/google/snappy (last
accessed on 10/15/2020).

[31] Juncheng Gu, Youngmoon Lee, Yiwen Zhang,
Mosharaf Chowdhury, and Kang G. Shin. “Effi-
cient Memory Disaggregation with Infiniswap”.
In: Symposium on Networked Systems Design and
Implementation (NSDI). 2017.

[32] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav
Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
“RDMA over Commodity Ethernet at Scale”. In: ACM
SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communi-
cations (SIGCOMM). 2016.

[33] “HPE Powers Up The Machine Architecture”. In:
https : / / www . nextplatform . com /
2017 / 01 / 09 / hpe - powers - machine -
architecture (last accessed on 10/15/2020).

[34] Xianglong Huang, Stephen M. Blackburn, Kathryn S.
McKinley, J Eliot B. Moss, Zhenlin Wang, and Perry
Cheng. “The Garbage Collection Advantage: Improv-
ing Program Locality”. In: ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA). 2004.

[35] “Intel 64 and IA-32 Architectures Developer’s Man-
ual: Vol. 1”. In: https://www.intel.com/
content/www/us/en/architecture-and-
technology/64-ia-32-architectures-
software - developer - vol - 1 - manual .
html (last accessed on 10/15/2020).

[36] “Java SE documentation. Chapter 6: The Parallel Col-
lector”. In: https : / / docs . oracle . com /
javase/8/docs/technotes/guides/vm/
gctuning/ parallel.html (last accessed on
10/15/2020).

[37] Anuj Kalia, Michael Kaminsky, and David Andersen.
“Datacenter RPCs can be General and Fast”. In: Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI). 2019.

[38] Anuj Kalia, Michael Kaminsky, and David G. An-
dersen. “Using RDMA Efficiently for Key-value Ser-
vices”. In: ACM SIGCOMM Conference on Applica-
tions, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM). 2014.

[39] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. “Design Guidelines for High Performance RDMA
Systems”. In: USENIX Annual Technical Conference
(ATC). 2016.

[40] Samir Koussih, Anurag Acharya, and Sanjeev Setia.
“Dodo: A User-level System for Exploiting Idle Mem-
ory in Workstation Clusters”. In: IEEE International
Symposium on High Performance Distributed Comput-
ing (HPDC). 1998.

[41] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souh-
lal, Neha Agarwal, Radoslaw Burny, Shakeel Butt,
Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid
Shahid, Greg Thelen, Kamil Adam Yurtsever, Yu Zhao,
and Parthasarathy Ranganathan. “Software-Defined
Far Memory in Warehouse-Scale Computers”. In: In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (AS-
PLOS). 2019.

[42] Butler W Lampson and David D Redell. “Experience
with processes and monitors in Mesa”. In: Communi-
cations of the ACM 23.2 (1980).

330 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.cryptopp.com/
https://www.cryptopp.com/
https://github.com/facebook/folly/blob/master/folly/synchronization/Rcu.h
https://github.com/facebook/folly/blob/master/folly/synchronization/Rcu.h
https://github.com/facebook/folly/blob/master/folly/synchronization/Rcu.h
https://genzconsortium.org
https://github.com/google/snappy
https://www.nextplatform.com/2017/01/09/hpe-powers-machine-architecture
https://www.nextplatform.com/2017/01/09/hpe-powers-machine-architecture
https://www.nextplatform.com/2017/01/09/hpe-powers-machine-architecture
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-1-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-1-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-1-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-1-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-1-manual.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/parallel.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/parallel.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/parallel.html

[43] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei
Lu, Yongqiang Xiong, Andrew Putnam, Enhong Chen,
and Lintao Zhang. “KV-Direct: High-Performance In-
Memory Key-Value Store with Programmable NIC”.
In: ACM Symposium on Operating Systems Principles
(SOSP). 2017.

[44] Kai Li and Paul Hudak. “Memory Coherence in Shared
Virtual Memory Systems”. In: 7.4 (1989).

[45] Shuang Liang, Ranjit Noronha, and Dhabaleswar K.
Panda. “Swapping to Remote Memory over Infini-
Band: An Approach using a High Performance Net-
work Block Device”. In: IEEE International Confer-
ence on Cluster Computing (CLUSTER). 2005.

[46] Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong
Xu, and Tongxin Bai. “Imbalance in the cloud: An anal-
ysis on alibaba cluster trace”. In: IEEE International
Conference on Big Data (Big Data). IEEE. 2017.

[47] “Mellanox Innova-2 Flex Open Programmable Smart-
NIC”. In: https : / / www . mellanox . com /
products/smartnics/innova-2-flex (last
accessed on 10/15/2020).

[48] Feeley Michael J, William E. Morgan, Frederic H.
Pighin, Anna R. Karlin, and Henry M. Levy. “Imple-
menting Global Memory Management in a Worksta-
tion Cluster”. In: ACM Symposium on Operating Sys-
tems Principles (SOSP). 1995.

[49] Christopher Mitchell, Yifeng Geng, and Jinyang Li.
“Using One-Sided RDMA Reads to Build a Fast, CPU-
Efficient Key-Value Store”. In: USENIX Annual Tech-
nical Conference (ATC). 2013.

[50] Jacob Nelson, Brandon Holt, Brandon Myers, Preston
Briggs, Luis Ceze, Simon Kahan, and Mark Oskin.
“Latency-tolerant Software Distributed Shared Mem-
ory”. In: USENIX Annual Technical Conference (ATC).
2015.

[51] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli,
Michael Cui, Yiying Zhang, Haggai Eran, Boris Pis-
menny, Liran Liss, Michael Wei, Dan Tsafrir, and Mar-
cos K. Aguilera. “Storm: a fast transactional dataplane
for remote data structures”. In: ACM International
Conference on Systems and Storage (SYSTOR). 2019.

[52] “NVIDIA Mellanox BlueField DPU”. In: https:
/ / www . mellanox . com / products /
bluefield - overview (last accessed on
10/15/2020).

[53] “NYC Taxi Trips - Exploratory Data Analysis”.
In: https : / / www . kaggle . com /
kartikkannapur / nyc - taxi - trips -
exploratory- data- analysis/notebook
(last accessed on 10/15/2020).

[54] “Opening a 20GB file for analysis with pandas”. In:
https : / / datascience . stackexchange .
com/questions/27767/opening-a-20gb-
file- for- analysis- with- pandas/ (last
accessed on 10/15/2020).

[55] Amy Ousterhout, Joshua Fried, Jonathan Behrens,
Adam Belay, and Hari Balakrishnan. “Shenango:
Achieving High CPU Efficiency for Latency-sensitive
Datacenter Workloads”. In: Symposium on Networked
Systems Design and Implementation (NSDI). 2019.

[56] “pandas - Python Data Analysis Library”. In: https:
/ / pandas . pydata . org/ (last accessed on
10/15/2020).

[57] “Pandas: Scaling to large datasets”. In: https :
/ / pandas . pydata . org / pandas - docs /
stable/user_guide/scale.html (last ac-
cessed on 10/15/2020).

[58] Nathan Pemberton. “Exploring the disaggregated mem-
ory interface design space”. In: Workshop on Resource
Disaggregation (WORD). 2019.

[59] “Persistent Memory Development Kit”. In: https:
//pmem.io/pmdk/ (last accessed on 10/15/2020).

[60] “Quora: Is anyone successful in using Python Pandas
while dealing with millions of rows or more than a
billion?” In: https://www.quora.com/Is-
anyone-successful-in-using-Python-
Pandas-while-dealing-with-millions-
of-rows-or-more-than-a-billion-If-
not-what-else-did-you-do (last accessed on
10/15/2020).

[61] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. “PebblesDB: Building Key-
Value Stores Using Fragmented Log-Structured Merge
Trees”. In: ACM Symposium on Operating Systems
Principles (SOSP). 2017.

[62] Andy Rudoff. “Persistent memory programming”. In:
Login: The Usenix Magazine 42 (2017).

[63] Stephen M. Rumble, Ankita Kejriwal, and John Ouster-
hout. “Log-structured Memory for DRAM-based Stor-
age”. In: USENIX Conference on File and Storage
Technologies (FAST). 2014.

[64] Daniel J. Scales, Kourosh Gharachorloo, and Chan-
dramohan A. Thekkath. “Shasta: A Low Overhead,
Software-only Approach for Supporting Fine-grain
Shared Memory”. In: International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS). 1996.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 331

https://www.mellanox.com/products/smartnics/innova-2-flex
https://www.mellanox.com/products/smartnics/innova-2-flex
https://www.mellanox.com/products/bluefield-overview
https://www.mellanox.com/products/bluefield-overview
https://www.mellanox.com/products/bluefield-overview
https://www.kaggle.com/kartikkannapur/nyc-taxi-trips-exploratory-data-analysis/notebook
https://www.kaggle.com/kartikkannapur/nyc-taxi-trips-exploratory-data-analysis/notebook
https://www.kaggle.com/kartikkannapur/nyc-taxi-trips-exploratory-data-analysis/notebook
https://datascience.stackexchange.com/questions/27767/opening-a-20gb-file-for-analysis-with-pandas/
https://datascience.stackexchange.com/questions/27767/opening-a-20gb-file-for-analysis-with-pandas/
https://datascience.stackexchange.com/questions/27767/opening-a-20gb-file-for-analysis-with-pandas/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/user_guide/scale.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/scale.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/scale.html
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://www.quora.com/Is-anyone-successful-in-using-Python-Pandas-while-dealing-with-millions-of-rows-or-more-than-a-billion-If-not-what-else-did-you-do
https://www.quora.com/Is-anyone-successful-in-using-Python-Pandas-while-dealing-with-millions-of-rows-or-more-than-a-billion-If-not-what-else-did-you-do
https://www.quora.com/Is-anyone-successful-in-using-Python-Pandas-while-dealing-with-millions-of-rows-or-more-than-a-billion-If-not-what-else-did-you-do
https://www.quora.com/Is-anyone-successful-in-using-Python-Pandas-while-dealing-with-millions-of-rows-or-more-than-a-billion-If-not-what-else-did-you-do
https://www.quora.com/Is-anyone-successful-in-using-Python-Pandas-while-dealing-with-millions-of-rows-or-more-than-a-billion-If-not-what-else-did-you-do

[65] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck,
Steven K. Reinhardt, James R. Larus, and David A.
Wood. “Fine-grain Access Control for Distributed
Shared Memory”. In: International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS). 1994.

[66] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiy-
ing Zhang. “LegoOS: A Disseminated, Distributed OS
for Hardware Resource Disaggregation”. In: Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI). 2018.

[67] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. “Dis-
tributed shared persistent memory”. In: ACM Sympo-
sium on Cloud Computing (SoCC). 2017.

[68] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulka-
rni, and Gustavo Alonso. “StRoM: smart remote mem-
ory”. In: European Conference on Computer Systems
(EuroSys). 2020.

[69] “std::weak_ptr”. In: https : / / en .
cppreference . com / w / cpp / memory /
weak_ptr (last accessed on 10/15/2020).

[70] “Stingray SmartNIC Adapters and IC”. In: https://
www.broadcom.com/products/ethernet-
connectivity / smartnic (last accessed on
10/15/2020).

[71] Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and
Jonas Pfefferle. “DaRPC: Data Center RPC”. In: ACM
Symposium on Cloud Computing (SoCC). 2014.

[72] Andrew S Tanenbaum and Herbert Bos. Modern Oper-
ating Systems. 2015.

[73] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E.
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. “Borg: The next Generation”.
In: European Conference on Computer Systems (Eu-
roSys). 2020.

[74] “TLC Trip Record Data”. In: https://www1.nyc.
gov/site/tlc/about/tlc-trip-record-
data.page (last accessed on 10/15/2020).

[75] Po-An Tsai and Daniel Sanchez. “Compress Objects,
Not Cache Lines: An Object-Based Compressed Mem-
ory Hierarchy”. In: International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS). 2019.

[76] Shin-Yeh Tsai and Yiying Zhang. “LITE Kernel
RDMA Support for Datacenter Applications”. In: ACM
Symposium on Operating Systems Principles (SOSP).
2017.

[77] “Understanding the Linux Virtual Memory Manager,
Chapter 10 Page Frame Reclamation”. In: https:
//www.kernel.org/doc/gorman/html/
understand/understand013.html (last ac-
cessed on 10/15/2020).

[78] “Validating References with Lifetimes”. In: https:
/ / doc . rust - lang . org / book / ch10 -
03-lifetime-syntax.html (last accessed on
10/15/2020).

[79] Chenxi Wang, Ting Cao, John Zigman, Fang Lv, Yun-
quan Zhang, and Xiaobing Feng. “Efficient Manage-
ment for Hybrid Memory in Managed Language Run-
time”. In: Network and Parallel Computing (NPC).
Edited by Guang R. Gao, Depei Qian, Xinbo Gao, Bar-
bara Chapman, and Wenguang Chen. 2016.

[80] Chenxi Wang, Huimin Cui, Ting Cao, John Zigman,
Haris Volos, Onur Mutlu, Fang Lv, Xiaobing Feng, and
Guoqing Harry Xu. “Panthera: Holistic Memory Man-
agement for Big Data Processing over Hybrid Memo-
ries”. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). 2019.

[81] Paul Wilson. “Operating System Support for Small
Objects”. In: International Workshop on Object Orien-
tation in Operating Systems (IWOOOS). 1991.

[82] Paul R. Wilson, Scott F. Kaplan, and Yannis Smarag-
dakis. “The Case for Compressed Caching in Virtual
Memory Systems”. In: USENIX Annual Technical Con-
ference (ATC). 1999.

332 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://en.cppreference.com/w/cpp/memory/weak_ptr
https://en.cppreference.com/w/cpp/memory/weak_ptr
https://en.cppreference.com/w/cpp/memory/weak_ptr
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html
https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html
https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html

Performance-Optimal Read-Only Transactions
Haonan Lu?, Siddhartha Sen†, Wyatt Lloyd?
?Princeton University, †Microsoft Research

Abstract

Read-only transactions are critical for consistently reading
data spread across a distributed storage system but have
worse performance than simple, non-transactional reads. We
identify three properties of simple reads that are necessary
for read-only transactions to be performance-optimal, i.e.,
come as close as possible to simple reads. We demonstrate
a fundamental tradeoff in the design of read-only transac-
tions by proving that performance optimality is impossible to
achieve with strict serializability, the strongest consistency.

Guided by this result, we present PORT, a performance-
optimal design with the strongest consistency to date. Cen-
tral to PORT are version clocks, a specialized logical clock
that concisely captures the necessary ordering constraints.
We show the generality of PORT with two applications.
Scylla-PORT provides process-ordered serializability with
simple writes and shows performance comparable to its non-
transactional base system. Eiger-PORT provides causal con-
sistency with write transactions and significantly improves
the performance of its transactional base system.

1 Introduction
Large-scale web services are built on distributed storage sys-
tems. Sharding data across machines enables distributed
storage systems to scale capacity and throughput. Sharding,
however, complicates building correct applications because
read requests sent to different shards may arrive at different
times and thus return an inconsistent view of the data.

Consistently interacting with data in a distributed storage
system thus requires transactional isolation, which unifies
the view of data across shards. While general transactions
provide isolation for reading and writing across shards, this
paper focuses on read-only transactions that only read data.
Read-only transactions are prevalent: they are used in sys-
tems without general transactions [4, 14, 31, 32, 34] and,
even for systems with general transactions, they are often
implemented with a specialized algorithm [10, 11, 34, 37,
38, 39, 51]. Read-only transactions are practically important
because reads dominate real-world workloads: Facebook re-
ported 99.8% reads for TAO [8] and Google reported three
orders of magnitude more reads than general transactions
for the ads workload (F1) that runs on Spanner [10]. They
are also theoretically important because they provide a lower
bound for other classes of transactions: anything impossible
for read-only transactions is also impossible for any class of
transactions that includes reads.

The dominance of reads in real-world workloads makes
their performance the primary determinant of end-user
latency and overall system throughput. Unfortunately,
read-only transactions perform worse than simple, non-
transactional reads due to the coordination required to
present a consistent view across shards. Whether a view is
consistent is determined by a system’s consistency model:
stronger consistency provides an abstraction closer to a
single-threaded environment, greatly simplifying application
code [33]. Thus, ideal read-only transactions would provide
the strongest consistency and have optimal performance.

What is the “optimal” performance? Although recent
work has studied optimality through the lens of latency [34],
it did not consider throughput, which adds a fundamentally
new dimension to this question. In this paper, we formalize
the notion of optimality for read-only transactions and use
it to explore the tradeoff between their consistency and per-
formance. We posit that optimality should be defined by the
algorithmic properties of simple reads that comprise a read-
only transaction. Simple reads do not provide transactional
isolation and thus capture the minimum work required to
read data in a distributed storage system: One round of Non-
blocking communication with a Constant amount of meta-
data. As we elaborate in §3, these algorithmic properties (N,
O, and C) precisely capture the additional coordination in-
curred by read-only transactions to present a consistent view.
Thus, we define performance-optimal read-only transactions
to be those with the same NOC properties as simple reads.

Our main theoretical result is that performance optimality
is impossible in a system that provides Strict serializability—
the strongest type of consistency. Specifically, our NOCS
Theorem states that no read-only transaction algorithm can
be performance optimal and provide strict serializability.
This result holds even in systems that only support non-
transactional writes, and thus applies to systems with and
without more general types of transactions. It shows there
is a fundamental choice in the design of distributed storage
systems: they can either provide the strongest consistency or
the best performance for read-only transactions, not both.

Guided by our impossibility result, we present the PORT
design, which enables performance-optimal read-only trans-
actions with the strongest consistency to date: process-
ordered serializability. Previous performance-optimal trans-
actions only provided relatively weak consistency (§5.1).
PORT provides performance-optimal read-only transactions
without harming either the latency or throughput of writes.
The main mechanism enabling our design is a new special-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 333

ized logical clock, called version clocks, that concisely cap-
ture the ordering constraints imposed by process-ordered se-
rializability on read and write operations. PORT uses version
clocks to tightly co-design its components. Version clock
values index its multi-versioning framework, control what
read-only transactions see, and control where writes are ap-
plied. They also enable optimizations that avoid the work of
applying some concurrent writes (write omission) and limit
the staleness of reads (data freshness).

We use the PORT design with the write omission
and data freshness optimizations to build a new stor-
age system, Scylla-PORT, that adds performance-optimal
read-only transactions to ScyllaDB [47] while providing
process-ordered serializability. As a single-versioned, non-
transactional system, ScyllaDB provides a clean slate for im-
plementing PORT and allows us to quantify the overhead
of our performance-optimal read-only transactions relative
to simple reads. ScyllaDB’s simple reads are a challeng-
ing baseline as the system is aggressively engineered for
high performance, including core-level sharding and custom
lock-free data structures. Our evaluation shows that PORT’s
read-only transactions introduce low overhead, achieving
throughput and latency within 3% of ScyllaDB on most of
the workloads we test, and within 8% in the worst case. Our
evaluation also compares PORT to a variant of OCC that
is optimized for read-only transactions. PORT significantly
outperforms OCC with at least double the throughput and at
most half the latency because Scylla-PORT always finishes
in one round while OCC’s best case is two rounds.

We also applied PORT with data freshness optimizations
to Eiger [32] to make its read-only transactions performance
optimal while preserving the system’s causal consistency and
write transactions. Eiger is a challenging baseline because it
can complete read-only transactions in a single round. Our
evaluation shows that Eiger-PORT significantly improves
performance with throughput up to 3× higher and latency
up to 60% lower than Eiger. These improvements do come
with some staleness relative to strongly consistent systems,
but our data freshness optimizations keep the staleness low.

In summary, this work makes the following contributions:
• A fundamental understanding of the tradeoff between per-

formance and consistency for read-only transactions. This
includes a precise definition of performance optimality
(§3) and the NOCS Theorem that proves optimality is im-
possible with strict serializability (§4).

• The PORT design that achieves performance-optimal read-
only transactions with the strongest consistency to date by
leveraging version clocks, a new type of logical clock that
concisely captures the necessary ordering constraints (§6).

• The implementation and evaluation of two new systems
based on the PORT design. Scylla-PORT is a clean-slate
application of PORT to a non-transactional system, Scyl-
laDB (§7). Eiger-PORT makes the read-only transaction
algorithm of Eiger performance optimal (§8, §9).

2 Background
Web service architecture. Web services are typically built
using two tiers of machines: a stateless frontend tier and a
stateful storage tier. The frontends handle end user requests
by executing application logic that generates sub-requests to
read or write data in the storage tier. We refer to the frontends
as clients and the storage machines as servers, as is common.
Web services are often replicated across multiple datacen-
ters. For simplicity, we focus on a single datacenter setting,
but our results also apply to multi-datacenter settings.

Read-only transactions. Read-only transactions provide a
consistent, unified view of data spread across servers in a
storage tier. They consist of one or more logical rounds of
simple read requests issued in parallel to the servers, which
collectively return a view satisfying the consistency model
of the system. One-shot transactions [23] know the data
locations of all reads prior to the transaction start. In con-
trast, multi-shot transactions may include key dependencies,
where the data read in one shot determines what data to read
in later shots. We study one-shot transactions for simplicity,
because they are common, and because what is impossible
for them is also necessarily impossible for multi-shot trans-
actions. The NOCS Theorem thus also applies to multi-shot
transactions. The PORT design for read-only transactions
can be easily extended to support multi-shot transactions.

3 Performance-Optimal Read Transactions
This section explains the challenges of reasoning about per-
formance, the rationale of our approach, and the set of algo-
rithmic properties that define optimal performance.

3.1 Reasoning About Performance
The key challenges to reasoning about performance are iden-
tifying the fundamental overhead of read-only transactions
and modeling it in a way that connects with practical designs.

Capturing the fundamental overhead. As a layer built
upon simple reads, the performance of a read-only transac-
tion is impacted by both the engineering factors in executing
simple reads and the algorithmic properties of coordinating
simple reads to find a consistent view. Engineering factors,
such as load balancing, batching, and networking, equally
affect simple reads and the read-only transactions built on
them. In contrast, the algorithmic properties, such as rounds
of communication, only affect read-only transactions. For
instance, a read-only transaction protocol that requires mul-
tiple round trips incurs overhead due to those extra rounds
of messages, while the read requests in each round are engi-
neered the same as simple reads.

Thus, this work focuses on the algorithmic properties that
capture the fundamental overhead of read-only transactions.
These properties capture the additional overhead to coordi-
nate a consistent view and are orthogonal to underlying en-
gineering factors. More specifically, we answer the question,

334 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

“given a system, how low can we make the performance
overhead of read-only transactions relative to the system’s
simple reads?”
Being useful in practice. Our goal is to model optimal per-
formance in a way that is both theoretically insightful and
practically useful. Theoretical insights help clarify funda-
mental tradeoffs between performance and guarantees. Prac-
tically useful guidance helps us design better systems. Our
NOCS Theorem (§4.1) and properties yield theoretical in-
sights that lead to a better design, PORT (§6), that achieves
better performance in practice. This shows that our modeling
is practically useful (§5).

3.2 Approach Overview
To reason about optimal performance in a practically use-
ful way, we examine the mechanisms used in existing sys-
tems to coordinate a consistent view across shards. These
coordination mechanisms include blocking, extra messages,
and metadata. Some systems block read operations until a
consistent view is ready—e.g., systems that use two-phase
locking. Almost all systems use extra messages to deter-
mine a consistent view, such as multiple round trips on the
critical path of reads—e.g., OCC [24]—or approaches that
asynchronously coordinate a consistent view—e.g., COPS-
SNOW [34], GentleRain [15], Cure [3]. Finally, all systems
we are aware of use metadata to help compute a consistent
view for read-only transactions to return—e.g., timestamps,
transaction ids. Figure 9 in Section 10 shows representative
systems that use these mechanisms.

These coordination mechanisms cause read-only transac-
tions to have worse performance than simple reads, as they
consume additional system resources. Therefore, we define
performance-optimal read-only transactions to be those that
require the least amount of each coordination mechanism,
making their performance closest to that of simple reads.

3.3 NOC: Optimal Performance
We now explain the NOC properties, which we use to define
optimal performance for read-only transactions.
N: Non-blocking. A read-only transaction algorithm is non-
blocking if servers process each read request without waiting
for any external event, such as a lock to become available, a
message to arrive, or a timer to expire.

Blocking for a read request increases the latency of the
read-only transaction: the more time spent blocking, the
longer the transaction takes to complete. It also decreases
throughput due to the overhead of context switches. In prac-
tice, blocking can incur more serious performance issues,
e.g., CPU underutilization and deadlocks, which are increas-
ingly pronounced in modern services [44, 52].
O: One-round communication. A read-only transaction al-
gorithm has one-round communication if it uses exactly one
parallel round of on-path messages and does not have any
off-path messages. This matches the messages of simple

reads: the client sends a single request to each server holding
relevant data, and each server sends a single response back.
It excludes algorithms that use extra messages, such as those
that require multiple rounds of on-path communication, e.g.,
to abort/retry. It also disallows coordinating through off-path
messages, i.e., messages that are necessary for the read-only
transactions but lie off the critical path of reads.

A message is an off-path message for read-only transac-
tions if its removal affects only the correctness of read-only
transactions. For example, COPS-SNOW [34] adds extra
messages to writes. These messages are used for read-only
transactions to find a consistent snapshot and are not neces-
sary for processing writes. Because only the correctness of
read-only transactions is affected if these messages are re-
moved, they are off-path messages.

Additional rounds of on-path messages increase the la-
tency of read-only transactions. Both extra on-path and off-
path messages decrease system throughput because trans-
mitting and processing them consume network and CPU re-
sources that could otherwise be used to service requests.

C: Constant metadata. Metadata is the information re-
quired by a read-only transaction algorithm to coordinate
consistent values. It is information a server needs to find
the specific version of the data that will produce a consistent
cross-shard view across reads in the same transaction. Ex-
amples of metadata include timestamps [2, 10], transaction
ids [34, 41], and identifiers of participating servers [5].

A read-only transaction algorithm has constant metadata
if the amount of metadata required to process each of its read
requests is constant, i.e., it does not increase with the size
of the system, the size of the transaction, or the number of
concurrent operations. An example of constant metadata is
one timestamp per read request for snapshot reads in Span-
ner [10]. An example of non-constant metadata is COPS-
SNOW [34], which requires information about many con-
current read-only transactions to process each read request.

Transmitting and/or processing extra metadata consumes
more resources, increasing latency and decreasing through-
put. Its negative impact on performance has been reported in
recent work [13, 14, 15]. We use Big-O notation, i.e., “con-
stant,” to capture the algorithmic complexity of metadata re-
quired for coordination. In practice, system designers should
aim for as low a constant as possible. We realize this in our
PORT design, which uses a single integer per read request.

Performance optimality. We deem an algorithm perfor-
mance optimal if it satisfies the N+O+C properties because
they capture the least coordination overhead and thus enable
performance as close as possible to simple reads.

4 The NOCS Theorem
An ideal system would have performance-optimal read-only
transactions that provide the strongest consistency. Our
NOCS Theorem proves this ideal is impossible.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 335

S: Strict serializability. Strict serializability is the strongest
form of consistency, equivalent to linearizability [22] with
the addition of transactional isolation. It requires that there
exists a legal total order of transactions that respects the real-
time order between transactions [42]. A legal total order en-
sures that the results of transactions are equivalent to a single
entity processing them one by one. The real-time order en-
sures that if transaction T2 starts after transaction T1 ends,
then T1 must appear before T2 in the total order. If T1 and T2
have overlapping lifetimes, then they are concurrent and can
be placed in either order. Strict serializability gives applica-
tion programmers the powerful abstraction of programming
in a single-threaded, transactionally isolated environment.

4.1 NOCS is Impossible
Our main result is that performance-optimal read-only trans-
actions (N+O+C) cannot provide strict serializability (S).
This section present a condensed version of the proof. The
full proof appears in our accompanying technical report [35].

The NOCS Theorem. No read-only transaction algorithm
satisfies all NOCS properties.

System model. We model a distributed system as a set of
processes that communicate by sending and receiving mes-
sages. This model is similar to that used in FLP [17]. A set
of client processes (clients) issue requests to server processes
(servers) that store the data. Processes are modeled as deter-
ministic automata: in each atomic step, they may receive a
message, perform deterministic local computation, and send
one or more messages to other processes.

A transaction (operation) starts when a client sends the re-
quest messages to servers and ends when the client receives
the last necessary server response. Two transactions (oper-
ations) are concurrent if their lifetimes overlap, i.e., neither
begins after the other ends. If concurrent transactions (oper-
ations) access the same data item, then they conflict.
Assumptions. We make the following assumptions:

(A-0) There are ≥ 2 servers and ≥ 2 clients. Otherwise,
optimal performance and strict serializability are trivial. All
reads and writes eventually complete.

(A-1) The network and processors are reliable. Every
message is eventually delivered and processed by the des-
tination process. Processes are correct and never crash. By
proving our impossibility result under these favorable condi-
tions, it will necessarily hold when the system can fail.

(A-2) The network is either asynchronous [20], i.e.,
messages can be arbitrarily delayed, or partially syn-
chronous [16], i.e., physical clocks ensure bounded delays.
Proof intuition. Due to network asynchrony, it is always
possible for a read-only transaction to conflict with write op-
erations and other concurrent read-only transactions. These
requests occupy an unstable region in the system’s history,
where conflicts are possible and a total order has not yet
been established. In contrast, the stable region is the part

of history that precedes the unstable region, where all writes
have committed and system states are finalized. Reading in
the stable region is easy as there are no conflicting writes.
However, we show that the real-time order requirement of S
requires read-only transactions that are N+O to interact with
the most recent writes in the unstable region (Lemma 1). Do-
ing this while ensuring a legal total order requires transfer-
ring metadata between the servers (Lemma 2), either proac-
tively through read requests or through the write protocol.
By extending this construction, we show that processing a set
of read-only transactions requires metadata that is asymptot-
ically larger than the total size of the transactions, regardless
of how the metadata is transferred (Lemma 3). This violates
C, proving the theorem.
Proof. Suppose the system has two servers, S1 and S2, and
multiple clients. Let ALG be any read-only transaction algo-
rithm that satisfies N+O+S. Let R = {r1,r2} be a read-only
transaction that executes ALG, issued by client CR. Let w1 and
w2 be simple write requests issued by client Cw 6=CR, where
w1 → w2 in real-time, i.e., w2 is sent after the response for
w1 is received. We place no restrictions on the write protocol
(beyond assumption A-0). Consider the execution e1:
S1 : r1,w1
S2 : w2,r2

Suppose there is no metadata in the system, i.e., no infor-
mation for coordinating consistent values between requests.

Lemma 1. Without metadata, a read-only transaction that is
N+O+S must observe any write that precedes it at a server.

Proof Summary. Without metadata, S2 cannot distinguish be-
tween an execution where w2 and R are concurrent and one
with w2→R in real-time. The latter requires r2∈R to observe
w2 to satisfy S’s real-time order. �

Lemma 2. Processing e1 while satisfying N+O+S requires
dependency R→ w1 to be transferred from S1 to S2.

Proof Summary. Lemma 1 states that, without metadata, r2
must observe w2, implying w2 → R. But r1 must be pro-
cessed before w1 to satisfy N+O, implying R→ w1. Since
w1 → w2 by construction, this creates a cycle, violating the
legal total order of S. Using basic two-party communication
complexity, we show that legalizing the total order requires
transferring R→ w1 from S1 to S2. �

We now extend e1 with more read-only transactions,
servers, and write requests, and apply the structure above to
force more dependency metadata to transfer between servers.
We then quantify this metadata and show that it violates C.

Proof of the NOCS Theorem. Suppose the system has
M2 + 1 servers S1,S2, . . . ,SM2+1. Let R1,R2, . . . ,RN be N
read-only transactions that execute ALG, where each Ri sends
a read request to S1 and M−1 other servers, such that every
server other than S1 receives N/M read requests. (In practice
M2� N, but our construction works for any N,M ≥ 1.) The

336 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

specific mapping of read requests to servers is unimportant;
we lay them out sequentially by transaction index below. Let
ri, j be a read request of Ri assigned to S j. We assign one
read request from each of R1 to RN/M to S2, one read request
from each of RN/M+1 to R2N/M to S3, and so on, restarting at
R1 after reaching RN . Let w1,w2, . . . ,wM2+1 be M2 +1 sim-
ple writes issued to each server by a distinct client Cw that
does not issue any read-only transactions. Suppose w1 pre-
cedes all other writes, i.e., w1 → w j for j = 2, . . . ,M2 + 1,
and all read-only transactions are concurrent with all writes.
Consider the execution e∗:

S1 : r1,1, . . . ,rN,1,w1
S2 : w2,r1,2, . . . ,rN/M,2
S3 : w3,rN/M+1,3, . . . ,r2N/M,3
...
SM+1 : wM+1,rN−N/M+1,M+1, . . . ,rN,M+1
SM+2 : wM+2,r1,M+2, . . . ,rN/M,M+1
...
SM2+1 : wM2+1,rN−N/M+1,M2+1, . . . ,rN,M2+1

By decomposing this execution into layers, we can induc-
tively quantify the metadata required to process it. Let e1 be
the execution fragment containing all write requests and only
the read requests of R1. Let ei contain the requests of ei−1
plus all read requests of Ri, for i = 2, . . . ,N. Thus eN = e∗.

Lemma 3. Processing ek while satisfying N+O+S requires
Ω(kM2) metadata, for k = 1, . . . ,N.

Proof Summary. The proof is by induction. For the base
case of e1, Lemma 2 requires us to transfer R1 → w1 from
S1 to all M− 1 servers targeted by R1. We show that the
write protocol cannot efficiently transfer this metadata, since
it does not know which servers R1 targets, and hence must
send R1 → w1 to all M2 servers, or Ω(M2) metadata. Al-
ternatively, r1,1 can convey the list of target servers, but
due to asynchrony, a different execution could cause a dif-
ferent target server S j to play the role of S1, making it
impossible to know which r1, j will appear before a write.
Thus, every r1, j must include the list of M servers, requir-
ing Ω(M ∗M) = Ω(M2) metadata. In the inductive step, we
show that ek cannot rely on previous metadata transferred in
ek−1, and thus requires an additional Ω(M2) metadata. �

Completion of the proof. By Lemma 3, e∗ = eN requires
Ω(NM2) metadata. Since R1, . . . ,RN issue NM read requests
total, the amortized metadata required per read request is
Ω(NM2

NM) = Ω(M), which is not constant, violating C. �

4.2 The Broad Scope of NOCS
We prove NOCS is impossible in the specific setting of one-
shot read-only transactions in failure-free systems. When
it comes to an impossibility result, the more restricted the
setting it is proved in, the stronger the result, because any

setting that is more general is also subject to the impossibility
result (the general setting includes the restricted setting as a
special case). Thus, the NOCS Theorem also applies to more
general settings, such as those with read-write transactions,
multi-shot transactions, and/or failures.

4.3 NOCS Is Tight
While all properties are impossible to achieve together, we
find that NOCS is “tight” in the sense that any combina-
tion of three properties is possible. Spanner’s [10] read-only
transactions are one-round, use constant metadata, but block
reads in order to return strictly serializable results (O+C+S).
Many systems use multiple non-blocking round trips to coor-
dinate strongly consistent results (N+C+S), e.g., DrTM [49],
RIFL [29]. To the best of our knowledge, no existing system
provides strict serializability in one round of non-blocking
communication (N+O+S). We present the design of such a
system, PORT-SEQ, and a proof of its correctness in our
technical report [35]. The design uses a centralized write se-
quencer to totally order writes, and requires a linear amount
of metadata for read-only transactions. We are aware of two
systems that have performance-optimal read-only transac-
tions (N+O+C): MySQL Cluster [39] and the snapshot read
API of Spanner. These systems provide weak consistency,
however, as we discuss below.

5 NOCS Connects Theory with Practice
This section discusses the value of the NOCS Theorem in un-
derstanding the design space and in guiding system designs.

5.1 Theoretical Insights
Proving the impossible. NOCS is philosophically similar
to other impossibility results like CAP and SNOW, in that it
helps system designers avoid attempting the impossible and
instead identifies a fundamental choice they must make: their
system can either have performance-optimal read-only trans-
actions or provide strict serializability, but not both.
Identifying the possible. The crux of NOCS’s impossibil-
ity is that the real-time requirement of strict serializability
forces read-only transactions to confront conflicting requests
(Lemma 1). This suggests optimal performance could be
possible with even slightly relaxed consistency models that
do not require real-time ordering, and thus can avoid the
unstable region. In particular, the second strongest consis-
tency model we are aware of—process-ordered serializabil-
ity [34]—does not require real-time ordering.

Yet, there is a large gap in the current design space. The
only two existing systems whose read-only transactions are
performance optimal provide weak consistency. MySQL
Cluster’s read-committed consistency does not isolate trans-
actions. Spanner’s snapshot read API can be used to get
performance optimality, but it does not ensure clients see
their own recent writes when used in this way (§10). Be-
tween these weak guarantees and strict serializability are

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 337

many stronger consistency models, such as read-atomic [5],
causal consistency [31], and process-ordered serializabil-
ity [34]. We bridge this gap by presenting the PORT de-
sign that provides performance-optimal read-only transac-
tions and the strongest consistency to date: PORT provides
process-ordered serializability in systems with only simple
writes (§6), and it provides causal consistency in systems
with write transactions (§8). (We conjecture causal consis-
tency is the upper bound for performance-optimal read-only
transactions when transactional writes are present.)

5.2 Guiding System Designs
NOCS is also useful in guiding system designs. First,
to make a design performance-optimal, it must satisfy the
NOC properties: each transaction must succeed using a sin-
gle round of non-blocking messages with constant meta-
data. Therefore, the NOC properties indicate we must avoid
validation-based and stabilization-based techniques to sat-
isfy O, avoid techniques based on distributed lock manage-
ment to satisfy N, and ensure the complexity of processing
a read does not depend on the level of contention—i.e., the
number of conflicting reads and/or writes—to satisfy C. Sec-
ond, the NOCS Theorem suggests a path towards designing
NOC protocols by avoiding how it derives its impossibil-
ity: read-only transactions should always execute on system
states outside the unstable region. These implications of the
NOC properties and the NOCS proof significantly reduced
the design space of algorithm we needed to explore and led
us to two high-level techniques for PORT: explicit ordering
control and multi-versioning.
Explicit ordering control. There are two methods for en-
suring reads avoid the unstable region by explicitly control-
ling the ordering of concurrent operations. First, reads can
request versions of the data that lie before the unstable region
begins, which orders a read-only transaction before ongoing
writes. Second, servers can reorder operations when a read
requests data in the unstable region.

Explicitly controlling ordering is not compatible with
strict serializability because the real-time requirement forces
a specific ordering of operations (Lemma 1) that cannot be
communicated in a performance-optimal system (Lemma 3).
Consistency models without the real-time requirement, how-
ever, might be compatible with an explicitly controlled or-
dering while satisfying NOC. PORT confirms this, by using
versions clocks to capture this explicit ordering. PORT uses
both types of explicit control on top of multi-versioning to
provide its consistency guarantees and optimal performance.
Multi-versioning. Enabling reads to control what version
of data they request requires multi-versioning on servers.
Multi-versioning introduces storage overhead to temporarily
keep additional version around, but this overhead is minor as
storage is inexpensive and extra versions are not kept long.
It also introduces some processing overhead to look up the
correct version of data to return, reflected by our C property.

The need for multi-versioning to support efficient reads is
not new. The existing performance-optimal systems, Span-
ner and MySQL Cluster, are multi-versioned. In fact, all ex-
isting systems whose read-only transactions are guaranteed
to terminate—i.e., have a bounded number of retries and/or
bounded blocking—are multi-versioned (Table 9). On the
other hand, multi-versioning alone does not ensure optimal
performance: most MVCC protocols require either extra on-
path messages to query a timestamp oracle [6, 43], off-path
messages to compute stable snapshots [3, 15], or blocking
reads if the client-provided timestamp in MVTSO-based pro-
tocols points to the future [30, 45]. PORT’s novelty is in how
it uses version clocks to explicitly control ordering by manip-
ulating the multi-versioning framework in order to achieve
optimal performance.

6 PORT Design
PORT is a new system design that enables performance-
optimal read-only transactions with process-ordered serial-
izability, the strongest consistency to date.
Process-ordered serializability. Process-ordered serializ-
ability guarantees there exists a legal total order of transac-
tions that respects the ordering of transactions within each
process [34]. It is equivalent to sequential consistency [27]
with the addition of transactional isolation. It preserves all
the properties of strict serializability (§4) except for the real-
time order across processes (clients). That is, it preserves the
real-time order within each process, i.e., process order, and
a total order across processes, but a client may not see the
most recent updates of other clients. Process order ensures
that each client interacts with the system monotonically, e.g.,
sees her own recent writes. Total order ensures that concur-
rent transactions are observed by all clients in the same order.

6.1 Version Clocks
This section describes version clocks (§6.1), a new special-
ized logical clock that tightly couples all the components of
PORT (§6.2). Version clocks also allow us to avoid the work
of applying some writes (write omission, §6.3) and limit the
staleness of reads (data freshness, §6.4).

Version clocks are designed in the context of distributed
storage systems and have two features: they ensure pro-
cess order by concisely capturing the ordering constraints be-
tween requests and enable optimal performance by reading
at the most recent snapshot in the stable region.
Enforcing process order. Version clocks take advantage of
two observations. First, process order is a per-client order,
and thus can be explicitly controlled by clients. Second, read
and write requests have different semantics, i.e., writes mod-
ify system state while reads do not. Therefore, they should
be treated differently: it is unnecessary to enforce an order
among the read requests that observe the same system state.
Capturing the stable frontier. Version clocks follow the
practical guidance of the NOCS Theorem (§5.2) to avoid the

338 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 Client Side
2 versionstamp = 0 # clock value
3 view[] # max known versionstamp per server
4

5 # Sending requests
6 function get_vs_read():
7 versionstamp = tick(min{view[]}) # stable frontier
8 return versionstamp
9

10 function get_vs_write():
11 versionstamp++
12 return versionstamp
13

14 # Receiving a response msg from server svr
15 function recv_response(maxVS):
16 view[svr] = max{view[svr], maxVS}
17 if msg.for_write is true
18 versionstamp = tick(maxVS)
19 return
20

21 function tick(vs):
22 return max{vs, versionstamp}
23

24 Server Side
25 maxVS = 0 # max seeen versionstamp
26 # ... return maxVS when sending response msg

Figure 1: Pseudocode for version clocks.

unstable region by capturing the stable frontier. The stable
frontier is the most recent snapshot in which all writes are
in the stable region. Each server tracks the final version-
stamp of its most recent write. A version clock tracks the
minimum of such versionstamps across all servers the client
has contacted, which is exactly the stable frontier the client
knows. Version clocks direct read messages to the stable
frontier when possible. PORT takes care of the cases when
reads have to confront conflicting requests beyond the stable
frontier. “Promotion” is used in systems with simple writes
to advance the stable frontier beyond the versionstamp of an
incoming read to ensure a total order. “Per-client ordering”
is used in systems with write transactions to logically move a
client’s own writes before the stable frontier so the client can
always safely read at the stable frontier (§8.2). Both tech-
niques enforce the necessary order between concurrent reads
and writes without blocking either reads or writes.
Clock structure. Figure 1 shows the pseudocode of version
clocks. versionstamp stores the current clock value (line 2),
which is embedded in every read/write message to explicitly
control their ordering. When versionstamps are the same for
two operations of the same type, the server orders them ar-
bitrarily. When versionstamps for a read and a write are the
same, the server orders the read after the write. A server re-
sponds with the highest versionstamp it has seen (line 26).
A client uses view to track the highest versionstamps of the
servers it has contacted (line 3) and uses them to find the sta-
ble frontier (line 7) before sending a read message (lines 6–
8). view is updated upon receiving a response (line 16). If the
response is for a write message, then the clock is advanced
so that future read messages will have greater versionstamps
than the write (lines 17–18), ensuring read-your-writes. Be-
cause versionstamps increase monotonically and reads have

1 Client Side
2 function read_only_txn(<keys>):
3 vs = VersionClock.get_vs_read()
4 for k in keys # in parallel
5 vals[k], maxVS = read(k, vs)
6 VersionClock.recv_response(maxVS)
7 return vals # replies to end user
8

9 function write(key, val):
10 vs = VersionClock.get_vs_write()
11 maxVS = write(key, val, vs)
12 VersionClock.recv_response(maxVS)
13 return # replies to end user
14

15 Server Side
16 vers[keys][] # multi-versioned storage
17 function read(key, vs):
18 if vers[key][vs] exists
19 return vers[key][vs], VersionClock.maxVS
20 else # return nearest version to not block
21 near_vs = find_nearest_earlier(ver)
22 # ensure future writes have higher vs
23 vers[key].max_r_vs = max(vers[key].max_r_vs, vs)
24 return vers[key][near_vs], VersionClock.maxVS
25

26 function write(key, val, vs):
27 if vs <= vers[key].max_w_vs
28 return VersionClock.maxVS # omit write
29 if vers[key].max_r_vs >= vs
30 vs = max_r_vs + 1 # commit after promoted versions
31 vers[key][vs] = val
32 vers[key].max_w_vs = vs
33 if vs > VersionClock.maxVS
34 VersionClock.maxVS = vs
35 return VersionClock.maxVS

Figure 2: Pseudocode for PORT.

non-smaller versionstamps than earlier writes, version clocks
preserve process ordering.

6.2 Basic PORT Design
The basic PORT design includes a multi-versioning frame-
work, a read-only transaction algorithm, and a write algo-
rithm. We co-design these components tightly by leveraging
version clocks. Figure 2 shows PORT’s pseudocode.

Client library. The read-only transaction and write algo-
rithms are executed by a client library. For each read-only
transaction or write, the client obtains a versionstamp from
its version clock and embeds it in the request message(s).
This per-client versionstamp decides which system version
on the servers the operation must read (or write) to ensure the
client’s process order (lines 3, 10). The server-side logic en-
sures a total order on top of the process order on each client
to guarantee process-ordered serializability.

Multi-versioning framework. Servers store written values
in a multi-versioning framework (line 16). Since PORT
uses version clocks to track the ordering between operations,
it is natural and efficient to index the historical values of
each data item with versionstamps. In this way, the multi-
versioning framework and transaction layer are nicely cou-
pled via versionstamps. We omit a detailed discussion of
garbage collection, which uses standard mechanisms similar
to those used to provide at-most-once semantics.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 339

P1! P2!Sx!
0!
1!
2!

w1=1	

(a) orders www111 before www222 by arrival.

P1! P2!Sx!
0!
2!
1!

w2=2	

(b) orders www222 before www111 by arrival.

P1! P2!Sx!
0!
1!

w1=1	

(c) orders www222 before www111 by omission.

Figure 3: Space-time diagrams showing three executions of writes www111 and www222 that are concurrent and conflicting. The
value underneath Sx indicates the value stored by the server. Process-ordered serializability allows www111, www222 to be ordered
either way. This enables us to omit www222 in (c) because it is equivalent to the ordering in (b), i.e., (www222,www111).

Read-only transactions. To process a read request, a server
executes it against the system version specified by its ver-
sionstamp. Executing a read is thus equivalent to returning
the value indexed at versionstamp. If the server has the re-
quested version, then the read is inside the stable region and
it returns the version directly (lines 18, 19). Otherwise, it
uses promotion to ensure a total order between the read and
any concurrent writes at the specified versionstamp, without
blocking either the read or write (lines 20–24).

Promotion logically copies the value of the nearest earlier
version to all empty positions between that version and the
one requested by versionstamp. Logical versions are used
as placeholders to ensure a total order: once a version has
been read by any client, no earlier versions can be modified
to ensure different clients observe them in the same order.
For example, if a read request has vs = 4 and the data item
has committed values at vs = 1,2, the version at vs = 2 is
the nearest earlier version and is promoted to positions 3,4.
A conflicting write at vs = 3,4 will be “bumped up” to vs =
5 when it arrives. We implement promotion with a single
variable (line 23) that marks earlier positions as immutable.

Writes. When receiving a write request, a server finds the
position specified by the write’s versionstamp in the multi-
versioning framework. If the position is empty, then the write
is applied at the versionstamp (line 31). If the position has
been marked immutable by read promotion, the server finds
the next available position to write the version at (lines 29–
31). The write protocol also includes a mechanism for safely
skipping concurrent writes (lines 27–28), discussed next.

6.3 Write Omission
Write omission is a special conflict resolution mechanism
that skips an incoming write if it is concurrent with an al-
ready applied write. Omitting a write is desirable because it
saves the computation needed to apply it, reduces the number
of stored versions, and saves the work of replicating it.

Write omission is safe. Consistency models in general, and
process-ordered serializability specifically, allow conflict-
ing writes to be ordered either way. For instance, if two
processes concurrently issue w1 : write(x = 1) and w2 :
write(x = 2), then they can be ordered as either (w1,w2)
or (w2,w1). Typically, systems apply writes in the order that

they arrive, e.g., w1 then w2. But if instead we use the oppo-
site order, then this is equivalent to omitting w2, as shown in
Figure 3: skipping the later write is equivalent to ordering it
before the earlier write and immediately overwriting it with
the latter. Write omission does not affect the total order re-
quirement: all clients observe concurrent writes in the same
order, because omitted writes are never seen by any client.
Knowing a write is concurrent. Version clocks enable
PORT to identify when writes are concurrent, allowing a
later concurrent write to be omitted. PORT omits an incom-
ing write if its versionstamp, vsomit , is less than or equal to
the highest committed versionstamp of the data item, vshighest
(lines 27–29). The write with the highest committed version-
stamp cannot have happened-before [26] the omitted write
because vshighest ≥ vsomit . More specifically, version clocks
guarantee the invariant: if write x happens-before write y,
then vsx < vsy. The omitted write cannot have happened-
before the write with the highest committed versionstamp
because it has not happened yet. Therefore, the two writes
are concurrent, and it is safe to omit the incoming write.

Omitting a write is equivalent to applying it immediately
before the write with the highest versionstamp. A client’s
future reads must observe the “higher” write if its own write
was overwritten in this way. Therefore, the server returns the
versionstamp of its highest applied write to the client (line
29), which uses it to update its versionstamp as normal.

6.4 Keeping Reads Fresh
To avoid the unstable region, we must sometimes return val-
ues staler than what strict serializability would return (§5.2).
PORT limits data staleness in two ways, neither of which
incurs extra messages, blocking, or non-constant metadata.
That is, they do not forfeit optimal performance (NOC).
Reducing staleness with version clocks. Instead of naively
returning versions far behind the stable frontier, version
clocks try to track the stable frontier precisely. They use view
to track the most recent versionstamp on each server a client
has contacted, so a client’s version clock never ticks slower
than the servers it is aware of. This significantly improves
the freshness of data requested by read-only transactions.
Reducing staleness via co-location. Many storage systems
co-locate “end users” on the same client machine [12, 18,

340 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

40], i.e., each client (machine) has many sessions (threads),
one per end user. We leverage co-location to help user ses-
sions keep each other fresh by sharing one version clock
among them on the same client, which ensures no user ses-
sion is staler than the freshest session it is co-located with.

6.5 Correctness and Generality
The only technique PORT relies on is version clocks, which
can easily be added to systems with existing physical/logical
clocks, or implemented from scratch. We demonstrate both
by applying PORT to a system without transactions (shown
by Scylla-PORT) and a system with existing sub-optimal
read-only transactions (shown by Eiger-PORT). We present
a proof of correctness for PORT in our technical report [35].
Failures. PORT can tolerate server failures using typical
techniques such as state machine replication [46]. To tol-
erate client—i.e., frontend—failures, clients can send ver-
sionstamps back to end-user machines that then include the
versionstamp in subsequent requests to the application (e.g.,
via cookies). This ensures process ordering is maintained
even if an end user’s later requests go to a different frontend
due to load-balancing or frontend failure.

7 PORT Implementation and Evaluation
This section discusses Scylla-PORT, the implementation of
PORT on a clean slate base system.

7.1 Implementation
We build PORT on ScyllaDB [47], a clean slate, non-
transactional base system that supports only simple reads
and simple writes. ScyllaDB is a production system that
serves as a drop-in replacement for Cassandra [25] and pro-
vides an order-of-magnitude better performance. It is well-
engineered and aggressively-optimized for performance, in-
cluding a new implementation in C++14, core-level sharding
that avoids cross-core locking and context switches, and cus-
tomized lock-free data structures.
Rationale and takeaways. We chose to implement PORT
on ScyllaDB for three reasons. First, it stresses the effi-
ciency of PORT: as a highly efficient baseline system, it is
sensitive to any additional overheads, and thus amplifies any
performance cost introduced by PORT. Second, ScyllaDB
is single-versioned. The negligible performance overhead
shown in our evaluation includes the cost of making it multi-
versioned (§5.2), which shows the efficiency of co-designing
the multi-versioning framework and the transaction layer en-
abled by version clocks. Third, PORT is compatible with
all the customized engineering decisions of ScyllaDB, which
demonstrates the generality of the design of PORT.

7.2 Evaluation Overview
We evaluate Scylla-PORT against ScyllaDB (the clean slate,
non-transactional base system) and Scylla-OCC (an im-
plementation of OCC atop ScyllaDB). We compare their

throughput, latency, scalability, and quantify data staleness.

Scylla-OCC. We implemented a variant of OCC optimized
for read-only transactions, similar to Rococo’s read-only
transaction algorithm [37]. It includes an initial round of
optimistic reads and then a validation round. If the values
read in the optimistic round match the values in the valida-
tion round the transaction succeeds. If not, the read-only
transaction is aborted and retried. This variant has strictly
better performance than traditional distributed OCC because
it avoids the need for distributed commit: its best case is two
rounds compared to traditional distributed OCC’s best case
of three rounds (read, validate/prepare, commit).

Code. We implemented our server-side logic in ScyllaDB’s
codebase (release 2.1-RC3) in C++14 and our client-side
logic in the Java Thrift client of the YCSB benchmark (re-
lease 0.10.0) [9]. Version clocks are implemented on both
servers and clients. Scylla-PORT adds ~1,300 LOC.

Experimental setting. We run experiments on Emulab [50].
Each machine has two 2.4GHz 8-Core Xeon CPUs, 64GB
RAM, and a 10Gbps network interface. We use a single
datacenter setting. All experiments, except for scalability
tests, use 8 servers loaded by 8 client machines. The scal-
ability tests use up to 64 machines. Each client issues 10
million requests in each experiment, which takes 5–10 min-
utes to complete, sufficiently long to minimize warm-up and
cool-down effects and provide stable results. Experiments
are CPU-bound on servers.

Configuration and workloads. We use YCSB’s standard
workloads B (read-heavy, 95% reads) and C (read-only) with
customized read-to-write ratios of up to 25% writes. We use
YCSB’s default parameters: 1 million records, 10 fields per
record, 100 B values per field, and Zipf constant of 0.99.
Each request (a read-only transaction or a group of simple
writes) accesses 5 records and all fields in each record.

Results summary. Transactional overhead is generally evi-
dent with read-write conflicts and under skewed workloads,
so we focus our evaluation in such scenarios to amplify
Scylla-PORT’s cost. Our results show that Scylla-PORT can
almost match its performance to that of non-transactional
ScyllaDB: 1–3% overhead in throughput and latency in most
settings and less than 8% even in the worst case. Scylla-
PORT outperforms OCC by an order-of-magnitude in such
contended scenarios due to OCC’s retries, and outperforms
OCC under low contention (OCC’s best case) by at least two
times. Scylla-PORT scales as well as ScyllaDB and scales
better under contention. More than 40% of its reads return
fresh values.

7.3 Throughput and Latency
Figure 4a shows the overall performance of the systems as
we gradually increase the system load by using more closed-
loop client threads. Scylla-PORT has similar performance to
the baseline ScyllaDB. Their largest difference before Scyl-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 341

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200

A
v
e
ra

g
e
 L

a
te

n
cy

 (
m

s)

Throughput (K Txn/s)

Scylla-OCC
Scylla-PORT

ScyllaDB

(a) Overall performance

 0

 50

 100

 150

 200

 250

0% 5% 10% 15% 20% 25%

T
h

ro
u

g
h

p
u

t
(K

 T
x
n

/s
)

Write Percentage

ScyllaDB
Scylla-PORT

Scylla-OCC

(b) System throughput

 0

 1

 2

0% 5% 10% 15% 20% 25%

A
v
e
ra

g
e
 L

a
te

n
cy

 (
m

s)

Write Percentage

 8

 12

 16 ScyllaDB
Scylla-PORT
Scylla-OCC

(c) Read latency

 0
 100
 200
 300
 400
 500
 600
 700
 800

 1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(K

 T
x
n

/s
)

Number of servers (log)

ScyllaDB
Scylla-PORT
Scylla-OCC

(d) Scalability (uniform)

 0

 50

 100

 150

 200

 250

 300

 1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(K

 T
x
n

/s
)

Number of servers (log)

ScyllaDB
Scylla-PORT
Scylla-OCC

(e) Scalability (Zipf=0.99)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 500 1000 1500

R
e
a
d

 S
ta

le
n

e
ss

 C
D

F

Staleness (ms)

25% writes
20% writes
15% writes
10% writes

5% writes

(f) Scylla-PORT data staleness

Figure 4: The performance of Scylla-PORT closely matches non-transactional ScyllaDB and is significantly better than
OCC, Scylla-PORT scales even better than ScyllaDB with skewed workloads, and half of its reads return fresh data.

laDB becomes overloaded is evident with 32 client threads:
5.6% in throughput and 5% in latency. All later experi-
ments report throughput and latency at this operating point,
i.e., with 32 client threads. OCC initially has latency that
is twice that of ScyllaDB and Scylla-PORT because it takes
at least two rounds to complete instead of one. As load in-
creases, OCC’s latency increases quickly and its throughput
decreases slightly because contention forces it to retry.

Varying write percentage. Figure 4b and 4c show the
throughput and latency as we vary the read-to-write ratio.
Scylla-PORT’s throughput is within 4% of ScyllaDB’s for
five of the experiments and within 7% for the remaining one.
Similarly, its latency is within 2% (20µs) of ScyllaDB’s
for two of the experiments and within 7% (107µs) for the
other four. As the write percentage increases, the overhead
disappears because of write omission: doing slightly more
work during reads is offset by doing less work during writes.
When there are only reads, Scylla-PORT has double the
throughput and half the latency of OCC because OCC’s read-
only transactions require at least two rounds. With writes,
OCC’s performance drops quickly due to retries.

7.4 Scalability
Figure 4d compares the scalability of the three systems
under a uniform workload as we increase the number of
servers while increasing the number of clients to keep the
servers CPU-bound. Scylla-PORT scales as well as Scyl-
laDB; the differences in throughput are negligible. Interest-
ingly, Scylla-PORT outperforms ScyllaDB under a skewed
workload, as shown in Figure 4e. ScyllaDB stops scaling
at 16 servers because the server holding the hottest keys be-
comes the bottleneck, and adding more servers does not help.
(We have confirmed this finding with ScyllaDB’s develop-

ers.) Scylla-PORT scales better than ScyllaDB under skewed
workloads because it can avoid the work of some writes to
the hottest keys due to write omission. Since write omis-
sion only applies to conflicting writes, this rarely occurs un-
der a uniform workload. OCC initially shows a similar scal-
ing pattern starting from its lower throughput. OCC’s scal-
ing stops, however, as more concurrent clients accessing the
same keys lead to higher contention and thus more retries.

7.5 Data Staleness
Figure 4f shows the staleness of Scylla-PORT under a
skewed workload with varying write percentages. Staleness
is measured relative to strict serializability, which always has
a staleness of 0: it is the amount of time since a newer version
has been committed. For example, if v0, v1 are consecutive
versions, v0 is returned at 0:05, and v1 committed at 0:00,
then the staleness of v0 is 5 seconds.

Scylla-PORT returns the most recent data ~40% of the
time, and 90% of reads return values no staler than 500 ms.
Scylla-PORT returns fresher data as the write percentage in-
creases because version clocks advance versionstamps more
frequently when there are more writes. Scylla-PORT lever-
ages version clocks to precisely capture the stable frontier,
but does not utilize client co-location. Sharing one clock
among co-located user sessions would further decrease stal-
eness, but also decreases the rate at which write omission can
be used. We leave investigating this tradeoff to future work.

7.6 Low Contention Evaluation
We focused here on high contention workloads because those
are where any differences between Scylla-PORT and Scyl-
laDB would appear. Scylla-OCC did poorly in this setting as
is expected because OCC is better suited to low contention

342 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

settings. We present the results of evaluating the three sys-
tems under low contention in our accompanying technical
report [35]. Even in that setting, Scylla-PORT significantly
outperforms Scylla-OCC with at least double the throughput
and at most half the latency because Scylla-PORT always
finishes in one round while OCC’s best case is two rounds.

8 Improving an Existing System
This section adapts PORT to improve Eiger, an existing sys-
tem that has both read-only and write transactions.

8.1 Eiger Overview and Rationale
Eiger is a geo-replicated, causally consistent system that
has read-only transactions and write transactions. Each ma-
chine implements a Lamport clock and attaches a Lamport
timestamp to each committed write that is guaranteed to be
larger than any earlier write it causally depends on. Eiger’s
write transaction protocol is a variant of two-phase com-
mit [21, 28] that always commits. Eiger’s read-only trans-
action protocol takes between one and three non-blocking
rounds of communication. If there are no concurrent write
transactions, it completes in a single round. Otherwise, it re-
quires a second round of messages to a subset of the servers,
followed by a third round if the concurrent write transactions
are still pending when the second-round requests arrive. In
the third round, each read request needs to query the states
of all write transactions it conflicts with, and thus the re-
quired metadata increases linearly with respect to the num-
ber of conflicting write transactions.
Rationale. We choose Eiger as a base system because of its
guarantees and the efficiency of its read-only transactions.
First, it provides causal consistency, not strict serializabil-
ity, so it may be possible to add performance-optimal read-
only transactions to it. Second, it includes write transactions,
which present a new challenge for the PORT design. Third,
it is the only system with write transactions and causal (or
stronger) consistency that completes read-only transactions
in a bounded number of non-blocking rounds of communica-
tion (Figure 9). Finally, its read-only transactions often com-
plete in a single non-blocking round, making them a more
difficult baseline than other algorithms such as OCC.

8.2 Eiger-PORT
Eiger’s read-only transactions are non-blocking, require
up to three rounds of on-path communication, and use
linear-sized metadata in the third round. We make them
performance-optimal by making them always finish in one
round using only constant metadata. The major challenge
is to ensure write isolation, i.e., return a system state that is
either before all updates in a write transaction or after.

More specifically, when a read-only transaction must read
beyond the stable frontier, e.g., to ensure read-your-writes,
PORT reorders the read-only transaction and the conflicting
writes without blocking by using “promotion” (§6.2). How-

1 Client Side
2 lst_map[][] # maps server to its local safe time
3 gst # global safe time
4

5 function read_only_txn(<keys>):
6 gst = get_read_ts(min{lst_map.valueSet()})
7 for k in keys # messages in parallel
8 vals[k], lst = read(k, gst, cl_id)
9 lst_map[k.server] = lst # lst is monotonic

10 return vals
11

12 function write_txn(<keys, vals>):
13 for k, v in <keys, vals> # in parallel
14 if k.server is coord # the coordinator
15 lst = write_coord(k, v, cl_id, gst)
16 else # a cohort
17 lst = write_cohort(k, v, cl_id, gst)
18 lst_map[k.server] = lst # lst is monotonic
19 return
20

21 function get_read_ts(ts):
22 return max{ts, gst}

Figure 5: Client-side pseudocode for Eiger-PORT.

1 Server Side (Read-Only Txn)
2 lst # local safe time, updated upon writes
3

4 function read(k, rts, cl_id):
5 ver = DS[k].at(rts) # vers are sorted by commit_t
6 for v in DS[k].newer_than(ver.commit_t)
7 # ensure read-your-writes, from newer ver to old
8 if v.cl_id == cl_id
9 return v.val, lst

10 if ver.cl_id != cl_id
11 return ver.val, lst
12 else # ensure write isolation
13 v = find_isolated(ver)
14 return v.val, lst
15

16 function find_isolated(ver):
17 # iterate from newer version to old
18 while v in DS[k].newer_than(ver.gst)
19 and v in DS[k].older_than(ver.commit_t)
20 if v.cl_id != ver.cl_id
21 return v
22 else
23 return find_isolated(v)
24 return ver

Figure 6: Read-only transaction logic for Eiger-PORT.

ever, promotion does not work for Eiger because it cannot
ensure that all writes in the same write transaction are pro-
moted at the same time since they can be on different servers.
Our solution, per-client ordering, enables clients to observe
conflicting writes in different orders, as allowed by causal
consistency. Specifically, it pulls back any of a client’s re-
cent writes that are beyond the stable frontier. This allows the
client to read at the stable frontier while also always seeing
their own writes. Figures 5, 6, and 7 show the pseudocode,
written in a way that favors clarity over efficiency.

Client-side logic. Figure 5 shows the client-side logic. Each
client maintains two variables (lines 2, 3). lst map tracks the
local safe time, lst, of each server. Global safe time, gst,
is the minimum lst across all servers (line 6) and advances
monotonically. gst is used as the read timestamp for each

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 343

1 Server Side (Write Txn)
2 lst # local safe time
3 pending_wtxns # uncommitted write txns
4 DS[][] # multi-versioned k-v data store
5

6 function write_coord(k, v, cl_id, gst): # coordinator
7 # PREPARE
8 ver, prepared_t = prepare_write(k, v, cl_id, gst)
9 # ... get yes-vote-msgs from all cohorts

10 # COMMIT
11 commit_t = max{yes-vote-msgs.prepared_t, prepared_t}
12 commit-msg = {"commit", commit_t}
13 # ... send commit-msg to all cohorts
14 commit_write(ver, commit_t)
15 return lst
16

17 function write_cohort(k, v, cl_id, gst): # cohort
18 # PREPARE
19 ver, prepared_t = prepare_write(k, v, cl_id, gst)
20 yes-vote-msg = {"yes", prepared_t}
21 # ... send yes-vote-msg to coordinator
22 # ... wait for commit-msg
23 # COMMIT
24 commit_t = commit-msg.commit_t
25 commit_write(ver, commit_t)
26 return lst
27

28 function prepare_write(k, v, cl_id, gst):
29 pending_t = LamportClock.current()
30 pending_wtxns.append(pending_t)
31 LamportClock.advance()
32 ver = DS[k].create_new_ver(v, cl_id, gst, pending_t)
33 ver.is_pending = true
34 return ver, LamportClock.current()
35

36 function commit_write(ver, commit_t):
37 ver.commit_t = commit_t
38 ver.is_pending = false
39 pending_wtxns.remove(ver.pending_t)
40 if pending_wtxns is empty
41 lst = LamportClock.current()
42 else
43 lst = pending_wtxns.head() # min of pending_wtxns
44 return

Figure 7: Write transaction logic for Eiger-PORT.

read-only transaction. Both lst and gst are Lamport times-
tamps as used in Eiger. A client sends all read requests in a
read-only transaction in parallel. Each read request includes
the key, the read timestamp gst, and the unique identifier of
this client (line 8). The server responds with the requested
value and lst on that server. A client issues a write transac-
tion by sending the write requests in parallel (lines 12–19).
One server is randomly chosen as the coordinator (line 14)
for 2PC with the others as cohorts. Each write request con-
tains the key, the value, the client ID, and the client’s current
gst (lines 15, 17). gst specifies the stable frontier this write
transaction causally depends on. The client updates lst map
after each read/write request (lines 9, 18).

Write transactions. Figure 7 shows the server-side logic of
write transactions. When a server receives a write request,
it records the current Lamport time (line 29) and creates a
new pending version (lines 8, 19, 32, 33). pending wtxns
tracks ongoing write transactions by keeping an ordered list
of pending times. The running minimum of pending wtxns
is the lst on this server, i.e., no pending writes exist before
lst. Because Lamport clocks advance monotonically, inser-

tion, removal, and fetching the minimum of pending wtxns
have a cost of O(1). At the end of the “prepare” phase of
2PC, each cohort sends a yes-vote message to the coordina-
tor, which includes the prepared time of this pending write
transaction. prepared time is guaranteed to be greater than
pending time by clock ticking (line 31).

To commit a write transaction, the coordinator calcu-
lates the commit time by taking the maximum across all
prepared times (line 11) and then sends a commit message to
the cohorts and commits its local pending version (lines 13,
14). When a cohort receives the commit message, it com-
mits its local pending version (lines 25, 38) with the commit
time (lines 24, 37). It then removes this write transaction’s
pending time from pending wtxns and updates lst (lines 39–
43). The server returns its lst to the client upon commit.
Eiger-PORT made minimum changes to Eiger’s write trans-
actions, i.e., the management of pending wtxns.

Read-only transactions. Figure 6 shows the server-side
logic of read-only transactions. When a server receives a
read request, it finds the version at the read timestamp, rts
(line 5), and checks if the same client has made a recent write
later than rts. It returns the most recent write by the same
client to ensure read-your-writes (lines 6–9). If the version
at rts was written by the same client, then we need to ensure
write isolation by checking whether there exist any versions
between the version’s gst, which is the snapshot time the ver-
sion depends on, and the version’s commit t (lines 18, 19). If
there exists such a version written by a different client, then
that version is returned to satisfy write isolation (lines 20,
21). We need to do this recursively, but our implementation
uses a loop instead for better performance. To ensure write
isolation (lines 16–24), we go through the multi-versioned
data store once, which has the same cost as finding a partic-
ular version by timestamp in other algorithms, e.g., MVCC.

Correctness. We show the correctness of Eiger-PORT by
proving that any execution in Eiger-PORT satisfies the causal
(“happened before”) relation [26] and write isolation for
write transactions. We present the full proof in the techni-
cal report [35].

9 Eiger-PORT Evaluation
We evaluate Eiger-PORT against Eiger, showing its through-
put and latency improvement as well as its data staleness.

Implementation. We implemented Eiger-PORT as a modi-
fication to Eiger’s code base, which is built on top of Cassan-
dra [25] and written in Java. Eiger-PORT adds ~1000 LOC.

Experimental setting. We try to match Eiger’s original ex-
perimental setup. We run all experiments on Emulab [50],
similar to the now-decommissioned PRObE testbed [19]
Eiger used. Each machine has one 2.4GHz Quad-Core Xeon
CPU, 12GB RAM, and a 1Gbps network interface. We run
5 trials for each data point, each lasting 65 seconds, and re-
port the median. We exclude the first and last 15 seconds to

344 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 5 10 15 20 25 30 35 40 45

O.P.

R
e
a
d

 L
a
te

n
cy

 (
m

s)

Throughput (K Txn/s)

Eiger Eiger-PORT

(a) Median latency and throughput

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

0 0.7 0.8 0.9 0.99 1.1 1.2

N
o
rm

a
liz

e
d

 T
h

ro
u

g
h

p
u

t

Zipf Constant

Eiger Eiger-PORT

(b) Throughput varying skew

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(K

 T
x
n

/s
)

Number of Servers/DC (log)

Eiger-PORT
Eiger

(c) Scalability (Zipf=0.8)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 0.7 0.8 0.9 0.99 1.1 1.2

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Zipf Constant

Eiger Eiger-PORT

(d) Read latency varying skew

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 0.7 0.8 0.9 0.99 1.1 1.2

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Zipf Constant

Eiger Eiger-PORT

(e) Write latency varying skew

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 500 1000 1500 2000

R
e
a
d

 S
ta

le
n

e
ss

 C
D

F

Staleness (ms)

uniform
zipf=0.7
zipf=0.8
zipf=0.9

zipf=0.99
zipf=1.1
zipf=1.2

(f) Eiger-PORT data staleness

Figure 8: Throughput, latency, scalability, and staleness of Eiger-PORT: up to 3× throughput improvement and 60%
latency reduction compared to Eiger, better scalability, and low data staleness. All latencies are median latencies.

avoid artifacts due to warm-up, cool-down, and imperfectly
synchronized clients. All experiments are CPU-bound.
Configuration and workloads. We use the same setting
as Eiger: two logical datacenters co-located in the testbed.
Each datacenter has eight server machines, and uses eight
client machines to load the servers. The second datacenter
is used as a replica, which applies updates replicated from
the first datacenter. We use the dynamic workload generator
from Eiger with the same default values: 1 million keys, 128-
byte values, 5 columns per key, 5 keys per operation, and a
write percentage of 10% unless otherwise specified. We also
use a Zipf traffic generator with a default value of 0.8.

9.1 Performance Improvement
Results summary. Eiger-PORT significantly improves the
performance of Eiger under different workloads, without de-
grading write performance: 2× and 3× throughput improve-
ment under mild and high skew, respectively, and 20%–60%
latency reduction. The performance improvement comes
from Eiger-PORT’s fewer on-path messages and less meta-
data to process. The improvement is larger in contended
workloads because Eiger is more likely to require more than
one round and more metadata in the third round when there
are more conflicting write transactions.
Throughput improvement. Figure 8a shows the median
read latency and system throughput as we double the number
of closed-loop client threads loading the system (from 2 to
512). It shows that Eiger-PORT performs strictly better than
Eiger: it achieves higher throughput with the same latency
and lower latency with the same throughput. We run all other
experiments in Figure 8 with 32 threads, representing an op-
erating point with reasonably low latency (< 20ms), i.e., at
line “O.P.” in Figure 8a. The improvements are more pro-

found at higher loads. Figure 8b shows normalized through-
put with different skew; the improvement stops increasing
after Zipf value 1.1, where a single server becomes the bot-
tleneck. Figure 8c shows Eiger-PORT scales better than
Eiger due to fewer messages in the system.
Latency improvement. Figure 8d shows the normalized
median read latency as we vary skew. Eiger-PORT achieves
20% lower latency under uniform workloads and up to 60%
lower latency under contended workloads. Figure 8e shows
that Eiger-PORT achieves lower write latency even though
we did not intentionally improve writes. The lower latency
comes from less queuing delay for writes because reads are
faster and there are fewer messages in the system. This
demonstrates that PORT can make read-only transactions
performance-optimal without making writes more costly.

9.2 Data Staleness
Figure 8f quantifies the read staleness in Eiger-PORT. Stale-
ness is measured relative to strict serializability as in Scylla-
PORT’s evaluation. Even with high skew, over 40% of Eiger-
PORT’s read-only transactions return up-to-date values, and
over 90% of reads experience less than 1s staleness. Eiger-
PORT tends to return staler data than Scylla-PORT because
the stable frontier moves more slowly in Eiger/Eiger-PORT:
write transactions take longer to commit than simple writes.

10 Related Work
This section examines existing read-only transactions with
the NOCS Theorem, reviews impossibility results, and dis-
cusses the move from latency to performance optimality.
Bridging the gap in the design space. We use the NOCS
Theorem as a lens to better understand existing systems and
show a set of representative systems in Figure 9. We find

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 345

System N O C S W
Performance-optimal

Scylla-PORT * X X X POS ×
Eiger-PORT * X X X Causal X
Spanner-Snap [10]* X X X SR X
MySQL Cluster [39]* X X X RC X

One fewer performance property for stronger guarantees

Spanner-RO [10]* × X X X X
DrTM [49]* X ≥ 1 X X X
RIFL [29] X ≥ 2 X X X
Sinfonia [1] X ≥ 2 X X X

Candidates for improvement in performance and/or guarantees

TAPIR [51]* × X X Ser X
Pileus-Strong [48] × 2 X X X
Rococo-SNOW [34]* × X Linear X X
COPS-SNOW [34]* X Off-path Linear Causal ×
COPS [31]* X ≤ 2 Linear Causal ×
RAMP-F|H [5]* X ≤ 2 Linear RA X
RAMP-S [5]* X 2 X RA X
Eiger [32]* X ≤ 3 Linear Causal X
Janus [38] × ≤ 2 Linear X X
Callinicos [41] × 2 Linear X X
Occult [36] X ≥ 1 X PC-PSI X
Rococo [37]* × ≥ 2 X X X
Contrarian [13]* X 2 X Causal ×
GentleRain [15]* × ≤ 2 + off-path X Causal ×
Cure [3] × Off-path X Causal X
MVTSO [30, 45] × X X Ser X

Figure 9: A review of existing systems through the lens
of NOCS. Asterisks denote specialized read-only trans-
action algorithms. W denotes write transactions.

a large gap in the design space. The only existing systems
that have performance-optimal read-only transactions pro-
vide weak consistency (§4.3). MySQL Cluster [39] provides
read-committed, which does not isolate transactions. Span-
ner’s snapshot reads API [10] cannot always guarantee non-
blocking read-your-writes. Suppose a client updates key k
in a read-write transaction with commit timestamp ts, and
then immediately performs a read-only transaction involving
a set S of keys that includes k. To ensure read-your-writes,
the client must use a timestamp greater than or equal to ts for
its read-only transaction. But doing so may block since other
keys in S may be involved in a read-write transaction that is
in the midst of two-phase-commit with a commit timestamp
less than ts. That is, Spanner must use its externally con-
sistent read-only transaction API, which may block reads in
such cases to ensure read-your-writes.

We bridge this gap in the design space with PORT, the first
design that provides performance-optimal read-only transac-
tions and the strongest consistency to date.

Other read-only transactions. Some systems choose to
trade one performance property for stronger guarantees [1,
10, 29, 49] but still reside on the “tight boundary” of the
NOCS Theorem. Many systems neither are performance-
optimal nor provide the strongest possible guarantees [3, 5,
13, 15, 31, 32, 34, 36], and thus could potentially be im-

proved by our PORT design.

Impossibility results. Our NOCS Theorem is philosophi-
cally similar to other impossibility results, e.g., FLP [17],
CAP [7, 20], and SNOW [34], in that it saves system de-
signers’ effort from trying the impossible. The most relevant
result is the SNOW Theorem, which we discuss next.

The move from latency to performance. SNOW [34]
showed tradeoffs in the design space of read-only transac-
tions with a focus only on latency. It proved optimal latency
is impossible if the system is strictly serializable and has
write transactions. This work aims for a more complete un-
derstanding of the tradeoffs in the design of read-only trans-
actions by considering latency and throughput. The move
from latency to performance has two takeaways.

First, optimal latency neither translates to nor forfeits op-
timal throughput. The former is shown by the two systems
built with SNOW, which provided lower latency at the cost of
lowering throughput. The latter is shown by our new designs
that achieve both optimal latency and optimal throughput.
What really matters is a complete understanding of the trade-
off between performance and consistency and its insights for
designs—the major contributions of this work.

Second, higher demand for performance, e.g., the move
from latency only to both latency and throughput, suggests
higher difficulty in providing stronger guarantees. Optimal
latency is possible in strictly serializable systems without
write transactions, but optimal performance is not.

11 Conclusion

Distributed storage systems are a fundamental building block
of large-scale web services. They rely on read-only trans-
actions to provide consistent views of sharded data. Our
NOCS Theorem proves that read-only transactions cannot
have optimal performance in strictly serializable systems.
We presented PORT, a performance-optimal read-only trans-
action design that provides the strongest consistency to date.
We applied PORT to design Scylla-PORT and Eiger-PORT.
Scylla-PORT has minimal performance overhead compared
to its non-transactional baseline. Eiger-PORT significantly
improves the performance of its transactional base system.

Acknowledgments

We would like to thank our shepherd, Jinyang Li, for her in-
valuable feedback that improved this work. We thank the
anonymous reviewers for their careful reading of our paper
and their many insightful comments and suggestions. We
are also grateful to Christopher Hodsdon, Theano Stavrinos,
and Jeffrey Helt for their feedback on earlier stages of this
work. Our evaluation at scale was made possible by the Em-
ulab testbed. This work was supported by NSF award CNS-
1824130 as well as a gift from Microsoft Research.

346 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and

C. Karamanolis. Sinfonia: A new paradigm for build-
ing scalable distributed systems. In ACM Symposium
on Operating System Principles (SOSP), Oct 2007.

[2] M. K. Aguilera, J. B. Leners, and M. Walfish. Yesquel:
scalable SQL storage for Web applications. In ACM
Symposium on Operating System Principles (SOSP),
Oct 2015.

[3] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li,
T. Crain, A. Bieniusa, N. Preguiça, and M. Shapiro.
Cure: Strong semantics meets high availability and low
latency. In IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), Jun 2016.

[4] S. Almeida, J. Leitao, and L. Rodrigues. ChainRe-
action: a causal+ consistent datastore based on chain
replication. In ACM SIGOPS European Conference on
Computer Systems (EuroSys), Apr 2013.

[5] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica. Scalable atomic visibility with RAMP trans-
actions. In ACM Special Interest Group on Manage-
ment of Data (SIGMOD), Jun 2014.

[6] C. Binnig, S. Hildenbrand, F. Färber, D. Kossmann,
J. Lee, and N. May. Distributed snapshot isolation:
global transactions pay globally, local transactions pay
locally. The VLDB journal, 23(6):987–1011, 2014.

[7] E. A. Brewer. Towards robust distributed systems. In
ACM Symposium on Principles of Distributed Comput-
ing (PODC), Jul 2000.

[8] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-
mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni,
H. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J. Song,
and V. Venkataramani. TAO: Facebook’s distributed
data store for the social graph. In USENIX Annual
Technical Conference (ATC), Jun 2013.

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems
with YCSB. In ACM Symposium on Cloud Computing
(SoCC), Jun 2010.

[10] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. F. andSanjay Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Tay-
lor, R. Wang, and D. Woodford. Spanner: Google’s
globally-distributed database. In USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), Oct 2012.

[11] J. Cowling and B. Liskov. Granola: Low-overhead dis-
tributed transaction coordination. In USENIX Annual
Technical Conference (ATC), Jun 2012.

[12] Developer Blog. Twemproxy: A fast, light-
weight proxy for memcached. https:
//blog.twitter.com/developer/en us/
a/2012/twemproxy.html, 2012.

[13] D. Didona, R. Guerraoui, J. Wang, and W. Zwaenepoel.
Causal consistency and latency optimality: friend or
foe? In International Conference on Very Large Data
Bases (VLDB), Aug 2018.

[14] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe:
Scalable causal consistency using dependency matri-
ces and physical clocks. In ACM Symposium on Cloud
Computing (SoCC), Oct 2013.

[15] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. Gen-
tlerain: Cheap and scalable causal consistency with
physical clocks. In ACM Symposium on Cloud Com-
puting (SoCC), Nov 2014.

[16] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM
(JACM), 35(2):288–323, 1988.

[17] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impos-
sibility of distributed consensus with one faulty pro-
cess. Journal of the ACM (JACM), 32(2):374–382,
1985.

[18] H. Fugal, A. Likhtarov, R. Nishtala, R. McEl-
roy, A. Grynenko, and V. Venkataramani. In-
troducing mcrouter: A memcached proto-
col router for scaling memcached deploy-
ments. https://engineering.fb.com/
core-data/introducing-mcrouter-
a-memcached-protocol-router-for-
scaling-memcached-deployments/, 2014.

[19] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd.
Probe: A thousand-node experimental cluster for com-
puter systems research. USENIX ;login:, June 2013.

[20] S. Gilbert and N. Lynch. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant
web services. ACM SIGACT News, 33(2):51–59, 2002.

[21] J. N. Gray. Notes on database systems. IBM Research
Report RJ2188 (Feb.1978), 1978.

[22] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 347

https://blog.twitter.com/developer/en_us/a/2012/twemproxy.html
https://blog.twitter.com/developer/en_us/a/2012/twemproxy.html
https://blog.twitter.com/developer/en_us/a/2012/twemproxy.html
https://engineering.fb.com/core-data/introducing-mcrouter-a-memcached-protocol-router-for-scaling-memcached-deployments/
https://engineering.fb.com/core-data/introducing-mcrouter-a-memcached-protocol-router-for-scaling-memcached-deployments/
https://engineering.fb.com/core-data/introducing-mcrouter-a-memcached-protocol-router-for-scaling-memcached-deployments/
https://engineering.fb.com/core-data/introducing-mcrouter-a-memcached-protocol-router-for-scaling-memcached-deployments/

[23] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. P. Jones, S. Madden, M. Stonebraker,
Y. Zhang, et al. H-store: a high-performance, dis-
tributed main memory transaction processing system.
In Proceedings of the VLDB Endowment (PVLDB),
Aug 2008.

[24] H.-T. Kung and J. T. Robinson. On optimistic meth-
ods for concurrency control. ACM Transactions on
Database Systems (TODS), 6(2):213–226, 1981.

[25] A. Lakshman and P. Malik. Cassandra: A decentralized
structured storage system. SIGOPS Operating Systems
Review, 44(2):35–40, Apr. 2010.

[26] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7), 1978.

[27] L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
transactions on computers, 1979.

[28] B. Lampson and H. Sturgis. Crash recovery in a dis-
tributed storage system. Xerox Palo Alto Research
Center, 1979.

[29] C. Lee, S. J. Park, A. Kejriwal, S. Matsushitay, and
J. Ousterhout. Implementing linearizability at large
scale and low latency. In ACM Symposium on Oper-
ating System Principles (SOSP), Oct 2015.

[30] J. Levandoski, D. Lomet, S. Sengupta, R. Stutsman,
and R. Wang. High performance transactions in
deuteronomy. In Conference on Innovative Data Sys-
tems Research (CIDR), Jan 2015.

[31] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with COPS. In ACM
Symposium on Operating System Principles (SOSP),
Oct 2011.

[32] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger semantics for low-latency geo-
replicated storage. In USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
Apr 2013.

[33] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song,
W. Tobagus, S. Kumar, and W. Lloyd. Existential con-
sistency: Measuring and understanding consistency at
Facebook. In ACM Symposium on Operating System
Principles (SOSP), Oct 2015.

[34] H. Lu, C. Hodsdon, K. Ngo, S. Mu, and W. Lloyd. The
SNOW theorem and latency-optimal read-only trans-
actions. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Nov 2016.

[35] H. Lu, S. Sen, and W. Lloyd. Performance-optimal
read-only transactions (extended version). Techni-
cal Report TR-005-20, Princeton University, Computer
Science Department, 2020.

[36] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bron-
son, and W. Lloyd. I can’t believe it’s not causal! scal-
able causal consistency with no slowdown cascades.
In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), Mar 2017.

[37] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extract-
ing more concurrency from distributed transactions. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Oct 2014.

[38] S. Mu, L. Nelson, W. Lloyd, and J. Li. Consolidating
concurrency control and consensus for commits under
conflicts. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Nov 2016.

[39] MySQL. MySQL :: MySQL Cluster CGE. https:
//www.mysql.com/products/cluster/, 2016.

[40] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani.
Scaling memcache at facebook. In USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI), Apr 2013.

[41] R. Padilha, E. Fynn, R. Soulé, and F. Pedone. Callini-
cos: Robust transactional storage for distributed data
structures. In USENIX Annual Technical Conference
(ATC), Jun 2016.

[42] C. H. Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM, 26(4), 1979.

[43] D. Peng and F. Dabek. Large-scale incremental pro-
cessing using distributed transactions and notifications.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Oct 2010.

[44] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout.
Arachne: core-aware thread management. In USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), Oct 2018.

[45] D. P. Reed. Implementing atomic actions on decen-
tralized data. ACM Transactions on Computer Systems
(TOCS), 1(1):3–23, 1983.

[46] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computer Surveys, 22(4), Dec. 1990.

[47] ScyllaDB. ScyllaDB :: Scylla Is Next Generation
NoSQL. http://www.scylladb.com/, 2018.

348 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.mysql.com/products/cluster/
https://www.mysql.com/products/cluster/
http://www.scylladb.com/

[48] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrish-
nan, M. K. Aguilera, and H. Abu-Libdeh. Consistency-
based service level agreements for cloud storage.
In ACM Symposium on Operating System Principles
(SOSP), Nov 2013.

[49] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast
in-memory transaction processing using RDMA and
HTM. In ACM Symposium on Operating System Prin-
ciples (SOSP), Oct 2015.

[50] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An Integrated Experimental Environment
for Distributed Systems and Networks. In USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), Dec 2002.

[51] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishna-
murthy, and D. R. K. Ports. Building consistent transac-
tions with inconsistent replication. In ACM Symposium
on Operating System Principles (SOSP), Oct 2015.

[52] F. Zhou, Y. Gan, S. Ma, and Y. Wang. wPerf: generic
Off-CPU analysis to identify bottleneck waiting events.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Oct 2018.

A Artifact Appendix
A.1 Abstract
This appendix presents the steps for installing Eiger-PORT
and running experiments that compare the performance of
Eiger-PORT and its base system, Eiger. Eiger-PORT is im-
plemented as a modification to Eiger’s code base, which is
built on top of Cassandra and written in Java. The exper-
iments evaluate latency, throughput, and scalability. The
results are expected to show that Eiger-PORT outperforms
Eiger in all experiments and the performance advantages be-
come more significant under more skewed workloads. Eiger-
PORT’s better performance comes from its performance-
optimal read-only transactions.

A.2 Artifact check-list
• Hardware: 2.4GHz Quad-Core Xeon CPU, 12GB RAM,

1Gbps network interface

• Metrics: latency, throughput, scalability

• Expected experiment run time: 10–20 hours

• Public link: http://github.com/princeton-sns/
Eiger-PORT.git

A.3 Description
A.3.1 How to access

The code base of Eiger-PORT is publicly accessible
on Github at http://github.com/princeton-sns/

Eiger-PORT.git. It includes a README file that pro-
vides step-by-step instructions on how to set up the environ-
ment and run experiments.

A.4 Installation
Please clone the code repository under a clean directory on
a machine. The scripts in the package will work seamlessly
if the repository is cloned under /local. The required de-
pendencies can be installed by simply running the bash file
install-dependencies.bash. Apache Ant is used to build the
source code. Both the system files and the stress tool need to
be compiled. Please see the README file in the repository
for more details.

A.5 Experiment workflow
Running experiments as described in the paper requires set-
ting up two clusters with each having 8 servers and 8 clients.
One cluster is the active cluster for processing transactions
and the other cluster is used as a replica, which passively re-
ceives replicated writes from the active cluster. One extra
machine is needed for the control node. Therefore, to create
an 8-server-8-client environment, 33 machines are needed in
total (2 clusters, 16 machines in each, and 1 control node).

When the experiment topology is determined, the config-
uration files under the directory vicci dcl config need to be
modified accordingly. All the scripts used to run experi-
ments are under the directory eval-scripts. Experiments can
be launched by executing latency throughput.bash. The ex-
perimental parameters, such as Zipfian constant and read-to-
write ratio, are specified in the file dynamic defaults. For
details, please see the README file.

A.6 Evaluation and expected result
The results of each experiment are stored under the directory
experiments/dynamic. Throughput numbers are shown in the
file combined.graph. A set of latency processing scripts are
provided under the directory data proc scripts. Eiger-PORT
is expected to have ~2X higher throughput and ~50% latency
compared to Eiger. The performance advantages of Eiger-
PORT are expected to become more significant under more
skewed workloads.

A.7 AE Methodology
Submission, reviewing and badging methodology:

• https://www.usenix.org/conference/
osdi20/call-for-artifacts

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 349

http://github.com/princeton-sns/Eiger-PORT.git
http://github.com/princeton-sns/Eiger-PORT.git
http://github.com/princeton-sns/Eiger-PORT.git
http://github.com/princeton-sns/Eiger-PORT.git
https://www.usenix.org/conference/osdi20/call-for-artifacts
https://www.usenix.org/conference/osdi20/call-for-artifacts

Toward a Generic Fault Tolerance Technique for Partial Network Partitioning
Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan, Samer Al-Kiswany

University of Waterloo, Canada

Abstract

We present an extensive study focused on partial network
partitioning. Partial network partitions disrupt the communi-
cation between some but not all nodes in a cluster.

First, we conduct a comprehensive study of system fail-
ures caused by this fault in 12 popular systems. Our study
reveals that the studied failures are catastrophic (e.g., lead
to data loss), easily manifest, and can manifest by partially
partitioning a single node.

Second, we dissect the design of eight popular systems and
identify four principled approaches for tolerating partial par-
titions. Unfortunately, our analysis shows that implemented
fault tolerance techniques are inadequate for modern systems;
they either patch a particular mechanism or lead to a complete
cluster shutdown, even when alternative network paths exist.

Finally, our findings motivate us to build Nifty, a trans-
parent communication layer that masks partial network parti-
tions. Nifty builds an overlay between nodes to detour packets
around partial partitions. Our prototype evaluation with six
popular systems shows that Nifty overcomes the shortcomings
of current fault tolerance approaches and effectively masks
partial partitions while imposing negligible overhead.

1 Introduction

Modern networks are complex. They use heterogeneous hard-
ware and software [1], deploy diverse middleboxes (e.g., NAT,
load balancers, and firewalls) [2, 3, 4], and span multiple data
centers [2, 4]. Despite the high redundancy built into modern
networks, catastrophic failures are common [1, 3, 5, 6]. Nev-
ertheless, modern cloud systems are expected to be highly
available [7, 8] and to preserve stored data despite failures of
nodes, networks, or even entire data centers [9, 10, 11].

We focus our investigation on a peculiar type of network
fault: partial network partitions1, which disrupts the commu-
nication between some, but not all, nodes in a cluster. Figure 1
illustrates how a partial network partition divides a cluster
into three groups of nodes, such that two groups (Group 1 and
Group 2) are disconnected, but Group 3 can communicate
with Groups 1 and 2.

In our previous work [12] we identified this fault and pre-
sented examples of how it leads to system failures. Other than
our previous preliminary effort, we did not find any in-depth
analysis of partial network partition failures and of their fault
tolerance techniques. Nevertheless, we found 51 reports of

1This is the commonly used name in failure reports and discussion forums.

Group 1 Group 2

Group 3

Partial
Partition

Figure 1: Partial partition. Groups 1 and 2 are disconnected,
while Group 3 can reach both sides of the partition.

failures caused by partial network partitioning faults2 in the
publicly accessible issue tracking systems of 12 production-
quality systems (Section 4), numerous blog posts and discus-
sions of this fault on developers’ forums (Section 3), and eight
popular systems with fault tolerance techniques specifically
designed to tolerate this type of fault (Section 5).

Our goal in this work is threefold. First, we aim to study fail-
ures caused by partial network partitioning to understand their
impact and failure characteristics and, foremost, to identify
opportunities to improve systems’ resiliency to this type of
fault. Second, we aim to dissect the fault tolerance techniques
implemented in popular production systems and identify their
shortcomings. Third, we aim to design a generic fault toler-
ance technique for partial network partitioning. This is the
first work to characterize these failures and explore fault tol-
erance techniques for partial partitioning faults.

It is important to understand that partial partitions are
fundamentally different from complete partitions [12]. Com-
plete partitions split a cluster into two completely discon-
nected sides and are well studied with known theoretical
bounds (CAP theorem [13]) and numerous practical solu-
tions [14, 15, 16, 17]. On the contrary, a cluster experiencing
a partial partition is still connected but not all-to-all connected.
Consequently, the theoretical bounds of complete partitions
do not apply to partial partitions, and fault tolerance tech-
niques for complete partitions are not effective in handling
partial partitions (Section 8).
An analysis of partial network partitioning failures. We
conduct an in-depth study of 51 partial network partitioning
failures from 12 cloud systems (Section 4). We select a diverse
set of systems, including database systems (MongoDB and
HBase), file systems (HDFS and MooseFS), an object storage
system (Ceph), messaging systems (RabbitMQ, Kafka, and
ActiveMQ), a data-processing system (MapReduce), a search
engine (Elasticsearch), and resource managers (Mesos and
DKron). For each considered failure, we carefully study the

2A fault is the initial root cause. If not properly handled, it may lead to a
user-visible system failure.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 351

failure report, logs, discussions between users and developers,
source code, and code patches.

Failure Impact. Overall, we find that partial network par-
titioning faults cause silent failures with catastrophic effects
(e.g., data loss and corruption) that affect core system mecha-
nisms (e.g., leader election and replication).

Ease of manifestation. Unfortunately, these failures can
easily occur. The majority of the failures are deterministic
and require less than four events (e.g., read or write request)
for the failure to occur. Even worse, all the studied failures
can be triggered by partially partitioning a single node. The
majority of failures do not require client access or can be
triggered by clients only accessing one side of the partition.

Insights. We identify three approaches to improve system
resilience: better testing, focused design reviews, and building
a generic fault tolerance communication layer. Our analysis
of each failure’s manifestation sequence, access patterns, and
timing constraints shows that almost all the failures could
have been revealed through simple tests and by only using five
nodes. Second, the majority of failures are due to design flaws.
We posit that design reviews focused on network partitioning
could identify these vulnerabilities. Third, building a generic
communication layer to mask partial partitions is feasible,
simplifies system design, and improves system resiliency.

Finally, we identify that a common deployment approach
of Zookeeper introduces a failure vulnerability (Section 5).
Our analysis shows that system designers need to design ad-
ditional mechanisms to handle partial partitions when using
Zookeeper or other external coordination services.
Dissecting modern fault tolerance techniques. We dissect
the implementation of eight popular systems (VoltDB, MapRe-
duce, HBase, MongoDB, Elasticsearch, Mesos, LogCabin,
and RabbitMQ) and study the fault tolerance techniques they
employ specifically to tolerate partial partitions (Section 5).
For each system, we study the source code, analyze the fault
tolerance technique’s design, extract the design principles, and
identify the technique’s shortcomings. We identify four prin-
cipled approaches for tolerating partial partitions: identifying
the surviving clique, checking neighbors’ views, verifying
failures announced by other nodes, and neutralizing partially
partitioned nodes.

Our analysis reveals that the studied fault tolerance tech-
niques are inadequate. They either patch a specific system
mechanism, which leaves the rest of the system vulnerable
to failures, or unnecessarily shut down the entire cluster or
pause up to half of the cluster nodes (Section 5).
Designing a generic fault tolerance technique. Our find-
ings motivate us to build the network partitioning fault-
tolerance layer (Nifty), a simple, generic, and transparent
communication layer that can mask partial network parti-
tions (Section 6). Nifty’s approach is simple; it monitors the
connectivity in a cluster through all-to-all heart beating, and
when it detects a partial partition, it detours the traffic around
the partition through intermediate nodes. Nifty overcomes

all the shortcomings present in the studied fault tolerance
techniques.

The main insight of Nifty is that tolerating partial parti-
tioning does not require elaborate techniques such as the
ones adopted by current systems (Section 5). Many mod-
ern systems already incorporate membership and connec-
tivity monitoring mechanisms based on all-to-all heart beat-
ing [18, 19, 20]. Nifty shows that extending these mechanisms
with a simple rerouting capability can effectively mask partial
partitions.

To demonstrate Nifty’s effectiveness, we deploy it with six
systems: HDFS, Kafka, RabbitMQ, ActiveMQ, MongoDB,
and VoltDB. We choose these systems because they are data
intensive and popular systems. Furthermore, RabbitMQ and
VoltDB implement generic techniques to tolerate partial parti-
tions. Our prototype evaluation with synthetic and real-world
benchmarks shows that Nifty effectively masks partial parti-
tions while adding negligible overhead.

2 Definitions

A partial network partition is a network fault that prevents
at least one node (e.g., a node in Group 1 in Figure 1) from
communicating with another node (Group 2) in the system,
while a third node (Group 3) can communicate with both
affected nodes. Nodes in a partially partitioned cluster are
still connected but are not all-to-all connected (i.e., they do
not form a complete graph [21]). A partial partition divides a
cluster into three groups: two sides and one bridge group. We
identify a node as a bridge node if it can reach at least one
node on each side of a partition. A partial partition has two
sides, all the nodes on one side of the partition cannot reach
all the nodes on the other side of the partition. We note that a
cluster may suffer from multiple concurrent partial partitions.

We define a single-node partial partition as a partial parti-
tion that has a single node on one side of the partition, while
the rest of the cluster nodes are bridge nodes or are on the
other side of the partition. For instance, a single-node partial
partition can be caused by a firewall misconfiguration that
prevents a node from communicating with some other nodes.

3 Causes of Partial Network Partitioning

Recent reports indicate that network partitioning faults are
common and happen at various scales. Connectivity loss be-
tween data centers [1] leads to network partitions in geo-
replicated systems. Wide area network partitions happen as
frequently as once every four days [6]. Switch failures can
cause a network partition in a data center [5]. Switch fail-
ures caused 40 network partitions in two years at Google [3]
and 70% of the downtime at Microsoft [5]. On a single node,
NIC [22] or software failures can partition a node that may
host multiple VMs. Finally, network partitions caused by cor-

352 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 1: List of studied systems and the number of studied
failures. The shaded rows are systems that implemented a
fault tolerance technique for partial network partitioning.

System Category Failures
Total Catastrophic

Elasticsearch [32] Search engine 17 17
MongoDB [33] Database 9 5
RabbitMQ [18] Messaging 5 3
MapReduce [34] Data processing 4 2
HBase [35] Database 3 2
Mesos [36] Resource mngr. 2 1
HDFS [34] File system 3 1
Ceph [20] Storage system 2 2
MooseFS [37] File system 2 2
Kafka [38] Messaging 2 2
ActiveMQ [39] Messaging 1 1
DKron [40] Resource mngr. 1 1
Total - 51 39

related failures are common [4, 5, 6] and often caused by
system-wide maintenance tasks [3, 5].

We found 51 failure reports detailing system failures due
to partial network partitions, and numerous articles and on-
line discussions discussing the fault [23, 24, 25, 26]. Some
of these reports and discussions mention the root cause of
the partial partition. Partial partitions are caused by a con-
nectivity loss between two data centers [1] while both are
reachable by a third center, the failure of additional links be-
tween racks [27, 28], network misconfiguration [29], firewall
misconfiguration [29], network upgrades [30], and flaky links
between switches [31]. Unfortunately, we did not find fail-
ure reports that detail partial partitioning faults in production
networks.

4 Analysis of Partial Network-Partitioning
Failures

We conduct an in-depth study of partial network partitioning
failures reported in 12 popular systems (Table 1). We aim to
understand the impact and characteristics of these failures and
to identify opportunities for improving system resilience.

4.1 Methodology
We choose 12 diverse and widely used systems (Table 1),
including two databases, a data analysis framework, two file
systems, three messaging systems, a storage system, a search
engine, and two distributed resource managers.

We selected the 51 failures in our study from publicly ac-
cessible issue-tracking systems. First, we used the search
tools in the issue-tracking systems to find tickets related to
partial network partitioning. Users did not classify network
partitioning failures based on the partition type, so we had
to search for all network partitioning failures and manually

identified partial partitioning failures. We used the following
keywords: “network partition,” “partial network partition,”
“partial partition,” “network failure,” “switch failure,” “isola-
tion,” “split-brain,” and “asymmetric partition.” Second, we
considered tickets that were dated 2011 or later. Third, we
excluded tickets marked as “Minor.” For each ticket, we stud-
ied the failure description, system logs, developers’ and users’
comments, and code patches. For tickets that lacked enough
details (e.g., missing output logs or did not have details about
the affected mechanism), we manually reproduced them us-
ing NEAT [12]. Finally, during our evaluation, we found and
reported bugs in Kafka and Elasticsearch. We included these
failures in our study.

We differentiate failures by their manifestation sequences.
In a few cases, the same faulty mechanism leads to two dif-
ferent failure paths. We count these as separate failures, even
if they are reported in a single ticket. Similarly, although the
exact failure is sometimes reported in multiple tickets, we
count it once in our study.

4.2 Limitations

As with any characterization study, our findings may not be
generalizable. Here, we list four potential sources of bias and
describe our best efforts to address them.

1. Representativeness of the studied systems. Although we
study 12 diverse systems (Table 1), our results may not be
generalizable to systems we did not study. The selected
systems follow diverse designs from strongly consistent
(MongoDB, HBase, and Ceph) to eventually consistent
(Elasticsearch) designs and from systems persisting data
on disks and replicating data in-memory across nodes
to caching systems. They follow a primary-backup or
peer-to-peer architecture and use synchronous or asyn-
chronous replication. The selected systems are widely
used: Kafka, ActiveMQ, and RabbitMQ are the most
popular open-source messaging systems; MapReduce,
HDFS, and HBase are the core of the Hadoop platform;
Elasticsearch is a popular search system; and MongoDB
is a popular database.

2. Limited number of tickets. We study all 51 tickets that we
found following our methodology. Statistical inference
indicates that 30 samples can sufficiently represent the
entire population [41]. More rigorously, if we assume the
tickets we found represent a random sample of partial
network partition failures in the wild, the central limit
theorem predicts that our analysis of 51 tickets has a 13%
margin of error at a 95% confidence level. To increase
confidence in our findings, we only report findings that
apply to at least two-thirds of the studied failures. A third
of our findings apply to all failures.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 353

Table 2: Failure impact and percentages of how many failures
caused the corresponding impact.

Impact %
Data loss 23.5%
System unavailability 21.6%
Stale read 15.7%
Data corruption 5.9%
Dirty read 3.9%
Data unavailability 3.9%

Catastrophic (74.5%)

Reduced availability 23.5 %
Other 2%

3. Priority bias. We include only high-impact tickets and
avoid tickets marked by the developers as low-priority.
This sampling methodology may bias the results.

4. Observer error. To reduce the chance for observer errors,
two team members study every failure report using the
same classification methodology. Then, we discuss the
failure in a group meeting before reaching a verdict.

4.3 Findings
This subsection presents nine general findings. Our study in-
dicates that partial network partitioning leads to catastrophic,
silent failures. Surprisingly, these failures are easy to manifest.
The majority of failures are deterministic, require a single-
node partial partition, and require a few events to manifest.
However, our study also identifies failure characteristics that
can inform system designs and improve testing. Finally, we
find that the majority of the studied failures are due to design
flaws, indicating that developers do not expect networks to
fail in this way.

Finding 1: A significant percentage (74.5%) of the studied
failures have a catastrophic impact.
A failure is said to be catastrophic if it leads to a system crash
or violates the system’s guarantees (Table 2). Failures that
reduce availability (e.g., crash of a single replica) or degrade
performance are not considered catastrophic.

Data loss is the most common impact of partial network
failures. For instance, in HBase, region servers store their
logs on HDFS. When a log reaches a certain size, the region
server creates a new log and informs the master of the new
log location. If a partial partition isolates a region server from
the master while both can reach HDFS, the master assumes
that the region server has failed and assigns its logs to a new
region server. If the old region server creates a new log, the
master will not know about it, and the entries in the new log
will be lost [42].

The second most common catastrophic impact of partial
partitions is complete cluster unavailability, from which the
majority of the studied systems suffer. A glaring example of
this failure is the common deployment approach of Zookeeper.
For instance, in ActiveMQ, a ZooKeeper service [43] moni-

tors the cluster master and selects a new master if the current
one fails. If a partial partition isolates the master from all Ac-
tiveMQ nodes while all nodes are reachable from ZooKeeper,
the nodes will pause their operations because they cannot
reach the master. Because ZooKeeper can reach the current
master, it neither detects the problem nor selects a new mas-
ter. The cluster remains unavailable until the partial partition
heals [44]. Kafka and Mesos use Zookeeper in a similar fash-
ion and suffer from a similar failure. The rest of the catas-
trophic failures lead to stale reads, data corruption, loss of
data availability, and dirty reads.

In 23.5% of the failures, a partial partition unnecessarily
reduces system availability. For example, leader election in
MongoDB is based on a majority vote, with an arbiter node
included to break ties. Unfortunately, this design leads to
cluster unavailability under partial network partitions. For
instance, consider a shard that has two replicas (A and B),
with A being the leader. If a partial partition disrupts the
communication between A and B while both can reach an
arbiter, B will detect that A is unreachable and calls for a
leader election. Because there is only one candidate in the
system, the arbiter votes for it, and B becomes the leader. The
arbiter will inform A of the new leader, and A steps down.
A will detect that the leader (B) is unreachable, call for a
leader election, become a leader, and then B steps down. This
leader-election thrashing continues until the network partition
heals [45]. The system is unavailable during leader election,
so this failure significantly reduces system availability. We
discuss the resolution of this failure in Section 5.

Finding 2: Most of the studied failures (84.3%) are silent —
the user is not informed about their occurrence.
Despite the dangerous impact of partial partitioning faults,
most systems do not report to the user that a failure has oc-
curred. This is unsettling because a lack of error or warning
notification delays failure detection. Some systems return a
warning to the user when an operation fails due to partial
network partitioning, but these warnings are ambiguous with
no clear mechanisms for resolution. For example, in Elastic-
search, if a client sends a request to a replica that is partially
isolated from the other replicas, the replica will return “a
rejected execution” exception [46]. This confusing warning
does not inform the user of the problem’s actual cause nor the
steps needed to resolve it.

Finding 3: Leader election, configuration change, and repli-
cation protocol are the mechanisms most vulnerable to partial
network partitioning.
Leader election is the mechanism most vulnerable to partial
network partitions (Table 3). In most cases, these failures
lead to electing two leaders, one at each side of the parti-
tion [47, 48].

Configuration change is the second-most affected mech-
anism. For instance, each node in RabbitMQ maintains a
membership log that lists the current nodes in the cluster. If

354 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 3: Failure percentages per affected mechanism.
Mechanism %
Leader election 37.3%
Configuration change 19.6%
Replication protocol 17.6%
Request routing 11.8%
Scheduling 5.9%
Data migration 5.9%
Data consolidation 2%

nodes have conflicting views on which nodes are part of the
cluster, the RabbitMQ cluster crashes. For instance, in a clus-
ter with three nodes (A, B, and C), when a partial partition
disconnects B and C, B assumes that C crashed and removes it
from the membership log, and C assumes that B crashed and
removes it from the membership log. This inconsistency in
the cluster membership leads to a complete cluster crash [49].

The replication mechanism is the third-most affected mech-
anism. For instance, if a partial partition in Elasticsearch iso-
lates a shard’s leader from the majority of that shard’s replicas,
the leader will wait for a period of time before stepping down.
In this period, the leader continues to accept client write oper-
ations and acknowledges them before successfully replicating
them [50]. If a client writes to the leader and later reads from
one of the other replicas, it may read stale data.

Finding 4: Most failures (60.8%) do not require client access
or require only that clients access one side of the partition.
To reduce the network partition’s impact, some systems limit
client access to one side of the partition [51, 52, 53]. How-
ever, our analysis shows that 60.8% of failures require no
client access at all or only client access to one side of the
partition. As an example of a failure that does not require
client access, in MongoDB, balancer servers monitor the clus-
ter load and migrate data chunks between nodes to rebalance
the load across nodes. After rebalancing the data, a balancer
updates Mongo’s metadata server with the new data location.
If during a re-balance operation of a particular shard a partial
partition isolates the balancer from the metadata service, the
cluster metadata will be in an inconsistent state, leading to
the unavailability of that shard [54].

This finding highlights that system designers should con-
sider the impacts of partial partitioning faults on all operations,
including background operations.

Finding 5: The majority of failures (68.6%) require three or
fewer events (other than the partial partition) to manifest.
Only a few events need to occur for a failure to happen. An
event is a user request, a hardware or software fault, or a start
of a background operation (e.g., leader election and data re-
balancing). This is alarming because a small number of events
can lead to catastrophic failures. Especially that in real de-
ployments, many users interact with the system, increasing
the probability of failure. Table 4 shows that, in 13.7% of fail-

Table 4: Number of events required for a partial network
partitioning failure to manifest.

Number of events %
1 (Just a partial partition) 13.7%
2 9.8%
3 31.4%
4 13.7%
>4 31.4%

Table 5: System connectivity during a partial partition.
Network Partition Characteristic %
Partition any node 33.3%
Partition a specific node 66.6%
• Leader 45.1%
• Nodes with a special role 9.8%
• A central service 7.8%
• New nodes 2%

ures, a partial partition, without any additional events, leads
to a failure.

Finding 6: All the studied failures can be triggered by a
single-node partial partition, with 33.3% of them happen by
partitioning any node.
Arguably, single-node partial partitions (Section 2) are gener-
ally more likely than partitioning more than one node. These
partitions could happen due to a single ToR switch malfunc-
tion or by misconfiguring a single machine’s firewall.

We further study which nodes need to be isolated for a
failure to manifest (Table 5). Of the failures, 33.3% manifest
by partitioning any node in the system—regardless of its
role. Among the failures that require partitioning a specific
node, partitioning the leader replica is most common (45.1%).
In real deployments, partitioning a leader is likely because
almost every node in the cluster is a leader for some shard.
Partitioning a node with a special role (such as an arbiter in
MongoDB) causes 9.8% of the failures.

Finding 7: All the studied failures, except one, are determin-
istic or have known time constraints.
Table 6 shows the timing constraints of the studied failures.
Almost all the failures are either deterministic with no tim-
ing constraints (i.e., whenever the event sequence happens,
a failure happens) or have known timing constraints, such
as the period before considering a node to have failed. Only
one failure is nondeterministic, as an interleaving of multiple
threads causes it.

Table 6: Failures’ timing constraints.
Timing constraint %
No timing constraints 64.7%
Known timing constraints 33.3%
Nondeterministic 2%

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 355

Table 7: Percentage of design and implementation flaws.
Flaw type % Average Time to Resolution
Design 41.2% 260 days
Implementation 31.4% 98 days
Unresolved 27.5% -

Table 8: Number of nodes needed to reproduce a failure.
Number of nodes %
3 nodes 76.5%
4 nodes 21.6%
5 nodes 2%

Finding 8: The resolution of 56.8% of the fixed failures
required changing the design of a protocol or a mechanism.
We consider a code patch to be fixing a design flaw if it
significantly changes the implemented protocol or logic, such
as changing the mechanism to select a master in Elasticsearch.

Most of the fixed failures are caused by a design flaw
(Table 7). This indicates that system designers overlook par-
tial network partitioning failures in the design phase. We
argue that a design review focused on partial partitions would
detect a system’s vulnerability to these failures.

Finding 9: All failures can be reproduced with five nodes,
and all but one can be reproduced using a fault injection tool.
These failures can be easily reproduced with small clusters
of five or fewer nodes (Table 8), and 76.5% require only
three nodes. Furthermore, all the failures except one can be
reproduced using a fault-injection framework that can inject
partial partitioning faults such as NEAT [12].

4.4 Insights
Our analysis shows that partial partitions lead to catastrophic
silent failures that are easy to manifest, are deterministic,
and can be triggered by a single-node partial partition and a
sequence of a few events.

Fortunately, we identify three approaches for improving
system resilience to partial partitions. First, because these
faults are deterministic and can be reproduced on a small clus-
ter, improved testing can reveal the majority of the studied
failures. Our analysis finds timing, client access, and partition
characteristics that significantly reduce the number of suffi-
cient test cases. Second, our study of the code patches reveals
that focused design reviews can identify system vulnerabili-
ties early in the design process.

Third, partial network partitions have two characteristics
that imply that a generic fault tolerance technique is possible.
These faults can be detected by exchanging information be-
tween the nodes, and by definition, there are alternative paths
in the network to reconnect the system. We leverage these
two characteristics in building Nifty (Section 6).

Most of the studied failures are caused by the underlying
assumption that, if a node can reach a service, all nodes can

reach that service, and if a node cannot reach a service then
the service is down. Our analysis shows the danger of such
assumptions; this leads to a confusing state, wherein some of
the system’s parts start executing a fault tolerance mechanism,
while others presume the whole system is healthy and carry
on normal operations. The mix of these two operation modes
is poorly understood and tested.

Finally, we identify that a common usage of external coor-
dination services (e.g., Zookeeper) introduces a vulnerability
to partial network partitioning fault. System designers need
to build additional techniques to detect and handle partial
partitions when using external coordination services.

5 Dissecting Modern Fault Tolerance Tech-
niques

We studied the code patches related to the tickets included in
our study. Six of the systems in Table 1 (MongoDB, Elastic-
search, RabbitMQ, HBase, MapReduce, and Mesos) changed
the system design to incorporate a fault tolerance technique
specific to partial network partitioning faults. The rest of
the systems either patched the code with an implementation-
specific workaround or did not fix the reported bugs yet.

Furthermore, we found that two additional systems,
VoltDB [19, 55] and LogCabin [56] (the original implementa-
tion of the Raft [14] consensus protocol), implement fault tol-
erance techniques for partial partitions. For these two systems,
we did not find failure reports related to partial partitioning
faults in their issue tracking systems, but VoltDB announced
that their recent version tolerates partial partitions [57]. We
experimented with LogCabin to understand the impact par-
tial partitions have on strongly consistent systems and found
that LogCabin incorporates a technique to tolerate partial
partitions. We included VoltDB and LogCabin in our study.

For each of the eight systems, we study the source code,
and extract and analyze the design principles of their fault
tolerance technique. We identify four approaches for tolerat-
ing partial partitions: detecting a surviving clique of nodes,
checking neighbors’ views, verifying failure reports received
from other nodes, and neutralizing one side of the partial
partition. Unfortunately, these techniques have severe short-
comings that may lead to a complete system shutdown or to
the unavailability of a major part of the system. In this section,
we detail these techniques and discuss their shortcomings.

5.1 Identifying the Surviving Clique
Main idea. Upon a partial network partition, the system iden-
tifies the maximum clique of nodes [58], which is the largest
subset of nodes that are completely connected. All nodes that
are not part of the maximum clique are shut down. VoltDB
follows this approach.
VoltDB Implementation. VoltDB [19, 55] is a popular
ACID, sharded, and replicated relational database. VoltDB

356 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2

1

6

5

3

4

Surviving

Clique

Par al

Par on

Figure 2: VoltDB’s surviving
clique. Gray nodes shut down
as they are not in the clique.

0

0.2

0.4

0.6

0.8

1

2 6 10 14 18
Pr
ob

ab
ili
ty
 o
f s
hu

td
ow

n

10
30
50
100

of shut down nodes

Figure 3: The probability of a
VoltDB cluster shutdown. Dif-
ferent lines represent differ-
ent cluster sizes. The x-axis
shows the number of nodes
that are not in the clique.

follows a peer-to-peer approach to implement this technique.
Every node in the system periodically sends a heartbeat to all
nodes. If a node loses connectivity to any node, it suspects
that a partial network partition occurred and starts the recov-
ery procedure. The recovery procedure has two phases. In
the first phase, the node that detects the failure broadcasts a
list of nodes it can reach. When a node in the cluster receives
this message, it broadcasts its list of reachable nodes to all
nodes in the cluster. In phase two, every node independently
combines the information from the other nodes into a graph
representing the cluster connectivity. Each node analyzes this
graph to detect the maximum completely connected clique of
nodes. Every node that finds that it is not part of this “surviv-
ing” clique shuts itself down. Figure 2 shows an example in
which a partial partition disrupts the communication between
nodes 2, 3, and 4 on one side and nodes 5 and 6 on another.
Nodes 5 and 6 are not part of the clique and will shut down.

After identifying the surviving clique, the system verifies
that it did not lose any data by verifying that the surviving
clique has at least one replica of every data shard. If the clique
is missing one shard, such as when all the replicas of a shard
are shut down, the entire system shuts down.
Shortcomings. This fault tolerance approach has two severe
shortcomings. First, it unnecessarily shuts down up to half of
the cluster nodes, reducing the system’s performance and fault
tolerance. Second, this approach causes a complete cluster
shutdown if the surviving clique is missing a single data shard.
To understand how likely a cluster is to shut down, we con-
duct a probabilistic analysis (detailed in our technical report
[59]). Figure 3 shows the probability of a complete cluster
shutdown while varying the cluster size and the number of
nodes that shut down (i.e., nodes that are not part of the sur-
viving clique – the x-axis in Figure 3). Each shard has three
replicas. Our analysis shows that isolating only 10% of the
nodes leads to more than a 50% probability of shutting down
the entire cluster, and isolating only 20% of the nodes leads
to a staggering 90% chance of a complete cluster shutdown.

5.2 Checking Neighbors’ Views
Main idea. When one node (e.g., node S) loses its connection
to another node D, it verifies whether the connection is lost
due to a partial partition. To this end, S asks all nodes in the
cluster whether they can reach D. If a node reports that it can
reach D, this indicates that the cluster is suffering a partial
network partition.

If S detects a partial network partition, S either disconnects
from all nodes that can reach D, which effectively makes
the partition a complete partition, or pauses its operation.
RabbitMQ and Elasticsearch follow this approach.

5.2.1 RabbitMQ

RabbitMQ [18] is a popular messaging system that replicates
message queues for reliability. In RabbitMQ, if a node detects
that its communication with another node (e.g., node D) is
affected by a partial partition, it applies one of the following
policies depending on its configuration.

1. Escalate to a complete partition. The node will drop its
connection with any node that can reach node D. The
goal of this policy is to create a complete partition in
which both sides work independently. This configuration
leads to data inconsistency and requires running a data
consolidation mechanism after the partition heals.

2. Pause: To avoid data inconsistency, once a node discov-
ers the partial partition, it pauses its activities. It resumes
its activities only when the partition heals. The result
of this policy is that a subset of nodes will continue to
operate. This subset will be completely connected and
will run without sacrificing data consistency.

3. Pause if anchor nodes are unreachable: RabbitMQ’s con-
figuration can specify a subset of nodes to act as anchor
nodes. If a node cannot reach any of the anchor nodes, it
pauses. This may lead to creating multiple complete par-
titions if the anchor nodes become partially partitioned.
This may lead to pausing all nodes if all the anchor nodes
are isolated.

After a partition heals, RabbitMQ employs two data con-
solidation techniques: administrator intervention, in which
the administrator decides which side of the partition should
become the authoritative version of the data, and auto-heal,
in which the system makes this determination based on the
number of clients connected to each side. Both techniques
may lead to data loss or inconsistency [12].
Shortcomings. RabbitMQ’s policies have serious shortcom-
ings. Changing a partial partition to a complete partition (poli-
cies 1 and 3) may lead to multiple inconsistent copies of the
data, whereas the pause policy (policy 2) may pause the entire
system or the majority of the nodes. For instance, in Figure 4,
if every node except node 1 detects that it cannot reach a

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 357

2 4

53
Par�al

Par��on

1I see

node 4

I see

node 2

Figure 4: A scenario for Rab-
bitMQ’s pause policy. Every
non-bridge node pauses (gray
nodes) as it detects that it can-
not reach one node on the
other side.

0

5

10

15

(1,13) (3,11) (5,9) (7,7)

#
 o

f
P

a
u

se
d

 N
o

d
e

s

Configuration

Figure 5: The median number
of paused nodes in a cluster of
15 nodes. In all runs, one node
is unaffected by the partition.
The notation (i, j) shows the
number of nodes on each side
of the partition.

node on the other side of the partition, it pauses, leading to a
complete cluster pause.

In the case of the pause policy (policy 2), to determine how
many nodes pause under different partial partition scenarios,
we conduct an experiment in which we deploy a 15-node Rab-
bitMQ cluster, introduce a partial partition, and observe how
many nodes pause. In all experiments, we inject a partition
such that one node remains unaffected and able to reach all
nodes. Figure 5 shows the median number of paused nodes
under various partition configurations. We run each configura-
tion 30 times. Surprisingly, in all configurations almost all the
cluster nodes pause because each node detects that it cannot
reach at least one node on the other side of the partition. Even
isolating a single node (configuration (1,13) in Figure 5) leads
to pausing 12 nodes. Our investigation reveals that nodes de-
clare another node unreachable after missing its heartbeats
for a timeout period. In RabbitMQ, the default timeout period
is 1 minute, which gives enough time for many nodes to de-
tect the partition and pause. Using a shorter timeout periods
causes some nodes to declare prematurely that other nodes
have failed, even without a partial partition.

5.2.2 Elasticsearch

Elasticsearch [32] is a popular search engine. Its master elec-
tion protocol uses a fault tolerance technique based on check-
ing neighbors’ views. In Elasticsearch, the node with the
lowest ID is the master. If a node (e.g., S) cannot reach the
master, it contacts all nodes to check whether they can reach
the master. If any node reports that it can reach the master,
S pauses its operations. If none of the nodes can reach the
master, the node with the lowest ID becomes the new master.
Shortcomings. First, this approach can affect cluster avail-
ability quite severely, as all nodes that cannot reach the master
pause. In the worst case, it can cause a complete cluster un-
availability. For instance, in Figure 6, none of the nodes can
reach the master except node 2, which refuses to become the
new master because it can reach a node with a lower ID (node
1). Consequently, all the nodes in the cluster pause. Further-

3

4

5

1

2

Partial
Partition

I can
see the
master

I can't
reach

majority

Master

Figure 6: Elasticsearch un-
availability scenario. The mas-
ter pauses because it cannot
reach majority of nodes, and
all nodes pause because they
cannot reach the master.

Workers

ZooKeeper

Masters

Partial
Partition

5

1

2

4

3
6

Figure 7: A Mesos cluster be-
comes unavailable when a par-
tial partition isolates the mas-
ter node and its backups.

more, because the master cannot reach a majority of nodes, it
also pauses, which leads to system unavailability [60]. Sec-
ond, Elasticsearch uses this approach only to fortify the master
election protocol, which leaves the rest of the system vulnera-
ble to partial partitions.

5.3 Failure Verification
Main idea. If a node (e.g., S) receives a notification from
another node that a third node (D) has failed, node S first
verifies that it cannot reach D before taking any fault tolerance
steps. This approach is used in the leader election protocols
of MongoDB [33] and LogCabin [56]. It was also used in an
earlier version of Elasticsearch.

In MongoDB and LogCabin, if a leader is on one side of
a partial partition but can still reach the majority of nodes,
the nodes on the other side of the partition unnecessarily
call for leader election. Finding 1 in Section 4 discusses a
scenario in which a partial partition leads to continuous leader
election thrashing and to system unavailability [45]. To avoid
unnecessary elections, when a node receives a call for election,
it first verifies that the current leader is unreachable. A node
participates in an election only if it cannot reach the current
leader, else it will ignore the failure report.
Shortcomings. This approach has two major shortcomings.
First, it leads to the unavailability of a large number of nodes.
Second, it is mechanism specific. Designing a system-wide
fault tolerance mechanism using this approach is tricky be-
cause one cannot ignore every failure notification. For in-
stance, using this approach in an earlier version of Elastic-
search backfired [61]. During data migration from a primary
replica of a shard to a secondary replica, if a partial partition
isolates the primary replica from the secondary replica while
both are reachable from the master node, the primary requests
a new secondary replica. Because the master can reach the
secondary replica, it ignores the failure report. This leads to
the unavailability of the affected shard [61]. Broadly applying

358 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 9: Summary of shortcomings. (D) indicates that the nodes shut down. (P) indicates that the nodes pause until the partition
heals. In the worst case, RabbitMQ pauses all nodes except one. We consider this a complete cluster loss (1). Under different
RabbitMQ policies, (2) and (3) can occur. (S) indicates a system-wide technique, whereas (M) is a mechanism-specific technique.

Surviving Clique Checking w/ Neighbors Failure Verification Neutralizing Nodes NiftyVoltDB Elasticsearch RabbitMQ MongoDB/LogCabin MapReduce/HBase Mesos
Reduced Availability ×D ×P ×P ×P ×D ×P

Complete Unavailability × × ×1

Complete Partition ×2

Double Execution ×
Data Unavailability ×3

Scope (System/Mechanism) S M S M M M S

this fault tolerance technique is not feasible because design-
ers have to revisit the design of every system mechanism,
consider the consequences of ignoring failure reports, and
examine the interaction of various mechanisms under partial
partitions.

5.4 Neutralizing Partitioned Nodes

Main idea. One challenge related to handling partial network
partitions is that nodes may update a shared state that is reach-
able from both sides of the partition, leading to data loss and
inconsistency. To avoid this problem, this approach attempts
to neutralize one side of the partition. However, the neutraliza-
tion method is implementation-specific. HBase, MapReduce,
and Mesos use this approach.
HBase Implementation. In HBase, data shards are managed
by an HBase node but are stored on HDFS. If the HBase
leader cannot reach one of the HBase nodes, it neutralizes that
node by renaming the shard’s directory in HDFS. Renaming
a shard’s directory effectively prohibits the old HBase node
from making further changes to the shard [42]. The leader
then assigns the shards of that node to a new HBase node.
MapReduce Implementation. In MapReduce, a manager
node assigns tasks to AppMaster nodes. If the manager can-
not reach an AppMaster, it reschedules the tasks assigned to
that AppMaster to a new AppMaster. With partial network
partitions, this approach may result in two AppMasters work-
ing on the same task, which leads to data corruption [62].
To fix this problem, when an AppMaster completes a task, it
writes a completion record in a shared log on HDFS. Before
an AppMaster executes a new task, it checks the shared log
for a completion record. If it finds one, it does not re-execute
the task.
Mesos Implementation. In Mesos, a master node assigns
tasks to worker nodes. A Zookeeper instance selects the mas-
ter node. The master sends periodic heartbeats to workers.
If a partial partition isolates a worker node from the master,
it pauses its operations. Figure 7 shows a worst-case sce-
nario in which the partial partition isolates the master and its
backup from all workers, which leads to a complete cluster
unavailability. Finally, if a master detects that one of the work-
ers is unavailable, it marks the tasks that were running on

the unreachable worker as lost and reschedules them on new
workers. This may lead to the double execution of a task [63].

Shortcomings. First, it is not practical to use this approach
for system-wide fault tolerance, as this approach is specific to
a certain protocol and implementation. The presented three
systems use this approach for different mechanisms. To use
this approach broadly, designers must go through the daunting
task of independently designing a fault tolerance technique for
every mechanism in the system and understanding the interac-
tion between these mechanisms. Second, this approach leaves
the nodes on one side of the partition idle, which reduces
system performance and availability.

5.5 Summary

Table 9 summarizes the shortcomings of the current fault tol-
erance techniques, none of which are adequate for modern
cloud systems. All current techniques severely affect system
availability, as they unnecessarily lose a significant number of
nodes. Failure verification and neutralizing partitioned nodes
are used to fortify specific mechanisms, rather than providing
system-wide fault tolerance. Using mechanism-specific fault
tolerance techniques requires the independent fortification of
all system mechanisms and the analysis of the interactions
between various mechanisms. This approach complicates sys-
tem design, fault analysis, and debugging. An example of a
system that uses multiple mechanism-specific techniques to
tolerate partial partitions is Elasticsearch, which uses check-
ing neighbors’ view, failure verification [61], and neutralizing
partitioned nodes [64] in different mechanisms. However,
Elasticsearch has the highest number of reported failures due
to partial partitions (Table 1).

Detecting the surviving clique and checking neighbors’
views can be used to build a system-wide fault tolerance tech-
nique. However, as Table 9 shows, these techniques lead to a
complete system shutdown or significant loss of system ca-
pacity. This realization motivated us to build Nifty (Section 6),
a system-wide fault tolerance technique that overcomes the
aforementioned shortcomings.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 359

Partial
Partitions

32

1

Dst IP # Hops Out MAC
IP4 2 MAC 3
...

4

Dst IP # Hops Out MAC
IP4 1 MAC 4
...

Dst IP # Hops Out MAC
IP4 3 MAC 2
...

Figure 8: A Nifty routing example. A partial network parti-
tion isolates node 1 from nodes 3 and 4, and another partial
partition isolates node 4 from nodes 1 and 2. Communication
between 1 and 4 is routed through nodes 2 and 3.

6 Nifty Design
To overcome the limitations of current fault tolerance tech-
niques, we design a simple, transparent network-partitioning
fault-tolerant communication layer (Nifty).

Nifty follows a peer-to-peer design in which every node
in the cluster runs a Nifty process. These processes collabo-
rate in monitoring cluster connectivity. When Nifty detects
a partial partition, it rerouts the traffic around the partition
through intermediate nodes (i.e., bridge nodes). For instance,
in Figure 8, if two partial partitions isolate node 1 from node
4, Nifty reroutes packets exchanged between nodes 1 and 4
through nodes 2 and 3.

Although Nifty keeps the cluster connected, it may increase
the load on the bridge nodes, leading to a lower system per-
formance. System designers who use Nifty may optimize the
data or process placement or employ a flow-control mecha-
nism to reduce the load on bridge nodes. To facilitate system-
specific optimization, Nifty provides an API to identify bridge
nodes.
Connectivity monitoring. Each Nifty process uses heart
beating to monitor its connectivity with all other Nifty pro-
cesses. Each Nifty process maintains a distance vector that
includes the distance, in number of hops, to every node in the
cluster. If a Nifty process misses three heartbeats from an-
other Nifty process, it assumes that the communication with
that process is broken and updates its distance vector. To de-
tect when the communication between nodes recovers, Nifty
processes continue to send heartbeats to disconnected nodes.
Recovery. Each Nifty process sends its distance vector (pig-
gybacked on heartbeat messages) to all other nodes. Every
Nifty process then uses these vectors to build and maintain a
routing table.

When a Nifty process detects a change in the cluster (e.g.,
a node becomes unreachable or reachable), it initiates the
route discovery procedure to find new routes. In our proto-
type, we use the classical Bellman–Ford distance-vector pro-
tocol [65, 66]. We use hop count as the link weight. By hop,
we mean a hop between end nodes. Using hop count natu-
rally favors direct connections, when they exist, over rerouting
through intermediate nodes.

An entry in the routing table has a destination IP address,
hop count, and output MAC address. If a packet is received
with a destination IP address that matches an entry in the
routing table, Nifty will change the destination MAC address
of the packet to equal the output MAC address found in the
routing table, then send the packet out.
Route deployment. Nifty uses OpenFlow [67] and Open
vSwitch [68] to deploy the new routes. For instance, to reroute
packets sent from node 1 to node 4 through nodes 2 and 3
in Figure 8, the Nifty process on node 1 installs rules on its
local Open vSwitch to change the destination MAC address
of any packet destined to node 4 to the MAC address of node
2. Whenever node 2 receives a packet with node 4 IP address
as its destination, it changes the destination MAC address to
node 3 MAC address and sends the packet out. Finally, when
node 3 receives a packet with node 4 IP address, it changes
the MAC address to node 4 MAC and sends the packet out.
Node classification. A system using Nifty can be optimized
to reduce the amount of data forwarded through bridge nodes.
The approach to do so is system-specific and may entail re-
locating processes in a cluster, dropping client requests, or
reducing query result quality [7].

To facilitate the implementation of these mechanisms, Nifty
identifies which nodes are on the same side of the network
partition and which nodes serve as bridge nodes. It then pro-
vides this node classification to the system running atop of it.
Section 7.3 demonstrates how this information can facilitate
optimizing process placement in a VoltDB cluster.

7 Evaluation
Our evaluation answers three questions. How much overhead
does Nifty impose when there are no network partitions?
What is a system’s performance with Nifty under a network
partition? What is the utility of Nifty’s classification API?
Testbed. We conduct our experiments using 40 nodes at the
Cloudlab Utah cluster. Each node has an Intel Xeon E5 10-
core CPU, 64 GB of RAM, and a Mellanox ConnectX-4 25
Gbps NIC. To inject a network partition fault, we modify the
Open vSwitch rules on the nodes to drop packets between the
affected nodes. In all our experiments, we report the average
for 30 runs. We note that the standard deviation in all our
experiments is lower than 5%.

7.1 Overhead Evaluation
To evaluate Nifty’s overhead, we measure its impact on the
performance of a synthetic benchmark using iperf [69] and six
data-centric systems (i.e., storage, database, and messaging
systems). The iperf experiment uses a 100-node cluster to
measure Nifty’s impact on larger clusters. The systems we
selected are:

• HDFS: We deploy HDFS (v3.3.0) on six nodes (one
name node and five data nodes) and with a replication

360 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

1

2

3

4

5

0 10 20 30 40

Th
ro
ug
hp

ut
	(G

B/
s)

Number	of	Clients

HDFS
HDFS-Nifty
HDFS-Nifty-P

(a) HDFS write throughput

0
2
4
6
8
10
12
14
16

0 1 2 3 4 5

La
te
nc
y	
(s
)

Throughput	(Mops/s)

Kafka
Kafka-Nifty
Kafka-Nifty-P
Kafka-P

(b) Kafka

0

5

10

15

20

25

0 25 50 75 100 125 150 175

La
te
nc
y	
(m

s)

Throughput	(1000	ops/s)

ActiveMQ
ActiveMQ-Nifty
ActiveMQ-Nifty-P

(c) ActiveMQ

0

2

4

6

8

0 100 200 300

La
te
nc
y	
(m

s)

Throughput	(1000	ops/s)

MongoDB
MongoDB-Nifty
MongoDB-Nifty-P

(d) MongoDB

0

0.4

0.8

1.2

1.6

2

300 800 1300 1800

La
te
nc
y	
(m

s)

Throughput	(1000	ops/s)

VoltDB
VoltDB-Nifty
VoltDB-Nifty-P

(e) VoltDB

0
1
2
3
4
5
6
7
8

0 20 40 60 80

La
te
nc
y	
(m

s)

Throughput	(1000	ops/s)

RabbitMQ
RabbitMQ-Nifty
RabbitMQ-Nifty-P
RabbitMQ-P

(f) RabbitMQ

Figure 9: Nifty’s overhead. The average throughput for HDFS (a) and the average throughput vs. average latency for the rest of
the systems. (-P) denotes the results with a partial partition.

level of three. To avoid disk access, we configure data
nodes to use tmpfs. We use the HDFS standard bench-
mark (TestDFSIO). The benchmark reads and writes 1
GB files.

• Kafka: We deploy Kafka (v2.6.0) on five nodes. We dis-
tribute the queues (aka, topics) among nodes to balance
the load. Each message is replicated on three nodes. We
use Kafka’s benchmarking tool to generate load on the
system. The experiments use a set of producers and con-
sumers. Each producer sends messages to a dedicated
queue and each queue has one consumer.

• ActiveMQ: We deploy ActiveMQ Artemis (v2.15.0)
on five nodes with each queue being replicated on two
nodes. The experiments use a set of producers and con-
sumers. Each producer sends messages to a dedicated
queue and each queue has one consumer.

• MongoDB: We deploy MongoDB (v4.4.1) on six nodes
(one config server and five mongod nodes) and with a
replication level of three. We discuss our results with
the Yahoo benchmark workload B (95% reads and 5%
writes) with a uniform distribution [70]. We use 10 mil-
lion records. The rest of the Yahoo benchmark workloads
shows similar results.

• VoltDB: We deploy VoltDB (v9.0) on nine nodes, with
data sharding enabled and a replication level of three.
We use the Yahoo benchmark and the TCP-C benchmark.
Figure 9.e shows the throughput-latency curve under Ya-
hoo benchmark workload B (95% reads and 5% writes)

with a uniform distribution. The results using the TPC-
C benchmark and the Yahoo benchmark workloads A
and C with uniform and skewed loads show similar low
overhead.

• RabbitMQ: We deploy RabbitMQ (v3.8.2) on three
nodes. We use the mirrored mode in which each queue
has a leader replica and two backup replicas. We dis-
tribute the queue masters among brokers to distribute
the load. The experiments use a set of producers and
consumers. Each producer sends messages to a dedi-
cated queue and each consumer reads messages from a
dedicated queue.

Results. We compare the throughput and average latency of
each system with and without Nifty when there is no partial
network partition. We evaluate Nifty with a partial partition
in Section 7.2.

Figure 9 shows the write throughput of HDFS (Figure 9.a)
and the throughput-latency curve for Kafka (Figure 9.b),
ActiveMQ (Figure 9.c), MongoDB (Figure 9.d), VoltDB
(Figure 9.e), and RabbitMQ (Figure 9.f). The results show
that Nifty does not add noticeable overhead; for all systems,
the curves almost completely overlap. This is because Nifty
processes exchange a negligible number of packets. Each
Nifty process sends a single UDP heartbeat packet every 200
ms to other nodes in the system. Consequently, in the largest
deployment of nine nodes, each node sends only 40 packets
every second.
Scalability evaluation. Nifty uses all-to-all heart beating to
monitor a cluster’s connectivity. Consequently, Nifty’s over-
head increases with the cluster size. To measure Nifty’s scal-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 361

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

Th
ro
ug
hp

ut
	(
G
bp

s)

Number	of	nodes

iperf
iperf-Nifty

Figure 10: Scalability evaluation. Average throughput while
increasing the number of nodes.

ablity, we evaluate its overhead on a 100-node CloudLab Utah
cluster. For this experiment, we limit the throughput of each
node to 1 Gbps, as CloudLab can not support a full 10-Gbps
connectivity between the 100 nodes we managed to book.
To generate network intensive load, we use iperf [69]. Half
of the nodes run an iperf server, and the other half run an
iperf client. Each client communicates with a single server.
Figure 10 shows the aggregate throughput of the iperf servers
when deployed with and without Nifty. The figure shows that
Nifty’s overhead is negligible. When using 100 nodes, Nifty
degrades the aggregate throughput by only 3.5%. Neverthe-
less, this monitoring approach will not scale to clusters with
thousands of nodes. We are currently exploring the design of
a fault tolerance technique that can scale to larger clusters.

7.2 Handling Partial Partitions
To demonstrate the effectiveness of the proposed approach,
we evaluate Nifty’s performance with the six aforementioned
systems under a partial partition fault. We note that RabbitMQ
and VoltDB implemented two different techniques for tolerat-
ing partial partitions (Section 5).
Partial partition setup. We use the same deployment of the
six aforementioned systems. Each system is deployed on an
odd number of replicas. We introduce a partial partition that
leaves one node as a bridge node and puts an equal number
of nodes on each side of the partition. Client nodes are not
affected by the partition. We partition the cluster this way to
create maximum pressure on the bridge node.

Figure 9 shows the system performance when the cluster
suffers from the partial partition. We notice that all the six
systems are severely effected by the partial partition. HDFS,
ActiveMQ, MongoDB, and VoltDB suffer a complete clus-
ter pause or shutdown when deployed without Nifty. The
VoltDB cluster shuts down because, after detecting the surviv-
ing clique, the system misses at least one shard. This confirms
our analysis in Section 5.1.

RabbitMQ uses the checking neighbor’s views fault toler-
ance approach. In our deployment, each queue is mirrored on
a backup replica. Due to the strong consistency requirement,
we configure RabbitMQ to pause in case of partial partition.

0

2

4

6

8

10

12

0 500 1000 1500 2000

Ta
il	
La
te
nc
y	
(m

s)

Throughput	(1000	ops/s)

VoltDB
VoltDB-Nifty
VoltDB-Nifty-P

(a) VoltDB tail latency.

0

5

10

15

20

25

30

0 20 40 60 80

Ta
il	
la
te
nc
y	(
m
s)

Throughput	(1000	ops/s)

RabbitMQ
RabbitMQ-Nifty
RabbitMQ-Nifty-P
RabbitMQ-P

(b) RabbitMQ tail latency.

Figure 11: Tail latency evaluation. Average throughput vs.
99th percentile of latency.

We deploy RabbitMQ on three nodes. Unfortunately, we could
not use a larger RabbitMQ cluster because partial partitions
often lead to the pause of the entire RabbitMQ cluster when
Nifty is not used (Figure 4). Even with three nodes, partial
partitions sometimes lead to pausing two out of three nodes.
We discard those results and only include results in which one
node pauses. Consequently, our results show the best possible
performance of RabbitMQ under partial partitions. Pausing
a broker in RabbitMQ leads to more than 50% reduction in
throughput (RabbitMQ-P in (Figure 9.f)).

Kafka uses Zookeeper to monitor a cluster nodes. If a par-
tial partition isolates a queue leader from the majority of repli-
cas while Zookeeper runs on a bridge node, Zookeeper will
not select a new leader and the entire cluster pauses (Finding 1
in Section 4). To mitigate this, we made sure that Zookeeper
falls on one side of the partition. In this case, all the nodes
on the other side of the partition that cannot reach Zookeeper
are removed from the cluster. In our experiment, the partial
partition causes two nodes to pause, which leads to almost a
50% reduction in system throughput (Figure 9.b).

Figure 9 shows that Nifty effectively masks the partial par-
tition, so none of the nodes shut down or pause. Figure 9.a
shows the write operation throughput for HDFS. With a repli-
cation level of three, each file has replicas on both sides of a
partial partition. Consequently, for every 1 GB of data written,
1 or 2 GB of data are rerouted through the bridge node. This
reduces the system throughput by up to 45%. We note that
having a partial partition result in a performance degradation
is better than a complete system unavailability when HDFS
is deployed without Nifty. For the rest of the systems, dur-
ing the partial partition, almost 50% of client requests and
responses are rerouted through the bridge node. Even so, the
system throughput only decreases by 2-6.7% and latency only
increases by 3-7.8%. This shows that Nifty can effectively
mask partial partitions and is able to utilize remaining con-
nections to reduce the performance impact.

Figure 11 shows the tail latency for VoltDB and RabbitMQ
for the same experiments presented in Figure 9. The figure
shows the average throughput and the 99th percentile of la-
tency while increasing the load on the system. The figure
shows that Nifty increases the 99th percentile latency by up
to 6.8% without a partial partition and by 15% under a partial
partition failure.

362 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

7.3 Classification API Utility

In this section, we demonstrate the utility of Nifty’s classifica-
tion API. In VoltDB, a single server (aka, multi-data-partition
initiator or MPI) processes all multi-shard operations. The
MPI divides a multi-shard query (e.g., a join) to sub-queries,
such that each sub-query targets a single shard. The MPI
forwards each sub-query to its shard leader, gathers the inter-
mediate results, performs final query processing, and sends
the result to the client.

When deploying VoltDB atop Nifty, if the MPI node is
on one side of the partition, a potentially significant volume
of intermediate data passes through the bridge node. In our
setup, when the MPI is on one side of the partition, 50% of
the intermediate results are rerouted through the bridge node.
This increases operation latency and the load on bridge nodes.

To improve the performance of multi-shard operations, the
MPI process can be migrated to a bridge node. This effec-
tively eliminates the need to reroute any traffic for multi-shard
queries. We modify VoltDB to use Nifty’s API to identify
bridge nodes and migrate the MPI to a bridge node.

To evaluate this optimization’s effectiveness, we evaluate
the effect of the MPI’s location on system performance. We
restrict clients to contacting VoltDB nodes on one side of
the partition and compare the system performance of three
MPI placements: on clients side of the partition (client side in
Figure 12), on the bridge node (bridge), and on the side oppo-
site to the clients (opposite side). Bridge placement represents
our optimization.
Setup and Workload. We use the same VoltDB configuration
and partial partition setup detailed in the previouse sections.
Unfortunately, VoltDB has limited support for join queries,
so it cannot run standard benchmarks such as TPC-H [71]. In
our experiments, we use a simple synthetic benchmark that
joins two tables. The benchmark has two sharded tables of 20
fields each. Each field is 50 bytes, leading to approximately
1 KB rows. To use multiple shards, clients issue a range
query that joins the two tables on the primary key. The client
issues a query with a range that includes four primary keys.
Consequently, the query result size is limited to four rows,
with a total size of almost 8 KB. We populate the database
with 20 GB of data before running the experiments. We report
the average and standard deviation for 30 runs.
Results. Figure 12 shows the system throughput (a) and
the average latency (b) for the three possible MPI place-
ments. During a partial partition fault, placing the MPI on
a bridge node decreases the latency by up to 11% and im-
proves throughput by 11% compared to client and opposite
side placements. Placing the MPI on a bridge node reduces
the number of hops the join query must make before the MPI
accumulates all the results and sends the query reply. Fur-
thermore, bridge placement achieves throughput and latency
within 4% of VoltDB’s performance when there is no partition
(“no partition” in Figure 12).

0

10

20

30

40

0 50 100 150 200

La
te
nc
y	
(m

s)

Number	of	Clients

No	Partition
Bridge
Client	Side
Opposite	Side

(a) Latency

0

1

2

3

4

5

6

0 50 100 150 200

Th
ro
ug
hp

ut
	(1
00
0	
op

s/
s)

Number	of	Clients

No	Partition
Bridge
Client	Side
Opposite	Side

(b) Throughput

Figure 12: The impact of MPI placement on VoltDB’s per-
formance. Figure shows the average latency (a) and average
throughput (b). Standard deviation was less than 2%.

We measure the amount of data forwarded through the
bridge nodes for each one of those configurations; placing the
MPI on the bridge node imposes the least overhead. When
using 128 clients, 72 MB, 5 GB, and 6.5 GB of data are
forwarded through the bridge node when the MPI is placed
on the bridge, client side, and opposite side, respectively. The
opposite side rerouts more data than the client side placement,
as the client request and the result are also rerouted through
the bridge node.

8 Related Work
To the best of our knowledge, this is the first study to focus on
partial network partitioning, characterize its failures, dissect
modern fault tolerance techniques, and explore the design of
a generic fault tolerance technique for this type of fault.

A number of previous efforts analyzed failures in dis-
tributed systems, including characterizing specific component
failures [5, 6, 72, 73, 74, 75] and characterizing failures in a
specific domain such as HPC [76, 77, 78], IaaS clouds [79],
data-mining services [80], hosting services [8, 81], data-
intensive systems [82, 83, 84], and cloud systems [85]. Our
work complements these efforts by focusing on failures trig-
gered by partial network partitions.

In our previous work [12], we studied 136 network parti-
tioning failures focusing on complete partitions. This previ-
ous work identified partial partitions, presented examples of
how they can lead to system failures, and presented NEAT,
a testing tool that can inject complete and partial network
partitioning faults. We use NEAT to reproduce some of the
reported failures. This paper presents an in-depth analysis of
partial partition failures and fault tolerance techniques and
proposes a novel fault-tolerant communication layer.

Comparing the characteristics of partial and complete par-
titions [12] shows that they have similar catastrophic impact
and manifestation and reproducibility characteristics. Partial
partitions seem easier to manifest. While all partial partition
failures are triggered by a single-node partial partition and
almost all of the failures are deterministic, 88% of the com-
plete partitions manifest by isolating a single node and 80%
of them are deterministic. Furthermore, we found twice as
many failure reports reporting complete partitions than partial
partitions.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 363

Despite their similarity in causing catastrophic failures and
being easy-to-manifest, partial and complete partitions are
fundamentally different faults. Unlike complete partitions, a
cluster suffering a partial partition is still connected but not all-
to-all connected. Consequently, the CAP theorem bounds [13]
do not apply to partial partitions. Furthermore, fault tolerance
techniques for complete partitions cannot handle partial par-
titions or lead to pausing up to half of the cluster nodes. For
instance, using majority vote to elect a leader is an effective
mechanism to tolerate complete partitions. This approach
alone is not effective in handling partial partitions, as there
could be multiple completely connected subgroups with each
connecting a majority of nodes. Section 5 shows how using
only majority voting can lead to leader election thrashing and
system unavailability.

Software-defined networking capabilities have been used
to engineer traffic and optimize system operations, including
offering network virtualization [86]; building network over-
lays [87]; performing network measurements [88, 89]; and im-
plementing in-network firewalls [90], load balancers [91, 92],
and key-value-based routing [93, 94]. Nifty is similar in spirit
to these systems, as we use Open vSwitch capabilities to
implement an overlay to mask partial partitions.

9 Concluding Remarks
Our work sheds light on a peculiar type of infrastructure fault
and highlights the need for further research to understand such
faults and explore techniques to improve systems’ resiliency.

This is the first work to focus on partial network partition-
ing fault and present an in-depth analysis of system failures
triggered by this fault. We identify characteristics that can
facilitate better test design. Our findings highlight that fo-
cused design reviews can identify vulnerabilities early in the
design process. We dissect the implementation of eight pop-
ular systems and study their fault tolerance techniques. In
doing so, we identify four main approaches for tolerating par-
tial partitions. Unfortunately, all implemented fault tolerance
techniques have severe shortcomings.

We, therefore, build Nifty to overcome the limitations of
modern fault tolerance techniques. Nifty is a simple, transpar-
ent communication layer that reroutes packets around partial
partitions. We note that modern systems already incorporate
a membership and connectivity monitoring. We show that ex-
tending the current implementations with a detour mechanism
is an effective and low overhead fault tolerance technique to
partial partitions. The source code for Nifty is available at
https://github.com/UWASL/NIFTY

Acknowledgment
We thank the anonymous reviewers, our shepherd, Jason Flinn,
Omid Abari, Ali Mashtizadeh, and Khuzaima Daudjee for
their insightful feedback. We thank the artifact evaluation

committee members for their effort in evaluating Nifty and
for their feedback. We thank Joslin Goh for her feedback
on our probabilistic analysis of VoltDB’s failure probabil-
ity. This research was supported by an NSERC Discovery
grant, Canada Foundation for Innovation (CFI) grant, and a
Waterloo-Huawei Joint Innovation lab grant.

References
[1] Daniel Turner, Kirill Levchenko, Jeffrey C Mogul, Ste-

fan Savage, Alex C Snoeren, Daniel Turner, Kirill
Levchenko, Jeffrey C Mogul, Stefan Savage, and Alex C
Snoeren. On failure in managed enterprise networks.
HP Labs HPL-2012-101, 2012.

[2] Data center: Load balancing data center, solutions refer-
ence nework design. Technical report, Cisco Systems,
Inc., 2004.

[3] Ramesh Govindan, Ina Minei, Mahesh Kallahalla,
Bikash Koley, and Amin Vahdat. Evolve or die: High-
availability design principles drawn from googles net-
work infrastructure. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 58–72. ACM, 2016.

[4] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Expe-
rience with a globally-deployed software defined wan.
In ACM SIGCOMM Computer Communication Review,
volume 43, pages 3–14. ACM, 2013.

[5] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan.
Understanding network failures in data centers: measure-
ment, analysis, and implications. ACM SIGCOMM Com-
puter Communication Review, 41(4):350–361, 2011.

[6] Daniel Turner, Kirill Levchenko, Alex C Snoeren, and
Stefan Savage. California fault lines: understanding
the causes and impact of network failures. ACM SIG-
COMM Computer Communication Review, 41(4):315–
326, 2011.

[7] Eric A Brewer. Lessons from giant-scale services. IEEE
Internet computing, 5(4):46–55, 2001.

[8] David Oppenheimer, Archana Ganapathi, and David A
Patterson. Why do internet services fail, and what can
be done about it? In USENIX symposium on internet
technologies and systems, volume 67. Seattle, WA, 2003.

[9] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, et al. TAO: Face-
book’s distributed data store for the social graph. In
Presented as part of the 2013 USENIX Annual Techni-
cal Conference (USENIX ATC 13), pages 49–60, 2013.

364 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/UWASL/NIFTY

[10] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan
Katz-Bassett, and Harsha V Madhyastha. Spanstore:
Cost-effective geo-replicated storage spanning multi-
ple cloud services. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Prin-
ciples, pages 292–308. ACM, 2013.

[11] James C Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, Jeffrey John Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. Spanner: Google’s globally
distributed database. ACM Transactions on Computer
Systems (TOCS), 31(3):8, 2013.

[12] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta,
and Samer Al-Kiswany. An analysis of network-
partitioning failures in cloud systems. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 51–68, 2018.

[13] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant
web services. SIGACT News, 33(2):51–59, June 2002.

[14] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages
305–319, 2014.

[15] Leslie Lamport et al. Paxos made simple. ACM Sigact
News, 32(4):18–25, 2001.

[16] Douglas B Terry, Marvin M Theimer, Karin Petersen,
Alan J Demers, Mike J Spreitzer, and Carl H Hauser.
Managing update conflicts in bayou, a weakly connected
replicated storage system. In SOSP, volume 95, pages
172–182, 1995.

[17] Barbara Liskov and James Cowling. Viewstamped repli-
cation revisited. Technical Report MIT-CSAIL-TR-
2012-021, MIT, July 2012.

[18] Rabbitmq message broker. https://www.rabbitmq.com.
Accessed: Apr. 2020.

[19] Voltdb in-memory database platform. https://www.
voltdb.com/. Accessed: Apr. 2020.

[20] The ceph object store. https://ceph.io/. Accessed: Apr.
2020.

[21] Robin J. Wilson. Introduction to Graph Theory. Prentice
Hall/Pearson, New York, 2010.

[22] bnx2 cards intermittantly going offline. https://www.
spinics.net/lists/netdev/msg152880.html. Accessed:
Apr. 2020.

[23] Simon J Maple and Ian Robinson. Transaction recovery
in a transaction processing computer system employing
multiple transaction managers, October 20 2015. US
Patent 9,165,025.

[24] Christian Maihofer. A survey of geocast routing pro-
tocols. IEEE Communications Surveys & Tutorials,
6(2):32–42, 2004.

[25] Matthew Milano and Andrew C Myers. Mixt: a lan-
guage for mixing consistency in geodistributed trans-
actions. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, pages 226–241. ACM, 2018.

[26] Observability in paxos clusters. https://davecturner.
github.io/2017/08/18/observability-in-paxos.html. Ac-
cessed: Apr. 2020.

[27] Partial network partitions and obstacles to inno-
vation. https://rachelbythebay.com/w/2012/02/16/
partition/. Accessed:Apr. 2020.

[28] Partial network partition and retries. https://github.com/
elastic/elasticsearch/issues/6105. Accessed: Apr. 2020.

[29] Healthchecking is not transitive. https://www.
robustperception.io/healthchecking-is-not-transitive.
Accessed: Apr. 2020.

[30] Cluster broken after switches upgrade. https://github.
com/elastic/elasticsearch/issues/9495. Accessed: Apr.
2020.

[31] Using map output fetch failures to blacklist nodes
is problematic. https://issues.apache.org/jira/browse/
MAPREDUCE-1800. Accessed: Apr. 2020.

[32] Elasticsearch: Distributed search & analytics. https:
//www.elastic.co/products/elasticsearch. Accessed: Apr.
2020.

[33] Mongodb: The database for modern applications. https:
//www.mongodb.com/. Accessed: Apr. 2020.

[34] The apache hadoop project. http://hadoop.apache.org/.
Accessed: Apr. 2020.

[35] Apache hbase. https://hbase.apache.org/. Accessed: Apr.
2020.

[36] Apache mesos. http://mesos.apache.org/. Accessed:
Apr. 2020.

[37] Moosefs: Distributed file system. https://moosefs.com/.
Accessed: Apr. 2020.

[38] Kafka: A distributed streaming platform. https://kafka.
apache.org/. Accessed: Apr. 2020.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 365

https://www.rabbitmq.com
https://www.voltdb.com/
https://www.voltdb.com/
https://ceph.io/
https://www.spinics.net/lists/netdev/msg152880.html
https://www.spinics.net/lists/netdev/msg152880.html
https://davecturner.github.io/2017/08/18/observability-in-paxos.html
https://davecturner.github.io/2017/08/18/observability-in-paxos.html
https://rachelbythebay.com/w/2012/02/16/partition/
https://rachelbythebay.com/w/2012/02/16/partition/
https://github.com/elastic/elasticsearch/issues/6105
https://github.com/elastic/elasticsearch/issues/6105
https://www.robustperception.io/healthchecking-is-not-transitive
https://www.robustperception.io/healthchecking-is-not-transitive
https://github.com/elastic/elasticsearch/issues/9495
https://github.com/elastic/elasticsearch/issues/9495
https://issues.apache.org/jira/browse/MAPREDUCE-1800
https://issues.apache.org/jira/browse/MAPREDUCE-1800
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.mongodb.com/
https://www.mongodb.com/
http://hadoop.apache.org/
https://hbase.apache.org/
http://mesos.apache.org/
https://moosefs.com/
https://kafka.apache.org/
https://kafka.apache.org/

[39] Activemq: Flexible & powerful open source multi-
protocol messaging. http://activemq.apache.org/. Ac-
cessed: Apr. 2020.

[40] Dkron: A distributed cron service. https://dkron.io/.
Accessed: Apr. 2020.

[41] Robert V. Hogg, Elliot Tanis, and Dale Zimmerman.
Probability and Statistical Inference. Pearson, 9 edition,
2013.

[42] Possible data loss when rs goes into gc pause while
rolling hlog. https://issues.apache.org/jira/browse/
HBASE-2312. Accessed: Apr. 2020.

[43] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In USENIX annual technical
conference, volume 8, 2010.

[44] Activemq cluster blocks indefinitely in the presence of
partial network partition. https://issues.apache.org/jira/
browse/AMQ-7064. Accessed: Apr. 2020.

[45] Arbiters in pv1 should vote no in elections if they can see
a healthy primary of equal or greater priority to the candi-
date. https://jira.mongodb.org/browse/SERVER-27125.
Accessed: Apr. 2020.

[46] Partial network partition and retries. https://github.com/
elastic/elasticsearch/issues/6105. Accessed: Apr. 2020.

[47] minimum_master_nodes does not prevent split-brain
if splits are intersecting. https://github.com/elastic/
elasticsearch/issues/2488. Accessed:Apr. 2020.

[48] Asymmetrical network partition can cause the election
of two primary nodes. https://jira.mongodb.org/browse/
SERVER-9730. Accessed: Apr. 2020.

[49] Mirrored queue crash with out of sync acks. https:
//github.com/rabbitmq/rabbitmq-server/issues/749. Ac-
cessed: Apr. 2020.

[50] A network partition can cause in flight documents to
be lost. https://github.com/elastic/elasticsearch/issues/
7572. Accessed: Apr. 2020.

[51] Hazelcast: the leading in-memory data grid. https://
hazelcast.com/. Accessed: Apr. 2020.

[52] Redis: in-memory data structure store. https://redis.io/.
Accessed: Apr. 2020.

[53] A. Herr. Veritas cluster server 6.2 I/O fencing deploy-
ment considerations. Technical report, Veritas Technolo-
gies, 2016.

[54] Balancer can cause cascading mongod failures during
network partitions. https://jira.mongodb.org/browse/
SERVER-19550. Accessed: Apr. 2020.

[55] Michael Stonebraker and Ariel Weisberg. The voltdb
main memory dbms. IEEE Data Eng. Bull., 36(2):21–
27, 2013.

[56] Logcabin. https://github.com/logcabin/logcabin. Ac-
cessed: Apr. 2020.

[57] How does voltdb handle partial network par-
titions? https://www.voltdb.com/resources/
transaction-consistency-faq#net. Accessed: Apr.
2020.

[58] Thomas H Cormen, Charles E Leiserson, Ronald L
Rivest, and Clifford Stein. Introduction to algorithms.
MIT press, 2009.

[59] Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan,
and Samer Al-Kiswany. Understanding partial network
partitioning. Technical Report WASL-TR-2020-02, Wa-
terloo Advanced Systems Lab, University of Waterloo,
October 2020.

[60] Partial network partitioning leads to cluster unavail-
ability. https://github.com/elastic/elasticsearch/issues/
43183. Accessed: Apr. 2020.

[61] Faulty recovery caused by partial network partitions.
https://github.com/elastic/elasticsearch/pull/8720. Ac-
cessed: Apr. 2020.

[62] Mapreduce ticket 4832. https://issues.apache.org/jira/
browse/MAPREDUCE-4832. Accessed: Apr. 2020.

[63] Designing highly available mesos frameworks.
http://mesos.apache.org/documentation/latest/
high-availability-framework-guide/. Accessed:
Apr. 2020.

[64] Wait on shard failures. https://github.com/elastic/
elasticsearch/issues/14252. Accessed: Apr. 2020.

[65] Deep Medhi and Karthik Ramasamy. Network rout-
ing: algorithms, protocols, and architectures. Morgan
Kaufmann, 2017.

[66] Dimitri P Bertsekas, Robert G Gallager, and Pierre Hum-
blet. Data networks, volume 2. Prentice-Hall Interna-
tional New Jersey, 1992.

[67] Openflow switch specification, version 1.5.1 (onf ts-
025). Open Networking Foundation, 2015.

[68] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jack-
son, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex
Wang, Joe Stringer, Pravin Shelar, et al. The design

366 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://activemq.apache.org/
https://dkron.io/
https://issues.apache.org/jira/browse/HBASE-2312
https://issues.apache.org/jira/browse/HBASE-2312
https://issues.apache.org/jira/browse/AMQ-7064
https://issues.apache.org/jira/browse/AMQ-7064
https://jira.mongodb.org/browse/SERVER-27125
https://github.com/elastic/elasticsearch/issues/6105
https://github.com/elastic/elasticsearch/issues/6105
https://github.com/elastic/elasticsearch/issues/2488
https://github.com/elastic/elasticsearch/issues/2488
https://jira.mongodb.org/browse/SERVER-9730
https://jira.mongodb.org/browse/SERVER-9730
https://github.com/rabbitmq/rabbitmq-server/issues/749
https://github.com/rabbitmq/rabbitmq-server/issues/749
https://github.com/elastic/elasticsearch/issues/7572
https://github.com/elastic/elasticsearch/issues/7572
https://hazelcast.com/
https://hazelcast.com/
https://redis.io/
https://jira.mongodb.org/browse/SERVER-19550
https://jira.mongodb.org/browse/SERVER-19550
https://github.com/logcabin/logcabin
https://www.voltdb.com/resources/transaction-consistency-faq#net
https://www.voltdb.com/resources/transaction-consistency-faq#net
https://github.com/elastic/elasticsearch/issues/43183
https://github.com/elastic/elasticsearch/issues/43183
https://github.com/elastic/elasticsearch/pull/8720
https://issues.apache.org/jira/browse/MAPREDUCE-4832
https://issues.apache.org/jira/browse/MAPREDUCE-4832
http://mesos.apache.org/documentation/latest/high-availability-framework-guide/
http://mesos.apache.org/documentation/latest/high-availability-framework-guide/
https://github.com/elastic/elasticsearch/issues/14252
https://github.com/elastic/elasticsearch/issues/14252

and implementation of open vswitch. In 12th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 15), pages 117–130, 2015.

[69] iperf: The ultimate speed test tool for tcp, udp and sctp.
https://iperf.fr/. Accessed: Apr. 2020.

[70] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, page
143–154, New York, NY, USA, 2010. Association for
Computing Machinery.

[71] TPC-H benchmark (decision support) standard specifi-
cation. Transaction Processing Performance Council,
December 2018. Revision 2.18.0.

[72] Kashi Venkatesh Vishwanath and Nachiappan Nagap-
pan. Characterizing cloud computing hardware reliabil-
ity. In Proceedings of the 1st ACM symposium on Cloud
computing, pages 193–204. ACM, 2010.

[73] Robert Birke, Ioana Giurgiu, Lydia Y Chen, Dorothea
Wiesmann, and Ton Engbersen. Failure analysis of vir-
tual and physical machines: patterns, causes and char-
acteristics. In 2014 44th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Net-
works, pages 1–12. IEEE, 2014.

[74] Daniel Ford, François Labelle, Florentina Popovici, Mur-
ray Stokely, Van-Anh Truong, Luiz Barroso, Carrie
Grimes, and Sean Quinlan. Availability in globally dis-
tributed storage systems. 2010.

[75] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and
Arkady Kanevsky. Are disks the dominant contributor
for storage failures?: A comprehensive study of storage
subsystem failure characteristics. ACM Transactions on
Storage (TOS), 4(3):7, 2008.

[76] Nosayba El-Sayed and Bianca Schroeder. Reading be-
tween the lines of failure logs: Understanding how hpc
systems fail. In 2013 43rd annual IEEE/IFIP interna-
tional conference on dependable systems and networks
(DSN), pages 1–12. IEEE, 2013.

[77] Yinglung Liang, Yanyong Zhang, Anand Sivasubrama-
niam, Morris Jette, and Ramendra Sahoo. Bluegene/l
failure analysis and prediction models. In Interna-
tional Conference on Dependable Systems and Networks
(DSN’06), pages 425–434. IEEE, 2006.

[78] Bianca Schroeder and Garth Gibson. A large-scale
study of failures in high-performance computing sys-
tems. IEEE transactions on Dependable and Secure
Computing, 7(4):337–350, 2009.

[79] Theophilus Benson, Sambit Sahu, Aditya Akella, and
Anees Shaikh. A first look at problems in the cloud.
HotCloud, 10:15, 2010.

[80] Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Haibo
Lin, Haoxiang Lin, and Tingting Qin. An empirical
study on quality issues of production big data platform.
In Proceedings of the 37th International Conference
on Software Engineering-Volume 2, pages 17–26. IEEE
Press, 2015.

[81] Haryadi S Gunawi, Mingzhe Hao, Riza O Suminto,
Agung Laksono, Anang D Satria, Jeffry Adityatama,
and Kurnia J Eliazar. Why does the cloud stop com-
puting?: Lessons from hundreds of service outages. In
Proceedings of the Seventh ACM Symposium on Cloud
Computing, pages 1–16. ACM, 2016.

[82] Ariel Rabkin and Randy Howard Katz. How hadoop
clusters break. IEEE software, 30(4):88–94, 2012.

[83] Haryadi S Gunawi, Mingzhe Hao, Tanakorn Leesat-
apornwongsa, Tiratat Patana-anake, Thanh Do, Jeffry
Adityatama, Kurnia J Eliazar, Agung Laksono, Jeffrey F
Lukman, Vincentius Martin, et al. What bugs live in the
cloud? a study of 3000+ issues in cloud systems. In Pro-
ceedings of the ACM Symposium on Cloud Computing,
pages 1–14. ACM, 2014.

[84] Sihan Li, Hucheng Zhou, Haoxiang Lin, Tian Xiao,
Haibo Lin, Wei Lin, and Tao Xie. A characteristic study
on failures of production distributed data-parallel pro-
grams. In Proceedings of the 2013 International Con-
ference on Software Engineering, pages 963–972. IEEE
Press, 2013.

[85] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Ro-
drigues, Xu Zhao, Yongle Zhang, Pranay U Jain, and
Michael Stumm. Simple testing can prevent most critical
failures: An analysis of production failures in distributed
data-intensive systems. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
14), pages 249–265, 2014.

[86] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan
Arefin, Anshuman Gupta, Brian Fahs, Dima Rubinstein,
Enrique Cauich Zermeno, Erik Rubow, James Alexander
Docauer, et al. Andromeda: performance, isolation, and
velocity at scale in cloud network virtualization. In 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 373–387, 2018.

[87] Piyush Raman Srivastava and Saket Saurav. Networking
agent for overlay l2 routing and overlay to underlay
external networks l3 routing using openflow and open
vswitch. In 2015 17th Asia-Pacific Network Operations
and Management Symposium (APNOMS), pages 291–
296. IEEE, 2015.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 367

https://iperf.fr/

[88] An Wang, Yang Guo, Songqing Chen, Fang Hao,
TV Lakshman, Doug Montgomery, and Kotikalapudi
Sriram. vprom: Vswitch enhanced programmable mea-
surement in sdn. In 2017 IEEE 25th International
Conference on Network Protocols (ICNP), pages 1–10.
IEEE, 2017.

[89] Zili Zha, An Wang, Yang Guo, Doug Montgomery, and
Songqing Chen. Instrumenting open vswitch with mon-
itoring capabilities: designs and challenges. In Proceed-
ings of the Symposium on SDN Research, page 16. ACM,
2018.

[90] Pakapol Krongbaramee and Yuthapong Somchit. Imple-
mentation of sdn stateful firewall on data plane using
open vswitch. In 2018 15th International Joint Confer-
ence on Computer Science and Software Engineering
(JCSSE), pages 1–5. IEEE, 2018.

[91] Anat Bremler-Barr, David Hay, Idan Moyal, and Liron
Schiff. Load balancing memcached traffic using soft-

ware defined networking. In 2017 IFIP Networking
Conference (IFIP Networking) and Workshops, pages
1–9. IEEE, 2017.

[92] Alex FR Trajano and Marcial P Fernandez. Two-phase
load balancing of in-memory key-value storages through
nfv and sdn. In 2015 IEEE Symposium on Comput-
ers and Communication (ISCC), pages 409–414. IEEE,
2015.

[93] I. Kettaneh, A. Alquraan, H. Takruri, S. Yang, A. S.
Dusseau, R. Arpaci-Dusseau, and S. Al-Kiswany. The
network-integrated storage system. IEEE Transactions
on Parallel and Distributed Systems, 2019.

[94] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G
Andersen, and Michael J Freedman. Be fast, cheap and
in control with switchkv. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
16), pages 31–44, 2016.

368 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

PACEMAKER
Avoiding HeART attacks in storage clusters with disk-adaptive redundancy

Saurabh Kadekodi, Francisco Maturana, Suhas Jayaram Subramanya, Juncheng Yang,
K. V. Rashmi, Gregory R. Ganger

Carnegie Mellon University

Abstract
Data redundancy provides resilience in large-scale storage
clusters, but imposes significant cost overhead. Substantial
space-savings can be realized by tuning redundancy schemes
to observed disk failure rates. However, prior design propos-
als for such tuning are unusable in real-world clusters, because
the IO load of transitions between schemes overwhelms the
storage infrastructure (termed transition overload).

This paper analyzes traces for millions of disks from pro-
duction systems at Google, NetApp, and Backblaze to expose
and understand transition overload as a roadblock to disk-
adaptive redundancy: transition IO under existing approaches
can consume 100% cluster IO continuously for several weeks.
Building on the insights drawn, we present PACEMAKER, a
low-overhead disk-adaptive redundancy orchestrator. PACE-
MAKER mitigates transition overload by (1) proactively orga-
nizing data layouts to make future transitions efficient, and
(2) initiating transitions proactively in a manner that avoids
urgency while not compromising on space-savings. Evalua-
tion of PACEMAKER with traces from four large (110K–450K
disks) production clusters show that the transition IO require-
ment decreases to never needing more than 5% cluster IO
bandwidth (0.2–0.4% on average). PACEMAKER achieves
this while providing overall space-savings of 14–20% and
never leaving data under-protected. We also describe and
experiment with an integration of PACEMAKER into HDFS.

1 Introduction
Distributed storage systems use data redundancy to pro-

tect data in the face of disk failures [13, 15, 56]. While it
provides resilience, redundancy imposes significant cost over-
head. Most large-scale systems today erasure code most of
the data stored, instead of replicating, which helps to reduce
the space overhead well below 100% [13, 24, 44, 48, 62, 67].
Despite this, space overhead remains a key concern in large-
scale systems since it directly translates to an increase in
the number of disks and the associated increase in capital,
operating and energy costs [13, 24, 44, 48].

Storage clusters are made up of disks from a
mix of makes/models acquired over time, and different
makes/models have highly varying failure rates [27, 32, 41].
Despite that, storage clusters employ a “one-size-fits-all-disks”
approach to choosing redundancy levels, without considering
failure rate differences among disks. Hence, space overhead
is often inflated by overly conservative redundancy levels,
chosen to ensure sufficient protection for the most failure-
prone disks in the cluster. Although tempting, the overhead

2017-06 2018-01 2018-06 2019-01 2019-06 2019-12
0

25

50

75

100

To
ta

l I
O

pe
r d

ay
 (%

)

Transition IO Num disks (right axis)

50K

150K

250K

350K

Nu
m

 d
isk

s r
un

ni
ng

(a) Transition IO for HeART [27] on Google Cluster1.

2017-06 2018-01 2018-06 2019-01 2019-06 2019-12
0

25

50

75

100

To
ta

l I
O

pe
r d

ay
 (%

)

Transition IO
Num disks (right axis)

Transition IO cap

50K

150K

250K

350K

Nu
m

 d
isk

s r
un

ni
ng

(b) Transition IO for PACEMAKER on Google Cluster1.

Figure 1: Fraction of total cluster IO bandwidth needed to use disk-
adaptive redundancy for a Google storage cluster’s first three years.
The state-of-the-art proposal [27] shown in (a) would require up
to 100% of the cluster bandwidth for extended periods, whereas
PACEMAKER shown in (b) always fits its IO under a cap (5%). The
light gray region shows the disk count (right Y-axis) over time.

cannot be removed by using very “wide” codes (which can
provide high reliability with low storage overhead) for all
data, due to the prohibitive reconstruction cost induced by
the most failure-prone disks (more details in § 2). An excit-
ing alternative is to dynamically adapt redundancy choices
to observed failure rates (AFRs)1 for different disks, which
recent proposals suggest could substantially reduce the space
overhead [27].

Adapting redundancy involves dynamic transitioning of
redundancy schemes, because AFRs must be learned from
observation of deployed disks and because AFRs change over
time due to disk aging. Changing already encoded data from
one redundancy scheme to another, for example from an era-
sure code with parameters k1-of-n1 to k2-of-n2 (where k-of-n
denotes k data chunks and n− k parity chunks; more de-
tails in § 2), can be exorbitantly IO intensive. Existing de-
signs for disk-adaptive redundancy are rendered unusable by
overwhelming bursts of urgent transition IO when applied to
real-world storage clusters. Indeed, as illustrated in Fig. 1a,
our analyses of production traces show extended periods of
needing 100% of the cluster’s IO bandwidth for transitions.
We refer to this as the transition overload problem. At its
core, transition overload occurs whenever an observed AFR
increase for a subset of disks requires too much urgent tran-
sition IO in order to keep data safe. Existing designs for

1AFR describes the expected fraction of disks that experience failure in a
typical year.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 369

disk-adaptive redundancy perform redundancy transitions as
a reaction to AFR changes. Since prior designs are reactive,
for an increase in AFR, the data is already under-protected
by the time the transition to increase redundancy is issued.
And it will continue to be under-protected until that transition
completes. For example, around 2019-09 in Fig. 1a, data was
under-protected for over a month, even though the entire clus-
ter’s IO bandwidth was used solely for redundancy transitions.
Simple rate-limiting to reduce urgent bursts of IO would only
exacerbate this problem causing data-reliability goals to be
violated for even longer.

To understand the causes of transition overload and inform
solutions, we analyse multi-year deployment and failure logs
for over 5.3 million disks from Google, NetApp and Back-
blaze. Two common transition overload patterns are observed.
First, sometimes disks are added in tens or hundreds over
time, which we call trickle deployments. A statistically confi-
dent AFR observation requires thousands of disks. Thus, by
the time it is known that AFR for a specific make/model and
age is too high for the redundancy used, the oldest thousands
of that make/model will be past that age. At that point, all of
those disks need immediate transition. Second, sometimes
disks are added in batches of many thousands, which we call
step deployments. Steps have sufficient disks for statistically
confident AFR estimation. However, when a step reaches an
age where the AFR is too high for the redundancy used, all
disks of the step need immediate transition.

This paper introduces PACEMAKER, a new disk-adaptive re-
dundancy orchestration system that exploits insights from the
aforementioned analyses to eliminate the transition overload
problem. PACEMAKER proactively organizes data layouts to
enable efficient transitions for each deployment pattern, reduc-
ing total transition IO by over 90%. Indeed, by virtue of its
reduced total transition IO, PACEMAKER can afford to use ex-
tra transitions to reap increased space-savings. PACEMAKER
also proactively initiates anticipated transitions sufficiently
in advance that the resulting transition IO can be rate-limited
without placing data at risk. Fig. 1b provides a peek into the
final result: PACEMAKER achieves disk-adaptive redundancy
with substantially less total transition IO and never exceeds a
specified transition IO cap (5% in the graph).

We evaluate PACEMAKER using logs containing all disk
deployment, failure, and decommissioning events from four
production storage clusters: three 160K–450K-disk Google
clusters and a ≈110K-disk cluster used for the Backblaze
Internet backup service [4]. On all four clusters, PACEMAKER
provides disk-adaptive redundancy while using less than 0.4%
of cluster IO bandwidth for transitions on average, and never
exceeding the specified rate limit (e.g., 5%) on IO bandwidth.
Yet, despite its proactive approach, PACEMAKER loses less
than 3% of the space-savings as compared to to an idealized
system with perfectly-timed and instant transitions. Specifi-
cally, PACEMAKER provides 14–20% average space-savings
compared to a one-size-fits-all-disks approach, without ever

failing to meet the target data reliability and with no tran-
sition overload. We note that this is substantial savings for
large-scale systems, where even a single-digit space-savings
is worth the engineering effort. For example, in aggregate,
the four clusters would need ≈200K fewer disks.

We also implement PACEMAKER in HDFS, demonstrat-
ing that PACEMAKER’s mechanisms fit into an existing
cluster storage system with minimal changes. Comple-
menting our longitudinal evaluation using traces from large
scale clusters, we report measurements of redundancy tran-
sitions in PACEMAKER-enhanced HDFS via small-scale
cluster experiments. Prototype of HDFS with Pacemaker
is open-sourced and is available at https://github.com/
thesys-lab/pacemaker-hdfs.git.

This paper makes five primary contributions. First, it
demonstrates that transition overload is a roadblock that pre-
cludes use of previous disk-adaptive redundancy proposals.
Second, it presents insights into the sources of transition
overload from longitudinal analyses of deployment and fail-
ure logs for 5.3 million disks from three large organizations.
Third, it describes PACEMAKER’s novel techniques, designed
based on insights drawn from these analyses, for safe disk-
adaptive redundancy without transition overload. Fourth, it
evaluates PACEMAKER’s policies for four large real-world
storage clusters, demonstrating their effectiveness for a range
of deployment and disk failure patterns. Fifth, it describes in-
tegration of and experiments with PACEMAKER’s techniques
in HDFS, demonstrating their feasibility, functionality, and
ease of integration into a cluster storage implementation.

2 Whither disk-adaptive redundancy
Cluster storage systems and data reliability. Modern

storage clusters scale to huge capacities by combining up
to hundreds of thousands of storage devices into a single stor-
age system [15,56,63]. In general, there is a metadata service
that tracks data locations (and other metadata) and a large
number of storage servers that each have up to tens of disks.
Data is partitioned into chunks that are spread among the
storage servers/devices. Although hot/warm data is now often
stored on Flash SSDs, cost considerations lead to the majority
of data continuing to be stored on mechanical disks (HDDs)
for the foreseeable future [6, 7, 54]. For the rest of the paper,
any reference to a “device” or “disk” implies HDDs.

Disk failures are common and storage clusters use data
redundancy to protect against irrecoverable data loss in the
face of disk failures [4,15,24,41,43,44,48]. For hot data, often
replication is used for performance benefits. But, for most
bulk and colder data, cost considerations have led to the use of
erasure coding schemes. Under a k-of-n coding scheme, each
set of k data chunks are coupled with n-k “parity chunks” to
form a “stripe”. A k-of-n scheme provides tolerance to (n−k)
failures with a space overhead of n

k . Thus, erasure coding
achieves substantially lower space overhead for tolerating a
given number of failures. Schemes like 6-of-9 and 10-of-14

370 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/thesys-lab/pacemaker-hdfs.git
https://github.com/thesys-lab/pacemaker-hdfs.git

are commonly used in real-world deployments [13, 43, 44,
48]. Under erasure coding, additional work is involved in
recovering from a device failure. To reconstruct a lost chunk,
k remaining chunks from the stripe must be read.

The redundancy scheme selection problem. The reliabil-
ity of data stored redundantly is often quantified as mean-time-
to-data-loss (MTTDL) [17], which essentially captures the
average time until more than the tolerated number of chunks
are lost. MTTDL is calculated using the disks’ AFR and its
mean-time-to-repair (MTTR).

Large clusters are built over time, and hence usually consist
of a mix of disks belonging to multiple makes/models depend-
ing on which options were most cost effective at each time.
AFR values vary significantly between makes/models and
disks of different ages [27, 32, 41, 50]. Since disks have dif-
ferent AFRs, computing MTTDL of a candidate redundancy
scheme for a large-scale storage cluster is often difficult.

The MTTDL equations can still be used to guide decisions,
as long as a sufficiently high AFR value is used. For ex-
ample, if the highest AFR value possible for any deployed
make/model at any age is used, the computed MTTDL will
be a lower bound. So long as the lower bound on MTTDL
meets the target MTTDL, the data is adequately reliable. Un-
fortunately, the range of possible AFR values in a large stor-
age cluster is generally quite large (over an order of magni-
tude) [27,32,41,52]. Since the overall average is closer to the
lower end of the AFR range, the highest AFR value is a conser-
vative over-estimate for most disks. The resulting MTTDLs
are thus loose lower bounds, prompting decision-makers to
use a one-size-fits-all scheme with excessive redundancy lead-
ing to wasted space.

Using wide schemes with large number of parities (e.g.,
30-of-36) can achieve the desired MTTDL while keeping
the storage overhead low enough to make disk-adaptive re-
dundancy appear not worth the effort. But, while this might
seem like a panacea, wide schemes in high-AFR regimes
cause significant increase in failure reconstruction IO traffic.
The failure reconstruction IO is derived by multiplying the
AFR with the number of data chunks in each stripe. Thus,
if either of these quantities are excessively high, or both are
moderately high, it can lead to overwhelmingly high failure
reconstruction IO. In addition, wide schemes also result in
higher tail latencies for individual disk reconstructions be-
cause of having to read from many more disks. Combined,
these reasons prevent use of wide schemes for all data all the
time from being a viable solution for most systems.

Disk-adaptive redundancy. Since the problem arises
from using a single AFR value, a promising alternative is
to adapt redundancy for subsets of disks with similar AFRs.
A recent proposal, heterogeneity-aware redundancy tuner
(HeART) [27], suggests treating subsets of deployed disks
with different AFR characteristics differently. Specifically,
HeART adapts redundancy of each disk by observing its fail-

ure rate on the fly2 depending on its make/model and its cur-
rent age. It is well known that AFR of disks follow a “bathtub”
shape with three distinct phases of life: AFR is high in “in-
fancy” (1-3 months), low and stable during its “useful life”
(3-5 years), and high during the “wearout” (a few months be-
fore decommissioning). HeART uses a default (one-size-fits-
all) redundancy scheme for each new disk’s infancy. It then
dynamically changes the redundancy to a scheme adapted to
the observed useful life AFR for that disk’s make/model, and
then dynamically changes back to the default scheme at the
end of useful life. The per-make/model useful life redundancy
schemes typically have much lower space overhead than the
default scheme. This suggests the ability to maintain target
MTTDL with many fewer disks (i.e., lower cost).

Although exciting, the design of HeART overlooks a cru-
cial element: the IO cost associated with changing the redun-
dancy schemes. Changing already encoded data under one
erasure code to another can be exorbitantly IO intensive. In-
deed, our evaluation of HeART on real-world storage cluster
logs reveal extended periods where data safety is at risk and
where 100% cluster IO bandwidth is consumed for scheme
changes. We call this problem transition overload.

An enticing solution that might appear to mitigate transition
overload is to adapt redundancy schemes only by removing
parities in low-AFR regimes and adding parities in high-AFR
regimes. While this solution eliminates transition IO when re-
ducing the level of redundancy, it does only marginally better
when redundancy needs to be increased, because new parity
creation cannot avoid reading all data chunks from each stripe.
What makes this worse is that transitions that increase redun-
dancy are time-critical, since delaying them would miss the
MTTDL target and leave the data under-protected. Moreover,
addition / removal of a parity chunk massively changes the
stripe’s MTTDL compared to addition / removal of a data
chunk. For example, a 6-of-9 MTTDL is 10000× higher
than 6-of-8 MTTDL, but is only 1.5× higher than 7-of-10
MTTDL. AFR changes would almost never be large enough
to safely remove a parity, given default schemes like 6-of-
9, eliminating almost all potential benefits of disk-adaptive
redundancy.

This paper analyzes disk deployment and failure data from
large-scale production clusters to discover sources of transi-
tion overload and informs the design of a solution. It then de-
scribes and evaluates PACEMAKER, which realizes the dream
of safe disk-adaptive redundancy without transition overload.

3 Longitudinal production trace analyses
This section presents an analysis of multi-year disk reli-

ability logs and deployment characteristics of 5.3 million
HDDs, covering over 60 makes/models from real-world en-
vironments. Key insights presented here shed light on the

2Although it may be tempting to use AFR values taken from manufac-
turer’s specifications, several studies have shown that failure rates observed
in practice often do not match those [41, 50, 52].

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 371

10 1

101

A
FR

 (
%

)

[0, 3) [3, 4) [4, 5) [5, 6)

Age of oldest disk (years)

(a) Spread of make/model AFRs

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Age (years)

0

2

4

A
FR

 (
%

)

(b) AFR distribution over disk life

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 Age
Number of useful life phases

0

1000

2000

d
a
y
s

2 3 4
Tolerance: AFR ratio (max / min)

(c) Approximate useful-life length

Figure 2: (a) AFR spread for over 50 makes/models from NetApp binned by the age of the oldest disk. Each box corresponds to a unique
make/model, and at least 10000 disks of each make/model were observed (outlier AFR values omitted). (b) Distribution of AFR calculated
over consecutive non-overlapping six-month periods for NetApp disks, showing the gradual rise of AFR with age (outliers omitted). (c)
Approximation of useful life length for NetApp disks for 1-5 consecutive phases of useful life and three different tolerance levels.

sources of transition overload and challenges / opportunities
for a robust disk-adaptive redundancy solution.

The data. Our largest dataset comes from NetApp and con-
tains information about disks deployed in filers (file servers).
Each filer reports the health of each disk periodically (typi-
cally once a fortnight) using their AutoSupport [29] system.
We analyzed the data for a subset of their deployed disks,
which included over 50 makes/models and over 4.3 million
disks total. As observed in previous studies [27, 41, 50], we
observe well over an order of magnitude difference between
the highest and lowest useful-life AFRs (see Fig. 2a).

Our other datasets come from large storage clusters de-
ployed at Google and the Backblaze Internet backup service.
Although the basic disk characteristics (e.g., AFR heterogene-
ity and its behavior discussed below) are similar to the NetApp
dataset, these datasets also capture the evolution and behavior
in our target context (large-scale storage clusters), and thus
are also used in the evaluation detailed in (§7). The particular
Google clusters were selected based on their longitudinal data
availability, but were not otherwise screened for favorability.

For each cluster, the multi-year log records (daily) all disk
deployment, failure, and decommissioning events from birth
of the cluster until the date of the log snapshot. Google
Cluster1’s disk population over three years included ≈350K
disks of 7 makes/models. Google Cluster2’s population over
2.5 years included ≈450K disks of 4 makes/models. Google
Cluster3’s population over 3 years included ≈160K disks of
3 makes/models. The Backblaze cluster’s population since
2013 included ≈110K disks of 7 makes/models.

3.1 Causes of transition overload
Disk deployment patterns. We observe disk deployments

occurring in two distinct patterns, which we label trickle
and step. Trickle-deployed disks are added to a cluster fre-
quently (weekly or even daily) over time by the tens and
hundreds. For example, the slow rise in disk count seen
between 2018-01 and 2018-07 in Fig. 1 represents a series
of trickle-deployments. In contrast, a step-deployment intro-
duces many thousands of disks into the cluster “at once” (over
a span of a few days), followed by potentially months of no
new step-deployments. The sharp rises in disk count around
2017-12 and 2019-11 in Fig. 1 represent step-deployments.

A given cluster may be entirely trickle-deployed (like the

Backblaze cluster), entirely step-deployed (like Google Clus-
ter2), or a mix of the two (like Google Cluster1 and Cluster3).
Disks of a step are typically of the same make/model.

Learning AFR curves online. Disk-adaptive redundancy
involves learning the AFR curve for each make/model by
observing failures among deployed disks of that make/model.
Because AFR is a statistical measure, the larger the population
of disks observed at a given age, the lower is the uncertainty
in the calculated AFR at that age. We have found that a
few thousand disks need to be observed to obtain sufficiently
accurate AFR measurements.

Transition overload for trickle-deployed disks. Since
trickle-deployed disks are deployed in tiny batches over time,
several months can pass before the required number of disks
of a new make/model are past any given age. Thus, by the
time the required number of disks can be observed at the age
that is eventually identified as having too-high an AFR and
requiring increased redundancy, data on the older disks will
have been left under-protected for months. And, the thousands
of already-older disks need to be immediately transitioned to
a stronger redundancy scheme, together with the newest disks
to reach that age. This results in transition overload.

Transition overload for step-deployed disks. Assum-
ing that they are of the same make/model, a batch of step-
deployed disks will have the same age and AFR, and indeed
represent a large enough population for confident learning of
the AFR curve as they age. But, this means that all of those
disks will reach AFR values together, as they age. So, when
their AFR rises to the point where the redundancy must be
increased to keep data safe, all of the disks must transition
together to the new safer redundancy scheme. Worse, if they
are the first disks of the given make/model deployed in the
cluster, which is often true in the clusters studied, then the sys-
tem adapting the redundancy will learn of the need only when
the age in question is reached. At that point, all data stored
on the entire batch of disks is unsafe and needs immediate
transitioning. This results in transition overload.

3.2 Informing a solution
Analyzing the disk logs has exposed a number of observa-

tions that provide hope and guide the design of PACEMAKER.
The AFR curves we observed deviate substantially from the
canonical representation where infancy and wearout periods

372 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

are identically looking and have high AFR values, and AFR
in useful life is flat and low throughout.

AFRs rise gradually over time with no clear wearout.
AFR curves generally exhibit neither a flat useful life phase
nor a sudden transition to so-called wearout. Rather, in gen-
eral, it was observed that AFR curves rise gradually as a
function of disk age. Fig. 2b shows the gradual rise in AFR
over six month periods of disk lifetimes. Each box represents
the AFR of disks whose age corresponds to the six-month
period denoted along the X-axis. AFR curves for individ-
ual makes/models (e.g., Figs. 5b and 5d) are consistent with
this aggregate illustration. Importantly, none of the over
60 makes/models from Google, Backblaze and NetApp dis-
played sudden onset of wearout.

Gradual increases in AFR, rather than sudden onset of
wearout, suggests that one could anticipate a step-deployed
batch of disks approaching an AFR threshold. This is one
foundation on which PACEMAKER’s proactive transitioning
approach rests.

Useful life could have multiple phases. Given the grad-
ual rise of AFRs, useful life can be decomposed into multiple,
piece-wise constant phases. Fig. 2c shows an approximation
of the length of useful life when multiple phases are consid-
ered. Each box in the figure represents the distribution over
different make/models of the approximate length of useful life.
Useful life is approximated by considering the longest period
of time which can be decomposed into multiple consecutive
phases (number of phases indicated by the bottom X-axis)
such that the ratio between the maximum and minimum AFR
in each phase is under a given tolerance level (indicated by
the top X-axis). The last box indicates the distribution over
make/models of the age of the oldest disk, which is an up-
per bound to the length of useful life. As shown by Fig. 2c,
the length of useful life can be significantly extended (for all
tolerance levels) by considering more than one phase. Fur-
thermore, the data show that a small number of phases suffice
in practice, as the approximate length of useful life changes
by little when considering four or more phases.

Infancy often short-lived. Disks may go through (poten-
tially) multiple rounds of so-called “burn-in” testing. The first
tests may happen at the manufacturer’s site. There may be
additional burn-in tests done at the deployment site allowing
most of the infant mortality to be captured before the disk is
deployed in production. For the NetApp and Google disks,
we see the AFR drop sharply and plateau by 20 days for most
of the makes/models. In contrast, the Backblaze disks display
a slightly longer and higher AFR during infancy, which can
be directly attributed to their less aggressive on-site burn-in.

PACEMAKER’s design is heavily influenced from these
learnings, as will be explained in the next section.

4 Design goals
PACEMAKER is an IO efficient redundancy orchestrator

for storage clusters that support disk-adaptive redundancy.

Term Definition

Dgroup Group of disks of the same make/model.
Transition The act of changing the redundancy scheme.
RDn transition Transition to a lower level of redundancy.
RUp transition Transition to a higher level of redundancy.
peak-IO-cap IO bandwidth cap for transitions.
Rgroup Group of disks using the same redundancy

with placement restricted to the group of disks.
Rgroup0 Rgroup using the default one-scheme-fits-all

redundancy used in storage clusters today.
Unspecialized disks Disks that are a part of Rgroup0.
Specialized disks Disks that are not part of Rgroup0.
Canary disks First few thousand disks of a trickle-deployed

Dgroup used to learn AFR curve.
Tolerated-AFR Max AFR for which redundancy scheme meets

reliability constraint.
Threshold-AFR The AFR threshold crossing which triggers

an RUp transition for step-deployed disks.

Table 1: Definitions of PACEMAKER’s terms.

Before going into the design goals for PACEMAKER, we first
chronicle a disk’s lifecycle, introducing the terminology that
will be used in the rest of the paper (defined in Table 1).

Disk lifecycle under PACEMAKER. Throughout its life,
each disk under PACEMAKER simultaneously belongs to a
Dgroup and an Rgroup. There are as many Dgroups in a
cluster as there are unique disk makes/models. Rgroups on
the other hand are a function of redundancy schemes and
placement restrictions. Each Rgroup has an associated re-
dundancy scheme, and its data (encoded stripes) must reside
completely within that Rgroup’s disks. Multiple Rgroups can
use the same redundancy scheme, but no stripe may span
across Rgroups. The Dgroup of a disk never changes, but a
disk may transition through multiple Rgroups during its life-
time. At the time of deployment (or “birth”), the disk belongs
to Rgroup0, and is termed as an unspecialized disk. Disks
in Rgroup0 use the default redundancy scheme, i.e. the con-
servative one-scheme-fits-all scheme used in storage clusters
that do not have disk-adaptive redundancy. The redundancy
scheme employed for a disk (and hence its Rgroup) changes
via transitions. The first transition any disk undergoes is an
RDn transition. A RDn transition changes the disk’s Rgroup
to one with lower redundancy, i.e. more optimized for space.
Whenever the disk departs from Rgroup0, it is termed as a
specialized disk. Disks depart from Rgroup0 at the end of
their infancy. Since infancy is short-lived (§3.2), PACEMAKER
only considers one RDn transition for each disk.

The first RDn transition occurs at the start of the disk’s
useful life, and marks the start of its specialization period.
As explained in §3.2, a disk may experience multiple useful
life phases. PACEMAKER performs a transition at the start
of each useful life phase. After the first (and only) RDn
transition, each subsequent transition is an RUp transition.
An RUp transition changes the disk’s Rgroup to one with
higher redundancy, i.e. less optimized for space, but the disk
is still considered a specialized disk unless the Rgroup that
the disk is being RUp transitioned to is Rgroup0. The space-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 373

savings (and thus cost-savings) associated with disk-adaptive
redundancy are proportional to the fraction of life the disks
remain specialized for.

Key decisions. To adapt redundancy throughout a disk’s
lifecycle as chronicled above, three key decisions related to
transitions must be made

1. When should the disks transition?
2. Which Rgroup should the disks transition to?
3. How should the disks transition?
Constraints. The above decisions need to be taken such

that a set of constraints are met. An obvious constraint, cen-
tral to any storage system, is that of data reliability. The
reliability constraint mandates that all data must always meet
a predefined target MTTDL. Another important constraint
is the failure reconstruction IO constraint. This constraint
bounds the IO spent on data reconstruction of failed disks,
which as explained in §2 is proportional to AFR and scheme
width. This is why wide schemes cannot be used for all disks
all the time, but they can be used for low-AFR regimes of
disk lifetimes (as discussed in §2).

Existing approaches to disk-adaptive redundancy make
their decisions on the basis of only these constraints [27], but
fail to consider the equally important IO caused by redun-
dancy transitions. Ignoring this causes the transition overload
problem, which proves to be a show-stopper for disk-adaptive
redundancy systems. PACEMAKER treats transition IO as
a first class citizen by taking it into account for each of its
three key decisions. As such, PACEMAKER enforces carefully
designed constraints on transition IO as well.

Designing IO constraints on transitions. Apart from
serving foreground IO requests, a storage cluster performs
numerous background tasks like scrubbing and load balanc-
ing [5,38,49]. Redundancy management is also a background
task. In current storage clusters, redundancy management
tasks predominantly consist of performing data redundancy
(e.g. replicating or encoding data) and reconstructing data
of failed or otherwise unavailable disks. Disk-adaptive re-
dundancy systems add redundancy transitions to the list of
IO-intensive background tasks.

There are two goals for background tasks: Goal 1: they
are not too much work, and Goal 2: they interfere as little as
possible with foreground IO. PACEMAKER applies two IO
constraints on background transition tasks to achieve these
goals: (1) average-IO constraint and (2) peak-IO constraint.
The average-IO constraint achieves Goal 1 by allowing stor-
age administrators to specify a cap on the fraction of the IO
bandwidth of a disk that can be used for transitions over its
lifetime. For example, if a disk can transition in 1 day using
100% of its IO bandwidth, then an average-IO constraint of
1% would mean that the disk will transition at most once every
100 days. The peak-IO constraint achieves Goal 2 by allowing
storage administrators to specify the peak rate (defined as the
peak-IO-cap) at which transitions can occur so as to limit
their interference with foreground traffic. Continuing the pre-

P

P P

P

PACEMAKER
Proactive-

transition-initiator

Rgroup-planner

FS Metadata
service

Disk health
monitoring service

Change point
detector

AFR curve learner

Transition-executor

new Rgroup,
disks

de
pl

oy
m

en
t,

co
nf

ig
 d

at
a

new AFR,
old AFR

di
sk

 fa
ilu

re
s

failure data

IO

pl
ac

em
en

t c
ha

ng
es

PA
C

EM
A

K
ER

 M
et

ad
at

a disks

rate limit, IO
Rate-limiter

Figure 3: PACEMAKER architecture.

vious example, if the peak-IO-cap is set at 5%, the disk that
would have taken 1 day to transition at 100% IO bandwidth
would now take at least 20 days. The average-IO constraint
and the peak-IO-cap can be configured based on how busy the
cluster is. For example, a cluster designed for data archival
would have a lower foreground traffic, compared to a cluster
designed for serving ads or recommendations. Thus, low-
traffic clusters can set a higher peak-IO-cap resulting in faster
transitions and potentially increased space-savings.

Design goals. The key design goals are to answer the three
questions related to transitions such that the space-savings are
maximized and the following constraints are met: (1) reliabil-
ity constraint on all data all the time, (2) failure reconstruction
IO constraint on all disks all the time, (3) peak-IO constraint
on all disks all the time, and (4) average-IO constraint on all
disks over time.

5 Design of PACEMAKER

Fig. 3 shows the high level architecture of PACEMAKER
and how it interacts with some other components of a storage
cluster. The three main components of PACEMAKER corre-
spond to the three key decisions that the system makes as
discussed in §4. The first main component of PACEMAKER
is the proactive-transition-initiator (§5.1), which determines
when to transition disks using the AFR curves and the disk
deployment information. The information of the transition-
ing disks and their observed AFR is passed to the Rgroup-
planner (§5.2), which chooses the Rgroup to which the disks
should transition. The Rgroup-planner passes the informa-
tion of the transitioning disks and the target Rgroup to the
transition-executor (§5.3). The transition-executor addresses
how to transition the disks to the planned Rgroup in the most
IO-efficient way.

Additionally, PACEMAKER also maintains its own meta-
data and a simple rate-limiter. PACEMAKER metadata in-
teracts with all of PACEMAKER’s components and also the

374 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

storage cluster’s metadata service. It maintains various con-
figuration settings of a PACEMAKER installation along with
the disk deployment information that guides transition de-
cisions. The rate-limiter rate-limits the IO load generated
by any transition as per administrator specified limits. Other
cluster components external-to-PACEMAKER that inform it
are the AFR curve learner and the change point detector. As
is evident from their names, these components learn the AFR
curve3 of each Dgroup and identify change points for redun-
dancy transitions. The AFR curve learner receives failure
data from the disk health monitoring service, which monitors
the disk fleet and maintains their vitals.

5.1 Proactive-transition-initiator
Proactive-transition-initiator’s role is to determine when

to transition the disks. Below we explain PACEMAKER’s
methodology for making this decision for the two types of
transitions (RDn and RUp) and the two types of deployments
(step and trickle).
5.1.1 Deciding when to RDn a disk

Recall that a disk’s first transition is an RDn transition.
As soon as proactive-transition-initiator observes (in a sta-
tistically accurate manner) that the AFR has decreased suffi-
ciently, and is stable, it performs an RDn transition from the
default scheme (i.e., from Rgroup0) employed in infancy to a
more space-efficient scheme. This is the only RDn transition
in a disk’s lifetime.
5.1.2 Deciding when to RUp a disk

RUp transitions are performed either when there are too
few disks in any Rgroup such that data placement is heavily
restricted (which we term purging an Rgroup), or when there
is a rise in AFR such that the reliability constraint is (going to
be) violated. Purging an Rgroup involves RUp transitioning
all of its disks to an Rgroup with higher redundancy. This
transition isn’t an imminent threat to reliability, and there-
fore can be done in a relaxed manner without violating the
reliability constraint as explained in §5.3.

However, most RUp transitions in a storage cluster are
done in response to a rise in AFR. These are challenging with
respect to meeting IO constraints due to the associated risk of
violating the reliability constraints whenever the AFR rises
beyond the AFR tolerated by the redundancy scheme (termed
tolerated-AFR).

In order to be able to safely rate-limit the IO load due to
RUp transitions, PACEMAKER takes a proactive approach.
The key is in determining when to initiate a proactive RUp
transition such that the transition can be completed before
the AFR crosses the tolerated-AFR, while adhering to the IO
and the reliability constraints without compromising much
on space-savings. To do so, the proactive-transition-initiator
assumes that its transitions will proceed as per the peak-IO
constraint, which is ensured by the transition-executor. PACE-
MAKER’s methodology for determining when to initiate a

3The AFR estimation methodology employed is detailed in [26].

proactive RUp transition is tailored differently for trickle ver-
sus for step deployments, since they raise different challenges.

Trickle deployments. For trickle-deployed disks, PACE-
MAKER considers two category of disks: (1) first disks to be
deployed from any particular trickle-deployed Dgroup, and
(2) disks from that Dgroup that are deployed later.

PACEMAKER labels the first C deployed disks of a Dgroup
as canary disks, where C is a configurable, high enough num-
ber of disks to yield statistically significant AFR observations.
For example, based on our disk analyses, we observe that C in
low thousands (e.g., 3000) is sufficient. The canary disks of
any Dgroup are the first to undergo the various phases of life
for that Dgroup, and these observations are used to learn the
AFR curve for that Dgroup. The AFR value for the Dgroup at
any particular age is not known (with statistical confidence)
until all canary disks go past that age. Furthermore, due to
the trickle nature of the deployment, the canary disks would
themselves have been deployed over weeks if not months.
Thus, AFR for the canary disks can be ascertained only in
retrospect. PACEMAKER never changes the redundancy of the
canary disks to avoid them from ever violating the reliability
constraint. This does not significantly reduce space-savings,
since C is expected to be small relative to the total number of
disks of a Dgroup (usually in the tens of thousands).

The disks that are deployed later in any particular Dgroup
are easier to handle, since the Dgroup’s AFR curve would
have been learned by observing the canaries. Thus, the date
at which a disk among the later-deployed disks needs to RUp
to meet the reliability constraints is known in advance by the
proactive-transition-initiator, which it uses to issue proactive
RUp transitions.

Step deployments. Recall that in a step deployment, most
disks of a Dgroup may be deployed within a few days. So, ca-
naries are not a good solution, as they would provide little-to-
no advance warning about how the AFR curve’s rises would
affect most disks.

PACEMAKER’s approach to handling step-deployments is
based on two properties: (1) Step-deployments have a large
number of disks deployed together, leading to a statistically
accurate AFR estimation; (2) AFR curves based on a large set
of disks tend to exhibit gradual, rather than sudden, AFR in-
creases as the disk ages (§3.2). PACEMAKER leverages these
two properties to employ a simple early warning methodol-
ogy to predict a forthcoming need to RUp transition a step
well in advance. Specifically, PACEMAKER sets a thresh-
old, termed threshold-AFR, which is a (configurable) frac-
tion of the tolerated-AFR of the current redundancy scheme
employed. For step-deployments, when the observed AFR
crosses the threshold-AFR, the proactive-transition-initiator
initiates a proactive RUp transition.

5.2 Rgroup-planner
The Rgroup-planner’s role is to determine which Rgroup

should disks transition to. This involves making two inter-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 375

dependent choices: (1) the redundancy scheme to transition
into, (2) whether or not to create a new Rgroup.

Choice of the redundancy scheme. At a high level, the
Rgroup-planner first uses a set of selection criteria to arrive at
a set of viable schemes. It further narrows down the choices
by filtering out the schemes that are not worth transitioning to
when the transition IO and IO constraints are accounted for.

Selection criteria for viable schemes. Each viable redun-
dancy scheme has to satisfy the following criteria in addition
to the reliability constraint: each scheme (1) must satisfy the
minimum number of simultaneous failures per stripe (i.e.,
n− k); (2) must not exceed the maximum allowed stripe di-
mension (k); (3) must have its expected failure reconstruction
IO (AFR× k× disk-capacity) be no higher than was assumed
possible for Rgroup0 (since disks in Rgroup0 are expected
to have the highest AFR); (4) must have a recovery time in
case of failure (MTTR) that does not exceed the maximum
MTTR (set by the administrator when selecting the default
redundancy scheme for Rgroup0).

Determining if a scheme is worth transitioning to. Whether
the IO cost of transitioning to a scheme is worth it or not
and what space-savings can be achieved by that transition is
a function of the number of days disks will remain in that
scheme (also known as disk-days). This, in turn, depends on
(1) when the disks enter the new scheme, and (2) how soon
disks will require another transition out of that scheme.

The time it takes for the disks to enter the new scheme is
determined by the transition IO and the rate-limit. When the
disks will transition out of the target Rgroup is dependent
on the future and can only be estimated. For this estimation,
the Rgroup-planner needs to estimate the number of days
the AFR curve will remain below the threshold that forces
a transition out. This needs different strategies for the two
deployment patterns (trickle and step).

Recall that PACEMAKER knows the AFR curve for trickle-
deployed disks (from the canaries) in advance. Recall that
step-deployed disks have the property that the AFR curve
learned from them is statistically robust and tends to exhibit
gradual, as opposed to sudden AFR increases. The Rgroup-
planner leverages these properties to estimate the future AFR
behavior based on the recent past. Specifically, it takes the
slope of the AFR curve in the recent past4 and uses that to
project the AFR curve rise in the future.

The number of disk-days in a scheme for it to be worth
transitioning to is dictated by the IO constraints. For example,
let us consider a disk running under PACEMAKER that requires
a transition, and PACEMAKER is configured with an average-
IO constraint of 1% and a peak-IO-cap of 5%. Suppose the
disk requires 1 day to complete its transition at 100% IO
bandwidth. With the current settings, PACEMAKER will only
consider an Rgroup worthy of transitioning to (assuming it is

4PACEMAKER uses a 60 day (configurable) sliding window with an
Epanechnikov kernel, which gives more weight to AFR changes in the recent
past [21].

allowed to use all 5% of its IO bandwidth) if at least 80 disk-
days are spent after the disk entirely transitions to it (since
transitioning to it would take up to 20 days at the allowed 5%
IO bandwidth).

From among the viable schemes that are worth transitioning
to based on the IO constraints, the Rgroup-planner chooses
the one that provides the highest space-savings.

Decision on Rgroup creation. Rgroups cannot be created
arbitrarily. This is because every Rgroup adds placement
restrictions, since all chunks of a stripe have to be stored
on disks belonging to the same Rgroup. Therefore, Rgroup-
planner creates a new Rgroup only when (1) the resulting
placement pool created by the new Rgroup is large enough
to overcome traditional placement restrictions such as “no
two chunks on the same rack5”, and (2) the space-savings
achievable by the chosen redundancy scheme is sufficiently
greater than using an existing (less-space-efficient) Rgroup.

The disk deployment pattern also affects Rgroup forma-
tion. While the rules for whether to form an Rgroup remain
the same for trickle and step-deployed disks, mixing disks
deployed differently impacts the transitioning techniques
that can be used for eventually transitioning disks out of
that Rgroup. This in turn affects how the IO constraints
are enforced. Specifically, for trickle deployments, creating
an Rgroup for each set of transitioning disks would lead to
too many small-sized Rgroups. So, for trickle-deployments,
the Rgroup-planner creates a new Rgroup for a redundancy
scheme if and only if one does not exist already. Creating
Rgroups this way will also ensure that enough disks (thou-
sands) will go into it to satisfy placement restrictions. Mixing
disks from different trickle-deployments in the same Rgroup
does not impact the IO constraints, because PACEMAKER op-
timizes the transition mechanism for few disks transitioning
at a time, as is explained in §5.3. For step-deployments, due
to the large fraction of disks that undergo transition together,
having disks from multiple steps, or mixing trickle-deployed
disks within the same Rgroup, creates adverse interactions
(discussed in §5.3). Hence, the Rgroup-planner creates a new
Rgroup for each step-deployment, even if there already exists
one or more Rgroups that employ the chosen scheme. Each
such Rgroup will contain many thousands of disks to over-
come traditional placement restrictions. Per-step Rgroups
also extend to the Rgroup with default redundancy schemes,
implying a per-step Rgroup0. Despite having clusters with
disk populations as high as 450K disks, PACEMAKER’s re-
strained Rgroup creation led to no cluster ever having more
than 10 Rgroups.

Rules for purging an Rgroup. An Rgroup may be purged
for having too few disks. This can happen when too many
of its constituent disks transition to other Rgroups, or they
fail, or they are decommissioned leading to difficulty in ful-
filling placement restrictions. If the Rgroup to be purged is

5Inter-cluster fault tolerance remains orthogonal to and unaffected by
PACEMAKER.

376 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

made up of trickle-deployed disks, the Rgroup-planner will
choose to RUp transition disks to an existing Rgroup with
higher redundancy while meeting the IO constraints. For
step-deployments, purging implies RUp transitioning disks
into the more-failure-tolerant RGroup (RGroup0) that may
include trickle-deployed disks.

5.3 Transition-executor
The transition-executor’s role is to determine how to transi-

tion the disks. This involves choosing (1) the most IO-efficient
technique to execute that transition, and (2) how to rate-limit
the transition at hand. Once the transition technique is cho-
sen, the transition-executor executes the transition via the
rate-limiter as shown in Fig. 3.

Selecting the transition technique. Suppose the data
needs to be conventionally re-encoded from a kcur-of-ncur
scheme to a knew-of-nnew scheme. The IO cost of conven-
tional re-encoding involves reading–re-encoding–writing all
the stripes whose chunks reside on each transitioning disk.
This amounts to a read IO of kcur×disk-capacity (assuming
almost-full disks), and a write IO of kcur×disk-capacity× nnew

knew
for a total IO > 2× kcur×disk-capacity for each disk.

In addition to conventional re-encoding, PACEMAKER sup-
ports two new approaches to changing the redundancy scheme
for disks and selects the most efficient option for any given
transition. The best option depends on the fraction of the
Rgroup being transitioned at once.

Type 1 (Transition by emptying disks). If a small percentage
of an Rgroup’s disks are being transitioned, it is more efficient
to retain the contents of the transitioning disks in that Rgroup
rather than re-encoding. Under this technique, the data stored
on transitioning disks are simply moved (copied) to other
disks within the current Rgroup. This involves reading and
writing (elsewhere) the contents of the transitioning disks.
Thus, the IO of transitioning via Type 1 is at most 2×disk-
capacity, independent of scheme parameters, and therefore at
least kcur× cheaper than conventional re-encoding.

Type 1 can be employed whenever there is sufficient free
space available to move the contents of the transitioning disks
into other disks in the current Rgroup. Once the transitioning
disks are empty, they can be removed from the current Rgroup
and added to the new Rgroup as “new” (empty) disks.

Type 2 (Bulk transition by recalculating parities). If a large
fraction of disks in an Rgroup need to transition together, it
is more efficient to transition the entire Rgroup rather than
only the disks that need a transition at that time. Most cluster
storage systems use systematic codes6 [8, 13, 14, 36], wherein
transitioning an entire Rgroup involves only calculating and
storing new parities and deleting the old parities. Specifi-
cally, the data chunks have to be only read for computing
the new parities, but they do not have to be re-written. In
contrast, if only a part of the disks are transitioned, some

6In systematic codes, the data chunks are stored in unencoded form. This
helps to avoid having to decode for normal (i.e., non-degraded-mode) reads.

fraction of the data chunks also need to be re-written. Thus,
the IO cost for transitioning via Type 2 involves a read IO of
kcur
ncur
×disk-capacity, and a write IO of only the new parities,

which amounts to a total IO of nnew−knew
knew

× kcur
ncur
×disk-capacity

for each disk in the Rgroup. This is at most 2× kcur
ncur
×disk-

capacity, which makes it at least ncur× cheaper than conven-
tional re-encoding.

Selecting the most efficient approach for a transition. For
any given transition, the transition-executor selects the most
IO-efficient of all the viable approaches. Almost always,
trickle-deployed disks use Type 1 because they transition a-
few-at-a-time, and step-deployed disks use Type 2 because
Rgroup-planner maintains each step in a separate Rgroup.

Choosing how to rate limit a transition. Irrespective of
the transitioning techniques, the transition-executor has to
resolve the competing concerns of maximizing space-savings
and minimizing risk of data loss via fast transitions, and mini-
mizing foreground work interference by slowing down transi-
tions so as to not overwhelm the foreground IO. Arbitrarily
slowing down a transition to minimize interference is only
possible when the transition is not in response to a rise in
AFR. This is because a rising AFR hints at the data being
under-protected if not transitioned to a higher redundancy
soon. In PACEMAKER, a transition without an AFR rise oc-
curs either when disks are being RDn transitioned at the end
of infancy, or when they are being RUp transitioned because
the Rgroup they belong to is being purged. For all the other
RUp transitions, PACEMAKER carefully chooses how to rate
limit the transition.

Determining how much bandwidth to allow for a given
transition could be difficult, given that other transitions may
be in-progress already or may be initiated at any time (we do
observe concurrent transitions in our evaluations). So, to en-
sure that the aggregate IO of all ongoing transitions conforms
to the peak-IO-cap cluster-wide, PACEMAKER limits each
transition to the peak-IO-cap within its Rgroup. For trickle-
deployed disks, which share Rgroups, the rate of transition
initiations is consistently a small percentage of the shared
Rgroup, allowing disk emptying to proceed at well below the
peak-IO-cap. For step-deployed disks, this is easy for PACE-
MAKER, since a step only makes one transition at a time and
its IO is fully contained in its separate Rgroup. The transition-
executor’s approach to managing peak-IO on a per-Rgroup
basis is also why the proactive-transition-initiator can safely
assume a rate-limit of the peak-IO-cap without consulting the
transition-executor. If there is a sudden AFR increase that
puts data at risk, PACEMAKER is designed to ignore its IO
constraints to continue meeting the reliability constraint—this
safety valve was never needed for any cluster evaluated.

After finalizing the transitioning technique, the transition-
executor performs the necessary IO for transitioning disks
(read, writes, parity recalculation, etc.). We find that the
components required for the transition-executor are already

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 377

Figure 4: PACEMAKER-enhanced HDFS architecture.

present and adequately modular in existing distributed storage
systems. In §6, we show how we implement PACEMAKER in
HDFS with minimal effort.

Note that this design is for the common case where storage
clusters are designed for a single dedicated storage service.
Multiple distinct distributed storage services independently
using the same underlying devices would need to coordinate
their use of bandwidth (for their non-transition related load as
well) in some way, which is outside the scope of this paper.

6 Implementation of PACEMAKER in HDFS
We have implemented a prototype of PACEMAKER for

the Hadoop distributed file system (HDFS) [56]. HDFS is
a popular open source distributed file system, widely em-
ployed in the industry for storing large volumes of data.
We use HDFS v3.2.0, which natively supports erasure cod-
ing. Prototype of HDFS with Pacemaker is open-sourced
and is available at https://github.com/thesys-lab/
pacemaker-hdfs.git.

Background on HDFS architecture. HDFS has a central
metadata server called Namenode (NN, akin to the master
node) and a collection of servers containing the data stored in
the file system, called Datanodes (DN, akin to worker nodes).
Clients interact with the NN only to perform operations on file
metadata (containing a collection of the DNs that store the file
data). Clients directly request the data from the DNs. Each
DN stores data on its local drives using a local file system.

Realizing Rgroups in HDFS. This design makes a simpli-
fying assumption that all disks belonging to a DN are of the
same Dgroup and are deployed together (this could be relaxed
easily). Under this simplifying assumption, conceptually, an
Rgroup would consist of a set of DNs that need to be managed
independent of other such sets of DNs as shown in Fig 4.

The NN maintains a DatanodeManager (DNMgr), which is
a gateway for the NN to interact with the DNs. The DNMgr
maintains a list of the DNs, along with their usage statistics.
The DNMgr also contains a HeartBeatManager (HrtBtMgr)
which handles the periodic keepalive heartbeats from DNs. A
natural mechanism to realize Rgroups in HDFS is to have one
DNMgr per Rgroup. Note that the sets of DNs belonging to
the different DNMgrs are mutually exclusive. Implementing
Rgroups with multiple DNMgrs has several advantages.

Right level of control and view of the system. Since the
DNMgr resides below the block layer, when the data needs to

be moved for redundancy adaptations, the logical view of the
file remains unaffected. Only the mapping from HDFS blocks
to DNs gets updated in the inode. The statistics maintained
by the DNMgr can be used to balance load across Rgroups.

Minimizing changes to the HDFS architecture and maximiz-
ing re-purposing of existing HDFS mechanisms. This design
obviates the need to change HDFS’s block placement policy,
since it is implemented at the DNMgr level. Block place-
ment policies are notoriously hard to get right. Moreover,
block placement decisions are affected by fault domains and
network topologies, both of which are orthogonal to PACE-
MAKER’s goals, and thus best left untouched. Likewise, the
code for reconstruction of data from a failed DN need not be
touched, since all of the reads (to reconstruct each lost chunk)
and writes (to store it somewhere else) will occur within the
set of nodes managed by its DNMgr. Existing mechanisms
for adding / decommissioning nodes managed by the DN-
Mgr can be re-purposed to implement PACEMAKER’s Type 1
transitions (described below).

Cost of maintaining multiple DNMgrs is small. Each DN-
Mgr maintains two threads: a HrtBtMgr and a DNAdminMgr.
The former tracks and handles heartbeats from each DN, and
the latter monitors the DNs for performing decommissioning
and maintenance. The number of DNMgr threads in the NN
will increase from two to 2× the number of Rgroups. Fortu-
nately, even for large clusters, we observe that the number
of Rgroups would not exceed the low tens (§7.4). The NN
is usually a high-end server compared to the DNs, and an
additional tens of threads shouldn’t affect performance.

Rgroup transitions in HDFS. An important part of PACE-
MAKER functionality is transitioning DNs between Rgroups.
Recall from §5.3 that one of PACEMAKER’s preferred way of
transitioning disks across Rgroups is by emptying the disks.
In HDFS, the planned removal of a DN from a HDFS cluster
is called decommissioning. PACEMAKER re-uses decommis-
sioning to remove a DN from the set of DNs managed by
one DNMgr and then adds it to the set managed by another,
effectively transitioning a DN from one Rgroup to another.

PACEMAKER does not change the file manipulation API
or client access paths. But, there is one corner-case related
to transitions when file reads can be affected internally. To
read a file, a client queries the NN for the inode and caches it.
Subsequently, the reads are performed directly from the client
to the DN. If the DN transitions to another Rgroup while the
file is still being read, the HDFS client may find that that DN
no longer has the requested data. But, because this design uses
existing HDFS decommissioning for transitions, the client
software knows to react by re-requesting the updated inode
from the NN and resuming the read.

7 Evaluation
PACEMAKER-enabled disk-adaptive redundancy using is

evaluated on production logs from four large-scale real-world
storage clusters, each with hundreds of thousands of disks.

378 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/thesys-lab/pacemaker-hdfs.git
https://github.com/thesys-lab/pacemaker-hdfs.git

G-1eA
G-2eA

G-2eB

G-1eB
G-3eC
G-6eB

(a) Redundancy management IO due to PACEMAKER over its 2.5+ year lifetime broken down by IO type. This identical to
Fig. 1b with the left Y axis only going to 20% to show the detailed IO activity happening in the cluster.

G-1eA G-1eB

(b) G-1 (step) AFR curve

G-1eA
G-2eA

G-2eB

G-1eB
G-3eC
G-6eB

Space-savings

6-of-9

30-of-33

6-of-9

10-of-13

11-of-14

(c) Space-savings due to PACEMAKER. Each colored region represents the fraction of cluster capacity that is using a
particular redundancy scheme. 6-of-9 is the default redundancy scheme (Rgroup0’s).

G-2eA G-2eB

(d) G-2 (trickle) AFR curve

Figure 5: Detailed IO analysis and space savings achieved by PACEMAKER-enabled adaptive redundancy on Google Cluster1.

We also experiment with a proof-of-concept HDFS implemen-
tation on a smaller sized cluster. This evaluation has four
primary takeaways: (1) PACEMAKER eliminates transition
overload, never using more than 5% of cluster IO bandwidth
(0.2–0.4% on average) and always meets target MTTDL, in
stark contrast to prior work approaches that do not account
for transition IO load; (2) PACEMAKER provides more than
97% of idealized-potential space-savings, despite being proac-
tive, reducing disk capacity needed by 14–20% compared to
one-size-fits-all; (3) PACEMAKER’s behavior is not overly
sensitive across a range of values for its configurable param-
eters; (4) PACEMAKER copes well with the real-world AFR
characteristics explained in §3.2. For example, it success-
fully combines the “multiple useful life phases” observation
with efficient transitioning schemes. This evaluation also
shows PACEMAKER in action by measuring disk-adaptive
redundancy in PACEMAKER-enhanced HDFS.

Evaluation methodology. PACEMAKER is simulated
chronologically for each of the four cluster logs described
in §3: three clusters from Google and one from Backblaze.
For each simulated date, the simulator changes the cluster
composition according to the disk additions, failures and de-
commissioning events in the log. PACEMAKER is provided
the log information, as though it were being captured live in
the cluster. IO bandwidth needed for each day’s redundancy
management is computed as the sum of IO for failure recon-
struction and transition IO requested by PACEMAKER, and is
reported as a fraction of the configured cluster IO bandwidth
(100MB/sec per disk, by default).

PACEMAKER was configured to use a peak-IO-cap of 5%,
an average-IO constraint of 1% and a threshold-AFR of 75%
of the tolerated-AFR, except for the sensitivity studies in
§7.3. For comparison, we also simulate (1) an idealized
disk-adaptive redundancy system in which transitions are in-

stantaneous (requiring no IO) and (2) the prior state-of-the-art
approach (HeART) for disk-adaptive redundancy. For all
cases, Rgroup0 uses 6-of-9, representing a one-size-fits-all
scheme reported in prior literature [13]. The required target
MTTDL is then back-calculated using the 6-of-9 default and
an assumed tolerated-AFR of 16% for Rgroup0. These config-
uration defaults were set by consulting storage administrators
of clusters we evaluated.

7.1 PACEMAKER on Google Cluster1 in-depth
Fig. 5a shows the IO generated by PACEMAKER (and disk

count) over the ≈3-year lifetime of Google Cluster1. Over
time, the cluster grew to over 350K disks comprising of disks
from 7 makes/models (Dgroups) via a mix of trickle and step
deployments. Fig. 5b and Fig. 5d show AFR curves of 2 of
the 7 Dgroups (obfuscated as G-1 and G-2 for confidentiality)
along with how PACEMAKER adapted to them at each age.
G-1 disks are trickle-deployed whereas G-2 disks are step-
deployed. The other 5 Dgroups are omitted due to lack of
space. Fig. 5c shows the corresponding space-savings (the
white space above the colors).

All disks enter the cluster as unspecialized disks, i.e.
Rgroup0 (dark gray region in the Fig. 5a and left gray re-
gion of Figs. 5b and 5d). Once a Dgroup’s AFR reduces
sufficiently, PACEMAKER RDn transitions them to a special-
ized Rgroup (light gray area in Fig. 5a). Over their lifetime,
disks may transition through multiple RUp transitions over
the multiple useful life phases. Each transition requires IO,
which is captured in blue in Fig. 5a. For example, the sud-
den drop in the unspecialized disks, and the blue area around
2018-04 captures the Type 2 transitions caused when over
100K disks RDn transition from Rgroup0 to a specialized
Rgroup. The light gray region in Fig. 5a corresponds to the
time over which space-savings are obtained, which can be
seen in Fig. 5c.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 379

30-of-33

6-of-9 6-of-9

10-of-13

HeART

Pacemaker

Space-savings

C
ap

ac
ity

(%
)

IO
 /

da
y

(%
)

IO
 /

da
y

(%
)

N
um

 d
is

ks
N

um
 d

is
ks

(a) Google Cluster2

HeART

6-of-9

Pacemaker

30-of-33

IO
 /

da
y

(%
)

15-of-18

C
ap
ac
ity
(%
)

6-of-9

10-of-13Space-savings

IO
 /

da
y

(%
)

N
um

 d
is

ks
N

um
 d

is
ks

(b) Google Cluster3

HeART

Pacemaker

Space-savings

C
ap

ac
ity

(%
)

IO
 /

da
y

(%
)

IO
 /

da
y

(%
)

30-of-33

6-of-9 6-of-9

13-of-16

27-of-30 15-of-18

N
um

 d
is

ks
N

um
 d

is
ks

(c) Backblaze

Figure 6: Top two rows show the IO overhead comparison between prior adaptive redundancy system (HeART) and PACEMAKER on two
Google clusters and one Backblaze cluster. PACEMAKER successfully bounds all IO under 5% (visible as tiny blue regions in middle graphs,
for e.g. around 2017 in (a)). The bottom row shows the 14–20% average space-savings achieved by PACEMAKER across the three clusters.

Many transitions with no transition overload. PACE-
MAKER successfully bounds all redundancy management IO
comfortably under the configured peak-IO-cap throughout the
cluster’s lifetime. This can be seen via an imaginary horizon-
tal line at 5% (the configured peak-IO-cap) that none of the
blue regions goes above. Recall that PACEMAKER rate-limits
the IO within each Rgroup to ensure simultaneous transitions
do not violate the cluster’s IO cap. Events G-1eA and G-2eA
are examples of events where both G-1 and G-2 disks (making
up almost 100% of the cluster at that time) request transitions
at the same time. Despite that, the IO remains bounded below
5%. G-3eC and G-6eB also show huge disk populations of
G-3 and G-6 Dgroups (AFRs not shown) requesting almost
simultaneous RUp transitions, but PACEMAKER’s design en-
sures that the peak-IO constraint is never violated. This is
in sharp contrast with HeART’s frequent transition overload,
shown in Fig. 1a.

Disks experience multiple useful life phases. G-1, G-3,
G-6 and G-7 disks experience two phases of useful life each.
In Fig. 5a, events G-1eA and G-1eB mark the two transitions
of G-1 disks through its multiple useful lives as shown in
Fig. 5b. In the absence of multiple useful life phases, PACE-
MAKER would have RUp transitioned G-1 disks to Rgroup0
in 2019-05, eliminating space-savings for the remainder of
their time in the cluster. §7.3 quantifies the benefit of multiple
useful life phases for all four clusters.

MTTDL always at or above target. Along with the AFR
curves, Figs. 5b and 5d also show the upper bound on the AFR
for which the reliability constraint is met (top of the gray re-
gion). PACEMAKER sufficiently protects all disks throughout
their life for all Dgroups across evaluated clusters.

Substantial space-savings. PACEMAKER provides 14%
average space-savings (Fig. 5c) over the cluster lifetime to
date. Except for 2017-01 to 2017-05 and 2017-11 to 2018-03,
which correspond to infancy periods for large batches of new
empty disks added to the cluster, the entire cluster achieves
≈20% space-savings. Note that the apparent reduction in
space-savings from 2017-11 to 2018-03 isn’t actually reduced
space in absolute terms. Since Fig. 5c shows relative space-
savings, the over 100K disks deployed around 2017-11, and

their infancy period makes the space-savings appear reduced
relative to the size of the cluster.

7.2 PACEMAKER on the other three clusters
Fig. 6 compares the transition IO incurred by PACEMAKER

to that for HeART [27] for Google Cluster2, Google Cluster3
and Backblaze, along with the corresponding space-savings
achieved by PACEMAKER. While clusters using HeART
would suffer transition overload, the same clusters under
PACEMAKER always had all their transition IO under the peak-
IO-cap of 5%. In fact, on average, only 0.21–0.32% percent
of the cluster IO bandwidth was used for transitions. The
average space-savings for the three clusters are 14–20%.

Google Cluster2. Fig. 6a shows the transition overload
and space-savings in Google Cluster2 and the corresponding
space-savings. All Dgroups in Google Cluster2 are step-
deployed. Thus, it is not surprising that Fig. 7c shows that
over 98% of the transitions in Cluster2 were Type 2 transitions
(bulk parity recalculation). Cluster2’s disk population exceeds
450K disks. Even at such large scales, PACEMAKER obtains
average space-savings of almost 17% and peak space-savings
of over 25%. This translates to needing 100K fewer disks.

Google Cluster3. Google Cluster3 (Fig. 6b) is not as large
as Cluster1 or Cluster2. At its peak, Cluster3 has a disk pop-
ulation of approximately 200K disks. But, it achieves the
highest average space-savings (20%) among clusters evalu-
ated. Like Cluster2, Cluster3 is also mostly step-deployed.

Backblaze Cluster. Backblaze (Fig. 6c) is a completely
trickle-deployed cluster. The dark grey region across the
bottom of Fig. 6c’s PACEMAKER plot shows the persistent
presence of canary disks throughout the cluster’s lifetime. Un-
like the Google clusters, the transition IO of Backblaze does
not produce bursts of transition IO that lasts for weeks. In-
stead, since trickle-deployed disks transition a-few-at-a-time,
we see transition work appearing continuously throughout
the cluster lifetime of over 6 years. The rise in the transition
IO spikes in 2019, for HeART, is because of large capac-
ity 12TB disks replacing 4TB disks. Unsurprisingly, under
PACEMAKER, most of the transitions are done using Type 1
(transitioning by emptying disks) as shown in Fig. 7c. The
average space-savings obtained on Backblaze are 14%.

380 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1.5% 2.5% 3.5% 5% 7.5%
Pacemaker's peak-IO-cap

0

25

50

75

100

%
 o

pt
im

al
 sa

vi
ng

s

(G
oo

gl
e

Cl
us

te
r1

)

(G
oo

gl
e

Cl
us

te
r1

)

(G
oo

gl
e

Cl
us

te
r1

)

97
.9

98
.4(G

oo
gl

e
Cl

us
te

r2
)

(G
oo

gl
e

Cl
us

te
r2

)

98
.6

98
.7

98
.7

97 98
.1

98
.4

98
.6

98
.8

97
.5

97
.6

97
.6

97
.6

97
.6

Google Cluster1 Google Cluster2 Google Cluster3 Backblaze

(a) PACEMAKER’s sensitivity to the peak-IO constraint.
GoogleC1

GoogleC2
GoogleC3

Backblaze
0.0

0.5

1.0

1.5

Op
tim

ize
d

di
sk

-d
ay

s

1.
1x

1.
28

x

1.
33

x

1.
03

x

(b) Multiple useful life phases
GoogleC1

GoogleC2
GoogleC3

Backblaze
0

20

40

60

80

100

Tr
an

sit
io

n
ty

pe
 sp

lit

Type 1 Type 2

(c) Transition type distribution

Figure 7: (a) shows PACEMAKER’s sensitivity to the peak IO bandwidth constraint. (b) shows the advantage of multiple useful life phases and
(c) shows the contribution of the two transitioning techniques when PACEMAKER was simulated on the four production clusters.

7.3 Sensitivity analyses and ablation studies
Sensitivity to IO constraints. The peak-IO constraint gov-

erns Fig. 7a, which shows the percentages of optimal space-
savings achieved with PACEMAKER for peak-IO-cap settings
between 1.5% and 7.5%. A peak-IO-cap of up to 7.5% is used
in order to compare with the IO percentage spent for existing
background IO activity, such as scrubbing. By scrubbing all
data once every 15 days [5], the scrubber uses around 7% IO
bandwidth, and is a background work IO level tolerated by
today’s clusters.

The Y-axis captures how close the space-savings are for
the different peak-IO-caps compared to “Optimal savings”,
i.e. an idealized system with infinitely fast transitions. PACE-
MAKER’s default peak-IO-cap (5%) achieves over 97% of
the optimal space-savings for each of the four clusters. For
peak-IO constraint set to <=2.5%, some RUp transitions in
Google Cluster1 and Cluster2 become too aggressively rate-
limited causing a subsequent AFR rise to violate the peak-IO
constraints. We indicate this as a failure, and show it as "∅".
The same situation happens for Google Cluster1 at 3.5%.

Sensitivity to threshold-AFR. The threshold-AFR deter-
mines when proactive RUp transitions of step-deployed disks
are initiated. Conceptually, the threshold-AFR governs how
risk-averse the admin wants to be. Lowering the threshold
would trigger an RUp transition when disks are farther away
from the tolerated-AFR (more risk-averse), and vice-versa.
We evaluated PACEMAKER for threshold-AFRs of 60%, 75%
and 90% of the respective Rgroups’ tolerated-AFRs. We
found that PACEMAKER’s space-savings is not very sensitive
to threshold-AFR, with space-savings only 2% lower at 60%
than at 90%. Data remained safe at each of these settings, but
would become unsafe with higher values.

Contribution of multiple useful life phases. Fig. 7b com-
pares the increased number of disk-days spent in specialized
Rgroups because of considering multiple useful life phases.
In the best case, Google Cluster2 spent 33% more disk-days
in specialized redundancy, increasing overall space-savings
from 16% to 19%. Note that in large-scale storage clusters,
even 1% space-savings are considered substantial as it repre-
sents thousands of disks.

Contribution of transition types. By proactively keeping
step-deployed disks in distinct Rgroups and using specialized
transitioning schemes whenever possible, instead of using

simple re-encoding for all transitions, PACEMAKER reduces
total transition IO by 92–96% for the four clusters. Fig. 7c
shows what percentage of transitions were done via Type 1
(disk emptying) vs. Type 2 (bulk parity recalculation). As
expected, Google clusters rely more on Type 2 transitions,
because most disks are step-deployed. In contrast, the Back-
blaze cluster is entirely trickle-deployed and hence mostly
uses Type 1 transitions. The small percentage of Type 2
transitions in Backblaze occur when Rgroups are purged.

7.4 Evaluating HDFS + PACEMAKER

This section describes basic experiments with the
PACEMAKER-enabled HDFS, focusing on its functioning and
operation. Note that PACEMAKER is designed for longitudinal
disk deployments over several years, a scenario that cannot
be reproduced identically in laboratory settings. Hence, these
HDFS experiments are aimed to display that integrating PACE-
MAKER with an existing storage system is straightforward,
rather than on the long-term aspects like overall space-savings
or transition IO behavior over cluster lifetime as evaluated via
simulation above.

The HDFS experiments run on a PRObE Emulab clus-
ter [16]. Each machine has a Dual-Core AMD Opteron Pro-
cessor, 16GB RAM, and Gigabit Ethernet. We use a 21-node
cluster running HDFS 3.2.0 with one NN and 20 DNs. Each
DN has a 10GB partition on a 10000 RPM HDD for a total
cluster size of 200GB. We statically define the cluster to
be made up of two Rgroups of ten DNs each, one using the
6-of-9 erasure coding scheme and the other using a 7-of-10
scheme. DFS-perf [19], a popular open-source HDFS bench-
mark is used, after populating the cluster to 60% full. Each
DFS-perf client sequentially reads one file over and over again
(size=768MB), for a total read size of about 1.75TB over 40
iterations. We use 60 DFS-perf clients, running on 20 nodes
separate from the HDFS cluster.

We focus on the behavior of a DN as it transitions between
Rgroups, compared with baseline HDFS performance (where
all DNs are healthy) and its behavior while recovering from a
failed DN. Fig. 8 shows the client throughput after the setup
phase, followed by a noticeable drop in client throughput
when a DN fails (emuated by stopping the DN). This is
caused by the reconstruction IO that recreates the data from
the failed node. Read latency exhibits similar behavior (not

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 381

0 200 400 600 800
Time (sec)

0

1000

2000

Th
ro

ug
hp

ut
 (M

B/
se

c)

St
op

 D
N

Failure
Baseline Failure

0 200 400 600 800
Time (sec)

Be
gi

n
tra

ns
iti

on

En
d

of
 tr

an
sit

io
n

Relaxed Rgroup Transition
Baseline Relaxed Rgroup Transition

Figure 8: DFS-perf reported throughput for baseline, with one DN
failure and one Rgroup transition.

shown due to space). Eventually, throughput settles at about
5% lower than prior to failure, since now there are 19 DNs.

Fig. 8 also shows client throughput when a node is RDn
transitioned from 6-of-9 to 7-of-10. There is minor interfer-
ence during the transition, which can be attributed to the data
movement that HDFS performs as a part of decommissioning.
The transition requires less work than failed node reconstruc-
tion, yet takes longer to complete because PACEMAKER limits
the transition IO. Eventually, even though 20 DNs are run-
ning, the throughput is lower by ≈5% (one DN’s throughput).
This happens because PACEMAKER empties the DN before it
moves into the new Rgroup, and load-balancing data to newly
added DNs happens over a longer time-frame. Experiments
with RUp transition showed similar results.

8 Related work
The closest related work [27] proposes a redundancy adap-

tation tool called HeART that categorizes disks into groups
and suggests a tailored redundancy scheme for each during its
useful life period. As discussed earlier, while [27] showcased
potential space-savings, it ignored transition overload and
hence is made impractical (Fig. 1a). PACEMAKER eliminates
transition overload by employing IO constraints (specifically
the peak-IO and average-IO constraints) that cap the transi-
tion IO to a tiny fraction cluster bandwidth. While HeART
was evaluated only for the trickle-deployed Backblaze cluster,
our evaluation of PACEMAKER for Google storage clusters
exposes the unique challenges of step-deployed clusters. Sev-
eral design elements were added to PACEMAKER to address
the challenges posed by step-deployed disks.

Various systems include support for multiple redundancy
schemes, allowing different schemes to be used for different
data [12, 14]. Tools have been created for deciding, on a per-
data basis, which scheme to use [59, 65]. Keeton et al. [28]
describe a tool that automatically provides disaster-resistant
solutions based on budget and failure models. PACEMAKER
differs from such systems by focusing on efficiently adapting
redundancy to different and time-varying AFRs of disks.

Reducing the impact of background IO, such as for data
scrubbing, on foreground IO is a common research theme. [1,
3, 30, 31, 38, 53]. PACEMAKER converts otherwise-urgent
bursts of transition IO into proactive background IO, which
could then benefit from these works.

Disk reliability has been well studied, including evidence
of failure rates being make/model dependent [5, 11, 22, 25,

32, 40, 41, 49–51, 55]. There are also studies that predict
disk failures [2, 20, 33, 37, 58, 61, 68], which can enhance any
storage fault-tolerance approach.

While several works have considered the problem of design-
ing erasure codes that allow transitions using less resources,
existing solutions are limited to specific kinds of transitions
and hence are not applicable in general. The case of adding
parity chunks while keeping the number of data chunks fixed
can be viewed [35, 45, 47] as the well-studied reconstruction
problem, and hence the codes designed for optimal recon-
struction (e.g., [10,18,39,46,47,60]) would lead to improved
resource usage for this case. Several works have studied the
case where the number of data nodes increases while the num-
ber of parity nodes remains fixed [23, 42, 64, 66, 69]. In [65],
the authors propose two erasure codes designed to undergo a
specific transition in parameters. In [34], the authors propose
a general theoretical framework for studying codes that enable
efficient transitions for general parameters, and derive lower
bounds on the cost of transitions as well as describe optimal
code constructions for certain specific parameters. However,
none of the existing code constructions are applicable for the
diverse set of transitions needed for disk-adaptive redundancy
in real-world storage clusters.

9 Conclusion
PACEMAKER orchestrates disk-adaptive redundancy with-

out transition overload, allowing use in real-world clusters.
By proactively arranging data layouts and initiating transi-
tions, PACEMAKER reduces total transition IO allowing it to
be rate-limited. Its design integrates cleanly into existing scal-
able storage implementations, such as HDFS. Analysis for 4
large real-world storage clusters from Google and Backblaze
show 14–20% average space-savings while transition IO is
kept small (<0.4% on average) and bounded (e.g., <5%).

10 Acknowledgements
We thank our shepherd Wyatt Lloyd and the anonymous

reviewers for their valuable feedback and suggestions. We ex-
tend special thanks to Larry Greenfield, Arif Merchant and nu-
merous other researchers, engineers at Google; Keith Smith,
Tim Emami, Jason Hennessey, Peter Macko and other re-
searchers from NetApp’s Advanced Technology Group (ATG)
who have been instrumental in providing data, feedback and
support. We also thank Jiaan Dai, Xuren Zhou, Jiaqi Zuo,
Sai Kiriti Badam and Jiongtao Ye for their help in building
the HDFS+PACEMAKER prototype. This research is gener-
ously supported in part by the NSF grants CNS 1956271 and
CNS 1901410. We also thank the members and companies of
the PDL Consortium (Alibaba, Amazon, Datrium, Facebook,
Google, HPE, Hitachi, IBM, Intel, Microsoft, NetApp, Ora-
cle, Pure Storage, Salesforce, Samsung, Seagate, Two Sigma,
Western Digital and VMware) for their interest, insights, feed-
back, and support.

382 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] George Amvrosiadis, Angela Demke Brown, and

Ashvin Goel. Opportunistic storage maintenance.
In ACM Symposium on Operating Systems Principles
(SOSP), 2015.

[2] Preethi Anantharaman, Mu Qiao, and Divyesh Jadav.
Large Scale Predictive Analytics for Hard Disk Remain-
ing Useful Life Estimation. In IEEE International
Congress on Big Data (BigData Congress), 2018.

[3] Eitan Bachmat and Jiri Schindler. Analysis of methods
for scheduling low priority disk drive tasks. In ACM
SIGMETRICS Performance Evaluation Review, 2002.

[4] Backblaze. Disk Reliability Dataset. https://www.
backblaze.com/b2/hard-drive-test-data.html,
2013-2019.

[5] Lakshmi N Bairavasundaram, Garth R Goodson,
Shankar Pasupathy, and Jiri Schindler. An analysis
of latent sector errors in disk drives. In ACM SIGMET-
RICS Performance Evaluation Review, 2007.

[6] Eric Brewer. Spinning Disks and Their Cloudy Future.
https://www.usenix.org/node/194391, 2018.

[7] Eric Brewer, Lawrence Ying, Lawrence Greenfield,
Robert Cypher, and Theodore T’so. Disks for data
centers. Technical report, Google, 2016.

[8] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-
tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu,
Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, et al.
Windows azure storage: a highly available cloud storage
service with strong consistency. In ACM Symposium on
Operating Systems Principles (SOSP), 2011.

[9] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen,
Emil Sit, Hakim Weatherspoon, M Frans Kaashoek,
John Kubiatowicz, and Robert Morris. Efficient Replica
Maintenance for Distributed Storage Systems. In
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2006.

[10] Alexandros G. Dimakis, Brighten Godfrey, Yunnan
Wu, Martin J. Wainwright, and Kannan Ramchandran.
Network coding for distributed storage systems. IEEE
Transactions on Information Theory, 2010.

[11] Jon Elerath. Hard-disk drives: The good, the bad, and
the ugly. Communication of ACM, 2009.

[12] Erasure code Ceph Documentation. https:
//docs.ceph.com/docs/master/rados/
operations/erasure-code/, (accessed Oct 15,
2020).

[13] Daniel Ford, François Labelle, Florentina I Popovici,
Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie
Grimes, and Sean Quinlan. Availability in Globally
Distributed Storage Systems. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2010.

[14] Apache Software Foundation. HDFS Erasure
Coding. https://hadoop.apache.org/docs/
r3.0.0/hadoop-project-dist/hadoop-hdfs/
HDFSErasureCoding.html, (accessed Oct 15, 2020).

[15] S. Ghemawat, H. Gobioff, and S.T. Leung. The Google
file system. In ACM Symposium on Operating Systems
Principles (SOSP), 2003.

[16] Garth Gibson, Gary Grider, Andree Jacobson, and Wyatt
Lloyd. Probe: A thousand-node experimental cluster
for computer systems research. USENIX; login, 2013.

[17] Garth A Gibson. Redundant disk arrays: Reliable,
parallel secondary storage. The MIT Press, 1992.

[18] Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and
Sergey Yekhanin. On the locality of codeword symbols.
IEEE Transactions on Information Theory, 2012.

[19] Rong Gu, Qianhao Dong, Haoyuan Li, Joseph Gonzalez,
Zhao Zhang, Shuai Wang, Yihua Huang, Scott Shenker,
Ion Stoica, and Patrick PC Lee. DFS-PERF: A scalable
and unified benchmarking framework for distributed file
systems. UC Berkeley, Tech. Rep. UCB/EECS-2016-
133, 2016.

[20] Greg Hamerly and Charles Elkan. Bayesian approaches
to failure prediction for disk drives. In International
Conference on Machine Learning (ICML), 2001.

[21] Trevor Hastie, Robert Tibshirani, and Jerome Friedman.
Kernel smoothing methods. In The elements of statisti-
cal learning. Springer, 2009.

[22] Eric Heien, Derrick Kondo, Ana Gainaru, Dan LaPine,
Bill Kramer, and Franck Cappello. Modeling and toler-
ating heterogeneous failures in large parallel systems. In
ACM / IEEE High Performance Computing Networking,
Storage and Analysis (SC), 2011.

[23] Yuchong Hu, Xiaoyang Zhang, Patrick P. C. Lee, and
Pan Zhou. Generalized optimal storage scaling via
network coding. In IEEE International Symposium on
Information Theory, ISIT, 2018.

[24] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron
Ogus, Brad Calder, Parikshit Gopalan, Jin Li, Sergey
Yekhanin, et al. Erasure Coding in Windows Azure Stor-
age. In USENIX Annual Technical Conference (ATC),
2012.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 383

https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.usenix.org/node/194391
https://docs.ceph.com/docs/master/rados/operations/erasure-code/
https://docs.ceph.com/docs/master/rados/operations/erasure-code/
https://docs.ceph.com/docs/master/rados/operations/erasure-code/
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html

[25] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and
Arkady Kanevsky. Are disks the dominant contributor
for storage failures?: A comprehensive study of storage
subsystem failure characteristics. ACM Transactions on
Storage (TOS), 2008.

[26] Saurabh Kadekodi, Francisco Maturana, Suhas Ja-
yaram Subramanya, Jungcheng Yang, K. V. Rashmi,
and Gregory R. Ganger. PACEMAKER: Avoiding
HeART attacks in storage clusters with disk-adaptive
redundancy (expanded). In arXiv, 2020.

[27] Saurabh Kadekodi, K V Rashmi, and Gregory R Ganger.
Cluster storage systems gotta have HeART: improving
storage efficiency by exploiting disk-reliability hetero-
geneity. In USENIX File and Storage Technologies
(FAST), 2019.

[28] Kimberly Keeton, Cipriano A Santos, Dirk Beyer, Jef-
frey S Chase, John Wilkes, et al. Designing for disasters.
In USENIX File and Storage Technologies (FAST), 2004.

[29] Larry Lancaster and Alan Rowe. Measuring real-world
data availability. In USENIX LISA, 2001.

[30] Christopher R Lumb, Jiri Schindler, Gregory R Ganger,
et al. Freeblock scheduling outside of disk firmware. In
USENIX File and Storage Technologies (FAST), 2002.

[31] Christopher R Lumb, Jiri Schindler, Gregory R Ganger,
David F Nagle, and Erik Riedel. Towards higher disk
head utilization: extracting free bandwidth from busy
disk drives. In USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2000.

[32] Ao Ma, Rachel Traylor, Fred Douglis, Mark Chamness,
Guanlin Lu, Darren Sawyer, Surendar Chandra, and
Windsor Hsu. RAIDShield: characterizing, monitoring,
and proactively protecting against disk failures. ACM
Transactions on Storage (TOS), 2015.

[33] Farzaneh Mahdisoltani, Ioan Stefanovici, and Bianca
Schroeder. Proactive error prediction to improve stor-
age system reliability. In USENIX Annual Technical
Conference (ATC), 2017.

[34] Francisco Maturana and K. V. Rashmi. Convertible
codes: new class of codes for efficient conversion of
coded data in distributed storage. In 11th Innovations in
Theoretical Computer Science Conference, ITCS, 2020.

[35] Sara Mousavi, Tianli Zhou, and Chao Tian. Delayed
parity generation in MDS storage codes. In IEEE Inter-
national Symposium on Info. Theory, ISIT, 2018.

[36] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy,
Cory Hill, Ernest Lin, Weiwen Liu, Satadru Pan, Shiva
Shankar, Viswanath Sivakumar, Linpeng Tang, et al. f4:

Facebook’s warm BLOB storage system. In USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2014.

[37] Joseph F Murray, Gordon F Hughes, and Kenneth
Kreutz-Delgado. Hard drive failure prediction using
non-parametric statistical methods. In Springer Artifi-
cial Neural Networks and Neural Information Process-
ing (ICANN/CONIP, 2003.

[38] Alina Oprea and Ari Juels. A Clean-Slate Look at Disk
Scrubbing. In USENIX File and Storage Technologies
(FAST), 2010.

[39] Dimitris S. Papailiopoulos and Alexandros G. Dimakis.
Locally repairable codes. IEEE Transactions on Infor-
mation Theory, 2014.

[40] David A Patterson, Garth Gibson, and Randy H Katz. A
case for redundant arrays of inexpensive disks (RAID).
In ACM International Conference on Management of
Data (SIGMOD), 1988.

[41] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz An-
dré Barroso. Failure Trends in a Large Disk Drive
Population. In USENIX File and Storage Technologies
(FAST), 2007.

[42] Brijesh Kumar Rai, Vommi Dhoorjati, Lokesh Saini,
and Amit K. Jha. On adaptive distributed storage sys-
tems. In IEEE International Symposium on Information
Theory, ISIT, 2015.

[43] K V Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang,
Dhruba Borthakur, and Kannan Ramchandran. A So-
lution to the Network Challenges of Data Recovery in
Erasure-coded Distributed Storage Systems: A Study on
the Facebook Warehouse Cluster. In USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage),
2013.

[44] K V Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang,
Dhruba Borthakur, and Kannan Ramchandran. A hitch-
hiker’s guide to fast and efficient data reconstruction
in erasure-coded data centers. ACM Special Interest
Group on Data Communication (SIGCOMM), 2014.

[45] K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar. En-
abling node repair in any erasure code for distributed
storage. In IEEE International Symposium on Informa-
tion Theory Proceedings, ISIT, 2011.

[46] K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar. Op-
timal exact-regenerating codes for distributed storage
at the MSR and MBR points via a product-matrix con-
struction. IEEE Trans. on Information Theory, 2011.

384 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[47] KV Rashmi, Nihar B Shah, and Kannan Ramchan-
dran. A piggybacking design framework for read-and
download-efficient distributed storage codes. IEEE
Transactions on Information Theory, 2017.

[48] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dim-
itris Papailiopoulos, Alexandros G Dimakis, Ramkumar
Vadali, Scott Chen, and Dhruba Borthakur. Xoring
elephants: Novel erasure codes for big data. In Interna-
tional Conference on Very Large Data Bases, 2013.

[49] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill.
Understanding latent sector errors and how to protect
against them. ACM Trans. on Storage (TOS), 2010.

[50] Bianca Schroeder and Garth A Gibson. Disk failures in
the real world: What does an MTTF of 1,000,000 hours
mean to you? In USENIX File and Storage Technologies
(FAST), 2007.

[51] Bianca Schroeder and Garth A Gibson. Understanding
failures in petascale computers. In Journal of Physics:
Conference Series. IOP Publishing, 2007.

[52] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash Reliability in Production: The Expected and the
Unexpected. In USENIX File and Storage Technologies
(FAST), 2016.

[53] Thomas JE Schwarz, Qin Xin, Ethan L Miller, Dar-
rell DE Long, Andy Hospodor, and Spencer Ng. Disk
scrubbing in large archival storage systems. In IEEE
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Sys-
tems (MASCOTS), 2004.

[54] Seagate. The Digitization of the World From
Edge to Core. https://www.seagate.com/
files/www-content/our-story/trends/files/
idc-seagate-dataage-whitepaper.pdf, 2018.

[55] Sandeep Shah and Jon G Elerath. Disk drive vintage
and its effect on reliability. In IEEE Reliability and
Maintenance Symposium (RAMS), 2004.

[56] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
Robert Chansler, et al. The hadoop distributed file
system. In IEEE/NASA Goddard Conference on Mass
Storage Systems and Technologies (MSST), 2010.

[57] Emil Sit, Andreas Haeberlen, Frank Dabek, Byung-Gon
Chun, Hakim Weatherspoon, Robert Tappan Morris,
M Frans Kaashoek, and John Kubiatowicz. Proactive
Replication for Data Durability. In USENIX Int. Work-
shop on Peer-to-Peer Systems (IPTPS), 2006.

[58] Brian D Strom, SungChang Lee, George W Tyndall,
and Andrei Khurshudov. Hard disk drive reliability

modeling and failure prediction. IEEE Transactions on
Magnetics, 2007.

[59] Eno Thereska, Michael Abd-El-Malek, Jay J Wylie,
Dushyanth Narayanan, and Gregory R Ganger. In-
formed data distribution selection in a self-predicting
storage system. In IEEE International Conference on
Autonomic Computing (ICAC), 2006.

[60] Myna Vajha, Vinayak Ramkumar, Bhagyashree Puranik,
Ganesh Kini, Elita Lobo, Birenjith Sasidharan, P Vijay
Kumar, Alexandar Barg, Min Ye, Srinivasan Narayana-
murthy, et al. Clay codes: Moulding {MDS} codes to
yield an {MSR} code. In USENIX File and Storage
Technologies (FAST), 2018.

[61] Yu Wang, Eden WM Ma, Tommy WS Chow, and Kwok-
Leung Tsui. A two-step parametric method for failure
prediction in hard disk drives. IEEE Trans. on industrial
informatics, 2014.

[62] Hakim Weatherspoon and John D Kubiatowicz. Era-
sure coding vs. replication: A quantitative compari-
son. In International Workshop on Peer-to-Peer Systems.
Springer, 2002.

[63] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE
Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2006.

[64] Si Wu, Yinlong Xu, Yongkun Li, and Zhijia Yang. I/O-
efficient scaling schemes for distributed storage systems
with CRS codes. IEEE Transactions on Parallel and
Distributed Systems, 2016.

[65] Mingyuan Xia, Mohit Saxena, Mario Blaum, and
David A. Pease. A tale of two erasure codes in HDFS.
In USENIX File and Storage Technologies (FAST), 2015.

[66] Xiaoyang Zhang, Yuchong Hu, Patrick P. C. Lee, and
Pan Zhou. Toward optimal storage scaling via network
coding: from theory to practice. In IEEE Conference
on Computer Communications, INFOCOM, 2018.

[67] Zhe Zhang, Amey Deshpande, Xiaosong Ma, Eno
Thereska, and Dushyanth Narayanan. Does erasure
coding have a role to play in my data center. Microsoft
research MSR-TR-2010, 52, 2010.

[68] Ying Zhao, Xiang Liu, Siqing Gan, and Weimin Zheng.
Predicting disk failures with HMM-and HSMM-based
approaches. In Springer Industrial Conference on Data
Mining (ICDM), 2010.

[69] Weimin Zheng and Guangyan Zhang. Fastscale: accel-
erate RAID scaling by minimizing data migration. In
USENIX File and Storage Technologies (FAST), 2011.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 385

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

Pegasus: Tolerating Skewed Workloads in Distributed Storage with
In-Network Coherence Directories

Jialin Li1, Jacob Nelson2, Ellis Michael3, Xin Jin4, and Dan R. K. Ports2

1National University of Singapore, 2Microsoft Research, 3University of Washington,
4Johns Hopkins University

Abstract

High performance distributed storage systems face the chal-
lenge of load imbalance caused by skewed and dynamic work-
loads. This paper introduces Pegasus, a new storage system
that leverages new-generation programmable switch ASICs
to balance load across storage servers. Pegasus uses selective
replication of the most popular objects in the data store to
distribute load. Using a novel in-network coherence directory,
the Pegasus switch tracks and manages the location of repli-
cated objects. This allows it to achieve load-aware forwarding
and dynamic rebalancing for replicated keys, while still guar-
anteeing data coherence and consistency. The Pegasus design
is practical to implement as it stores only forwarding meta-
data in the switch data plane. The resulting system improves
the throughput of a distributed in-memory key-value store by
more than 10× under a latency SLO – results which hold
across a large set of workloads with varying degrees of skew,
read/write ratio, object sizes, and dynamism.

1 Introduction
Distributed storage systems are tasked with providing fast,
predictable performance in spite of immense and unpre-
dictable load. Systems like Facebook’s memcached deploy-
ment [50] store trillions of objects and are accessed thousands
of times on each user interaction. To achieve scale, these sys-
tems are distributed over many nodes; to achieve performance
predictability, they store data primarily or entirely in memory.

A key challenge for these systems is balancing load in the
presence of highly skewed workloads. Just as a celebrity may
have many millions more followers than the average user, so
too do some stored objects receive millions of requests per
day while others see almost none [3, 67]. Moreover, the set of
popular objects changes rapidly as new trends rise and fall [5].
While classic algorithms like consistent hashing [30] are effec-
tive at distributing load when all objects are of roughly equal
popularity, here they fall short: requests for a single popular
object commonly exceed the capacity of any individual server.

Replication makes it possible to handle objects whose re-
quest load exceeds one server’s capacity. Replicating every
object, while effective at load balancing [13, 49], introduces
a high storage overhead. Selective replication of only a set of
hot objects avoids this overhead. Leveraging prior analysis of

caching [17], we show that surprisingly few objects need to
be replicated in order to achieve strong load-balancing prop-
erties. However, keeping track of which objects are hot and
where they are stored is not straightforward, especially when
the storage system may have hundreds of thousands of clients,
and keeping multiple copies consistent is even harder [50].

We address these challenges with Pegasus, a distributed
storage system that uses a new architecture for selective repli-
cation and load balancing. Pegasus uses a programmable data-
plane switch to route requests to servers. Drawing inspiration
from CPU cache coherency protocols [4, 19, 22, 31, 34, 36,
37, 40], the Pegasus switch acts as an in-network coherence
directory that tracks which objects are replicated and where.
Leveraging the switch’s central view of request traffic, it can
forward requests to replicas in a load-aware manner. Unlike
prior approaches, Pegasus’s coherence directory also allows
it to dynamically rebalance the replica set on each write oper-
ation, accelerating both read- and write-intensive workloads –
while still maintaining strong consistency.

Pegasus introduces several new techniques, beyond the
concept of the in-network coherence directory itself. It uses
a lightweight version-based coherence protocol to ensure
consistency. Load-aware scheduling is implemented using a
combination of reverse in-network telemetry and in-switch
weighted round-robin policy. Finally, to provide fault toler-
ance, Pegasus uses a simple chain replication [66] protocol
to create multiple copies of data in different racks, each load-
balanced with its own switch.

Pegasus is a practical approach. We show that it can be
implemented using a Barefoot Tofino switch, and provides ef-
fective load balancing with minimal switch resource overhead.
In particular, unlike prior systems [29, 45], Pegasus stores no
application data in the switch, only metadata. This reduces
switch memory usage to less than 3.5% of the total switch
SRAM, permitting it to co-exist with existing switch function-
ality and thus reducing a major barrier to adoption [56].

Using 28 servers and a Pegasus switch, we show:
• Pegasus can increase the throughput by up to 10× – or re-

duce by 90% the number of servers required – of a system
subject to a 99%-latency SLO.

• Pegasus can react quickly to dynamic workloads where the
set of hot keys changes rapidly, and can recover quickly
from server or rack failures.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 387

• Pegasus can provide strong load balancing properties by
only replicating a small number of objects.

• Pegasus is able to achieve these benefits for many classes
of workloads, both read-heavy and write-heavy, with dif-
ferent object sizes and levels of skew.

2 Motivation
Real-world workloads for storage systems commonly ex-
hibit highly skewed object access patterns [3, 6, 26, 50, 51].
Here, a small fraction of popular objects receive dispropor-
tionately more requests than the remaining objects. Many
such workloads can be modeled using Zipfian access distri-
butions [3, 5, 6, 67]; recent work has shown that some real
workloads exhibit unprecedented skew levels (e.g., Zipf distri-
butions with α > 1) [10, 67]. Additionally, the set of popular
objects changes dynamically: in some cases, the average hot
object loses its popularity within 10 minutes [5].

Storage systems typically partition objects among multi-
ple storage servers for scalability and load distribution. The
implication of high skew in workloads is that load across stor-
age servers is also uneven: the few servers that store the most
popular objects will receive disproportionately more traffic
than the others. The access skew is often high enough that the
load for an object can exceed the processing capacity of a sin-
gle server, leading to server overload. To reduce performance
penalties, the system needs to be over-provisioned, which sig-
nificantly increases overall cost.

Skewed workloads are diverse. Read-heavy workloads have
been the focus of many recent studies, and many systems op-
timize heavily for them (e.g., assuming > 95% of requests
are reads) [21, 29, 41, 45]. While many workloads do fall
into this category, mixed or write-heavy workloads are also
common [67]. Object sizes also vary widely, even within
one provider. Systems may store small values (a few bytes),
larger values (kilobytes to megabytes), or a combination of
the two [1,3,5,67]. An ideal solution to workload skew should
be able to handle all of these cases.

2.1 Existing Approaches

How should a storage system handle skewed workloads,
where the request load for a particularly popular object might
exceed the processing capability of an individual server? Two
existing approaches have proven effective here: caching pop-
ular objects in a faster tier, and replicating objects to increase
aggregate load capacity.

Caching Caching has long served as the standard approach
for accelerating database-backed web applications. Recent
work has demonstrated, both theoretically and practically, the
effectiveness of a caching approach: only a small number
of keys need to be cached in order to achieve provable load
balancing guarantees [17, 29, 41].

There are, however, two limitations with the caching ap-
proach. First, the effectiveness of caching hinges on the abil-
ity to build a cache that can handle orders of magnitude more

requests than the storage servers. Once an easily met goal,
this has become a formidable challenge as storage systems
themselves employ in-memory storage [50, 53, 58], clever
data structures [42, 46], new NVM technologies [25, 68], and
faster network stacks [38,42,48]. Recent efforts to build faster
caches out of programmable switches [29, 45] address this,
but hardware constraints impose significant limitations, e.g.,
an inability to support values greater than 128 bytes. Sec-
ondly, caching solutions only benefit read-heavy workloads,
as cached copies must be invalidated until writes are pro-
cessed by the storage servers.

Selective Replication Replication is another common so-
lution to load imbalance caused by skewed workloads. By
selectively replicating popular objects [2, 9, 13, 50], requests
to these objects can be sent to any of the replicas, effectively
distributing load across servers.

Existing selective replication approaches, however, face
two challenges. First, clients must be able to identify the
replicated objects and their locations – which may change
as object popularity changes. This could be done using a cen-
tralized directory service, or by replicating the directory to
the clients. Both pose scalability limitations: a centralized di-
rectory service can easily become a bottleneck, and keeping
a directory synchronized among potentially hundreds of thou-
sands of clients is not easy.

Providing consistency for replicated objects is the second
major challenge – a sufficiently complex one that existing sys-
tems do not attempt to address it. They either replicate only
read-only objects, or require users to explicitly manage in-
consistencies resulting from replication [2, 9]. The solutions
required to achieve strongly consistent replication (e.g., con-
sensus protocols [35]) are notoriously complex, and incur sig-
nificant coordination overhead [39], particularly when objects
are modified frequently.

2.2 Pegasus Goals

The goal of our work is to provide an effective load balanc-
ing solution for the aforementioned classes of challenging
workloads. Concretely, we require our system to 1) provide
good load balancing for dynamic workloads with high skew,
2) work with fast in-memory storage systems, 3) handle arbi-
trary object sizes, 4) guarantee linearizability [24], and 5) be
equally effective for read-heavy, write-heavy, and mixed read-
/write workloads. As listed in Table 1, existing systems make
explicit trade-offs and none of them simultaneously satisfy
all five properties. In this paper, we will introduce a new
distributed storage load balancing approach that makes no
compromises, using an in-network coherence directory.

3 System Model
Pegasus is a design for rack-scale storage systems consisting
of a number of storage servers connected via a single top-of-
rack (ToR) switch, as shown in Figure 1. Pegasus combines
in-switch load balancing logic with a new storage system. The

388 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Highly Skewed
Workload

Fast In-Memory
Store

All Object
Sizes

Strong
Consistency

Any Read-Write
Ratio

Consistent Hashing [30] 7 3 3 7 –
Slicer [2] 3 7 3 7 –

Orleans [9] 3 7 3 7 –
EC-Cache [57] 3 7 7 3 3

Scale-Out ccNUMA [21] 3 3 3 3 7
SwitchKV [41] 3 7 3 3 7
NetCache [29] 3 3 7 3 7

Pegasus 3 3 3 3 3

Table 1: A comparison of existing load balancing systems vs. Pegasus. In the "Any Read-Write Ratio" column, we only consider systems that
provide strong consistency.

ToR Switch

Clients

L2/L3
Routing

In-Network
Directory

Controller

Storage
Server

Storage
Server

Storage
Server

Figure 1: Pegasus system model. Pegasus is a rack-scale storage
system. It augments the top-of-rack switch with an in-network co-
herence directory to balance load across storage servers in the rack.
Servers store data in memory for fast and predictable performance.

Pegasus system provides a key-value store with a read/write
interface. It does not support read-modify-write or atomic
cross-key operations. Pegasus ensures strong data consistency
(specifically, linearizability [24]). It uses in-memory storage
to offer fast and predictable performance.

The Pegasus architecture is a co-design of in-switch pro-
cessing and an application-level protocol. This is made possi-
ble by leveraging the capabilities of newly available switches
with programmable dataplanes, such as the Barefoot Tofino,
Cavium XPliant, or Broadcom Trident3 families. Broadly
speaking, these chips offer reconfigurability in three relevant
areas: (1) programmable parsing of application-specific head-
ers; (2) flexible packet processing pipelines, usually consist-
ing of 10–20 pipeline stages each capable of a match lookup
and one or more ALU operations; and (3) general-purpose
memory, on the order of 10 MB. Importantly, all of these
features are on the switch dataplane, meaning that they can
be used while processing packets at full line rate – a total
capacity today measured in terabits per second.

Pegasus provides load balancing at the rack level, i.e., 32–
256 servers connected by a single switch. It does not provide
fault tolerance guarantees within the rack. Larger-scale, re-

silient systems can be built out of multiple Pegasus racks. For
these systems, Pegasus ensures availability using a chain repli-
cation protocol to replicate objects across multiple racks for
fault tolerance.

4 A Case for In-Network Directories
As we have discussed in §2, selectively replicating popular
objects can offer good load balancing for highly skewed work-
loads, and it avoids certain drawbacks of a caching approach.
Existing selective replication solutions, however, fall short in
providing efficient directory services and strong consistency
for the dynamic set of replicated objects. Our key observation
is that in a rack-scale storage system (§3), the ToR switch
serves as a central point of the system and is on the path of
every client request and server reply. This enables us to imple-
ment a coherence directory abstraction in the ToR switch that
addresses both challenges at the same time. It can track the lo-
cation of every replicated object in the system and forward re-
quests to servers with available capacity, and even change the
number or location of replicas by determining where to send
WRITE requests. Leveraging this in-network coherence direc-
tory, we co-design a version-based coherence protocol which
guarantees linearizability and is highly efficient at processing
object updates, enabling us to provide good load balancing
even for write-intensive workloads.

4.1 Coherence Directory for Replicated Data

How do we design an efficient selective replication scheme
that provides strong consistency? At a high level, the sys-
tem needs to address the following challenges: first, it needs
to track the replicated items and their locations with the lat-
est value (i.e., the replica set). Second, read requests for a
replicated object must be forwarded to a server in the cur-
rent replica set. Third, after a write request is completed, all
subsequent read requests must return the updated value.

The standard distributed systems approaches to this prob-
lem do not work well in this environment. One might try to
have clients contact any server in the system, which then for-
wards the query to an appropriate replica for the data, as in
distributed hash tables [14, 59, 60]. However, for in-memory
storage systems, receiving and forwarding a request imposes

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 389

nearly as much load as executing it entirely. Nor is it feasible
for clients to directly track the location of each object (e.g., us-
ing a configuration service [8, 27]), as there may be hundreds
of thousands or millions of clients throughout the datacenter,
and it is a costly proposition to update each of them as new
objects become popular or an object’s replica set is updated.

In Pegasus, we take a different approach. We note that these
are the same set of challenges faced by CPU cache coherence
and distributed shared memory systems. To address the above
issues, these systems commonly run a cache coherence proto-
col using a coherence directory [4, 19, 22, 31, 34, 36, 37, 40].
For each data block, the coherence directory stores an entry
that contains the set of processors that have a shared or exclu-
sive copy. The directory is kept up to date as processors read
and write blocks – invalidating old copies as necessary – and
can always point a processor to the latest version.

A coherence directory can be applied to selective replica-
tion. It can track the set of replicated objects and forward read
requests to the right servers, and it can ensure data consistency
by removing stale replicas from the replica set. However, to
use a coherence directory for a distributed storage system re-
quires the directory to handle all client requests. Implemented
on a conventional server, it will quickly become a source of
latency and a throughput bottleneck.

4.2 Implementing Coherence Directory in the Network

Where should we implement a coherence directory that pro-
cesses all client requests while not becoming a performance
bottleneck? The ToR switch, as shown in Figure 1, provides
a viable option for our targeted rack-scale storage systems.
Switch ASICs are optimized for packet I/O: current gener-
ation switches can support packet processing at more than
10 Tb/s aggregate bandwidth and several billion packets per
second [64, 65]. The programmable switches we target have
a fixed-length reconfigurable pipeline, so any logic that fits
within the pipeline can run at the switch’s full line rate. Thus,
implementing the coherence directory in the ToR switch for
a rack-scale storage system will not become the bottleneck
nor add significant latency, as it already processes all network
traffic for the rack.

But can we implement a coherence directory efficiently in
the ToR switch? To do so, two challenges have to be addressed.
First, we need to implement all data structures and functional
logic of a coherence directory in the switch data plane. We
show that this is indeed possible with recent programmable
switches: we store the replicated keys and their replica sets
in the switch’s memory, match and forward based on custom
packet header fields (e.g. keys and operation types), and apply
directory updating rules for the coherence protocol. We give
a detailed description of our switch implementation in §8.

Second, the switch data plane has limited resources and
many are already consumed by bread-and-butter switch func-
tionality [56]. As the coherence directory tracks the replica
set for each replicated object, the switch can only support a

limited number of objects to be replicated. Our design meets
this challenge. Interestingly, it is possible to achieve provable
load balancing guarantees if we only replicate the most popu-
lar O(n logn) objects to all servers, where n is the number of
servers (not keys) in the system (we give a more detailed anal-
ysis of this result in §4.5). Moreover, the coherence directory
only stores small metadata such as key hashes and server IDs.
For a rack-scale system with 32–256 servers, the size of the
coherence directory is a small fraction of the available switch
resources.

4.3 A Coherence Protocol for the Network

Designing a coherence protocol using an in-network coher-
ence directory raises several new challenges. Traditional CPU
cache coherence protocols can rely on an ordered and reliable
interconnection network, and they commonly block proces-
sor requests during a coherence update. Switch ASICs have
limited buffer space and therefore cannot hold packets in-
definitely. Network links between ToR switches and servers
are also unreliable: packets can be arbitrarily dropped, re-
ordered, or duplicated. Many protocols for implementing or-
dered and reliable communication require complex logic and
large buffering space that are unavailable on a switch.

We design a new version-based, non-blocking coherence
protocol to address these challenges. The switch assigns a
monotonically increasing version number to each write re-
quest and inserts it in the packet header. Servers store these
version numbers alongside each object, and attach the version
number in each read and write reply. The switch additionally
stores a completed version number for each replicated ob-
ject in the coherence directory. When receiving read or write
replies (for replicated objects), the switch compares the ver-
sion in the reply with the completed version in the directory.
If the version number in the reply is higher, the switch up-
dates the completed version number and resets the replica set
to include only the source server. Subsequent read requests
are then forwarded to the server with the new value. When
more than one server has the latest value of the object, the
version number in the reply can be equal to the completed
version. In that case, we add the source server (if not already
present) to the replica set so that subsequent read requests can
be distributed among up-to-date replicas.

This protocol – which we detail in §6 – guarantees lineariz-
ability [24]. It leverages two key insights. First, all storage
system requests and replies have to traverse the ToR switch.
We therefore only need to update the in-network coherence di-
rectory to guarantee data consistency. This allows us to avoid
expensive invalidation traffic or inter-server coordination over-
head. Second, we use version numbers, applied by the switch
to packet headers, to handle network asynchrony.

4.4 Load-Aware Scheduling

When forwarding read requests, the switch can pick any of the
servers currently in the replica set. The simplest policy is to

390 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

select a random server from the set and rely on statistical load
balancing among the servers. However, this approach falls
short when the processing capacity is uneven on the storage
servers (e.g. due to background tasks or different hardware
specifications). To handle this issue, we also implement a
weighted round-robin policy: storage servers periodically re-
port their system load to the controller. The controller assigns
weights for each server based on these load information and
installs them on the switch. The switch then forwards requests
to servers in the replica set proportional to their weights. Note
that our in-network directory approach provides the mecha-
nism for performing server selection. A full discussion of all
scheduling policies is beyond the scope of this paper.

Surprisingly, these mechanisms can also be used for write
requests. At first glance, it appears necessary to broadcast new
writes to all servers in the replica set – potentially creating sig-
nificant load and overloading some of the servers. However,
the switch can choose a new replica set for the object on each
write. It can forward write requests to one or more of the
servers, and the coherence directory ensures data consistency,
no matter which server the switch selects. The ability to move
data frequently allows a switch to use load-aware scheduling
for both read and write requests. This is key to Pegasus’s abil-
ity to improve performance for both read- and write-intensive
workloads.

4.5 Feasibility of An In-Network Coherence Directory

Pegasus makes efficient use of switch resources because it
only tracks object metadata (vs. full object contents [29]), and
only for a small number of objects. We claimed in §4.2 that
Pegasus only needs to replicate the most popular O(n logn)
objects (where n is the number of servers) to achieve strong
load balancing guarantees. This result is an extension of previ-
ous work [17] which showed that caching the O(n logn) most
frequently accessed objects is sufficient to achieve provable
load balancing. That is, if we exclude these objects, the re-
maining load on each server exceeds the average load by at
most a slack factor α , which depends on the constant factors
but is generally quite small; see §9.5. Intuitively, most of the
load in a highly-skewed workload is (by definition) concen-
trated in a few keys, so eliminating that load rebalances the
system.

Our approach, rather than absorbing that load with a cache,
is to redistribute it among the storage servers. A consequence
of the previous result is that if the total request handling ca-
pacity of the system exceeds the request load by a factor of
α , then there exists a way to redistribute the requests of the
top O(n logn) keys such that no server exceeds its capacity.
For read-only workloads, a simple way to achieve this is to
replicate these keys to all servers, then route request to any
server with excess capacity, e.g., by routing a request for a
replicated key to the least-loaded server in the system.

Writes complicate the situation because they must be pro-
cessed by all servers storing the object. As described in §4.4,

SERVERIDIP KEYHASHUDP OP VERETH

Figure 2: Pegasus packet format. The Pegasus application-layer
header is embedded in the UDP payload. OP is the request or reply
type. KEYHASH contains the hash value of the key. VER is an object
version number. SERVERID contains a unique server identifier.

Pegasus can pick a new replica set, and a new replication fac-
tor, for an object on each write. Pegasus accomodates write-
intensive workloads by tracking the write fraction for each
object and setting the replication factor proportional to the ex-
pected number of reads per write, yielding constant overhead.
Strictly speaking, our initial analysis (for read-only work-
loads) may not apply in this case, as it is no longer possible
to send a read to any server. However, since Pegasus can re-
balance the replica set on every write and dynamically adjusts
the replication factor, it remains effective at load balancing
for any read-write ratio. Intuitively, a read-mostly workload
has many replicas, so Pegasus has a high degree of freedom
for choosing a server for each read, whereas a write-mostly
workload has fewer replicas but constantly rebalances them
to be on the least-loaded servers.

5 Pegasus Overview
We implement an in-network coherence directory in a new
rack-scale storage system, Pegasus. Figure 1 shows the
high level architecture of a Pegasus deployment. All storage
servers reside within a single rack. The top-of-rack (ToR)
switch that connects all servers implements Pegasus’s coher-
ence directory for replicated objects.

Switch. The ToR switch maintains the coherence directory:
it stores the set of replicated keys, and for each key, a list
of servers with a valid copy of the data. To reduce switch
resource overhead and to support arbitrary key sizes, the di-
rectory identifies keys by a small fixed-sized hash.

Pegasus defines an application-layer packet header embed-
ded in the L4 payload, as shown in Figure 2. Pegasus re-
serves a special UDP port for the switch to match Pegasus
packets. The application-layer header contains an OP field,
either READ, WRITE, READ-REPLY, or WRITE-REPLY. KEY-
HASH is an application-generated, fixed-size hash value of the
key. VER is an object version number assigned by the switch.
SERVERID contains a unique identification of the server and
is filled by servers on replies. If at-most-once semantics is
required (§6.4), the header will additionally contain REQID, a
globally unique ID for the request (assigned by the client).
Non-Pegasus packets are forwarded using standard L2/L3
routing, keeping the switch fully compatible with existing
network protocols.

To keep space usage low, the Pegasus switch keeps direc-
tory entries only for the small set of replicated objects. Read
and write requests for replicated keys are forwarded accord-
ing to the Pegasus load balancing and coherence protocol. The

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 391

Switch States:
• ver_next: next version number
• rkeys: set of replicated keys
• rset: map of replicated keys→ set of servers with a valid copy
• ver_completed: map of replicated keys→ version number of the

latest completed WRITE

Figure 3: Switch states

other keys are mapped to a home server using a fixed algo-
rithm, e.g., consistent hashing [30]. Although this algorithm
could be implemented in the switch, we avoid the need to do
so by having clients address their packets to the appropriate
server; for non-replicated keys, the Pegasus switch simply for-
wards them according to standard L2/L3 forwarding policies.

Controller. The Pegasus control plane decides which keys
should be replicated. It is responsible for updating the co-
herence directory with the most popular O(n logn) keys. To
do so, the switch implements a request statistics engine that
tracks the access rate of each key using both the data plane
and the switch CPU. The controller – which can be run on the
switch CPU, or a remote server – reads access statistics from
the engine to find the most popular keys. The controller keeps
only soft state, and can be immediately replaced if it fails.

6 Pegasus Protocol
To simplify exposition, we begin by describing the core Pe-
gasus protocol (§6.2), under the assumption that the set of
popular keys is fixed, and show that it provides linearizability.
We then show how to handle changes in which keys are popu-
lar (§6.3), and how to provide exactly-once semantics (§6.4).
Finally, we discuss server selection policies (§6.5) and other
protocol details (§6.6).

Additionally, a TLA+ specification of the protocol which
we have model checked for safety is available in our public
repository [55].

6.1 Switch State

To implement an in-network coherence directory, Pegasus
maintains a small amount of metadata in the switch data-
plane, as listed in Figure 3. A counter ver_next keeps the
next version number to be assigned. A lookup table rkeys

stores the O(n logn) replicated hot keys, using KEYHASH in
the packet header as the lookup key. For each replicated key,
the switch maintains the set of servers with a valid copy in
rset, and the version number of the latest completed WRITE
in ver_completed. In §8, we elaborate how we store this state
and implement this functionality in the switch dataplane.

6.2 Core Protocol: Request and Reply Processing

The core Pegasus protocol balances load by tracking the
replica set of popular objects. It can load balance READ oper-
ations by choosing an existing replica to handle the request,
and can change the replica set for an object by choosing which
replicas process WRITE operations. Providing this load balanc-
ing while ensuring linearizability requires making sure that

Algorithm 1 HandleRequestPacket(pkt)

1: if pkt.op = WRITE then
2: pkt.ver← ver_next++
3: end if
4: if rkeys.contains(pkt.keyhash) then
5: if pkt.op = READ then
6: pkt.dst← select replica from rset[pkt.keyhash]
7: else if pkt.op = WRITE then
8: pkt.dst← select from all servers
9: end if

10: end if
11: Forward packet

Algorithm 2 HandleReplyPacket(pkt)

1: if rkeys.contains(pkt.keyhash) then
2: if pkt.ver > ver_completed[pkt.keyhash] then
3: ver_completed[pkt.keyhash]← pkt.ver
4: rset[pkt.keyhash]← set(pkt.serverid)
5: else if pkt.ver = ver_completed[pkt.keyhash] then
6: rset[pkt.keyhash].add(pkt.serverid)
7: end if
8: end if
9: Forward packet

the in-network directory tracks the location of the latest suc-
cessfully written value for each replicated key. Pegasus does
this by assigning version numbers to incoming requests and
monitoring outgoing replies to detect when a new version has
been written.

6.2.1 Handling Client Requests

The Pegasus switch assigns a version number to every WRITE
request, by writing ver_next into its header and increment-
ing ver_next (Algorithm 1 line 1-3). It determines how to
forward a request by matching the request’s key hash with the
rkeys table. If the key is not replicated, the switch simply for-
wards the request to the original destination – the home server
of the key. For replicated keys, it forwards READ requests
by choosing one server from the key’s rset. For replicated
WRITEs, it chooses one or more destinations from the set of
all servers. In both cases, this choice is made according to the
server selection policy (§6.5).

Storage servers maintain a version number for each key
alongside its value. When processing a WRITE request, the
server compares VER in the header with the version in the
store, and updates both the value and the version number only
if the packet has a higher VER. It also includes the version
number read or written in the header of READ-REPLY and
WRITE-REPLY messages.

6.2.2 Handling Server Replies

When the switch receives a READ-REPLY or a WRITE-REPLY,
it looks up the reply’s key hash in the switch rkeys table.

392 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

If the key is replicated, the switch compares VER in the
packet header with the latest completed version of the key in
ver_completed. If the reply has a higher version number, the
switch updates ver_completed and resets the key’s replica
set to include only the source server (Algorithm 2 line 1-4). If
the two version numbers are equal, the switch adds the source
server to the key’s replica set (Algorithm 2 line 5-7).

The effect of this algorithm is that write requests are sent
to a new replica set which may or may not overlap with the
previous one. As soon as one server completes and acknowl-
edges the write, the switch directs all future read requests to it
– which is sufficient to ensure linearizability. As other replicas
also acknowledge the same version of the write, they begin to
receive a share of the read request load.

6.2.3 Correctness

Pegasus provides linearizability [24]. The intuition behind this
is that the Pegasus directory monitors all traffic, and tracks
where the latest observed version of a key is located. As soon
as any client sees a new version of the object – as indicated by
a READ-REPLY or WRITE-REPLY containing a higher version
number – the switch updates the directory to send future read
requests to the server holding that version.

The critical invariant is that the Pegasus directory contains
at least one address of a replica storing a copy of the latest
write to be externalized, as well as a version number of that
write. A write is externalized when its value can be observed
outside the Pegasus system, which can happen in two ways.
The way a write is usually externalized is when a WRITE-
REPLY is sent, indicating that the write has been completed.
It is also possible, if the previous and current replica set over-
lap, that a server will respond to a concurrent READ with
the new version before the WRITE-REPLY is delivered. Pega-
sus detects both cases by monitoring both WRITE-REPLY and
READ-REPLY messages, and updating the directory if VER
exceeds the latest known compatible version number.

This invariant, combined with Pegasus’s policy of forward-
ing reads to a server from the directory’s replica set, is suffi-
cient to ensure linearizability:
• WRITE operations can be ordered by their version numbers.
• If a READ operation r is submitted after a WRITE operation

w completes, then r comes after w in the apparent order of
operations because it is either forwarded to a replica with
the version written by w or a replica with a higher version
number.

• If a READ operation r2 is submitted after another READ r1
completes, then it comes after r1 in the apparent order of
operations, because it will either be forwarded to a replica
with the version r1 saw or a replica with a newer version.

6.3 Adding and Removing Replicated Keys

Key popularities change constantly. The Pegasus controller
continually monitors access frequencies and updates the co-
herence directory with the most popular O(n logn) keys. We

elaborate how access statistics are maintained in §8.
When a new key becomes popular, Pegasus must create a di-

rectory entry for it. The Pegasus controller does this by adding
the key’s home server to rset. It also adds a mapping for the
key in ver_completed, associating it with ver_next−1, the
largest version number that could have been assigned to a
write to that key at the key’s home server. Finally, the con-
troller adds the key to rkeys. This process does not imme-
diately move or replicate the object. However, later WRITE
requests will be sent to a new (and potentially larger) replica
set, with a version number necessarily larger than the one
added to the directly. Once these newly written values are
externalized, they will added to the directory as normal.

Transitioning a key from the replicated to unreplicated state
is similarly straight-forward. The controller simply marks the
switch’s directory entry for transition. The next WRITE for
that key is sent to its home server; once the matching WRITE-
REPLY is received, the key is removed from the directory.

Read-only objects and virtual writes. The protocol above
only moves an object to a new replica set (or back to its home
node) on the next write. While this simplifies design, it poses
a problem for objects that are read-only or modified infre-
quently. Conceptually, Pegasus addresses this by performing
a write that does not change the object’s value when an object
needs to be moved. More precisely, the controller can force
replication by issuing a virtual write to the key’s home server,
instructing it to increment its stored version number to the one
in ver_completed and to forward that value to other replicas
so that they can be added to rset and assist in serving reads.

6.4 Avoiding Duplicate Requests

At-most-once semantics, where duplicated or retried write re-
quests are not reexecuted, are desirable. There is some debate
about whether these semantics are required by linearizability
or an orthogonal property [18,28], and many key-value stores
do not have this property. Pegasus accommodates both camps
by optionally supporting at-most-once semantics.

Pegasus uses the classic mechanism of maintaining a table
of the most recent request from each client [43] to detect du-
plicate requests. This requires that the same server process the
original and the retried request, a requirement akin to “sticki-
ness” in classic load balancers. A simple way to achieve this
would be to send each write request initially to the object’s
home server. However, this sacrifices load balancing of writes.

We instead provide duplicate detection without sacrificing
load balancing by noticing that it is not necessary for one
server to see all requests for an object – only that a retried
request goes to the same server that previously processed it.
Thus, Pegasus forwards a request initially to a single detec-
tor node – a server deterministically chosen by the request’s
unique REQID, rather than the key’s hash. It also writes into a
packet header the other replicas, if any, that the request should
be sent to. The detector node determines if the request is a du-
plicate; if not, it processes it and forwards the request to the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 393

other selected servers.
Some additional care is required to migrate client table

state when a key transitions from being unpopular to popular
and vice versa. We can achieve this by pausing WRITEs to the
key during transitions. When a new key becomes popular, the
controller retrieves existing client table entries from the home
server and propagates them to all servers. When a popular key
becomes unpopular, it queries all servers to obtain their client
tables, and sends their aggregation (taking the latest entry for
each client) to the home server. Once this is complete, the
system can resume processing WRITEs for that key.

6.5 Server Selection Policy

Which replica should be chosen for a request? This is a policy
question whose answer does not impact correctness (i.e., lin-
earizability) but determines how effective Pegasus is at load
balancing. As described in §4.4, we currently implement two
such policies. The first policy is to simply pick a random
replica and rely on statistical load balancing. A more sophisti-
cated policy is to use weighted round-robin: the controller as-
signs weights to each server based on load statistics it collects
from the servers, and instructs the switch to select replicas
with frequency proportional to the weights.

Write replication policy. Read operations are sent to ex-
actly one replica. Write requests can be sent to one or more
servers, whether they are in the current replica set or not.
Larger replica set sizes improve load balancing by offering
more options for future read requests, but increase the cost of
write operations. For write-heavy workloads, increasing the
write cost can easily negate any load balancing benefit.

As discussed in §4.5, the switch tracks the average READs
per WRITE for each replicated object. By choosing a replica-
tion factor to be proportional to this ratio, Pegasus can bound
the overhead regardless of the write fraction.

6.6 Additional Protocol Details

Hash collisions. The Pegasus coherence directory acts on
small key hashes, rather than full keys. Should there be a
hash collision involving a replicated key and a non-replicated
key, requests for the non-replicated key may be incorrectly for-
warded to a server that is not its home server. To deal with this
issue, each server tracks the set of all currently replicated keys
(kept up to date by the controller per §6.3). Armed with this
information, a server can forward the improperly forwarded
request to the correct home server. This request chaining ap-
proach has little performance impact: it only affects hash colli-
sions involving the small set of replicated keys. Moreover, we
only forward requests for the unreplicated keys which have
low access rate. In the extremely rare case of a hash collision
involving two of the O(n logn) most popular keys, Pegasus
only replicates one of them to guarantee correctness.

Version number overflow. Version numbers must increase
monotonically. Pegasus uses 64-bit version numbers, which

makes overflow unlikely: it would require processing trans-
actions at the full line rate of our switch for over 100 years.
Extremely long-lived systems, or ones that prefer shorter ver-
sion numbers, can use standard techniques for version number
wraparound.

Garbage collection. When handling WRITEs for replicated
keys, Pegasus does not explicitly invalidate or remove the old
version. Although this does not impact correctness – the co-
herence directory forwards all requests to the latest version
– retaining obsolete copies forever wastes storage space on
servers. We handle this issue through garbage collection. The
Pegasus controller already notifies servers about which keys
are replicated, and periodically reports the last-completed ver-
sion number. Each server, then, can detect and safely remove
a key if it has an obsolete version, or if the key is no longer
replicated (and the server is not the home node for that key).

7 Beyond a Single Rack
Thus far, we have discussed single-rack, single-switch Pe-
gasus deployments. Of course, larger systems need to scale
beyond a single rack. Moreover, the single-rack architecture
provides no availability guarantees when servers or racks fail:
while Pegasus replicates popular objects, the majority of ob-
jects still have just one copy. This choice is intentional, as
entire-rack failures are common enough to make replicating
objects within a rack insufficient for real fault tolerance.

We address both issues with a multi-rack deployment
model where each rack of storage servers and its ToR switch
runs a separate Pegasus instance. The workload is partitioned
across different racks, and chain replication [66] is used to
replicate objects to multiple racks. Object placement is done
using two layers of consistent hashing. A global configuration
service [8, 27] maps each range of the keyspace to a chain of
Pegasus racks. Within each rack, these keys are mapped to
servers as in §5. In effect, each key is mapped to a chain of
servers, each server residing in a different rack.

We advocate this deployment model because it uses in-
switch processing only in the ToR switches in each rack. The
remainder of the datacenter network remains unmodified, and
in particular it does not require any further changes to packet
routing, which has been identified as a barrier to adoption for
network operators [56]. A consequence is that it cannot load
balance popular keys across different racks. Our simulations,
however, indicate that this effect is negligible at all but the
highest workload skew levels: individual servers are easily
overloaded, but rack-level overload is less common.

Replication Protocol. As in the original chain replication,
clients send WRITEs to the head server in the chain. Each
server forwards the request to the next in the chain, until reach-
ing the tail server, which then replies to the client. Clients send
READs to the tail of the chain; that server responds directly to
the client. In each case, if the object is a popular one in that
rack, the Pegasus switch can redirect or replicate it.

394 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Replicated
Keys

Lookup

Packet Statistics
Engine

RKey

!RKey

Version
Number
Engine

Replica
Set

Directory

Address
Rewrite
Table To Egress

RKey

!RKey

Request

Reply

Figure 4: Switch data plane design for the Pegasus coherence directory

Pegasus differs from the original chain replication proto-
col in that it cannot assume reliable FIFO channels between
servers. To deal with network asynchrony, it reuses the version
numbers provided by the Pegasus switches to ensure consis-
tency. Specifically, we augment Algorithm 1 in the following
way: when a Pegasus switch receives a WRITE request, it only
stamps ver_next into the request if VER in the packet header
is not null; otherwise, it leaves the version number in the re-
quest unmodified and sets its ver_next to be one greater than
that value (if it isn’t already). The effect of this modification
is that WRITE requests only carry version numbers from the
head server’s ToR switch; and the number does not change
when propagating along the chain. This ensures that all repli-
cas apply WRITEs in the same order.

Reconfiguring the Chains. If a Pegasus rack fails, it can
be replaced using the standard chain replication protocol [66].
When the failure is noted, the configuration service is notified
to remove the failed rack from all chains it participated in,
and to add a replacement. This approach leverages the cor-
rectness of the underlying chain replication protocol, treating
the Pegasus rack as functionally equivalent to a single replica.

If a system reconfiguration changes the identity of the head
rack for a key range, subsequent WRITEs will get version num-
bers from a different head switch. If the new head rack was
present in the old chain, these version numbers will necessar-
ily be greater than any previously completed writes. If a rack
is added to a chain as the head, the ver_next in the rack’s
switch must first be updated to be greater than or equal to the
other switches in the chain.

If an individual server fails, a safe solution is to treat its
entire rack as faulty and replace it accordingly. While cor-
rect, this approach is obviously inefficient. Pegasus has an
optimized reconfiguration protocol (omitted due to space con-
straints) that only moves data that resided on the failed server.

8 Switch Implementation

The coherence directory (§6) plays a central role in Pegasus:
it tracks popular objects and their replica sets; it distributes
requests for load balancing; it implements the version-based
coherence protocol; and it updates the set of replicated objects
based on dynamic workload information. In this section, we
detail the implementation of the Pegasus coherence directory
in the data plane of a programmable switch.

8.1 Switch Dataplane Implementation

Figure 4 shows the schematic of the data plane design for
the coherence directory. When a Pegasus packet enters the
switch ingress pipeline, a lookup table checks if it refers to
a replicated object. The packet then traverses a version num-
ber engine and a replica set directory, which implement the
version-based coherence protocol (Algorithms 1 and 2). For
request packets, one or more servers are selected from the
replica set directory, and the packet’s destination is updated
by an address rewrite table. Finally, all Pegasus packets go
through a statistics engine before being routed to the egress
pipeline.

We leverage two types of stateful memory primitives avail-
able on programmable switching ASICs (such as Barefoot’s
Tofino [63]) to construct the directory: exact-match lookup
tables and register arrays. A lookup table matches fields in
the packet header and performs simple actions such as arith-
metics, header rewrites, and metadata manipulations. Lookup
tables, however, can only be updated from the control plane.
Register arrays, on the other hand, are accessed by an index
and can be read and updated at line rate in the data plane. The
rest of the section details the design of each component.

Replicated Keys Lookup Table When adding replicated
keys (§6.3), the controller installs its KEYHASH in an
exact-match lookup table. The table only needs to maintain
O(n logn) entries, where n is the number of servers in the
rack. The switch matches each Pegasus header’s KEYHASH
with entries in the table. If there is a match, the index number
associated with the entry is stored in the packet metadata to
select the corresponding replicated key in later stages.

Version Number Engine We use two register arrays to
build the version number engine, as shown in Figure 5. The
first register array contains a single element – the next ver-
sion number. If the packet is a WRITE request, the version
number in the register is incremented and the switch writes
the version into the packet header. The second register array
stores the completed version number for each replicated key,
and uses numeric ALUs to compare and update the version
number (per Algorithm 2). The comparison result is passed to
the next stage.

Replica Set Directory As shown in Figure 6, we build the
replica set directory using three register arrays to store: (i) the
size of each replica set, (ii) a bitmap indicating which servers
are currently in each replica set, and (iii) a list of server IDs in
each set. When choosing replicas for Pegasus READ requests,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 395

Version Next

15

Version Completed

rkey
index

2 5 13 9 10 3 1 7

+

Header
Rewrite

metadata

> =
pkt.ver

Figure 5: Design of the switch version number engine. One register
array with a single element tracks the next version number. The regis-
ter is incremented on each WRITE. A second register array stores the
latest completed version number for each replicated object. Numeric
ALUs compare values in this array with version numbers in the reply
headers.

the replica set size is read and fed into the selection logic unit
to calculate an index for locating the server ID in the list (the
selection logic can pick any servers for WRITE requests). Note
that we collapse the server ID list of all replicated keys into
a single register array, leveraging the fact that each key can
be replicated on at most n servers. Therefore, to locate the ith
replica for the kth key, the index is calculated as k ∗n+ i (for
brevity, we will use relative indices, i.e. i in the formula, for
the remaining discussion).

If the version number engine indicates that the Pegasus re-
ply has a higher version number, the size of the replica set
is reset to one, and the replica set bitmap and server ID list
are reset to contain only the server ID in the reply packet. If
the version number engine indicates that the version numbers
are equal, the switch uses the bitmap to check if the server is
already in the replica set. If not, it updates the bitmap, incre-
ments the replica set size, and appends the server ID to the
end of the server list.

To add a new replicated key, the controller sets the replica
set size to one, and the bitmap and server ID list to contain
only the home server.

Address Rewrite Table The address rewrite table maps
server IDs to the corresponding IP addresses and ports, and is
kept up to date by the controller as servers are added. When
the replica set directory chooses a single server as the desti-
nation, the address rewrite table updates the headers accord-
ingly. If the replica set directory selects multiple servers (for
a WRITE request), we use the packet replication engine on the
switch to forward the packet to the corresponding multicast
group.

Statistics Engine To detect the most popular O(n logn)
keys in the workload, we construct a statistics engine to track
the access rate of each key. For replicated keys, the switch
maintains counters in a register array. This approach is obvi-
ously not feasible for the vast number of non-popular keys.
The statistics engine instead samples requests for unreplicated
keys, forwarding them to the switch CPU. A dedicated pro-

Replica Set Size

rkey
index

Bitmap

& |

Selection
Logic

Server List

metadata

pkt.serverid

Figure 6: Design of the switch replica set directory. The directory
uses three register arrays: one array stores the size of each replica
set; another array maintains a bitmap for each set, tracking which
servers are currently in the set; the last array stores a list of server
IDs in each set.

gram on the switch CPU constructs an access frequency table
from sampled packets. The sampling component serves two
purposes: it reduces the traffic to the switch CPU and it func-
tions as a high-pass filter to filter out keys with low access
frequency. The controller scans both statistics tables to deter-
mine when newly popular keys need to be replicated or repli-
cation stopped for existing keys, and makes these changes
following the protocol in §6.3.

Two separate register arrays track the READ and WRITE
count for each replicated key. The controller uses these to
compute the read/write ratio, which the selection logic in the
replica set directory uses to decide how many replicas to use
for each WRITE request.

9 Evaluation
Our Pegasus implementation includes switch data and con-
trol planes, a Pegasus controller, and an in-memory key-value
store. The switch data plane is implemented in P4 [7] and runs
on a Barefoot Tofino programmable switch ASIC [63]. The
Pegasus controller is written in Python. It reads and updates
the switch data plane through Thrift APIs [62] generated by
the P4 SDE. The key-value store client and server are im-
plemented in C++ with Intel DPDK [15] for optimized I/O
performance.

Our testbed consists of 28 nodes with dual 2.2 GHz In-
tel Xeon Silver 4114 processors (20 total cores) and 48 GB
RAM running Ubuntu Linux 18.04. These are connected to
an Arista 7170-64S (Barefoot Tofino-based) programmable
switch using Mellanox ConnectX-4 25 Gbit NICs. 16 nodes
act as key-value servers and 12 generate client load.

To evaluate the effectiveness of Pegasus under realistic
workloads, we generated load using concurrent open-loop
clients, with inter-arrival time following a Poisson distribu-
tion. The total key space consists of one million randomly
generated keys, and client requests chose keys following ei-
ther a uniform distribution or a skewed (Zipf) distribution.

We compared Pegasus against two other load balancing so-
lutions: a conventional static consistent hashing scheme for
partitioning the key space, and NetCache [29]. The consis-

396 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 50

 100

 150

 200

Uniform Zipf-0.9 Zipf-1.0 Zipf-1.2

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

s)

Consistent Hashing
NetCache

Pegasus
Pegasus-AMO

Figure 7: Maximum throughput achievable subject to a 99% latency
SLO of 50 us. Pegasus successfully rebalances request load, main-
taining similar performance levels for uniform and skewed work-
loads.

tent hashing scheme assigns 16 virtual nodes to each storage
server to improve load balancing. We additionally evaluated
a version of Pegasus that supports at-most-once semantics
(Pegasus-AMO, as described in §6.4). To allow a compari-
son with NetCache, we generally limit ourselves to 64-byte
keys and 128-byte values, as this is the largest object value
size it can support. NetCache reserves space for up to 10,000
128-byte values in the switch data plane, consuming a sig-
nificant portion of the switch memory. In contrast, Pegasus
consumes less than 3.5% of the total switch SRAM. At larger
key and value sizes, Pegasus maintains similar performance
and memory usage, whereas NetCache cannot run at all.

9.1 Impact of Skew

To test and compare the performance of Pegasus under a
skewed workload, we measured the maximum throughput of
all four systems subject to a 99%-latency SLO. We some-
what arbitrarily set the SLO to 5× of the median unloaded
latency (we have seen similar results with different SLOs).
Figure 7 shows system throughput under increasing workload
skew with read-only requests. Pegasus maintains the same
throughput level even as the workload varies from uniform
to high to extreme skew (Zipf α = 0.9–1.2),1 demonstrating
its effectiveness in balancing load under highly skewed ac-
cess patterns. Since the workload is read-only, Pegasus with
at-most-once support (Pegasus-AMO) has the exact same per-
formance. In contrast, throughput of the consistent hashing
system drops to as low as 10% under more skewed work-
loads. At α = 1.2, Pegasus achieves a 10× throughput im-
provement over consistent hashing. NetCache provides sim-
ilar load balancing benefits. In fact, its throughput increases
with skew, outperforming Pegasus. This is because requests
for the cached keys are processed directly by the switch, not
the storage servers, albeit at the cost of significantly higher
switch resource overhead.

1 Although α = 1.2 is a very high skew level, some major storage systems
reach or exceed this level of skew. For example, more than half of Twit-
ter’s in-memory cache workloads can be modeled as Zipf distributions with
α > 1.2 [67], as can Alibaba’s key-value store workload during peak usage
periods [10].

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.2 0.4 0.6 0.8 1

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

s)

Write Ratio

Consistent Hashing
NetCache

Pegasus
Pegasus-AMO

Figure 8: Throughput vs. write ratio. Pegasus maintains its load
balancing advantage across the spectrum of write ratios, whereas
NetCache suffers a significant penalty with even 10% writes.

9.2 Read/Write Ratio

Pegasus targets not only read-intensive workloads, but also
write-intensive and read-write mixed workloads. Figure 8
shows the maximum throughput subject to a 99%-latency
SLO of 50 µs when running a highly skewed workload (Zipf-
1.2), with varying write ratio. The Pegasus coherence protocol
allows write requests to be processed by any storage server
while providing strong consistency, so Pegasus can load bal-
ance both read and write requests. As a result, Pegasus is able
to maintain a high throughput level, regardless of the write
ratio. Even with at-most-once semantics enforced, Pegasus-
AMO performs equally well for all write ratios, by leveraging
the randomness in requests’ REQID (§6.4) to distribute write
requests to all servers. This is in contrast to NetCache, which
can only balance read-intensive workloads; it requires stor-
age servers to handle writes. As a result, NetCache’s through-
put drops rapidly as the write ratio increases, approaching
the same level as static consistent hashing. Even when only
10% of requests are writes, its throughput drops by more than
80%. Its ability to balance load is eliminated entirely for write-
intensive workloads. In contrast, Pegasus maintains its high
throughput even for write-intensive workloads, achieving as
much as 11.8× the throughput as NetCache. Note that Pega-
sus’s throughput does drop with higher write ratio. This is due
to the increasing write contention and cache invalidation on
the storage servers.

9.3 Scalability

To evaluate the scalability of Pegasus, we measured the max-
imum throughput subject to a 99%-latency SLO under a
skewed workload (Zipf 1.2) with increasing number of storage
servers, and compared it against the consistent hashing system.
As shown in Figure 9, Pegasus scales nearly perfectly as the
number of servers increases. On the other hand, throughput of
consistent hashing stops scaling after two servers: due to se-
vere load imbalance, the overloaded server quickly becomes
the bottleneck of the entire system. Adding more servers thus
does not further increase the overall throughput.

We also evaluate the performance of an end-host coher-
ence directory implementation, using Pegasus’s protocol with

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 397

 8

 16

 32

 64

 128

 1 2 4 8 16

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

s)

Number of Servers

Consistent Hashing
Pegasus

End-Host Coherence Directory

Figure 9: Scalability. Pegasus scales nearly linearly up to 16 servers,
as no individual server becomes a bottleneck, even with a skewed
workload.

 0

 50

 100

 150

 200

 250

64 128 256 512 1024

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

s)

Value Size (Bytes)

Pegasus (Zipf 1.2)
Consistent Hashing (Uniform)

Figure 10: Throughput vs. object size. Pegasus provides effective load
balancing across a wide range of object sizes. The performance of a
traditional design under a uniform workload is shown as a baseline.

a server in place of the switch. Because the directory needs to
process twice as many packets as the storage servers for each
client request (both requests and replies), this implementation
is unable to keep up with even a single server – highlighting
the importance of using an accelerated platform like a switch-
ing ASIC as the coherence directory.

9.4 Object Sizes

To test if Pegasus can handle different object sizes, we varied
the value size from 64 bytes to 1 KB and measured the max-
imum throughput of Pegasus subject to a 99%-latency SLO
under the same skewed workload. We additionally plot the
throughput of the consistent hashing system under a uniform
workload. Figure 10 shows that Pegasus is equally efficient in
load balancing for both small and large objects. Its through-
put under a highly skewed workload is virtually equivalent
to that of consistent hashing under a zero-skewed workload.
Note that the throughput in the figure uses number of opera-
tions per second (which should naturally decrease with larger
object size), not bits per second.

9.5 Impact of Number of Replicated Keys

Keeping the size of coherence directory small is crucial as
switches are highly resource constrained. Our analysis (§4.5)
shows that Pegasus only needs to replicate the O(n logn) most
popular keys to balance load under arbitrary access patterns.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 4 8 16 32 64

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

s)

Number of Replicated Keys

Pegasus (Zipf-0.9) Pegasus (Zipf-1.2)

Figure 11: Throughput vs. number of replicated keys. For these work-
loads, only 8–16 replicated keys are needed to achieve most of Pega-
sus’s load balancing benefit.

What constant factors are hidden here? For adversarial work-
loads, they are not high (e.g, 8n logn) [17]. We show in Fig-
ure 11 that they are even lower for our non-adversarial Zipf
workload. Specifically, Pegasus only needs to replicate 8–16
keys to achieve its throughput benefit – significantly less than
n logn. While these numbers would be expected to increase
with more servers, they easily remain within the capacity of
the switch’s register memory.

9.6 Server Selection Policies

We have implemented two policies for selecting servers for
replicated objects: random and weighted round-robin. We
evaluated both policies: Figure 12 shows their maximum
throughput under different workloads.

Both policies are quite effective at distributing load for uni-
form and highly skewed workloads when we use a set of
dedicated, homogeneous servers with the same load capacity.
The random policy begins to fall short, however, when some
servers are more capable than others, or background process
sap their available capacity. We evaluated this by reducing the
processing capacity of half of the servers by 50%. As shown
in Figure 12, throughput with the random policy drops 50% as
the slower servers become the performance bottleneck, even
though the faster servers still have spare processing capacity.
By collecting load information from the servers and setting
the weights accordingly, the weighted round-robin policy al-
lows both the slower and faster servers to fully utilize their
processing capacity.

9.7 Handling Dynamic Workloads

Finally, we evaluated Pegasus under dynamic workloads with
changing key popularity, similar to SwitchKV [41] and Net-
Cache [29]. Specifically, we selected 100 keys every 10 sec-
onds and changed their popularity rankings in the Zipf distri-
bution. Here we consider two dynamic patterns:
• Hot-in. The 100 coldest keys in the popularity ranking are

promoted to the top of the list, immediately turning them
into the hottest objects. This workload represents extreme
fluctuations in object popularities, which we hypothesize
is rare in real world workloads.

398 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Uniform Zipf-0.9 Zipf-1.2 Unequal
Capacity

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

s)

Random
Load-Aware Round-Robin

Figure 12: Comparing Pegasus server selection policies: throughput
with a 99% latency SLO of 50 us. A random selection policy provides
good statistical load balancing when server capacity is uniform;
Pegasus’s load-aware policy outperforms it otherwise.

 0

 1000

 2000

 0 10 20 30 40 50 60

9
9
%

 L
at

en
cy

 (
u
s)

Time (s)

99% latency per 100ms

(a) Hot-in: 100 unpopular keys become popular every 10 s

 0

 1000

 2000

 0 10 20 30 40 50 60

9
9
%

 L
at

en
cy

 (
u
s)

Time (s)

99% latency per 100ms

(b) Random: 100 random keys swap popularity every 10 s

Figure 13: Dynamic workloads. Pegasus reacts quickly to changes
in object popularity.

• Random. We randomly select 100 keys from the 10,000
hottest keys, and swap their popularities with another set
of randomly chosen keys. As the most popular keys are
less likely to be changed, this dynamism represents a more
moderate change to object popularity.
We evaluate Pegasus for these workloads with a Zipf-1.2

workload and 80% utilization.

Hot-in. Sudden changes to the popularity of all hottest keys
cause the tail latency to increase. Pegasus, however, is able
to immediately detect the popularity changes and updates the
in-switch coherence directory. A workload change this drastic
is unlikely, but Pegasus nevertheless reacts quickly. Within
100 ms, tail latency observed by clients returns to normal.

Random. Under a random dynamic pattern, only a moder-
ate number of the most popular keys are changed. Pegasus
thus can continue balancing load for the unaffected keys, and
leveraging load-aware scheduling to avoid overloading the
servers. No change in 99% end-to-end latency is observed.

 0

 2

 4

 6

 8

 10

 12

 14

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

s)

Time (s)

Single-Rack Multi-Rack

Figure 14: Throughput of single-rack vs. multi-rack configuration
during a rack failure. After the failure (t = 0), the multi-rack config-
uration continues processing requests but loses some capacity.

9.8 Multi-Rack

To test a multi-rack configuration, we use a larger (but slower)
cluster with 72 servers with dual 1.8 GHz Intel Xeon E5-2450
processors. These are organized into two racks, each with 24
storage servers and one Pegasus switch, plus a third rack of
client machines. Per-node performance is significantly lower,
largely because these servers use 10 Gbit NICs that do not
support DPDK.

The two 24-server racks are configured into a 2-replica con-
figuration: each rack acts as the head of the chain for half of
the keys and the tail for the other half. Because both repli-
cas need to handle WRITEs but only the tail processes READs,
adding a second rack not only provides fault tolerance, it dou-
bles read throughput; write throughput remains unchanged.

Figure 14 demonstrates this by comparing a single-rack
and two-rack configurations, running a read-only workload
with Zipf α = 1.2; the two-rack configuration has 1.7× the
throughput. At t = 0, one rack fails. The two-rack deploy-
ment is able to continue processing at half of its speed using
the remaining rack. The single-rack deployment, of course,
becomes entirely unavailable.

10 Related Work
Load Balancing. Load imbalance in large-scale key-value
stores has been addressed by past systems in three ways. Con-
sistent hashing [30] and virtual nodes [12] are widely used,
but do not perform well with changing workloads. Solutions
based on migration [11, 32, 61] and randomness [49] can be
used to balance dynamic workloads, but these techniques in-
troduce additional overheads and have limited ability to han-
dle high skew. EC-Cache [57] balances load using erasure
coding to split and replicate values, but works best for large
keys in data-intensive clusters. SwitchKV [41] balances load
across a flash-based storage layer using switches to route to an
in-memory caching layer; it cannot react fast enough to chang-
ing load when the storage layer is in memory. NetCache [29]
caches values directly in programmable dataplane switches;
while this provides excellent throughput and latency, value
sizes are limited by switch hardware constraints.

Another class of load balancers are designed to balance

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 399

layer 4 traffic, such as HTTP, across a dynamic set of backend
servers. These systems may be implemented as clusters of
servers, as in Ananta [54], Beamer [52], and Maglev [16]; or
using switches, as in SilkRoad [47] or Duet [20]. These sys-
tems are designed to balance long-lived flows across servers,
whereas Pegasus balances load of individual request packets.
Prism [23] provides a way to perform request-level load bal-
ancing by migrating TCP and TLS connections, an approach
that could be useful for Pegasus as an alternative to its UDP-
based protocol.

Several new systems use programmable switches for
application-specific load balancing protocols. R2P2 [33] load
balances RPCs for stateless services where any request can
be handled by any server. Harmonia [69] allows optimized
forwarding for read requests in replicated systems by tracking
when concurrent writes are in progress.

Directory-Based Coherence. Directory-based coherence
protocols have been used in a variety of shared-memory mul-
tiprocessors and distributed shared memory systems [4, 19,
22, 31, 34, 36, 37, 40]. These systems can be thought of as
key-value stores with fixed-size keys (addresses) and values
(cache lines or pages). Directory protocols have been used in
general key-value stores as well; IncBricks [44] implements
an in-network key-value store using a distributed directory
to cache values in network processors attached to datacenter
switches. Keys have a designated home node that is involved
in writes and coherence operations, limiting load-balancing
opportunities for write-intensive workloads. Pegasus stores
keys and values only in servers, and its coherence protocol
allows any storage server to handle write requests, so Pegasus
can load-balance both read- and write-intensive workloads.
Both systems can scale beyond a rack and tolerate failures:

IncBricks does so at the individual server level; Pegasus does
so at the rack level.

11 Conclusion
With Pegasus, we have demonstrated that programmable
switches can improve the load balancing of a storage appli-
cation. Using our in-network coherence directory protocol,
the switch takes over responsibility for placement of the most
popular keys. This makes possible new data placement poli-
cies that cannot be achieved using traditional methods, such
as reassigning the set of replicas on each write or selecting
read replicas based on fine-grained load measurements. The
end result is that Pegasus increases by 10× the throughput
level achievable subject to a latency SLO, compared to a con-
sistent hashing workload. This permits a major reduction in
the size of a cluster needed to support a particular workload.

More broadly, we believe that Pegasus provides an exam-
ple of the class of applications that programmable dataplane
switches are well suited for. It takes a classic use case for
network devices – load balancing – and extends it to the next
level by integrating it with an application-level protocol.
Acknowledgments

We thank our shepherd Simon Peter and the anonymous
reviewers for their valuable feedback. This work was sup-
ported by NSF grant CNS-1615102 and gifts from Google
and VMware. Jialin Li was supported by an MOE AcRF Tier
1 grant. Ellis Michael was supported by an IBM fellowship.
Xin Jin was supported in part by NSF grants CNS-1813487,
CCF-1918757 and CNS-1955487, a Facebook Communica-
tions & Networking Research Award, and a Google Faculty
Research Award.

400 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] A. Adya, R. Grandl, D. Myers, and H. Qin. Fast key-

value stores: An idea whose time has come and gone.
In Proceedings of the 17th Workshop on Hot Topics in
Operating Systems (HotOS ’19), Bertinoro, Italy, May
2019.

[2] A. Adya, D. Myers, J. Howell, J. Elson, C. Meek,
V. Khemani, S. Fulger, P. Gu, L. Bhuvanagiri, J. Hunter,
R. Peon, L. Kai, A. Shraer, A. Merchant, and K. Lev-
Ari. Slicer: Auto-sharding for datacenter applications.
In Proceedings of the 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI ’16),
Savannah, GA, Nov. 2016.

[3] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-
value store. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE Joint International Conference
on Measurement and Modeling of Computer Systems
(SIGMETRICS ’12), London, England, UK, 2012.

[4] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin:
Distributed shared memory based on type-specific mem-
ory coherence. In Proceedings of the Second ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming (PPOPP ’90), 1990.

[5] B. Berg, D. S. Berger, S. McAllister, I. Grosof, S. Gu-
nasekar, J. Lu, M. Uhlar, J. Carrig, N. Beckmann,
M. Harchol-Balter, and G. R. Ganger. The CacheLib
caching engine: Design and experiences at scale. In Pro-
ceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’20), Banff,
AL, Canada, Nov. 2020.

[6] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A.
Patterson. Characterizing, modeling, and generating
workload spikes for stateful services. In Proceedings
of the 1st ACM Symposium on Cloud Computing (SoCC

’10), 2010.

[7] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming protocol-
independent packet processors. SIGCOMM Comput.
Commun. Rev., July 2014.

[8] M. Burrows. The Chubby lock service for loosely-
coupled distributed systems. In Proceedings of the 7th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’06), Seattle, WA, USA, Nov.
2006.

[9] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya,
and J. Thelin. Orleans: Cloud computing for everyone.
In Proceedings of the 2nd ACM Symposium on Cloud
Computing (SOCC ’11), 2011.

[10] J. Chen, L. Chen, S. Wang, G. Zhu, Y. Sun, H. Liu, and
F. Li. HotRing: A hotspot-aware in-memory key-value
store. In Proceedings of the 18th USENIX Conference on
File and Storage Technologies (FAST ’20), Santa Clara,
CA, USA, Feb. 2020.

[11] Y. Cheng, A. Gupta, and A. R. Butt. An in-memory ob-
ject caching framework with adaptive load balancing. In
Proceedings of the 10th European Conference on Com-
puter Systems (EuroSys ’15), Bordeaux, France, 2015.

[12] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proceedings of the 18th ACM Symposium on Operat-
ing Systems Principles (SOSP ’01), Banff, AL, Canada,
2001.

[13] J. Dean and L. A. Barosso. The tail at scale. Communi-
cations of the ACM, 56(2):74–80, Feb. 2013.

[14] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s
highly available key-value store. In Proceedings of the
21th ACM Symposium on Operating Systems Principles
(SOSP ’07), Stevenson, WA, USA, Oct. 2007.

[15] Intel Data Plane Development Kit. https://www.dpdk.
org/.

[16] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,
R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,
B. Cheyney, W. Shang, and J. D. Hosein. Maglev: A
fast and reliable software network load balancer. In Pro-
ceedings of the 13th USENIX Conference on Networked
Systems Design and Implementation (NSDI ’16), Santa
Clara, CA, 2016.

[17] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky.
Small cache, big effect: Provable load balancing for ran-
domly partitioned cluster services. In Proceedings of
the 2nd ACM Symposium on Cloud Computing (SOCC

’11), Cascais, Portugal, 2011.

[18] P. Fonseca, K. Zhang, X. Wang, and A. Krishnamurthy.
An empirical study on the correctness of formally ver-
ified distributed systems. In Proceedings of the 12th
ACM SIGOPS EuroSys (EuroSys ’17), Belgrade, Serbia,
Apr. 2017.

[19] S. Frank, H. Burkhardt, and J. Rothnie. The KSR 1:
Bridging the gap between shared memory and MPPs. In
Digest of Papers. Compcon Spring, pages 285–294, Feb
1993.

[20] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye,
L. Yuan, and M. Zhang. Duet: Cloud scale load bal-
ancing with hardware and software. In Proceedings of
the 2014 ACM SIGCOMM, Chicago, IL, USA, 2014.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 401

https://www.dpdk.org/
https://www.dpdk.org/

[21] V. Gavrielatos, A. Katsarakis, A. Joshi, N. Oswald,
B. Grot, and V. Nagarajan. Scale-out ccNUMA: Ex-
ploiting skew with strongly consistent caching. In Pro-
ceedings of the 13th European Conference on Systems
(Eurosys ’18), 2018.

[22] D. B. Gustavson. The scalable coherent interface and
related standards projects. IEEE Micro, 12(1):10–22,
Jan. 1992.

[23] Y. Hayakawa, M. Honda, D. Santry, and L. Eggert.
Prism: Proxies without the pain. In Proceedings of the
18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’21), Boston, MA, USA, Feb.
2021.

[24] M. P. Herlihy and J. M. Wing. Linearizability: A cor-
rectness condition for concurrent objects. ACM Trans.
Program. Lang. Syst., July 1990.

[25] M. Honda, G. Lettieri, L. Eggert, and D. Santry. PASTE:
A network programming interface for non-volatile main
memory. In Proceedings of the 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI ’18), Renton, WA, USA, Apr. 2018.

[26] Q. Huang, H. Gudmundsdottir, Y. Vigfusson, D. A.
Freedman, K. Birman, and R. van Renesse. Characteriz-
ing load imbalance in real-world networked caches. In
Proceedings of the 13th ACM Workshop on Hot Topics
in Networks (HotNets ’14), 2014.

[27] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for Internet-scale
systems. In Proceedings of the 2010 USENIX Annual
Technical Conference, Boston, MA, USA, June 2010.

[28] Incomplete high-level spec prevents verifi-
cation of exactly-once semantic. https:

//github.com/microsoft/Ironclad/issues/3.

[29] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,
C. Kim, and I. Stoica. NetCache: Balancing key-value
stores with fast in-network caching. In Proceedings of
the 26th Symposium on Operating Systems Principles
(SOSP ’17), Shanghai, China, 2017.

[30] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and ran-
dom trees: Distributed caching protocols for relieving
hot spots on the world wide web. In Proceedings of the
29th Annual ACM Symposium on Theory of Computing
(STOC ’97), El Paso, Texas, USA, 1997.

[31] P. Keleher, A. L. Cox, S. Dwarkadas, and
W. Zwaenepoel. Treadmarks: Distributed shared
memory on standard workstations and operating
systems. In Proceedings of the USENIX Winter 1994
Technical Conference, WTEC ’94, San Francisco, CA,
USA, 1994.

[32] M. Klems, A. Silberstein, J. Chen, M. Mortazavi, S. A.
Albert, P. Narayan, A. Tumbde, and B. Cooper. The
Yahoo!: Cloud datastore load balancer. In Proceedings
of the Fourth International Workshop on Cloud Data
Management (CloudDB ’12), 2012.

[33] M. Koglas, G. Prekas, A. Ghosn, J. Fietz, and
E. Bugnion. R2P2: Making RPCs first-class datacen-
ter citizens. In Proceedings of the 2019 USENIX Annual
Technical Conference, Renton, WA, USA, July 2019.

[34] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Si-
moni, K. Gharachorloo, J. Chapin, D. Nakahira, J. Bax-
ter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hen-
nessy. The Stanford FLASH multiprocessor. In Pro-
ceedings of the 21st Annual International Symposium
on Computer Architecture (ISCA ’94), 1994.

[35] L. Lamport. Paxos made simple. ACM SIGACT News,
32(4), Dec. 2001.

[36] J. Laudon and D. Lenoski. The SGI origin: A ccNUMA
highly scalable server. In Proceedings of the 24th An-
nual International Symposium on Computer Architec-
ture (ISCA ’97), 1997.

[37] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and
J. Hennessy. The directory-based cache coherence pro-
tocol for the DASH multiprocessor. In Proceedings of
the 17th Annual International Symposium on Computer
Architecture (ISCA ’90), Seattle, WA, USA, 1990.

[38] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam,
E. Chen, and L. Zhang. KV-Direct: High-performance
in-memory key-value store with programmable NIC. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles (SOSP ’17), Shanghai, China, 2017.

[39] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and
D. R. K. Ports. Just say NO to Paxos overhead: Replac-
ing consensus with network ordering. In Proceedings
of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’16), Savannah, GA,
USA, 2016.

[40] K. Li and P. Hudak. Memory coherence in shared virtual
memory systems. ACM Trans. Comput. Syst., 7(4):321–
359, Nov. 1989.

[41] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J.
Freedman. Be fast, cheap and in control with SwitchKV.
In Proceedings of the 13th Usenix Conference on Net-
worked Systems Design and Implementation (NSDI ’16),
Santa Clara, CA, USA, 2016.

[42] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A holistic approach to fast in-memory key-value
storage. In Proceedings of the 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI ’14), Seattle, WA, USA, Apr. 2014.

402 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/microsoft/Ironclad/issues/3
https://github.com/microsoft/Ironclad/issues/3

[43] B. Liskov and J. Cowling. Viewstamped replication re-
visited. Technical Report MIT-CSAIL-TR-2012-021,
MIT Computer Science and Artificial Intelligence Lab-
oratory, Cambridge, MA, USA, July 2012.

[44] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy,
and K. Atreya. IncBricks: Toward in-network compu-
tation with an in-network cache. In Proceedings of the
22nd International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS ’17), Xi’an, China, 2017.

[45] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman,
X. Jin, and I. Stoica. DistCache: Provable load bal-
ancing for large-scale storage systems with distributed
caching. In Proceedings of the 17th USENIX Conference
on File and Storage Technologies (FAST ’19), Boston,
MA, USA, Feb. 2019. USENIX.

[46] Y. Mao, E. Kohler, and R. Morris. Cache craftiness
for fast multicore key-value storage. In Proceedings
of the 7th European Conference on Computer Systems
(EuroSys ’12), Bern, Switzerland, Apr. 2012.

[47] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. SilkRoad:
Making stateful layer-4 load balancing fast and cheap
using switching ASICs. In Proceedings of the 2017
ACM SIGCOMM, Los Angeles, CA, USA, 2017.

[48] C. Mitchell, Y. Geng, and J. Li. Using one-sided RDMA
reads to build a fast, CPU-efficient key-value store. In
Proceedings of the 2013 USENIX Annual Technical Con-
ference, San Jose, CA, USA, June 2013.

[49] M. Mitzenmacher. The power of two choices in random-
ized load balancing. IEEE Transactions on Parallel and
Distributed Systems, 12(10):1094–1104, Oct. 2001.

[50] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani.
Scaling Memcache at Facebook. In Proceedings of the
10th USENIX Conference on Networked Systems Design
and Implementation (NSDI ’13), Lombard, IL, USA,
2013.

[51] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and
B. Grot. An analysis of load imbalance in scale-out data
serving. In Proceedings of the 2016 ACM SIGMETRICS
International Conference on Measurement and Model-
ing of Computer Science (SIGMETRICS ’16), 2016.

[52] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu.
Stateless datacenter load-balancing with Beamer. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’18), Renton, WA, 2018.

[53] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, S. M. Rumble, E. Strat-
mann, and R. Stutsman. The case for RAMClouds: Scal-

able high-performance storage entirely in DRAM. ACM
SIGOPS Operating Systems Review, 43(4):92–105, Dec.
2009.

[54] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg,
D. A. Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu,
C. Kim, and N. Karri. Ananta: Cloud scale load bal-
ancing. In Proceedings of the 2013 ACM SIGCOMM,
SIGCOMM ’13, Hong Kong, China, 2013.

[55] Pegasus public repository. https://github.com/

NUS-Systems-Lab/pegasus.

[56] D. R. K. Ports and J. Nelson. When should the network
be the computer? In Proceedings of the 17th Workshop
on Hot Topics in Operating Systems (HotOS ’19), Berti-
noro, Italy, May 2019.

[57] K. V. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica,
and K. Ramchandran. EC-cache: Load-balanced, low-
latency cluster caching with online erasure coding. In
Proceedings of the 12th USENIX Conference on Operat-
ing Systems Design and Implementation, OSDI’16, Sa-
vannah, GA, USA, 2016.

[58] Redis in-memory data structure store. https://redis.
io/.

[59] A. Rowstron and P. Druschel. Pastry: Scalable, decen-
tralized object location and routing for large-scale peer-
to-peer systems. In Proceedings of the 18th IFIP/ACM
International Conference on Distributed Systems Plat-
forms (Middleware 2001), Heidelberg, Germany, Nov.
2001.

[60] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger,
M. F. Kaashoek, F. Dabek, and H. Balakrishnan. Chord:
a scalable peer-to-peer lookup protocol for internet ap-
plications. IEEE/ACM Transactions on Networking,
11(1):149–160, Feb. 2003.

[61] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. El-
more, A. Aboulnaga, A. Pavlo, and M. Stonebraker. E-
store: Fine-grained elastic partitioning for distributed
transaction processing systems. Proc. VLDB Endow.,
8(3):245–256, Nov. 2014.

[62] Apache Thrift software framework. https://thrift.

apache.org/.

[63] Barefoot Tofino programmable switch ASICs.
https://www.barefootnetworks.com/products/

brief-tofino/.

[64] Barefoot Tofino 2: Second-generation of world’s
fastest P4-programmable Ethernet switch ASICs.
https://www.barefootnetworks.com/products/

brief-tofino-2/.

[65] Broadcom’s Tomahawk 3 Ethernet switch chip.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 403

https://github.com/NUS-Systems-Lab/pegasus
https://github.com/NUS-Systems-Lab/pegasus
https://redis.io/
https://redis.io/
https://thrift.apache.org/
https://thrift.apache.org/
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino-2/
https://www.barefootnetworks.com/products/brief-tofino-2/

[66] R. van Renesse and F. B. Schneider. Chain replication
for supporting high throughput and availability. In Pro-
ceedings of the 6th Conference on Symposium on Op-
erating Systems Design & Implementation (OSDI ’04),
San Francisco, CA, USA, 2004.

[67] J. Yang, Y. Yue, and R. Vinayak. A large scale analysis
of hundreds of in-memory cache clusters at Twitter. In
Proceedings of the 14th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI ’20),
Banff, AL, Canada, Nov. 2020.

[68] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson. Mo-

jim: A reliable and highly-available non-volatile mem-
ory system. In Proceedings of the 20th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’15), Istan-
bul, Turkey, Mar. 2015.

[69] H. Zhu, Z. Bai, J. Li, E. Michael, D. R. K. Ports, I. Sto-
ica, and X. Jin. Harmonia: Near-linear scalability for
replicated storage with in-network conflict detection.
Proceedings of the VLDB Endowment, 13(3):376–389,
Nov. 2019.

404 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A Artifact Appendix
Abstract

Our artifact includes the following components: 1) P4 source
code of the Pegasus switch data plane, 2) Python source
code of the Pegasus switch controller, 3) C++ implemen-
tation of an in-memory key-value store with Intel DPDK,
4) configuration files and Python/shell scripts for running Pe-
gasus experiments in a cluster, and 5) a TLA+ specification
of the Pegasus protocol. The artifact is publicly available at:
https://github.com/NUS-Systems-Lab/pegasus.

A.1 Artifact check-list
• Algorithm: Coherence protocol.
• Program: Key-value store, P4 packet processing program.
• Compilation: GCC 7.5.0 (Ubuntu 7.5.0-3ubuntu11̃8.04), Bare-

foot SDE 9.1.1
• Binary: Generated from GCC compiler and Barefoot SDE.
• Run-time environment: Ubuntu 18.04 LTS (Linux 4.15), Bare-

foot SDE 9.1.1
• Hardware: Dual socket 2.2 GHz Intel Xeon Silver 4114 pro-

cessors with 20 cores and 48 GB RAM per socket. Mellanox
ConnectX-4 25 Gbit NICs. Arista 7170-64S (barefoot Tofino-
based) programmable switch.

• Execution: Bash and Python scripts.
• Output: Throughput. Average, median, 90%, 99% latencies.
• Experiments: Experiments as specified in the main paper (§9).

Customizable experiment parameters: number of clients and
servers, client request rate, read/write ratio, Zipfian coefficient,
value size, number of keys, maximum number of replicated ob-
jects, and experiment duration.

• Expected experiment run time: 10-60 seconds per experiment.
• Public link: https://github.com/NUS-Systems-Lab/pegasus
• Code licenses: MIT license.

A.2 Description

A.2.1 How to access

All source code, configuration files, and scripts are publicly available
at: https://github.com/NUS-Systems-Lab/pegasus.

A.2.2 Hardware dependencies

The artifact requires a P4 programmable switch (e.g., Barefoot
Tofino programmable switch ASIC). The network interface cards
on the client and server machines need to support Intel DPDK.

A.2.3 Software dependencies

The artifact has been tested on Ubuntu 18.04 LTS (Linux kernel 4.15).
Compiling and running the Pegasus P4 data plane program require
the Barefoot SDE (tested with version 9.1.1). Additional software
package dependencies:
• libevent
• Intel TBB
• libnuma
• zlib
• DPDK (tested with version 19.11)

• Python Sorted Containers
• Python PyREM

A.2.4 Data sets

Experiments in this artifact expect a text file that contains ASCII
keys (one key per line) for the key-value store. We provide a sample
keys file, artifact_eval/keys, that has one million 64B-keys.

A.3 Installation
First, download or clone the repository. Throughout this document,
we will use the following macros:
• $REPO: path to the root of the repository
• $SDE: path to Barefoot SDE
• $SDE_INSTALL: path to Barefoot SDE installation directory

A.3.1 Compiling Client and Server Code

Run make in $REPO.

A.3.2 Compiling P4 Code

On the target P4 switch:

cd $SDE/pkgsrc/p4-build

./configure P4_PATH=$REPO/p4/p4_tofino/pegasus.p4 \

P4_NAME=pegasus P4_PREFIX=pegasus \

P4_VERSION=p4-14 P4_FLAGS="--verbose 2" \

--with-tofino --prefix=$SDE_INSTALL \

--enable-thrift

make && make install

./configure P4_PATH=$REPO/p4/netcache/one.p4 \

P4_NAME=netcache P4_PREFIX=netcache \

P4_VERSION=p4-14 P4_FLAGS="--verbose 2" \

--with-tofino --prefix=$SDE_INSTALL \

--enable-thrift

make && make install

Note that the location of p4-build may depend on the Barefoot
SDE version.

A.4 Experiment workflow

A.4.1 P4 Switch

First, start the Pegasus switch daemon on the P4 switch:

cd $SDE

./run_switchd.sh -p pegasus

Or if running NetCache, run the following:

cd $SDE

./run_switchd.sh -p netcache

In the switch shell, add and enable all switch ports used by the
experiments.

Secondly, modify $REPO/artifact_eval/pegasus.json and
$REPO/artifact_eval/netcache.json with the testbed cluster con-
figuration (refer to artifact_eval/README.md for configuration file
format).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 405

https://github.com/NUS-Systems-Lab/pegasus
https://github.com/NUS-Systems-Lab/pegasus
https://github.com/NUS-Systems-Lab/pegasus

Thirdly, start the Pegasus switch controller:

cd $REPO

./artifact_eval/run_pegasus_controller.sh

Or if running NetCache, run the following:

cd $REPO

./artifact_eval/run_netcache_controller.sh

A.4.2 End-Hosts

First, modify $REPO/artifact_eval/testbed.config with the
cluster configuration. Refer to artifact_eval/README.md for the
format of the file.

Secondly, modify the experiment python script
$REPO/artifact_eval/run_experiments.py. Update clients

and servers with actual host names of the client and server
machines.

Lastly, on a machine that has ssh connectivity to all clients and
servers, run the following:

python2 $REPO/artifact_eval/run_experiments.py

A.5 Evaluation and expected result
The experiment python script outputs the following statistics:
• Total throughput

• Average latency
• Median latency
• 90% latency
• 99% latency

Modify n_client_threads and interval in the experiment
script to control the client load. Tune them until getting the max-
imum throughput with some 99% latency SLO, as reported in the
paper.

To evaluate the different workloads and system configurations
as specified in §9, vary the following parameters in the experiment
script:
• n_servers: number of servers used in the experiment
• node_config: one of pegasus, netcache, or static (consistent

hashing). Note that pegasus and netcache require running the
corresponding P4 switch daemon and controller.

• alpha: Zipfian coefficient
• get_ratio: percentage of read requests in the workload (0.0 -

1.0)
• key_type: key access distribution. Either unif (uniform) or zipf

(Zipfian)
• value_len: value size (in bytes)
• n_keys: total number of keys

A.6 AE Methodology
Submission, reviewing and badging methodology:
• https://www.usenix.org/conference/osdi20/

call-for-artifacts

406 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.usenix.org/conference/osdi20/call-for-artifacts
https://www.usenix.org/conference/osdi20/call-for-artifacts

FlightTracker: Consistency across Read-Optimized Online Stores at Facebook
Xiao Shi, Scott Pruett, Kevin Doherty, Jinyu Han,

Dmitri Petrov, Jim Carrig, John Hugg, Nathan Bronson
Facebook, Inc.

Abstract
Social media platforms deliver fresh personalized content

by performing a large number of reads from an online data
store. This store must be optimized for read efficiency, avail-
ability, and scalability. Multi-layer caches and asynchronous
replication can satisfy these goals, such as in Facebook’s
graph store TAO, but it is challenging for the resulting sys-
tem to provide a developer-friendly consistency model. TAO
originally provided read-your-writes (RYW) consistency via
write-through caching, but scaling challenges with this ap-
proach have led us to a new implementation.

This paper introduces FlightTracker, a family of APIs and
systems which now manage consistency for online access to
Facebook’s graph. FlightTracker implicitly provides RYW
and can be explicitly used to provide alternative consistency
guarantees for special use cases; it enables flexible commu-
nication patterns between caches, which we have found im-
portant as the number of datacenters increases; it extends the
same consistency guarantees to cross-shard indexes and mate-
rialized views, allowing us to transparently optimize queries;
and it provides a uniform primitive for clients to obtain de-
sired consistency guarantees across a variety of data stores.
FlightTracker delivers these advantages while preserving the
efficiency, latency, and availability benefits of asynchronous
replication for the underlying systems, managing consistency
for billions of users and more than 1015 queries per day.

1 Introduction

Social media platforms deliver fresh and customized aggre-
gation of content. This feature combination makes it ineffec-
tive to aggregate ahead of time; instead each application-level
web request at Facebook may issue hundreds or thousands
of queries to our graph store TAO [20] to render a single re-
sponse. This high query amplification means that data store
reads must be efficient, low-latency, and highly available. At
Facebook, we have addressed this challenge with an asyn-
chronously coupled federation of caches, database replicas,
and customized indexes that model social media data and

web servers

web request

Ticket-inclusive read
(query + Ticket)
Consistency miss
with Ticket

TAO cache

user_id

…
TAO cache

TAO cache

web
request

client
library

web
request

FlightTracker
TicketUser 17 ↦
…User 42 ↦RYW Ticket

mobile

web
request

web
request

web
request

…browser

Figure 1: Web request flow with FlightTracker.

metadata as a graph. While this read-optimized ecosystem
achieves high performance, it is challenging to provide an
intuitive and uniform consistency model to developers.

FlightTracker is our solution for managing RYW consis-
tency for online access to the social graph at Facebook. It
preserves the read efficiency, hot spot tolerance, and high
availability of eventual consistency while providing RYW
consistency. FlightTracker offers a uniform notion of an end
user session that spans many stateful services and can be
extended to new data stores without architecture changes.

FlightTracker consists of a family of APIs and a metadata
service. Building on write-set tracking techniques [28, 40,
41, 51] and CRDTs [18, 50], the FlightTracker service accu-
mulates the metadata of a user’s recent writes and exposes
the metadata as a data type we call a Ticket. Web requests
fetch the user’s Ticket once, as soon as the user is identified
(see Figure 1). This Ticket is automatically attached on all
subsequent queries to the social graph from the web request.

We use a variety of system-specific strategies to ensure
that every write identified by the Ticket is reflected in query
results. For example, our strategy for caches is to ignore cache
entries that may be stale compared to writes in the Ticket;
we refer to the resulting cache miss as a consistency miss.
Systems can propagate Tickets recursively when they need to
fetch data from another component while processing a query.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 407

FlightTracker has been in production since 2016. It pro-
vides RYW consistency for billions of users and 1015 data
store queries per day. For the majority of Facebook’s inter-
nal applications and developers, FlightTracker is automatic
and hidden. Some call sites and higher-layer infrastructure
components explicitly manipulate Tickets to strengthen the
consistency level. FlightTracker’s loosely coupled design has
allowed us to incrementally roll out support to two caching
systems, three indexing systems, and two databases. It pre-
serves the efficiency, latency, and availability that these data
stores would offer under eventual consistency.

Overall, this paper makes five contributions:

• We summarize challenges Facebook encountered when
relying on write-through caching for RYW in TAO, a read-
optimized geo-replicated graph store (§ 2).

• We present the Ticket abstraction, which encapsulates the
system-specific details of write sets in an extensible manner
across service boundaries (§ 4).

• We show how we store and exchange Tickets in the Flight-
Tracker service to provide RYW consistency (§ 3 and § 5)
or explicitly satisfy alternative consistency requirements
for select use cases (§ 7) while tolerating hot spots (§ 6.5).

• We explain a variety of strategies we used to implement
Ticket-inclusive reads in query-serving systems (§ 6), in-
cluding ones for simple caches and global indexes with
complex update pipelines (§ 6.3).

• We evaluate FlightTracker in our production environment,
demonstrating that it preserves the useful properties of the
underlying read-optimized stores (§ 8), and share some
lessons learned (§ 8.5).

2 Motivation

TAO is a read-optimized data store that provides access to
the social graph at Facebook [20]. It is implemented using two
layers of caches in front of a geo-replicated database. TAO
originally relied on write-through caching for consistency.
This technique provided RYW on top of eventual consistency,
while preserving the read efficiency and hot spot tolerance of
the system, since it allowed most queries to be served from a
nearby L1 cache server.

As Facebook grew, we found that we needed a better ap-
proach to consistency. TAO’s original write-through strategy
relied on the use of a fixed communication pattern: users were
made sticky to a single L1 cache cluster by the load balancers,
inter-cluster communication was limited to traversing a fixed
tree, and writes were proxied along the same tree traversal
chain that would be followed on a read miss. RYW would be
violated if any of the following were true: user requests were
routed to another cluster of web servers; the mapping from
web server cluster to L1 cache cluster was changed; queries
were failed over to a stale replica; cache contents were lost

web
server

L1
cache

L2
cache

load
balancer

web
server

web
server

L1
cache

region 2

primary
DB

L2
cache

…

region 3

replica
DB

L2
cache

…
global
index

Sticky path for RYW
Avoiding load imbalance
Failover and disaster routing
Additional systems

Figure 2: RYW via write-through caching excludes many
useful inter-cluster communication patterns.

before asynchronous replication occurred; or any query was
served by a data store other than TAO.

2.1 Scaling challenges
As TAO’s footprint grew, we found it increasingly problem-

atic to rely on a fixed communication topology. In fact, each of
the conditions required for write-through RYW became harder
to satisfy over time. As cross-cluster networking improved,
we moved away from pairing and collocating L1 caches with
web server clusters, reducing the number of L1 cache replicas
per region. This reduced the number of cached copies of data,
but it required fractional or dynamic assignment of web server
traffic to L1 cache clusters to get reasonable balance. Switch-
ing from cluster-sticky to region-sticky user routing improved
the load distribution of both the web server clusters and TAO.
As the number of geographic regions grew, we started to de-
ploy TAO in some datacenters without a local database replica,
routing cache misses to the closest neighboring region. If we
were restricted to a tree topology for miss routing and cache
invalidation streams, the outage of one database replica would
affect multiple regions. Figure 2 shows some of the desirable
communication patterns we encountered that break the write-
through consistency model. The dotted and dashed arrows
show read requests that potentially violate RYW consistency
without FlightTracker.

Another recurring issue was queries that needed cross-
cluster or global write visibility. TAO marks these queries
critical, routing them to the L2 cache in the region hold-
ing database primaries, near the base of the communication
tree [20]. This strategy has latency and availability drawbacks.
It is also not tolerant of spiky workloads.

2.2 Cross-system consistency
As we encountered challenges scaling TAO’s write-through

approach to consistency, the social graph ecosystem expanded.
Application developers moved from directly accessing TAO
to using a query language that makes it easy to express multi-
hop and attribute-filtering predicates over the graph. This
layer of indirection allowed us to build additional systems
tailored to a subset of the Facebook query workload.

408 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Some application queries involve many round trips when
mapped onto TAO’s simple API and transfer a lot of data that
the client immediately discards. Global secondary indexes can
optimize the communication pattern of these queries, but it is
only safe to transparently or retroactively optimize execution
using indexes if the index stores have the same semantics as
TAO [34]. Our indexing systems are loosely coupled, updated
by asynchronous pipelines that reshard, transform, and filter.
Loose coupling enables separate development and deploy-
ment, but it limits the consistency implementation strategies.
Most indexes are sharded differently than TAO, so even if
we used a more monolithic design, they could not participate
synchronously in the write path without reducing availability
and increasing tail latency [17, 54].

Another side effect of moving to the application-level query
language for the social graph was that it became easier to use
alternate database technologies as the system of record for
parts of the social graph, such as for data types that experi-
ence high write rates or limited lifetimes. These systems also
experience the same consistency challenges as TAO.

Ajoux et al. [10] previously identified four fundamental
challenges to providing causal consistency in Facebook’s so-
cial media platform: integrating across many stateful services,
tolerating high query amplification, handling linchpin objects
(i.e., hot spots), and providing a net benefit for users. Our
experience has been that these challenges also arise when pro-
viding RYW consistency and that the most difficult hurdle is
producing a design that addresses all of them simultaneously.

2.3 Why read-your-writes?
Consistency models for data stores make guarantees about

what writes should be visible to a read. Application devel-
opers use these guarantees to reason about the correctness
of the entire system. Strong models like linearizability [32]
or causal consistency [9] generally provide a simpler experi-
ence and mental model for developers, but they constrain the
implementation.

Providing consistency guarantees for read-optimized sys-
tems boils down to implementing a staleness check to deter-
mine whether a cache or replica can serve a read query with
its local data. This staleness check must be: (1) local, avoiding
network communication in most cases; (2) highly granular,
so that few queries result in extra work due to false positives
from the checks; and (3) conducive to incremental repair, so
that the extra work to find fresh data can be reused for sub-
sequent queries. Importantly, staleness checks are needed for
single-replica reads even in systems that use synchronous
quorum writes. For example, Raft followers [43] or Paxos ac-
ceptors [38] might have no knowledge of a write committed
by the leader if they were not part of the commit quorum.

Logical and physical timestamps, such as Hybrid logical
clocks [36], Spanner’s TrueTime [26], and Occult’s com-
pressed vector clocks [41], provide a simple and scalable way
to check for staleness—the local data is sufficiently fresh if its

timestamp is higher than the desired read timestamp. Unfor-
tunately, these approaches are neither granular nor conducive
to incremental repair. If the local store is 10 seconds behind
the desired read timestamp, for example, it cannot service any
queries until it has processed all of the missing writes.

For our workload, it is important that we can serve most
queries locally, even if the local replicas are a few seconds
stale. This led us to reject consistency levels in which all
writes (linearizability) or most writes (causal consistency)
missing from a stale replica need to be visible. In contrast,
RYW allows us to utilize a stale replica by adding fresh
versions of only a limited set of writes ("your" writes). We
also rejected weaker models like bounded staleness that do
not guarantee that a user sees their own writes, which are
difficult to use correctly for an interactive application [54].1

Our experience at Facebook has been that the simple RYW
consistency model [51] is a reasonable default for application
developers and our end users, with an extension: we want to
extend the concept of a session to end users.

User-centric sessions: Our desire to implement user-
centric session RYW guarantees means that we experience
intra-session concurrency at several levels, as shown in Fig-
ure 1: a single web request issues TAO reads and writes in
parallel; a single browser or mobile app has many web re-
quests in flight at once; and a user may even be accessing
Facebook simultaneously from multiple devices.

The original definition of RYW session guarantees [51]
implies that reads and writes within a session are totally
ordered and that this intra-session order coincides with the
physical order of those operations, as in linearizability. As
a result, while the theoretical definition does not require a
single-threaded session, implementations limit sessions to a
single client, writer, session manager, or server [19,28,42,52].

However, our observation is that application developers do
not expect concurrent web requests to communicate with each
other. A common mental model is that concurrent requests
execute in a random order and possibly interleave with each
other, so visibility from one request to the next is only assured
if one request finishes before the other starts. An application
developer’s intuition is that the first moment data is guaran-
teed to be available is when the write acknowledgement is
received by the local program that issued the web request.

This observation led us to the following relaxation of the
RYW guarantee, which is what FlightTracker provides:

A read to the social graph will observe all writes done by
the same end user in previously completed web requests or in
the same web request.

This definition gives us much-needed flexibility for han-
dling intra-session concurrency. Note that as in the original
RYW definition, a read may “observe” a write by returning
an even newer version of the data.

1We think providing both RYW and bounded staleness is an interesting
and feasible model, even for our read-optimized environment.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 409

3 FlightTracker

The main idea of FlightTracker is to decompose the prob-
lem of RYW consistency into three parts: (1) the Ticket ab-
straction, a flexible and extensible way of representing write
sets across independently developed systems and APIs; (2)
the FlightTracker service, generic infrastructure queried once
per web request to get a user’s recent write metadata; and (3)
Ticket-inclusive reads, system-specific mechanisms to ensure
that the specified writes are reflected in query results.

Our goal for FlightTracker is to preserve the communica-
tion patterns that benefit eventually consistent read-optimized
stores. FlightTracker piggybacks on existing messages in
these data stores. Most read queries can be served by a sin-
gle local RPC, maintaining high efficiency and low latency.
FlightTracker does not restrict where data stores send read
RPCs, which allows them to leverage per-query retry and
failover for high availability. FlightTracker supports the ag-
gressive multi-level caching that data stores use to tolerate hot
spots. Most of the work to ensure writes become visible to
reads is handled by asynchronous pipelines, which retains the
desired isolation and loose coupling of the underlying data
stores. This piggybacking approach has also made it feasible
to incrementally add FlightTracker support to existing mature
systems with low overhead.

Figure 3 shows the API extensions a data store needs to im-
plement to integrate with FlightTracker. On a successful write,
a data store returns a Ticket identifying the write alongside
the result; read queries take a Ticket parameter and guarantee
any relevant writes in the Ticket will be reflected in the result.

3.1 An example
Consider a hypothetical social media product using TAO’s

graph model of versioned nodes and edges, with user nodes,
media nodes, edges when a user has enjoyed a particular me-
dia instance, and edges when a user trusts another’s tastes.
Let’s say Alice enjoys Mozart’s Requiem; Bob recently indi-
cated he trusts Alice’s taste in art and then expanded his trust
in Alice to include music. The resulting subgraph is shown in
Figure 5 and Bob’s recent writes to TAO would be:

WriteEdge(h17,TRUSTS,42i 7! {"art"}) (1)
WriteEdge(h42,TRUSTED_BY,17i 7! {"art"}) (2)
WriteEdge(h17,TRUSTS,42i 7! {"art","music"}) (3)
WriteEdge(h42,TRUSTED_BY,17i 7! {"art","m . . .}) (4)
To get RYW consistency, we simply need to ensure that

Bob’s subsequent data store queries include the effects of
these writes. We do this by computing Bob’s recent write set
once per web request, attaching it to all of his queries, and
then making sure the data stores reflect attached writes in the
query results.

3.2 Tickets
We store write metadata in a data type we call a Ticket.

Metadata to identify a write includes information like the

pair<Result, Ticket> write(...); // returns metadata
Result read(..., Ticket); // Ticket-inclusive read

Figure 3: API extensions data stores expose to participate in
the FlightTracker ecosystem.

void appendWrite(SessionId, Ticket); // FT write
Ticket getMergedWrites(SessionId); // FT read

Figure 4: The API of the FlightTracker service.

TRUSTS
{"art","music"}

TRUSTED_BY
{"art","music"}

ENJOYS

ENJOYED_BY

USER
id: 17
Bob

USER
id: 42
Alice

MEDIA
id: 55
kind: "music"
Requiem in D minor

Figure 5: Subgraph for a hypothetical application.

transaction ID and the resulting node or edge version but does
not include the data itself. If Wi is metadata that identifies
Bob’s i-th write above, we might have:

W3 = [key 7! h17,TRUSTS,42i,
op 7! WriteEdge, v 7! 2, txn_id 7! 8980]

W4 = [key 7! h42,TRUSTED_BY,17i, . . . , txn_id 7! 8985]

Bob’s Ticket would then be {W1 . . .W4}.
As write sets, Tickets can be joined via set union. Moreover,

Tickets are handled and passed around between many inde-
pendently deployed systems; therefore, they need to be encap-
sulated, extensible, and forward- and backward-compatible.
Inside a Ticket, writes can be enumerated or represented using
a low-water mark that implicitly includes all preceding writes.
§ 4 describes Ticket contents, semantics, and implementation.

3.3 The FlightTracker service
Bob’s logical user session spans many web requests, so

we need to store metadata for his recent writes elsewhere.
To that end, we built the FlightTracker service with an API
resembling a hash map of user IDs to recent writes (Figure 4).
For example, Bob’s entry will be 17 7! {W1,W2,W3,W4}. The
client library calls appendWrite immediately after a success-
ful write to the data store before acknowledging success to
the application; getMergedWrites returns the recent writes
for a particular user.

Figure 1 shows an RPC pattern that might occur as Bob
browses the music portion of the site. As soon as the web re-
quest identifies Bob as the logged-in user, it fetches his RYW
Ticket from FlightTracker by calling getMergedWrites(17)
and puts it into the web request context. When Bob performs
a write, the client library joins its metadata into the Ticket in
the web request context and also uses appendWrite to imme-
diately send the write metadata to FlightTracker. The client
library implicitly attaches the Ticket from the web request
context to every read query. A single web request performs
many such queries, offering ample opportunity to amortize the
initial Ticket fetch. Most developers do not explicitly observe
or manipulate Tickets.

410 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3.4 Ticket-inclusive reads
It is the responsibility of the data store clients to attach a

Ticket that ensures RYW to each query, and it is the responsi-
bility of each query-serving component to ensure that all of
the writes in the Ticket are included in a query result.

Our applications do not expect to have exclusive access to
the social graph or to read from snapshots; reads are always
allowed to return data that is fresher than expected. In Ticket-
inclusive reads, a Ticket specifies a lower bound on writes that
should be visible. A Ticket that encodes a superset of another
can always be safely substituted at read time, as anything
made visible by the superset Ticket might have been visible
anyway as part of normal asynchronous replication.

Cache queries: After getting his RYW Ticket, Bob’s web
request performs two queries to TAO’s cache. The sim-
plicity of the TAO API makes it straightforward for the
cache to validate the freshness of its cache content—a TAO
replica compares the versions of the data in question against
the versions specified in the Ticket. For example, if the re-
quest is reading a list of all of the users that Bob trusts
(GetEdges(h17,TRUSTS,⇤i)), then W3 implies the edge to Al-
ice must be present with version � 2.

In Figure 1, the first TAO query was a cache hit unaffected
by the Ticket. This is the common case. The second TAO
query shows a consistency miss, where the local cache con-
tents are stale. In this case, the cache goes upstream and
merges the fresh edge into the local list before responding.
Note that the upstream query has the same Ticket attached,
which recursively ensures visibility of Bob’s recent writes.

Index queries: If Bob is browsing the song with ID 55, we
would like to display Bob’s trusted users who also enjoy it.
This involves finding all x where h17,TRUSTS["music"],xi^
h55,ENJOYED_BY,xi. This two-hop query is not well suited
to TAO, because both the TRUSTS and ENJOYED_BY edge lists
may be too large to fully cache. We can optimize this type
of query by materializing a global secondary index. Specifi-
cally, we might use a list-intersection index with edge lists for
TRUSTS edges that include "music" and ENJOYED_BY edges
from "music" MEDIA nodes.

An index leaf (read server) does not have enough informa-
tion to accurately identify missing writes, because writes that
are filtered by the update pipeline will never arrive. For ex-
ample, W1 can be filtered upstream because it is not a TRUSTS
edge that includes "music" and thus does not change any
materialized lists. Without extra information, an index leaf
will consider W1 missing forever. Any such index leaf cannot
satisfy a Ticket-inclusive read with Bob’s Ticket with W1 in
it. We solve this problem by tracking the delivery informa-
tion of recent writes, including the recent routing and filtering
choices of the update pipeline as well as the delivery status
to the index leaves. This FlightTracker-ReverseIndex (FT-RI)
component builds an index of recent writes to the actions
taken by the index update pipeline (§ 6.3). Queryable using

the metadata present in Tickets, the delivery information is
used by the index client library to determine whether an index
read result is fresh enough. If stale, the client library uses
strategies such as read repair or retry to obtain a fresh result.

§ 6 describes our full range of strategies to ensure results
of Ticket-inclusive reads reflect all writes in a Ticket.

4 Ticket details

A Ticket is a set of write metadata. We use Tickets to iden-
tify writes to the social graph regardless of where the writes
are committed. Tickets allow generic infrastructure to track
and identify writes across many independently deployed sys-
tems, while letting databases convey system-specific details.
For clarity, we refer to the systems that persist the normalized
data and generate the write metadata as “databases,” as op-
posed to other data stores such as caches and indexes which
mostly serve reads and proxy writes.

A Ticket is implemented as a union of custom per-database
representations. On a write, a single-database Ticket is minted
with only metadata for the newly committed write (Figure 3).
It can then be joined with other Tickets or otherwise used
by FlightTracker and custom applications, producing Tickets
that may contain writes from multiple databases.

The encapsulation of Tickets and the semantics of Ticket-
inclusive reads together give us great flexibility in the Ticket
implementation. Since Ticket-inclusive reads interpret Tickets
as lower bounds, read results containing additional writes or
fresher writes than exactly encoded in the Ticket are unsurpris-
ing to the applications. Furthermore, thanks to encapsulation,
applications cannot examine the exact content or representa-
tion of a Ticket, which means we can always safely include
additional writes inside a Ticket. We leverage this flexibility
in Ticket compaction (§ 4.2) and Ticket replication in the
FlightTracker service (§ 5).

4.1 Identifying a set of writes
The naive strategy of identifying writes by globally unique

IDs is easy to implement but difficult to use—read-serving
data stores must keep track of all write IDs to determine
whether the local replica is sufficiently up-to-date. Assigning
a total write order allows systems to identify writes by their
ordinal positions. However, ordering implies synchronization
via communication or via timed-wait [26]. To preserve the ef-
ficiency benefits of asynchronous replication, databases often
opt for limited-scope ordering. In our experiences, there are
three natural scopes:

• Per-key: Any strictly monotonically increasing value can
be combined with a key to identify a particular change to
that row or object. This version need not be contiguous—a
monotonically increasing timestamp would also suffice.

• Per-shard: Many databases totally order all writes to a par-
ticular shard, but give no order guarantees between shards.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 411

• Global: Some systems [26,53] offer total order of all writes
globally. HLCs or known-accuracy clocks can also order
writes across shards and database types.
All of the databases supported by FlightTracker have the

following properties which allow us to further simplify our
assumptions. Our databases expose a versioned key-object
model. They are sharded and maintain a total order for all
writes within a shard; furthermore, writes in a single shard are
replicated in the same order. The commit-time information
(such as commit timestamps or transaction IDs) can thus
specify a contiguous prefix of that shard and serve as a low-
water mark to determine the replication state of a data store.

Most fields in a Ticket can be and are empty. When new
Tickets are minted, they can include any information known
at commit time, such as per-key versions, commit timestamps,
or transaction IDs. While not necessary, including more meta-
data allows flexibility in interpreting and using the Ticket. Fig-
ure 6 shows an example Ticket structure with two databases.

For a data store or client to determine whether a read result
is sufficiently up-to-date, this metadata needs to be accessible
on reads, which means that it should be stored alongside the
data. While this overhead appears non-trivial (e.g., up to 8-
bytes per key), our databases already persist these versioning
primitives, so the additional cost is negligible.

Although we describe the Ticket abstraction in the context
of databases at Facebook, it is applicable and extensible to
other databases. Many natively support and store per-key
versioning primitives, such as the rowversion of Azure SQL
Database [13]. Per-shard or global-scope ordering also often
underlies modern databases, where writes can be identified by
sequence numbers or timestamps stored alongside the client
data (e.g., zxid for ZooKeeper [33], hlc in CockroachDB [2],
offset in Kafka [35], LSN in LogDevice [4]).

4.2 Ticket joining and compaction
Two important operations on Tickets are joining and com-

paction: joining combines Tickets and compaction reduces
their space footprint. Both are local operations with no need
for RPCs or information outside the input Tickets.

The join operation, which is essentially set union, produces
a Ticket that is a superset of all the inputs. It is the primary API
for Tickets. For example, data store clients can join Tickets to
combine metadata from multiple shards or multiple databases;
the FlightTracker service joins Tickets to accumulate per-user
recent writes (§ 5); select applications join Tickets to express
additional constraints for their reads (§ 7).

Compaction helps Tickets overcome the scaling limit of
write set tracking techniques. The idea is straightforward.
Tickets represent writes that should be visible, i.e., a kind
of lower bound; we can raise the lower bound in exchange
for a more compact representation. Intuitively, doing Ticket-
inclusive reads with the resulting Ticket makes their con-
straints equally or more stringent.

Formally, Tickets are CRDTs [50] and the compaction

struct RepForDatabaseA {
map<WriteKey, tuple<Version, TxnId, Timestamp>> perKeyMap;
map<ShardId, pair<TxnId, Timestamp>> perShardMap;

};
struct RepForDatabaseB {
map<WriteKey, tuple<Version, Hlc>> perKeyMap;
map<ShardId, Hlc> perShardMap;

};
struct Ticket {
RepForDatabaseA repA;
RepForDatabaseB repB;
Timestamp globalTs;

};

Figure 6: Tickets represent the union of the writes identified
by each field.

techniques we use are CRDT inflation operations [18]: the
per-scope ordering and subset-superset relation define the
partial order. Ticket inflation produces a Ticket that is � the
input Ticket according to this order. The resulting Ticket may
need fewer bytes to represent. Not all inflation reduces Ticket
size but the three types of inflation we use below do:

Per-scope compaction: Keeping the highest version for
each key and the highest transaction ID for each shard lets us
discard metadata with older versions or transaction IDs. This
compaction is performed during every join.

Cross-scope compaction: Some databases have static
shard assignments and include both per-key versions and
per-shard transaction IDs in the Tickets (such as DatabaseA
in Figure 6). Replacing per-key metadata with a per-shard
transaction ID can greatly reduce the Ticket size, espe-
cially for shards with many individual writes. Suppose the
edges from the example in § 3.1 among many other writes
are all on shard X . We can then compact a Ticket T1 =
{W3,W4, . . . ,W100} to T2 = {shardX : txn_id 7! 8985}.

Cross-scope compaction offers us a tradeoff between the
Ticket size and the cost of serving the Ticket-inclusive read.
Since a compacted Ticket semantically encodes more writes,
the read is less likely to be served locally. E.g., T2 requires
all writes on shard X with txn_id 8985 to be replicated.
Thus, this type of compaction is performed heuristically and
sparingly in the FlightTracker service.

Global compaction: We can inflate a Ticket into a global-
scope timestamp to represent all writes that have earlier times-
tamps. Global compaction only happens in the FlightTracker
service for writes older than 60 seconds, since we assume the
replication lag of our data stores plus clock skews are much
smaller. Given the long threshold, global compaction does
not have to be exact—older writes do not need to be removed
from a Ticket immediately since they purely reduce Ticket
size. Thus, the timestamps used for compaction could either
be the logical commit timestamp generated by the database or
the physical timestamp generated by the data store after the
write completes. Global compaction lets FlightTracker store
only 60s of data, which greatly reduces its working set.

Additionally, we define a Ticket-inclusive read with an

412 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

empty Ticket as implicitly encoding the constraint of return-
ing data no more than 60 seconds stale relative to the current
physical timestamp of the replica serving the read. This way,
in most cases, we avoid the need to pass around Tickets con-
taining only a single old global timestamp.

4.3 Physical representation
As a cross-system primitive, Ticket presents a number of

interesting software-engineering challenges. Ticket-handling
code runs inside systems with widely varying deployment
frequencies, so Ticket must be both forward- and backward-
compatible. Ticket encapsulates implementation-specific
details from multiple systems, but because clients can join
Tickets, it cannot leave encoding and decoding up to the data
stores. Ticket must be extensible and loosely coupled, allow-
ing metadata for new systems to be added without affecting
existing systems. Ticket must also be efficient enough to use
on each query in our read-heavy environment.

We address some of the above challenges by using
Thrift [8], a serialization format originally designed for effi-
cient and portable RPC. We define the Ticket data structure
using the Thrift interface definition language (IDL).

Compatibility: Thrift handles the majority of forward- and
backward-compatibility issues, as unknown fields from future
versions are silently skipped. Care must still be taken as we in-
troduce new metadata fields to existing systems in the Ticket.
For example, if two writes with the same key and timestamp
are differentiated by a transaction ID, older code unaware of
transaction IDs may be surprised to see a duplicated write.

Serialization: We currently support two serialization
formats, identified by the prefix. The default is an LZ4-
compression [25] of the Thrift Compact encoding. This is
used across all RPC boundaries, making it easy to tunnel
Tickets through other systems. The second is the Thrift JSON
encoding for readability in debugging and logging.

Encapsulation: A Ticket’s internal struct is accessible to
systems that mint new Tickets or perform Ticket-inclusive
reads. Clients that need not inspect Tickets can treat them
as opaque tokens. We provide language bindings and utility
functions for code that needs to examine the Ticket internals.

FlightTracker

{W1, W2, …}17↦
T42↦

web request

client library

getMergedWrites(42)
T

appendWrite(42, T’)

data write

✓

✓

TAO read

TAO cache

read(T+T’,…)

TAO cache

TAO write

T’

ack

ap
pl

ic
at

io
n

lo
gi

c

Figure 7: Web request flow with the FlightTracker service.

We chose the name Ticket to minimize assumptions devel-
opers would make about its semantics. Infrastructure engi-
neers often conflate a visibility guarantee on a specific write
(Transaction 8980) with a guarantee on a contiguous prefix
(Transactions 1. . . 8980); a new name reduces this tendency.

Extensibility and loose coupling: As shown in Figure 6,
each database can customize its own representation. Extend-
ing the Ticket structure to support an additional database boils
down to adding a field in the main struct and updating the
join function. Loose coupling between databases is provided
by using different fields for each.

5 FlightTracker service implementation

The API of the stateful FlightTracker service (Figure 4) is
extremely simple, consisting of just two operations. As shown
in Figure 7, a web request calls getMergedWrites(user) at
the beginning to get the user session’s RYW Ticket; the client
library call appendWrite(user, ticket) after a database
write with the newly minted Ticket and only acknowledge
the write to the application if both the data store write and
appendWrite succeed. To reduce ambiguity, we use “data
writes” to refer to data store operations and use “metadata
writes” to refer to FlightTracker operations.

FlightTracker has the following requirements:

• High throughput: FlightTracker is subject to the full write
throughput of all the underlying data stores, since every
data write results in a metadata write to FlightTracker. Its
effective replication factor is lower than a globally repli-
cated store like TAO, because most writes are only stored in
the writing user’s region. Its read throughput is proportional
to the number of web requests.

• Low latency: Data writes are not acknowledged until their
metadata is recorded in FlightTracker, so FlightTracker
adds to application-visible write latency.

• High availability: Unavailability of FlightTracker implies
loss of availability or loss of RYW consistency for clients.
The decoupled nature of FlightTracker allows us to let some
use cases fail open (available but inconsistent) while others
fail closed (unavailable).

• Durability: A Ticket passed to appendWrite should be in-
cluded in getMergedWrites even when there are machine
failures. FlightTracker uses a single-round quorum proto-
col that does not provide atomicity because it is okay for a
failed or in-progress appendWrite call to be visible.

The working set of FlightTracker is relatively small, as
FlightTracker compacts Tickets as it merges them (§ 4.2). Put
more practically, if queries are only routed to replicas that are
at most 60s stale, then write metadata older than 60s are safe
to compact away. Our data stores track the staleness of their
own replication streams and a vast majority (>99.99%) of the
servers are no more than 60s stale.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 413

5.1 Replication

We implement FlightTracker as a quorum-based store. We
statically determine the number of replicas N; the Flight-
Tracker client broadcasts an appendWrite to all replicas and
considers it successful when W replicas acknowledge the
write; a getMergedWrites query contacts R replicas and
joins the retrieved Tickets.

This plain single-round quorum protocol with R+W > N
is sufficient to provide the desired correctness guarantee for
FlightTracker. A previously appended Ticket will be returned
by at least one replica in R, since R +W > N guarantees
overlap between the read and write quorums. Merging the
read results via join() from all R replicas ensures durability:
the Ticket will be included in the final read result.

FlightTracker does not need to guarantee atomicity. Recall
that given Ticket encapsulation and how Tickets are used as
lower bounds, we can safely include additional write meta-
data in Tickets without violating the overall RYW consistency
(§ 4). If a metadata write fails to reach W FlightTracker repli-
cas or is still in progress, FlightTracker can safely include it
in the result of getMergedWrites. Moreover, if a data write
succeeds but its metadata write to FlightTracker fails, we con-
sider this write an “unacknowledged success,” i.e., the data
store client errors out the data write to the application. Ap-
plication developers do not expect to see failed data writes
but know how to handle them if they do show up. Since many
of Facebook’s applications are built on eventually consistent
stores, applications are used to reading fresher writes (e.g.,
from other applications). Thus, unacknowledged successes
are acceptable as long as they are infrequent.

For example, suppose we have a FlightTracker deployment
with N =W = 3 and R = 1; data writes for W5 and W6 com-
pleted, but the metadata write for W5 failed and the metadata
write for W6 is in progress. The state of the three FlightTracker
replicas is {W5,W6},{W6},{}. A first metadata read could re-
turn a Ticket of {W5,W6} and a subsequent metadata read
could return {}. This is permitted: W6 has not completed so
RYW does not apply yet; W5, while written in the database,
has returned an error to the application, thus the application
should have no expectation of visibility either way.

FlightTracker’s default setup is a region-local quorum, as
Facebook pins logged-in users to a region. We leverage the
regional placement to ensure low latency for FlightTracker
accesses. Since FlightTracker has a small working set, we
choose to store everything in memory and adjust N for redun-
dancy. Empirically, we’ve found N = 3 offers a good trade-off
between low latency and sufficient redundancy (§ 8).

We statically map user IDs onto logical shards, which are
dynamically placed within each FlightTracker replica. Shard
placement is aware of load-balancing and covers failure de-
tection. Some use cases use non-user session IDs and cross-
region quorums (§ 7.3).

5.2 Failure tolerance
Machine failure is the most common failure that must be

handled. Our strategy for this also handles network issues and
gaps in coverage during shard movements. We leverage the
global compaction bound to restore resiliency after a Flight-
Tracker machine gets a new shard assignment or dynamic
shard movement. FlightTracker “warms up” in the first 60
seconds after a shard comes online by accepting all writes but
not serving reads. Rejected reads are retried on warm replicas.

5.3 Fail closed vs. fail open
One of the challenges identified by Ajoux et al. [10] was

ensuring consistency mechanisms provide a net user benefit.
Some applications would prefer to continue a web request
even if getMergedWrites fails, for example. Given that we
have the option to cleanly fail open on a per-query basis, it
is difficult to argue for a uniform fail-closed policy. If Flight-
Tracker is completely reliable, there will be vanishingly few
inconsistencies even with a fail-open policy, so there is no
benefit to fail-closed; on the other hand, if FlightTracker is
not completely reliable, then use cases that prefer availabil-
ity will be harmed by fail-closed. A future option would be
to rate-limit fail-closed for those use cases and escalate all
fail-open potential RYW violations to an engineer.

Since an error is reported to the application when a data
write succeeds but the corresponding appendWrite fails,
FlightTracker write availability caps the data store availability.
FlightTracker is in-memory and region-local, so it has much
higher write availability (§ 8) than our underlying persistent
data stores; it has a minimal impact on application-visible
write availability. Although less important now, the option to
fail open was crucial to reducing risk during early rollout.

6 Ticket-inclusive reads

Once FlightTracker has attached a Ticket to a query, it is
the responsibility of the data store to ensure that every write
identified by the Ticket is reflected in the query result.

The general pattern for implementing Ticket-inclusive
reads is that the data store (client or server) filters the writes in
the Ticket for relevancy, then checks against its local state to
see if they have already been applied. Frequently, the writes
in a Ticket are irrelevant to the read (e.g., a write to a MEDIA
node is irrelevant to reading Alice’s TRUSTED users) or have
been replicated and included locally, in which case the Ticket
does not change the result and the read can be served locally.

In the uncommon case that some writes are possibly rele-
vant but missing, i.e., the local data is possibly stale, the data
store uses a more expensive non-local action to fix the query
result. The specific strategies for each of those steps depend
on query semantics, the way in which writes are encoded in
the Ticket, and what information is locally available.

414 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

6.1 Filtering by relevance
Filtering works best for the most granular write representa-

tions such as per-key versions. In contrast, timestamps define
a write set that includes a contiguous prefix of the history of
all data systems at Facebook, which can never be filtered.

For database-specific encodings, a coarse level of filter-
ing happens when the data store ignores writes from other
databases in the Ticket. It is also fast and easy to filter by
static information in the Ticket or in data store configs, such
as TAO object types (e.g., USER or ENJOYS) or database tables.
For Ticket representations that contain keys, we can further
filter writes based on query parameters such as the desired
node ID. This is highly effective for point queries and simple
range queries like TAO’s and works for some indexes.

Type and query parameter filtering can be done on the
client, which avoids the need to even include a Ticket on
most queries. We refer to this operation as cropping and have
integrated it in the client libraries of all data stores we support.

6.2 Checking inclusion
The systems that incorporate FlightTracker provide even-

tual consistency on their own, mostly using asynchronous
replication. The large majority of writes are delivered with
low latency, so most writes are included at the check time.

For database replicas and caches sharded by key, we repli-
cate in write order (i.e., in per-shard txn_id order). The repli-
cation stream pointer is a compact way of identifying the
set of writes included in the local store. If the latest repli-
cated record was 8983, for example, then the write W3 with
txn_id 7! 8980 is included but W4 with txn_id 7! 8985 is not.

Cache misses can fetch values from ahead of the replica-
tion pointer, so a single low-water mark is not sufficient for
high-granularity inclusion checks. TAO maintains a key !
txn_idsafe mapping that identifies when a particular cache en-
try is known to include writes newer than the local low-water
mark. txn_idsafe records the replication position of the up-
stream source when it serviced the cache miss, not necessarily
the transaction at which the key was updated. For example,
if a cache with low-water mark 8983 took a cache miss and
fetched the edge in W4 from a database replicated up to 9000,
it will have a cache entry with txn_idsafe 7! 9000 for the edge;
the cache is now able to serve point reads to the edge locally
if the Ticket has W4 or even {shardX : txn_id 7! 9000}. This
exception map is essential to ensuring that Ticket-inclusive
queries can still be cache hits.

6.3 Relevance and inclusion for global indexes
Both relevance and inclusion checking are much more chal-

lenging for global indexes. An index that lets us find media
nodes by their name, for example, will be partitioned using a
mutable data attribute rather than by the node’s key.

While in this case it would be feasible to include the in-
dexed attribute in the Ticket, we avoid this approach. It bloats
the Ticket without solving the problem for all indexes, be-

FT-ReverseIndex

DB
update

pipeline
index leaf

(read server)

global secondary index

… …

resharding

Figure 8: Stages of the asynchronous index update pipeline
inform FT-RI as they process writes.

global index

web request
client
library

FT-ReverseIndex

getIndexState(T,…)

read
repair

index read

TAO cache

T W1↦filtered

W2↦applied_in(*)

W3↦applied_in(
{hostX, hostY})

…

ap
pl

ic
at

io
n

lo
gi

c

Figure 9: Web request flow with FT-ReverseIndex.

cause the indexed attributes might be from adjacent nodes
or edges in the graph. It requires writers to be aware of all
index schemas and cannot scale to handle fan-in cases, where
a single write affects a large number of index rows. In the
example in § 3.4 where we want to answer queries such as
“return a list of trusted users who also enjoy a particular song,”
the graph indexing system materializes an ordered list of
huser.id, media.id, list(trusted_user.id)i tuples. Checking
whether a write like W3 (which expands the TRUSTS edge to
include "music" between Bob and Alice) is relevant or locally
applied to an index server requires the list of MEDIA nodes that
Alice ENJOYS. This list could easily bloat the Ticket should
we take this approach.

Another option we rejected was to ignore relevance check-
ing for indexes and focus only on inclusion. This would re-
quire plumbing information about the replication water marks
of all shards through the index update pipeline, perhaps us-
ing a compressed vector clock scheme like Occult [41] to
avoid the need to deterministically merge across millions of
replication streams. To distinguish lack of new updates from
staleness in replication, each stream needs heartbeats, which
results in a lot of overhead for cold shards and small indexes.

Our solution is to build an inverted index from writes to
the actions taken by the index update pipeline. We store this
in a stateful component named FlightTracker-ReverseIndex
(FT-RI). We describe the interactions between the index up-
date pipeline and FT-RI shown in Figure 8 with the example
of W3 and the intersection index. Based on W3’s type and index
schemas, FT-RI determines the indexes W3 could affect and
initially assumes it could affect every row in those indexes. As
W3 goes through the update pipeline, each stage of the pipeline
informs FT-RI when it is about to filter out W3 for some or

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 415

all indexes. We also require the update pipeline to propagate
W3’s metadata all the way to the index leaf servers unless W3
is filtered out entirely. The update pipeline determines that W3
matters only for index rows of the form h17, media.id, 42i
in the intersection index and informs FT-RI. When a leaf ap-
plies the index row updates generated due to W3, it informs
FT-RI of its server identifier and the part of the index state
was updated. This way, FT-RI narrows down the scope of the
indexes and read queries W3 might affect.

As shown in Figure 9, to perform both relevance filtering
and inclusion checking for a Ticket-inclusive index read, the
client library first sends the query and the Ticket to FT-RI.
FT-RI then returns the subset of writes that might be relevant
(since they have not been reported as filtered) and not yet
included (since they are still missing from the index leaves).

The client consults FT-RI before the query is sent to the
index, so the set of missing writes may include false positives.
False negatives would lead to RYW violations, so they must
be avoided. To minimize the false positive rate without intro-
ducing any false negatives, FT-RI returns a map from writes
to the physical servers where it may be missing. The client
checks this information against the query execution plan, in
case the stale server was not actually consulted. It can also be
used to make intelligent replica choices and to retry only the
stale portion of a query.

FT-RI accumulates a set of irrefutable facts about writes, so
its internal state is a CRDT. It exploits the same single-round
quorum protocol as FlightTracker (§ 5) for replication. FT-RI
also shares much of the same infrastructure and is deployed
as a RAM-only regional service.

6.4 Strategies to handle local staleness
This section describes ways to get the correct result when

a potentially relevant write might be missing from the local
data store. Our approaches fall into two categories: when
the Ticket enumerates individual writes, the data store can
request the data from upstream and cache the result for the
next reader; if the Ticket contains a contiguous prefix, such
as after compaction, we generally only reevaluate the query
(on a different replica or at a later time), as it is expensive or
impossible to request the contiguous prefix. In production,
we use every strategy below but index repair.

Delay and retry: When we realize a data store is stale,
a simple option is to just try again later. This strategy is not
sufficient on its own, but it can be used as a first try to reduce
the frequency of a more costly strategy.

Replica selection: Data stores are replicated for read avail-
ability. When one replica is stale, we can contact another
replica that is up-to-date, especially if it is nearby. This strat-
egy can lead to correlated failures such as thundering herd, so
we only use it for low-volume workloads or behind a cache.

Consistency miss: When a Ticket identifies individual
writes by key, caches that keep per-key versions (§ 4.1) can
easily determine which data items are stale. They can use their

normal miss-handling logic to pull data about the missing
writes from their upstream source, passing on the Ticket to
recursively ensure visibility.

Even client-side hot object caches can similarly take con-
sistency misses, which otherwise rely on TTLs to get fresh
data. This is integral to our tolerance of read hot spots (§ 6.5).

Index bypass (re-materialization): Indexing systems
have the option to fall back to the source of normalized data
to answer a read query, though this is an expensive option.
Quite a few of our indexes are materialized on-demand, so
this fallback functionality is already regularly exercised.

Read repair: Read repair looks for possible matches to
components of an index predicate among the writes in a
Ticket, uses point queries to a non-index store like TAO
to evaluate the full predicate, and then fixes the index re-
sult accordingly. Read repair can reduce complexity and la-
tency. Consider the example in § 3.4 where we want to find
Bob’s trusted users who also enjoy Song 55. If W3 on edge
h17,TRUSTS,42i is in the Ticket and the read repair library
sees that node 42 (Alice) ENJOYS Song 55 from TAO, it adds
node 42 into the result set.

Index read repair does not completely avoid extra commu-
nication on following queries, like consistency misses in a
cache, but it avoids the need for future cross-region calls.

FT-RI filters out writes we do not need to repair. As shown
in Figure 9, the client library queries FT-RI to find which
of Bob’s relevant writes have not yet been applied before
querying the index and read repair. We initially tested read
repair without FT-RI, treating every write a user had made in
the last 60 seconds as undetermined. FT-RI for list intersection
indexes has only a modest effect on the average number of
edges to be checked for read repair, but it provides a dramatic
reduction for the worst cases.

Read repair has its limitations. Firstly, certain indexes with
aggregation cannot be read repaired. For example, if an in-
dex query only returns the size of the intersection, the read
repair library would not know which writes have been applied
in the result. Fortunately, the vast majority of our online in-
dex usage returns set results that can be repaired. Secondly,
client-side read repair for complex indexes, such as ones that
require traversing 3+ hops in the graph or those with large
fan-outs, could duplicate the transform and processing logic
of the update pipeline and index leaves, resulting in extra com-
plexity. The above challenges are akin to those encountered
in deferred incremental view maintenance in the database
community [23, 24, 47, 58].

Index repair: Repairing the index by synchronously in-
voking the index update logic is more complex, but avoids
many of the limitations of client-side read repair. We have not
yet explored this option.

6.5 Handling hot spots
Handling linchpin objects is one of the major challenges of

a social networking workload [10]. Read hot spots are a much

416 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

bigger concern than write hot spots in our read-heavy work-
load. Caches like TAO handle read hot spots by storing more
local copies of the data, including on the client-side. Ticket-
inclusive reads for cache queries are cache-able, preserving
this hot spot tolerance. We cannot always cache post-repair
index results, but the data fetched to perform repair is always
locally cacheable.

Aside from hot objects for the overall system, FlightTracker
has its own hot spots: since FlightTracker is sharded by
session_id, it has different hot spot patterns from the under-
lying data stores. These hot spots are more likely due to user-
triggered actions such as batch processing or from custom
sessions (§ 7.3). To alleviate write hot spots, FlightTracker’s
client library batches metadata writes without concerns for
sacrificing write availability, since all FlightTracker writes
are conflict-free. On the FlightTracker server side, we proac-
tively detect sessions that are frequently accessed. For a hot
session that spawns many web requests and thus results in
many metadata reads, we coalesce these metadata reads into
short time buckets, and respond to all reads in a bucket with
the same response. These strategies have eliminated hot spots
as a significant error source for FlightTracker (§ 8).

7 Beyond RYW: Explicit write visibility

Certain applications need visibility guarantees beyond a sin-
gle end user or across regions, where our default user-centric
RYW consistency falls short. To obtain desired visibility guar-
antees, we enable them to explicitly manipulate Tickets or
customize FlightTracker session IDs. These applications are
responsible for explicitly identifying the writes and preventing
the Tickets from growing too large.

7.1 Embedding Tickets in notifications
Facebook’s notification infrastructure for GraphQL Sub-

scriptions [48] fans out to all subscribers when a publisher
event occurs. To render personalized notifications for each
subscriber, GraphQL queries TAO in the subscriber regions.
This pub-sub system races with TAO replication. To ensure
that the query sees all of the writes associated with the event,
we include and pass along the original publisher’s Ticket.
When rendering the notification, GraphQL transiently joins it
with the subscriber’s Ticket to query TAO. This is all hidden
in the product infrastructure layer from product developers.

Subscriptions with a high subscribers fanout could result
in a storm of consistency misses. Though TAO would only
go cross-region once for this data, many requests would be
stalled waiting for the result. Thus, we prefetch data in the
Ticket into the local region’s TAO before notification fanout.

7.2 Data-derived additional sessions
When a user performs a write that includes another person’s

User ID, such as when Bob created a TRUSTS edge to Alice,
the write is naturally associated with the other user’s Flight-

Tracker session. For some edge types, we act on this by having
the client library perform extra appendWrites calls, pushing
the write to both the normal RYW session and the session
identified by the destination node. These additional writes are
sent to every region. We do not push the entire writing user’s
Ticket into the data-derived additional sessions; only the user-
terminated edge write gets strengthened visibility guarantees.
As users are highly connected [7], this conservative choice
avoids the potential for super-linear growth of write sets.

7.3 Explicit global sessions
Some applications need visibility guarantees beyond a sin-

gle end user or across region. We allow them to customize
their session IDs and configure quorum and compaction in
FlightTracker on a per-use-case basis.

Facebook’s async job scheduling framework, similar to
Celery or Resque [1, 5], enables web requests to schedule
followup jobs such as sending email invites or long running
migrations. These jobs may run in any region, but all of the
writes from the original user session must be visible. To pro-
vide this guarantee, we use job_id as the session ID, which
is the same for all tasks that are part of a job. Given the rel-
ative read-write ratio, we require a write to be replicated to
most replicas in all regions and a read to be read from a few
(usually region-local) replicas. We provide a utility function
for the job framework to collect the writes the web request
has done and send to FlightTracker under the appropriate job
ID. When a job starts, it fetches a Ticket from FlightTracker
using its job ID and uses Ticket-inclusive reads thereafter.

We also use global sessions for some TAO objects as an
alternative to TAO’s critical reads. Critical reads ensure write
visibility by proxying reads to the region of the object’s
database primary, at the expense of increased latency, reduced
efficiency, and reduced availability. If we record all writes to
this object in a global session using its ID, we can replace
the critical read: querying region-local FlightTracker to get a
Ticket for this session and querying that object with a Ticket-
inclusive read will return the latest successful (or newer) write.
This approach shifts the cross-region latency to write time
and increases read availability.

8 Evaluation

FlightTracker allows Facebook to get the read efficiency,
hot spot tolerance, and high availability of eventual consis-
tency while providing RYW consistency with a rich notion of
user sessions that spans many stateful services.

8.1 Environment
Facebook serves millions of user requests per second.

These user requests amplify to more than ten billion read
queries per second to our online graph data stores, which also
process tens of millions of writes per second.

Each of our stateful data stores, such as TAO and its indexes,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 417

Figure 10: The size distribution of FlightTracker read re-
sponses in our production environment for different global
compaction thresholds.

are deployed across over ten datacenter regions. Cache and
indexing systems maintain asynchronously updated replicas
in every region, while database replicas are present only in
some regions. More than 99% of cache and index queries are
served without any cross-region communication.

8.2 FlightTracker operational characteristics
FlightTracker has been in production for over four years.

It manages RYW consistency for two database technologies,
two cache types (including TAO), and three indexing systems.
FlightTracker serves more than 100 million Ticket reads and
20 million Ticket writes per second.

We measured FlightTracker’s availability as observed by
the client over 30 days. Measuring errors from the client side
offers an end-to-end picture, because it includes unavailabil-
ity due to misconfiguration, networking issues, and collateral
damage from other problems. FlightTracker’s overall read
error rate was 1.1⇥10�7. When examining the availability
data for 15-minute buckets, all but 8 buckets over the month
of data indicated at least 99.9999% of read availability. Flight-
Tracker’s write availability was an order of magnitude higher
than the write availability of the underlying databases.

8.3 FlightTracker overheads
Request and response sizes: The bane of explicit write-

tracking techniques is handling large write sets. The Tickets
fetched from FlightTracker contain all recent writes for a user
that are not globally compacted (§ 4.2), so they tend to be the
largest explicit write sets passed around in our systems. Fig-
ure 10 shows the size distribution of metadata read responses
in production for different global compaction thresholds, mea-
sured in the number of writes in the returned Ticket. In pro-
duction, we use 60s as the default, but as shown, extending it
to 2 minutes does not significantly bend the curve.

Ticket serialization includes compression using LZ4 [25].
Figure 11 shows that this provides a useful benefit for Tickets
with more individual writes, improving encoding efficiency
by up to a factor of three. Table 1 shows that cropping in the
client is effective; Ticket sizes attached to read queries are

Operation Avg P50 P99
FlightTracker metadata read response 250 0 2805
FlightTracker metadata write request 156 129 447
Ticket-inclusive read from cache 110 0 450
Ticket-inclusive read from indexes 225 152 607

Table 1: Serialized sizes of Tickets attached on various re-
quests and responses, in bytes.

Operation Avg P50 P99
FlightTracker read 288 µs 226 µs 1.4 ms
FlightTracker write 376 µs 326 µs 1.5 ms
FT-ReverseIndex read 304 µs 236 µs 1.5 ms
FT-ReverseIndex update 428 µs 311 µs 1.2 ms

Table 2: Client-measured latency of FlightTracker and FT-RI.

Service CPU RAM
Application (web) servers 0.7% 0.06%
TAO L1 and L2 cache 0.8% 0.01%
Indexes and materialized views 0.98% 2.6%

Table 3: Relative CPU and memory costs of all code paths
related to Ticket, FlightTracker, or FT-ReverseIndex.

much smaller than the full write set pulled from FlightTracker.
Latency: FlightTracker and FT-RI have low latency for

both reads and writes, as shown in Table 2. Both of these
services are RAM-only and process all of their reads and
writes from the local datacenter region. Queries for custom
use cases (§ 7.3) are excluded in the table.

Footprint: The footprint of FlightTracker includes extra
work and data in client libraries, extra work and space inside
the data stores to enable Ticket-inclusive reads, and servers
devoted exclusively to running the FlightTracker and FT-RI
services. Table 3 shows that FlightTracker-related code paths
consume only a small amount of the CPU and memory in
clients and Ticket-enabled query-serving systems. The Flight-
Tracker and FT-RI services use less than 2% as many servers
as TAO and its indexes.

Extensibility: The Ticket abstraction is designed to be
extended to handle new databases and new ways of encoding
write metadata for the benefit of new projections. Since it was
deployed to production, we have changed the Ticket Thrift
schema 22 times, and we have made changes to the core
Ticket join logic 50 times. Extending the Ticket abstraction
to cover a new database does not increase the serialized size,
but it does increase the heap footprint of the deserialized C++
objects. FlightTracker’s RAM consumption increased by 5%
when we added support for a second type of database.

8.4 FlightTracker effectiveness
RYW for caches: FlightTracker enabled our caches to no

longer rely on fixed communication topology to provide RYW
consistency. It provided an opportunity to apply additional
techniques to improve efficiency and reliability for our caches.

418 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 11: LZ4 improves serialized encoding efficiency by
up to a factor of three for Tickets with more individual writes.

Today, 0.2% of the TAO reads have a non-empty Ticket
attached, and 3% of those reads are for updates that have not
yet been replicated via the per-shard replication stream. We
allocate around 40MB per TAO instance for caching the result
of Ticket-inclusive reads, resulting in a hit rate between 30%
and 80% depending on the type of query. This hit rate is not
evenly distributed: frequently read hot objects account for the
bulk of hits. Fewer than 3% of TAO reads that end up going
across regions are due to consistency misses.

Ticket-inclusive reads reduce cross-region traffic when
they replace primary-DB-only queries for use cases that need
stronger consistency guarantees. In one extreme use case
where the cache only tracked per-shard replication progress,
Ticket-inclusive reads reduced the percentage of queries going
upstream from 20-40% to near 0%.

RYW for indexes: FlightTracker identifies that between
0.01% to 0.4% of indexing reads can benefit from read repair
or other staleness handling strategies.

Explicit use cases: In the event delivery use case (§ 7.1),
3% of the subscribers’ reads are for publishers’ recent writes.
0.5% of these reads would have returned stale data without the
publisher’s Ticket. Six use cases benefit from global sessions
(§ 7.3), totaling 46k writes and 700k reads per second. They
often set large write quorums to optimize for read availability
and latency.

8.5 Experience and lessons learned
An early lesson was that identifying the appropriate user

for a web request was much more difficult than we originally
expected. Request endpoints may be invoked before login
or after logout; internal applications may track user contexts
using bespoke mechanisms; and applications may involve
multiple identities, such as when a user manages a business
account. Getting high query coverage involved a lot of manual
work to discover alternate user contexts and identify endpoints
that are not expected to be associated with a user.

Global sessions tend to be used for metadata stored in TAO,
such as for product flows modeled as state machines. The
addition of global sessions to a code base is often done fairly
late in the product development cycle, to fix issues neglected
in the initial design. Our ability to strengthen write visibility

for such call sites, without data migrations or schema changes,
is an important part of making RYW a reasonable default.

The applications that cause the most challenge opera-
tionally need RYW consistency the least. These tend to be
internal applications that perform batch processing or involve
massive fan-out. They often cause write hot spots in the data
stores but rarely read what they wrote afterwards.

Closing consistency loopholes with FlightTracker revealed
the underlying systems were not actually eventually consis-
tent. We have found low-probability bugs that cause perma-
nent inconsistencies in TAO, graph indexes, and even database
replication. These bugs were previously difficult to notice, as
they were outnumbered by transient inconsistencies. Ticket-
inclusive reads should never return old data, so now that we
have FlightTracker even a single occurrence of a stale result
is actionable. Bugs leading to permanent inconsistencies in-
cluded protocol flaws, incorrect handling of error conditions,
and relying on data invariants that were not honored by all
historical data.

9 Limitations and future work

Our approach still relies on region-sticky user routing. We
could avoid this limitation by always using global quorums
like in § 7.3, but this would increase latency. We plan to
eventually make user RYW sessions global by maintaining a
map from user to region in FlightTracker, rehoming sessions
when the mapping changes.

The relative efficiency of our solution depends on amortiz-
ing the cost of the metadata reads across many TAO queries,
and depends on the set of writes being relatively small. En-
vironments with fewer reads have a different set of tradeoffs.
This limitation is less applicable to index queries, because
those tend to do more work per operation.

FlightTracker does not provide consistency for “unacknowl-
edged successes.” As described previously in § 5.3, unac-
knowledged successes happen when a data write has a client
error like a timeout or if the metadata write fails. We have not
seen this to be a problem in practice, probably because the
issue exists even without FlightTracker.

Some queries are difficult to repair: TAO top-N queries
for large edge lists result in unnecessary consistency misses;
index queries to a materialized aggregation (such as counts)
can be detected as stale by FT-RI, but the stale result cannot
be fixed with read repair; and list intersection queries that
involve more than two lists are also difficult to repair.

The FlightTracker service compacts Tickets into a times-
tamp bound, so that we will take a consistency miss if replica-
tion exceeds the global compaction bound of 60s (§ 4.2). The
global compaction bound is not fully rolled out as of publi-
cation time, so tail latency events in the replication pipeline
can result in RYW violations. This has not been a big issue in
practice because it requires that the first read of a write occurs
after the global compaction interval but before replication.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 419

Although some of our motivations are specific to Face-
book’s workload, our desire to provide user-centric sessions
is widely shared [42,55], as is our desire to extend consistency
guarantees to global indexes [3,12,30,34]. Cache invalidation
is also a perennial challenge for systems at all scales.

Our FlightTracker approach is generalizable: designed for
heterogeneous data stores, Tickets can easily be extended to
other data stores without much overhead (§ 4.1); the API
extensions data stores need to implement (Figure 3) do not
require core replication protocol changes and have relatively
small overhead (§ 8.3); the client library where a lot of the
FlightTracker logic lives can be implemented and rolled out
gradually. Our approach is especially beneficial when trying
to retrofit indexing systems, because it allows us to separate
the reverse metadata index into its own component.

10 Related Work

Stronger consistency atop eventually consistent stores:
Many eventually consistent systems offer options to opt for
stronger consistency levels. Systems such as Cassandra [37],
Riak [6], and RedBlue [39] provide strong consistency ei-
ther by routing read requests to the leader or by adjusting
their commit protocols. To provide bounded staleness, Azure
CosmosDB [21] could backpressure writes. In contrast, Flight-
Tracker serves most reads from a single local replica.

Index consistency: Most of these systems, including Ama-
zon’s DynamoDB [11, 12] and Google AppEngine Datas-
tore [31], do not extend the stronger consistency levels to
global secondary indexes. Twitter’s Manhattan [49] extends
RYW to global secondary indexes by including them in a
cross-shard transactional write, doubling latency [34, 55].
Couchbase [3] supports RYW for reads to its global indexes
using a timestamp in the client session. It accomplishes this
by deterministically merging updates to all shards, limiting
scalability in the number of shards.

Bailis et al. [15] proved that index consistency can be imple-
mented with better availability characteristics than approaches
that include indexes in general-purpose transactions.

Implementing RYW sessions: Session RYW [51] is
intuitive and implementable with low overhead [14, 27].
Bayou [28] and Pileus [52] provide session guarantees that
span multiple servers by managing the session state in their
client libraries. Bermbach et al. [19] similarly observed that
client-centric consistency should focus on end users; their
approach nonetheless assumes that a session is sticky to a
single application server. PathStore [42] address the same
challenge where clients interact with multiple data store repli-
cas by using a session migration protocol on every replica
switch. In contrast, FlightTracker manages session state in an
intermediate layer between the client and the data servers.

Write-set tracking for stronger consistency: Systems
like COPS [40] and SwiftCloud [56] track dependent
write sets to provide causal consistency. They also provide

client contexts that are similar to FlightTracker sessions.
BoltOn [16] layers causal consistency guarantees via a shim
over eventually consistent stores. Its design shares similar
principles as FlightTracker, aiming to retain the desirable
properties of eventually consistent stores. For these systems,
the dependency sets need to be stored in the database and
cached on the client-side.

TxCache [46] provides transactional (but possibly stale)
consistency for application-level caching and uses the terms
staleness miss and consistency miss (both of which are in-
cluded in our use of the term consistency miss). Its design
focuses on single datacenter and treats materialized views
as cacheable results from user-specified functions, which is
insufficient for our applications.

To reduce the metadata size, systems like Occult [41] and
Wukong+S [57] use structural or temporal properties to com-
press write sets and vector timestamps. FlightTracker uses
CRDT inflation to compact Tickets and trims irrelevant writes
to reduce network overhead, but mainly avoids metadata size
explosion by providing a weaker consistency level.

Tradeoff between cache hit rate and consistency: Zanz-
ibar [44] is built on top of Google’s linearizable Spanner [26],
but chooses to expose a weaker consistency model to clients to
improve its read efficiency and latency. Its zookies play a sim-
ilar role to FlightTracker Tickets, encapsulating consistency
information, but they are used only by Zanzibar itself.

CRDT quorum protocols: The single-round Flight-
Tracker protocol is at its core CRDT [50] using quorum repli-
cation [29]. Gryff [22] and CURP [45] similarly leverage
commutativity of writes. Because FlightTracker does not need
atomicity, a single round suffices.

11 Conclusion

This paper introduces FlightTracker, our approach for pro-
viding RYW consistency for Facebook’s social graph. Flight-
Tracker operates in a read-optimized ecosystem of asyn-
chronously replicated caches, database replicas, and indexes.
It preserves the read efficiency, hot spot tolerance, and loose
coupling benefits of eventual consistency, and it has allowed
us to circumvent the scaling challenges we encountered when
using write-through caching for consistency.

Acknowledgements
We thank the following people for critical contributions to

the systems in this paper: Tina Park, Kevin Ventullo, Christo-
pher Small, Andrew Bass, Tushar Pankaj, David Goode, So-
ham Shah, Lu Pan, Gordon (Zhuo) Huang, Brendan Forsyth,
Neil Wheaton, Shilpa Lawande, and Tony Savor.

We thank our shepherd Malte Schwarzkopf and our review-
ers for raising the bar on feedback quality. We thank Wyatt
Lloyd, Mahesh Balakrishnan, and Rob Lyerly for their many
valuable suggestions on the paper.

420 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Celery: Distributed Task Queue. http://www.
celeryproject.org/.

[2] CockroachDB. https://www.cockroachlabs.com/.

[3] Couchbase Global Secondary Indexes. https://docs.
couchbase.com/server/
6.5/learn/services-and-indexes/indexes/
global-secondary-indexes.html.

[4] LogDevice. https://logdevice.io/.

[5] Resque. http://resque.github.io/.

[6] Riak. https://riak.com/products/riak-kv/.

[7] Three and a Half Degrees of Separation. https://
research.fb.com/blog/2016/02/
three-and-a-half-degrees-of-separation/.

[8] Thrift. http://thrift.apache.org/.

[9] AHAMAD, M., NEIGER, G., BURNS, J. E., KOHLI, P.,
AND HUTTO, P. W. Causal Memory: Definitions, Imple-
mentation, and Programming. Distributed Computing 9,
1 (1995), 37–49.

[10] AJOUX, P., BRONSON, N., KUMAR, S., LLOYD, W.,
AND VEERARAGHAVAN, K. Challenges to Adopting
Stronger Consistency at Scale. In Proceedings of the
15th USENIX Conference on Hot Topics in Operating
Systems (USA, 2015), HOTOS’15, USENIX Associa-
tion, p. 13.

[11] AMAZON. Design Patterns Using Amazon DynamoDB.
https://www.slideshare.net/
AmazonWebServices/
design-patterns-using-amazon-dynamodb.

[12] AMAZON. Improving Data Access with Secondary In-
dexes. https://docs.amazonaws.cn/en_us/
amazondynamodb/latest/developerguide/
SecondaryIndexes.html.

[13] ANTONOPOULOS, P., BUDOVSKI, A., DIACONU,
C., HERNANDEZ SAENZ, A., HU, J., KODAVALLA,
H., KOSSMANN, D., LINGAM, S., MINHAS, U. F.,
PRAKASH, N., PUROHIT, V., QU, H., RAVELLA,
C. S., REISTETER, K., SHROTRI, S., TANG, D.,
AND WAKADE, V. Socrates: The New SQL Server in
the Cloud. In Proceedings of the 2019 International
Conference on Management of Data (New York, NY,
USA, 2019), SIGMOD ’19, Association for Computing
Machinery, p. 1743–1756.

[14] BAILIS, P., DAVIDSON, A., FEKETE, A., GHODSI, A.,
HELLERSTEIN, J. M., AND STOICA, I. Highly Avail-
able Transactions: Virtues and Limitations. Proc. VLDB
Endow. 7, 3 (Nov. 2013), 181–192.

[15] BAILIS, P., FEKETE, A., FRANKLIN, M. J., GHODSI,
A., HELLERSTEIN, J. M., AND STOICA, I. Coordi-
nation Avoidance in Database Systems. Proc. VLDB
Endow. 8, 3 (Nov. 2014), 185–196.

[16] BAILIS, P., GHODSI, A., HELLERSTEIN, J. M., AND
STOICA, I. Bolt-on Causal Consistency. In Proceedings
of the 2013 ACM SIGMOD International Conference
on Management of Data (New York, NY, USA, 2013),
SIGMOD ’13, Association for Computing Machinery,
p. 761–772.

[17] BAILIS, P., VENKATARAMAN, S., FRANKLIN, M. J.,
HELLERSTEIN, J. M., AND STOICA, I. Probabilistically
Bounded Staleness for Practical Partial Quorums. Proc.
VLDB Endow. 5, 8 (Apr. 2012), 776–787.

[18] BAQUERO, C., ALMEIDA, P. S., CUNHA, A., AND
FERREIRA, C. Composition of State-based CRDTs.
HASLab, May (2015).

[19] BERMBACH, D., KUHLENKAMP, J., DERRE, B.,
KLEMS, M., AND TAI, S. A Middleware Guaranteeing
Client-Centric Consistency on Top of Eventually
Consistent Datastores. In 2013 IEEE International
Conference on Cloud Engineering (IC2E) (2013), IEEE,
pp. 114–123.

[20] BRONSON, N., AMSDEN, Z., CABRERA, G., CHAKKA,
P., DIMOV, P., DING, H., FERRIS, J., GIARDULLO, A.,
KULKARNI, S., LI, H., AND ET AL. TAO: Facebook’s
Distributed Data Store for the Social Graph. In Pro-
ceedings of the 2013 USENIX Conference on Annual
Technical Conference (USA, 2013), USENIX ATC’13,
USENIX Association, p. 49–60.

[21] BROWN, M. Consistency Levels in Azure Cosmos DB.
https://docs.microsoft.com/en-us/azure/
cosmos-db/consistency-levels.

[22] BURKE, M., CHENG, A., AND LLOYD, W. Gryff: Uni-
fying Consensus and Shared Registers. In 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 20) (2020), pp. 591–617.

[23] CHO, S., AVERBUKH, R., ZHANG, Y., CARTER, A.,
AND JAN, J. A. Partial Update: Efficient Materialized
View Maintenance in a Distributed Graph Database. In
2018 IEEE 34th International Conference on Data En-
gineering (ICDE) (2018), pp. 1477–1488.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 421

[24] COLBY, L. S., GRIFFIN, T., LIBKIN, L., MUMICK,
I. S., AND TRICKEY, H. Algorithms for Deferred View
Maintenance. In Proceedings of the 1996 ACM SIG-
MOD International Conference on Management of Data
(New York, NY, USA, 1996), SIGMOD ’96, Association
for Computing Machinery, p. 469–480.

[25] COLLET, Y. LZ4 – Extremely Fast Compression.
https://github.com/lz4/lz4.

[26] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A.,
FROST, C., FURMAN, J. J., GHEMAWAT, S., GUBAREV,
A., HEISER, C., HOCHSCHILD, P., HSIEH, W., KAN-
THAK, S., KOGAN, E., LI, H., LLOYD, A., MELNIK,
S., MWAURA, D., NAGLE, D., QUINLAN, S., RAO, R.,
ROLIG, L., SAITO, Y., SZYMANIAK, M., TAYLOR, C.,
WANG, R., AND WOODFORD, D. Spanner: Google’s
Globally Distributed Database. ACM Trans. Comput.
Syst. 31, 3 (Aug. 2013).

[27] CROOKS, N., PU, Y., ALVISI, L., AND CLEMENT, A.
Seeing is Believing: A Unified Model for Consistency
and Isolation via States. CoRR abs/1609.06670 (2016).

[28] EDWARDS, W. K., MYNATT, E. D., PETERSEN, K.,
SPREITZER, M. J., TERRY, D. B., AND THEIMER,
M. M. Designing and Implementing Asynchronous
Collaborative Applications with Bayou. In Proceed-
ings of the 10th Annual ACM Symposium on User In-
terface Software and Technology (New York, NY, USA,
1997), UIST ’97, Association for Computing Machinery,
p. 119–128.

[29] GIFFORD, D. K. Weighted Voting for Replicated Data.
In Proceedings of the Seventh ACM Symposium on
Operating Systems Principles (New York, NY, USA,
1979), SOSP ’79, Association for Computing Machin-
ery, p. 150–162.

[30] GJENGSET, J., SCHWARZKOPF, M., BEHRENS, J.,
ARAÚJO, L. T., EK, M., KOHLER, E., KAASHOEK,
M. F., AND MORRIS, R. Noria: Dynamic, Partially-
Stateful Data-Flow for High-Performance Web Applica-
tions. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation (USA,
2018), OSDI’18, USENIX Association, p. 213–231.

[31] GOOGLE. Data consistency in Datastore queries.
https://cloud.google.com/appengine/docs/
standard/java/datastore/data-consistency#
query-data-consistency.

[32] HERLIHY, M. P., AND WING, J. M. Linearizability:
A Correctness Condition for Concurrent Objects. ACM
Trans. Program. Lang. Syst. 12, 3 (July 1990), 463–492.

[33] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED,
B. ZooKeeper: Wait-free Coordination for Internet-
scale Systems. In USENIX annual technical conference
(2010), vol. 8, p. 9.

[34] KATOORU, K. Native Secondary Indexing in Manhattan.
https://blog.twitter.com/engineering/en_us/
topics/infrastructure/2018/native-
secondary-indexing-in-manhattan.html.

[35] KREPS, J., NARKHEDE, N., RAO, J., ET AL. Kafka: A
Distributed Messaging System for Log Processing.

[36] KULKARNI, S. S., DEMIRBAS, M., MADAPPA, D.,
AVVA, B., AND LEONE, M. Logical Physical Clocks.
In International Conference on Principles of Distributed
Systems (2014), Springer, pp. 17–32.

[37] LAKSHMAN, A., AND MALIK, P. Cassandra: A Decen-
tralized Structured Storage System. SIGOPS Oper. Syst.
Rev. 44, 2 (Apr. 2010), 35–40.

[38] LAMPORT, L. Paxos Made Simple. ACM SIGACT News
(Distributed Computing Column) 32, 4 (Whole Number
121, December 2001) (December 2001), 51–58.

[39] LI, C., PORTO, D., CLEMENT, A., GEHRKE, J.,
PREGUIÇA, N., AND RODRIGUES, R. Making Geo-
Replicated Systems Fast as Possible, Consistent When
Necessary. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Implemen-
tation (USA, 2012), OSDI’12, USENIX Association,
p. 265–278.

[40] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND
ANDERSEN, D. G. Don’t Settle for Eventual: Scalable
Causal Consistency for Wide-Area Storage with COPS.
In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles (New York, NY, USA,
2011), SOSP ’11, Association for Computing Machin-
ery, p. 401–416.

[41] MEHDI, S. A., LITTLEY, C., CROOKS, N., ALVISI, L.,
BRONSON, N., AND LLOYD, W. I Can’t Believe It’s
Not Causal! Scalable Causal Consistency with No Slow-
down Cascades. In Proceedings of the 14th USENIX
Conference on Networked Systems Design and Imple-
mentation (USA, 2017), NSDI’17, USENIX Associa-
tion, p. 453–468.

[42] MORTAZAVI, S. H., BALASUBRAMANIAN, B.,
DE LARA, E., AND NARAYANAN, S. P. Toward Ses-
sion Consistency for the Edge. In USENIX Workshop
on Hot Topics in Edge Computing (HotEdge 18) (2018).

[43] ONGARO, D., AND OUSTERHOUT, J. In Search of an
Understandable Consensus Algorithm. In Proceedings
of the 2014 USENIX Conference on USENIX Annual

422 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Technical Conference (USA, 2014), USENIX ATC’14,
USENIX Association, p. 305–320.

[44] PANG, R., CACERES, R., BURROWS, M., CHEN, Z.,
DAVE, P., GERMER, N., GOLYNSKI, A., GRANEY, K.,
KANG, N., KISSNER, L., KORN, J. L., PARMAR, A.,
RICHARDS, C. D., AND WANG, M. Zanzibar: Google’s
Consistent, Global Authorization System. In 2019
USENIX Annual Technical Conference (USENIX ATC
’19) (Renton, WA, 2019).

[45] PARK, S. J., AND OUSTERHOUT, J. Exploiting Commu-
tativity for Practical Fast Replication. In Proceedings of
the 16th USENIX Conference on Networked Systems
Design and Implementation (USA, 2019), NSDI’19,
USENIX Association, p. 47–64.

[46] PORTS, D. R. K., CLEMENTS, A. T., ZHANG, I.,
MADDEN, S., AND LISKOV, B. Transactional Con-
sistency and Automatic Management in an Application
Data Cache. In Proceedings of the 9th USENIX Con-
ference on Operating Systems Design and Implemen-
tation (USA, 2010), OSDI’10, USENIX Association,
p. 279–292.

[47] SALEM, K., BEYER, K., LINDSAY, B., AND
COCHRANE, R. How to Roll a Join: Asynchronous
Incremental View Maintenance. SIGMOD Rec. 29, 2
(May 2000), 129–140.

[48] SCHAFER, D., AND KUENZEL, L. Subscriptions in
GraphQL and Relay. https://graphql.org/blog/
subscriptions-in-graphql-and-relay/.

[49] SCHULLER, P. Manhattan: Our Real-Time, Multi-
Tenant Distributed Database for Twitter Scale.
https://blog.twitter.com/engineering/en_us/
a/2014/
manhattan-our-real-time-multi-tenant-
distributed-database-for-twitter-scale
.html.

[50] SHAPIRO, M., PREGUIÇA, N., BAQUERO, C., AND
ZAWIRSKI, M. Conflict-free Replicated Data Types. In
Symposium on Self-Stabilizing Systems (2011), Springer,
pp. 386–400.

[51] TERRY, D. B., DEMERS, A. J., PETERSEN, K., SPRE-
ITZER, M. J., THEIMER, M. M., AND WELCH, B. B.

Session Guarantees for Weakly Consistent Replicated
Data. In Proceedings of the Third International Con-
ference on on Parallel and Distributed Information Sys-
tems (Washington, DC, USA, 1994), PDIS ’94, IEEE
Computer Society Press, p. 140–150.

[52] TERRY, D. B., PRABHAKARAN, V., KOTLA, R., BAL-
AKRISHNAN, M., AGUILERA, M. K., AND ABU-
LIBDEH, H. Consistency-Based Service Level Agree-
ments for Cloud Storage. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Princi-
ples (New York, NY, USA, 2013), SOSP ’13, Associa-
tion for Computing Machinery, p. 309–324.

[53] THOMSON, A., DIAMOND, T., WENG, S.-C., REN,
K., SHAO, P., AND ABADI, D. J. Calvin: Fast Dis-
tributed Transactions for Partitioned Database Systems.
In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data (New York, NY,
USA, 2012), SIGMOD ’12, Association for Computing
Machinery, p. 1–12.

[54] VOGELS, W. Eventually Consistent. https://queue.
acm.org/detail.cfm?id=1466448.

[55] YARMULA, A. Strong consistency in Manhattan.
https://blog.twitter.com/engineering/en_
us/a/2016/strong-consistency-in-manhattan
.html.

[56] ZAWIRSKI, M., PREGUIÇA, N., DUARTE, S., BIE-
NIUSA, A., BALEGAS, V., AND SHAPIRO, M. Write
Fast, Read in the Past: Causal Consistency for Client-
Side Applications. In Proceedings of the 16th Annual
Middleware Conference (New York, NY, USA, 2015),
Middleware ’15, Association for Computing Machinery,
p. 75–87.

[57] ZHANG, Y., CHEN, R., AND CHEN, H. Sub-
Millisecond Stateful Stream Querying over Fast-
Evolving Linked Data. In Proceedings of the 26th Sym-
posium on Operating Systems Principles (New York,
NY, USA, 2017), SOSP ’17, Association for Computing
Machinery, p. 614–630.

[58] ZHUGE, Y., GARCÍA-MOLINA, H., HAMMER, J., AND
WIDOM, J. View Maintenance in a Warehousing Envi-
ronment. SIGMOD Rec. 24, 2 (May 1995), 316–327.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 423

KVell+: Snapshot Isolation without Snapshots

Baptiste Lepers
University of Sydney

Oana Balmau
University of Sydney

Karan Gupta
Nutanix

Willy Zwaenepoel
University of Sydney

Abstract

Snapshot Isolation (SI) enables online analytical processing
(OLAP) queries to observe a snapshot of the data at the time
the query is issued, despite concurrent updates by online trans-
actional processing (OLTP) transactions. The conventional
implementation of SI creates a new version of a data item
when it is updated, rather than overwriting the old version. Ver-
sions are garbage collected when they can no longer be read
by any OLAP query. Frequent updates during long-running
OLAP queries therefore create significant space amplifica-
tion, and garbage collection can give rise to latency spikes
for OLTP transactions. These problems are exacerbated on
modern low-latency drives that can persist millions of updates
per second.

We observe that analytic queries often consist in large part
of commutative processing of data items resulting from range
scans in which each item in the range is read exactly once.
We introduce Online Commutative Processing (OLCP), a new
model for processing analytical queries, that takes advantage
of this observation. Under OLCP, analytical queries observe
the same snapshot of the data as they would under conven-
tional SI, but space amplification and garbage collection costs
are largely and oftentimes nearly entirely avoided. When an
item in such a range is updated, the old version of the item is
propagated to the OLCP queries that might need it instead of
being kept in the store.

We demonstrate OLCP’s expressiveness by showing how
to formulate, among others, the TPC-H benchmark queries
in OLCP. We implement OLCP in KVell+, an extension of
KVell, a key-value store for NVMe SSDs. Using YCSB-T,
TPC-CH and production workloads from Nutanix, we run
a wide range of analytics queries concurrently with write-
intensive transactions. We show that OLCP incurs little or
no space amplification or garbage collection overhead. As
a surprising by-product we also show that OLCP speeds up
analytical queries compared to SI.

1 Introduction

The desire to run frequent analytics on fresh data has led to
the recent development of databases that allow concurrent pro-
cessing of online transaction processing (OLTP) and online
analytical processing (OLAP) [34]. To isolate OLAP queries
from OLTP updates, databases typically rely on Snapshot
Isolation (SI) [51, 66, 69]. SI provides OLAP queries with a
snapshot of the database at the time the query is issued, inde-
pendent of later updates made by OLTP transactions. Conven-
tionally, SI is implemented by multi-versioning [6]: an update
generates a new version of a data item, and previous versions
are kept for as long as they belong to an active OLAP query’s
snapshot. Versions that no longer belong to such a snapshot
are garbage collected. Long queries may thus cause the store
to grow—a phenomenon known as space amplification, and
garbage collection may provoke latency spikes.

Minimizing disk usage is important in production systems.
Facebook found that "storage space is the bottleneck" [23],
and Alibaba Group runs garbage collection with "the high-
est priority to prevent waste of storage space" [32]. Space
amplification is particularly problematic when the dataset is
stored on modern storage devices. NVMe SSDs can persist
millions of items per second. Furthermore, because random
and sequential access bandwidth are nearly identical, scan-
ning data is no longer faster than performing random access
updates. An analytical query running concurrently with write-
intensive transactions may therefore cause the size of the store
to increase manyfold.

Space amplification is a well-known problem for in-
memory SI data stores. Various solutions have been devel-
oped, but they perform poorly on disk-based systems. Execut-
ing transactions sequentially avoids the need for locking and
versioning [28], but is impractical when I/O latencies have to
be overlapped with CPU use. Creating snapshots using oper-
ating system fork and copy-on-write techniques [39] incurs
very high file system overheads when applied to disk-based
systems. Closest to our work, Steam [8] trims versions that
do not belong to any active snapshot, providing efficiencies

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 425

for some workloads. We propose a more radical re-design,
suitable also for disk storage, that seeks to altogether avoid
keeping old versions in the store.

Our approach is based on the following two observations.
First, most OLAP queries scan data, but are oblivious to the
order in which they read items, because the operations per-
formed on items are commutative. Second, OLAP queries
read scanned items at most once. For instance, queries that
compute sales statistics (e.g., the most popular item in a re-
gion) can perform their operation by scanning items once
in any order. Based on these observations, we define a new
class of processing: OnLine Commutative Processing (OLCP).
OLCP queries declare so called scan ranges. When an item
in a scan range is updated by a concurrent transaction, its
old value is processed by OLCP queries and then discarded,
instead of being kept in the store.

Scan ranges have numerous advantages. First, because no
versions are kept for items in scan ranges, space amplifica-
tion is limited, and GC overhead is reduced. Second, because
OLCP queries process items in scan ranges as they are mod-
ified, they read more data from memory and less from disk,
and thus have higher throughput than their OLAP counter-
parts. The trade-off is that an OLCP query can read items
belonging to its scan ranges only once. In addition, scanned
items are not guaranteed to be read in order.

In addition, OLCP queries can declare point ranges, ranges
of items on which they want to perform point queries. Items
in point ranges are versioned, as in the conventional SI imple-
mentation. The combination of scan ranges and point ranges
allows OLAP queries to be expressed efficiently in OLCP.
Moreover, a very large subset can be expressed in a man-
ner so that they derive great benefit from OLCP, including
reduced space amplification, no GC-induced latency spikes,
and higher throughput.

We implement OLCP queries in Kvell+, an extension
of KVell [45]. In KVell+, scan and point ranges are de-
clared through an interface inspired by the MapReduce
paradigm [19]. OLCP queries declare a map function that
is called exactly once on all items that belong to scan ranges.
The items that map reads correspond to the items that the
query would have read under conventional SI (i.e., belonging
to the snapshot at the start of the query). The map function can
also perform point queries on items in point ranges. In the ab-
sence of updates by OLTP transactions, map is called on items
in scan ranges in lexicographic order, but when an item is
updated, we propagate its old value to OLCP queries. The old
value is processed by the OLCP queries (potentially breaking
the lexicographic order of the scans) and then deleted from
the store. Space freed by the deletion can be reused to store
new items.

OLCP can easily be integrated in existing applications,
either manually, using an SQL-to-MapReduce tool [44,71], or
automatically at the SQL query-plan level. OLAP and OLCP
queries can run simultaneously on the same data. A developer

may therefore choose to port existing OLAP queries that
create substantial space amplification to OLCP, while leaving
less problematic OLAP queries to run under SI.

We make the following contributions:

• The OLCP query model.
• A detailed explanation and examples showing how to

port OLAP queries (e.g., MapReduce analytics, TPC-H
queries) to OLCP.

• The implementation of OLCP in KVell+.
• A comparison of OLCP to SI and Steam [8] in terms of

space amplification, tail latency and throughput.

Roadmap. Section 2 presents the key OLCP principles.
Section 3 explains in detail how data analytics workloads can
greatly benefit from OLCP. Section 4 discusses the implemen-
tation. Section 5 shows our experimental evaluation results.
Section 6 presents the related work, and Section 7 concludes.

2 OLCP Overview

In this section, we explain OLCP’s design principles, advan-
tages, and limitations. We explain how to perform scans con-
currently with propagation events.

2.1 OLCP in a nutshell

The main goal of OLCP is to reduce the time that old item
versions spend in the store. OLCP allows the store to reduce
the lifespan of old versions down to the duration of OLTP
commits. In a conventional SI implementation, OLAP queries
force the store to keep old versions for the entire duration of
the queries. In contrast, OLCP queries process old versions
as they are generated. Once the old version of an item has
been processed, it is deleted from the store and its space can
be reused to store new items.

OLCP advantages: OLCP provides the same guarantees as
SI, with virtually no space amplification. Furthermore, be-
cause OLCP queries process items as they are being updated,
OLCP queries avoid reads to disk, improving the throughput
of analytical queries.

OLCP requirements: To completely avoid space amplifica-
tion under OLCP, queries need to support scanning out-of-
order and to access each item in the scan ranges only once.
These requirements can be relaxed at the expense of increased
space amplification, but OLCP’s space amplification is always
lower than that of conventional SI implementations. OLCP
queries are widely applicable and constitute an efficient re-
placement of OLAP queries, as we demonstrate in Section 3.

426 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2.2 OLCP interface

MapReduce interface: The interface of OLCP is inspired by
the event-driven MapReduce paradigm [19]. An OLCP query
is created and executed by a single function call:

t = olcp_query(map, payload, [scan_range1,
scan_range2, ...], [point_range1, ...])

The olcp_query call takes the following parameters:
• A map function callback. OLCP guarantees that the map

callback is called exactly once on all items within the
scan ranges. The exactly-once guarantee is essential to
limit overheads. Without it, OLCP would have to main-
tain a list of items they have already seen, which could
have prohibitive CPU and memory overhead for large
scans. The item versions provided to the map callback
correspond to those that the query would have scanned
under SI (i.e., those belonging to the snapshot at the time
the query is launched).

• Payload for the map callback. An arbitrary pointer to
application specific data. Usually used to retrieve or store
intermediary computation results.

• Scan ranges. This range can be the entire store. If ranges
overlap, the map function is called only once per item
belonging to the ranges. Items belonging to the ranges
are not versioned and induce no space amplification. In
return, items belonging to the ranges are not guaranteed
to be scanned in order (old versions might be scanned
before their turn to avoid keeping them in snapshots).

• Point ranges. OLCP queries may also declare ranges of
items that they might access using point queries. Items
within those ranges are versioned until the query is com-
mitted and may induce space amplification. Items in
the point ranges can be accessed multiple times, and
scans on these ranges are guaranteed to happen in lexi-
cographic order. Many analytical processing queries can
be expressed without using point queries, as we show in
Section 3.

Items outside of the scan and point ranges are neither ver-
sioned nor propagated. The olcp_query function blocks until
the scans are complete. After calling olcp_query, a devel-
oper might choose to do further processing on the payload. In
the remainder of this paper, we do this processing in a reduce
function.

2.3 Scans, propagation and space reclamation
Algorithm 1 presents pseudo code for scanning, updating and
propagating updates in a store that supports OLCP queries.
For simplicity, we present a sequential implementation that
does not support point ranges. A full implementation would
have to handle possible races between scans and propagations
and delay the deletion of items belonging to point ranges. We

also assume the use of timestamps to define snapshots, as is
common in SI implementations.

Algorithm 1 Pseudo-code of a sequential implementation of
updates, propagations, and scans.

1 /*OLCP commit: create a new version and add the
2 old version in GC queue */
3 timestamp t_commit = now();
4 active_commit_timestamps.add(t_commit);
5 foreach(item i in updated_items) {
6 kv.write(i, t_commit);
7 gc.add(get_oldest(i), t_commit);
8 }
9 active_commit_timestamps.delete(t_commit);

11 /* GC */
12 timestamp t_min=min(active_commit_timestamps);
13 foreach(item i in gc) {
14 // Only delete items from
15 // fully committed transactions
16 if(i.t_commit >= t_min)
17 break;
18 foreach(olcp o in running_olcp) {
19 if(o.in_snapshot(i)
20 && i.key > o.last_scanned)
21 o.propagation_queue.add(i);
22 }
23 delete(i); // remove from the store
24 }

26 /* OLCP query thread */
27 item last_scanned = get_first(scan_range);
28 do {
29 if(last_scanned != EOF) {
30 map(last_scanned , payload);
31 get_next(&last_scanned);
32 }
33
34 while(item i = propagation_queue.pop())
35 if(i.key > last_scanned)
36 map(i, payload);
37 } while(last_scanned != EOF);

Scans: OLCP queries request items from the store in lex-
icographic order using the get_next function (line 31 of
Algorithm 1). When there are no concurrent OLTP trans-
actions, the scan happens as it would in a conventional SI
implementation: items are read in lexicographic order, and
the map function is called on each of them. In OLCP, however,
this order can be "interrupted" by propagations resulting from
updates by OLTP transactions to items in the scan ranges.
When receiving a propagated item, the OLCP query checks
that it has not yet scanned the item and, if so, calls map on it
(lines 35-36). Afterwards, the OLCP query resumes the scan
from the last scanned item using the get_next function.
Propagation and space reclamation: The key to avoiding
space amplification with OLCP queries is to delete old data as
soon as possible. However, an old version of an item cannot
be deleted as soon as a new version is created. When an OLTP
transaction updates multiple items, old items can be deleted

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 427

only after all new items are persisted (to allow recovery in case
of a mid-commit crash). Hence, the deletions must happen
after a transaction has committed. Consequently, the store
must maintain multiple versions of committed items for the
duration of an OLTP commit.

Committing an OLTP transaction then consists of updating
the modified items in the store and enqueueing the oldest
version of those items on the GC queue (lines 6-7 of Algo-
rithm 1). After the commit is completed, the GC propagates
and deletes items. An item is propagated to an OLCP query
only if it belongs to the query’s snapshot and if it has not
yet been scanned. We rely on the lexicographic order of the
scan to efficiently ensure this latter property (line 20). In our
pseudo code, we choose to enqueue propagated elements in
a per-OLCP query queue (line 21), but an implementation
might choose a different communication mechanism between
the store and running OLCP queries.

Space reclamation efficiency: In practice, the number of ver-
sioned items in OLCP is small. When an OLCP query does
not use point ranges, a rough estimate of the number of ver-
sioned items in OLCP is the number of updates per transaction
times the number of concurrent commits. In a conventional
implementation of SI, this number is much higher, since the
system needs to keep old versions of all items updated during
the lifetime of OLAP queries.

Old versions are also only kept for a much shorter time in
OLCP. Figure 1 summarizes the lifespan of objects, executing
an OLTP transaction concurrently with an (a) OLAP or (b)
OLCP query. With OLAP queries, the store has to keep all
versions of items for the duration of long queries (minutes),
while OLCP allows the store to remove old versions after at
most a few commits (microseconds).

OLCP queries can run alongside OLAP queries. In that case
the deletion and propagation of items is postponed to ensure
the correct execution of OLAP queries: items are deleted and
propagated when they no longer belong to an OLAP snapshot.
OLAP queries may thus reduce the effectiveness of using
OLCP.

2.4 Informal correctness argument

Correctness requires that, despite concurrent OLTP transac-
tions, OLCP queries read the same items from their scan
ranges as they would have read under a conventional imple-
mentation of SI, and that these items are processed exactly
once. The correctness relies on the following observations.

An item is propagated at most once, and the propa-
gated item belongs to the query’s snapshot. If an item is
not updated, then no propagation occurs. If an item is updated
once, its old version is propagated only if it belongs to the
snapshot (line 19 in Algorithm 1). If an item is updated multi-
ple times, all old versions are put in the GC queue, but only
one of them belongs to the snapshot and is propagated.

An item is processed exactly once. If an item is not prop-
agated, it is read as part of the scan. The scan does not "skip"
items: after scanning an item, a query always requests the
next item from the store regardless of concurrent propaga-
tions. Thus, a query always scans its entire scan_ranges. Only
items that have not yet been scanned are propagated (lines 20
and 35 in Algorithm 1).

From the previous observations, we conclude that an OLCP
query processes all the items belonging to its scan ranges ex-
actly once, and that the processed items belong to its snapshot.
As a result, a developer need not consider the distinction be-
tween scanned and propagated items.

2.5 Example

Figure 2 illustrates with an example some of the complex
interleavings between OLTP and OLCP. An OLCP query
T scans a range of 5 items. T has snapshot timestamp 0.
The initial versions of all five items have timestamp 0, and
therefore belong to T’s snapshot. Despite various updates by
OLTP transactions, T correctly calls map exactly once on all
five initial item versions.

Of particular interest in this execution is item d that is
updated twice, at t2 and t4, but only d0 is propagated. De-
spite being interrupted by the propagation of d0, T correctly

k1 GC deletes k0

Ti
m

e

k[0,1]

KV
Versions of k

OLAP
Query

OLTP
Transaction

k0

update(k)
Commit

k1

Ti
m

e

k[0,1]

KV
Versions of k

OLCP
Query

OLTP
Transaction

k0

update(k)
Commit

 propagates k0GC deletes and ...
map(k0)

(a) (b)

Figure 1: Lifespan of items under OLAP (a) and OLCP (b). OLAP forces an old item version to be kept for the entire duration of
the OLAP query, while OLCP needs to keep it only for the duration of the commit of the OLTP transaction that produces the new
version.

428 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

resumes its scan from b0 at time t3. Finally, at t5, a is not
propagated because the query already scanned b, and at t6, c
is not propagated because it has just been scanned.

Ti
m

e

KV
OLCP Query T
(snapshot = 0)

OLTP
Transactions

[a0, b0, c0, d0, e0] scan
[-∞...+∞]

get_first(-∞)
map(a0)

get_next(a)
map(b0)

Ø

update(d)

propagate(d)?

Commit

[a0, b0, c0, d2, e0] map(d0)

[a0, b0, c0, d[0,2] , e0]

t1

t2

t3

t4

t6

in_snapshot(d0)

&& d < b

update(d)
Commit

[a0, b0, c0, d4, e0]

[a0, b0, c0, d[2,4] , e0]

in_snapshot(d2)

&& d < b

t5
update(a)

Commit

[a5, b0, c0, d4, e0]

[a[0,5], b0, c0, d4 , e0]

in_snapshot(a0)

&& a < b

update(c)
Commit

[a5, b0, c6, d4, e0]

[a5, b0, c[0,6], d4 , e0]

in_snapshot(c0)

&& c < c

get_next(b) map(c0)

get_next(c) map(e0)

get_next(e)

t7

propagate(d)?

propagate(a)?

propagate(c)?

Figure 2: Possible interleavings between a scan and various
propagations. Arrows indicate that an item is propagated to
the OLCP query, rounded segments indicate that an item is
not. At the end, the map function has been called exactly once
on all items initially contained in the scan range.

3 Using OLCP in practice

Below, we explain how OLCP can be widely used in practice
to eliminate space amplification. Analytical processing is
typically done in the following three ways:

1. Multidimensional OLAP (MOLAP) analytics,

2. Relational OLAP (ROLAP) analytics, and

3. MapReduce-style analytics.

3.1 MOLAP analytics
MOLAP databases provide a traditional platform for data
analytics which is widely used in Business Intelligence ap-
plications (e.g., IBM Cognos [14], Oracle Essbase [56], and
iccube [35]). The data is first extracted from a relational
database, transformed into a specialized multidimensional
cube format, and then transferred into the MOLAP database.
OLCP can be used during the extraction phase to get a snap-
shot of the database with little space overhead. Using a con-
ventional implementation of SI, updates performed during
the extraction create space amplification, and the relational
database may stall once the extraction is complete because
of GC. To avoid these issues, database administrators usu-
ally run the extraction during the night when the load is low.
OLCP allows extractions to occur at any time without space
overhead or database stalls.

3.2 ROLAP analytics
ROLAP tools query the main relational database directly
through a language like SQL. In this paper we use SQL syntax
for simplicity, but other languages with similar constructs can
be used as well. Analytical queries consist of a combination
of three types of building blocks.

1. Decomposable aggregate functions (e.g., SUM, COUNT).

2. Aggregate functions (e.g., GROUP BY, CUBE, ROLLUP).

3. Joins.

We show that for these three types of operations OLCP re-
duces space amplification. Most ROLAP operations have no
space overhead under OLCP.

Decomposable aggregate functions: Decomposable aggre-
gate functions are the least complex of the three query build-
ing blocks. They consist of commutative operations that only
require one pass over the data (e.g., SUM, MIN, MAX, AVG).

Nutanix uses decomposable aggregate functions to com-
pute simple statistics on a store that keeps track of disk blocks
allocated to virtual machines in a datacenter. For instance,
Algorithm 2 counts the number of disk blocks that have not
been accessed for the last two hours. The query is used to es-
timate the percentage of allocated storage that is infrequently
accessed. Algorithm 3 presents the equivalent using OLCP.
For simplicity, we present a sequential version of the algo-
rithm. In practice the map function can be called concurrently
by multiple threads, and we use per thread payloads that are
merged at the end of the scan.

The query is executed with low priority in order to avoid
interfering with other workloads. This query used to be exe-
cuted under read committed to avoid the space amplification
overhead of SI (under read-committed, old data is removed
from the store and the scan reads the most recent version
of committed items). Unfortunately, under read committed,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 429

this query overestimates the number of accessed blocks be-
cause, when a block is accessed after the start of the query,
it is impossible to know if the block was idle in the past two
hours prior to the query, since this information is lost after
the update. Executing the query with OLCP, and thus with SI
guarantees, produces a precise estimate of disk usage.

Algorithm 2 RocksDB pseudocode for counting the number
of disk blocks in a datacenter that have not been used in the
last two hours.

1 size_t count = 0, target_time = now() - 2;
2 Iterator *it = ...;
3 for(it->SeekToFirst();it->Valid();it->Next()){
4 block_t *t = it->value;
5 if(t->last_access < target_time)
6 count++;
7 }

Algorithm 3 OLCP pseudocode for counting the number of
disk blocks in a datacenter that have not been used in the last
two hours.

1 map(item *i, payload *p) {
2 if(i->last_access < p->target_time)
3 p->count++;
4 }
5 payload p={.target_time = now()-2, .count=0};
6 t = olcp_query(map, &p, [...], NULL);
7 commit(t);

Aggregate functions: Like decomposable aggregate func-
tions, these queries do not require items to be accessed in
order, and the data is accessed only once. The difference is
that these queries group items into categories and compute
statistics for each group (e.g., using the GROUP BY clause and
its extensions like CUBE and ROLLUP).

We illustrate how OLCP reduces space overhead with the
first query from the TPC-H suite [74] (Algorithm 4). Algo-
rithm 5 presents its equivalent using OLCP (for simplicity we
use the name of the tables to represent the ranges of keys).
The query provides a summary pricing report for all items
shipped before a given date, aggregated by a flag and a sta-
tus. This query is more complex than the previous example
because it requires grouping analyzed items in buckets and re-
turning them in order. Since the number of flags and statuses
is small, the number of buckets is small, and the summaries
can be computed in memory. If the number of summaries
to be computed was large, the map function could use point
queries to load and store temporary summary results from
disk. After the scan completes, the summaries are sorted in a
reduce function.
Joins: ROLAP joins are typically hash joins or nested loop
joins [30]. An analysis of the query plans of Microsoft
SQL [12] for the TPC-H queries shows that approximately
70% of the joins are hash joins, and the remaining 30% are
nested loop joins.

Algorithm 4 First query of TPC-H.

1 select l_returnflag ,
2 l_linestatus ,
3 sum(l_quantity) as sum_qty , [...]
4 from lineitem
5 where l_shipdate <= ’1998-09-04’
6 group by l_returnflag , l_linestatus
7 order by l_returnflag , l_linestatus;

Algorithm 5 First query of TPC-H using OLCP.

1 map(item *i, payload *p) {
2 if(i->l_shipdate < "1998-09-04")
3 return;
4 string k=i->l_returnflag+"|"+i->l_linestatus;
5 p->sum_qty[k] += i->l_quantity;
6 }
7
8 reduce(payload *p) {
9 sort(p->sum_qty); // sort p by key

10 return p->sum_qty;
11 }
12
13 payload p = { ... };
14 t = olcp_query(map, &p, [lineitems], NULL);
15 commit(t);
16 reduce(&p);

Hash joins are usually performed in two steps. First, the
join scans the first table, and builds a hash table (build phase).
Then, the join scans the second table and probes the hash
table for matches (probing phase). Building the hash table
only uses one-time commutative reads. By putting the first
table in the scan ranges, OLCP avoids any space amplification
during the build phase. The probing phase then occurs in the
reduce function, with the second table in the point ranges. In
general, hash joins can easily be ported to OLCP by placing
the more frequently updated table in the scan ranges and the
less frequently accessed table in the point ranges.

Algorithm 6 presents the fourth query of TPC-H. The query
counts the number of orders ordered in a given quarter of a
given year in which at least one lineitem (item of an order)
is received by the customer later than its committed date.
In Microsoft SQL, the build phase is performed on the "or-
ders" table and the probing phase on the "lineitem" table.
Algorithm 7 presents a port of this query plan to OLCP. The
"orders" table is placed in the scan ranges, and the "lineitem"
table in the point ranges. The hash table is built in the map
function, and the scan of lineitem and the probing is done
in the reduce function. While the query is running, updates
on the "orders" table, or any table that is not accessed by the
query, do not induce any space amplification. Items in the
"lineitem" table are versioned. If "lineitem" were known to be
frequently updated, the query plan could easily be modified
to build the hash table using "lineitems" and scanning the
"orders" table next.

430 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 6 Query 4 of TPC-H in SQL.

1 select o_orderpriority , count(*) as order_cnt
2 from orders
3 where
4 o_orderdate >= date ’1995-01-01’
5 and o_orderdate < date ’1995-04-01’
6 and exists (
7 select *
8 from lineitem
9 where l_orderkey = o_orderkey

10 and l_commitdate < l_receiptdate
11)
12 group by o_orderpriority
13 order by o_orderpriority;

Algorithm 7 Pseudo code of Query 4 of TPC-H using OLCP.

1 map(item *i, payload *p) {
2 if(i->o_orderdate >= ’1995-01-01’
3 && i->o_orderdate < ’1995-04-01’)
4 p->hash[i->o_orderkey] = ...;
5 }
6 reduce(payload *p) {
7 // Scan versioned lineitems
8 hash_t res = {};
9 foreach(lineitem_t l in lineitems) {

10 if(p->hash[l->l_orderkey]
11 && l->l_commitdate < l->l_receiptdate)
12 res[l->o_orderdate].order_cnt++;
13 }
14 return sort(res);
15 }
16 payload p = { ... };
17 t=olcp_query(map,&p,[order],[lineitem]);
18 reduce(&p);
19 commit(t);

Nested loop joins iterate over two tables in order. Because
of the order constraint, nested loops do not naturally fit the
OLCP model. However, it is often possible to adapt nested
loops to OLCP with minor changes to the query plan. Query
17 of the TPC-H benchmark (Algorithm 8) is an example of a
complex join query that is executed using nested loops in the
Microsoft SQL query plans for TPC-H. This query gets items
of a given brand that sold five times less than the same item
from other brands. It then computes the total revenue loss that
would have occurred if these items had not been sold. The
query is divided in two sections: tinner computes the average
number of sales per "partkey" item, regardless of the brand,
and touter gets the sales information for a given brand.

The number of "partkey" items is small (10K) compared to
the number of order items (90M), and orders are aggregated
by "partkey". Algorithm 9 presents pseudo code of a possible
implementation. Lineitem (list of ordered items) is scanned,
and the map function simultaneously computes information
for the tinner and touter queries. The map function performs
one point query to the "partkey" table to get the brand of the
scanned item. A reduce function then aggregates per-partkey

information and outputs the total price of the items that match
the criteria. The memory required to execute this query is low
(hashtable with 10K entries). The "partkey" table is the only
table that is accessed using a point query. Since "partkey"
is read-mostly, this query has negligible space amplification
when executed with OLCP.

Algorithm 8 Query 17 of TPC-H.

1 select sum(l_extprice) / 7.0 as avg_yearly
2 from
3 (
4 select l_partkey , l_quantity , l_extprice
5 from lineitem , part
6 where p_partkey = l_partkey
7 and p_brand=’Brand#34’
8 and p_container=’MED PACK’
9) touter ,

10 (
11 select l_partkey as lp,
12 0.2*avg(l_quantity) as lq
13 from lineitem
14 group by l_partkey
15) tinner
16 where touter.l_partkey = tinner.lp
17 and touter.l_quantity < tinner.lq;

Algorithm 9 Pseudo code of Query 17 using OLCP.

1 map(item *i, payload *p) {
2 string k = i->l_partkey;
3
4 // Tinner
5 p->tinner[k].l_quantity_sum += i->l_quantity;
6 p->tinner[k].l_quantity_count++;
7
8 // Touter
9 part_t *part = kv_get("part"+k); // Seek

10 if(part ->p_brand == "Brand#34"
11 && part ->p_container = "MED PACK") {
12 p->touter[k] += {
13 l_quantity = i->l_quantity ,
14 l_extprice = i->l_extprice
15 };
16 }
17 }
18 reduce(payload *p) {
19 double l_extprice_sum = 0;
20 foreach(string k in p->touter) {
21 double lq = 0.2*p->tinner[k].l_quantity_sum/
22 p->tinner[k].l_quantity_count;
23 foreach(int i in p->touter[k]) {
24 if(p->touter[k][i].l_quantity < lq)
25 l_extprice_sum+=p->touter[k].l_extprice;
26 }
27 }
28 return l_extprice_sum / 7.0;
29 }
30 payload p = { ... };
31 t=olcp_query(map,&p,[lineitems],[parts]);
32 commit(t);
33 reduce(&p);

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 431

3.3 MapReduce analytics
MapReduce provides a highly parallelizable and scalable
framework. This approach is popular for computing simple
analytics on vast amounts of data, employed for instance to
obtain cluster management statistics [9], to compute popular
search-word and query trends [20], and to analyze time-series
workloads in IoT, recommender systems and finance [1]. Es-
sentially, the mappers are doing a background scan on the
store (e.g., Cassandra, RocksDB), and push the items of in-
terest into a MapReduce system (e.g., Hadoop, CouchDB,
Phoenix [52]). These scans take on the order of a few hours
and happen concurrently with the foreground workloads,
which can be write-heavy [3]. Using the conventional im-
plementation of SI causes prohibitive space amplification
because incoming updates need to be tracked over a long time
span. To avoid the space explosion, these statistics are usually
collected in read-committed mode and thus have lower accu-
racy. In contrast, OLCP supports consistent one-pass scans,
with no space overhead.

4 Implementation

In this section, we describe our implementation of SI and
OLCP. The source code of our implementation is available at
https://github.com/BLepers/KVell. Our implementation adds
approximately 4,000 lines of code on top of KVell.

4.1 KVell
As noted in previous work [45], when running on modern
fast drives, existing KVs that support SI, such as WiredTiger
and RocksDB, run into a CPU bottleneck and are unable to
write data at disk speed. As a result they are not suitable for
studying space amplification on such drives. We therefore
extend KVell [45], a recent KV designed for NVMe SSDs.

KVell has two main components: an ordered index residing
in RAM, and an unsorted data structure on disk similar to a
slab memory allocator, which groups items with similar sizes
in the same file. Reads are either served from a cache (0 I/O),
or from disk (1 I/O). Updates fetch a 4KB block from disk,
modify it in memory, and then write the dirty block back to
disk (1 or 2 I/Os, depending on whether the block was cached
or not). The index and the disk data structure are partitioned
among multiple worker threads, with each worker handling a
range of the key space.

Ideally, analytical queries should not slow down OLTP
transactions. Even on modern drives, a fine balance has to be
maintained between sending too few simultaneous requests
(resulting in sub-optimal bandwidth) and sending too many
(resulting in high latency). In its original implementation,
KVell scans ranges by reading all items of the range in par-
allel. We change the implementation of scans to ensure that
scans do not overwhelm the disk with with requests. Scans

request batches of items from the store, with the size of a
batch adjusted depending on the current disk utilization. In
practice, we aim at having between 32-64 pending disk I/O
requests at all time. When reading the next batch, we adjust
the batch size to keep the number of disk I/Os within this
bound.

In its original implementation, KVell did not support trans-
actions. We first describe our conventional implementation of
SI in KVell+ and the extension to reduce space amplification
proposed in Steam [8]. We then describe our implementation
of OLCP in KVell+.

4.2 Conventional SI

Our implementation of SI is inspired by those of RocksDB
and WiredTiger, two KVs that are widely used in industry.

Timestamps: We add a global logical timestamp in KVell.
The global timestamp is incremented every time it is read.
When a transaction commits, it is given a commit timestamp
tcommit equal to the current global timestamp. When a trans-
action starts, it is given a snapshot timestamp, tsnapshot . The
snapshot timestamp is chosen so that a transaction can only
read data that has already been committed, using the following
formula: tsnapshot = minactive(tcommit)−1. If no transaction is
committing, the tsnapshot is set to the current global timestamp.

In the original version of KVell, persisted items are already
timestamped; we use these timestamps in the read and writing
path: a transaction can only read or write an item with a
timestamp less than or equal to its tsnapshot .

Writing data: To perform a write on a key, a transaction
locks the index entry for that key in the main memory index.
If the key is not present in the store, a new locked index entry
is created. To prevent write-write conflicts, a transaction that
fails to lock an item aborts. It also removes all previously
acquired locks and any newly created index entries. Before
commit, only the in-memory index is updated. The new item
versions are kept in a private in-memory buffer (similarly to
RocksDB).

Reading data: When reading an item, the worker first checks
if the item is in its private buffer. If not, the item is read from
the main store. If the memory index contains multiple versions
of an item, the transaction reads the most recent version that
belongs to its snapshot.

Committing updated data: To commit, a transaction per-
sists an tuple "(tcommit ,N)", where N is the number of updated
items. This tuple is used in case of a crash to avoid recovering
items from partially committed transactions. The transaction
then writes the new items to disk, timestamped with tcommit .
Once all new items have been persisted, the transaction deletes
the "(tcommit ,N)" tuple. During a commit, the transaction up-
dates the index non-atomically: entries for the new versions
are added to the index, and index entries are unlocked as they
are updated. This process is safe because no other transac-

432 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

tion can read or write any of the updates before the commit
ends (by the definition of tsnapshot), so transactions cannot
access partially committed data. Hence, transactions appear
"atomically" in the system.

KVell did not use a commit log in its original implemen-
tation, and we do not add one to support transactions. This
design choice is essential for performance on modern drives.
Historically, commit logs were cheap to maintain compared
to the cost of updating the store – a fast sequential append
vs. a slow random update to a complex data structure. NVMe
drives can perform random I/Os as fast as sequential I/Os.
In KVell, persisting an item is performed in as low as 1 I/O.
Adding a commit log would essentially double the number
of I/Os required to perform an update and halve the speed of
the store. We acknowledge the usefulness of logs (e.g., for ac-
countability, audit, etc.), and developers might choose to log
store accesses via a fast logging system. Our implementation
has the advantage of placing logs outside of the critical path.

Garbage collection: After commit, the location of the old ver-
sions of updated items are placed in a per-worker cleaning list.
Workers periodically check the smallest active tsnapshot . When
this value changes, they scan their cleaning list and delete
obsolete items. Workers stop cleaning as soon as they find an
item with a timestamp higher than or equal to min(tsnapshot)
(similarly to WiredTiger).

4.3 Steam

Steam [8] uses a more aggressive form of garbage collection
that aims to reduce the number of old versions. When an item
is updated, Steam scans that item’s versions, and deletes the
ones that do not belong to any active transaction. Steam was
originally implemented in an in-memory database and does
not handle recovery in case of a crash. In our implementation,
we delay the deletion of old versions to after the commit to
avoid deleting versions that might be needed during recovery.
Otherwise, our implementation is similar to the original one.

4.4 OLCP in KVell+

OLCP further modifies garbage collection and implements
propagation, We also describe a key optimization to avoid
extra I/Os as a result of propagation.

Garbage collection: The main difference between OLCP
and OLAP is the time during which old versions need to
be kept in the store. Workers have two cleaning lists: one
for items belonging to the scan ranges, and one for items
belonging to the point ranges. GC for point ranges happens as
it would under SI. GC for scan ranges happens as described
in Algorithm 1.

Propagations: Key to the proper functioning of OLCP is im-
plementing an efficient propagation mechanism. KVell uses
an asynchronous interface: threads send requests to the datas-

tore, and the datastore enqueues answers in a per-transaction
queue. We build on this mechanism for propagations. Propa-
gating an item I to a OLCP query T consists of enqueuing I in
T’s queue (as if T had requested to read the item). At the data
store level, data is sharded between single threaded workers,
so propagations do not introduce any data races. For instance,
if an item is propagated "while" being requested by a scan,
the scan request and the propagation request are serialized at
the worker level and only one of the requests causes the item
to be enqueued in the queue. If multiple OLCP queries are
running, an item may be enqueued in multiple queues.

Concurrency: In KVell, items are sharded between multiple
workers. To speed up queries, we start the scan on all workers.
All workers progress in their scan concurrently and may prop-
agate updates concurrently. No synchronization is required
between workers because workers work on distinct items. In
practice, the scan happens as if multiple single threaded scans
were launched on disjoint sets of items.

Avoid reading old versions from disk: In Section 2, old
item versions are propagated immediately after committing
the new versions. This approach is sub-optimal: updates are
not performed in place, and therefore propagating old ver-
sions at this time requires reading them from disk, adding an
extra read to an update. To eliminate this extra read, we delay
propagations and deletions. Instead of propagating and delet-
ing the old versions in the GC (lines 18- 23 in Algorithm 1),
we keep the entries for them in the index, and we put their
location in a list of reusable spots. When such a spot is later
reused, the disk block containing that spot is read, and we
take advantage of that to propagate the old version without
an extra disk read.

This optimization raises the possibility that versions of
the same item might not be overwritten in the order they are
created. For instance, if versions of the same data item are of
different size, they are allocated in different slabs, and a more
recent version may be overwritten before an older version.

Figure 3 presents a case where an item has three versions
(k0, k1 and k2). k2 is the current version. k0 and k1 are old
versions (t0< t1< t2). k0 and k1 are in the free list of reusable
spots and have not yet been overwritten. At the beginning of
the execution, the in-memory index still contains all three
versions. Indeed, k0 and k1 have not been overwritten, and so
have not yet been propagated. In Figure 3 an OLCP query
T executes with a snapshot timestamp equal to t1. Assume
that the slot containing k1 is reused before the one containing
k0, and assume furthermore that k has not been scanned. k1 is
propagated and deleted, since it has not been scanned and it
is part of T ’s snapshot.

However, k1’s index entry must not be immediately re-
moved. In the absence of any record of k1 in the index, if k0’s
slot is overwritten before the scan reaches k, as depicted in
Figure 3, it would be propagated to T . Similarly, if T ’s scan
reaches k before k0 is overwritten, it would be read by the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 433

scan. In both cases, T would erroneously read k0, a version
that does not belong to its snapshot. To avoid these situa-
tions, we keep k1 in the index, but flag it as deleted. It then
becomes clear that k0 does not belong to T ’s snapshot, and
it is neither propagated nor read by the scan. Once k0 has
been overwritten, it is removed from the index because it is
the oldest version. k1 is then removed from the index as well
because it is now the oldest version and flagged as deleted.

Ti
m

e

k[0,(1),2]

k[0,1,2]

update(...)
(overwrites k1)

Commit map(k1)

get_next(...)
skips k because

k1 is marked
as deleted

update(...)
(overwrites k0)

Commit k2 propagate(k0)
skipped because
k0 was followed

by k1

propagate(k1)

KV
Versions of k

OLCP Query
(Snapshot = 1)

OLTP
Transactions

Figure 3: Under optimized OLCP old versions might not be
overwritten in version order. In that case, the query must skip
k0, even though it would appear to belong to its snapshot
(t0 < t1).

4.5 OLCP in other stores

In the previous section, we focused on the implementa-
tion of OLCP in KVell, but the OLCP paradigm is general
and applicable to other datastores and other storage devices.
For instance, OLCP can be implemented in RocksDB and
WiredTiger and on slower SSDs. In RocksDB, old items
can be propagated during compactions: when merging two
SSTables, old items can be propagated and discarded with
no extra I/Os. Similarly, WiredTiger can propagate old items
during checkpointing. OLCP can also be implemented in in-
memory databases like Hyper [39]: Hyper maintains free lists
of reusable spots, so it can propagate old items when reusing
their spot (just as in our KVell+ implementation).

5 Evaluation

5.1 Goals

We evaluate OLCP queries on a variety of synthetic and pro-
duction workloads. We seek to answer the following ques-
tions:

• Resource utilization: What is the space amplification
of OLCP compared with existing SI implementations?
What is the impact of using OLCP queries on throughput
and tail latency?

• Scalability: How does OLCP scale with the number of
concurrent scans and with the size of the store?

• Performance: How does OLCP perform on TPC and
production workloads?

5.2 Experimental settings
Hardware: We use the following hardware configurations:

Config-AWS. An AWS i3.metal instance, with 36 CPUs
(72 cores) running at 2.3GHz, 488GB of RAM, and 8 NVMe
SSD drives of 1.9TB each (brand unknown, 2016 technology).
The server can sustain a total of 3M read IOPS and 1.4M
write IOPS (on read/write workloads, the maximum number
of IOPS varies between 1.4 and 3M). The store is configured
to cache 30GB of data.

Config-NVMe. A 4-core 4.2GHz Intel i7, 48GB of RAM,
and a 480GB Intel Optane 905P (2018). The server can sustain
500K read or write IOPS. The store is configured to cache
20GB of data.
Workloads: We use the following workloads:

YCSB-T: YCSB-Transactional [21] is inspired by the Ya-
hoo! Cloud Serving Benchmark [16] but groups updates in
transactions. The average KV item size is 1024B, and the
total data set size is approximately 100GB (100M keys) for
the small test and 5TB (5B keys) for the large test. Similarly
to previous work [77], we perform 16 updates per transaction
and items are accessed uniformly. We use this workload to
test the limit of SI and OLCP under a write-heavy workload
(100% updates).

TPC-CH: The TPC-CH workload [15] mixes the widely
popular TPC-C and TPC-H workloads. Currently, TPC-C is
the industry standard to simulate OLTP systems [72] and TPC-
H is the industry standard to simulate OLAP systems [74].
The TPC-CH workload harmonizes the representation of the
data used by TPC-C and TPC-H so that TPC-C and TPC-H
queries can run on the same dataset. The TPC-CH bench-
marks [15] remove 3 updates that cause most TPC-C queries
to fail due to write-write conflicts. Without this modification,
TPC-C transactions abort 85% of the time. The abort rate
goes down to less than 1% of the time with the modification.
Our implementation is similar to the one for Redis [73].

In order to reach a significant database size, we configure
TPC-CH to run with 300 warehouses. In that configuration,
the store contains 140M items in total, 90M of which represent
orders. The rest of the items represent customer data, stock,
etc.

Production workloads from Nutanix: The production
workloads are two write-intensive workloads, with a profile
of 57:41:2 write:read:scan ratio. The KV item sizes range
between 250B and 1KB, with a median of 400B. The total
dataset size for the production workload is 256GB. The dif-
ference between the two workloads is the data skew: The
key distribution in Production Workload 1 is close to uni-
form, while Production Workload 2 is more skewed. OLTP

434 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

transactions perform on average 10 requests per transaction.

Existing SI implementations: We compare OLCP to the
conventional SI implementations and the Steam SI implemen-
tation presented in Section 4. In the remainder of this section,
we refer to these implementations as "SI" and "Steam", re-
spectively.

5.3 YCSB-T

In this experiment, we run scans of the store concurrently
with YCSB-T transactions. The system is disk-bound. We run
the experiment with the 100GB dataset on Config-NVMe.

5.3.1 Space amplification

Figure 4 presents the evolution of the number of old versions
in time for a Zipfian and a uniform distribution of updates,
varying the number of concurrent scans.

Figure 4(a) - 1 scan - Zipfian distribution: Unsurpris-
ingly, the number of old versions increases linearly with time
with the standard implementation of SI and, after 24 minutes
of execution, the store has accumulated 350 million old ver-
sions and runs out of space. Steams keeps at most one version
per active snapshot; since we only execute one scan, Steam
only keeps at most one old version per item. Running a Zip-
fian workload concurrently with a single scan is the best case
scenario for Steam because most updates are concentrated on
a few items. At the end of the scan, Steam has accumulated
50M old versions. OLCP propagates old versions to the scan,
and the number of old versions using OLCP is low and stable
throughout the run (a maximum of 1000 old versions).

Figure 4(b) - 1 scan - Uniform distribution: Similarly to
the Zipfian distribution, the number of old versions grows
linearly with the standard implementation of SI. Because
updates are distributed over more items, Steam keeps more
versions and eventually the store doubles in size. The number
of old versions using OLCP is again negligible throughout
the run (a maximum of 1000 old versions).

Figure 4(c) - 3 scans - Uniform distribution: In this ex-
periment, we launch a second scan after 500s of execution,
and a third scan after 1,000s of execution. The three scans
run concurrently. In this configuration, Steam has to keep
up to three versions per item. At the end of the execution
of the first scan (not shown in the picture), the store has ac-
cumulated 250M old versions (store tripled in size). OLCP
propagates old versions to the scans and has close to zero
space amplification (a maximum of 1000 old versions).

5.3.2 Throuphput

In this section, we study the performance of the scans and the
updates when executed with the various SI implementations.
We run the uniform workload with a single scan presented
in the previous section. Results are similar with the Zipfian
distribution and with more scans. Figure 5(a) shows the scan
throughput, and Figure 5(b) shows the update throughput.

Figure 5(a): The scan throughput is the same for the stan-
dard SI implementation and Steam. Surprisingly, scanning
data is much faster using OLCP. The OLCP scan finishes after
691s. With standard SI, the scan aborts after 1460s because
the store runs out of disk space (350GB space amplification).
With Steam, the scan takes 1870s to complete, 2.7x as long
as OLCP. OLCP queries process items just before they are
overwritten, and thus when they are in memory. In contrast,
with SI and Steam, queries have to fetch most of their data
from disk. This advantage is especially visible at the begin-
ning of the scan. As the scan progresses, the advantage of
OLCP over SI decreases, because, statistically, as the scan
progresses, most of the overwritten items have already been
scanned.

Figure 5(b): OLCP scans also interfere slightly less with
updates because updates make better use of the caches with
OLCP. Updates happen as follows: read a 4KB block (1 I/O if
the block is not cached), modify and persist the block (1 I/O).
In a uniform workload, the probability of hitting the cache
depends on the store size (P(hit) = cache size/store size).
Because the database grows less with OLCP, the read has a
higher probability of hitting the cache and updates are faster.

 0

 1x108

 2x108

 3x108

 4x108

 0 500 1000 1500 2000

XABORT

O
ld

 v
er

si
on

s

Time (s)

 OLCP
 Steam

 SI

 0

 1x108

 2x108

 3x108

 4x108

 0 500 1000 1500 2000

XABORT

O
ld

 v
er

si
on

s

Time (s)

 OLCP
 Steam

 SI

 0

 1x108

 2x108

 3x108

 4x108

 0 500 1000 1500 2000

XABORT

O
ld

 v
er

si
on

s

Time (s)

 OLCP
 Steam

 SI

(a) (b) (c)

Figure 4: Config-NVMe. Evolution of the number of old versions for (a) a Zipfian workload with 1 scan, (b) a uniform workload
with 1 scan, and (c) a uniform workload with 3 scans.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 435

 0

 100

 200

 300

 400

 0 500 1000 1500 2000

X

AB
O

RT

Sc
an

 th
ro

ug
hp

ut
(K

Ite
m

s/
s)

Time (s)

OLCP
Steam

SI

(a)

 0

 100

 200

 300

 0 500 1000 1500 2000U
pd

at
e

th
ro

ug
hp

ut
(K

Ite
m

s/
s)

Time (s)

OLCP
Steam

SI

(b)

Figure 5: Config-NVMe. Evolution of (a) scanned items/s,
and (b) updated items/s. Y-axes differ.

Table 1 shows the tail latency of the updates. At the 99th
percentile, it takes 3-3.4ms to commit the 16 updates per-
formed by an OLTP transaction (190-250us per update).
Switching to OLCP for scans has no significant impact on the
99th percentile latency of OLTP transactions. In SI, the GC
of the 350M old items stalls the store after the scan aborts, so
the tail latency is high (18s). Cleaning the 100M old items
takes 5s in Steam. A non stop-the-world GC could be used,
at the expense of higher average space utilization. In OLCP,
regardless of the GC implementation, cleaning overhead is
negligible, and tail latency is orders of magnitude lower (9ms).

Latency SI Steam OLCP
99p 3.4ms 3.1ms 3ms
Max 18s 5s 9ms

Table 1: Config-NVMe. Tail latency of OLTP transactions
(16 updates).

Config-AWS: Trends are similar on Config-AWS. The full
scan of the store finishes in 134s with OLCP and in 256s with
SI and Steam. OLTP transactions have similar throughput.

5.3.3 Overhead of propagations

The overhead of propagations depends on the number of run-
ning OLCP queries: the more OLCP queries, the more en-
queues in propagation queues might be done. The overhead

also depends on whether concurrent updates are done on scan
ranges or not: an item is only propagated if it belongs to
a scan range. We launch up to 32 concurrent scans on two
stores containing 100M items (100GB) and 5B items (5TB),
respectively. Each scan reads a random range of 1M items.
As in the previous section, the scans run concurrently with
an update intensive YCSB-T workload. We run all tests on
Config-AWS, since it is the only machine able to store 5TB.

Figure 6 presents the average number of scanned items per
second, varying the number of concurrent scans. On all tested
configurations, OLCP is equivalent or faster than conventional
SI and Steam. The difference between OLCP and conven-
tional SI is lower than in the experiments of Section 5.3.2
because (i) the queries only scan a small percentage of the
store, so updates are less likely happen in a scanned range and
result in a propagation, (ii) the read bandwidth of the disks
on Config-AWS is higher than the write bandwidth, so the
scan progresses faster than the updates. On the 100M store,
the gap between OLCP and SI increases with the number of
concurrent scans. Indeed, as the number of scans increases,
so does the probability that a propagation happens within a
scan range and that OLCP can process items in memory. On
the 5TB store this effect is less visible (statistically an update
has a lower probability of being in a scan range).

The throughput on the 5TB store is lower than on the 100M
store because less data is cached (30% vs. 0.6%). The total
number of "scans + updates" requests per second is not con-
stant in the experiments (i.e., adding 100K scans/s does not
reduce the update rate by 100K updates/s) because (i) reads
are done using at most 1 I/O (vs. 2 for updates), and (ii)
Config-AWS disks can sustain a higher number of read IOPS
than write IOPS.

(a)

 0
 200
 400
 600
 800

 1000

0 1 2 4 8 16 32Sc
an

 th
ro

ug
hp

ut
(K

Ite
m

s/
s)

Number of concurrent scans

OLCP Steam&SI

(b)

 0
 200
 400
 600
 800

 1000

0 1 2 4 8 16 32Sc
an

 th
ro

ug
hp

ut
(K

Ite
m

s/
s)

Number of concurrent scans

OLCP Steam&SI

Figure 6: Config-AWS. Number of scanned items per second
on a (a) 100M and (b) 5TB store, varying the number of scans.

436 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 7 presents the number of updates performed per
second. OLCP is slightly faster for the same reasons as those
presented in the previous experiment.

(a)

 0
 200
 400
 600
 800

0 1 2 4 8 16 32U
pd

at
e

th
ro

ug
hp

ut
(K

Ite
m

s/
s)

Number of concurrent scans

OLCP Steam&SI

(b)

 0
 200
 400
 600
 800

0 1 2 4 8 16 32U
pd

at
e

th
ro

ug
hp

ut
(K

Ite
m

s/
s)

Number of concurrent scans

OLCP Steam&SI

Figure 7: Config-AWS. Number of updates per second on a
(a) 100M and (b) 5TB store, varying the number of scans.

In conclusion, it is possible to propagate items to OLCP
queries with negligible overhead. In all experiments, less than
2% of the time is spent propagating values.

5.4 TPC-CH performance
In this section, we measure space amplification and perfor-
mance on a TPC-C workload running concurrently with a
TPC-H analytical workload. We ran on average 10 TPC-C
queries concurrently. Each TPC-C query does an average of
22 requests (17 reads, 5.5 writes), and 30% of the reads hit
the cache. Figure 8 presents the throughput of TPC-C running
concurrently with TPC-H Query 17, presented in Algorithm 9.

With OLCP, Query 17, which scans 64% of the store, com-
pletes without space overhead and creates little interference
with TPC-C queries (3% slowdown compared to an execution
without a scan). Under Steam, the store doubles in size. Under
SI, the store runs out of space, and the query aborts.

5.5 Production workloads performance
We study the performance of conventional SI, Steam and
OLCP with the production workloads running on Config-
AWS. Figure 9 presents the resulting space amplification,
scan throughput and update throughput. At the end of the
analytical processing, in Production Workload 2, the store
has accumulated 934M old versions with the conventional SI
implementation, and GC takes 49s. Steam stores 310M old
versions at the end of the analytical processing. OLCP queries
cause no space amplification. All implementations have the
same throughput.

 0
 1
 2
 3
 4

ABORT

0

Sp
ac

e
am

pl
ifi

ca
tio

n OLCP Steam SI

 0

 20

 40

 60

Scan

AB
O

RT

Th
ro

ug
hp

ut
(K

Ite
m

s/
s)

 0

 20

 40

OLTP

Th
ro

ug
hp

ut
(K

Tr
an

sa
ct

io
ns

/s
)

Figure 8: Config-NVMe. Space amplification and throughput
of TPC-CH.

 0

 1

 2

Prod 1
Prod 2

00Sp
ac

e
Am

pl
ifi

ca
tio

n
(x

)

 0
 400
 800

 1200
 1600

S O S O
Prod 1Prod 2

Th
ro

ug
hp

ut
(K

Ite
m

s/
s)

OLCP Steam SI

Figure 9: Config-AWS, production workloads. Space ampli-
fication, S (scan), O (OLTP) throughput.

6 Related Work

Running mixed OLTP/OLAP workloads: OLTP/OLAP
workloads are commonly handled by systems that maintain
a column-oriented datastore for OLAP (e.g., Vertica [42], C-
Store [67], and Hive [71]), isolated from the row-oriented
OLTP system (e.g. Cassandra [26], RocksDB [24]). This ap-
proach allows to optimize each sub-system independently.
The main disadvantages are running analytics on old data and
space amplification caused by data replication.

A popular approach to decrease data replication overhead is
to design store for OLTP/OLAP workloads from the ground-
up [10, 13, 25, 38, 39, 43, 60, 80]. Typically, these systems
employ hybrid vertical/horizontal data partitioning schemes,
coupled with carefully chosen secondary indexing. A signif-
icant drawback of these systems is the performance impact
that OLAP and OLTP workloads have on each other (e.g., up
to 5x throughput decrease in SAP HANA [63]). In OLCP,
the analytics workloads do not impact transactions thanks to
OLCP’s minimal GC overhead.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 437

Reducing space amplification in SI: The role of SI is to pro-
vide a coherent view of the data to OLAP queries [51, 66, 69].
SI-related space amplification is one of the most challenging
issues for stores that run fully in main memory and it has
been addressed by many designs. Harizopoulos et al. [28]
execute transactions sequentially to avoid MVCC mainte-
nance work. IoSnap provides flash-optimized snapshots that
reduce space overhead by reconstructing snapshot metadata
in-memory [68]. Hyper [38, 39] runs OLTP transactions on
a fork of the store. BatchDB [51] runs OLAP queries on a
replica of the store. These solutions still create problematic
space amplification (up to 2x), and garbage collection times
at the end of the execution of OLAP queries. Furthermore,
the execution of OLAP queries might be delayed to the next
batch, adding possibly minutes/hours of latency to analytical
queries. OLCP mitigates the space amplification and garbage
collection issues. OLCP model could also be beneficial for
in-memory stores.

Space amplification in KVs for fast drives: Much of the
prior KVs work relies on SI to provide a consistent view of
the data during range scans [2, 4, 36, 37, 47, 50, 57–59, 64, 65].
Existing systems such as PebblesDB [64], TRIAD [3], Wis-
cKey [50], and HashKV [11] propose optimizations to de-
crease space amplification caused by compactions in log-
structured merge KVs. SlimDB [65] decreases space for
caching indexes and filters. Other KVs designed for fast drives
do not support transactions [3, 5, 40, 41, 45, 48]. To the best
of our knowledge, OLCP is the first work that focuses on
reducing disk space amplification due to SI on fast drives.

Improving the performance of MVCC: In practice, SI is
implemented through MVCC [6]. Many recent optimiza-
tions and protocols provide support for high transaction
rates [8, 33, 46, 49, 55, 75]. Steam [8] trims versions that
do not belong to any active transaction’s snapshot. Steam
is efficient for skewed workloads. However, under a uniform
load the space amplification is proportional to the number of
active transactions. We go one step further by propagating
old versions to avoid keeping unnecessary versions in snap-
shots. Silo [75] chooses provides scalable timestamps and
uses RCU to garbage collect old versions. Cicada [49] batches
operations to reduce protocol costs. TicToc [77] only keeps
the latest version of an item in the store. All these techniques
focus on improving the speed of MVCC, but do not address
space amplification. They can be used to complement OLCP.

Improving the performance of transactions: Various ap-
proaches have been proposed to increase transaction perfor-
mance such as transactional memory techniques [7, 18, 22,
29, 31, 54, 62], transaction support for byte-addressable per-
sistent memory [27, 53], work stealing [79], relaxing ACID
properties when possible [17, 61, 76], decreasing replication
overhead [78], and reducing coordination [70]. These tech-
niques are orthogonal to OLCP and can be used together with
our model to boost the OLTP workload.

7 Conclusion

Long OLAP queries cause problematic space amplification
and long transaction tail latencies when run under SI. To
remedy this problem, we propose OLCP, a new query model.
OLCP provides the same isolation guarantees as conventional
SI implementations, but with much reduced space amplifi-
cation and interference with concurrent OLTP transactions.
We show how OLCP can be used to express a wide range of
OLAP queries. We implement OLCP in KVell+, an extension
of KVell, a state-of-the-art open-source KV for NVMe SSDs.
OLCP achieves low or no space amplification, up to 2x higher
throughput for OLAP queries, and order-of-magnitude im-
provements in tail latency for concurrent OLTP transactions.

References

[1] Nitin Agrawal and Ashish Vulimiri. Low-latency ana-
lytics on colossal data streams with SummaryStore. In
Proceedings of SOSP, 2017.

[2] Joy Arulraj, Justin J. Levandoski, Umar Farooq Min-
has, and Per-Åke Larson. BzTree: A high-performance
latch-free range index for non-volatile memory. In Pro-
ceedings of the VLDB Endowment, 2018.

[3] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy
Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan
Gupta, and Pavan Konka. TRIAD: Creating synergies
between memory, disk and log in log structured key-
value stores. In Proceedings of USENIX ATC, 2017.

[4] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan
Gupta, Ravishankar Chandhiramoorthi, and Diego Di-
dona. SILK: Preventing latency spikes in log-structured
merge key-value stores. In Proceedings of USENIX
ATC, 2019.

[5] Michael A. Bender, Martin Farach-Colton, William Jan-
nen, Rob Johnson, Bradley C. Kuszmaul, Donald E.
Porter, Jun Yuan, and Yang Zhan. An introduction to
bε-trees and write-optimization. ;login:, 40(5), 2015.

[6] Philip A Bernstein and Nathan Goodman. Concurrency
control in distributed database systems. ACM Comput-
ing Surveys (CSUR), 13(2), 1981.

[7] Jayaram Bobba, Neelam Goyal, Mark D Hill, Michael M
Swift, and David A Wood. TokenTM: Efficient execu-
tion of large transactions with hardware transactional
memory. In Proceedings of ISCA, 2008.

[8] Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons
Kemper. Scalable garbage collection for in-memory
MVCC systems. Proceedings of the VLDB Endowment,
13(2), 2019.

438 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[9] Ignacio Cano, Srinivas Aiyar, Varun Arora, Manosiz
Bhattacharyya, Akhilesh Chaganti, Chern Cheah, Brent
Chun, Karan Gupta, Vinayak Khot, and Arvind Krishna-
murthy. Curator: Self-managing storage for enterprise
clusters. In Proceedings of NSDI, 2017.

[10] Yu Cao, Chun Chen, Fei Guo, Dawei Jiang, Yuting Lin,
Beng Chin Ooi, Hoang Tam Vo, Sai Wu, and Quanqing
Xu. Es 2: A cloud data storage system for supporting
both OLTP and OLAP. In Proceedings of ICDE, 2011.

[11] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and
Yinlong Xu. HashKV: Enabling efficient updates in KV
storage via hashing. In Proceedings of USENIX ATC,
2018.

[12] Joe Chang. TPC-H SF100 Non-parallel Plans,
SQL Server 2008. http://www.qdpma.com/tpch/
TPCH100_Query_plans.html, 2020.

[13] James Cipar, Greg Ganger, Kimberly Keeton, Charles B
Morrey III, Craig AN Soules, and Alistair Veitch. Lazy-
Base: trading freshness for performance in a scalable
database. In Proceedings of EuroSys, 2012.

[14] Cognos. IBM Cognos Analytics. https://www.ibm.
com/products/cognos-analytics, 2020.

[15] Richard Cole, Florian Funke, Leo Giakoumakis, Wey
Guy, Alfons Kemper, Stefan Krompass, Harumi Kuno,
Raghunath Nambiar, Thomas Neumann, Meikel Poess,
et al. The mixed workload CH-benCHmark. In Proceed-
ings of the Fourth International Workshop on Testing
Database Systems, 2011.

[16] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of SoCC,
2010.

[17] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar
Harel, Rachit Agarwal, and Lorenzo Alvisi. Obladi:
Oblivious serializable transactions in the cloud. In Pro-
ceedings of OSDI, 2018.

[18] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor
Luchangco, Mark Moir, and Daniel Nussbaum. Hybrid
transactional memory. In Proceedings of ASPLOS, 2006.

[19] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simpli-
fied data processing on large clusters. Communications
of the ACM, 51(1):107–113, 2008.

[20] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified data processing on large clusters. Communica-
tions of the ACM, 51(1), 2008.

[21] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe
Röhm. YCSB+ T: Benchmarking web-scale transac-
tional databases. In Proceedings of ICDE Workshops,
2014.

[22] Diego Didona, Nuno Diegues, Anne-Marie Kermarrec,
Rachid Guerraoui, Ricardo Neves, and Paolo Romano.
Proteustm: Abstraction meets performance in transac-
tional memory. In Proceedings of ASPLOS, 2016.

[23] Siying Dong, Mark Callaghan, Leonidas Galanis,
Dhruba Borthakur, Tony Savor, and Michael Strum. Op-
timizing space amplification in rocksdb. In CIDR, vol-
ume 3, page 3, 2017.

[24] Facebook. RocksDB: a persistent key-value store for
fast storage environments. https://rocksdb.org,
2018.

[25] Franz Färber, Norman May, Wolfgang Lehner, Philipp
Große, Ingo Müller, Hannes Rauhe, and Jonathan Dees.
The SAP HANA database–an architecture overview.
IEEE Data Engineering Bulletin, 35(1), 2012.

[26] Apache Software Foundation. Cassandra NoSQL key-
value store. http://cassandra.apache.org/, 2018.

[27] Kaan Genç, Michael D Bond, and Guoqing Harry Xu.
Crafty: Efficient, htm-compatible persistent transactions.
In Proceedings of PLDI, 2020.

[28] Stavros Harizopoulos, Daniel J Abadi, Samuel Madden,
and Michael Stonebraker. OLTP through the looking
glass, and what we found there. In Making Databases
Work: the Pragmatic Wisdom of Michael Stonebraker.
2018.

[29] Tim Harris, James Larus, and Ravi Rajwar. Transac-
tional memory. Synthesis Lectures on Computer Archi-
tecture, 5(1), 2010.

[30] Sven Helmer, Guido Moerkotte, et al. Evaluation of
main memory join algorithms for joins with set com-
parison join predicates. In Proceedings of the VLDB
Endowment, volume 97, 1997.

[31] Maurice Herlihy and J Eliot B Moss. Transactional
memory: Architectural support for lock-free data struc-
tures. In Proceedings of ISCA, 1993.

[32] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang,
Dengcheng He, Tieying Zhang, Feifei Li, Sheng Wang,
Wei Cao, and Qiang Li. X-engine: An optimized storage
engine for large-scale e-commerce transaction process-
ing. In Proceedings of the 2019 International Confer-
ence on Management of Data, pages 651–665, 2019.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 439

http://www.qdpma.com/tpch/TPCH100_Query_plans.html
http://www.qdpma.com/tpch/TPCH100_Query_plans.html
https://www.ibm.com/products/cognos-analytics
https://www.ibm.com/products/cognos-analytics
https://rocksdb.org
http://cassandra.apache.org/

[33] Yihe Huang, William Qian, Eddie Kohler, Barbara
Liskov, and Liuba Shrira. Opportunities for optimism
in contended main-memory multicore transactions. Pro-
ceedings of the VLDB Endowment, 13(5).

[34] Hyperdex. Hyperleveldb. https://github.com/
rescrv/HyperLevelDB, 2018.

[35] iccube. iccube embedded analytics. https://www.
iccube.com/, 2020.

[36] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael Bender,
Martin Farach-Colton, Rob Johnson, Bradley C. Kusz-
maul, and Donald E. Porter. Betrfs: Write-optimization
in a kernel file system. ACM Transactions on Storage
(TOS), 11(4), 2015.

[37] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing LSMs for nonvolatile memory with Nov-
eLSM. In Proceedings of USENIX ATC, 2018.

[38] Alfons Kemper and Thomas Neumann. One size fits
all, again! the architecture of the hybrid OLTP&OLAP
database management system Hyper. In International
Workshop on Business Intelligence for the Real-Time
Enterprise, 2010.

[39] Alfons Kemper and Thomas Neumann. HyPer: A hybrid
OLTP&OLAP main memory database system based on
virtual memory snapshots. In Proceedings of ICDE,
2011.

[40] Jungwon Kim, Seyong Lee, and Jeffrey S Vetter. Pa-
pyrusKV: a high-performance parallel key-value store
for distributed NVM architectures. In Proceedings of
SC, 2017.

[41] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Kolt-
sidas. Reaping the performance of fast NVM storage
with uDepot. In Proceedings of FAST, 2019.

[42] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan,
Nga Tran, Ben Vandier, Lyric Doshi, and Chuck Bear.
The Vertica analytic database: C-store 7 years later. Pro-
ceedings of the VLDB Endowment, 5(12), 2012.

[43] Per-Åke Larson, Adrian Birka, Eric N Hanson, Weiyun
Huang, Michal Nowakiewicz, and Vassilis Papadimos.
Real-time analytical processing with SQL server. Pro-
ceedings of the VLDB Endowment, 8(12), 2015.

[44] Rubao Lee, Tian Luo, Yin Huai, Fusheng Wang,
Yongqiang He, and Xiaodong Zhang. Ysmart: Yet an-
other SQL-to-MapReduce translator. In Proceedings of
ICDCS, 2011.

[45] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. KVell: the design and implementation of a
fast persistent key-value store. In Proceedings of SOSP,
2019.

[46] Justin Levandoski, David Lomet, Sudipta Sengupta,
Ryan Stutsman, and Rui Wang. High performance trans-
actions in Deuteronomy. In Proceedings of CIDR, 2015.

[47] Justin J. Levandoski, David B. Lomet, and Sudipta Sen-
gupta. The Bw-Tree: A B-tree for new hardware plat-
forms. In Proceedings of ICDE 2013, 2013.

[48] Hyeontaek Lim, Bin Fan, David G Andersen, and
Michael Kaminsky. SILT: A memory-efficient, high-
performance key-value store. In Proceedings of OSDI,
2011.

[49] Hyeontaek Lim, Michael Kaminsky, and David G An-
dersen. Cicada: Dependably fast multi-core in-memory
transactions. In Proceedings of SIGMOD, 2017.

[50] Lanyue Lu, Thanumalayan Sankaranarayana Pillai,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. WiscKey: Separating keys from values in
SSD-conscious storage. In Proceedings of FAST, 2016.

[51] Darko Makreshanski, Jana Giceva, Claude Barthels, and
Gustavo Alonso. BatchDB: Efficient isolated execu-
tion of hybrid OLTP+ OLAP workloads for interactive
applications. In Proceedings of SIGMOD, 2017.

[52] Yandong Mao, Robert Morris, and Frans Kaashoek. Op-
timizing mapreduce for multicore architectures. Techni-
cal report, Technical Report MIT-CSAIL-TR-2010-020,
MIT, 2010.

[53] Virendra Marathe, Achin Mishra, Amee Trivedi, Yihe
Huang, Faisal Zaghloul, Sanidhya Kashyap, Margo
Seltzer, Tim Harris, Steve Byan, Bill Bridge, and Dave
Dice. Persistent memory transactions (arXiv), 2018.

[54] Shuai Mu, Sebastian Angel, and Dennis Shasha. De-
ferred runtime pipelining for contentious multicore soft-
ware transactions. In Proceedings of EuroSys, 2019.

[55] Thomas Neumann, Tobias Mühlbauer, and Alfons Kem-
per. Fast serializable multi-version concurrency control
for main-memory database systems. In Proceedings of
SIGMOD, 2015.

[56] Oracle. Oracle essbase. https://www.oracle.com/
business-analytics/essbase.html, 2020.

[57] Anastasios Papagiannis, Giorgos Saloustros, Pilar
González-Férez, and Angelos Bilas. Tucana: Design and
implementation of a fast and efficient scale-up key-value
store. In Proceedings of USENIX ATC, 2016.

440 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/rescrv/HyperLevelDB
https://github.com/rescrv/HyperLevelDB
https://www.iccube.com/
https://www.iccube.com/
https://www.oracle.com/business-analytics/essbase.html
https://www.oracle.com/business-analytics/essbase.html

[58] Anastasios Papagiannis, Giorgos Saloustros, Pilar
González-Férez, and Angelos Bilas. An efficient
memory-mapped key-value store for flash storage. In
Proceedings of SoCC, 2018.

[59] Percona. Tokumx. https://www.percona.com/
software/mongo-database/percona-tokumx,
2018.

[60] Hasso Plattner. A common database approach for OLTP
and OLAP using an in-memory column database. In
Proceedings of SIGMOD, 2009.

[61] Dan R. K. Ports, Austin T. Clements, Irene Zhang,
Samuel Madden, and Barbara Liskov. Transactional
consistency and automatic management in an applica-
tion data cache. In Proceedings of OSDI, 2010.

[62] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Li-
dong Zhou. Transactional flash. In Proceedings of
OSDI, 2008.

[63] Iraklis Psaroudakis, Florian Wolf, Norman May, Thomas
Neumann, Alexander Böhm, Anastasia Ailamaki, and
Kai-Uwe Sattler. Scaling up mixed workloads: a battle
of data freshness, flexibility, and scheduling. In Technol-
ogy Conference on Performance Evaluation and Bench-
marking (TPCTC), 2014.

[64] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. PebblesDB: Building key-value
stores using fragmented log-structured merge trees. In
Proceedings of SOSP, 2017.

[65] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson.
SlimDB: A space-efficient key-value storage engine for
semi-sorted data. Proceedings of VLDB Endowment,
10(13), 2017.

[66] Yair Sovran, Russell Power, Marcos K. Aguilera, and
Jinyang Li. Transactional storage for geo-replicated
systems. In Proceedings of SOSP, 2011.

[67] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xue-
dong Chen, Mitch Cherniack, Miguel Ferreira, Edmond
Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat
O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-
Store: A column-oriented DBMS. In Proceedings of the
VLDB Endowment, 2005.

[68] Sriram Subramanian, Swaminathan Sundararaman,
Nisha Talagala, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Snapshots in a flash with
IoSnap. In Proceedings of EuroSys, 2014.

[69] Yihan Sun, Guy E Blelloch, Wan Shen Lim, and Andrew
Pavlo. On supporting efficient snapshot isolation for

hybrid workloads with multi-versioned indexes. Pro-
ceedings of the VLDB Endowment, 13(2), 2019.

[70] Adriana Szekeres, Michael Whittaker, Naveen Kr.
Sharma, Jialin Li, Arvind Krishnamurthy, Dan Ports,
and Irene Zhang. Meerkat: Scalable replicated trans-
actions following the zero-coordination principle. In
Proceedings of EuroSys, 2020.

[71] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng
Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete
Wyckoff, and Raghotham Murthy. Hive: a warehousing
solution over a map-reduce framework. Proceedings of
the VLDB Endowment, 2(2), 2009.

[72] TPC-C. TPC-C, an on-line transaction processing bench-
mark. http://www.tpc.org/tpcc/, 1992.

[73] Python TPC-C. https://github.com/apavlo/
py-tpcc, 2019.

[74] TPC-H. TPC-H a decision support benchmark. http:
//www.tpc.org/tpch/, 2018.

[75] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 18–32, 2013.

[76] Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang,
Navid Yaghmazadeh, Lorenzo Alvisi, and Prince Maha-
jan. Salt: Combining ACID and BASE in a distributed
database. In Proceedings of OSDI, 2014.

[77] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srini-
vas Devadas. Tictoc: Time traveling optimistic concur-
rency control. In Proceedings of SIGMOD, 2016.

[78] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan RK Ports. Building con-
sistent transactions with inconsistent replication. ACM
Transactions on Computer Systems (TOCS), 35(4), 2018.

[79] Xiaozhou Zhou, Zhaoguo Wang, Rong Chen, Haibo
Chen, and Jinyang Li. Extracting more intra-transaction
parallelism with work stealing for oltp workloads. In
Proceedings of the Asia-Pacific Workshop on Systems,
2017.

[80] Xiaowei Zhu, Guanyu Feng, Marco Serafini, Xiaosong
Ma, Jiping Yu, Lei Xie, Ashraf Aboulnaga, and Wen-
guang Chen. LiveGraph: A transactional graph storage
system with purely sequential adjacency list scans. Pro-
ceedings of the VLDB Endowment, 13(7), 2020.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 441

https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
http://www.tpc.org/tpcc/
https://github.com/apavlo/py-tpcc
https://github.com/apavlo/py-tpcc
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

Serving DNNs like Clockwork: Performance Predictability from the BottomUp

Arpan Gujarati∗ Reza Karimi∗
Max Planck Institute for Software Systems Emory University

Safya Alzayat Wei Hao
Max Planck Institute for Software Systems Max Planck Institute for Software Systems

Antoine Kaufmann Ymir Vigfusson
Max Planck Institute for Software Systems Emory University

JonathanMace
Max Planck Institute for Software Systems

Abstract
Machine learning inference is becoming a core building block
for interactive web applications. As a result, the underlying
model serving systems on which these applications depend
must consistently meet low latency targets. Existing model
serving architectures use well-known reactive techniques
to alleviate common-case sources of latency, but cannot
effectively curtail tail latency caused by unpredictable
execution times. Yet the underlying execution times are not
fundamentally unpredictable—on the contrary we observe
that inference using Deep Neural Network (DNN) models has
deterministic performance.

Here,startingwith thepredictable execution timesof individ-
ualDNN inferences,we adopt a principleddesignmethodology
to successively build a fully distributed model serving system
that achieves predictable end-to-end performance. We eval-
uate our implementation, Clockwork, using production trace
workloads, and show that Clockwork can support thousands
of models while simultaneously meeting 100ms latency tar-
gets for 99.9999% of requests. We further demonstrate that
Clockwork exploits predictable execution times to achieve
tight request-level service-level objectives (SLOs) as well as a
high degree of request-level performance isolation.

1 Introduction
With the proliferation of machine learning (ML), model
inferences are now not only commonplace but increasingly on
the critical path of web requests [29,71]. Inference requests are
handled by underlying model serving services [16, 26, 51, 58]
responsible for supporting scores of different pre-trainedML
models (including personalized models and experimental
A/B tests), ideally at low latency, high throughput, and low
cost. These are demanding goals to meet at scale—Facebook
alone serves over 200 trillion inference requests each day [48].
Furthermore, at least 100 companies are creating hardware
chips for accelerated ML inference [48], which underscores
the high stakes in this industry.

* Equal contribution

Yet significant software bottlenecks continue to hamper the
efficient utilization of hardware accelerators, such as GPUs,
for high-performance model serving. Consider an inference
request passing through a model serving system. The request
has an inherent deadline after which the answer ceases to
be useful to the end-user, and so the system should seek to
bound the latency of the request, or even provide service level
objectives (SLOs) for consistently achieving low tail latency.
The canonical approach for building such a low-latency system
is to reduce potential wait times for resources through over-
provisioning, since a larger pool of available resources makes
it more likely to find a resource on which a pending request can
be immediately scheduled. Increased resource provisioning,
however, comes at the expense of efficiency and utilization.

Existing systems fundamentally assume that the constituent
system components have unpredictable latency perfor-
mance [16,58]. Moreover, the best-effort techniques employed
to tolerate such variability, such as fair queuing, further cascade
the unpredictability to other system components and propagate
tail latency to higher layers.While some performance volatility
of a model serving system is due to external factors, such as a
bursty or skewedworkload,much variability in execution times
stems from design decisions internal to the service, ranging
from caching decisions over conditional branching behavior to
concurrency from other processes, the OS, and the hypervisor.
The challenge, then, is to tame the internal unpredictability.

In this paper, we present the design and implementation
of Clockwork, a distributed system for serving models with
predictable performance. With an explicit focus on the
ubiquitous deep neural network (DNNs) architectures we first
show that DNN inference is fundamentally a deterministic
sequence of mathematical operations that has a predictable
execution time on a GPU. To leverage this observation in
designing a responsive model serving system, our approach is
to preserve predictability wherever possible by consolidating
choice: eschewing reactive and best-effort mechanisms
and centralizing all resource consumption and scheduling
decisions. Clockwork will only execute an inference request
if it is confident that the request can meet its latency SLO. To

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 443

support such proactive scheduling, Clockwork is composed of
workers that each handle one or more GPUs, and a centralized
controller that schedules requests. Each Clockwork worker,
responsible for the exclusive model loading and inference
execution on the GPUs, achieves predictable performance. If a
worker cannot execute a particular schedule, because of exter-
nal factors, the request is immediately aborted and the worker
resumes execution of the next request at the specified time. The
Clockwork controller manages the resources of each worker
and maintains a minimal advance schedule for the worker’s
operations, including model placement and replication.
We have implemented Clockwork in C++ and evaluated it

using a wide range of DNNmodels on production workload
traces. In comparison to Clipper [16] and INFaaS [58], two
prior model serving systems, Clockwork more effectively
meets latency goals while providing comparable or better
goodput. Clockwork more effectively shares resources
between different models, and scales to thousands of models
per worker. For realistic workloads comprising unpredictable,
bursty, and cold-start clients, Clockwork consistently meets
low-latency response times of under 100ms.

The main contributions of this paper are as follows:
• We demonstrate that predictability is a fundamental

trait of DNN inference that can be exploited to build a
predictable model serving system.

• We propose a system design approach, consolidating
choice, to preserve predictable responsiveness in a
larger system comprised of components with predictable
performance.

• We present the design and implementation of Clockwork,
a distributed model serving system that mitigates tail
latency of DNN inference from the bottom up.

• We report from an experimental evaluation on Clockwork
to show that the system supports thousands of models
concurrently per GPU and substantially mitigates tail
latency, even while supporting tight latency SLOs.
Clockwork achieves close to ideal goodput even under
overload, with unpredictable and bursty workloads, and
with many contending users.

2 Background andMotivation
The state of machine learning. The meteoric rise of
applications driven by machine learning (ML), ranging
from computer vision [28, 78] to ad-targeting [3, 17] to
virtual assistants [13, 64], has prompted significant interest
into making both ML training and inference faster. These
efforts have targeted the underlying ML models, hardware
accelerators, and software infrastructure. Chief among the ML
modeling approaches are deep neural networks (DNNs),which
are composed of multiple layers of artificial neurons tuned
through non-linear convolution and pooling operations [25].

A plethora of specialized hardware are being developed and
deployed for ML training and inference [48], such as ASIC
and FPGA chips, Google’s TPUs [41], and Facebook’s Big

ML Applications

ML Data Sets
ML Models
ML Frameworks
Graph Formats
Graph Compilers
Optimized Libraries
Operating Systems
Hardware

ONNX NNEF

TVM nGraph Glow XLA

Linux Android Windows BSD/OS-X RTOS

CUDA MKL DNN OpenBLAS CuBLAS Eigen

ImageNet COCO VOC KITTI WMT

Tensor-Flow PyTorch Caffe MXNet CNTK Theano

ResNet GoogLeNet SqueezeNet MobileNet SSD GNMT

GPU CPU TPU NPU DSP FPGA Accelerators

Computer
Vision

Speech
Recognition

Language
Translation

Autonomous
Driving

Recommender
Systems

Fraud
Detection Advertising

Narrow Waist

Fig. 1: Model serving targets the narrow waist of the ML software
stack (adapted from Reddi et al. [48]). Clockwork targets the shaded
blocks on the left.

Basin [29] chips. The dominant machine learning hardware
in data centers, however, is the GPU, representing a third of
the global market in 2020 [5], and will be our focus here.
Interposed between the emerging DNN applications

and hardware accelerators, an ecosystem of ML software
frameworks is flourishing. Fig. 1 displays several prominent
projects in today’s ML software stack. Layered protocol
stacks in complex systems and competitive environments
tend to evolve into hourglass-shaped architectures [4]. We
are witnessing the ONNX and NNEF graph exchange formats
for DNNs [49,52] emerging as the “narrow waist” of the ML
stack, acting as an interface between high-level ML model
development and low-level software and hardware concerns.
Model serving. Operators increasingly deploy machine
learning on the critical path of nascent interactive applica-
tions [71]. This has elevated machine learning inference to
separate, managedmodel serving services [16,26,58]. From
the vantage point of an operator, the model serving users (cus-
tomers or internal applications) upload their pre-trained DNN
ahead of time (the natural format for which is ONNX/NNEF).
Their applications can then submit inference requests to an
API. The model serving back-end manages the users’ models
and the hardware accelerator resources, and provides timely
responses to inference requests. Upon receiving an inference
request, it loads the appropriate model into hardware if not
already loaded, runs the DNN on the input, and returns the
resulting output to the user.Model serving has similar concerns
to other datacenter services [2]: it multiplexes workloads of
different users concurrently and load balances requests across
multiple workers and GPU hardware accelerators.
Low-latency inference. Model serving users require a
timely response to their queries. Most cloud and data center
services have service-level objectives (SLOs) that codify the
performance that clients can expect from the service [40].
The most common type is a latency SLO, which specifies
the service’s acceptable request latencies, typically on the
order of milliseconds [14, 32, 41]. For example, a latency SLO
might specify a 10ms average response time, or a 40ms 99th
percentile response time, or both. If a service fails to meet its
SLOs – for example, by being too slow for too many requests
– the service provider may risk a penalty.

Model serving further operates under hard cost constraints.
SpecializedML hardware is necessary to achieve interactive

444 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

latencies [41], but it is comparatively expensive to procure and
operate, and must thus be used efficiently [60, 65]. Existing
model serving systems achieve efficient inferences for specific
heavily usedmodels by dedicating them entire GPUs and using
copious batching [41]. However, many use cases cannot justify
dedicated hardware resources: applications with insufficient
request volume; specialization (e.g. location-specific search or
language-to-language translation); and experimentation (e.g.
retrained models and A/B testing) [63]. Efficiently serving
models with low request rates requires a large number of
models to share accelerators; no existingmodel serving system
supports this.
While it is already difficult for model serving operators

to meet latency SLOs under these constraints, the bigger
challenge lies in minimizing tail latency, the insidious bane
of interactive performance. Numerous sources of latency
variability in complex individual [46] and distributed [18, 56]
systems have been identified and studied, including out-of-
order scheduling, interference from concurrency, power saving
modes, and network queuing delays.
The crux of tail latency lies in performance variability

of both the constituent system/network components and the
encompassing architecture. To tame it, the system designer
can either seek to (quoting Dean and Barrosso [18]) “create
a predictably responsive whole out of less-predictable parts”,
or to expend significant effort to systematically unshroud
and mitigate the performance variability of these underlying
components. To meet tight tail-latency SLOs under resource
constraints, the latter approach is necessary.
Observation:DNN inference is predictable. Weobserve
that DNN executions exhibit negligible latency variability,
a result both intuitive in concept—DNN inferences involve
no conditional branches — and demonstrable in practice.
Although we describe our observations in the context of GPU
execution, they extend to other accelerators such as TPUs, and
also to CPU execution where appropriate.
Conceptually, a DNN inference is a fully deterministic ex-

ecution. Each DNN inference request carries a fixed-size input
tensor argument; in practical terms this is a statically-sized
array of bytes. A worker receives this input over the network
into main memory. To execute on a GPU, the input is copied
frommain memory to GPUmemory over the PCIe intercon-
nect. The DNN is then executed on the GPU. Abstractly, a
DNN is a pre-defined sequence of tensor multiplications and
activation functions. Concretely, the DNN code applies these
operations to the input tensor one-at-a-time to transform the
input into an output. DNN code lacks conditional branching;
input choices such as batching size and RNN sequence length
are specified ahead of time as parameters. The output is also
a statically-sized array of bytes, and it is copied from GPU
memory back to main memory over the PCIe interconnect.
We compiled ResNet50v2 [78] with TVM 0.7 [15] and

executed 11million inferences in isolation on a state-of-the-art

0
90
99

99.9
99.99

99.999

2.895 2.900Latency (ms)

Per
cen

tile

(a) CDF of 1-thread latency

0

100

200

300

400

500

1 2 4 8 16
Concurrency

Th
rou

gh
pu

t(r
/s)

1

10

100

1 2 4 8 16
Concurrency

La
ten

cy
(m

s)

(b) Inference throughput and latency.
Whiskers showmin and max.

Fig. 2: Inference is predictable in isolation (left). Running
inferences concurrently gains up to 25% throughput (middle), at
a cost of substantially increased latency variability (right) due to
interleaved GPU and OS executions.

NVIDIA Tesla v100 GPU using random inputs and batch size
1. Wemeasured the latencies of each inference and show the
median and high-percentile latencies in Fig. 2a. The 99.99th
percentile latency was within 0.03% of the median latency.

IfDNNexecution times can bemeasured and then accurately
predicted for future inferences on that model, the next question
is whether a distributed model serving system can preserve
the predictable responsiveness of the core inference execution.
3 Predictable Performance
To build a responsive system through principled design, we
further study the factors that can cause or amplify performance
variability. Importantly, components at any level of themodern
system stack can contribute to variable request latency,whether
at the application layer, in the operating system, or even in the
hardware [46]. Network effects and workload fluctuations add
two more sources of unpredictability to distributed systems.
The whole is more than the sum of its parts. The overall
system performance variability is primarily governed by how
the system is assembled from its constituent components. We
can handle variable latency of a software component in several
ways. First, we can ignore the problem and allow the volatility
to propagate to later requests or percolate to other components
of the system. Even performance-conscious code that is
optimized to improve throughput or average latency does not
fix tail latency [19]. An example of this contagiousness of
unpredictability, known as the “straggler” problem in data
analytics frameworks [7, 56], is when a worker executes a re-
quest that takes unusually long and the other requests that were
enqueued on the worker in the meantime then incur the extra
delay from the unexpected wait-time. Ignoring the variability
can further compound the problem across the system, such
as when the request handler itself has variable latency [69].
Second, we can mitigate the volatility by ensuring all

requests match the worst-case latency, thus exchanging lower
resourceutilization forpredictability—often a steeppricewhen
worst-case latency is significantly higher than the median.

Third, we can minimize variability by expending more
resources, again in trade for lower utilization. Some networked
systems,for instance,aredesignedtosubmit the same jobtomul-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 445

tiple workers in parallel and then to cancel unneeded jobs upon
successfully receiving a result from the fastest worker [18].
Fourth, upon detecting an unusual delay, we can notify a

feedback mechanism to adjust the environment to lower the
impact on future requests. Such “best-effort” methods are
typically reactive and aimed at longer-term effects, such as
by temporarily adding more resources (auto-scaling [23]),
throttling requests, or balancing load.
Consolidating choice. We take a fundamentally different
approach: designing a predictable system from the bottom
up. Our strategy is to restrict the choices available to lower
system layers as much as possible—a philosophy based on our
observation thatwhen executing an essentially predictable task,
performance variability only arose when a lower layer in the
systemwas given choices regarding how to execute its task. Ex-
amples from all layers of the systems stack abound, including:

• Hardware level:when a GPU is passed multiple CUDA
kernels to execute in parallel, the GPU has the choice
of how to allocate resources, including execution units
and memory bandwidth, between kernels. The GPU
makes these choices based on its internal state and
undocumented, proprietary policies.

• OS level: when we create multiple threads that the
operating system can execute on the same core, the OS
has the choice of what threads to execute when, based
on internal scheduling policies and state.

• Application level: when the worker processes of a
distributed application each manage their own cache
independently, the workers have the choice of what to
cache and for how long, leading to unpredictable hit
rates and latency variability [38]; similarly, when worker
processes implement their own thread pools and queuing
policies, they have the choice ofwhich requests to execute
first, leading to unpredictable queuing times.

Fig. 2b illustrates this: a standard design for building a worker
would use thread pools serving inference requests in parallel
to saturate the GPU.While concurrent threads indeed increase
inference throughput by up to 25%, the factors above cause
tail latency to increase by 100×.
Our approach is to consolidate choices in the upper layers:

once a layer implements choices for lower layers based on inter-
nal state, it forces the lower layer to follow a narrow path of pos-
sible executions, causing the performance of the resulting layer
to be nearly deterministic. The upper layer can then sufficiently
predict the performanceof the lower layers and reasonwith fore-
sight about resource utilization and the anticipated execution
times for all requests. The price of this strategy, however, is a
tighter coupling of components and a lessmodular architecture.
Imperfect predictability. Notably, we can consolidate
choice without requiring perfect predictability. Real systems
will retain some unpredictable components, such as managing
CPU caches or workload shifts, even after consolidating
choices in its upper layers. Instead, the chief goal of concentrat-

ControllerUsers
À Á

Worker
RAM

GPU Mem
GPU Exec

Â

Ã

Workers

C
lie

nt
AP

I

Fig. 3: Clockwork comprises multiple Workers and a centralized
Controller. Models () reside on Workers; inference requests are
queued and scheduled centrally on Clockwork’s Controller. See §4.1
for a detailed description.

ing these choices is tomakepredictable executions the common
case. This frees us from implementing best-effort mechanisms
to tolerate the occasional, rare instance of unpredictability;
instead unpredictability can be directly treated as an error.
4 Design
By recursively restricting choice from lower layers, we
converge on a design where the most performance-critical
execution choices are made in the topmost layer. In the context
of a model serving service, this process converges to an
architecture, which we call Clockwork, with a centralized
controller and workers with predictable performance.
4.1 Overview
Architecture. Fig. 3 illustrates Clockwork’s architecture.
Users submit inference requests (À)which are queued centrally
on Clockwork’s controller. Each worker has a set of DNN
models () loaded into RAMandmaintains exclusive control
over one or more GPUs. The centralized scheduler has a global
view of system state, including all workers, and decides when
to execute each request (Á). To execute a request, the scheduler
explicitly decides when to load models into GPUmemory (Â)
and when to execute requests on the GPU (Ã). At any time, the
scheduler makes accurate, high-quality caching, scheduling,
and load balancing decisions. The controller can perform these
actions proactively because execution on workers is highly
predictable. The controller transmits continual scheduling
information to the workers that, by design, will execute
schedules exactly as directed.
Illustrative example. To elucidate the Clockwork archi-
tectural components with more detail, including the choices
that were consigned to the controller, consider the key steps
for serving the inference requests illustrated in Fig. 4.

À Upon receiving an inference request r1 for model , the
controller is aware that a target worker has yet to copy the
model weights from RAM into GPUmemory. It estimates the
time required to load the model weights (LOAD), plus the time
to subsequently execute the inference (INFER), and concludes
that the request will complete within its specified SLO. The
controller instructs the worker to copy the model weights to

446 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Controller

Queue
LOAD
INFER

r1

r1

À request for model arrives
r1 deadline

Controller
Worker

Queue
LOAD
INFER

LOAD

r1
r2

r1
r2

Á request for model arrives

Controller
Worker

Queue
LOAD
INFER

LOAD
INFER

r1
r3

r1
r1r3

r2

Â request for model arrives

r1 deadline

Controller
Worker

Queue
LOADINFER
LOAD
INFER

r4

r4

r2 r1r3

Ã request for model arrives

r4 deadline

Fig. 4: Timeline of four illustrative inference requests.

GPUmemory via a LOAD action. Since the controller is aware
of all timings, it does not yet need to submit the subsequent
INFER action until the LOAD has completed.

Á While is loading, a request r2 for model arrives. The
controller is aware that, unlike , is already loaded into
GPU memory. The controller can choose to either INFER r2immediately, or wait for to complete loading then INFER
r1. Since the worker would be otherwise idle, the controllerinstructs the worker to execute the inference for r2 immediately
via an INFER action.

Â Clockwork workers only execute one INFER action and
one LOAD action at a time, so the controller can wait until r2has nearly completed before submitting an INFER action for
r1. In the meantime, another request r3 for model arrives.
This gives the controller a choice between INFER for r1 byitself, or to batch r1 and r3. Batched execution is more efficient,
but takes longer. In this case a batched INFER action will still
complete before r1’s deadline, so the controller instructs theworker to batch the inferences for r1 and r3.

Ã While r1 and r3 execute, a request r4 for arrives with a
tight SLO. The controller is aware that r4 will miss its deadline,
even if it executes immediately after the worker becomes free.
The controller does not proceed to schedule an INFER action,
and cancels the request before performing any fruitless work.
Each step of the above execution is fast, e.g. for ResNet50,

LOAD and INFER take approximately 8ms and 3ms respec-
tively. Table 1 outlines representative measurements for 8 of
the 61 models used for Clockwork experiments.

4.2 Consolidating Choice
Our design consolidates choice in three main ways. First,
changes in the worker’s state, for instance evicting a DNN
fromGPUmemory, can influence the performance for future
requests in a way that makes performance estimation complex.
We therefore require that no worker operation should have im-
plicit performance side-effects on any future operation. Second,
we must ensure that a predictable component either delegates
scheduling decisions that may impact performance to the cen-
tralized controller, or otherwisemakes schedules deterministic.
Third, when a predictable component is unable to execute a
schedule as instructed, it is treated as an error to enable workers
to get back on schedule. Workers do not attempt best-effort
remediation, so as to avoid a cascade of mispredictions.
We enforce these three properties in Clockwork through

an action command abstraction between the controller
and workers that, in lieu of traditional RPC calls, either
communicates a change in a worker’s state or a task for a
worker to execute. Each action the controller issues to a worker,
such as LOAD and INFER, has predicted execution time and
a designated execution window. These are derived using the
known state of the worker, previously submitted actions, and
known transitions in controller-maintained worker state.
4.3 Challenges for Predictable Inference
Toconsolidate choicewemustfirst identifywhereperformance-
critical choices arise in system components. We have estab-
lished that DNN inference itself on a GPU has deterministic
performance; we next study the challenges in extending this
result to a full-fledged inference system.
Managed memory and caches can be unpredictable (C1).
RAM and GPU memory on a worker constitute state that
impacts the performance of future requests. Additionally,
some memory allocators exhibit variable timing for allocation
and deallocation requests due to internal trade-offs between
memory fragmentation and amortized performance. Memory
that is used as a cache specifically introduces performance
variability between cache hits and misses, with an internal
cache replacement policy influencing performance of future
items. To maintain predictability, we must instead consolidate
choice by managing cache admission and eviction for each
worker at the central controller. Fortunately, caching of DNN
weights is coarse-grained and per-model.
Hardware interactions can be unpredictable (C2).
Many system resources are implicitly administered by
hardware schedulers that operate at very fine time-scales and
produce different schedules under even minute shifts in the
arrival times of other requests. The volatility of timing coupled
with proprietary and un-documented scheduling policies make
it onerous to accurately predict completion times for concurrent
requests. The remedy for non-determinism is to strip away
the ability for schedulers to reorder requests by forcing only
a single request to be executed at a time, at the cost of spending

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 447

Model Family Model IO Size (kB) Weights GPU Execution Latency (ms)
Input Output Size (MB) Transfer (ms) B1 B2 B4 B8 B16

DenseNet [36] densenet169 602 4 56.5 4.50 5.18 6.29 8.57 12.82 21.85
Inception v3 [68] inceptionv3 1073 4 95.3 7.77 4.46 6.85 10.99 16.45 26.17
Mobile Pose [72] mobile_pose_mobilenetv3 590 209 19.0 1.55 1.29 1.92 3.13 5.71 11.62

ResNet [30]
resnet18 602 4 46.7 3.81 1.27 1.86 2.73 4.06 7.02
resnet50 602 4 102.3 8.33 2.61 3.78 5.61 9.13 15.67
resnet152 602 4 240.9 19.58 7.71 11.14 16.21 26.48 44.60

Table 1: Measurements of a representative subset of the 61 models used for Clockwork experiments. Pre-trained models were sourced from
the ONNXModel Zoo [53] and the GluonCVModel Zoo [28], and optimized for NVIDIA Tesla v100 GPUs using TVM v0.7 [15].

greater effort on keeping the resource fully utilized.Mercifully,
one-at-a-time execution of DNN inferences on GPUs has
closely comparable throughput to concurrent execution
(Fig. 2b) and many classes of DNNs (e.g. convolutional neural
networks) can saturate GPUs with small batch sizes.
External factors can trigger performance variance (C3).
Even after systematically removing the key internal sources
of unpredictability by consolidating choice, there will always
remain external sources outside of the controller’s purview.
These include performance interference through shared
network bottlenecks, thermal throttling of CPUs and GPUs,
and others. The only option is to minimize their effects by
building sufficient tolerance into the system.
4.4 Predictable DNNWorker
At a high-level,ClockworkworkersmaintainDNNs inmemory
and execute inference requests on one or more GPUs. The
workers interface with the controller to receive actions.
Memorymanagement. Model weights must be present in
GPUmemory to execute an inference. However, GPUmemory
capacity is small (≤32GB) relative to host memory (≤4TB),
and host-to-GPU memory transfers (≈8.3ms for ResNet50)
typically take longer than running the DNN inference on the
GPU (≈2.9ms). Consequently, Clockwork treats GPUmemory
as a cache, letting commonly or recently used models avoid
expensive loads. To overcomeC1, workers explicitly expose
LOAD and UNLOAD actions to the controller for copying
models to and removing models from worker’s GPUmemory
with deterministic latency. These actions also update the state
that the controller tracks for the worker.
Inference execution. The controller only sends an INFER
action when a model is present in GPUmemory or a LOAD ac-
tion will momentarily complete. The worker internally divides
INFER actions into three steps. First, INPUT transfers the input
vector from host to GPU memory. Next, EXEC performs the
actual heavy-weight DNNGPU calculations, which dominate
the total inference time. Finally,OUTPUT transfers the resulting
output vector from the GPU back to host memory. These steps
may coincide: the previous request’s outputs can be copied at
the same time as the current request’s input is being transferred.
However, multiple concurrent EXEC calls cause the GPU
hardware scheduler to behave unpredictably (C2). Fortunately,

a DNN inference call by itself can efficiently utilize the GPU
while also restricting the hardware scheduler to a single,
predictable option (Fig. 2b). Clockwork workers therefore
run a single EXEC at a time, a design choice that reduces
performance variability by two orders of magnitude while
only minimally decreasing inference throughput (Fig. 2b).
Interfacewith the controller. Clockworkworkers receive
LOAD, UNLOAD, and INFER actions from the controller with
detailed timing expectations attached:
type INFER, LOAD, or UNLOAD
earliest the time when this action may begin executing
latest when this action will be rejected
Rather than executing actions in a work-conserving, best-

effort manner, workers strictly follow the schedule of actions
imposed by the controller. The controller communicates
two timestamps with every action, earliest and latest,
to designate a time interval during which the worker may
begin executing the action. Actions that cannot start within
the prescribed window are cancelled and never executed.
This allows workers to quickly get back on schedule after an
individual action is delayed unexpectedly (C3) by skipping
one or more actions, minimizing the impact of the delay on
other actions. Workers communicate the result of each action
back to the controller, including whether the command was
successful and the measured execution time.
4.5 Central Controller
All decision-making in Clockwork occurs in the central
controller. The controller receives inference requests from
users and decides worker actions while striving to meet SLOs.

Modelingworkerperformance. Thecontrollermaintains a
per-worker,per-modelperformanceprofilecomprisingprocess-
ing time measurements of recent requests; profiles are updated
continuously to tolerate shifts due to external factors (C3). The
controller also tracks the outstanding actions andmemory state
at every worker. Since actions have inherently deterministic la-
tency by design, the controller can deduce the earliest time that
a worker could begin executing a new action (queuing time).

Action scheduler. The Clockwork controller proactively
manages action schedules for workers. It utilizes a global view

448 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of system requests, up-to-date worker performance profiles,
and accurate predictions for when outstanding actions will
complete. The controller attempts to pack worker schedules
tightly by making narrow, realistic estimates for the earliest
and latest time interval. The interval width balances a trade-
off between Clockwork SLO fulfillment and system goodput.
On one hand, making the interval too narrow increases the risk
of an action not being executed by a worker because it could
not be completed in time (C3), potentially triggering an SLO
violation. On the other hand, underestimating the window
length can create periods of inactivity and decrease worker
utilization, thus affecting Clockwork goodput.
The scheduler lazily decides which worker should execute

the inference. The controller only submits a minimal amount
of work to keep workers utilized; it is in no hurry to commit
because it can accurately predict action timings. Delaying
choices on the controller improves schedules by providing
more options, permitting the Clockwork controller to re-order
and batch inference requests to the same model, significantly
improving resource efficiency and throughput.
In our design, any worker can process any request since

they all store every model in host memory; however, workers
have different sets of models loaded into their GPUmemory.
A worker that executes only cold inferences must transfer
weights for each model from host memory to the GPU and
may saturate the available PCIe bandwidth, whereas a worker
that executes only hot inferences may be bottlenecked by the
GPU. The Clockwork scheduler balances load by mixing and
matching hot and cold inferences among all workers.
5 Implementation
Clockwork’s implementation, comprising 26KLOC of
C++, contains various decisions that enable Clockwork to
consolidate choice on its controller.
5.1 Models

Predictable model execution. Prior model serving sys-
tems such as Clipper [16] and INFaaS [58] act as orchestration
layers atop existing model execution frameworks such as
TensorFlow [1] and TensorRT [50]. This decoupling makes
it difficult to consolidate choice, since the model execution
frameworks encapsulate scheduling and memory management
decisions that we wish to make with Clockwork. Instead,
Clockwork implements its own model runtime, reusing key
components of the TVM optimizing compiler [15]. Clock-
work’s model runtime enables fine-grained control over each
stageofamodel’s execution. FormodelsprovidedtoClockwork
(e.g. inONNX form),we compile a binary representation using
TVM and postprocess the model to produce the following:

• Weights: A model’s weights are a binary blob (10s to
100s of MB (cf. Table 1).

• Kernels:The CUDA kernels that execute a model (10s to
100s of kB). These are not provided by the user; they are
derived from the abstract model definition, and kernels

from different users can safely execute within the same
process. Clockwork uses the kernels compiled by TVM.
Clockwork compiles kernels for multiple configurable
batchsizes; bydefault1,2,4,8,and16.Kernels fordifferent
batch sizes can use the sameweightswithoutmodification.

• Memorymetadata:At runtime, models do not directly
allocate memory; instead, Clockwork will pre-allocate
and manage all GPUmemory and pass pointers as argu-
ments to function calls. The memory requirements for a
modelare static,andClockworkprecalculates the required
workspace memory and offsets required for each kernel.

• Profiling data:Clockwork runs a brief profiling step to
produce a seed estimate for model execution times.

Model loading. Models are stored in an efficient serialized
form on disk. Clockwork workers pre-load models from
disk into main memory on worker startup. For the worker
machines used in our evaluation, 768GB RAM can support
thousands of models (cf. §6.5). Once a model is in main
memory, Clockwork extracts and links the CUDA modules
needed for its execution. To improve predictability, Clockwork
disables JIT compilation and the caching of CUDA kernels.
5.2 DNNWorkers
Each machine runs one worker process that receives and
executes actions from Clockwork’s controller. We do not run
Clockwork in a container or VM to avoid the performance
interference such sharing can impose.
Managing model weights in memory. Clockwork pre-
allocates all GPUmemory and divides it into three categories:

• Workspace: Models require a variable amount of
GPU memory for intermediate results. This memory
is transient and only needed during execution; once
an output has been produced, it is no longer needed.
Clockwork only executes models one-at-a-time, so it
allocates 512MBworkspace memory.

• IOCache: Although Clockwork only executes models
one-at-a-time, Clockwork asynchronously copies inputs
to theGPUprior to execution, and outputs to hostmemory
after execution. Clockwork allocates 512MB device
memory for temporary storage of inputs and outputs
before and after execution.

• PageCache: The remaining device memory is used
for storing model weights, divided into 16MB pages.
Multiple tensors can occupy the same 16MB page and
the mapping of tensors to pages is determined statically
at model-compile time. At runtime, page pointers are
passed as kernel arguments and tensors are read from
pre-defined offsets.

Clockwork’s PageCache has several advantages. First,
avoiding repeated memory allocation calls leads to more
predictable executions, since memory allocation can be an
unpredictable source of overheads (C1). Second, paging
simplifies choice: external memory fragmentation issues are

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 449

eliminated, and the controller need only track the number of to-
tal free pages to completely capture the worker’s memory state.
Paging slightly increases memory utilization; however, model
memory requirements are static and known ahead of time, and
can be bucketed on to pages to reduce internal fragmentation.
Paging does not affect the latency of memory transfers.
Actions. To orchestrate workers, the controller uses the pre-
viously described action abstraction. Actions contain a unique
id and an action-dependent payload (e.g. INFER inputs).
Eachworker runs a dedicated executor for each action type and
each worker-GPU. An executor runs a thread that dequeues
actions chronologically by earliest timestamp, and waits
until earliest is reached before proceeding with an action.
Executors reject actions whose latest timestamp has passed.
To reduce interference between threads and other processes,
each executor is pinned to a dedicated core and runs at real-time
priority. Both INFER and LOAD execute asynchronous work
in their own CUDA streams. Each executor is bottlenecked by
a different resource (e.g.GPU execution and PCIe transfers)
and can run concurrently with negligible interference.
Results. A network thread maintains a persistent con-
nection with the controller for receiving actions and sending
results. A result comprises the following:
status success or an error code
timing start and end times, and on-device execution

duration for any asynchronous work
LOAD actions acquire pages from the PageCache, then copy

weights to those pages. If no pages are available then LOAD
aborts. The controller explicitly frees pages with UNLOAD;
this only updates in-memory metadata and always succeeds.

INFER actions comprise INPUT, EXEC and OUTPUT, each of
which have dedicated executors. INPUT executes immediately
on receipt of INFER; it acquires IO memory from the IOCache
then copies inputs. EXEC inherits the INFER action’s earliest
and latest timestamps; it checks weights and inputs are
present then executes kernels on the GPU, usingWorkspace
for intermediate calculations. OUTPUT immediately copies
outputs back to main memory then releases the IO memory.
To simplify controller decision making, INPUT and OUTPUT
are not exposed as actions since they are orders of magnitude
faster than EXEC and LOAD (10s of microseconds) for our
workloads. Clockwork’s memory management allows for
back-to-back INFER actions for the same model.
5.3 Central Controller
On startup, Clockwork’s controller establishes persistent
connections to all workers and exchanges metadata about
the size of each worker’s PageCache, the models present on
each worker, and their initial pre-profiled execution times. The
core duty of the controller is to satisfy requests received from
clients by submitting actions to workers. This decision making
is encapsulated in the Scheduler interface:

onRequest client request received, specifying a model
ID, SLO, and providing inference inputs

onResult a result is received from a worker
A scheduler implements this interface, and can invoke

sendAction to send an action to aworker, and sendResponse
to respond to a client. A separate layer of the controller imple-
ments common tasks such as networking, forwarding inputs
to workers, setting timestamps, and handling timeouts. This
design concentrates all choice in a single place, and enables
different scheduler implementations to be easily dropped in.
Managing worker state. The controller maintains an
accurate representation of workers’ execution state, which is
threefold: memory state, in which the scheduler tracks what
models are present in the worker PageCaches and when LOAD
will be required; action profiles, which are measurements
of past 10 actions duration, stratified by model, worker, and
batch size, to predict the duration of future action; and pending
actions, which tracks submitted actions and estimates when
each executor will next be available. Taken together, these
enable the scheduler to accurately predict when candidate
actions will complete, and avoid submitting work that cannot
complete before the request’s deadline. Worker state is not a
significant scalability bottleneck; action profiles require only
40 bytes for each model, worker and batch size combination.
Scheduling INFER. Upon arrival, requests are enqueued
into per-model request queues. For each INFER executor, a
new action must be scheduled whenever the executor has less
than 5ms of outstanding work. To schedule an INFER action,
a model and batch size must be selected. The batch size can
differ action-to-action, though the scheduler prioritizes larger
batch sizes for efficiency.

At any point in time, a model will have zero or more queued
requests. However, not every request is suitable for every batch
size. Higher batch sizes take longer to execute, so a request
close to its deadline might only be satisfiable using a small
batch size. To handle this, each model has a request queue
per batch size (we term this a batch queue). New requests are
enqueued into every batch queue. Requests are dropped from
batch queues when they cease to be satisfiable; e.g. a request
in the batch size of 16 queue will be dropped sooner than it
is dropped from the batch size of 8 queue.
To decide which model and batch size to schedule, we use

strategies. A strategy specifies a model, a latest timestamp,
and a batch size. Each INFER executor has a separate strategy
queue, ordered by latest, containing only strategies for models
it has loaded. The scheduler dequeues strategies until it finds
one that is valid: latest has not elapsed, and the batch queue for
the specified batch size has sufficient requests. If a strategy is
valid, the scheduler will also speculatively increase the batch
size as long as extra requests are available.
When a valid strategy is found, an INFER action is created

and requests are dequeued to fill the batch. Old strategies for
this model are removed from the strategy queue, and new

450 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

200

400

600

800

1000

10 25 50 100 250 500

Go
od

pu
t(r

/s)

ClockworkINFaaSClipper

0909999.999.9999.99999.9999

1000 500

Pe
rce

nti
le

Clipper100ms SLO

1s 10s100

INFaaS100ms SLO

10 11

10ms SLO

19 20 21 22

Clockwork25ms SLO

44.9 45 45.1

50ms SLO

0909999.999.9999.99999.9999

0 500
Per

cen
tile

500ms SLO

0 500

500ms SLO

94.5 95 95.5

100ms SLO

245 250

250ms SLO

300 305
SLO (ms) Latency (ms) Latency (ms)Latency (ms)

500ms SLO

Fig. 5: Goodput and latency measurements for Clipper, INFaaS, and Clockwork. We deploy 15 instances of ResNet50 on 1 worker; each model
submits 16 concurrent requests in a closed loop. (Left) Request goodput. Goodput only counts requests that succeed within the SLO. (Right)
Request latency CDFs across all requests (including those rejected due to missed deadlines). Latency CDFs are scaled to highlight tail latency.

strategies are then created and enqueued. A strategy is created
per batch queue; latest is calculated by subtracting the batch
execution time from the deadline of the request at the head of
the queue. Empty batch queues are skipped.
Scheduling LOAD. Each LOAD executor also schedules
up to 5ms of outstandingwork. For a LOAD executor, the sched-
uler selects amodel by estimating eachmodel’s SLOviolations
given the model’s current state and outstanding requests. To
do this efficiently, the scheduler maintains and incrementally
updates load and demand statistics for models and GPUs:

• dm the total demand for each modelm
• am,g the demand allocation of modelm on GPU g.
• lg=

∑

mam,g the total load on each GPU g
Amodel’s total demanddm is the total estimated execution time
ofm’s outstanding requests; we update dm when requests for
that model arrive and complete. The demand allocations am,gform onGPU g are also updatedwhen requests arrive and com-
plete; they are calculated such that∑gam,g=dm. Demand allo-
cations are 0 forGPUswhere themodel is not loaded. OnGPUs
where themodel is loaded,demandallocationsare inverselypro-
portional to theGPU’s load,sinceoverloadedGPUswill be able
to execute proportionally less of the total demand. Each GPU’s
total load lg is the sum of its allocations across all models.
With these estimates, each model’s load priority is defined as

pm,g=dm−
∑

g
am,g ⋅

capacityg
lg

.

A model’s load priority estimates its unfulfilled work. For
example, a model that is not loaded on any GPUs has priority
equal to its outstanding work; a model loaded on a GPU that
sits mostly idle has negative priority since the GPU can serve
more work than the model demands.

Clockwork does not attempt to converge to a perfect demand
allocation each time the system’s state changes. Rather, Clock-
work incrementally updates each model’s demand allocation
and load priority (i)when new requests arrive for that model;
(ii)when an INFER is initiated for that model; (iii)when LOAD
and UNLOAD affect a model; and (iv)when a request crosses
the point where it can benefit from LOAD before its deadline.

The scheduler selects LOAD actions by choosing the highest
priority model that is not already loaded. Notably, models
with negative priority need not be loaded since their demands
are already met. Clockwork uses a least-recently-used (LRU)
eviction policy when selecting models to UNLOAD.
6 Evaluation
We next assess Clockwork’s ability to reliably serve DNNs
under a variety of workload conditions. We begin our
experimental evaluation with simple workloads in controlled
settings, before expanding to heterogeneous models and
diverse workloads. Our evaluation shows that Clockwork’s as-
sumptions about predictability hold, and result in a system that
can effectively meet SLOs and drastically reduce tail latency.
Experimental setup. We deploy Clockwork in a private
cluster of 12 Dell PowerEdge R740 Servers. Each server has
32 cores, 768GB RAM, and 2×NVIDIA Tesla v100 GPUS
with 32GBmemory. The servers are connected by 2×10Gbps
Ethernet on a shared network. In all experiments, we run the
controller, clients, and workers on separate machines.
6.1 HowDoes Clockwork Compare?
Webeginwithacomparison to twopriormodelservingsystems,
Clipper [16] and INFaaS [58]. For Clipper and Clockwork, we
provisiona single clustermachine touse1GPUto serve15sepa-
rate copiesofResNet50.ResNet50 is thede factomodelusedfor
comparisonpreviouslyby these systems;wechose15models as
this reached thememory limit of Clipper1. To evaluate INFaaS,
wedeployedanm5.24xlarge andap3.2xlargeEC2 instance
as the master and the worker, respectively. These are not iden-
tical experiment conditions; however, INFaaS is tightly inte-
gratedwithEC2,andcouldnotbedeployedonourcluster infras-
tructure. We include these results for qualitative comparison.
Offered load. For each model, we run 16 closed-loop
clients2. The serving systems may batch requests for the same
model instance, but requests to different instances cannot be
1INFaaS memory limits were reached at 64 models
2Open-loop clients yielded similar results

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 451

0

250

500

(a) Goodput(r/s)
MinorMajor

0
50

100
(b) Latency(ms)

MinorMajorMax

0
50

100
(c)Cold-Start(%)

MinorMajor

0
50

100
(d) PCIeUtilization(%)

UtilizationGoodput

0
50

100

0 10 20 30 40 50 60

(e) GPUUtilization(%)

Time (Minutes)

UtilizationGoodput

Fig. 6: Clockwork can serve thousands of models from a single
worker. From t = 0, the Major workload adds an additional model
per second, to a total of 3,600 models at t=60 (cf. §6.2.)

batched. We run multiple experiments, varying the target SLO
from 10ms to 500ms.
Goodput. Fig. 5 plots the goodput achieved by each system
as the target SLO varies from 10ms to 500ms. Goodput is
the number of successful requests that completed within the
target SLO; it excludes timed out requests and requests that
responded after the SLO.
With a high SLO of 500ms, Clockwork and INFaaS meet

their SLOs and have comparable goodput of approximately
800 r/s. Clipper’s goodput is substantially lower,asClipperonly
treats SLOs as an average latency target, not a strict threshold,
and converges to this target over timewithout bounding latency
variability. As SLOs tighten, goodput and tail latency deteri-
orate for both Clipper and INFaaS, and their goodput collapses
below a 100ms SLO. Like Clipper, INFaaS uses the SLO as
a coarse-grained goal for reactive policies. Consequently, only
Clockwork can continue serving SLOs below 100ms.
Fig. 5 also plots latency CDFs for Clipper, INFaaS, and

Clockwork. We scale the CDFs to emphasize tail latency. The
figure illustrates how both Clipper and INFaaS allow latency
higher than their SLOs. However, of note, with a 500ms SLO,
INFaaS successfully finds a configuration that can serve this
SLO, andmeets its SLO for 99%of its requests. By comparison,
Clockwork’s tail latency remains very close to the SLO in all
cases. For the 500ms SLO, Clockwork’s latency remains at
≈300ms because it schedules each model’s entire batch of 16
requests at a time, round-robin across models. With 15 models
and a 20ms batch-16 execution duration, Clockwork does not
exceed the optimal 300ms latency.
6.2 Can Clockwork Serve Thousands?
The previous experiment represented an idealized scenario,
with only a small number of models, each with a steady
sustained workload. We now examine the serving limits of
a single worker. We deploy 3,601 copies of ResNet50 to a
worker, and set a 100ms SLO. We submit two workloads: a
Major workload and aMinor workload. TheMajor workload

comprises 3,600 model instances; we vary the number of
instances that are active at any point in time, and evenly
distribute a workload of 1,000 r/s across all active models. The
Minor workload is a single model instance that maintains a
fixed 200 r/s request rate throughout the experiment.

Figure Fig. 6 (a) plots the goodput achieved by themajor and
minor workloads. From t=−5 to t=0 (we denote t in minutes)
only theMinor workload is present, achieving its full 200 r/s.
At t=0, we activate one model instance of the Major workload;
the addition of 1000 r/s fully saturates the GPU (e). After that,
we activate an additional model of theMajor workload every
1 second. As more model instances become active, the Major
workload’s goodput drops since each additional model forgoes
batching opportunities. At t=60 all 3,600 models are active,
each submitting approximately 0.28 r/s.
By t=3.5, 201 models have been activated, reaching the

capacity of GPU devicememory. To continue serving requests,
Clockwork begins swapping models on and off GPU; Fig. 6
(d) shows PCIe utilization rapidly rises to 100%. As more
models activate, an increasing number of requests in theMajor
workload find that their model is not loaded; Fig. 6 (c) plots the
rise in cold-starts, reaching 70% by the end of the experiment.
The minor workload, with its sustained request rate of 200 r/s,
does not experience any cold starts because its demand dwarfs
every other model after the first 5 seconds. As the number of
cold-starts increases, the demand on GPU execution decreases,
enabling the Minor workload’s goodput to gradually grow
back to 200 r/s. At approximately t=20, the bottleneck for the
Major workload shifts to PCIe utilization, enabling the Minor
workload’s latency to drop back to an average of 20ms (b).

This experiment illustrates how bottlenecks in Clockwork
can shift as workload demand changes. Clockwork can deal
with shifting bottlenecks even while serving a large number
of models. As illustrated in Fig. 6 (b), the maximum request
latency across the experiment did not exceed the 100ms SLO.
6.3 How LowCan Clockwork Go?
Clockwork’s predictability and centralized decision-making
enables it to satisfy low-latency SLOs. In this experiment, we
use six Clockwork workers and evaluate the lower limit on
SLOs that Clockwork can achieve bymeasuring the proportion
of successful requests while varying the SLO.We repeat the
experiment for six different workloads, varying the number
of ResNet50 instances (N=12 or 48) and cumulative request
rate (R=600 r/s, 1200 r/s, or 2400 r/s). For each experiment
run, we begin with an SLO of 2.9ms (1× the execution latency
of batch-1 ResNet50 inference). Every 30 seconds, we extend
the SLO by 50%; by the end of the experiment the SLO reaches
74ms.We run a separate open-loop client for eachmodelwith a
Poisson inter-arrival time distribution, and as before, allmodels
are independent (requests cannot be batched across models).
Workload satisfaction. Fig. 7 plots the workload satis-
faction for each experiment run. Workload satisfaction is the
ratio of goodput to offered load. A workload satisfaction of

452 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0
0.2
0.4
0.6
0.8
1

2.9 4.4 6.5 10 15 22 33 50 74

Wo
rkl

oad
Sa

tisf
act

ion

SLO (ms)

N=12 R=600N=48 R=600N=12 R=1200
N=48 R=1200N=12 R=2400N=48 R=2400

Fig. 7: Workload satisfaction rates as we vary N , the number of
clients, andR, the request rate.

0
0.2
0.4
0.6
0.8
1

Wo
rkl

oad
Sa

tisf
act

ion

Without Batch Clients12 Big-Batch Clients48 Small-Batch Clients

1500
2000
2500
3000
3500

2.9 4.4 6.5 10 15 22 33 50 74Go
od

pu
t(r

/s)

SLO (ms)

Fig. 8: Workload satisfaction rates for latency-sensitive clients (top)
and workload goodput for batch clients (bottom).

1 means all requests received a successful response within
their SLO. For a load ofR=600 r/s and 1200 r/s, irrespective
of the number of models, Clockwork successfully satisfied
tight SLOs 10 and 22ms. Even at R =2400 r/s, Clockwork
comfortably managed an SLO of 74ms.
6.4 Can Clockwork Isolate Performance?
Clockwork can satisfy tight SLOs for latency-sensitive clients
in isolation; we next consider when the system is shared with
other users serving batch requests without latency SLOs. As
before, we use six Clockwork workers, and all clients use in-
stances ofResNet50.Weprovision six latency-sensitive clients,
each submitting a 200 r/s open-loop workload. We also provi-
sion several batch clients, which submit sustained closed-loop
workloads and do not have latency SLOs. Big-batch clients
have a concurrency of 16, while small-batch clients have a con-
currency of 4. Varying the concurrency affects the maximum
batch size Clockwork can achieve for batch client requests. We
considered three scenarios: (a) baseline without batch clients;
(b) 12 big-batch clients; and (c) 48 small-batch clients

Fig. 8 illustrates the workload satisfaction rates for latency-
sensitive clients and the total goodput achieved for the batch
clients. Clockwork successfully prioritizes latency-sensitive
requests over batch requests. Through SLO-aware scheduling,
it ensures that the workload satisfaction rates are unaffected
by the presence of other pending, less time-critical requests.
At the same time, Clockwork does not throttle batch requests
entirely, but schedules them during idle times or expected idle
times. However, when the SLOs are too tight (<15ms), many
latency-sensitive requests are rejected in advance, allowing
pending batch requests to pass through.
6.5 Are RealisticWorkloads Predictable?
We now ask whether executions remain predictable under
realistic workloads that comprise many concurrent users and
models. We also investigate whether Clockwork effectively

Model Family Count Model Variants
DenseNet [36] 4 121, 161, 198, 201
DLA [75] 1 34
GoogLeNet [67] 1
Inception [68] 1 v3
Xception [68] 1
MobilePose [33] 4 SPRN18, MNv3, RN18, RN50
ResNeSt [78] 4 14, 26, 40, 101
ResNet [30] 22 18, 18b, 34, 34b, 50, 50b, 50c, 50d, 50s,

50-1.8x, 101, 101b, 101c, 101d, 101s, 101-
1.9x,101-2.2x,152,152b,152c,152d,152s

ResNet-v2 [31] 5 18, 34, 50, 101, 152
ResNeXt [73] 3 50-32, 101-32, 101-64
SENet [35] 2 50-32, 101-32
TSN [70] 7 iv1, iv3, r18, r34, r50, r101, r152
Wide ResNet [76] 3 16-10, 28-10, 40-8
Winograd [45] 3 RN18, RN50, RN101

Table 2: List of models used in experiments.

exploits this predictability.
To answer these questions, we deploy Clockwork on 12

workers and replay a workload trace of Microsoft Azure Func-
tions (MAF) [61]. The trace records approximately 46,000
function workloads, counting the number of invocations of
each function,everyminute, for twoweeks. It interleaves awide
range of workloads, including heavy sustained workloads, low
utilization coldworkloads, burstyworkloads that fluctuate over
time, and workloads with periodic spikes [61]. We believe this
to be a representative workload for evaluation since serverless
platforms enable a wide range of applications and supporting
ML inference on serverless is an active area of research [10,39].

In this experiment, we replay six hours of the MAF trace in
real-time. We use 61 different models (Table 2) taken from the
ONNXModel Zoo [53] and the GluonCVModel Zoo [28].We
duplicate each model 66 times, resulting in a total of 4,026 in-
stances and reaching the main-memory capacity of our worker
machines. We replay ten or eleven function workloads for each
model instance. We configure Clockwork with a 100ms SLO.
Clockwork with realistic workloads. The time series in
Fig. 9 (a) shows the offered load and goodput achieved across
all models. For the 6 hour experiment, both the offered load
and goodput averaged 9,638 r/s – out of a total of 208 million
requests,only58 faileddue to action timingmispredictions,and
no requests timed out. All GPUs were fully utilized throughout
the experiment, yet no request exceeded the 100ms SLO.
Fig. 9 (b) plots the median, 99th percentile, and maximum

request latency over the course of the experiment. Latency
spikes occur every 5, 15, and 60minutes, due to the presence of
numerous periodic workloads within the trace [61]. Workload
spikes do not cause SLO violations because of latency head-
room; Fig. 9 (c) shows the average batch size for the experiment,
and with each workload spike, Clockwork can schedule larger
batches,withhigher latency. To evaluate the cold-start behavior
of this workload, we categorize a request as a cold-start if its
model is not already loaded into GPU’s memory before arrival.
For each 1-minute interval, Fig. 9 (d) counts the number of

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 453

8k
10k
12k

(a)

Tp
ut(

r/s) Offered Load Goodput

0
40
80

(b)

La
ten

cy
(m

s)

Maximum 99th %ile Median

0
2
4

(c) Ba
tch Siz
e

Mean

0
1000
2000

(d)

Mo
del

s Cold Warm

0
100
200
300

0 60 120 180 240 300 360

(e)

Tp
ut(

r/s)

Time (Minutes)

Coldstarts

Fig. 9: Microsoft Azure Functions (MAF) over Clockwork; see §6.5
for a description.

0909999.999.9999.99999.999999.9999999.99999999.9999999

0 5 10 15

Per
cen

tile

INFER

0909999.999.9999.99999.999999.9999999.99999999.9999999

0 5 10 15

Per
cen

tile

Error (ms)

0 5 10 15

Duration

LOAD

OverpredictUnderpredict

0 5 10 15

Completion

Error (ms)
Fig. 10: Clockwork prediction and completion errors for MAF trace.

unique models that have at least one cold-start, and at least one
warm-start. On average,987uniquemodels performcold-starts
each minute; or approximately 25% of all models. However,
while many models perform cold-starts, they only represent a
small fraction of all requests. Fig. 9 (e) plots the throughput of
cold-start requests, averaging 126 r/s, or 1.3% of all requests.
These results show that Clockwork can sustain significant load
for varied, realisticworkloads comprising thousands ofmodels.
Predictable executions. Clockwork’s scheduler relies on
accurate predictions of action latency, so to assess Clockwork’s
underlying assumptions of predictability, we next evaluate
the accuracy of Clockwork’s predictions. We measure the
latency of INFER and LOAD actions on Clockwork’s workers
and compare it to the time estimated by Clockwork’s controller
to derive a prediction error. Prediction errors comprise two
types: overprediction, when the real execution latency is faster
than predicted; and underprediction, when the real execution
latency is slower than predicted. Consistent overpredictions
can lead to idle resources, while consistent underpredictions
can cause SLO violations. Fig. 10 (top) plots the prediction
errors for INFER and LOAD actions. For INFER actions, the 99th
percentile of overpredictions and underpredictions is 144�s
and 55�s, respectively. Thereafter, the tail latency grows

0
2
4
6
8

0 1 2 3 4 5 6 7 8

Ba
tch Siz
e

Time (mins)

Mean

0
20000
40000
60000
80000

100000
120000

0 20 40 60 80 100 120 140

Pea
kG

oo
dp
ut(

r/s
)

Number ofWorkers

0
25000
50000
75000

100000

Re
q/s Offered LoadGoodput

Fig. 11: (Left) With 40 emulated workers, goodput is approximately
equal to offered load; peak goodput is achieved at appx. 40,000 r/s,
when all workers are fully utilized. (Right) Peak goodput achieved
with different numbers of emulated workers.

to exceed 10ms in a few extremely rare cases. Clockwork
consistently overpredicts more than it underpredicts, as it uses
a rolling 99th percentile measurement to make its predictions.
For LOAD actions, the 99th percentile of overpredictions and
underpredictions is 431�s and 348�s, respectively.

Fig. 10 (bottom) plots the completion time error. Clockwork
must accurately predict when a given action will complete,
taking into account any previously submitted actions (i.e.
queuing time). Individual prediction errors can compound,
leading to increased completion time error. For INFER actions,
the error compounds 4×, with a 99th percentile completion
error of ≈1ms. In extreme cases, Clockwork’s completion
error also grows to more than 10ms. However, the completion
error does not substantially exceed the action duration error,
implying that for Clockwork, erroneous predictions of outliers
are statistically independent.
6.6 Can Clockwork Scale?
Centralized scheduling presents a potential scalability bot-
tleneck, though prior work has demonstrated that centralized
schedulers can reach impressive scale [24, 57]. Our final
experiment examines the scalability ofClockwork’s controller.

To venture beyond the capacity of our testbed, we leverage a
specially-developed emulated worker that implements Clock-
work’s action interface. The emulated worker behaves identi-
cally to a bona fide Clockwork worker, except the LOAD and
INFER actions perform no meaningful work; instead, they wait
for a period of time according to the pre-profiled model mea-
surements before returning a response. The emulated worker is
indistinguishable from a real worker from the vantage point of
Clockwork’s controller. To bypass the limited network capacity
ofourtestbed,wemodifiedourclients to sendzero-length inputs
(network is nota fundamental limitation; see§7 fordiscussion).

Wemeasure the peak goodput achieved as we varyN , the
number of emulated workers. We run multiple experiments,
each with a different value ofN , from 10 to 150 in increments
of 10. We use the same models as described in §6.5, and a
similar workload. Instead of replaying the trace at a fixed rate,
we scale the trace and gradually offer more load in 60-second
intervals. Fig. 11 (Left) illustrates one experiment run with
N=40. Goodput follows the offered load almost perfectly up
to about 40,000 r/s, at which point all workers are fully utilized
and the goodput saturates.

454 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Fig. 11 (Right) reports the peak goodput achieved with
different numbers of workers. We report the median values
across three experiment repetitions. The figure shows a
linear increase in the peak goodput as the number of workers
increases. BelowN=110, goodput is limited by workers reach-
ing full utilization. AtN=110, we reach a maximum goodput
of 103,387 r/s. At this point worker utilization stops being the
limiting factor; instead, the bottleneck shifts to Clockwork’s
controller. BeyondN=110 peak goodput declines.
6.7 Summary
In comparison with prior model serving systems, Clockwork
achieves superior goodput, serves considerably more models
concurrently, and violates substantially fewer SLOs. Owing
to a lack of performance variability, Clockwork can achieve
much tighter latency SLOs without sacrificing tail latency.
Clockwork’s underlying assumptions about predictable execu-
tions bear out in reality: by consolidating choice, a predictable
system that substantially curtails tail latency can be built.
Clockwork extends to a diverse range of workload condi-

tions not supported by prior systems, including supporting
thousands of models concurrently per GPU. Slow cold
starts can run alongside high-throughput workloads without
interference. Under all workload conditions, including cold
starts and even under overload, Clockwork meets most SLOs
without degrading service, and maintains close to maximal
possible goodput. Finally,Clockwork isolates users of different
models, enabling low-latency workloads to share the same
system with background batch workloads.
7 Discussion

Why consolidate choice? Philosophically, the encapsu-
lation, abstraction, and loose coupling of components are
essential design practices while the building blocks and use
cases of large systems are still in flux. Over time, the true
use cases for the system settle and the entire system may
in turn be replaced by a simpler, refined system that avoids
the over-engineering and generality of its constituent parts—
components that transpired to either be unnecessary in practice
or to impede the commonuse case of the system. The squashing
of layers through such specialization, effectively transforming
systems into abstract units, can counteract the infamous bloat
of modern software stacks. We designed Clockwork to be such
an abstract unit for model serving systems.
Machine learning. Clockwork focuses on DNN inference,
and excludes data preprocessing and postprocessing steps
that are user-defined and CPU-bound. Safely and predictably
executing these in Clockwork is a current research topic.
Individual DNN inferences are the atomic unit of work for

Clockwork. Increasingly, modern ML applications are com-
posed of pipelines or cascades of DNNs [34, 43, 62]. For these
applications, performance predictability is strongly desired.
We believe there are opportunities to leverage Clockwork’s

properties and performmore sophisticated pipeline scheduling
that provides end-to-end guarantees. Similarly, performance
predictability can influence system designs in other areas, such
as large language embedding models [11] that may require
dedicated or distributed accelerators. Expanding Clockwork
into other ML paradigms, such as deep reinforcement learning
and DNN training, raises philosophical questions about the
nature and limits of predictability.
Inference accelerators. The Clockwork approach gen-
eralizes readily beyond GPUs to other inference-specific
hardware accelerators [48], whose performance is arguably
even more predictable. TPUs [41], for instance, are explicitly
built around the idea of delegating control to software, while
also eschewing general purpose processing engines with
flexible control logic and generic memory hierarchies in favor
of high-level operations and explicit memory hierarchies.

On the other extreme, inferences can also be executed in soft-
ware on theCPU.Whilemanymodels are heavily parallel in na-
ture and execute orders ofmagnitude slower onCPUs, there are
other models where execution on CPU is acceptable. One such
example are recurrentneuralnetworks (RNNs)whichare funda-
mentally more sequential and often cannot effectively leverage
the available parallelism on GPUs or other accelerators.
Limitations of predictability. Consolidating choice
is only possible when you have control of, or guarantees
about, the system’s major bottleneck resources. For example,
Clockwork assumes workers have exclusive control over their
machine, and dedicated GPUs. Clockwork does not assume
exclusive control over the network, but does assume that the
network has mostly-predictable latency between the controller
and workers. In a shared setting, preserving predictability
becomes more challenging – though not impossible – and this
is an active area of research due to a general need to co-locate
latency critical datacenter services [42, 47].
Network. Clockwork does not explicitly consider the net-
work in its schedulingdecisions; theoccasionalnetwork latency
spikes of dozens of ms during our experiments had negligible
impact on our results. Our prototype routes all inputs and
outputs through the central controller which will become a bot-
tleneck at scale. We were able to reach the limits of our testbed
network with 12 workers and a sustained, single-model work-
load; to test beyond this we disabled inputs as described in §6.6.
This limitation is not fundamental; Clockwork’s controller
only requires requestmetadata to schedule requests, andwe are
working to remove this limitation with a tier of load balancers.
Security. Security is important for all multi-user systems,
since there arenocontainerorhypervisorboundaries separating
the workloads of different users. Clockwork does not explicitly
address security; however, Clockwork does not execute
arbitrary user code. Users must submit models in an abstract
format that we then compile to binary code under the covers.
Clockwork’s threatmodel resembles shared storage ordatabase

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 455

systems, where system correctness is the chief concern; we
have not verified any safety properties of Clockwork.
Fault tolerance. While Clockwork is a distributed system,
we do not address the challenges of tolerating failures when
serving models at large scale.This will require implementing
a fault-tolerant centralized scheduler; however, we note that
Clockwork’s predictable worker design will make pernicious
phenomena like grey failure [27, 37] far easier to detect.
Other benefits of predictability. Concentrating choice
makes it easier to implement other guarantees, such as SLOs
related to burstiness or per-request cost. The Azure trace
in our evaluation, for instance, contained regular, periodic
spikes; exploiting advanced knowledge is an appealing
future avenue for Clockwork. A further benefit of predictable
system components is performance clarity [55]: performance
bottlenecks and upcoming tasks in Clockwork are easy to
reason about. Clockwork’s controller also provides a central
point for explanation, since the controller has complete
visibility of the expected and actual request behavior.
8 RelatedWork

Model serving. We directly compared Clockwork to Clip-
per [16] and INFaaS [58] in §6.1; here we provide additional
comments. Both Clipper and INFaaS are designed as wrappers
around existing model execution frameworks: Clipper, in
order to provide a unifying abstraction; INFaaS, in order to
exploit heterogeneous execution strategies. Being agnostic
to the underlying execution engine sacrifices predictability
and control over model execution. Both systems treat latency
SLOs as long-term, reactive targets; by contrast, Clockwork
is explicitly designed to consolidate choice, and exploit pre-
dictability by making proactive decisions. Clipper and INFaaS
propose several orthogonal concepts that are compatible with
Clockwork. Clipper’s model selection layer could be superim-
posed on Clockwork. INFaaS’s model variant concept could
be integrated into Clockwork; we found similar predictability
properties held for DNNs executing on dedicated CPU cores.
Several other projects investigate model serving in virtu-

alized cloud environments and on serverless platforms, where
predictability is in the hands of the cloud provider [10, 44, 77].
Like INFaaS, these model throughput, latency, and accuracy
together for optimal model selection, but, unlike Clockwork,
they do not use the backend predictability and latency SLOs for
making proactive scheduling decisions. In industry, TFS2 [51]
is a proprietary model hosting service at Google, about which
public information is not available. Amazon SageMaker [59]
and Google AI Platform [26] are public cloud DNN serving
systems with a similar interface to Clockwork: upload your
model, then make inference requests. Both use containers
under the covers as an isolation mechanism, and users suffer
the associated cold-start latency. Beyond these details, further
design information is not publicly known.

Real-time systems. Performance predictability, especially
temporal safety, is also an important concern for safety-critical
real-time systems. However in general, real-time systems are
designed for periodic or sporadicworkloads [8] with known
minimum inter-arrival times and worst-case execution times,
or for scenarios where the set of all inference requests is known
in advance [66]. Soft-real-time systems [12] consider weaker
notions of timeliness similar to the latency SLOs considered
in this paper, but mainly target periodic or sporadic workloads.
Clockwork, in contrast, makes no a priori assumptions
about its workloads. Prior real-time systems work has also
proposed mechanisms to tame the unpredictability inside
GPUs [6, 9, 20, 22, 54]. Elliott and Anderson [21], for example,
proposed interrupt handlingmechanisms to circumvent the pro-
prietary GPU drivers that ignore scheduling priorities, while
Yang et al. [74] suggested avoiding synchronization anomalies
throughmore careful use of CUDA synchronization primitives.
Thesemechanisms are designed to facilitate an a priori schedu-
lability analysis— mathematically bounding the blocking
delays due to contention. Such bounds are orthogonal to Clock-
work, which does not require strict worst-case guarantees.
9 Conclusion
As DNN inferences become increasingly central to interactive
applications, the requirements for fast response tighten, the
volume of requests expands, and the number of models grows.
Our model serving system, Clockwork, meets these challenges.
Clockwork efficiently fulfills aggressive tail-latency SLOs
while supporting thousands of DNN models with different
workload characteristics concurrently on each GPU, and scal-
ing out to additional worker machines for increased capacity.
The systemalso successfully isolatesmodels fromperformance
interference caused by othermodels served on the same system.
Our results derive from our design methodology of recursively
ensuring all internal architecture components have predictable
performance by concentrating all choices in the centralized
controller. Notably, our approach required us to either circum-
vent canonical best-effort mechanisms or orchestrate them to
become predictable, and illustrates how consolidating choice
can be applied in practice to achieve predictable performance.
Acknowledgements
We thank our shepherd Junfeng Yang and the anonymous
reviewers for their insightful feedback that helped improve
our work. Our work was partially supported by NSF CAREER
Grant #1553579.
References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, AndyDavis, Jeffrey Dean,Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, Kudlur
Manjunath, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan

456 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Yu, and Xiaoqiang Zheng. TensorFlow: A System for
Large-Scale Machine Learning. In Proceedings of the
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2016.

[2] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson,
Colin Meek, Vishesh Khemani, Stefan Fulger, Pan Gu,
Lakshminath Bhuvanagiri, Jason Hunter, et al. Slicer:
Auto-Sharding for Datacenter Applications. In Pro-
ceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2016.

[3] Deepak Agarwal, Bo Long, Jonathan Traupman, Doris
Xin, and Liang Zhang. LASER: A Scalable Response
Prediction Platform for Online Advertising. In Proceed-
ings of the 7th ACM International Conference on Web
Search and Data Mining (WSDM), 2014.

[4] Saamer Akhshabi and Constantine Dovrolis. The
Evolution of Layered Protocol Stacks leads to an
Hourglass-Shaped Architecture. In Proceedings of the
2011 Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2011.

[5] Allied Market Research. Global machine learning
chip market to garner $37.85 Billion by 2025, at 40.8%
CAGR. https://www.globenewswire.com/news-
release/2020/02/18/1986370/0/en/Global-
Machine-Learning-Chip-Market-to-Garner-
37-85-Billion-by-2025-at-40-8-CAGR.html,
February 2020.

[6] Tanya Amert, Nathan Otterness, Ming Yang, James H
Anderson, and FDonelson Smith. Gpu scheduling on the
NVIDIA TX2: Hidden details revealed. In Proceedings
of the 38th IEEE Real-Time Systems Symposium (RTSS),
2017.

[7] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker,
and Ion Stoica. Effective Straggler Mitigation: Attack of
the Clones. In Proceedings of the 10th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2013.

[8] Theodore P Baker and Sanjoy K Baruah. Schedulability
analysis of multiprocessor sporadic task systems.
Handbook of Real-Time and Embedded Systems, pages
3–31, 2007.

[9] Joshua Bakita,NathanOtterness, JamesHAnderson, and
F Donelson Smith. Scaling Up: The Validation of Em-
pirically Derived Scheduling Rules on NVIDIA GPUs.
In 14th Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT), 2018.

[10] Anirban Bhattacharjee, Ajay Dev Chhokra, Zhuangwei
Kang, Hongyang Sun, Aniruddha Gokhale, and Gabor

Karsai. Barista: Efficient and Scalable Serverless
Serving System for Deep Learning Prediction Services.
In Proceedings of the 7th IEEE International Conference
on Cloud Engineering (IC2E), 2019.

[11] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. LanguageModels are Few-Shot Learners.
arXiv preprint arXiv:2005.14165, 2020.

[12] Giorgio Buttazzo, Giuseppe Lipari, Luca Abeni, and
Marco Caccamo. Soft Real-Time Systems: Predictability
vs. Efficiency: Predictability Vs. Efficiency. Springer
Science & Business Media, 2005.

[13] Giovanni Campagna, Rakesh Ramesh, Silei Xu, Michael
Fischer, andMonica S Lam. Almond: The Architecture
of an Open, Crowdsourced, Privacy-Preserving, Pro-
grammable Virtual Assistant. In Proceedings of the 26th
InternationalWorldWideWebConference (WWW), 2017.

[14] Wai Chee Yau. How Zendesk Serves TensorFlowMod-
els in Production. https://medium.com/zendesk-
engineering/how-zendesk-serves-tensorflow-
models-in-production-751ee22f0f4b, February
2017.

[15] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An
Automated End-to-End Optimizing Compiler for Deep
Learning. In Proceedings of the 13th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2018.

[16] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J
Franklin, Joseph E Gonzalez, and Ion Stoica. Clipper: A
Low-Latency Online Prediction Serving System. In Pro-
ceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2017.

[17] Brian Dalessandro, Daizhuo Chen, Troy Raeder, Claudia
Perlich, Melinda Han Williams, and Foster Provost.
Scalable Hands-Free Transfer Learning for Online
Advertising. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD), 2014.

[18] Jeffrey Dean and Luiz André Barroso. The Tail at Scale.
Communications of the ACM, 56(2):74–80, 2013.

[19] Christina Delimitrou and Christos Kozyrakis. Amdahl’s
Law for Tail Latency. Communications of the ACM,
61(8):65–72, 2018.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 457

https://www.globenewswire.com/news-release/2020/02/18/1986370/0/en/Global-Machine-Learning-Chip-Market-to-Garner-37-85-Billion-by-2025-at-40-8-CAGR.html
https://www.globenewswire.com/news-release/2020/02/18/1986370/0/en/Global-Machine-Learning-Chip-Market-to-Garner-37-85-Billion-by-2025-at-40-8-CAGR.html
https://www.globenewswire.com/news-release/2020/02/18/1986370/0/en/Global-Machine-Learning-Chip-Market-to-Garner-37-85-Billion-by-2025-at-40-8-CAGR.html
https://www.globenewswire.com/news-release/2020/02/18/1986370/0/en/Global-Machine-Learning-Chip-Market-to-Garner-37-85-Billion-by-2025-at-40-8-CAGR.html
https://medium.com/zendesk-engineering/how-zendesk-serves-tensorflow-models-in-production-751ee22f0f4b
https://medium.com/zendesk-engineering/how-zendesk-serves-tensorflow-models-in-production-751ee22f0f4b
https://medium.com/zendesk-engineering/how-zendesk-serves-tensorflow-models-in-production-751ee22f0f4b

[20] Glenn A Elliott and James H Anderson. Real-world Con-
straints of GPUs in Real-Time Systems. In Proceedings
of the 17th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications
(RTCSA), 2011.

[21] Glenn A Elliott and James HAnderson. Robust real-time
multiprocessor interrupt handling motivated by GPUs.
In Proceedings of the 24th Euromicro Conference on
Real-Time Systems (ECRTS), 2012.

[22] Glenn A Elliott and James H Anderson. An Optimal
k-Exclusion Real-Time Locking Protocol Motivated by
Multi-GPUSystems. Real-Time Systems, 49(2):140–170,
2013.

[23] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan,
and Michael A Kozuch. Autoscale: Dynamic, robust
capacity management for multi-tier data centers. ACM
Transactions on Computer Systems, 30(4):1–26, 2012.

[24] IonelGog,MalteSchwarzkopf,AdamGleave,RobertNM
Watson, and Steven Hand. Firmament: Fast, Centralized
Cluster Scheduling at Scale. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron
Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[26] Google AI Platform. Retrieved May 2020 from
https://cloud.google.com/ai-platform/, 2020.

[27] Haryadi S Gunawi, Riza O Suminto, Russell Sears,
Casey Golliher, Swaminathan Sundararaman, Xing Lin,
Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, et al. Fail-slow at scale: Evidence of
hardware performance faults in large production systems.
ACM Transactions on Storage, 14(3):1–26, 2018.

[28] JianGuo,HeHe,TongHe,LeonardLausen,MuLi,Haibin
Lin,Xingjian Shi,ChenguangWang, JunyuanXie, Sheng
Zha, et al. GluonCV and GluonNLP: Deep Learning in
ComputerVisionandNaturalLanguageProcessing. Jour-
nal of Machine Learning Research, 21(23):1–7, 2020.

[29] Kim Hazelwood, Sarah Bird, David Brooks, Soumith
Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed
Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al.
Applied Machine Learning at Facebook: A Datacenter
Infrastructure Perspective. In Proceedings of the 24th
IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2018.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition. In
Proceedings of the IEEE 2016 Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Identity Mappings in Deep Residual Networks.
In Proceedings of the 14th European Conference on
Computer Vision (ECCV), 2016.

[32] Jeremy Hermann andMike Del Balso. Meet Michelan-
gelo: Uber’s Machine Learning Platform. https:
//eng.uber.com/michelangelo/, September 2017.

[33] AndrewHoward,Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun
Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching
for MobileNetV3. In Proceedings of the IEEE 2019
Conference on Computer Vision (ICCV), 2019.

[34] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik,
Shivaram Venkataraman, Paramvir Bahl, Matthai Phili-
pose, Phillip B Gibbons, and Onur Mutlu. Focus: Query-
ing LargeVideoDatasetwithLowLatency andLowCost.
In Proceedings of the 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI), 2018.

[35] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-Excitation
Networks. In Proceedings of the IEEE 2018 Conference
on Computer Vision and Pattern Recognition (CVPR),
2018.

[36] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian QWeinberger. Densely Connected Convolutional
Networks. In Proceedings of the IEEE 2017 Conference
on Computer Vision and Pattern Recognition (CVPR),
2017.

[37] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R
Lorch, Yingnong Dang, Murali Chintalapati, and
Randolph Yao. Gray Failure: The Achilles’ Heel of
Cloud-Scale Systems. In Proceedings of the 16th Work-
shop on Hot Topics in Operating Systems (HotOS), 2017.

[38] Qi Huang, Ken Birman, Robbert Van Renesse, Wyatt
Lloyd, Sanjeev Kumar, and Harry C Li. An Analysis
of Facebook Photo Caching. In Proceedings of the
24th ACM Symposium on Operating Systems Principles
(SOSP), 2013.

[39] Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. Serving Deep LearningModels in a Server-
less Platform. In Proceedings of the 6th IEEE Interna-
tional Conference on Cloud Engineering (IC2E), 2018.

[40] Chris Jones, John Wilkes, Niall Murphy, and Cody
Smith. Site Reliability Engineering: How Google
Runs Production Systems. O’Reilly Media, 2016.
https://landing.google.com/sre/sre-book/
chapters/service-level-objectives/.

458 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.deeplearningbook.org
https://cloud.google.com/ai-platform/
https://eng.uber.com/michelangelo/
https://eng.uber.com/michelangelo/
https://landing.google.com/sre/sre-book/chapters/service-level-objectives/
https://landing.google.com/sre/sre-book/chapters/service-level-objectives/

[41] Norman P Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
Datacenter Performance Analysis of a Tensor Processing
Unit. InProceedingsof the44thACM/IEEEInternational
Symposium on Computer Architecture (ISCA), 2017.

[42] Kostis Kaffes, Dragos Sbirlea, Yiyan Lin, David Lo, and
Christos Kozyrakis. Leveraging Application Classes
to Save Power in Highly-Utilized Data Centers. In
Proceedings of the 11th ACM Symposium on Cloud
Computing (SoCC), 2020.

[43] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis,
and Matei Zaharia. NoScope: Optimizing Neural
Network Queries over Video at Scale. Proceedings of
the VLDB Endowment, 10(11), 2017.

[44] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin
Raju, Jeongseob Ahn, Jason Mars, and Lingjia Tang.
GrandSLAm: Guaranteeing SLAs for Jobs inMicroser-
vices Execution Frameworks. In Proceedings of the 14th
European Conference on Computer Systems (EuroSys),
2019.

[45] Andrew Lavin and Scott Gray. Fast Algorithms for
Convolutional Neural Networks. In Proceedings of the
IEEE 2016 Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[46] Jialin Li,NaveenKrSharma,DanRKPorts, andStevenD
Gribble. Talesof theTail:Hardware,OS,andApplication-
Level Sources of Tail Latency. In Proceedings of the 5th
ACM Symposium on Cloud Computing (SoCC), 2014.

[47] David Lo, Liqun Cheng, Rama Govindaraju,
Parthasarathy Ranganathan, and Christos Kozyrakis.
Heracles: Improving Resource Efficiency at Scale.
In Proceedings of the 42nd Annual International
Symposium on Computer Architecture (ISCA), 2015.

[48] Peter Mattson, Vijay Janapa Reddi, Christine Cheng,
Cody Coleman, Greg Diamos, David Kanter, Paulius
Micikevicius, David Patterson, Guenther Schmuelling,
Hanlin Tang, et al. MLPerf: An industry standard
benchmark suite for machine learning performance.
IEEEMicro, 40(2):8–16, 2020.

[49] Neural Network Exchange Format (NNEF). Retrieved
May 2020 from https://www.khronos.org/nnef/,
2020.

[50] NVIDIA TensorRT. Retrieved May 2020 from
https://developer.nvidia.com/tensorrt, 2020.

[51] ChristopherOlston,NoahFiedel,KirilGorovoy,Jeremiah
Harmsen, Li Lao, Fangwei Li, Vinu Rajashekhar, Sukriti
Ramesh, and Jordan Soyke. TensorFlow-Serving:

Flexible, High-PerformanceML Serving. Workshop on
ML Systems at NeurIPS 2017, 2017.

[52] Open Neural Network Exchange Format: The new open
ecosystem for interchangeable AI models. Retrieved
May 2020 from https://onnx.ai/, 2020.

[53] The ONNX Model Zoo. Retrieved May 2020 from
https://github.com/onnx/models, 2020.

[54] Nathan Otterness, Ming Yang, Tanya Amert, James An-
derson, and F Donelson Smith. Inferring the scheduling
policies of an embedded cuda gpu. In 13th Workshop on
Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT), 2017.

[55] Kay Ousterhout, Christopher Canel, Sylvia Ratnasamy,
and Scott Shenker. Monotasks: Architecting for
Performance Clarity in Data Analytics Frameworks. In
Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP), 2017.

[56] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott
Shenker, and Byung-Gon Chun. Making Sense of Perfor-
mance in Data Analytics Frameworks. In Proceedings
of the 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2015.

[57] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Devavrat Shah, and Hans Fugal. FastPass: A Centralized
“Zero-Queue” Datacenter Network. In Proceedings of
the 2014 Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM), 2014.

[58] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and
Christos Kozyrakis. INFaaS: A Model-less Inference
Serving System. arXiv preprint arXiv:1905.13348, 2019.

[59] Deploying a Model on Amazon SageMaker
Hosting Services. Retrieved May 2020 from
https://docs.aws.amazon.com/sagemaker/
latest/dg/how-it-works-hosting.html, 2020.

[60] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Et-
zioni. Green AI. arXiv preprint arXiv:1907.10597, 2019.

[61] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri,
Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo
Laureano, Colby Tresness, Mark Russinovich, and Ri-
cardo Bianchini. Serverless in theWild: Characterizing
and Optimizing the Serverless Workload at a Large
Cloud Provider. In Proceedings of the 2020 USENIX
Annual Technical Conference (ATC ’20), 2020.

[62] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong,Matthai Philipose, ArvindKrishnamurthy,
and Ravi Sundaram. Nexus: a GPU Cluster Engine
for Accelerating DNN-based Video Analysis. In

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 459

https://www.khronos.org/nnef/
https://developer.nvidia.com/tensorrt
https://onnx.ai/
https://github.com/onnx/models
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-hosting.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-hosting.html

Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), 2019.

[63] Julien Simon. Amazon Elastic Inference – GPU-
Powered Deep Learning Inference Acceleration. https:
//aws.amazon.com/blogs/aws/amazon-elastic-
inference-gpu-powered-deep-learning-
inference-acceleration/, November 2018.

[64] Kacper Sokol and Peter A Flach. Glass-Box: Explaining
AI DecisionsWith Counterfactual Statements Through
ConversationWith a Voice-enabled Virtual Assistant. In
Proceedings of the 27th International Joint Conference
on Artificial Intelligence (IJCAI), 2018.

[65] Emma Strubell, AnanyaGanesh, andAndrewMcCallum.
Energy and Policy Considerations for Deep Learning
in NLP. arXiv preprint arXiv:1906.02243, 2019.

[66] Jinghao Sun, Jing Li, Zhishan Guo, An Zou, Xuan Zhang,
Kunal Agrawal, and Sanjoy Baruah. Real-Time Schedul-
ing upon a Host-Centric Acceleration Architecture
with Data Offloading. In Proceedings of the 26th IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2020.

[67] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
Going Deeper with Convolutions. In Proceedings of the
IEEE 2015 Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[68] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and ZbigniewWojna. Rethinking the Inception
Architecture for Computer Vision. In Proceedings of the
IEEE 2016 Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[69] Ymir Vigfusson, HussamAbu-Libdeh, Mahesh Balakr-
ishnan, Ken Birman, Robert Burgess, Gregory Chockler,
Haoyuan Li, and Yoav Tock. Dr. Multicast: Rx for Data
Center Communication Scalability. In Proceedings
of the 5th European Conference on Computer systems
(EuroSys), 2010.

[70] LiminWang,YuanjunXiong,ZheWang,YuQiao,Dahua
Lin,Xiaoou Tang, andLucVanGool. Temporal Segment
Networks: Towards Good Pratices for Deep Action
Recognition. In Proceedings of the 14th European
Conference on Computer Vision (ECCV), 2016.

[71] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas
Chen,SyChoudhury,MaratDukhan,KimHazelwood,El-
dad Isaac, Yangqing Jia, Bill Jia, et al. Machine Learning
atFacebook:Understanding Inferenceat theEdge. InPro-
ceedings of the 2019 IEEE International Symposium on
HighPerformanceComputerArchitecture (HPCA), 2019.

[72] Bin Xiao, Haiping Wu, and Yichen Wei. Simple
Baselines for Human Pose Estimation and Tracking.
In Proceedings of the 16th European Conference on
Computer Vision (ECCV), 2018.

[73] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu,
and Kaiming He. Aggregated Residual Transformations
for Deep Neural Networks. In Proceedings of the IEEE
2017 Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[74] Ming Yang, Nathan Otterness, Tanya Amert, Joshua
Bakita, James H Anderson, and F Donelson Smith.
Avoiding Pitfalls when using NVIDIA GPUs for Real-
Time Tasks in Autonomous Systems. In Proceedings
of the 30th Euromicro Conference on Real-Time Systems
(ECRTS), 2018.

[75] Fisher Yu, DequanWang, Evan Shelhamer, and Trevor
Darrell. Deep Layer Aggregation. In Proceedings of the
IEEE 2018 Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[76] SergeyZagoruyko andNikosKomodakis. WideResidual
Networks. arXiv preprint arXiv:1605.07146, 2016.

[77] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng
Yan. Mark: ExploitingCloud Services forCost-Effective,
SLO-aware Machine Learning Inference Serving. In
Proceedings of the 2019 USENIX Annual Technical
Conference (ATC), 2019.

[78] Hang Zhang, ChongruoWu, Zhongyue Zhang, Yi Zhu,
Zhi Zhang,Haibin Lin,Yue Sun, TongHe, JonasMueller,
RManmatha, et al. ResNeSt: Split-Attention Networks.
arXiv preprint arXiv:2004.08955, 2020.

460 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://aws.amazon.com/blogs/aws/amazon-elastic-inference-gpu-powered-deep-learning-inference-acceleration/
https://aws.amazon.com/blogs/aws/amazon-elastic-inference-gpu-powered-deep-learning-inference-acceleration/
https://aws.amazon.com/blogs/aws/amazon-elastic-inference-gpu-powered-deep-learning-inference-acceleration/
https://aws.amazon.com/blogs/aws/amazon-elastic-inference-gpu-powered-deep-learning-inference-acceleration/

A Artifact Appendix
A.1 Abstract
The artifact consists of Clockwork’s prototype source code,
instructions for building from source, and directions for prepar-
ing the environment. The instructions for launching a Docker
instance that has all dependencies pre-installed is provided
as well. The artifact also contains scripts, descriptions, and
instructions to run the experiments automatically or manually
for reproducing the graphs and results presented in the paper.
A.2 Artifact check-list
⋅ Program: dnn-model-serving, multi-tenant
⋅ Compilation: cmake, g++
⋅ Binary: worker, controller, client
⋅ Model: distributed, multi-tenant
⋅ Data set: azure-functions-trace-2019, poission-distribution
⋅ Run-time environment: Linux, CUDA, network
⋅ Hardware: NVIDIA, Tesla-V100
⋅ Execution: automated, manual
⋅ Metrics: throughput, latency, SLO-violation, tail-latency
⋅ Output: telemetry-measurements, table, graph
⋅ Experiments: throughput-latency, scalability, predictability, SLO,
tail-latency

⋅ Required disk space:
Clockwork: 210MB
Total including compiled models and dataset: 12GB

⋅ Expected experiment run time:About 17 hours in total
⋅ Public link:
https://gitlab.mpi-sws.org/cld/ml/clockwork

⋅ Code licenses:
Clockwork: Apache License 2.0
TVM: Apache License 2.0
CUDACommon Library: Apache License 2.0
Catch2: Boost Software License 1.0

⋅ Data licenses:
Azure Functions Trace 2019: CC-BYAttribution

A.3 Description
A.3.1 How to access

The artifact is publicly available at
https://gitlab.mpi-sws.org/cld/ml/clockwork

A.3.2 Hardware dependencies

To reproduce the exact experiment results, worker machines
must have 768GB RAM or higher, 16 CPU cores or more, at
least one 32GB Tesla v100 GPU and 10Gbps network. The
large-scale experiment with Azure Functions (Fig. 9) requires
12 worker machines. Most other experiments require fewer
worker machines; details on the number of machines for each
experiment and environment customization guide is provided
in each experiment’s documentation.

A.3.3 Software dependencies

⋅ Clockwork:
Ubuntu 18.04 or later, CUDA v9.0+, libtbb-dev, libasio-dev,
libconfig++-dev, libboost-all-dev, g++-8, make, cmake,
automake, autoconf, libtool, curl, unzip, clang, llvm, and
protobuf.
A Dockerfile is provided to facilitate the build process.

⋅ Data analysis and plotting scripts:
Python 3.x and the numpy, pandas, matplotlib, and seaborn
libraries.

A.3.4 Data sets

⋅ Publicly released Azure Functions 2019 trace [61]
https://gitlab.mpi-sws.org/cld/trace-
datasets/azure-functions

A.3.5 Models

The DNN models pre-compiled for NVIDIA Volta V100
GPUs are accessible at
https://gitlab.mpi-sws.org/cld/ml/clockwork-
modelzoo-volta

A.4 Installation
⋅ Installation pre-requisites:
https://gitlab.mpi-sws.org/cld/ml/clockwork/
-/blob/master/docs/prerequisites.md

⋅ Building Clockwork:
https://gitlab.mpi-sws.org/cld/ml/clockwork/
-/blob/master/docs/building.md

⋅ Setting-up the environment:
https://gitlab.mpi-sws.org/cld/ml/clockwork/
-/blob/master/docs/environment.md

⋅ Clockwork configuration:
https://gitlab.mpi-sws.org/cld/ml/clockwork/
-/blob/master/docs/configuration.md

A.5 Experiment workflow
Experiments can be run using the scripts provided in the
repository. We have also provided instructions to run the
experiments manually. To get started with Clockwork, we
recommend getting the system running manually, in order to
understand the pieces involved, and to ensure the system has
been configured appropriately for your machines. Afterwards,
you might choose to run the experiments using the provided
scripts or manually. The experiments repository is available at
https://gitlab.mpi-sws.org/cld/ml/clockwork-
results

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 461

https://gitlab.mpi-sws.org/cld/ml/clockwork
https://gitlab.mpi-sws.org/cld/ml/clockwork
https://gitlab.mpi-sws.org/cld/trace-datasets/azure-functions
https://gitlab.mpi-sws.org/cld/trace-datasets/azure-functions
https://gitlab.mpi-sws.org/cld/ml/clockwork-modelzoo-volta
https://gitlab.mpi-sws.org/cld/ml/clockwork-modelzoo-volta
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/prerequisites.md
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/prerequisites.md
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/building.md
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/building.md
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/environment.md
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/environment.md
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/configuration.md
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/configuration.md
https://gitlab.mpi-sws.org/cld/ml/clockwork-results
https://gitlab.mpi-sws.org/cld/ml/clockwork-results

Experiment Related figure Execution Documentation and scripts
time (hr)

HowDoes Clockwork Compare? Fig. 5 3 https://gitlab.mpi-sws.org/cld/ml/clockwork-
results/-/tree/master/sec61_fig5

Can Clockwork Serve Thousands? Fig. 6 1.5 https://gitlab.mpi-sws.org/cld/ml/clockwork-
results/-/tree/master/sec62_fig6

How Low Can Clockwork Go? Fig. 7 1 https://gitlab.mpi-sws.org/cld/ml/clockwork-
results/-/tree/master/sec63_fig7

Can Clockwork Isolate Performance? Fig. 8 1 https://gitlab.mpi-sws.org/cld/ml/clockwork-
results/-/tree/master/sec64_fig8

Are Realistic Workloads Predictable? Fig. 10 8 https://gitlab.mpi-sws.org/cld/ml/clockwork-
results/-/tree/master/sec65_fig9_fig10

Can Clockwork Scale? Fig. 11 2 https://gitlab.mpi-sws.org/cld/ml/clockwork-
results/-/tree/master/sec66_fig11

Table 3: The experiments reproducing the presented results in this paper, their related figures, execution time, and links to the extensive
documentation and scripts for each experiment.

A.6 Evaluation and expected results
The experiments repository is structured based on §6. We
have provided the experiment titles, their related figures on
the paper, execution time of each experiment, and the links
to directories containing the respective descriptions, scripts
and instructions in Table 3.
A.7 Experiment customization
The directions for running each experiment manually is
provided in each experiment’s documentation. Instructions
for customizing the experiment environment is provided at
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/
blob/master/docs/customizing.md

A.8 AEMethodology
Submission, reviewing and badging methodology:
https://www.usenix.org/conference/osdi20/call-
for-artifacts

462 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec61_fig5
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec61_fig5
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec62_fig6
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec62_fig6
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec63_fig7
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec63_fig7
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec64_fig8
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec64_fig8
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec65_fig9_fig10
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec65_fig9_fig10
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec66_fig11
https://gitlab.mpi-sws.org/cld/ml/clockwork-results/-/tree/master/sec66_fig11
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/customizing.md
https://gitlab.mpi-sws.org/cld/ml/clockwork/-/blob/master/docs/customizing.md
https://www.usenix.org/conference/osdi20/call-for-artifacts
https://www.usenix.org/conference/osdi20/call-for-artifacts

A Unified Architecture for Accelerating Distributed DNN Training in
Heterogeneous GPU/CPU Clusters

Yimin Jiang⇤†, Yibo Zhu†, Chang Lan‡, Bairen Yi†, Yong Cui⇤, Chuanxiong Guo†

⇤Tsinghua University, †ByteDance, ‡Google

Abstract
Data center clusters that run DNN training jobs are inher-

ently heterogeneous. They have GPUs and CPUs for computa-
tion and network bandwidth for distributed training. However,
existing distributed DNN training architectures, all-reduce
and Parameter Server (PS), cannot fully utilize such heteroge-
neous resources. In this paper, we present a new distributed
DNN training architecture called BytePS. BytePS can lever-
age spare CPU and bandwidth resources in the cluster to
accelerate distributed DNN training tasks running on GPUs.
It provides a communication framework that is both proved
optimal and unified – existing all-reduce and PS become two
special cases of BytePS. To achieve the proved optimality in
practice, BytePS further splits the functionalities of a parame-
ter optimizer. It introduces a Summation Service abstraction
for aggregating gradients, which is common for all the op-
timizers. Summation Service can be accelerated by AVX
instructions and can be efficiently run on CPUs, while DNN
model-related optimizer algorithms are run on GPUs for com-
putation acceleration. BytePS can accelerate DNN training
for major frameworks including TensorFlow, PyTorch and
MXNet. For representative DNN training jobs with up to 256
GPUs, BytePS outperforms the state-of-the-art open source
all-reduce and PS by up to 84% and 245%, respectively.

1 Introduction
In recent years, research on Deep Neural Networks (DNNs)
has experienced a renaissance. DNNs have brought break-
throughs to computer vision [32, 43], speech recognition and
synthesis [33, 69], natural language processing (NLP) [26],
and many other areas. Training these DNN models usually
requires a huge amount of arithmetic computation resources.
Consequently, GPUs are preferred. To run many such tasks
and achieve high resource utilization, large GPU clusters with
thousands or more GPUs are introduced [29, 35, 52, 71].

Such GPU clusters have not only GPUs, but also CPUs and
high speed networks. GPU machines typically also have high-
end CPUs [2, 11]. There may also be CPU-only machines
used for training data pre-processing and generation, e.g.,

in reinforcement learning. These GPU/CPU machines are
connected by high-speed Ethernet or Infiniband network to
facilitate distributed training. Based on our experience in
operating production GPU clusters (§3.1) and recent literature
from others [35], GPUs are usually better utilized while there
are often spare CPU and bandwidth resources.

There are two major families of distributed training archi-
tectures, all-reduce [54] and Parameter Server (PS) [44]. They
are both based on data parallelism (§2). In a task that uses
all-reduce, only GPU machines are involved. In an iteration,
GPUs compute the gradients of the model parameters inde-
pendently, and then aggregate gradients using the all-reduce
primitive. In PS tasks, both GPU machines and CPU machines
can be used. Different from all-reduce, the gradients are sent
to PS, which typically runs on CPU machines and aggregates
the received gradients. PS then runs certain DNN training
optimizer, e.g., SGD [76] or Adam [42] and sends back the
updated model. For both all-reduce and PS, the above happens
in every iteration, until the training finishes.

All-reduce and PS are quite different, in both theory and
practice. Given a set of GPU machines without additional
CPU machines, all-reduce is proved to be bandwidth opti-
mal [54]. However, with additional CPU and bandwidth re-
sources, the optimality of all-reduce no longer holds – we
find that, in theory, PS can offer even better performance by
utilizing additional CPU machines to aid the GPU machines
(§2). It seems to be a good opportunity to accelerate DNN
training because GPU clusters indeed have spare CPU and
bandwidth resources (§3.1). Unfortunately, in practice, all
the existing PS have inferior performance for multiple design
reasons, as we shall see soon in this paper. It is therefore not
a surprise to see that distributed DNN training speed records
are dominated by all-reduce [27, 49, 73].

We are thus motivated to design BytePS 1, an architecture
that is communication-optimal, both in theory and in practice.
Fundamentally, both all-reduce and PS are theoretically op-
timal only in very specific GPU/CPU setups, while are not
1The name BytePS was chosen in the early stage of this project [4]. However,
it is conceptually different from the conventional PS architecture.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 463

the optimal for more generic settings, e.g., there are some fi-
nite additional CPU resources. By carefully allocating traffic
loads, BytePS unifies the cases where PS or all-reduce is the-
oretically optimal, and generalizes the optimality to any given
number of GPU/CPU machines with different PCIe/NVLink
configurations, with analytical proofs.

On top of that, BytePS pushes its real-world performance
close to the theoretical limit, by removing bottlenecks in exist-
ing PS designs. With fast high-speed networks, we found that
CPUs are not fast enough for the full fledged DNN optimiz-
ers. We introduce a new abstraction, Summation Service, to
address this issue. We split an optimizer into gradient aggre-
gation and parameter update. We keep gradient aggregation
in Summation Service running on CPUs and move param-
eter update, which is more computation intensive, to GPUs.
In addition, in implementation, we incorporated the idea of
pipelining and priority-scheduling from prior work [34, 55]
and resolved multiple RDMA-related performance issues.

As a drop-in replacement for all-reduce and PS, BytePS
aims to accelerate distributed training without changing the
DNN algorithm or its accuracy at all. Prior work on top of all-
reduce and PS, like tensor compression [21, 45], can directly
apply to BytePS. Our BytePS implementation supports pop-
ular DNN training frameworks including TensorFlow [20],
PyTorch [53], and MXNet [22] with Horovod-like [60] API
and native APIs.

This paper makes the following contributions:

• We design a new distributed DNN training architecture,
BytePS, for heterogeneous GPU/CPU clusters. With spare
CPU cores and network bandwidth in the cluster, BytePS
can achieve communication optimality 2 for DNN training
acceleration. BytePS provides a unified framework which
includes both all-reduce and PS as two special cases.

• We further optimize the intra-machine communication. We
explain the diverse and complicated topology in GPU ma-
chines and present the optimal strategy and principles.

• We propose Summation Service, which accelerates DNN
optimizers by keeping gradient summation running in
CPUs, and moving parameter update, which is the more
computation intensive, to GPUs. This removes the CPU
bottleneck in the original PS design.

As a major online service provider, we have deployed
BytePS internally and used it extensively for DNN training.
We evaluate BytePS using six DNN models and three training
frameworks in production data centers. The results show that
with 256 GPUs, BytePS consistently outperform existing all-
reduce and PS solutions by up to 84% and 245%, respectively.
We also released an open source version [4], which attracted
interests from thousands in the open source community, sev-
eral top-tier companies and multiple research groups.
2The optimality means to achieve minimized communication time for data-
parallel distributed DNN training, given a fixed number of GPUs.

2 Background
2.1 Distributed DNN Training
A DNN model consists of many parameters. DNN training
involves three major steps: (1) forward propagation (FP),
which takes in a batch of training data, propagates it through
the DNN model, and calculates the loss function; (2) back-
ward propagation (BP), which uses the loss value to compute
the gradients of each parameter; (3) parameter update, which
uses the aggregated gradients to update the parameters with a
certain optimizer (e.g., SGD [76], Adam [42], etc.). Training
a DNN refines the model parameters with the above three
steps iteratively, until the loss function reaches its minimal.

On top of it, users can optionally run distributed train-
ing. The most popular distributed DNN training approach
is data parallelism, which partitions the dataset to multiple
distributed computing devices (typically GPUs) while each
GPU holds the complete DNN model. Since the data input
to each GPU is different, the gradients generated by BP will
also be different. Thus data parallelism demands all GPUs to
synchronize during each training iteration.

In large enterprises or in public clouds, users often run
these DNN training tasks in shared GPU clusters. Such clus-
ters are built with hundreds to thousands of GPU machines
connected by high-speed RDMA networks [35, 52]. Those
GPU machines typically have multiple GPUs, tens of CPU
cores, hundreds of GB of DRAM, and one to several 100Gb/s
NICs. These clusters run many training jobs simultaneously,
with many jobs using GPUs intensively while not using CPUs
heavily. A public dataset on a DNN cluster [35] indicates that
50% of hosts have CPU utilization lower than 30%.

For distributed training, there are two families of data paral-
lelism approaches, i.e., all-reduce and Parameter Server (PS).
In what follows, we introduce all-reduce and PS and analyze
their communication overheads. We assume that we have
n GPU machines for a data-parallel training job. The DNN
model size is M bytes. The network bandwidth is B.

2.2 All-reduce
Originated from the HPC community, all-reduce aggregates
every GPU’s gradients in a collective manner before GPUs
update their own parameters locally. In all-reduce, no addi-
tional CPU machine is involved. Ring is the most popular
all-reduce algorithm. All-reduce has been optimized for many
years, and most state-of-the-art training speed records are
achieved using all-reduce, including classical CNN-based Im-
ageNet tasks [27, 36, 49, 73], RNN-based language modeling
tasks [56], and the pre-training of BERT [26, 74].

Fig. 1 shows an example of ring-based all-reduce for three
nodes. We can dissect an all-reduce operation into a reduce-
scatter and an all-gather. Reduce-scatter (Fig. 1(a)) partitions
the whole M bytes into n parts, and use n rings with different
starting and ending point to reduce the n parts, respectively.
Each node will send (n�1)M/n traffic, because each node

464 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

acts as the last node for just 1 ring and thus sends 0, while for
each of the other n�1 rings, it must send M/n bytes.

Next, all-gather requires each node to broadcast its reduced
part to all other (n�1) nodes using a ring. In the end, all nodes
have identical data that have been all-reduced (Fig. 1(c)).
Similar to reduce-scatter, each node also sends (n�1)M/n
egress traffic during this operation.

Adding the two steps together, in an all-reduce operation,
each node sends (and receives) 2(n� 1)M/n traffic to (and
from) the network. With B network bandwidth, the time re-
quired is 2(n�1)M/nB, which is proved to be the optimal in
topologies with uniformed link bandwidth [54], assuming no
additional resources.

In hierarchical topologies with non-uniformed link band-
width, the optimal hierarchical strategy would require at least
2(n0 �1)M/n0B0 communication time, where B0 is the slowest
link bandwidth and n0 is the number of nodes with the slowest
links. In distributed DNN training, n0 is usually the number of
GPU machines and B0 is usually the network bandwidth per
machine. For simplicity and without impacting our analysis,
below we assume each machine has just one GPU and is con-
nected by the same network bandwidth, i.e., n = n0,B = B0.

All-reduce has no way to utilize additional non-worker
nodes, since it was designed for homogeneous setup. Next,
we will show that the 2(n�1)M/nB communication time is
no longer optimal with additional CPU machines.

2.3 Parameter Server (PS)
The PS architecture [44] contains two roles: workers and PS.
Workers usually run on GPU machines, perform FP and BP,
and push the gradients to PS. PS aggregates the gradients
from different workers and update the parameters. Finally,
workers pull the latest parameters from PS and start the next
iteration. According to our experience in industry, the PS
processes usually run on CPUs because of cost-effectiveness.
Since GPUs (and GPU memory) are much more expensive
than CPUs,3 we want GPUs to focus on the most computation-
intensive tasks instead of storing the model parameters.

There are two placement strategies for PS. One is non-
colocated mode (Fig. 2(a)), in which PS processes are de-
ployed on dedicated CPU machines, separate from the GPU
machines. Suppose that we have k CPU machines,4 the DNN
model will be partitioned into k parts and stored on the k ma-
chines, respectively. In every iteration, each GPU worker must
send M bytes gradients and receives M bytes parameters back.
Each CPU machine must receive in total nM/k gradients from
the GPU workers and send back nM/k parameters.

3AWS price sheet [18] shows that p3.16xlarge (8 NVIDIA V100 GPUs and
64 CPU cores) costs nearly $25 per hour. However, r4.16xlarge, which is
the same as p3.16xlarge minus GPUs, costs only $4.2 per hour.

4In this paper, for simplicity, we assume that a CPU machine has the same
network bandwidth as a GPU machine. If not, all analysis and design will
remain valid as long as the number of CPU machines scales accordingly.
For example, use 4⇥ CPU machines if their bandwidth is 25% of GPU
machines.

A0 B0 C0

A2 B2 C2 A1 B1 C1

ΣA B0 C0

A2 B2 ΣC A1 ΣB C1

ΣA ΣB ΣC

ΣA ΣB ΣC ΣA ΣB ΣC

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC

Worker-0 Worker-1 Worker-2

Server-0 Server-1 Server-2

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC
Machine-0 Machine-1 Machine-2

(a) Reduce-scatter

A0 B0 C0

A2 B2 C2 A1 B1 C1

ΣA B0 C0

A2 B2 ΣC A1 ΣB C1

ΣA ΣB ΣC

ΣA ΣB ΣC ΣA ΣB ΣC

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC

Worker-0 Worker-1 Worker-2

Server-0 Server-1 Server-2

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC
Machine-0 Machine-1 Machine-2

(b) All-gather

A0 B0 C0

A2 B2 C2 A1 B1 C1

ΣA B0 C0

A2 B2 ΣC A1 ΣB C1

ΣA ΣB ΣC

ΣA ΣB ΣC ΣA ΣB ΣC

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC

Worker-0 Worker-1 Worker-2

Server-0 Server-1 Server-2

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC
Machine-0 Machine-1 Machine-2

(c) Result
Figure 1: The communication workflow of all-reduce.

A0 B0 C0

A2 B2 C2 A1 B1 C1

ΣA B0 C0

A2 B2 ΣC A1 ΣB C1

ΣA ΣB ΣC

ΣA ΣB ΣC ΣA ΣB ΣC

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC

Worker-0 Worker-1 Worker-2

Server-0 Server-1 Server-2

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC
Machine-0 Machine-1 Machine-2

(a) Non-colocated mode

A0 B0 C0

A2 B2 C2 A1 B1 C1

ΣA B0 C0

A2 B2 ΣC A1 ΣB C1

ΣA ΣB ΣC

ΣA ΣB ΣC ΣA ΣB ΣC

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC

Worker-0 Worker-1 Worker-2

Server-0 Server-1 Server-2

A0 B0 C0 A2 B2 C2A1 B1 C1

ΣA ΣB ΣC
Machine-0 Machine-1 Machine-2

(b) Colocated mode
Figure 2: The communication pattern of PS. A solid arrow line
indicates the network traffic. A dashed arrow line represents the
loop-back (local) traffic.

Assuming k = n, PS would theoretically be faster than
all-reduce, as summarized in Table 1. In fact, PS is com-
munication optimal in such setting, since M is the absolute
lower bound each GPU machine has to send and receive.
However, with fewer CPU machines (smaller k), the commu-
nication time nM/kB on CPU machines would increase and,
if k n/2, become slower than all-reduce. The network band-
width of GPU machines would become under-utilized because
the CPU machines would be the communication bottleneck.

The other strategy is colocated mode (Fig. 2(b)), which
does not use any CPU machines. Instead, it starts a PS process
on every GPU worker and reuses its spare CPU resources. The
PS and GPU worker on the same machine will communicate
through loopback traffic. In this case, it is easy to calculate
that communication time is the same as all-reduce (Table 1).
All-reduce vs. PS. They have different communication pat-
terns. PS uses a bipartite graph. Non-colocated PS can lever-
age additional CPU and bandwidth resources to aid GPU
machines, while may under-utilize the resources of GPU ma-
chines. Colocated PS and all-reduce utilize the GPU worker
resources better, while cannot use additional CPU machines.

Another difference is that PS supports asynchronous train-
ing, which allows GPU workers to run at different speed and
mitigates the impact of stragglers, while all-reduce does not
support it. However, asynchronous training is less popular
because it can slow down model convergence. We will mainly
focus on synchronous training in this paper while briefly ad-
dress asynchronous training in §5.

3 Motivation and BytePS Architecture
3.1 Motivation
Before the deployment of BytePS in our internal GPU clusters,
our users mostly used all-reduce as the distributed training
architecture due to its higher performance than existing PS
designs. The remaining users choose PS for tasks where asyn-
chronous training is acceptable or preferable. With multiple
years of experience and efforts on accelerating DNN tasks
and improving resource utilization, we have the following
observation.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 465

Table 1: The theoretical communication time required by each
training iteration. n is the number of GPU machines. k is the number
of additional CPU machines. M is the model size. B is the network
bandwidth. We will revisit the Optimal? row in §4.1.

All-reduce Non-Colocated PS Colocated PS
Time 2(n�1)M

nB max(M
B , nM

kB) 2(n�1)M
nB

Optimal? Only if k = 0 Only if k = n Only if k = 0

Opportunity: there are spare CPUs and bandwidth in
production GPU clusters. Large-scale GPU clusters simulta-
neously run numerous jobs, many of which do not heavily use
CPUs or network bandwidth. Fig. 3 shows a 3-month trace
collected from one of our GPU clusters that have thousands
of GPUs. The GPUs have been highly utilized in that period
(approaching 96% allocation ratio in peak times). We find
that, 55%-80% GPU machines have been assigned as GPU
workers for at least one distributed training task. This leaves
the network bandwidth of 20%-45% GPU machines unused
because they are running non-distributed jobs.5 The cluster-
wide average CPU utilization is only around 20%-35%. This
aligns with the findings in prior work from Microsoft [35].

This observation, combined with the all-reduce vs. non-
colocated PS analysis in §2.1, inspires us – if we can better
utilize these spare CPUs and bandwidth, it is possible to ac-
celerate distributed training jobs running on given GPUs.
Existing all-reduce and PS architectures are insufficient.
Unfortunately, the analysis in §2.1 also shows that all-reduce
and PS have a common issue: they do not utilize additional
CPU and bandwidth resources well. All-reduce and colocated
PS only use resources on GPU workers, and non-colocated
PS may not fully utilize the CPU cores and NIC bandwidth
on GPU workers. The former is communication optimal only
when k = 0, while the latter is optimal only when k = n. When
the number of CPU machine k is 0 < k < n, neither would be
optimal. We defer further analysis to §4.1. Here, we use an
experiment to show the end-to-end performance of existing
all-reduce and PS.

Fig. 4 shows the training speed of VGG-16 [63] using 32
V100 GPUs (4 GPU machines), with 100GbE RDMA net-
work. The batch size is 32 images for each GPU. We run the
latest MXNet native PS RDMA implementation [1] and (one
of) the most popular all-reduce library NCCL-2.5.7 [13]. We
also tested TensorFlow’s native PS, and got similar results. We
vary the number of additional CPU machines for each setup.
All-reduce plot is flat because additional CPU machines are
of no use, while PS has the worst performance even with
additional CPU machines. Both of them are far from optimal.
Even with ByteScheduler [55], which is a state-of-the-art tech-
nique that can improve the communication performance, both
all-reduce and PS are still far from the linear scaling, i.e., 32⇥
of single-GPU training speed. This is because ByteScheduler
5Our machines have dedicated but slower NIC for data I/O. This is a common
practice in industry [52]. In addition, data I/O traffic is usually much smaller
than the distributed training traffic between GPU machines.

2020-01-01
2020-01-21

2020-02-10
2020-03-01

2020-03-21
0%

50%

100%
% G3U Pachines
foU Gist-tUaining
AveUage C3U
utilization

Figure 3: Daily statistics of our internal DNN training clusters from
2020-01-01 to 2020-03-31.

Figure 4: VGG-16 training performance of different architectures.
We use 4 GPU machines with 32 GPUs in total. Linear Scaling
represents the maximal performance (in theory) of using 32 GPUs.

works on top of PS or all-reduce, and thus has the same limi-
tations. BytePS outperforms all of above at any given number
of CPU machines (more in §7).
Our solution: BytePS. It is a unified architecture for dis-
tributed DNN training that can leverage spare CPU and band-
width resources. It achieves the following goals.

First, BytePS is always communication optimal with any
additional CPU and bandwidth resources, i.e., 0 k n, al-
located by the cluster scheduler. In practice, the volume of
spare resources can be dynamic (Fig. 3), so BytePS must adapt
well. In addition, the hardware setup of GPU machines can
be diverse, especially the internal PCIe or NVLink topology.
BytePS is also proved optimal in intra-machine communi-
cation. All-reduce and PS, when they are communication
optimal, are two special cases of BytePS (§4).

Second, BytePS can achieve communication time very
close to the theoretical optimal. This is important, as shown
in the existing PS case – PS performance is far from its theo-
retical limit. We found that original PS designs have several
implementation bottlenecks (which we will discuss in §6). But
even after all the bottlenecks are removed, PS performance is
still inferior to optimal. This leads to BytePS’s second design
contribution: Summation Service. We find that running the
full optimizers on CPU can be a bottleneck. We divide the
computation of optimizers and only put summation on CPUs.
We will elaborate the rationale of this design in §5.

All the BytePS designs are generic to DNN training.
BytePS can therefore accelerate various DNN training frame-
works including TensorFlow, PyTorch, and MXNet. We start
from presenting BytePS’s architecture.

3.2 Architecture Overview
Fig. 5 shows the architecture of BytePS. BytePS has two
main modules – Communication Service (CS) and Summa-
tion Service (SS). In BytePS, we aim to leverage any CPU
resources, whether on GPU machines or CPU machines, to

466 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

GPU
Computation Summation

Service

Communication
Service

CPU Machine0

GPU Machine0

…Summation
Service

CPU Machinek-1
Summation
Service

Summation
Service

Communication
Service

GPU Machinen-1

…

GPU
Computation

Figure 5: BytePS architecture. Solid lines: the connection between
CPU machines and GPU machines. Dashed lines: the data flow
inside GPU machines.

achieve the best communication efficiency. This is achieved
by SS, which runs on the CPU of every machine, including
the CPU machines and GPU machines. The CPU machines
may not necessarily be actual CPU-only machines. For exam-
ple, our in-house cluster scheduler can allocate CPUs on the
GPU machines that run non-distributed jobs and have spare
CPU cores and network bandwidth. This improves the overall
cluster resource utilization.

Another important property of SS is that it is much simpler
than common PS server processes, which run full fledged
DNN algorithm optimizers. In contrast, SS is only responsible
for receiving tensors that are sent by CS, summing up the
tensors and sending them back to CS.

The other module, CS, is responsible for internally syn-
chronizing the tensors among multiple (if there are) local
GPUs and externally communicating with SS. Every train-
ing iteration, each CS must send in total M bytes (the DNN
model size) to and receive M bytes from SS. In synchronous
distributed training, the tensors are model gradients.

CS contains several design points of BytePS. First, it de-
cides the traffic volume to each SS (both internal and external).
The load assignment strategy is based on our analysis of the
optimal communication strategy (§4.1). Second, it chooses
the best local tensor aggregation strategy depending on dif-
ferent internal GPU and NIC topology (§4.2) of the GPU
machines. Finally, both CS and SS should be optimized for
RDMA in modern high-speed data centers (§6.2).

This architecture enables BytePS to flexibly utilize any
number of additional CPU resources and network bandwidth.
When the number of CPU machines is 0, i.e., k = 0, the com-
munication will fallback to only using SSs on GPU machines.
When the number of CPU machines is the same as GPU ma-
chines, BytePS is as communication optimal as non-colocated
PS. In other cases, BytePS can leverage SSs on all machines
together. In fact, our analytical results will reveal the optimal
communication strategy with any number of CPU machines,
while PS and all-reduce are just two specific points in the
whole problem space.

4 BytePS Communication Design
4.1 Inter-machine Communication
In BytePS, all networking communication is between CS and
SS. To prevent a bottleneck node from slowing down the

whole system, we must balance the communication time of
all machines. In what follows, we assume the network has
full bisection bandwidth, which is a common practice in deep
learning clusters [52]. We also assume that the full bisection
bandwidth can be fully utilized due to the newly introduced
RDMA congestion control algorithms, e.g., DCQCN [75].

On each CPU machine, the summation workload of its SS
determines the network traffic. For example, if a SS is re-
sponsible for summing up x% of the DNN model, the CPU
machine would send and receive x%⇥M bytes traffic to every
GPU machine during each training iteration. However, the
network traffic of a GPU machine is determined by the com-
bination of CS and SS running on it. Due to this difference,
BytePS classifies SS into SSCPU and SSGPU based on whether
they run on CPU machines or GPU machines.

To minimize the communication time, BytePS assigns
MSSCPU bytes summation workload to each SSCPU . MSSCPU
is given in Eq. 1, where k� 1 is the number of CPU machines
and n � 2 is the number of GPU machines, and k n. Out-
side these constraints, the communication time of BytePS falls
back to trivial solutions like PS (when k > n) and all-reduce
(when k = 0), as §4.1.1 shows.

MSSCPU =
2(n�1)

n2 + kn�2k
M (1)

Similarly, BytePS assigns MSSGPU bytes to each SSGPU .

MSSGPU =
n� k

n2 + kn�2k
M (2)

Eq. 1 and Eq. 2 show the workload assignment strategy
that is optimal for minimizing the communication time. The
analysis is in §4.1.1. In practice, the DNN model consists of
tensors with variable sizes and may not allow us to perfectly
assign workloads. BytePS uses an approximation method. It
partitions the tensors into small parts no larger than 4MB.6
Then, all CSs consistently index each part and hash the indices
into the range of [0,n2 + kn�2k). CSs will send and receive
tensors to SSs based on the hash value and approximate the
probabilities according to Eq. 1 and Eq. 2. Consistent indexing
and hashing guarantee that the same part from all GPUs will
be sent to and processed by the same SS.

4.1.1 Communication Efficiency Analysis

Next, we present the communication time analysis of BytePS.
To simplify the analysis, we assume that the model size M is
much larger than the partition size (4MB in our case). Parti-
tioning enables BytePS not only to better balance the sum-
mation workloads, but also to well utilize the bidirectional
network bandwidth by pipelining sending and receiving, as
shown in [34, 55]. So, we further assume that sending and
receiving the whole M bytes can fully overlap with negligible
overhead. We have the following result.
6While we find that 4MB partition size works reasonably well in our envi-
ronment, BytePS allow users to tune the partition size value.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 467

Theorem 1. The SS workload assignment given by Eq. 1 and
Eq. 2 is optimal for minimizing communication time.

Proof. We first consider the network traffic of a GPU machine.
It runs a CS module and an SS module. CS should send and
receive M bytes in total. However, when it communicates
with the SS on the same GPU machine, the traffic does not
go over the network. So, a CS module will send and receive
M�MSSGPU bytes. An SS module on a GPU machine must
receive and send MSSGPU from other n�1 GPU machines, i.e.,
(n�1)MSSGPU in total. Adding them together, a GPU machine
with network bandwidth B requires communication time tg:

tg =
M+(n�2)MSSGPU

B
(3)

Similarly, if k > 0, we can get that a CPU machine with net-
work bandwidth B requires communication time tc:

tc = MSSCPU /B (4)
In addition, the sum of all the SS workload should be equal
to the total model size.

M = kMSSCPU +nMSSGPU (5)
From Eq. 5, it is clear that the larger MSSCPU is, the smaller
MSSGPU is. Consequently, when n � 2, the larger tc is, the
smaller tg is (or tg is unchanged if n = 2). In addition, we
know that the final communication time is max(tc, tg).

To minimize the communication time, tc and tg need to be
equal. If they are not equal, say tc > tg, it means the commu-
nication time can be further reduced by decreasing MSSCPU
and thus bring down tc.

We let tc = tg and combine Eq. 3, Eq. 4, and Eq. 5. Solving
the equations with MSSGPU and MSSCPU as variables, we can
get the optimal values as given by Eq. 1 and Eq. 2.

Based on Theorem 1, combine Eq. 3 and Eq. 2, we have
the optimal communication time, which is used in Fig. 12.

topt =
2n(n�1)M

(n2 + kn�2k)B
(6)

From Eq. 2, we can see that when the numbers of CPU
machines and GPU machines are the same, MSSGPU = 0, which
means that we do not need any SSGPU . This is because the
CPU machines already provide enough aggregate bandwidth.
BytePS falls back to non-colcated PS. Similarly, when the
number of CPU machines is 0, BytePS falls back to all-reduce
and colocated PS.

Of course, the more interesting case is the general case
when 0 < k < n. We use the communication time of the plain
all-reduce and non-colocated PS as the two baselines. We
define the acceleration ratio ga as the communication time
of the plain all-reduce divided by that of the general case.
Similary, gp is defined as the acceleration ratio compared to
the non-colocated PS case. We have

ga =
n2 + kn�2k

n2 ,gp =
n2 + kn�2k

2k(n�1)
(7)

0 2

1 3

4 6

5 7

NIC
QPI

P0 P1 P2 P3

0

CPU0
MemNIC

P0

1 2 3

P1

4 5 6 7

CPU1
Mem

QPI

0

CPU0
MemNIC

P0

1 2 3

P1

CPU1
Mem

4 5 6 7

CPU0
Mem

CPU1
Mem

0 2

1 3

4 6

5 7

NIC
P0 P1 P2 P3

CPU0
Mem

CPU1
Mem

(a) PCIe-only topology

0 2

1 3

4 6

5 7

NIC
QPI

P0 P1 P2 P3

0

CPU0
MemNIC

P0

1 2 3

P1

4 5 6 7

CPU1
Mem

QPI

0

CPU0
MemNIC

P0

1 2 3

P1

CPU1
Mem

4 5 6 7

CPU0
Mem

CPU1
Mem

0 2

1 3

4 6

5 7

NIC
P0 P1 P2 P3

CPU0
Mem

CPU1
Mem

(b) Outgoing data flow
Figure 6: PCIe-only machine topology and BytePS data flow. Gray
boxes are GPUs. Only the outgoing direction (from GPUs to net-
work) is shown in the data flow figure. Incoming is the opposite.

When k = n and n! •, ga = 2. When k is small, gp can
be quite big, as the communication bandwidth is severely
bottlenecked by the CPU machines in non-colocated PS. For
example, when n = 32 and k = 16, we have ga = 1.46 and
gp = 1.52, respectively. It means that BytePS can theoretically
outperform all-reduce and PS by 46% and 52%, respectively.

We note that adding more CPU machines beyond k = n
does not help, since the communication bottleneck will be-
come the NIC bandwidth of the GPU machines.

4.2 Intra-machine Communication
In §4.1, we design the optimal inter-machine communication
strategy. In practice, we find that intra-machine communi-
cation is equally important. There are often multiple GPUs
in a machine. CS must aggregate/broadcast the tensors be-
fore/after communicating with SS. This can create congestion
on the PCIe links and prevent NIC from fully utilizing its
bandwidth B. Moreover, the GPU machine’s internal topol-
ogy can be diverse in data centers. Below, we share the two
most common machine setups in our environment and our
corresponding solution. We present several principles that can
apply to other machine setups in §4.2.3.

4.2.1 PCIe-only Topology
Fig. 6(a) shows a setup in our production environment. A GPU
machine has two NUMA CPUs connected via QPI. The eight
GPUs are split into two groups and connected to two PCIe
switches, respectively. The NIC is 100Gbps and connected
to the PCIe of one of the CPUs. All PCIe links in figure are
3.0 x16 (128Gbps theoretical bandwidth). The CPU memory
and QPI has > 300Gbps bandwidth, which are less likely the
communication bottleneck. We call this PCIe-only topology.
For this machine model, we measure that the throughput of
GPU-to-GPU memory copy is ⇡105Gbps within the same
PCIe switch. The throughput of GPU-to-GPU memory copy
across PCIe switches, however, is only ⇡80Gbps.

Unfortunately, many existing training frameworks ignore
such details of internal topology. For example, TensorFlow
PS, MXNet PS and even the “hierarchical all-reduce” mode of
Horovod use a straightforward reduce or reduce-scatter across
all GPUs on the same machine. This would lead to cross-PCIe
switch memory copy, which is unfortunately slower.

468 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

C0

S0 Sp-1

Cp-1
QPI

N0 Nn-1N1 Npn-1N(p-1)n

...
...

...

Figure 7: Notations of the PCIe-only topology.

In contrast, BytePS lets GPUs under the same PCIe switch
sum the tensors first, then copy to CPU and let CPU do the
global summation, and finally broadcast back the global sum.
We call it CPU-assisted aggregation. Specifically, it consists
of the following steps.

1. Reduce-Scatter: Suppose each PCIe switch has l GPUs.
These l GPUs perform a reduce-scatter which incurs (l�
1)M/l traffic only inside the PCIe switch. When it finishes,
each GPU should hold M/l aggregated data.

2. GPU-CPU Copy: Each GPU copies its M/l data to CPU
memory, which incurs M/l traffic along the route. Every
PCIe switch would generate M aggregated data.

3. CPU-Reduce: CPU reduces the data from all PCIe
switches and generates the aggregated data across all
GPUs. This reduction does not incur any PCIe traffic.

4. Networking: CS sends the data to SS and receives globally
aggregated data from SS.

5. CPU-GPU Copy: Each GPU copies its M/l partition from
CPU memory back to itself. This incurs M/l traffic from
the CPU to each GPU.

6. All-Gather: Each GPU performs an all-gather operation
with those that are under the same PCIe switch. This incurs
(l�1)M/l traffic inside the switch.

Fig. 6(b) shows the traffic of step 1 to 3. Step 4 to 6 use
the same links but the opposite direction. With CPU-assisted
aggregation, the PCIe switch to CPU link would carry only
M traffic in each direction, much lower than doing collective
operation directly on eight GPUs (7M/4 traffic). Meanwhile,
the traffic on each PCIe switch to GPU link would be (2l�
1)M/l. Let l = 4 (each PCIe has four GPUs), this is 7M/4,
remaining the same as the existing approach. Fundamentally,
BytePS leverages the spare CPUs on the GPU machine to
avoid the slow GPU-to-GPU cross-PCIe switch memory copy.
Optimality Analysis. We now analyze the communication
optimality of the above strategy. Fig. 7 shows a more generic
PCIe-only topology with variable number of GPUs and PCIe
switches. We do not plot the NIC as in Fig. 6(a) because
under that topology, the NIC has dedicated PCIe lanes and
will not compete for the PCIe bandwidth with GPUs. The
system architecture is modeled as a hierarchical graph G =
(V,E). Denote N as the set of leaf nodes (GPUs), S as the
set of intermediate nodes (switches), C as the set of CPU
nodes. V = N[S[C. Each edge e(vx,vy) in E represents the
bandwidth from vertex vx to vy, and we denote t(vx,vy) as the
amount of traffic sent from vx to vy. We further define p as

the number of switches (p� 2), and n as the leaf nodes that
each switch connects (n� 2).

We assume the following features of G: (1) Each edge
in E is duplex and the bandwidth of both directions are
equal. Denote b(vx,vy) as the bandwidth of e(vx,vy), then
b(vx,vy) = b(vy,vx); (2) We assume G is symmetric. The
bandwidth at the same layer of the tree is equivalent. For ex-
ample, b(S j,Cj) = b(Sk,Ck) and b(Nx,S j) = b(Ny,S j) hold
for any j,k 2 [0, p�1], x,y 2 [jn,(j+1)n�1]; (3) The mem-
ory and QPI bandwidth is much higher than the PCIe links
and is less likely to be the bottleneck. In the following, we
only focus on the PCIe links.

The GPUs from N0 to Npn�1 need to sum their data. We
can either use CPU-assisted aggregation mentioned before,
or use brute-force copy that needs each GPU to copy its entire
data to C directly. In practice, the optimal solution should
be a combination of these two strategies, depending on the
value of b(S j,C j) and b(Ni,S j). The intuition is that we apply
brute-force copy on x of the data, and CPU-assisted aggrega-
tion on y of the data (x+ y = 1). Under certain x and y, the
job completion time J can be minimized. We calculate the
traffic of two links respectively. On e(S j,Cj), the traffic is
composed of n times brute-force copy plus the traffic of CPU-
assisted aggregation. On e(Ni,Cj), the traffic is composed of
one brute-force copy and the complete traffic of CPU-assisted
aggregation.

t(S j,Cj) = n⇤ xM+
yM
n
⇤n = (nx+ y)M (8)

t(Ni,S j) = xM+(
2(n�1)

n
+

1
n
)yM = (

2n�1
n

y+ x)M (9)

Since J is determined by J = max(t(Ni,S j)
b(Ni,S j)

,
t(S j ,Cj)
b(S j ,Cj)

), the
optimal J is highly related to the two bandwidth terms. On our
own PCIe machines (Fig. 6(a)), we measure that both b(Ni,S j)
and b(S j,Cj) are 13.1GB/s (105Gbps). Let M=1GB and n= 4,
combining Equation (8), (9) and x+ y = 1, we are trying to
find a x 2 [0,1] such that argminx J(x) = max(3x+1

13.1 ,
7�3x
52.4).

Solve it and we will get the optimal solution is x⇤ = 1/5 and
J⇤ = 0.129s. This means the optimal solution works like this:
each GPU applies brute-force copy on its 1/5 data, and uses
CPU-assisted aggregation for the rest 4/5 data. Therefore, we
have the following key conclusions:
CPU-assisted aggregation is near-optimal. When x = 0, the
solution is our CPU-assisted aggregation, and the job comple-
tion time is J(0) = 0.141s. As calculated, the optimal time is
0.129s. Thus, our strategy closely approximates the optimal
solution, with 9% difference on performance. However, in
practice, brute-force copy heavily stresses the CPU memory
– any tensor that uses brute-force copy would consume 4⇥
CPU memory bandwidth compared with CPU-assisted aggre-
gation. CPU memory does not really have 4⇥ bandwidth of
PCIe links, especially for FP16 summation (Fig. 9(b). Conse-
quently, we choose not to use brute-force copy at all and stick

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 469

to CPU-assisted aggregation.
CPU-assisted aggregation is better than ring-based all-
reduce. We have the job completion time for ring-based
all-reduce as Jar =

2(np�1)M
np⇤bbottleneck

. Similarly, for CPU-assisted
aggregation we have Jca = M

b(S j ,Cj)
⇤ max(1, 2n�1

kn), where

k = b(Ni,S j)
b(S j ,Cj)

. In our case, k = 1 and bbottleneck < b(S j,Cj), so it
is easy prove that Jca < Jar always holds for any n, p� 2. For
example, using the value from our PCIe machines, let p = 2,
n = 4, bbottleneck = 80Gbps (bandwidth of memory copy that
crosses PCIe switches) and b(S j,Cj) = 105Gbps we get that
Jca is 23.7% smaller than Jar.

4.2.2 NVLink-based Topology
Fig. 8(a) shows the other machine model in our data center –
a GPU machine with NVLinks. There are four PCIe switches,
each connecting two GPU cards. The GPUs are also con-
nected via NVLinks. The NVLinks give every GPU in total
1.2Tbps GPU-GPU bandwidth, much higher than the PCIe
link. The NIC is connected to one of the PCIe switches.

With NVLink, GPU-to-GPU communication can com-
pletely avoid consuming PCIe bandwidth. So, we no longer
need CPU-assisted aggregation. However, we find that exist-
ing framework, including the most popular GPU all-reduce im-
plementation NCCL (used by TensorFlow, PyTorch, MXNet
and Horovod), is again sub-optimal.

The problem is that the topology is not symmetric consid-
ering the NIC, which is connected to only one (out of four)
PCIe switch. The NIC and the two GPUs under the same PCIe
switch have to compete for the PCIe bandwidth of P0�CPU0.
Remember that not only CS uses this PCIe bandwidth, but also
the SS runs on this same GPU machine uses it! P0�CPU0
again becomes the bottleneck in the whole communication.

Based on the analysis, we should leave as much P0�CPU0
PCIe bandwidth as possible to the NIC during local aggre-
gation. For this topology, BytePS uses reduce and broadcast
instead of reduce-scatter and all-gather – tensors from all
GPUs are first reduced to GPU2 and the result is then copied
to CPU0 memory from GPU2. Fig. 8(b) shows those steps.
Later, when CS gets the aggregated results from SS, GPU2
would copy the data into GPU memory and broadcast them
to other GPUs. This way, we completely prevent GPUs from
using the P0�CPU0 bandwidth for communication, so the
NIC can run to full 100Gbps bandwidth.

This approach seems to create traffic hotspots on GPU2.
However, NVLinks has much larger bandwidth than PCIe
links, so inter-GPU communication is never the bottleneck
even on the hotspots. Meanwhile, the P1 �CPU0 PCIe
link used for GPU-CPU copy has approximately the same
100Gbps bandwidth as the NIC, so it is not a bottleneck either.

BytePS has achieved the optimal result – there is no intra-
machine bandwidth bottleneck. Existing solutions like NCCL,
unfortunately, tends to let GPUs use the P0�CPU0 bottleneck
link because of the proximity between GPU0 and the NIC.

0 2

1 3

4 6

5 7

NIC
QPI

P0 P1 P2 P3

CPU0
Mem

CPU1
Mem

0 2

1 3

4 6

5 7

NIC
P0 P1 P2 P3

CPU0
Mem

CPU1
Mem

(a) NVLink-based topology

0 2

1 3

4 6

5 7

NIC
QPI

P0 P1 P2 P3

CPU0
Mem

CPU1
Mem

0 2

1 3

4 6

5 7

NIC
P0 P1 P2 P3

CPU0
Mem

CPU1
Mem

(b) Outgoing data flow

Figure 8: NVLink-based machine topology and BytePS data flow.
Only the outgoing direction is shown in the data flow figure.

Consequently, its communication performance is lower than
our solution in the NVLink-based machines.

4.2.3 Discussion
The solutions for PCIe-only and NVLink-based topology are
quite different. This shows that there is no one-fit-all optimal
solution. The intra-matchine communication must adapt to
different internal topologies. Admittedly, there are certainly
more topologies than the above two used in our environment.
However, we believe that the above two are representative,
since they are similar to the reference design recommended
by server vendors [15] and NVIDIA [11], respectively.

Despite the difference, we summarize two principles – 1)
always avoid direct GPU-to-GPU memory copy when the two
GPUs are not under the same PCIe switch because it is slow
in practice. 2) Always minimize traffic on the PCIe switch to
CPU link that is shared by GPUs and NIC. We propose the
following best practice procedure. Let Sn be the number of
PCIe switches with GPUs and NIC, and Sg be the number of
PCIe switches with only GPUs.

1. If Sn > 0 and Sg > 0, the topology is asymmetric like
our NVLink-based topology. CS should use reduce and
broadcast, with GPUs that are not competing with NICs
as reduce or broadcast roots.

2. If Sn = 0 or Sg = 0, the topology is symmetric like our
PCIe-only case. CS should use reduce-scatter and all-
gather to balance traffic on all PCIe switches. CPU-assisted
aggregation (§4.2.1) should be used if no NVLink.

Multi-NIC topology. Although the two specific topologies
we discussed have only one NIC, the above principles can
directly extend to multi-NIC topology – it only changes the
value of Sn and Sg.
GPU-direct RDMA (GDR). GDR can potentially reduce the
PCIe traffic. However, GDR requires the GPU and the RDMA
NIC to be on the same PCIe switch, otherwise the throughput
can be less than 50Gbps even with 100GbE NIC [12], which
is also confirmed by our own measurements. Consequently,
GDR does not benefit our settings – PCIe-only topology does
not satisfy the requirement, and we already avoided any PCIe
bottlenecks for NVLink-based topology. In addition, most
clouds like AWS do not support GDR. Therefore, BytePS
does not use GDR for now.

470 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) Parameter update on different de-
vices. (Mtum: Momentum [65])

(b) Throughput of CPU summation
on different floating point tensors.

Figure 9: CPU is slow for optimizers but not for summation.

We can see that the optimal intra-machine communication
strategy is tightly coupled with the internal topology. Build-
ing a profiler to automatically detect the topology, probe the
bandwidth, and generate the best strategy is interesting future
work.

5 Summation Service
To get the optimal inter-machine communication time (§4.1),
BytePS needs a module that can run on the CPU of every
machine and communicate with CS. The question is, what is
its role in the training algorithm? Our initial attempt was to
follow the previous PS design [44], in which the PS processes
are responsible for running the optimizer. The optimizer ag-
gregates the gradients from all GPUs and updates the DNN
model parameters using various optimizers.
The CPU bottleneck. Unfortunately, soon we found that the
CPUs became a bottleneck in the system. We use an exper-
iment to demonstrate this. We train the VGG16 DNN [63]
using a typical non-colocated PS setting: using one Tesla
V100 GPU machine and one CPU machine (Intel Xeon Plat-
inum CPU, 32 cores with hyper-threading and Intel MKL [7])
connected by 100GbE Ethernet. The GPU machine runs the
forward and backward propagation, and the CPU machine
runs the optimizer using all the 32 CPU cores.

Fig. 9(a) shows that, even with 32 cores and MKL-enabled,
running the optimizer on the CPU machine can slow down the
end-to-end training speed. It means the CPU cannot match
the network bandwidth and becomes a bottleneck (§6). As
the optimizer algorithm gets more complicated (from sim-
pler SGD to the more complicated RMSProp), the bottleneck
effect becomes more severe.
The root cause. The CPU bottleneck is caused by the lim-
ited memory bandwidth. Popular optimizers such as Adam
can easily exhaust the memory bandwidth of modern CPUs.
For example, the peak transfer rate of a 6-channel DDR4-
2666 memory setup is up to 1024 Gbps combining read
and write [8]. It is easy to estimate that, for example, the
Adam optimizer [42] requires more than 10x memory ac-
cess (read+write) for applying every gradient update. Adding
that 100Gbps NIC consumes 200 Gbps memory bandwidth
(read+write), the 1024 Gbps memory bandwidth is simply not
sufficient for Adam to process 100 Gbps gradient stream.
CPU is good at summation. The above experiment leads us
to rethink the tasks placed on CPUs.The computation of an

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

GPU

optimizer

CPU

fp

bp

update

sum

GPU

optimizer

CPU

fp

bp

update

sum

GPU

optimizer

CPU

(a) PS

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

GPU

optimizer

CPU

fp

bp

update

sum

GPU

optimizer

CPU

fp

bp

update

sum

GPU

optimizer

CPU

(b) All-reduce

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

comm

GPU

optimizer

Network

CPU

fp

bp

update

sum

GPU

optimizer

CPU

fp

bp

update

sum

GPU

optimizer

CPU

fp

bp

update

sum

GPU

optimizer

CPU

(c) BytePS

Figure 10: Component placement comparison between all-reduce,
PS and BytePS.

optimizer can be divided into two steps, gradient summation
and parameter update, as Fig. 10 shows.

Fortunately, modern x86 CPUs are good at summation
thanks to the highly optimized AVX instructions [47]. In
Fig. 9(b), we show the summation throughput on the same
CPUs as above, using synthetic floating point tensors. The
throughput is more than 200Gbps for both FP16 and FP32 pre-
cision, higher than the 100Gbps NIC bandwidth. Therefore,
summation on CPU will not be a bottleneck.
BytePS’s solution. Based on these observations, BytePS de-
couples the two steps of optimizer. We move the computation-
intensive parameter update to GPUs and places only sum-
mation on CPUs – this is why we name the CPU module
Summation Service (SS). SS not only prevents the CPU from
being the bottleneck, but also largely reduces the CPU over-
head. With carefully implementation using AVX and OpenMP,
SS only consumes fewer than 3 CPU cores when it runs at
100Gbps throughput. Fig. 10 gives a high-level comparison
over PS, all-reduce and BytePS on how they place different
components in DNN training onto GPU and CPU resources.

Since Summation Service moves parameter update to GPU
machines, all the GPU machines need to perform the same pa-
rameter update calculation, whereas parameter update needs
to be done only once in traditional PS. BytePS hence uses
more computation cycles for parameter update than PS. This
is a tradeoff we made willingly, to accelerate end-to-end train-
ing speed. We define SS overhead ratio as the FLOPs for
parameter update over the sum of FP and BP FLOPS. The ra-
tio is 138 MFLOPs / 32 GFLOPs, 26 MFLOPs / 7.8 GFLOPs,
387 MFLOPs / 494 GFLOPs for VGG-16, ResNet-50, BERT-
large using SGD as the optimizer, all are less than 0.5%. The
introduced overhead is negligible, compared to the training
speedup (Fig. 9(a)). The above ratio definition assumes batch
size of 1. DNN training typically uses batch size of tens or
hundreds. Parameter update is done once per batch, hence the
additional overhead is even smaller in practice.

We note that Horovod [60] has the option to move gradient
aggregation to CPUs by first copying the tensors to CPU mem-
ory and then performing CPU-only all-reduce. Since it still
only relies on the CPUs and bandwidth on GPU machines, it
does not provide communication-wise advantages compared
with directly all-reduce on GPUs. BytePS is different: it lever-
ages additional CPU machines for gradient summation, while
keeps parameter update on GPUs.
Support asynchronous training. Although separating the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 471

summation and update brings us performance benefits, it
breaks an important feature of the original PS: the support of
asynchronous training like Asynchronous Parallel [25]. Asyn-
chronous Parallel relies on the PS processes keeping the most
updated model parameters, which is not directly compatible
with the design of SS. To bridge this gap, we re-design a new
workflow that can enable asynchronous training with SS, as
shown in Fig. 11(b). In short, GPU updates parameters and
computes the delta parameters first. CS sends them and re-
ceives latest parameters. SS keeps adding delta parameters to
the latest parameters. Next, we prove that this new training
workflow is equivalent to Asynchronous Parallel in terms of
algorithm convergence.

Theorem 2. The asynchronous algorithm for BytePS is equiv-
alent to Asynchronous Parallel [25].

Proof. Consider one SS connected with n CSs. We say a
CS stores the local model parameters, and a SS holds the
latest version of parameters. The high level idea of our proof
is to show that our algorithm generates identical state (i.e.,
same parameter for the SS module and n CS modules) with
Asynchronous Parallel, given the same communication order
(push and pull order). We use f as a general representation
of the optimizer. The optimizations thus can be represented
as w w+ f (gi,t), where gi,t represents the gradients of CSi
(i2 [0,n�1]) at iteration t (t 2 [1,T]). Denote wps and wbyteps
as the parameter in PS and BytePS, respectively. And denote
wi,t as the parameter on each workeri (for PS) or CS (for
BytePS) at iteration t. The parameter is initiated to w0 for all
CSs and the SS. After T iterations, we can obtain the updated
parameter as:

wps = w0 +
T

Â
t=1

n�1

Â
i=0

f (gi,t) (10)

wbyteps = w0 +
T

Â
t=1

n�1

Â
i=0

Dwi,t (11)

Next, we use induction to prove that Dwi,t = f (gi,t) holds
for any i and t. (1) Base case t = 1: Given initial param-
eter w0, we obtain the gradient gi,1 from w0. In Parameter
Server, workeri pushes gi,1 to the server and get updated as
wps,1 = w0 + f (gi,1). In BytePS, CSi pushes f (gi,1) to SS
and get updated as wbyteps,1 = w0 + f (gi,1). So Dwi,t = f (gi,t)
holds for t = 1. Meanwhile, the parameter on workeri or CSi
is the same on both architectures after receiving the response
from the server or SS. (2) Inductive step: If the lemma we
want to prove holds for t = k(k � 1), the gradient gi,k+1 is
computed from the same wk. Similar to the base case, we ob-
tain wps,k+1 =wk+ f (gi,k+1) and wbyteps,k+1 =wk+ f (gi,k+1).
So Dwi,t = f (gi,t) holds for t = k+1. By the principle of in-
duction, Dwi,t = f (gi,t) holds for all t 2 N.

Return to (10) and (11). Since Dwi,t = f (gi,t) holds for
any i and t, we get wps = wbyteps. This completes the proof

fpbp

updatesum

GPU
CPU

gt
!t+1

(a) PS-async

fpbp

update

sum!"t= "'t+1- "t

GPU
CPU "t+1

overwrite
"'t+1

(b) BytePS-async
Figure 11: Asynchronous training workflow comparison between
PS and BytePS. g is the gradients. w is the parameters.

because the parameter of our algorithm and Asynchronous
Parallel are equivalent after any T batches.

6 Implementation
While the core of BytePS is generic for any training frame-
work, BytePS also implements plugins for TensorFlow, Py-
Torch and MXNet, for user-friendliness. The core is imple-
mented in C++, while the framework plugins contain both
C++ and Python. In total, BytePS consists of about 7.8K lines
of Python code, and 10K lines of C++ code. As a major online
service provider, we have deployed BytePS internally. BytePS
has also been open-sourced [4] and attracted thousands of
users.

6.1 Multi-Stage Pipeline
A common way to speed up a multi-step procedure is to build
a multi-stage pipeline that overlaps the processing time of
each step. We incorporated the idea of tensor partition and
pipelining from prior work [34, 55]. For example, for PCIe-
only topology, CS has six steps. It maps to a 6-stage pipeline
in BytePS runtime. We implement BytePS to be flexible in
constructing the pipeline without recompiling. Each stage in
the pipeline is implemented as an independent thread with
a priority queue of tensors. The priority is assigned similar
to [34,55]. As analyzed in §4.1.1, large tensors are partitioned
to multiple smaller tensors no more than 4MB. Next, each
small tensor is enqueued to the first queue and moves towards
the next queue once a stage finishes processing it, until it is
dequeued from the last one.

6.2 Address RDMA Performance Issues
For inter-machine communication, we use RDMA RoCEv2.
Each machine has one 100GbE NIC, and the RDMA network
provides full bisection bandwidth. To get the full benefit of
RDMA, we have gone through a full design and debug journey
which we share as follows.
RDMA Memory Management. To improve the perfor-
mance, we aim to avoid unnecessary memory copies [72]
and achieve zero-copy on CPU memory. BytePS is based
on RDMA WRITE because it is the most performant among
common RDMA verbs [39]. Conventional one-sided RDMA
operations (WRITE and READ) require at least two round-
trips: getting the remote address, and writing (reading) the
value to (from) that address [39, 40, 50, 70]. We optimize
the process by leveraging the fact that DNN training always
sends the same set of tensors in every iteration. Only at the

472 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 2: BytePS throughput with a pair of CPU machine and GPU
machine running microbenchmark.

Solution baseline +shm +shm
+aligned all

Throughput
in Gbps 41 52

(1.27x)
76

(1.85x)
89

(2.17x)

first iteration, BytePS initializes all the required tensors, reg-
ister the buffer with RDMA NIC and exchange all the remote
addresses. Then BytePS stores the remote buffer information
and reuse it directly in the rest iterations.
Address Slow Receiver Symptom. We also run into the slow
receiver symptom as reported in [30] – the NICs are send-
ing out many PFCs into the network. Those excessive PFCs
slow down tensor transmission can cause collateral damage
to other traffic. Here we report several additional causes of
such symptom and how we address them.

Our first finding is that internal RDMA loopback traffic
can cause internal incast, and push the NIC to generate PFC.
BytePS runs both CS and SS on each GPU machine. The
traffic between them, which we call loopback traffic, does
not consume NIC’s external Ethernet bandwidth, but does
consume internal CPU-NIC PCIe bandwidth. Initially, we did
not add any special design – we stuck to RDMA verbs [9]
for loopback traffic and thought the NIC DMA can handle it.
However, we realize that it creates a 2:1 incast on the NIC,
with RX and loopback as two ingress ports and the DMA to
memory engine as one egress port!

To solve it, we implement a shared memory (shm) data
path. When CS detects that SS is on the same machine as
itself, CS simply notifies SS that the data is in shared memory.
After SS finishes summation, SS copies the results from its
own buffer back to CS’s shared memory. Consequently, the
loopback RDMA traffic is eliminated.

Our Second finding is that we need to use page-aligned
memory for RDMA. Otherwise PFCs may be triggered. Our
hypothesis is that hardware DMA aligns the transfer unit
to the page size (e.g., 4096 bytes). Therefore, using a page-
aligned address is more friendly to DMA engine as it reduces
the number of pages needed to be written.

Our third finding is that the RDMA NIC RX performance
can be impacted by how the concurrent send is implemented!
In the end, we not only use page-aligned memory, but also en-
force only one scatter-gather entry (sge) per RDMA WRITE
on the sender side.7

After all the optimization, BytePS implementation can run
as expected. Table 2 shows the performance improvement
after each of the above three optimizations is applied. The
NIC generates negligible PFCs.

As we have discussed in §4.1, BytePS creates many many-
to-one communication patterns in the network. Many-to-one

7In the whole process, we contacted with the NIC vendor and had lengthy
discussion with their software and hardware experts. As of writing, we have
not got the official root cause of the last two problems.

is well-known for creating incast and packet loss in TCP/IP
network [66]. But BytePS uses RDMA/RoCEv2 which de-
pends on a lossless fabric and DCQCN [75] for congestion
control. We do not observe incast issue in BytePS.

6.3 BytePS Usage
BytePS [4] is easy to use. We provide Python interfaces that
are almost identical to Horovod, PyTorch native API and
TensorFlow native API. Users can choose either of them and
migrate to BytePS with minimal efforts. For example, for
a Horovod-MNIST example [19], we only need to change
one line of Python code, from "import horovod" to "import
byteps". In fact, we are able to convert most of our internal
Horovod-based training tasks to BytePS automatically.

7 Evaluation
In this section, we show that BytePS not only achieves opti-
mal communication performance in microbenchmarks, but
also significantly accelerate training jobs in production envi-
ronment. We list a few highlights regarding the high fidelity
of the results.

• All resources used are allocated by the scheduler of produc-
tion clusters. The scheduler uses non-preemptive resource
scheduling – once a training job is scheduled, it will have a
fixed number of CPU machines that will not change. Even
the most large-scale tasks we show use < 5% GPUs of a
cluster that runs many production tasks.

• We use large training batch sizes. Smaller batch sizes mean
less GPU memory consumption but more communication,
so the end-to-end improvement will be more evident. How-
ever, all our tasks use almost full GPU memory, so the
speedup numbers against all-reduce and PS are the lower
bound of BytePS.

• Although we cannot disclose any specific models that are
used internally, the tasks and DNN model structures shown
are highly representative of production workloads. The
code is also available publicly for reproducibility [5].

• We compare BytePS with the state-of-the-art PS and all-
reduce implementation without modification. For example,
we do not apply the RDMA optimizations mentioned in
§6.2 on native-PS and all-reduce.

The cluster we use has a RoCEv2 network with full bisec-
tion bandwidth. All the machines have one 100GbE NIC. We
note that TensorFlow, PyTorch and MXNet can overlap the
DNN computation and communication [34, 55], thus even a
small improvement in end-to-end performance can indicate a
large improvement in communication.

7.1 Inter-machine Microbenchmarks
First, we use microbenchmarks to show the pure inter-
machine communication performance of different architec-
tures. We allocate eight 1-GPU machines from the cluster
scheduler. We run a dummy task in which all GPU workers

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 473

Figure 12: Communication goodput of 8⇥ 1-GPU machines with
varying number of additional CPU machines. The point-to-point
RDMA goodput is⇡ 90Gbps in our network, so we plot the “optimal”
line based on B = 90Gbps and the analysis in §4.1.

(a) PCIe-only GPU machines

(b) NVLink-based GPU machines

Figure 13: End-to-end performance with different number of CPU
machines. The training is run with PyTorch on 8 GPU machines
each with 8 GPUs. Each CPU machine uses < 4 cores.

just keep reducing large tensors on GPU and record the com-
munication goodput. We verify that no other distributed job
is placed on the same physical machines.

Fig. 12 shows that BytePS performance is very close to
the theoretical optimum (§4.1), with 1-9% difference for dif-
ferent number of CPU machines. All-reduce, as expected, is
close to the optimal only if there is no additional CPU ma-
chine, while remain the same even if there are CPU machines.
The (MXNet) PS does not run optimizer in this case, but is
mainly bottlenecked by issues described in §6.2. In practice,
if PS runs DNN optimizer algorithms, the performance will be
worse than all-reduce even with k = n CPU machines (Fig. 4).
In contrast, because of the Summation Service design, BytePS
would not be affected in real training tasks shown below.

7.2 Leverage CPU Machines
Next, we show that BytePS can indeed leverage different num-
bers of CPU machines to speed up training. In Fig. 13, we use
8 GPU machines, each with 8 Tesla V100 32GB GPUs, and
is either PCIe-only or NVLink-based topology. We vary the
number of CPU machines from 0 to 8. We compare BytePS
end-to-end training performance against state-of-the-art all-
reduce implementation (Horovod 0.19 and NCCL 2.5.7) as
the baseline. We test two DNN models, UGATIT GAN [41]
(one of the most popular models for image generation) and
GPT-2 [57] (one of the most popular NLP models for text gen-
eration), both implemented in PyTorch. The per GPU batch

(a) PCIe-only GPU machines (b) NVLink-based GPU machines

Figure 14: Topology-aware intra-machine communication. The
training is run with PyTorch on 8 GPU machines each with 8 GPUs
and no additional CPU machine.

size is 2 images for UGATIT, and 80 tokens for GPT-2. We
will evaluate more models, frameworks and machines in §7.4.

Fig. 13 shows that, with more CPU machines, BytePS can
run faster – up to 20% than without CPU machines. The SS
on each CPU machine only consumes no more than 4 CPU
cores. It is usually easy for our scheduler to find sufficient
CPUs that are on machines running non-distributed jobs. It is
free (or << 10% costs compared with the expensive GPUs)
speedup for the cluster. Compared with all-reduce, BytePS is
consistently faster in any cases and can be up to 45% faster in
the best case. On NVLink-based GPU machines, the speedup
is higher because the communication bottleneck is more on
the network instead of PCIe links. Finally, models have differ-
ent speedup due to different model sizes and FLOPs. In the
examples we show, GAN is more communication intensive,
so the end-to-end gain of BytePS is larger.

7.3 Adapt to Intra-machine Topology
Next, we show the benefits of BytePS intra-machine commu-
nication strategy. The software and hardware configurations
are the same as in §7.2. To better compare with the all-reduce
baseline, we run the jobs without any CPU machines. Thus,
BytePS does not take any advantages explained in §7.2. For
PCIe-only GPU machines (Fig. 14(a)), we run BytePS with
1) strawman strategy, the same as common all-reduce or PS
and 2) the optimal solution in §5. We see that the optimal
intra-machine solution has up to 20% gain as well.

For NVLink-based GPU machines (Fig. 14(b)), we use
different sets of GPUs as the local reduce roots. BytePS’s op-
timal solution, as explained in §4.2.2, is root = 2. root = 2,3
means CS chooses GPU 2 and 3 as the reduce root in a
round robin manner. It has almost the same performance
because GPU 3 is not competing for PCIe bandwidth with the
NIC, either. It is an alternatively optimal solution. However,
root = all has poorer performance. Communication-wise, it
is equivalent to Horovod’s hierarchical mode. root = 0 is
the worst because it competes hardest with the NIC. Unfor-
tunately, it is equivalent to Horovod’s normal mode (plain
NCCL all-reduce).

One thing to note is that even without any optimization,
BytePS still outperforms all-reduce. We discuss this in §8.

474 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) TensorFlow, ResNet-50, batch=256 images (b) MXNet, VGG-16, batch=96 images (c) PyTorch, UGATIT, batch=2 images
Figure 15: Computer Vision models. The batch sizes are per GPU.

(a) TensorFlow, Transformer, batch=3072 tokens (b) MXNet, BERT-Large, batch=8192 tokens (c) PyTorch, GPT-2, batch=80 tokens
Figure 16: NLP models. The batch sizes are per GPU.

7.4 Scalability
To demonstrate BytePS’s performance at different scales, we
run six different training jobs using 8 to 256 Tesla V100 32GB
GPUs, i.e., 1 GPU machine to 32 GPU machines. Due to the
constraint of free resources, we only use NVLink-based GPU
machines. The six different jobs cover three frameworks, Ten-
sorFlow, PyTorch and MXNet. We have introduced two of the
models, UGATIT and GPT-2 in §7.2. The rest four models are
ResNet-50 [32], VGG-16 [63] (two of the most popular mod-
els for image classification and extraction), Transformer [67]
(one of the most popular models for machine translation) and
BERT [26] (one of the most popular models for natural lan-
guage understanding). We take the official implementation
of these models and slightly modify them (no more than 20
lines of code) to use PS, all-reduce and BytePS, respectively.

For BytePS, we evaluate its performance with and without
CPU machines. When there are CPU machines, the num-
ber of CPU machines is equal to GPU machines. For all-
reduce, we use Horovod with NCCL for all cases. For PS, we
show the native implementation from TensorFlow and MXNet
with RDMA support enabled. PS uses the same resources as
BytePS with CPU machines. PyTorch does not have official
PS implementation, so it does not have PS results. We also
provide the speed of linear scaling as the upper bound. We use
trained images per second as the speed metric for computer
vision models, and tokens per second for NLP models.

Fig. 15 and Fig. 16 show very consistent results – BytePS
with CPU machines is always the best and BytePS without
CPU machines is the second. The native PS of both Ten-
sorFlow or MXNet are always the poorest. All-reduce al-
ways has a clear advantage over PS, but is inferior to BytePS.
When training with 256 GPUs, the speedup of BytePS over
all-reduce is 10% to 84% with CPU machines, and 9% to
53% without CPU machines. From 8 GPUs to 256 GPUs,
the speedup becomes larger. We expect that with even more

GPUs, BytePS will have even larger advantage.
We see that models have different system scalability,8

which is determined by the model sizes and FLOPs. The most
scalable model is ResNet-50. BytePS achieves 97.5% scal-
ing efficiency with 256 GPUs. All-reduce also performs well,
achieving 88% scaling efficiency. It is not surprising that prior
work is fond of training ResNet at large scale [49, 73] with
all-reduce. Nevertheless, other models are more challenging,
with UGATIT as the least scalable one. Even BytePS only
achieves 74% scaling efficiency. For such communication
intensive models, BytePS has the most gain over all-reduce
(84% with 256 GPUs). Despite UGATIT, BytePS has at least
91.6% scaling factor for the rest five 256-GPU training jobs.

We analyze the breakdown of performance improvement
by comparing native-PS and BytePS, since they both use
the same number of additional CPU machines. For example,
BytePS outperforms native-PS by 52% with 256 GPUs on
VGG-16 (Fig. 15(b)). Among the 52% improvement, we find
that 19% comes from optimal communication design (intra-
server), 18% comes from Summation Service, and the rest
15% comes from better implementation mentioned in §6.

8 Observations and Discussion
In this section, we share several of our observations and dis-
cussions, with the aim to inspire future research.
BytePS outperforms all-reduce even without extra CPU
machines. Theoretically, the communication time is the same
for all-reduce and BytePS when no additional CPU machines
are available (§4.1). In practice, we observe that BytePS still
outperforms all-reduce significantly in this case. One reason
is that BytePS has a better intra-machine communication
strategy than all-reduce. However, even without intra-machine
optimization, BytePS still outperforms all-reduce (see Fig. 14
in §7). We hypothesize that BytePS has the advantage of
8We focus on system scalability and do not discuss algorithm scalability, i.e.
the hyperparameter tuning and convergence speed with more GPUs.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 475

allowing more “asynchronicity” than all-reduce. All-reduce
usually requires additional out-of-band synchronization to
ensure the consistent order across nodes, while BytePS does
not have this overhead. However, to analyze it, we need a
distributed profiler that can build the complete timeline of the
execution and communication across all nodes in distributed
training.
GPU cluster scheduler should consider dynamic CPU re-
sources. By leveraging additional CPU machines, BytePS
can speedup DNN training. Since BytePS can adapt to any
number of CPU machines, it enables elasticity – the cluster
scheduler can scale in or out CPU machines for existing jobs
based on real time conditions. Most existing schedulers keep
the number of GPUs of a job static because of convergence
problems [16, 74]. Fortunately, the number of CPU machines
in BytePS only impacts system performance but not model
convergence. We plan to add elasticity support to BytePS,
which will enable BytePS to dynamically schedule CPU re-
sources during the training process.
Model-parallelism support. BytePS can accelerate the com-
munication when reducing tensors across GPUs. Some model
parallelism methods, such as Megatron-LM [62] and Mesh-
TensorFlow [61], also rely on the all-reduce primitive for
communication. Therefore, BytePS can also accelerate them
by replacing the all-reduce operations.

9 Related Work
Acceleration of computation: To accelerate the forward
propagation and backward propagation, the community has
worked out many advanced compilers and libraries, includ-
ing cuDNN [10], MKL [7], TVM [23], XLA [17], Astra [64]
and other computation graph optimization, e.g., Tensor Fu-
sion [14] and graph substitution [37]. They focus on speeding
up DNN computation. They are complementary to and can
be used with BytePS.
Acceleration of communication: There are several direc-
tions for accelerating communication: (1) Gradient compres-
sion [21, 45] is proposed to reduce the communication traf-
fic, i.e., using half precision for gradient transmission, at the
cost of potential degradation of accuracy. (2) Communica-
tion scheduling and pipelining: Recent work explores to bet-
ter overlap the computation and communication by priority-
based scheduling and tensor partition [31, 34, 55]. The ideas
are that tensor partition enables simultaneous bidirectional
communication, and that during communication, the former
layers have higher priority because they are needed sooner
for FP of the next iteration. Those ideas are complementary
to BytePS, and they have been integrated into our implemen-
tation. Pipedream [51] adds parallelism between multiple
batches. BytePS can also potentially accelerate its data paral-
lel stages.
Hierarchical all-reduce: Some work proposes to leverage
the hierarchical topology [24, 49] during all-reduce, in order
to minimize the traffic at bottleneck links. However, they still

rely on the assumption that resources are homogeneous while
overlooking CPU resources. BytePS can outperform them
by leveraging the heterogeneous resources. In fact, the lat-
est NCCL includes hierarchical, tree-based all-reduce, which
does not differ much from the results in §7.
Intra-machine optimization: Blink [68] also optimizes mul-
tiple GPU communication inside a single machine, by lever-
aging hybrid transfers on NVLinks and PCIe links. How-
ever, Blink does not optimize the distributed training cases,
where the main communication bottleneck is the NIC and its
PCIe connection instead of the much faster NVLinks. BytePS
carefully schedules the intra-machine traffic to utilize the
bottleneck bandwidth better – the NIC bandwidth. Our intra-
machine design also considers the PCIe bandwidth consumed
by the NIC, while Blink is only focused on GPU’s PCIe con-
nections.
New hardware chips or architecture for accelerating
DNN training: Recently, there are many new chips, like
TPU [38] and Habana [6], that are specifically designed
for DNN training. In fact, the design of BytePS is not
GPU-specific, and should apply to them as long as they
are also PCIe devices. Some also propose using Infini-
Band switch ASIC [28] to accelerate all-reduce, or using P4
switches [58, 59] to accelerate PS. E3 [46] leverages Smart-
NICs to accelerate network applications, and can potentially
benefit BytePS by offloading the gradient summation from
CPUs to SmartNICs. PHub [48] proposes a rack-scale hard-
ware architecture with customized network configurations,
e.g., 10 NICs on one server. BytePS focuses on using gen-
erally available CPU and GPU servers in commodity data
centers.

10 Conclusion
BytePS is a unified distributed DNN training acceleration sys-
tem that achieves optimal communication efficiency in hetero-
geneous GPU/CPU clusters. BytePS handles cases with vary-
ing number of CPU machines and makes traditional all-reduce
and PS as two special cases of its framework. To further accel-
erate DNN training, BytePS proposes Summation Service and
splits a DNN optimizer into two parts: gradient summation
and parameter update. It keeps the CPU-friendly part, gradi-
ent summation, in CPUs, and moves parameter update, which
is more computation heavy, to GPUs. We have implemented
BytePS and addressed numerous implementation issues, in-
cluding those that affect RDMA performance. BytePS has
been deployed, extensively used and open sourced [4]. Mul-
tiple external projects have been developed based on it. The
Artifact Appendix to reproduce the evaluation is at [3].

11 Acknowledgement
We thank our shepherd Rachit Agarwal and the anony-
mous reviewers for their valuable comments and sugges-
tions. Yimin Jiang and Yong Cui are supported by NSFC
(No. 61872211), National Key RD Program of China (No.
2018YFB1800303).

476 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] A Light-weight Parameter Server Interface. https:
//github.com/dmlc/ps-lite.

[2] Amazon EC2 P3 Instances. https://aws.amazon.c
om/ec2/instance-types/p3/.

[3] Artifact Appendix. https://github.com/byteps/
examples/blob/master/osdi20ae.pdf.

[4] BytePS. https://github.com/bytedance/byteps.

[5] Evaluation Code. https://github.com/byteps/ex
amples.

[6] Habana. https://habana.ai/.

[7] Intel MKL. https://software.intel.com/en-us
/mkl.

[8] Intel Xeon Platinum 8168 Processor. https://ark.in
tel.com/content/www/us/en/ark/products/120
504/intel-xeon-platinum-8168-processor-33m
-cache-2-70-ghz.html.

[9] Libibverbs. https://www.rdmamojo.com/2012/05
/18/libibverbs/.

[10] NVIDIA cuDNN. https://developer.nvidia.com
/cudnn.

[11] NVIDIA DGX-1. https://www.nvidia.com/data-
center/dgx-1/.

[12] NVIDIA GPU Direct RDMA Benchmark. https://
devblogs.nvidia.com/benchmarking-gpudirect
-rdma-on-modern-server-platforms/.

[13] NVIDIA NCCL. https://developer.nvidia.com
/nccl.

[14] NVIDIA TensorRT Inference Library. https://devb
logs.nvidia.com/deploying-deep-learning-nv
idia-tensorrt/.

[15] Supermicro PCIe Root Architectures for GPU Systems.
https://www.supermicro.org.cn/products/sys
tem/4U/4029/PCIe-Root-Architecture.cfm.

[16] Train ImageNet in 18 Minutes. https://www.fast.a
i/2018/08/10/fastai-diu-imagenet/.

[17] XLA. https://www.tensorflow.org/xla.

[18] Amazon EC2 Pricing on demand. https://aws.amaz
on.com/ec2/pricing/on-demand/, 2019.

[19] TensorFlow MNIST Example with Horovod. https:
//github.com/horovod/horovod/blob/master/e
xamples/tensorflow_mnist.py, 2020.

[20] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A System for Large-Scale Machine Learn-
ing. In OSDI 2016.

[21] Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur
Agrawal, Wei Zhang, and Kailash Gopalakrishnan. Ada-
comp: Adaptive Residual Gradient Compression for
Data-parallel Distributed Training. In AAAI 2018.

[22] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. MXNet: A Flexible and Efficient Ma-
chine Learning Library for Heterogeneous Distributed
Systems. In LearningSys 2015.

[23] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An
Automated End-to-End Optimizing Compiler for Deep
Learning. In OSDI 2018.

[24] Minsik Cho, Ulrich Finkler, and David Kung. Blue-
Connect: Novel Hierarchical All-Reduce on Multi-tired
Network for Deep Learning. In SysML 2019.

[25] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Andrew Senior, Paul
Tucker, Ke Yang, Quoc V Le, et al. Large Scale Dis-
tributed Deep Networks. In NIPS 2012.

[26] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding.
arXiv preprint arXiv:1810.04805, 2018.

[27] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, Large
Minibatch SGD: Training Imagenet in 1 Hour. arXiv
preprint arXiv:1706.02677, 2017.

[28] Richard L Graham, Devendar Bureddy, Pak Lui, Hal
Rosenstock, Gilad Shainer, Gil Bloch, Dror Goldenerg,
Mike Dubman, Sasha Kotchubievsky, Vladimir Koush-
nir, et al. Scalable Hierarchical Aggregation Protocol
(SHArP): A Hardware Architecture for Efficient Data
Reduction. In COMHPC 2016.

[29] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,
Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu,
and Chuanxiong Guo. Tiresias: A GPU Cluster Manager
for Distributed Deep Learning. In NSDI 2019.

[30] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
Over Commodity Ethernet at Scale. In SIGCOMM 2016.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 477

https://github.com/dmlc/ps-lite
https://github.com/dmlc/ps-lite
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://github.com/byteps/examples/blob/master/osdi20ae.pdf
https://github.com/byteps/examples/blob/master/osdi20ae.pdf
https://github.com/bytedance/byteps
https://github.com/byteps/examples
https://github.com/byteps/examples
https://habana.ai/
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://ark.intel.com/content/www/us/en/ark/products/120504/intel-xeon-platinum-8168-processor-33m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120504/intel-xeon-platinum-8168-processor-33m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120504/intel-xeon-platinum-8168-processor-33m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120504/intel-xeon-platinum-8168-processor-33m-cache-2-70-ghz.html
https://www.rdmamojo.com/2012/05/18/libibverbs/
https://www.rdmamojo.com/2012/05/18/libibverbs/
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://www.nvidia.com/data-center/dgx-1/
https://www.nvidia.com/data-center/dgx-1/
https://devblogs.nvidia.com/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://devblogs.nvidia.com/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://devblogs.nvidia.com/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://devblogs.nvidia.com/deploying-deep-learning-nvidia-tensorrt/
https://devblogs.nvidia.com/deploying-deep-learning-nvidia-tensorrt/
https://devblogs.nvidia.com/deploying-deep-learning-nvidia-tensorrt/
https://www.supermicro.org.cn/products/system/4U/4029/PCIe-Root-Architecture.cfm
https://www.supermicro.org.cn/products/system/4U/4029/PCIe-Root-Architecture.cfm
https://www.fast.ai/2018/08/10/fastai-diu-imagenet/
https://www.fast.ai/2018/08/10/fastai-diu-imagenet/
https://www.tensorflow.org/xla
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://github.com/horovod/horovod/blob/master/examples/tensorflow_mnist.py
https://github.com/horovod/horovod/blob/master/examples/tensorflow_mnist.py
https://github.com/horovod/horovod/blob/master/examples/tensorflow_mnist.py

[31] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and
Roy H Campbell. TicTac: Accelerating Distributed
Deep Learning with Communication Scheduling. In
SysML 2019.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition.
In CVPR 2016.

[33] Geoffrey Hinton, li Deng, Dong Yu, George Dahl, Abdel-
rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vin-
cent Vanhoucke, Phuongtrang Nguyen, Tara Sainath,
and Brian Kingsbury. Deep Neural Networks for Acous-
tic Modeling in Speech Recognition: The Shared Views
of Four Research Groups. Signal Processing Magazine,
IEEE, 2012.

[34] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra
Fedorova, and Gennady Pekhimenko. Priority-based
Parameter Propagation for Distributed DNN Training.
In SysML 2019.

[35] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of Large-Scale Multi-Tenant GPU Clusters
for DNN Training Workloads. In ATC 2019.

[36] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang,
Haidong Rong, Feihu Zhou, Liqiang Xie, Zhenyu Guo,
Yuanzhou Yang, Liwei Yu, et al. Highly Scalable
Deep Learning Training System with Mixed-precision:
Training Imagenet in Four Minutes. arXiv preprint
arXiv:1807.11205, 2018.

[37] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. TASO: Opti-
mizing Deep Learning Computation with Automatic
Generation of Graph Substitutions. In SOSP 2019.

[38] Norman P Jouppi, Cliff Young, Nishant Patil, David Pat-
terson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,
Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
datacenter performance analysis of a tensor processing
unit. In ISCA 2017.

[39] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In
OSDI 2016.

[40] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using RDMA efficiently for Key-value Services. In
SIGCOMM 2014.

[41] Junho Kim, Minjae Kim, Hyeonwoo Kang, and
Kwanghee Lee. U-GAT-IT: Unsupervised Genera-
tive Attentional Networks with Adaptive Layer-Instance
Normalization for Image-to-Image Translation. arXiv
preprint arXiv:1907.10830, 2019.

[42] Diederik P. Kingma and Jimmy Ba. Adam: A Method
for Stochastic Optimization. In ICLR, 2015.

[43] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. ImageNet Classification with Deep Convolutional
Neural Networks. In NIPS 2012.

[44] Mu Li, David G Andersen, Jun Woo Park, Alexander J
Smola, Amr Ahmed, Vanja Josifovski, James Long, Eu-
gene J Shekita, and Bor-Yiing Su. Scaling Distributed
Machine Learning with the Parameter Server. In OSDI
2014.

[45] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and
William J Dally. Deep Gradient Compression: Reducing
the Communication Bandwidth for Distributed Training.
arXiv preprint arXiv:1712.01887, 2017.

[46] Ming Liu, Simon Peter, Arvind Krishnamurthy, and
Phitchaya Mangpo Phothilimthana. E3: Energy-
Efficient Microservices on SmartNIC-Accelerated
Servers. In ATC 2019.

[47] Chris Lomont. Introduction to Intel Advanced Vector
Extensions. Intel white paper, 23, 2011.

[48] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee,
and Arvind Krishnamurthy. Parameter Hub: A Rack-
scale Parameter Server for Distributed Deep Neural Net-
work Training. In SoCC 2018.

[49] Hiroaki Mikami, Hisahiro Suganuma, Yoshiki Tanaka,
and Yuichi Kageyama. Massively Distributed SGD:
ImageNet/ResNet-50 Training in a Flash. arXiv preprint
arXiv:1811.05233, 2018.

[50] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-
ing One-Sided RDMA Reads to Build a Fast, CPU-
Efficient Key-Value Store. In ATC 2013.

[51] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. PipeDream: Gen-
eralized Pipeline Parallelism for DNN Training. In
SOSP 2019.

[52] Tony Paikeday. Steel for the AI Age: DGX SuperPOD
Reaches New Heights with NVIDIA DGX A100. http
s://blogs.nvidia.com/blog/2020/05/14/dgx-s
uperpod-a100/, May 2020.

[53] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In NIPS 2019.

478 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://blogs.nvidia.com/blog/2020/05/14/dgx-superpod-a100/
https://blogs.nvidia.com/blog/2020/05/14/dgx-superpod-a100/
https://blogs.nvidia.com/blog/2020/05/14/dgx-superpod-a100/

[54] Pitch Patarasuk and Xin Yuan. Bandwidth Optimal All-
reduce Algorithms for Clusters of Workstations. Journal
of Parallel and Distributed Computing, 2009.

[55] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A Generic Communication Scheduler for Distributed
DNN Training Acceleration. In SOSP 2019.

[56] Raul Puri, Robert Kirby, Nikolai Yakovenko, and Bryan
Catanzaro. Large Scale Language Modeling: Converg-
ing on 40GB of Text in Four Hours. In SBAC-PAD
2018.

[57] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language Models are Un-
supervised Multitask Learners. OpenAI Blog, 2019.

[58] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan,
Marco Canini, and Panos Kalnis. In-network Compu-
tation Is A Dumb Idea Whose Time Has Come. In
HotNets 2017.

[59] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Krish-
namurthy, Masoud Moshref, Dan RK Ports, and Pe-
ter Richtárik. Scaling Distributed Machine Learn-
ing with In-network Aggregation. arXiv preprint
arXiv:1903.06701, 2019.

[60] Alexander Sergeev and Mike Del Balso. Horovod: Fast
and Easy Distributed Deep Learning in TensorFlow.
CoRR, 2018.

[61] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, Ryan Sepassi, and Blake Hechtman. Mesh-
TensorFlow: Deep Learning for Supercomputers. arXiv
preprint arXiv:1811.02084, 2018.

[62] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-LM: Training Multi-Billion Parameter Lan-
guage Models Using Model Parallelism. arXiv preprint
arXiv: 1909.08053, 2019.

[63] Karen Simonyan and Andrew Zisserman. Very Deep
Convolutional Networks for Large-scale Image Recog-
nition. arXiv preprint arXiv:1409.1556, 2014.

[64] Muthian Sivathanu, Tapan Chugh, Sanjay S Singapuram,
and Lidong Zhou. Astra: Exploiting Predictability to
Optimize Deep Learning. In ASPLOS 2019.

[65] Ilya Sutskever, James Martens, George Dahl, and Ge-
offrey Hinton. On the Importance of Initialization and
Momentum in Deep Learning. In ICML 2013.

[66] Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie
Krevat, David G. Andersen, Gregory R. Ganger, Garth A.
Gibson, and Brian Mueller. Safe and Effective Fine-
grained TCP Retransmissions for Datacenter Communi-
cation. In SIGCOMM 2009.

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is All You Need. In
NIPS 2017.

[68] Guanhua Wang, Shivaram Venkataraman, Amar Phan-
ishayee, Jorgen Thelin, Nikhil Devanur, and Ion Stoica.
Blink: Fast and Generic Collectives for Distributed ML.
In MLSys 2020.

[69] Yuxuan Wang, R. J. Skerry-Ryan, Daisy Stanton,
Yonghui Wu, Ron J. Weiss, Navdeep Jaitly, Zongheng
Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, Quoc V.
Le, Yannis Agiomyrgiannakis, Rob Clark, and Rif A.
Saurous. Tacotron: A Fully End-to-End Text-To-Speech
Synthesis Model. CoRR, abs/1703.10135, 2017.

[70] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing RDMA-enabled Distributed
Transactions: Hybrid is Better! In OSDI 2018.

[71] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
et al. Gandiva: Introspective Cluster Scheduling for
Deep Learning. In OSDI 2018.

[72] Bairen Yi, Jiacheng Xia, Li Chen, and Kai Chen. To-
wards Zero Copy Dataflows Using RDMA. In SIG-
COMM 2017 Posters and Demos.

[73] Chris Ying, Sameer Kumar, Dehao Chen, Tao Wang, and
Youlong Cheng. Image Classification at Supercomputer
Scale. arXiv preprint arXiv:1811.06992, 2018.

[74] Yang You, Jing Li, Jonathan Hseu, Xiaodan Song, James
Demmel, and Cho-Jui Hsieh. Reducing BERT Pre-
Training Time from 3 Days to 76 Minutes. arXiv
preprint arXiv:1904.00962, 2019.

[75] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion Control for Large-Scale RDMA
Deployments. In SIGCOMM 2015.

[76] Martin Zinkevich, Markus Weimer, Lihong Li, and
Alex J Smola. Parallelized Stochastic Gradient Descent.
In NIPS 2010.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 479

Heterogeneity-Aware Cluster Scheduling Policies for Deep Learning Workloads

Deepak Narayanan†∗, Keshav Santhanam†∗, Fiodar Kazhamiaka†, Amar Phanishayee?, Matei Zaharia†

?Microsoft Research †Stanford University

Abstract
Specialized accelerators such as GPUs, TPUs, FPGAs, and

custom ASICs have been increasingly deployed to train deep
learning models. These accelerators exhibit heterogeneous
performance behavior across model architectures. Existing
schedulers for clusters of accelerators, which are used to ar-
bitrate these expensive training resources across many users,
have shown how to optimize for various multi-job, multi-
user objectives, like fairness and makespan. Unfortunately,
existing schedulers largely do not consider performance het-
erogeneity. In this paper, we propose Gavel, a heterogeneity-
aware scheduler that systematically generalizes a wide range
of existing scheduling policies. Gavel expresses these poli-
cies as optimization problems and then systematically trans-
forms these problems into heterogeneity-aware versions us-
ing an abstraction we call effective throughput. Gavel then
uses a round-based scheduling mechanism to ensure jobs re-
ceive their ideal allocation given the target scheduling policy.
Gavel’s heterogeneity-aware policies allow a heterogeneous
cluster to sustain higher input load, and improve end objec-
tives such as makespan and average job completion time by
1.4× and 3.5× compared to heterogeneity-agnostic policies.

1 Introduction
As Moore’s law comes to an end, specialized accelerators
such as GPUs, TPUs, FPGAs, and other domain-specific ar-
chitectures have emerged as an alternative to more general-
purpose CPUs. These accelerators have been deployed to
great effect [25, 35] to train state-of-the-art deep neural net-
work (DNN) models for many domains, including language,
image and video [14, 30, 31, 51, 55].

Consequently, users today must choose from a wide variety
of accelerators to train their DNN models. For example, public
cloud users can rent several generations of NVIDIA GPUs and
Google TPUs from cloud providers [1–3]. Even organizations
with private clusters have accumulated different accelerator
types over time [34]; anecdotally, our research group has
NVIDIA Titan V, Titan X, and P100 GPUs in its private
cluster. Resources in these multi-tenant settings are typically
arbitrated by a scheduler. GPU cluster schedulers such as
Themis [40], Tiresias [28], AlloX [37], and Gandiva [58] thus
need to decide how to allocate diverse resources to many
users while implementing complex cluster-wide scheduling

∗Work done in part as interns at Microsoft Research.

K80 P100 V100

Transformer A3C CycleGAN ResNet-18 ResNet-50
0
2
4
6
8

10

Th
ro

ug
hp

ut
(w

.r.
t.

K8
0)

1.0 1.0 1.0 1.0 1.0
3.3

1.2

4.6
4.0

3.7
3.3

2.2

9.3

6.8

9.6

(a) Throughput.

Transformer A3C CycleGAN ResNet-18 ResNet-50
0.0
0.4
0.8
1.2
1.6

Do
lla

r-n
or

m
al

iz
ed

Th
pt

. (
w

.r.
t.

K8
0)

1.0 1.0 1.0 1.0 1.01.0

0.4

1.4
1.2

1.1

0.6

0.4

1.7

1.2

1.8

(b) Dollar-normalized.

Figure 1: Throughputs and dollar-normalized throughputs of train-
ing for various ML models. Dollar-normalized throughputs are com-
puted by dividing the corresponding throughput by the relevant GCP
on-demand price, The magnitude of speedup across GPU generations
varies significantly across models.

policies, optimizing objectives such as fairness or makespan.
Unfortunately, choosing the most effective accelerator types
in this context is difficult for three reasons:

Performance Heterogeneity. Commonly used models
show heterogeneous performance behavior across accelerator
types due to various architectural differences. For example,
Figure 1a shows that a ResNet-50 model sees a nearly 10×
speedup from an NVIDIA V100 GPU compared to a K80
GPU, while an A3C Deep Reinforcement Learning model
only sees a 2× speedup. However, as shown in Figure 1b, the
V100 is no longer the optimal choice for all models when we
consider the number of samples trained per dollar – for many
models, the older P100 GPU is competitive or cheaper on a
per-dollar basis. Some scheduling policies can also benefit
from splitting a job between multiple resource types: for ex-
ample, minimizing a job’s cost subject to a latency SLO (e.g.,
complete a job in 10 hours) might involve using a cheaper
accelerator to begin training and then switching to a faster,
more expensive device to meet the SLO. Thus, for even simple
single-job settings, the choice of accelerator type is non-trivial
and depends on both the job and the policy. This gets more
complicated in multi-job settings as granting all jobs their

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 481

preferred accelerator simultaneously might not be possible.
Existing schedulers like Gandiva, Tiresias, and Themis do not
consider this heterogeneous performance behavior.

Generality across Policies. Cluster operators might want
to implement different scheduling policies based on their busi-
ness goals, such as optimizing for time to complete a set of
batch jobs (makespan), fairness for ad-hoc jobs, or more so-
phisticated hierarchical policies that divide resources among
high-level entities (e.g., departments) using one policy, and
then individual jobs within the entity using another [34]. In
data analytics clusters, many job schedulers have support for
hierarchical allocation policies [6, 7, 12, 59] already. The two
recently proposed GPU schedulers that do consider heteroge-
neous resources, AlloX [37] and Gandivafair [18], optimize
for a single scheduling objective, and tightly couple their
scheduling mechanism to that objective (e.g., max-min fair-
ness). Thus, they cannot easily support the more sophisticated
policies often used in practice.

Colocation and Placement Optimizations. To improve
cluster utilization, existing GPU schedulers often deploy op-
timizations such as space sharing as in Gandiva [58], where
multiple jobs can use the same accelerator concurrently, and
placement sensitivity as in Themis and Tiresias [28, 40],
which involves the careful placement of tasks in a distributed
job to ensure good scaling performance. The performance
benefits of these optimizations should be considered explic-
itly while optimizing for global scheduling objectives, since
these optimizations are more effective when deployed in a
heterogeneity-aware way. We show that explicit modeling for
space sharing can improve objectives by 2.2× compared to
Gandiva’s ad-hoc approach.

In this paper, we present Gavel, a new cluster scheduler
designed for DNN training in both on-premise and cloud de-
ployments, that effectively incorporates heterogeneity in both
hardware accelerators and workloads to generalize a wide
range of existing scheduling policies. For example, Gavel can
provide heterogeneity-aware versions of fair sharing / least
attained service [28], FIFO, minimum makespan, minimum
cost subject to SLOs, finish-time fairness [40], shortest job
first, and hierarchical policies [12, 59].

Gavel’s key observation is that many widely used schedul-
ing policies, including hierarchical ones, can be expressed as
optimization problems whose objective is a function of the
jobs’ achieved throughputs. For example, least attained ser-
vice is equivalent to maximizing the minimum scaled through-
put among the jobs, makespan is equivalent to minimizing
the maximum duration (computed as the ratio of number
of iterations to achieved throughput), and so on. Given the
optimization problem for a scheduling policy, Gavel intro-
duces a general way to transform the problem to make it
heterogenity-, colocation- and placement-aware. In particular,
Gavel changes the problem to search over a heterogeneous
allocation for each job, the fraction of time spent in various

resource configurations (e.g., 60% of time running alone on
a V100 GPU and 40% of time space-sharing an A100 GPU
with another job), and changes the throughput terms in the
objective function to effective throughput, i.e. the average
throughput of the job over the mix of resources in its alloca-
tion. Additional constraints need to be added to ensure that
the returned allocation is valid. We show that Gavel’s trans-
formed optimization problems are efficient to execute even
for clusters with hundreds of GPUs and jobs, and can sup-
port a wide range of policies. Many of these problems can be
solved using a sequence of one or more linear programs.

Gavel’s heterogeneity-aware allocations for each job need
to be mapped to actual scheduling decisions (placement of
jobs on specific resources in the cluster for a specified du-
ration of time). To achieve this, Gavel uses a preemptive
round-based scheduling mechanism to ensure that jobs re-
ceive resources in fractions similar to the computed target
allocation. Gavel’s scheduling mechanism needs to be able to
schedule both distributed training jobs, which request multiple
accelerators at once, as well as combinations of jobs running
concurrently on a given accelerator due to space sharing.

Gavel makes these scheduling decisions transparently: it
specifies an API between the scheduler and applications that
allow jobs written in existing deep learning frameworks like
PyTorch [48] and TensorFlow [13] to be moved between re-
sources with minimal code changes, and uses a mechanism
similar to Quasar [21] to estimate performance measurements
of colocated jobs, which are needed as inputs to Gavel’s poli-
cies, when not available a priori.

By explicitly considering performance heterogeneity, Gavel
improves various policy objectives (e.g., average job comple-
tion time or makespan): on a smaller physical cluster, it im-
proves average JCT by 1.5×, and on a larger simulated cluster,
it increases the maximum input load a cluster can support,
while improving objectives such as average job completion
time by 3.5×, makespan by 2.5×, and cost by 1.4×.

To summarize, our main contributions are:

• A systematic method to convert existing cluster schedul-
ing policies into equivalent policies that consider het-
erogeneity and colocation; these equivalent optimization
problems are practical for current DNN clusters.

• A round-based scheduling mechanism to ensure that the
cluster realizes the allocations returned by these policies.

• Generalizations of many existing policies in our frame-
work that improve corresponding objectives.

Gavel is open sourced at https://github.com/
stanford-futuredata/gavel.

2 Background
In this section, we provide a brief overview of DNN training
(§2.1), and discuss performance optimizations used in existing
schedulers that Gavel can help deploy more effectively (§2.2).

482 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/stanford-futuredata/gavel
https://github.com/stanford-futuredata/gavel

Throughput
Estimator Policy Scheduling

MechanismThroughput
tensor

Allocation Per-round
placement

Throughput measurements from runs fed back into throughput estimator

V100

P100

Training jobs written in
existing frameworks

…

…

…

If measurements provided by user User objective

Figure 2: Gavel overview. Jobs are written in frameworks like PyTorch or TensorFlow. Gavel’s throughput estimator obtains performance
measurements for each runnable job on each available accelerator type if necessary; its policy then computes an allocation that optimizes a
user-specified objective such as fairness. Gavel’s scheduling mechanism accepts this computed allocation as an input, and makes per-round
placement decisions in proportions that faithfully mimic the computed allocation.

2.1 Deep Neural Network (DNN) Training

DNN training proceeds in iterations. In each iteration, the
DNN processes a collection of inputs (called a minibatch) and
subsequently updates the model parameters using gradients
derived from the input minibatch. Each minibatch is typically
of similar size, which means model training throughput using
short profiling runs (order of minutes). Gavel leverages this
fact in its throughput estimator. Jobs are typically fairly long-
running (on the order of hours to days), and can be distributed
over many workers [9, 58].

Modern DNN schedulers leverage the fact that DNN train-
ing is iterative to suspend and resume training at iteration
boundaries [28, 58]; this ensures that jobs can be time multi-
plexed over the existing physical resources. The latest model
parameters need to be checkpointed to stable storage when
a job is suspended to ensure training progress is not lost. In
this work, we show how time sharing should be deployed to
optimize various single- and multi-job objectives.

2.2 Performance Optimizations

Prior work has shown that GPUs can be severely under-
utilized in multi-tenant clusters [34]; for example, average
GPU utilization (measured as the percentage of GPU Stream-
ing Multiprocessors active over time) was as low as 52% on
a Microsoft cluster. Prior work has also shown the placement
of tasks for a distributed training job can have significant
impact on performance. Gavel can optionally deploy these
optimizations systematically, as we show in §3.1.

Space Sharing. Smaller models often do not leverage the
full computational capacity of modern GPUs. In such cases,
concurrently executing multiple models on the same GPU us-
ing NVIDIA’s Multi Process Service (MPS) or CUDA streams
can help improve utilization [10, 47].

Placement Sensitivity. DNN models show heterogeneity
in their distributed scaling behavior depending on the size of
the tensors that need to be exchanged between workers during
training: some models have compact weight representations
and can scale well even when workers are not on the same
server, while other models scale poorly when workers are
spread over many servers. Existing schedulers like Tiresias
use heuristics for placement sensitivity.

3 System Overview
Given a collection of jobs, Gavel arbitrates cluster resources
(in the form of accelerators of different types) among the
resident jobs, while optimizing for the desired cluster ob-
jective. This is accomplished in a two-step process: first, a
heterogeneity-aware policy computes the fraction of time
different jobs (and combinations) should run on different
accelerator types to optimize the desired objective. These
policies require as input the performance behavior (in terms
of throughputs) for each job on each accelerator type, which
can either be provided by the user, or can be measured on
the fly by Gavel’s throughput estimator. Allocations are in-
tended to be respected only between allocation recomputation
events; for example, if job 1 is much longer than job 2, the
allocation will be recomputed once job 2 completes. Gavel
can recompute its policy either when a reset event occurs (job
arrives or completes, worker in the cluster fails), or at peri-
odic intervals of time. Given the policy’s output allocation,
Gavel’s scheduling mechanism grants jobs time on the differ-
ent resources, and moves jobs between workers as necessary
to ensure that the true fraction of time each job spends on
different resources closely resembles the optimal allocation
returned by the policy. Gavel’s workflow is shown in Figure 2.

3.1 Heterogeneity-Aware Policies

Gavel expresses scheduling policies as optimization prob-
lems for various objectives of interest, such as fairness or
makespan, and allocations as matrices that specify the frac-
tion of wall-clock time a job should spend on each accelerator
type between allocation recomputations. A matrix X can rep-
resent allocations on a single accelerator type (homogeneous
setting), on multiple accelerator types (heterogeneous setting),
as well as with other optimizations. Consider Xexample:

Xexample =

V 100 P100 K80()0.6 0.4 0.0 job 0
0.2 0.6 0.2 job 1
0.2 0.0 0.8 job 2

According to this allocation specified over three jobs and three
accelerator types, job 0 should spend 60% of the time this

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 483

Job 0

Job 1

Job 2

V100

V100

V100

P100

P100 K80

K80

allocation!
computed

allocation!"#
computed

Figure 3: The cumulative time each job spends on accelerator types
between allocation recomputations for allocation Xexample.

A3C

CycleGAN
LSTM

ResNet-18

ResNet-50

Transformer

A3C

CycleGAN

LSTM

ResNet-18

ResNet-50

Transformer

(1.00,
 1.00)

(0.92,
 0.87)

(1.00,
 0.80)

(1.00,
 0.81)

(0.64,
 1.00)

(0.97,
 0.85)

nan (0.59,
 0.59)

(0.84,
 0.49)

(0.69,
 0.48)

(0.00,
 0.00)

(0.73,
 0.55)

nan nan (0.60,
 0.63)

(0.61,
 0.76)

(0.26,
 1.00)

(0.68,
 0.73)

nan nan nan (0.59,
 0.60)

(0.23,
 1.00)

(0.60,
 0.65)

nan nan nan nan (0.00,
 0.00)

(1.00,
 0.36)

nan nan nan nan nan (0.66,
 0.65)

Figure 4: Performance of several DNN models when run concur-
rently on a single P100 GPU. The cell at row i and column j re-
ports the normalized throughput (iterations/second) achieved by co-
located models i and j. Throughputs are normalized with respect to
the throughput achieved by each model when run in isolation. Black
squares show jobs that cannot co-locate due to memory constraints.

allocation is valid on a V100 GPU, and the remaining 40% of
time on a P100 GPU. This is shown visually in Figure 3.

Gavel finds an optimal value for the matrix X given a pol-
icy expressed as an optimization problem. To construct the
optimization problem for a given policy, Gavel requires a
throughput matrix T with each job’s throughput (in training
iterations per second) on different accelerators. Tm j can be
set to −∞ if job m does not run on accelerator type j (for
example, due to memory constraints).

Given T and X , we define the effective throughput
of a model m as the time-weighted average throughput
across accelerators and jobs. We denote this quantity
throughputT (m,X) or simply throughput(m,X) (dropping the
T) for brevity. For allocations X without space sharing,

throughput(m,X) = ∑
j∈

accelerator types

Tm j ·Xm j

Different cluster scheduling policies can be expressed as opti-
mization problems for X while maximizing or minimizing an
appropriate objective function. Constraints need to be spec-
ified to ensure that X is a valid allocation. A hypothetical
policy that maximizes total effective throughput looks like,

MaximizeX ∑
m∈jobs

throughput(m,X)

Subject to the following constraints:

0≤ Xm j ≤ 1 ∀(m, j) (1)

∑ j Xm j ≤ 1 ∀m (2)

∑m Xm j · scale_factorm ≤ num_workers j ∀ j (3)

These constraints ensure that each job-worker allocation is
non-negative and between 0 and 1 (equation 1), that the total
allocation for a job does not exceed 1 (equation 2), and that
the allocation does not oversubscribe workers (equation 3).

Space Sharing. Gavel’s allocation matrices can also incor-
porate space sharing (SS). While previous work has used
greedy algorithms for space sharing, we found that different
pairs of DNN applications in practice have vastly different
performance when colocated together, based on the resources
they consume (Figure 4). When using space sharing, X needs
to contain rows for each viable combination of jobs, and T
needs to have throughputs of the job combinations, like:

T =

V 100 P100 K80()40.0 20.0 10.0 job 0
15.0 10.0 5.0 job 1

(20.0,7.5) 0.0 0.0 jobs (0, 1)

The SS-aware allocation X dictates the fraction of time that
each job combination should spend on each accelerator type.

We limit entries of T to combinations of at most 2 jobs;
we found empirically that larger combinations rarely increase
net throughput. Additionally, although the size of T grows
quadratically with the number of jobs even with job combi-
nations of size 2, we found that in practice we only need to
consider combinations that actually perform well. We evalu-
ate the scaling behavior of these SS-aware policies in §7.4.

Objectives in terms of throughput(m,X) remain the same;
however, throughput(m,X) now needs to be computed to in-
clude the throughputs of co-located jobs:

throughput(m,X) = ∑
j∈

accelerator types

∑
k∈Cm

Tk jm ·Xk jm

The constraints need to be slighly modified as well to ensure
that X is a valid allocation in this new regime:

0≤ Xk j ≤ 1 ∀(k, j)

∑k∈Cm ∑ j Xk j ≤ 1 ∀m
∑k Xk j · scale_factorm ≤ num_workers j ∀ j

Cm is the set of all job combinations that contain job m.

Placement Sensitivity. Similarly, Gavel’s allocation matri-
ces can also be extended to incorporate placement sensitivity.
The observed throughput for distributed jobs depends on the
location of tasks, as well as the model and accelerator type
(slower workers are less likely to be communication-bound,

484 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Jobs placed on resources
where they have high priority

(marked in red)

rounds_received!

		3		 		1		 		0		
1 3 0
0 0 4

job 0
V100 | P100 | K80

job 1
job 2

		3		 		𝟐		 		0		
1 3 𝟏
𝟏 0 4

priorities!

	0.2	 	𝟎. 𝟒	 	0	
0.2 0.2 ∞
∞ 0 0.2

job 0
V100 | P100 | K80

job 1
job 2

rounds_received!"#

job 0
V100 | P100 | K80

job 1
job 2

Figure 5: Priorities are used to move the received allocation to-
wards the intended allocation (in this case, Xexample). prioritiesn is
computed as X/rounds_receivedn (element-wise division).

which means consolidation of tasks is less effective). We
can make our policies placement-sensitive by considering the
performance of distributed jobs in: 1) a consolidated setting,
where as many accelerators are on the same server as possible
(for example, 8 GPUs per server if using 8-GPU servers), and
2) an unconsolidated setting, where accelerators are on inde-
pendent servers. These are extreme points in the placement
space, and are upper and lower bounds on performance. We
can model this in our policies by having two different worker
types (consolidated and unconsolidated) with corresponding
throughput values in T and allocation values in X .

3.2 Round-based Scheduling Mechanism

After computing the optimal allocation, Gavel’s next step is
to assign jobs (or job combinations, in the case of SS) to
accelerator types while matching the optimal allocation as
closely as possible. That is, to realize the allocation Xexample

above, the scheduling mechanism needs to make sure that
in the time period where jobs 0, 1, and 2 are the only three
runnable jobs in the cluster, jobs should receive resources
according to their computed optimal time fractions.

To do this, the scheduler computes a priority score for
every job and accelerator type combination that is high when
a job has received a smaller time fraction than the optimal
allocation. Scheduling is performed in rounds; in each round,
the scheduler runs jobs in decreasing priority order, while
ensuring that a given job is not scheduled on multiple workers
(or accelerators) in a given round. This is shown in Figure 5.
Priorities are updated as rounds complete. We have found
empirically that round durations of around 6 minutes allow
Gavel to effectively approximate the ideal allocation (§7.5).

3.3 Throughput Estimator

To estimate the throughputs of concurrent jobs (e.g., in the
case of space sharing), Gavel employs a throughput estima-
tor, similar to those found in prior work such as Quasar [21].
Gavel’s throughput estimator maps a new job to a set of pre-
profiled reference jobs. The throughputs of the closest ref-
erence job can then be used as the initial performance esti-
mate for the new job’s combinations. For individual jobs, the
throughput estimator is not needed, since throughputs can be

estimated on the fly as jobs run on different resource types.

3.4 Limitations and Non-Goals

While Gavel exposes a flexible API that supports a variety of
policies and objectives, we do not propose new scheduling
policies or performance optimizations in this work. Instead,
Gavel’s main goal is to determine how best to share resources
amongst many different users and jobs in a heterogeneity-
aware way, while supporting many existing cluster-wide ob-
jectives. Gavel accomplishes these goals with a policy frame-
work that easily allows policies to be made heterogeneity-,
colocation-, and placement-aware (§4), a reusable scheduling
mechanism (§5), and a narrow scheduler API that allows users
to deploy their applications with minimal code changes (§6).

4 Scheduling Policies
In this section, we show how various scheduling policies
such as max-min fairness (Least Attained Service or LAS)
and multi-level fairness can be expressed as optimization
problems in terms of effective throughput. We describe some
properties of the resulting heterogeneity-aware allocations at
the end of this section.

4.1 Max-Min Fairness as an Optimization Problem

The classical Least Attained Service (LAS) policy, used by
Tiresias [28], implements max-min fairness across active
users in the cluster, by round-robining resources across jobs
according to the total number of accelerator hours consumed.
This can be modified into a weighted max-min fairness policy
with per-user weights wm. On a homogeneous cluster, if a job
m with weight wm receives a fraction Xm (which is a scalar
since there is only one resource type), LAS can be expressed
as the following optimization problem:

MaximizeX min
m

1
wm

Xm

We need to add an additional constraint to ensure that the
cluster is not overprovisioned (∑m Xm ≤ 1).

However, this vanilla LAS policy is not fair in a heteroge-
neous setting; jobs might see unequal reductions in through-
put due to variations in performance across accelerator types.
For example, giving one job a K80 and another job a V100
would equalize their number of resources, but could result in
very low performance for the job with the K80.

To compute a more fair allocation, we can compute max-
min fairness over the weighted normalized effective through-
puts, as defined in §3.1. Let Xequal

m be the allocation given to
job m assuming it receives equal time share on each worker in
the cluster. For example, if the cluster had 1 V100 and 1 K80,
Xequal

m = [0.5,0.5]. Xequal
m scales the effective throughputs to

make them comparable across jobs.

MaximizeX min
m

1
wm

throughput(m,X)

throughput(m,Xequal
m)

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 485

Policy Description

Makespan Minimize time taken by batch of jobs.
LAS [28] Max-min fairness by total compute time.
LAS w/ weights Max-min fairness with weights.
Finish Time Fairness [40] Maximize minimum job speedup.
FIFO First in, first out.
Shortest Job First Minimize time taken by shortest job.
Minimize cost Minimize total cost in public cloud.
Minimize cost w/ SLOs Minimize total cost subject to SLOs.
Hierarchical [59] Multi-level policy: FIFO, fairness, etc.

Table 1: Policies that can be expressed in Gavel.

As specified in §3.1, additional constraints need to be specified
to ensure that allocations are valid.

As an example, consider 3 jobs which benefit differently
when moved from a K80 GPU to a V100 GPU:

T =

V 100 K80()40.0 10.0 job 0
12.0 4.0 job 1

100.0 50.0 job 2

Solving the above optimization problem with wm = 1, and a
cluster with 1 V100 and 1 K80 yields the following allocation:

Xhet. =

V 100 K80()0.45 0.0 job 0
0.45 0.09 job 1
0.09 0.91 job 2

Jobs receive about 10% higher throughput compared to an al-
location where every user is given 1/n of the time on each ac-
celerator (here, n = 3), also called an isolated allocation [26].

Fairness policy objective functions need to be modified to
take into account muti-resource jobs with scale_factorm > 1,
since these multi-resource jobs occupy a larger share of the
cluster per unit time. An easy way to do this is to multiply the
max-min objectives from before by scale_factorm. Concretely,
the LAS objective from before now becomes,

MaximizeX min
m

1
wm

throughput(m,X)

throughput(m,Xequal
m)

· scale_factorm

4.2 Other Policies as Optimization Problems

We can express many other common cluster schedul-
ing policies, some proposed by recent papers, using
throughput(m,X); we list these policies in Table 1. Most of
these policies can be expressed using a single linear program,
with a few exceptions: the cost policies are formulated as a
linear-fractional program [8], which can be reduced to a se-
quence of linear programs. These optimization problems yield
corresponding heterogeneity-aware allocations. The optimal
allocation can be computed using off-the-shelf solvers.

Minimize Makespan. The makespan minimization policy
tries to complete all active jobs as soon as possible. Gandiva
uses a version of this policy to finish higher-level tasks such
as hyperparameter tuning and AutoML, which involve train-
ing a large number of variants of a model. If num_stepsm is
the number of iterations remaining to train model m, then the
makespan is the maximum of the durations of all active jobs,
where the duration of job m is the ratio of the number of itera-
tions to throughput(m,X) (expressed in iterations / second).
Overall, this can be framed as,

MinimizeX max
m

num_stepsm

throughput(m,X)

Minimize Finish-Time Fairness (Themis). Themis [40]
proposes a new metric called finish-time fairness (represented
as ρ), which is the ratio of the time taken to finish a job using a
given allocation and the time taken to finish the job using 1/n
of the cluster (X isolated), assuming n users using the cluster.
This can be expressed in terms of throughput(m,X) as follows
(num_stepsm is the number of iterations remaining to train
model m, tm is the time elapsed since the start of training for
model m, and t isolated

m is the hypothetical time elapsed since
the start of training if model m had 1/n of the cluster to itself),

ρT (m,X) =
tm +

num_stepsm
throughput(m,X)

t isolated
m +

num_stepsm
throughput(m,X isolated)

The final optimization problem is then,

MinimizeX max
m

ρT (m,X)

FIFO. The First-In-First-Out (FIFO) policy schedules jobs
in the order they arrive. In a heterogeneous regime, jobs
should be placed on the fastest available accelerator type.
Mathematically, we can write this as maximizing the through-
put of job m relative to its throughput on the fastest type
(throughput(m,X fastest)). Assuming that jobs are enumerated
in order of their arrival time (m arrived before m+1), a FIFO
allocation can be computed with the following objective:

MaximizeX ∑
m

throughput(m,X)

throughput(m,X fastest)
(M−m)

where M is the total number of jobs.

Shortest Job First. The Shortest Job First policy finds the
allocation that minimizes the duration of the shortest job,

MinimizeX min
m

num_stepsm

throughput(m,X)

Minimizing Total Cost and Cost subject to SLOs. We
can express policies for deployments that use elastic public
cloud resources. Since cloud VMs are charged on a per-time
basis, we can express policies that explicitly optimize for total
cost, speed, or both.

486 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Fairness

Organization

Product Team Research Team

Job 1 Job 2 Job 5Job 4Job 3

𝑤! 𝑤"

FIFO

Weighted
fairness

Figure 6: Example of a hierarchical policy: weighted fairness across
two entities: a product and research team, fairness across jobs within
the product team, and FIFO within the research team.

Consider a simple policy that maximizes total throughput,

MinimizeX ∑
m

throughput(m,X)

The above policy can be extended to incorporate cost by
optimizing the following cost-adjusted objective,

MaximizeX
∑m throughput(m,X)

∑m(∑ j cost j ·Xm j)

where cost j is the cost of accelerator type j. The numerator in
the above objective is the time-averaged effective throughput,
and the denominator is the time-averaged cost. When using
space sharing, care must be taken to not double count the
cost of instances running job combinations (all jobs in a job
combination derive value in the form of some throughput).

Jobs can have time SLOs as well, e.g., certain high-priority
jobs might need to complete every 12 hours. We can add
additional constraints: given SLOm for each model m (models
without SLOs can have SLOm = ∞),

throughput(m,X)≥ num_stepsm/SLOm

4.3 Hierarchical Scheduling Policies

Modern cluster schedulers do not only deploy “single-level”
policies. Hierarchical policies are common [6, 12, 59]: a large
organization might share a single physical cluster among
many sub-organizations (or entities) using a fairness policy.
In turn, each entity can share resources among individual
jobs according to a distinct per-entity policy, such as per-user
fairness or FIFO. We give an example in Figure 6, where a re-
search and product team share the same physical cluster. The
research team runs ad-hoc experiments that can be executed
in FIFO order, but the product team needs to ensure that all
its jobs receive a fair share of the cluster.

Gavel can currently support fairness in the upper levels
and fairness or FIFO in the lower levels, which matches the
hierarchical policies supported by the Hadoop scheduler [6].
Determining how to extend this to other hierarchical policy
sets (for example, with finish time fairness) is future work.

Gavel solves hierarchical objectives using a procedure
called water filling [15], which is used in other max-min fair-
ness problems such as link allocation in networks [49]. At a
high level, the water-filling algorithm increases the allocation
given to all parties at an equal rate to respect max-min fairness,

until a party saturates. The saturated party is then taken out,
and the procedure repeated iteratively until all commodities
are saturated. We adapt this procedure to our setting, solving
a series of optimization problems iteratively: an LP that com-
putes a fair allocation across entities while respecting each
entity’s internal policy, and an MILP that identifies bottle-
necked jobs, i.e., jobs whose effective throughputs cannot be
improved without lowering other jobs’ effective throughput.

We assume that each entity s is associated with a weight ws;
the jobs belonging to this entity receive a total cluster share
proportional to this weight. We denote wjob

m to be the weight
of job m, set such that ∑m∈s wjob

m = ws. Jobs are assigned
priorities in accordance to the relevant entity’s policy; for
example, a fairness policy within an entity would assign each
job a weight proportional to its individual weight within the
entity, while for FIFO, the first job in the queue would initially
receive the entire weight of the entity.

In each iteration, we solve the following modified LP (as-
suming scale_factorm = 1 for all m for simplicity):

MaximizeX min
{m:wjob

m >0}

1

wjob
m

(
throughput(m,X)

throughput(m,Xequal
m)

− tm

)

tm is the normalized effective throughput of job m in the
previous iteration (tm := 0 in the first iteration). The above
objective can be appropriately modified for scale_factorm > 1.
Bottlenecked jobs are given priority 0 and no longer consid-
ered in future iterations. Priorities are redistributed among
non-bottlenecked jobs according to the entity’s policy at the
end of every iteration. For instance, in the example shown
in Figure 6, if job 4 is bottlenecked, then its weight is reas-
signed to job 5 in accordance to the FIFO policy, while if job
2 is bottlenecked, its weight is distributed equally between
jobs 1 and 3 in accordance with the entity’s fairness policy.
The LP then solves the max-min problem on the resources
remaining while ensuring each job’s throughput does not
drop compared to the previous iteration’s allocation Xprev, ex-
pressed as throughput(m,X) ≥ throughput(m,Xprev) for all
m. Iterations continue until all jobs are bottlenecked. To make
this procedure more concrete, consider an example with 4
identical jobs: job 1 with a weight of 3.0, and jobs 2 to 4 with
a weight of 1.0; and 4 identical GPUs. In the first iteration,
job 1 is assigned resources such that its throughput is 1.0,
and jobs 2, 3, and 4 are assigned resources such that their
throughput is 0.33 to respect weights. Job 1 is a bottleneck;
the throughput of the remaining jobs can still be increased. In
the next iteration, jobs 2 to 4 are given full-GPU allocations.

The final allocation satisfies both inter-entity and intra-
entity policies. We note that the above water-filling procedure
can also be used for single-level fairness policies such as
the one described in §4.1 to improve the throughput of non-
bottelenecked jobs.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 487

4.4 Properties of Gavel’s Policies

Existing scheduling schemes have been analyzed in terms
of properties like sharing incentive, Pareto efficiency, and
strategy proofness [26]. We formalize Gavel’s heterogeneity-
aware policies in the context of these properties as well.

Homogeneous Clusters. For homogeneous clusters,
Gavel’s heterogeneity-aware policies are equivalent to the
baseline policies (throughput(m,X) = Xm · Tm), since the
heterogeneity-aware optimization problems reduce to the
original optimization problems with one accelerator type.

Sharing Incentive. For heterogeneous clusters, the policy’s
objective metric (maximize least job share in LAS, comple-
tion time of first job in FIFO, or makespan) is at least as well
off as it would be under a policy that naïvely splits all re-
sources equally among all runnable jobs. This is because the
allocation corresponding to giving each user 1/n of each re-
source is a feasible solution to Gavel’s optimization problem,
so Gavel’s solution will be at least as good. All Gavel policies
have sharing incentive [26], which encourages users to use
the shared cluster rather than a static private share.

Colocation. Solutions with colocation are always at least
as good as without colocation.

Pareto Efficiency. Allocations of max-min fairness poli-
cies with water filling are Pareto efficient: that is, the alloca-
tion for a particular job cannot be increased without decreas-
ing the allocation for another job.

Note that some of Gavel’s policies may not satisfy other
desirable properties. For example, Sun et al. [53] showed
that no fair-sharing policy can simultaneously satisfy Pareto
efficiency, sharing incentive and strategy proofness in a set-
ting with interchangeable resources. If users manipulate their
throughputs, then they can possibly obtain larger shares of
the cluster (e.g., jobs can be placed on a faster accelerator
type) for certain objectives. Exploring how to make Gavel’s
policies strategy-proof is interesting future work.

5 Scheduling Mechanism
Gavel’s scheduling mechanism schedules training iterations
of runnable jobs on the available workers (with possibly differ-
ent accelerators), such that for each schedulable job (or com-
bination), the fraction of wall-clock time it spends on each
accelerator type is approximately equal to the computed opti-
mal allocation Xopt between allocation recomputation events.
This is challenging for two main reasons: 1) Jobs can run on
multiple accelerators. Moreover, since distributed training can
be communication intensive [19, 46], jobs should be placed
on accelerators “close” to each other (for example, on accel-
erators on the same server, or on accelerators in servers in the
same rack). 2) Combinations of up to two jobs can run on a set
of accelerators in order to improve resource utilization (space
sharing). Each distinct job can have ≤ 1 job combination
running in a given round to prevent work duplication.

Gavel makes its scheduling decisions in rounds. This is
similar in spirit to Tiresias’s [28] priority discretization in
some respects. However, Gavel’s scheduling mechanism dif-
fers from Tiresias’s in three ways:

• Gavel needs to schedule jobs on different accelerator
types: it needs to decide which job should be active in
any round and which accelerator type to use.

• Gavel needs to grant resources to jobs while respecting
an arbitrary allocation returned by the policy.

• Gavel’s round-based scheduler grants time to jobs while
ensuring that multiple job combinations sharing a job do
not run in the same round; Tiresias does not consider job
combinations and does not need to deal with this.

Gavel’s scheduler tries to place work on all available work-
ers for a specific duration (this time period is configurable; we
use 6 minutes in our experiments). We call the work handed
to each worker in a given round a micro-task. Without rounds,
jobs that request many accelerators can suffer from starva-
tion. For example, consider a cluster with 8 total accelerators
and 4 available. The scheduler can handle a 8-accelerator
job waiting for resources in one of two ways: a) wait for
8 accelerators to become available; 4 accelerators will be
unused until the full quota of 8 accelerators becomes avail-
able, b) keep the 8-accelerator job in the queue, and give 4
accelerators to another job that requests a fewer number of
resources. However, this situation can repeat itself, leading
to starvation [59]. Scheduling is thus performed in rounds
to limit resource under-utilization, simplify scheduling logic,
and ensure that jobs with large scale factors do not experience
prolonged starvation.

Since the number of active, schedulable jobs might far
exceed the total number of workers, Gavel first determines
the job combinations that should run in the upcoming round.
To do this, Gavel maintains the time tm j spent by a job (or
combination) m on accelerator type j, which is updated as
jobs run on different accelerator types every round. Given
tm j, Gavel’s scheduler can then compute the fraction of total
wall-clock time spent by each job (or combination) m on
each accelerator type j as fm j = tm j/(∑m′ tm′ j). The matrix of
priorities is then just the element-wise division of Xopt by f .

Algorithm. In every round, we want to move fm j closer to
Xopt

m j . This can be achieved by giving high-priority jobs time
on accelerator type j.

This problem can be solved exactly if jobs only request
single accelerators and if space sharing is not deployed by
finding the num_workers j jobs with highest priority (for ex-
ample, using a heap). However, jobs submitted to Gavel can
be distributed, and space sharing can be used to improve re-
source utilization. Solving this problem exactly with these
added requirements makes the problem similar to a multiple-
choice knapsack problem [52], which is NP-hard.

488 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

V100

P100

K80 2

23

32

2 3

3

Scheduling rounds

0
1

0
1

0
1

0
1

X!"#.%&&

	1.0	 	0.0	 	0.0	
0.0 0.5 0.5
0.0 0.5 0.5

jobs 0+1
V100 | P100 | K80

job 2
job 3

Figure 7: Round-based scheduling mechanism in action to achieve
an allocation Xhet.+SS. Space sharing is shown with vertically split
boxes. Each round is denoted by a box.

Algorithm 1 Algorithm for Gavel’s scheduling mechanism
1: function SCHEDULE_JOBS

2: active_combinations← all active job combinations
3: num_workers_rem.← number of total workers
4: while num_workers_rem.g > 0 do
5: j← job combination with highest priority
6: Remove j from active_combinations
7: if j.scale_factor > num_workers_rem. then
8: continue
9: for all j′ that conflict (share a job k) with j do

10: Remove j′ from active_combinations

11: num_workers_rem. −= j.scale_factor

To overcome these challenges, we observe that it is ac-
ceptable to make greedy sub-optimal scheduling decisions
occasionally in any given round, since we can recover from
these sub-optimal decisions in subsequent rounds: our goal is
to ensure that the average allocation each job receives over
multiple rounds resemble the computed allocation (the allo-
cations returned by policies are optimal, which follows from
how policies in Gavel are expressed as optimization prob-
lems). We study the impact of this design choice in §7.5.
A job (combination) not run in a particular round will have
increased priority in subsequent rounds until it receives ac-
celerator time, while a job that runs in a particular round will
have decreased priority. This ensures that jobs do not suffer
from starvation if they have a non-zero optimal allocation.

Gavel uses a greedy algorithm to pick the highest-priority
job combinations that fit in the provided resource budget.
The algorithm maintains a set of eligible job combinations
(eligible_job_combinations) that can be scheduled in the
upcoming scheduling round. The scheduling mechanism then
tries to add job combinations with highest priority into a
job_combinations_to_schedule set. Once a job combina-
tion is added to this set, all conflicting job combinations are
removed from the set of eligible combinations to ensure that
a given job is not run more than once in a given scheduling
round. Job combinations that cannot fit in the current round
due to space limitations (required number of accelerators
unavailable) are also removed from the set of eligible combi-
nations. This procedure is detailed in Algorithm 1. Gavel’s
scheduling mechanism is decoupled from its policies, ensur-
ing that the same scheduling mechanism can be used for

Matrix

completion

Green entries measured
Black entries not measured

Hashed entries:
estimates of missing

black entries

𝑅 𝑅!"#

Fingerprint
of job i

Find closest
reference job

(offline)

Ref. job 1
Ref. job 2

Ref. job r
New job i

...

Figure 8: Gavel’s throughput estimator. Profiling is combined with
matrix completion to obtain a fingerprint for every new job. The
fingerprint is then used to find the closest reference job.

many different policies. Figure 7 shows Gavel’s scheduling
mechanism in action.

Once Gavel has decided what jobs (and combinations)
should run in a given round on different accelerator types,
Gavel must decide how to place these jobs. Gavel’s scheduler
places jobs in decreasing order of the number of requested
workers, and tries to give jobs accelerators on the same physi-
cal server to minimize fragmentation.

6 Implementation
We implemented a prototype of Gavel in approximately
9000 lines of Python code, and implemented a simulator in
about 500 LOC. We used cvxpy [23] to implement Gavel’s
heterogeneity-aware policies, and gRPC [4] to communicate
control messages between the scheduler and workers.

Interface between Scheduler and Applications. Gavel
currently supports user applications written in PyTorch [48];
support for TensorFlow [13] is left for future work. The
scheduler and user applications then interact through a nar-
row API. Gavel ships with a Python library that users can
import into their code. This library provides an implemen-
tation for a wrapper around existing framework-provided
data iterators (GavelIterator). GavelIterator ensures that
each task in a distributed job runs for the same number
of iterations, and synchronizes the conclusion of rounds
between the scheduler and workers. GavelIterator is in-
stantiated with arguments train_loader (base data loader),
load_checkpoint, save_checkpoint, and a configuration ob-
ject. load_checkpoint is a pointer to a function that loads
all necessary parameters and metadata from a checkpoint at
the start of a round, and save_checkpoint is a pointer to a
function that creates a checkpoint at the end of a round; these
need to call appropriate framework methods (< 5 LOC).

GavelIterator contacts the scheduler near a round end to
see if the same job will run in the next round on the same
worker. We call this a lease renewal. If the lease is not re-
newed, the iterator calls save_checkpoint at round end. The
scheduler can then launch another job on the worker.

Throughput Estimation. Gavel uses a similar technique
to Quasar [21] to estimate colocated throughputs when us-
ing the optional space sharing optimization (if they are not
available a priori), mixing profiling with matrix completion.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 489

Model Task Dataset /
Application Batch size(s)

ResNet-50 [5, 31]
Image
Classification ImageNet [22]

16, 32,
64, 128

ResNet-18 [31, 39]
Image
Classification CIFAR-10 [36]

16, 32, 64,
128, 256

A3C [27, 44] Deep RL Pong 4

LSTM [11]
Language
Modeling Wikitext-2 [42]

5, 10, 20,
40, 80

Transformer [33, 55]
Language
Translation

Multi30k [24]
(de-en)

16, 32, 64,
128, 256

CycleGAN [38, 60]
Image-to-Image
Translation monet2photo [60] 1

Recoder [45]
(Autoencoder) Recommendation ML-20M [29]

512, 1024,
2048, 4096,
8192

Table 2: Models used in the evaluation.

Trace System Objective Physical Simulation

Continuous Gavel Average JCT 3.4 hrs 3.7 hrs
Continuous LAS Average JCT 5.1 hrs 5.4 hrs

Static Gavel Makespan 17.7 hrs 17.6 hrs
Static Gandiva Makespan 21.3 hrs 22.1 hrs

Table 3: Comparison of end objective between physical experiment
and simulation for two different traces. For the continuous trace, we
measure the average JCT of 25 jobs in a steady-state cluster. For the
static trace, we measure the total time needed to complete 100 jobs
submitted at the start of the run. The heterogeneity-aware policies
improve target objectives, and results on the physical cluster are in
agreement with results on simulated cluster (< 8%).

Model Overhead without Overhead with
lease renewals lease renewals

ResNet-18 0.94% 0.17%
ResNet-50 1.58% 0.25%
A3C 0.22% 0%
LSTM 2.91% 0.47%
Transformer 0.77% 0.11%
CycleGAN 0.77% 0.11%

Table 4: Overhead of using preemptive scheduling in Gavel, with
and without lease renewals, and with a round duration of 6 minutes.

Matrix completion enables sparse low rank matrices to be
reconstructed with low error [17,43]. With matrix completion,
Gavel is able to extrapolate measurements obtained through
direct profiling on separate workers dedicated to profiling,
and determine the job’s most similar pre-profiled reference
job. The throughput estimator can then use the reference job’s
throughput measurements as an initial throughput estimate.
Gavel’s throughput estimator is diagrammed in Figure 8.

7 Evaluation
In this section, we seek to answer the following questions:

• Do Gavel’s heterogeneity-aware policies improve objec-
tive metrics in a physical cluster (§7.2) and in simula-
tions of larger clusters (§7.3)?

• How do Gavel’s policies scale? (§7.4)

0 2 4 6 8
Input job rate (jobs/hr)

0

25

50

75

100

Av
er

ag
e

JC
T

(h
ou

rs
)

LAS
LAS w/ Gandiva SS
AlloX
Gavel
Gavel w/ SS

(a) Average job completion time vs. cluster load.

0 100 200 300 400 500
JCT (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 jo

bs

0 5 10 15 20 25
0.00

0.33

0.67

1.00

LAS
LAS w/ Gandiva SS

AlloX
Gavel

Gavel w/ SS

(b) CDF of job completion times (input job rate = 5.6 jobs/hr).

Figure 9: Comparison of heterogeneity-agnostic least attained ser-
vice (LAS) policy to a heterogeneity-aware LAS policy (Gavel), in
simulation on the continuous-single trace.

• How well does Gavel’s scheduling mechanism realize
Gavel’s heterogeneity-aware allocations? (§7.5)

• Is Gavel able to accurately estimate the throughputs of
co-located jobs when using space sharing? (§7.6)

7.1 Experiment Setup

We run experiments on both a physical and simulated cluster.

Clusters. We run physical cluster experiments on a cluster
with 8 V100s, 16 P100s, and 24 K80s. Simulated cluster
experiments are run on a cluster with 36 GPUs of each type.

Traces. We run physical and simulated experiments on two
types of traces: one where all jobs are available at the start
of the trace and jobs are not subsequently added (“static”),
and another where jobs are continuously added to the cluster
(“continuous”). For the continuous trace, job arrival times are
generated according to a Poisson arrival process with an inter-
arrival rate λ. For the simulated experiments, we vary λ to
show the extra load each heterogeneity-aware policy is able to
sustain in steady state. We run 3 seeds for every λ, and show
standard deviations. For the physical cluster experiments, we
use a single λ that keeps the cluster well-utilized in steady
state. The online traces used in the simulated experiments
have a variable number of jobs (at least 5000) and span 20-30
days. We measure the completion times of jobs with ID 4000
to 5000 to study steady state behavior (new jobs continue
to be added until jobs of interest complete). Job types are
uniformly sampled from the job table with 26 distinct job (or
model) types, shown in Table 2. The online traces used in the
physical experiments span a day and have 100 jobs.

490 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Input job rate (jobs/hr)

0

25

50

75

100
Av

er
ag

e
JC

T
(h

ou
rs

)
LAS
LAS w/ Gandiva SS
Gavel
Gavel w/ SS

(a) Average job completion time vs. cluster load.

0 100 200 300 400 500
JCT (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 jo

bs

0 5 10 15 20 25
0.00

0.33

0.67

1.00

LAS
LAS w/ Gandiva SS

Gavel Gavel w/ SS

(b) CDF of job completion times (input job rate = 2.6 jobs/hr).

Figure 10: Comparison of heterogeneity-agnostic least attained ser-
vice (LAS) policy to a heterogeneity-aware LAS policy (Gavel), in
simulation on the continuous-multiple trace. Each input job rate is
run with 3 seeds; shaded regions show the standard deviation.

The duration of each job on a V100 GPU is sampled from
an exponential distribution: jobs have duration 10x minutes,
where x is drawn uniformly from [1.5,3] with 80% proba-
bility, and from [3,4] with 20% probability. Given the job’s
observed throughput on the V100 GPU, the number of train-
ing steps is then inferred by multiplying the throughput (in
steps/sec) by the duration. This matches the process used
by Gandiva [58]. For the simulated experiments, we show
results in two regimes: one where all jobs use a single worker
(“continuous-single”), and another where 70% of jobs request
a single worker, another 25% request between 2 and 4 work-
ers, and the remaining 5% request 8 workers, as observed in
published traces from Microsoft [9] (“continuous-multiple”).

Metrics. For fairness and FIFO policies, our target metric
is average job completion time of steady-state jobs, which
is the same metric used by related work [28, 41]. We also
show finish time fairness (FTF) for policies that explicitly
optimize for FTF. For makespan policies, our target metric
is the time needed to complete a job batch. For cost-related
policies, the metric is cost (in dollars), and the percentage of
jobs that violate time SLOs.

7.2 End-to-End Results on Physical Cluster

For our physical cluster experiments, we run a heterogeneity-
aware and a heterogeneity-agnostic fairness policy on a con-
tinuous trace, and a heterogeneity-aware makespan policy
against a baseline that uses Gandiva’s ad-hoc space shar-
ing on a static trace. Results are shown in Table 3. Gavel’s
heterogeneity-aware policies improved average job comple-
tion time by 1.5× and makespan by 1.2×. For the makespan

objective, we do not run Gavel with space sharing; in theory,
space sharing would additionally reduce makespan.

We also compare the real performance to simulations and
observe that for both policies, the difference between metrics
in simulation and on the physical cluster is small (< 8%),
indicating that our simulator has high fidelity.

Table 4 shows the overhead of using Gavel’s preemptive
scheduler with a round duration of 6 minutes, with and without
lease renewals. Allocations and worker assignments can be
computed asynchronously. The only synchronous overhead is
the loading and saving of checkpoints, which is dependent on
the size of the model. Lease renewals decrease this overhead
by allowing jobs to run on the same worker for extra rounds.
The overhead of preemption, even without lease renewals and
with a short round duration, is low (< 3%).

7.3 End-to-End Results in Simulation

We use a larger simulated cluster to evaluate the efficacy of
Gavel’s heterogeneity-aware policies across a range of objec-
tives, and compare with heterogeneity-agnostic versions from
previous work using a round duration of 6 minutes. As appro-
priate, we compare to other baselines like AlloX. Magnitudes
of speedups are higher for these experiments compared to the
physical cluster experiments since the simulated traces show
job behavior over weeks, while the physical cluster traces are
only a day long; consequently, queue buildups are less ex-
treme for the traces used in the physical cluster experiments.

Least Attained Service (LAS). Figures 9 and 10 compare
the vanilla LAS policy with its heterogeneity-aware variants.
We compare with two other baselines: a modified LAS policy
that uses Gandiva’s ad-hoc space sharing, and an AlloX policy
that explicitly optimizes average job completion time (but
only for single-worker jobs). We make three observations.

First, the heterogeneity-aware policies support higher load
on the same cluster, reduce average JCT by 3.5× for the
continuous-single trace, and by 2.2× for the continuous-
multiple trace (graph can be read by comparing average JCT
value for a given input job rate or x-intercept) at high load
(5.6 jobs/hr for continuous-single, 2.6 jobs/hr for continuous-
multiple). Second, the heterogeneity-aware LAS policy sup-
ports higher load than AlloX, since AlloX can give short jobs
preferential treatment in the interest of optimizing average
JCT, leading to long jobs experiencing starvation (long tail in
JCT CDF). At moderate load, AlloX represents a best-case
scenario since it explicitly optimizes for average JCT on a het-
erogeneous cluster. Gavel is able to essentially match this best
case scenario, while also supporting other objectives. Third,
Gandiva-style packing, which randomly explores job com-
binations until a combination that improves performance is
found, is ineffective compared to Gavel’s principled packing
(2.2× better average JCT for both traces at high load).

Finish Time Fairness (FTF). We compare the
heterogeneity-aware version of Finish Time Fairness

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 491

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Input job rate (jobs/hr)

0

25

50

75

100
Av

er
ag

e
JC

T
(h

ou
rs

)
Minimize FTF
Gavel

(a) Average job completion time vs. cluster load.

0 1 2 3 4
FTF

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 jo

bs

Minimize FTF Gavel

(b) CDF of finish time fairness metric (input job rate = 2.6 jobs/hr).

Figure 11: Comparison of a heterogeneity-agnostic policy that opti-
mizes for finish time fairness (“Minimize FTF”) to a heterogeneity-
aware one (Gavel), in simulation with the continuous-multiple trace.

(FTF) to its heterogeneity-agnostic counterpart in Figure 11.
The heterogeneity-aware policy reduces average JCTs by 3×
and improves average FTF by 2.8×. FTF is the ratio of the
time taken to finish a job using a given allocation and the
time taken to finish the job using 1/n of the cluster (X isolated),
assuming n users use the cluster. Lower FTF means jobs take
less time with the provided allocation compared to X isolated.

Makespan. Gavel’s heterogeneity-aware makespan policy
reduces makespan by 2.5× compared to a FIFO baseline, and
by 1.4× compared to a baseline that uses Gandiva’s ad-hoc
space sharing. Makespan is reduced by a further 8% when the
number of jobs in the trace is high when using space sharing.

FIFO. The heterogeneity-aware versions of FIFO allow the
cluster to support average input job rate. At high load, the
heterogeneity-aware version without space sharing reduces
average JCT by 2.7×, and the heterogeneity-aware version
with space sharing reduces average JCT by 3.8× at high load.
Space sharing is less effective for distributed jobs: it reduces
average JCT by 1.1× with distributed jobs, compared to 1.4×
for the continuous-single trace.

LAS with priorities. We also run an experiment with the
LAS policies where 20% of jobs have higher priority. At high
load, Gavel reduces the average JCT of high-priority jobs by
1.5× and the average JCT of low-priority jobs by 2.7×.

Cost. We simulate each of the cost policies on a 500-job
workload comprised of ResNet-50 and A3C jobs. As we
observe in Figure 1b, the ResNet-50 job has the best cost-
normalized throughput on the V100 while the A3C job has

10 20 30 40 50 60 70
Timestep

0.0

0.5

1.0

Fr
ac

tio
n

of
 to

ta
l

ef
fe

ct
iv

e
th

ro
ug

hp
ut

Entity 0 Entity 1 Entity 2

(a) Fraction of total throughput for each job with time.

0 10 20 30 40 50 60 70
Timestep

0

5

10

To
ta

l e
ff

ec
tiv

e
th

ro
ug

hp
ut

Multi-level fairness
Gavel

(b) Total throughput vs. time.

Figure 12: Behavior of a multi-level fairness policy with time as
jobs are added to a small cluster with 3 V100 GPUs, 3 P100 GPUs,
and 3 K80 GPUs. Each line represents a separate job, and jobs are
added every 4 timesteps. The first 6 jobs belong to entity 0 (weight
of entity, w0 = 1), the next 6 jobs belong to entity 1 (w1 = 2), and
the last 6 jobs belong to entity 2 (w2 = 3).

the best cost-normalized throughput on the K80. Each job’s
duration is chosen from {0.5,1,2,4,8} days, and each job’s
SLO is chosen from {1.2×,2×,10×} its duration.

The policy that minimizes cost reduces the total cost com-
pared to the policy that maximizes throughput by a factor of
roughly 1.4×. However, approximately 35% of jobs violate
their SLO as this policy prioritizes cheaper but slower GPUs;
in particular, the A3C jobs are scheduled on K80 GPUs which
results in violations for tight SLOs. In comparison, the policy
that includes SLOs as well eliminates all violations for a small
increase in cost (a cost reduction of 1.2× compared to the
baseline policy), by ensuring that A3C jobs with tight SLOs
are run on instances with V100 GPUs.

Multi-level Hierarchical Policies. Figure 12 shows the be-
havior of a multi-level fairness policy as new jobs belonging
to multiple entities are added to a heterogeneous cluster with
equal numbers of K80, P100, and V100 GPUs. Resources are
granted to jobs in a way that respects both the higher-level
and lower-level policies: in Figure 12a, fairness is enforced
both within and across entities (as can be seen by the widths
of the colored bands, which represents cross-entity fairness,
and the widths of bands within a color, which represents fair-
ness across jobs within an entity), and allocations are adjusted
as new jobs come in. Figure 13 shows results with a fair-
ness+FIFO policy; later jobs in each entity 0 do not receive
any GPU time to respect the per-entity FIFO policy.

The multi-level fairness policy can also be implemented
in a heterogeneity-agnostic manner by statically partitioning

492 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

10 20 30 40 50 60 70
Timestep

0.0

0.5

1.0

Fr
ac

tio
n

of
 to

ta
l

ef
fe

ct
iv

e
th

ro
ug

hp
ut

Entity 0 Entity 1 Entity 2

Figure 13: Behavior of a hierarchical policy (weighted fairness as
top-level policy, FIFO as bottom-level policy) with time as jobs are
added to a small cluster with 3 V100 GPUs, 3 P100 GPUs, and 3
K80 GPUs. Each line represents a separate job, and jobs are added
every 4 timesteps. The first 6 jobs belong to entity 0 (weight of entity,
w0 = 1), the next 6 jobs belong to entity 1 (w1 = 2), and the last 6
jobs belong to entity 2 (w2 = 3).

Gavel Gavel w/ SS

32 128 512 2048
Number of jobs

0.125

1

8

64

512

Se
co

nd
s

(a) LAS.

32 128 512 2048
Number of jobs

0.125

1

8

64

512

Se
co

nd
s

(b) Hierarchical.

Figure 14: Scaling of LAS and hierarchical policies with the num-
ber of active jobs on a heterogeneous cluster with an equal number
of V100, P100, and K80 GPUs. The size of the cluster is increased
as the number of active jobs is increased.

resources across users while respecting per-entity and per-
user weights. While this results in a fair allocation as well,
we observe that total effective throughput is about 17% lower
compared to the heterogeneity-aware policy (Figure 12b).

7.4 Scalability of Heterogeneity-Aware Policies

Figure 14 shows the scaling behavior of the heterogeneity-
aware LAS and multi-level fairness policies with and without
space sharing. We observe that even with 2048 active jobs,
the hierarchical policy without space sharing can be run in
< 10 minutes. With space sharing, the policy can be run
with 512 jobs in < 10 minutes. The single-level LAS policy
is much cheaper to compute in comparison. We note that
allocations do not need to be recomputed every scheduling
round – however, the longer the policy takes to run, the longer
it takes for the new allocation to be acted upon (jobs can still
be given heterogeneity-agnostic allocations in the interim,
and consequently time on resources). We believe latencies
of < 30 minutes for large clusters are still preferable to non-
preemptive schedulers where jobs experience large queuing
delays, or preemptive schedulers with heterogeneity-agnostic
policies which lead to worse objective values, as shown above.

7.5 Efficacy of Scheduling Mechanism

Figure 15a shows the effect of the round length on average
JCT for the heterogeneity-aware LAS policy with a single-

0 2 4 6
Input job rate (jobs/hr)

0

25

50

75

100

Av
er

ag
e

JC
T

(h
ou

rs
)

Gavel (360s)
Gavel (720s)
Gavel (1440s)
Gavel (2880s)

(a) Effect of round length.

0 2 4 6
Input job rate (jobs/hr)

0

25

50

75

100

Av
er

ag
e

JC
T

(h
ou

rs
)

Gavel
Gavel (ideal)

(b) Mechanism vs. ideal.

Figure 15: (a) Effect of round length on average JCT for the
heterogeneity-aware LAS policy. (b) Comparison of scheduling
mechanism to an ideal baseline that allocates resources to jobs ex-
actly according to the computed allocation for the same policy.

0.2 0.4 0.6 0.8
Input job rate (jobs/hr)

0

20

40

Av
er

ag
e

JC
T

(h
ou

rs
)

Gavel w/ SS (Oracle)
Gavel w/ SS (Estimated)
Gavel

Figure 16: Comparison of SS-aware LAS policy with estimated
throughputs, compared to the SS-aware with oracle throughputs and
LAS without space sharing on a heterogeneous 12-GPU cluster.

GPU trace. We observed similar behavior on traces with multi-
GPU jobs, as well as other policies. A smaller round length
gives Gavel’s scheduling mechanism more rounds to course
correct, allowing the true allocation and computed optimal
allocation to more closely match. We found that the time
needed to load and save checkpoints for our target models is
< 5 seconds, which means that a round length of 6 minutes
gives a good tradeoff between fidelity with the optimal allo-
cation and preemption overhead (preemption overhead with
6-minute rounds shown in Table 4).

We compare this to an ideal baseline that allocates re-
sources to jobs exactly according to their computed allocation.
As shown in Figure 15b, Gavel’s scheduling mechanism with
a round duration of 6 minutes behaves almost identically to
this ideal baseline with a single-GPU trace (behavior with a
multi-GPU trace is similar). We note that the ideal baseline is
impractical to use in practice, since jobs with different scale
factors can complete at different times (leading to starvation),
and preemptions can be often since allocations for some (job,
accelerator type) pairs are small, leading to high overhead.

7.6 Impact of Throughput Estimation

Figure 16 shows the effect of Gavel’s throughput estimator on
average JCT when using the space sharing-aware LAS policy
compared to the LAS policy without space sharing, and the
LAS policy with space sharing and oracle throughputs. The
throughput estimator is able to determine missing throughputs
in an online fashion accurately enough to observe a very small
decrease in average JCT at high load (orange and blue lines).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 493

8 Related Work and Discussion
In this section, we compare Gavel to related work.

Existing DNN Training Schedulers. Several recent papers
have proposed schedulers targeting DNN training workloads.

Gandiva [58] uses time and space sharing to reduce queuing
delay and improve resource utilization, but does not specify an
explicit scheduling policy and does not support configurable
objectives. It uses a profiling-based methodology to deter-
mine whether to co-locate jobs on an accelerator. However,
it does not incorporate model performance data (isolated or
co-located performance) explicitly into its scheduling policy,
resorting to random exploration of job combinations until a
combination that improves performance is found.

Tiresias [28] and Themis [40] use different objectives to
achieve multi-job fairness. However, both do not incorporate
jobs’ affinities for different accelerator types in their schedul-
ing objectives, and have scheduling mechanisms strongly cou-
pled with the target policy, making it hard to support other
more sophisticated policies like multi-level fairness.

AlloX [37] and Gandivafair [18] are recent DNN schedulers
that do consider worker and model heterogeneity. However,
both only work for single policies (average job completion
time for AlloX, max-min fairness for Gandivafair). Moreover,
Gandivafair uses a second-price auction mechanism to im-
prove the performance of a heterogeneity-agnostic max-min
fairness scheme, but does not provide guarantees as to the
optimality of the final allocation. On the other hand, Gavel
formalizes each policy as an optimization problem, and can
provide a guarantee that the returned solution is “optimal” ac-
cording to the provided objective. Gavel is also able to support
more sophisticated policies such as multi-level fairness.

Traditional Cluster Schedulers. Traditional schedulers
such as Mesos [32], Borg [57], TetriSched [54], and
YARN [56] support workloads with fixed heterogeneous re-
source requests, but do not reason about the diverse perfor-
mance characteristics of jobs across accelerators. Mesos and
YARN do not reason about interchangeable resource types
that can run the same computation: for example, Mesos’s
DRF multi-resource sharing policy [26] decides how to give
jobs allocations of distinct resource types, such as RAM and
CPUs, but assumes that each job has declared which resources
it needs to use and in what ratio (unlike our case, where we
consider heterogeneity over accelerators themselves).

The multi-interchangeable resource allocation (MIRA)
problem [53] also introduces the notion of effective through-
put similar to Gavel, but does not demonstrate how this can
be used to specify policies as optimization problems, does not
consider performance optimizations like space sharing and
placement sensitivity, and does not discuss how computed
allocations can be realized on physical resources.

Omega [50], Apollo [16], and Hydra [20] are schedulers
that take into account the fact that the target workload shows
heterogeneity in the number and duration of constituent tasks.

However, tasks largely take the same time on different CPUs,
and heterogeneity in memory capacities only impacts the
number and size of tasks that can be placed on a server. In our
work, the compute devices themselves are interchangeable
with sometimes large performance differences, and policies
decide the time fractions of resources each job should receive
while optimizing for various end objectives.

Dynamic Performance Estimation. As detailed in §6,
Gavel uses the approach proposed by Quasar [21] to esti-
mate co-located job performance online. In particular, Gavel
uses a mix of profiling and matrix completion to compute a
“fingerprint” against a set of reference models profiled offline.
In this work, we show that the techniques used by Quasar can
be successfully applied to this new setting.

Applicability to Other Settings. Even though we focused
this paper on allocating heterogeneous resources for DNN
training workloads, we believe that Gavel can be used for non-
DNN workloads as well. Other workloads that are amenable
to GPU execution, such as simulations, can be considered,
even though performance estimates for these applications will
be needed. We also believe the main technical insight pre-
sented in this paper – formulating diverse scheduling policies
as optimization problems – is broadly applicable, and can be
used to more easily deploy policies on homogeneous deep
learning clusters, and on CPU clusters as well.

9 Conclusion

In this paper, we proposed Gavel, a heterogeneity-aware clus-
ter scheduler that is able to optimize for many high-level
metrics like fairness, makespan, and cost. Gavel demonstrates
how existing policies can be expressed as optimization prob-
lems, and extends these policies to be heterogeneity-aware.
Gavel then uses a decoupled round-based scheduling mecha-
nism to ensure that the computed optimal allocation is real-
ized. Gavel’s heterogeneity-aware policies improve end objec-
tives both on a physical and simulated cluster. It can support
a higher average input job rate, while improving objectives
such as average job completion time by 3.5×, makespan by
2.5×, and cost by 1.4×.

10 Acknowledgements
We thank our shepherd, Alexandra Fedorova, the anonymous OSDI reviewers,
Firas Abuzaid, Trevor Gale, Shoumik Palkar, Deepti Raghavan, Daniel Kang,
Pratiksha Thaker, and fellow Project Fiddle interns Jack Kosaian, Kshiteej
Mahajan, and Jayashree Mohan for their invaluable feedback that made this
work better. We thank MSR for their generous support of DN’s and KS’s
internships, and for resources to develop and evaluate Gavel. This research
was also supported in part by affiliate members and other supporters of the
Stanford DAWN project— Ant Financial, Facebook, Google, Infosys, NEC,
and VMware—as well as Toyota Research Institute, Northrop Grumman,
Amazon Web Services, Cisco, NSF Graduate Research Fellowship grant
DGE-1656518, and the NSF CAREER grant CNS-1651570. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF.

494 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] AWS Accelerator Offerings. https://aws.amazon.

com/ec2/instance-types/, 2020.

[2] Cloud GPUs on GCP. https://cloud.google.com/
gpu, 2020.

[3] Cloud TPUs on GCP. https://cloud.google.com/
tpu, 2020.

[4] gRPC. https://grpc.io, 2020.

[5] ImageNet Training in PyTorch. https://github.com/
pytorch/examples/tree/master/imagenet, 2020.

[6] Implementing Core Scheduler Functionality in Resource
Manager (V1) for Hadoop. https://issues.apache.
org/jira/browse/HADOOP-3445, 2020.

[7] Job Scheduling in Spark. https://spark.
apache.org/docs/latest/job-scheduling.
html#scheduling-within-an-application, 2020.

[8] Linear-fractional Optimization. http://www.seas.
ucla.edu/~vandenbe/ee236a/lectures/lfp.pdf,
2020.

[9] Microsoft Philly Trace. https://github.com/
msr-fiddle/philly-traces, 2020.

[10] NVIDIA Multi-Process Service. https:
//docs.nvidia.com/deploy/pdf/CUDA_Multi_
Process_Service_Overview.pdf, 2020.

[11] Word-level Language Modeling RNN. https:
//github.com/pytorch/examples/tree/master/
word_language_model, 2020.

[12] YARN – The Capacity Scheduler. https://blog.
cloudera.com/yarn-capacity-scheduler/, 2020.

[13] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
et al. TensorFlow: A System for Large-Scale Machine
Learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages
265–283, 2016.

[14] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai,
E. Battenberg, C. Case, J. Casper, B. Catanzaro,
Q. Cheng, G. Chen, et al. Deep Speech 2: End-to-End
Speech Recognition in English and Mandarin. In In-
ternational Conference on Machine Learning, pages
173–182, 2016.

[15] D. P. Bertsekas and R. G. Gallager. Data Networks.
1987.

[16] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,
M. Wu, and L. Zhou. Apollo: Scalable and Coordi-
nated Scheduling for Cloud-Scale Computing. In 11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 285–300, 2014.

[17] E. J. Candes and Y. Plan. Matrix Completion with Noise.
Proceedings of the IEEE, 98(6):925–936, 2010.

[18] S. Chaudhary, R. Ramjee, M. Sivathanu, N. Kwatra, and
S. Viswanatha. Balancing Efficiency and Fairness in
Heterogeneous GPU Clusters for Deep Learning. In
Proceedings of the Fifteenth European Conference on
Computer Systems, pages 1–16, 2020.

[19] C. Coleman, D. Kang, D. Narayanan, L. Nardi, T. Zhao,
J. Zhang, P. Bailis, K. Olukotun, C. Ré, and M. Zaharia.
Analysis of DAWNBench, A Time-to-Accuracy Ma-
chine Learning Performance Benchmark. ACM SIGOPS
Operating Systems Review, 53(1):14–25, 2019.

[20] C. Curino, S. Krishnan, K. Karanasos, S. Rao, G. M. Fu-
marola, B. Huang, K. Chaliparambil, A. Suresh, Y. Chen,
S. Heddaya, et al. Hydra: A Federated Resource Man-
ager for Data-Center Scale Analytics. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 177–192, 2019.

[21] C. Delimitrou and C. Kozyrakis. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In ACM
SIGARCH Computer Architecture News, volume 42,
pages 127–144, 2014.

[22] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 248–
255, 2009.

[23] S. Diamond and S. Boyd. CVXPY: A Python-
Embedded Modeling Language for Convex Optimiza-
tion. The Journal of Machine Learning Research,
17(1):2909–2913, 2016.

[24] D. Elliott, S. Frank, K. Sima’an, and L. Specia.
Multi30K: Multilingual English-German Image De-
scriptions. In Proceedings of the 5th Workshop on Vision
and Language, pages 70–74. Association for Computa-
tional Linguistics, 2016.

[25] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massen-
gill, M. Liu, D. Lo, S. Alkalay, M. Haselman, L. Adams,
M. Ghandi, et al. A Configurable Cloud-Scale DNN
Processor for Real-Time AI. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architec-
ture (ISCA), pages 1–14, 2018.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 495

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://cloud.google.com/gpu
https://cloud.google.com/gpu
https://cloud.google.com/tpu
https://cloud.google.com/tpu
https://grpc.io
https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/pytorch/examples/tree/master/imagenet
https://issues.apache.org/jira/browse/HADOOP-3445
https://issues.apache.org/jira/browse/HADOOP-3445
https://spark.apache.org/docs/latest/job-scheduling.html#scheduling-within-an-application
https://spark.apache.org/docs/latest/job-scheduling.html#scheduling-within-an-application
https://spark.apache.org/docs/latest/job-scheduling.html#scheduling-within-an-application
http://www.seas.ucla.edu/~vandenbe/ee236a/lectures/lfp.pdf
http://www.seas.ucla.edu/~vandenbe/ee236a/lectures/lfp.pdf
https://github.com/msr-fiddle/philly-traces
https://github.com/msr-fiddle/philly-traces
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://github.com/pytorch/examples/tree/master/word_language_model
https://github.com/pytorch/examples/tree/master/word_language_model
https://github.com/pytorch/examples/tree/master/word_language_model
https://blog.cloudera.com/yarn-capacity-scheduler/
https://blog.cloudera.com/yarn-capacity-scheduler/

[26] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant Resource Fair-
ness: Fair Allocation of Multiple Resource Types. In
8th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 11), pages 24–24, 2011.

[27] D. Griffis. RL A3C PyTorch. https://github.com/
dgriff777/rl_a3c_pytorch, 2020.

[28] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon,
J. Qian, H. Liu, and C. Guo. Tiresias: A GPU Clus-
ter Manager for Distributed Deep Learning. In 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 485–500, 2019.

[29] F. M. Harper and J. A. Konstan. The MovieLens
Datasets: History and Context. ACM Transactions on
Interactive Intelligent Systems (TIIS), 5(4):19, 2016.

[30] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask
R-CNN. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 2961–2969, 2017.

[31] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual
Learning for Image Recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[32] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. H. Katz, S. Shenker, and I. Stoica.
Mesos: A Platform for Fine-Grained Resource Sharing
in the Data Center. In 8th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 11),
pages 22–22, 2011.

[33] Y.-H. Huang. Attention is All You Need: A PyTorch Im-
plementation. https://github.com/jadore801120/
attention-is-all-you-need-pytorch, 2018.

[34] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian,
W. Xiao, and F. Yang. Analysis of Large-Scale Multi-
Tenant GPU Clusters for DNN Training Workloads. In
USENIX Annual Technical Conference, USENIX ATC
2019, pages 947–960, 2019.

[35] N. P. Jouppi, C. Young, N. Patil, D. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, et al. In-Datacenter Performance Analysis
of a Tensor Processing Unit. In 2017 ACM/IEEE 44th
Annual International Symposium on Computer Architec-
ture (ISCA), pages 1–12, 2017.

[36] A. Krizhevsky, V. Nair, and G. Hinton. The CIFAR-
10 Dataset. http://www.cs.toronto.edu/kriz/
cifar.html, 2014.

[37] T. N. Le, X. Sun, M. Chowdhury, and Z. Liu. AlloX:
Compute Allocation in Hybrid Clusters. In Proceed-
ings of the Fifteenth European Conference on Computer
Systems, pages 1–16, 2020.

[38] E. Linder-Norén. PyTorch-GAN. https://github.
com/eriklindernoren/PyTorch-GAN#cyclegan,
2020.

[39] K. Liu. Train CIFAR-10 with PyTorch. https://
github.com/kuangliu/pytorch-cifar, 2020.

[40] K. Mahajan, A. Balasubramanian, A. Singhvi,
S. Venkataraman, A. Akella, A. Phanishayee, and
S. Chawla. Themis: Fair and Efficient GPU Cluster
Scheduling. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
289–304, 2020.

[41] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan,
Z. Meng, and M. Alizadeh. Learning Scheduling Algo-
rithms for Data Processing Clusters. In Proceedings of
the ACM Special Interest Group on Data Communica-
tion, pages 270–288. 2019.

[42] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer
Sentinel Mixture Models. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceed-
ings, 2017.

[43] A. Mnih and R. R. Salakhutdinov. Probabilistic Ma-
trix Factorization. In Advances in Neural Information
Processing Systems, pages 1257–1264, 2008.

[44] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lilli-
crap, T. Harley, D. Silver, and K. Kavukcuoglu. Asyn-
chronous Methods for Deep Reinforcement Learning. In
International Conference on Machine Learning, pages
1928–1937, 2016.

[45] A. Moussawi. Towards Large Scale Training of Autoen-
coders for Collaborative Filtering. In Proceedings of
Late-Breaking Results Track Part of the Twelfth ACM
Conference on Recommender Systems, RecSys’18, Van-
couver, BC, Canada, 2018.

[46] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri,
N. R. Devanur, G. R. Ganger, P. B. Gibbons, and M. Za-
haria. PipeDream: Generalized Pipeline Parallelism for
DNN Training. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles, pages 1–15,
2019.

[47] D. Narayanan, K. Santhanam, A. Phanishayee, and
M. Zaharia. Accelerating Deep Learning Workloads
through Efficient Multi-Model Execution. In NeurIPS
Workshop on Systems for Machine Learning (December
2018), 2018.

496 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/dgriff777/rl_a3c_pytorch
https://github.com/dgriff777/rl_a3c_pytorch
https://github.com/jadore801120/attention-is-all-you-need-pytorch
https://github.com/jadore801120/attention-is-all-you-need-pytorch
http://www. cs. toronto. edu/kriz/cifar. html
http://www. cs. toronto. edu/kriz/cifar. html
https://github.com/eriklindernoren/PyTorch-GAN#cyclegan
https://github.com/eriklindernoren/PyTorch-GAN#cyclegan
https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar

[48] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Informa-
tion Processing Systems, pages 8024–8035, 2019.

[49] B. Radunovic and J.-Y. Le Boudec. A Unified Frame-
work for Max-Min and Min-Max Fairness with Ap-
plications. IEEE/ACM Transactions on Networking,
15(5):1073–1083, 2007.

[50] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: Flexible, Scalable Schedulers for
Large Compute Clusters. In Proceedings of the 8th
ACM European Conference on Computer Systems, pages
351–364, 2013.

[51] M. J. Shafiee, B. Chywl, F. Li, and A. Wong. Fast YOLO:
A Fast You Only Look Once System for Real-Time
Embedded Object Detection in Video. arXiv preprint
arXiv:1709.05943, 2017.

[52] P. Sinha and A. A. Zoltners. The Multiple-Choice Knap-
sack Problem. Operations Research, 27(3):503–515,
1979.

[53] X. Sun, T. N. Le, M. Chowdhury, and Z. Liu. Fair Alloca-
tion of Heterogeneous and Interchangeable Resources.
ACM SIGMETRICS Performance Evaluation Review,
46(2):21–23, 2019.

[54] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch,
M. Harchol-Balter, and G. R. Ganger. Tetrisched:
Global Rescheduling with Adaptive Plan-Ahead in Dy-
namic Heterogeneous Clusters. In Proceedings of the
Eleventh European Conference on Computer Systems,
page 35. ACM, 2016.

[55] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is All You Need. In Advances in Neural In-
formation Processing Systems, pages 5998–6008, 2017.

[56] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
et al. Apache Hadoop YARN: Yet Another Resource
Negotiator. In Proceedings of the 4th Annual Symposium
on Cloud Computing, page 5. ACM, 2013.

[57] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes. Large-scale Cluster Manage-
ment at Google with Borg. In Proceedings of the Tenth
European Conference on Computer Systems, page 18,
2015.

[58] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu,
N. Kwatra, Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang,
et al. Gandiva: Introspective Cluster Scheduling for

Deep Learning. In 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 18),
pages 595–610, 2018.

[59] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay Scheduling: A Sim-
ple Technique for Achieving Locality and Fairness in
Cluster Scheduling. In Proceedings of the 5th Euro-
pean Conference on Computer Systems, pages 265–278.
ACM, 2010.

[60] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired
Image-to-Image Translation using Cycle-Consistent Ad-
versarial Networks. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 2223–
2232, 2017.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 497

A Artifact Appendix
A.1 Abstract

Gavel is open sourced at https://github.com/
stanford-futuredata/gavel. We provide imple-
mentations for Gavel’s heterogeneity-aware policies, its
round-based scheduling mechanism, and the GavelIterator

interface, as well as implementations of relevant baselines
such as AlloX [37], a simulator, and code to reproduce the
graphs and other quantitative results shown in this paper.

A.2 Artifact check-list
• Algorithm: Heterogeneity-aware policies are expressed as op-

timization problems over allocations. Scheduling is performed
using a greedy round-based scheduling mechanism.

• Hardware: Experiments in simulation can run on a multi-core
server with Ubuntu 16.04. Experiments on a physical cluster
need Nvidia GPUs.

• Setup instructions: Setup instructions are available in the
README.md and EXPERIMENTS.md files provided in the artifact.

• Experiments: All results presented in this paper can be repro-
duced using the provided artifact.

• Required disk space: About 100 GB for logfiles when run-
ning simulated cluster experiments, about 10 GB for intermedi-
ate model checkpoints for physical cluster experiments, about
150 GB for datasets.

• Expected experiment run time: Days to a week for full
simulated experiments, shorter durations (hours to a day) for
scaled-down experiments (smaller cluster and trace).

• Public link: https://github.com/
stanford-futuredata/gavel.

• Code licenses: MIT License.

A.3 Description

A.3.1 How to access

The artifact is publicly available at https://github.com/
stanford-futuredata/gavel.

A.3.2 Hardware dependencies

Simulated experiments can be run on any multicore server.
We ran experiments on a 56-core server with Ubuntu 16.04.
Physical clusters need to have Nvidia GPU accelerators; other
accelerators supported by Deep Learning frameworks such as
PyTorch are supported as well by the scheduler.

A.3.3 Software dependencies

Software dependencies are specified at https:
//github.com/stanford-futuredata/gavel/blob/
master/README.md.

A.3.4 Datasets

Running the simulator does not require any external datasets.
When running physical cluster experiments, training data for
training jobs is needed. These are task-specific (for example,

image classification training jobs might use the ImageNet
dataset).
A.4 Installation

Installation instructions are specified at https:
//github.com/stanford-futuredata/gavel/blob/
master/README.md.

A.5 Experiment workflow

Experiments in simulation are triggered by a driver script that
instantiates the scheduler, and then adds jobs to the simulated
cluster either according to a pre-defined trace, or on-the-fly
using distributions with input parameters specified by the user.
The scheduler computes the optimal allocation for each active
job based on the desired policy and target objective, and then
assigns resources to jobs according to this computed allo-
cation using its round-based scheduling mechanism. Oracle
throughputs are used to estimate the progress of jobs given a
specified amount of time on the given resources. At the end
of a run, completion times of all jobs of interest are recorded.
Jobs of interest are usually a subset of all jobs submitted to the
cluster, since we want to study steady state behavior. An ex-
ception is made for makespan policies, which try to minimize
the total time taken by a collection of jobs; for this policy,
jobs are added once at the start of the trace, and then jobs are
allowed to drain from the cluster.

Experiments on physical clusters are also triggered by a
driver script run on the scheduler, but are different in one
key aspect: jobs are run on real accelerators for the specified
number of steps. Every round, the scheduler makes a schedul-
ing decision to decide what resources should be given to the
different jobs. As before, job completion times are recorded
when a job finishes executing.

A.6 Evaluation and expected result

Each experiment run results in an output logfile that records
the microtasks run every scheduling round, as well as
the completion times for each job. These logfiles can
then be parsed to produce the graphs and other quanti-
tative results presented in the evaluation section of this
paper. Code to parse and produce plots are available
at https://github.com/stanford-futuredata/gavel/
tree/master/scheduler/notebooks/figures.

A.7 Experiment customization

Experiments can be run with different seeds using the main
sweep scripts. Experiments can also be scaled down in differ-
ent ways to obtain results faster: a) smaller cluster, b) fewer
traces, c) smaller traces, and d) smaller set of jobs of interest
over which objectives (such as average JCT) are measured.

A.8 AE Methodology

Submission, reviewing and badging methodology is spec-
ified at https://www.usenix.org/conference/osdi20/
call-for-artifacts.

498 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/stanford-futuredata/gavel
https://github.com/stanford-futuredata/gavel
https://github.com/stanford-futuredata/gavel
https://github.com/stanford-futuredata/gavel
https://github.com/stanford-futuredata/gavel
https://github.com/stanford-futuredata/gavel
https://github.com/stanford-futuredata/gavel/blob/master/README.md
https://github.com/stanford-futuredata/gavel/blob/master/README.md
https://github.com/stanford-futuredata/gavel/blob/master/README.md
https://github.com/stanford-futuredata/gavel/blob/master/README.md
https://github.com/stanford-futuredata/gavel/blob/master/README.md
https://github.com/stanford-futuredata/gavel/blob/master/README.md
https://github.com/stanford-futuredata/gavel/tree/master/scheduler/notebooks/figures
https://github.com/stanford-futuredata/gavel/tree/master/scheduler/notebooks/figures
https://www.usenix.org/conference/osdi20/call-for-artifacts
https://www.usenix.org/conference/osdi20/call-for-artifacts

PipeSwitch: Fast Pipelined Context Switching for Deep Learning Applications

Zhihao Bai⋆ Zhen Zhang⋆ Yibo Zhu† Xin Jin⋆

⋆Johns Hopkins University †ByteDance Inc.

Abstract

Deep learning (DL) workloads include throughput-

intensive training tasks and latency-sensitive inference tasks.

The dominant practice today is to provision dedicated GPU

clusters for training and inference separately. Due to the need

to meet strict Service-Level Objectives (SLOs), GPU clus-

ters are often over-provisioned based on the peak load with

limited sharing between applications and task types.

We present PipeSwitch, a system that enables unused cycles

of an inference application to be filled by training or other

inference applications. It allows multiple DL applications

to time-share the same GPU with the entire GPU memory

and millisecond-scale switching overhead. With PipeSwitch,

GPU utilization can be significantly improved without sacri-

ficing SLOs. We achieve so by introducing pipelined context

switching. The key idea is to leverage the layered structure

of neural network models and their layer-by-layer computa-

tion pattern to pipeline model transmission over the PCIe and

task execution in the GPU with model-aware grouping. We

also design unified memory management and active-standby

worker switching mechanisms to accompany the pipelining

and ensure process-level isolation. We have built a PipeSwitch

prototype and integrated it with PyTorch. Experiments on a

variety of DL models and GPU cards show that PipeSwitch

only incurs a task startup overhead of 3.6–6.6 ms and a total

overhead of 5.4–34.6 ms (10–50× better than NVIDIA MPS),

and achieves near 100% GPU utilization.

1 Introduction

Deep learning (DL) powers an emerging family of intelligent

applications in many domains, from retail and transportation,

to finance and healthcare. GPUs are one of the most widely-

used classes of accelerators for DL. They provide better trade-

off between performance, cost and energy consumption than

CPUs for deep neural network (DNN) models.

DL workloads include throughput-intensive training tasks

and latency-sensitive inference tasks. The dominant practice

today is to provision dedicated GPU clusters for training and

inference separately. Inference tasks cannot be served with

training clusters under flash crowds, and training tasks cannot

utilize inference clusters when the inference load is low. Con-

sequently, inference clusters are often over-provisioned for

the peak load, in order to meet strict Service Level Objectives

(SLOs). Even for inference itself, production systems are typ-

ically provisioned to each application on per-GPU granularity

to limit the interference between applications.

Ideally, multiple DL applications should be able to be

packed to the same GPU server to maximize GPU utiliza-

tion via time-sharing. This is exactly how operating systems

achieve high CPU utilization via task scheduling and con-

text switching. The idea of fine-grained CPU time-sharing

has been further extended to cluster scheduling. For example,

Google Borg [1] packs online services and batch jobs, and

saves 20%-30% machines (compared with not packing them).

Why can’t we use GPUs in the same way?

The gap is that GPU has high overhead when switching

between tasks. Consequently, naively using GPUs in the same

way as CPUs will not satisfy the requirements of DL infer-

ence that have strict SLOs in the range of tens to hundreds of

milliseconds [2, 3]. If a GPU switches to a DNN model (e.g.,

ResNet) that has not been preloaded onto the GPU, it can take

multiple seconds before serving the first inference request,

even with state-of-the-art tricks like CUDA unified mem-

ory [4] (§6). In contrast, CPU applications can be switched in

milliseconds or even microseconds [5].

To avoid such switching overhead, the existing solution is

to spatially share the GPU memory. For example, although

NVIDIA Multiple Process Sharing (MPS) [6] and Salus [7]

allow multiple processes to use the same GPU, they require all

processes’ data (e.g., DNN models) to be preloaded into the

GPU memory. Unfortunately, the GPU memory is much more

limited than host memory and cannot preload many applica-

tions. Sometimes, just one single memory-intensive training

task may consume all the GPU memory. Moreover, the mem-

ory footprints of inference tasks are also increasing—the mod-

els are getting larger, and request batching is prevalently used

to increase throughput [3]. In addition, this approach does not

provide strong GPU memory isolation between applications.

As such, we argue that a context switching design that min-

imizes the switching overhead, especially quickly switching

the contents on GPU memory, is a better approach for effi-

ciently time-sharing GPUs. The DNN models can be held in

host memory, which is much larger and cheaper than GPU

memory, and the GPU can quickly context-switch between

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 499

the models either for training or inference. This way, the num-

ber of applications that can be multiplexed is not limited by

the GPU memory size, and each application is able to use the

entire GPU compute and memory resources during its time

slice. To our best knowledge, no existing solution offers such

context switching abstraction for GPU.

To this end, we propose PipeSwitch, a system that (i) en-

ables GPU-efficient multiplexing of many DL applications on

GPU servers via fine-grained time-sharing, and (ii) achieves

millisecond-scale latencies and high throughput as dedicated

servers. PipeSwitch enables unused cycles of an inference

application to be filled by training or other inference applica-

tions. We achieve so by introducing a new technology called

pipelined context switching that exploits the characteristics

of DL applications to achieve millisecond-scale overhead for

switching tasks on GPUs. Such small switching overhead is

critical for DL applications to satisfy strict SLO requirements.

To understand the problem, we first perform a measure-

ment study to profile the task switching overhead and analyze

the overhead of each component. We divide the switching

overhead into four components, which are old task cleaning,

new task initialization, GPU memory allocation, and model

transmission via PCIe from CPU to GPU. Every component

takes a considerable amount of time, varying from tens of mil-

liseconds to seconds. Such overhead is significant, because

an inference task itself only takes tens of milliseconds on a

GPU and the latency SLOs are typically a small multiple of

the inference time [3].

We take a holistic approach, and exploit the characteristics

of DL applications to minimize the overhead of all the com-

ponents. Our design is based on a key observation that DNN

models have a layered structure and a layer-by-layer compu-

tation pattern. As such, there is no need to wait for the entire

model to be transmitted to the GPU before starting computa-

tion. Based on this observation, we design a pipelined model

transmission mechanism, which pipelines model transmission

over the PCIe and model computation in the GPU. Naive

pipelining on per-layer granularity introduces high overhead

on tensor transmission and synchronization. We divide layers

into groups, and design an optimal model-aware grouping

algorithm to find the best grouping strategy for a given model.

The computation of a DL task is layer by layer, which has

a simple, regular pattern for memory allocation. The default

general-purpose GPU memory management (e.g., CUDA uni-

fied memory [4]) is an overkill and incurs unnecessary over-

head. We design unified memory management with a dedi-

cated memory daemon to minimize the overhead. The daemon

pre-allocates the GPU memory, and re-allocates it to each task,

without involving the expensive GPU memory manager. The

DNN models are stored only once in the memory daemon,

instead of in every worker, to minimize memory footprint.

We exploit that the memory allocation for a DNN model is

deterministic to eliminate extra memory copies between the

daemon and the workers and reduce the IPC overhead .

We use an active-standby mechanism for fast worker

switching and process-level isolation. Each server contains

an active worker and multiple standby workers. The active

worker executes the current task on the GPU; the standby

workers stay on the CPU and wait for the next task. Our

mechanism parallelizes old task cleaning in the active worker

and new task initialization in the standby worker to minimize

worker switching overhead. With separate worker processes,

PipeSwitch enforces process-level isolation.

Pipelining is a canonical technique widely used in com-

puter systems to improve system performance and maxi-

mize resource utilization. Prior work in DL systems such as

PipeDream [8] and ByteScheduler [9] has applied pipelining

to distributed training. These solutions focus on inter-batch

pipelining to overlap computation and gradient transmission

of different batches for training workloads of the same DNN

model. The key novelty of PipeSwitch is that it introduces

intra-batch pipelining to overlap model transmission and com-

putation to reduce the overhead of switching between different

DNN models, which can be either inference or training. Un-

like pipelining for the same task, PipeSwitch requires us to

address new technical challenges on memory management

and worker switching across different processes. We design

new techniques to not only support training, but also inference

that has strict SLOs.

In summary, we make the following contributions.

• We propose PipeSwitch, a system that enables GPU-

efficient fine-grained time-sharing for multiple DL appli-

cations, and achieves millisecond-scale context switching

latencies and high throughput.

• We introduce pipelined context switching, which exploits

the characteristics of DL applications, and leverages

pipelined model transmission, unified memory manage-

ment, and active-standby worker switching to minimize

switching overhead and enforce process-level isolation.

• We implement a system prototype and integrate it with Py-

Torch. Experiments on a variety of DL models and GPU

cards show that PipeSwitch only incurs a task startup over-

head of 3.6–6.6 ms and a total overhead of 5.4–34.6 ms

(10–50× better than NVIDIA MPS), and achieves near

100% GPU utilization.

2 Motivation

In this section, we identify the inefficiencies in today’s shared

GPU clusters, and motivate running DL workloads on GPUs

in the fine-grained time-sharing model.

2.1 GPU Clusters

Shared GPU clusters. To run DNN workloads in a large

scale, enterprises build GPU clusters that are either pri-

vately [10, 11] or publicly [12–14] shared by multiple users.

Such GPU clusters are usually specifically designed with ded-

icated physical forms and power supplies, along with high

speed networks and specialized task schedulers.

500 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Why build a shared cluster instead of a dedicated one for

each user? The main reason is to bring down the cost. The

demand of training is not well predictable—it would depend

on the progress of different developers. The demand of infer-

ence is more predictable, e.g., an inference task for a partic-

ular application usually has a daily periodical pattern based

on the application usage. Nevertheless, the patterns can still

vary across different tasks. Like traditional CPU workloads, a

shared cluster by different tasks would increase the resource

utilization via time-sharing.

No sharing between training and inference. However, such

“shared” clusters are not shared between training and infer-

ence. Even though training and inference both use GPUs, the

current practice is to build dedicated clusters for training and

inference separately. This brings several inefficiencies.

• Inference clusters are over-provisioned for the peak load,

because they directly serve user requests and need to meet

strict SLOs. Although inference clusters are not always run-

ning at high utilization, they cannot be utilized by training.

• Training clusters are equipped with powerful GPUs to run

training tasks, which are often elastic and do not have strict

deadlines. However, when there is a flash crowd (e.g., an ap-

plication suddenly becomes popular and the demand grows

beyond the operator’s expectation), the training cluster can-

not preempt the training tasks for inference tasks.

• Even for inference tasks, production systems often allocate

GPUs to applications on per-GPU granularity (e.g., binding

GPUs to the VMs, containers or processes of an applica-

tion), in order to limit the interference between different

applications and satisfy the SLO requirements.

One of the reasons for separately provisioning is that GPUs

designed for inference tasks might be too wimpy for training

tasks. This, however, has started to change with the arrival of

new GPU hardware, most notably NVIDIA T4. Compared

with NVIDIA V100 which has up to 32GB GPU memory and

15.7 TFLOPS (single-precision), NVIDIA T4 has compara-

ble performance with 16GB GPU memory and 8.1 TFLOPS

(single-precision). Also, new algorithms and systems for dis-

tributed training [8, 9, 15, 16] enable multiple GPUs to accel-

erate training, if one GPU is not fast enough.

Our industry collaborator, a leading online service provider,

confirms this observation. This service provider currently runs

more than 10K V100 GPUs for training, and at least 5× as

many T4 GPUs for inference. The computation power on both

sides is within the same order of magnitude. The inference

workload fluctuates in correlation with the number of active

users, and shows clear peaks and valleys within each day—

the peak demand during daytime is > 2× of the valley at

midnight. It would be a great match to utilize inference GPUs

during less busy times for training models that require daily

updates with latest data. A good example is to fine-tune BERT

using daily news. This means great opportunity in improving

GPU utilization by Borg-like [1] systems for GPUs.

2.2 Fine-Grained Time-Sharing GPU

We envision to build GPU clusters that can be shared across

different applications including training and inference. We

propose to pack multiple DL applications onto the same GPU

via fine-grained time-sharing abstraction to maximize GPU

utilization. This is inspired by the OS scheduler and context

switching in the CPU world. It has the following advantages.

• It would dramatically improve the resource utilization, es-

pecially because inference and training workloads have

complementary usage patterns. Online inference services

are often more idle during midnight, while many training

developers would start a time-consuming job at night. Be-

sides, inference loads on different models have different

patterns, which also benefits from the time sharing.

• Similar to CPU workloads, fine-grained time-sharing can

provide better utilization than provisioning dedicated re-

sources, while providing necessary process-level isolation.

• It would greatly simplify the design of load balancers and

schedulers as any server would be able to run any task with

low overhead to switch between different applications.

The gap: the precious GPU memory and slow switching.

To achieve this goal, however, we face a major challenge—fast

GPU context switching between different processes. A mod-

ern server can be equipped with several TB of host memory,

enabling it to load many applications. However, task execu-

tion on GPUs require GPU memory, which is very limited

even on high-end GPUs, e.g., 16 GB for T4 and 32 GB for

V100. More importantly, GPU memory is purposed for task

execution, not for storing the state of idle applications. DL

tasks, especially training, require a large amount, or even all

of the memory on a GPU.

Storing the models in the GPU like Salus [7] cannot support

training tasks which are memory-intensive or even multiple

inference tasks which have large models. This is particularly

important as state-of-the-art models are getting deeper and

larger, and thus even idle applications can occupy large mem-

ory space. In addition, request batching is prevalently used

to increase throughput [3], which further increases the GPU

memory requirement of inference applications. Ideally, the

active application should be able to utilize the entire GPU

memory for its purpose, and the number of applications that

can be served by a GPU server should only be limited by

its host memory size. Consequently, switching a task would

require heavy memory swapping.

Unfortunately, many online inference workloads require

strict SLOs that naive memory swapping between the host

memory and the GPU memory cannot meet. For example, we

test the strawman scenario where we stop a training task and

then start an inference task. The first inference batch would

require several seconds to finish (§4.1). Existing support such

as NVIDIA MPS is not optimized for DL workloads, and

incurs hundreds of milliseconds overhead (§6).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 501

Controller

Active
Worker

GPU

Memory
Daemon

Standby
Worker

Standby
Worker

New
Task

Figure 1: PipeSwitch architecture.

The opportunity: DL workloads have well-defined struc-

tures. Fortunately, the structure and computation pattern of

DNN models allow us to highly optimize task switching and

achieve millisecond-scale overhead. DNN models are usually

deep, consisting of multiple layers stacking one on another.

Furthermore, the computation of DNN models takes place

layer by layer as well. Thus, it is possible to build a pipeline

that overlaps the computation and GPU memory swapping

for fast context switching.

In the following sections, we will show that such pipeline

is indeed feasible and effective. In addition, we will also need

to resolve other challenges like memory management and

worker switching. Combining all the ideas into our system,

PipeSwitch, we close the gap of GPU memory sharing and

switching, and enable the design of an efficient time-sharing

GPU cluster for DL workloads.

3 PipeSwitch Overview

PipeSwitch enables GPU-efficient multiplexing of multiple

DL applications on GPU servers. It exploits the characteristics

of DL applications to achieve millisecond-scale task switch-

ing overhead in order to satisfy SLO requirements. Such fast

task switching enables more flexible fine-grained scheduling

to improve GPU utilization for dynamic workloads. It benefits

switching not only between inference and training, but also

between inference on different models. Here we provide an

overview of the architecture and task execution.

System architecture. Figure 1 shows the architecture of a

PipeSwitch server. This server contains four types of compo-

nents: a controller, a memory daemon, an active worker, and

multiple standby workers.

• Controller. The controller is the central component. It re-

ceives tasks from clients, and controls the memory daemon

and the workers to execute the tasks.

• Memory daemon. The memory daemon manages the GPU

memory and the DNN models. It allocates the GPU memory

to the active worker, and transfers the model from the host

memory to the GPU memory.

• Active worker. The active worker is the worker that cur-

rently executes a task in the GPU. Here a worker is a process

that executes tasks on one GPU.

Instance Type g4dn.2xlarge p3.2xlarge

GPU Type NVIDIA T4 NVIDIA V100

Task Cleaning 155 ms 165 ms

Task Initialization 5530 ms 7290 ms

Memory Allocation 10 ms 13 ms

Model Transmission 91 ms 81 ms

Total Overhead 5787 ms 7551 ms

Inference Time 105 ms 32 ms

Table 1: Measurement results of task switching overhead and

the breakdown of individual components. All components

should be optimized to meet the SLOs.

• Standby worker. A server has one or more standby work-

ers. A standby worker is idle, is initializing a new task, or

is cleaning its environment for the previous task.

Task execution. The controller queues a set of tasks received

from the clients. It uses a scheduling policy to decide which

task to execute next. It supports canonical scheduling policies

such as first come first serve (FCFS) and earliest deadline first

(EDF), and can be easily extended to support new policies.

We focus on fast context switching, and the specific schedul-

ing algorithm is orthogonal to this paper. The scheduling is

preemptive, i.e., the controller can preempt the current task

for the next one based on the scheduling policy. For example,

if the current task is a training task, the controller can preempt

it for an inference task that has a strict latency SLO.

To start a new task, the controller either waits for the current

task to finish (e.g., if it is inference) or preempts it by notifying

the active worker to stop (e.g., if it is training). At the same

time, the controller notifies an idle standby worker to initialize

its environment for the new task. After the active worker

completes or stops the current task, the controller notifies the

memory daemon and the standby worker to load the task to

GPU to execute with pipelined model transmission (§4.2).

The memory daemon allocates the memory to the standby

worker (§4.3), and transmits the model used by the new task

from the host memory to the GPU memory. The standby

worker becomes the new active worker to execute the new task,

and the active worker becomes a standby worker and cleans

the environment for the previous task (§4.4). The primary

goal of this paper is to design a set of techniques based on

the characteristics of DL applications to minimize the task

switching overhead in this process.

4 PipeSwitch Design

We first perform a measurement study to profile the task

switching overhead and break it down to individual compo-

nents. Then we describe our design to systematically mini-

mize the overhead of each component.

4.1 Profiling Task Switching Overhead

In order to understand the problem, we perform a measure-

ment study to profile the task switching overhead. The mea-

502 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

surement considers a typical scenario that a server stops a

training task running on the GPU, and then starts an in-

ference task. The DNN model used in the measurement

is ResNet152 [17]. The measurement covers two types of

instances on Amazon AWS, which are g4dn.2xlarge with

NVIDA T4 and p3.2xlarge with NVIDIA V100. We assume

the inference task has arrived at the server, and focus on mea-

suring the time to start and execute it on the GPU. We exclude

the network time and the task queueing time.

Table 1 shows the results. The total times to start the infer-

ence task on the GPUs are 5787 ms and 7551 ms, respectively.

We break the overhead down into the four components.

• Task cleaning. The training task stops and cleans its GPU

environment, such as freeing the GPU memory.

• Task initialization. The inference task creates and ini-

tializes its environment (i.e., process launching, PyTorch

CUDA runtime loading, and CUDA context initialization).

• Memory allocation. The inference task allocates GPU

memory for its neural network model.

• Model transmission. The inference task transmits the

model from the host memory to the GPU memory.

The inference time on V100 is lower than that on T4, and

both of them are significantly lower than the total overheads.

The reason for lower overhead on T4 is that task switching

largely depends on CPU, and g4dn.2xlarge is equipped with

better CPU than p3.2xlarge (Intel Platinum 8259CL vs. Intel

Xeon E5-2686 v4). A strawman solution that simply stops the

old task and starts the new task would easily violate SLOs.

Because all the components take considerable time com-

pared to the inference time, we emphasize that all the com-

ponents should be optimized to achieve minimal switching

overhead and meet the SLOs.

4.2 Pipelined Model Transmission

Transmitting a task from CPU to GPU is bounded by the

PCIe bandwidth. The PCIe bandwidth is the physical limit

on how fast an arbitrary task can be loaded to the GPU. We

exploit the characteristics of DL applications to circumvent

this physical limit. Our key observation is that DNN models

have a layered structure. The computation is performed layer

by layer. An inference task only performs a forward pass

from the first layer to the final layer to make a prediction;

each iteration in a training task performs a forward pass and

then a backward pass. In both cases, a task does not need to

wait for the entire model to be transmitted to the GPU before

beginning the computation. Instead, the task can start the com-

putation of a layer as soon as the layer is loaded in the GPU

and the input of the layer is ready (i.e., the previous layers

have finished their computation), regardless of its following

layers. Figure 2 illustrates the advantage of pipelining over

the strawman solution.

PipeSwitch requires the knowledge of models. PipeSwitch

does not modify the model structure, and only adds hooks for

PyTorch to wait for transmission or synchronize the execution.

T0 E0

model transmission
over PCIe

task execution
on GPU

T1 Tn-1 E1 En-1T2 E2

(a) Transmit model to GPU, and then execute task on GPU.

PCIe

GPU E0 E1 En-1E2

(b) Pipeline model transmission and task execution.

T0 T1 Tn-1T2

Figure 2: PipeSwitch pipelines model transmission and task

execution. The example shows an inference task that only has

a forward pass in task execution.

Adding hooks can be automated, and PipeSwitch can be im-

plemented as a part of the DNN framework, e.g., PyTorch, so

it can gather the model structure information while remaining

transparent to users and cluster managers.

Optimal model-aware grouping. The basic way for pipelin-

ing is to pipeline on per-layer granularity, i.e., the system

transmits the layers to the GPU memory one by one, and the

computation for a layer is blocked before the layer is trans-

mitted. Pipelining brings two sources of system overheads.

One is the overhead to invoke multiple calls to PCIe to trans-

mit the data. For a large amount of data (e.g., combining the

entire model to a large tensor to transmit together), the trans-

mission overhead is dominated by the data size. But when

we divide the model into many layers, invoking a PCIe call

for each layer, especially given that some layers can be very

small, would cause significant extra overhead. The other is the

synchronization overhead between transmission and computa-

tion, which is necessary for the computation to know when a

layer is ready to compute. Pipelining on per-layer granularity

requires synchronization for every layer.

We use grouping to minimize these two sources of over-

head. We combine multiple layers into a group, and the

pipelining is performed on per-group granularity. In this way,

the pipelining overhead is paid once for each group, instead of

each layer. Grouping introduces a trade-off between pipelin-

ing efficiency and pipelining overhead. On one hand, using

small groups (e.g., per-layer in the extreme case) enables

more overlap between transmission and computation, which

improves pipelining efficiency, but it also pays more pipelin-

ing overhead. On the other hand, using big groups (e.g., the

entire model in one group in the extreme case) has minimal

pipelining overhead, but reduces the chance for overlapping.

Grouping must be model-aware, because models have dif-

ferent structures in terms of the number of layers and the size

of each layer. Naively, we can enumerate all possible com-

binations to find the optimal grouping strategy. This is not

amenable because large models can have hundreds of layers

and the time complexity for enumeration is exponential.

In order to find the optimal grouping strategy efficiently,

we introduce two pruning techniques based on two insights.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 503

PCIe

GPU

lower bound of F({Group(0, i)}, i+1)

PCIe

GPU Group(0, i) Group(i+1, j*)

Group(0, i) Group(i+1, j*) j*, j*+1, …, n-1

j*, j*+1, …, n-1

(a) Prune this case if lower bound ≥ current optimal time.

(b) Prune the cases that group from i to j < j*.

batch at least from layer i+1 to j*

Group(0, i) Group(i+1, n-1)

Group(0, i) Group(i+1, n-1)

Figure 3: Examples for two pruning techniques.

Before we dive into the details, we first formulate the problem.

Let the number of layers be n. Let F(B, i) be a function that

returns the total time of the optimal grouping strategy from

layer i to n-1 given that layer 0 to i-1 have formed groups rep-

resented by B. Then we have the following recursive formula.

F({},0) = min
i

F({group(0, i)}, i+1) (1)

Specifically, to find the optimal grouping strategy for the en-

tire model (i.e., F({}, 0)), we divide all possible combinations

into n cases based on how the first group is formed, i.e., case

i means the first group contains layer 0 to i. This formula can

be applied recursively to compute F({group(0, i)}, i+1).
Our first insight is that it is not necessary to examine all the

n cases, because if the first group contains too many layers, the

computation of the first group would be delayed too much to

compensate the pipeline efficiency. Let T (i, j) and E(i, j) be

the transmission and execution times for a group from layer i

to j respectively, where T (i, j) is calculated based on the size

of layer i to j and PCIe bandwidth, and E(i, j) is profiled on

the GPU. Note that the overhead of invoking multiple calls is

included in T (i, j). As illustrated by Figure 3(a), we compute

a lower bound for the total time for each case in Equation 1.

F({group(0, i)},i+1)≥

min(T (0, i)+T (i+1,n−1),

T (0, i)+E(0, i)+E(i+1,n−1))

(2)

The lower bound considers the best case that all the remaining

layers are combined in one group for transmission and com-

putation, and that the computation and communication can be

perfectly overlapped, i.e., its computation can happen right

after the computation of the first group finishes. If the lower

bound of case i is already larger than the total time of the best

grouping strategy found so far, then case i (i.e., the recursive

computation for F({group(0, i)}, i+1)) can be pruned.

Our second insight is that other than the first group, we can

safely pack multiple layers in a group based on the progress of

computation without affecting pipeline efficiency. Figure 3(b)

shows an example for this insight. Suppose that we have

already fixed the first group to be from layer 0 to i, and we

apply Equation 1 recursively to enumerate the cases for the

PCIe

GPU

B.delay
(group at least from layer x to j* to fill)

0, 1, …, x-1

0, 1, …, x-1

Group(a, i) Group(i+1, n-1)

Group(x, i) Group(i+1, n-1)

lower bound of F(B + Group(a,i), i+1)

Figure 4: General case for the two pruning techniques.

second group. We can hide the transmission of the second

group into the computation of the first group, as long as the

transmission finishes no later than the computation of the first

group. The least number of layers to group can be computed

using the following equation.

j∗ = argmax
j

T (i+1, j)≤ E(0, i) (3)

Group from layer (i+1) to j < j∗ is no better than grouping

from (i+ 1) to j∗ because it does not increase the pipeline

efficiency and has higher pipeline overhead. Therefore, we

can prune the cases that group from layer (i+ 1) to j < j∗

and only search for j ≥ j∗.

Algorithm. Based on these two insights, we design an algo-

rithm to find the optimal grouping strategy for a given model.

We emphasize that this algorithm runs offline to find the strat-

egy, and the resulting strategy is used online by PipeSwitch

for context switching. Algorithm 1 shows the pseudo code.

The function FindOptGrouping recursively finds the opti-

mal grouping strategy based on Equation 1 (line 1-27). It

takes two inputs: B represents the groups that have already

formed, x is the first layer that have not formed a group. It uses

opt_groups to store the best grouping strategy from layer x

given B, which is initialized to none (line 2). The algorithm

applies the second pruning insight to form the first group

from layer x (line 3-9). Equation 3 and Figure 3(b) illustrate

this insight with a special example that B only contains one

group from layer 0 to i. In general, B can contain multiple

groups formed by previous layers, and we use B.delay to de-

note the time to which the group can be formed, as shown in

Figure 4. The algorithm finds j∗ based on B.delay (line 4-9),

and the enumeration for i can skip the layers from x to j∗-1

(line 11). For case i, the algorithm applies the first insight to

compute the lower bound (line 12-17). Again, the example

in Equation 2 and Figure 3(a) is a special case when x is 0.

For the general case, the computation from x has to wait for

both its transmission (i.e., T (x, i)) and the computation of

the previous groups (i.e., B.delay), as shown in Figure 4. If

the lower bound is already bigger than the current optimal

time, then case i is pruned (line 18-19). Given the group from

layer x to i is formed, the function recursively applies itself

to find the optimal groups from layer i+1 to n-1 (line 21-23),

and updates opt_groups if the current strategy is better (line

24-26). Finally, it returns opt_groups (line 27). In practice,

we use a heuristic that bootstraps opt_groups with a relative

504 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 1 Optimal Model-Aware Grouping

1: function FINDOPTGROUPING(B, x)

2: opt_groups← /0, opt_groups.time← ∞

3: // find first group from layer i to j∗

4: j∗← x

5: for layer i from x to n−1 do

6: if T (x, i)≤ B.delay then

7: j∗← i

8: else

9: break

10: // recursively find the optimal grouping

11: for layer i from j∗ to n−1 do

12: if opt_groups 6= /0 then

13: // compute lower bound

14: trans_time← T (x, i)+T (i+1,n−1)
15: exec_time← max(T (x, i),B.delay)
16: +E(x, i)+E(i+1,n−1)
17: lower_bound← min(trans_time,exec_time)
18: if lower_bound > opt_groups.time then

19: continue

20: // recursively find rest groups

21: f irst_group← Group(x, i)
22: rest_groups← FindOptGrouping(
23: B+ f irst_group, i+1)
24: cur_groups← f irst_group+ rest_groups

25: if cur_groups.time < opt_groups.time then

26: opt_groups← cur_groups

27: return opt_groups

good strategy (e.g., group every ten layers). Given n layers,

there are 2n−1 different grouping strategies, so the time com-

plexity of Algorithm 1 is O(2n), as in the worst case it needs

to enumerate all strategies. The two pruning techniques are

able to prune most of the strategies, and can quickly find the

optimal one as we will show in §6. We have the following

theorem for the algorithm.

Theorem 1. Algorithm 1 finds the optimal grouping strategy

that minimizes the total time for the pipeline.

Proof. Algorithm 1 computes the recursive function

FindOptGrouping(B,x). Let m = n− x, which is the num-

ber of layers the function considers. We use induction on

m to show that FindOptGrouping(B,x) outputs the optimal

grouping strategy from layer x to n− 1 given that previous

layers have formed groups represented by B.

Base case. When m = 1, the function only examines one

layer. Because there is only one strategy which is layer x itself

is one group, this strategy is the optimal strategy.

Inductive step. Assume that for some k≥ 1 and any m≤ k,

FindOptGrouping(B,x) outputs the optimal strategy. Con-

sider m = k+1, i.e., the algorithm now considers k+1 layers.

The algorithm divides the problem into k+ 1 cases, where

case i (0≤ i≤ k) forms the first group from layer x to x+ i.

For case i where 0 ≤ i ≤ k − 1, because

FindOptGrouping(B + Group(x,x + i),x + i + 1) only

considers k− i ≤ k layers, it outputs the optimal grouping

strategy for case i based on the assumption.

For case i = k, the first group contains all layers from x to

n−1. The optimal strategy for this case is one group.

Because these cases are exclusive and cover the entire

search space, by choosing the optimal grouping strategy from

these cases, the algorithm outputs the optimal grouping strat-

egy for m = k+1.

The algorithm uses two pruning techniques. The first tech-

nique prunes the cases if their lower bounds are no better

than the current found optimal. It is obvious that this tech-

nique does not affect the optimality. The second technique

prunes the case if their first groups are from layer x to j < j∗.

Because these cases cannot advance the computation to an

earlier point than grouping from x to at least j∗, pruning these

cases also do not affect the optimality.

Generality. Algorithm 1 achieves optimality for a given list

of layers. This, however, does not require the models to be

linear. In general, the layers or operators in a DNN model can

be connected as an arbitrary computation graph, instead of a

simple chain. Models like ResNet and Inception are techni-

cally non-linear directed acyclic graph (DAGs). Yet, there is

an execution order that the layers/operators in the DAG are

issued to the GPU one by one. Algorithm 1 does not have

any special assumptions on the execution order. It is only

interested in finding out how to group the layers given the

execution order (and corresponding data dependencies) to

achieve high pipelining efficiency and low pipelining over-

head. It even applies for graphs with loops, in which the order

is based on the first time an operator is executed. The order

does not affect correctness, because an operator can be exe-

cuted only when it is transmitted to the GPU and the input is

ready. Thus, our pipelined model transmission is applicable

to the general case.

4.3 Unified Memory Management

Task execution in a GPU requires GPU memory. A GPU

has its own memory management system, and provides a

malloc function (e.g., cudaMalloc for NVIDIA GPUs) sim-

ilar to CPUs for memory allocation. NVIDIA also provides

CUDA unified memory [4] to automatically handle memory

movement between the host memory and the GPU memory

for applications. A naive solution for GPU memory manage-

ment is that each task uses the native cudaMallocManaged

function for GPU memory allocation, and delegates model

transmission to CUDA unified memory. This solution incurs

high overhead for DL applications because of two reasons.

First, DL applications have large models and generate large

amounts of intermediate results, which require a lot of GPU

memory. Second, the native cudaMalloc function and CUDA

unified memory are designed for general-purpose applications,

and may incur unnecessary overhead for DL applications.

We exploit two characteristics of DL applications to mini-

mize GPU memory management overhead. A DL task stores

two important types of data in the GPU memory: the DNN

model (including the model parameters), and the intermediate

results. First, the amount of memory allocated to the DNN

model is fixed, and does not change during task execution. An

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 505

inference task only uses the model for inference, and does

not change the model itself. While a training task updates the

model, it only updates the model parameters (i.e., the weights

of the neural network), not the DNN structure, and the amount

of memory needed to store them stays the same.

Second, the intermediate results change in a simple, regular

pattern, which do not cause memory fragmentation. For an

inference task, the intermediate results are the outputs of each

layer, which are used by the next layer. After the next layer is

computed, they are no longer needed and can be safely freed.

A training task differs in that the intermediate results gener-

ated in the forward pass cannot be immediately freed, because

they are also used by the backward pass to update the weights.

However, the backward pass consumes the intermediate re-

sults in the reverse order as that the forward pass generates

them, i.e., the intermediate results are first-in-last-out. The

memory allocation and release can be handled by a simple

stack-like mechanism, without causing memory fragmenta-

tion. The general-purpose GPU memory management does

not consider these characteristics, and is too heavy-weight for

DL applications that require fast task switching.

Minimize memory allocation overhead. Based on these

two characteristics, we design a memory management mech-

anism tailored for DL applications. PipeSwitch uses a ded-

icated memory daemon to manage the GPU memory. To

be compatible with the existing system and incur minimal

changes, instead of replacing the GPU memory manager, the

memory daemon uses cudaMalloc to obtain the GPU mem-

ory when the system starts, and then dynamically allocates

the memory to the workers at runtime. This eliminates the

overhead for each worker to use cudaMalloc to get a large

amount of memory to store their models and intermediate

results. The memory daemon only needs to pass memory

pointers to the workers, which is light-weight. The daemon

ensures that each time only one worker owns the GPU mem-

ory to guarantee memory isolation between workers. Each

worker uses a memory pool to allocate the memory to store

its model and intermediate results, and recycles the memory

to the pool after the intermediate results are no longer needed.

The memory management of PipeSwitch extends that of Py-

Torch. It is designed and optimized for efficient GPU memory

allocation between different tasks, while the memory man-

agement in PyTorch handles memory allocation for a task

itself. PipeSwitch inserts GPU memory blocks to PyTorch

GPU memory pool, and PyTorch creates tensors on them.

Minimize memory footprint and avoid extra memory

copies. The server stores the DNN models in the host memory.

Replicating the models in each worker incurs high memory

footprint, and reduces the number of models a server can store,

and consequently the types of tasks the server can execute. On

the other hand, storing the models in a dedicate process has

minimal memory footprint as each model is only stored once,

but it incurs an extra memory copy from this process to a

worker to start a task, which hurts the task switching time. We

use unified memory management with the memory daemon to

both achieve minimal memory footprint and eliminate extra

memory copies. PipeSwitch stores the models in the memory

daemon so that the server only needs to keep one copy of each

model in the host memory. Because the memory daemon also

manages the GPU memory, it directly transmits the model

from the host memory to the GPU memory for task startup,

which eliminates the extra memory copy from the memory

daemon to the worker.

Minimize IPC overhead. After the model is transmitted to

the GPU, the memory daemon needs to notify the worker

and export the relevant GPU memory handlers to the worker,

so that the worker can access the model to execute its task.

This can be implemented by IPC APIs provided by GPUs,

e.g., cudaIpcOpenMemHandle for NVIDIA GPUs. We have

measured the performance of these IPC APIs and found that

they incur high overhead (§6). The overhead is exacerbated

by the pipeline because the pipeline needs to invoke the IPCs

frequently to synchronize model transmission and task exe-

cution for every pipeline group, instead of invoking the IPC

only once for the entire model transmission.

We leverage a property of DL applications to minimize the

IPC overhead. The property is that the memory allocation

process for a neural network model is deterministic. Specif-

ically, given the same GPU memory region and the same

model, as long as the memory daemon and the worker uses

the same order to allocate memory for the model parameters,

the memory pointers for the parameters would be the same. It

is easy to keep the same order for the memory daemon and

the worker because the neural network model is known and

given, and the memory daemon only needs to use the same

order to transmit the model as the worker would. As a result,

the memory daemon can minimize the usage of expensive

GPU IPCs. It only uses the GPU IPC once to initialize the

worker, and then uses cheap CPU IPCs to notify the worker

which pipeline group has been transmitted.

Pin memory. The OS would swap a memory page to disk

if the page is inactive for a certain amount of time. GPUs

require a page in the host memory to be pinned (or page-

locked) in order to transmit the data in the page to the GPU

memory. Otherwise, a temporary pinned page is created for

the transmission. We pin the pages of the memory daemon to

the host memory, to eliminate this overhead.

4.4 Active-Standby Worker Switching

PipeSwitch aims to provide fast task switching and ensure

process-level isolation. Process-level isolation is desirable

because it ensures that one task cannot read the memory of

another task, and that the crashing of one task, e.g., because

of a bug, does not affect other tasks or the entire system.

A naive solution is to use separate processes and start the

new task after the current task is stopped. As we have profiled

506 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

No Task No Task Process-

Cleaning Initialization Level

Overhead Overhead Isolation

Two Processes × ×
√

One Process ×
√

×

Active-Standby
√ √ √

Table 2: Comparison of worker switching mechanisms.

in Table 1, such sequential execution incurs long delay due to

old task cleaning and new task initialization.

Another possible solution is to let the current and new tasks

share the same process with a warm CUDA context, so that

the new task can reuse the GPU environment of the current

task. This avoids the new task initialization, but it still has the

overhead for the current task to clean its status. In addition, it

does not provide process-level isolation between tasks.

We design an active and standby worker switching mecha-

nism that hides the overhead of both task cleaning and task

initialization, and also ensures process-level isolation. Similar

to the naive solution, we use separate processes to achieve

process-level isolation. PipeSwitch has an active worker and

multiple standby workers. Each worker is a separate process,

and initializes its own GPU environment (i.e., CUDA context)

when it is first created. This eliminates the GPU environ-

ment initialization overhead when a new task is assigned to a

worker. When a current task is stopped, a major job is to clear

asynchronous CUDA functions queued on the GPU. We in-

sert synchronization points into training tasks, so the number

of queued functions are limited and can be quickly cleared.

Synchronization points are not needed for inference tasks as

they are short and not preempted. Another job is to free its

GPU memory. An important property of the cleaning proce-

dure is that it does not modify the content of the memory, but

only cleans the metadata, i.e., GPU memory pointers. As the

GPU memory is managed by PipeSwitch, the cleaning pro-

cedure deletes the pointers pointing to the tensor data rather

than freeing the actual data. Therefore, it is safe for the new

task to transmit its model to the GPU memory at the same

time. In other words, we can parallelize the task cleaning of

the current task and the pipelined model transmission of the

new task, to hide the task cleaning overhead. This choice is

optimized for performance, and is not a problem for a trusted

environment. It is possible that a latter process can read the

memory data of a previous process. If this is a concern, an

additional zero-out operation can be added. GPU has high

memory bandwidth (e.g., 900GB/s for V100). It would incur

sub-millisecond overhead for zeroing-out most models like

ResNet-152 (around 240MB). On the other hand, for a trusted

environment, it is unnecessary to release all allocated memory

for the preempted process if the new process does not require

entire GPU memory, and this could be achieved by some sim-

ple coordination. Table 2 summarizes the differences between

these three solutions.

In summary, to switch workers, the controller signals the

current active worker to stop, deletes the GPU memory allo-

cated to it, and allocates the GPU memory to the new active

worker. The controller ensures only one active worker to guar-

antee exclusive occupation of the GPU.

There is a trade-off between the number of standby work-

ers and their GPU memory consumption. On one hand, task

cleaning takes time. If a new task arrives before a standby

worker finishes cleaning a previous task, the new task needs

to wait, which increases its startup time. On the other hand,

it is possible to have many standby workers so that there

is always at least one idle standby worker. However, every

standby worker needs to maintain its own CUDA context,

which consumes a few hundred MB GPU memory. Our expe-

rience is that two standby workers are sufficient to ensure at

least one idle worker, which eliminates the waiting time and

has moderate GPU memory consumption.

4.5 Discussion

PipeSwitch is focused on single-GPU tasks for training and

inference. For inference tasks, strict SLOs require requests to

be handled in small batches for low latency, so it is common to

execute an inference task with a single GPU [18]. Multi-GPU

inference tasks can be supported by performing PipeSwitch

on each GPU with transactions. A transaction here means a

model is switched in or out on all of its GPUs to enable or

disable inference on this model.

For training tasks, PipeSwitch supports single-GPU train-

ing and asynchronous multi-GPU training for data parallel

strategies, as preempting one GPU does not affect other GPUs.

However, it does not work out of the box with synchronous

multi-GPU training. We have analyzed a production GPU

training trace from Microsoft [19, 20]. Among 111,883 tasks

in this trace, 96,662 tasks (or 86% of all the tasks) are single-

GPU training tasks. Thus, a significant fraction of tasks in real-

world workloads currently use a single GPU, and PipeSwitch

is applicable to them out of the box. However, these jobs

only account for 18% of total GPU hours and we expect the

share of multi-GPU jobs to increase in the future. One way

to seamlessly use PipeSwitch for synchronous multi-GPU

training is to use elastic synchronous training, which allows

the dynamic changing of the number of GPUs used for train-

ing. Unfortunately, current training frameworks do not have

mature support of elastic training. This remains an active

research topic and is orthogonal to PipeSwitch.

5 Implementation

We have implemented a system prototype for PipeSwitch

with ∼3600 lines of code in C++ and Python, and we have

integrated it with PyTorch [21].

PyTorch Plugins. We add C++ and Python functions to the

GPU memory management module of PyTorch. To share

GPU memory between the controller and the workers, we

add functions for allocating GPU memory, sharing the GPU

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 507

memory to workers through CUDA IPC API, and getting the

shared GPU memory. We also add functions which insert

the received GPU memory into PyTorch GPU memory pool

for a specific CUDA stream or clear the GPU memory from

the pool. Note that the shared GPU memory can be inserted

into the PyTorch GPU memory pool for multiple times for

different CUDA streams, and the controller guarantees that

only one of these CUDA streams is active.

Controller and memory daemon. The controller process

consists of a TCP thread and a scheduler thread. For better

performance, the scheduler and the memory daemon are im-

plemented together. The TCP thread accepts task through TCP

from clients, and sends the task to the scheduler thread. The

scheduler thread allocates and shares the GPU memory with

workers, activates or deactivates workers, sends the task to a

worker, and transfers parameters for the corresponding model

to the GPU memory. Before starting a task, the user should

register the model in the scheduler to notify the controller to

load the model from the disk to the CPU memory. When the

controller schedules a task, it determines whether to switch

to another worker. There is no need for context switching if

the application is already loaded in the GPU. If a new model

should be loaded to the GPU, the controller will notify the

current active worker to stop, and transfers the parameters

of the new model to the GPU after receiving the current ac-

tive worker’s reply. Parameters are transmitted to the GPU

memory in groups in a pipeline. After each group is trans-

ferred, the controller notifies the worker to start computing

the corresponding layers.

Worker. The worker process consists of two threads. The ter-

mination thread waits for the termination signal from the con-

troller, and notifies the main thread. The main thread manages

the DNN models and performs the computation for inference

or training. Similar to the controller, the worker also requires

the user to register the model before starting a task, so the

worker can load the models and add the hooks to wait for

parameter transmission or terminate on notification. Note that

the worker only loads the model structures, which is small,

not the model parameters. The parameters are only stored

once in the memory daemon for minimal memory footprint.

When the models are loaded, they are attached to different

CUDA streams, and their parameters are assigned to locations

in the shared GPU memory. Different models might use the

same GPU memory location, but the value is not valid until

the controller transfers the corresponding parameters to these

locations. After loading the models, the worker waits for the

scheduler to transfer required parameters for DNN models,

and performs inference or training.

6 Evaluation

In this section, we first use end-to-end experiments to demon-

strate the benefits of PipeSwitch, and then show the effective-

ness of the design choices on each component.

Setup. All experiments are conducted on AWS. We use two

EC2 instance types. One is p3.2xlarge, which is configured

with 8 vCPUs (Intel Xeon E5-2686 v4), 1 GPU (NVIDIA

V100 with 16 GB GPU memory), PCIe 3.0 ×16, and 61 GB

memory. The other is g4dn.2xlarge, which is configured with

8 vCPUs (Intel Platinum 8259CL), 1 GPU (NVIDIA T4 with

16 GB GPU memory), PCIe 3.0 ×8, and 32 GB memory. The

software environment includes PyTorch-1.3.0, torchvision-

0.4.2, scipy-1.3.2, and CUDA-10.1. We use PyTorch with our

plugins for all mechanisms in comparison for consistency,

which provides better results for stop-and-start than native

PyTorch from Python-PyPI used in Table 1.

Workloads. The models include ResNet152 [17], Incep-

tion_v3 [22] and Bert_base [23], which are standard bench-

marks for evaluating DL systems. We use representative con-

figurations for each model. The experiments cover both train-

ing and inference. We use single-GPU inference and training

tasks as discussed in §4.5. Training tasks periodically check-

point their models to the host memory, and restart from the

latest checkpoint after preemption. The checkpointing fre-

quency of training tasks is set according to the scheduling

cycle to minimize checkpointing overhead. The default batch

size for training is 32, and that for inference is 8.

Metrics. We use throughput and latency as evaluation metrics.

Each number is reported with the average of 100 runs. For

Figure 6(b), we additionally report the minimum and maxi-

mum latencies using the error bar, because the latency of the

first batch and those of later batches in one scheduling cycle

can differ significantly due to switching overhead.

6.1 End-to-End Experiments

Minimizing end-to-end overhead. In this experiment, a

client sends an inference task to a GPU server, and the GPU

server preempts the training task to execute the inference

task and sends a reply back to the client. We measure the the

end-to-end latency experienced by the client. We compare the

following mechanisms.

• Ready model. There is no training task. The process with

the required model is already loaded in the GPU. This solu-

tion provides the lower bound, which is the lowest latency

we can achieve for an inference task.

• Stop-and-start. It stops the training task in the GPU, and

then starts the inference task. This solution is used by ex-

isting systems like Gandiva [24] for task switching, which

reported similar second-scale overhead.

• NVIDIA MPS. This is the multi-process support from

NVIDIA which allows the inference process to share the

GPU with the training process. We initialize separate pro-

cesses in advance. The training task occupies the entire

GPU memory and does not stop when inference tasks come.

CUDA unified memory is used for memory swapping.

• PipeSwitch. This is the proposed system. The properties

are described in §4.

508 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

7500

10000
La

te
nc

y
(m

s)
Ready model
PipeSwitch

MPS
Stop-and-start

ResNet152 Inception_v3 Bert_base
0

200

400

(a) p3.2xlarge (NVIDIA V100, PCIe 3.0 ×16).

5000

10000

La
te

nc
y

(m
s)

Ready model
PipeSwitch

MPS
Stop-and-start

ResNet152 Inception_v3 Bert_base
0

200

400

600

(b) g4dn.2xlarge (NVIDIA T4, PCIe 3.0 ×8).

Figure 5: Total latency experienced by the client for different mechanisms.

p3.2xlarge (NVIDIA V100, PCIe 3.0 ×16) g4dn.2xlarge (NVIDIA T4, PCIe 3.0 ×8)

ResNet152 Inception_v3 Bert_base ResNet152 Inception_v3 Bert_base

Stop-and-start 6475.40 ms 7536.07 ms 6371.32 ms 5486.74 ms 6558.76 ms 5355.95 ms

NVIDIA MPS 307.02 ms 232.25 ms 204.52 ms 259.20 ms 193.05 ms 338.25 ms

PipeSwitch 6.01 ms 5.40 ms 10.27 ms 5.57 ms 7.66 ms 34.56 ms

Table 3: Total overhead, i.e., the difference on total latency between different mechanisms and ready model.

ResNet152 Inception_v3 Bert_base

p3.2xlarge 3.62 ms 4.82 ms 3.62 ms

g4dn.2xlarge 2.53 ms 5.49 ms 6.57 ms

Table 4: The startup overhead for PipeSwitch to start comput-

ing the first layer.

Salus [7] is not directly comparable because it requires the

models to be preloaded to the GPU, and has several limitations

described in §2.2. Its performance is similar to the ready

model when the model is preloaded, and is similar to NVIDIA

MPS when the model is in the host memory. Figure 5 shows

the latency experienced by the client, and Table 3 shows the

total overhead. The total overhead is the difference between

the latency of a mechanism and that of the ready model. It is

obvious that stop-and-start performs the worst, which takes

several seconds. The main source of the overhead is CUDA

context initialization and first-time library loading operations

in PyTorch. NVIDIA MPS has lower overhead compared to

stop-and-start, but still incurs several hundred milliseconds

overhead, which prevents MPS from meeting strict SLOs.

One source of the overhead is the contentions both on the

computation and memory of the GPU, as the training task

do not stop when an inference task comes. Another source is

GPU memory swapping. PipeSwitch performs the best and

is close to the lower bound. The overhead of PipeSwitch for

most configurations is up to 10ms, except for BERT on T4,

which is due to the large model size and the smaller PCIe

bandwidth on T4 than that on V100. Since it also takes longer

(120ms) to compute BERT on T4 even with the ready model,

the relative overhead is acceptable.

We also show the task startup overhead for PipeSwitch

in Table 4, which is the difference between the time for

ResNet152 Inception_v3 Bert_base

of Layers 464 189 139

Algorithm 1 1.33 s 0.18 s 0.34 s

Only Pruning 1 2.09 s 0.30 s 0.88 s

Only Pruning 2 3.44 h 5.07 s > 24 h

No Pruning > 24 h > 24 h > 24 h

Table 5: Effectiveness of two pruning techniques.

PipeSwitch to start computing the first layer and that for

the ready model to start computing. The startup overhead

of PipeSwitch is only a few milliseconds.

Enabling fine-grained scheduling cycles. In this experi-

ment, we compare throughput and end-to-end latency of dif-

ferent mechanisms under different scheduling cycles. We use

ResNet152 for both training and inference on eight p3.2xlarge

instances, and switch between these two tasks after each

scheduling cycle. Figure 6(a) shows the inference throughput.

The dashed line is the upper bound, which is the throughput of

the ready model assuming no task switching. The throughput

of stop-and-start is nearly zero for scheduling cycles smaller

than 10 s, because it takes several seconds for task switching.

MPS keeps poor throughput around 100 batches per second.

We define GPU utilization as the ratio to the upper bound.

PipeSwitch has high throughput close to the upper bound,

achieving near 100% GPU utilization.

Figure 6(b) shows the average latency of the inference tasks.

The dashed line is the lower bound, which is the average

latency of the ready model assuming no task switching. The

error bar indicates the minimum and maximum latency. Stop-

and-start has poor latency because the first batch has several

seconds overhead. MPS has about 80 ms average latency, and

has several hundred milliseconds latency for the first batch.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 509

1s 2s 5s 10s 30s
0

100

200

300

400

Th
ro

ug
hp

ut
 (b

at
ch

es
/s

ec
)

Upper bound

PipeSwitch
MPS

Stop-and-start

(a) Throughput (eight p3.2xlarge instances).

7500

10000

La
te

nc
y

(m
s)

PipeSwitch
MPS

Stop-and-start

1s 2s 5s 10s 30s0

200

400 Lower bound

(b) Latency.

Figure 6: Throughput and latency under different scheduling

cycles for ResNet on p3.2xlarge.

PipeSwitch incurs only a few milliseconds overhead for task

switching, and achieves low latency close to the lower bound.

6.2 Pipelined Model Transmission

To evaluate the effectiveness of pipelined model transmission,

we keep all other components of PipeSwitch the same, and

compare the following mechanisms discussed in §4.2.

• No optimization. It transmits the model layer by layer

(with many PCIe calls), and then executes the task.

• Grouped transmission. It groups the entire model in one

transmission, and then executes the task.

• Per-layer pipeline. It transits model parameters layer by

layer. Computation starts, once parameters are transmitted.

• PipeSwitch. It is the pipelining mechanism with optimal

model-aware grouping in PipeSwitch.

Figure 7 shows the total time measured by the client for an in-

ference task to preempt a training task and finish its inference.

No optimization performs the worst in most cases. Grouped

transmission improves no optimization by combining the lay-

ers of the model into one big tensor and transmitting it in

one group. Per-layer pipeline overlaps transmission and com-

putation at the granularity of layer. But because it has PCIe

overhead and synchronization overhead for every layer, for

the models with many layers but relatively light computa-

tion such as ResNet152 and Inception, it can perform worse

than grouped transmission and sometimes even no pipeline.

PipeSwitch uses model-aware grouping and achieves the best

trade-off between pipeline overhead and efficiency. It reduces

the total time by up to 38.2 ms compared to other solutions.

ResNet152 Inception_v3 Bert_base0

20

40

60

80

100

La
te

nc
y

(m
s)

PipeSwitch
Per-layer pipeline
Grouped transmission
No optimization

(a) p3.2xlarge (NVIDIA V100, PCIe 3.0 ×16).

ResNet152 Inception_v3 Bert_base0

50

100

150

200

250

La
te

nc
y

(m
s)

PipeSwitch
Per-layer pipeline
Grouped transmission
No optimization

(b) g4dn.2xlarge (NVIDIA T4, PCIe 3.0 ×8).

Figure 7: Effectiveness of pipelined model transmission.

Note that this reduction is significant, especially consider-

ing that it is evaluated when the optimizations on memory

management and worker switching have already been applied.

We would like to emphasize that to meet strict SLOs, it is

important to reduce all overheads for task switching, not only

the most significant one.

Table 5 shows the running time of Algorithm 1, as well as

the effects of the two pruning techniques mentioned in § 4.2.

Note that the number of layers includes both weighted and

unweighted layers, as both contribute to the computation time.

We measure the parameter size and running time for each

layer in advance. Algorithm 1 takes only several seconds to

compute an optimal grouping strategy, even for ResNet152

which has hundreds of layers. On the contrary, no pruning

does not finish for all three models after running for 24 hours.

6.3 Unified Memory Management

To evaluate the effectiveness of unified memory management.

we keep all other components of PipeSwitch the same, and

compare the following five mechanisms discussed in §4.3.

• No unified memory management. Each worker uses

cudaMalloc to allocate GPU memory, and transmits the

model to GPU by its own.

• No IPC optimization. The memory daemon handles GPU

memory allocation and model transmission, but creates

and sends GPU memory handlers to workers. To compare,

PipeSwitch simply sends an 64-bit integer offset for the

shared GPU memory to workers.

• No pin memory. It has all optimizations on unified memory

management except that the pages of the memory daemon

are not pinned to the main memory.

510 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ResNet152 Inception_v3 Bert_base0

100

200

300

400

La
te

nc
y

(m
s)

PipeSwitch
No memory management
No IPC optimization

No pin memory
CUDA unified memory

(a) p3.2xlarge (NVIDIA V100, PCIe 3.0 ×16).

ResNet152 Inception_v3 Bert_base0

100

200

300

400

La
te

nc
y

(m
s)

PipeSwitch
No memory management
No IPC optimization

No pin memory
CUDA unified memory

(b) g4dn.2xlarge (NVIDIA T4, PCIe 3.0 ×8).

Figure 8: Effectiveness of unified memory management.

• CUDA unified memory. Each worker allocates GPU mem-

ory with cudaMallocManaged, and CUDA automatically

transmits the model to GPU when needed.

• PipeSwitch. It is the unified memory management mecha-

nism used by PipeSwitch.

Figure 8 shows the total time measured by the client. First,

compared to no unified memory management, PipeSwitch

saves 2–23 ms by eliminating the memory allocation over-

head with the memory daemon. It is also important to note

that no unified memory management requires each worker

to keep a copy for each DNN model, which increases the

memory footprint. Second, IPC optimization is important,

which reduces the latency by 16–48 ms. Without IPC opti-

mization, the latency is even higher than no unified memory

management. Third, pinning the pages to the host memory can

reduce the latency with a few milliseconds. Finally, CUDA

unified memory is not optimized for DL applications, and in-

troduces more than one hundred milliseconds overhead than

PipeSwitch. Overall, this experiment demonstrates that all the

optimizations on memory management are effective.

6.4 Active-Standby Worker Switching

To evaluate the effectiveness of active-standby worker switch-

ing, we keep all other components of PipeSwitch the same,

and compare the following mechanisms discussed in §4.4.

• Two processes. The process of the old task cleans the GPU

environment, and then another process is created and ini-

tialized for the new task.

• One process. The process cleans the GPU environment for

the old task, and reuses the environment for the new task.

6000

8000

La
te

nc
y

(m
s)

PipeSwitch
One process

Two processes

ResNet152 Inception_v3 Bert_base
0

100

200

(a) p3.2xlarge (NVIDIA V100, PCIe 3.0 ×16).

5000

7500

La
te

nc
y

(m
s)

PipeSwitch
One process

Two processes

ResNet152 Inception_v3 Bert_base
0

200

400

(b) g4dn.2xlarge (NVIDIA T4, PCIe 3.0 ×8).

Figure 9: Effectiveness of active-standby switching.

• PipeSwitch It is the active-standby worker switching mech-

anism used by PipeSwitch.

Figure 9 shows the results. Two processes perform the worst

as it stops the training task and initializes a new process for

the new task. The new process needs to create a new CUDA

environment, which dominates the total time. One process

reuses the CUDA environment, but still pays the overhead

to clean the environment. PipeSwitch uses an active-standby

worker switching mechanism to parallelize old task cleaning

and new task initialization, and incurs minimal overhead. It

reduces the latency by 116–307 ms compared to one process,

and 5–7 s compared to two processes.

7 Related Work

Many frameworks have been developed for deep learning,

such as TensorFlow [25], PyTorch [21] and MXNet [26]. Sev-

eral algorithms and systems have been designed for executing

and scheduling deep learning tasks on clusters, including

both training and inference tasks [3, 10, 24, 27–32]. These

scheduling solutions are orthogonal and complementary to

PipeSwitch. They focus on what scheduling decisions to

make, while PipeSwitch focuses on how to realize a schedul-

ing decision. Importantly, PipeSwitch enables the scheduler

to change the resource allocation more often with millisecond-

scale task switching. Many techniques and systems have

been proposed to optimize communication and improve dis-

tributed training [8, 9, 15, 33–42]. The most relevant ones are

PipeDream [8], ByteScheduler [9] and Poseidon [40]. They

use inter-batch pipelining for training of the same task, while

PipeSwitch introduces intra-batch pipelining to fast start both

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 511

training and inference tasks and enables fast switching across

tasks. Other works like vDNN [43] and SwapAdvisor [44]

also have GPU memory management module, but they focus

on memory management for a single training task of large

models, which are not directly comparable to PipeSwitch.

Cluster managers [45–48] typically allocate GPUs to VMs

or containers at device granularity. Several solutions have

been proposed to share a GPU at application granularity us-

ing techniques like library interception [6, 49–53]. They are

general-purpose and focus on sharing only a few kernels. As

such, they are not suitable for deep learning applications that

typically require hundreds of kernels. NVIDIA MPS [6] pro-

vides official support for sharing a GPU between multiple

processes. It is also not specially designed for deep learning

and thus cannot meet strict SLOs of inference tasks as shown

in §6. There are many efforts on GPU optimization to im-

prove the performance of running a single task, such as tensor

fusion and kernel-level concurrency and scheduling [54–58].

These solutions are complementary to PipeSwitch.

8 Conclusion

We present PipeSwitch, a system that enables GPU-efficient

fine-grained time-sharing for multiple DL applications. We

introduce pipelined context switching to minimize task switch-

ing overhead on GPUs for DL applications. Pipelined context

switching includes three key techniques, which are pipelined

model transmission, unified memory management and active-

standby worker switching. With these techniques, PipeSwitch

is able to achieve millisecond-scale task switching time, and

enables DL applications on time-sharing GPUs to meet strict

SLOs. We demonstrate the performance of PipeSwitch with

experiments on a variety of DNN models and GPU cards.

PipeSwitch can significantly increase GPU utilization and

improve the agility of DL applications.

Acknowledgments. We thank our shepherd Madan Musu-

vathi and the anonymous reviewers for their valuable feed-

back. Zhihao Bai, Zhen Zhang and Xin Jin were supported in

part by an AWS Machine Learning Research Award.

References

[1] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,

E. Tune, and J. Wilkes, “Large-scale cluster management

at Google with Borg,” in EuroSys, 2015.

[2] J. Dean and L. A. Barroso, “The tail at scale,” Commu-

nications of the ACM, vol. 56, 2013.

[3] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Phili-

pose, A. Krishnamurthy, and R. Sundaram, “Nexus: A

GPU cluster engine for accelerating DNN-based video

analysis,” in ACM SOSP, 2019.

[4] “CUDA Unified Memory.” https://

devblogs.nvidia.com/unified-memory-cuda-

beginners/.

[5] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Bal-

akrishnan, “Shenango: Achieving high CPU efficiency

for latency-sensitive datacenter workloads,” in USENIX

NSDI, 2019.

[6] “CUDA Multi-Process Service.” https:

//docs.nvidia.com/deploy/pdf/

CUDA_Multi_Process_Service_Overview.pdf.

[7] P. Yu and M. Chowdhury, “Salus: Fine-grained GPU

sharing primitives for deep learning applications,” in

Conference on Machine Learning and Systems, 2020.

[8] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri,

N. R. Devanur, G. R. Ganger, P. B. Gibbons, and M. Za-

haria, “PipeDream: generalized pipeline parallelism for

DNN training,” in ACM SOSP, 2019.

[9] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu,

and C. Guo, “A generic communication scheduler for

distributed DNN training acceleration,” in ACM SOSP,

2019.

[10] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon,

J. Qian, H. Liu, and C. Guo, “Tiresias: A GPU clus-

ter manager for distributed deep learning,” in USENIX

NSDI, 2019.

[11] M. Jeon, S. Venkataraman, A. Phanishayee, u. Qian,

W. Xiao, and F. Yang, “Analysis of large-scale multi-

tenant GPU clusters for DNN training workloads,” in

USENIX ATC, 2019.

[12] “Amazon Web Services.” https://aws.amazon.com/.

[13] “Microsoft Azure.” https://azure.microsoft.com/.

[14] “Google Cloud Platform.” https://

cloud.google.com/.

[15] A. Sergeev and M. Del Balso, “Horovod: fast and easy

distributed deep learning in tensorflow,” arXiv preprint

arXiv:1802.05799, 2018.

[16] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,

A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and

B.-Y. Su, “Scaling distributed machine learning with the

parameter server,” in USENIX OSDI, 2014.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual

learning for image recognition,” in IEEE Conference on

Computer Vision and Pattern Recognition, 2016.

[18] “Nvidia data center deep learning product perfor-

mance.” https://developer.nvidia.com/deep-

learning-performance-training-inference.

512 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://aws.amazon.com/
https://azure.microsoft.com/
https://cloud.google.com/
https://cloud.google.com/
https://developer.nvidia.com/deep-learning-performance-training-inference
https://developer.nvidia.com/deep-learning-performance-training-inference

[19] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian,

W. Xiao, and F. Yang, “Analysis of large-scale multi-

tenant GPU clusters for DNN training workloads,” in

USENIX ATC, 2019.

[20] “Philly traces.” https://github.com/msr-fiddle/

philly-traces.

[21] “PyTorch.” https://pytorch.org/.

[22] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wo-

jna, “Rethinking the inception architecture for computer

vision,” in IEEE Conference on Computer Vision and

Pattern Recognition, 2016.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,

“BERT: Pre-training of deep bidirectional transformers

for language understanding,” in Proceedings of the 2019

Conference of the North American Chapter of the Associ-

ation for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), 2019.

[24] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu,

N. Kwatra, Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang,

et al., “Gandiva: Introspective cluster scheduling for

deep learning,” in USENIX OSDI, 2018.

[25] “TensorFlow.” https://www.tensorflow.org/.

[26] “MXNet.” https://mxnet.apache.org/.

[27] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “Slaq:

quality-driven scheduling for distributed machine learn-

ing,” in ACM Symposium on Cloud Computing, 2017.

[28] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Opti-

mus: an efficient dynamic resource scheduler for deep

learning clusters,” in EuroSys, 2018.

[29] K. Mahajan, A. Balasubramanian, A. Singhvi,

S. Venkataraman, A. Akella, A. Phanishayee, and

S. Chawla, “Themis: Fair and efficient GPU cluster

scheduling,” in USENIX NSDI, 2020.

[30] R. Liaw, R. Bhardwaj, L. Dunlap, Y. Zou, J. E. Gonza-

lez, I. Stoica, and A. Tumanov, “HyperSched: Dynamic

resource reallocation for model development on a dead-

line,” in ACM Symposium on Cloud Computing, 2019.

[31] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter,

S. Maleki, M. Musuvathi, and T. Mytkowicz, “CHET:

An optimizing compiler for fully-homomorphic neural-

network inferencing,” in ACM Conference on Program-

ming Language Design and Implementation, 2019.

[32] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen,

M. Cowan, L. Wang, Y. Hu, L. Ceze, et al., “TVM:

An automated end-to-end optimizing compiler for deep

learning,” in USENIX OSDI, 2018.

[33] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen,

M. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu, et al.,

“Gpipe: Efficient training of giant neural networks using

pipeline parallelism,” in Advances in Neural Informa-

tion Processing Systems, 2019.

[34] G. Wang, S. Venkataraman, A. Phanishayee, J. Thelin,

N. Devanur, and I. Stoica, “Blink: Fast and generic col-

lectives for distributed ML,” in Conference on Machine

Learning and Systems, 2020.

[35] “NVIDIA Collective Communications Library (NCCL).”

https://developer.nvidia.com/nccl.

[36] J. Liu, J. Wu, and D. K. Panda, “High performance

RDMA-based MPI implementation over infiniband,” Int.

J. Parallel Program., vol. 32, 2004.

[37] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gib-

bons, G. A. Gibson, G. Ganger, and E. P. Xing, “More

effective distributed ML via a stale synchronous parallel

parameter server,” in Advances in Neural Information

Processing Systems, 2013.

[38] A. A. Awan, C.-H. Chu, H. Subramoni, and D. K. Panda,

“Optimized broadcast for deep learning workloads on

dense-GPU infiniband clusters: MPI or NCCL?,” in Pro-

ceedings of the 25th European MPI Users’ Group Meet-

ing, 2018.

[39] J. Daily, A. Vishnu, C. Siegel, T. Warfel, and V. Am-

atya, “GossipGraD: Scalable deep learning using gossip

communication based asynchronous gradient descent,”

CoRR, vol. abs/1803.05880, 2018.

[40] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang,

Z. Hu, J. Wei, P. Xie, and E. P. Xing, “Poseidon: An ef-

ficient communication architecture for distributed deep

learning on GPU clusters,” in USENIX ATC, 2017.

[41] Z. Zhang, C. Chang, H. Lin, Y. Wang, R. Arora, and

X. Jin, “Is network the bottleneck of distributed train-

ing?,” in ACM SIGCOMM Workshop on Network Meets

AI & ML (NetAI), August 2020.

[42] Y. Chen, Z. Liu, B. Ren, and X. Jin, “On efficient con-

structions of checkpoints,” in International Conference

on Machine Learning (ICML), July 2020.

[43] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and

S. W. Keckler, “vDNN: Virtualized deep neural net-

works for scalable, memory-efficient neural network de-

sign,” in 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2016.

[44] C.-C. Huang, G. Jin, and J. Li, “SwapAdvisor: Pushing

deep learning beyond the GPU memory limit via smart

swapping,” in ACM ASPLOS, 2020.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 513

https://github.com/msr-fiddle/philly-traces
https://github.com/msr-fiddle/philly-traces
https://pytorch.org/
https://www.tensorflow.org/
https://mxnet.apache.org/
https://developer.nvidia.com/nccl

[45] “Kubernetes.” https://kubernetes.io/.

[46] “NVIDIA Container Runtime for Docker.” https://

github.com/NVIDIA/nvidia-docker.

[47] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,

A. D. Joseph, R. H. Katz, S. Shenker, and I. Stoica,

“Mesos: A platform for fine-grained resource sharing in

the data center.,” in USENIX NSDI, 2011.

[48] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,

M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,

et al., “Apache Hadoop YARN: Yet another resource

negotiator,” in ACM Symposium on Cloud Computing,

2013.

[49] G. Giunta, R. Montella, G. Agrillo, and G. Coviello, “A

GPGPU transparent virtualization component for high

performance computing clouds,” in European Confer-

ence on Parallel Processing, 2010.

[50] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche,

N. Tolia, V. Talwar, and P. Ranganathan, “GViM: GPU-

accelerated virtual machines,” in Proceedings of the 3rd

ACM Workshop on System-level Virtualization for High

Performance Computing, 2009.

[51] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S.

Quintana-Ortí, “rCUDA: Reducing the number of GPU-

based accelerators in high performance clusters,” in

2010 International Conference on High Performance

Computing & Simulation, 2010.

[52] V. T. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar,

“Supporting GPU sharing in cloud environments with a

transparent runtime consolidation framework,” in Pro-

ceedings of the 20th international symposium on High

performance distributed computing, 2011.

[53] L. Shi, H. Chen, J. Sun, and K. Li, “vCUDA: GPU-

accelerated high-performance computing in virtual ma-

chines,” IEEE Transactions on Computers, vol. 61,

2011.

[54] “TensorFlow XLA.” https://www.tensorflow.org/

xla/.

[55] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,

T. Xiao, B. Xu, C. Zhang, and Z. Zhang, “MXNet:

A flexible and efficient machine learning library for

heterogeneous distributed systems,” arXiv preprint

arXiv:1512.01274, 2015.

[56] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron, “Fine-

grained resource sharing for concurrent GPGPU kernels,”

in Presented as part of the 4th USENIX Workshop on

Hot Topics in Parallelism, 2012.

[57] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Im-

proving GPGPU concurrency with elastic kernels,” ACM

SIGARCH Computer Architecture News, vol. 41, 2013.

[58] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia,

and A. Aiken, “TASO: optimizing deep learning compu-

tation with automatic generation of graph substitutions,”

in ACM SOSP, 2019.

514 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://kubernetes.io/
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://www.tensorflow.org/xla/
https://www.tensorflow.org/xla/

HiveD: Sharing a GPU Cluster for Deep Learning with Guarantees

Hanyu Zhao 1,3∗, Zhenhua Han 2,3∗ , Zhi Yang 1, Quanlu Zhang 3, Fan Yang 3, Lidong Zhou 3,

Mao Yang 3, Francis C.M. Lau 2, Yuqi Wang 3, Yifan Xiong 3, Bin Wang 3

1 Peking University, 2 The University of Hong Kong, 3 Microsoft

Abstract
Deep learning training on a shared GPU cluster is becom-

ing a common practice. However, we observe severe sharing

anomaly in production multi-tenant clusters where jobs in

some tenants experience worse queuing delay than they would

have in a private cluster with their allocated shares of GPUs.

This is because tenants use quota, the number of GPUs, to

reserve resources, whereas deep learning jobs often use GPUs

with a desirable GPU affinity, which quota cannot guarantee.

HiveD is the first framework to share a GPU cluster safely,

so that such anomaly would never happen by design. In HiveD,

each tenant reserves resources through a Virtual Private Clus-

ter (VC), defined in terms of multi-level cell structures corre-

sponding to different levels of GPU affinity in a cluster. This

design allows HiveD to incorporate any existing schedulers

within each VC to achieve their respective design goals while

sharing the cluster safely.

HiveD develops an elegant buddy cell allocation algorithm

to ensure sharing safety by efficiently managing the dynamic

binding of cells from VCs to those in a physical cluster. A

straightforward extension of buddy cell allocation can fur-

ther support low-priority jobs to scavenge the unused GPU

resources to improve cluster utilization.

With a combination of real deployment and trace-driven

simulation, we show that: (i) sharing anomaly exists in three

state-of-the-art deep learning schedulers, incurring extra queu-

ing delay of up to 1,000 minutes; (ii) HiveD can incorporate

these schedulers and eliminate the sharing anomaly in all of

them, achieving separation of concerns that allows the sched-

ulers to focus on their own scheduling goals without violating

sharing safety.

1 Introduction

Deep learning training is becoming a major computing work-

load on a GPU cluster. It is a common practice for an organi-

zation to train deep learning models in a multi-tenant GPU

cluster, where each tenant reserves resources using a quota

that consists of the number of GPUs and other associated

resources such as CPU and memory [52].

Surprisingly, in a production multi-tenant GPU cluster, we

have observed unexpected anomalies where a tenant’s deep

learning training jobs wait significantly longer for GPUs than

∗Equal contribution.

they would do in a private cluster whose size equals to the

tenant’s quota. This is because the current resource reserva-

tion mechanism is based on quota, i.e., the number of GPUs.

Quota cannot capture the GPU affinity requirement of training

jobs: e.g., an 8-GPU job on one node usually runs signifi-

cantly faster than on eight nodes [41, 52, 86]. Quota cannot

guarantee a tenant’s GPU affinity like the tenant’s private

cluster does. As a result, multi-GPU jobs often have to wait

in a queue or run at a relaxed affinity, both resulting in worse

performance (longer queuing delay or slower training speed).

In this paper, we present HiveD, a resource reservation

framework to share a GPU cluster for deep learning training

that guarantees sharing safety by completely eliminating shar-

ing anomalies. Instead of using quota, HiveD presents each

tenant a virtual private cluster (abbreviated as VC) defined

by a new abstraction: cell. Cell uses a multi-level structure to

capture the different levels of affinity that a group of GPUs

could satisfy. Those cell structures naturally form a hierarchy

in a typical GPU cluster; e.g., from a single GPU, to GPUs at-

tached to a PCIe switch, to GPUs connected to a CPU socket,

to GPUs in a node, to GPUs in a rack, and so on.

With cell, HiveD virtualizes a physical GPU cluster as a VC

for each tenant, where the VC preserves the necessary affinity

structure in a physical cluster. This allows any state-of-the-art

deep learning scheduler to make scheduling decisions within

the boundary defined by the VC, without affecting the affinity

requirement from other VCs, hence ensuring sharing safety.

In this way, HiveD achieves the separation of concerns [47]:

It focuses on the resource reservation mechanism and leaves

other resource allocation goals to VC schedulers (e.g., cluster

utilization and job completion time).

HiveD develops an elegant and efficient buddy cell alloca-
tion algorithm to bind cells from a VC to a physical cluster.

Buddy cell allocation advocates dynamic cell binding over

static binding for flexibility. It dynamically creates and re-

leases the binding of cells in a VC to GPUs in the physical

cluster, while providing proven sharing safety despite unpre-

dictable workloads. Moreover, the algorithm can be naturally

extended to support preemptible low-priority jobs to scavenge

unused cells opportunistically to improve overall utilization.

Combined, HiveD achieves the best of both a private cluster

(for guaranteed availability of cells independent of other ten-

ants) and a shared cluster (for improved utilization and access

to more resources when other tenants are not using them).

We evaluate HiveD using experiments on a 96-GPU real

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 515

cluster and trace-driven simulations. The evaluation shows

that (i) sharing anomaly exists in all the evaluated state-of-the-

art deep learning schedulers [41,52,86]; (ii) HiveD eliminates

all sharing anomalies, decreases excessive queuing delay from

1,000 minutes to zero, while preserving these schedulers’

design goals; (iii) HiveD guarantees sharing safety regardless

of cluster loads, whereas a quota-based cluster can result in

7× excessive queuing delay for a tenant under a high load.

We have open-sourced HiveD [17], and integrated it in

OpenPAI [20], a Kubernetes-based deep learning training

platform. It has been deployed in multiple GPU clusters serv-

ing research and production workloads at scale, including a

cluster of 800 GPUs where HiveD has been up and running

reliably for more than 12 months (as of Nov. 2020).

In summary, this paper makes the following contributions:

• We are the first to observe and identify sharing anomaly

in production multi-tenant GPU clusters for deep learn-

ing training.

• We define the notion of sharing safety against the

anomaly and propose a new resource abstraction, i.e.,

multi-level cells, to model virtual private clusters.

• We develop an elegant and efficient buddy cell allocation

algorithm to manage cells with proven sharing safety,

and to support low-priority jobs.

• We perform extensive evaluations both on a real cluster

and through simulation, driven by a production trace, to

show that HiveD achieves the design goals in terms of

sharing safety, queuing delay, and utilization.

2 Background and Motivation

The current approach of managing a multi-tenant GPU
cluster. In large corporations, a large-scale GPU cluster

is usually shared by multiple business teams, each being a

tenant contributing their resources (budget or hardware). The

tenants share the GPU cluster in a way similar to sharing

a CPU cluster [1, 52]: Each tenant is assigned a number of

tokens as its quota. Each token corresponds to the right to use

a GPU along with other types of resource. The quota denotes

an expectation that the tenant can access “at least” the share

of resources it contributes.

To improve training speed in the cluster, a user usually

specifies a GPU affinity requirement for a deep learning

job [52, 86]. For example, it is often desirable for a 64-GPU

job to run in the 8×8 affinity, i.e., to run the job on 8 nodes

each with 8 GPUs, instead of 64×1, i.e., 64 nodes each using

1 GPU. Given the affinity requirements, the resource manager

will satisfy them in a guaranteed (hard) or best-effort (soft)

manner. If there is no placement satisfying a job’s affinity

requirement, the job will wait in the queue if it has a hard

Figure 1: Sharing anomaly: a tenant suffers longer queuing

delay in a shared cluster than in its own private cluster.

affinity requirement or will be scheduled with relaxed affinity

if the requirement is soft (e.g., 64×1 as opposed to 8×8).

Sharing anomaly. In a production GPU cluster described

in [52], we observe an anomaly from user complaints: a tenant

is assigned a quota of 64 GPUs but reports that it cannot

run a single (and the only) 8×8 deep learning job. Such

anomaly arises because the tenant’s assigned affinity has been

fragmented, not by its own job(s) but by jobs from other

tenants. Even though the tenant has enough GPU quota, the

64-GPU job has to wait in a queue or execute with degraded

performance with relaxed affinity. The promise to the tenant

that it can access at least its share of resource is broken.

Sharing anomaly appears similar to external fragmentation

in memory management [54], if we liken a tenant to a program.

The important difference however is that, in a shared GPU

cluster, tenants expect their resource shares to be guaranteed.

In the above real-world example, the fragmentation is due to

other tenants, and the suffering tenant can hardly do anything

except to complain to the cluster operator. Sharing anomaly

can easily happen when jobs with lower affinity requirement

(e.g., single-GPU jobs) from a tenant add to the fragmentation

of global resources (due to varying job arrival and completion

times), making jobs with higher affinity requirement (e.g.,

8×8-GPU jobs) from other tenant(s) not able to run, even

with sufficient quota. Apparently, quota can reserve only the

quantity of resources, but not the affinity of resources. Hence

it cannot automatically get around the external fragmentation

across tenants. We call this phenomenon “sharing anomaly”

because the sharing of a tenant’s resource impacts the tenant

negatively. Therefore, in the above case, rather than sharing

with others, the wised up tenant would prefer to run a private

cluster with eight 8-GPU nodes to adhere to its 8× 8 GPU

affinity with zero queuing delay.

A multi-tenant cluster is said to suffer from sharing
anomaly if a tenant’s sequence of GPU requests (possibly

with affinity requirement) cannot be satisfied in this shared

cluster; whereas it can be satisfied in a private cluster whose

size equals to the tenant’s quota. Figure 1 highlights how

severe sharing anomaly could become, selected from a trace-

driven simulation in a setup similar to [52] (more details in

§5). The figure shows the job queuing anomaly of one tenant

in a shared cluster when jobs have hard affinity requirement.

In the 10-day submission window (denoted as X-axis), the

516 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

tenant’s average job queuing delay (denoted as Y-axis) in

the shared cluster is significantly higher than that in its own

private cluster.1 In particular, the jobs submitted around Day

1 have to stay in the queue for more than 8,000 minutes (5

days) while they have zero queuing delay in the private clus-

ter! Moreover, tenants having reserved large resources tend to

suffer the most. Consequently, we have witnessed important

corporate users reverting to private clusters, after experiencing

high queuing delay brought by severe sharing anomalies.

One approach to reducing sharing anomaly is to devise

a scheduling policy to minimize global resource fragmen-

tation. This makes the design of a deep learning scheduler

even more complex, which already has to manage sophisti-

cated multi-objective optimizations. For example, minimizing

global fragmentation may decrease job performance due to

increased inter-job interference [86]. Therefore, we propose

to separate the concern of sharing anomaly from other re-

source allocation objectives [47]. Instead of developing a

complicated scheduler that achieves all possible goals, we de-

sign HiveD, a resource reservation framework that focuses on

eliminating sharing anomaly, and provides a clean interface

to incorporate any state-of-the-art deep learning schedulers to

address concerns like cluster utilization [86], job completion

time [41, 66], and fairness [29, 60].

3 HiveD Design

3.1 System Overview
HiveD proposes to guarantee sharing safety (i.e., eliminating

sharing anomaly as described in §2) as a prerequisite of shar-

ing a GPU cluster. Specifically, if a sequence of GPU requests

with affinity requirements can be satisfied in a private clus-

ter, it should be satisfied in the corresponding virtual private

cluster and the shared physical cluster.

Figure 2: System architecture: a two-layer design.

Figure 2 illustrates the overall system architecture. HiveD’s

abstraction of GPU resources is divided into two layers, i.e.,

the layer of Virtual Private Clusters (VCs) and the layer of

physical cluster. HiveD presents each tenant a VC. Each VC

is pre-assigned a set of cells, a novel resource abstraction that

1The anomaly is dominated by queuing delay in the job completion time

when the affinity requirement is hard. Details discussed in §5.1.

captures not only quota, but also the affinity structure of GPUs

(the number inside each cell in the figure shows the number of

affinitized GPUs of the cell). The cells assigned to a VC form

a VC view with the GPU affinity structure identical to that of

the corresponding private cluster. Any third-party scheduler

can be incorporated to work on the VC view to achieve a

certain goal of resource allocation [41, 52, 60, 86]. Moreover,

HiveD ensures that any scheduling decision is constrained

within the boundary defined by the VC view, as if happening

on its private cluster, thus guaranteeing sharing safety.

Cells in a VC are logical. When a job uses a GPU in a

logical cell, e.g., one GPU in the 4-GPU cell in the VC view

of Tenant A in Figure 2, the logical cell will be bound to a

physical cell allocated from the physical cluster, denoted at

the bottom of Figure 2. If none of the GPUs is in use, the

logical cell will be unbound from the physical cluster. To im-

prove utilization, preemptible low-priority jobs can scavenge

idle GPUs opportunistically. Such dynamic binding is more

flexible than static binding: a dynamic binding can avoid a

physical cell whose hardware is failing; it can avoid cells used

by low-priority jobs to reduce preemptions; it can also pack

the cells to minimize the fragmentation of GPU affinity.

To achieve this, HiveD adopts buddy cell allocation, an

efficient and elegant algorithm, to handle the dynamic bind-

ing. A key challenge of dynamic binding is to guarantee the

safety property in response to dynamic workloads, that is,

jobs arrive unpredictably and request varying levels of cells.

Buddy cell allocation algorithm is proven to ensure sharing

safety: any legitimate cell request within a VC is guaranteed

to be satisfied. The algorithm can also support low-priority

jobs. Figure 2 shows a possible cell allocation, where cells in

a physical cluster are bound to those defined in two VCs, and

also to a low-priority job.

In §3.2, we explain the details of cells and show how a VC

can be defined by cells. And in §3.3, we introduce the buddy

cell allocation algorithm, prove its sharing safety guarantee,

and extend it to support low-priority jobs.

3.2 Virtual Private Cluster with Cells

To model a (private) GPU cluster, HiveD defines a hierarchy
of multi-level cell structures. A cell at a certain level is the

corresponding collection of affinitized GPUs with their inter-

connection topology. Each virtual private cluster (VC) is then

defined as number of cells at each level, modeled after the

corresponding private cluster.

Figure 3 shows an example, where there are 4 levels of cell

structures: at the GPU (level-1), PCIe switch (level-2), CPU

socket (level-3), and node levels (level-4), respectively. The

cluster has one rack that consists of four 8-GPU nodes, shared

by three tenants, A, B, and C. The cell assignment for each

tenant’s VC is summarized in the table in Figure 3. Tenants A
and B’s VCs both reserve one level-3 cell (4 GPUs under the

same CPU socket), one level-2 cell (2 GPUs under the same

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 517

Tenant B

Rack

8-GPU
Node

8-GPU
Node

8-GPU
Node

Cell Level A B C
L4 cell (8-GPU) 0 0 2
L3 cell (4-GPU) 1 1 0
L2 cell (2-GPU) 1 1 1
L1 cell (1-GPU) 1 1 0

PCIe Switch

GPU

Network Tenant ATenant A

Tenant C

1 2 3 4 5 6 7 8

CPUCPU

2

8-GPU
Node1 2 43

1

1 2 3 4 5 6 7 8

CPUCPU2

1 2 3 4 5 6 7 8

CPU

8-
GP

U
No

de
8-

GP
U

No
de

QPI

5 6 7 8

CPU

QPI

8-GPU
Node

8-GPU
Node

Figure 3: Multi-level cell assignment for a rack: an example.

PCIe switch), and one level-1 cell (single GPU). Tenant C is

a larger tenant, which reserves two level-4 cells (node level)

and one level-2 cell. Given the VC views defined in Figure 3,

HiveD can adopt a third-party scheduler [41, 52, 60, 86] to

work on the views. From the third-party scheduler’s point

of view, the VC view is no different from a private cluster

consisting of nodes with different sizes (i.e., different level

of cells). For example, the scheduler can treat tenant C as a

private cluster with two 8-GPU nodes and one 2-GPU node,

despite the fact that the 2-GPU node is actually a level-2 cell.

Note that a third-party scheduler can use any GPUs in the

assigned cells. For example, it can schedule two 2-GPU jobs

to a 4-GPU (level-3) cell: a cell is the granularity of resource

reservation in VCs and the physical cluster, but not necesarily

the job scheduling granularity of a third-party scheduler.

In the cell hierarchy, a level-k cell c consists of a set S of

level-(k−1) cells. The cells in S are called buddy cells; buddy

cells can be merged into a cell at the next higher level. We

assume cell demonstrates hierarchical uniform composability:

(i) all level-k cells are equivalent in terms of satisfying a tenant

request for a level-k cell, and (ii) all level-k cells can be split

into the same number of level-(k−1) cells.

Heterogeneity. A heterogeneous cluster can be divided into

multiple homogeneous ones satisfying hierarchical uniform

composability. This is logical in practice because a production

cluster typically consists of sufficiently large homogeneous

sub-clusters (each often a result of adding a new GPU model

and/or interconnect) [52]. Users typically use homogeneous

GPUs for a job for better performance and specify the desired

GPU/topology type (e.g., V100 vs. K80).

Initial cell assignment. A cluster provider must figure out

the number of cells at each level to be assigned to each tenant’s

VC. A VC assignment is feasible in a physical cluster if it

can accommodate all cells assigned to all VCs; that is, there

exists a one-to-one mapping from the logical cells in each

VC to the physical cells in the physical cluster. The initial cell

Algorithm 1 Buddy Cell Allocation Algorithm

1: // Initial state of free_cells: only top level has cells

2: procedure ALLOCATECELL(cell_level)

3: if free_cells[cell_level].size() == 0 then
4: c = AllocateCell(cell_level+1)

5: cells = Split(c) � Split cells are buddies

6: free_cells[cell_level].extend(cells)

7: Return free_cells[cell_level].pop()

8:

9: procedure RELEASECELL(cell)

10: if cell.buddies ⊆ free_cells[cell.level] then
11: higher_cell = Merge(cell, cell.buddies)

12: free_cells[cell.level].remove(cell.buddies)

13: ReleaseCell(higher_cell)

14: else
15: free_cells[cell.level].add(cell)

assignment for VCs depends on factors like budget, business

priority, and workload, thus it is handled outside of HiveD (§6

for further discussion). A cluster might spare more physical

resources than the assigned cells to handle hardware failures.

Note that dashed lines in Figure 3 illustrate only one possi-

ble cell binding. HiveD advocates dynamic cell binding for

flexibility, which reduces job preemption and fragmentation

of GPU affinity. §5.3 confirms its benefits over static binding.

3.3 Buddy Cell Allocation Algorithm
HiveD manages the dynamic binding between the logical

cells in VCs and the physical cells in the physical cluster, and

handles requests to allocate and release cells. This is done by

the buddy cell allocation algorithm. The algorithm maintains

for each VC the information of (i) the corresponding physical

cell for each allocated logical cell (i.e., the binding); (ii) a

global free list at each cell level k to track all unallocated phys-

ical cells at that level. The algorithm always keeps available

cells at the highest possible level: for example, if all the buddy

cells at level-(k− 1) are available for a cell at level-k, only

the cell at level-k is recorded. And the algorithm aims to keep

as many higher-level cells available as possible. Algorithm 1

shows the pseudo-code of the algorithm.

To allocate a level-k cell in a VC, the algorithm starts at

level-k and goes up the levels if needed: it first checks whether

a free level-k cell is available and allocates one if available.

If not, the algorithm will move up level-by-level, until a free

level-l cell is available, where l > k. The algorithm will then

split a free level-l cell recursively into multiple lower-level

cells, until a level-k cell is available. Each splitting produces a

set of buddy cells at the next lower level, which will be added

to the free list at that lower level. One of those new low-level

cells is again split until free level-k cells are produced.

The cell release process also works in a bottom-up manner.

When a level-k cell c is released, the algorithm adds c into

518 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the free list of level-k cells and checks the status of c’s buddy

cells. If all of c’s buddy cells are free, the algorithm will

merge c and its buddy cells into a level-(k + 1) cell. The

merge process continues recursively while going up the levels,

until no cells can be merged. In this way, the buddy cell

allocation algorithm reduces GPU fragmentation and creates

opportunities to schedule jobs that require higher-level cells.

Before processing an allocation request, the algorithm en-

sures the request is legal in that it is within the assigned quota

for the VC at this cell level. HiveD stores the cell assignment

in a table r, where a tenant t’s preassigned number for level-k
cells is stored in rt,k. The buddy cell allocation algorithm

guarantees to satisfy all legal cell requests under a feasible

initial VC assignment, which is formally stated in Theorem 1.

Theorem 1. Buddy cell allocation algorithm satisfies any
legal cell allocation, under the condition of hierarchical uni-
form composability, if the original VC assignment is feasible.

Proof. Denote as rt,k the number of level-k cells reserved

by tenant t, i.e., cell assignment for t. Denote as rk the num-

ber of reserved level-k cells for all tenants, i.e. rk = ∑t rt,k.

Denote as at,k the number of level-k cells that have already

been allocated to t by the buddy cell allocation algorithm.

Cell allocations that maintain at,k ≤ rt,k are legal. Denote as

ak the number of allocated level-k cells for all tenants (i.e.,

ak = ∑t at,k), and fk the number of free level-k cells in the

physical cluster, and hk the number of level-(k− 1) buddy

cells that a level-k cell can be split into (hierarchical uniform

composability). Define Fk as the number of level-k cells that

can be obtained by splitting the higher level cells while still

satisfying the safety check for the cell assignment. Fk can be

calculated by Eqn. (1).

Fk =

{
(fk+1 +Fk+1 − (rk+1 −ak+1))hk+1 k < k̂;

0 k = k̂,
(1)

where k̂ is the highest level.

To prove the theorem, we prove the following invariant:

rk −ak ≤ fk +Fk ∀k = 1,2, ..., k̂. (2)

The L.H.S. is the number of level-k cells all tenants have yet

to allocate, and the R.H.S. is the number of available level-k
cells the cluster can provide.

We prove by induction on discrete time slots. Denote as w
the sequence number of time slots. A change of the cluster

state will increase w by 1. When w = 0, ak = 0, the invariant

(2) holds as long as the original VC assignment is feasible.

Assuming the invariant holds at time w = i, we shall prove the

invariant still holds at time w = i+1 after a tenant allocates a

legal level-k cell.

Because the allocation is legal, ak < rk should hold at time

i+ 1. In order to satisfy the invariant (2), either fk > 0 or

fk = 0.

When fk > 0, according to Algorithm 1, ak = ak +1 and

fk = fk −1 after an allocation of level-k cell at time i+1. The

gap of both sides in the invariant remains constant, thus it still

holds.

When fk = 0, i.e., no free cell at level-k, the algorithm will

split a level-k′ cell by finding the smallest k′ where k′ > k and

fk′ > 0. In this case, the invariant remains true as in the fk > 0

case, while the gap of the invariant at level-k′ will decrease by

1. If the invariant at the level-k′ breaks after cell splitting, it

would mean rk′ −ak′ = fk′ +Fk′ at time w = i. By definition,

Fk should be 0 at time w = i. But since ak < rk (because the

allocation request is legal), thus the invariant (2) cannot hold

true at level k. This leads to a contradiction. Therefore, the

invariant must hold at level k′ after splitting a level-k′ cell.

Following the same step, we can prove the invariant holds at

level k′′ when the algorithm recursively splitting a level-k′′
cell, where k′′ ∈ [k+1,k′ −1]. Hence the invariant holds on

all levels when fk = 0.

Merging the buddy cells can only either increase or keep

the gap of the invariant and thus it still holds. Q.E.D.

The buddy cell allocation algorithm has the time complex-

ity of O(k̂), where k̂ is the number of levels, and can therefore

scale to a large GPU cluster efficiently: k̂ is usually 5, from

the level of racks to the level of GPUs.

Hierarchical uniform composability ensures the algorithm’s

correctness and efficiency: it does not have to check explicitly

after each split whether or not the subsequent legal alloca-

tion requests are satisfiable. Instead, it just needs to check

whether every allocation request is legal. For the case where

cells are heterogeneous (e.g., due to different GPU models

or different inter-GPU connectivities), HiveD partitions the

cluster into several pools within which cells at the same level

are homogeneous, and applies Algorithm 1 in each pool.

The algorithm resembles buddy memory allocation [56],

hence the name. Beyond reducing fragmentation effi-

ciently [35], our key contribution here is making the non-

obvious observation: GPU affinity can be modeled as cells,

thus making buddy allocation applicable. Moreover, we prove

that buddy cell allocation satisfies sharing safety, while tra-

ditional buddy allocation does not have such safety concern

and hence does not provide this guarantee. Our algorithm

also reveals the different characteristics of GPU hierarchy

vs. memory regions; for example, the hierarchical uniform

composability condition captures GPU hierarchy and is a

generalization of the artificially-created power-of-2 rule in

buddy memory allocation. Our algorithm also supports prior-

ity (elaborated next).

Allocating low-priority cells. The buddy cell allocation

algorithm can be naturally extended to support low-priority

jobs (a.k.a. opportunistic jobs), whose allocated cells can

be preempted by high-priority jobs. Supporting such low-

priority jobs helps improve overall GPU utilization, without

compromising the sharing safety guarantees provided to the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 519

VCs. HiveD maintains two cell views, one for allocating high-

priority (guaranteed) cells, and the other for allocating the low-

priority cells. Both views manage the same set of cells in the

physical cluster using the same cell allocation algorithm (i.e.,

Algorithm 1). Similar to YARN [83] and Omega [73], HiveD

enforces strict priority where high-priority bindings can pre-

empt low-priority cells. Note that preempting a low-priority

job could lead to loss of training progress if its checkpoint

is stale. When allocating low-priority cells, HiveD chooses

the cells farthest away from those occupied by high-priority

jobs (e.g., a non-buddy cell of a high-priority cell) in order

to minimize the chance of being preempted. Likewise, when

allocating high-priority cells, HiveD chooses the free cells

with the fewest GPUs used by low-priority jobs to reduce the

chances of unnecessary preemptions. With a similar approach,

we can extend HiveD to support multiple levels of priority.

HiveD adopts weighted max-min fairness [37,49] to decide

the numbers of low-priority cells allocated to tenants. One

could incorporate other state-of-the-art fairness metrics [60]

to decide the fair share among tenants.

4 Implementation

HiveD has been integrated in OpenPAI, an open-source deep

learning training platform [20] based on Kubernetes [28].

It has been deployed to multiple GPU clusters, managing

various types of GPUs from NVIDIA Volta [19] to AMD

MI50 [14]. This includes a cloud cluster with 800 heteroge-

neous GPUs (200 Azure GPU VMs) where HiveD has been

running reliably for 12+ months (as of Nov. 2020). HiveD has

served research and production workloads at scale, ranging

from long-lasting training of large NLP models (e.g., BERT

large [34]) to AutoML experiments that consist of hundreds

of short-lived 1-GPU jobs. Next we share our experience in

implementing and operating HiveD.

HiveD is implemented in 7,700+ lines of Go codes. In addi-

tion, it has a few more thousands of lines of JavaScript, Shell

scripts, and YAML specifications to integrate with the train-

ing platform. It is implemented as a scheduler extender [9], a

standalone process that works in tandem with the Kubernetes

default scheduler (kube-scheduler [7]). This way, HiveD is

able to reuse kube-scheduler’s basic scheduling logic.

Cell specification. HiveD relies on a cell specification to

understand the cell hierarchies in a cluster and the cell as-

signments for VCs. Figure 4 presents an example specifi-

cation for a heterogeneous GPU cluster with two racks of

NVIDIA V100 GPUs and one rack of NVIDIA P100 GPUs.

cellHierarchy describes the two types of multi-level cell

structures. physicalCluster specifies the cell layout in a

physical cluster: two V100 racks and one P100 rack, and their

IP addresses. With physicalCluster and cellHierarchy,

vcAssignment specifies the cell assignment for a VC: the

only P100 rack and 4 V100 nodes are assigned to the VC vc1.

cellHierarchy:
- name: V100 -RACK # cell hierarchy for V100 rack

hierarchy:
- cellType: V100 -GPU # level-1 cell
- cellType: V100 -PCIe -SWITCH

splitFactor: 2 # split to 2 level-1 cells
- cellType: V100 -CPU-SOCKET

splitFactor: 2
- cellType: V100 -NODE

splitFactor: 2
- cellType: V100 -RACK # level-5 (top-level)cell

splitFactor: 8
- name: P100 -RACK # cell hierarchy for P100 rack

hierarchy:
- cellType: P100 -RACK # omit lower-level cells

splitFactor: 8

physicalCluster: vcAssignment:
- topLevelCellType: V100 -RACK - vc: vc1 #omit other VCs

topLevelCellAddresses: cells:
- 10.0.1.0~7 - subCluster: P100 -RACK
- 10.0.2.0~8 - cellType: P100 -RACK

- topLevelCellType: P100 -RACK cellNumber: 1
topLevelCellAddresses: - subCluster: V100 -RACK
- 10.0.3.0~7 - cellType: V100 -NODE

cellNumber: 4

Figure 4: A simplified cell specification (in .yaml format).

A third-party scheduler can leverage the VC view of vc1 to

make scheduling decisions, as if vc1 is a physical cluster. Our

release of HiveD comes with a tool to automatically detect

infeasible VC assignments in the specification.

Handling faulty hardware. When multiple free cells are

available, the buddy cell allocation algorithm allows HiveD

to avoid using faulty hardware. It prefers binding to a healthy

cell when possible. When a VC has no other choice, HiveD

will proactively bind to a faulty physical cell so that the third-

party scheduler in the VC can see the faulty hardware and

avoid using GPUs in the cell.

Fault tolerance. The HiveD process itself is also fault-

tolerant. It is deployed as a Kubernetes StatefulSet [10] to

ensure a single running instance. HiveD maintains several

centralized in-memory data structures to keep all the run-time

information used for cell allocation (e.g., the free cell list, and

the cell allocation list). To reduce overheads, these data struc-

tures are not persistent. HiveD partitions and stores the cell

binding decision for each pod in its “pod annotation”, which

is kept reliably by Kubernetes. If a job has multiple pods, the

annotation in each pod stores the cell binding decisions for

all the pods of the job. When recovering from a crash, HiveD

reconstructs all the in-memory data structures like the cell

allocation list and the free cell list from the pod annotation

in all the running pods. Moreover, with the cell binding deci-

sions stored in pod annotation, HiveD could detect whether

or not there are unscheduled pods and resume the scheduling

for the unscheduled ones. In case none of the pods of a job

gets scheduled when HiveD crashes, the job manager, another

single instance StatefulSet, will receive a timeout and resub-

mit the job. The fault tolerance of the third-party scheduler is

handled by the scheduler itself.

Reconfiguration. We observe that a cluster operator may

520 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

occasionally change the cell specification on-the-fly to recon-

figure a cluster: adding, removing, or upgrading hardware;

adjusting cell assignment for a VC. HiveD treats reconfig-

uration similar to crash recovery. The difference is during

a reconfiguration HiveD will check if there is any inconsis-

tency between the old cell bindings in the pod annotations

and the new cell specification. For example, the total bound

cells from a VC may exceed the new cell assignment. In this

case, HiveD will downgrade the jobs with the inconsistent

pods to low-priority jobs and preempt them when necessary.

The failure handling and reconfiguration capabilities of

HiveD have been tested and verfied on all the deployed Open-

PAI clusters. There are occasional hardware issues that require

human intervention, e.g., power failures, GPU hardware fail-

ures. HiveD handles the decommission and recommission of

hardware smoothly. To fully validate its failure handling ca-

pability, we run HiveD on an 800-GPU cluster on 200 Azure

low-priority VMs [78]. The 200 Azure VMs consist of 125

NC24 [15] (NVIDIA Tesla K80) and 75 NV24 [16] (NVIDIA

Tesla M60) series VMs, which could get preempted anytime.

HiveD treats a preempted VM as a faulty cell. When a pre-

empted VM resumes, HiveD will re-include it in the cluster

just as a faulty cell turning normal. We observe up to 75%

of the preemption rate (150 out of 200 VMs) in the cluster.

And HiveD handles the preemptions well. When a VM gets

preempted, the deep learning job running atop will migrate

to other available GPUs or wait in a queue when GPUs are

unavailable. The waiting job will get scheduled within one

minute when a desired VM resumes from preemption.

5 Evaluation

We evaluate HiveD using experiments on a 96-GPU cluster on

a public cloud and trace-driven simulations on a production

workload. Overall, our key findings include:

• HiveD eliminates all the sharing anomalies found in

all the tested schedulers. Excessive job queuing delay

decreases from 1,000 minutes to zero.

• HiveD can incorporate the state-of-the-art deep learning

schedulers and complement them with sharing safety,

while maintaining their scheduling goals and preserving

sharing benefits with low-priority jobs.

• HiveD guarantees sharing safety under various cluster

load. In contrast, high cluster load in quota-based scheme

can result in 7× excessive queuing delay.

• HiveD’s buddy cell allocation algorithm reduces job

preemption by 55% with dynamic binding and fragmen-

tation of GPU affinity by up to 20%.

Experimental setup. We collect a 2-month trace from a

production cluster of 279 8-GPU nodes (2,232 GPUs). The

Tenant 1-GPU 2-GPU 4-GPU 8-GPU ≥16-GPU Total Quota

res-a 429 14 260 625 40 1,368 0.37%
res-b 18,319 1,593 931 148 238 21,229 0.73%
res-c 3,285 161 716 185 0 4,347 0.73%
res-d 1,754 0 0 0 0 1,754 1.47%
res-e 2,682 110 3,005 0 0 5,797 1.83%
res-f 8,181 88 618 1,337 559 10,783 28.57%
prod-a 227 54 23 1,132 138 1,574 8.79%
prod-b 16,446 67 605 1,344 22 18,484 10.62%
prod-c 4,692 301 1,905 4,415 1,206 12,519 11.36%
prod-d 781 6 545 650 95 2,077 15.75%
prod-e 58,407 532 2,118 959 2 62,018 19.78%

Total 115,203 2,926 10,726 10,795 2,300 141,950 100%

Table 1: Number of jobs with different GPU demands and

quota assignment of tenants.

trace contains 141,950 deep learning training jobs, each spec-

ifying its submission time, training time, number of GPUs

with the affinity requirement, and the associated tenant. The

cluster is shared by 11 tenants. Table 1 shows each tenant’s

quota assignment in the real deployment and the distribution

of a job’s GPU number. Please refer to [52] for more details

of the trace and its collection and analysis methodology. We

run experiments in a 96-GPU cluster deployed on Azure. The

cluster consists of 24 virtual machines (NC24 [15]), each with

4 NVIDIA K80 GPUs.

5.1 Sharing Safety: Cluster Experiments

In this section, we examine sharing safety in traditional quota-

based scheme and HiveD on the deployed cluster.

Methodology. We collect a 10-day trace from the original

2-month production trace. To approximate the load of the

2,232-GPU cluster on a 96-GPU one, we scale down the

number of jobs by randomly sampling from the 10-day trace

proportionally (96 out of 2,232). Due to security reasons, we

do not have access to the code and data of the jobs. Therefore,

we replace the jobs with 11 popular deep learning models

in domains of Natural Language Processing (NLP), Speech,

and Computer Vision (CV) from GitHub (summarized in

Table 2). We mix these models following a distribution of

NLP:Speech:CV = 6:3:1, as reported in [86].

We test three state-of-the-art deep learning schedulers:

YARN-CS [52], Gandiva [86], and Tiresias [41]. We obtained

the source code of Gandiva and Tiresias [11], and use the same

implementation in our experiments. YARN-CS is a modified

YARN Capacity Scheduler. It packs jobs as close as possible

to spare good GPU affinity, similar to [52]. We further refine

the preemption policy of YARN-CS: instead of preempting

the latest jobs, it preempts low-priority jobs based on the de-

sired GPU affinity requirement. Otherwise, the baseline of

YARN-CS will be much worse. To enforce quota in Tiresias,

jobs exceeding the quota will get scheduled in a low-priority

queue, which is also sorted by Tiresias. For each scheduler,

we compare: (i) each tenant running its jobs in a private clus-

ter with the capacity set to its quota; (ii) tenants sharing the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 521

Type Model Dataset

NLP

Bi-Att-Flow [74] SQuAD [68]

Language Model [90] PTB [61]

GNMT [85] WMT16 [13]

Transformer [82] WMT16

Speech
WaveNet [81] VCTK [12]

DeepSpeech [45] CommonVoice [5]

CV

InceptionV3 [79] ImageNet [33]

ResNet-50 [46] ImageNet

AlexNet [57] ImageNet

VGG16 [77] ImageNet

VGG19 ImageNet

Table 2: Deep learning models used in the experiments [86].

cluster using quota; and (iii) tenants sharing the cluster us-

ing the scheduler with HiveD enabled. In a shared cluster,

all schedulers will schedule jobs as high-priority ones if the

tenant has sufficient resources in its quota or VC, otherwise

the job will be scheduled as a low-priority one.

In HiveD’s experiments, we use a cell hierarchy with four

levels: node (8-GPU), CPU socket (4-GPU), PCIe switch (2-

GPU), and GPU. We assign each tenant a set of node-level

cells with a total number of GPUs equal to its quota. To

model the cell hierarchy after the production cluster, we treat

every two contiguous 4-GPU VMs as one logical 8-GPU

node (i.e., one 8-GPU node level cell). Similar to [86], to

speed up replaying the 10-day trace, we “fast-forward” the

experiment by instructing running jobs to skip a number of

iterations whenever there are no scheduling events, including

job arrival, completion, preemption, migration, etc. The time

skipped is calculated by measuring job training performance

in a stable state. To enable the skipping, HiveD bypasses the

kube-scheduler and talks to job pods directly.

The trace shows that the GPU affinity requirements of most

jobs are hard, showing that users are not willing to sacrifice

training performance. In this case, queuing delay is the major

source of sharing anomaly in the overall job completion time

(JCT). Note that JCT consists of queuing delay and actual

training time, and job training time is highly deterministic as

long as GPU affinity is the same [86]. Therefore, we show the

queuing delay to illustrate the sharing anomaly when job’s

GPU affinity requirement is hard. We also evaluate the JCT

when job’s affinity requirement is soft.

Results. Figure 5(a) shows the queuing delay of jobs from

tenant prod-a using the three schedulers. The X-axis denotes

the job submission time. The Y-axis denotes the queuing delay

averaged in a 12-hour moving window. Figure 5(a) shows that

all the three schedulers demonstrate sharing anomaly without

HiveD. For YARN-CS, from Day 8 to Day 10, jobs in prod-a
suffer 1,000 minutes longer queuing delay in a quota-based

cluster than in its private cluster. Although YARN-CS packs

jobs as compactly as possible, a large number of 1-GPU jobs

from other tenants with varying durations make the available

GPUs affinity highly fragmented. As a result, multi-GPU jobs

have to wait a long time for the desired affinity. Since the

(a) Average queuing delay of Tenant prod-a

(b) Average job completion time across all tenants

Figure 5: The experiments for the three schedulers in a 96-

GPU cluster, with and without HiveD.

majority of jobs in prod-a use multiple GPUs (Table 1), the

tenant suffers more from sharing anomaly.

Similarly, in Gandiva, jobs in prod-a suffer up to 400 min-

utes longer queuing delay in the shared cluster on Day 2 and

Day 8. The excessive queuing delay is shorter than that in

YARN-CS because Gandiva can mitigate the fragmentation of

GPU affinity by job migration. However, unaware of cells in

a VC, Gandiva’s greedy algorithm may accidentally migrate

jobs to improve the job performance in a tenant at the ex-

pense of other tenant’s GPU affinity, thus violating safety. For

example, Gandiva may greedily migrate away an interfering

job in a VC while increasing the fragmentation and violating

the sharing safety of other VCs. In contrast, HiveD achieves

separation of concerns, allowing Gandiva to migrate jobs for

its own goal without worrying about sharing safety. We will

discuss job migration more in §6.

In Tiresias, Tenant prod-a shows sharing anomaly on Day 2

and Day 8. With quota enforcement, Tiresias suffers over 330

minutes longer queuing delay than that in its private cluster.

To reduce job completion time (JCT), Tiresias prefers running

522 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) 279 nodes (b) 200 nodes

Figure 6: The average job queuing delay of Tenant prod-a and prod-e vs. the level of fragmentation of GPU affinity.

shorter and smaller jobs first. We do observe shorter queuing

delay (and JCT) in Tiresias, compared to the other two sched-

ulers. However, without HiveD, the global advantage of small

jobs in a tenant might increase the fragmentation of GPU

affinity in other tenants, thus resulting in sharing anomaly.

The experiment suggests that the evaluated schedulers are

effective in their design objectives but they do not consider

sharing safety, a factor that could severely impact user experi-

ence. HiveD complements the three schedulers with sharing

safety by reserving the GPU affinity in each tenant’s VC. With

HiveD, prod-a (and all the other tenants) never experiences an

excessive queuing delay in the shared cluster, using each of

the three schedulers. Even during Days 8∼10, the multi-GPU

jobs are scheduled immediately as the tenant has enough 8-

GPU cells in its VC (hence the reserved cells in the physical

cluster). HiveD also allows jobs to have a significantly shorter

queuing delay in the shared cluster when a tenant runs out of

its own capacity in the private cluster (Days 1, 3, and 6), by

giving it chances to run low-priority jobs.

With sharing safety, HiveD can still preserve the scheduling

efficiency. Figure 5(b) shows that HiveD exhibits similar job

completion time compared to those without HiveD: at most

3% worse (for YARN-CS) and 12% better (for Gandiva).

We also evaluate the job completion time (JCT) when job’s

GPU affinity requirement is soft. Without HiveD, some jobs

experience worse training speed due to a relaxed affinity re-

quirement and thus result in higher JCT in a shared cluster

than in a private cluster (i.e., sharing anomaly). Again, HiveD

eliminates all sharing anomalies in this case. Overall we ob-

serve a trend similar to the result when the affinity requirement

is hard, hence the details are omitted in this paper.

5.2 Sharing Safety: Full Trace Simulation
We further use simulations to reveal the factors that influ-

ence sharing safety. The simulations use YARN-CS as the

scheduler in the rest of this section. To validate simulation

accuracy, the simulator replays the experiments in §5.1 and

we compare the obtained job queuing delay to that in §5.1.

The largest difference across all the experiments is within 7%.

In the simulations we also observe similar sharing anomalies

shown in the real experiments, so we believe the variations

do not affect our main conclusion.

Queuing delay in a cluster with the original size. The

top two figures in Figure 6(a) show the queuing delay for

jobs from two representative tenants, prod-a and prod-e, sub-

mitted in 20 days. The jobs run in a cluster of the same size

as the original production cluster (279 8-GPU nodes). The

result is averaged in a 12-hour sliding window over job sub-

mission time. In the bottom figure of Figure 6(a) we also

show the level of fragmentation of GPU affinity to observe

its correlation with queuing delay. At any time, the level of

fragmentation is defined as the proportion of 8-GPU nodes

that cannot provide 8-GPU affinity for a high-priority job.

Among the three solutions, HiveD achieves the shortest

queuing delay in both tenants. Tenant prod-a suffers a longer

queuing delay in its private cluster in several time slots (e.g.,

the first 5 days) when the resource demands exceed its capac-

ity. Both the quota-based scheme and HiveD reduce the queu-

ing delay significantly by running low-priority jobs. However,

from Day 11 to Day 12, prod-a experiences a longer queuing

delay (200 minutes) in the quota-based cluster than that in the

private cluster. In this period, the fact that no queuing delay

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 523

Figure 7: Average queuing delay of each tenant, normalized to that in its private cluster (200 nodes).

observed in its private cluster suggests prod-a has enough

GPU quota. But the fragmentation level in the cluster reaches

100%, suggesting the quota-based scheme cannot find even

one node to run an 8-GPU job for prod-a. In comparison, prod-
a in HiveD has zero queuing delay since it has enough 8-GPU

cells available. Overall, the fragmentation level in HiveD is

lower than that in the quota-based scheme, because HiveD

reserves cells for each tenant, preventing the fragmentation

of reserved GPU affinity.

Queuing delay in a higher-load cluster. When a cluster

is under-utilized, sharing anomaly is less likely to happen

due to sufficient GPU affinity. To further understand the im-

pact of cluster load on sharing safety, we keep the workload

unchanged but reduce the cluster size to 200 8-GPU nodes

(1,600 GPUs) and rerun the simulation. In this setup, around

90% of the GPUs are used by high-priority jobs. The results

are shown in Figure 6(b). In the quota-based scheme, prod-a
experiences more severe sharing anomaly when the cluster

load is higher. The anomaly lasts from Day 9 to Day 19: the

queuing delay can be 8,000 minutes longer than that in the

private cluster. The higher cluster load incurs a higher level of

GPU affinity fragmentation: the fragmentation level stays at

100% for most of the time, which delays the multi-GPU jobs.

For tenant prod-e, the queuing delays for both Quota and

HiveD are always shorter in a shared cluster than in the pri-

vate cluster. This is because its workload is dominated by a

large number of 1-GPU jobs (refer to Table 1), which are im-

mune to the fragmentation of GPU affinity. HiveD can further

reduce prod-e’s queuing delay by guaranteeing its multi-GPU

affinities for its multi-GPU jobs.

We also compare the average queuing delay in the three

schemes for each tenant and show the result in Figure 7. The

bars marked “Private” and “Quota” show that prod-a’s queu-

ing delay in Quota is nearly 7× that in its private cluster. In

contrast, the bars marked “HiveD” show that every single ten-

ant has a shorter queuing delay in HiveD than in the private

cluster. Compared to Quota, HiveD reduces the queuing delay

in 9 out of the 11 tenants (accounting for over 98% quota)

due to lower fragmentation level. This reduction is up to 94%

(for tenant prod-a), and on average 9% for all the 11 tenants.

In all the previous experiments, the cluster utilization in

HiveD is similar to or slightly better than that in quota-based

scheme. At some time instances, HiveD improve the utiliza-

tion over quota-based scheme by up to 20% in the 200-node

case and 14% in the 279-node case, as a result of reduced

queuing delay. In fact, cluster utilization may depend on the

“shape” of jobs (i.e., number of GPUs per job). For example,

with a sufficient number of 1-GPU jobs, one can easily sat-

urate the whole cluster. Therefore, our evaluation does not

focus on cluster utilization.

Sharing anomalies leading to diminishing benefits of
sharing. Figure 7 shows prod-a suffers from severe shar-

ing anomaly (7× queuing delay). It is no longer beneficial

for prod-a to contribute its GPUs to the shared cluster. We

then run the experiment again to evaluate the effect of decom-

missioning prod-a (removing its GPUs and workload) from

the cluster. The result is shown in the bars marked “Quota

(w/o prod-a)” in Figure 7. This time, res-f becomes the vic-

tim of sharing anomalies, suffering over 1.7× longer queuing

delay. As the largest tenant, res-f previously benefits less (9%

shorter queuing delay in Quota than its private cluster) from

contributing GPUs to the cluster, compared to the smaller ten-

ants. Because prod-a contains mostly multi-GPU jobs, after

decommissioning prod-a, the fragmentation of GPU affinity

in the whole cluster becomes worse, leading to longer queu-

ing delay of res-f’s multi-GPU jobs and hence the sharing

anomaly. This experiment shows the importance of ensur-

ing sharing safety for large tenants. They already benefit less

from the shared cluster. They will prefer not contributing their

resource to the cluster if experiencing sharing anomaly.

We further decommission res-f from the cluster and re-

run the experiment. The result is shown in the bars marked

“Quota (w/o prod-a and res-f)” in Figure 7. This time, we

do not discover further sharing anomaly. However, the de-

commissioning of the two tenants greatly reduces the sharing

benefits of other tenants. prod-a and res-f contribute 37% of

the GPUs in the original cluster. The queuing delay of other

tenants in the smaller cluster is clearly longer than that in the

larger clusters (before removing prod-a and res-f).

In contrast, with HiveD, not a single tenant suffers from

524 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 8: Queuing delay of res-f normalized by private cluster

vs. workload fragmentation level (200 nodes).

sharing anomaly in all the settings. And HiveD’s queuing

delay is consistently shorter than those without HiveD, across

all settings. This highlights the necessity of sharing safety.

GPU affinity requirement vs. Sharing safety. We find

that the distribution of the GPU affinity requirement for jobs

across tenants affects sharing safety. Large number of 1-GPU

jobs from other tenants may interfere (or fragment) the GPU

affinity of a tenant, leading to sharing anomaly. To show

this, we “reshape” the GPU affinity requirement of jobs and

observe the queuing delay. In the experiment, we divide the 11

tenants into two groups: jobs in one group are reshaped to the

GPU affinity of 1×8 (8-GPU), and those in the other group

are changed to 1×1 (1-GPU). The reshaping does not change

the total number of GPUs used in each tenant: the number

of jobs N is defined by the total number of GPUs divided by

the GPU number of a job (8 and 1 in this case). And the job

submission time is set by randomly sampling N jobs from the

original trace. We further define workload fragmentation as

the ratio of the total number of jobs to the total number of

GPUs. Jobs with higher affinity level have a lower workload

fragmentation. The metric will be 1 if all jobs use 1 GPU.

Initially, only res-f is in the 8-GPU group, while the rest ten-

ants go to the 1-GPU group. Figure 8 shows the queuing delay

of res-f (normalized by that in its private cluster) and the work-

load fragmentation, when tenants prod-e, prod-d, and prod-c
are moved to the 8-GPU group one by one. When only res-f is

in the 8-GPU group, the workload is highly fragmented (0.91).

This leads to severe sharing anomaly in Quota-based system:

132× of the queuing delay in the private cluster. When more

tenants are moved to the 8-GPU group, the workload fragmen-

tation level goes down. This correspondingly reduces sharing

anomaly. res-f experiences shorter queuing delay after the

other three tenants are added (4.3×, 1.9×, 0.9×, respectively,

as shown in Figure 8). In contrast, HiveD guarantees sharing

safety even under the highest fragmentation and consistently

provides shorter queuing delay. Similar trends are observed

in other tenants, we hence omit the detailed results here.

Soft affinity requirement. We also study the impact on

sharing safety when the GPU affinity requirement of some

jobs is soft, i.e., relax the affinity if it cannot be satisfied.

Figure 9: Sharing anomaly still happens when some jobs’

GPU affinity requirement is soft.

According to [86], not all training jobs will suffer from perfor-

mance degradation with relaxed affinity. Hence in the study,

we make the most optimistic assumption on the performance

degradation: jobs with soft affinity requirement will not sacri-

fice the training speed. Surprisingly, sharing anomaly could

still happen in this case for a quota-based scheme. Figure 9

shows the average queuing delay of tenant prod-a when some

multi-GPU jobs in the trace are randomly selected to relax its

GPU affinity. We use the 200-node setting in the experiments.

Figure 9 shows that prod-a still has sharing anomaly when

50% of the multi-GPU jobs are allowed to relax their affinity.

The average queuing delay in the quota-based scheme is 1.3×
of that in its private cluster. Although no obvious anomaly

found in the average queuing delay when the job ratio set to

25% and 75%, we still observe sharing anomalies in certain

time instances. This is similar to the behaviors in Figures 5(a)

and 6. We omit the details due to space limit. On the other

hand, HiveD eliminates all the sharing anomalies and always

has the shortest queuing delay. Note that Figure 9 shows the

best case scenario for relaxed affinity. In reality, jobs with

relaxed affinity could perform much worse than the same

jobs with the desired affinity [86]. Thus sharing anomaly may

happen more likely than it is described in Figure 9.

Although relaxing affinity may reduce the queuing delay

for jobs with soft affinity requirement, the behavior may in-

crease the fragmentation of GPU affinity in the cluster. This in

turn will increase the queuing delay for jobs with hard affinity

requirement. It becomes a complex tradeoff among queuing

delay, fragmentation of GPU affinity, training performance,

and cluster utilization. HiveD reserves cells to achieve sharing

safety and avoids the complex tradeoff altogether.

5.3 Buddy Cell Allocation
In this section, we evaluate the buddy cell allocation algo-

rithm through trace-driven simulations, to understand its ef-

fectiveness in reducing preemption and fragmentation of GPU

affinity, and its algorithm efficiency.

Reducing preemption with dynamic binding. In the

buddy cell allocation algorithm, cells are bound to those in the

physical cluster dynamically. This reduces unnecessary pre-

emption of low-priority jobs when there are idle cells. Figure

10 shows the numbers of job preemption when using dynamic

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 525

Figure 10: Preemption in dynamic and static bindings.

binding and static binding, respectively. This experiment uses

the same setup as the 279-node experiment in §5.2. In total,

dynamic binding reduces the number of preempted GPUs

by 55%. We also measure the correlation between preemp-

tion and the proportion of bound cells in the time dimension

(on a 12-hour window). When there are more cells being

bound to the physical cluster (e.g., Day 10, Day 20 in dy-

namic binding), there are also more GPUs being preempted.

This is because we have fewer choices of physical cells to

bind, hence fewer opportunities to reduce preemption. This

observation is also consistent with the fact that static bind-

ing, where this proportion is always 100%, incurs many more

unnecessary preemptions.

Reducing fragmentation of GPU affinity with multi-level
cells. Multi-level cells allow the buddy cell allocation al-

gorithm to pack the cells at the same level across tenants to

reduce the fragmentation of GPU affinity. For example, if two

tenants both have a level-1 (1-GPU) cell, the algorithm prefers

selecting two cells from the same physical node, i.e., buddy

cells, to run a 1-GPU job. Instead, if both tenants only reserve

level-4 cells (8-GPU, node level), the two tenants have to use

a level-4 cell to run its 1-GPU job. Hence the two 1-GPU jobs

will be placed on two different nodes, which increases the

fragmentation of GPU affinity at node level.

To demonstrate this, instead of only assigning level-4 cells,

we assign cells from level-1 to level-4 while keeping the

total number of GPUs assigned to each tenant the same as

in the above 279-node simulation. Each tenant’s assignment

matches the distribution of its demands on each level of the

cells. Figure 11 shows the fragmentation level of GPU affinity

over time when using multi-level and single-level (level-4)

cells, respectively. The fragmentation level is always lower

with multi-level cells. The gap is more than 10% (up to 20%)

for most of the time, which means we can spare roughly 30

more level-4 cells. HiveD therefore recommends that tenants

model their job’s affinity requirements more precisely, in order

for a cluster to perform more efficient cross-VC packing.

Algorithm efficiency. We profile the performance of our

Figure 11: Fragmentation with multi- and single-level cells.

implementation of buddy cell allocation in a setup of a 65,536-

GPU cluster with 8 racks, each consisting of 1024 8-GPU

nodes. We issued 10,000 cell allocation requests at random

levels. The average time to complete a request is 2.18ms. A

large part of the cost comes from ordering cells according

to low-priority jobs, which accounts for 88% of the time. As

the algorithm is clearly not the system bottleneck, we do not

perform further optimization (e.g., lock-free operations).

6 Discussion

VC assignment. The VC assignment to a tenant, in terms

of both the number of GPUs and their cell structures, has im-

pacts on the effective VC utilization and queuing delay across

tenants. The VC assignment is usually a business process, a

common practice in large production clusters, e.g., Borg [84].

Factors to consider in VC assignment include overall capacity,

tenant demands, composition of tenant workload, workload

variation over time, business priority, and budget constraints.

Therefore, HiveD leaves the choice of VC assignment to users.

In most cases, a tenant can just reserve several node-level cells

as a VC and adopt a deep learning scheduler for the VC. If a

tenant has more details about workloads, e.g., the GPU num-

ber distribution of the jobs, the tenant can reserve different

levels of cells to match the job requirement and enjoy less

fragmentation and preemption, as discussed in §5.3. VC as-

signment is a new kind of resource reservation based on cells,

and HiveD is a framework to enforce such a reservation.

Job migration. Migrating jobs between GPUs is a powerful

mechanism that has been shown effective [86] in improving

quality of GPU allocations. De-fragmentation via migration

can in theory be used to resolve potential sharing safety viola-

tions, but our experience has shown that there are significant

challenges in applying migration in production. Fully trans-

parent migration remains challenging in practice, due to imple-

mentation issues in different deep learning frameworks (e.g.,

inconsistent or limited use of certain programming APIs; chal-

lenges of multi-language, multi-framework, and multi-version

support [21, 30, 62, 65]). Moreover, the choice of which jobs

to migrate and where could be rather complex, with different

conflicting objectives to balance and a large search space. As

shown in §5.1, a greedy migration algorithm [86] can still

violate sharing safety. In contrast, HiveD’s cell abstraction

and buddy cell allocation algorithm enable separation of con-

526 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cerns. HiveD can also leverage migration, especially within

each tenant—it will be a search space constrained to within a

tenant under the sharing-safety guarantee.

HiveD in the cloud. Major cloud providers are offering

GPU VMs in the cloud. Our findings in HiveD are highly

relevant even in the cloud setting and can shed light on the

types of offering in the cloud. Our buddy cell allocation algo-

rithm can also be used by the cloud providers to manage their

reserved [2,6,27] and spot [4,8,78] GPU instances, as our VC

cells are essentially reserved instances and our low-priority

cells are essentially preemptible spot instances. HiveD’s im-

plementation already satisfies requirements of a typical cloud

provider, e.g., supports different GPU models, reserves pay-

as-you-go instances [70], and handles expansion in capacity.

For practical deployment, HiveD can use a hybrid strategy

to leverage the cloud as an extension of a multi-tenant GPU

cluster when the demand temporarily exceeds the capacity, or

can be deployed entirely on a cloud using reserved resources

at a lower price, with the options to (i) use spot instances, (ii)

buy pay-as-you-go instances when needed, and (iii) purchase

and sell reserved capacity in the marketplace [3, 23].

Extending HiveD to other affinity-aware resources. Al-

though this paper focuses on reserving affinitized GPUs,

HiveD’s design applies to other types of affinity-aware re-

sources as well. For example, the cell can be used to define

affinitized CPU cores within the same NUMA node, or even

multiple types of NUMA-aware resources like affinitized

GPUs and CPU cores under the same socket [18].

7 Related Work
Affinity-aware schedulers for deep learning training.
Affinity has been well considered something important when

scheduling deep learning jobs [22, 41, 51, 52, 59, 66, 72, 86]

as well as other (big-data) jobs [36, 38, 89]. HiveD comple-

ments these schedulers by applying them in virtualized cluster

views, thereby leveraging their efficiency while avoiding shar-

ing anomalies, as identified and shown in our experiments.

Fairness in shared clusters. Identifying the fair share of

resources in large clusters has been widely studied. Max-min

fairness [55] has been extended in a CPU cluster to address

fair allocation of multiple resource types (DRF [37]), job

scheduling with locality constraints [38, 39, 48, 89], and cor-

related and elastic demands (HUG [31]). There are recent

proposals to achieve fairness and efficiency for machine learn-

ing workloads [29, 60, 64].

In contrast, HiveD focuses on sharing safety with respect

to given resource shares (i.e., VC assignment). As we have

discussed in §6, determining the resource shares is usually

a business process. HiveD assumes a pre-agreed resource

partition among multiple tenants, and enforces it with the

sharing safety guarantee. This is driven by witnessing that

corporate users are annoyed by the uncertain availability of

GPU resources that are already assigned to them. In this

sense, HiveD is a framework to guarantee a type of resource

reservation [91], defined in terms of cells in VCs. HiveD

can address fairness by applying the fairness schemes (e.g.,

Themis [60]) to determine fine-grained fair-share for jobs

within a tenant (or across tenants for low-priority jobs), given

the coarse-grained VC assignment enforced by HiveD.

Performance isolation. Performance in a shared cluster

is sensitive to various sources of interference, including I/O,

network, and cache. There are research works on performance

isolation that include storage isolation [32, 42, 43, 80], appli-

ance isolation [24, 76], network isolation [44, 58, 67, 75, 87],

and GPU isolation [25, 26, 50, 53, 69, 88]. In HiveD, we iden-

tify a new source of interference: the fragmentation of GPU

affinity in a tenant may affect the GPU affinity in other ten-

ants in a shared GPU cluster. To eliminate such interference,

HiveD adopts the notion of VC to encapsulate the requirement

in multi-level cells and constrains the scheduling behavior

within each VC.

Reducing fragmentation. Reducing fragmentation is im-

portant to cluster utilization, which has been widely studied in

past decades. Tetris [40] is a multi-resource scheduler to pack

tasks to avoid resource fragmentation. Feitelson [35] also

proposed a buddy-based algorithm to reduce fragmentation

for gang-scheduled jobs in supercomputers. There are also

works using migration/preemption to reduce fragmentation

for gang-scheduled jobs [63,71,86]. HiveD’s buddy allocation

algorithm with affinity hierarchy can also effectively reduce

fragmentation. More importantly, HiveD takes a step further

to guarantee sharing safety, i.e., eliminate the external frag-

mentation across tenants. Ensuring sharing safety requires

not only minimizing fragmentation but also explicitly defin-

ing cells assigned to each VC, and enforcing this assignment

during physical resource allocation.

8 Conclusion
Motivated by observations from production clusters and vali-

dated through extensive evaluations, HiveD takes a new ap-

proach to meeting the challenge of sharing a multi-tenant

GPU cluster for deep learning by (i) defining a simple and

practical guarantee, sharing safety, that is easily appreciated

by tenants, (ii) proposing an affinity-aware resource abstrac-

tion, cell, to model virtual private clusters, (iii) developing an

elegant and efficient algorithm, buddy cell allocation, that is

proven to guarantee sharing safety and is naturally extended

to support low-priority jobs, and (iv) devising a flexible ar-

chitecture, to incorporate state-of-the-art schedulers for both

sharing safety and scheduling efficiency. All these combined,

HiveD strikes the right balance between multiple objectives

such as sharing safety and cluster utilization.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 527

Acknowledgements

We thank our shepherd Junfeng Yang and the anonymous

reviewers for their constructive feedbacks that helped improve

the clarity of the paper. We thank Jim Jernigan and Kendall

Martin from the Microsoft Grand Central Resources team for

providing GPUs for the evaluation of HiveD. Fan Yang thanks

the late Pearl, his beloved cat, for her faithful companion

during writing this paper. This work was partially supported

by the National Natural Science Foundation of China under

Grant No. 61972004.

References

[1] Hadoop: Fair scheduler, 2016. https://hadoop.
apache.org/docs/r2.7.2/hadoop-yarn/
hadoop-yarn-site/FairScheduler.html.

[2] Announcing general availability of azure reserved vm

instances. https://bit.ly/2jEFKHR, Nov. 2017.

[3] Amazon EC2 reserved instance marketplace. https:
//aws.amazon.com/ec2/purchasing-options/
reserved-instances/marketplace/, Apr. 2019.

[4] Aws spot instances. https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/
using-spot-instances.html, Apr. 2019.

[5] Common voice dataset. http://voice.mozilla.
org/, Apr. 2019.

[6] Google cloud: Committed use discounts. https:
//cloud.google.com/compute/docs/instances/
signing-up-committed-use-discounts, Apr.

2019.

[7] Kubernetes default scheduler. https:
//kubernetes.io/docs/concepts/scheduling/
kube-scheduler/, June 2019.

[8] Preemptible virtual machines. https://cloud.
google.com/preemptible-vms/, Apr. 2019.

[9] Scheduler extender. https://github.
com/kubernetes/community/blob/master/
contributors/design-proposals/scheduling/
scheduler_extender.md, Jan. 2019.

[10] Statefulsets. https://kubernetes.io/
docs/concepts/workloads/controllers/
statefulset/, June 2019.

[11] Tiresias code. https://github.com/SymbioticLab/
Tiresias/, Feb. 2019.

[12] VCTK dataset. https://homepages.inf.ed.ac.uk/
jyamagis/page3/page58/page58.html, Apr. 2019.

[13] Wmt16 dataset. http://www.statmt.org/wmt16/,

Apr. 2019.

[14] Amd Radeon Instinct MI50 accelerator. https://www.
amd.com/en/products/professional-graphics/
instinct-mi50, Apr. 2020.

[15] Azure vm: Nc-series. https://docs.microsoft.
com/en-us/azure/virtual-machines/nc-series,

2020.

[16] Azure vm: Nv-series. https://docs.microsoft.
com/en-us/azure/virtual-machines/nc-series,

2020.

[17] HiveD scheduler. https://github.com/microsoft/
hivedscheduler, 2020.

[18] Kubernetes topology manager. https:
//kubernetes.io/blog/2020/04/01/
kubernetes-1-18-feature-topoloy-manager-beta,

2020.

[19] Nvidia v100 tensor core gpu. https://www.nvidia.
com/en-us/data-center/v100/, Apr. 2020.

[20] OpenPAI. https://github.com/Microsoft/pai,

2020.

[21] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Geoffrey Irving, Michael Isard, et al.

Tensorflow: A system for large-scale machine learning.

In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16), pages 265–283,

2016.

[22] Marcelo Amaral, Jordà Polo, David Carrera, Seetharami

Seelam, and Malgorzata Steinder. Topology-aware gpu

scheduling for learning workloads in cloud environ-

ments. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis, SC ’17, pages 17:1–17:12, New York, NY,

USA, 2017. ACM.

[23] Pradeep Ambati, David Irwin, and Prashant Shenoy. No

reservations: A first look at amazon’s reserved instance

marketplace. In 12th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 20). USENIX Associa-

tion, July 2020.

[24] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis,

Greg O’Shea, and Eno Thereska. End-to-end perfor-

mance isolation through virtual datacenters. In 11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 233–248, Broomfield,

CO, 2014.

528 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[25] Rachata Ausavarungnirun, Joshua Landgraf, Vance

Miller, Saugata Ghose, Jayneel Gandhi, Christopher J

Rossbach, and Onur Mutlu. Mosaic: An application-

transparent hardware-software cooperative memory

manager for gpus. arXiv preprint arXiv:1804.11265,

2018.

[26] Rachata Ausavarungnirun, Vance Miller, Joshua Land-

graf, Saugata Ghose, Jayneel Gandhi, Adwait Jog,

Christopher J Rossbach, and Onur Mutlu. Mask: Re-

designing the gpu memory hierarchy to support multi-

application concurrency. In ACM SIGPLAN Notices,

volume 53, pages 503–518. ACM, 2018.

[27] Jeff Barr. Announcing amazon EC2 reserved in-

stances. https://aws.amazon.com/blogs/aws/
announcing-ec2-reserved-instances/, Mar.

2009.

[28] Brendan Burns, Brian Grant, David Oppenheimer, Eric

Brewer, and John Wilkes. Borg, omega, and kubernetes.

Commun. ACM, 59(5):50–57, 2016.

[29] Shubham Chaudhary, Ramachandran Ramjee, Muthian

Sivathanu, Nipun Kwatra, and Srinidhi Viswanatha. Bal-

ancing efficiency and fairness in heterogeneous gpu clus-

ters for deep learning. In EUROSYS, 2020.

[30] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,

Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,

and Zheng Zhang. Mxnet: A flexible and efficient ma-

chine learning library for heterogeneous distributed sys-

tems. arXiv preprint arXiv:1512.01274, 2015.

[31] Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi, and

Ion Stoica. HUG: Multi-resource fairness for correlated

and elastic demands. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
16), pages 407–424, Santa Clara, CA, 2016.

[32] Asaf Cidon, Daniel Rushton, Stephen M Rumble, and

Ryan Stutsman. Memshare: a dynamic multi-tenant

key-value cache. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 321–334, 2017.

[33] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical

image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,

2009.

[34] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. Bert: Pre-training of deep bidirec-

tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[35] Dror G Feitelson. Packing schemes for gang scheduling.

In Workshop on Job Scheduling Strategies for Parallel
Processing, pages 89–110. Springer, 1996.

[36] Panagiotis Garefalakis, Konstantinos Karanasos, Pe-

ter Pietzuch, Arun Suresh, and Sriram Rao. Medea:

Scheduling of long running applications in shared pro-

duction clusters. In Proceedings of the Thirteenth Eu-
roSys Conference, EuroSys ’18, pages 4:1–4:13, New

York, NY, USA, 2018. ACM.

[37] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy

Konwinski, Scott Shenker, and Ion Stoica. Dominant

resource fairness: Fair allocation of multiple resource

types. In Nsdi, volume 11, pages 24–24, 2011.

[38] Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica.

Choosy: Max-min fair sharing for datacenter jobs with

constraints. pages 365–378, 04 2013.

[39] Ionel Gog, Malte Schwarzkopf, Adam Gleave,

Robert NM Watson, and Steven Hand. Firmament:

Fast, centralized cluster scheduling at scale. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 99–115, 2016.

[40] Robert Grandl, Ganesh Ananthanarayanan, Srikanth

Kandula, Sriram Rao, and Aditya Akella. Multi-

resource packing for cluster schedulers. ACM SIG-
COMM Computer Communication Review, 44(4):455–

466, 2015.

[41] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,

Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu,

and Chuanxiong Guo. Tiresias: A GPU cluster manager

for distributed deep learning. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), Boston, MA, 2019.

[42] Ajay Gulati, Irfan Ahmad, Carl A Waldspurger, et al.

Parda: Proportional allocation of resources for dis-

tributed storage access. In FAST, volume 9, pages 85–98,

2009.

[43] Ajay Gulati, Arif Merchant, and Peter J Varman.

mclock: Handling throughput variability for hypervisor

io scheduling. In OSDI, volume 10, pages 1–7, 2010.

[44] Chuanxiong Guo, Guohan Lu, Helen J Wang, Shuang

Yang, Chao Kong, Peng Sun, Wenfei Wu, and Yong-

guang Zhang. Secondnet: a data center network virtual-

ization architecture with bandwidth guarantees. In Pro-
ceedings of the 6th International Conference, page 15.

ACM, 2010.

[45] Awni Hannun, Carl Case, Jared Casper, Bryan Catan-

zaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev

Satheesh, Shubho Sengupta, Adam Coates, et al. Deep

speech: Scaling up end-to-end speech recognition. arXiv
preprint arXiv:1412.5567, 2014.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 529

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[47] Walter L Hürsch and Cristina Videira Lopes. Separation

of concerns. 1995.

[48] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi

Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:

fair scheduling for distributed computing clusters. In

Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 261–276. ACM,

2009.

[49] Jeffrey Jaffe. Bottleneck flow control. IEEE Transac-
tions on Communications, 29(7):954–962, 1981.

[50] Paras Jain, Xiangxi Mo, Ajay Jain, Harikaran Subbaraj,

Rehan Sohail Durrani, Alexey Tumanov, Joseph Gonza-

lez, and Ion Stoica. Dynamic space-time scheduling for

gpu inference. arXiv preprint arXiv:1901.00041, 2018.

[51] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra

Fedorova, and Gennady Pekhimenko. Priority-based

parameter propagation for distributed dnn training. In

SysML, 2019.

[52] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-

ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.

Analysis of large-scale multi-tenant GPU clusters for

DNN training workloads. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 947–

960, Renton, WA, July 2019. USENIX Association.

[53] Angela H Jiang, Daniel L-K Wong, Christopher Canel,

Lilia Tang, Ishan Misra, Michael Kaminsky, Michael A

Kozuch, Padmanabhan Pillai, David G Andersen, and

Gregory R Ganger. Mainstream: Dynamic stem-sharing

for multi-tenant video processing. In 2018 USENIX
Annual Technical Conference (USENIXATC 18), pages

29–42, 2018.

[54] Mark S Johnstone and Paul R Wilson. The memory

fragmentation problem: Solved? ACM Sigplan Notices,

34(3):26–36, 1998.

[55] J. Kay and P. Lauder. A fair share scheduler. Commun.
ACM, 31(1):44–55, January 1988.

[56] Kenneth C. Knowlton. A fast storage allocator. Com-
mun. ACM, 8(10):623–624, October 1965.

[57] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural

networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[58] Jeongkeun Lee, Yoshio Turner, Myungjin Lee, Lucian

Popa, Sujata Banerjee, Joon-Myung Kang, and Puneet

Sharma. Application-driven bandwidth guarantees in

datacenters. In ACM SIGCOMM computer communica-
tion review, volume 44, pages 467–478. ACM, 2014.

[59] Hyeontaek Lim, David G Andersen, and Michael Kamin-

sky. 3lc: Lightweight and effective traffic compres-

sion for distributed machine learning. arXiv preprint
arXiv:1802.07389, 2018.

[60] Kshiteej Mahajan, Arjun Singhvi, Arjun Balasubra-

manian, Varun Batra, Surya Teja Chavali, Shivaram

Venkataraman, Aditya Akella, Amar Phanishayee, and

Shuchi Chawla. Themis: Fair and efficient gpu cluster

scheduling for machine learning workloads. USENIX
NSDI, 2020.

[61] Mitchell Marcus, Beatrice Santorini, and Mary Ann

Marcinkiewicz. Building a large annotated corpus of

english: The penn treebank. 1993.

[62] Philipp Moritz, Robert Nishihara, Stephanie Wang,

Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-

bol, Zongheng Yang, William Paul, Michael I Jordan,

et al. Ray: A distributed framework for emerging AI

applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages

561–577, 2018.

[63] Ioannis A Moschakis and Helen D Karatza. Perfor-

mance and cost evaluation of gang scheduling in a cloud

computing system with job migrations and starvation

handling. In 2011 IEEE Symposium on Computers and
Communications (ISCC), pages 418–423. IEEE, 2011.

[64] Deepak Narayanan, Keshav Santhanam, Fiodar

Kazhamiaka, Amar Phanishayee, and Matei Zaharia.

Heterogeneity-aware cluster scheduling policies for

deep learning workloads. In OSDI, 2020.

[65] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin,

Alban Desmaison, Luca Antiga, and Adam Lerer. Auto-

matic differentiation in pytorch. 2017.

[66] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu,

and Chuanxiong Guo. Optimus: An efficient dynamic

resource scheduler for deep learning clusters. In Pro-
ceedings of the Thirteenth EuroSys Conference, EuroSys

’18, pages 3:1–3:14, New York, NY, USA, 2018. ACM.

[67] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury,

Arvind Krishnamurthy, Sylvia Ratnasamy, and Ion Sto-

ica. Faircloud: sharing the network in cloud computing.

ACM SIGCOMM Computer Communication Review,

42(4):187–198, 2012.

530 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[68] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,

and Percy Liang. Squad: 100,000+ questions for

machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

[69] Christopher J Rossbach, Jon Currey, Mark Silberstein,

Baishakhi Ray, and Emmett Witchel. Ptask: operating

system abstractions to manage gpus as compute devices.

In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, pages 233–248. ACM,

2011.

[70] Margaret Rouse. Pay-as-you-go cloud comput-

ing. https://searchstorage.techtarget.com/
definition/pay-as-you-go-cloud-computing-\
PAYG-cloud-computing, Mar. 2015.

[71] Kittisak Sajjapongse, Xiang Wang, and Michela Bec-

chi. A preemption-based runtime to efficiently schedule

multi-process applications on heterogeneous clusters

with gpus. In Proceedings of the 22nd international sym-
posium on High-performance parallel and distributed
computing, pages 179–190, 2013.

[72] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nel-

son, Panos Kalnis, Changhoon Kim, Arvind Krishna-

murthy, Masoud Moshref, Dan RK Ports, and Peter

Richtárik. Scaling distributed machine learning with in-

network aggregation. arXiv preprint arXiv:1903.06701,

2019.

[73] Malte Schwarzkopf, Andy Konwinski, Michael Abd-

El-Malek, and John Wilkes. Omega: flexible, scalable

schedulers for large compute clusters. 2013.

[74] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi,

and Hannaneh Hajishirzi. Bidirectional attention

flow for machine comprehension. arXiv preprint
arXiv:1611.01603, 2016.

[75] Alan Shieh, Srikanth Kandula, Albert G Greenberg,

Changhoon Kim, and Bikas Saha. Sharing the data cen-

ter network. In NSDI, volume 11, pages 23–23, 2011.

[76] David Shue, Michael J. Freedman, and Anees Shaikh.

Performance isolation and fairness for multi-tenant

cloud storage. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Implemen-
tation, OSDI’12, pages 349–362, Berkeley, CA, USA,

2012.

[77] Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556, 2014.

[78] Lee Stott. Microsoft azure low-priority virtual machines

– take advantage of surplus capacity in azure, Nov. 2017.

[79] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception

architecture for computer vision. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2818–2826, 2016.

[80] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas

Karagiannis, Antony Rowstron, Tom Talpey, Richard

Black, and Timothy Zhu. Ioflow: a software-defined

storage architecture. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Prin-
ciples, pages 182–196. ACM, 2013.

[81] Aäron Van Den Oord, Sander Dieleman, Heiga Zen,

Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalch-

brenner, Andrew W Senior, and Koray Kavukcuoglu.

Wavenet: A generative model for raw audio. SSW, 125,

2016.

[82] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,

and Illia Polosukhin. Attention is all you need. In Ad-
vances in neural information processing systems, pages

5998–6008, 2017.

[83] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Dou-

glas, Sharad Agarwal, Mahadev Konar, Robert Evans,

Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth

Seth, et al. Apache hadoop yarn: Yet another resource

negotiator. In Proceedings of the 4th annual Symposium
on Cloud Computing, page 5. ACM, 2013.

[84] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,

David Oppenheimer, Eric Tune, and John Wilkes. Large-

scale cluster management at google with borg. In Pro-
ceedings of the Tenth European Conference on Com-
puter Systems, page 18. ACM, 2015.

[85] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V

Le, Mohammad Norouzi, Wolfgang Macherey, Maxim

Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.

Google’s neural machine translation system: Bridging

the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[86] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-

jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,

Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,

et al. Gandiva: Introspective cluster scheduling for deep

learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages

595–610, 2018.

[87] Di Xie, Ning Ding, Y Charlie Hu, and Ramana Kom-

pella. The only constant is change: Incorporating time-

varying network reservations in data centers. ACM SIG-
COMM Computer Communication Review, 42(4):199–

210, 2012.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 531

[88] Hangchen Yu and Christopher J Rossbach. Full virtu-

alization for gpus reconsidered. In Proceedings of the
Annual Workshop on Duplicating, Deconstructing, and
Debunking, 2017.

[89] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,

Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay

scheduling: a simple technique for achieving locality

and fairness in cluster scheduling. In Proceedings of the
5th European conference on Computer systems, pages

265–278. ACM, 2010.

[90] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.

Recurrent neural network regularization. arXiv preprint
arXiv:1409.2329, 2014.

[91] L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource

reservation protocol (rsvp). https://tools.ietf.
org/html/rfc2205#section-2#page-19, 1997.

IETF RFC2205.

532 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

AntMan: Dynamic Scaling on GPU Clusters for Deep Learning

Wencong Xiao, Shiru Ren∗, Yong Li, Yang Zhang, Pengyang Hou,
Zhi Li, Yihui Feng, Wei Lin, Yangqing Jia

Alibaba Group

Abstract
Efficiently scheduling deep learning jobs on large-scale GPU
clusters is crucial for job performance, system throughput,
and hardware utilization. It is getting ever more challeng-
ing as deep learning workloads become more complex. This
paper presents AntMan, a deep learning infrastructure that
co-designs cluster schedulers with deep learning frameworks
and has been deployed in production at Alibaba to manage
tens of thousands of daily deep learning jobs across thousands
of GPUs. AntMan accommodates the fluctuating resource de-
mands of deep learning training jobs. As such, it utilizes the
spare GPU resources to co-execute multiple jobs on a shared
GPU. AntMan exploits unique characteristics of deep learn-
ing training to introduce dynamic scaling mechanisms for
memory and computation within the deep learning frame-
works. This allows fine-grained coordination between jobs
and prevents job interference. Evaluations show that AntMan
improves the overall GPU memory utilization by 42% and
computation utilization by 34% in our multi-tenant cluster
without compromising fairness, presenting a new approach
to efficiently utilizing GPUs at scale.

1 Introduction

Over the past years we have witnessed the great success of
Deep Learning (DL) with GPUs. DL already powers several
widely-used products today, spreading across fields including
computer vision, language understanding, speech recognition,
recommendation, advertisement, etc. Therefore, it has become
a vital workload integrated into the production pipeline at
scale. Large companies often build multi-tenant GPU clus-
ters for DL workloads, similar to shared clusters for big-data
analytics.

At Alibaba, we have observed low utilization of GPU
hardware in shared multi-tenant DL clusters, while queu-
ing many jobs waiting for resources. Such low utilization
of DL cluster arises from two main aspects. Firstly, most

∗Co-first author

DL-production training jobs cannot fully utilize all the GPU
resources throughout their execution. Training a DL model
often requires a mixture of computations, some of which can
hardly be parallelized using GPU, such as graph sampling
in graph neural network [21, 54], feature extraction in adver-
tisement [15, 23], data augmentation in computer vision [56],
etc. Besides, when scaled to distributed training, 90% of the
time can be spent on networking [32]. Secondly, the common
reservation-based approach for cluster scheduling results in
significant GPU idling because DL jobs often cannot consume
partial resources. For example, stochastic gradient descent
(SGD) is synchronous and requires all resources to be avail-
able simultaneously for gang-scheduling [27]. The cluster
scheduler thus forces partially available resources to idle in
reserve until the final request is satisfied.

Packing jobs on shared GPUs can boost GPU utilization
and make the same cluster accomplish more jobs overall.
However, this approach is rarely used in production clusters.
The reason is that although improving GPU utilization is bene-
ficial, it is also critical to guarantee the performance of impor-
tant resource-guarantee jobs (i.e., jobs with resource quota).
Co-executing multiple jobs on the same GPU can result in in-
terference, which leads to significant performance slowdown
of the resource guarantee jobs [48]. What’s more, the job pack-
ing strategy can introduce memory contention on concurrent
jobs, which could even cause the failure of the training jobs
if the resource demands of a job abruptly increase. Therefore,
it is typical in existing production GPU clusters to perform
exclusive allocation of resources on jobs [27].

We present AntMan, a DL system that improves GPU clus-
ter utilization while ensuring fairness and performance of
resource-guaranteed jobs by doing cooperative resource scal-
ing to minimize job interference. New mechanisms are intro-
duced in DL frameworks to allocate the exact required amount
of GPU memory and computation unit dynamically during
the job training. Any spare GPU resources, including GPU
memory and compute cycles, could be leveraged by over-
subscription jobs. AntMan co-designs the cluster scheduler
and DL frameworks to adapt to the inherent fluctuating re-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 533

source characteristics in production jobs, through framework
information aware scheduling, transparent memory extension,
and fast continuous inter-job coordination. With this architec-
ture, AntMan opens a space for policy design of co-executing
DL jobs using GPU resources. In the GPU clusters of Al-
ibaba, AntMan adopts a simple and practical strategy to max-
imize the cluster throughput. While providing performance
guarantee on resource-guarantee jobs, AntMan dispatches
opportunistic jobs to best-effort utilize GPU resources at a
low-priority without any resource guarantees.

We have implemented AntMan by modifying two most
popular DL frameworks, PyTorch [35] and TensorFlow [8],
to expose necessary new primitives for the cluster scheduler
to leverage at runtime. Our scheduling policy is implemented
in a scheduler prototype on top of Kubernetes for evaluation,
and the complete system is fully implemented in Fuxi [52],
the internal scheduler of Alibaba, to serve the production DL
jobs in the GPU clusters.

We evaluate AntMan on a 64 V100-GPU Kubernetes clus-
ter to show the advantages of the new scheduling primitives
and policies with micro-benchmarks and real workloads. The
trace evaluation shows that AntMan can preserve the perfor-
mance of resource-guarantee jobs ideally without preemp-
tion. Moreover, it improves the average Job Completion Time
(JCT) of all jobs by up to 2.05x compared to current produc-
tion cluster scheduler, and 1.84x compared to Gandiva [48], a
state-of-the-art DL cluster scheduler. We also deploy AntMan
in real production clusters and report the evaluations and
statistics on a heterogeneous cluster with over 5000 GPUs.
The cluster statistics shows that AntMan improves the overall
throughput by offering up to 17.1% more GPUs for DL jobs,
significantly reduces the average queuing delay by 2.05x, and
raises the GPU memory and computation unit utilization by
42% and 34% respectively.

The key contributions of this paper are as follows.

• We investigate the comprehensive characteristics of pro-
duction DL clusters to understand low utilization from
three aspects: hardware, cluster scheduling, and job be-
havior (Section 2).

• We introduce two new dynamic scaling mechanisms in
both memory and computation unit management for DL
frameworks to address the challenges of GPU sharing.
The new mechanisms leverage DL job characteristics
to dynamically adjust the resource usage of DL jobs
efficiently during the job execution (Section 3.1).

• Through co-designing the cluster scheduler and DL
frameworks to utilize dynamic scaling mechanisms, we
introduce a new industrial method to GPU sharing. This
maintains the job service-level agreement (SLA) in a
multi-tenant cluster while improving the cluster utiliza-
tion with opportunistic scheduling (Section 3.2 and 3.3).

• By deploying AntMan in Alibaba to serve tens of thou-
sands of daily jobs, we conduct experiments and report
the performance improvement in a cluster with more
than 5000 GPUs, demonstrating a productive approach
in managing multi-tenant DL cluster fairly and efficiently
at scale (Section 5).

2 Motivation

In this section, we start by introducing essential DL terminolo-
gies as the background. We then highlight our observations
by characterising the GPU production cluster to motivate the
design of AntMan. We end by discussing opportunities to
leverage the DL training characteristics.

2.1 Deep Learning Training
Deep learning training often consists of millions of iterations,
and each iteration processes a few samples, called a mini-
batch. Usually, a training mini-batch can be divided into three
phases. Firstly, samples and model weights are calculated to
produce a set of scores, known as a forward pass. Secondly,
a loss error is calculated between the produced scores and
the desired ones using an objective function. The loss is then
spread backwards through the model to compute gradients,
called a backward pass. Finally, the gradients are scaled by
a learning rate, as defined by an optimizer, to update the
model parameters. The computation output of a forward pass
usually includes many data outputs, each of which is called
a tensor. These tensors should be temporarily held in the
memory and consumed by the backward pass to calculate
gradients. Usually, to monitor the model quality in training,
evaluations are periodically triggered.

To train models with massive data, DL generally adopts
data parallelism in multiple GPUs where each GPU is re-
sponsible for processing a subset of data in parallel while
performing gradient synchronizations per mini-batch before
the model update.

In large companies, multi-tenant clusters are commonly
used to improve hardware utilization, where users can some-
times oversubscribe GPU resource quota, especially when
GPU demands burst [33].

2.2 Characterizing Production DL Cluster
We study resource usage in production clusters from three
perspectives: hardware, cluster scheduling, and job behavior.

Low utilization of in-use GPUs. Figure 1 illustrates a one-
week statistic of GPU memory usage and computation unit
utilization. The numbers are collected from one of the produc-
tion clusters with thousands of heterogeneous GPUs. GPU
memory consumption is normalized by the memory capac-
ity of the running GPU due to the heterogeneity in the GPU

534 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

GPU Resource (%)

 GPU util
 GPU memory

Figure 1: GPU resource
statistic on a GPU produc-
tion cluster.

 0
 20
 40
 60
 80

 100
 120
 140
 160

2-GPU 4-GPU 8-GPU
16-GPU

A
vg

. I
dl

e
G

P
U

 (
G

P
U

*m
in

)

Number of GPU Request

Figure 2: Average GPU idle
waiting waste from gang-
schedule.

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10
 0

 100

 200

 300

 400

 500

G
P

U
 u

ti
l (

%
)

G
P

U
 m

em
or

y
(M

B
)

Time (min)

SM util
Memory

Figure 3: DeepFM on Criteo
dataset.

 0
 10
 20
 30
 40
 50
 60
 70
 80

 1200 1400 1600 1800
 0
 5
 10
 15
 20
 25
 30
 35
 40

G
P

U
 u

ti
l (

%
)

G
P

U
 m

em
or

y
(G

B
)

Time (second)

SM util
Memory

Figure 4: ESPnet on text-
speech dataset.

memory capacity. As shown in the figure, only 20% of the
GPUs are running applications that consume more than half
of the GPU memory. With regards to the usage of compu-
tation unit, only 10% of the GPUs achieve higher than 80%
GPU utilization. This statistic indicates that both the GPU
memory and computation units are not being fully utilized,
and are thus wasting the expensive hardware resources.

Idle waiting for gang-schedule. To train deep learning
with massive amounts of data, distributed multi-GPU training
is essential. Multi-GPU training jobs require gang-scheduling,
which means a job will not start training unless all required
GPUs are simultaneously available [19, 27]. However, in a
cluster, GPU resources can hardly be satisfied simultaneously.
(e.g., three GPUs might need to be held and then wait for
the last one before launching a 4-GPU job, leaving the three
GPUs in idle waiting mode). The more resources a job re-
quires, the more GPU cycles are wasted when in idle waiting
mode due to partial resource reservation. To understand the
resource waste due to idle waiting, the timestamp of every re-
source grant for every gang-scheduled job was recorded. The
idle waiting time of each GPU (i.e., the gap between the job
launching time and the resource granting time) is summed up
to calculate the total resources wasted in idle waiting for a job.
Figure 2 illustrates the average idle waiting resource waste
for different sizes of jobs. The more GPUs a job requires, the
higher the cost the cluster must pay for holding idle resources.

The unpredictable arrival of upcoming resources is the
reason that reserved resources are left idle. A naïve approach
to improving utilization is to launch other jobs on idle waiting
resources. However, this can cause the large jobs to become
starved and break the scheduling fairness. In addition, once all
resources are satisfied, the burst GPU demand of this resource-
guarantee job can lead to inter-job resource conflicts with the
ones that are currently running in GPUs, which may cause the
jobs to fail. Recently, elastic training (e.g., TorchElastic [7])
is proposed to adapt to the incrementally available resources.
However, it is rarely used in production because of the non-
determinism it introduces to the accuracy [18, 47].

Dynamic resource demand. In addition to the idle wast-
ing from job scheduling, our observation finds that DL jobs
usually cannot fully utilize GPU resources during their life

cycle. Figure 3 illustrates the first 10 minutes of resource
usage when running DeepFM [20] on Criteo dataset. At the
beginning, preprocessing on the dataset only requires CPU.
However, both GPU Streaming Multiprocessor (SM) utiliza-
tion and memory usage are boosted at 275 seconds. Such
dynamic resource demands also commonly exist in other
jobs. Figure 4 illustrates a 10-minute (1200∼1800 seconds)
profiling on ESPnet [46], an end-to-end speech model train-
ing job. The model training pipeline could contain several
phases. During the training phase, ESPnet consumes 3.6 GB
GPU memory with a dynamic GPU SM utilization up to 70%.
At 1400 seconds, decoding on GPU (around 1400∼1600 sec-
onds) and synthesis (around 1600∼1700 seconds) on the CPU
are issued in order to evaluate the model. It is worthy of note
that, the decoding phase requires up to 19 GB GPU memory.
After the evaluation phase, the model training continues. Such
intra-job dynamic resource demand is common in production
DL pipelines, making it hard to predict desired resources. We
also find some jobs periodically become CPU bound, which is
consistent with the observations in neural machine translation
tasks [49]. We omit the result due to space limitation.

The dynamic resource demand actually conflicts with the
fixed resource allocation and the potentially long running time
in the training of deep learning jobs. Jobs requiring sufficient
resources according to their peak usage make expensive hard-
ware underutilized. If not granted sufficient resources, the job
performance may be limited and thus the job completion time
could be delayed. In addition, the memory caching design in
existing DL frameworks (e.g., TensorFlow and PyTorch) also
conceal the temporal memory usage variations [50], which
prevents GPU memory from potential sharing.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000

C
D

F

model size (MB)

Model size

(a) Model size distribution.

 0

 0.2

 0.4

 0.6

 0.8

 0 300 600 900 1200 1500

C
D

F

mini-batch time (ms)

Mini-batch time

(b) Mini-batch time distribution.
Figure 5: One-week deep learning tasks statistic.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 535

Tensor

Tensor

GPU Memory

Tensor

Tensor Tensor

Tensor

Tensor

Tensor

Tensor

Tensor

Tensor

GPU Memory GPU Memory GPU MemoryGPU Memory Host Memory

Tensor

Tensor

Tensor

GPU Memory Host Memory

Existing DL framework Dynamic Scaling in AntMan

Shrink Growth

(a) (b) (c) (d) (e) (f)

Figure 6: Dynamic scaling universal memory in AntMan

2.3 Opportunities in DL Uniqueness
The preceding characterization of the production DL cluster
shows that low utilization is common for both GPU mem-
ory and GPU computation unit (i.e., SM). It shows great op-
portunities to improve the cluster throughput with resource
over-subscription. However, the unpredictable inter-job and
intra-job demand burst introduces challenges to safe resource
sharing. Jobs could run out of memory due to resource con-
tention. Besides, in multi-tenant clusters, it is important to pro-
vide performance isolation for jobs holding a resource quota
when the jobs are executed in a resource-sharing approach.
To cater to these challenges when scheduling deep learning
jobs, AntMan leverages the opportunities in the uniqueness
of DL training.

We sample 10K tasks in a week of our production cluster
to understand DL characteristics. We measure model size and
mini-batch size during model training, both shown in Figure 5.
Even though DL training could potentially use as much as 32
to 40 GB GPU memory (e.g., V100 and A100), only a small
portion is used to store the persistent DL model. 90% of DL
models occupy only 500 MB GPU memory.1 The majority
of GPU memory is allocated and freed within the same mini-
batch. Moreover, the DL training cycle is also rather small. As
much as 80% of tasks consume a mini-batch within 600 ms.

We exploit such unique characteristics in several ways to
schedule jobs on shared GPUs. Firstly, due to the small model
size in common, the majority of GPU memory could be sched-
uled among the co-executing jobs. Secondly, mini-batch cy-
cles are generally quite small, allowing fine-grained GPU
memory and computation scheduling at every mini-batch
boundary. This could further allow fast resource coordination
between jobs. Thirdly, mini-batches apply mostly similar com-
putations that can be utilized to profile the job performance,
therefore their progress rate can be created as a performance
metrics to quantify interference.

3 Design

AntMan deeply co-designs cluster schedulers and DL frame-
works to address GPU sharing challenges. In this section, we

1we omit the largest 2% jobs’ model size as the number is business
sensitive.

first describe the new mechanism extensions in DL frame-
works. We then introduce the collaborative scheduling design
to leverage those new primitives. Finally, we present a new
productive policy enabled in the cluster scheduler of Alibaba
to manage DL jobs.

3.1 Dynamic Scaling in DL Frameworks
As mentioned in Section 2.2, DL training clusters exhibit low
utilization due to unsaturated GPU usage in DL workloads
and unique gang-schedule requirements during job schedul-
ing, which contains great potentials that can be exploited to
execute more jobs. However, some challenges need to be ad-
dressed, such as executing jobs at their minimal requirements
while preventing GPU memory usage outbreak failures, adapt-
ing to the fluctuating computation unit usage while limiting
potential interference. At its core, existing DL frameworks
are designed for dedicated GPU executions, which lack key
capabilities when collaborating with other jobs. Such con-
flicts between production DL cluster characteristics and DL
framework limitation motivate the design of dynamic scaling
mechanisms to enhance DL frameworks. The dynamic scaling
mechanisms include the fine-grained dynamic control in two
aspects, GPU memory and computation unit. We elaborate
them next.

3.1.1 Memory Management

A dynamic memory management mechanism is introduced
in AntMan to adapt the allocated memory on the fluctuat-
ing memory demands of a DL training job. This is achieved
by allocating universal memory to DL application tensors,
i.e., switching tensors between GPU and CPU host machine
DRAM across mini-batches. Modern operating systems sup-
port paging in memory management at the granularity of
memory pages, where they use disk as memory when they run
out of physical memory. AntMan adopts a similar approach,
however, this is carried out in an application-specific granular-
ity, tensor, which can be transparently migrated in universal
memory addresses at runtime. In this way, DL frameworks
can support the dynamic GPU memory upper limit.

Figure 6 illustrates the memory management in existing DL
frameworks as well as the differences to AntMan. The total

536 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Time

Memory

T0 T1

Growth

a

a

(a) Scaling for memory burst up.

Memory

TimeT0 T1

GPU CPU

Shrink

Growth

b

b

(b) Scaling to secure memory.

Figure 7: Leveraging mini-batch behavior to scale memory
efficiently.

number of cached GPU memory size (i.e., red dash line) in-
creases with tensors created in DL frameworks (Figure 6a∼b).
In order to eliminate the expensive overheads in memory al-
locations and de-allocations, and also to speed up training
among mini-batches, the GPU memory is cached in a global
memory allocator inside DL frameworks after tensors are de-
stroyed. Prevalently, some tensors are used only in certain
stages of DL training (e.g., data preprocessing, evaluation),
which are no longer required. However, this portion of cached
GPU memory is not released (Figure 6c). This cached mem-
ory design in DL frameworks optimizes individual job perfor-
mance at the cost of losing sharing potentials.

AntMan turns to the approach of scaling the GPU memory
upper limit. It proactively detects in-used memory to shrink
the cached memory to introspectively adjust GPU memory
usage to an appropriate fit. This is done by monitoring applica-
tion performance and memory requirements when processing
mini-batches (Figure 6d). Furthermore, new primitives are
provided to shrink the upper limit of GPU memory at runtime,
even below the actual GPU memory demand of a job. AntMan
uses its greatest effort to allocate tensors on GPU devices,
however, tensors can be allocated outside of GPU with the
host memory if GPU memory is still lacking (Figure 6e). With
such universal memory support, jobs can continue to process
even below their actual GPU memory requirements, where we
find workloads slowdown the performance differently (Sec-
tion 3.3). Tensors can be allocated back to GPU automatically
when the GPU memory’s upper limit increases (Figure 6f).

Paging in operating systems introduces costly page copy be-
tween the memory and disk. In contrast, thanks to the unique
pattern of DL, tensor copy between the GPU and CPU host
DRAM is explicitly avoided. Identical tensors are created
across mini-batches, and therefore, AntMan exploits this pat-
tern to adjust the upper limit of the memory at the boundary
of the mini-batches. Figure 7a illustrates how memory scaling
addresses the burst demand. At T0, the memory requirement
of a running DL training job increases, due to the limited
upper-bound of GPU memory, some tensors cannot be placed
in the GPU memory, and are instead created using the host
memory. AntMan detects the usage of the host memory, and
at T1, it raises the GPU memory’s upper limit for that job
according to the usage of the host memory, which allows

GPU

GPU kernels of Job-A

Launch kernel Op dependencyOp execution

GPU kernels of Job-B

1 2 3 4 5 6

(a) Job-A executes in a GPU exclusively despite some idle cycles.

GPU

DL framework
Op executor

CPU Op

GPU Op

CPU Op CPU Op CPU Op

GPU Op GPU Op GPU Op GPU Op

1 2 31 2 3 4 5

(b) Job-A significantly interfered by Job-B.

GPU

CPU Op CPU Op CPU Op CPU Op

GPU Op GPU Op GPU Op GPU Op

GPU Op

GPU Op

GPU OpIdleTime IdleTime

DL framework
Op executor

GPU Op
Manager

1 2 3 4 5 61 2

(c) GpuOpManager of Job-B controls the interference.

Figure 8: Computation management to run two jobs in a
shared GPU without interference.

the tensors to be fully allocated in the GPU device for the
next mini-batch. Note that, the performance of this running
job might slowdown in a mini-batch as tensors are placed in
the host memory. However, such performance overheads are
negligible, considering a typical DL training often requires
millions of mini-batches. The overhead of memory shrinkage
and growth is quantified in Section 5. Furthermore, AntMan
provides fine-grained GPU memory scheduling at runtime.
A training job might shrink to secure memory resources for
other jobs, and grow back after other jobs are finished, as
shown in Figure 7b. It illustrates that a DL job scales down at
T0 and scales up at T1, at the cost of some tensors allocated
on the host memory. Therefore, the usage of the remaining
GPU memory between T0 and T1 for jobs running in the same
shared GPU is secured.

3.1.2 Computation Management

Dynamic computation unit management is a mechanism in-
troduced in AntMan to control the GPU utilization of a DL
training job. Modern operating systems (e.g., Linux) support
cgroups, which limits, accounts for, and isolates the CPU
resources that a process requires [1]. AntMan introduces a
similar method of dynamically isolating the GPU computation
resource access of DL-specific processes at runtime.

When multiple DL jobs are launched on the same GPU,
the interference is mainly caused by the potential GPU kernel
queuing delay and PCIe bus contention [14], which could

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 537

result in consistent performance downgrades across all jobs if
packing jobs are running on the same model and configura-
tion [48]. Our observation shows that jobs slowdown in dif-
ferent ways if different jobs are packed together (Section 5.1).
This is because jobs have different capabilities at acquiring
GPU computation units. Consequently, job performance can
barely guarantee or predict in GPU sharing, resulting in dif-
ficulties on the deployment of GPU sharing for multi-tenant
clusters. Figure 8 illustrates an example of GPU computa-
tion unit interference for two jobs that are executed on the
same GPU. Figure 8a illustrates how Job-A executes on a
GPU in a fine-grained manner. In short, GPU kernels will be
placed in order and processed by the GPU computation unit
one by one. Note that, in Figure 8, Job-A might not be able
to fully saturate the GPU, resulting in idle GPU cycles and
low GPU utilization which can potentially be used by other
jobs. Therefore, Job-B is scheduled on this GPU (Figure 8b).
The GPU operators of Job-B launch kernels (green blocks)
executed in the GPU, which can fill it up, and thus delay the
execution of other GPU kernels (blue blocks), leading to the
poor performance of Job-A. The interference mainly comes
from the lack of ability to control the execution frequency
of GPU kernels. To address this issue, We introduce a GPU
operator manager in DL framework(Figure 8c). Existing DL
frameworks issue GPU kernels in the GPU operator once its
control dependency is satisfied. In AntMan, the execution
of GPU operator is dedicated to a newly-introduced mod-
ule, called GpuOpManager. When a GPU operator is ready
to execute, it is added to GpuOpManager instead of being
directly launched. The main idea of GpuOpManager is to
control the launching frequency by delaying the execution of
GPU operators. In this way, AntMan introduces a new prim-
itive to limit the GPU utilization of a DL training job using
GpuOpManager. GpuOpManager continuously profiles the
GPU operators execution time and simply distributes idle time
slots before launching the GPU operators. Note that, GpuOp-
Manager only delays the GPU kernel execution. Therefore,
the potential dependencies among operators (including GPU
operators and CPU operators) are retained, meaning that CPU
operators can continue if possible. As illustrated in Figure 8c,
the third CPU operator is not blocked, however, the fourth one
is delayed as it depends on the second GPU operator, which
has its execution delayed by the GpuOpManager.

3.2 Collaborative Scheduler

In this section, we describe how we co-design the cluster
scheduler and DL frameworks to leverage the dynamic scaling
mechanisms mentioned above for collaborative scheduling.
We focus on the overall architecture of AntMan and how
different modules operate. The detailed policy description is
in the next section.

As shown in Figure 9, AntMan adopts a hierarchical ar-
chitecture, where a global scheduler is responsible for job

Global Scheduler

Data statistic flow Control flow

Scheduler

Cluster Stats

Local Coordinator

TF Job

GPU0

……

Coordinator

Local Stats
Job Stats

Device Stats

GPU1

……

GpuUtil
GpuMem
MiniBatch
PeakMem
MinMem

Job-A Job-B …

HostMem

30%

5.6 GB
300 ms

5.6 GB

0.5 GB

0 GB

40%

5.1 GB
233 ms

6.5 GB

0.2 GB

1.4 GB

Device
Info

DL
Job
Info

…

Local Coordinator TF Job

PyTorch Job
GPU0

……

Coordinator

Local Stats
Job Stats

Device Stats

Scheduling
decision

Figure 9: Collaborative scheduling workflow of AntMan.

scheduling. Each working server contains a local coordinator
that is responsible for managing the job execution using the
primitives of dynamic resource scaling through considering
the statistics reported from DL frameworks. AntMan is de-
signed for multi-tenant GPU clusters. In a multi-tenant cluster,
each tenant usually owns certain resources, annotated as a re-
source quota (i.e., number of GPUs), which is the concurrent
performance guarantee resources that can be assigned to the
jobs of that tenant. The sum of the GPU resource quota of each
tenant is less equal to the total capacity of a GPU cluster. In
AntMan, jobs are classified into resource-guarantee jobs and
opportunistic jobs by global scheduler with different schedul-
ing policies applied (Section 3.3). Resource-guarantee jobs
consume a certain amount of GPU resources quota of their
corresponding tenants while opportunistic jobs do not. There-
fore, AntMan ensures that the performance of the resource-
guarantee jobs should be consistent with that in exclusive
executions.

In AntMan, similar to conventional cluster schedulers, the
scheduling decision is dispatched from the global scheduler
to the local coordinator. In addition, the local coordinator
introspectively schedules the GPU resources to DL training
jobs using the dynamic scaling mechanisms (Section 3.1).
Therefore, the scheduling decisions can be treated as a top-
down control flow. In contrast, data statistic flow information
is collected by statistic modules of the local coordinator and
aggregated on the cluster statistic module in a bottom-up ap-
proach to help make scheduling decisions, which is similar to
Apollo [10]. Alongside with the hardware information (e.g.,
GPU utilization, GPU memory usage), AntMan also lever-
ages detailed job information reported by DL frameworks,
including mini-batch duration, peak memory usage, minimal
memory usage, and host memory consumption, etc. This in-
formation can also assist job scheduling decisions made by
the global scheduler. For example, peak memory and minimal
memory usage are used to indicate the GPU memory size
that can be made available quickly. Mini-batch time shows
how soon the GPU memory can be available for another DL
training job, which can affect the scheduling decisions of the
global scheduler when launching jobs.

538 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 1 scheduleJob(in job, out nodes)

1: nodes0← f indNodes(job.gpu,constraints← job.topo)
2: nodes1← f indNodes(job.gpu,constraints←M)
3: nodes2← minLoadNodes(nodes1, job.gpu)
4: if job.isResourceGuarantee:
5: if numGPUs(nodes0)>= job.gpu:
6: return nodes0
7: else:
8: reserve(nodes0)
9: else:

10: return nodes2

Once a job is launched on a GPU server, a local scheduler
takes over the management of its end-to-end execution. Due
to the load fluctuation of a DL training job, a local coordinator
acts in an introspective mode to perform continual job control
to DL frameworks. More specifically, it collects the statistics
from the hardware and DL frameworks of all jobs, which is
used to control job performance via resource usage adjust-
ments (e.g., shrink GPU memory) through the new primitives
we introduced in Section 3.1.

3.3 Scheduling Policy
In this section, we first present the goal of our cluster sched-
uler. Then we describe the detailed policies applied in global
scheduler and local coordinator. Finally, we introduce the job
upgrade in our system.

Goal. There is an inherent tension between providing fair-
ness (e.g., to ensure SLAs of DL jobs with guaranteed re-
sources) and achieving high resource utilization (e.g., GPU
utilization), because of the constant fluctuation in both the
load on a cluster and the resource needs of a job. Prevalent
production DL cluster schedulers often trade fairness in cer-
tain ways for efficiency. For example, spare resources are
allocated to over-provision tenants. However, such GPU re-
sources can hardly get back without preemption. Generally,
preemption is rarely used as it fails running jobs while wastes
expensive GPU cycles. Besides, [27] also reports the out-of-
order behavior which discriminates large jobs (i.e., allocating
more GPUs), leading to unfairness by preferring small jobs.
In AntMan, multi-tenant fairness is our primary goal, and the
second priority is to improve the cluster efficiency therefore to
achieve higher throughput. AntMan achieves fairness with the
polices that are implemented in both the global scheduler and
the local coordinator, powered by the dynamic scaling mech-
anisms. Furthermore, GPU opportunistic jobs are introduced
in AntMan to steal idle cycles in GPUs so as to maximize
cluster utilization.

Global scheduler. As a multi-tenant cluster scheduler, the
global scheduler maintains multiple queues of tenants where

jobs arrive and decides GPU locations allocated for jobs. For
resource-guarantee jobs and opportunistic jobs, AntMan ap-
plies different scheduling polices as shown in Algorithm 1.
findNodes is a function that returns the node and GPU candi-
dates which satisfy the job request with an optional param-
eter to specify constraints. Global scheduler fairly allocates
resource-guarantee jobs given sufficient GPU resources. In
addition, resource-guarantee jobs are optimized to maximize
the job performance using the free GPU resources, i.e., GPUs
that are not allocated to other resource-guarantee jobs (line
5-6). For instance, a distributed resource-guarantee job that
uses all-reduce communication strategy (e.g., NCCL [5]) can
be scheduled on one server to utilize the NVLink [6] for
high-performance communication. However, if the resource
request of a job can partially be satisfied, the global scheduler
reserves the resources for this job, and waits for others to meet
the gang-scheduling requirement (line 7-8). Such insufficient
resource reservation exists mainly for resource quota (e.g.,
three GPUs left while there is a request for four) and resource
fragmentation (e.g., request four GPUs in the same server,
however only four are available spread across servers). The
reserved resources will never be occupied by other resource-
guarantee jobs, however, they can be utilized by opportunistic
jobs.

By default, the global scheduler will estimate the queu-
ing time for jobs without GPU quota granted. Those jobs
that suffer long queuing delay will be automatically executed
as opportunistic jobs. To schedule opportunistic jobs, global
scheduler aims to utilize free resources to the best of its abil-
ity. It allocates opportunistic jobs on GPUs by considering
the actual GPU utilization, even when some other jobs run
on those GPUs. Only GPUs with a utilization of less than M
(set as 80% for now) in the past 10 seconds can be selected as
candidates. AntMan adopts a heuristic strategy to allocate op-
portunistic jobs on the freest candidates (i.e., minLoadNodes,
line 9-10). In this way, there are some jobs allocated on the
same GPU, where they are managed by the local coordinator.
We will elaborate their coordinated execution next. Note that,
although AntMan automatically selects opportunistic jobs by
default, it also allows users to manually identify the job type at
the point of submission; for example, as a resource-guarantee
job explicitly to ensure SLAs. A job can also be specified as
an opportunistic job that will never occupy the tenant’s re-
source quota, and vice versa. In practice, users usually submit
jobs in opportunistic mode to avoid the potential queuing de-
lay, aiming to perform debugging and hyper-parameter tuning,
which are both driven by early feedbacks [48, 51].

Local coordinator. The main responsibility of the local co-
ordinator is to collaborate the execution of jobs on shared
GPUs. Next, we first introduce how local coordinator ensures
the performance of resource-guarantee jobs at shared exe-
cution. Then, we describe the approach to handle resource
demand surges of a resource-guarantee job. Finally, we in-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 539

troduce a greedy approach in AntMan to maximize the ag-
gregated job performance when a GPU is only shared by
opportunistic jobs. These approaches are achieved by uti-
lizing the information reported from both GPU device and
DL frameworks, and by instructing the memory management
module (Section 3.1.1) and computation management module
(Section 3.1.2) in DL frameworks.

A GPU is allocated to only one resource-guarantee job
as it consumes GPU quota. However, in AntMan, it is pos-
sible that there are some opportunistic jobs executed on this
GPU. As such, the local coordinator must prevent the resource-
guarantee job from interfering by other co-located jobs at run-
time. When a resource-guarantee job arrives on a GPU that
runs with opportunistic jobs, the local coordinator first limits
the opportunistic jobs in using GPU, for both GPU memory
and GPU SM. By reducing the GPU usage of the opportunis-
tic jobs, the newly launched resource-guarantee job will be
capable of persistently initializing the training variables (i.e.,
model) in the GPU memory. In addition, when launching a
DL training job, the GPU device needs to be initialized by the
DL framework, which takes more time if the GPU is in a high
load. Once the resource-guarantee job is stably executed, the
local coordinator will allocate the rest of the GPU memory to
the opportunistic jobs. Furthermore, it gradually increases the
GPU computation unit usage of opportunistic jobs without
interfering with resource-guarantee jobs by monitoring the
job performance (i.e., mini-batch time). Similarly, when an
opportunistic job arrives on a shared GPU, the local coordina-
tor raises its GPU resource usage in a step-like fashion under
the condition that the resource-guarantee job is not affected.

During the job execution, the resource demand of both the
GPU memory and GPU computation unit might surge beyond
the currently available resources (Section 2.2). To be aware of
such dynamic resource demand, the local coordinator moni-
tors the metrics that are reported by DL frameworks (e.g., host
memory usage, mini-batch time). Therefore, when a resource-
guarantee job increases the GPU memory requirement, the
tensors are temporarily stored using host memory, thanks to
the universal memory (Section 3.1.1). The local coordinator
shrinks the GPU memory usage of other opportunistic jobs
and raises the GPU memory limit of the resource-guarantee
job to recover its performance. It is similar for GPU computa-
tion unit usage coordination. Note that, AntMan relies on the
application level metric (i.e., mini-batch time) to indicate the
job performance of resource-guarantee jobs. If it observes an
unstable performance in the resource-guarantee job, it adopts
a pessimistic strategy to limit the usage of GPU resources of
other opportunistic jobs.

GPU resources can also be idle waiting without any
resource-guarantee jobs (e.g., due to gang-schedule as de-
scribed in Section 2.2). In this case, if there is only one oppor-
tunistic job, the GPU resources can be fully utilized by this
job without any constraints. Sometimes, it is possible that a
GPU is occupied by multiple opportunistic jobs. Under this

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 20 30 40 50 60 70 80 90 100N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

GPU memory limit (%)

SR VGG ResNet

Figure 10: Workloads show diversity in performance sen-
sitivity given insufficient memory.

scenarios, AntMan optimizes the aggregated job performance
by maximizing GPU memory efficiency. With the dynamic
scaling mechanisms enabled, we find that different workloads
show differences in sensitivity regarding the performance
slowdown from memory limitations. The peak memory usage
of a job is limited using the dynamic memory scaling mecha-
nism, and the host memory is thereby used for the remainder
of the excess. As illustrated in Figure 10, Super Resolution
(SR) model suffers only around 25% performance slowdown
even with a 90% reduction in its device memory. VGG16 [43]
model on Cifar10 dataset (VGG) can keep most of its original
performance even after reducing its device memory by half.
ResNet50 [22] on ImageNet dataset (ResNet) is sensitive to
memory shrinkage; a 10% memory reduction introduces more
than 60% slowdown. Therefore, when the total GPU memory
demand of opportunistic jobs exceeds the GPU’s memory
capacity, AntMan adopts a simple heuristic approach which
allocates GPU memory to the job that improves the normal-
ized aggregated job performance at best. This is carried out
via an introspective trial-and-error allocation.

Job upgrade. In AntMan, opportunistic jobs are executed
at best-effort level to improve the cluster utilization. However,
this is done without an SLA guarantee. The global scheduler
upgrades these jobs given sufficient resources to complete
them quickly. For distributed synchronous DL training, the
partial upgrade does not help because the performance down-
grade of a worker can be broadcast to the entire job. Thus, the
global scheduler checks if all GPUs are filled up in opportunis-
tic jobs. Once all task instances are ready to upgrade and the
resource quota is sufficient, AntMan prefers to upgrade the
opportunistic job rather than launch a new one. Global sched-
uler notifies local coordinator to tag it as a resource-guarantee
job and consumes the tenant’s GPU quota to accomplish the
job upgrade.

540 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4 Implementation

At Alibaba, DL training jobs are executed in Docker con-
tainers with our customized versions of DL frameworks. The
APIs of the DL frameworks are compatible with the commu-
nity version however with AntMan’s features enhanced. A
prototype custom cluster scheduler is implemented on Ku-
bernetes [11] for evaluation. AntMan is fully implemented
in our internal cluster scheduler, Fuxi [52], to serve the daily
production training jobs on several clusters with thousands of
GPUs each.

4.1 Deep Learning Framework

Dynamic scaling mechanisms are implemented in two popular
deep learning frameworks, TensorFlow [8] and PyTorch [35],
on versions v1.12 and v1.3.1 respectively. The implementa-
tion in TensorFlow takes 4000 lines of code (mostly in C++).
The implementation in PyTorch takes about 2000 lines of
code (500 lines in Python and 1500 lines in C++).

The modification of DL frameworks is mostly in three
components: memory allocator, executor, and interfaces. As
it adopts a similar implementation in both frameworks, we
mainly use TensorFlow terminology to describe the de-
tails. To enable dynamic universal memory, BFCAllocator
(CUDACachingAllocator in PyTorch) is modified to intro-
duce an adjustable upper limit for memory. The memory
allocator keeps track of the total bytes of memory allocation
and triggers out-of-memory when total bytes exceed the upper
limit. In addition, a new interface is introduced to the memory
allocator to allow emptying of cached memory at any time.
A new universal memory allocator, UniversalAllocator,
is also added to wrap the GPU memory allocator and host
memory allocator (i.e., using cudaHostMalloc for memory
allocation). When a memory allocation is triggered by the
request of a tensor, UniversalAllocator tries to allocate the
memory using the GPU memory allocator and treats the CPU
memory allocator as a backup if there is insufficient GPU
memory left over. Note that, the UniversalAllocator main-
tains a set data structure that records the pointers of memory
regions allocated by GPU, which is used to classify the mem-
ory pointers for de-allocation.

To enable dynamic computation unit scaling, a
GpuOpManager with an operator processing queue, which
runs in a standalone thread, is introduced in DL frameworks.
The operator executor of TensorFlow is modified accordingly
to insert GPU operators to GpuOpManager queue in order
so as to dedicate the execution of GPU operators to it.
GpuOpManager may delay the actual execution of the GPU
operators based on a limited percentage of the computation
capacity.

The statistics of memory usage patterns and the execution
information are aggregated for the local coordinator. The DL
frameworks and local coordinator communicate through the

file system. They both have a monitor thread to check the
file for receiving either job statistics or control signals. To
minimize the overhead of memory management, the dynamic
scaling of memory is triggered at the mini-batch boundaries
(end of session.run()).

4.2 Cluster Scheduler
A custom scheduler is implemented on Kubernetes [11] as a
prototype to evaluate AntMan. The implementation requires
around 2000 lines of code in Python. Overall, Kubernetes is
responsible for cluster management and for executing jobs in
Docker containers. Our global scheduler uses Python APIs to
monitor the events in Kubernetes’s API server for scheduling.
Local coordinators are deployed as a DaemonSet in Kuber-
netes. Each coordinator monitors certain paths of the file
system to collect the reported information for each job. The
aggregated job and device information are stored in ETCD, a
built-in distributed key-value store in Kubernetes. Therefore,
global scheduler directly reads states in ETCD when making
scheduling decisions.

AntMan has been fully implemented in Alibaba’s internal
cluster scheduler, Fuxi [52]. The implementation of global
scheduler takes about 10000 LOC, including failover support
and testing. The local coordinator implementation takes about
2000 LOC. Both of them are written in C++. The DL in-
frastructure is coupled with the big-data infrastructure, as DL
jobs are part of the data pipeline. Fuxi adopts an architec-
ture that optimizes for high performance scheduling, and it
currently does not have ETCD. Global scheduler and local
coordinator shall maintain their own aggregated device and
job information and use RPC for communication.

5 Evaluation

In this section, we first show micro-benchmark results to
demonstrate the effectiveness and efficiency of AntMan mech-
anisms. We then evaluate the benefits of AntMan in a small
cluster with 64 V100 GPUs to compare the policies with real
workloads. Finally, we present the evaluation results on a
production cluster with more than 5000 heterogeneous GPUs
(V100 and P100). All the experiments are conducted on a
cloud GPU cluster with 8 servers, unless explicitly stated. Ev-
ery server is equipped with a 96-core Intel Xeon Platinum
8163 (Skylake) @2.50GHz with 736GB RAM, running Cen-
tOS 7.7. Each server has 8 NVIDIA V100 GPUs (32 GB
GPU memory, with NVLink) powered by NVIDIA driver
418.87, CUDA 10.0, and CUDNN 7. The cloud GPU clus-
ter is managed by Kubernetes; jobs are submitted through
KubeFlow, and are executed in Docker containers. Only data-
parallel is evaluated with synchronous training for jobs that
require more than 1 GPU because they are common, although
asynchronous training can also be supported. The trace in
the experiment consists of 9 models, 2 of them implemented

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 541

Model Arrival GpuMem BS Quota
Job-A GCN 0 min 3.5 GB 1400 No
Job-B ResNet 26 min 30.0 GB 360 Yes

Table 1: Setup and information of two jobs.

Preempt FIFO Pack UMem AntMan
Job-A Failed 43.0 43.1 43.4 43.9
Job-B 91.1 108.2 Failed 541.6 91.8

Table 2: Job status and JCT (min) of two jobs executing in
different configurations.

in PyTorch 1.3.1 and 7 of them implemented in TensorFlow
1.12.

5.1 Benchmark
In this section, we evaluate the dynamic scaling mechanism
of AntMan in two aspects, memory and computation unit. We
first demonstrate that dynamic memory scaling is indispens-
able in preventing failure and ensuring job performance. We
then measure the efficiency of memory shrinkage and growth
on typical workloads and detail the timeline on a ResNet-50
benchmark. Finally, we demonstrate the ability of dynamic
computation unit scaling on avoiding job interference, by
packing two jobs in a shared GPU.

Dynamic GPU memory scaling. To demonstrate that dy-
namic memory scaling is essential for sharing GPUs with
multiple jobs, two typical jobs are chosen to construct a typ-
ical scenario. As shown in Table 1, Job-A is a GCN model
that arrives at 0 minutes. Its peak GPU memory usage is 3.5
GB and is submitted by users without a resource quota. Job-B
is a ResNet-50 task that arrives 26 minutes later. In total, it
consumes 30 GB GPU memory and is submitted with a re-
source quota guarantee, which means it should run directly to
meet the SLA requirements. The cluster has only one 32 GB
GPU left and both jobs are scheduled on this GPU at arrival.
Both jobs are run in the setup described above multiple times,
but with different action policies when Job-B arrives. Table 2
shows the job status and job completion time (JCT) in min-
utes for both jobs with different configurations. At Job-B’s
arrival, the scheduler can choose to preempt Job-A. In this
way, Job-B can be directly scheduled and finished in 91.1
minutes at the cost of Job-A’s failure. The second choice is
to run Job-B in a first-in-first-out (FIFO) mode. Job-B will
not be launched until Job-A is finished, which introduces an
extra 17.1-minute queuing delay. The third choice is to pack
two jobs in the same GPU as proposed in Gandiva [48]. In
this case, Job-B eventually fails because of the insufficient
GPU memory (28.5 GB) granted. UMem indicates running
Job-B in packing mode with the support of AntMan’s uni-
versal memory, but without the coordinated scaling on the

(a) A shrink-growth profiling on
ResNet-50.

 0

 50

 100

 150

 200

VGG16

InceptionV3
GoogleNet

O
ve

rh
ea

d
(m

s)

Growth
Shrink

(b) Overhead of GPU memory
scaling for typical models.

Figure 11: Efficiency of GPU memory scaling in AntMan.

GPU memory limit (Section 3.1.1). Host memory are used
when running out of GPU memory. Thus, Job-B will not fail
from out-of-memory, however, it takes 514.6 minutes to fin-
ish and violates the SLA. AntMan leverages both universal
memory and dynamic GPU memory scaling to coordinate job
execution. It allocates sufficient device memory to Job-B as
it runs with a resource quota, and offers the rest part of GPU
memory to Job-A to allow it run as efficiently as possible.
More specifically, when Job-B arrives, AntMan coordinates
two jobs to shrink the GPU memory usage of Job-A and grow
the GPU memory of Job-B. Job-B uses 30 GB GPU memory
and Job-A uses the 2 GB left over, and 1.5 GB host memory.
Note that, the performance of Job-B is still slightly slower
compared to the preemptive scenario. This is because even
though the required GPU memory is sufficient through dy-
namic scaling of AntMan, Job-B is still interfered in by the
co-execution with Job-A in the computation unit.

Efficient memory shrinkage and growth. To demonstrate
the efficiency of the dynamic memory scaling mechanism, a
ResNet-50 job is run and the memory shrinkage and growth
are manually triggered in order. As shown in Figure 11a,
the performance is measured by monitoring the in-use GPU
memory using both Nvidia API and memory statistics in DL
frameworks. As Figure 11a indicates, the memory shrink from
17.6 GB to 1.3 GB takes only 17 ms. The GPU memory usage
grows back to 17.6 GB in 143 ms, which is slower than the
memory shrink. This is because GPU memory is allocated on
demand with deep learning forward computation. Thus, the
measured time includes both the forward computation time,
which is essential to this mini-batch, and the memory alloca-
tion overhead. To understand the actual overhead, the time
cost and memory usage of the next mini-batch are also plot-
ted. The mini-batch with GPU memory growth takes 234 ms
and the next mini-batch, which utilizes the cached memory,
takes 119 ms to accomplish. Therefore, the growth overhead
of ResNet-50 model is 115 ms. The same approach is applied
to measure memory scaling overhead on other typical DL
models. Figure 11b summarizes the overhead measured for
VGG16 [43], Inception3 [45], and GoogleNet [44], which
adjust GPU memory at a size of 17 GB, 16 GB, and 4 GB

542 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500

S
M

 u
ti

l (
%

)

Time (second)

ResNet50 ESPnet

(a) Packing mode.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500

S
M

 u
ti

l (
%

)

Time (second)

ResNet50 ESPnet

(b) Adaptive computation adjust-
ment mode.

Figure 12: The SM utilization rates of packing mode in
Gandiva [48] and an adaptive computation adjustment
mode in AntMan for a 500s segment of execution of ESP-
net and ResNet-50.

respectively. Given a dynamic memory scaling interval of one
minute, the largest overhead (i.e., VGG16) is still negligible
(only 0.4%).

Dynamic GPU computation unit scaling. To demonstrate
the adaptive computation adjustment is essential for sharing
GPU between multiple jobs, the SM utilization rates when
running two typical jobs under packing mode and adaptive
computation mode are characterized separately. As shown
in Figure 12, the resource-guarantee job is an PyTorch job
with ESPnet [46] model on the speech-text dataset. It co-
executes with an opportunistic job which is a TensorFlow
job with ResNet-50 [22] model on ImageNet [16]. Compared
to ResNet-50, ESPnet consumes less SM and less memory.
Therefore, packing these two jobs together into one GPU in-
curs a relatively higher GPU kernel queuing delay for the
ESPnet and eventually leads to an SLA violation. Figure 12a
illustrates that ESPnet is poor at competing GPU computa-
tion cycles compared to ResNet-50. The utilization of ESPnet
remains mostly at 30% which is lower than in Figure 12b.
ResNet-50 launches many more kernels per unit time than
ESPnet, therefore, it consumes more GPU computation time.
These results show that the end-to-end execution time of ES-
Pnet increases dramatically from 20.1 minutes (when running
on a dedicated GPU) to 105.2 minutes (when running together
with ResNet-50).

Figure 12b illustrates that AntMan can leverage adaptive
computation adjustment to utilize the left over resources as
much as possible while still satisfying the SLA requirements.
Specifically, AntMan introduces a feedback-based adjustment
approach that continuously monitors the performance of re-
source guarantee jobs and uses performance feedbacks to
adjust the GPU kernel launching frequency of opportunistic
jobs. As shown in Figure 12b, the SM utilization rates of
the training stage (the first 140 seconds) of ESPnet fluctuate
between 5% and 50%. In this scenario, AntMan continuously
adjusts the GPU kernel launching frequency of ResNet-50
to ensure the training performance of ESPnet. Therefore, the

Model Type Dataset

20%
ResNet-50 [22] CV ImageNet [16]

VGG16 [43] CV Cifar10 [30]
SuperResolution [42] CV BSD300 [34]

20% Bert [17] NLP SQuAD [38]
20% ESPnet [46] Speech Corp.Data

20% GraphSAGE [21] Rec. PPI [55]
GCN [29] Rec. Cora [41]

20% DIN [53] Ad. Corp.Data
Wide & Deep [15] Ad. Corp.Data

Table 3: Deep learning models and the ratios in the trace.

results reflected in this figure is that the SM utilization rates
of ResNet-50 are constantly fluctuating between 30% to 90%
within the first 140 seconds of execution. In contrast, the de-
coding stage (between 140 and 390 seconds) of ESPnet runs
without consuming GPU computation cycles. Therefore, the
SM utilization rates of ResNet-50 are relatively high at this
stage As a result, by leveraging adaptive computation adjust-
ments, the end-to-end execution time of ESPnet remains 20.8
minutes while ResNet-50 maintains 57% performance.

5.2 Trace Experiment
Workloads. Nine state-of-the-art deep learning models are
selected from Github, together with open datasets, as summa-
rized in Table 3. As the datasets of speech and advertisement
are too small for evaluation, the internal datasets of Alibaba
are used for the experiment. The models are classified into
categories according to their application domains and they are
evenly mixed up (20%). The job runtime of the trace is config-
ured according to the distribution reported by Microsoft [48].
As a simplified multi-tenant setup, deep learning training jobs
of the trace are randomly dispatched into two tenants. Tenant-
A has 64-GPU quota and Tenant-B has no quota. Therefore,
all Tenant-A’s jobs are resource-guarantee jobs, and all jobs
in Tenant-B are opportunistic jobs.

Baseline. The experiment compares AntMan to another
GPU production cluster scheduler, Apache YARNs capacity
scheduler (YARN-CS), which is used in Microsoft Philly [19,
28]. Gandiva [48], a state-of-the-art DL scheduling system,
is also used for comparison. Gandiva introduces a series of
primitives in DL for scheduling, including packing, migra-
tion, and time-slicing. The packing strategy of Gandiva is
used in this experiment, which greedily schedules jobs to the
GPUs with lowest GPU utilization and sufficient GPU mem-
ory. The migration and time-slicing proposed in Gandiva are
to solve resource fragmentation and benefit AutoML, which
are orthogonal to AntMan. Note that, Gandiva relies on job
profiling information (i.e., GPU utilization, GPU memory us-
age) for greedy packing decisions. Such profiling can hardly

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 543

 0

 400

 800

 1200

 1600

YARN-CS
Gandiva

AntMan

T
im

e
(M

in
)

JCT
Makespan

(a) Comparison of YARN-CS,
Gandiva, and AntMan.

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600

C
D

F

JCT (Mins)

YARN-CS
YARN-CS-preempt

Gandiva
AntMan

(b) Job completion time of
resource-guarantee jobs.

Figure 13: Trace experiment on 64 V100 GPUs.

be achieved in a production cluster, as its outputs might affect
the successor tasks of DL pipeline. In the trace experiment,
profiling information is unknown to both AntMan and YARN-
CS.

Results. Figure 13a shows the average job completion time
(JCT) and the makespan for the three schedulers when ex-
ecuting the same synthesized job trace in a cluster with 64
V100 GPUs. Compared to the capacity scheduler and Gandiva,
AntMan improves average JCT by 2.05x and 1.84x. The total
makespan is also reduced by 1.76x and 1.67x respectively.
To understand the improvements brought about by AntMan,
we config YARN-CS to run with preemption, which allows
jobs in Tenant-A to preempt jobs in Tenant-B for execution.
The JCT of resource-guarantee jobs (Tenant-A) are shown
in Figure 13b. This shows the JCT of AntMan is almost the
same as YARN-CS-preempt, however, YARN-CS-preempt
achieves it with 46% of jobs being preempted. AntMan re-
spects the jobs of Tenant-A and schedules them once their
resource quota are satisfied, while conducting a performance
control on the co-executing opportunistic jobs to avoid inter-
ference. Conversely, Gandiva delays the completion time of
these jobs because of the lack of performance isolation and
dynamic resource scaling.

5.3 Cluster Experiment

AntMan has been deployed on the production clusters of
Alibaba to serve tens of thousands of daily deep learning
training jobs. To verify the design and implementation of
AntMan while ensuring it works properly, experiments and
statistics are conducted on a heterogeneous GPU cluster with
over 5000 GPUs.

To illustrate the cluster efficiency improvement provided
by AntMan, one-week statistics were collected in December
2019, right before the deployment of AntMan, as the baseline.
It is compared to the number collected in April 2020, after
AntMan was fully deployed for weeks. However, as the jobs
of these two weeks are different, the average JCT cannot be
compared directly. Therefore, we focus on system metrics

Avg. 90% tile 95% tile
Dec. 2019 1132 1978 5960
Apr. 2020 550 124 489

Table 4: One-week queuing delay statistic in seconds.

Interference 0% 0∼1% 1∼2% 2∼3% 3∼4%
of jobs 9895 26 30 20 29

Table 5: Interference analysis on mini-batch time for 10K
production jobs

comparison because the jobs of this cluster come from the
same departments in Alibaba. The comparison shows that
AntMan provides up to 17.1% extra GPUs for DL training
jobs in this cluster. Hardware statistics show that AntMan
achieves a 42% improvement on average for GPU memory
usage and a 34% improvement on average for GPU utilization.
Table 4 illustrates the queuing delay of jobs selected from
a one-week period when roughly the same number of jobs
arrive at the cluster. It illustrates that on average, the job queu-
ing delay reduces by 2.05x and the tail latency significantly
reduces by more than an order of magnitude, thanks to the
cluster throughput improvement.

To measure the performance of resource-guarantee jobs
in co-execution, 10000 jobs were randomly sampled from
one week in April 2020 which both have the phases executing
exclusively and co-executing with other jobs. For each job, the
mini-batch time was recorded for both its dedicated execution
and packing execution with other jobs. The mini-batch time
difference between these two scenarios was calculated and any
gaps larger than 10 ms were considered as interfered (10 ms is
small enough to be considered as mini-batch fluctuation). In
this way, the interference ratio for each job could be calculated.
As shown in Table 5, 99% of the jobs suffer zero performance
downgrades during job packing.

6 Related Work

GPU memory management. To optimize the limited
and valued GPU memory for supporting larger batch-size
DNN training, vDNN [39], Capuchin [36], CDMA [40], and
Gist [26] adopts eviction, prefetching, and re-computation to
reduce the GPU memory footprint, leveraging application-
specific knowledge. Salus [50] packs multiple jobs in the
same process to share the GPU memory management, how-
ever, with interference in co-execution. In addition, running
multiple jobs in a process could potentially broadcast the
failures, especially when given a significantly high failure
ratio [27, 51]. AntMan provides a universal memory manage-
ment design using dynamic GPU and CPU memory swapping
at the granularity of tensors for the fluctuant load, which com-
plements the memory swapping and re-computation policies.

544 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Interference and performance isolation. Performance
isolation is critical in modern operating systems and shared
CPU clusters. Linux uses cgroups [1] to control the CPU and
memory usage of a process. However, it rarely has support for
general GPU applications. A series of research works, such as
Quincy [25] and Entropy [24], optimize the job performance
for fair sharing on CPU clusters. In AntMan, the character-
istic of DL jobs is leveraged to provide fine-grained control
on GPU memory and computation unit at runtime, which is
similar to cgroups, but on an application level.

The interference issue of multiplexing jobs on a GPU has
been well studied. Baymax [14] shares GPUs by mitigating
queuing delay and PCIe contention. Prophet [13] tries to
predict co-executed GPU workload performance using an an-
alytical model. AntMan introduces an operator management
module in the executor of the DL framework, leveraging the
inherent periodical mini-batch iteration cycles as a metric
for inter-job coordination. It controls the frequency of GPU
kernel launches and resolves the contention in both the GPU
computation unit and PCIe.

NVIDIA MPS can co-operate with multi-process CUDA
applications in a GPU. MPS support is not production ready
yet [4]. The resource limit cannot be changed at the runtime
of a client process which violates the fluctuant characteristic.
Moreover, MPS merges CUDA execution in only one con-
text, resulting in the termination of all clients for any fatal
GPU exceptions. rCUDA [37] and FlexDirect [3] of VMWare
Bitfusion allow jobs to be remotely executed on a shared
GPU.

GPU cluster scheduling Today, DL training jobs in multi-
tenant production clusters are managed by infrastructures
such as Kubernetes or YARN [9,28], where jobs are allocated
on dedicated GPUs, leading to common low utilization [27].
Gandiva [48] proposes time-slicing, migration, and packing
to allow GPU sharing. Time-slicing and migration switch
the GPU usage among jobs in coarse-grained, and therefore
cannot improve GPU utilization. The packing approach pro-
posed in Gandiva [48] could potentially introduce significant
unpredictable resource contention, which violates the fairness
requirements of a shared multi-tenant cluster. Themis [33]
addresses the unfairness of placement-sensitive character-
istic in DL jobs by proposing a long term fairness object.
Gandiva f air [12] addresses the fairness issue of multi-size job
time-slicing and proposes an automated trading mechanism.
AlloX [31] efficiently and fairly schedules DL jobs in inter-
changeable resources by modelling the scheduling problem
as a min-cost bipartite matching problem. AntMan introduces
opportunistic DL jobs as low-priority jobs to best-effort uti-
lize the GPU cycles, which is complementary to the fairness
metrics and policies proposed above.

Elastic training. To utilize the idle GPUs introduced by
gang-scheduling and to support fault-tolerance in DL training,

TorchElastic [7] and ElasticDL [2] are designed to start train-
ing with any number of available GPUs. A common problem
of these elastic DL frameworks is that the model training ac-
curacy can hardly be guaranteed or reproduced, and are thus
rarely used in production.

7 Conclusion

We present AntMan, a deep learning infrastructure deployed
in the GPU production clusters of Alibaba. AntMan intro-
duces dynamic scaling primitives in deep learning frame-
works, allowing flexible fine-grained control of GPU re-
sources for individual deep learning jobs at runtime. By uti-
lizing the effective primitives mentioned above, AntMan co-
designs cluster scheduler and deep learning frameworks for
cooperative job management, allowing GPUs to be utilized
by over-provision of opportunistic jobs at best-effort while
avoiding the interference to other jobs. AntMan improves the
overall GPU memory utilization and the computation unit
utilization of Alibaba’s GPU clusters by 42% and 34% re-
spectively without compromising fairness.

Acknowledgements

We would like to thank our shepherd Roxana Geambasu and
the anonymous reviewers for their valuable comments and
suggestions. We would also like to thank Chen Xing, Jin
Ouyang, Xinyuan Li, Lixue Xia for their help in improving
quality of writing.

References

[1] cgroups. https://en.wikipedia.org/wiki/
Cgroups.

[2] ElasticDL. https://github.com/
sql-machine-learning/elasticdl/.

[3] FlexDirect of VMware BitFusion.
https://www.vmware.com/content/dam/
digitalmarketing/vmware/en/pdf/whitepaper/
vmw-bitfusion-docs-flexdirect-whitepaper.
pdf.

[4] MPS. https://github.com/NVIDIA/
nvidia-docker/issues/419.

[5] NCCL. https://developer.nvidia.com/nccl/.

[6] NVLink. https://www.nvidia.com/en-us/
data-center/nvlink/.

[7] TorchElastic. https://github.com/pytorch/
elastic.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 545

https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups
https://github.com/sql-machine-learning/elasticdl/
https://github.com/sql-machine-learning/elasticdl/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/vmw-bitfusion-docs-flexdirect-whitepaper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/vmw-bitfusion-docs-flexdirect-whitepaper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/vmw-bitfusion-docs-flexdirect-whitepaper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/vmw-bitfusion-docs-flexdirect-whitepaper.pdf
https://github.com/NVIDIA/nvidia-docker/issues/419
https://github.com/NVIDIA/nvidia-docker/issues/419
https://developer.nvidia.com/nccl/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://github.com/pytorch/elastic
https://github.com/pytorch/elastic

[8] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: A System for Large-Scale Machine Learn-
ing. In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16), volume 16,
pages 265–283. USENIX Association, 2016.

[9] Scott Boag, Parijat Dube, Benjamin Herta, Waldemar
Hummer, Vatche Ishakian, K Jayaram, Michael Kalan-
tar, Vinod Muthusamy, Priya Nagpurkar, and Florian
Rosenberg. Scalable multi-framework multi-tenant life-
cycle management of deep learning training jobs. In
Workshop on ML Systems, NIPS, 2017.

[10] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jin-
gren Zhou, Zhengping Qian, Ming Wu, and Lidong
Zhou. Apollo: Scalable and Coordinated Scheduling
for Cloud-Scale Computing. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 14), pages 285–300, Broomfield, CO, 2014.
USENIX Association.

[11] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, Omega, and Kubernetes.
ACM Queue, 14:70–93, 2016.

[12] Shubham Chaudhary, Ramachandran Ramjee, Muthian
Sivathanu, Nipun Kwatra, and Srinidhi Viswanatha. Bal-
ancing efficiency and fairness in heterogeneous gpu clus-
ters for deep learning. In Proceedings of the Fifteenth
European Conference on Computer Systems, pages 1–
16, 2020.

[13] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa
Kannan, Jason Mars, and Lingjia Tang. Prophet: Precise
qos prediction on non-preemptive accelerators to im-
prove utilization in warehouse-scale computers. In Pro-
ceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 17–32, 2017.

[14] Quan Chen, Hailong Yang, Jason Mars, and Lingjia
Tang. Baymax: Qos awareness and increased utilization
for non-preemptive accelerators in warehouse scale com-
puters. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’16, At-
lanta, GA, USA, April 2-6, 2016, pages 681–696. ACM,
2016.

[15] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen Ander-
son, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide
& deep learning for recommender systems. In Proceed-
ings of the 1st workshop on deep learning for recom-
mender systems, pages 7–10, 2016.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on, pages
248–255. IEEE, 2009.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidi-
rectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171–4186. Association
for Computational Linguistics, 2019.

[18] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter No-
ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch SGD: training imagenet in 1 hour. CoRR,
abs/1706.02677, 2017.

[19] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo
Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu, and
Chuanxiong Guo. Tiresias: A GPU cluster manager
for distributed deep learning. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), pages 485–500, 2019.

[20] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li,
and Xiuqiang He. Deepfm: A factorization-machine
based neural network for CTR prediction. In Proceed-
ings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Aus-
tralia, August 19-25, 2017, pages 1725–1731. ijcai.org,
2017.

[21] William L. Hamilton, Zhitao Ying, and Jure Leskovec.
Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA,
USA, pages 1024–1034, 2017.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[23] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu,
Tao Xu, Yanxin Shi, Antoine Atallah, Ralf Herbrich,
Stuart Bowers, et al. Practical lessons from predicting
clicks on ads at facebook. In Proceedings of the Eighth
International Workshop on Data Mining for Online Ad-
vertising, pages 1–9, 2014.

546 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[24] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud,
Gilles Muller, and Julia L. Lawall. Entropy: a consoli-
dation manager for clusters. In Proceedings of the 5th
International Conference on Virtual Execution Environ-
ments, VEE 2009, Washington, DC, USA, March 11-13,
2009, pages 41–50. ACM, 2009.

[25] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
fair scheduling for distributed computing clusters. In
Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 261–276. ACM,
2009.

[26] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia
Tang, and Gennady Pekhimenko. Gist: Efficient data
encoding for deep neural network training. In 2018
ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pages 776–789. IEEE,
2018.

[27] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of large-scale multi-tenant GPU clusters for
DNN training workloads. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 947–
960, 2019.

[28] Myeongjae Jeon, Shivaram Venkataraman, Junjie Qian,
Amar Phanishayee, Wencong Xiao, and Fan Yang.
Multi-tenant gpu clusters for deep learning workloads:
Analysis and implications. Tech. Rep., 2018.

[29] Thomas N. Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. In
5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017.

[30] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
tiple layers of features from tiny images. 2009.

[31] Tan N Le, Xiao Sun, Mosharaf Chowdhury, and Zhenhua
Liu. Allox: compute allocation in hybrid clusters. In
Proceedings of the Fifteenth European Conference on
Computer Systems, pages 1–16, 2020.

[32] Liang Luo, Peter West, Arvind Krishnamurthy, Luis
Ceze, and Jacob Nelson. Plink: Discovering and exploit-
ing datacenter network locality for efficient cloud-based
distributed training, 2020.

[33] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and effi-
cient GPU cluster scheduling. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 289–304, 2020.

[34] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application
to evaluating segmentation algorithms and measuring
ecological statistics. In Proc. 8th Int’l Conf. Computer
Vision, volume 2, pages 416–423, July 2001.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information
Processing Systems, pages 8024–8035, 2019.

[36] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang
Ma, Qian Xiong, Fan Yang, and Xuehai Qian. Ca-
puchin: Tensor-based gpu memory management for
deep learning. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
891–905, 2020.

[37] Javier Prades and Federico Silla. Gpu-job migration:
The rcuda case. IEEE Trans. Parallel Distrib. Syst.,
30(12):2718–2729, 2019.

[38] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. Squad: 100, 000+ questions for machine
comprehension of text. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, EMNLP 2016, Austin, Texas, USA, Novem-
ber 1-4, 2016, pages 2383–2392. The Association for
Computational Linguistics, 2016.

[39] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Ar-
slan Zulfiqar, and Stephen W. Keckler. vdnn: Virtualized
deep neural networks for scalable, memory-efficient neu-
ral network design. In 49th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 2016,
Taipei, Taiwan, October 15-19, 2016, pages 18:1–18:13.
IEEE Computer Society, 2016.

[40] Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff
Pool, Youngeun Kwon, and Stephen W Keckler. Com-
pressing dma engine: Leveraging activation sparsity for
training deep neural networks. In 2018 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), pages 78–91. IEEE, 2018.

[41] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise
Getoor, Brian Gallagher, and Tina Eliassi-Rad. Collec-
tive classification in network data. AI Mag., 29(3):93–
106, 2008.

[42] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes
Totz, Andrew P Aitken, Rob Bishop, Daniel Rueckert,
and Zehan Wang. Real-time single image and video

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 547

super-resolution using an efficient sub-pixel convolu-
tional neural network. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 1874–1883, 2016.

[43] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
In 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[44] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 1–9, 2015.

[45] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2818–2826, 2016.

[46] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson Enrique
Yalta Soplin, Jahn Heymann, Matthew Wiesner, Nanxin
Chen, Adithya Renduchintala, and Tsubasa Ochiai. Es-
pnet: End-to-end speech processing toolkit. In Inter-
speech, pages 2207–2211, 2018.

[47] Pijika Watcharapichat, Victoria Lopez Morales,
Raul Castro Fernandez, and Peter R. Pietzuch. Ako:
Decentralised deep learning with partial gradient ex-
change. In Proceedings of the Seventh ACM Symposium
on Cloud Computing, Santa Clara, CA, USA, October
5-7, 2016, pages 84–97. ACM, 2016.

[48] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2018, Carlsbad, CA, USA, October 8-
10, 2018, pages 595–610. USENIX Association, 2018.

[49] Wencong Xiao, Zhenhua Han, Hanyu Zhao, Xuan Peng,
Quanlu Zhang, Fan Yang, and Lidong Zhou. Scheduling
CPU for gpu-based deep learning jobs. In Proceedings
of the ACM Symposium on Cloud Computing, SoCC
2018, Carlsbad, CA, USA, October 11-13, 2018, page
503. ACM, 2018.

[50] Peifeng Yu and Mosharaf Chowdhury. Salus: Fine-
grained GPU sharing primitives for deep learning appli-
cations. CoRR, abs/1902.04610, 2019.

[51] Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu,
Haoxiang Lin, and Mao Yang. An empirical study on
program failures of deep learning jobs. In Proceedings
of the 42nd International Conference on Software Engi-
neering, ICSE ’20, pages 1159–1170, NY, USA, 2020.
Association for Computing Machinery.

[52] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong
Tang, and Jie Xu. Fuxi: a fault-tolerant resource man-
agement and job scheduling system at internet scale. In
Proceedings of the VLDB Endowment, volume 7, pages
1393–1404. VLDB Endowment Inc., 2014.

[53] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan,
Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and
Kun Gai. Deep interest network for click-through rate
prediction. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 1059–1068, 2018.

[54] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang
Zhou, Baole Ai, Yong Li, and Jingren Zhou. Aligraph:
a comprehensive graph neural network platform. Pro-
ceedings of the VLDB Endowment, 12(12):2094–2105,
2019.

[55] Marinka Zitnik and Jure Leskovec. Predicting multi-
cellular function through multi-layer tissue networks.
Bioinformatics, 33(14):i190–i198, 2017.

[56] Barret Zoph, Ekin D. Cubuk, Golnaz Ghiasi, Tsung-Yi
Lin, Jonathon Shlens, and Quoc V. Le. Learning data
augmentation strategies for object detection. CoRR,
abs/1906.11172, 2019.

548 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Write Dependency Disentanglement with Horae

Xiaojian Liao, Youyou Lu∗, Erci Xu, and Jiwu Shu∗

Tsinghua University

Abstract

Storage systems rely on write dependency to achieve atom-

icity and consistency. However, enforcing write dependency

comes at the expense of performance; it concatenates multi-

ple hardware queues into a single logical queue, disables the

concurrency of flash storage and serializes the access to iso-

lated devices. Such serialization prevents the storage system

from taking full advantage of high-performance drives (e.g.,

NVMe SSD) and storage arrays.

In this paper, we propose a new IO stack called Horae to al-

leviate the write dependency overhead for high-performance

drives. Horae separates the dependency control from the

data flow, and uses a dedicated interface to maintain the write

dependency. Further, Horae introduces the joint flush to en-

able parallel FLUSH commands on individual devices, and

write redirection to handle dependency loops and parallelize

in-place updates. We implement Horae in Linux kernel and

demonstrate its effectiveness through a wide variety of work-

loads. Evaluations show Horae brings up to 1.8× and 2.1×

performance gain in MySQL and BlueStore, respectively.

1 Introduction

The storage system has been under constant and fast evolution

in recent years. At the device level, high-performance drives,

such as NVMe SSD [15], are pushed onto the market with

around 5× higher bandwidth and 6× lower latency against

their previous generation (e.g., SATA SSD) [11, 18]. From

the system perspective, developers are also proposing new

ways of storage array organization to boost performance. For

example, in BlueStore [23], a state-of-the-art storage backend

of Ceph [45], data, metadata and journal can be separately

persisted in different, or even dedicated devices.

With drastic changes from the hardware to the software,

maintaining the write dependency without severely impacting

the performance becomes increasingly challenging. The write

dependency indicates a certain order of data blocks to be per-

∗Jiwu Shu and Youyou Lu are the corresponding authors.

{shujw, luyouyou}@tsinghua.edu.cn

sisted in the storage medium, and further underlies a variety

of techniques (e.g., journaling [44], database transaction [13])

to provide ordering guarantee in the IO stack. Yet, the write

order is achieved through an expensive approach, referred

as exclusive IO processing in this paper. In the exclusive IO

processing, the following IO requests can not be processed

until the preceding one has been transferred through PCIe

bus, then been processed by the device controller and finally

returned with a completion response.

Unfortunately, this one-IO-at-a-time fashion of processing

conflicts with the high parallelism of the NVMe stack, and

further nullifies the concurrency potentials between multiple

devices. First, it concatenates the multiple hardware queues

of the NVMe SSD, thereby eliminating the concurrent pro-

cessing of both host- and device-side cores [50]. Moreover, it

serializes the access to physically independent drives, prevent-

ing the applications from enjoying the benefits of aggregated

devices. In our motivation study, we observe that with the

scaling of hardware queues and devices, the performance

loss introduced by the write dependency can be up to 87%.

Conversely, orderless writes without dependency can easily

saturate the high bandwidth of NVMe SSDs (§3).

Therefore, to leverage the high bandwidth of NVMe SSDs

while preserving dependency, we propose the barrier trans-

lation (§4) to convert the ordered writes into orderless data

blocks and ordering metadata that describes the write de-

pendency. The key idea of barrier translation is shifting the

write dependency maintenance to the ordering metadata dur-

ing normal execution and crash recovery, while concurrently

dispatching the orderless data blocks.

We incarnate this idea by re-architecting modern IO stack

with Horae (§5). In a nutshell, Horae bifurcates the tradi-

tional IO path into two dedicated ones, namely ordered con-

trol path and orderless data path. In the control path, Horae

flushes ordering metadata directly into the devices’ persistent

controller memory buffer (CMB), a region of general-purpose

read/write memory on the controller of NVMe SSDs [15, 16],

using memory-mapped IO (MMIO). On the other hand, Ho-

rae reuses classic IO stack (i.e., block layer to device driver to

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 549

device) to persist orderless writes. Note that this design is also

scaling-friendly as orderless data blocks can be processed in

both an asynchronous (to a single device) and pipelined (to

multiple devices) manner.

Now, with a bifurcated IO path, we further develop a series

of techniques to ensure both high performance and consis-

tency in Horae. First, we design compact ordering metadata

and efficiently organize them in the CMB (§5.2). Second, the

joint flush of Horae performs parallel FLUSH commands on

dependent devices (§5.3). Next, Horae uses the write redi-

rection to break the dependency loops, parallelizing in-place

updates with strong consistency guarantee (§5.4). Finally,

for crash recovery, Horae reloads the ordering metadata, and

further only commits the valid data blocks but discarding

invalid ones that violate the write order (§5.5).

To quantify the benefits of Horae, we build a kernel file

system called HoraeFS to test applications relying on POSIX

interfaces, and a user-space object store called HoraeStore

for distributed storage (§5.6). We compare HoraeFS against

ext4 and BarrierFS [46], resulting in an up to 2.5× and 1.8×

speedup at file system and application (e.g., MySQL [13])

level, respectively (§6). We also evaluate HoraeStore against

BlueStore [23], showing the transaction processing perfor-

mance increases by up to 2.1×.

To sum up, we make the following contributions:

• We perform a study of the write dependency issue on

multi-queue drives among both single and multiple de-

vices setup. The results demonstrate considerable over-

head of ensuring write dependency.

• We propose the barrier translation to decouple the or-

dering metadata from the dependent writes to enforce

correct write order.

• We present a new IO stack called Horae to disentangle

the write dependency of both a single physical device

and storage arrays. It introduces a dedicated path to

control the write order, and uses joint flush and write

redirection to ensure high performance and consistency.

• We adapt a kernel file system and a user-space object

store to Horae, and conduct a wide variety of experi-

ments, showing significant performance improvement.

2 Background

This section starts with a brief introduction of enforcing write

dependency under current IO stack (§2.1). Then, we illus-

trate state-of-the-art techniques that alleviate the overhead of

enforcing the write dependency (§2.2).

2.1 Basic Ordering Guarantee Approach

In Figure 1(a), we can see that modern IO stack is a combina-

tion of software (i.e., the block layer, the device driver) and

hardware (i.e., the storage device) layers. Each layer may

reorder the write requests for better performance [15, 50] or

fairness [4, 29]. Specifically, in the block layer, the host IO

scheduler can schedule the requests in the per-core software

Ext4

Device A

Device

Driver

Per-core SWQ
Block

Layer

File

System

R/W

BarrierFS

Barrier-Enabled Device

Order Preserving

Dispatch

Barrier Write

Order Preserving

Block Layer

App. MySQL

fsync

journal

write-ahead log

BStorage C

Ext4

fsync

S
W
Q

S
W
Q

H
W
Q

MySQL

fsync fbarrier

(a) Linux IO stack (b) Barrier-Enabled IO stack

H
W
Q

H
W
Q

Figure 1: Existing IO Stacks with Different Order-Preserving

Techniques. SWQ: software queue. In current multi-queue block

layer, each core has a software queue. HWQ: hardware queue. The

storage device determines the maximum number of HWQs. Emerging

NVMe drives usually have multiple HWQs.

queues based on different algorithms (e.g., deadline). While

in the storage device, the controller may fetch and process

arbitrary requests due to timeouts and retries.

As a result of this design, the file system must explicitly

enforce the storage order. Traditionally, the file system relies

on two important steps: synchronous transfer and cache bar-

rier (e.g., cache FLUSH). First, synchronous transfer requires

the file system to process and transfer the dependent data

blocks through each layer to the storage interface serially.

Then, to further avoid the write reordering by the controller

in the storage device layer, the file system issues a cache bar-

rier command (e.g., FLUSH), draining out the data blocks in

the volatile embedded buffer to the persistent storage. After-

wards, the file system repeats this processing the next request.

Through interleaving dependent requests with exclusive IO

processing, the file system ensures the write requests are made

durable with the correct order.

The basic approach in guaranteeing the storage order is

undoubtedly expensive. It exposes DMA transfer latency

(synchronous transfer) and flash block programming delay

(cache barrier) to the file system.

2.2 Ordering Guarantee Acceleration

Many techniques [25, 26, 46, 48] improve the basic approach

presented in §2.1, by reducing the overhead of synchronous

transfer and cache barrier. As barrier-enabled IO stack (Barri-

erIO [46]) is the closest competitor, we introduce it briefly.

BarrierIO reduces the storage order overhead by preserv-

ing the order throughout the entire IO stack. Specifically,

the BarrierIO enforces the write dependency mainly using

two techniques: the order-preserving dispatch to accelerate

the synchronous transfer, and the barrier write command to

improve the cache barrier. First, as shown in Figure 1(b), the

order-preserving block layer ensures that the IO scheduler

follows the write order specified by the file system. Further,

the order-preserving dispatch maintains the write order of

550 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of hardware queues

1 Device 2 Devices 3 Devices

orderless

ordered

IO
P

S
 (

K
)

200

400

600

0 10 20 30 40 50 60 70 80 90

Figure 2: Ordered Write VS. Orderless Write with Varying The

Number of Hardware Queues and Devices. Each device has up

to 32 hardware queues. Described in Section 3.1.

requests queueing in the (single) hardware queue. As a col-

laborator, the storage controller also fetches and serves the

requests in a serialized fashion. Second, BarrierIO replaces

the expensive FLUSH with a lightweight barrier write com-

mand for the storage controller to preserve the write order.

File systems provide the fsync() call for applications to

order their write requests. Yet, it is still too expensive to

preserve order by fsync(). Thus, like OptFS [26], Barri-

erIO separates the ordering from the durability, and further

introduces a file system interface, i.e., fbarrier(), for order-

ing guarantee. The fbarrier() writes the associated data

blocks in order, but returns without durability assurance.

3 Motivation

Multi-queue. The improvement of storage technologies has

been continuously pushing forward the performance of solid-

state drives. To meet the large internal parallelism of flash

storage, SSDs are often equipped with multiple embedded

processors and multiple hardware queues [33, 38]. In the

host side, as shown in Figure 1(a), the IO stack employs

the multicore friendly design. It statically maps the per-core

software queues to the hardware queues for concurrent access.

Multi-device. On the other hand, for higher volume capacity,

performance and isolation, applications usually stripe data

blocks to multiple devices as in RAID 0, or manually isolate

different types of data into multiple devices. For example,

as shown in Figure 1(a), the ext4 file system uses a dedi-

cated device for journaling processing. The MySQL database

redirects its write-ahead logs to a logging device.

The multi-queue and multi-device bring opportunities to

enhance performance for independent write requests. Nev-

ertheless, it still remains unknown how much overhead the

write dependency introduces to the multi-queue and multi-

device design. Here, we first start with a performance study

of the write dependency atop multi-queue and multi-device.

3.1 Write Dependency Overhead

In this subsection, we quantify the overhead of write depen-

dency atop Linux IO stack by comparing the IOPS of ordered

writes with orderless ones. We use an NVMe SSD (spec in

Table 2 Intel 750) with up to 32 hardware queues and use

FIO [9] for testing. During the test, we vary the number of

hardware queues and attach more devices. Further, we in-

crease the number of threads issuing 4 KB writes to gain the

maximum IOPS.

For orderless random write, we use libaio [3] engine with

iodepth of 512. In this setup, the write requests issued by

libaio have no ordering constraints and can be freely re-

ordered by the storage controller according to NVMe specifi-

cation [15]. The results are shown in Figure 2. As we enable

more hardware queues, the IOPS of orderless writes increases

and gradually saturates the storage devices.

For ordered random write, we use libaio engine but set the

iodepth to 1. This setup follows the principle of exclusive

IO processing in guaranteeing the ordering. As shown in

Figure 2, the IOPS of ordered write can hardly grow, even if

we use more devices as RAID 0 to serve the write request.

The gap between orderless and ordered writes (blue area

in Figure 2) indicates the overhead of the write dependency.

With the increase of hardware queues, the overhead becomes

more severe, and reaches up to 87%. We conclude that the

Linux IO stack is not efficient in handling ordered writes.

3.2 Write Dependency Analysis

In this subsection, we analyze the write dependency overhead

via explaining the behaviors of Linux IO stack.

For a single device, the physically independent hardware

queues get logically dependent. The application thread firstly

puts the write requests in the software queues through the

IO interface (e.g., io submit()). Linux IO stack supports

various IO schedulers (e.g., BFQ [4]), which perform requests

merging/reordering in the software queues. Next, the requests

are dispatched to hardware queues, where IO commands are

generated. In the hardware queues, out of consideration for

hardware performance (e.g., device-side scheduling) and com-

plexity (e.g., request retries), there are no ordering constraints

of storage controller processing the commands [15] 1. There-

fore, due to the orderless feature of both types of queues, to

guarantee storage order, the IO stack only processes a single

request or a set of independent requests at a time. As a result,

the ordered write request keeps most queues idle and leaves

the multi-queue drives underutilized.

For multiple devices, physically isolated devices get logi-

cally connected. The IO stack employs isolated in-memory

data structures for the software environment of multi-device.

In the hardware side, a device has its private DMA engine and

hardware context. Despite the concurrent execution environ-

ment, the ordered writes flow through the multi-device in a

serialized fashion; the application can not send a request to a

different device until the on-going device finishes execution.

1In barrier-enabled devices, the host can queue multiple ordered writes

and insert a barrier command in between. Such barrier command is available

in a few eMMC products [22] with usually single hardware queue. Multi-

queue-based NVMe does not have similar concept.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 551

3.3 Limitation of Existing Work

A straightforward solution to remedy aforementioned issues

is to keep the entire IO stack ordered as BarrierIO does, so as

to allow more ordered writes to stay in the hardware queue.

Recall that in Section 2.2, each layer in BarrierIO stack must

preserve the request order spread by the upper layer. Imple-

menting such design is quite simple in old drives with a sole

command queue (e.g., mobile UFS, SATA SSD): the requests

in the hardware queue are serviced in the FIFO way. How-

ever, it is quite challenging to extend this idea to multi-queue

drives and multiple devices, without sacrificing the multicore

designs of the host IO stack and the core/data parallelism of

fast storage devices. We explain the reason in detail.

The key of BarrierIO is that each layer agrees on a specific

order. While a single hardware queue structure itself can de-

scribe the order, for multi-queue and multi-device, the host IO

stack must manually specify the order. Maintaining a global

order among multiple queues throughout the entire IO stack

potentially ruins the multi-queue and multi-device concur-

rency, which are vital features to fully exploit the bandwidth

of high-performance drives, according to our evaluation (§6.2)

and a recent study [50]. Further, the firmware design should

comply with the host-specified order, which may introduce

synchronization among embedded cores and may neutralize

the internal core and data parallelism.

In this paper, instead of keeping the IO stack ordered, we

seek a new approach that keeps most parts of current IO stack

orderless while preserving correct storage order. We now

present our design in the following sections.

4 The Horae Foundation

To efficiently utilize the modern fast storage devices, we wish

to keep the orderless and independent property of both the

software and hardware intact. We achieve this goal via barrier

translation, which disentangles the write dependency from

original slow and ordered write requests.

4.1 Design

Here, we refer a series of ordered write requests issued by

the file system or applications as a write stream. Commonly,

a write stream can have multiple sets of data blocks and the

inbetween barriers that serve as ordering points between two

sets of data blocks. We note a set of data blocks to device

A with a monotonic set ID x as Ax, and refer a barrier (write

dependency) as �. Thus, for a write stream Ax � Bx+1, it shall

be ensured that the data blocks of Ax must be made durable

prior to (≺) Bx+1 or at the same time (=) as Bx+1.

Next, we move on to remove the dependency (i.e., �) be-

tween two write requests. We use {} to group a set of indepen-

dent write requests that can be processed concurrently. Our

key issue is to translate the Ax � Bx+1 into {Ax, Bx+1}. We

decouple the indexing of a write stream from its data content.

The indexing (i.e., ordering metadata) keeps a minimum set

of information to retain the dependency. We refer the ordering

metadata as Ãx and the data content as Āx, and thus we have

Ax = Ãx ∪ Āx. Specifically, if Ax has consecutive data blocks

of n length to device A from logical block address (lba) m, Ãx

= {A, m, n}.

Given a write stream Ax � Bx+1, the barrier translation

turns it into Ãx � ˜Bx+1 � {Āx, ¯Bx+1}. Specifically, the trans-

lated write stream guarantees the order in two steps: (1) {Ãx,
˜Bx+1} � {Āx, ¯Bx+1} and (2) Ãx � ˜Bx+1. First, we must ensure

the ordering metadata is made durable no later than data con-

tent. Then, the write dependency of original write stream is

extracted as the ordering metadata.

4.2 Proof

Now, we further discuss the correctness of barrier translation

via the following proof. Our main point is to show that the

translated write stream has the same effect on satisfying the

ordering constraints. In other words, the following proves

that if the ordering metadata is made durable in specific order,

and is made durable no later than the data content, the write

dependency of original write stream is maintained.

We formalize the implication as follows:

Ãx � ˜Bx+1 � {Āx,
¯Bx+1} =⇒ Ax � Bx+1 (1)

The key lies in the non-deterministic order between Āx and
¯Bx+1. We thus discuss the proof in two situations: Āx � ¯Bx+1

and ¯Bx+1 ≺ Āx as follows.

The first case Āx � ¯Bx+1. Since we already have Ãx � ˜Bx+1,

we have (Ãx ∪ Āx) � (˜Bx+1 ∪ ¯Bx+1). Because Ax = Ãx ∪ Āx

and Bx+1 = ˜Bx+1 ∪ ¯Bx+1, we have Ax � Bx+1.

The second case ¯Bx+1 ≺ Āx. This case at first glance may

seem to violate the write order. However, since we have ˜Bx+1

� ¯Bx+1, we can always find and discard the content ¯Bx+1 via

the indexing ˜Bx+1. In this situation, the data content remains

empty, i.e., ∅. The empty result obeys any write dependency,

i.e., ∅ ∈ {Ax � Bx+1} = {∅, {Ax}, {Ax, Bx+1}}.

Two intuitive concerns may be raised from the second case.

First, a long write stream may be at a higher risk of losing

more data due to discard, although it keeps a consistent state

of disk status. However, such scenario is common and accept-

able in storage systems. Similar to roll-back and undo log, the

discarding time window (e.g., fsync() delay) is determined

by the file systems or applications. If applications desire data

durability rather than ordering, they must synchronously wait

for the durability of the write stream, e.g., calling fsync().

Second, a special case of the write dependency, called

discarding at a dependency loop, may erase the old but valid

data content. For example, consider Ax � Bx+1 � Ax+2, where

Ax and Ax+2 operate on the same logical block address. This

would occur when storage systems perform in-place updates

(IPU). Simply discarding Āx in the second case loses the

valid data. Our solution is to break the dependency loop by

redirecting IPU to another location, i.e., Ax � Bx+1 � A
′

x+2,

where A
′

x+2 targets on a different address from Ax. In this

way, we guarantee the correctness of dependency loop as in

552 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A1A3 A2B4B5B6

A1

Device A

Device B

A3B4B6A1 A3A2

B4 B5 B6

Device A

Device B{lba, len, device id}

Ai
: ordered write request i to device A

Bk
: orderless write request k to device B

: slow barrier

: faster barrier

(a) the write stream before the barrier translation

(b) the write stream after the barrier translation

Figure 3: An Example of The Barrier Translation. The solid

circle represents the ordering metadata. The subscript denotes the

desired write order of the file system or applications.

normal case, preserving high concurrency as well as the old

version of data. We show more details in §5.4.

4.3 Example

We now use an example to go through the entire process of bar-

rier translation. Figure 3(a) presents the original write stream.

As we can see, even for different devices, the block-sized (e.g.,

4 KB) data is still processed in a serialized fashion. Even

worse, the classic approach uses slow and coarse-grained

barrier (the cloud shape, e.g., flash FLUSH) to enforce the

relationship �, which may process unrelated data blocks (e.g.,

the orderless data blocks).

Figure 3(b) shows the output of the barrier translation.

Original expensive barriers are replaced with faster and fine-

grained barriers (the thunder shape, e.g., memory barrier).

Further, the initial ordered writes are translated to orderless

ones with no barriers. As a result, after processing the order-

ing metadata, the devices can process data blocks at their full

throttle concurrently.

5 The Horae IO stack

To demonstrate the advantage of the barrier translation, we

implement Horae by modifying the classic Linux IO stack.

The following sections first give an overview of Horae, and

then present the techniques at length.

5.1 Overview

As the high level architecture shown in the Figure 4, Horae

extends the generic IO stack with an ordering layer target-

ing ordered writes. Moreover, Horae separates the ordering

control from the data flow: the ordering layer translates the

ordered data writes (①) into ordering metadata (②) plus

the orderless data writes (③). The ordering metadata passes

through a dedicated control path (MMIO). The orderless data

writes flow through the original block layer and device driver

(block IO) as usual. As a result of separation, the data path

is no longer bounded by the write dependency, and it thus

allows the file systems to dispatch the data blocks to arbi-

HoraeFS

Ordering Layer

Block Layer

Device Driver

fsync()fbarrier()

①Ax≼Bx+1

②	Ax
% ≼ Bx+1 &

③{Ax' , Bx+1}

Device A Device B

Ordered data writes

Ordered control writes

Orderless data writes

HoraeStore

queue_tx() apply_tx()

Figure 4: The Horae IO Stack Architecture. Horae splits the

traditional IO path into ordered control path ② and orderless data

path ③. Horae persists the ordering metadata Ãx via the control

path before submitting the orderless data blocks Āx to the data path.

trary hardware queues or storage devices without exclusively

occupying the hardware resources.

The key of Horae is the ordering layer, to which the order-

ing guarantee of the entire IO stack is completely delegated

(§5.2). Note that the ordering layer does not need to handle all

block IOs, but instead just need to capture the write dependen-

cies of ordered writes. Specifically, Horae stores the ordering

metadata in the persistent controller memory buffer (CMB in

NVMe spec 1.2 [15], PMR in NVMe spec 1.4 [16]) of the

storage device using an ordering queue structure. Horae lever-

ages epochs to group a set of writes with no intra-dependency,

and further uses the ordering queue structure itself to reflect

the order of each epoch with inter-dependency.

Separating the ordering control path from the data path pro-

vides numerous benefits; it saves the block layer, the device

driver, and the devices from enforcing write order, which can

sacrifice performance or particular property (e.g., schedul-

ing). Further, this design enables Horae to perform parallel

FLUSHes despite the dependencies among multiple devices

(§5.3). Yet, it also faces a challenge, the dependency loop.

As we mentioned in §4.2, the dependency loop occurs

when multiple in-place updates (IPU) operate on the same ad-

dress. As the data path of Horae is totally orderless, multiple

ordered in-progress (issued by the file system but the comple-

tion response is not returned) IPUs can co-exist and be freely

reordered. The dependency loops, if not properly handled,

can introduce data version issue (e.g., the former request over-

writes the later one) and even the security issue (e.g., unau-

thorized data access). Horae breaks the dependency loops

by write redirection (§5.4). In other words, Horae treats the

IPUs as versioned writes, stores their ordering metadata seri-

ally, and concurrently redirects them to a pre-reserved disk

location. In background, Horae writes the redirected data

blocks back to their original destination. In this way, Horae

parallels the IPUs while retaining their ordering.

Atop the ordering layer, Horae exports block device ab-

straction and provides ordering control interface to the upper

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 553

…..

Head Tail

Device A

A1 Z3A2 Z4

Epoch[0] Epoch[n]Epoch[n-1]

A5 Z7A6 Z8

A1 A2 A5 A6

A1 Z3A2 Z4 A5 Z7A6 Z8

A1 A2

A5 A6

Z3 Z4

Z7 Z8

Device Z

Z3 Z4 Z7 Z8

1

A1

A1

:data block

PCIe

:ordering metadata

A1, A2, Z3, Z4 A5, A6, Z7, Z8≼ MMIO

Block IO

The Ordering

Queue

1

4 4

32

Figure 5: The Circular Ordering Queue Organization. The or-

dering queue is located in the persistent controller memory buffer

(CMB) of SSD. Horae groups a set of independent writes to an epoch,

and enforces the ordering between epochs. Described in Section 5.2.

layer systems (§5.6). We provide APIs (application program-

ming interfaces) and high level porting guidelines for upper

layer systems to adapt to Horae. Moreover, we build a kernel

file system, HoraeFS, for applications that rely on POSIX file

system interfaces, and a user-space object store, HoraeStore,

for distributed storage backend.

On top of HoraeFS and HoraeStore, similar to previous

works [23,26,46], we provide two interfaces, the ordering and

durability interface, for upper layer systems or applications to

organize the ordered data flow. The ordering interfaces (i.e.,

fbarrier(), queue tx()) send the data blocks to the stor-

age with ordering guarantee, but return without ensuring dura-

bility. The durability interfaces (i.e., fsync(), apply tx())

deliver the intact semantics as before.

5.2 Ordering Guarantee

The major role of the ordering layer is guaranteeing the write

order. Recall that the write stream Ax � Bx+1 is translated to

Ãx � ˜Bx+1 � {Āx, ¯Bx+1}, thus the ordering layer enforces the

write dependency of the ordering metadata before dispatching

the translated data blocks. We first present the organization

of the ordering metadata.

Ordering metadata organization. As shown in the center of

Figure 5, through the PCIe base address register, Horae uses

the persistent Controller Memory Buffer (CMB) as the persis-

tent circular ordering queue. The ordering queue is bounded

by the head and tail pointers, and stores the ordering meta-

data of one write stream. For an incoming ordered write re-

quest, Horae first appends its ordering metadata to the queue

via MMIO. As shown in Figure 6, the ordering metadata is

compact, mainly consisting of range-based destination (i.e.,

lba, len, devid). Storing the ordering metadata via control

path is a CPU-to-device transfer with byte-addressability; un-

like an interrupt-based memory-to-device DMA transfer, it

does not transfer a full block nor switch context. Thus, per-

sisting the compact ordering metadata via MMIO is efficient.

Horae leverages the epoch to group a set of independent

writes. And, Horae only enforces the write dependency in

lba

32

Format:

Size in bits: 8 2232

len

32

devid plbaetag rsvddr

11

Figure 6: The Ordering Metadata Format. lba: logical block

address. len: length of continuous data blocks. devid: destination

device ID. etag: epoch boundary. dr: is made durable. plba: lba of

prepare write. rsvd: reserved bits.

the unit of epoch. To realize epoch, Horae uses the etag to

indicate the boundary of epochs. The etag implies �.

Now, we go through an example presented in Figure 5

to show how data blocks reach the storage with ordering

constraints. Suppose that the ordering layer receives two

sets of ordered write requests from two threads with ordering

constraints {A1,A2,Z3,Z4} � {A5,A6,Z7,Z8}. The ordering layer

first forms two epochs N and N-1, and constructs the ordering

metadata according to the data blocks and write dependencies.

Next, the two threads store the ordering metadata concurrently

to the ordering queue via MMIO (1©). Then, Horae updates

the 8-byte tail pointer sequentially to ensure both the update

atomicity of each epoch and the write order of associated

ordering metadata (2©, 3©). Finally, the two threads dispatch

the orderless writes concurrently via block IO interface (4©).

Since the size of available CMB is usually limited (e.g.,

2 MB), the ordering queue may exceed the CMB region.

Thus, Horae introduces two operations, swap and dequeue,

to reclaim free space of the CMB for incoming requests.

Swap. The ordering layer blocks the threads issuing ordered

writes, and then invokes swap operation, when the total size

of the valid ordering metadata exceeds the queue capacity. It

moves the valid ordering metadata to a checkpoint region with

larger capacity, e.g., a portion of flash storage. It first waits

for the on-going append operations on the ordering queue to

complete. Next, it copies the whole valid ordering metadata

to the checkpoint region. Finally, it updates the head and

tail pointers atomically with a lightweight journal.

Dequeue. The ordering layer dequeues the expired ordering

metadata when its associated data blocks and the preceding

ones are durable. The dequeue operation moves the 8-byte

head pointer.

Optimization. We observe that the MMIO write latency

through PCIe is acceptable, but MMIO read can be extremely

slow (8 B read costs 0.9us, 4 KB read costs 113us). This

is because MMIO read is split into small-sized (determined

by CPU) non-posted read transactions to guarantee atomic-

ity [17]. Yet, MMIO reads can be abundant on the CMB. For

example, Horae allocates free locations from the ordering

queue before sending the ordering metadata, which requires

frequent head and tail pointer access. Also, Horae needs

to read the whole ordering queue for a swap operation. Horae

avoids slow MMIO reads by maintaining an in-memory write-

through cache for the entire CMB. The cache serves all read

operations in memory. Write operations are performed to the

cache, and persisted to the device CMB simultaneously via

554 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Device A Device B Device C Device D

Head FLUSH(C) Tail

A1 C3B2 B4 A5 D7C6 D8 D9
The Ordering Q

A: <1,5> B: <2,4> C: <3,6> D: <7,9>

Flushed

(a) Pre-FLUSH states

Device A Device B Device C Device D

FlushedTail

D7 D8 D9

The Ordering Queue

A: <0,0> B: <0,0> C: <0,0> D: <7,9>

A1 C3B2 B4 A5 C6

Head Flushed

(b) Post-FLUSH states

Figure 7: The Durability and Joint FLUSH of Horae. A FLUSH

command to a single device also triggers flushings to other devices

whose write requests must be made durable in advance.

MMIO. The extra memory consumption (2 MB) is negligible.

5.3 Durability Guarantee

Applications may also require instant durability. Linux IO

stack uses the FLUSH command (e.g., calling fsync()) to

enforce durability and ordering of updates in a storage de-

vice. Further, the FLUSH serves as a barrier between multiple

devices, so as to ensure that the post-FLUSH requests are not

made durable prior to the pre-FLUSH ones. For example, to

guarantee the durability of Ax � Bx+1, Linux IO stack issues

two FLUSHes. The first one on device A ensures the write de-

pendency (�) as well as the durability of Ax, and the second

one on device B for durability of Bx+1.

The FLUSH of Horae no longer serves as a barrier. Thus,

Horae eliminates intermediate FLUSHes and invokes an even-

tual FLUSH to ensure durability. Unlike the legacy FLUSH

targeting on sole device, the FLUSH of Horae, called joint

FLUSH, automatically flushes related devices whose data

blocks should be persisted in advance.

Figure 7 shows an example of the joint FLUSH in detail.

The states of the ordering queue are in Figure 7a, and suppose

we decide to flush device C. The ordering layer firstly finds

the flush point (6), the last position of the flushed device in the

ordering queue. Next, it identifies the devices that need to be

flushed simultaneously. A device should be flushed if it has

requests prior to the flush point. To quickly locate the flush

candidates, Horae keeps the first and last position of each

device (device range) in the ordering queue (e.g., 〈1,5〉 of

device A), as shown in the top of Figure 7a. By checking the

existence of the intersection of the device range and head-to-

flush range (〈1,6〉), Horae selects the flush candidates. Then,

Horae sends FLUSH commands to the candidate devices (A

and B) simultaneously. When the joint FLUSH completes, Ho-

rae moves the flushed pointer and resets the device range,

as shown in Figure 7b.

With the flushed pointer, Horae ensures the durability of

the write requests between the head and flushed position.

However, on SSDs with power loss protection (PLP), data

blocks are guaranteed to durable when they reach the storage

buffer, prior to a FLUSH command. Therefore, Horae uses

the dr bit (shown in Figure 6) to indicate the durability of

the requests after the flushed position. For SSD with PLP,

Horae sets the dr bit, once the ordered write requests are

completed via interrupt handler or polling.

While the legacy FLUSH is always performed in a serialized

and synchronous fashion, the joint FLUSH enables Horae to

flush concurrently and asynchronously, for devices without

PLP. These devices expose extremely long flash programming

latency, so async flushings on them exploit the potential par-

allelism. However, Horae remains the sync flushing on the

other type of devices with PLP. Since flushing such devices is

returned from the block layer directly, async flushing incurs

unnecessary context switches from the wakeup mechanism.

5.4 Handling Dependency Loops

To understand the motivation for resolving the dependency

loops, we show two examples. First, consider a data block is

overwritten repeatedly. Reordering of two overwrite opera-

tions may cause the later one to be overwritten by the former

one, and results in a data version issue. Second, consider

at the file system level. The file system frees a data block

from owner A, and then reallocates it to owner B. Reordering

of reallocating and freeing upon a sudden crash can cause a

security issue: owner B can see the data content of owner A.

Classic IO stacks handle dependency loops by prohibiting

multiple in-progress IPUs on the same address. IPUs on the

same address are operated exclusively, where the next IPU

can not be submitted until the preceding one is completely

durable. However, this approach serializes the access to the

same address, leaving the device underutilized. Horae allows

multiple in-progress parallel IPUs on the same address, and

resolves dependency loops through IPU detection, prepare

and commit write.

IPU detection. The foremost issue is to detect IPUs. In Ho-

rae, the upper layer systems must specify the IPU explicitly

because of the awareness of IPU.

Prepare write. In receiving an IPU, Horae first allocates an

available location from the preparatory area (p-area), a pre-

reserved area of each device for handling dependency loops.

It stores the location in the plba region (shown in Figure 6) of

the ordering metadata. Next, it dispatches the IPU to the plba

position of p-area, via the same routine as the classic orderless

write. Further, Horae uses an in-memory IPU radix tree to

record the plba for following read operations to retrieve the

latest data. The IPU tree accepts the logical block address

(lba) as the input and outputs the newest plba. Compared

to the IO processing, the modification on the IPU tree is

performed in memory, and its overhead is thus negligible.

Commit write. Horae applies the effects of IPUs via the

commit write, once the durability of the prepare write is sat-

isfied. Horae firstly scans the ordering queue, and merges

the overlapping data blocks of the p-area. Then, it writes the

merged data blocks back to their original destination concur-

rently. When the commit write completes, Horae removes

associated entries of the IPU tree, and dequeues the entries

between the head and flushed pointer of the ordering queue.

Horae introduces two commit write policies, lazy and ea-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 555

API Explanation

olayer init stream(sid, param) Register an ordered write stream with ID sid and parameters param

olayer submit bio(bio, sid) Submit an ordered block IO bio to stream sid

olayer submit bh(bh, op, opflags, sid) Submit a buffer head bh to stream sid with specific flags opflags and op

olayer submit bio ipu(bio, sid) Submit an ordered in-place update block IO bio to stream sid

olayer blkdev issue flush(bdev, gfp mask, error sector, sid) Issue a joint FLUSH to device bdev and stream sid

fbarrier(fd) Write the data blocks and file system metadata of file fd in order

fdatabarrier(fd) Write the data blocks of file fd in order

io setup(nr events, io ctx, sids) Create an asynchronous I/O context io ctx and a set of streams sids

io submit order(io ctx, nr, iocb, sid) Write nr data blocks defined in iocb to stream sid

Table 1: The APIs of Horae. Horae provides the stream (or sequencer) abstraction for upper layer systems. Each stream is identified by a

unique sid, and represents a sequence of ordered IO requests. To realize multiple streams, Horae evenly partitions the CMB area and p-area,

and assigns a portion to each stream.

ger commit write. The lazy commit write is performed in

background when the IO stack is idle. When Horae runs out

of p-area space, it triggers eager commit write.

Read. As the ordered IPUs are redirected to p-area, the

following read operation retrieves the latest data blocks from

p-area first. Horae searches the IPU tree for the plba, and

reads the data from the plba position of p-area.

With write redirection for IPUs, Horae provides higher

consistency than the data consistency, which matches the

default ordered mode of ext4. The data consistency requires

that (1) the file system metadata does not point to garbage

data, and (2) the old data blocks do not overwrite new ones.

Horae is able to preserve the order between data and file

system metadata, and thus the file system metadata always

points to valid data. Also, Horae controls the order of parallel

IPUs. Therefore, Horae supports data consistency.

However, the data consistency does not provide request

atomicity. Under data consistency, the IPUs directly overwrite

valid data blocks, and can sometimes leave the file system

a combination of old and new data, which brings inconve-

nience to maintain application-level consistency [2]. This is

because commodity storage does not provide atomic write

operations. For a write request containing a 4 KB data block,

it may be split into multiple 512 B (determined partially by

Max Payload Size) PCIe atomic ops (i.e., transactions) [17].

A crash may result in partially updated 4 KB data block.

Horae enhances data consistency with request atomicity;

continuous data blocks of each write request sent to the Ho-

rae are made durably visible atomically due to double write.

Once the durability of the prepare write is satisfied, Horae

ensures request atomicity. Otherwise, the prepare write may

be partially completed and its effect is thus ignored.

5.5 Crash Consistency

In the face of a sudden crash, Horae must be able to recover

the system to a correct state that the data blocks are persisted

in the correct order and the already durable data blocks with

a completion response are not lost. This subsection discusses

the crash consistency of Horae, including the ordering queue

consistency and the data block consistency.

The ordering queue. As stated in §5.2, Horae writes the

ordering metadata via MMIO. But MMIO writes are not

guaranteed to be durable because they are posted transactions

without completions. After each MMIO write, Horae issues

a non-posted MMIO read of zero byte length to ensure prior

writes are made durable [24].

Upon a power outage, the ordering queue, the head,

flushed and tail pointers, are saved to a backup region

of flash memory, with the assistance of capacitors inside the

SSD. When power resumes, Horae loads the backup region

into the CMB.

The data block. Horae recovers the storage to a correct

state with the support of the ordering queue. Horae scans

the ordering queue from the head position to the flushed

position, in case of the data blocks are made durable with the

FLUSH response but expired entries are not dequeued. Horae

commits the data blocks of the p-area that obey the order.

Further, Horae recovers the durable yet not flushed data

blocks (e.g., in SSD with PLP). Starting from the flushed

position, Horae sequentially scans the ordering queue, and

commits the prepare writes until it finds a non-durable data

block (i.e., dr bit is not set). After that, Horae discards the

following data blocks through filling the blocks with “zeros”,

because they violate the write order.

5.6 The API of Horae and Use Cases

This subsection first describes the API of Horae, and then

presents two use cases: a file system leveraging a single write

stream (i.e., a single ordering queue), and a user-space object

store running with multiple write streams.

5.6.1 The API of Horae

To enable the developers to leverage the efficient ordering con-

trol of Horae, we provide three levels of functionalities/APIs

shown in Table 1: the kernel block device, the file system and

the asynchronous IO interface (i.e., libaio [3]).

Kernel block device interface. The kernel systems (e.g.,

file systems) can use olayer init stream to initialize an

ordered write stream for further use. olayer submit bio

and olayer submit bh deliver the same block IO sub-

556 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

mission function as classic interfaces (i.e., submit bio

and submit bh); but they return when associated order-

ing metadata are persisted in the sid ordering queue

(§5.2). olayer submit bio ipu is for in-place updates

(§5.4). olayer blkdev issue flush is extended from clas-

sic FLUSH interface (i.e., blkdev issue flush); it keeps the

same arguments and performs joint FLUSH on a given stream

and target devices (§5.3).

File system interface. We offer two ordering file system

interfaces, the fbarrier and fdatabarrier, for upper layer

systems or applications to organize their ordered data flow.

The fbarrier bears the same semantics as the osync of

OptFS and fbarrier of BarrierFS; it writes the data blocks

and journaled metadata blocks in order but returns without

ensuring durability. The fdatabarrier is the same as that

of BarrierFS; it only ensures the ordering of the application

data blocks but not the journaled blocks. We further show the

internals of these interfaces in the following §5.6.2.

Libaio interface. Libaio provides wrapper functions for

async IO system calls, which are used for some systems (e.g.,

BlueStore and KVell [36]) designed on high-performance

drives. We expose the ordering control path of Horae via

two new interfaces on libaio. io setup allows developers to

allocate a set of streams defined in sids. io submit order

performs ordered IO submission; it bears the same seman-

tics of fdatabarrier. We further show the usage of these

interfaces in boosting BlueStore in §5.6.3.

Porting guidelines. We provide three guidelines. First, upper

layer systems can distinguish the ordered writes from the

orderless ones based on the categories of the request, and send

them using Horae’s APIs. The requests that contain metadata,

the write-ahead log and the data of eager persistence (e.g.,

data specified by the fsync() thread) are treated as ordered

writes. Second, due to the separation of ordering control path,

upper layer system can design and implement the ordering and

durability logic individually. In the ordering logic, they can

use the ordering control interface (e.g., olayer submit bio)

to dispatch the following ordered writes immediately after

the previous one returns from the control path. This allows

the ordered data blocks to be transferred in an asynchronous

manner without waiting for the completion of DMA. Third,

they can remove all FLUSHes that serve as ordering points in

the ordering logic, and invoke an eventual joint FLUSH in the

durability logic to guarantee durability.

5.6.2 The HoraeFS File System

We build HoraeFS atop the Horae with a set of modifications

of BarrierFS [46]. BarrierFS builds on Ext4, and divides the

journaling thread (i.e., JBD2 in Figure 8) into submit thread

and flush thread.

HoraeFS inherits this design, and the major changes are

that (1) we submit ordered writes and reads to the ordering

layer first, (2) we remove the FLUSH to coordinate the data

and journal device and (3) we detect IPUs through inspecting

D Wait D

6.30 9.93

Pre

0.85

1.05

JM

6.12

Wait JM

10.75

JC

2.83

Wait JC
11.78

Post
0.72

Ext4 fsync 51.18us

1.05 6.12 2.83

5.95
Wait JM

0.72

0.85

Wait JC
5.26

F
0.85

Post
1.09

HoraeFS fbarrier 20.82us

HoraeFS fsync 34.82us

0.85

0.85

D
6.30 0.85

0.7

Pre JM JC
0.7 0.7

Post

CPU IO Context switch Ordering layer

App.

JBD2

App.

Submit

Flush

Figure 8: The fsync() and fbarrier(). 4 KB data size. The

number shows the latency of each operation in microseconds. D:

application data blocks. Pre: prepare the journaled metadata. JM:

journaled file system metadata. JC: journaled commit record. Post:

change transaction state, calculate journal stats, etc.

the BH New states of each write. Although the journal area is

repeatedly overwritten, we do not treat the journaled writes

as IPUs, as the journal area is always cleaned before reused.

Figure 8 shows a side-by-side comparison between Ext4

and Horae on a NVMe SSD. For each 4 KB allocating write in

most cases, both file systems issue three data blocks, namely

the data block (D), the journaled metadata block (JM) and

the journaled commit block (JC). Further, both file systems

order the data blocks with {D, JM } � JC. Ext4 enforces the

ordering constraints through the exclusive IO processing. It

waits for the completion of preceding data blocks (e.g., Wait

JM) and issues a FLUSH (not shown in the figure because it

is returned by the block layer quickly). HoraeFS eliminates

the exclusive IO processing, and preserves the order through

the ordering layer, as shown in the black rectangle. HoraeFS

waits for the durability of the associated blocks in flush thread,

and finally issues a FLUSH to the ordering layer for durability.

HoraeFS differs from BarrierFS in the IO dispatching (i.e.,

the white rectangle) and IO waiting (i.e., the gray rectan-

gle) phase. During IO dispatching phase, BarrierFS passes

through the entire order-preserving SCSI software stack. Be-

sides, BarrierFS experiences extra waiting time due to the

order-preserving hardware write, i.e., the barrier write.

5.6.3 The HoraeStore Distributed Storage Backend

We build HoraeStore atop the Horae with a set of modifica-

tions of BlueStore [23], an object store engine of Ceph.

BlueStore directly manages the block device by async IO

interfaces (e.g., libaio), providing transaction interfaces for

distributed object storage (i.e., RADOS). Inside each write

transaction, it first persists the aligned write to data storage,

followed by storing the unaligned small writes and metadata

in a RocksDB [1] KV transaction (KVTXN). The RocksDB

first writes the write-ahead log (WAL), then applies the up-

dates to the KV pairs. For inter-transaction ordering, it uses

sequencers; the next transaction can not start a KVTXN until

the preceding one has made the aligned write durable and

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 557

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

0

0.5

1.0

Write size (KB)
4 8 16 32 64

1 NVMe SSD B

0

1

2

Write size (KB)
4 8 16 32 64

1 NVMe SSD C

0

1

2

Write size (KB)
4 8 16 32 64

2 NVMe SSDs (B + B)

0

2

4

Write size (KB)
4 8 16 32 64

3 NVMe SSDs (2B + C)

vanilla barrier horae

Figure 9: Ordered Write Performance. The throughput of randomly writing 1 GB drive space by 1 write stream (i.e., 1 thread). vanilla:

native Linux NVMe IO stack. horae: Horae IO stack. barrier: Barrier-enabled IO stack. Horizontal dotted lines: maximum device bandwidth.

started its KVTXN. Besides, BlueStore uses a single KV

thread to serially perform KVTXNs, which blocks and waits

for in-progress KVTXNs to become durable.

HoraeStore accelerates the transaction ordering guarantee,

while exporting the same transaction interfaces. For intra-

transaction ordering, HoraeStore uses the new async IO

interface of Horae, io submit order(), to control the write

order of data, WAL and KV pairs. With this new interface,

for each transaction, HoraeStore processes the data, WAL

and KV pairs concurrently.

For inter-transaction ordering, HoraeStore extends the

overlapping range of dependent transactions, and improves

the concurrency of KVTXNs’ submission. First, in Horae-

Store, the following transaction starts the KVTXN immedi-

ately after the preceding one has satisfied the ordering of its

aligned writes (D) and KVTXN. In other words, Horae can

process two dependent transactions concurrently, once the

ordering between them is satisfied, i.e., {D1, D2} � KVT XN1

� KVT XN2. Second, HoraeStore separates the ordering of

KVTXN from durability; it starts the KVTXNs in a KV sub-

mit thread for ordering, and ensures the durability in a KV

flush thread. Hence, more KVTXNs can be queued in the KV

submit thread, and can further be dispatched to RocksDB for

processing.

5.7 Implementation Details and Discussion

We implement Horae in Linux kernel as a pluggable kernel

module (i.e., the ordering layer), consisting of 1288 lines of

code (LOC); no changes are needed for traditional IO stack

(i.e., the block layer, NVMe and SCSI driver). HoraeFS is im-

plemented based on BarrierFS with approximately 100 LOC

changes. HoraeStore is implemented based on BlueStore

with around 200 LOC change.

Horae needs a region of byte-addressable persistent mem-

ory for efficient ordering control path. We realize this by

remapping the CMB region of a capacitor-backed CMB-

enabled SSD from StarBlaze [20] using ioremap wc().

Currently, CMB-enabled SSDs are already available in the

market [14, 18]. Moreover, many SSDs have enabled power

loss protection [10,12,18,32]. Therefore, the persistent CMB

(or PMR) requirement of Horae can be achieved easily. We

further discuss the alternatives of the CMB in §7.

6 Evaluation

This section evaluates the Horae, HoraeFS and HoraeStore

by answering the following questions:

• What is the performance of Horae in guaranteeing the

ordering? (§6.2, §5.2)

• What is the performance of Horae in guaranteeing the

durability? (§6.3, §5.3)

• How does Horae perform under in-place updates with

different consistency level? (§6.4, §5.4)

• Can Horae recover correctly after a crash and how much

overhead does recovery introduce? (§6.5, §5.5)

• How much improvement does Horae bring to applica-

tions? (§6.6, §5.6)

6.1 Experimental Setup

Hardware. We conduct all experiments with a 12-core ma-

chine running at 2.50 GHZ. Table 2 shows the specification of

the candidate SSDs. We use three broadly categorized SSDs:

the SATA SSD (labelled as A), the consumer-grade NVMe

SSD (B), and the high-performance datacenter-grade NVMe

SSD (C). The NVMe SSD B and C are with PLP. The size of

CMB used by Horae is 2 MB.

Compared Systems. We mainly compare with two types

of IO stacks, Vanilla and BarrierIO [46]. Vanilla is the de-

fault Linux IO stack. Ext4 [7] is a journaling file system

running upon vanilla. We setup ext4 with default options in

ordered journaling mode (denoted as ext4-DR). We disable

the barriers in ext4-DR (nobarrier option) with ext4-OD,

which only guarantees the dispatch order reaching in storage

buffer (not storage medium). Similar to ext4, we test Bar-

rierFS [46] upon BarrierIO stack with durability guarantee

(denoted as BFS-DR) and ordering guarantee (denoted as

BFS-OD). Since we do not have barrier compliant storage

Model Seq. Bandwidth Rand. IOPS (8GB span)

A
Samsung

860 PRO SATA

Read: 560MB/s

Write: 530MB/s

Read: 100k

Write: 90k

B
Intel

750 NVMe

Read: 2200MB/s

Write: 950MB/s

Read: 430K

Write: 230K

C
Intel

DC P3700 NVMe

Read: 2800MB/s

Write: 1900MB/s

Read: 640K

Write: 475K

Table 2: SSD Specifications.

558 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Ordering

Durability

(a) SATA

0

2

4

0
20

40

 # of theads
1 4 12

Ordering

Durability

(b) NVMe

0

50

0

50

100

 # of theads
1 4 12

Ordering

Durability

(c) SATA + SATA

0

2

4

0
20

40

60

 # of theads
1 4 12

Ordering

Durability

(d) SATA + NVMe

0

5

0
50

100

150

 # of theads
1 4 12

Durability

Ordering

(e) NVMe + NVMe

0

50

100

0
50

100

150

 # of theads
1 4 12

IO
P

S
(K

)

ext4 BFS HFS-SF HFS-JF

SATA + SATA SSDs

Figure 10: File System Performance under FIO Allocating Write Workload. Ordering: nobarrier option of ext4, but only guarantees a

relaxed ordering of reaching the storage write buffer. fbarrier() of BarrierFS and HoraeFS. Durability: fsync(). SF: serialized FLUSH.

JF: joint FLUSH.

devices, we reuse the software of BarrierFS and add extra

5% overhead of the hardware barrier write, following the as-

sumption of the BarrierFS paper. To run BarrierFS correctly

in multi-queue drives, we modify the NVMe driver to setup

only one IO command queue. HoraeFS (abbreviated as HFS)

uses just one ordering queue.

6.2 Basic Performance Evaluation

First, we demonstrate the effectiveness of Horae in guarantee

the ordering (§5.2), through measuring the throughput of

three IO stacks on block devices. We vary the number of

devices and organize them as soft-RAID 0. Specifically, we

evenly distribute X KB random writes to different devices in a

round-robin fashion. Figure 9 shows the overall throughput of

ordering guarantee with varying the write size. Note that we

only have the result of BarrierIO on a single device, because

it does not support multiple drives.

Result. From the result, we find that Horae outperforms

vanilla and BarrerIO IO stack by 4.1× and 2× respectively in

the case of a single device and 4 KB write unit. On multiple

devices, Horae achieves up to 6.8× throughput than vanilla.

Further, we observe that Horae can easily saturate the device

bandwidth with small write units (e.g., 4 KB).

Analysis. We now decompose the IO path to better under-

stand the performance. The overall IO path can be broken

down into four parts, and we measure the overhead of each

part when issuing 4 KB data blocks as follows: (1) data page

preparation costs 0.8 us in our test; (2) the ordering layer pro-

cesses and writes ordering metadata within 0.7 us; (3) about

1.0 us is spent on block layer, which performs request merging

and bio(block IO data structure)-to-request(NVMe driver

data structure) transmission; (4) data DMA, device-side pro-

cessing and interrupt handler consume 8.7 us. The classic

approach experiences all parts except (2), which counts up

to 10.5 us in total. Thus, the maximum IOPS and throughput

that a single write stream can achieve in classic IO stack are

95K and 380 MB/s. Horae experiences (1) and (2) in most

cases. The ordering layer delegates the submission of order-

less block IO to per-CPU background submitter threads, so as

to hide the overhead of block layer for foreground ordering

calls. Thus, Horae can achieve up to 2.6 GB/s in the case

of 4 KB writes. BarrierIO eliminates (4) in ordering guar-

antee, and thus can achieve up to 2.2 GB/s in NVMe stack

theoretically. However, we observe that configuring the drive

to a single IO command queue considerably decreases the

available bandwidth of high-performance storage.

6.3 File System Evaluation

In this subsection, we evaluate the performance of POSIX

file systems atop different IO stacks with varying the number

and type of storage devices. Moreover, we demonstrate the

effectiveness of Horae in guaranteeing the durability (§5.3).

We perform allocating write so that the file system always

finds the updated metadata in the journal. We set up the file

system with two modes: the internal journal that mixes data

and journal blocks in a single device, and the external journal

that uses a dedicated device for locating journal. The result is

shown in Figure 10, and we make the following observations.

Effect of removing flush. As shown in Figure 10(a), on

SATA SSD, HFS achieves 80% higher IOPS averagely against

ext4, and exhibits comparable performance compared to BFS.

Here, the major overhead is two FLUSHes. The former one

is used to control the write order of the data blocks and the

commit record, and the later one is to ensure durability. The

FLUSH of SATA SSD exposes raw flash programming delay

(1 ms). In BFS and HFS, the former FLUSH is eliminated.

Effect of async DMA. As shown in Figure 10(b), on NVMe

SSD, HFS achieves 22% higher IOPS than ext4. Compared to

the durability of HFS, the ordering guarantee of HFS can fur-

ther boost IOPS by 57%. The major overhead here is shifted

to the DMA transfer. Figure 8 shows the source of improve-

ment, and the number next to each rectangle shows the single

thread latency of each operation. Due to the separation of the

ordering and durability, HFS and BFS can overlap the DMA

transfer with CPU processing, and thus partly hide the DMA

delay. BFS does not perform well on NVMe SSD due to the

restriction of the single IO command queue, especially when

we increase the number of threads.

Effect of joint flush. As shown in Figure 10(c), HFS out-

performs ext4 by 88% and 90% on average in durability and

ordering respectively. Comparing HFS-PF to HFS-SF, we

find the joint flush improves the overall performance by up to

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 559

(a) IOPS with different consistency

ext4

HFS

0

50

100

ordered
DR OD

data-journaling
DR OD

ext4-OD
ext4-DR

HFS-OD
HFS-DR

(b) Sensitivity to p-area size

60

80

100

p-area size (MB)
16 32 64 128 256 512

IO
P

S
 (

K
)

Figure 11: In-Place Update Performance. OD: nobarrier op-

tion of ext4, fbarrier() of HFS. DR: fsync(). Test on SSD C.

70%. This is because joint flush allows physically indepen-

dent devices to perform flushing concurrently.

Effect of parallel device access. Figure 10(d-e) plots the

result when we use an NVMe SSD to accelerate the journal. In

ordering, HFS improves ext4 by 150% and 76% respectively.

The major contributor here is the parallel device access. In

HFS, once the associated ordering metadata is processed

serially by the control path, the data blocks can be transferred

and processed by individual devices concurrently. While in

ext4, this is done in a serialized manner.

6.4 In-Place Update Evaluation

In this subsection, we evaluate the performance of in-place

update under different consistency and with varying the size

of the preparatory area (p-area) (§5.4).

As shown in the X title of Figure 11(a), we first setup the

file system with two modes, the ordered and data-journaling

mode, representing data and version consistency, respectively.

Then, we issue 10 GB overwrites to a 10 GB file. The ordered

mode performs metadata journal. The data-journaling mode

performs data journal to achieve the version consistency that

the version of data matches that of metadata.

In the ordered mode, the double write of eager commit

write enhances the data consistency at the cost of 10% IOPS

loss in durability. In ordering, HFS exhibits 50% higher

IOPS compared to ext4, because HFS can emit multiple IPUs

simultaneously without interleaving each IPU with DMA

transfer and FLUSH command.

In the data-journaling mode, both file systems first put

the IPU to journal area. When performing journal, HFS

dispatches the commit record immediately after the journaled

data, and thus provides 60% higher IOPS on average.

When Horae runs out of p-area space, Horae blocks incom-

ing requests and triggers eager commit write. To investigate

the performance of Horae in such a situation, we run the same

IPU workload with the scaling of p-area size. The results are

shown in Figure 11(b). We find that HFS-OD performs dra-

matically better than ext4-OD even with small p-area. To

provide request atomicity, HFS-DR delivers less IOPS than

ext4-DR. As we enlarge the p-area, the IOPS gap narrows.

ext4 ext4-R0 BFS HFS-R0 HFS

K
 T

x
/s

0

50

100

(a) Sole

DR OD

(b) Separate redo

DR OD

(c) Separate redo&undo

DR OD

Figure 12: MySQL under OLTP-insert Workload. (a) Sole: mix

data, redo log and undo log in device B. (b) Separate redo: data and

undo log to device B, redo log to device C. (c) Separate redo & undo:

data to device B, redo log to device C, undo log to another device B.

DR: The fsync() used to control the write order of transactions is

replaced with fbarrier(). OD: All fsync()s are replaced with

fbarrier()s. Sync() the database every 1 second. R0: organize

underlying devices as logical volumes using RAID 0.

6.5 Crash Recovery Evaluation

To verify the consistency guarantees of Horae (§5.5), we run

workloads, and forcibly shut down the machine at random.

We restart the machine and measure the recovery performance.

We choose Varmail workload of Filebench [8] for its intensive

fsync(). Varmail contains two fsync()s in each flow loop,

and we replace the first one with fbarrier().

We repeat the test 30 times, and observe HoraeFS can

always recover to a consistent state. The recovery time comes

from two main parts: the ordering queue load time and com-

mit write time. First, Horae loads the pointers and the order-

ing metadata into host DRAM, which consumes 29.8 ms on

average. Next, the commit write requires “read-merge-write”,

and costs 497.6 ms on average.

6.6 Application Evaluation

6.6.1 MySQL

We evaluate MySQL with OLTP-insert workload [21]. The

setups are described in the caption of Figure 12.

In sole configuration, HFS-DR outperforms ext4-DR and

BFS-DR by 15% and 23% respectively. In ordering, HFS-

OD prevails ext4-OD by 56% and achieves 36% higher TPS

than BFS-OD. This evidences that HFS is more efficient in

controlling the write order.

When using dedicated devices to store redo and undo logs

(i.e., Figure 12(b)), HFS-DR outperforms ext4-DR by 16%,

and HFS-OD performs 76% better than ext4-OD. This is

because HFS can parallelize the IOs to individual devices.

Comparing Figure 12(b) with (c), we find that separating

undo logs does not bring much improvement in both ext4

and HFS. Undo logs perform logical logging to retain the old

version of database tables, which incurs less writes compared

to physical logging (redo log). MySQL tightly embeds the

undo logs in the table files, thus separating undo logs does

not alleviate the write traffic to the data device.

Comparing HFS with HFS-R0, we observe that, from the

performance aspect, manually distributing data flows to de-

560 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0
.8

1
1
.8

0
.9

1
1
.0

1
.0

1
2

.3

1
0

.0

1
1
.8

1
2

.1

1
4

.6

1
2

.6

1
5

.3

ext4-DR

BFS-DR

HFS-DR

ext4-OD

BFS-OD

HFS-OD

K
 T

x
/s

0

5

10

15

20

SATA SSD NVMe SSD

Figure 13: SQLite Random Insert Performance. SQLite runs at

WAL mode. 1M inserts in random key order. Key size 16 bytes, value

size 100 bytes. DR: The first three fdatasync()s used to control

storage order of transactions are replaced with fdatabarrier()s,

but the last one remains intact. OD: All fdatasync()s are replaced

with fdatabarrier()s.

(a) apply_transaction

0

2

4

of sequencers
2 4 6 8 10 12

(b) queue_transaction

0

5

10

of sequencers
2 4 6 8 10 12

Bluestore-S BlueStore-M HoraeStore-S HoraeStore-M

T
P

S
 (

K
)

Figure 14: Object Store Performance. Store-S: mix data, meta-

data, WAL to device A. Store-M: data to device A, metadata to

device B, WAL to device C. apply transaction: durability guaran-

tees. queue transaction: ordering guarantee.

vices of particular usage is better than the automatic disper-

sion of logical volumes. A naive implementation of RAID 0

treats the devices equally. However, the data flows of applica-

tion usually have different write traffic and locality. Therefore,

uniform distribution potentially bounds the better devices and

ruins the data locality.

6.6.2 SQLite

This subsection focuses on the performance of SQLite [19].

The detailed setups are presented in the caption of Figure 13.

On SATA SSD, the ordering setups (OD) outperform the

durability ones (DR) by an order of magnitude due to the

reduction of the prohibitive FLUSH. In ordering, both BFS

and HFS exhibit over 20% performance gain against ext4

due to the separation of ordering and durability that brings

chances of overlapping CPU with IOs.

On NVMe SSD, as the FLUSH becomes inexpensive, ext4-

OD achieves almost the same performance as ext4-DR. HFS

separates the control path from the data path, and thus SQLite

can order the table files and logs through fbarrier(). There-

fore, more IOs can be processed at the same time.

6.6.3 BlueStore

This subsection evaluates the transaction processing of ob-

ject store with default options. We use the built-in object

store benchmark [5] of Ceph with varying the number of

HFS-flash HFS-CMB HFS-PM HFS-DRAMext4

(a) Durability

(b) Ordering

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

0

500

0

500

Write size (KB)
4 8 16 32 64

Figure 15: Comparison of The Media of The Ordering Queue.

flash: block IO to SSD. CMB: MMIO to SSD’s memory buffer. PM:

Intel Optane persistent memory. DRAM: capacitor-back memory.

sequencers. Each sequencer serializes the transactions, and

transactions of different sequencers do not have dependency.

Each transaction issues 20 KB write, which is split into 16 KB

aligned write to data device and 4 KB small write to RocksDB.

Two interfaces are evaluated, apply transaction() and

queue transaction(), representing ordering and durabil-

ity guarantee, respectively. Figure 14 shows the results.

In Figure 14(a), HoraeStore exhibits 1.4× and 2.1× TPS

gain against BlueStore, in S and M setup, respectively. To

preserve order, BlueStore does not submit the small write

and metadata to RocksDB until the aligned write has been

completed. While in HoraeStore, once the aligned write and

KV transaction have been processed serially via the control

path, associated data blocks can be processed concurrently.

The queue transaction() brings opportunities to apply

multiple transactions. As shown in Figure 14(b), HoraeStore

outperforms BlueStore averagely by 23% and 83% in S and

M setup, respectively. Due to the write dependency over

multiple devices, the slower data device burdens the faster

metadata and WAL devices. Hence, BlueStore-M delivers

similar TPS compared to BlueStore-S. In HoraeStore-M,

as the control path guarantees the ordering, the synchroniza-

tion between aligned write and KV transaction is alleviated.

Further, HoraeStore enables more KV transactions to con-

tinuously fulfill the metadata and WAL storage.

7 Discussion

CMB Alternatives. Recall that Horae persists the ordering

metadata in the CMB for efficiency. Nevertheless, several

off-the-shelf non-volatile media are capable of storing the

ordering metadata: SSD (flash), Intel persistent memory (PM)

and capacitor-backed DRAM. We locate the ordering queue

in these media and measure the single-threaded throughput

of the ordered writes, as shown in Figure 15. We find that

storing the ordering metadata directly through the block-based

interface to SSD (i.e., HFS-flash) significantly decreases the

throughput. This is because, even the ordering metadata is

16 B, it must be padded to 4 KB, where the 4 KB synchronous

PCIe transfer masks the concurrency of translated orderless

writes. When the write size increases (over 64 KB), HFS-

flash gradually outperforms ext4. We also find the PM and

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 561

DRAM are also satisfiable alternatives of the CMB.

8 Related Work

Storage order. Many researchers [25–28, 40, 46] have stud-

ied and mitigated the overhead of storage order guarantee.

Among these studies, the closest ones are OptFS [26] and Bar-

rierFS [46] that separate the ordering guarantee from durabil-

ity guarantee and provide similar ordering primitive. OptFS,

BarrierFS and HoraeFS are proposed under different storage

technologies (HDD, SATA SSD, NVMe SSD and storage

arrays), thereby mainly differing in the architecture, the scope

of application and hardware requirements. First, OptFS em-

beds the transaction checksum in the journal commit block

and detects the ordering violation during recovery, which

reduces the rotational disk FLUSH overhead at runtime. Barri-

erFS preserves the order layer by layer, thereby aligning with

the single queue structure of SCSI stack and devices. They

are difficult to be extended to multiple queues or multiple

devices. In contrast, Horae stores the ordering metadata via

a dedicated control path to maintain the write order. This

design aims to let the ordering bypass the traditional stack to

enable high throughput and easy scaling to multiple devices.

Second, the checksum-based ordering approach of OptFS is

limited to continuous address space (e.g., file system journal-

ing), because the checksum can be only used to detect the

ordering violation of data blocks in pre-determined locations.

Alternatively, Horae builds a more generic ordering layer

which can spread data blocks to arbitrary logical locations of

any device. Third, OptFS requires the disk to support asyn-

chronous durability notification. BarrierIO requires barrier

compliant storage device which is only available in a few

eMMC (embedded multimedia card) products. Horae can

run on the standard NVMe devices with exposed CMB. The

CMB feature is already defined in NVMe spec, and is under

increasing promotion and recognition by NVMe and SPDK

communities [6].

Dependency tracking. Some works use dependency track-

ing techniques to handle storage order. Soft updates [39]

directly tracks the dependencies of the file system structures

in a per-pointer basis. Similarly, Featherstitch [28] introduces

the patch to specify how a range of bytes should be changed.

Horae also tracks the write dependencies in the ordering

queue. The tracking unit of Horae is different from prior

works; each entry in Horae describes how a range of data

blocks (e.g., 4 KB) should be ordered. The block-aligned

tracking introduces less complexity of both dependency track-

ing and file system modifications, and it is more generic in

the context of block device. In addition, due to the disability

of telling data versions, soft updates does not support version

consistency. Featherstitch assumes single in-progress write

to the same block address, and treats dependency loop as

errors. Thus, the in-place updates of Featherstitch must wait

for the completion of preceding one. Instead, Horae saves

the in-place updates from long DMA transfer through write

redirection with enhanced consistency.

Storage IO stack. A school of works [30,31,34,35,37,40–43,

49,51] improve the storage IO stack. Xsyncfs [40] uses output-

triggered commits to persist a data block only when the result

needs to be externally visible. IceFS [37] allocates separate

journals for each container for isolation. SpanFS [31] parti-

tions the file system at domain granularity for performance

scalability. Built atop F2FS [34], ParaFS [51] co-designs the

file system with the SSD’s FTL to bridge the semantics gap

between the hardware and software. iJournaling [41] designs

fine-grained journaling for each file, and thus mitigates the

interference between fsync() threads. CCFS [42] provides

similar stream abstraction at file system level for applica-

tions to implement correct crash consistency. Its stream is

designed on individual journals and still relies on exclusive

IO processing to preserve the order. Horae exports stream

at block level via the dedicated control path, not relying on

exclusive IO processing nor journal. TxFS [30] leverages the

file system journaling to provide transactional interface. Son

et al. [43] propose a high-performance and parallel journal

scheme. FlashShare [49] punches through the IO stack to

device firmware to optimize the latency for ultra-low latency

SSDs. AsyncIO [35] overlaps the CPU execution with IO

processing, so as to reduce the fsync() latency. CoinPurse

leverages the byte interface and device-assisted logic to ex-

pedite non-aligned writes [47]. However, these works still

rely on exclusive IO processing to control the internal order

(e.g., the order between data blocks and metadata blocks) and

external order (e.g., the order of applications’ data).

NoFS [27] introduces backpointer-based consistency to

remove the ordering point between two dependent data blocks.

Due to the lack of ordering updates, NoFS does not support

atomic operations (e.g., rename()).

9 Conclusion

In this paper, we revisit the write dependency issue on high-

performance storage and storage arrays. Through a perfor-

mance study, we notice that with the growth of performance

of storage arrays, the performance loss induced by the write

dependency becomes more severe. Classic IO stack is not

efficient in resolving this issue. We thus propose a new IO

stack called Horae. Horae separates the ordering control

from the data flow, and uses a range of techniques to ensure

both high performance and strong consistency. Evaluations

show that Horae outperforms existing IO stacks.

10 Acknowledgement

We sincerely thank our shepherd Vijay Chidambaram and the

anonymous reviewers for their valuable feedback. We also

thank Qing Wang and Zhe Yang for the discussion on this

work. This work is supported by National Key Research & De-

velopment Program of China (Grant No. 2018YFB1003301),

the National Natural Science Foundation of China (Grant No.

61832011, 61772300).

562 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] A Persistent Key-Value Store for Fast Storage. https:

//rocksdb.org/.

[2] A way to do atomic writes. https://lwn.net/

Articles/789600/.

[3] An async IO implementation for Linux.

https://elixir.bootlin.com/linux/v4.18.

20/source/fs/aio.c.

[4] BFQ (Budget Fair Queueing). https://www.

kernel.org/doc/html/latest/block/bfq-

iosched.html.

[5] Ceph Objectstore benchmark. https://github.

com/ceph/ceph/blob/master/src/test/

objectstore_bench.cc.

[6] Enabling the NVMeTM CMB and PMR

Ecosystem. https://nvmexpress.org/wp-

content/uploads/Session-2-Enabling-the-

NVMe-CMB-and-PMR-Ecosystem-Eideticom-and-

Mell....pdf.

[7] ext4 Data Structures and Algorithms. https:

//www.kernel.org/doc/html/latest/

filesystems/ext4/index.html.

[8] Filebench - A Model Based File System Work-

load Generator. https://github.com/filebench/

filebench.

[9] fio - Flexible I/O tester. https://fio.readthedocs.

io/en/latest/fio_doc.html.

[10] Intel Solid State Drive 750 Series Datasheet.

https://www.intel.com/content/dam/

www/public/us/en/documents/product-

specifications/ssd-750-spec.pdf.

[11] Intel R© SSD 545s Series. https://www.intel.

com/content/www/us/en/products/memory-

storage/solid-state-drives/consumer-

ssds/5-series/ssd-545s-series/545s-256gb-

2-5inch-6gbps-3d2.html.

[12] Intel R© SSD DC P3700 Series. https:

//ark.intel.com/content/www/us/en/ark/

products/79621/intel-ssd-dc-p3700-series-

2-0tb-2-5in-pcie-3-0-20nm-mlc.html.

[13] MySQL reference manual. https://dev.mysql.

com/doc/refman/8.0/en/.

[14] NoLoad U.2 Computational Storage Proces-

sor. https://www.eideticom.com/uploads/

attachments/2019/07/31/noload_csp_u2_

product_brief.pdf.

[15] NVMe specifications. https://nvmexpress.org/

resources/specifications/.

[16] NVMe SSD with Persistent Memory Region.

https://www.flashmemorysummit.com/

English/Collaterals/Proceedings/2017/

20170810_FM31_Chanda.pdf.

[17] PCI Express Base Specification Revision 3.0.

http://www.lttconn.com/res/lttconn/pdres/

201402/20140218105502619.pdf.

[18] Product Brief: Intel R© OptaneTM SSD DC D4800X

Series. https://www.intel.com/content/www/

us/en/products/docs/memory-storage/solid-

state-drives/data-center-ssds/optane-ssd-

dc-d4800x-series-brief.html.

[19] SQLite. https://www.sqlite.org/index.html.

[20] Starblaze OC SSD. http://www.starblaze-tech.

com/en/lists/content/id/137.html.

[21] SysBench manual. https://imysql.com/wp-

content/uploads/2014/10/sysbench-

manual.pdf.

[22] Embedded Multimedia Card. http://www.konkurel.

ru/delson/pdf/D93C16GM525(3).pdf, 2018.

[23] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R.

Ganger, and G. Amvrosiadis. File systems unfit as

distributed storage backends: Lessons from 10 years

of ceph evolution. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles, SOSP ’19,

page 353–369, New York, NY, USA, 2019. Association

for Computing Machinery.

[24] D.-H. Bae, I. Jo, Y. A. Choi, J.-Y. Hwang, S. Cho, D.-

G. Lee, and J. Jeong. 2b-ssd: The case for dual, byte-

and block-addressable solid-state drives. In Proceed-

ings of the 45th Annual International Symposium on

Computer Architecture, ISCA ’18, page 425–438. IEEE

Press, 2018.

[25] Y.-S. Chang and R.-S. Liu. Optr: Order-preserving trans-

lation and recovery design for ssds with a standard block

device interface. In Proceedings of the 2019 USENIX

Conference on Usenix Annual Technical Conference,

USENIX ATC ’19, pages 1009–1023, Berkeley, CA,

USA, 2019. USENIX Association.

[26] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau. Optimistic crash consistency. In

Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles, SOSP ’13, pages 228–

243, New York, NY, USA, 2013. ACM.

[27] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau. Consistency without ordering.

In Proceedings of the 10th USENIX Conference on File

and Storage Technologies, FAST’12, page 9, USA, 2012.

USENIX Association.

[28] C. Frost, M. Mammarella, E. Kohler, A. de los Reyes,

S. Hovsepian, A. Matsuoka, and L. Zhang. Generalized

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 563

https://rocksdb.org/
https://rocksdb.org/
https://lwn.net/Articles/789600/
https://lwn.net/Articles/789600/
https://elixir.bootlin.com/linux/v4.18.20/source/fs/aio.c
https://elixir.bootlin.com/linux/v4.18.20/source/fs/aio.c
https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://github.com/ceph/ceph/blob/master/src/test/objectstore_bench.cc
https://github.com/ceph/ceph/blob/master/src/test/objectstore_bench.cc
https://github.com/ceph/ceph/blob/master/src/test/objectstore_bench.cc
https://nvmexpress.org/wp-content/uploads/Session-2-Enabling-the-NVMe-CMB-and-PMR-Ecosystem-Eideticom-and-Mell....pdf
https://nvmexpress.org/wp-content/uploads/Session-2-Enabling-the-NVMe-CMB-and-PMR-Ecosystem-Eideticom-and-Mell....pdf
https://nvmexpress.org/wp-content/uploads/Session-2-Enabling-the-NVMe-CMB-and-PMR-Ecosystem-Eideticom-and-Mell....pdf
https://nvmexpress.org/wp-content/uploads/Session-2-Enabling-the-NVMe-CMB-and-PMR-Ecosystem-Eideticom-and-Mell....pdf
https://www.kernel.org/doc/html/latest/filesystems/ext4/index.html
https://www.kernel.org/doc/html/latest/filesystems/ext4/index.html
https://www.kernel.org/doc/html/latest/filesystems/ext4/index.html
https://github.com/filebench/filebench
https://github.com/filebench/filebench
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-750-spec.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-750-spec.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ssd-750-spec.pdf
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/5-series/ssd-545s-series/545s-256gb-2-5inch-6gbps-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/5-series/ssd-545s-series/545s-256gb-2-5inch-6gbps-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/5-series/ssd-545s-series/545s-256gb-2-5inch-6gbps-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/5-series/ssd-545s-series/545s-256gb-2-5inch-6gbps-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/5-series/ssd-545s-series/545s-256gb-2-5inch-6gbps-3d2.html
https://ark.intel.com/content/www/us/en/ark/products/79621/intel-ssd-dc-p3700-series-2-0tb-2-5in-pcie-3-0-20nm-mlc.html
https://ark.intel.com/content/www/us/en/ark/products/79621/intel-ssd-dc-p3700-series-2-0tb-2-5in-pcie-3-0-20nm-mlc.html
https://ark.intel.com/content/www/us/en/ark/products/79621/intel-ssd-dc-p3700-series-2-0tb-2-5in-pcie-3-0-20nm-mlc.html
https://ark.intel.com/content/www/us/en/ark/products/79621/intel-ssd-dc-p3700-series-2-0tb-2-5in-pcie-3-0-20nm-mlc.html
https://dev.mysql.com/doc/refman/8.0/en/
https://dev.mysql.com/doc/refman/8.0/en/
https://www.eideticom.com/uploads/attachments/2019/07/31/noload_csp_u2_product_brief.pdf
https://www.eideticom.com/uploads/attachments/2019/07/31/noload_csp_u2_product_brief.pdf
https://www.eideticom.com/uploads/attachments/2019/07/31/noload_csp_u2_product_brief.pdf
https://nvmexpress.org/resources/specifications/
https://nvmexpress.org/resources/specifications/
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170810_FM31_Chanda.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170810_FM31_Chanda.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170810_FM31_Chanda.pdf
http://www.lttconn.com/res/lttconn/pdres/201402/20140218105502619.pdf
http://www.lttconn.com/res/lttconn/pdres/201402/20140218105502619.pdf
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-dc-d4800x-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-dc-d4800x-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-dc-d4800x-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-dc-d4800x-series-brief.html
https://www.sqlite.org/index.html
http://www.starblaze-tech.com/en/lists/content/id/137.html
http://www.starblaze-tech.com/en/lists/content/id/137.html
https://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
https://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
https://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
http://www.konkurel.ru/delson/pdf/D93C16GM525(3).pdf
http://www.konkurel.ru/delson/pdf/D93C16GM525(3).pdf

file system dependencies. In Proceedings of Twenty-

First ACM SIGOPS Symposium on Operating Systems

Principles, SOSP ’07, page 307–320, New York, NY,

USA, 2007. Association for Computing Machinery.

[29] M. Hedayati, K. Shen, M. L. Scott, and M. Marty. Multi-

queue fair queuing. In 2019 USENIX Annual Technical

Conference (USENIX ATC 19), pages 301–314, Renton,

WA, July 2019. USENIX Association.

[30] Y. Hu, Z. Zhu, I. Neal, Y. Kwon, T. Cheng, V. Chi-

dambaram, and E. Witchel. Txfs: Leveraging file-

system crash consistency to provide ACID transac-

tions. In 2018 USENIX Annual Technical Conference

(USENIX ATC 18), pages 879–891, Boston, MA, July

2018. USENIX Association.

[31] J. Kang, B. Zhang, T. Wo, W. Yu, L. Du, S. Ma, and

J. Huai. Spanfs: A scalable file system on fast storage

devices. In Proceedings of the 2015 USENIX Confer-

ence on Usenix Annual Technical Conference, USENIX

ATC ’15, pages 249–261, Berkeley, CA, USA, 2015.

USENIX Association.

[32] W.-H. Kang, S.-W. Lee, B. Moon, Y.-S. Kee, and M. Oh.

Durable write cache in flash memory ssd for relational

and nosql databases. In Proceedings of the 2014 ACM

SIGMOD International Conference on Management of

Data, SIGMOD ’14, pages 529–540, New York, NY,

USA, 2014. ACM.

[33] N. Kirsch. Phison E12 High-Performance SSD Con-

troller. https://www.legitreviews.com/sneak-

peek-phison-e12-high-performance-ssd-

controller_206361, 2018.

[34] C. Lee, D. Sim, J.-Y. Hwang, and S. Cho. F2fs: A new

file system for flash storage. In Proceedings of the 13th

USENIX Conference on File and Storage Technologies,

FAST’15, pages 273–286, Berkeley, CA, USA, 2015.

USENIX Association.

[35] G. Lee, S. Shin, W. Song, T. J. Ham, J. W. Lee, and

J. Jeong. Asynchronous i/o stack: A low-latency kernel

i/o stack for ultra-low latency ssds. In 2019 USENIX

Annual Technical Conference (USENIX ATC 19), pages

603–616, Renton, WA, July 2019. USENIX Associa-

tion.

[36] B. Lepers, O. Balmau, K. Gupta, and W. Zwaenepoel.

Kvell: The design and implementation of a fast persis-

tent key-value store. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles, SOSP ’19,

page 447–461, New York, NY, USA, 2019. Association

for Computing Machinery.

[37] L. Lu, Y. Zhang, T. Do, S. Al-Kiswany, A. C. Arpaci-

Dusseau, and R. H. Arpaci-Dusseau. Physical disentan-

glement in a container-based file system. In Proceedings

of the 11th USENIX Conference on Operating Systems

Design and Implementation, OSDI’14, pages 81–96,

Berkeley, CA, USA, 2014. USENIX Association.

[38] Marvell. Marvell 88SS1093 Flash Memory Con-

troller. https://www.marvell.com/content/

dam/marvell/en/public-collateral/storage/

marvell-storage-88ss1093-product-brief-

2017-03.pdf, 2017.

[39] M. K. McKusick and G. R. Ganger. Soft updates: A

technique for eliminating most synchronous writes in

the fast filesystem. In Proceedings of the Annual Confer-

ence on USENIX Annual Technical Conference, ATEC

’99, page 24, USA, 1999. USENIX Association.

[40] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and

J. Flinn. Rethink the sync. In Proceedings of the 7th

Symposium on Operating Systems Design and Imple-

mentation, OSDI ’06, page 1–14, USA, 2006. USENIX

Association.

[41] D. Park and D. Shin. ijournaling: Fine-grained journal-

ing for improving the latency of fsync system call. In

Proceedings of the 2017 USENIX Conference on Usenix

Annual Technical Conference, USENIX ATC ’17, pages

787–798, Berkeley, CA, USA, 2017. USENIX Associa-

tion.

[42] T. S. Pillai, R. Alagappan, L. Lu, V. Chidambaram, A. C.

Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Applica-

tion crash consistency and performance with CCFS. In

15th USENIX Conference on File and Storage Technolo-

gies (FAST 17), pages 181–196, Santa Clara, CA, Feb.

2017. USENIX Association.

[43] Y. Son, S. Kim, H. Y. Yeom, and H. Han. High-

performance transaction processing in journaling file

systems. In Proceedings of the 16th USENIX Confer-

ence on File and Storage Technologies, FAST’18, pages

227–240, Berkeley, CA, USA, 2018. USENIX Associa-

tion.

[44] S. C. Tweedie. Journaling the linux ext2fs filesystem. In

In LinuxExpo’98: Proceedings of The 4th Annual Linux

Expo, 1998.

[45] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn.

Ceph: A scalable, high-performance distributed file sys-

tem. pages 307–320, 11 2006.

[46] Y. Won, J. Jung, G. Choi, J. Oh, S. Son, J. Hwang, and

S. Cho. Barrier-enabled io stack for flash storage. In

Proceedings of the 16th USENIX Conference on File

and Storage Technologies, FAST’18, pages 211–226,

Berkeley, CA, USA, 2018. USENIX Association.

[47] Z. Yang, Y. Lu, E. Xu, and J. Shu. Coinpurse: A

device-assisted file system with dual interfaces. In 2020

57th ACM/IEEE Design Automation Conference (DAC),

pages 1–6, 2020.

564 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.legitreviews.com/sneak-peek-phison-e12-high-performance-ssd-controller_206361
https://www.legitreviews.com/sneak-peek-phison-e12-high-performance-ssd-controller_206361
https://www.legitreviews.com/sneak-peek-phison-e12-high-performance-ssd-controller_206361
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-storage-88ss1093-product-brief-2017-03.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-storage-88ss1093-product-brief-2017-03.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-storage-88ss1093-product-brief-2017-03.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-storage-88ss1093-product-brief-2017-03.pdf

[48] J. Yeon, M. Jeong, S. Lee, and E. Lee. Rflush: Re-

think the flush. In Proceedings of the 16th USENIX

Conference on File and Storage Technologies, FAST’18,

pages 201–209, Berkeley, CA, USA, 2018. USENIX

Association.

[49] J. Zhang, M. Kwon, D. Gouk, S. Koh, C. Lee, M. Alian,

M. Chun, M. T. Kandemir, N. S. Kim, J. Kim, and

M. Jung. Flashshare: Punching through server storage

stack from kernel to firmware for ultra-low latency ssds.

In 13th USENIX Symposium on Operating Systems De-

sign and Implementation (OSDI 18), pages 477–492,

Carlsbad, CA, Oct. 2018. USENIX Association.

[50] J. Zhang, M. Kwon, M. Swift, and M. Jung. Scalable

parallel flash firmware for many-core architectures. In

18th USENIX Conference on File and Storage Technolo-

gies (FAST 20), pages 121–136, Santa Clara, CA, Feb.

2020. USENIX Association.

[51] J. Zhang, J. Shu, and Y. Lu. Parafs: A log-structured

file system to exploit the internal parallelism of flash

devices. In 2016 USENIX Annual Technical Conference

(USENIX ATC 16), pages 87–100, Denver, CO, June

2016. USENIX Association.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 565

Blockene: A High-throughput Blockchain Over Mobile Devices

Sambhav Satija?, Apurv Mehra?, Sudheesh Singanamalla†∗, Karan Grover?,
Muthian Sivathanu?, Nishanth Chandran?, Divya Gupta?, Satya Lokam?

?Microsoft Research India †University of Washington

Abstract
We introduce Blockene, a blockchain that reduces resource
usage at member nodes by orders of magnitude, requiring
only a smartphone to participate in block validation and con-
sensus. Despite being lightweight, Blockene provides a high
throughput of transactions and scales to a large number of
participants. Blockene consumes negligible battery and data
in smartphones, enabling millions of users to participate in
the blockchain without incentives, to secure transactions with
their collective honesty. Blockene achieves these properties
with a novel split-trust design based on delegating storage
and gossip to untrusted nodes.

We show, with a prototype implementation, that Blockene
provides throughput of 1045 transactions/sec, and runs with
very low resource usage on smartphones, pointing to a new
paradigm for building secure, decentralized applications.

1 Introduction

Blockchains provide a powerful systems abstraction: they
allow mutually untrusted entities (members) to collectively
manage a ledger of transactions in a decentralized manner.

All blockchains today require member nodes to run pow-
erful servers with significant network, storage, and compute
resources. Blockchains based on proof-of-work [5, 30] push
resource usage to an extreme, requiring significant compute
for puzzle-solving, but even consortium blockchains [13] and
blockchains based on proof-of-stake [21] incur significant net-
work and storage costs to keep the blockchain up to date at a
high transaction throughput. Blockchains today are therefore
limited to use-cases where members have a strong incentive
to participate, and can hence afford the high resource cost. For
example, in consortium blockchains [13], business efficiency
improves, while in cryptocurrencies [21, 30], members earn
currency.

Interestingly, the high resource requirement of blockchains
also weakens reliability for several real-world applications.
Blockchains require that majority (typically two-thirds) of
members are honest, a property that is easier to guarantee
when a large number of members participate. However, wide-
scale adoption of a blockchain is hard given the high resource
requirement, especially in scenarios where members do not
have a direct incentive to participate. Not surprisingly, public

∗Sudheesh was with Microsoft Research India while doing this work.

blockchains with high membership today target cryptocurren-
cies [5, 30].

In this paper, we present Blockene1, an ultra-lightweight,
large scale blockchain that provides high throughput for real-
world transactions. By being lightweight and scalable, it en-
ables wide-scale adoption by millions of users. By enabling
large scale of participation, Blockene makes it plausible to
assume honest-majority. By being high-throughput, Blockene
supports real-world transaction rates.

The key breakthrough in Blockene is that instead of re-
quiring members to run powerful servers, Blockene is the
first blockchain that enables members to participate as first-
class citizens in consensus even while running on devices
as lightweight as smartphones, lowering cost by orders of
magnitude.
Network: Blockchains rely on peer-to-peer gossip between
members; at a high transaction rate, gossip would require tens
of GBs of data transfer per day; Blockene requires only about
60MB of data transfer per day on a smartphone.
Storage: Member nodes in blockchains keep a copy of the
entire blockchain (terabytes at high-throughput); in Blockene,
members incur only a few hundred MBs of storage.
Compute: Even the gossip cost of typical blockchains would
drain battery on mobile nodes; Blockene ensures that battery
drain is less than 3% per day.

Thus, a user incurs no perceptible cost while running Block-
ene. As the low resource usage in Blockene makes it feasible
even in a smartphone, Blockene can also run on desktops,
with much lighter resource usage than state-of-the-art.

Blockene achieves three conflicting properties: large scale
of participation, high throughput, and lightweight resource
usage, catering to even scenarios where there is no direct
incentive (e.g., altruistic participation), and handling transac-
tions across variety of use-cases including those on public
funds. A comparison of Blockene with other blockchain ar-
chitectures is depicted in Table 1.
Example application: Audited Philanthropy. Charitable
donations to non-profits are in excess of USD 500 billion
annually worldwide [7, 8, 10]. However, from a donor’s per-
spective, the lack of transparency on the end-use of funds
makes donations vulnerable to sub-optimal use or misman-
agement by non-profits, especially in regions where regulatory
enforcement is ineffective or crippled by corruption. A sys-

1Named after Graphene, one of the lightest and strongest materials.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 567

tem that provides a public, end-to-end trail of funds from
the donor to the end beneficiary, will exert market pressure
on non-profits, besides motivating donors. A blockchain can
provide such tracking, but given the scale of funds involved,
a small consortium of members cannot be trusted with opera-
tion of the blockchain. Ideally, such a blockchain should be
jointly controlled by millions of citizens altruistically. Similar
requirements arise in government/public spending.
Key techniques in Blockene: Blockene adopts a novel sys-
tem design based on a split-trust architecture with a new
security model. There are two types of nodes in Blockene: Cit-
izens and Politicians. Citizens run on smartphones and are the
real members of the blockchain, i.e., they have voting power
in consensus protocol; hence we assume that two-thirds of the
Citizens are honest (a reasonable assumption with millions of
Citizens). On the other hand, Politicians run on servers and
are untrusted, i.e., do not participate in consensus. Politicians
are fewer in number (few hundreds), and we require only
20% of them to be honest. Although Politicians do the heavy
work such as storing the blockchain, our protocols ensure
that Citizens can detect and handle malicious behavior even if
80% of the Politicians collude with the one-third of malicious
Citizens. Citizens deal with high dishonesty of Politicians by
using a new primitive called replicated verifiable reads: the
Citizen reads the same data from multiple Politicians and can
get the correct value even if one (out of, say, 25) is honest.

Citizens perform transaction validation, and decide on the
block and resulting global state to commit, by running Byzan-
tine consensus. To make consensus feasible with millions of
Citizens, Blockene borrows an idea from Algorand [21] (mod-
ified to make it battery-friendly), where a different random
committee of (~2000) Citizens is cryptographically chosen
to run consensus for each block. Unlike Algorand, Blockene
exposes the set of committee members a few minutes before
their participation: this enables Blockene to reduce data and
battery cost at Citizens. While this may appear to increase the
window for a targeted attack on the committee, we discuss in
§ 4.2 why this is not a serious concern.

To keep storage/communication costs at the Citizens low,
only Politicians store the blockchain and the global state (i.e.,
key-value pairs), freeing Citizens from gossiping all blocks
(~50GB/day). Citizens only read a small subset of data from
Politicians (e.g., key-values for transactions for the current
block), and write out the new block. Further, because Politi-
cians are untrusted, Citizens cannot rely on the correct latest
values returned by them for, say, a given key. Blockene uses
a novel technique of sampling-based Merkle tree read/write
that reduces communication cost while ensuring tolerance to
80% malicious Politicians.

When in the committee, Citizens reduce their communica-
tion cost by not gossiping directly, but through Politicians;
data written by a Citizen gets gossiped among Politicians, and
interested Citizens read from Politicians.

As participation in Blockene is lightweight, the system

needs to protect against Sybil attacks [17]; preventing an
adversary from spinning up lots of virtual nodes to get dis-
proportionate voting share. To thwart such attacks, Blockene
requires the participant identity to be certified by the trusted
hardware (TEE) available in most smartphones [6, 11], and
enforces that each TEE can have at most one active identity on
the blockchain, thus raising the economic cost of participation
to the cost of a unique smartphone.

To limit damage that 80% malicious Politicians can cause
to performance, Blockene employs several techniques to re-
strict their ability to lie. First, we use a technique called pre-
declared commitments to make some malicious behaviors
detectable. Second, to perform gossip among Politicians reli-
ably and efficiently despite 80% dishonesty, we introduce a
novel technique called prioritized gossip. These techniques
reduce cost at Citizens, enabling Blockene to achieve high
throughput despite running on smartphones.

We have built a prototype of Blockene; the Citizen node is
implemented as an Android application, and Politician node
is implemented as a cloud server. We evaluate Blockene along
various dimensions, and show that it achieves good transac-
tion throughput of 1045 transactions/sec (6.8 MB/min) while
ensuring a commit latency of 270s in the 99th percentile. We
also demonstrate very little data use (61 MB/day) and battery
use (3%/day) at Citizens.

The key contributions of this paper are as follows:

We present the first blockchain system where nodes can
participate as first-class members in consensus while
running on devices as lightweight as smartphones, sup-
porting high scale of members and high throughput.
We present a novel split-trust design with a new security
model comprised of resource constrained Citizens (hon-
est majority) and resource heavy Politicians (dishonest
majority), and Citizens performing validation and con-
sensus by offloading heavy work to untrusted Politicians
in a verifiable way.
We make several novel optimizations (e.g., pre-declared
commitments, sampling-based Merkle tree read/write,
prioritized gossip) that achieve good performance de-
spite 80% malicious Politicians.
With a thorough theoretical analysis, we prove that Block-
ene satisfies safety, liveness, and fairness.
We perform a thorough empirical evaluation of this archi-
tecture, demonstrating its feasibility as a shared scalable
blockchain service.

The rest of the paper is structured as follows: In § 2, we
provide a background on blockchains, and discuss existing
blockchain architectures in § 3. § 4 provides an overview of
Blockene, and its threat model, and § 5 presents its design. We
discuss optimizations for resource-heavy steps in § 6, present
an overview of safety and liveness proofs in § 7, and describe
the implementation in § 8. We evaluate Blockene in § 9, and
conclude (§ 10).

568 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2 Background

In this section, we discuss the key principles and abstrac-
tions in a blockchain, and its applications.

2.1 Basic properties

A blockchain is a distributed ledger of transactions. With-
out a trusted authority (e.g., a bank) managing the ledger, a
group of mutually untrusted parties collectively validate trans-
actions, and maintain a consistent ledger, provided at least
a threshold of participants (e.g., two-thirds) are honest. A
blockchain must provide safety, liveness, and fairness. Safety
ensures that honest participants have a consistent view of the
ledger. Liveness ensures that malicious participants cannot
indefinitely stall the blockchain by preventing new block ad-
ditions. Fairness ensures that all valid transactions submitted
to the blockchain get eventually committed.

2.2 Building blocks

A blockchain is a replicated, peer-to-peer distributed sys-
tem built on the following basic primitives:
Merkle tree for Global State: A key part of a blockchain
is the global state database that tracks keys and their current
values. This global state is managed in a tamper-proof manner,
typically using a Merkle tree where the leaf nodes contain
the key-value pairs, while each intermediate node contains a
hash of the concatenated contents of child nodes. The root is
a single hash value that represents the entire state. An update
of a key requires recomputation of hashes only along the path
from that leaf to the root. Given the root, the value of any key
can be proved by a path of valid hashes to the root.
Signed transactions: The basic unit of work in a blockchain
is a transaction. A transaction reads and updates a few keys in
the global state (e.g., transfer $1000 from Alice to Bob). To be
valid, (a) the transaction must be signed (b) the user signing
the transaction must have access to the keys (c) “semantic”
integrity must pass (e.g., cannot overspend).
Cryptographic linkage: A blockchain is a list of blocks. A
block is a list of transactions. The ordering of blocks is en-
sured by a cryptographic linkage; every block embeds the
cryptographic hash of the previous block’s contents.
Gossip: Participants in a blockchain exchange state with each
other in a peer-to-peer fashion. For example, when a new
block gets committed to the ledger, it must be sent to other
members. This communication happens through multi-hop
gossip, with eventual consistency.
Consensus Protocol: The key primitive in blockchains is a
distributed consensus protocol that handles Byzantine failures
(e.g., PBFT [15], Nakamoto [30], or BBA [21]), as minority of
participants could be malicious. Byzantine consensus requires
at least 2/3rd participants to be honest, and requires several
rounds of communication.

3 Comparison with Existing Blockchains

In this section, we present a brief survey of related work
on existing blockchain architectures. Blockene provides three
properties: lightweight resource usage, large scale of partic-
ipation, and high transaction throughput. We use the same
three dimensions to compare Blockene with related work.

3.1 Resource usage by member nodes

Existing blockchains span a wide spectrum in resource us-
age by participating member nodes, depending on the mech-
anism used for consensus. We first discuss compute cost in-
curred by members, and then the network and storage cost.

Compute Cost. In terms of compute cost, the most expensive
are blockchains based on Nakamoto consensus [30], also
referred to as proof-of-work; examples are Bitcoin [30] and
Ethereum [5]. In Nakamoto consensus, the first member node
to solve a compute-intensive cryptographic puzzle is chosen
as the winner in committing a new block. Such blockchains
therefore require heavy compute resources at member nodes.

In order to address the high compute (and energy) costs of
proof-of-work blockchains, two popular alternative architec-
tures have emerged. The first is consortium blockchains (e.g.,
HyperLedger [13]), which, by limiting the blockchain mem-
bership to a small number of nodes, can run traditional Byzan-
tine consensus algorithms, instead of the compute-intensive
proof-of-work based consensus. The second architecture is
proof-of-stake blockchains, which tie the voting power of a
member node with the amount of money the member node has
on the blockchain. Examples of these blockchains are Algo-
rand [21], Ouroboros [14, 22], PeerCoin [23], etc.. Inherently,
proof-of-stake blockchains target cryptocurrency applications
where such a “stake” is meaningful.
Network and Storage cost. While the above two ar-
chitectures, i.e., consortium blockchains and proof-of-stake
blockchains, address the raw compute cost of member nodes,
they are still too expensive for smartphones. In particular,
they are heavy on network and storage resources, as they re-
quire the member nodes to be always up-to-date with the
“current” state of the blockchain. Given the high transaction
rate (1000s of transactions per second) that such blockchains
enable, replication of the entire state across member nodes
is expensive: at 1000 transactions/sec, the blockchain would
commit roughly 9GB per day, which needs to be gossiped
across member nodes, resulting in a network cost of roughly
45 GB/day (assuming a gossip fanout of 5 neighbors) that
every member node has to incur. Further, such a blockchain
would consume terabytes of storage on member nodes, as
every member node stores a local copy of the blockchain.

Even blockchains that target smartphones [35] adopt the
same philosophy of member nodes staying up to date, and
thus incur the network and storage overheads.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 569

Some blockchains address storage cost by sharding. Om-
niLedger [25] is a recent blockchain that allows participants
to only store a shard of the blockchain. It uses a variant of
Byzcoin [24] for fast consensus. RapidChain [37] also uses
sharding to reduce storage cost. Both these works scale only
to a few thousand participants and also require participants to
store a large fraction (1

3 or 1
16) of the entire blockchain.

Lightweight but Incapable Nodes. A class of “lightweight”
blockchains adopt an approach of “unequal members”: only
the first-tier, resource-heavy members participate in consensus
and have voting power, while the second-tier members simply
serve as read-only query frontends, and do not participate in
consensus. In such a model, the “majority-honest” property
must be met purely by the heavy nodes, as light nodes do not
contribute to security. Not surprisingly, given the limited re-
sponsibility, the “light” nodes don’t consume much resources.
An example of this architecture is the separation between
light and heavy nodes in Ethereum [32].
Blockene. In contrast, Blockene, achieves lightweight re-
source usage for first-class members that participate in con-
sensus and block validation. Further, unlike Ethereum which
depends on honest majority among heavy nodes (only heavy
nodes can vote), Blockene tolerates up to 80% of the “heavy”
nodes (i.e., Politicians) being corrupt. Members in Blockene
require only a smartphone and negligible2 data transfer (< 60
MB/day, i.e., three orders of magnitude lower) and negligible
compute (battery use of <3% per day). It achieves this by
enabling member nodes to operate with minimal state needed
for committing a particular block, and performing work only
a few times a day, i.e., not striving to stay up-to-date always.

3.2 Scale of participation
As the security of a blockchain fundamentally relies

on a majority of the participating members being honest,
blockchains need to protect against collusion of a large num-
ber of participants. Consortium blockchains [13] carefully
structure the blockchain for a particular business process,
such that members have a shared incentive in the success of
the blockchain. It is sometimes infeasible/hard to structure
a consortium with the above guarantee; in the philanthropy
example, if a small number of members are in control of
the blockchain, they may collude to, say, facilitate siphon-
ing of donations meant for the poor. Moreover, a consortium
blockchain is intricately tied to a specific business process
among a set of entities, resulting in high setup and operational
overhead, besides limiting inter-operability.

Another approach to guard against collusion among ma-
jority, is to enable large scale participation; by onboarding a
large number of participants (say millions), majority-collusion
can be made hard and unlikely. Most “public” blockchains
such as Bitcoin [30], Ethereum [5], and Algorand [21] enable

2Cellular data costs in several countries are much cheaper than in the
US [18]; in US/Europe, users are on WiFi/broadband most of the day.

large-scale participation. Blockene also supports a large num-
ber of participants, but unlike most public blockchains today
that target cryptocurrencies, Blockene is not tied to cryptocur-
rency (e.g., no proof-of-stake), but enables generic business
transactions. Unlike consortium blockchains, Blockene can
additionally enable real-world scenarios where there is poten-
tial for collusion among a small number of members.

3.3 Transaction throughput
Public blockchains based on proof-of-work are low in

throughput (~4-10 transactions/sec). Proof-of-stake based
Algorand [21] is the first public blockchain with ~1000 trans-
actions/sec3 Consortium blockchains, due to low scale of
participants and traditional consensus (e.g., PBFT), provide
1000s of transactions/sec. Similar to Algorand, Blockene also
provides a high transaction throughput. By not being tied to
cryptocurrency applications, Blockene can serve traditional
business applications similar to consortium blockchains.

Blockchain Scale of Trans. Cost Incentive
members rate needed?

Public Millions 4-10 /sec. Huge Yes
(e.g., Bitcoin) (PoW)
Consortium Tens 1000s /sec. High Yes
(e.g., [13])

Algorand [21] Millions 1000-2000/sec. High Yes
Blockene Millions 1045 /sec. Tiny No

Table 1: Comparison of blockchain architectures.

3.4 Incentives to Participants
Because of high resource cost (compute, network, or stor-

age), existing blockchains need an incentive for participants
(e.g., mining coins in cryptocurrencies, or business efficiency
in consortiums). Blockchains that depend on such incentives
cannot work for applications such as philanthropy (§ 1). To
scale without incentives and to enable altruistic participation,
the cost of participation has to be negligible.

Table 1 compares blockchain architectures along these di-
mensions. Blockene is the first blockchain to achieve all of
the above: scale, throughput, and low cost. With low cost,
Blockene supports real-world use-cases even where partici-
pants do not have a direct incentive, but are altruistic to run a
background app with negligible battery and data usage.

3.5 Other related work
The committee-based consensus in Blockene is heavily

inspired by Algorand [21]; Like Blockene, Algorand also

3Assuming 100-byte transactions and 2.2 MB in 20s, 10MB blocks
@750MB/hr.

570 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

does not allow forks to occur, and one consistent view of
the blockchain is always maintained. There is a tradeoff
between Algorand and Blockene on the resilience to two
kinds of targeted attacks (described in § 4.2 para 1). Hon-
eyBadger [28] is a recent system designed for consortium
blockchains with O(100) participants. IOTA [19,20] is another
distributed ledger system, but currently relies on a centralized
co-ordinator for consensus.

Among proof-of-work-based blockchains, the most closely
related work to Blockene is Hybrid consensus [31]. Similar to
Algorand (and Blockene), Hybrid consensus periodically se-
lects a group of participants and does not allow the adversary
to corrupt nodes during the “participant selection interval”.
However it has a long selection interval (of about 1 day) and
is also open to the possibility of forks.

4 Architecture Overview

In this section, we first introduce our two-tier architecture
that achieves the three conflicting properties of lightweight re-
source usage, large scale of participation, and high transaction
throughput. We then discuss the threat model of Blockene.

4.1 Two-tier Architecture
Blockene employs a novel two-tier architecture with asym-

metric trust. This architecture is depicted in Figure 1.
There are two kinds of nodes in Blockene: Citizens and

Politicians. Citizens are resource-constrained (i.e., run on
smartphones), are large in number (millions), and are the only
entities having voting power in the system (i.e., participate in
consensus). Politicians are powerful and run servers (similar
to existing blockchains like Algorand), and are lot fewer in
number (low hundreds), but they do not have voting power.
Politicians only execute decisions taken by Citizens, and can-
not take any decisions on their own.

The low resource usage enables a large number of Citizens
to participate without incentives, while Politicians being few
in number, will be run by large entities that have interest in
the particular use-case (e.g., in the audited philanthropy case,
large donors and foundations).

As Citizens participate in consensus, at least two-thirds
of Citizens are required to be honest, while others can be
malicious and collude. This is reasonable as Blockene al-
lows millions of Citizens, making large-scale corruption hard.
However, Politicians enjoy much lower trust. Blockene only
requires 20% of politicians to be honest; the remaining 80%
of the politicians can be malicious and collude among them-
selves, and with one-third malicious Citizens.

4.1.1 Offloading work to Politicians

Intuitively, given the two-tier architecture, Citizens can of-
fload expensive responsibilities such as storage and commu-

Figure 1: Blockene’s architecture

nication to Politicians. However, as 80% of Politicians are
corrupt, a write made by a Citizen could just be dropped by
a Politician or, a read could return incorrect value. To get
useful work done out of Politicians Blockene uses a novel
mechanism of replicated reads and writes. Reads and writes
by Citizens to Politicians happen with a random safe sam-
ple of Politicians. The size of this sample is fixed such that
with high probability, at least one Politician in the sample
is honest (e.g., for a sample size of 25, this probability is
1− (0.8)25 = 99.6%). Blockene is resilient to a small number
of Citizens (0.4%) picking all dishonest Politicians.

4.1.2 Division of responsibilities

We now describe how the Citizens and Politicians collabo-
rate to perform the various standard blockchain tasks:
Storage: In a traditional blockchain, every participant keeps a
replica of the entire blockchain, but Citizens in Blockene can-
not afford to store TBs of data. In Blockene, only Politicians
store the ledger and the global state (i.e., database of key-
values § 2). Citizens read subsets of this data from Politicians
as needed. The only state Citizens store (and periodically
update) is a list of valid Citizen identities (§ 5.3).
Transaction Validation: As Citizens are the actual partici-
pants in consensus, they validate transactions, ensuring that
transactions are signed, and have semantic integrity (e.g., no
double-spending). To perform validation, Citizens read trans-
actions from Politicians, and lookup latest values of the keys
referenced in them, from the global state with Politicians.
Citizens then propose a block with valid transactions.
Gossip: To ensure that all honest participants agree on the
state of the blockchain, participants need to gossip among
themselves. However, as discussed in § 3, direct gossip among
Citizens is expensive. Blockene solves this problem by having
Citizens gossip through Politicians. When a Citizen needs to
broadcast information to other Citizens, it sends a message
to a safe sample of Politicians. Politicians then gossip data

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 571

among themselves; they can afford to do so because they have
good network connectivity. Other Citizens then perform a
replicated read from the Politicians when they need to, e.g.,
when they are in the committee4. For gossip through Politi-
cians, we need the guarantee that a message that reaches one
honest Politician always reaches all other honest Politicians
via gossip, a challenging property when 80% of the Politi-
cians are malicious; our custom gossip protocol is described
in § 6.1). Thus, we achieve the same semantics as direct gossip
among Citizens, but with minimal network load on Citizens.
Consensus: Citizens participate in consensus by performing
gossip through Politicians. Given the large scale of Citizens,
all Citizens cannot participate in consensus. Instead, we cryp-
tographically select a random committee of citizens (roughly
2000 members) for each block (§ 5.2).

4.2 Threat Model

While our threat model is similar to Algorand [21], there is
a tradeoff between Algorand and Blockene on the resilience
to targeted attacks. On one hand, Algorand is based on proof-
of-stake, which allows an adversary infinite time to target
nodes with higher stake (who will appear in the committee
more frequently); Blockene avoids this attack, as all Citizens
have equal votes. On the other hand, Algorand protects the
secrecy of the committee members until they perform their
role, but Blockene exposes their identities a few minutes (1-2
blocks) before they participate. To conserve battery, Citizens
normally poll Politicians for current state of the blockchain
roughly every 10 blocks (5.2), but when they are going to be
in the committee, will poll again shortly (e.g., 1 block) before
their expected turn, thus exposing their identity to malicious
Politicians. This potentially provides a window for a targeted
attack (e.g., by bribing the committee: § 4.2.1).

4.2.1 Attack vector of Citizens

Bribing attack on Citizens: As Blockene implicitly exposes
the public keys of the committee a few (e.g., 2) minutes in
advance, an adversary could in theory perform a targeted
attack by bribing a sufficient number of committee members.
However, we believe this is not a concern for the following
reasons. First, with just the IP address, it is non-trivial for
an adversary to “send a message” offering bribe to a Citizen,
because of carrier-grade NAT [4] and the architecture for
push notifications in smartphones ; the existing channel from
a malicious Politician to the Citizen cannot be misused for
this, as an untampered Blockene app on the Citizen will ignore
any spurious traffic on that channel. Second, as the committee
is randomly chosen every block, pull-based bribing where
the Citizens (who know of their selection up to 10 blocks
in advance - § 5.2) pro-actively reach out to the adversary

4Direct gossip among Citizens would require all Citizens (i.e., including
those outside the committee) to participate in gossip of all data.

cannot happen, as that would imply violation of the honesty
assumption on Citizens, i.e., greater than 70% being honest.
Sybil Attack by Citizens: Given the lightweight cost of par-
ticipation, Blockene needs to ensure that an adversary cannot
get disproportionate share of voting by spinning up several
virtual nodes (i.e., Sybil attacks [17]). A common way of
addressing Sybil attacks is Proof-of-work which is resource-
intensive and does not fit the goals of Blockene; another al-
ternative is Proof-of-stake [21] where a participant’s voting
power is proportional to the amount of “stake” (money) on
the blockchain, but it is specific to cryptocurrencies.

In Blockene, we protect against Sybil attack by exploiting
the trusted hardware (TEE) available in smartphones [6, 11],
and ensuring that a smartphone can have at most one identity
on the blockchain. Thus, Blockene imposes an economic cost
to participation, i.e., the cost of a smartphone; this is sunk
cost already incurred in owning the smartphone, but protects
against Sybil as each identity is a unique smartphone.

In particular, each TEE has a unique public key that is
certified by the platform (Android/iOS) vendor. The TEE can
certify an EdDSA public-private keypair generated by an app;
this generated public key serves as the identity on Blockene.
The global state of Blockene tracks the set of valid public
keys, along with the public key/certificate of the TEE that
authorized it. When a transaction for adding a new member
is proposed, Blockene looks up the TEE public key to see if
that TEE (i.e., the same smartphone) already has an identity
in Blockene; if yes, it rejects the transaction5. Thus, every
Citizen on Blockene is tied to a unique smartphone, making it
economically infeasible/unattractive for a single entity to get
large participation on Blockene.

Note that Blockene only assumes that every certificate
signed by Google/Apple for a TEE public-key corresponds
to a unique smartphone. It does not depend on the security
of an individual TEE (unlike running the blockchain consen-
sus inside TEE, e.g. SGX [33], that opens up side-channel
attacks compromising integrity and security). As a result, the
TEE identity can be replaced/combined with other unique
identities. In India, one-way-hash of Aadhaar-ID [1, 12] (digi-
tally verifiable, biometric-deduped, 1.2 billion-reach) can be
used. Other de-duped IDs (e.g.SSN) augmented with digital
verifiability can also be used.

4.2.2 Attack vector of Politicians

Dealing with 80% dishonesty among the politicians is one
of the main technical challenges in the design of Blockene.
Malicious behavior by Politicians falls under two kinds: de-
tectable and covert. Detectable maliciousness where there is a
succinct proof of lying, can be used to improve performance
by blacklisting. For example, if a Politician is supposed to
only send one group of transactions in a round, but there are

5We can also support replacing the old identity with the new one for the
same TEE with appropriate bookkeeping.

572 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

two versions signed by the same Politician, it is detectable
with proof. Covert maliciousness is harder to handle, and is
the focus of our techniques. We list broad (non-exhaustive)
classes of covert attacks a Politician can employ.
Staleness Attack: When a Citizen node asks the Politician
for some state (e.g., the latest committed block), the Politician
could return a stale block. Such a response would appear to
be valid because the old block would also have been signed
by a quorum of Citizens (§ 5.3).
Split-View Attack: A Politician can respond selectively to
some Citizens and not to others, causing a split in the world-
view seen by honest Citizens. Worse, a Politician can respond
with two different values to different subsets of Citizens. In a
coordinated split-view attack, the malicious Politicians could
only gossip among themselves, so that no honest Politician
has a certain data. Malicious Politicians can then selectively
relay this data only to some Citizens (e.g., § 5.5.2).
Drop Attack: A malicious Politician may drop data written
by a Citizen without committing it or gossiping it to other
Politicians. Similarly on a read, the Politician may choose to
not respond, even though the Politician has the data (§ 4.1.1).
Denial-of-Service Attack: As Politicians are powerful
servers typically hosted in the cloud, we assume that hon-
est Politicians employ standard DoS protection that public
clouds offer [2, 3]. For Citizens, most ISPs employ carrier-
grade NAT to handle the explosion of IP addresses on mobile
phones [4], which also provides DoS protection. Malicious
Politicians can make our gossip protocol more expensive by
asking for more data than they need (§ 6.1).
Sybil Attack: An adversary could try pushing the dishonesty
fraction of Politicians beyond 80% by spinning up several
nodes. However, given the small number (say 200), we envi-
sion that Politician nodes would have an out-of-band regis-
tration mechanism (e.g., mapping them to real entities, say
one per Fortune-500 company) - robust because only 20% of
them need to be honest (unlike Citizens).

Blockene protects against both detectable and covert mali-
ciousness of the Politicians including the attacks listed above.

5 Design

In this section, we present in more detail how Citizens and
Politicians coordinate on the key steps in Blockene.

5.1 System Configuration
We first outline the system configuration for Blockene. Cit-

izens in Blockene run on a smartphone, so we assume that
their network bandwidth is low, i.e., 1 MB/s. We choose a
block size of 9MB (to amortize fixed cost per block), con-
taining about 90k transactions (~100 bytes each including a
64-byte signature). We assume a network bandwidth of 40
MB/s between Politicians (representative of bandwidth in the
cloud, e.g., between an Azure and a Google Cloud VM across
east-US and west-US). We choose the number of Politicians

as 200. The work done per block only depends on committee
size, so the system scales to millions of Citizens.

Transaction originators submit signed transactions to a safe
sample or to all Politicians, continuously in the background.
Transactions can modify keys that the originator has access
to. Transactions from the same originator can depend on each
other; we preserve their order by tracking a per-originator
nonce in the global state. In this paper, (without loss of gen-
erality) each transaction accesses three keys (debits one key
and credits another, third key is nonce). Politicians gossip
transactions among each other.

5.2 Selecting Committee of Citizens

The committee of citizens for validating and signing each
block is chosen on the basis of a VRF (Verifiable Random
Function) [27], inspired by Algorand [21] but with one key
modification. Algorand requires each participant to check in
each round whether it is chosen in the committee. A Citizen
on a mobile phone cannot afford to do such frequent checks
because waking up the phone every round and communicating
would cause significant battery drain. Therefore, instead of
computing the VRF on the hash of the previous block (N−1),
Blockene uses the hash of block N−10, thus allowing a Citi-
zen to wake up once every 10 blocks. Note that this modifica-
tion still preserves the security guarantee required from VRFs
in our threat model. Specifically, for a citizen, the VRF for
block N is calculated as Hash(Signsk(Hash(BlockN−10)||N))
where sk is private key known to the citizen. 6 A Citizen is in
the committee if the VRF has 0’s in the last k bits (hence a
Citizen is part of a committee with probability 2−k; k can be
set appropriately). Only the concerned Citizen can generate
the VRF as it requires its private key, but anyone can verify
its validity based on the public key given the signature.
Committee size: The size of the committee needs to bal-
ance performance and security. A small committee is good
for performance, but for security of consensus protocol, we
require that in any committee, at least 2/3 Citizens are honest.
As our committee selection is probabilistic, by the Chernoff
bound [29], this security requirement cannot be met for very
small committee size even if we have 2/3 honest Citizens
overall. Committee size increases with the fraction of dishon-
est Citizens. We calibrate this tradeoff to obtain an expected
committee size of 2000 with a citizen dishonesty threshold
of 25%. The details of these computations appear in the full
version [34]. We give an overview below.

Proof overview: We prove several properties about the
committee for a block. We call a Citizen that participates in
a committee as good if the Citizen is honest and speaks to at
least 1 honest Politician through m fan-out read/write. Other-
wise, we say that the Citizen is bad. For a configuration with
25% corrupt Citizens, 80% corrupt Politicians, and m = 25,

6We use EdDSA signatures. ECDSA uses random number which the
adversary can exploit to brute-force itself into the committee.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 573

we show that our committee satisfies the following proper-
ties 7: size of all committees lies in the range [1700..2300]
(Lemma 1), every committee has at least 1137 good citizens
(Lemma 2), every committee has at least a 2/3 fraction of
good citizens (Lemma 3), and no committee has more than
772 bad citizens (Lemma 4).

5.3 Fork-proof Structural Validation

Blockene is designed to prevent forks from occurring. To
enable this, each Citizen periodically verifies the structural
integrity of the blockchain to enforce that the chain of hashes
and VRFs are consistent and to prevent forks.
Track local state: Each Citizen locally remembers the block
number N until which the Citizen validated the structural
integrity of the blockchain, and the hashes of blocks N to
N−9. In addition, a Citizen stores an up to date list of public
keys of other valid Citizens. The total storage size is <100MB
for 1 million Citizens.
Chained ID sub-blocks: To enable Citizens to efficiently
update local state, the public keys of new users added as part
of each block B, are tracked in an ID sub-block (SB) within B.
SBs are chained together by embedding Hash(SBi−1) within
SBi. To aid cheap verification, committee members sign
Hash(Hash(Bi), Hash(SBi), GlobalStateRoot(Bi)).
Incremental Validation: Roughly every 10 blocks (12-15
mins), each Citizen performs a getLedger call to validate the
incremental structural integrity (i.e., from last validation point
to the latest state), and to check if it will be in the commit-
tee soon (committee for a block N is a function of the hash
of block N−10). To find the latest block, a Citizen queries
a safe sample of Politicians for the latest block number. It
picks the highest number reported by any Politician, and asks
for proof, i.e., signatures of committee of that block and the
corresponding VRFs. Thus, if at least one Politician in the
safe sample is honest, the Citizen will know the latest block
hash. If the latest block is greater than N + 10, it first veri-
fies block N +10. Further, it refreshes its set of valid public
keys by downloading the chained sub-blocks SBN+1...SBN+10
that contain new Citizens added in each block, verifying the
integrity of SBi based on the chained hashes.
Cool-off period for new nodes: To prevent a (low-
probability) attack where an adversary can manufacture
public-private keypairs8 to increase chances of getting higher
malicious fraction for a particular block N, we allow a Cit-
izen to be in the committee only k(= 40) blocks after the
block in which the Citizen was added. To verify this as part of
VRF checks, a Citizen’s local state tracks the block number
of “recently” added Citizens. This is similar to the “look back
parameter” in Algorand [21].

7All references to Lemma/Theorem/Algorithm numbers below and rest
of this paper refer to those in the full version.

8Android TEE API does not allow directly signing with the private key
of TEE; instead a keypair is certified by TEE.

Proof overview: Our getLedger protocol [34] is used for
verifying ledger height i+ 10, given the Citizen v has last
verified height i, without an explicit brute-force verification
of signatures of all 10 blocks. The algorithm generalizes to
verifying any height i+ j for 1≤ j≤ 10. We show (Lemma 5)
that if a good Citizen with a verified state for height i invokes
the getLedger protocol at round (i+11) and accepts, then
the Citizen’s updated structural state is consistent with the
blockchain up to height (i+10). Using this, we can show that
honest Citizens can obtain the consistent structural state of the
blockchain, along with all registered public keys, for every
round of the protocol (Corollary 2).

5.4 Transaction Validation

Citizens perform the task of verifying signatures of transac-
tions, checking the transaction nonce to detect replay attacks,
and verifying semantic correctness of the transaction (e.g.,
double spending). However, only Politicians store the Merkle
tree (§ 2.2) of the global state; keeping a large and up to
date global state in Citizens is unaffordable. To validate a
transaction, a Citizen must lookup the correct value of keys
referenced therein. On commit, the Citizen must update the
Merkle tree with new values from the transaction, and sign
the new Merkle root. The challenge lies in doing so correctly
given untrusted Politicians.

The Merkle root (along with block number) is signed by the
committee of the previous block, so the Politician cannot lie
about the Merkle root. Once the Citizen learns the latest block
number (§ 5.3), it learns the correct Merkle root as well. To
verify a value returned for a key, Citizen asks the Politician to
send the challenge path for this key, i.e., all the sibling nodes
(hashes) along the path from the leaf to the root. This enables
the Citizen to reconstruct the Merkle path and match the root
hash with the signed Merkle root. By security of hashes, the
Politician cannot present spurious challenge paths that verify.
In a tree with 1 billion key-value pairs, the challenge path
would contain 30 hashes.

Update of keys in the Merkle tree follows a similar protocol.
The Citizen could build a partial Merkle tree with the new
values at the leaves, and compute the new Merkle root. Both
the read and update paths mentioned above are expensive, and
we optimize them in § 6.

5.5 Block Proposal

Like in any blockchain, committee members can propose a
new block for committing to the blockchain.

5.5.1 Pick winning proposer

For efficiency, we allow only a subset of committee mem-
bers called proposers to actually propose a block, based on
the VRF of the Citizen. For this selection, we use an additional

574 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

VRF that is based on the hash of the previous block N−1 (in-
stead of N−10); only committee members who have the last
k′ bits of the additional VRF set to zero can propose a block,
and the winner is the one with the least VRF. Using the previ-
ous block hash in this VRF ensures that the adversary does
not know about the proposers until the last minute (similar to
Algorand) thus preventing a targeted attack on the proposers.
Any committee member can consistently determine the win-
ning VRF among the proposers. All proposers upload their
block to Politicians and other committee members download
the block of the winning proposer.

5.5.2 Pre-declared commitments

The upload of the proposed block by a proposer needs to
be done to a safe sample of 25 Politicians. In Blockene, as the
blocks are ∼9MB in size, assuming 1MB/s bandwidth at mo-
bile nodes, this would take 225 sec. To optimize this step, we
make the transaction selection process deterministic, so that
any Citizen can reconstruct what the original proposer would
have done, without the proposer explicitly uploading the full
block. Determinism is challenging, however, because the 80%
malicious Politicians can send different transactions to differ-
ent Citizens. Our technique of pre-declared commitments to
transactions addresses this.
1. Freeze Transactions. At the start of block N, each Politi-
cian freezes the exact set of transactions it will send to Citizens
reading from it. It does so by creating a tx_pool, which in-
cludes a set of (about 2000) transactions, and then generates a
commitment which is a signed hash of the tx_pool along with
the block number9. Malicious Politicians are forced to issue
only one commitment for a given block N, because two signed
commitments from a Politician is a proof of malicious behav-
ior, and can be used for efficient blacklisting; Citizens then
drop all commitments from that Politician in the same round.
Intuitively, with frozen commitments, a Citizen proposing a
block, need not upload the full block, but only a digest with
the commitments that went into the block, and other Citizens
can reconstruct that block by downloading the tx_pools for
those commitments from Politicians.
2. Ensure that enough honest citizens have commitments.
A malicious Politician can respond with its tx_pool only to
a subset of Citizens, and refuse to respond to others; thus, a
tx_pool committed in the proposed block may not be readable
by all honest Citizens, thus thwarting consensus. To address
this, we perform three steps. First, we limit the exact set
of Politicians from whom to pull transactions for a given
block to a randomly chosen set of 45 politicians based on
the hash of the block number and hash of previous block.
Instead of reading tx_pools from a random safe sample, a

9To reduce overlap of transactions across tx_pools from multiple Politi-
cians (which would reduce the unique transactions in the final block), trans-
actions are deterministically partitioned across Politicians using a hash on
transaction identifier and round number. Given a tx_pool and commitment, it
is easy to detect/ blacklist a Politician that doesn’t follow this.

Citizen reads from these 45 designated Politicians for a block.
Second, the Citizen uploads a witness list to a safe sample
of Politicians; the witness list contains the list of tx_pools
the Citizen was able to successfully download. The witness
list of all Citizens gets gossiped between Politicians. Third,
the proposer reads the witness list of all other Citizens, and
picks only commitments whose tx_pools were successfully
downloaded by at least a threshold number of Citizens. This
threshold is fixed to be ñb +∆, where ñb is the maximum
number of malicious nodes in any committee (computed to be
772, from Lemma 4), and ∆ is chosen to be 350. Intuitively,
all commitments (and tx_pools) that pass this condition are
available with at least ∆ honest Citizens. As 20% of Politicians
are honest, in expectation, at least 9 out of the 45 commitments
will pass this test.
3. Ensure that all honest citizens get commitments. The
commitments available with at least ∆ honest Citizens now
need to be propagated to all honest Citizens. Each Citizen
in Step 4, re-uploads 5 random tx_pools it has, to 1 ran-
dom Politician. This ensures that (with high probability) each
tx_pool (including those from malicious Politicians) that be-
longs to at least ∆ honest Citizens reaches at least one honest
Politician (who then gossips it to other honest politicians).
Thus, other honest Citizens can successfully download that
tx_pool (by querying a safe sample of politicians), preventing
a split-view attack by malicious Politicians.
4. Handle malicious proposer. When the winner of block
proposal is a malicious Citizen, it need not respect the wit-
ness list criteria, and can pick a commitment whose tx_pool
is known to very few Citizens. This attack is possible only
when consensus outputs the block proposed by this malicious
proposer, so we can argue that at least 1/3 honest Citizens
had all tx_pools at the beginning of the consensus. To en-
sure that all honest Citizens are able to download all required
tx_pools, a second re-upload of randomly chosen tx_pools
happens (step 9), now including the downloaded tx_pools
from previous step. Formal proofs capturing the guarantees
provided by these re-uploads needed to prove security of our
system are presented in Lemmas 10 and 11.

5.6 Block Commit Protocol

The main operation in a blockchain is adding a new block
to the blockchain. We list below the key steps in the process
of committing block N. The protocol for block N starts once
the previous block N−1 gathers a threshold number of signa-
tures (set to 850 in our case, §E.1 [34]) from the committee
members for block N−1.

1. A new committee of Citizens is chosen for block N (us-
ing Hash of block N−10), denoted by CN . The Citizens
in CN keep polling for the latest committed block num-
ber, and start the protocol once that number is N−1.

2. Each Citizen CN
i in CN downloads tx_pools & commit-

ments from ρ = 45 designated Politicians for the block.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 575

3. Each CN
i uploads a signed witness list with the commit-

ments it downloaded, to a safe sample of Politicians.
4. Each Citizen CN

i picks 5 random tx_pool it has, and re-
uploads them to 1 random Politician.

5. Each proposer in CN downloads all witness lists of CN

from a safe sample of Politicians, and picks commit-
ments with at least a threshold (1122) of votes (§ 5.5.2).
Then, it makes a block proposal with those commitments,
along with its VRF to prove proposer eligibility.

6. Politicians gossip on block proposals/VRFs and on the
tx_pools that were re-uploaded by Citizens.

7. Each Citizen CN
i tries to download missing tx_pools in

step 2 from safe sample of Politicians, relying on the
re-upload (Step 4) by other Citizens.

8. Each CN
i reads the VRFs of all proposers in CN from a

safe sample of Politicians, and picks the lowest correct
VRF as the local winner. If CN

i already has all tx_pools
in the winning proposal, it enters consensus with that set
of commitments, otherwise, NULL.

9. Each Citizen CN
i performs a second re-upload of 10 ran-

dom tx_pools it has to 1 random Politician.
10. Citizens in CN run a consensus protocol (§ 5.6.1) with

gossip through Politicians, where each CN
i ’s vote is de-

cided in Step 8. At the end, all honest Citizens either
agree on same set of commitments or an empty block.
CN

i downloads the tx_pools missing w.r.t. the output of
consensus from safe sample of Politicians.

11. Each Citizen CN
i performs transaction validation by

downloading challenge paths for all keys from Politi-
cians (§ 5.4) and drops transactions that fail validation.

12. Based on valid transactions (Step 11), each CN
i creates

a block, computes the new Merkle root of the global
state using updated values of keys and signs the block
hash and new Merkle root, along with block number
N. It uploads the block hash, new Merkle root, and this
signature to a safe sample of Politicians.

13. When more than a threshold number of signatures have
accumulated for block N, block N +1 starts.

Our complete protocol description can be found in Algo-
rithm 4. We give an overview of various properties of Block-
ene, i.e., safety, liveness and fairness, in § 7.

5.6.1 Consensus Protocol

For consensus (Step 10), we use the Byzantine Agreement
(BA) algorithm for string consensus (that is based on [36])
which calls upon the bit consensus algorithm BBA [26] in a
black-box manner. These are the same consensus algorithms
used by Algorand. Citizens enter the consensus protocol with
list of commitments in local winning block, as input. Two
scenarios are relevant here. If the winning proposer (i.e., the
one with the lowest VRF) was honest, which would happen

at least two-thirds of the time, all honest Citizens in the com-
mittee would enter consensus with this proposal except with
small probability (Lemma 10), and the protocol will terminate
in 5 rounds. However, if the winning proposer was malicious,
it can collude with malicious Politicians to partition the view
of honest Citizens. In general, the consensus protocol would
take an expected 11 rounds [21].

6 Optimizations

In this section, we present two key optimizations crucial to
achieving high transaction throughput in Blockene.

6.1 Prioritized Gossip
Problem. The guarantee we require in Blockene is that if
one honest Politician has a message, all honest Politicians re-
ceive the message. Because of the high fraction of dishonesty
among Politicians, standard multi-hop gossip with a small
number of neighbors (e.g., 10) cannot provide this guaran-
tee, because there is a non-trivial probability that all of them
were dishonest, and drop the message. Hence the safe thing
to do is a full broadcast to all other Politicians, which is ex-
pensive; when Politicians need to gossip tx_pools that were
re-uploaded by Citizens in the committee, each Politician may
have up to 45 tx_pools to gossip; with full broadcast, it would
send 0.2MB∗45∗200 = 1.8GB which would take 45 seconds
in the critical path (@40MB/s).
Key idea. We leverage the fact that messages being gossiped
by the different Politicians have a high overlap; each Politi-
cian has a subset of the same 45 tx_pools as Citizens pick a
random Politician to re-upload a subset of tx_pools. Moreover,
given the nature of re-upload, in expectation, any Politician
would be missing only a few tx_pools, and honest Politicians
wouldn’t lie about state.
1. Handshake. Each Politician asks recipients Bi which
tx_pools they already have, and send only the missing ones.
While this works with honest Politicians, the 80% malicious
ones could always lie that don’t have any, to cause a higher
load/latency on the system.
2. Selfish gossip. As malicious Politicians can lie that they
have no tx_pools, we assign a soft-penalty to Politicians that
miss a lot of tx_pools. Each sender Politician A favors the
peer B that has the maximum number of tx_pools that A needs.
In each round, A sends a tx_pool to B, and receives one in
return. Given the random re-uploads by Citizens, each honest
Politician would be missing only a small number of tx_pools,
and hence would get prioritized. The list of what B has to offer
keeps getting updated as B gets tx_pools from other peers;
note that this list can only grow, not shrink.
3. Incentivize frugal nodes. Selfish gossip loses its ability to
discriminate between honest and malicious recipients, once
the sender receives all tx_pools. To address this, after getting
all tx_pools, the sender changes its priority function for desti-
nations Bi to be the number of tx_pools that Bi claims to have;

576 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

thus honest nodes which will have large fraction of tx_pools
are favored. Again, the list of tx_pools that B advertises can
only grow, not shrink, as shrinking would mean that B lied.
Further, each honest Bi requests its missing chunk from at
most k = 5 peers simultaneously; k = 1 will be data-frugal,
but incur high latency if the peer dishonestly delays response.

6.2 Sampling-based Merkle Tree Read/Write

Problem. The Merkle tree validation in Step 11 is expensive.
In a 1-billion node Merkle-tree (30-levels deep), a challenge
path is 300 bytes (10-byte hashes); downloading 270K chal-
lenge paths is 81 MB (8̃1 sec latency) ignoring compression.
The compute at Citizens is also high (total 16.2 million hash
computations for challenge path verification during read and
for computing new root post update).
Key idea. We offload most of this work to Politicians, in a ver-
ifiable manner. Since the Merkle tree validation is done after
the conclusion of the consensus run using gossip through the
Politicians, Politicians know the tx_pools that are considered
for constructing the block. Hence, all Citizens in committee
and Politicians know the keys whose values need to be read
and updated. We first discuss the optimization for reading
values correctly from the Merkle tree.
1. Get Values. Each Citizen gets just the values for all 270K
keys (no challenge path, 1 MB instead of 81 MB) from one
Politician, and then asks a safe sample of Politicians whether
those values were correct. As at least one of these Politicians
is honest, it alerts the Citizen to incorrect values through an
exception list. The Politician can “prove” an incorrect value
by providing a challenge path from the signed Merkle root
that indicates a different value for the key.
2. Spot-checks. If many values were wrong, the exception
list would be quite large and eat into the savings. To avoid
this, Citizen picks a small random subset of k′ = 4500 keys
to initially spot-check using the challenge paths. If the spot-
checks pass for a sufficiently large k′, a Politician could have
lied only for a small number (200) of keys (except with small
probability). Thus, the extra spot-checks bound the size of the
exception list (Lemma 6).
3. Exception list protocol. To cross-verify the values with a
safe sample of Politicians, the Citizen deterministically puts
these values into buckets (2000) and uploads the hashes of
these buckets. When a Politician notices a mismatch for a
bucket, it sends the bucket index and the correct values for all
keys in that bucket. Citizen gets challenge paths only for keys
that disagree (from first Politician). Our spot-checks ensure
that only a small number of buckets can mismatch.
Corner case. Even after doing the above, there is a small
probability (< 2−10) that a Citizen may obtain an incorrect
value; we count such Citizen nodes as malicious and account
appropriately (Lemma 7). The full protocol and all proofs are
provided in Algorithm 2.

Writes: Updating the Merkle tree is a trickier problem. Due to
lack of old challenge paths for the all keys being updated, the
Citizen cannot construct the root of the updated Merkle tree T ′.
We solve this problem by making the Politicians compute T ′,
but now the Citizen must verify that the Politicians performed
the computation correctly, i.e., T ′ is consistent with the new
values of updated keys and old tree T for unmodified keys. We
achieve this by breaking T ′ at a level called the frontier level
(the nodes at this level are frontier nodes). Citizens obtain
the values of the frontier nodes of T ′ from a safe sample
of the Politicians. The Citizens then run a spot checking
algorithm - they pick a random subset of frontier nodes and
ask a Politician to prove the correctness of that frontier node.
Next, Citizens create exception lists with the help of the rest of
the selected Politicians. This list denotes which frontier nodes
are incorrect with the Citizen. The Citizen then proceeds
to sequentially correct the incorrect frontier nodes and then
finally compute the correct root of T ′ from the frontier nodes.

Proof Overview: In the full paper [34], we prove (in
Lemma 6) that for a good Citizen, after successfully spot-
checking only µ fraction of key-values, only (a small number
of) τ values are incorrect with probability 1− ε1 (here, µ, τ

and ε1 are appropriately chosen parameters). Moreover, these
values will get corrected by processing exception lists of size
at most τ. Hence, a good Citizen gets correct values with prob-
ability 1− ε1 (Corollary 3). We pick our parameters (Lemma
7) such that at most 18 good Citizens will obtain incorrect val-
ues during read, and account for these 18, by counting them as
bad Citizens in the committee. In the write protocol, we can
show that the sizes of exception lists can be bounded (Lemma
8) and that no more than 18 Citizens accept an incorrectly up-
dated Merkle tree T ′ (Lemma 9), which we once again factor
in to the set of bad Citizens. We additionally also show that
our algorithms are between 3− 18× more communication
efficient and between 10−66× computationally faster than
the naive algorithm for global state read/write.

7 Proofs of Safety, Liveness, and Fairness

In this section, we provide a brief overview of the proofs
in the full paper [34] for the safety, liveness, and fairness
guarantees of Blockene.

A committee round N ends when a new block gets signed
and committed by a threshold number (T∗), of committee
members for N. T∗ will be set to be 850 (done taking into
account maximum number of bad citizens in any committee
as well as the 36 good citizens who might have read/written
an incorrect global state).

First, we show (in Lemma 10) that for a block, if a good
Citizen is the winning proposer, then (except with bounded
constant probability) all good Citizens will output the pro-
posal of this Citizen as the output of the consensus protocol.
In Lemma 11, we show that, on the contrary, if a malicious
Citizen is the winning proposer and the consensus results

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 577

in a non-null value, then all good Citizens will be able to
download the transactions committed in the proposal. Using
Lemmas 7 and 9 (see Proof Overview of § 6) , we then show
(Lemma 12) that at the end of the block commit protocol all,
except 36, good citizens will sign the same block hash and
new global state root and that the new block is consistent with
the entire blockchain and global state. Now, using Lemma
12, safety (i.e. all honest Citizens agree upon all committed
blocks and all blocks are consistent with a correct sequence of
transactions) follows via an inductive argument. Next, to ar-
gue liveness (that adversarial entities cannot indefinitely stall
the system and that the empty-block probability is bounded
by a small constant), we use Lemmas 12 and 10.

Additionally, we also prove bounds on throughput in
Lemma 13 (in expectation, committed blocks have a threshold
number of transactions in them) and fairness in Lemma 14
(all valid transactions will eventually be committed).

8 Implementation

We have built a prototype of Blockene, that is spread across
two components, Citizen nodes and Politician nodes.

8.1 Citizen nodes
The Citizen node is implemented as an Android app on

SDK v23 and has 10,200 lines of code. It is built to optimize
battery use and runs as a background app, without user in-
volvement after initial setup. The application caters to two
main phases of the protocol that a Citizen participates in:
passive and active. In the passive phase, a service using Job-
Scheduler [9] periodically polls Politicians for getLedger
calls. In the active phase, when the Citizen is part of a com-
mittee, the application runs the steps of the protocol, handling
failures, timeouts and retries to deal with corrupt Politicians.
The implementation for the active phase uses a multi-threaded
event-driven model and is built on top of EventBus to par-
allelize and pipeline network and compute intensive crypto
tasks such as signature validation.

8.2 Politician nodes
The Politician node is implemented in C++ (11K lines of

code). The implementation scales to load from thousands of
Citizens, and handles bursty load during gossip. Given the
state-machine nature of the protocol, we have built it on top
of the convenient C-Actor-Framework [16], which is based
on “actors” that transition the state of the Politician through
the steps of the protocol. For instance, the BBA actor, apart
from storing and serving the votes that Citizens submit, also
reads the votes to determine the result of consensus. Based
on this, it emits an event to build the updated Merkle tree.

For the global state, we have built a SparseMerkleTree
(SMT), where the leaf index is deterministically computed
using the SHA256 of the key. Since the tree is of bounded
depth, we allow for (a small number of) collisions in the leaf

node. The challenge path of any key includes all the collisions
co-located with this key, so the leaf hash can be computed. To
prevent targeted flooding of a single leaf node, we reject key
additions that take a leaf node beyond a threshold, forcing the
transaction originator to use a different key. We also imple-
ment a DeltaMerkleTree, which allows us to efficiently create
an updated version of the SMT using memory proportional
only to the touched keys.

Our gossip implementation does simple broadcast for regu-
lar messages, and runs a stateful protocol for tx_pool gossip.
We segregate these messages into different ports/queues so
the bursty gossip messages are isolated from small messages
(e.g., BBA votes) that are broadcast. To prevent malicious
Citizens from flooding an honest Politician with the responsi-
bility of gossiping their writes, we limit the set of Politicians
for a Citizen to be deterministic based on its VRF. Politicians
do not gossip messages from non-conforming Citizens.

9 Evaluation

We evaluate our Blockene prototype under several dimen-
sions. The main questions we answer in our evaluation are:

What throughput and latency does Blockene provide?

How well does Blockene handle malicious behaviors?

Are the optimizations on Merkle tree & gossip useful?

What is the load on Citizen nodes (battery/data usage)?

9.1 Experimental setup

In our experiments, we use a setup with 2000 Citizen nodes
and 200 Politician nodes. Citizen nodes are 1-core VMs on
Azure with a Xeon E5-2673, 2GB of RAM, and are spread
across three geographic regions across WAN: 700 VMs in
SouthCentralUS, 600 VMs in WestUS, and 700 VMs in Eas-
tUS. Each Citizen runs an Android 7.1 image, and is rate-
limited to 1MB/s network upload and download. Politician
nodes run on 8-core Azure VMs with a Xeon E5-2673, 32
GB of RAM, and are spread as 100 VMs each in EastUS and
WestUS. They are rate limited to 40MB/s network bandwidth.
Given the random safe sampling, the Citizen-Politician com-
munication spans across WAN regions. Similarly, the gossip
between Politicians happens across WAN regions. As our
committee size is 2000, every Citizen is in the committee
for every block. With a higher number of Citizens, say 1 mil-
lion, a particular Citizen will be in the committee only once
every 500 blocks. Except the per-Citizen load, the system
performance is independent of the total number of Citizens
and is just a function of committee size, so the numbers are
representative of a large setup.

578 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0.0

500.0k

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

4.0M

4.5M

5.0M

 0 500 1000 1500 2000 2500 3000 3500 4000 4500
 0

 100

 200

 300

 400

 500

N
u
m

 t
ra

n
sa

ct
io

n
s

co
m

m
it

te
d
 (

cu
m

u
la

ti
v
e
)

M
B

 d
a
ta

 c
o
m

m
it

te
d
 (

cu
m

u
la

ti
v
e
)

Time (sec)

Fully honest (0/0)
Malicious (50/10)
Malicious (80/25)

Figure 2: Throughput of Blockene under various configs. In
50/10, 50% Politicians & 10% Citizens are malicious.

 10

 100

 1000

 10000

0.0 500.0k 1.0M 1.5M 2.0M 2.5M 3.0M 3.5M 4.0M 4.5M 5.0M

 135

 234

 584

 174

 403

 1089

 263

 736

 1792

Tr
a
n
sa

ct
io

n
 c

o
m

m
it

 l
a
te

n
cy

 (
se

c)

Num transactions (CDF)

Fully honest (0/0)
Malicious (50/10)
Malicious (80/25)

Figure 3: Transaction Latency under different malicious con-
figs. Dots show 50th, 90th, 99th percentiles.

9.2 Transaction Throughput and Latency
Figure 2 shows the timeline of block commits in Block-

ene under fully honest and malicious configurations, for 50
consecutive blocks. In the fully honest (0/0) case, 4.6 million
transactions get committed in 4403 seconds, corresponding
to a throughput of 1045 transactions per second, or 114 KB/s.

Citizen dishonesty Politician dishonesty

0% 50% 80%
0% 1045 757 390
10% 969 675 339
25% 813 553 257

Table 2: Transaction throughput under malicious configs.

We also evaluate Blockene under malicious behaviors of
both Citizens and Politicians. We denote our malicious config-
urations in the format P/C, where P is the fraction of malicious
Politicians, and C is the fraction of malicious Citizens. With
our choice of parameters (e.g., committee size), Blockene is
guaranteed to ensure safety in the presence of up to 80%
malicious Politicians and 25% malicious Citizens. However,

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700 800

W
A

N
 d

a
ta

 t
ra

n
sf

e
r

(M
B

)

Time (sec)

Download
Upload

Figure 4: Network usage at a Politician node.

performance can be affected because of adverserial behavior.
A malicious Citizen in these experiments attacks in two ways
(a) force an empty block by colluding with malicious Politi-
cians and proposes a block with tx_pools that only malicious
Politicians have. Honest Citizens therefore cannot download
that commitment and will vote for an empty block; (b) forces
additional rounds in the BBA consensus protocol by manipu-
lating its votes. A malicious Politician attacks in two ways: (a)
fails to give out transaction commitments, making a subset of
the 45 tx_pools empty, potentially causing a smaller block to
be committed (b) manipulates gossip by acting as sink holes
and asking for same chunks from multiple peers. As Figure 2
shows, Blockene is quite robust to a range of malicious be-
haviors, and gracefully degrades in performance. With 80%
dishonest Politicians, the effective tx_pools reduce to 9 out
of 45, resulting in the block having only 18K transactions
instead of 90K. Malicious Citizens cause a performance hit
(empty blocks + BBA rounds) when they get chosen as the
proposer (i.e., highest VRF); Table 2 shows the throughput
under more configurations of malicious behaviors.

Figure 3 shows the CDF of transaction latencies of the
system under different configurations, demonstrating fairness
across transactions. In the fully honest case (0/0), Blockene
ensures a median latency of 135s and a 99th%-ile latency
of 263s. Under the two malicious configurations: 50/10 and
80/20, latencies are higher as expected.

9.3 Timeline of Citizens and Politicians

Figure 4 shows the network load at a typical Politician
node during 10 blocks (each of the repetitive patterns is a
block). The two large spikes in uploaded data correspond
to rounds where this Politician was one of the 45 chosen to
provide tx_pools. For each block, there are two small spikes
of transmitted data; the first spike corresponds to gossip of
tx_pools through prioritized gossip, and the second spike is
due to gossip of votes from Citizens in the BBA consensus.

We also show the breakup of the 89-sec block latency by

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 579

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
te

p
 s

ta
rt

 t
im

e
 (

se
c)

Mobile node #

Breakup of time spent in committing one block across citizen nodes

Get height
Download txpools
Upload witness list
Get proposed blocks

Enter BBA
GsRead + TxnSignValidation
GsUpdate
Commit block

Figure 5: Breakup of time spent at Citizen nodes for a single
block commit. Cross indicates block commit.

plotting the time taken in Citizen nodes during a typical block.
Figure 5 shows the progress of the 2000 Citizen nodes during
one of the blocks, separating out the key phases of the pro-
tocol; the bulk of the time goes in the transaction validation
phase, and in fetching tx_pools from Politicians.

9.4 Impact of Optimizations
We now evaluate the prioritized gossip and the sampling-

based Merkle tree optimizations. For gossip, we consider how
much upload/download each Politician incurs before all other
honest Politicians get all the tx_pools. For example, in the
0/0 case, we have 10K data points (across 50 blocks and 200
Politicians each). Across these samples, we plot the 50th,
90th, and 99th percentiles. The malicious strategy we model
in the 80/25 case is where only the bare minimum number of
honest Citizens have tx_pools of malicious Politicians (∆ from
§ 5.5.2) and all malicious Politicians ask for the full set of
tx_pools from all honest nodes. As Table 3 shows, the network
load of prioritized gossip is robust to dishonest behavior. Even
in the malicious setting, the data transmitted is quite small
before all honest Politicians get all tx_pools.

Table 4 compares the performance of our sampling based
Merkle-tree reads and updates, with the simple solution of
downloading challenge paths for all keys referenced in the
block. The simple solution incurs much higher network cost
(the numbers are after gRPC compression), and a significant
compute cost at the Citizen. With our optimization, the net-
work cost drops by 10.8× while the CPU cost drops by nearly
31×, thus significantly improving transaction throughput.

9.5 Load on Citizens
Finally, we evaluate the load at Citizen nodes due to run-

ning Blockene. The two metrics of interest are battery usage
and data usage. To get these metrics, we run an actual An-
droid phone (a OnePlus 5) with the Citizen app, as part of the
committee along with the 2000 committee members on VMs,

Config Percentile Upload Download Time
(MB) (MB) (sec)

0/0 50 23.1 22.4 3.6
0/0 90 30.5 27.5 4.8
0/0 99 36.7 30.1 5.2
80/25 50 35.4 23.8 3.5
80/25 90 47.6 27.6 4.1
80/25 99 53.4 28.9 4.5

Table 3: Cost of gossip per honest Politician before all hon-
est Politicians receive all tx_pools.

Config Upload Download Compute
(MB) (MB) (s)

Naive: GS Read 0 56.16 93.5
Naive: GS Update 0 0 93.5
Optimized: GS Read 0.55 1.6 1.0
Optimized: GS Update 0.01 3 5.88

Table 4: Performance of Global State Read & Write.

and measure battery use. After being in the committee for 5
blocks, the battery drain was ~3%. The total network traffic
incurred by a Citizen for a single block was 19.5 MB.

Now, we can extrapolate the daily cost based on the per-
block cost and the number of times a single Citizen is expected
to be in the committee. With 1 million Citizens, a Citizen will
participate roughly every 500 blocks, which at our block la-
tency of ~90s, translates to 2 times per day. Thus, the expected
battery use is < 2% per day, and the data use is ~40MB/day. In
addition, we also measured on the same OnePlus5 that waking
up the phone every 10 minutes and performing getLedger
costs about 0.9% battery and 21MB data download. Waking
up every 5 minutes costs 1.7% battery and 42MB data down-
load. With a total of 3% battery usage and 61MB data/day, a
user running the Blockene app will hardly notice it running.

10 Conclusion

By enabling, for the first time, a high-throughput
blockchain where members perform block validation and con-
sensus on smartphones at negligible resource usage, Blockene
opens up a much larger class of real-world applications to ben-
efit from the security and decentralized nature of blockchains.
With a novel architecture, and several new techniques coupled
with a careful security reasoning, Blockene is able to simul-
taneously provide three conflicting properties: large scale of
participation, high transaction throughput, and low resource
usage at member nodes.

Acknowledgements

We thank our shepherd Nickolai Zeldovich and the anony-
mous reviewers for their valuable suggestions and feedback.
We also thank Ankush Jain, Sriram Rajamani, Bill Thies, Jacki
O’Neill, and Rashmi.K.Y for their support.

580 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Aadhaar identity ecosystem. In https:
//uidai.gov.in/aadhaar-eco-system/
authentication-ecosystem.html.

[2] AWS Shield: Managed DDoS Protection. In https:
//aws.amazon.com/shield/.

[3] Azure DDoS Protection. In https://
azure.microsoft.com/en-in/services/
ddos-protection/.

[4] Carrier-grade NAT: Wikipedia. In https://en.
wikipedia.org/wiki/Carrier-grade_
NAT.

[5] Ethereum blockchain. In https://www.
ethereum.org/.

[6] Apple Platform Security: Secure Enclaves Overview.
In https://support.apple.com/en-in/
guide/security/sec59b0b31ff/web, 2017.

[7] Giving in Europe country reports available. In
https://ernop.eu/giving-in-europe-
launched-at-spring-of-philanthropy/,
2017.

[8] India Philanthropy Report 2017. In
https://www.bain.com/insights/
india-philanthropy-report-2017/, 2017.

[9] Android Docs: JobScheduler. In https:
//developer.android.com/reference/
android/app/job/JobScheduler, 2018.

[10] Charitable Giving Statistics. Americans
gave $410 billion to charities in 2017. In
https://nonprofitssource.com/
online-giving-statistics, 2018.

[11] Android Keystore System: Hardware Security
module. In https://developer.android.
com/training/articles/keystore#
HardwareSecurityModule, 2019.

[12] Ronald Abraham, Elizabeth S Bennett, Noopur Sen, and
Neil Buddy Shah. State of aadhaar report 2016-17. IDin-
sight. Available at: http://stateofaadhaar. in, 2017.

[13] Elli Androulaki, Artem Barger, Vita Bortnikov, Chris-
tian Cachin, Konstantinos Christidis, Angelo De Caro,
David Enyeart, Christopher Ferris, Gennady Laventman,
Yacov Manevich, et al. Hyperledger fabric: a distributed
operating system for permissioned blockchains. In Pro-
ceedings of the Thirteenth EuroSys Conference, page 30.
ACM, 2018.

[14] Christian Badertscher, Peter Gazi, Aggelos Kiayias,
Alexander Russell, and Vassilis Zikas. Ouroboros Gen-
esis: Composable Proof-of-Stake Blockchains with Dy-
namic Availability. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-
19, 2018, pages 913–930, 2018.

[15] Miguel Castro, Barbara Liskov, et al. Practical byzantine
fault tolerance. In OSDI, volume 99, pages 173–186,
1999.

[16] Dominik Charousset, Thomas C. Schmidt, Raphael Hies-
gen, and Matthias Wählisch. Native Actors – A Scal-
able Software Platform for Distributed, Heterogeneous
Environments. In Proc. of the 4rd ACM SIGPLAN
Conference on Systems, Programming, and Applications
(SPLASH ’13), Workshop AGERE!, pages 87–96. ACM,
Oct. 2013.

[17] John R Douceur. The sybil attack. In International work-
shop on peer-to-peer systems, pages 251–260. Springer,
2002.

[18] Forbes. The cost of mobile internet around the
world. In https://blogs-images.forbes.
com/niallmccarthy/files/2019/03/
20190305_Data_Cost.jpg, 2019.

[19] IOTA Foundation. Differences between the tangle
and blockchain. In https://docs.iota.org/
docs/getting-started/1.1/the-tangle/
tangle-vs-blockchain.

[20] IOTA Foundation. Tangle: The coordina-
tor. In https://docs.iota.org/docs/
getting-started/1.1/the-tangle/
the-coordinator.

[21] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vla-
chos, and Nickolai Zeldovich. Algorand: Scaling byzan-
tine agreements for cryptocurrencies. In Proceedings of
the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 51–68, New York, NY, USA, 2017.
ACM.

[22] Aggelos Kiayias, Alexander Russell, Bernardo David,
and Roman Oliynykov. Ouroboros: A Provably Secure
Proof-of-Stake Blockchain Protocol. In Advances in
Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 20-24, 2017, Proceedings, Part I, pages 357–388,
2017.

[23] S King and S Nadal. Peercoin–secure & sustain-
able cryptocoin. https://www.peercoin.net/
whitepapers/peercoin-paper.pdf, 2012.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 581

https://uidai.gov.in/aadhaar-eco-system/authentication-ecosystem.html
https://uidai.gov.in/aadhaar-eco-system/authentication-ecosystem.html
https://uidai.gov.in/aadhaar-eco-system/authentication-ecosystem.html
https://aws.amazon.com/shield/
https://aws.amazon.com/shield/
https://azure.microsoft.com/en-in/services/ddos-protection/
https://azure.microsoft.com/en-in/services/ddos-protection/
https://azure.microsoft.com/en-in/services/ddos-protection/
https://en.wikipedia.org/wiki/Carrier-grade_NAT
https://en.wikipedia.org/wiki/Carrier-grade_NAT
https://en.wikipedia.org/wiki/Carrier-grade_NAT
https://www.ethereum.org/
https://www.ethereum.org/
https://support.apple.com/en-in/guide/security/sec59b0b31ff/web
https://support.apple.com/en-in/guide/security/sec59b0b31ff/web
https://ernop.eu/giving-in-europe-
launched-at-spring-of-philanthropy/
https://www.bain.com/insights/india-philanthropy-report-2017/
https://www.bain.com/insights/india-philanthropy-report-2017/
https://developer.android.com/reference/android/app/job/JobScheduler
https://developer.android.com/reference/android/app/job/JobScheduler
https://developer.android.com/reference/android/app/job/JobScheduler
https://nonprofitssource.com/online-giving-statistics
https://nonprofitssource.com/online-giving-statistics
https://developer.android.com/training/articles/keystore#HardwareSecurityModule
https://developer.android.com/training/articles/keystore#HardwareSecurityModule
https://developer.android.com/training/articles/keystore#HardwareSecurityModule
https://blogs-images.forbes.com/niallmccarthy/files/2019/03/20190305_Data_Cost.jpg
https://blogs-images.forbes.com/niallmccarthy/files/2019/03/20190305_Data_Cost.jpg
https://blogs-images.forbes.com/niallmccarthy/files/2019/03/20190305_Data_Cost.jpg
https://docs.iota.org/docs/getting-started/1.1/the-tangle/tangle-vs-blockchain
https://docs.iota.org/docs/getting-started/1.1/the-tangle/tangle-vs-blockchain
https://docs.iota.org/docs/getting-started/1.1/the-tangle/tangle-vs-blockchain
https://docs.iota.org/docs/getting-started/1.1/the-tangle/the-coordinator
https://docs.iota.org/docs/getting-started/1.1/the-tangle/the-coordinator
https://docs.iota.org/docs/getting-started/1.1/the-tangle/the-coordinator
https://www.peercoin.net/whitepapers/peercoin-paper.pdf
https://www.peercoin.net/whitepapers/peercoin-paper.pdf

[24] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas
Gailly, Ismail Khoffi, Linus Gasser, and Bryan Ford. En-
hancing Bitcoin Security and Performance with Strong
Consistency via Collective Signing. In 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016., pages 279–296, 2016.

[25] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. Om-
niLedger: A Secure, Scale-Out, Decentralized Ledger
via Sharding. In 2018 IEEE Symposium on Security and
Privacy, SP 2018, Proceedings, 21-23 May 2018, San
Francisco, California, USA, pages 583–598, 2018.

[26] Silvio Micali. Byzantine agreement, made trivial. In
https://people.csail.mit.edu/silvio/
Selected%20Scientific%20Papers/
Distributed%20Computation/BYZANTYNE%
20AGREEMENT%20MADE%20TRIVIAL.pdf, 2018.

[27] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan.
Verifiable random functions. In 40th Annual Symposium
on Foundations of Computer Science, FOCS ’99, 17-
18 October, 1999, New York, NY, USA, pages 120–130,
1999.

[28] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and
Dawn Song. The Honey Badger of BFT Protocols. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Aus-
tria, October 24-28, 2016, pages 31–42, 2016.

[29] Michael Mitzenmacher and Eli Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, New York, NY,
USA, 2005.

[30] Satoshi Nakamoto. A peer-to-peer electronic cash sys-
tem. In https://bitcoin.org/bitcoin.pdf,
2008.

[31] Rafael Pass and Elaine Shi. Hybrid Consensus: Efficient
Consensus in the Permissionless Model. In 31st Inter-

national Symposium on Distributed Computing, DISC
2017, October 16-20, 2017, Vienna, Austria, pages 39:1–
39:16, 2017.

[32] Gary Rong and Felix Lange. Light ethereum
sub-protocol (les). In https://github.com/
ethereum/devp2p/blob/master/caps/les.
md, 2019.

[33] Mark Russinovich, Edward Ashton, Christine Avanes-
sians, Miguel Castro, Amaury Chamayou, Sylvan Cleb-
sch, Manuel Costa, Cédric Fournet, Matthew Kerner,
Sid Krishna, et al. Ccf: A framework for building confi-
dential verifiable replicated services. Technical report,
Technical Report MSR-TR-2019-16, Microsoft, 2019.

[34] Sambhav Satija, Apurv Mehra, Sudheesh Singanamalla,
Karan Grover, Muthian Sivathanu, Nishanth Chandran,
Divya Gupta, and Satya Lokam. Blockene: A high-
throughput blockchain over mobile devices. arXiv
preprint arXiv:2010.07277, 2020.

[35] Kongrath Suankaewmanee, Dinh Thai Hoang, Dusit Niy-
ato, Suttinee Sawadsitang, Ping Wang, and Zhu Han. Per-
formance analysis and application of mobile blockchain.
In 2018 international conference on computing, net-
working and communications (ICNC), pages 642–646.
IEEE, 2018.

[36] Russell Turpin and Brian A. Coan. Extending binary
byzantine agreement to multivalued byzantine agree-
ment. Inf. Process. Lett., 18(2):73–76, 1984.

[37] Mahdi Zamani, Mahnush Movahedi, and Mariana
Raykova. RapidChain: Scaling blockchain via full
sharding. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018,
pages 931–948, 2018.

582 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Distributed%20Computation/BYZANTYNE%20AGREEMENT%20MADE%20TRIVIAL.pdf
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Distributed%20Computation/BYZANTYNE%20AGREEMENT%20MADE%20TRIVIAL.pdf
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Distributed%20Computation/BYZANTYNE%20AGREEMENT%20MADE%20TRIVIAL.pdf
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Distributed%20Computation/BYZANTYNE%20AGREEMENT%20MADE%20TRIVIAL.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/devp2p/blob/master/caps/les.md
https://github.com/ethereum/devp2p/blob/master/caps/les.md
https://github.com/ethereum/devp2p/blob/master/caps/les.md

Tolerating Slowdowns in Replicated State Machines using Copilots

Khiem Ngo?, Siddhartha Sen†, Wyatt Lloyd?
?Princeton University, †Microsoft Research

Abstract
Replicated state machines are linearizable, fault-tolerant
groups of replicas that are coordinated using a consensus al-
gorithm. Copilot replication is the first 1-slowdown-tolerant
consensus protocol: it delivers normal latency despite the
slowdown of any 1 replica. Copilot uses two distinguished
replicas—the pilot and copilot—to proactively add redun-
dancy to all stages of processing a client’s command. Copi-
lot uses dependencies and deduplication to resolve potentially
differing orderings proposed by the pilots. To avoid depen-
dencies leading to either pilot being able to slow down the
group, Copilot uses fast takeovers that allow a fast pilot to
complete the ongoing work of a slow pilot. Copilot includes
two optimizations—ping-pong batching and null dependency
elimination—that improve its performance when there are 0
and 1 slow pilots respectively. Our evaluation of Copilot
shows its performance is lower but competitive with Multi-
Paxos and EPaxos when no replicas are slow. When a replica
is slow, Copilot is the only protocol that avoids high latencies.

1 Introduction
Replicated state machines (RSMs) are linearizable, fault-
tolerant groups of replicas coordinated by a consensus algo-
rithm [46]. Linearizability gives the RSM the illusion of be-
ing a single machine that responds to client commands one
by one [21]. Fault-tolerance enables the RSM to continue op-
erating despite the failure of a minority of replicas. Together,
these make RSMs operate as single machines that do not fail.

RSMs are used to implement small services that require
strong consistency and fault tolerance, whose work can be
handled by a single machine. They are used throughout large-
scale systems, such as distributed databases [13, 14], cloud
storage [6, 9], and service managers [25, 39]. While each
RSM is individually small, their pervasive use at scale means
that they collectively use many machines. At such scale, it is
common for some machines to be slow [2, 15]. These slow-
downs arise for a myriad of reasons, including misconfigura-
tions, host-side network problems, partial hardware failures,
garbage collection events, and many others. The slowdowns
manifest as machines whose latency for responding to other
machines is higher than usual.

Thus, RSMs should also be slowdown-tolerant, i.e., pro-
vide similar performance despite the presence of slow repli-
cas. Unfortunately, no existing consensus protocol is
slowdown-tolerant: a single slow replica can sharply increase

their latency. This increased latency decreases availability be-
cause a service that does not respond in time is not meaning-
fully available [5, 6, 20, 48].

Slowdowns can be transient, lasting only a few seconds
to minutes, or they can be long-term, lasting hours to days.
Monitoring mechanisms within and around a system should
eventually detect long-term slowdowns and reconfigure the
slow replica out of the RSM to restore normal perfor-
mance [1, 3, 23, 24, 32, 35]. What remains unsolved is how
to tolerate transient slowdowns in general and how to tolerate
long-term slowdowns in the time between their onset, their
eventual detection, and the end of reconfiguration.

Our ultimate goal is to develop slowdown-tolerant RSMs
that continue to operate as fast RSMs despite the presence of
slow replicas. Given the general rarity of slowdowns, how-
ever, it is unlikely that a single RSM will contain multiple
slow replicas at the same time. Thus, we target the first
and most pragmatic step toward slowdown-tolerant RSMs:
1-slowdown-tolerant RSMs that continue to provide normal
performance despite the presence of 1 slow replica.

To provide 1-slowdown-tolerance, a consensus protocol
must be able to tolerate a slowdown in all stages of processing
a client’s command: receive, order, execute, and reply. No
existing consensus protocol is 1-slowdown-tolerant because
none can handle a slow replica in the ordering stage. Existing
ordering protocols all either rely on a single leader [3, 10, 28]
or rely on the collaboration of multiple replicas [36, 40]. A
single leader is not slowdown-tolerant because if it is slow,
then it slows down the RSM. Multiple replicas collaboratively
ordering commands is not slowdown-tolerant because if any
of those replicas is slow, it slows down the RSM.

Copilot replication is the first 1-slowdown-tolerant consen-
sus protocol. It avoids slowdowns using two distinguished
replicas, the pilot and copilot. The two pilots do all stages of
processing a client’s command in parallel. This ensures all
steps happen quickly even if one pilot is slow. Clients send
commands to both pilots, and both pilots order, execute, and
reply to the client. This proactive redundancy protects against
a slowdown but also makes it more challenging to preserve
consistency and efficiency.

The key challenge for Copilot replication is making its or-
dering stage slowdown tolerant. To provide linearizability, it
needs to ensure the pilots agree on the ordering of client com-
mands, but that in turn would naively require each to wait on
the other if it is slow. Copilot instead allows a pilot to fast
takeover the ordering work of a slow pilot. It does so by per-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 583

sisting its takeover and subsequent ordering to the replicas.
Each pilot has a separate log where it orders client com-

mands. Copilot combines the logs using dependencies, e.g.,
pilot log entry 9 is after copilot log entry 8. Copilot’s or-
dering protocol has two phases—FastAccept, Accept—that
commit commands to the pilots’ logs along with their depen-
dencies. In the FastAccept round, a pilot proposes an initial
dependency for a log entry. If a sufficient number of replicas
agree to this ordering, then this entry has committed on the
fast path and the pilot moves on to execution. Otherwise—if
the replicas have already agreed to a different ordering pro-
posed by the other pilot—then the pilot adopts a dependency
suggested by the replicas that it persists in the Accept round.

Copilot provides crash fault tolerance using similar mecha-
nisms to Multi-Paxos [28, 37] that are applied independently
to the log of each pilot. Copilot combines the logs of the
two pilots using mechanisms inspired by EPaxos [40]. As
such, it provides the same safety and liveness guarantees as
Multi-Paxos and EPaxos. It is safe under any number of crash
faults, and it is live as long as a majority of replicas can com-
municate in a timely manner. In addition, Copilot provides
slowdown tolerance even if one replica is slow or failed.

The core Copilot protocol provides slowdown tolerance.
However, it would naively go to the Accept round often as
the two pilot’s ordering commands continuously interleave
and prevent one or both from taking the fast path. This ad-
ditional round of messages would increase latency and de-
crease throughput relative to traditional consensus protocols
like Multi-Paxos, which need only 1 round in the normal case.

Copilot replication includes two optimizations that keep it
on the fast path almost all the time. When both pilots are fast,
ping-pong batching coordinates them so that they alternate
their proposals, allowing both pilots to commit on the fast
path. When one pilot is slow, null dependency elimination
allows the fast pilot to avoid waiting on commits from the
slow pilot. With null dependency elimination, a fast pilot only
needs to fast takeover the ordering work of the slow pilot that
is in-progress when the slowdown begins.

Copilot replication is implemented in Go and our evalua-
tion compares it to Multi-Paxos and EPaxos in a datacenter
setting. When no replicas are slow, Copilot’s performance
is competitive with Multi-Paxos and EPaxos. When there is
a slow replica, Copilot is the only consensus protocol that
avoids high latencies for client requests.

In summary, this work makes the following contributions:
• Defining slowdown-tolerance and identifying why existing

consensus protocols are not slowdown-tolerant (§2).
• Copilot replication, the first 1-slowdown-tolerant consen-

sus protocol. Copilot replication uses two pilots to ensure
the RSM stays fast, by using proactive redundancy in all
stages of processing a client command (§3).

• Ping-pong batching and null dependency elimination,
which make Copilot’s performance with no slowdowns or
one slowdown competitive with traditional protocols (§5).

2 Slowdown Tolerance
This section explains RSMs, defines slowdown tolerance, and
explains why existing protocols do not tolerate slowdowns.

2.1 Replicated State Machine Primer
RSMs are linearizable, fault-tolerant groups of machines.
They implement a state machine that atomically applies de-
terministic commands to stored state and returns any out-
put [46]. The machines within an RSM are replicas. The
RSM provides fault tolerance by starting the replicas in the
same initial state and then moving them through the same se-
quence of states by executing commands in the same order.
Then, if one of the replicas fails, the remaining replicas still
have the state and can continue providing the service.

RSMs provide linearizability for client commands. Lin-
earizability is a consistency model that ensures that client
commands are (1) executed in some total order, and (2) this
order is consistent with the real-time ordering of client com-
mands, i.e., if command a completes in real-time before com-
mand b begins, then a must be ordered before b [21].

RSMs are coordinated by consensus protocols that deter-
mine a consistent order of client commands that are then ap-
plied across the replicas. An RSM goes through four stages to
process a client command: it receives the command, it orders
the command using the consensus protocol, it executes the
command, and it replies to the client with any output. Each
replica executes commands in the agreed-upon order. A com-
mon way to implement and think about RSMs is that they
agree to put commands in sequentially increasing log entries,
and then execute them in that log order.

2.2 Defining Slowdown Tolerance
We define a slow replica, clarify the relationship between
slow and failed, and then define 1-slowdown-tolerance.

Defining a slow replica. We reason about the speed of a
replica based on the time it takes between when the machine
receives a request over the network and sends a response back
out over the network. This includes the replica’s RSM pro-
cessing and its host-side network processing. It does not in-
clude the time it takes messages to traverse network links.

We say a replica is slow when its responses to messages
take more than a threshold time t over its normal response
time. For example, if a replica typically replies to mes-
sages within 1 ms, and we consider a slowdown threshold of
t =10 ms, then a replica is slow if it takes more than 11 ms
to send responses. The precise setting of t will depend on
the scenario and may even vary over time. For example, if
an OS upgrade increases the processing speed of all repli-
cas, then what was considered normal performance in the past
may now be considered slow. We assume the term “slow” re-
flects the current definition and build our notion of slowdown
tolerance on top of this term—that is, our notion of slowdown
tolerance is robust to changes in what is considered slow.

584 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Failed versus slow replicas. Replicas that have failed are
also slow because they will not reply to messages within the
slowdown threshold time. Thus, all failed replicas are slow.
However, not all slow replicas are failed. Replicas can be
slow but not failed for many reasons, e.g., misconfigurations,
host-side network problems, or garbage collection events. It
is these slow-but-not-failed replicas that we care about most
because existing fault-tolerance mechanisms do not necessar-
ily tolerate them.
Defining s-slowdown-tolerance. Traditionally, clients use
RSMs because they provide a service that does not fail de-
spite f replicas failing. Our definition of slowdown tolerance
mirrors this traditional definition of fault tolerance while ac-
counting for the dynamic nature of what is considered “slow.”
An RSM is s-slowdown-tolerant if it provides a service that
is not slow despite s replicas being slow. More specifically,
sort the replicas {r1, ...,rs, ...,rn} of an RSM according to the
current definition of slow, such that {r1, ...,rs} are the s slow-
est replicas. Let T represent how slow the RSM is—i.e., its
response time properties based on the current definition of
“slow”—and let T ′ represent how slow the RSM would be if
replicas {r1, ...,rs} were all replaced by clones of rs+1. An
RSM is s-slowdown-tolerant if the difference between T and
T ′ is close to zero. In other words, the presence of s slow
replicas should not appreciably slow down the RSM relative
to an ideal scenario where those s replicas are not slow.

In this work, we focus on the practical case of 1-slowdown-
tolerance. Designing RSMs that are s-slowdown-tolerant for
s > 1 is an interesting avenue of future work.

2.3 Why Existing Protocols Slowdown
We explain why existing protocols are not slowdown tolerant
using Multi-Paxos, EPaxos, and Aardvark as examples.
Multi-Paxos. Multi-Paxos [26, 28, 29, 37] is the canonical
consensus protocol. It uses the replicas to elect a leader.
The leader receives client commands and orders them by as-
signing them to the next available position in its log. It per-
sists that order by sending Accept messages to the replicas
and waiting for a majority quorum (including itself) to reply,
which commits the command in that log position. It notifies
other replicas of the commit using a Commit message. The
replicas execute commands in the accepted prefix of the log in
order, i.e., they only execute a command once its log position
is committed and all previous log positions have been exe-
cuted. After executing the command, the replicas reply to the
client with any output. (We describe a variant of Multi-Paxos
that has all replicas reply to the client, similar to PBFT [10],
because it provides more redundancy.)

Figure 1a shows these steps and identifies parts of the pro-
tocol that are not slowdown tolerant. Receiving the client’s
command and running the ordering protocol are not slow-
down tolerant because they are only done by the leader. If
the leader is slow, it slows these stages. In turn, this is evi-
dent to clients whose commands see much higher latency.

client
leader
replica
replica

exe replyorder

(a) Multi-Paxos

client
replica
replica
replica

dep wait*slow path*fast path

exe replyorder

(b) EPaxos

Figure 1: Message diagrams with execution for Multi-
Paxos (a) and EPaxos (b). Orange components indicate
parts of each protocol that are not slowdown tolerant be-
cause they lack redundancy. Blue components indicate
parts with redundancy. EPaxos ordering phases that are
only sometimes necessary are marked with asterisks (*).

Several parts of Multi-Paxos are individually slowdown
tolerant—notably, the Accept messages sent to the replicas to
persist the leader’s ordering of a command. These messages
are sent to all replicas with the leader only needing to hear
back from a majority (including itself). For instance, with 5
replicas the leader sends the messages to the 4 other repli-
cas and can proceed once it hears back from 2. This makes
Multi-Paxos resilient to a non-leader replica being slow.
EPaxos. EPaxos [40] avoids the single leader of Multi-Paxos
with a more egalitarian approach that distributes the work of
receiving, ordering, executing, and replying across all repli-
cas. Each replica in EPaxos receives commands from a subset
of clients and runs the ordering protocol. We call this specific
replica the command’s designated replica. EPaxos’s ordering
protocol uses fine-grained dependencies between commands
to dynamically determine an ordering using FastAccept and
SlowAccept phases. Once a replica knows the dependencies
of its commands, it waits for the final dependencies of its
dependencies to arrive in the DependencyWait phase. Then
a replica totally orders the commands and executes them in
the resulting order. When a replica executes a command for
which it is the designated replica, it sends the reply to the
client. EPaxos can sometimes avoid the SlowAccept and De-
pendencyWait phases.

Figure 1b shows these steps and identifies the parts of
the protocol that are not slowdown tolerant. Receiving the
client’s command, running the ordering protocol, and reply-
ing to the client are all not slowdown tolerant because they
are only done by a command’s designated replica. If the des-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 585

ignated replica is slow, it will slow down all of these stages,
and thus the RSM, for its subset of clients.

DependencyWait can lead to slowdowns for all clients if
any replica is slow. This is because DependencyWait requires
a replica to wait until it learns the dependencies of the de-
pendencies of a command. These transitive dependencies are
necessary for EPaxos to consistently order commands at dif-
ferent replicas. But they are only determined and then sent
from a command’s designated replica. Thus, a slow replica
will be slow to finalize and send out the dependencies for its
designated commands to other replicas. This in turn slows
commands that acquire dependencies on commands ordered
by the slow replica, in addition to commands that use the slow
replica as their designated replica.
Leader election. Consensus protocols with leaders include
a leader election sub-protocol that provides fault tolerance in
case a leader fails. In this sub-protocol, replicas detect when
they think a leader may have failed, elect a new leader, ensure
that the new leader’s log includes all the commands that have
been accepted by a majority quorum, and then have the new
leader start processing new commands.

Some protocols, like Aardvark [3] and SDPaxos [51], have
proposed using leader election to mitigate slowdowns as well,
by having replicas detect when they think a leader is slow
and then trigger the leader election sub-protocol. Unfortu-
nately, this approach does not provide slowdown tolerance for
two reasons. First, leader election is a heavy-weight process
that makes an RSM unavailable while it is ongoing: no new
commands can be processed until a new leader is elected and
brought up to date. Second, leader election is only triggered
when a replica thinks the leader is slow (or failed). Thus, only
the subset of slowdowns detected by the replicas will be mit-
igated, and only after they have been detected. In contrast, 1-
slowdown-tolerance requires an RSM to deliver performance
as if the slowdown did not exist.

Consider the case of Aardvark. Aardvark employs two
mechanisms to detect slowdowns in the leader: the first en-
forces a gradually increasing lower bound on the leader’s
throughput based on past peak performance; the second starts
a heartbeat timer between each batch to ensure the leader
is proposing new batches quickly enough. If the leader’s
throughput drops below the lower bound or if the heartbeat
timeout expires, Aardvark initiates a view change to rotate
the leader among the replicas. These mechanisms provide
only partial slowdown tolerance because each limits the ef-
fects of only the subset of slowdowns it detects. For example,
they do not protect against a replica whose processing path
is slow for client requests but fast for replicas; or a replica
whose responses become gradually slower over time while
maintaining a small gap between successive responses. Such
replicas would still be able to slow down the RSM during
their turn as leader.

Further, using view changes to react to slowdowns can
itself cause slowdowns and become costly. In practice,

leader election timeouts are generally on the order of hun-
dreds [43, 44] or thousands [8, 14, 17] of milliseconds to pre-
vent the excess load, unavailability, and instability that occurs
when leader elections are easily triggered. Thus, any leader
slowdown whose severity is less than these timeouts will go
undetected, as will any slowdown that is not covered by the
detection mechanisms.

2.4 Summary and Insights
The fundamental problem with existing protocols is that they
are detection based. Detection-based approaches do not pro-
tect against slowdowns until they are detected and never pro-
tect against slowdowns that are not detected. As a result, a
consensus protocol cannot be 1-slowdown-tolerant if the path
of a client’s command includes at least one point where it
goes through a single replica. If that replica is slow, the RSM
will be slow (until and if the slowdown is detected). Thus, to
design a 1-slowdown-tolerant replication protocol, we must
proactively ensure there are at least 2 disjoint paths that a
client’s command can take at every stage. If one of these
paths gets stuck at a slow replica, the other path can continue
because we assume only 1 replica becomes slow.

3 Design
The core idea behind Copilot is to use two distinguished repli-
cas, the pilot (P) and the copilot (P′), to redundantly process
every client command. Figure 2 shows the life of an individ-
ual command in Copilot, which begins with a client sending
the command to both pilots. By providing two disjoint paths
for processing a command at every stage, Copilot prevents
any single slow replica from slowing down the RSM.

This section describes the basic design of Copilot, and Sec-
tion 5 describes optimizations that complete its design. This
section first defines our model and then details each major
part of the protocol—ordering, execution, and fast takeovers.
Finally, it covers additional design details and summarizes
why Copilot provides 1-slowdown-tolerance.

3.1 Model
Copilot assumes the crash failure model: a failed process
stops executing and stops responding to messages. Copilot
assumes an asynchronous system: there is no bound on the
relative speed at which processes execute instructions, and
there is no bound on the time it takes to deliver a message.
Copilot requires 2 f +1 replicas to tolerate at most f failures,
and guarantees linearizability as a correctness condition de-
spite any number of failures. Copilot provides 1-slowdown-
tolerance in the presence of any one slow replica.

3.2 Ordering
Copilot’s ordering protocol places client commands into the
pilot log and the copilot log, which are coordinated by the
pilot and copilot, respectively. The two separate logs are or-
dered together using dependencies that indicate the prefix of

586 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

client
pilot
replica
copilot

takeover*regular path*fast path

exe replyorder

Figure 2: Message diagram with execution for Copilot.
All components are in blue because all have the neces-
sary redundancy to avoid any slow replica. Phases that
are only sometimes necessary are marked with asterisks
(*). The takeover phase only executes when it is necessary
to prevent one pilot from waiting too long on the other pi-
lot. Copilot’s optimizations (§5) keep it on the fast path
when both pilots are fast and mostly avoid the need for
fast takeovers when one pilot is slow.

the other log that should be executed before a given entry.
Pilots propose initial dependencies for log entries. Replicas
either agree to that ordering or reply with a suggested depen-
dency. Ultimately, each entry has a final dependency that is
used by the execution protocol. The final dependencies be-
tween the pilot and copilot log may form cycles. Copilot’s
execution protocol constructs a single combined log using the
final dependencies between the pilot and copilot logs and a
priority rule that orders pilot entries in a cycle ahead of copi-
lot entries. Figure 3 shows an example of how dependencies
are used to order the entries in the combined log.

Copilot’s ordering protocol persists the command and final
dependency for a log entry to the replicas to ensure they can
be recovered if up to f replicas (including both pilots) fail.
The ordering protocol always includes a FastAccept phase
and sometimes includes an Accept phase. The protocol com-
pletes after the FastAccept phase if enough of the replicas
have agreed with the initial dependency to ensure it will al-
ways be recovered as the final dependency. Otherwise, the
pilot selects a suggested dependency that orders an entry af-
ter enough of the other pilot’s log to ensure linearizability.

The remainder of this subsection follows the ordering pro-
tocol in order, starting with the client sending a command to
the replicas. Our description assumes no fast takeovers (§3.4)
or view-changes (§3.5) for simplicity; with fast takeovers and
view-changes, replicas reject messages when entries are taken
over by another pilot, and entries can be committed with a no-
op as a command.
Clients submit commands to both pilots. Each client has
a unique client ID cliid. Clients assign commands a unique,
increasing command ID cid. Clients send each command, its
client ID, and its command ID to both pilots. The 〈cliid, cid〉
tuple uniquely identifies commands and enables the replicas
to deduplicate them during execution.
Pilots propose commands and an initial dependency.
Upon receiving a command from a client, a pilot puts the

command into its next available log entry. It also assigns the
initial dependency for this entry, which is the most recent en-
try from the other pilot it has seen. It then proposes this as-
signment of command and initial dependency for this entry to
the other replicas by sending them FastAccept messages.
Replicas reply to FastAccepts. When a replica receives a
FastAccept message it checks if the initial dependency for
this entry is compatible with all previously accepted depen-
dencies. If it is, the replica fast accepts the initial depen-
dency. If it is not, the replica rejects the initial dependency
and replies with a new suggested dependency.

A pair of dependencies are compatible if at least one or-
ders its entry after the other. Figure 3a shows examples of
compatible and incompatible dependencies. P′.1 with depen-
dency P.1, and P.2 with dependency P′.1 are compatible be-
cause P.2 is ordered after P′.1. P′.3 with dependency P.2 and
P.3 with dependency P′.2 are incompatible because neither
is ordered after the other. Incompatible dependencies must
be avoided because they could lead to replicas with differ-
ent subsets of the pilot and copilot logs executing entries in
different orders, e.g., one replica executing P.3 then P′.3 and
another executing P′.3 then P.3.

A replica uses the compatibility check to determine if an
initial dependency, P.i with dependency P′. j, is compatible
with all previously accepted dependencies. P.i is ordered af-
ter all previous entries in the P log automatically and after
all entries P′. j or earlier by its dependency. Thus, the check
only needs to look at later entries in the other pilot’s log. The
compatibility check passes unless the replica has already ac-
cepted a later entry P′.k (k > j) from the other pilot P′ with a
dependency earlier than P.i, i.e., P′.k’s dependency is < P.i.

If it has not accepted a later entry, then this same check
will prevent the replica from fast accepting any incompatible
dependencies from the other pilot in the future. If it has ac-
cepted a later entry, but that entry’s dependency is on P.i or
a later entry, then that entry, call it P′.k, is ordered after this
one, i.e., P′. j,P.i, . . . ,P′.k. Thus, in either of these cases the
replica fast accepts the initial dependency and replies with
a FastAcceptOk message to the pilot. Otherwise, it sends a
FastAcceptReply message to the pilot with its latest entry for
the other pilot, P′.k, as its suggested dependency.
Pilots try to commit on the fast path. A pilot tries to gather
a fast quorum of f + b f+1

2 c FastAcceptOk replies (including
from itself).1 If a pilot gathers a fast quorum, then enough
replicas have agreed to its initial dependency that it will al-
ways be recovered from any majority quorum of replicas.
Thus, it is safe for the pilot to commit this entry on the fast
path and continue to execution. The entry’s initial depen-
dency is now its final dependency that is used during execu-
tion. The pilot also sends a Commit message to the other
replicas to inform them of the final dependency for this entry.
(It does not wait for responses for the Commit messages.)

1This size is 2/3, 3/5, 5/7, and 6/9 for common RSM sizes.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 587

P

P’

a b d e c g

a c d f e g

0 1 2 3 4 5

0 1 2 3 4 5

(a) Dependencies join the two logs.

g
5

a
0

b
1P

d
2P

e
3P

c
4P P

a
0P’

c
1P’

d
2P’

f
3P’

e
4P’

g
5P’P

(b) Combined log with duplicates.

g
5

a
0

b
1P

d
2P

e
3P P

c
1P’

f
3P’P

(c) Execution order from the combined log.

Figure 3: Dependencies are used to combine the pilot (P) and copilot (P′) logs (a) into the combined log (b) that is
deduplicated and then used for execution (c). (a) Solid black arrows indicate initial dependencies that became final
dependencies because an entry was committed on the fast path. Dotted red arrows indicate initial dependencies rejected
by the compatibility check because they could lead to different execution orders—e.g., P.3 or P′.3 could be executed
seventh. Solid green arrows indicate final dependencies for entries whose initial dependency was rejected and thus
committed on the regular path. Green arrows may contain cycles, which are consistently ordered by the execution
protocol to derive a combined log. (b) The combined log has duplicates of most commands, shown in gray. (c) A
command is only executed in its first position in the combined log.

A pilot might be unable to gather a fast quorum of Fast-
AcceptOks for two reasons. First, it might receive Fast-
AcceptReplys because replicas rejected the initial depen-
dency as incompatible. Second, it might only receive as few
as f +1 replies instead of the necessary f + b f+1

2 c because up
to f of the 2 f +1 replicas have failed. In either case, the pilot
waits until it receives at least f +1 FastAcceptOks and Fast-
AcceptReplys and then continues to the Accept phase.

Pilots persist the final dependency in the Accept phase.
A pilot selects the final dependency based on the suggested
dependencies in the responses to the FastAccept round. All
FastAcceptOk messages (including the pilot’s) suggest the
initial dependency. The pilot sorts the suggested dependen-
cies in ascending order and then selects the (f+1)-th as the
final dependency. This dependency is high enough to cap-
ture the necessary ordering constraint on this entry: it must
use the (f+1)-th dependency to ensure quorum intersection
with any command that has already been committed and po-
tentially executed by the other pilot, so that this entry is or-
dered after that entry as required by linearizability. It is no
higher to avoid creating more cycles for the other pilot: any
dependency beyond the (f+1)-th will have its own depen-
dency on this entry because this entry arrived at a majority
quorum first.

Then the pilot persists this final dependency by sending
it in an Accept message to all the other replicas. The order-
ing determined by final dependencies in Accept messages can
create cycles at replicas. These cycles are acceptable because
replicas will learn about them and then execute the commands
in the cycles in the same order using the execution protocol.
Thus, the other replicas accept this final dependency and re-
ply with AcceptOk messages. When the pilot receives f + 1
AcceptOks (including from itself) it has committed the entry
on the regular path. It then sends Commit messages to the
other replicas and proceeds to execution.

3.3 Execution
Replicas execute commands in the combined log order. The
combined log contains each client command twice. A replica
only executes a command in its first position in the combined
order. After executing a command, the pilot and copilot reply
to the command’s client. Figure 3 shows an example of a
combined log and its executed subset.
Copilot’s total order of commands. The total order of com-
mands in the combined log is determined by the partial order
of each pilot’s log, the dependencies between them, and a pri-
ority rule. There are three rules that define the total order. (1)
The total order includes the partial order of each pilot’s log,
e.g., P.0 < P.1 < P.2 in Figure 3a. The dependencies between
the logs sometimes create cycles. (2) When the dependen-
cies are acyclic, the total order follows the dependency order,
e.g., P.1 < P′.0 < P′.1 < P.2 in Figure 3a. (3) When the de-
pendencies form a cycle, the total order is determined by the
priority of the pilots: the pilot’s entries are ordered before the
copilot’s, e.g., P.4 < P.5 < P′.5 in Figure 3a.
Executing in order. Replicas learn the final dependencies
for each entry and thus use the same total order. A replica
executes a command once its entry is committed and all pre-
ceding entries in the total order have been executed. The fol-
lowing rules determine when it is safe for a replica to execute
a command in entry P.i with dependency P′. j: (0) P.i is com-
mitted, and (1) it has executed P.(i− 1), and then one of the
following two conditions holds: (2) it has executed P′. j, or
(3) P.i and P′. j are in a cycle and P is the pilot log. The rules
1–3 correspond to the rules that define the total order above.

Replicas can learn of committed entries out of order, e.g.,
a pilot can learn that their entries have committed before they
learn of the commits for their dependencies. To ensure com-
mands are executed in the total order, a replica must wait for
the commit of all potentially preceding entries. For example,
an entry in the pilot log P.i must wait for the commit of all en-
tries < i in the pilot log, the commit of its dependency P′. j in

588 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the copilot log, and the commit of all entries < j in the copilot
log. Copilot’s fast takeover protocol ensures a fast pilot need
not wait long (§3.4) before executing this entry.
Deduplicating execution and replying. In the absence of
failures, each command will be in the combined log twice.
A replica executes each command only once in its first po-
sition. It tracks the commands from each client that have al-
ready been executed using the 〈cliid, cid〉 tuple. The first time
it sees a command, it executes it. If the replica is the current
pilot or copilot, it replies to the client with any output. The
second time it sees a command, it simply marks it as exe-
cuted and moves on. A client thus receives a response from
each pilot for each command; it ignores the second response.

3.4 Fast Takeover
To execute commands in the total order determined by the or-
dering protocol, a pilot sometimes waits on commits from the
other pilot. Waiting on the other pilot for a long time would
not be slowdown tolerant. Copilot’s fast takeover mechanism
avoids a fast pilot waiting too long for a slow pilot by com-
pleting the necessary ordering work for that slow pilot.

All entries in the logs for both pilots have associated bal-
lot numbers, and all messages include ballot numbers as in
Paxos’s proposal numbers [29]. These ballot numbers allow
a fast pilot to safely takeover the work of a slow pilot using
Paxos’s two phases of prepare and accept. When a replica
is elected as either pilot or copilot, that sets a ballot number
for all entries in the corresponding log to be b. Replicas only
(fast) accept entries if the included ballot number is ≥ the
ballot number set for that entry. When a pilot is not slow, its
included ballot numbers are exactly those set for each entry,
and the protocol proceeds as described above.

When a pilot is slow, the other pilot can safely takeover its
work by setting higher ballot numbers on the relevant entries
in the slow pilot’s log. The fast pilot does this by sending Pre-
pare messages with a higher ballot number b′ for the entry to
all replicas. If b′ is higher than the set ballot number for that
entry, the replicas reply with PrepareOk messages and update
their prepared ballot number for that entry. The PrepareOk
messages indicate the progress of an entry at a replica, which
is one of: not-accepted, fast-accepted, accepted, or commit-
ted. The PrepareOk messages include the highest ballot num-
ber for which a replica has fast or regular accepted an entry,
the command and dependency associated with that entry, and
an id of the dependency’s proposing pilot.

After sending the Prepare messages, the fast pilot waits for
at least f +1 PrepareOks (including from itself). If any of the
PrepareOk messages indicate an entry is committed, the pilot
short-circuits waiting and commits that entry with the same
command and dependency. Otherwise, the fast pilot uses the
value picking procedure described below to select a command
and dependency. It then sends Accept messages for that com-
mand and final dependency, waits for f +1 AcceptOk replies,
and then continues the execution protocol.

Recovery value picking procedure. We use value to indi-
cate the command and dependency for a log entry. The fast
takeover mechanism and view-change mechanism use the re-
covery value picking procedure to correctly recover a com-
mand and dependency for any entry that could have been
committed and thus executed. This ensures all replicas ex-
ecute all commands in the same combined log order.

The recovery value picking procedure is complex and its
full details appear in our accompanying technical report [41].
The procedure examines the set S of PrepareOk replies that
include the highest seen ballot number. The first three cases
are straightforward:
1. There are one or more replies r ∈ S with accepted as their

progress. Then pick r’s command and dependency.
2. There are < b f+1

2 c replies r ∈ S with fast-accepted as their
progress. Then pick no-op with an empty dependency.

3. There are ≥ f replies r ∈ S with fast-accepted as their
progress. Then pick r’s command and dependency.

In the first case, the value may have been committed with a
lower ballot number in an Accept phase, so the same value
must be used. In the second case, the value could not have
been committed in either an Accept phase or a FastAccept
phase, so it is safe to pick a no-op. In the third case, the value
may have been committed with a lower ballot number in a
FastAccept phase and it is safe to use the same value. It is
safe because the f or more fast-accept replies plus the entry’s
original proposing pilot form a majority quorum of replicas
that passed the compatibility check. In turn, this ensures that
any incompatible entries from the other pilot’s log will be
ordered after this entry. Thus, it is safe to commit this entry
with its initial dependency.

The remaining case is when there are in the range of
[b f+1

2 c, f) replies r ∈ S with fast-accepted as their progress.
In this case, the value may have been committed with a lower
ballot number in a FastAccept phase, or it might not have be-
cause an incompatible entry in the other pilot’s log reached
the replicas first. In the first subcase we must commit us-
ing the same value, and in the second subcase we must not.
To distinguish between these subcases, the recovering replica
examines the first possible incompatible entry in the other pi-
lot’s log. If that entry is not yet committed, the recovering
replica recovers that entry by repeating the above procedure,
which enables it to safely distinguish between the subcases.
Triggering a fast takeover. A pilot sets a takeover-timeout
when it has a committed command but does not know the fi-
nal dependencies of all potentially preceding entries, i.e., it
has not seen a commit for this entry’s final dependency. If
the takeover-timeout fires, the pilot stops waiting and does
the necessary ordering work itself. It starts the fast takeover
of all entries in the slow pilot’s log that potentially precede
this entry. Our implementation does this in a parallel batch
for all entries. Setting the takeover-timeout too low could
result in spurious fast takeovers that could lead to dueling
proposers. We avoid dueling proposers using the standard

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 589

technique of randomized exponential backoff. We avoid spu-
rious fast takeovers by setting a medium takeover-timeout in
our implementation (10 ms). This medium timeout is fine be-
cause null dependency elimination (§5.2) avoids needing to
wait when a pilot is continually slow.

Fast takeovers have a superficial resemblance to leader
elections because both are triggered by one replica timing out
while waiting to hear from another replica. Leader elections
are triggered when one replica does not hear something from
another replica—e.g., a heartbeat or a new proposal. But a
leader can still send something regularly and/or quickly while
being slow in other ways (§2.3). Fast takeovers, on the other
hand, are triggered when one pilot is waiting to execute a spe-
cific client command. This puts them on the processing path
of every request. When combined with the proactive redun-
dancy of having both pilots process each client command, this
bounds the latency of client commands to that of the faster
pilot. If one pilot is slow, the other will process any given
command up until execution and then, if necessary, wait for
the takeover-timeout before completing the specific ordering
work of the other pilot needed to unblock execution.

3.5 Additional Design
The additional parts of Copilot’s design not described in this
section all are similar to normal RSM designs. At-most-once
semantics for client requests are handled using 〈cliid, cid〉
tuples and caching the output associated with a command.
Non-deterministic commands can be handled by having pi-
lots make the commands deterministic by doing the non-
deterministic work (e.g., selecting a random number) and in-
cluding it as input to the command. There will be two differ-
ent non-deterministic versions of the command in the com-
bined total order, but deduplication will ensure only the first
is executed. State used for deduplication is garbage collected
once a command is encountered in the log a second time.

Pilot and copilot election uses view-changes, analogous
to Multi-Paxos’s leader election [37], on the pilot and copi-
lot logs, respectively. The view-change process has a newly
elected pilot or copilot use the recovery value picking proce-
dure described above while committing all unresolved entries
in the log. The two separate logs of the pilots allow Copilot
to elect a new pilot to replace a failed one while the other pi-
lot continues to order and commit commands in its own log.
While this is happening, the active pilot will acquire no new
dependencies. Thus, the active pilot will be able to commit
on the fast path and execute commands without waiting on
any entries in the other log while a new pilot is elected.

3.6 Why Copilot is 1-Slowdown-Tolerant
Copilot achieves 1-slowdown tolerance by ensuring a client
command is never blocked on a single path. That is, there are
always two disjoint paths in the processing of a command,
from when it is received by the RSM to when a response is
sent to the client, and one of the paths must be fast.

When both pilots are fast, 1-slowdown tolerance is triv-
ially achieved even if up to f (non-pilot) replicas are slow or
failed. This is because the regular path only requires a major-
ity of replicas, allowing both pilots’ entries (and their depen-
dencies) to commit and execute. If one of the pilots becomes
slow or fails, then the other (fast) pilot can still commit its en-
tries, but some of these entries might depend on uncommitted
entries in the slow pilot’s log. In this case, the fast pilot does
a fast takeover of these entries and commits them. Thus, the
fast pilot is able to continue executing its own entries. Shortly
after a slowdown, the fast pilot stops acquiring dependencies
on uncommitted entries (or acquires only null dependencies
(§5.2)), eliminating the need for any fast takeovers. Thus, the
performance of the RSM reduces to that of the faster pilot,
satisfying 1-slowdown-tolerance.

4 Correctness
We prove that Copilot replication is both safe, i.e., it provides
linearizability (4.1), and live, i.e., all client commands even-
tually complete (4.2). Our technical report [41] contains the
full proofs; we summarize the intuition for each proof below.

4.1 Safety
To prove linearizability, we must show that client commands
are (1) executed in some total order, and (2) this order is con-
sistent with the real-time ordering of client operations, i.e., if
command a completes in real-time before command b begins,
then a must be ordered before b.

Let P and P′ represent the two pilots. To prove the real-
time ordering property, consider a command a that completes
before a command b begins. Since a completes, it must be
committed in at least one pilot’s log; suppose w.l.o.g. it com-
mits in P’s log at entry P.i. Within P’s log, a is trivially or-
dered before b, because b is issued only after a has been com-
mitted. In P′’s log, a and b may commit in either order, but
the key observation is that b’s entry, call it P′. j, cannot have a
dependency that precedes P.i, because this would be deemed
incompatible during the FastAccept phase (cf. §3.2). Since
P′. j’s dependency is ≥ P.i and P.i’s dependency is < P′. j,
there are no cycles between P.i and P′. j. Thus, P.i is executed
before P′. j, which implies that a is executed before b.

To prove the total ordering property, we first prove the fol-
lowing invariant: if two log entries P.i and P′. j commit at
different pilots, either P.i has a dependency≥ P′. j or P′. j has
a dependency ≥ P.i. This ensures that a dependency path ex-
ists from one entry to the other, preventing them from being
ordered differently at different replicas. We then show that
each entry in a pilot’s log commits with the same commands
and dependency across all replicas, even in the presence of
failures (including failures of both pilots). This relies on the
recovery value picking procedure from §3.4. When an entry
commits on either the fast path or regular path, it is persisted
to at least a majority of replicas. During a fast takeover or
view change—which occur when one or both pilots are slow

590 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(or failed)—the prepare phase will see the entry due to major-
ity quorum intersection, and will reuse it when committing.
If the replies from the prepare phase do not show a committed
entry, then we must look at them more carefully. If any reply
shows the entry is accepted, or if ≥ f replies show it is fast-
accepted, then we commit the entry with its accepted depen-
dency because it might have committed. If < b f+1

2 c replies
show it is fast-accepted, then we can safely commit a no-op
because the entry did not have enough fast accepts to commit.
The final case occurs when the number of replies that show
fast-accepted is in the range [b f+1

2 c, f). In this case, the entry
may or may not have committed, depending on whether there
was an incompatible entry in the other pilot’s log. The recov-
ery value picking procedure resolves this by examining and,
if needed, recovering the first possible incompatible entry in
the other pilot’s log. Note that this procedure does not rely on
replies from either pilot, and instead reasons about any f +1
possible replies received during the prepare phase.

Since each pilot’s log is consistent across a majority of the
replicas, the entries and their dependencies are also consis-
tent, so the commands are executed in the same total order.

4.2 Liveness
To prove liveness, we must show that a command issued by
a client eventually receives a response. Due to FLP [18], we
assume the system is eventually partially-synchronous [16]
and that all messages are eventually delivered.

Our proof uses a double induction. Assume a replica has
executed all entries in P’s log up to P.i and all entries in P′’s
log up to P′.k. We show that the replica eventually executes
either P.(i+ 1) or P′.(k+ 1), or a fast takeover occurs, or a
view change occurs. Consider the failure-free case first.

If the dependency of P.(i+ 1) is null or points to an entry
P′. j ≤ P′.k, then P.(i+ 1) can be executed immediately. If
P′. j > P′.k (i.e., P′. j has not been executed), then Copilot
checks if a cycle exists between P.(i+1) and P′. j. If no cycle
exists, then execution switches to the next entry in P′’s log,
P′.(k+1). P′.(k+1) can be executed because its dependency
must precede Pi (otherwise there would have been a cycle),
which by our inductive assumption has been executed.

If there is a cycle and P has higher priority, Copilot breaks
the cycle in favor of P and executes P.(i+1). If P′ has higher
priority, execution switches to P′’s log. Entry P′.(k+ 1) can
execute immediately if its dependency is ≤ P.i (by our induc-
tive assumption), or after Copilot breaks the cycle in favor of
P′. In all cases, either P.(i+1) or P′.(k+1) is executed.

Now consider the case of failures. If only non-pilots fail,
this reduces to the failure-free case. If P′ is slow/failed, then
P.(i+ 1) may not be able to execute because its dependency
P′. j may not have committed. In this case, P eventually does
a fast takeover of P′. j’s entry. If both pilots are slow/failed,
then neither P.(i+1) nor P′.(k+1) may be able to execute. In
this case, a replica eventually initiates a view change to elect
new pilots. Fast takeovers and view changes cannot repeat

indefinitely by the same argument that basic Paxos and Multi-
Paxos use to ensure progress, by relying on partial synchrony.

5 Optimizations
This section covers ping-pong batching and null dependency
elimination, which improve Copilot’s performance. Ping-
pong batching coordinates the pilots so they propose com-
patible orderings when both are fast. Null dependency elimi-
nation allows a fast pilot to safely avoid waiting on commits
from a slow pilot. Copilot includes both optimizations.

5.1 Ping-Pong Batching
Ping-pong batching coordinates the pilots so they propose
compatible orderings to the replicas. The replicas fast accept
these compatible orderings and thus the pilots commit on the
fast path. With ping-pong batching, each pilot accumulates
a batch of client commands. It assigns each command to its
next available entry, so each batch is a growing assignment
of client commands to consecutive entries. A pilot closes a
batch and tries to FastAccept the batch when either it receives
a FastAccept message from the other pilot or its ping-pong-
wait timeout fires.

When both pilots are fast, they will close batches when
they receive a FastAccept from the other pilot. This causes
FastAccepts to ping-pong back and forth between the two pi-
lots. The pilot closes its first batch and sends out its Fast-
Accepts. When the copilot receives that FastAccept, it closes
its first batch and sends out its FastAccepts. When the pilot
receives that FastAccept, it closes its second batch, and so on.

This ping-ponging ensures that the pilots agree on the or-
dering of their entries. Before a pilot sends out a batch it hears
about the latest batch from the copilot; and the copilot will not
send out another batch until it hears about this batch from the
pilot. Because the pilots agree on the ordering of their entries,
the replicas can always fast accept their proposed orderings.
If the replicas receive the proposed orderings in the same or-
der that the pilots ping-pong propose them, then they agree to
this ordering. Even when replicas receive the proposed order-
ing in a different order, they can still accept them because the
dependencies will be compatible.

If one pilot is slow, the other will close its batches when
the ping-pong-wait timeout fires. This timeout helps provide
slowdown tolerance: even if one pilot is slow, the other need
not wait on it for long.

5.2 Null Dependency Elimination
Null dependency elimination allows a fast pilot to avoid wait-
ing on commits from a slow pilot. It looks inside a depen-
dency to see the command it contains. If the contained com-
mand has already been executed, then execution deduplica-
tion (§3.3) will avoid executing it. We call these null depen-
dencies because their execution will have no effect.

Sometimes a pilot must wait on the commit of the other
pilot’s earlier entries because it needs to know the finalized

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 591

dependency of that entry to know the agreed-upon total or-
der. This is unnecessary for null dependencies because they
are not executed. Thus, their final ordering information is ir-
relevant: a pilot need not determine when to execute them
because it will not execute them. Instead, the pilot marks the
null dependency as executed and continues.

When there is a continually slow pilot, null dependency
elimination allows the fast pilot to avoid fast takeovers. A
continually slow pilot will propose entries with a given com-
mand c after the fast pilot has already proposed an entry with
that command c. Thus, the continually slow pilot’s entries
will be null dependencies for the fast pilot that can be safely
skipped. This allows the fast pilot to never wait on commits
from the slow pilot and thus avoids needing to fast takeover
its entries. Fast takeovers are still necessary, however, for the
cases when a pilot becomes slow after it proposes its order-
ing. Thus, when a pilot becomes slow, the other pilot does
a fast takeover of the slow pilot’s ongoing entries to provide
1-slowdown-tolerance. Thereafter, the fast pilot uses null de-
pendency elimination to provide 1-slowdown-tolerance.

6 Evaluation
Copilot provides 1-slowdown-tolerant RSMs by using two pi-
lots to provide redundancy at every stage of processing a com-
mand. Our evaluation demonstrates the benefit and quantifies
the overhead of our approach. Specifically, it asks:
§6.3 Can Copilot tolerate transient slowdowns?
§6.4 Can Copilot tolerate slowdowns of varying severity?
§6.5 Can it tolerate slowdowns of varying manifestations?
§6.6 How does the throughput and latency of Copilot com-

pare to existing consensus protocols?

Summary. We find that Copilot tolerates any one replica
slowdown regardless of the type of slowdown, the role of the
slow replica, or how slow the slow replica becomes. Copi-
lot’s latency under slowdown scenarios is comparable to its
normal case latency when no replicas are slow. Copilot toler-
ates slowdowns better than Multi-Paxos, EPaxos, and Multi-
Paxos with fast view changes. All commands in Multi-Paxos
see high latencies when the leader is slow. EPaxos incurs a
partial slowdown when any of the replicas is slow, and a slow
replica can slow down other normal replicas under high con-
flict rates. Multi-Paxos with fast view changes tolerates the
slowdowns that its low timeout detects, but it does not tolerate
slowdowns that go undetected. Copilot achieves slowdown
tolerance through redundancy. Althought this incurs more
messages and processing, we find that Copilot’s throughput
and latency are competitive with Multi-Paxos and EPaxos.

6.1 Implementation and Baseline
We implemented Copilot in Go using the framework of
EPaxos [40] to enable a fair comparison with the baselines.
We use the framework’s implementations of EPaxos and
Multi-Paxos. The Multi-Paxos implementation is representa-

tive of well optimized Multi-Paxos [11, 26, 37]. Clients send
commands directly to the leader, the leader gets those com-
mands accepted in a single round of messages to the replicas,
it executes the commands in log order, and then it replies to
the clients. Replicas execute commands in log order but do
not reply to the client. Any performance improvement we
made to Copilot’s implementation we also applied to EPaxos
and Multi-Paxos to ensure the comparison remains fair.

EPaxos and Multi-Paxos can use the thrifty optimization
to send and receive messages only to the required number
of other replicas. The thrifty optimization improves perfor-
mance by decreasing load on all replicas in EPaxos and the
leader in Multi-Paxos. It also harms slowdown-tolerance by
eliminating redundancy from the ordering in these systems.
Our latency slowdown experiments do not use the thrifty op-
tion for Multi-Paxos and EPaxos to show them in their best
possible setting. Our throughput and latency experiments
without slowdowns compare to the baselines with and with-
out the thrifty optimization.

The EPaxos and Multi-Paxos baselines send pings every
3 s to make sure each replica has not failed. An alterna-
tive that would make them more slowdown tolerant, though
less stable and unable to use some optimizations, is to use a
very short view-change timeout. Fast-View-Change is a base-
line we use to represent this alternative. Our implementation
builds on the view-change implementation for Multi-Paxos
in the EPaxos framework. It differs from a faithful imple-
mentation in two ways that decrease the time to complete a
view change. Thus, its performance is an upper bound on
that of a more faithful implementation. The first difference
is that view-changes are triggered by a master process that
never fails or becomes slow. The master receives heartbeats
from the current leader every 1 ms and triggers a view-change
as soon as 10 ms have elapsed with no heartbeats. (This time-
out matches the fast-takeover timeout for Copilot.) The sec-
ond difference is that a view-change immediately identifies
the next leader instead of running an election, making the
view-change process similar to that for viewstamped repli-
cation [34, 42]. If a client has not received a response to its
command after 10 ms, it contacts the master to learn the cur-
rent leader and resubmits its command to that leader.

6.2 Experimental Setup
Experiments were run on the Emulab testbed [49], where we
have exclusive bare-metal access to 21 machines. Each ma-
chine has one 2.4GHz 64-bit 8-Core processor, 64GB RAM,
and is networked with 1Gbps Ethernet. These machines
are located in the same datacenter with an average network
round-trip time of about 0.1ms. Thus, our evaluation of Copi-
lot is focused on a datacenter setting with small latencies be-
tween replicas. Evaluation and optimization of Copilot for a
geo-replicated setting is an interesting avenue of future work.
Configuration and workloads. We use 5 machines to create
an RSM with 5 replicas that can tolerate at most 2 failures.

592 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) Copilot. (b) Multi-Paxos. (c) EPaxos.

Figure 4: Client command latency for Copilot, Multi-Paxos, Fast-View-Change, and EPaxos with transient slowdowns.
Transient slowdowns are injected every second starting at time 2 seconds. The severity and duration of the slowdowns
in order are 0.5 ms, 1 ms, 2 ms, 5 ms, 10 ms, 20 ms, 40 ms, and 80 ms. Multi-Paxos and EPaxos have spikes in latency
proportional to the slowdowns. Fast-View-Change tolerates the slowdowns using view changes to limit the maximum
latency. Copilot tolerates the transient slowdowns because fast takeovers limit maximum latency.

We use 5-replica RSMs since they are a common setup for
fault-tolerant services inside a datacenter [8]. Clients run on
separate machines in the same facility. We use a simple work-
load with 8 byte commands that overwrite 4 bytes of data.

We run each experiment for 3 minutes and exclude the first
and the last 30 seconds of each run to avoid experimental
artifacts. To determine how to fairly configure our latency
experiments, we probed the operation of each system under
increasing load. For each system, we choose the number of
closed-loop clients where the system operates at 50% of its
peak load. This reduces the effect of queuing delays.

We enable batching for EPaxos and Multi-Paxos with a
batching interval of 0.1ms, which is similar to the effective
length of Copilot’s ping-pong batches. This choice of batch-
ing interval ensures all systems have similar median latency at
low and moderate load. Copilot uses a ping-pong-wait time-
out of 1ms and a fast-takeover timeout of 10ms.

For Multi-Paxos, clients send commands to the leader. For
Copilot, clients send commands to both pilots. For EPaxos,
each client has a designated replica it sends commands to.

EPaxos includes an interface that allows service builders to
provide specialized logic in their implementation that iden-
tifies when two commands conflict. This allows EPaxos to
avoid needing to determine an order between non-conflicting
commands. We compare to EPaxos with 0%, 25%, and 100%
conflicts. The 0% case is EPaxos’s best case. The 100% case
is EPaxos’s worst case and also represents its performance
when used as a generic RSM without its specialized interface.
The 25% case is a middle ground.

Severity and duration. Slowdowns vary in their severity and
their duration. The severity of a slowdown indicates its mag-
nitude, e.g., a replica taking an extra 10 ms or an extra 80 ms
to send responses. The duration of a slowdown indicates how
long the slowdown lasts, e.g., 1 second or 10 minutes. For ex-
ample, a replica could take an extra 10 ms to respond to every
message it receives during a 1-second duration. We present
experiments that evaluate tolerance of slowdowns of varying

severity, duration, and manifestation.

6.3 Transient Slowdowns
Figure 4 shows the latency of client commands for Copilot,
Multi-Paxos, and EPaxos as transient slowdowns of increas-
ing severity are injected. Transient slowdowns are injected
every second starting at time 2 seconds. The injected slow-
downs are pauses of increasing length, i.e., the severity and
duration of the slowdown are both equal to the pause length.
The pause lengths are 0.5 ms, 1 ms, 2 ms, 5 ms, 10 ms, 20 ms,
40 ms, and 80 ms. The pauses are injected by stopping all pro-
cessing for the specified length inside the go processes. The
slowdowns are injected on a pilot for Copilot, on the leader
for Multi-Paxos, and on a replica for EPaxos.

Multi-Paxos and EPaxos slow down. Multi-Paxos and
EPaxos each have latency spikes that increase proportion-
ally with the length of the injected pause. For instance, for
pauses of 40 ms, Multi-Paxos and EPaxos have commands
with 40.1 ms and 41.5 ms respectively.

Fast-View-Change tolerates transient slowdowns. Fast-
View-Change limits the maximum latency by detecting the
pause and switching to a new leader. Maximum latency is
controlled by the client timeout and view-change timeout.
We see a maximum latency around their sum of 20 ms when
a client needs to retransmit its command twice because the
view-change had not completed after its first timeout. For in-
stance, Fast-View-Change has commands with 25 ms latency
for a 40 ms pause.

Copilot tolerates transient slowdowns. The latency for
Copilot remains low and close to its latency when there are
no slowdowns. For very small pauses, e.g., 0.5 ms, Copilot
simply waits out the pause. This does not mask the slow-
down and does show up in client command latency, but its
magnitude is small enough that latency remains similar. For
longer pauses, Copilot’s fast-takeover timeout of 10 ms fires
and the fast pilot completes the ordering work of the slow pi-
lot. This keeps latency low and close to the timeout value.
For instance, the maximum command latency is 12.6 ms for

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 593

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000

C
D

F

Command Latency (ms) (log)

0
0.5

1
2
5

10
20
30
40

(a) Copilot.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000

C
D

F

Command Latency (ms) (log)

0
0.5

1
2
5

10
20
30
40

(b) Multi-Paxos.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000

C
D

F

Command Latency (ms) (log)

0
0.5

1
2
5

10
20
30
40

(c) EPaxos-25%.

Figure 5: CDF of command latency for Copilot, Multi-Paxos, and EPaxos in the normal case (0) and with slowdowns
of varying severity in ms. Slowdowns are injected for the duration of the experiment. Multi-Paxos and EPaxos have
latency that increases proportionally with the severity of the slowdown. Copilot’s latency stays low during the slowdowns
because the fast pilot completes all stages of processing commands. In addition, null dependency elimination avoids
having the fast pilot either wait on or fast takeover the ordering work of the slow pilot during the duration of a slowdown.

a 40 ms pause. The maximum latency during the onset of
a slowdown is thus controlled by the fast-takeover timeout
value. Latency as a slowdown continues, however, is even
lower as our next experiment shows.

6.4 Slowdowns of Varying Severity
Figure 5 shows a CDF of latency for Copilot, Multi-Paxos,
and EPaxos in the normal case (0 slowdown) and with slow-
downs of varying severity that last for the duration of the ex-
periment. A slowdown of the given severity is injected on
one of the pilots for Copilot, the leader for Multi-Paxos, and
a replica for EPaxos. The duration of these slowdowns is
the length of the experiment (they last longer than the slow-
downs evaluated in the previous subsection). The slowdowns
are injected using Linux’s traffic control (tc) to add delay cor-
responding to the severity on the slow replica. The severity
ranges from 0.5 ms to 40 ms.

Multi-Paxos and EPaxos slow down. Figure 5b shows the
CDF of latency for Multi-Paxos. The latency of client com-
mands in Multi-Paxos is proportional to 2× the severity of
the slowdown. The slowdown affects latency twice because
the leader appears twice on the path for client commands:
the message path is client-to-leader-to-replicas-to-leader-to-
client. Fast-View-Change has similar results to Multi-Paxos
when the severity of the slowdown is less than the view-
change timeout and it avoids the slowdown using a view-
change when the severity is greater than the timeout.

Figure 5c shows the CDF of latency for EPaxos with 25%
conflicts. Normal case latency is higher than Multi-Paxos
because EPaxos processes batches together, and if one com-
mand in a batch acquires a dependency then the entire batch
goes to the slow path and does a dependency wait. With 25%
conflicts, almost all batches have at least one command with
a dependency and thus almost all have higher latency than
Multi-Paxos. Slowdowns have two effects for EPaxos that
result in two step functions in latency. First, the upper per-
centiles show a slowdown proportional to 2× the severity of
the slowdown. This is due to the increased latency for com-

mands whose designated replica is the slow replica. Second,
the middle percentiles show a slowdown proportional to 1×
the severity of the slowdown. This is due to the increased
latency for commands that are ordered by a fast replica but
that acquire a dependency on a command ordered by the slow
replica. These commands wait on commits from the slow
replica (§2.3). The CDF of latency for EPaxos with 0% con-
flicts (not shown) shows only the first effect. The CDF of
latency for EPaxos with 100% conflicts (not shown) shows
both effects with the latency of nearly all commands affected.

Copilot tolerates slowdowns of varying severity. Figure 5a
show the CDF of latency for Copilot. Normal case latency is
similar to Multi-Paxos. Copilot’s latency under these slow-
downs is related to its ping-pong-wait timeout of 1 ms. The
fast pilot forms batches when either it hears from the slow
pilot or its ping-pong-wait timeout fires. The fast pilot or-
ders client commands in earlier batches than the slow pilot.
Thus, null dependency elimination enables the fast pilot to
avoid waiting on the slow pilot or having to fast takeover its
work. The larger batches result in an increase in the latency
for Copilot compared to its normal case, but this increase is
small and overall performance is similar. Even in the worst
case during a slowdown, median, 90th, and 99th percentile la-
tencies are within 0.6 ms, 2 ms, and 4 ms of their values when
there is no slowdown, respectively. Thus, we conclude that
Copilot’s implementation is resilient to slowdowns.

6.5 Slowdowns of Varying Manifestations
Figure 6 compares latency CDFs for Copilot and Fast-View-
Change for three slowdowns with varying manifestations.
The slowdowns are injected on the leader for Fast-View-
Change and one of the pilots for Copilot.

Figure 6a considers a slowdown manifested by a slowed
processing path for client commands with a fast processing
path for messages from replicas. This experiment uses tc to
inject 40 ms of delay. Fast-View-Change slows down in this
case with 40 ms higher latency than usual because the client
command processing path on the leader is slow.

594 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000

C
D

F

Command Latency (ms) (log)

Copilot
FVC

(a) Slow for clients.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000

C
D

F

Command Latency (ms) (log)

Copilot
FVC

(b) Slow with fast heartbeats.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000

C
D

F

Command Latency (ms) (log)

Copilot
FVC

(c) Gradually slow.

Figure 6: CDF of client command latency for Copilot and Fast-View-Change with slowdowns of varying manifestations.
Fast-View-Change’s view changes are not triggered in these cases and latency spikes. Copilot’s proactive redundancy
tolerates these slowdowns and delivers latency similar to the normal case.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 0 50 100 150 200 250 300 350

M
ed

ia
n

La
te

nc
y

(m
s)

Throughput (Kops/sec)

EPaxos-100%
EPaxos-25%

EPaxos-0%
Copilot

Multi-Paxos

Figure 7: Throughput and latency without the thrifty op-
timization of the systems when there are no slow replicas.

Figure 6b shows a CDF of latency when the leader is slow
but still quickly replies to heartbeats. This experiment in-
jects 40 ms of delay to non-heartbeat processing directly in
the Go process. Fast-View-Change slows down in this case
with 80 ms higher latency than usual because the slow leader
appears twice on the processing path for client commands.

Figure 6c shows a CDF of latency when the leader becomes
gradually slower over time. The leader’s processing of all
messages (including heartbeats) is delayed by X ms, where X
starts at 5 ms and increases by 1 ms every 1 second. This de-
lay is directly injected in the Go process. Fast-View-Change
slows down in this case with a CDF of latency that mirrors
the increasing slowness of its leader.

In each of these slowdowns Fast-View-Change’s low view
change timeout is not triggered because the replicas are still
regularly receiving messages from the leader. Multi-Paxos
and EPaxos’s view changes similarly would not be triggered.
In contrast, Copilot’s proactive redundancy tolerates these
slowdowns and delivers latency similar to the normal case.

6.6 Performance Without Slow Replicas
Figure 7 shows the throughput and latency of the systems
without the thrifty optimization as we increase load. We
find that Copilot’s throughput is about 8% lower than Multi-
Paxos’s. Copilot’s latency at low/moderate load is similar to
Multi-Paxos’s; at high load its latency is higher but still low.

EPaxos’s best case of 0% conflicts achieves the same peak

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 0 50 100 150 200 250 300 350

M
ed

ia
n

La
te

nc
y

(m
s)

Throughput (Kops/sec)

EPaxos-100%
EPaxos-25%

EPaxos-0%
Copilot

Multi-Paxos

Figure 8: Throughput and latency with the thrifty opti-
mization of the systems when there are no slow replicas.

throughput as Multi-Paxos with slightly higher latency. Un-
der moderate and high conflict rates, EPaxos incurs another
round-trip to commit on the slow path more often, and hence
has higher latency and lower throughput. EPaxos processes
an entire batch on the slow path if any command in the batch
has a conflict. With 25% conflicts, almost all batches have
at least one command with a conflict and thus almost all are
processed on the slow path, resulting in similar performance
to 100% conflicts. In contrast, Copilot and Multi-Paxos are
not affected because they both totally order all commands.

Figure 8 shows the throughput and latency of all systems
with the thrifty optimization as we increase load. Copilot
does not use the thrifty optimization because its elimination
of redundancy is not slowdown tolerant. Thus, Copilot’s per-
formance is the same. Multi-Paxos and EPaxos both see
their maximum throughput increase. This makes EPaxos’s
best case (0% conflicts) provide clearly the highest through-
put. With conflicts, however, its throughput is still lower than
that of Copilot and Multi-Paxos. The thrifty optimization
makes Multi-Paxos provide higher throughput than Copilot
by about 35K commands/second, i.e., Copilot achieves 13%
lower maximum throughput than Multi-Paxos. Multi-Paxos
has higher throughput in this case because it needs to send
and receive fewer messages.

Copilot’s low latency and high throughput when there are
no slow replicas is due to ping-pong batching. The pilots co-
ordinate with each other to ensure that replicas agree with

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 595

their proposed ordering, allowing them to always commit on
the fast path. Committing on the fast path keeps the amount of
work each pilot needs to do for its own batches similar to that
of a leader in Multi-Paxos. However, a pilot also needs to do
the work of a replica for the other pilot’s batches. Thus, Copi-
lot’s lower but competitive performance with Multi-Paxos is
as we expect, because the pilots and leader are the throughput
bottlenecks in each system respectively.

7 Related Work
This section reviews related work. To the best of our knowl-
edge, all previous consensus protocols are not 1-slowdown-
tolerant. Copilot’s primary distinction is thus being the first
1-slowdown-tolerant consensus protocol. We review related
work in consensus protocols, Byzantine consensus protocols,
and slowdown cascades.
Consensus protocols. There is a growing body of consen-
sus protocols that started with Paxos [28] and Viewstamped
Replication [42]. New consensus protocols improve latency
and/or throughput on these baselines [4, 22, 30, 31, 33, 36,
45, 51]. Others are designed to be more understandable [44].
SDPaxos [51] includes a throughput-based detection mecha-
nism, similar to that of Aardvark (§2.3), that triggers a view-
change for its sequencer that orders commands. Gryff unifies
shared registers and consensus [7]. Its unproxied shared reg-
ister operations are slowdown tolerant while its consensus op-
erations are not. If the network ordering from NOPaxos [33]
could be made slowdown tolerant, it could be used to elimi-
nate the need for ping-pong batching to keep the pilots on the
fast path in the normal case. To the best of our knowledge,
none of these protocols are 1-slowdown-tolerant.
Paxos, EPaxos, Mencius. We drew inspiration in our design
from Paxos, EPaxos, and Mencius. Our fast takeover proto-
col uses the classic 2-phase Paxos [28] on a slow pilot’s log to
enable a fast pilot to complete its ordering work. Our order-
ing protocol is influenced by EPaxos’s ordering protocol [40].
It draws its use of dependencies and a multi-round ordering
protocol with a fast path from EPaxos. Copilot’s ordering
differs because it orders the same commands twice, totally
orders all commands, has only one dependency per entry, and
includes fast takeovers. Mencius has all replicas work collab-
oratively to avoid doing redundant work or conflicting with
each other [36]. Our ping-pong batching is inspired by Men-
cius and lets our pilots avoid conflicting with each other.
Byzantine consensus protocols. There is also a vast body
of literature on Byzantine consensus protocols [3, 10, 12, 19,
27, 47, 50]. These protocols tolerate Byzantine faults, which
Copilot does not. Most use the approach that PBFT intro-
duced for practical systems of having multiple replicas exe-
cute a command and reply to the client. Copilot’s use of both
pilots to execute and reply to clients is inspired by this design.
Aardvark. Aardvark focuses on ensuring reliable minimum
performance in BFT environments [3]. It employs two mech-

anisms to detect slowdowns in the leader: a gradually increas-
ing lower bound on the leader’s throughput, and an inter-
batch heartbeat timer that ensures the leader is proposing
new batches quickly enough. Both mechanisms trigger view
changes to rotate the leader among replicas. As explained in
§2.3, these mechanisms are detection based and hence pro-
vide only partial slowdown tolerance for Aardvark, because
each limits the effect of a subset of slowdowns and incurs
view changes that themselves cause slowdowns (§2.3). Copi-
lot, in contrast, provides 1-slowdown-tolerance, because it
proactively provides an alternative path for processing at all
times, including during a view change to replace a slow pilot.

Note that Aardvark is designed for a Byzantine environ-
ment where replicas can be malicious. Copilot assumes nodes
follow its protocol and thus would not work in a malicious
setting. Focusing on crash faults allows Copilot to use tech-
niques like fast takeovers and ping-pong batching to provide
slowdown tolerance with good performance, which would be
vulnerable to manipulation by a Byzantine replica. An inter-
esting question to explore is whether mechanisms from Copi-
lot and Aardvark can be combined to provide 1-slowdown-
tolerance in a Byzantine environment.

Slowdown cascades. Occult is a scalable, geo-replicated
data store that is immune to slowdown cascades [38]. Slow-
down cascades occur when one slow shard of a scalable sys-
tem cascades and affects other shards. They are a mostly
orthogonal problem to slowdown tolerance because they are
about preventing slowdowns of one part (shard) of a system
from affecting other parts (shards) that do different work.
Slowdown tolerance, in contrast, is about preventing slow-
downs within an RSM, which may be one part (shard) of a
larger system. Slowdown tolerance within shards decreases
the likelihood of slowdown cascades. But they are mostly or-
thogonal, because cascades can still occur if there are more
than s slowdowns within a shard.

8 Conclusion
Copilot replication is the first 1-slowdown-tolerant consen-
sus protocol. Its pilot and copilot both receive, order, exe-
cute, and reply to all client commands. It uses this proactive
redundancy and a fast takeover mechanism to provide slow-
down tolerance. Despite its redundancy, Copilot replication’s
performance is competitive with existing consensus protocols
when no replicas are slow. When a replica is slow, Copilot is
the only consensus protocol that avoids high latencies.

Acknowledgements. We thank our shepherd, Allen
Clement, and the anonymous reviewers for their insights
and help in refining the ideas of this work. We are grateful
to Christopher Hodsdon and Jeffrey Helt for their feedback.
This work was supported by the National Science Foundation
under grant number CNS-1827977.

596 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] M. K. Aguilera and M. Walfish. No time for asynchrony.
In ACM SIGOPS Workshop on Hot Topics in Operating
Systems (HotOS), 2009.

[2] P. Ajoux, N. Bronson, S. Kumar, W. Lloyd, and K. Veer-
araghavan. Challenges to adopting stronger consistency
at scale. In ACM SIGOPS Workshop on Hot Topics in
Operating Systems (HotOS), 2015.

[3] L. Alvisi, A. Clement, M. Dahlin, M. Marchetti, and
E. Wong. Making byzantine fault tolerant systems tol-
erate byzantine faults. In USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
Apr. 2009.

[4] B. Arun, S. Peluso, R. Palmieri, G. Losa, and B. Ravin-
dran. Speeding up consensus by chasing fast decisions.
In IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2017.

[5] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy. Site
Reliability Engineering: How Google Runs Production
Systems. O’Reilly Media, Inc., 2016.

[6] M. Brooker, T. Chen, and F. Ping. Millions of tiny
databases. In USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2020.

[7] M. Burke, A. Cheng, and W. Lloyd. Gryff: Unify-
ing consensus and shared registers. In USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2020.

[8] M. Burrows. The Chubby lock service for loosely-
coupled distributed systems. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
Nov. 2006.

[9] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J. Wu,
H. Simitci, et al. Windows Azure Storage: a highly
available cloud storage service with strong consistency.
In ACM Symposium on Operating System Principles
(SOSP), 2011.

[10] M. Castro and B. Liskov. Practical Byzantine fault tol-
erance. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Feb. 1999.

[11] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: an engineering perspective. In ACM Sympo-
sium on Principles of Distributed Computing (PODC),
2007.

[12] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi,
M. Dahlin, and T. Riche. Upright cluster services.
In ACM Symposium on Operating System Principles
(SOSP), 2009.

[13] Cockroach DB. https://www.cockroachlabs.
com/product/, 2020.

[14] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,

J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Tay-
lor, R. Wang, and D. Woodford. Spanner: Google’s
globally-distributed database. In USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2012.

[15] J. Dean and L. A. Barroso. The tail at scale. Communi-
cations of the ACM, 56(2):74–80, 2013.

[16] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM,
35(2):288–323, Apr. 1988.

[17] etcd docs — Tuning. https://etcd.io/docs/
v3.4.0/tuning/, 2020.

[18] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impos-
sibility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374–382, Apr. 1985.

[19] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić.
The next 700 BFT protocols. In ACM SIGOPS Eu-
ropean Conference on Computer Systems (EuroSys),
2010.

[20] T. Hauer, P. Hoffmann, J. Lunney, D. Ardelean, and
A. Diwan. Meaningful availability. In USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2020.

[21] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 1990.

[22] H. Howard, D. Malkhi, and A. Spiegelman. Flexi-
ble paxos: Quorum intersection revisited. In Interna-
tional Conference on Principles of Distributed Systems
(OPODIS), 2017.

[23] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang,
M. Chintalapati, and R. Yao. Gray failure: The achilles’
heel of cloud-scale systems. In ACM SIGOPS Workshop
on Hot Topics in Operating Systems (HotOS), 2017.

[24] P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang.
Capturing and enhancing in situ system observability
for failure detection. In USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), 2018.

[25] M. Isard. Autopilot: automatic data center management.
Operating Systems Review, 41(2):60–67, 2007.

[26] J. Kirsch and Y. Amir. Paxos for system builders: An
overview. In ACM SIGOPS Workshop on Large-Scale
Distributed Systems and Middleware (LADIS), 2008.

[27] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: Speculative byzantine fault toler-
ance. In ACM Symposium on Operating System Princi-
ples (SOSP), Oct. 2007.

[28] L. Lamport. The part-time parliament. ACM Transac-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 597

https://www.cockroachlabs.com/product/
https://www.cockroachlabs.com/product/
https://etcd.io/docs/v3.4.0/tuning/
https://etcd.io/docs/v3.4.0/tuning/

tions on Computer Systems (TOCS), 16(2), 1998.
[29] L. Lamport. Paxos made simple. ACM Sigact News, 32,

2001.
[30] L. Lamport. Generalized consensus and Paxos. Tech-

nical Report MSR-TR-2005-33, Microsoft Research,
March 2005.

[31] L. Lamport. Fast paxos. Distributed Computing, 19(2):
79–103, Oct. 2006.

[32] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and
M. Walfish. Detecting failures in distributed systems
with the falcon spy network. In ACM Symposium on
Operating System Principles (SOSP), 2011.

[33] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R.
Ports. Just Say NO to Paxos Overhead: Replacing Con-
sensus with Network Ordering. In USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2016.

[34] B. Liskov and J. Cowling. Viewstamped replica-
tion revisited. http://www.pmg.lcs.mit.edu/
papers/vr-revisited.pdf, 2012.

[35] C. Lou, P. Huang, and S. Smith. Comprehensive and
efficient runtime checking in system software through
watchdogs. In ACM SIGOPS Workshop on Hot Topics
in Operating Systems (HotOS), 2019.

[36] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:
Building efficient replicated state machines for WANs.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Dec 2008.

[37] D. Mazières. Paxos made practical. http:
//www.scs.stanford.edu/˜dm/home/
papers/paxos.pdf, 2007.

[38] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bron-
son, and W. Lloyd. I can’t believe it’s not causal! scal-
able causal consistency with no slowdown cascades. In
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2017.

[39] Y. Mei, L. Cheng, V. Talwar, M. Levin, G. Jacques-
Silva, N. Simha, A. Banerjee, B. Smith, T. Williamson,
S. Yilmaz, W. Chen, and G. J. Chen. Turbine: Face-
book’s Service Management Platform for Stream Pro-
cessing. In International Conference on Data Engineer-
ing (ICDE), 2020.

[40] I. Moraru, D. G. Andersen, and M. Kaminsky. There
is more consensus in egalitarian parliaments. In ACM
Symposium on Operating System Principles (SOSP),
2013.

[41] K. Ngo, S. Sen, and W. Lloyd. Tolerating slowdowns
in replicated state machines using copilots. Technical
Report TR-004-20, Princeton University, Computer Sci-
ence Department, 2020.

[42] B. M. Oki and B. H. Liskov. Viewstamped replication:
A general primary copy. In ACM Symposium on Princi-

ples of Distributed Computing (PODC), Aug. 1988.
[43] D. Ongaro. Consensus: Bridging Theory And Practice.

PhD thesis, Stanford University, 2014.
[44] D. Ongaro and J. Ousterhout. In search of an un-

derstandable consensus algorithm. In USENIX Annual
Technical Conference (ATC), 2014.

[45] D. R. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krish-
namurthy. Designing distributed systems using approx-
imate synchrony in data center networks. In USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2015.

[46] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computer Surveys, 22(4), 1990.

[47] S. Sen, W. Lloyd, and M. J. Freedman. Prophecy: Using
history for high-throughput fault tolerance. In USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2010.

[48] SLA summary for Azure services. https:
//azure.microsoft.com/en-gb/support/
legal/sla/summary/, 2020.

[49] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. In USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI), 2002.

[50] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and
E. Cecchet. Zz and the art of practical BFT execution. In
ACM SIGOPS European Conference on Computer Sys-
tems (EuroSys), 2011.

[51] H. Zhao, Q. Zhang, Z. Yang, M. Wu, and Y. Dai.
SDPaxos: Building efficient semi-decentralized geo-
replicated state machines. In ACM Symposium on Cloud
Computing (SoCC), 2018.

598 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.pmg.lcs.mit.edu/papers/vr-revisited.pdf
http://www.pmg.lcs.mit.edu/papers/vr-revisited.pdf
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
https://azure.microsoft.com/en-gb/support/legal/sla/summary/
https://azure.microsoft.com/en-gb/support/legal/sla/summary/
https://azure.microsoft.com/en-gb/support/legal/sla/summary/

Microsecond Consensus for Microsecond Applications

Marcos K. Aguilera
VMware Research

Naama Ben-David
VMware Research

Rachid Guerraoui
EPFL

Virendra J. Marathe
Oracle Labs

Athanasios Xygkis
EPFL

Igor Zablotchi
EPFL

Abstract
We consider the problem of making apps fault-tolerant
through replication, when apps operate at the microsecond
scale, as in finance, embedded computing, and microservices
apps. These apps need a replication scheme that also operates
at the microsecond scale, otherwise replication becomes a
burden. We propose Mu, a system that takes less than 1.3
microseconds to replicate a (small) request in memory, and
less than a millisecond to fail-over the system—this cuts the
replication and fail-over latencies of the prior systems by at
least 61% and 90%. Mu implements bona fide state machine
replication/consensus (SMR) with strong consistency for a
generic app, but it really shines on microsecond apps, where
even the smallest overhead is significant. To provide this
performance, Mu introduces a new SMR protocol that care-
fully leverages RDMA. Roughly, in Mu a leader replicates
a request by simply writing it directly to the log of other
replicas using RDMA, without any additional communica-
tion. Doing so, however, introduces the challenge of handling
concurrent leaders, changing leaders, garbage collecting the
logs, and more—challenges that we address in this paper
through a judicious combination of RDMA permissions and
distributed algorithmic design. We implemented Mu and used
it to replicate several systems: a financial exchange app called
Liquibook, Redis, Memcached, and HERD [33]. Our evalua-
tion shows that Mu incurs a small replication latency, in some
cases being the only viable replication system that incurs an
acceptable overhead.

1 Introduction

Enabled by modern technologies such as RDMA,
Microsecond-scale computing is emerging as a must [7]. A
microsecond app might be expected to process a request
in 10 microseconds. Areas where software systems care
about microsecond performance include finance (e.g., trading
systems), embedded computing (e.g., control systems), and
microservices (e.g., key-value stores). Some of these areas

are critical and it is desirable to replicate their microsecond
apps across many hosts to provide high availability, due to
economic, safety, or robustness reasons. Typically, a system
may have hundreds of microservice apps [25], some of which
are stateful and can disrupt a global execution if they fail
(e.g., key-value stores)—these apps should be replicated for
the sake of the whole system.

The golden standard to replicate an app is State Machine
Replication (SMR) [68], whereby replicas execute requests
in the same total order determined by a consensus protocol.
Unfortunately, traditional SMR systems add hundreds of mi-
croseconds of overhead even on a fast network [28]. Recent
work explores modern hardware in order to improve the per-
formance of replication [30, 32, 36, 38, 61, 71]. The fastest of
these (e.g., Hermes [36], DARE [61], and HovercRaft [38])
induce however an overhead of several microseconds, which
is clearly high for apps that themselves take few microsec-
onds. Furthermore, when a failure occurs, prior systems incur
a prohibitively large fail-over time in the tens of milliseconds
(not microseconds). For instance, HovercRaft takes 10 mil-
liseconds, DARE 30 milliseconds, and Hermes at least 150
milliseconds. The rationale for such large latencies are time-
outs that account for the natural fluctuations in the latency
of modern networks. Improving replication and fail-over
latencies requires fundamentally new techniques.

We propose Mu, a new SMR system that adds less than
1.3 microseconds to replicate a (small) app request, with
the 99th-percentile at 1.6 microseconds. Although Mu is a
general-purpose SMR scheme for a generic app, Mu really
shines with microsecond apps, where even the smallest repli-
cation overhead is significant. Compared to the fastest prior
system, Mu is able to cut 61% of its latency. This is the
smallest latency possible with current RDMA hardware, as it
corresponds to one round of one-sided communication.

To achieve this performance, Mu introduces a new SMR
protocol that fundamentally changes how RDMA can be lever-
aged for replication. Our protocol reaches consensus and repli-
cates a request with just one round of parallel RDMA write
operations on a majority of replicas. This is in contrast to

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 599

prior approaches, which take multiple rounds [30,61,71] or re-
sort to two-sided communication [28, 32, 39, 53]. Roughly, in
Mu the leader replicates a request by simply using RDMA to
write it to the log of each replica, without additional rounds of
communication. Doing this correctly is challenging because
concurrent leaders may try to write to the logs simultaneously.
In fact, the hardest part of most replication protocols is the
mechanism to protect against races of concurrent leaders (e.g.,
Paxos proposal numbers [40]). Traditional replication imple-
ments this mechanism using send-receive communication
(two-sided operations) or multiple rounds of communication.
Instead, Mu uses RDMA write permissions to guarantee that
a replica’s log can be written by only one leader. Critical to
correctness are the mechanisms to change leaders and garbage
collect logs, as we describe in the paper.

Mu also improves fail-over time to just 873 microseconds,
with the 99-th percentile at 945 microseconds, which cuts
fail-over time of prior systems by an order of magnitude. The
fact that Mu significantly improves both replication overhead
and fail-over latency is perhaps surprising: folklore suggests
a trade-off between the latencies of replication in the fast path,
and fail-over in the slow path.

The fail-over time of Mu has two parts: failure detection
and leader change. For failure detection, traditional SMR sys-
tems typically use a timeout on heartbeat messages from the
leader. Due to large variances in network latencies, timeout
values are in the 10–100ms even with the fastest networks.
This is clearly high for microsecond apps. Mu uses a con-
ceptually different method based on a pull-score mechanism
over RDMA. The leader increments a heartbeat counter in its
local memory, while other replicas use RDMA to periodically
read the counter and calculate a badness score. The score is
the number of successive reads that returned the same value.
Replicas declare a failure if the score is above a threshold,
corresponding to a timeout. Different from the traditional
heartbeats, this method can use an aggressively small timeout
without false positives because network delays slow down the
reads rather than the heartbeat. In this way, Mu detects fail-
ures usually within ∼600 microseconds. This is bottlenecked
by variances in process scheduling, as we discuss later.

For leader change, the latency comes from the cost of
changing RDMA write permissions, which with current NICs
are hundreds of microseconds. This is higher than we ex-
pected: it is far slower than RDMA reads and writes, which go
over the network. We attribute this delay to a lack of hardware
optimization. RDMA has many methods to change permis-
sions: (1) re-register memory regions, (2) change queue-pair
access flags, or (3) close and reopen queue pairs. We carefully
evaluate the speed of each method and propose a scheme that
combines two of them using a fast-slow path to minimize
latency. Despite our efforts, the best way to cut this latency
further is to improve the NIC hardware.

We prove that Mu provides strong consistency in the form
of linearizability [26], despite crashes and asynchrony, and it

ensures liveness under the same assumptions as Paxos [40].
We implemented Mu and used it to replicate several

apps: a financial exchange app called Liquibook [50], Redis,
Memcached, and an RDMA-based key-value stored called
HERD [33].

We evaluate Mu extensively, by studying its replication
latency stand-alone or integrated into each of the above apps.
We find that, for some of these apps (Liquibook, HERD), Mu
is the only viable replication system that incurs a reasonable
overhead. This is because Mu’s latency is significantly lower
by a factor of at least 2.7× compared to other replication
systems. We also report on our study of Mu’s fail-over latency,
with a breakdown of its components, suggesting ways to
improve the infrastructure to further reduce the latency.

Mu has some limitations. First, Mu relies on RDMA and
so it is suitable only for networks with RDMA, such as local
area networks, but not across the wide area. Second, Mu
is an in-memory system that does not persist data in stable
storage—doing so would add additional latency dependent
on the device speed. 1 However, we observe that the industry
is working on extensions of RDMA for persistent memory,
whereby RDMA writes can be flushed at a remote persistent
memory with minimum latency [70]—once available, this
extension will provide persistence for Mu.

To summarize, we make the following contributions:

• We propose Mu, a new SMR system with low replication
and fail-over latencies.

• To achieve its performance, Mu leverages RDMA per-
missions and a scoring mechanism over heartbeat coun-
ters.

• We give the complete correctness proof of Mu [2].

• We implement Mu, and evaluate both its raw perfor-
mance and its performance in microsecond apps. Results
show that Mu significantly reduces replication latencies
to an acceptable level for microsecond apps.

• Mu’s code is available at:
https://github.com/LPD-EPFL/mu.

One might argue that Mu is ahead of its time, as most apps
today are not yet microsecond apps. However, this situation
is changing. We already have important microsecond apps in
areas such as trading, and more will come as existing timing
requirements become stricter and new systems emerge as the
composition of a large number of microservices (§2.1).

1For fairness, all SMR systems that we compare against also operate
in-memory.

600 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/LPD-EPFL/mu

2 Background

2.1 Microsecond Apps and Computing

Apps that are consumed by humans typically work at the
millisecond scale: to the human brain, the lowest reported
perceptible latency is 13 milliseconds [62]. Yet, we see the
emergence of apps that are consumed not by humans but by
other computing systems. An increasing number of such sys-
tems must operate at the microsecond scale, for competitive,
physical, or composition reasons. Schneider [67] speaks of a
microsecond market where traders spend massive resources
to gain a microsecond advantage in their high-frequency trad-
ing. Industrial robots must orchestrate their motors with mi-
crosecond granularity for precise movements [6]. Modern
distributed systems are composed of hundreds [25] of state-
less and stateful microservices, such as key-value stores, web
servers, load balancers, and ad services—each operating as
an independent app whose latency requirements are gradually
decreasing to the microsecond level [9], as the number of com-
posed services is increasing. With this trend, we already see
the emergence of key-value stores with microsecond latency
(e.g., [32, 55]).

To operate at the microsecond scale, the computing ecosys-
tem must be improved at many layers. This is happening
gradually by various recent efforts. Barroso et al [7] argue
for better support of microsecond-scale events. The latest
Precision Time Protocol improves clock synchronization to
achieve submicrosecond accuracy [4]. And other recent work
improves CPU scheduling [9,58,63], thread management [65],
power management [64], RPC handling [18, 32], and the net-
work stack [58]—all at the microsecond scale. Mu fits in this
context, by providing microsecond SMR.

2.2 State Machine Replication

State Machine Replication (SMR) replicates a service (e.g.,
a key-value storage system) across multiple physical servers
called replicas, such that the system remains available and
consistent even if some servers fail. SMR provides strong
consistency in the form of linearizability [26]. A common
way to implement SMR, which we adopt in this paper, is
as follows: each replica has a copy of the service software
and a log. The log stores client requests. We consider non-
durable SMR systems [29,31,49,52,57,59], which keep state
in memory only, without logging updates to stable storage.
Such systems make an item of data reliable by keeping copies
of it in the memory of several nodes. Thus, the data remains
recoverable as long as there are fewer simultaneous node
failures than data copies [61].

A consensus protocol ensures that all replicas agree on
what request is stored in each slot of the log. Replicas then
apply the requests in the log (i.e., execute the corresponding
operations), in log order. Assuming that the service is deter-

ministic, this ensures all replicas remain in sync. We adopt a
leader-based approach, in which a dynamically elected replica
called the leader communicates with the clients and sends
back responses after requests reach a majority of replicas. We
assume a crash-failure model: servers may fail by crashing,
after which they stop executing.

A consensus protocol must ensure safety and liveness prop-
erties. Safety here means (1) agreement (different replicas do
not obtain different values for a given log slot) and (2) validity
(replicas do not obtain spurious values). Liveness means ter-
mination—every live replica eventually obtains a value. We
guarantee agreement and validity in an asynchronous system,
while termination requires eventual synchrony and a majority
of non-crashed replicas, as in typical consensus protocols. In
theory, it is possible to design systems that terminate under
weaker synchrony [14], but this is not our goal.

2.3 RDMA

Remote Direct Memory Access (RDMA) allows a host to
access the memory of another host without involving the
processor at the other host. RDMA enables low-latency com-
munication by bypassing the OS kernel and by implementing
several layers of the network stack in hardware.

RDMA supports many operations: Send/Receive,
Write/Read, and Atomics (compare-and-swap, fetch-and-
increment). Because of their lower latency, we use only
RDMA Writes and Reads. RDMA has several transports;
we use Reliable Connection (RC) to provide in-order reliable
delivery.

RDMA connection endpoints are called Queue Pairs (QPs).
Each QP is associated to a Completion Queue (CQ). Op-
erations are posted to QPs as Work Requests (WRs). The
RDMA hardware consumes the WR, performs the operation,
and posts a Work Completion (WC) to the CQ. Applications
make local memory available for remote access by registering
local virtual memory regions (MRs) with the RDMA driver.
Both QPs and MRs can have different access modes (e.g.,
read-only or read-write). The access mode is specified when
initializing the QP or registering the MR, but can be changed
later. MRs can overlap: the same memory can be registered
multiple times, yielding multiple MRs, each with its own
access mode. In this way, different remote machines can have
different access rights to the same memory. The same effect
can be obtained by using different access flags for the QPs
used to communicate with remote machines.

3 Overview of Mu

3.1 Architecture

Figure 1 depicts the architecture of Mu. At the top, a client
sends requests to an application and receives a response. We

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 601

client

ok execute

response

request
capture

request
inject

request

application

propose

application

follower

replication
plane

background
plane

RDMA
comm

QPs

QPs

RDMA

RDMA

leader

RDMA
comm

QPs

QPs

logging

v1 v2local log

perm mgmt

perms 1 0 0

proposalNr

replicator

7

permissions

perm management

1 0 0

curWriter 1 curWriter 1

leader election

heartbeat
leader 1

42

leader elect.

leader 1

replayer

v1 v2local log

ok

Figure 1: Architecture of Mu. Grey color shows Mu components. A replica is either a leader or a follower, with different
behaviors. The leader captures client requests and writes them to the local logs of all replicas. Followers replay the log to inject
the client requests into the application. A leader election component includes a heartbeat and the identity of the current leader. A
permission management component allows a leader to request write permission to the local log while revoking the permission
from other nodes.

are not particularly concerned about how the client commu-
nicates with the application: it can use a network, a local
pipe, a function call, etc. We do assume however that this
communication is amenable to being captured and injected.
That is, there is a mechanism to capture requests from the
client before they reach the application, so we can forward
these requests to the replicas; a request is an opaque buffer
that is not interpreted by Mu. Similarly, there is a mechanism
to inject requests into the app. Providing such mechanisms
requires changing the application; however, in our experience,
the changes are small and non-intrusive. These mechanisms
are standard in any SMR system.

Each replica has an idea of which replica is currently the
leader. A replica that considers itself the leader assumes
that role (left of figure); otherwise, it assumes the role of a
follower (right of figure). Each replica grants RDMA write
permission to its log for its current leader and no other replica.
The replicas constantly monitor their current leader to check
that it is still active. The replicas might not agree on who the
current leader is. But in the common case, all replicas have the
same leader, and that leader is active. When that happens, Mu
is simple and efficient. The leader captures a client request,
uses an RDMA Write to append that request to the log of each
follower, and then continues the application to process the
request. When the followers detect a new request in their log,
they inject the request into the application, thereby updating
the replicas.

The main challenge in the design of SMR protocols is to
handle leader failures. Of particular concern is the case when
a leader appears failed (due to intermittent network delays) so

another leader takes over, but the original leader is still active.
To detect failures in Mu, the leader periodically increments

a local counter: the followers periodically check the counter
using an RDMA Read. If the followers do not detect an
increment of the counter after a few tries, a new leader is
elected.

The new leader revokes a write permission by any old
leaders, thereby ensuring that old leaders cannot interfere
with the operation of the new leader [3]. The new leader also
reconstructs any partial work left by prior leaders.

Both the leader and the followers are internally divided into
two major parts: the replication plane and the background
plane. Roughly, the replication plane plays one of two mu-
tually exclusive roles: the leader role, which is responsible
for copying requests captured by the leader to the followers,
or the follower role, which replays those requests to update
the followers’ replicas. The background plane monitors the
health of the leader, determines and assigns the leader or fol-
lower role to the replication plane, and handles permission
changes. Each plane has its own threads and queue pairs. This
is in order to improve parallelism and provide isolation of per-
formance and functionality. More specifically, the following
components exist in each of the planes.

The replication plane has three components:

• Replicator. This component implements the main proto-
col to replicate a request from the leader to the follow-
ers, by writing the request in the followers’ logs using
RDMA Write.

• Replayer. This component replays entries from the lo-

602 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cal log. This component and the replicator component
are mutually exclusive; a replica only has one of these
components active, depending on its role in the system.

• Logging. This component stores client requests to be
replicated. Each replica has its own local log, which
may be written remotely by other replicas according to
previously granted permissions. Replicas also keep a
copy of remote logs, which is used by a new leader to
reconstruct partial log updates by older leaders.

The background plane has two components:

• Leader election. This component detects failures of
leaders and selects other replicas to become leader. This
is what determines the role a replica plays.

• Permission management. This component grants and
revokes write access of local data by remote replicas.
It maintains a permissions array, which stores access
requests by remote replicas. Basically, a remote replica
uses RDMA to store a 1 in this vector to request access.

We describe these planes in more detain in §4 and §5.

3.2 RDMA Communication
Each replica has two QPs for each remote replica: one QP for
the replication plane and one for the background plane. The
QPs for the replication plane share a completion queue, while
the QPs for the background plane share another completion
queue. The QPs operate in Reliable Connection (RC) mode.

Each replica also maintains two MRs, one for each plane.
The MR of the replication plane contains the consensus log
and the MR of the background plane contains metadata for
leader election (§5.1) and permission management (§5.2).
During execution, replicas may change the level of access to
their log that they give to each remote replica; this is done
by changing QP access flags. Note that all replicas always
have remote read and write access permissions to the memory
region in the background plane of each replica.

4 Replication Plane

The replication plane takes care of execution in the common
case, but remains safe during leader changes. This is where
we take care to optimize the latency of the common path. We
do so by ensuring that, in the replication plane, only a leader
replica communicates over the network, whereas all follower
replicas are silent (i.e., only do local work).

In this section, we discuss algorithmic details related to
replication in Mu. For pedagogical reasons, we first describe
in §4.1 a basic version of the algorithm, which requires sev-
eral round-trips to decide. Later, in §4.2, we discuss how
Mu achieves its single round-trip complexity in the common

case, as we present key extensions and optimizations to im-
prove functionality and performance. We give an intuition
of why the algorithm works in this section, and we provide
the complete correctness argument in the full version of the
paper [2].

4.1 Basic Algorithm
The leader captures client requests, and calls propose to repli-
cate these requests. It is simplest to understand our replication
algorithm relative to the Paxos algorithm, which we briefly
summarize; for details, we refer the reader to [40]. In Paxos,
for each slot of the log, a leader first executes a prepare phase
where it sends a proposal number to all replicas.2 A replica
replies with either nack if it has seen a higher proposal number,
or otherwise with the value with the highest proposal number
that it has accepted. After getting a majority of replies, the
leader adopts the value with the highest proposal number. If it
got no values (only acks), it adopts its own proposal value. In
the next phase, the accept phase, the leader sends its proposal
number and adopted value to all replicas. A replica acks if
it has not received any prepare phase message with a higher
proposal number.

In Paxos, replicas actively reply to messages from the
leader, but in our algorithm, replicas are silent and communi-
cate information passively by publishing it to their memory.
Specifically, along with their log, a replica publishes a min-
Proposal representing the minimum proposal number which
it can accept. The correctness of our algorithm hinges on the
leader reading and updating the minProposal number of each
follower before updating anything in its log, and on updates
on a replica’s log happening in slot-order.

However, this by itself is not enough; Paxos relies on active
participation from the followers not only for the data itself,
but also to avoid races. Simply publishing the relevant data
on each replica is not enough, since two competing leaders
could miss each other’s updates. This can be avoided if each
of the leaders rereads the value after writing it [24]. However,
this requires more communication. To avoid this, we shift
the focus from the communication itself to the prevention of
bad communication. A leader ` maintains a set of confirmed
followers, which have granted write permission to ` and re-
voked write permission from other leaders before ` begins its
operation. This is what prevents races among leaders in Mu.
We describe these mechanisms in more detail below.

Log Structure

The main data structure used by the algorithm is the consensus
log kept at each replica (Listing 1). The log consists of (1)
a minProposal number, representing the smallest proposal
number with which a leader may enter the accept phase on this

2Paxos uses proposer and acceptor terms; instead, we use leader and
replica.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 603

replica; (2) a first undecided offset (FUO), representing the
lowest log index which this replica believes to be undecided;
and (3) a sequence of slots—each slot is a (propNr,value)
tuple.

Listing 1: Log Structure
1 struct Log {
2 minProposal = 0,
3 FUO = 0,
4 slots[] = (0,⊥) for all slots
5 }

Algorithm Description

Each leader begins its propose call by constructing its con-
firmed followers set (Listing 2, lines 9–12). This step is
only necessary the first time a new leader invokes propose
or immediately after an abort. This step is done by sending
permission requests to all replicas and waiting for a majority
of acks. When a replica acks, it means that this replica has
granted write permission to this leader and revoked it from
other replicas. The leader then adds this replica to its con-
firmed followers set. During execution, if the leader ` fails to
write to one of its confirmed followers, because that follower
crashed or gave write access to another leader, ` aborts and,
if it still thinks it is the leader, it calls propose again.

After establishing its confirmed followers set, the leader
invokes the prepare phase. To do so, the leader reads the min-
Proposal from its confirmed followers (line 19) and chooses
a proposal number propNum which is larger than any that it
has read or used before. Then, the leader writes its proposal
number into minProposal for each of its confirmed follow-
ers. Recall that if this write fails at any follower, the leader
aborts. It is safe to overwrite a follower f ’s minProposal in
line 22 because, if that write succeeds, then ` has not lost its
write permission since adding f to its confirmed followers set,
meaning no other leader wrote to f since then. To complete
its prepare phase, the leader reads the relevant log slot of all of
its confirmed followers and, as in Paxos, adopts either (a) the
value with the highest proposal number, if it read any non-⊥
values, or (b) its own initial value, otherwise.

The leader ` then enters the accept phase, in which it tries
to commit its previously adopted value. To do so, ` writes
its adopted value to its confirmed followers. If these writes
succeed, then ` has succeeded in replicating its value. No new
value or minProposal number could have been written on any
of the confirmed followers in this case, because that would
have involved a loss of write permission for `. Since the
confirmed followers set constitutes a majority of the replicas,
this means that `’s replicated value now appears in the same
slot at a majority.

Finally, ` increments its own FUO to denote successfully
replicating a value in this new slot. If the replicated value
was `’s own proposed value, then it returns from the propose

Listing 2: Basic Replication Algorithm of Mu
6 Propose(myValue):
7 done = false
8 If I just became leader or I just aborted:
9 For every process p in parallel:

10 Request permission from p
11 If p acks: add p to confirmedFollowers
12 Until this has been done for a majority
13 While not done:
14 Execute Prepare Phase
15 Execute Accept Phase

17 Prepare Phase:
18 For every process p in confirmedFollowers:
19 Read minProposal from p’s log
20 Pick a new proposal number , propNum , higher

↪→ than any minProposal seen so far
21 For every process p in confirmedFollowers:
22 Write propNum into LOG[p].minProposal
23 Read LOG[p].slots[myFUO]
24 Abort if any write fails
25 If all entries read were empty:
26 value = myValue
27 Else:
28 value = entry value with the largest

↪→ proposal number of slots read

30 Accept Phase:
31 For every process p in confirmedFollowers:
32 Write propNum ,value to p in slot myFUO
33 Abort if any write fails
34 If value == myValue:
35 done = true
36 Locally increment myFUO

call; otherwise it continues with the prepare phase for the new
FUO.

4.2 Extensions

The basic algorithm described so far is clear and concise, but
it also has downsides related to functionality and performance.
We now address these downsides with some extensions, all of
which are standard for Paxos-like algorithms; their correctness
is discussed in the full version of our paper [2].

Bringing stragglers up to date. In the basic algorithm, if a
replica r is not included in some leader’s confirmed followers
set, then its log will lag behind. If r later becomes leader,
it can catch up by proposing new values at its current FUO,
discovering previously accepted values, and re-committing
them. This is correct but inefficient. Even worse, if r never
becomes leader, then it will never recover the missing values.
We address this problem by introducing an update phase for
new leaders. After a replica becomes leader and establishes
its confirmed followers set, but before attempting to replicate
new values, the new leader (1) brings itself up to date with its
highest-FUO confirmed follower (Listing 3) and (2) brings

604 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

its followers up to date (Listing 4). This is done by copying
the contents of the more up-to-date log to the less up-to-date
log.

Listing 3: Optimization: Leader Catch Up
1 For every process p in confirmedFollowers
2 Read p’s FUO
3 Abort if any read fails
4 F = follower with max FUO
5 if F.FUO > myFUO:
6 Copy F.LOG[myFUO: F.FUO] into my log
7 myFUO = F.FUO
8 Abort if the read fails

Listing 4: Optimization: Update Followers
1 For every process p in confirmed followers:
2 Copy myLog[p.FUO: myFUO] into p.LOG
3 p.FUO = myFUO
4 Abort if any write fails

Followers commit in background. In the basic algorithm,
followers do not know when a value is committed and thus
cannot replay the requests in the application. This is easily
fixed without additional communication. Since a leader will
not start replicating in an index i before it knows index i−1
to be committed, followers can monitor their local logs and
commit all values up to (but excluding) the highest non-empty
log index. This is called commit piggybacking, since the
commit message is folded into the next replicated value. As
a result, followers replicate but do not commit the (i−1)-st
entry until either the i-th entry is proposed by the current
leader, or a new leader is elected and brings its followers up
to date, whichever happens first.

Omitting the prepare phase. Once a leader finds only
empty slots at a given index at all of its confirmed follow-
ers at line 23, then no higher index may contain an accepted
value at any confirmed follower; thus, the leader may omit
the prepare phase for higher indexes (until it aborts, after
which the prepare phase becomes necessary again). This opti-
mization concerns performance on the common path. With
this optimization, the cost of a Propose call becomes a single
RDMA write to a majority in the common case.

Growing confirmed followers. In the algorithm so far, the
confirmed followers set remains fixed after the leader initially
constructs it. This implies that processes outside the leader’s
confirmed followers set will miss updates, even if they are
alive and timely, and that the leader will abort even if one of
its followers crashes. To avoid this problem, we extend the
algorithm to allow the leader to grow its confirmed followers

set by briefly waiting for responses from all replicas during
its initial request for permission. The leader can also add
confirmed followers later, but must bring these replicas up
to date (using the mechanism described above in Bringing
stragglers up to date) before adding them to its set. When its
confirmed follower set is large, the leader cannot wait for its
RDMA reads and writes to complete at all of its confirmed
followers before continuing, since we require the algorithm
to continue operating despite the failure of a minority of the
replicas; instead, the leader waits for just a majority of the
replicas to complete.

Replayer. Followers continually monitor the log for new
entries. This creates a challenge: how to ensure that the fol-
lower does not read an incomplete entry that has not yet been
fully written by the leader. We adopt a standard approach: we
add an extra canary byte at the end of each log entry [51, 71].
Before issuing an RDMA Write to replicate a log entry, the
leader sets the entry’s canary byte to a non-zero value. The
follower first checks the canary and then the entry contents.
In theory, it is possible that the canary gets written before the
other contents under RDMA semantics. In practice, however,
NICs provide left-to-right semantics in certain cases (e.g., the
memory region is in the same NUMA domain as the NIC),
which ensures that the canary is written last. This assump-
tion is made by other RDMA systems [21, 22, 33, 51, 71].
Alternatively, we could store a checksum of the data in the
canary, and the follower could read the canary and wait for
the checksum to match the data.

5 Background Plane

The background plane has two main roles: electing and moni-
toring the leader, and handling permission change requests.
In this section, we describe these mechanisms.

5.1 Leader Election

The leader election component of the background plane main-
tains an estimate of the current leader, which it continually
updates. The replication plane uses this estimate to determine
whether to execute as leader or follower.

Each replica independently and locally decides who it con-
siders to be leader. We opt for a simple rule: replica i decides
that j is leader if j is the replica with the lowest id, among
those that i considers to be alive.

To know whether a replica has failed, we employ a pull-
score mechanism, based on a local heartbeat counter. A
leader election thread continually increments its own counter
locally and uses RDMA Reads to read the counters (heart-
beats) of other replicas and check whether they have been
updated. It maintains a score for every other replica. If a
replica has updated its counter since the last time it was read,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 605

we increment that replica’s score; otherwise, we decrement it.
The score is capped by configurable minimum and maximum
values, chosen experimentally to be 0 and 15, respectively.
Once a replica’s score drops below a failure threshold, we
consider it to have failed; if its score goes above a recovery
threshold, we consider it to be active and timely. To avoid
oscillation, we have different failure and recovery thresholds,
chosen experimentally to be 2 and 6, respectively, so as to
avoid false positives.

Large network delays. Mu employs two timeouts: a small
timeout in our detection algorithm (scoring), and a longer
timeout built into the RDMA connection mechanism. The
small timeout detects crashes quickly under common failures
(process crashes, host crashes) without false positives. The
longer RDMA timeout fires only under larger network delays
(connection breaks, counter-read failures). In theory, the
RDMA timeout could use exponential back-off to handle
unknown delay bounds. In practice, however, that is not
necessary, since we target datacenters with small delays.

Fate sharing. Because replication and leader election run
in independent threads, the replication thread could fail or be
delayed, while the leader election thread remains active and
timely. This scenario is problematic if it occurs on a leader,
as the leader cannot commit new entries, and no other leader
can be elected. To address thie problem, every X=10000
iterations, the leader election thread checks the replication
thread for activity; if the replication thread is stuck inside a
call to propose, the replication thread stops incrementing the
local counter, to allow a new leader to be elected.

5.2 Permission Management
The permission management module is used when changing
leaders. Each replica maintains the invariant that only one
replica at a time has write permission on its log. As explained
in Section 4, when a leader changes in Mu, the new leader
must request write permission from all the other replicas;
this is done through a simple RDMA Write to a permission
request array on the remote side. When a replica r sees a
permission request from a would-be leader `, r revokes write
access from the current holder, grants write access to `, and
sends an ack to `.

During the transition phase between leaders, it is possible
that several replicas think themselves to be leader, and thus
the permission request array may contain multiple entries. A
permission management thread monitors and handles permis-
sion change requests one by one in order of requester id by
spinning on the local permission request array.

RDMA provides multiple mechanisms to grant and revoke
write access. The first mechanism is to register the consen-
sus log as multiple, completely overlapping RDMA memory
regions (MRs), one per remote replica. In order to grant or

4MB 16MB 64MB 256MB 1GB 4GB

102

103

104

105

Log Size

Ti
m

e
to

gr
an

t/r
ev

ok
e

ac
ce

ss
[µ

s]

QP Flags
QP State
MR Rereg

Figure 2: Performance comparison of different permission
switching mechanisms. QP Flags: change the access flags
on a QP; QP Restart: cycle a QP through the reset, init, RTR
and RTS states; MR Rereg: re-register an RDMA MR with
different access flags.

revoke access from replica r, it suffices to re-register the MR
corresponding to r with different access flags. The second
mechanism is to revoke r’s write access by moving r’s QP
to a non-operational state (e.g., init); granting r write access
is then done by moving r’s QP back to the ready-to-receive
(RTR) state. The third mechanism is to grant or revoke access
from replica r by changing the access flags on r’s QP.

We compare the performance of these three mechanisms
in Figure 2, as a function of the log size (which is the same
as the RDMA MR size). We observe that the time to re-
register an RDMA MR grows with the size of the MR, and
can reach values close to 100ms for a log size of 4GB. On
the other hand, the time to change a QPs access flags or
cycle it through different states is independent of the MR
size, with the former being roughly 10 times faster than the
latter. However, changing a QPs access flags while RDMA
operations to that QP are in flight sometimes causes the QP
to go into an error state. Therefore, in Mu we use a fast-
slow path approach: we first optimistically try to change
permissions using the faster QP access flag method and, if
that leads to an error, switch to the slower, but robust, QP
state method.

5.3 Log Recycling

Conceptually, a log is an infinite data structure but in practice
we need to implement a circular log with limited memory.
This is done as follows. Each follower has a local log head
variable, pointing to the first entry not yet executed in its copy
of the application. The replayer thread advances the log head
each time it executes an entry in the application. Periodi-
cally, the leader’s background plane reads the log heads of
all followers and computes minHead, the minimum of all log
head pointers read from the followers. Log entries up to the
minHead can be reused. Before these entries can be reused,

606 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

they must be zeroed out to ensure the correct function of the
canary byte mechanism. Thus, the leader zeroes all follower
logs after the leader’s first undecided offset and before min-
Head, using an RDMA Write per follower. Note that this
means that a new leader must first execute all leader change
actions, ensuring that its first undecided offset is higher than
all followers’ first undecided offsets, before it can recycle
entries. To facilitate the implementation, we ensure that the
log is never completely full.

5.4 Adding and Removing Replicas

Mu adopts a standard method to add or remove replicas: use
consensus itself to inform replicas about the change [40].
More precisely, there is a special log entry that indicates that
replicas have been removed or added. Removing replicas
is easy: once a replica sees it has been removed, it stops
executing, while other replicas subsequently ignore any com-
munication with it. Adding replicas is more complicated
because it requires copying the state of an existing replica
into the new one. To do that, Mu uses the standard approach of
check-pointing state; we do so from one of the followers [71].

6 Implementation

Mu is implemented in 7157 lines of C++17 code (CLOC [19]).
It uses the ibverbs library for RDMA over Infiniband. We
implement all features and extensions in sections 4 and 5,
except adding/removing replicas and fate sharing. Moreover,
we implement some standard RDMA optimizations to reduce
latency. RDMA Writes and Sends with payloads below a
device-specific limit (256 bytes in our setup) are inlined: their
payload is written directly to their work request. We pin
threads to cores in the NUMA node of the NIC.

Our implementation is modular. We create several modules
on top of the ibverbs library, which we expose as Conan [17]
packages. Our modules deal with common practical problems
in RDMA-based distributed computing (e.g., writing to all
and waiting for a majority, gracefully handling broken RDMA
connections etc.). Each abstraction is independently reusable.
Our implementation also provides a QP exchange layer, mak-
ing it straightforward to create, manage, and communicate
QP information.

7 Evaluation

Our goal is to evaluate whether Mu indeed provides viable
replication for microsecond computing. We aim to answer
the following questions in our evaluation:

• What is the replication latency of Mu? How does it
change with payload size and the application being repli-
cated? How does Mu compare to other solutions?

• What is Mu’s fail-over time?

• What is the throughput of Mu?

We evaluate Mu on a 4-node cluster, the details of which
are given in Table 1. All experiments show 3-way replication,
which accounts for most real deployments [28].

Table 1: Hardware details of machines.

CPU 2x Intel Xeon E5-2640 v4 @ 2.40GHz
Memory 2x 128GiB

NIC Mellanox Connect-X 4
Links 100 Gbps Infiniband
Switch Mellanox MSB7700 EDR 100 Gbps

OS Ubuntu 18.04.4 LTS
Kernel 4.15.0-72-generic

RDMA Driver Mellanox OFED 4.7-3.2.9.0

We compare against APUS [71], DARE [61], and Her-
mes [36] where possible. The most recent system, Hov-
ercRaft [38], also provides SMR but its latency at 30–60
microseconds is substantially higher than the other systems,
so we do not consider it further. For a fair comparison, we dis-
able APUS’s persistence to stable storage, since Mu, DARE,
and Hermes all provide only in-memory replication.

We measure time using the POSIX clock_gettime func-
tion, with the CLOCK_MONOTONIC parameter. In our deploy-
ment, the resolution and overhead of clock_gettime is
around 16–20ns [20]. In our figures, we show bars labeled
with the median latency, with error bars showing 99-percentile
and 1-percentile latencies. These statistics are computed over
1 million samples with a payload of 64-bytes each, unless
otherwise stated.

Applications. We use Mu to replicate several microsecond
apps: three key-value stores, as well as an order matching
engine for a financial exchange.

The key-value stores that we replicate with Mu are Re-
dis [66], Memcached [54], and HERD [33]. For the first
two, the client is assumed to be on a different cluster, and
connects to the servers over TCP. In contrast, HERD is a
microsecond-scale RDMA-based key-value store. We repli-
cate it over RDMA and use it as an example of a microsecond
application. Integration with the three applications requires
183, 228, and 196 additional lines of code, respectively.

The other app is in the context of financial exchanges, in
which parties unknown to each other submit buy and sell
orders of stocks, commodities, derivatives, etc. At the heart
of a financial exchange is an order matching engine [5], such
as Liquibook [50], which is responsible for matching the
buy and sell orders of the parties. We use Mu to replicate
Liquibook. Liquibook’s inputs are buy and sell orders. We
created an unreplicated client-server version of Liquibook

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 607

32 50 64 128 256 512
Payload size

1

2

3

4

La
te

nc
y

(μ
s)

1.2
9

1.2
9

1.3
0

1.3
3 1.6

7 1.7
8

1.5
3

1.5
3

1.6
8

1.7
1

2.1
3 2.2

7

1.5
5

1.5
4

1.6
8

1.7
2

2.1
2 2.3

5

1.4
0

1.3
4

Standalone
+Redis (rds)

+Memcached (mcd)
+HERD

+LiQ

Figure 3: Replication latency of Mu integrated into different
applications [Memcached (mcd), Liquibook (LiQ), Redis
(rds), HERD] and payload sizes. Bar height and numerical
labels show median latency; error bars show 99-percentile
and 1-percentile latencies.

using eRPC [32], and then replicated this system using Mu.
The eRPC integration and the replication required 611 lines
of code in total.

7.1 Common-case Replication Latency

We begin by testing the overhead that Mu introduces in nor-
mal execution, when there is no leader failure. For these
experiments, we first measure raw replication latency and
compare Mu to other replication systems, as well as to itself
under different payloads and attached applications.

Effect of Payload and Application on Latency We first
study Mu in isolation, to understand its replication latency
under different conditions.

We evaluate the raw replication latency of Mu in two set-
tings: standalone and attached. In the standalone setting,
Mu runs just the replication layer with no application and
no client; the leader simply generates a random payload and
invokes propose() in a tight loop. In the attached setting,
Mu is integrated into one of a number of applications; the
application client produces a payload and invokes propose()
on the leader. These settings could impact latency differently,
Mu and the application could interfere with each other.

Figure 3 compares standalone to attached runs as we vary
payload size. Liquibook and Herd allow only one payload
size (32 and 50 bytes), so they have only one bar each in the
graph, while Redis and Memcached have many bars.

We see that the standalone version slightly outperforms the
attached runs, for all tested applications and payload sizes.
This is due to processor cache effects; in standalone runs,
replication state, such as log and queue pairs, are always in
cache, and the requests themselves need not be fetched from

memory. This is not the case when attaching to an appli-
cation. Additionally, in attached runs, the OS can migrate
application threads (even if Mu’s threads are pinned), lead-
ing to additional cache effects which can be detrimental to
performance.

Mu supports two ways of attaching to an application, which
have different processor cache sharing effects. The direct
mode uses the same thread to run both the application and the
replication, and so they share L1 and L2 caches. In contrast,
the handover method places the application thread on a sepa-
rate core from the replication thread, thus avoiding sharing
L1 or L2 caches. Because the application must communicate
the request to the replication thread, the handover method
requires a cache coherence miss per replicated request. This
method consistently adds≈400ns over the standalone method.
For applications with large requests, this overhead might be
preferable to the one caused by the direct method, where
replication and application compete for CPU time. For lighter
weight applications, the direct method is preferable. In our
experiments, we measure both methods and show the best
method for each application: Liquibook and HERD use the
direct method, while Redis and Memcached use the handover
method.

We see that for payloads under 256 bytes, standalone la-
tency remains constant despite increasing payload size. This
is because we can RDMA-inline requests for these payload
sizes, so the amount of work needed to send a request remains
practically the same. At a payload of 256 bytes, the NIC must
do a DMA itself to fetch the value to be sent, which incurs
a gradual increase in overhead as the payload size increases.
However, we see that Mu still performs well even at larger
payloads quite well; at 512B, the median latency is only 35%
higher than the latency of inlined payloads.

Comparing Mu to Other Replication Systems. We now
study the replication time of Mu compared to other replica-
tion systems, for various applications. This comparison is not
possible for every pair of replication system and application,
because some replication systems are incompatible with cer-
tain applications. In particular, APUS works only with socket-
based applications (Memcached and Redis). In DARE and
Hermes, the replication protocol is bolted onto a key-value
store, so we cannot attach it to the apps we consider—instead,
we report their performance with their key-value stores.

Figure 4 shows the replication latencies of these systems.
Mu’s median latency outperforms all competitors by at least
2.7×, outperforming APUS on the same applications by 4×.
Furthermore, Mu has smaller tail variation, with a difference
of at most 500ns between the 1-percentile and 99-percentile
latency. In contrast, Hermes and DARE both varied by more
than 4µs across our experiments, with APUS exhibiting 99-
percentile executions up to 20µs slower (cut off in the figure).
We attribute this higher variance to two factors: the need to
involve the CPU of many replicas in the critical path (Hermes

608 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

2

4

6

8

10

La
te

nc
y

(μ
s)

1.4
0

1.3
4 1.6
8

1.6
8

5.1
5

4.5
5

6.8
0

6.8
6

Mu + HERD
Mu + LiQ
Mu + mcd

Mu + rds
DARE
Hermes

Apus+mcd
Apus+rds

Figure 4: Replication latency of Mu compared with other
replication solutions: DARE, Hermes, Apus on memcached
(mcd), and Apus on Redis (rds). Bar height and numerical
labels show median latency; error bars show 99-percentile
and 1-percentile latencies.

and APUS), and sequentializing several RDMA operations
so that their variance aggregates (DARE and APUS).

7.2 End-to-End Application Latency
Figure 5 shows the end-to-end latency of our tested applica-
tions, which includes the latency incurred by the application
and by replication (if enabled). We show the result in three
graphs corresponding to three classes of applications.

In all three graphs, we first focus on the unreplicated la-
tency of these applications, so as to characterize the workload
distribution. Subsequently, we show the latency of the same
applications under replication with Mu and with competing
systems, so as to exhibit the overhead of replication.

The leftmost graph is for Liquibook. The left bar is the
unreplicated version, and the right bar is replicated with Mu.
We can see that the median latency of Liquibook without
replication is 4.08µs, and therefore the overhead of replica-
tion is around 35%. There is a large variance in latency, even
in the unreplicated system. This variance comes from the
client-server communication of Liquibook, which is based
on eRPC. This variance changes little with replication. The
other replication systems cannot replicate Liquibook (as noted
before, DARE and Hermes are bolted onto their app, and
APUS can replicate only socket-based applications). How-
ever, extrapolating their latency from Figure 4, they would
add unacceptable overheads—over 100% overhead for the
best alternative (Hermes).

The middle graph in Figure 5 shows the client-to-client
latency of replicated and unreplicated microsecond-scale key-
value stores. The first bars in orange show HERD unreplicated
and HERD replicated with Mu. The green bar shows DARE’s
key-value store with its own replication system. The median
unreplicated latency of HERD is 2.25µs, and Mu adds 1.34µs.

While this is a significant overhead (59% of the original la-
tency), this overhead is lower than any alternative. We do not
show Hermes in this graph since Hermes does not allow for a
separate client, and only generates its requests on the servers
themselves. HERD replicated with Mu is the best option for
a replicated key-value store, with overall median latency 2×
lower than the next best option, and a much lower variance.

The rightmost graph in Figure 5 shows the replication of
the traditional key-value stores, Memcached and Redis. The
two leftmost bars show the client-to-client latencies of unrepli-
cated Memcached and Redis, respectively. The four rightmost
bars show the client-to-client latencies under replication with
Mu and APUS. Note that the scale starts at 100µs to show
better precision.

Mu incurs an overhead of around 1.5µs to replicate these
apps, which is about 5µs faster than replicating with APUS.
For these TCP/IP key-value stores, client-to-client latency
under replication with Mu is around 5% lower than client-
to-client latency under replication with APUS. With a faster
client-to-app network, this difference would be bigger. In
either case, Mu provides fault-tolerant replication with essen-
tially no overhead for these applications.

Tail latency. From Figures 4 and 5, we see that applications
replicated with DARE and APUS show large tail latencies
and a skew towards lower values (the median latency is closer
to the 1-st percentile than the 99-th percentile). We believe
this tail latency occurs because DARE and APUS must handle
several successive RDMA events on their critical path, where
each event is susceptible to delay, thereby inflating the tail.
Because Mu involves fewer RDMA events, its tail is smaller.

Figure 5 shows an even greater tail for the end-to-end la-
tency of replicated applications. Liquibook has a large tail
even in its unreplicated version, which we believe is due to its
client-server communication, since the replication of Liqui-
book with Mu has a small tail (Figure 4). For Memcached
and Redis, additional sources of tail latency are cache effects
and thread migration, as discussed in Section 7.1. This ef-
fect is particularly pronounced when replicating with APUS
(third panel of Figure 5), because the above contributors are
compounded.

7.3 Fail-Over Time

We now study Mu’s fail-over time. In these experiments, we
run the system and subsequently introduce a leader failure.
To get a thorough understanding of the fail-over time, we
repeatedly introduce leader failures (1000 times) and plot a
histogram of the fail-over times we observe. We also time
the latency of permission switching, which corresponds to
the time to change leaders after a failure is detected. The
detection time is the difference between the total fail-over
time and the permission switch time.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 609

Unreplicated Replicated
0.0

2.5

5.0

7.5

10.0

12.5

15.0

La
te

nc
y

(μ
s)

4.0
8 5.5

5

Liquibook

Unreplicated Replicated
0.0

2.5

5.0

7.5

10.0

12.5

15.0

2.2
5 3.5

9
7.5

6

RDMA KVs

Unreplicated Replicated
100

110

120

130

140

150

160

11
4.8

9
11

7.1
6

11
6.3

2 12
1.3

9
11

8.7
3 12
3.9

0

TCP/IP KVs

LiQ Unreplicated
LiQ Replicated
HERD Unreplicated
HERD
DARE
mcd Unreplicated
rds Unreplicated
Mu+mcd
APUS+mcd
Mu+rds
APUS+rds

Figure 5: End-to-end latencies of applications. The first graph shows a financial exchange app (Liquibook) unreplicated and
replicated with Mu. The second graph shows microsecond key-value stores: HERD unreplicated, HERD replicated with Mu, and
DARE. The third graph shows traditional key-value stores: Memcached and Redis, unreplicated, as well as replicated with Mu
and APUS. Bar height and numerical labels show median latency; error bars show 99-percentile and 1-percentile latencies.

220 240 260 280
Time (μs)

0

20

40

60

80

100

Fr
eq

ue
nc

y

Permissions switch

850 875 900 925
Time (μs)

0

20

40

60

Fail-over

Figure 6: Fail-over time distribution.

We inject failures by delaying the leader, thus making it
become temporarily unresponsive. This causes other replicas
to observe that the leader’s heartbeat has stopped changing,
and thus detect a failure.

Figure 6 shows the results. We first note that the total fail-
over time is quite low; the median fail-over time is 873µs and
the 99-percentile fail-over time is 947µs, still below a mil-
lisecond. This represents an order of magnitude improvement
over the best competitor at ≈10 ms (HovercRaft [38]).

The time to switch permissions constitutes about 30% of
the total fail-over time, with mean latency at 244µs, and 99-
percentile at 294µs. Recall that this measurement in fact
encompasses two changes of permission at each replica; one
to revoke write permission from the old leader and one to
grant it to the new leader. Thus, improvements in the RDMA
permission change protocol would be doubly amplified in
Mu’s fail-over time.

The rest of the fail-over time is attributed to failure de-
tection (≈600µs). Although our pull-score mechanism does
not rely on network variance, there is still variance intro-
duced by process scheduling (e.g., in rare cases, the leader
process is descheduled by the OS for tens of microseconds)—
this is what prevented us from using smaller timeouts/scores
and it is an area under active investigation for microsecond
apps [9, 58, 63, 65].

7.4 Throughput
While Mu optimizes for low latency, in this section we eval-
uate the throughput of Mu. In our experiment, we run a
standalone microbenchmark (not attached to an application).
We increase throughput in two ways: by batching requests
together before replicating, and by allowing multiple out-
standing requests at a time. In each experiment, we vary the
maximum number of outstanding requests allowed at a time,
and the batch sizes.

Figure 7 shows the results in a latency-throughput graph.
Each line represents a different max number of outstanding
requests, and each data point represents a different batch size.
As before, we use 64-byte requests.

We see that Mu reaches high throughput with this simple
technique. At its highest point, the throughput reaches 47
Ops/µs with a batch size of 128 and 8 concurrent outstanding
requests, with per-operation median latency at 17µs. Since the
leader is sending requests to two other replicas, this translates
to a throughput of 48Gbps, around half of the NIC bandwidth.

Latency and throughput both increase as the batch size
increases. Median latency is also higher with more concurrent
outstanding requests. However, the latency increases slowly,
remaining at under 10µs even with a batch size of 64 and 8
outstanding requests.

610 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

10 20 30 40
Throughput (Ops/μs)

5

10

15

50
th

-%
ile

 L
at

en
cy

 (μ
s)

4 8
16

32

64

128

1 outstanding
2 outstanding

4 outstanding
8 outstanding

Figure 7: Latency vs throughput. Each line represents a
different number of allowed concurrent outstanding requests.
Each point on the lines represents a different batch size. Batch
size shown as annotation close to each point.

There is a throughput wall at around 45 Ops/µs, with la-
tency rising sharply. This can be traced to the transition
between the client requests and the replication protocol at the
leader replica. The leader must copy the request it receives
into a memory region prepared for its RDMA write. This
memory operation becomes a bottleneck. We could optimize
throughput further by allowing direct contact between the
client and the follower replicas. However, that may not be
useful as the application itself might need some of the network
bandwidth for its own operation, so the replication protocol
should not saturate the network.

Increasing the number of outstanding requests while keep-
ing the batch size constant substantially increases throughput
at a small latency cost. The advantage of more outstanding
requests is largest with two concurrent requests over one. Re-
gardless of batch size, this allows substantially higher through-
put at a negligible latency increase: allowing two outstanding
requests instead of one increases latency by at most 400ns for
up to a batch size of 32, and only 1.1µs at a batch size of 128,
while increasing throughput by 20–50% depending on batch
size. This effect grows less pronounced with higher numbers
of outstanding requests.

Similarly, increasing batch size increases throughput with a
low latency hit for small batch sizes, but the latency hit grows
for larger batches. Notably, using 2 outstanding requests and
a batch size of 32 keeps the median latency at only 3.4µs, but
achieves throughput of nearly 30 Ops/µs.

8 Related Work

SMR in General. State machine replication is a common
technique for building fault-tolerant, highly available ser-
vices [40, 68]. Many practical SMR protocols have been
designed, addressing simplicity [8,10,28,44,56], cost [39,43],

and harsher failure assumptions [11, 12, 24, 39]. In the orig-
inal scheme, which we follow, the order of all operations is
agreed upon using consensus instances. At a high-level, our
Mu protocol resembles the classical Paxos algorithm [40],
but there are some important differences. In particular, we
leverage RDMA’s ability to grant and revoke access permis-
sions to ensure that two leader replicas cannot both write a
value without recognizing each other’s presence. This allows
us to optimize out participation from the follower replicas,
leading to better performance. Furthermore, these dynamic
permissions guide our unique leader changing mechanism.

Several implementations of Multi-Paxos avoid repeating
Paxos’s prepare phase for every consensus instance, as long as
the same leader remains [13, 41, 53]. Piggybacking a commit
message onto the next replicated request, as is done in Mu, is
also used as a latency-hiding mechanism in [53, 71].

Aguilera et al. [1] suggested the use of local heartbeats in a
leader election algorithm designed for a theoretical message-
and-memory model, in an approach similar to our pull-score
mechanism. However, no system has so far implemented such
local heartbeats for leader election in RDMA.

Single round-trip replication has been achieved in several
previous works using two-sided sends and receives [23, 36,
37, 39, 43]. Theoretical work has shown that single-shot con-
sensus can be achieved in a single one-sided round trip [3].
However, Mu is the first system to put that idea to work and
implement one-sided single round trip SMR.

Alternative reliable replication schemes totally order only
non-conflicting operations [16, 27, 36, 42, 59, 60, 69]. These
schemes require opening the service being replicated to iden-
tify which operations commute. In contrast, we designed Mu
assuming the replicated service is a black box. If desired,
several parallel instances of Mu could be used to replicate
concurrent operations that commute. This could be used to
increase throughput in specific applications.

It is also important to notice that we consider “crash” fail-
ures. In particular, we assume nodes cannot behave in a
Byzantine manner [11, 15, 39].

Improving the Stack Underlying SMR. While we pro-
pose a new SMR algorithm adapted to RDMA in order to
optimize latency, other systems keep a classical algorithm but
improve the underlying communication stack [32, 48]. With
this approach, somewhat orthogonal to ours, the best reported
replication latency is 5.5 µs [32], almost 5× slower than Mu.
HovercRaft [38] shifts the SMR from the application layer to
the transport layer to avoid IO and CPU bottlenecks on the
leader replica. However, their request latency is more than
an order of magnitude more than that of Mu, and they do not
optimize fail-over time.

Some SMR systems leverage recent technologies such as
programmable switches and NICs [29, 31, 49, 52]. How-
ever, programmable networks are not as widely available
as RDMA, which has been commoditized with technologies

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 611

such as RoCE and iWARP.

Other RDMA Applications. More generally, RDMA has
recently been the focus of many data center system designs,
including key-value stores [21, 33] and transactions [35, 72].
Kalia et al. provide guidelines on the best ways to use RDMA
to enhance performance [34]. Many of their suggested opti-
mizations are employed by Mu. Kalia et al. also advocate the
use of two-sided RDMA verbs (Sends/Receives) instead of
RDMA Reads in situations in which a single RDMA Read
might not suffice. However, this does not apply to Mu, since
we know a priori which memory location should be read, and
we rarely have to follow up with another read.

Failure detection. Failure detection is typically done using
timeouts. Conventional wisdom is that timeouts must be large,
in the seconds [47], though some systems report timeouts as
low as 10 milliseconds [38]. It is possible to improve detec-
tion time using inside information [45, 47] or fine-grained
reporting [46], which requires changes to apps and/or the in-
frastructure. This is orthogonal to our score-based mechanism
and could be used to further improve Mu.

Similar RDMA-based Algorithms
A few SMR systems have recently been designed for
RDMA [30, 61, 71], but used RDMA differently from Mu.

DARE [61] is the first RDMA-based SMR system. Similarly
to Mu, DARE uses only one-sided RDMA verbs executed by
the leader to replicate the log in normal execution, and makes
use of permissions when changing leaders. However, unlike
Mu, DARE requires updating the tail pointer of each replica’s
log in a separate RDMA Write from the one that copies over
the new value, which leads to more round-trips for replication.
DARE’s use of permissions does not lead to a light-weight
mechanism to block concurrent leaders, as in Mu. DARE has
a heavier leader election protocol than Mu’s, similar to that
of RAFT, in which care is taken to ensure that at most one
process considers itself leader at any point in time.

APUS [71] improves upon DARE’s throughput. However,
APUS requires active participation from the follower replicas
during the replication protocol, resulting in higher latencies.
Thus, it does not achieve the one-sided common-case com-
munication of Mu. Similarly to DARE and Mu, APUS uses
transitions through queue pair states to allow or deny RDMA
access. However, like DARE, it does not use this mechanism
to achieve a single one-sided communication round.

Derecho [30] provides durable and non-durable SMR, by
combining a data movement protocol (SMC or RDMC) with
a shared-state table primitive (SST) for determining when it is
safe to deliver messages. This design yields high throughput

but also high latency: a minimum of 10µs for non-durable
SMR [30, Figure 12(b)] and more for durable SMR. This
latency results from a node delaying the delivery of a message
until all nodes have confirmed its receipt using the SST, which
takes additional RDMA communication steps compared to
Mu. It would be interesting to explore how Mu’s protocol
could improve Derecho.

Aguilera et al [3] present a one-shot consensus algorithm
based on RDMA that solves consensus in a single one-sided
communication round in the common case. They model
RDMA’s one-sided verbs as shared memory primitives which
operate only if granted appropriate permissions. Their one-
round communication complexity relies on changing permis-
sions, an idea we use in Mu. While that work focuses on
a theoretical construction, Mu is a fully fledged SMR sys-
tem that needs many other mechanisms, such as logging,
managing state, coordinating instances, recycling instances,
handling clients, and permission management. Because these
mechanisms are non-trivial, Mu requires its own proof of
correctness [2]. Mu also provides an implementation and
experimental evaluation not found in [3].

9 Conclusion

Computers have progressed from batch-processing systems
that operate at the time scale of minutes, to progressively
lower latencies in the seconds, then milliseconds, and now
we are in the microsecond revolution. Work has already
started in this space at various layers of the computing stack.
Our contribution fits in this context, by providing generic
microsecond replication for microsecond apps.

Mu is a state machine replication system that can replicate
microsecond applications with little overhead. This involved
two goals: achieving low latency on the common path, and
minimizing fail-over time to maintain high availability. To
reach these goals, Mu relies on (a) RDMA permissions to
replicate a request with a single one-sided operation, as well
as (b) a failure detection mechanism that does not incur false
positives due to common network delays—a property that
permits Mu to use aggressively small timeout values.

References

[1] Marcos K. Aguilera, Naama Ben-David, Irina Calciu,
Rachid Guerraoui, Erez Petrank, and Sam Toueg. Pass-
ing messages while sharing memory. In ACM Sympo-
sium on Principles of Distributed Computing (PODC),
pages 51–60, July 2018.

[2] Marcos K. Aguilera, Naama Ben-David, Rachid Guer-
raoui, Virendra J. Marathe, Athanasios Xygkis, and Igor

612 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Zablotchi. Microsecond consensus for microsecond ap-
plications. ArXiv preprint arXiv:2010.06288, October
2020. URL: https://arxiv.org/abs/2010.06288.

[3] Marcos K. Aguilera, Naama Ben-David, Rachid Guer-
raoui, Virendra J. Marathe, and Igor Zablotchi. The
impact of RDMA on agreement. In ACM Symposium
on Principles of Distributed Computing (PODC), pages
409–418, July 2019.

[4] Anonymous. 1588-2019—IEEE approved draft
standard for a precision clock synchronization pro-
tocol for networked measurement and control sys-
tems. https://standards.ieee.org/content/
ieee-standards/en/standard/1588-2019.html.

[5] Order matching system. https://en.wikipedia.
org/wiki/Order_matching_system.

[6] Anonymous. When microseconds count: Fast current
loop innovation helps motors work smarter, not harder.
http://e2e.ti.com/blogs_/b/thinkinnovate/
archive/2017/11/14/when-microseconds-count-
fast-current-loop-innovation-helps-motors-
work-smarter-not-harder.

[7] Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the killer mi-
croseconds. Communications of the ACM, 60(4):48–54,
April 2017.

[8] Romain Boichat, Partha Dutta, Svend Frølund, and
Rachid Guerraoui. Deconstructing Paxos. ACM
SIGACT News, 34(1):47–67, March 2003.

[9] Sol Boucher, Anuj Kalia, and David G. Andersen.
Putting the “micro” back in microservice. In USENIX
Annual Technical Conference (ATC), pages 645–650,
July 2018.

[10] Mike Burrows. The Chubby lock service for loosely-
coupled distributed systems. In USENIX Symposium on
Operating System Design and Implementation (OSDI),
pages 335–350, November 2006.

[11] Miguel Castro and Barbara Liskov. Practical Byzantine
fault tolerance. In USENIX Symposium on Operating
System Design and Implementation (OSDI), pages 173–
186, February 1999.

[12] Miguel Castro, Rodrigo Rodrigues, and Barbara Liskov.
BASE: Using abstraction to improve fault tolerance.
ACM Transactions on Computer Systems (TOCS), 21(3),
August 2003.

[13] Tushar Deepak Chandra, Robert Griesemer, and Joshua
Redstone. Paxos made live: An engineering perspec-
tive. In ACM Symposium on Principles of Distributed
Computing (PODC), pages 398–407, August 2007.

[14] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam
Toueg. The weakest failure detector for solving consen-
sus. Journal of the ACM (JACM), 43(4):685–722, July
1996.

[15] Allen Clement, Edmund L. Wong, Lorenzo Alvisi,
Michael Dahlin, and Mirco Marchetti. Making Byzan-
tine fault tolerant systems tolerate Byzantine faults. In
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 153–168, April 2009.

[16] Austin T. Clements, M. Frans Kaashoek, Nickolai Zel-
dovich, Robert Tappan Morris, and Eddie Kohler. The
scalable commutativity rule: designing scalable soft-
ware for multicore processors. In ACM Symposium
on Operating Systems Principles (SOSP), pages 1–17,
November 2013.

[17] Conan, a C/C++ package manager. https://conan.
io. Accessed 2020-09-30.

[18] Alexandros Daglis, Mark Sutherland, and Babak Falsafi.
RPCValet: NI-driven tail-aware balancing of µs-scale
RPCs. In International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 35–48, April 2019.

[19] Al Danial. cloc: Count lines of code. https://github.
com/AlDanial/cloc.

[20] Travis Downs. A benchmark for low-level CPU
micro-architectural features. https://github.com/
travisdowns/uarch-bench.

[21] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast remote mem-
ory. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 401–414,
April 2014.

[22] Aleksandar Dragojevic, Dushyanth Narayanan,
Ed Nightingale, Matthew Renzelmann, Alex Shamis,
Anirudh Badam, and Miguel Castro. No compromises:
distributed transactions with consistency, availability,
and performance. In ACM Symposium on Operating
Systems Principles (SOSP), October 2015.

[23] Partha Dutta, Rachid Guerraoui, and Leslie Lamport.
How fast can eventual synchrony lead to consensus? In
International Conference on Dependable Systems and
Networks (DSN), pages 22–27, June 2005.

[24] Eli Gafni and Leslie Lamport. Disk paxos. Distributed
computing (DIST), 16(1):1–20, February 2003.

[25] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 613

https://arxiv.org/abs/2010.06288
https://standards.ieee.org/content/ieee-standards/en/standard/1588-2019.html
https://standards.ieee.org/content/ieee-standards/en/standard/1588-2019.html
https://en.wikipedia.org/wiki/Order_matching_system
https://en.wikipedia.org/wiki/Order_matching_system
http://e2e.ti.com/blogs_/b/thinkinnovate/archive/2017/11/14/when-microseconds-count-fast-current-loop-innovation-helps-motors-work-smarter-not-harder
http://e2e.ti.com/blogs_/b/thinkinnovate/archive/2017/11/14/when-microseconds-count-fast-current-loop-innovation-helps-motors-work-smarter-not-harder
http://e2e.ti.com/blogs_/b/thinkinnovate/archive/2017/11/14/when-microseconds-count-fast-current-loop-innovation-helps-motors-work-smarter-not-harder
http://e2e.ti.com/blogs_/b/thinkinnovate/archive/2017/11/14/when-microseconds-count-fast-current-loop-innovation-helps-motors-work-smarter-not-harder
https://conan.io
https://conan.io
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://github.com/travisdowns/uarch-bench
https://github.com/travisdowns/uarch-bench

Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. An open-source benchmark
suite for microservices and their hardware-software im-
plications for cloud & edge systems. In International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
3–18, April 2019.

[26] Maurice P. Herlihy and Jeannette M. Wing. Lineariz-
ability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 12(3):463–492, January 1990.

[27] Brandon Holt, James Bornholt, Irene Zhang, Dan R. K.
Ports, Mark Oskin, and Luis Ceze. Disciplined inconsis-
tency with consistency types. In Symposium on Cloud
Computing (SoCC), pages 279–293, October 2016.

[28] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In USENIX Annual Technical
Conference (ATC), June 2010.

[29] Zsolt István, David Sidler, Gustavo Alonso, and Marko
Vukolic. Consensus in a box: Inexpensive coordination
in hardware. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 425–
438, March 2016.

[30] Sagar Jha, Jonathan Behrens, Theo Gkountouvas,
Matthew Milano, Weijia Song, Edward Tremel, Rob-
bert Van Renesse, Sydney Zink, and Kenneth P. Birman.
Derecho: Fast state machine replication for cloud ser-
vices. ACM Transactions on Computer Systems (TOCS),
36(2), April 2019.

[31] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and
Ion Stoica. Netchain: Scale-free sub-RTT coordination.
In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 35–49, April 2018.

[32] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be general and fast. In USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 1–16, February 2019.

[33] Anuj Kalia, Michael Kaminsky, and David G Ander-
sen. Using RDMA efficiently for key-value services.
In ACM Conference on SIGCOMM, pages 295–306,
August 2014.

[34] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Design guidelines for high performance RDMA systems.
In USENIX Annual Technical Conference (ATC), pages
437–450, June 2016.

[35] Anuj Kalia, Michael Kaminsky, and David G Ander-
sen. FaSST: Fast, scalable and simple distributed
transactions with two-sided (RDMA) datagram RPCs.
In USENIX Symposium on Operating System Design
and Implementation (OSDI), pages 185–201, November
2016.

[36] Antonios Katsarakis, Vasilis Avrielatos, M R Siavash
Katebzadeh, Arpit Joshi, Aleksandar Dragojević, Boris
Grot, and Vijay Nagarajan. Hermes: A fast, fault-
tolerant and linearizable replication protocol. In In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), pages 201–217, March 2020.

[37] Idit Keidar and Sergio Rajsbaum. On the cost of fault-
tolerant consensus when there are no faults: preliminary
version. ACM SIGACT News, 32(2):45–63, June 2001.

[38] Marios Kogias and Edouard Bugnion. Hover-
cRaft: Achieving scalability and fault-tolerance for
microsecond-scale datacenter services. In European
Conference on Computer Systems (EuroSys), April
2020.

[39] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: speculative
Byzantine fault tolerance. In ACM Symposium on Oper-
ating Systems Principles (SOSP), pages 45–58, October
2007.

[40] Leslie Lamport. The part-time parliament. ACM
Transactions on Computer Systems (TOCS), 16:133–
169, May 1998.

[41] Leslie Lamport. Paxos made simple. ACM SIGACT
News, 32(4):18–25, June 2001.

[42] Leslie Lamport. Generalized consensus and Paxos.
Technical Report MSR-TR-2005-33, Microsoft Re-
search, March 2005.

[43] Leslie Lamport. Fast paxos. Distributed computing
(DIST), 19(2):79–103, July 2006.

[44] Butler W Lampson. How to build a highly available
system using consensus. In International Workshop on
Distributed Algorithms (WDAG), pages 1–17, October
1996.

[45] Joshua B. Leners, Trinabh Gupta, Marcos K. Aguil-
era, and Michael Walfish. Improving availability in
distributed systems with failure informers. In USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), April 2013.

[46] Joshua B. Leners, Trinabh Gupta, Marcos K. Aguilera,
and Michael Walfish. Taming uncertainty in distributed

614 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

systems with help from the network. In European Con-
ference on Computer Systems (EuroSys), April 2015.

[47] Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos K.
Aguilera, and Michael Walfish. Detecting failures
in distributed systems with the FALCON spy network.
In ACM Symposium on Operating Systems Principles
(SOSP), October 2011.

[48] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao
Zhang. Socksdirect: datacenter sockets can be fast and
compatible. In ACM Conference on SIGCOMM, pages
90–103, August 2019.

[49] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana
Szekeres, and Dan RK Ports. Just say NO to Paxos
overhead: Replacing consensus with network ordering.
In USENIX Symposium on Operating System Design
and Implementation (OSDI), pages 467–483, November
2016.

[50] Liquibook. https://github.com/enewhuis/
liquibook. Accessed 2020-05-25.

[51] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda.
High performance RDMA-based MPI implementation
over InfiniBand. International Journal of Parallel Pro-
gramming, 32(3):167–198, June 2004. URL: https://
doi.org/10.1023/B:IJPP.0000029272.69895.c1,
doi:10.1023/B:IJPP.0000029272.69895.c1.

[52] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading
distributed applications onto smartNICs using iPipe. In
ACM Conference on SIGCOMM, pages 318–333, Au-
gust 2019.

[53] David Mazieres. Paxos made practical. https://www.
scs.stanford.edu/~dm/home/papers/paxos.pdf,
2007.

[54] Memcached. https://memcached.org/. Accessed
2020-05-25.

[55] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli,
Michael Cui, Yiying Zhang, Haggai Eran, Boris Pis-
menny, Liran Liss, Michael Wei, Dan Tsafrir, and Mar-
cos K. Aguilera. Storm: a fast transactional dataplane
for remote data structures. In ACM International Confer-
ence on Systems and Storage (SYSTOR), pages 97–108,
May 2019.

[56] Diego Ongaro and John K Ousterhout. In search of
an understandable consensus algorithm. In USENIX
Annual Technical Conference (ATC), pages 305–319,
June 2014.

[57] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman,
John Ousterhout, and Mendel Rosenblum. Fast crash
recovery in RAMCloud. In ACM Symposium on Oper-
ating Systems Principles (SOSP), pages 29–41, October
2011.

[58] Amy Ousterhout, Joshua Fried, Jonathan Behrens,
Adam Belay, and Hari Balakrishnan. Shenango: Achiev-
ing high CPU efficiency for latency-sensitive datacen-
ter workloads. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 361–
378, February 2019.

[59] Seo Jin Park and John Ousterhout. Exploiting com-
mutativity for practical fast replication. In USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 47–64, February 2019.

[60] Fernando Pedone and André Schiper. Handling message
semantics with generic broadcast protocols. Distributed
Computing, 15(2):97–107, April 2002.

[61] Marius Poke and Torsten Hoefler. DARE: High-
performance state machine replication on RDMA net-
works. In Symposium on High-Performance Parallel
and Distributed Computing (HPDC), pages 107–118.
ACM, June 2015.

[62] Mary C. Potter, Brad Wyble, Carl Erick Hagmann, and
Emily Sarah McCourt. Detecting meaning in RSVP
at 13 ms per picture. Attention, Perception, & Psy-
chophysics, 76(2):270–279, February 2014.

[63] George Prekas, Marios Kogias, and Edouard Bugnion.
ZygOS: Achieving low tail latency for microsecond-
scale networked tasks. In ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 325–341, October
2017.

[64] George Prekas, Mia Primorac, Adam Belay, Christos
Kozyrakis, and Edouard Bugnion. Energy proportional-
ity and workload consolidation for latency-critical ap-
plications. In Symposium on Cloud Computing (SoCC),
pages 342–355, August 2015.

[65] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft,
and John Ousterhout. Arachne: Core-aware thread
management. In USENIX Symposium on Operating
System Design and Implementation (OSDI), pages 145–
160, October 2018.

[66] Redis. https://redis.io/. Accessed 2020-05-25.

[67] David Schneider. The microsecond market. IEEE
Spectrum, 49(6), June 2012.

[68] Fred B Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 615

https://github.com/enewhuis/liquibook
https://github.com/enewhuis/liquibook
https://doi.org/10.1023/B:IJPP.0000029272.69895.c1
https://doi.org/10.1023/B:IJPP.0000029272.69895.c1
http://dx.doi.org/10.1023/B:IJPP.0000029272.69895.c1
https://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
https://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
https://memcached.org/
https://redis.io/

Computing Surveys (CSUR), 22(4):299–319, December
1990.

[69] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and
Marek Zawirski. Conflict-free replicated data types. In
International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS), pages 386–400,
October 2011.

[70] SNIA. Extending RDMA for persistent memory over
fabrics. https://www.snia.org/sites/default/
files/ESF/Extending-RDMA-for-Persistent-
Memory-over-Fabrics-Final.pdf.

[71] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi,
and Heming Cui. APUS: Fast and scalable paxos on
RDMA. In Symposium on Cloud Computing (SoCC),
pages 94–107, September 2017.

[72] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing
using RDMA and HTM. In ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 87–104, October
2015.

616 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.snia.org/sites/default/files/ESF/Extending-RDMA-for-Persistent-Memory-over-Fabrics-Final.pdf
https://www.snia.org/sites/default/files/ESF/Extending-RDMA-for-Persistent-Memory-over-Fabrics-Final.pdf
https://www.snia.org/sites/default/files/ESF/Extending-RDMA-for-Persistent-Memory-over-Fabrics-Final.pdf

Virtual Consensus in Delos

Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mihir Dharamshi, Ahmed Jafri, Xiao Shi
Santosh Ghosh, Hazem Hassan, Aaryaman Sagar, Rhed Shi, Jingming Liu, Filip Gruszczynski

Xianan Zhang, Huy Hoang, Ahmed Yossef, Francois Richard, Yee Jiun Song
Facebook, Inc.

Abstract
Consensus-based replicated systems are complex, mono-

lithic, and difficult to upgrade once deployed. As a result,
deployed systems do not benefit from innovative research,
and new consensus protocols rarely reach production. We
propose virtualizing consensus by virtualizing the shared log
API, allowing services to change consensus protocols without
downtime. Virtualization splits the logic of consensus into
the VirtualLog, a generic and reusable reconfiguration layer;
and pluggable ordering protocols called Loglets. Loglets are
simple, since they do not need to support reconfiguration
or leader election; diverse, consisting of different protocols,
codebases, and even deployment modes; and composable,
via RAID-like stacking and striping. We describe a produc-
tion database called Delos1 which leverages virtual consensus
for rapid, incremental development and deployment. Delos
reached production within 8 months, and 4 months later up-
graded its consensus protocol without downtime for a 10X
latency improvement. Delos can dynamically change its per-
formance properties by changing consensus protocols: we
can scale throughput by up to 10X by switching to a disaggre-
gated Loglet, and double the failure threshold of an instance
without sacrificing throughput via a striped Loglet.

1 Introduction

The last decade has seen significant research advances in
faster and more flexible consensus protocols. Unfortunately,
systems that use consensus to replicate state are monolithic,
complex, and difficult to evolve. As a result, deployed systems
rarely benefit from new research ideas (e.g., ZooKeeper [20]
still runs a decade-old protocol [22]); in turn, such ideas only
have real-world impact when entire new production systems
and applications are built from scratch around them (e.g.,
VMware’s CorfuDB [1] uses sharded acceptors [7, 16]; Face-
book’s LogDevice [3] implements flexible quorums [19];

1Delos is an island in the Cyclades, a few hundred miles from Paxos and
Corfu.

etcd [2] runs on Raft [39]). Contrast this state of affairs with
other areas such as OSes and networks, where modular de-
sign and clean layering allow plug-and-play adoption of new
mechanisms and incremental improvement of existing ones:
for example, a new type of SSD, a new filesystem layout, or
a new key-value store like RocksDB can each be deployed
with no modification to the layers above or below it.

Recently, the shared log has gained traction as an API for
consensus in research [7–9, 16, 37] and industry [1, 3, 23, 47].
Applications can replicate state via this API by appending
updates to the shared log, checking its tail, and reading back
updates from it. The consensus protocol is hidden behind the
shared log API, allowing applications to bind to any imple-
mentation at deployment time.

Unfortunately, an API on its own is not sufficient to en-
able incremental evolution. First, new implementations of
the shared log are difficult to deploy and operate: no support
exists for upgrading and migrating applications to different
implementations without downtime, which is untenable for
highly available services. Second, new implementations are
difficult to develop: the consensus protocol implementing the
shared log is itself a complex distributed system containing a
data plane (for ordering and storing commands durably) and a
control plane (for reconfiguring leadership, roles, parameters,
and membership). Existing protocols such as Raft aggres-
sively combine both planes into a single protocol; in doing so,
they give up the ability to incrementally change the data plane
(i.e., the ordering mechanism) without reimplementing the
entire control plane. As a result of these two limitations, sys-
tems have to be written and deployed from scratch around new
consensus protocols (e.g., ZooKeeper cannot be upgraded to
run over Raft [39] or CORFU [7]); and protocols have to be
rewritten around new ordering mechanisms (e.g., Raft cannot
be changed easily to support sharded acceptors).

In this paper, we virtualize consensus by virtualizing the
shared log API. We propose the novel abstraction of a virtu-
alized shared log (or VirtualLog). The VirtualLog exposes a
conventional shared log API; applications above it are oblivi-
ous to its virtualized nature. Under the hood, the VirtualLog

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 617

VirtualLog

Loglets

Database

NativeLoglet

BackupLoglet ZKLoglet

append
checkTail
readNext

append
checkTail
readNext
seal

Figure 1: Virtual consensus: servers replicate state via a
VirtualLog, which is mapped to underlying Loglets.

chains multiple shared log instances (called Loglets) into a
single shared log. Different Loglets in a VirtualLog can be
instances of the same ordering protocol with different pa-
rameters, leadership, or membership (e.g., different instances
of MultiPaxos [45]); they can be entirely distinct log imple-
mentations (e.g., Raft [39], LogDevice [3], Scalog [16], or
CORFU [7]); or they can be simple log shims over external
storage systems (e.g., ZooKeeper [20] or HDFS [43]). Vir-
tualization enables heterogeneous reconfiguration: a single
VirtualLog can span different types of Loglets and dynami-
cally switch between them.

We implemented virtual consensus in Delos, a database
that stores control plane state for Facebook. Delos has been in
production for over 18 months and currently processes over
1.8 billion transactions per day across all our deployments.
One of its use cases is Twine’s Resource Broker [44], which
stores metadata for the fleet of servers in Facebook; each
Delos deployment runs on 5 to 9 machines and manages
server reservations for a fraction of the fleet. Internally, Delos
is a shared log database [7, 8, 33]; it replicates state across
servers by appending and playing back commands on the
VirtualLog. Delos supports multiple application-facing APIs;
we have a Table API in production, while a second ZooKeeper
API is under development.

Virtual consensus in Delos simplified the deployment
and operation of consensus implementations. Virtualization
slashed time to deployment since we had the ability to de-
ploy the system rapidly with an initial Loglet implementation,
and later upgrade it without downtime. We reached produc-
tion within eight months with a simple Loglet implemented
as a shim over ZooKeeper (ZKLoglet); later, we obtained a
10X improvement in end-to-end latency in production by mi-
grating online to a new, custom-built Loglet implementation
(NativeLoglet). We also enabled seemingly infinite capacity
for the VirtualLog by migrating older segments to a Loglet
layered on cold storage (BackupLoglet); in turn, this allowed

Delos to provide operators with a point-in-time restore capa-
bility. Loglets can be converged (i.e., collocated on the same
machines as the database) or disaggregated (i.e., running on
an entirely different set of machines), allowing operators to
switch the Delos deployment mode on the fly to obtain differ-
ent performance and fault-tolerance properties.

Virtual consensus also simplifies the development of new
consensus implementations. Virtualization splits the complex
functionality of consensus into separate layers: a control plane
(the VirtualLog) that provides a generic reconfiguration capa-
bility; and a data plane (the Loglet) that provides critical-path
ordering. While the VirtualLog’s reconfiguration mechanism
can be used solely for migrating between entirely different
Loglet implementations, it can also switch between different
instances of the same Loglet protocol with changes to lead-
ership, roles, parameters, and membership. As a result, the
Loglet itself can be a statically configured protocol, without
any internal support for reconfiguration. In fact, the Loglet
does not even have to implement fault-tolerant consensus (i.e.,
be highly available for appends via leader election), as long as
it provides a fault-tolerant seal command, which is theoreti-
cally weaker and practically simpler to implement. When a
Loglet fails for appends, the VirtualLog seals it and switches
to a different Loglet, providing leader election and reconfig-
uration as a separate, reusable layer that can work with any
underlying Loglet.

Accordingly, new Loglets are simple to design and imple-
ment since they are not required to implement fault-tolerant
consensus or reconfiguration. To demonstrate this point, we
describe the Delos NativeLoglet, which uses a primary-driven
protocol that is unavailable for appends if the primary fails, but
can support seals as long as a quorum is alive. New Loglets
are also easy to construct via RAID-like composition; for
example, we describe StripedLoglet, a thin shim layer that
stitches together multiple Loglets to enable behavior equiva-
lent to rotating sequencers [35] and sharded acceptors [7, 16].

Virtual consensus has some limitations. The reusability of
VirtualLog-driven reconfiguration comes with a latency hit
for certain types of reconfigurations such as planned leader
changes. Loglets can optimize for specific cases by relying on
their own in-band reconfiguration instead of the VirtualLog.
A second limitation relates to generality: since we virtualize a
specific API for consensus that captures a total order of com-
mands, we do not currently support protocols that construct
partial orders based on operation commutativity [26, 36]. In
future work, we plan to extend virtual consensus to partially
ordered shared logs [33].

We are the first to propose a virtualized shared log
composed from heterogeneous log implementations. Prior
work composes a logical shared log directly from storage
servers [7, 9, 16, 47]; or virtualizes in the opposite direc-
tion, multiplexing homogenous streams over a single shared
log [8, 48]. Delos is the first replicated database that can
switch its consensus implementation on the fly to different

618 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

protocols, deployment modes, or codebases. While the theory
of consensus has always allowed learners and acceptors to be
disaggregated, Delos is also the first production system that
can switch between converged and disaggregated acceptors.

In this paper, we make the following contributions:

• We propose virtualizing consensus via the novel Vir-
tualLog and Loglet abstractions; and describe Delos, a
storage system that implements these abstractions.

• Using production data, we show Delos upgrading to
NativeLoglet without downtime for a 10X latency im-
provement.

• Using experiments, we show that Delos can: A) switch
to a disaggregated Loglet for a 10X improvement in
throughput under a 15ms p99 SLA; B) double its failure
threshold without lowering throughput via a Striped-
Loglet that rotates sequencers. Further, we show that
StripedLoglet can support over a million 1KB appends/s
on a log-only workload by sharding acceptors.

2 The Path to Virtual Consensus

Virtualization for faster deployment: In 2017, Facebook
needed a table store for its core control plane services with
strong guarantees on durability, consistency, and availability.
Two practical imperatives drove the design and development
of this system: fast deployment (it had to reach production
within 6-9 months) and incremental evolution (it had to sup-
port better performance over time).

At the time, Facebook already operated four different stor-
age systems: a ZooKeeper service; a shared log service based
on LogDevice [3]; a key-value service called ZippyDB [5];
and a replicated MySQL service [13]. None of these systems
fit the exact use case, either due to a mismatch in API (e.g.,
ZooKeeper does not provide a table API) or fault-tolerance
guarantees (e.g., the MySQL service provided inadequate
availability).

Further, these systems could not be easily modified to pro-
vide the required API or guarantees. Each of them was a mono-
lith: the database API could not be easily changed, nor could
the underlying consensus protocol be re-used. In some sys-
tems, no abstraction boundary existed between the database
and the consensus protocol. In other systems, an abstraction
boundary did exist in the form of a shared log API, allowing
the underlying consensus protocol to be reused; however, no
support existed to migrate from one implementation of the
abstraction to another.

Building yet another monolithic system from scratch – in-
cluding a new consensus implementation – was not feasible
since we had to hit deployment within 6-9 months. Layering
the system over an existing shared log such as LogDevice
would allow us to reach production quickly, but also tie us for

perpetuity to the fault-tolerance and performance properties
of that consensus implementation.

Our solution was to virtualize consensus. In the remainder
of this paper, we describe how virtual consensus allowed us
to reach production quickly with an existing implementation
of consensus, and then migrate without downtime to new
implementations.

Virtualization for faster development: Beyond fast ini-
tial deployment and online migration, virtualization also en-
abled faster development of new consensus implementations.
On its own, the shared log abstraction simplifies consensus-
based systems, separating applications from the logic of con-
sensus via a data-centric API. Virtualizing the shared log
further splits the consensus protocol into two layers: a control
plane, which includes the logic for reconfiguration, and a data
plane, which orders commands on the critical path.

In practice, such separation allowed us to incrementally
improve the system by re-implementing just the data plane of
the consensus protocol via new Loglets, while reusing the Vir-
tualLog control plane for features such as leader election and
membership changes. In the process, we completely changed
the operational characteristics and performance of the system,
as we describe later.

Importantly, such a separation also enables diversity in the
data plane. The last few years have seen a number of consen-
sus protocols with novel ordering mechanisms [3, 7, 14–16,
22, 24, 31, 35, 37, 39, 42], providing vastly different trade-offs
between performance and fault-tolerance. By making it easier
to implement such protocols and deploy them within running
systems, virtualization lowers the barrier to innovation.

3 Abstractions for Virtual Consensus

In this paper, we propose virtualizing consensus by virtual-
izing the shared log abstraction. We have three design goals
for virtualization. First, virtualization should be transparent
to applications, which should be unmodified and oblivious to
the virtualized nature of the log. Second, virtualization should
allow underlying logs to be simple and diverse, lowering
the barrier to new log implementations. Third, virtualization
should allow for migration between implementations without
downtime. We obtain these properties via two core abstrac-
tions.

In virtual consensus, the application operates above a Virtu-
alLog, which stitches together multiple independent Loglets.
The VirtualLog and Loglets expose a conventional shared log
API (see Figure 2). Applications can append an entry, receiv-
ing back a log position; call checkTail to obtain the first
unwritten position; call readNext to read the first entry in the
passed-in range; and call prefixTrim to indicate that a prefix
of the log can be trimmed. Virtualization requires two addi-
tions to this basic API: a seal command, which ensures that
any new appends fail; and an augmented checkTail response

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 619

class ILoglet {
logpos_t append(Entry payload);
pair<logpos_t,bool> checkTail();
Entry readNext(logpos_t min, logpos_t

max);
logpos_t prefixTrim(logpos_t trimpos);
void seal();

}
class IVirtualLog : public ILoglet {

bool reconfigExtend(LogCfg newcfg);
bool reconfigTruncate();
bool reconfigModify(LogCfg newcfg);

}

Figure 2: Loglet and VirtualLog APIs.

that indicates via a boolean whether the log is sealed. In ad-
dition, the VirtualLog also implements extra reconfiguration
APIs to add and remove Loglets.

The VirtualLog is the only required source of fault-tolerant
consensus in the system, providing a catch-all mechanism
for any type of reconfiguration. The Loglet does not have to
support fault-tolerant consensus, instead acting as a pluggable
data plane for failure-free ordering. Existing systems typically
struggle to implement monolithic consensus protocols that
are simple, fast, and fault-tolerant. In virtual consensus, we
divide and conquer: consensus in the VirtualLog is simple
and fault-tolerant (but not necessarily fast, since it is invoked
only on reconfigurations), while consensus in the Loglet is
simple and fast (but not necessarily fault-tolerant). We now
describe these abstractions and their interaction in detail.

3.1 The VirtualLog abstraction
The VirtualLog implements a logical shared log by chaining
a collection of underlying Loglets. In this section, we use the
term ‘client’ to refer to an application process that accesses
the VirtualLog. Clients accessing the VirtualLog see a shared,
append-only virtual address space that is strongly consistent
(i.e., linearizable [18]), failure-atomic, and highly available.
Internally, this address space is mapped to the individual
address spaces of different Loglets in a chain. Operations
to the VirtualLog are translated to operations on underlying
Loglets based on this chain-structured mapping.

The simplest possible VirtualLog is a trivial singleton chain:
[0,•) of the VirtualLog is mapped to [0,•) of a single Loglet.
In this case, commands to the VirtualLog are passed through
unmodified to the underlying Loglet. A more typical chain
consists of multiple Loglets, mapping different segments of
the virtual address space to each log: for example, [0,100)
is mapped to [0,100) of Loglet A; [100,150) is mapped to
[0,50) of Loglet B; [150,•) to [0,•) of C. We use the follow-

0 1 2

0 1 2

0 1 2 3 4 5

0 1 2 0 1 2

0 1 2

0 1 2

0 1 2 3 4 5

0 1 2

{trimmed}

II: during reconfigExtend III: after reconfigExtend

IV: after reconfigTruncateI: before reconfig

VL

SL

VL

SL

VL

SL

VL

SL SL

Figure 3: The VirtualLog reconfigures from a single Loglet
(I) by first sealing the Loglet (II) and installing a new Loglet
(III). Later, the old Loglet is removed (IV).

ing notation for such a chain: [0 A�! 100 B�! 150 C�! •].
Any append and checkTail commands on a VirtualLog

are directed to the last Loglet in the chain, while readNext
commands on a range are routed to the Loglet storing that
range. In the process, log positions are translated from the
virtual address space to each Loglet’s individual address space
(for example, in the chain described above, if an append that is
routed to Loglet C returns position 10, we map it to position
160 on the VirtualLog). Log positions can be contiguous
(i.e., every position has an entry) or sparse (i.e., positions
can be left unoccupied), depending on the underlying Loglet.
Importantly, only the last log in the chain is appendable (we
call this the active segment); the other logs are sealed and
return errors on appends (we call these sealed segments).

The VirtualLog can be reconfigured to a new chain via its
API (see Figure 2). The reconfigExtend call changes the
active segment of the VirtualLog so that new appends are
directed to an entirely different Loglet. Reconfigurations can
also modify sealed segments via the reconfigModify call
(e.g., to replace failed servers within a sealed Loglet). The
reconfigTruncate call is used to remove the first sealed
segment from the chain (e.g., when the VirtualLog’s address
space is trimmed).

3.2 VirtualLog design
The VirtualLog is composed of two distinct components: a
client-side layer exposing the shared log API, which routes op-
erations to underlying Loglets based on the chain-structured
mapping; and a logically centralized metadata component
(MetaStore) that durably stores the chain. Each client main-
tains a local (potentially stale) cached copy of the chain.

The MetaStore component has a simple API: it is a single
versioned register supporting a conditional write. Reading the
MetaStore returns a value with an attached version. Writing

620 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

to it requires supplying a new value and an expected existing
version.

The primary technical challenge for the VirtualLog is pro-
viding clients with a shared, strongly consistent, and highly
available virtual address space. In steady-state, when the chain
remains unchanged, this task is trivial: the client-side layer
can use its locally cached copy of the chain to route opera-
tions. However, the chain can be changed via the VirtualLog
reconfiguration APIs shown in Figure 2.

Any client can initiate a reconfiguration, or complete a
reconfiguration started by some other client. Reconfigura-
tion involves three steps: sealing the old chain, installing
the new chain on the MetaStore, and fetching the new chain
from the MetaStore. The following reconfiguration protocol
is expressed entirely in the form of data-centric operations
against the Loglet and MetaStore; it assumes nothing about
the internal implementation of either component.

Step 1: Sealing the current chain by sealing its last
Loglet: The first step of a reconfiguration involves sealing
the current chain (Ci) to stop new appends from succeeding
within it. To seal the current chain, the reconfiguring client
simply calls seal on the active segment, since this is the only
segment that receives appends, and all other segments are
already sealed. Seals on a Loglet are idempotent; accordingly,
multiple clients can concurrently seal the current chain. Once
the current chain is sealed by the reconfiguring client, any
subsequent append on the current chain by a client returns
an error. After sealing the active segment, the client calls
checkTail to retrieve its tail; this determines the start of the
new active segment.

Step 2: Installing the new chain in the MetaStore: Once
the old chain Ci is sealed, the reconfiguring client writes a
new chain Ci+1 to the MetaStore. The MetaStore is simply a
versioned register supporting a conditional write; accordingly,
it only accepts the new chain Ci+1 if the existing chain is
Ci. In effect, multiple reconfiguring clients – after running
step 1 idempotently – can race to install the new chain in the
MetaStore, with at most one guaranteed to win. The chain
is stored as a list of segments with start/stop positions, each
with an opaque Loglet-specific configuration.

Step 3: Fetching the new chain from the MetaStore: In
the final step, the reconfiguring client fetches the latest chain
from the MetaStore. In the common case, this step can be
omitted if the reconfiguring client succeeded in installing its
candidate chain in Step 2. Alternatively, if the write in Step 2
failed, some other client may have won the race and installed
a different chain, which we have to fetch.
Concurrency: After a client seals a chain in Step 1, it is
possible that other clients continue operating within it. An
append to the VirtualLog using the sealed chain will be routed
to its last Loglet, which is now sealed in the new chain. As
a result, a client issuing appends in the old chain will obtain
an error code indicating that the Loglet is sealed; it will then
fetch the latest chain from the MetaStore and retry.

A checkTail to the VirtualLog using the sealed chain also
gets routed to the last Loglet in the chain. In response, the
Loglet returns not just its tail position, but also a bit indicating
whether or not it is sealed. If the Loglet has been sealed, then
the client knows that it is operating on a stale chain, which
means in turn that the computed tail is likely to not be the true
tail of the VirtualLog. In this case, it fetches the latest chain
from the MetaStore and retries.
Failure Atomicity: When a client encounters a sealed chain,
it is possible that it does not find a newer chain in the MetaS-
tore. This can happen if the reconfiguring client (which sealed
the chain) either failed or got delayed after the seal step but
before installing the new chain. In this case, after a time-out
period, the client ‘rolls forward’ the reconfiguration by in-
stalling its own new chain. Note that the client completing the
reconfiguration does not know the original intention of the
failed client (e.g., if it was reconfiguring to a different Loglet
type); hence, it creates a default new chain by cloning the
configuration of the previous active segment.
Reconfiguration Policy: The protocol above provides a
generic mechanism for reconfiguration. However, it has to
be invoked based on some policy. There are three primary
drivers of reconfiguration. First, planned reconfigurations
(e.g., upgrading to a faster Loglet) are driven via a com-
mand line tool by operators. Second, the VirtualLog calls
reconfigTruncate on itself when it trims the entirety of
its first sealed Loglet while servicing a prefixTrim. For ex-
ample, if the application calls prefixTrim(100) on chain
[0 A�! 100 B�! •]; the VirtualLog trims all of A and then re-
configures to chain [100 B�! •]. Third, individual Loglets that
do not implement their own leader election or reconfigura-
tion are responsible for detecting failures and requesting a
reconfigExtend on the VirtualLog, as we describe later.

A subtle point is that an old chain only has to be sealed
if it conflicts with a newer chain: i.e., the new chain remaps
some unwritten virtual address to a different Loglet. Recon-
figurations for sealed segments (e.g., to rebuild failed servers
in a sealed Loglet, or to copy and remap a sealed segment to a
different Loglet) do not change the locations of unwritten vir-
tual addresses. As a result, they do not necessarily require the
old chain to be sealed first before the new chain is installed;
different clients can concurrently operate in the old and new
chains. Similarly, truncation (i.e., removing the first segment)
does not require the old chain to be sealed; if a client with
the old chain tries to access an address on a truncated Loglet,
it may succeed or receive an error saying the entry has been
deleted. In practice, this means rebuild and GC activity on
sealed segments does not interfere with appends at the tail of
the VirtualLog.

3.3 The VirtualLog MetaStore
As described above, the VirtualLog stores a mapping – its
chain of constituent Loglets – in a MetaStore: a single ver-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 621

sioned register supporting a conditional write predicated on
the current version. We now discuss the requirements and
design space for this component.

The VirtualLog MetaStore is a necessary and sufficient
source of fault-tolerant consensus in our architecture; as we
describe later, Loglets are not required to implement con-
sensus. The MetaStore has to be highly available for writes;
accordingly, it requires a fault-tolerant consensus protocol
like Paxos. Since the VirtualLog (and its MetaStore) is a sep-
arate, reusable layer, we need to implement this fault-tolerant
consensus protocol only once. Further, the MetaStore is not
required to be particularly fast, since it is accessed by the
VirtualLog only during reconfigurations.

Why does the VirtualLog require its own MetaStore? Ex-
isting reconfigurable systems often store similar information
(e.g., the set of servers in the next configuration) inline with
the same total order as other commands (within the last con-
figuration [34] or a combination of the old and new configu-
rations [39]). In this case, the steps of sealing the old chain
and writing the membership of the new chain can be done in
a single combined operation. In the VirtualLog, this would be
equivalent to storing the identity of the next Loglet within the
current active Loglet while sealing it. However, such a design
requires the Loglet itself to be highly available for writes (i.e.,
implement fault-tolerant consensus), since reconfiguring to
a new Loglet would require a new entry to be written to the
current Loglet. With a separate MetaStore, we eliminate the
requirement of fault-tolerant consensus for each Loglet. Since
one of our design goals is to make Loglets simple and diverse,
we choose to use a separate MetaStore.

Using a separate MetaStore means the common-case la-
tency of a reconfiguration consists of a seal, a checkTail,
and a write to the MetaStore. In our current setting (con-
trol plane applications running within a single data center),
reconfiguration latencies of 10s of ms are tenable. If recon-
figuration is driven by failure, the latency of failure detection
is typically multiple seconds in any case, to avoid false posi-
tives [30]. In the future, when we run across regions, it may
be important to optimize for planned reconfiguration (e.g., re-
placing servers); since the Loglet is still available in this case,
we can potentially reconfigure by storing inline commands
within the Loglet itself, borrowing existing techniques such
as a-windows [25, 34].

3.4 The Loglet abstraction
The Loglet is the data plane abstraction in virtual consensus:
a shared log designed to operate as a segment of the Virtual-
Log. The requirements for a Loglet are minimal: it provides
totally ordered, durable storage via the shared log API. Sig-
nificantly, the Loglet can operate within a static configuration;
it does not have to provide support for role or membership
changes. It does not have to support leader election, either;
i.e., it is not required to provide high availability for append

calls. Instead, the Loglet provides a highly available seal
command that prevents new appends from being successfully
acknowledged. The VirtualLog uses such a sealing capability
to support highly available append calls via reconfiguration,
as described earlier in this section.

A seal bit does not require fault-tolerant consensus. Com-
pared to similar data types that are equivalent to consensus, it
differs from a write-once register [42], since only one ‘value’
can be proposed (i.e., the bit can be set); and a sticky bit [40],
since it has only two states (undefined and set) rather than
three. It can be implemented via a fault-tolerant atomic regis-
ter that stores arbitrary values [6, 11], which in turn is weaker
than consensus and not subject to the FLP impossibility re-
sult [17]. As we describe later, a seal is also much simpler
to implement than a highly available append.

In addition to supporting seal, the Loglet provides an
augmented checkTail to return its sealed status along with
the current tail (i.e., checkTail returns a (tail pos,sealbit)
tuple rather than a single tail position). To lower the burden
of implementing this extra call on each Loglet, it is designed
to have weak semantics: the tail position and seal status do
not need to be checked atomically. Instead, the checkTail
call is equivalent to a conventional checkTail and a checkSeal
executed in parallel, combined in a single call for efficiency.

In similar vein, a successful seal call ensures that any new
append call will not be successfully acknowledged to the ap-
pending client; however, these failed appends can become
durable and be reflected by future checkTail calls on the
Loglet due to specific failure scenarios. As a result, calling
checkTail on a sealed log can return increasing values for
the tail position even after the log is successfully sealed. These
‘zombie’ appends on a sealed log do not appear on the Vir-
tualLog’s address space, which maps to fixed-size segments
of the Loglet’s address space (i.e., if the VirtualLog chain
is [0 A�! 100 B�! •], appends on log A can become durable
beyond 100 without any impact on the VirtualLog). These
semantics are sufficient to implement a linearizable Virtual-
Log: all we need is that any append on a sealed log throws
an exception, and that any checkTail returns the seal status
correctly.

The Loglet API provides a common denominator interface
for different log implementations. Such implementations may
provide availability for appends via internal leader election
protocols; they may even support their own reconfiguration
protocols for adding and removing storage servers. In such
cases, the VirtualLog can be used to reconfigure across dif-
ferent Loglet types, while each Loglet can perform its own
leader election and membership changes. To draw an analogy
with storage stacks, Loglets can be functionally simple (e.g.,
like hard disks) or rich (e.g., like SSDs).

The log positions returned by a Loglet can be contiguous
or sparse, depending on its internal implementation. Loglets
that implement their own leader election or reconfiguration
protocols typically expose sparse address spaces, since the log

622 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Delos
runtime

VirtualLog

Table API

(converged)
NativeLoglet

local storage
(RocksDB)

ZK API

MetaStore

(disagg)
ZKLoglet

client

append/read/…

append/read/…

propose/sync

more APIs

more Loglets

API

Core

Loglet (disagg)
LDLoglet

apply

experimental

production

Figure 4: Delos design: multiple APIs can run over a Core
platform, which in turn can switch dynamically between mul-
tiple Loglet implementations.

position often embeds some notion of a membership epoch.
In the case where the Loglet operates within a static con-

figuration and relies on the VirtualLog for any form of recon-
figuration, it reacts to failures by invoking reconfigExtend
on the VirtualLog, which seals it and switches to a different
Loglet. In this case, each Loglet is responsible for its own fail-
ure detection, and for supplying a new Loglet configuration
minus the failed servers. In other words, while the Virtual-
Log provides the mechanism for reconfiguration, Loglets are
partially responsible for the policy of reconfiguration.

4 Delos: Design and Implementation

Delos is a replicated storage system for control plane services.
The design of Delos is driven by a number of requirements
unique to control plane services: low dependencies on other
services; strong guarantees for durability, availability, and
consistency; and rich and flexible storage APIs. Delos is a
fully replicated ACID database providing strict serializability.
It does not implement transparent sharding or multi-shard
transactions, but can be layered under other systems that pro-
vide these capabilities. Delos occupies a similar role in the
Facebook stack to Google’s Chubby [12], or the open-source
etcd [2] and ZooKeeper [20].

The Delos database is similar to Tango [8]. Each Delos
server maintains a local copy of state in RocksDB and keeps
this state synchronized via state machine replication (SMR)
over the VirtualLog. When a server receives a read-write trans-
action, it serializes and appends it to the VirtualLog without
executing it. The server then synchronizes with the Virtual-
Log; when it encounters a transaction in the log (whether
appended by itself or other servers), it executes the operation
within a single thread as a failure-atomic transaction on its
local RocksDB. The transaction returns when the appending
server encounters it in the VirtualLog and applies it to the

local RocksDB store. To perform a read-only transaction, the
server first checks the current tail of the VirtualLog (obtaining
a linearization position); it then synchronizes its local state
with the VirtualLog until that position. The read-only trans-
action is then executed on the local RocksDB snapshot. For
efficiency, Delos borrows a technique from Tango, queuing
multiple read-only transactions behind a single outstanding
synchronization with the VirtualLog.

As Figure 4 shows, the logic described above is separated
into three layers on each Delos server: an API-specific wrap-
per at the top; a common Core consisting of a runtime that
exposes an SMR interface, which in turn interacts with the
VirtualLog; and individual Loglets under the VirtualLog. This
layered design provides extensibility in two dimensions. First,
Delos can support multiple Loglets under the VirtualLog,
which is the focus of this paper. Second, Delos can support
multiple application-facing APIs on a single platform. Each
API wrapper is a thin layer of code that interacts with the De-
los runtime and provides serialization logic against RocksDB.
We support a Table API in production, with support for trans-
actions, range queries, and secondary indices; we are currently
deploying a second API identical to ZooKeeper. The ability
to support multiple APIs on a common base is not novel:
most state machine replication libraries treat the application
as a black box. However, Delos provides a larger subset of
application-agnostic functionality within the common Core,
including local durable storage, backups, and state transfer
when new servers join.

4.1 The Delos VirtualLog
In Delos, the VirtualLog is implemented via a combination
of a client-side library and a MetaStore implementation. The
library code implements the protocol described in Section
3.2, interacting with underlying Loglet implementations and
the MetaStore. Initially, Delos went to production with the
MetaStore residing on an external ZooKeeper service as a
single key/value pair. Later, to remove this external depen-
dency, we implemented an embedded MetaStore that runs
on the same set of Delos servers as the database layer and
VirtualLog library code.

To implement this embedded MetaStore, we used Lam-
port’s construction of a replicated state machine from the orig-
inal Paxos paper [25], which uses a sequence of independent
Paxos instances. Each such instance is a simple, unoptimized
implementation of canonical single-slot Paxos, incurring two
round-trips to a quorum for both writes and reads. As in Lam-
port’s description, each Paxos instance stores the membership
of the next instance. We further simplify the protocol by dis-
allowing pipelined writes at each proposer, and removing
liveness optimizations such as leader election across multiple
slots.

Such a protocol has inadequate latency and throughput to be
used in the critical path of ordering commands, which is why

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 623

Loglet Consensus Deployment Prod Use
ZK Yes Disagg Yes Bootstrap
Native No Conv/Disagg Yes Primary
Backup Yes Disagg Yes Backup
LogDevice Yes Disagg No Perf
Striped No Conv/Disagg No Perf

Figure 5: Different Loglet implementations in Delos.

so many (complex) variants of Multi-Paxos exist. However,
it is more than sufficient for a control plane protocol that is
invoked only for reconfigurations.

4.2 The Delos Loglet(s)
Loglets can be converged, running on the Delos database
servers; or disaggregated, as shims on the Delos servers ac-
cessing an external service. Each deployment model has its
benefits: a converged log allows Delos to operate without a
critical path service dependency, and without incurring the
extra latency of accessing an external service. Disaggrega-
tion enables higher throughput by placing the log on a stor-
age tier that can be independently scaled and I/O-isolated
from the database servers. Delos currently supports three
disaggregated Loglets (see Figure 5): ZKLoglet stores log
entries on a ZooKeeper namespace; LogDeviceLoglet is a
pass-through wrapper for a LogDevice service; BackupLoglet
layers over an HDFS-like filesystem service used for cold
storage. All three backing systems – ZooKeeper, LogDevice,
and the HDFS-like filesystem – internally implement fault-
tolerant consensus, including leader election and reconfigu-
ration; Delos uses the VirtualLog solely to switch to/from
them.

4.2.1 Loglets sans consensus: NativeLoglet

We argued earlier that Loglets can be simple since they do
not require fault-tolerant consensus (i.e., highly available ap-
pends) or any form of reconfiguration. We now describe the
NativeLoglet, which illustrates this point. A NativeLoglet
can be either converged or disaggregated; we describe its
converged form, which is how we use it in production.

Each Delos server – in addition to running the materializa-
tion logic and the VirtualLog code – runs a NativeLoglet client
and a NativeLoglet server (or LogServer). One of the Delos
servers also runs a sequencer component. The NativeLoglet
is available for seal and checkTail as long as a majority of
LogServers are alive; and for append if the sequencer is also
alive. Each LogServer stores a local on-disk log, along with
a seal bit; once the seal bit is set, the LogServer rejects new
appends to its local log. The local log stores commands in a
strictly ascending order that can have gaps (i.e., it may not
store every command).

We first define some terms before describing the protocol.
A command is locally committed on a particular LogServer
after it has been written and synced to its local log. The local
tail for a particular LogServer is the first unwritten position
in its local log. A command is globally committed once it is
locally committed on a majority of LogServers and all pre-
vious commands have been globally committed. The global
tail of the NativeLoglet is the first globally uncommitted log
position. The NativeLoglet does not have gaps; i.e., every
position from 0 up to the global tail stores a globally com-
mitted command. Each component (i.e., LogServers, clients,
and the sequencer) maintains a knownTail variable: the global
tail it currently knows about, which can trail the actual global
tail. Components piggyback knownTail on the messages they
exchange, updating their local value if they see a higher one.
append: To append commands to the NativeLoglet, Delos
servers send requests to the sequencer. The sequencer assigns
a position to each command and forwards the request to all
LogServers. It considers the append globally committed (and
acknowledges to the client) once it receives successful re-
sponses from a majority of unsealed LogServers. If a majority
of LogServers report that they have been sealed, an error is
returned indicating that the NativeLoglet is sealed. In all other
cases where a majority of LogServers respond negatively or
fail to respond before a timeout, the sequencer retries the
append. Retries are idempotent (i.e., the same command is
written to the same position), and the sequencer continues to
retry until the append succeeds or the NativeLoglet is sealed.

Each LogServer locally commits a particular log position
n only after the previous position n� 1 has either (1) been
locally committed on the same server, or (2) has been globally
committed on a majority of servers (i.e., knownTail > n�1).
The sequencer maintains an outgoing queue of appends for
each LogServer, and omits sending a command to a particular
LogServer if it knows the command has already been globally
committed. As a result, slow LogServers do not block appends
from completing on other LogServers and a trailing LogServer
can catch up more easily because it is allowed to omit storing
commands that are already globally committed.
seal: Any client can seal the NativeLoglet by contacting each
LogServer to set its seal bit. If the seal completes successfully
– i.e., a majority of LogServers respond – future appends are
guaranteed to return an error code indicating the NativeLoglet
is sealed. Note that a successful seal operation can leave
different LogServers with different local tails.
checkTail: This call returns both the current global tail of
the NativeLoglet, as well as its current seal status. Any client
can issue a checkTail by sending a command to all the
LogServers and waiting for a majority to respond. Once a ma-
jority responds, the checkTail call follows a simple 5-state
state machine, as described in Figure 6. For ease of exposition,
we assume that no more than a majority responds; if this is not
true, the protocol below can work trivially by discarding the
extra responses, though in practice we use the additional infor-

624 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

none-sealed
diff-tail

some-sealed all-sealed
diff-tail

none-sealed
max-tail

all-sealed
max-tail

wait for
max tail

wait for
max tail

repair

seal +
retry

seal +
retry

seal +
retry

Figure 6: NativeLoglet checkTail state machine.

mation for better performance. Three outcomes are possible
for the returned seal bits:

1. all-sealed: In the case where all responding LogServers
are sealed and they all return the same local tail X, the return
value is (X, true). However, it is possible that the LogServers
can have different local tails (e.g., if a seal arrives while an
append is ongoing). In this case, the client ‘repairs’ the re-
sponding LogServers to the maximum returned position Xmax,
copying over entries from the LogServers that have them (and
bypassing the seal bit). It then returns Xmax to the application.
Note that repair is safe: the single sequencer ensures that there
can never be different entries for the same position on differ-
ent LogServers. This repair activity can result in the ‘zombie’
appends described in Section 3.4, where appends on a sealed
Loglet are not acknowledged but can complete later due to
repairs.

2. some-sealed: In the case where the responding
LogServers have a mix of sealed and unsealed status bits,
the client issues a seal first and then reissues the checkTail.
In the absence of an adversarial failure pattern (e.g., where the
seal continually lands on a different majority), the subsequent
checkTail should return the all-sealed case above where all
responding LogServers are sealed.

3. none-sealed: In the case where none of the respond-
ing LogServers are sealed, the client picks the maximum
position Xmax and then waits for its own knownTail to reach
this position. While waiting, if the client discovers that some
LogServer is sealed, the checkTail is in the some-sealed
state described above, and proceeds accordingly. If the se-
quencer fails, the client’s knownTail may never reach Xmax;
in this case, the Loglet will eventually be sealed, putting the
client in the some-sealed or all-sealed state.

The latency of the checkTail in the none-sealed case
depends on how quickly the client’s knownTail is updated,
along with its knowledge of the seal status of a majority
of LogServers. Clients quickly and efficiently discover this
information via an extra API exposed by each LogServer,
which allows them to ask for notification when the local tail
reaches a particular position or the LogServer is sealed.
readNext: Loglet semantics dictate that readNext behavior
is defined only for log positions before the return value of a

previous checkTail call from the same client. As a result, a
readNext call translates to a read on a particular log position
that is already known to exist. This simplifies the readNext
implementation: the client first checks the locally collocated
LogServer to find the entry. If it can’t find the entry locally, it
issues a read to some other LogServer. Note that a quorum is
not required for reads, since we already know that the entry
has been committed; we merely have to locate a copy.

To reiterate, the NativeLoglet does not implement fault-
tolerant consensus: it becomes unavailable for appends if the
sequencer fails. As a result, the append path has no complex
leader election logic. Instead, the NativeLoglet implements
a highly available seal, which is a trivial operation that sets
a bit on a quorum of servers. The checkTail call follows
a compact state machine for determining the seal status and
global tail of the NativeLoglet. Practically, we found this
protocol much easier to implement than fault-tolerant consen-
sus: it took just under 4 months to implement and deploy a
production-quality NativeLoglet.

When the sequencer or one of the LogServers fails, the
NativeLoglet is responsible for detecting this failure and in-
voking reconfiguration on the VirtualLog (which in turn seals
it and switches to a new NativeLoglet). In our implementation,
we use a combination of in-band detection (e.g., the sequencer
detecting that it has rebooted, or that other servers are per-
sistently down) and out-of-band signals (via a gossip-based
failure detector, as well as information from the container
manager) to trigger reconfiguration. In other words, the Vir-
tualLog provides the mechanism of reconfiguration / leader
election, while the NativeLoglet handles the policy by select-
ing the LogServers and sequencer of the new NativeLoglet
instance.

4.2.2 Loglets via composition: StripedLoglet

The StripedLoglet stripes a logical address space across multi-
ple underlying Loglets. The mapping between address spaces
is a simple and deterministic striping: logical position L0
maps to position A0 on stripe A; L1 maps to position B0; L2
to C0; L3 to A1; and so on (see Figure 7).

Incoming append calls to the StripedLoglet are routed to
individual stripe Loglets in round-robin order. This routing
is done independently at each StripedLoglet client (i.e., the
Delos database servers). When the append on an individual
Loglet returns with a stripe-specific position (e.g., A1), we
map it back to a logical position (e.g., L3). However, we do
not acknowledge the append to the StripedLoglet client im-
mediately; instead, we wait until all prior logical positions
have been filled, across all stripes. This ensures linearizability
for the StripedLoglet: if an append starts after another append
completes, it obtains a greater logical position. For example,
in Figure 7, an append is routed to stripe B at position B2
or L7; but it is not acknowledged or reflected by checkTail
until L6 appears on stripe A at position A2.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 625

L0 L1 L2 L3 L4 L5 L7

L0 L3 L1 L4 L7 L2 L5

Stripe A Stripe B Stripe C

StripedLoglet

A0 A1 A2 B0 B1 B2 C0 C1 C2

Stripe A Stripe B

(sharded acceptors)

Stripe A

Stripe B

(rotating sequencer)

Figure 7: The StripedLoglet stripes over underlying Loglets.
Loglets can be disjoint (sharded acceptors) or have over-
lapping membership but different sequencers (rotating se-
quencer).

A checkTail call fans out to all stripes and returns the first
unfilled logical position, while readNext calls are directed
to the corresponding stripe. For this protocol to work, the
StripedLoglet requires the stripe Loglets to have contiguous
log positions. While the NativeLoglet provides this property,
LogDeviceLoglet does not: LogDevice embeds an epoch num-
ber (generated by its own internal reconfiguration mechanism)
within the log position, so that positions are typically contigu-
ous but can skip forward if an internal reconfiguration takes
place.

We found composition to be a simple and effective way to
create protocols with new properties. The StripedLoglet is a
shim layer with only around 300 lines of code and consists
entirely of invocations on the underlying Loglets; yet it pro-
vides a versatile building block for scaling throughput. We
experimented with two uses of it (shown in Figure 7):
Rotating sequencer: A StripedLoglet can be composed from
NativeLoglets with identical LogServers but different se-
quencers. For instance, a 9-node NativeLoglet will bottleneck
on the single sequencer, which has to transmit each entry 8
times. Instead, a StripedLoglet can be layered over two Na-
tiveLoglet stripes, each of which uses the same LogServers
but a different sequencer.
Sharded acceptors: A StripedLoglet can be layered over
multiple disaggregated Loglets, achieving a linear scaling
of throughput similar to CORFU [7] or Scalog [16], albeit via
a design that doesn’t require a centralized sequencer or sepa-
rate ordering layer. StripedLoglet also differs by relying on
virtualization: it implements a Loglet API over other Loglets.
As a result, StripedLoglet can scale any existing Loglet while
inheriting its fault-tolerance properties (i.e., the StripedLoglet
fails if any of its stripes fail).

Note that the StripedLoglet code is identical for both these
use cases: what changes is the composition of the individual

Loglets. These Loglets can have different memberships (and
even entirely different Loglet implementations) in the sharded
acceptor case; or identical membership (and the same Loglet
implementation) but different sequencers in the rotating se-
quencer case.

From the viewpoint of the VirtualLog, the StripedLoglet is
like any other Loglet; it has to be sealed as a whole (i.e., every
stripe has to be sealed) even if only one of its stripes needs to
be changed via the VirtualLog reconfiguration mechanism. In
the future, we plan to explore schemes for selectively sealing
and replacing a single stripe.

5 Evaluation

We use two hardware setups for evaluating Delos. The first
is the production hardware that most of our instances run on,
which consists of 5 servers with shared boot SSDs. Since De-
los has to run in a variety of data centers, we cannot assume
specific or dedicated storage hardware. The second is bench-
mark hardware with dedicated NVMe SSDs. In both setups,
we run within Twine [44] containers, and have production-
grade debug logging and monitoring enabled.

We show numbers for two workloads. The first is real pro-
duction traffic. For a representative deployment, the workload
consists of 425 queries/sec and 150 puts/sec on the Delos
Table API. Write size has a median of 500 bytes and a max
of 150KB. Each deployment stores between 1GB and 10GB.
In production, Delos takes local snapshots every 10 minutes
and ships them to a backup service every 20 minutes.

The second workload is a synthetic one consisting of single-
key puts and gets. The value consists of a single 1KB blob.
The keys are chosen from an address space of 10M keys; we
select keys randomly with a uniform distribution and generate
random values, since this provides a lower bound for perfor-
mance by reducing caching and compression opportunities,
respectively. We pre-write the database before each run with
10GB; this matches our production data sizes.

Delos runs with two Loglets in production: ZKLoglet and
NativeLoglet. In our experiments, we additionally use LogDe-
viceLoglet (or LDLoglet) and StripedLoglet. The external
ZooKeeper service used by ZKLoglet lives on a set of 5
servers similar to our production hardware, running on shared
boot SSDs and collocated with other jobs. LDLoglet uses a
LogDevice service deployed on a set of 5 servers similar to
our benchmark hardware, with dedicated NVMe SSDs.

In all the graphs, we report 99th percentile latency over
1-minute windows. We assume a p99 SLA of 15ms, which
matches our production requirements.

5.1 The Benefit of Virtualization
Virtual consensus allowed Delos to upgrade its consensus
protocol in production without downtime. In Figure 8, we
show the actual switch-over happening from ZKLoglet to

626 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0.1
 1

 10
 100

La
te

nc
y

(m
s)

Multi-Puts

 0.1
 1

 10
 100

La
te

nc
y

(m
s)

Multi-Gets

 0.1
 1

 10
 100

La
te

nc
y

(m
s)

Queries

 0.1
 1

 10
 100

 0 50 100 150 200 250 300 350 400

La
te

nc
y

(m
s)

Time (minutes)

Indexed
Queries

Figure 8: Production upgrade from ZKLoglet to NativeLoglet
(log-scale y-axis).

a converged NativeLoglet for the first time on a Delos pro-
duction instance on April 2nd 2019. Switching to a different
log implementation provides substantially lower latency for a
production workload. The graph shows p99 latencies for four
categories of Table operations: we see 10X improvements
for multi-gets and indexed queries, and a 5X improvement
for multi-puts. Additionally, the switch-over happens with-
out downtime: p99 latency spikes for indexed queries during
reconfiguration, but otherwise service availability is not dis-
rupted. The latency improvement is largely due to the unopti-
mized nature of our ZKLoglet implementation, which simply
writes a new sequential ZooKeeper key on each append.

Interestingly, the graph shows two reconfigurations: the
first is a reconfigExtend that seals the ZKLoglet and
switches the active segment to a NativeLoglet, causing the
visible shift in performance; the second, which happens a few
minutes later, is a reconfigTruncate that removes the old
ZKLoglet segment from the VirtualLog, but does not require
a seal (as described in Section 3.2) and hence does not cause
any disruption. The hourly spikes in multi-puts are due to
periodic large writes from the application.

Delos can scale throughput by running over a disaggre-
gated Loglet. In Figure 9, we plot throughput on the x-axis and
p99 latency on the y-axis, for the synthetic workload with 90%
gets and 10% puts. We compare the converged NativeLoglet
vs. the disaggregated LDLoglet. In the top two graphs, the
Delos database runs on production HW with shared SSDs; la-

0
10
20
30
40
50 Prod HW

15ms SLA

La
te
nc
y
(m
s) Puts (NativeLoglet)

Puts (LDLoglet)

0
10
20
30
40
50 Prod HW

La
te
nc
y
(m
s) Gets (NativeLoglet)

Gets (LDLoglet),

0
10
20
30
40
50 Bench HW

La
te
nc
y
(m
s) Puts (NativeLoglet)

Puts (LDLoglet)

0
10
20
30
40
50

0 50 100 150 200

Bench HW

La
te
nc
y
(m
s)

Tput (KOps/s): 10% Puts 90% Gets

Gets (NativeLoglet)
Gets (LDLoglet),

Figure 9: Delos can scale throughput between 10X (top) and
33% (bottom) for different HW types with a disaggregated
LDLoglet instead of a converged NativeLoglet.

tency with NativeLoglet starts rising at 15K ops/s for puts due
to contention between the Loglet and the database. With a dis-
aggregated LDLoglet running on 5 other machines, through-
put scales 10X higher at 150K ops/s without breaching 15ms
p99 latency for either puts or gets. This 10X improvement
is partly due to more HW (twice the machines); better HW
for the log (LDLoglet runs over dedicated NVMe SSDs); and
less I/O contention (the database and log are on different
machines).

In the bottom two graphs, Delos runs on benchmark HW
with dedicated SSDs; the performance hit for the converged
NativeLoglet is less stark due to more IOPS to share between
the log and database, with latency rising for both puts and gets
at around 139K ops/s. The disaggregated LDLoglet provides
33% higher throughput at 190k ops/s. For both types of HW,
disaggregation allows the shared log to utilize a separate,
dedicated set of resources. We get similar results running
against a disaggregated NativeLoglet instead of LDLoglet,
but wanted to highlight Delos’ ability to run over different
consensus implementations.

Delos can switch dynamically between converged and dis-
aggregated modes without downtime. Figure 10 (Left) demon-
strates the ability of Delos to change dynamically between
converged and disaggregated modes, and the utility of doing
so in order to handle workload shifts. In this experiment, we
run the synthetic workload on the high-contention production
HW. We want to maintain a 15ms p99 latency SLA.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 627

1

10

100

1000

0 100200300400500600700

La
te
nc
y
(m
s)

Time (secs)

Put p99
Put p50

0
5
10
15
20
25
30
35

5 7 9

Th
ro
ug
hp
ut
(K
O
ps
/s)

Number of Replicas

NativeLoglet
StripedLoglet

0
200
400
600
800
1000
1200

1 10 20 30 40

Th
ro
ug
hp
ut
(K
O
ps
/s)

Number of 3-node Stripes

StripedLoglet

Figure 10: Left: Delos can dynamically switch from converged (NativeLoglet) to disaggregated (LDLoglet) logging to handle
workload shifts (log-scale y-axis). Middle: StripedLoglet (rotating sequencer) alleviates the sequencer bottleneck as Delos
scales. Right: StripedLoglet (sharded acceptors) scales to 1M+ appends/s for a log-only workload.

For the first 180 secs, we run a constant, low workload of
100 puts/sec; after that, we increase the workload to 2500 put-
s/sec. Delos initially runs over the NativeLoglet, which meets
the 15ms SLA for the low workload. But when the workload
switches, Delos+NativeLoglet is no longer able to keep up
due to I/O contention for the SSDs, with p99 latency degrad-
ing to over a second. At around 530 secs, we reconfigure to
use LDLoglet; this reduces I/O pressure on the local SSDs,
allowing p99 latencies to drop back to under 15ms (after a
60-second lag due to the 1-minute sliding window).

If a disaggregated log provides better throughput and lower
latency, why not always use one? First, disaggregation is inef-
ficient from a resource standpoint for low workloads, using
10 machines compared to 5 with a converged log. Second,
converged Delos does not depend on any external service in
the critical path, which is important for some control plane
applications.

New protocols with useful properties can be implemented
via Loglet composition. In the NativeLoglet, all appends are
routed via the sequencer node. For a 100% 1KB put workload
on a 5-node cluster, Delos is bottlenecked by the IOPS of the
NativeLoglet LogServers. However, when we run Delos over
9 LogServers for higher fault-tolerance, the bottleneck shifts
to the NativeLoglet sequencer, which now has to send out
each entry 8 times. If we instead use a StripedLoglet over 2
NativeLoglets (each with the same set of LogServers but dif-
ferent sequencers), we rotate the sequencing load across two
servers. As Figure 10 (Middle) shows, Delos+StripedLoglet
runs 25% faster than Delos+NativeLoglet with 9 nodes on the
benchmark HW.

We also ran log-only experiments with StripedLoglet in
Figure 10 (Right). We created a StripedLoglet over multi-
ple 3-node NativeLoglets, and appended 1KB payloads from
20 VirtualLog clients. We see linear scaling of throughput
as we go from 1 stripe (3 LogServers) to 30 stripes (i.e.,
90 LogServers); beyond that, our clients became the bottle-
neck. The LogServers run on shared NVMe SSDs, which
provide 30K IOPS with a p99 of 75ms; we report the maxi-

mum throughput for each configuration with a p99 latency of
under 75ms. We obtained similar results with 4KB payloads
(750K appends/s with 30 shards); this is the highest reported
single-log throughput in a non-emulated experiment, exceed-
ing CORFU (570K/s) and Scalog (255K/s). Delos cannot
leverage such a high-throughput log, since it bottlenecks on
log playback; we plan to explore selective playback [8], as
well as compare against Scalog’s higher emulated numbers.

5.2 The Cost of Virtualization

Virtualization is inexpensive in terms of critical path latency.
In most cases, the VirtualLog acts as a simple pass-through
layer. Figure 11 (Left) shows the p99 latency of VirtualLog
and NativeLoglet operations; this data is measured over a
one-hour time period on a production cluster running over
the NativeLoglet. For append and checkTail, virtualization
adds 100-150 µseconds to p99 latency; this is largely due
to the overhead of an asynchronous Future-based API. In
contrast, readNext is a synchronous pass-through call and
adds only a few µseconds.

Reconfigurations occur within 10s of ms. In Figure 11
(Middle), we show a histogram of all reconfigurations
in a 1-month period on our production clusters. Since
reconfigTruncate does not call seal, it has lower latency
than reconfigExtend. For our applications, reconfiguration
latencies of 10s of ms are tenable. The vast majority of these
reconfigurations are triggered by 1) continuous deployment of
software upgrades; and 2) machine preemptions for hardware
maintenance, kernel upgrades, etc. Actual failures constitute a
small percentage of the reconfigurations. In practice, clusters
see a few reconfigurations per day; for example, one of our
production clusters was reconfigured 98 times in the 1-month
period.

Virtualization does not affect peak throughput. We
performed an apples-to-apples comparison of Delos to
ZooKeeper on our benchmark HW. We translate puts into
SetData commands and gets into GetData commands on the

628 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1
10
100
1000
10000
100000

�rea
dr�
x

chr
ckT
eil

epp
rna

p9
9
La
te
nc
y
(m
ic
ro
se
cs
)

NativeLoglet
VirtualLog

0
50
100
150
200
250
300

0 20 40 60 80 100120140160

N
um
be
ro
fR
ec
on
�g
s

Latency (ms)

reconfgTruncate
reconfgExtend

0.1

1

10

100

1000

0 5 10 15 20 25 30 35 40 45

15ms SLA

La
te
nc
y
(m
s)

Tput (KOps/s): 100% Puts

Delphi
ZooKeeper

Delphi InMem

Figure 11: Left: virtualization overhead is low in production: 6 µs for readNext and 100 to 150 µs for append / checkTail p99.
Middle: reconfigurations take tens of ms in production. Right: Delos+NativeLoglet matches ZooKeeper performance.

ZooKeeper API. Since ZooKeeper does not support more
than a few GB of data, we ran with a 1GB database. Figure 11
(Right) shows that ZooKeeper can provide over 30K puts/sec
before p99 latency degrades beyond 15ms. In contrast, De-
los+NativeLoglet manages around 26K puts/sec. The primary
reason for the performance difference is that ZooKeeper stores
its materialized state in memory while Delos uses RocksDB.
We also ran a version of Delos where the materialized state
lives in memory; this prototype hit 40K puts/sec. While stor-
ing state in RocksDB causes a performance hit at small sizes,
it enables us to scale; the Delos+NativeLoglet curve for a 100
GB database (not shown in the graph) is nearly identical to
the 1GB case. These results show that Delos performance is
comparable to unvirtualized systems.

6 Discussion

Virtual consensus provided a number of ancillary benefits for
the operation of Delos.

Fate-sharing... but only when my fate is good: In produc-
tion, Delos typically runs as a converged database with no
external dependencies, where all logic and state (including the
database and the log) resides on a set of 5 machines. However,
the database / learner layer is simultaneously more fragile
than the log / acceptor layer (since it is updated frequently
to add features) and requires lower fault-tolerance (only one
learner needs to survive, compared to a quorum of acceptors).
If two converged replicas crash out of five, another failure can
cause unavailability and data loss for the log. In this situation
(which was not uncommon), we found it valuable to reconfig-
ure the system to a disaggregated log, temporarily decoupling
the fate of the database and the log. Once the database was
restored to five replicas, we reconfigured back. This style
of temporary decoupling also proved valuable when we dis-
covered latent bugs in the NativeLoglet; we reconfigured to
ZKLoglet, rolled out hotfixes, and then reconfigured back.
Currently, switching between converged and disaggregated
logs is a manual operation driven by operators; in the future,

we may explore automated switching.
Consensus is forever... until it’s not: Deletion of arbitrary

entries is typically quite difficult in conventional consensus
protocols. However, with virtual consensus, we can delete
an entry simply by changing the metadata of the VirtualLog.
Similarly, altering written entries is possible via remapping.
We found this kind of surgical editing capability useful when
faced with site-wide outages: on one occasion, a “poison”
entry caused hangs on all learners processing the log.

ZooKeeper over Delos... over ZooKeeper: Virtualization
often enables interesting and practically useful layerings; for
example, it is routine in storage stacks to run a filesystem
over a virtual block device that in turn is stored on a different
instance of the same filesystem. Virtual consensus brings sim-
ilar flexibility to replicated databases: in our current stack, we
have the ability to run our experimental ZooKeeper API over
the VirtualLog, which in turn can run over the ZooKeeper-
based ZKLoglet.

7 Related Work

Virtual consensus builds upon a large body of work in
fault-tolerant distributed systems. Most approaches to re-
configurable replication (including Viewstamped Replica-
tion [32, 38], ZAB [22], Raft [39], Vertical Paxos [27], and
SMART [34]) use protocols for leader election and reconfigu-
ration that are tightly intertwined with the ordering protocol.
Virtual Synchrony [10, 46] is an exception: it uses a unified
view change protocol for leader election and reconfiguration
that sits above the ordering mechanism used within each view.
This unified approach is also found in more recent systems
such as Derecho [21] and CORFU [7]. Reconfiguration has
been explored as a layer above a generic state machine by
Stoppable Paxos [28, 29]; unlike Loglets, the underlying state
machine has to implement fault-tolerant consensus.

Virtual consensus borrows many ideas from this literature,
combines them, and applies them to a production system:
for example, unified leader election and reconfiguration (Vir-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 629

tual Synchrony); a segmented total order with potentially
disjoint configurations (SMART); an external auxiliary (Ver-
tical Paxos); and a generic ordering abstraction (Stoppable
Paxos). However, virtual consensus also differs from all this
prior work in several important aspects. First, we target and
demonstrate diversity in the ordering layer (e.g., deploying
new layers, switching to disaggregated mode, etc.). Second,
the ordering layer is only required to provide a highly avail-
able seal, which is weaker than fault-tolerant consensus and
easier to implement. Finally, virtual consensus applies and
extends these ideas to shared logs, which pose unique op-
portunities (e.g., data-centric APIs that hide complexity) and
challenges (e.g., application-driven trims and explicit reads).

To assess the generality of the Loglet abstraction, we did an
informal survey of recent replication protocols. The majority
of these protocols either directly expose a log API [3,7,16,37,
42] or can be wrapped as a Loglet [14, 15, 22, 24, 31, 35, 39].
Virtualization gives us the ability to easily experiment with
these protocols under Delos and deploy them to production.
Other work – such as protocols that exploit speculation [41]
or commutativity [4, 26, 36] – does not currently fit under the
Loglet API.

Virtual consensus is based on the shared log approach for
building replicated systems; we leverage the existence of
the shared log API as a boundary between the database and
consensus mechanism. Shared logs were first introduced by
CORFU [7] and Hyder [9] as an API for consensus. Subse-
quently, CorfuDB [1] was the first production database to be
deployed over a shared log API. Along similar lines, systems
such as Kafka [23] and LogDevice [3] have become popular in
industry, exposing large numbers of individual, independently
ordered logs. In contrast, research has largely focused on scal-
ing a single log, either via faster ordering protocols [16] or
different forms of selective playback [8,48]. Rather than build
a faster shared log or a more scalable database above it, virtual
consensus seeks to make such systems simpler to build and
deploy as they become commonplace in industry.

8 Conclusion

Virtual consensus enables faster deployment and development
of replicated systems. Reconfiguration and leader election is
encapsulated in a control plane (the VirtualLog) that can be
reused across any data plane (Loglets). Delos is the first sys-
tem that supports heterogeneous reconfiguration, allowing
changes to not just the leader or the set of servers in the sys-
tem, but also the protocol, codebase, and deployment model
of the consensus subsystem. As a result, new systems can
be developed and deployed rapidly (e.g., Delos hit produc-
tion within 8 months by leveraging an external service for its
Loglet); and upgraded without downtime to provide signif-
icantly different performance and fault-tolerance properties
(e.g., we hot-swapped Loglets in production for a 10X latency
reduction).

Acknowledgments

We would like to thank our shepherd, Jay Lorch, and the
anonymous OSDI reviewers. Many people contributed to the
Delos project, including Adrian Hamza, Mark Celani, Andy
Newell, Artemiy Kolesnikov, Ali Zaveri, Ben Reed, Denis
Samoylov, Grace Ko, Ivailo Nedelchev, Mingzhe Hao, Maxim
Khutornenko, Peter Schuller, Suyog Mapara, Rajeev Nagar,
Russ Arun, Soner Terek, Terence Feng, and Vidhyashankar
Venkataraman. Marcos Aguilera, Jose Faleiro, Dahlia Malkhi,
and Vijayan Prabhakaran provided valuable feedback on early
iterations of this work.

References

[1] CorfuDB. https://github.com/corfudb.

[2] etcd. https://etcd.io/.

[3] LogDevice. https://logdevice.io/.

[4] AILIJIANG, A., CHARAPKO, A., DEMIRBAS, M., AND
KOSAR, T. WPaxos: Wide Area Network Flexible Con-
sensus. IEEE Transactions on Parallel and Distributed
Systems 31, 1 (2019), 211–223.

[5] ANNAMALAI, M., RAVICHANDRAN, K., SRINIVAS,
H., ZINKOVSKY, I., PAN, L., SAVOR, T., NAGLE, D.,
AND STUMM, M. Sharding the Shards: Managing Data-
store Locality at Scale with Akkio. In Proceedings of
USENIX OSDI 2018.

[6] ATTIYA, H., BAR-NOY, A., AND DOLEV, D. Sharing
Memory Robustly in Message-Passing Systems. Journal
of the ACM (JACM) 42, 1 (1995), 124–142.

[7] BALAKRISHNAN, M., MALKHI, D., PRABHAKARAN,
V., WOBBER, T., WEI, M., AND DAVIS, J. D. CORFU:
A Shared Log Design for Flash Clusters. In USENIX
NSDI 2012.

[8] BALAKRISHNAN, M., MALKHI, D., WOBBER, T., WU,
M., PRABHAKARAN, V., WEI, M., DAVIS, J. D., RAO,
S., ZOU, T., AND ZUCK, A. Tango: Distributed Data
Structures over a Shared Log. In Proceedings of ACM
SOSP 2013.

[9] BERNSTEIN, P. A., DAS, S., DING, B., AND PILMAN,
M. Optimizing Optimistic Concurrency Control for
Tree-Structured, Log-Structured Databases. In Proceed-
ings of ACM SIGMOD 2015.

[10] BIRMAN, K. P., AND JOSEPH, T. A. Reliable Commu-
nication in the Presence of Failures. ACM Transactions
on Computer Systems (TOCS) 5, 1 (1987), 47–76.

630 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[11] BURKE, M., CHENG, A., AND LLOYD, W. Gryff: Uni-
fying Consensus and Shared Registers. In Proceedings
of USENIX NSDI 2020.

[12] BURROWS, M. The Chubby lock service for loosely-
coupled distributed systems. In Proceedings of USENIX
OSDI 2006.

[13] CAO, Z., DONG, S., VEMURI, S., AND DU, D. H.
Characterizing, Modeling, and Benchmarking RocksDB
Key-Value Workloads at Facebook. In Proceedings of
USENIX FAST 2020.

[14] CHARAPKO, A., AILIJIANG, A., AND DEMIRBAS, M.
PigPaxos: Devouring the communication bottlenecks in
distributed consensus. arXiv preprint arXiv:2003.07760
(2020).

[15] DANG, H. T., CANINI, M., PEDONE, F., AND SOULÉ,
R. Paxos Made Switch-y. ACM SIGCOMM Computer
Communication Review 46, 2 (2016), 18–24.

[16] DING, C., CHU, D., ZHAO, E., LI, X., ALVISI, L.,
AND VAN RENESSE, R. Scalog: Seamless Reconfig-
uration and Total Order in a Scalable Shared Log. In
Proceedings of USENIX NSDI 2020.

[17] FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S.
Impossibility of Distributed Consensus with One Faulty
Process. Journal of the ACM (JACM) 32, 2 (1985),
374–382.

[18] HERLIHY, M. P., AND WING, J. M. Linearizability:
A Correctness Condition for Concurrent Objects. ACM
Trans. Program. Lang. Syst. 12, 3 (July 1990), 463–492.

[19] HOWARD, H., MALKHI, D., AND SPIEGELMAN, A.
Flexible Paxos: Quorum intersection revisited. In Pro-
ceedings of OPODIS 2016.

[20] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED,
B. ZooKeeper: Wait-free Coordination for Internet-
scale Systems. In Proceedings of USENIX ATC 2010.

[21] JHA, S., BEHRENS, J., GKOUNTOUVAS, T., MILANO,
M., SONG, W., TREMEL, E., RENESSE, R. V., ZINK,
S., AND BIRMAN, K. P. Derecho: Fast State Machine
Replication for Cloud Services. ACM Transactions on
Computer Systems (TOCS) 36, 2 (2019), 1–49.

[22] JUNQUEIRA, F. P., REED, B. C., AND SERAFINI, M.
Zab: High-performance broadcast for primary-backup
systems. In Proceedings of IEEE DSN 2011.

[23] KLEPPMANN, M., AND KREPS, J. Kafka, Samza and
the Unix Philosophy of Distributed Data. IEEE Data
Engineering Bulletin, 38 (4) (2015).

[24] KOGIAS, M., AND BUGNION, E. HovercRaft: Achiev-
ing Scalability and Fault-tolerance for microsecond-
scale Datacenter Services. In Proceedings of ACM Eu-
roSys 2020.

[25] LAMPORT, L. The Part-Time Parliament. ACM Trans-
actions on Computer Systems (TOCS) 16, 2 (1998), 133–
169.

[26] LAMPORT, L. Generalized Consensus and Paxos. Mi-
crosoft Research Technical Report MSR-TR-2005-33
(2005).

[27] LAMPORT, L., MALKHI, D., AND ZHOU, L. Vertical
Paxos and Primary-Backup Replication. In Proceedings
of ACM PODC 2009.

[28] LAMPORT, L., MALKHI, D., AND ZHOU, L. Stoppable
Paxos. Microsoft Research Technical Report (unpub-
lished) (2008).

[29] LAMPORT, L., MALKHI, D., AND ZHOU, L. Recon-
figuring a State Machine. SIGACT News 41, 1 (2010),
63–73.

[30] LENERS, J. B., WU, H., HUNG, W.-L., AGUILERA,
M. K., AND WALFISH, M. Detecting failures in dis-
tributed systems with the FALCON spy network. In
Proceedings of ACM SOSP 2011.

[31] LI, J., MICHAEL, E., SHARMA, N. K., SZEKERES, A.,
AND PORTS, D. R. Just say NO to Paxos Overhead:
Replacing Consensus with Network Ordering. In Pro-
ceedings of USENIX OSDI 2016.

[32] LISKOV, B., AND COWLING, J. Viewstamped Replica-
tion Revisited. In MIT Technical Report (2012).

[33] LOCKERMAN, J., FALEIRO, J. M., KIM, J.,
SANKARAN, S., ABADI, D. J., ASPNES, J., SEN, S.,
AND BALAKRISHNAN, M. The FuzzyLog: a Partially
Ordered Shared Log. In Proceedings of USENIX OSDI
2018.

[34] LORCH, J. R., ADYA, A., BOLOSKY, W. J., CHAIKEN,
R., DOUCEUR, J. R., AND HOWELL, J. The SMART
Way to Migrate Replicated Stateful Services. In Pro-
ceedings of ACM EuroSys 2006.

[35] MAO, Y., JUNQUEIRA, F. P., AND MARZULLO, K.
Mencius: Building Efficient Replicated State Machines
for WANs. In Proceedings of USENIX OSDI 2008.

[36] MORARU, I., ANDERSEN, D. G., AND KAMINSKY, M.
There Is More Consensus in Egalitarian Parliaments. In
Proceedings of ACM SOSP 2013.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 631

[37] NAWAB, F., ARORA, V., AGRAWAL, D., AND EL AB-
BADI, A. Chariots: A Scalable Shared Log for Data
Management in Multi-Datacenter Cloud Environments.
In Proceedings of EDBT 2015.

[38] OKI, B. M., AND LISKOV, B. H. Viewstamped Replica-
tion: A New Primary Copy Method to Support Highly-
Available Distributed Systems. In Proceedings of ACM
PODC 1988.

[39] ONGARO, D., AND OUSTERHOUT, J. K. In Search of
an Understandable Consensus Algorithm. In Proceed-
ings of USENIX ATC 2014.

[40] PLOTKIN, S. A. Sticky Bits and Universality of Con-
sensus. In Proceedings of ACM PODC 1989.

[41] PORTS, D. R., LI, J., LIU, V., SHARMA, N. K., AND
KRISHNAMURTHY, A. Designing Distributed Systems
Using Approximate Synchrony in Data Center Net-
works. In Proceedings of USENIX NSDI 2015.

[42] SHIN, J.-Y., KIM, J., HONORÉ, W., VANZETTO, H.,
RADHAKRISHNAN, S., BALAKRISHNAN, M., AND
SHAO, Z. WormSpace: A Modular Foundation for Sim-
ple, Verifiable Distributed Systems. In Proceedings of
ACM SoCC 2019.

[43] SHVACHKO, K., KUANG, H., RADIA, S., AND
CHANSLER, R. The Hadoop Distributed File System.
In Proceedings of IEEE MSST 2010.

[44] TANG, C., YU, K., VEERARAGHAVAN, K., KALDOR,
J., MICHELSON, S., KOOBURAT, T., ANBUDURAI, A.,
CLARK, M., GOGIA, K., CHENG, L., CHRISTENSEN,
B., GARTRELL, A., KHUTORNENKO, M., KULKARNI,
S., PAWLOWSKI, M., PELKONEN, T., RODRIGUES, A.,
TIBREWAL, R., PAWLOWSKI, M., PELKONEN, T., RO-
DRIGUES, A., TIBREWAL, R., VENKATESAN, V., AND
ZHANG, P. Twine: A Unified Cluster Management
System for Shared Infrastructure. In Proceedings of
USENIX OSDI 2020.

[45] VAN RENESSE, R., AND ALTINBUKEN, D. Paxos
Made Moderately Complex. ACM Computing Surveys
(CSUR) 47, 3 (2015), 1–36.

[46] VAN RENESSE, R., BIRMAN, K. P., AND MAFFEIS,
S. Horus: A Flexible Group Communication System.
Communications of the ACM 39, 4 (1996), 76–83.

[47] VERBITSKI, A., GUPTA, A., SAHA, D., BRAHMADE-
SAM, M., GUPTA, K., MITTAL, R., KRISHNAMURTHY,
S., MAURICE, S., KHARATISHVILI, T., AND BAO,
X. Amazon Aurora: Design Considerations for High
Throughput Cloud-Native Relational Databases. In
ACM SIGMOD 2017.

[48] WEI, M., TAI, A., ROSSBACH, C. J., ABRAHAM, I.,
MUNSHED, M., DHAWAN, M., STABILE, J., WIEDER,
U., FRITCHIE, S., SWANSON, S., ET AL. vCorfu: A
Cloud-Scale Object Store on a Shared Log. In USENIX
NSDI 2017.

632 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Byzantine Ordered Consensus without Byzantine Oligarchy

Yunhao Zhang,† Srinath Setty,⋆ Qi Chen,⋆ Lidong Zhou,⋆ and Lorenzo Alvisi†
†Cornell University ⋆Microsoft Research

Abstract
The specific order of commands agreed upon when run-
ning state machine replication (SMR) is immaterial to fault-
tolerance: all that is required is for all correct deterministic
replicas to follow it. In the permissioned blockchains that
rely on Byzantine fault tolerant (BFT) SMR, however, nodes
have a stake in the specific sequence that ledger records, as
well as in preventing other parties from manipulating the se-
quencing to their advantage. The traditional specification of
SMR correctness, however, has no language to express these
concerns. This paper introduces Byzantine ordered consensus,
a new primitive that augments the correctness specification of
BFT SMR to include specific guarantees on the total orders
it produces; and a new architecture for BFT SMR that, by
factoring out ordering from consensus, can enforce these guar-
antees and prevent Byzantine nodes from controlling ordering
decisions (a Byzantine oligarchy). These contributions are in-
stantiated in Pompē,1 a BFT SMR protocol that is guaranteed
to order commands in a way that respects a natural extension
of linearizability.

1 Introduction
This paper aims to add a new dimension to state machine
replication (SMR) [62], a fundamental building block in fault-
tolerant distributed computing, by introducing a way to ex-
press, reason about, and enforce specific properties about how
the SMR protocol orders the commands it receives.

SMR coordinates a set of replicas of a deterministic service
so that, collectively, they implement the abstraction of a single,
correct server. In particular, the protocol sequences client-
issued requests to produce a total order, which correct replicas
then follow when processing the requests. As long as the
system includes sufficiently many correct replicas, voting on
replica outputs guarantees that clients of the replicated service
can recognize and accept only output values that would have
been generated by a correct server.

SMR totally orders client requests by running an instance
of consensus for each position in the request sequence. The
only requirement on the sequence agreed upon is that it even-
tually contains all requests from correct clients. Indeed, if all
SMR is used for is fault-tolerance, no further legislation is
necessary: the specific sequence of states that correct replicas
traverse is immaterial.

1The urban ritual of the pompē (πομπή, or procession) was central to civic
and religious life in the Byzantine empire.

Not so, however, when SMR is used (typically, in a Byzan-
tine fault tolerant (BFT) configuration) across multiple ad-
ministrative domains to support a blockchain. Consider, for
instance, permissioned blockchains like Libra [3], CCF [60],
or HyperLedger Fabric [6]: the specific order of transactions
held by their ledger can have significant financial implica-
tions [24, 47]. The nodes running these protocols are not
just interested in converging on an agreed-upon ledger: they
have a real stake in the specific sequence that ledger records,
as well as in preventing other parties from manipulating the
sequencing to their advantage.

The traditional specification of correctness for (BFT) SMR,
however, has no language for addressing such concerns; be-
cause it attaches no significance to the sequence it produces,
it is intrinsically incapable of characterizing what makes a
total order “right” or “wrong”.

Our aim in this paper is to introduce a framework for ex-
pressing and enforcing such distinctions. A key challenge
is that the lack of expressiveness in the correctness specifi-
cation of SMR has deep architectural roots. Specifically, in
standard leader-based SMR [16, 43], the ordering of a com-
mand is hardcoded in the protocol that adds the command to
the ledger: the leader runs concurrently a set of consensus
instances, each dedicated to filling a specific ledger position
with a command of its choosing.

Thus, we pursue a two-pronged approach: for expressive-
ness, we expand the correctness specification of the BFT SMR
primitive; for enforcement, we articulate a new architecture
for BFT replication that makes it possible to implement in
practice our newly-introduced correctness requirements.

Our first contribution is to introduce Byzantine ordered
consensus, a new primitive that augments the correctness
specification of BFT SMR to include the enforcement of
specific guarantees on the total orders it produces. The new
specification allows the nodes that implement a replicated
state machine to associate an ordering indicator to the com-
mands they ultimately agree upon. Through these indicators,
nodes can express how they would like commands to be or-
dered with respect to one another. The correctness conditions
for Byzantine ordered consensus specify, given a set of input
⟨ordering indicator, command⟩ pairs, the set of allowable total
orders for the commands.

To identify meaningful correctness conditions in the pres-
ence of Byzantine nodes, we draw inspiration from classic
work in social choice theory [7, 9, 11] and explore the lim-
its of what can be guaranteed in the presence of Byzantine

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 633

nodes. In particular, we ask: is it possible to prevent Byzantine
nodes from dictating the ordering of commands? And, at the
other end of the spectrum, is it possible to completely prevent
Byzantine nodes from wielding influence on that order? We
find that, while eliminating Byzantine influence is provably
impossible, new mechanisms can prevent the establishment
of a Byzantine oligarchy.

Simply expressing these correctness conditions, however,
is not enough: we need the means to enforce them. Our second
main contribution is to introduce a new general architecture
for BFT protocols that factors ordering out of consensus: it
cleanly separates the process of establishing the relative order
of commands from the consensus step necessary to add those
ordered commands to the ledger. This separation completely
eliminates the leader’s ability to control a command’s position
in the ledger; at the same time, it retains the simplicity and
efficiency of having a leader in charge of the consensus step.

Finally, we design, implement, and evaluate Pompē, a BFT
SMR protocol based on Byzantine ordered consensus that
enforces ordering linearizability, a new correctness condition
that prevents a Byzantine oligarchy and offers correct nodes a
meaningful guarantee about the order ultimately recorded in
the ledger. Informally, it ensures that if the lowest timestamp
that any correct node assigns to command c2 is larger than the
highest timestamp that any correct node assigns to c1, then c1
will precede c2 in the ledger.

We implement Pompē by extending prior state-of-the-art
BFT implementations [1, 2]. Our experimental evaluation
demonstrates that while Pompē incurs higher latencies than
its baselines, Pompē can achieve higher throughput at com-
petitive latencies by batching commands in both the ordering
step and the consensus step. For example, with n = 4 nodes
in a single datacenter, a version of Pompē that extends order-
ing linearizability to HotStuff [2, 67] achieves a throughput
of approximately 360,000 commands/s at a latency of about
53 ms, which corresponds to 40% higher throughput and 6%
higher latency than HotStuff. Additionally, since in Pompē
nodes can order multiple commands in parallel, we find that,
if the computing resources assigned to each node are scaled
up proportionally with the number of nodes, Pompē can sus-
tain its high throughput in settings with 100 nodes distributed
over three geo-distributed datacenters.

2 Background and motivation
The increasing popularity of blockchains as a platform for co-
operation and data sharing among mutually distrustful parties
has brought about a renewed interest in Byzantine fault toler-
ance (BFT). In particular, permissioned blockchains, which
promise a platform for executing commands without trusting
a centralized authority, have adopted as their core the standard
BFT SMR architecture [62]. Transitioning BFT to this new
application domain has introduced some new challenges. One
that has received much attention is scalability. Traditional
BFT SMR protocols have typically targeted deployments in-

volving a number of nodes in the single digits, while some
permissioned blockchains envision running BFT at scales that
are two orders of magnitude or larger. A new breed of BFT
SMR protocols have raised to this challenge, finding clever
ways to pipeline requests and streamline the communication
required to achieve consensus [10, 31, 50, 54, 68].

In this paper we address a different challenge that emerges
when applying BFT SMR in a blockchain context, one funda-
mental enough to bring into question whether this primitive is
sufficiently expressive to serve as the basis for this new class
of applications.

Consider the correctness specification of SMR: it requires
all correct nodes replicating a service to traverse the same
set of states and produce the same outputs. If replicas are
deterministic, an expedient way to satisfy this requirement is
to ensuring that all correct replicas process the same sequence
of inputs: identical inputs translate into identical states and
outputs. As long as these inputs are valid client commands,
the correctness specification assigns no semantic meaning to
the particular order in which they are executed by the replicas:
that order is simply a syntactic mechanism used to achieve
the desired safety property.

In blockchains, however, the specific order adopted by the
underlying SMR protocol tends to have rich semantic impli-
cations, which often translate into substantially different fi-
nancial rewards for the parties involved. Allowing some users
to front-run their commands ahead of others clearly gives
them an unfair advantage in applications such as auctions and
exchanges [47, 57]; indeed, a recent paper [24] details how
bots have reaped from unsuspecting parties profits in excess
of $6M by replicating, within the Ethereum network, transac-
tion manipulation strategies already notorious in traditional
exchanges [47]. Yet, order manipulation (including censor-
ship, selective inclusion, command reordering, and command
injection) does not, per se, violate the specification of SMR,
the technology at the core of projects like Libra [3].

Unfortunately, adding the “BFT” qualifier to SMR does not
help address these concerns: all it does is to ensure that the
standard SMR specification continues to hold even if some
nodes are Byzantine. The crux, rather, is that the correctness
expectations of blockchain users do not stop at requiring all
ledgers to hold the same total order: which order matters.

A symptom of the discomfort caused by this semantic gap
is the growing focus on curbing the discretion of the single
node that, in Paxos-like BFT SMR, leads the consensus de-
cisions: if Byzantine, this leader node can single-handedly
control the ledger’s order. Proposed solutions include rotating
leaders [13, 21, 68]; holding leaders accountable for their ac-
tions [33, 35]; or developing outright “leaderless” protocols
that give no node a special role in the execution of consen-
sus [23, 44, 54]. These efforts are a step in the right direction,
but they also, arguably, miss the point. While it is clear enough
that leaving a single leader in full control of the ledger’s order
is undesirable, they fiddle with a low-level mechanism with-

634 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

out offering a way to express the correctness guarantees that
such mechanisms, whatever they may be, should enforce. Re-
cent work on order-fairness [38], concurrent with ours, takes a
further step forward by adding to consistency and liveness the
additional requirement of transactional order-fairness; how-
ever, it offers neither a general framework for synthesizing
desirable ordering guarantees from the ordering preferences
of individual nodes, nor tries to precisely characterize the
degree to which Byzantine nodes can affect ordering.

This paper argues that the correct approach to bridge the
current semantic gap is instead to start from first principles.
Thus, we introduce a new primitive, Byzantine ordered con-
sensus, that expands the correctness specifications of BFT
SMR so it can express specific correctness guarantees about
the total orders it produces. Inspired by classic work in so-
cial choice theory [7, 9, 11], Byzantine ordered consensus
lets participating nodes not only propose commands, but also
indicate how they prefer to see them ordered. Essentially,
Byzantine ordered consensus makes it possible to specify
which total orders a correct BFT SMR is allowed to produce,
given the nodes’ ordering preferences. For example, assuming
that nodes use as their ordering preference the time they first
see a command, we show that it is possible to require total
orders that satisfy a natural generalization of linearizability:
ordering linearizability, which ensures that, if the highest
timestamp from all correct nodes for command c1 is lower
than the lowest timestamp from all correct nodes for c2, c1 is
ordered before c2.

The design space for ordering properties that we explore is
delimited by two overarching concerns. On the one hand, we
want to curb as much as possible the clout of Byzantine nodes;
on the other hand, we want to ensure that the preferences of
correct nodes will carry weight in the final ordering.

These goals can sometimes align; in particular, when it
comes to preventing Byzantine nodes from solely controlling
the ledger’s final ordering. As we noted above, the standard
approach to BFT SMR allows a Byzantine leader to alone dic-
tate which command commits in which consensus instance,
independent of what other nodes prefer. We aim for, and de-
fine, guarantees (such as ordering linearizability) that prevent
such Byzantine dictatorships. Indeed, we show that it is pos-
sible to rule out a Byzantine oligarchy, in which Byzantine
nodes are jointly able to determine the ordering decisions,
regardless of the correct nodes’ ordering preferences.

Sometimes, however, we find these goals fundamentally
at odds with one another: in particular, we find that ensuring
that each correct node has a saying in the final order makes
it impossible, in general, to completely prevent Byzantine
nodes from influencing the final order. This is the price, if
you wish, of operating in a Byzantine democracy.

3 Byzantine ordered consensus
Byzantine ordered consensus generalizes BFT SMR to expose
the ordering aspect explicitly, but preserves the same system

model, which consists of a distributed system of n nodes
(with at most f Byzantine faults) that act as clients as well
as servers: they both propose commands and execute them.
This model simplifies our presentation without any loss of
generality; we discuss how it relates to different real-world
deployment scenarios in Section 8.

Ordering indicators. As in standard BFT SMR, nodes in
Byzantine ordered consensus propose commands as inputs
and output a consistent totally-ordered ledger. Unlike standard
BFT SMR, each node associates a proposed command c with
an ordering indicator o, which is metadata indicating the
node’s ordering preference for c, so proposals are of the form
⟨o, c⟩. Let O denote the set of ordering indicators; we define
an order-before relation≺o onO×O as follows: For any pair
of proposals ⟨o1, c1⟩ and ⟨o2, c2⟩, where o1, o2 ∈ O, o1 ≺o o2
indicates a preference to order c1 before c2.

Examples of ordering indicators include timestamps, se-
quence numbers, and dependency sets or graphs. For time-
stamps (or sequence numbers), the order-before relation ≺o

can simply be the < relation on timestamps (or sequence
numbers), while for dependency sets/graphs, ≺o can be the
subset/subgraph relation on dependency sets or graphs.

Profiles, executions, and traces. We refer to a set of ⟨o, c⟩
proposals as a profile. Let P i and PC denote, respectively, the
set of proposals from node i and the set of proposals from all
correct nodes. Given a command c, we say that c ∈ PC if and
only if there exists a correct node i and an ordering indicator
o, such that ⟨o, c⟩ ∈ P i.

In an execution, correct nodes follow their prescribed pro-
tocol and input their proposals from PC , whereas Byzantine
nodes and the network are under the control of an adversary.
For a given profile, an execution can produce different traces;
each trace captures a single deterministic run of the protocol,
recording the behavior of all nodes (both correct and Byzan-
tine) as well as of the adversarial network. Although all traces
of an execution take as input the same PC , the content of
the ledger on which correct nodes agree may be different for
different traces, because of the actions of Byzantine nodes or
the behavior of the network. But what is the degree to which
Byzantine nodes can exert their influence on a given protocol?
And what is the price to curb it?

The politics of Byzantium. A minimum guarantee that any
protocol should offer is to make it impossible for Byzantine
nodes to dictate the ordering of the ledger’s entries. It is out of
concern for ensuring this guarantee that recent work in BFT
SMR has focused on limiting the leader node’s discretion in
making ordering decision. The formal structure offered by
Byzantine ordered consensus allows us to move past the inad-
equacies of the current mechanisms used to drive consensus
and focus instead on a precise characterization of what any
such mechanism should guarantee. In particular, we capture
the intuition that Byzantine nodes can dictate the ordering
decisions through the notion of Byzantine oligarchy.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 635

Byzantine Oligarchy. A protocol execution is subject to a
Byzantine oligarchy if and only if, for all profiles of correct
nodes PC , for all pairs of commands c1 and c2 in PC , there
exists a trace for PC that results in c1 before c2 in the ledgers
of correct nodes and another trace for PC that results in c2
before c1 in the ledgers of correct nodes.

Intuitively, this definition conveys that, in a Byzantine oli-
garchy, the actions of Byzantine nodes can determine the
ordering of any two commands c1 and c2, regardless of the
ordering indicators from correct nodes.

Can we do more, and completely eliminate any influence
of Byzantine nodes over the ledger’s final ordering? The
framework offered by Byzantine ordered consensus allows
us to prove that this target can be achieved only at the price
of denying correct nodes a voice in the ordering decision.
The intuition is simple: since in general it is impossible to
distinguish a priori between correct and Byzantine nodes, a
policy that enfranchises the first group necessarily also gives
some influence to the second.

To formalize this intuition, we introduce two new notions.
First, we express what it means for a protocol to allow the
ordering preferences of its nodes to influence the ledgers’ final
total order. Note that, if a node can influence the outcome,
then there will be some circumstances in which the node’s
preferences will actually determine the outcome. The second
notion we introduce characterizes the impact of according
such influence to a Byzantine node.

Free Will. We say that a protocol respects the nodes’ free
will if and only if (i) for all profiles of correct nodes PC , there
exists a trace for PC , such that all commands in PC appear
in the ledgers of correct nodes in the trace and (ii) there exist
two profiles PA and PB, such that, for all commands c1 and
c2 that appear in both profiles, there exists a trace for PA that
results in c1 before c2 in the ledgers of correct nodes and there
exists a trace for PB that results in c2 before c1 in the ledgers
of correct nodes.

Free will rules out (i) arbitrarily denying proposed com-
mands and (ii) trivial and predetermined ordering mechanisms
(e.g., ordering commands by their hash values) .

Byzantine Democracy. We say that a protocol upholds
Byzantine democracy if and only if there exists a profile of
correct nodes PC , such that for all pairs of commands c1 and
c2 in PC , there exists a trace for PC that results in c1 before
c2 in the ledgers of correct nodes and another trace for PC

that results in c2 before c1 in the ledgers of correct nodes.
Unlike a Byzantine oligarchy, a Byzantine democracy gives

Byzantine nodes sway over the final ledger only for some
profiles of correct nodes, rather than all of them.

We are now ready to formulate a theorem that places fun-
damental limits to the degree to which it is possible to curb
the influence of Byzantine nodes.

Theorem 3.1. Free will =⇒ Byzantine democracy.

Proof. Consider the following n + 1 profiles, where P#1 =

PA and P#n+1 = PB and every node proposes the same com-
mands (though, possibly, with different ordering preferences)
in PA and PB.

PA = P#1 = P1
A ∪ P2

A ∪ ... ∪ Pn−1
A ∪ Pn

A

P#2 = P1
B ∪ P2

A ∪ ... ∪ Pn−1
A ∪ Pn

A

P#3 = P1
B ∪ P2

B ∪ ... ∪ Pn−1
A ∪ Pn

A

...

P#n = P1
B ∪ P2

B ∪ ... ∪ Pn−1
B ∪ Pn

A

PB = P#n+1 = P1
B ∪ P2

B ∪ ... ∪ Pn−1
B ∪ Pn

B

In profile P#i, the proposals of the first i− 1 nodes are the
same as in as in PB; those of the other n− i + 1 nodes are the
same as in PA. Because free will (condition (ii)) holds, there
is a trace for P#1 for which the ledgers of correct nodes order
c1 before c2, and a trace for P#n+1 where instead they appear
in the opposite order. And, also because free will (condition
(i)) holds, for each index k, there exists a trace for P#k, such
that c1 and c2 appear in the final ledgers. Then, there must
exist some index i for which the relative order of c1 and c2
switches when going from P#i to P#i+1. Consider the the
smallest such i. P#i and P#i+1 only differ in what node i
proposes: in P#i node i’s proposals come from PA; in P#i+1,
they come from PB. Hence, by choosing whether to P i

A or P i
B,

node i determines the relative order of c1 and c2.
If i is Byzantine, then Byzantine democracy holds for the

following correct profile:

PC = P1
B ∪ ... ∪ P i−1

B ∪ P i+1
A ... ∪ Pn

A

The definition of Byzantine democracy makes clear that
there exist some profiles that allow Byzantine nodes to con-
trol ordering decisions. A natural question then is: can we
design protocols that, by construction, enforce guarantees
that specify profiles on which Byzantine nodes can have no
influence? And what would such properties look like? We
address the second question next, leaving the answer to the
first to Section 4.

Ordering properties. Since under standard BFT assump-
tions (Section 4) correct nodes are more than two thirds of
the total (a supermajority!), the profiles less likely to be influ-
enced by Byzantine nodes are intuitively those in which the
voting preferences of correct nodes are aligned. We examine
two natural ordering properties that one might want to see
holding in such profiles; other definitions are possible.

The first requires that, if the ordering indicators of correct
nodes are unanimous on how to relatively order two com-
mands, their preference should be reflected in the final ledger.
Ordering unanimity: For all profiles of correct nodes PC ,
for all commands c1 and c2 that appear in PC and in the

636 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ledgers of correct nodes, if, for every correct node i, ⟨o1, c1⟩ ∈
P i ∧ ⟨o2, c2⟩ ∈ P i ⇒ o1 ≺o o2, and there exists at least one
correct node j, such that ⟨o1, c1⟩ ∈ P j ∧ ⟨o2, c2⟩ ∈ P j holds,
then c1 must precede c2 in the ledgers of correct nodes.

The second ordering property is inspired by linearizabil-
ity [36], which orders a command c1 before a command c2 if
the first ends before the second starts.
Ordering linearizability: For all profiles of correct nodes PC ,
for all commands c1 and c2 in PC and in the ledgers of correct
nodes, let O1 = {o1|⟨o1, c1⟩ ∈ PC} and O2 = {o2|⟨o2, c2⟩ ∈
PC}, if o1 ≺o o2 holds for all o1 ∈ O1 and o2 ∈ O2, then c1
must precede c2 in the ledgers of correct nodes.

Informally, the “lowest” and “highest” ordering indicators
in O1 (or O2) indicate when c1 (or c2) start and end in the
collective perception of correct nodes. Hence, by analogy
with linearizability, if all ordering indicators in O1 are lower
than those in O2, then c1 is to be ordered before c2.

Unfortunately, even when correct nodes are unanimous,
their wishes are not guaranteed to come true. The issue again
arises from the tension between the desire of giving a voice
to every correct node and the inability to distinguish a priori
between correct and Byzantine nodes.

Theorem 3.2. No protocol can uphold both free will and
ordering unanimity.

Proof (sketch). Consider the four-node profile (f = 1) in
Figure 1. It is an example of what classic social choice theory
calls a Condorcet cycle [11, 22]: for any two commands ci

and ci+1 (modulo 4) , three nodes prefer the first before the
second; the fourth begs to differ.

P1 = {⟨1, c1⟩, ⟨2, c2⟩, ⟨3, c3⟩, ⟨4, c4⟩}
P2 = {⟨1, c2⟩, ⟨2, c3⟩, ⟨3, c4⟩, ⟨4, c1⟩}
P3 = {⟨1, c3⟩, ⟨2, c4⟩, ⟨3, c1⟩, ⟨4, c2⟩}
P4 = {⟨1, c4⟩, ⟨2, c1⟩, ⟨3, c2⟩, ⟨4, c3⟩}

FIGURE 1—A Condorcet cycle

Since any single node may be Byzantine, the requirement
of ordering unanimity applies to all ordering preferences
endorsed by at least three nodes—but in this example they
form a cycle, and thus cannot be all satisfied.

Like ordering unanimity, ordering linearizability also
promises to respect the collective preferences of correct nodes;
fortunately, unlike the former property, it is achievable. What
allows ordering linearizability to escape the Condorcet cy-
cle trap is a simple insight: it expresses ordering preferences
in terms of real-time happened before, a relation that is in-
herently acyclical. Indeed, as we show next, it is not only
achievable, but can be efficiently implemented.

4 Pompē
Pompē is a new protocol explicitly designed for Byzantine
ordered consensus that preserves the same interface as a stan-

dard BFT protocol: clients propose commands and correct
nodes reach consensus on a sequence of committed com-
mands. In addition to satisfying the standard safety and live-
ness properties of BFT SMR, Pompē introduces an ordering
phase for Byzantine ordered consensus and prevents Byzan-
tine oligarchies by enforcing ordering linearizability.

A new architecture. Pompē’s two-phase architecture is de-
signed to mirror the decoupling of ordering from consensus
made possible by the ordered consensus primitive. First, an
ordering phase decides the total ordering of commands, “lock-
ing” the relative position among the commands proposed in
this phase in a way that Byzantine nodes cannot alter; then, a
consensus phase allows all correct nodes to agree on a stable
prefix of the final sequence, following the total ordering deci-
sions in the ordering phase, and to record it in the ledger. We
refer to commands in the ledgers of correct nodes as stable
commands. Note that, since the total order of commands that
have completed the ordering phase cannot be changed during
the consensus phase, it is again safe to put a single leader node
in charge of finalizing consensus. Thus, Pompē can retain the
performance benefits of leader-based BFT SMR without fears
of enabling a Byzantine oligarchy.

System model. As in prior works in the BFT SMR literature,
we consider a distributed system with a set of n = 3f + 1
nodes, where up to f nodes can be Byzantine (i.e., deviate arbi-
trarily from their prescribed protocol) and the rest are correct.
We assume the existence of standard cryptographic primi-
tives (unforgeable digital signatures and collision-resistant
hash functions) and that cryptographic hardness assumptions
necessary to realize these primitives hold. Furthermore, we
assume that each node holds a private key to digitally sign
messages, and that each node knows the public keys of other
nodes in the system. We consider an adversarial network that
can drop, reorder, or delay messages. However, for liveness
properties, we assume that the network satisfies a weak form
of synchrony [16, 27, 28]. Finally, we assume that each node
has access to a timer, which produces monotonically increas-
ing timestamps each time it is queried.

4.1 Protocol description

We now describe how Pompē instantiates each of the phases
in our new architecture. Throughout the protocol, we assume
that correct recipients of messages that are not well-formed
(e.g., because they carry an incorrect signature) will drop
them: we omit these actions in the interest of brevity.

(1) Ordering phase. Pompē uses timestamps as ordering
indicators. To “lock” a position for a command in a total
order, Pompē proceeds in two steps.

In the first step, a node Ni with a command c collects
signed timestamps on c from a quorum of 2f + 1 nodes. The
median timestamp in the set of 2f + 1 signed timestamps is
the assigned timestamp for c, and it determines the position
of c in the total order. Because there are at most f Byzantine

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 637

nodes, by picking the median value, the assigned timestamp
is both upper- and lower-bounded by timestamps from correct
nodes. This is the key observation that allows the protocol to
achieve ordering linearizability.

To lock this position in the total order for c, in the second
step Ni broadcasts c along with its assigned timestamp and
waits for it to be accepted by a quorum 2f + 1 nodes (we
explain below what it means for a command to be accepted). If
a command c is accepted by a quorum of 2f +1 nodes, c is not
only guaranteed to be included in the totally-ordered ledgers
of correct nodes, but also that its position in the ledgers is
determined by the assigned timestamp of c. We refer to such
commands as sequenced.

Local state. Each node maintains the following local data
structures: (1) localAcceptThresholdTS, an integer, initialized
to 0, that tracks what Nj believes to be, currently, the latest
possible timestamp of any stable command in the ledger;
(2) localSequencedSet, a set, initially empty, that tracks all
commands that the node has accepted; (3) highTS, an n-sized
vector of integers where highTS[i], initialized to 0, stores the
highest timestamp received from node Ni; and (4) highTSMsgs,
an n-sized vector of messages where highTSMsgs[i], initialized
to null, stores the message signed by node Ni that carried the
value currently stored in highTS[i].

To complete our discussion of each node’s local state, we
first need to introduce a simple protocol that nodes use to
update their timers.

The protocol. Let T be the (f + 1)th highest timestamp in
highTS. Because at most f nodes are Byzantine, T is upper-
bounded by a timestamp from a correct node. Let each node
reset its timer to T whenever T is higher than the current
value of the local timer. Periodically, each node broadcasts its
current value of T in a Sync message to indicate that all correct
nodes can now set their timer to be T or higher. To prove to
its recipients that the T value is valid, the Sync message also
includes the sender’s highTSMsgs vector. □

We are now ready to define two additional data structures:
(4) globalSyncTS stores the highest T received so far in a Sync
message; and (5) localSyncTS stores instead the node’s local
timestamp at the time it received that Sync message.

Actions. Each node Ni with a command c executes the
following two steps to lock a position for c in a total ordering
of commands:

1. Ni broadcasts ⟨RequestTS, c⟩σNi
and waits for responses

from 2f + 1 nodes, where σNi is a signature on the payload
using Ni’s private key.

• A node Nj responds with ⟨ResponseTS, c, ts⟩σNj
, where ts

is a timestamp from Nj’s local timer.

2. Ni broadcasts ⟨Sequence, c, T⟩σNi
, where T is a set of 2f + 1

responses received in the first step, and waits for responses
from a quorum of 2f + 1 nodes.

• A node Nj accepts the broadcast message and adds

it to its localSequencedSet if the assigned timestamp
of c is higher than localAcceptThresholdTS. If so, Nj re-
sponds with ⟨SequenceResponse, ack, h⟩σNj

; otherwise, it
responds with ⟨SequenceResponse, nack, h⟩σNj

, where h
is the cryptographic hash of the Sequence message.

The second step above is crucial to establish stable prefixes
in the sequence of commands. Intuitively, it requires every
correct node Nj to refuse sequencing commands if their time-
stamp may be lower than that of a stable command. Note that,
during sufficiently long periods of synchrony (which are nec-
essary for liveness), nodes can get their commands sequenced
in just two round-trips—a lower latency than recent BFT pro-
tocols [18, 68]. However, sequenced commands are not yet
suitable for execution until they become stable: only then they
are guaranteed that commands with lower timestamps will
not be sequenced.

Nodes can execute commands speculatively in their localSe-
quencedSet, but they must wait for the consensus phase to
finish before externalizing output and be ready to perform
selective reexecution if their speculation is incorrect.

(2) Consensus phase. The principal goal of the consensus
phase is to ensure that all correct nodes agree that a certain
prefix of the total order constructed in the previous phase is
now stable, meaning that the prefix is forever immutable.

To accomplish this, Pompē employs any standard leader-
based BFT SMR protocol (e.g., [16, 31, 68]) that offers a
primitive to agree on a value for each slot in a sequence
of consensus slots. We generically refer to this protocol as
Consensus. For simplicity, we assume that each consensus slot
is associated with non-overlapping time intervals [ts, ts′) such
that ts′ > ts, and that for the first consensus slot ts = 0. We
further assume that the mapping from consensus slot numbers
to time intervals is common knowledge. In practice, this can
be implemented by making the interval of the first consensus
slot as [0,τ), where τ is the system initialization time, and
then assigning each subsequent consensus slot a fixed window
of time (e.g., [ts, ts + 100 ms)). Note that this does not mean
that nodes must agree on a value during these time intervals.

For liveness, Pompē relies on a bound ∆ on the sum of
two terms: the maximum difference ∆1 between the values
returned, at any time, by local timers of correct processes,
which in turn depends on the time it takes for a Sync to travel
from one node to another and be processed at the recipient;
and the maximum time ∆2 needed by a correct node to exe-
cute the ordering phase (we assume that these bounds include
additional slack to account for clock drifts across nodes).
Pompē’s safety properties hold even when ∆ does not hold,
but, during sufficiently long periods of synchrony (which is
necessary for liveness), we assume that the bound holds for
proving liveness (Section 4.2).

Local state. The local state of each node is a totally-
ordered ledger, initially empty.

Actions. Suppose that consensus slot k maps to time inter-

638 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

val [ts, ts′), meaning that all commands with assigned time-
stamp in this interval are expected to be included in this slot.
If node Ni wishes to serve as a leader in reaching consensus
on a value for slot k using Consensus, it proceeds as follows.

1. Ni broadcasts ⟨Collect, k⟩σNi
, and waits for responses from

2f + 1 nodes.

• Node Nj waits until two conditions hold. First, the value
of Nj’s globalSyncTS is higher than ts′, meaning that some
node sent Nj a Sync message with T ≥ ts′. Second, since
that Sync message was received, a time interval of at
least ∆ has elapsed on Nj’s timer (i.e., Nj’s timer reads
at least localSyncTS +∆). Note that, during sufficiently
long periods of synchrony, these delays give all correct
nodes enough time to sequence all their commands with
assigned timestamps lower than ts′ before Nj advances
its localAcceptThresholdTS to ts′. In more detail, after ∆1,
all correct nodes should have received and processed a
Sync message with T ≥ ts′ to set their local timer to be
at least T , so after this point, any new command entering
the ordering phase will not have an assigned timestamp
lower than ts′. After an additional ∆2, any command
with an assigned timestamp lower than ts′ must have
completed the ordering phase.

• Nj updates its localAcceptThresholdTS ←
max(ts′, localAcceptThresholdTS).

• Nj responds with ⟨CollectResponse, k,S⟩σNj
, where S is

the set of messages in the localSequencedSet of Nj with
assigned timestamps in the interval [ts, ts′).

2. Ni runs Consensus to agree on value U for consensus slot
k, where U is the union of CollectResponse messages from
2f + 1 nodes for consensus slot k.

Constructing a totally-ordered ledger. Once a prefix of
consensus slots are agreed upon, nodes can construct a totally-
ordered prefix of the ledger by sorting commands in each slot
(of the prefix) by their assigned timestamps, breaking ties
by their cryptographic hashes. When a node adds a proposal
to its totally ordered ledger, it can execute them in the order
specified by the ledger.

4.2 Proofs of safety and liveness

This section proves that Pompē satisfies ordering lineariz-
ability and a strengthened version of liveness in addition to
standard safety properties.

Theorem 4.1 (Consistency). For every pair of correct nodes
Ni and Nj with local ledgers Li and Lj, the following holds:
Li[k] = Lj[k] ∀k :: 0 ≤ k ≤ min(len(Li), len(Lj)), where
len(·) computes the number of entries in a ledger.

Proof. By the safety properties of BFT SMR, every pair of
correct nodes agrees on the same value for each consensus slot.
Furthermore, the transformation from values in consensus
slots to a totally-ordered ledger is deterministic. Together,

these observations imply the desired result.

Theorem 4.2 (Validity). If a correct node appends a com-
mand c to its local totally-ordered ledger, then at least one
node in the system proposed c in the ordering phase.

Proof. Each command in the ledger of a correct node is con-
structed from a valid value agreed upon in one of the con-
sensus slots. Furthermore, for a given consensus slot k with
assigned time interval [ts, ts′), by our construction, a valid
value is a set of CollectResponse messages for slot k from at
least 2f + 1 nodes, where each CollectResponse contains com-
mands with timestamps in the interval [ts, ts′). Additionally,
for a command to have an assigned timestamp, it must have
been proposed in the first step of the ordering phase. Together,
these observations imply the statement of the theorem.

Lemma 4.1. The assigned timestamp of a command is
bounded by timestamps provided by correct nodes.

Proof. By assumption, there are at most f Byzantine nodes.
Thus, at least f + 1 (out of 2f + 1) timestamps provided in the
ordering phase for a given command are from correct nodes.
Furthermore, the assigned timestamp of a command discards f
lowest and f highest timestamps in the 2f +1 ResponseTS mes-
sages, thus the assigned timestamp of a command is bounded
by timestamps provided by correct nodes.

Theorem 4.3 (Ordering linearizability). If the highest time-
stamp provided by any correct node for a command c1 is
lower than the lowest timestamp provided by any correct
node for another command c2 and if both c1 and c2 are com-
mitted, then c1 will appear before c2 in the totally-ordered
ledgers constructed by correct nodes.

Proof. By Lemma 4.1, the assigned timestamp of a command
is bounded by timestamps provided by correct nodes. As a
result of this and the pre-condition in the statement of the
theorem, the assigned timestamp of c1 will be smaller than
the assigned timestamp of c2. Thus, if both c1 and c2 are
committed, c1 will appear before c2 in the totally-ordered
ledgers of correct nodes because nodes sort commands by
their assigned timestamps.

Lemma 4.2. During sufficiently long periods of synchrony,
a correct node can get its command (along with its assigned
timestamp) added to localSequencedSet of at least 2f +1 nodes.

Proof (sketch). Suppose a correct node executes the first step
of the ordering phase for its command c and obtains an as-
signed timestamp of ts. During sufficiently long periods of
synchrony, by the choice of ∆, a Sequence message that in-
cludes c will reach 2f + 1 correct nodes and be added to their
localSequencedSet before they advance their localAcceptThresh-
oldTS past ts, which implies the statement of the lemma.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 639

Lemma 4.3. If a command c with assigned timestamp ts is
added to localSequencedSet of at least 2f +1 nodes, then c will
eventually be included in the value committed by a unique
consensus slot whose time interval includes ts.

Proof (sketch). Let k denote the consensus slot whose time
interval includes ts. When a leader broadcasts Collect for con-
sensus slot k, the local timers on correct nodes will eventually
meet the condition required to send CollectResponse messages.
Since c appears in the localSequencedSet of at least 2f + 1
nodes, and, by assumption, since at most f of them are Byzan-
tine, at least f +1 nodes will include c in their CollectResponse
for consensus slot k. Denote these f + 1 nodes with C.

Since Pompē’s use of BFT SMR requires proposals that
are constructed by taking a union of 2f + 1 CollectResponse
messages, a leader must include at least one message from
nodes in C. Thus, c must be included to construct a valid
proposal for consensus slot k. These combined with the live-
ness property of the employed BFT SMR protocol (which
ensures that a valid value will eventually be chosen for each
consensus slot) implies the desired result.

Theorem 4.4 (Strong liveness). During sufficiently long pe-
riods of synchrony, a correct node can get an assigned time-
stamp for its command c such that c will eventually be in-
cluded in the total order constructed by correct nodes at a
position determined by the assigned timestamp of c.

Proof. During sufficiently long periods of synchrony, by
Lemmas 4.2 and 4.3, c will eventually be included in the
value committed by a unique consensus slot whose time inter-
val includes the assigned timestamp of c. Since the algorithm
to construct a total ordering of commands from values com-
mitted by consensus slots sorts commands by their assigned
timestamps, the position of c is determined by the assigned
timestamp of c.

4.3 Byzantine influence in Pompē

Pompē greatly diminishes the leverage of Byzantine nodes.
Once a command is sequenced, Byzantine nodes can neither
censor it nor affect its position in the totally-ordered ledgers
of correct nodes. Furthermore, they cannot violate ordering
linearizability. Nonetheless, as we saw in Sections 2 and 3,
in a Byzantine democracy, it is impossible to completely
eliminate the influence of Byzantine nodes, and Pompē is not
immune from it.

Byzantine democracy in action. Consider the following ex-
ecution of Pompē, where n = 4 and f ≤ 1. There are two
commands, c1 and c2, that in the ordering phase obtained the
following timestamps from a quorum of 2f + 1 nodes.

N1 N2 N3

c1 0 3 3
c2 1 4 2

Assume, without loss of generality, that N3 is Byzantine,
and that the remaining nodes are correct. The timestamps
make clear that correct nodes prefer to order c1 before c2.
However, since the median timestamp of c1 is higher than the
median timestamp of c2, it is c2 that will be ordered before c1.
On a positive note, we observe that, in the normal case where
the timers on correct nodes are sufficiently synchronized and
network delays are small, this window of vulnerability to
Byzantine manipulation is small.

Early stopping and deferred selective inclusion. Pompē
cannot prevent a Byzantine node from obtaining an assigned
timestamp for its command, but not proceeding with the rest
of the ordering phase, as this misbehavior is indistinguishable
from what may result from a network failure. This ambiguity
allows a Byzantine node (possibly with the aid of a Byzantine
leader) to decide later, during the consensus phase, whether
or not to include its timestamped-but-not-yet-sequenced com-
mand in the ledger.

Preventing or reliably detecting this type of misbehavior
is impossible, but mechanisms to mitigate the risks and raise
suspicion do exist. One possibility is for each node to employ
an append-only linear hash chain to record the timestamps
it assigns to other nodes’ commands. Nodes exchange those
hash chains and refer to the corresponding hash value (in the
hash chain) in each ResponseTS message. Such hash chains
constrain the ability for Byzantine nodes to assign timestamps
abnormally (e.g., out of order), and allow after-the-fact au-
diting (which could be used to expose nodes that routinely
timestamp their commands, but do not always sequence those
commands). In addition, a correct node Ni can piggyback
the tail of a hash chain of all previously timestamped com-
mands of Nj whenever Nj requests a timestamp; this makes
it hard for a Byzantine Nj to blame on the network when
silently dropping an earlier timestamped command. An alter-
native mechanism is for correct nodes to hide their commands
using a threshold encryption scheme until those commands
are totally ordered. This additional step prevents Byzantine
nodes from observing the contents of other timestamped com-
mands before deciding whether to drop their timestamped
commands.

5 Implementation

We implement two variants of Pompē, where the artifacts dif-
fer in the specific BFT protocol they employ for the consen-
sus phase. Specifically, we extend two prior state-of-the-art
leader-based BFT protocols: SBFT [31] and HotStuff [68].
SBFT implements a variant of PBFT [16] that includes many
optimizations for scalability. HotStuff uses a rotating leader
paradigm while incurring low network costs and serves as the
foundation of the Libra blockchain [3]. For SBFT, we use its
implementation in VMware’s Concord [1], and for HotStuff,
we use the authors’ implementation [2].

640 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

base extensions

Concord [1] 22,141 1122
HotStuff [68] 4,983 900

FIGURE 2—Number of lines of C++ code in Pompē, which we build
atop a base BFT library with a set of extensions.

Ease of implementation. Implementing Pompē atop an ex-
isting consensus protocol involves modest system effort. Fig-
ure 2 reports the numbers of lines of code we add to the base
BFT protocol implementations. These extensions primarily
focus on implementing the two steps of the ordering phase
in our new architecture. Specifically, we implement four new
message types, as described in Section 4. We then imple-
ment message handlers to sign and verify timestamps and to
manage data structures for localSequencedSet and localAccept-
ThresholdTS. Additionally, we modify the leader logic so that,
for each time interval, a leader starts a consensus phase after
assembling a proposal by collecting responses from a quorum
of 2f + 1 nodes, as described in Section 4. The rest of the
consensus protocol is unmodified: the leader of an instance
runs the original consensus protocol for a slot with a proposal
assembled as described above. Within each slot, commands
are ordered by their assigned timestamps.

Optimizations. In Pompē’s consensus phase, the
CollectResponse message used for consensus slot k con-
tains all commands in a node’s localSequencedSet whose
assigned timestamp falls within the time interval associated
with k. This can lead to large message sizes. However, when
the network is synchronous and correct nodes respond in a
timely manner, CollectResponse messages will contain the
same set of commands. Therefore, we optimize Pompē by
having CollectResponse messages sent to the leader carry only
a hash of the set commands in the sender’s localSequencedSet.
The leader compares the hash of its own localSequencedSet
with the hashes carried in the CollectResponse messages
received from 2f other nodes. If the hashes match, then
the leader proceeds to reach consensus for slot k on the
commands from its localSequencedSet, using the 2f +1 signed
hash values (those received from the other nodes as well as
its own) as proof that 2f + 1 nodes reported the same set
of commands. Otherwise, the leader requests a new set of
CollectResponse messages, this time including the actual set
of commands. We enable this optimization by default.

6 Experimental evaluation
This section experimentally evaluates Pompē. We ask two
main questions: (1) How does the performance of Pompē
compare with that of state-of-the art BFT protocols? (or, what
is the price of transitioning from a Byzantine oligarchy to
a Byzantine democracy that enforces Byzantine-tolerant or-
dering guarantees?) and (2) What is the impact of separating
ordering from consensus on end-to-end performance? Fig-

ure 3 provides a summary of our findings.
We choose as baselines two prior state-of-the-art BFT pro-

tocol implementations: Concord [1, 31] and HotStuff [2, 68].
Both are leader-based (and hence subject to Byzantine oli-
garchy) and hardcode ordering decisions within consensus.
As described in Section 5, we implement two variants of
Pompē, both upholding ordering linearizability (and hence
free of Byzantine oligarchy), by augmenting those two BFT
protocols. We refer to Pompē that extends HotStuff as Pompē-
HS, and to Pompē that extends Concord as Pompē-C.

Methodology, testbed, and metrics. We run our experi-
ments on 100 Standard D16s_v3 (16 vcpus, 64 GB memory)
VMs on the Azure cloud platform spanning three datacenters,
each running Ubuntu Linux 18.04: 34 in West US, 33 in South-
East Asia, and 33 in North Europe. We run single-datacenter
experiments using VMs in the West US.

We report results only for failure-free executions, as fail-
ures do not alter how Pompē performs relative to its baselines.

Our workload is generated by clients that submit their com-
mands in a closed loop, i.e., they wait to receive a response to
their currently outstanding command before submitting the
next one. To run experiments with different loads, we vary the
number of clients. For HotStuff and Pompē-HS, as in prior
work [67], we run experiments where commands are random,
32-bytes-long values.2

Similarly, for Concord and Pompē-C, as in prior work [31],
we use a benchmark that writes a random value to a randomly-
selected key in a key-value store.

Our principal performance metrics are client-perceived
latency (measured in ms) and throughput (in com-
mands/second). To measure latency, each client records the
latency of each command using its local clock, and our scripts
aggregate latencies across clients and across commands. For
throughput, we compute the total number of commands pro-
cessed by the system and divide it by the duration of the
experiment. To measure the peak throughput of a given sys-
tem, we increase the number of clients until saturation.

Since Pompē separates ordering from consensus, clients in
Pompē receive two responses, one for confirming the relative
position of the command in the totally-ordered ledger (when
a command is sequenced; see Section 4 for details), and an-
other for the execution result of the command. Therefore, we
report two types of latency for Pompē, which we refer to as
ordering latency and consensus latency. Since our baselines
hardcode ordering decisions within consensus, both ordering
and consensus complete at the same time, so, for baselines,
we report a single type of latency.

6.1 End-to-end performance: Throughput and latency

We begin by measuring the performance of Pompē and its
baselines in a four-node configuration (we report results for
2The HotStuff implementation reaches consensus not on actual commands,
but on their 32-byte-long cryptographic hashes; clients communicate the
actual commands to the replica nodes outside of the consensus protocol.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 641

Pompē incurs higher latency than its baselines, but by batching in both phases, Pompē achieves higher throughput at competative latencies §6.1,6.2
Pompē’s throughput degrades when n increases, but Pompē can scale up each node for higher throughput §6.3
Pompē incurs modest network overheads over its baselines §6.4

FIGURE 3—Summary of evaluation results.

throughput median latency
(cmds/s) (ms)

HotStuff (βc = 1) 474 8.2
HotStuff (βc = 800) 253,360 49.9
Pompē-HS (βo = 1) 1,642 2.3 (o), 47.7 (c)
Pompē-HS (βo = 200) 361,687 5.7 (o), 53.1 (c)

Concord (βc = 1) 40 53
Concord (βc = 800) 6,633 67
Pompē-C (βo = 1) 1,415 17 (o), 67 (c)
Pompē-C (βo = 200) 249,221 18 (o), 74 (c)

FIGURE 4—Peak throughput and median latency for Pompē and its
baselines in a single datacenter with n = 4 nodes. Pompē’s leader
starts the consensus phase every 50 ms with ∆ = 10 ms. Pompē’s
ordering latency is denoted with “o”, its consensus latency with “c”.

larger system sizes in the next subsection). We run clients on
a separate set of virtual machines so that clients and nodes do
not contend for computing resources.

A note about batching. Batching is a standard technique
in SMR protocols to increase throughput at the cost of higher
latency by amortizing the cost of running consensus across all
the commands in a batch. Both Pompē and its baselines can
take advantage of it, and we report experiments for different
batch sizes. However, Pompē’s separation of ordering from
consensus has two significant implications for batching.

First, it eliminates the unintended leverage that Byzantine
nodes can gain through batching even in BFT SMR protocols
that rotate leaders out of concern for “fairness”. The larger the
batch, the larger the number of commands whose ordering is
left to the unchecked discretion of the current leader: through-
put gains thus come at the cost of expanding opportunities for
Byzantine oligarchy. Pompē removes these concerns: its or-
dering guarantee (e.g., ordering linearizability) is unaffected
by either the existence of batches or by their sizes.

Second, separating order and consensus affects the trade-
off between latency and throughput that comes with batch-
ing. When Pompē’s baselines do not batch commands, they
achieve lower latency and lower peak throughput than Pompē.
Latency is higher under Pompē because a leader in Pompē
must wait for a fixed time window before initiating a pro-
posal; peak throughput is higher because Pompē implicitly
batches commands whose timestamps fall within a time win-
dow during consensus. However, when the baselines batch
commands to match Pompē’s latencies, they achieve signif-
icantly higher peak throughput than Pompē. Pompē’s peak
throughput is lower because nodes must produce and validate
signed timestamps during the ordering phase, which causes
nodes to saturate earlier.

throughput median latency
(cmds/s) (ms)

HotStuff (βc = 800) 6,160 915.8
Pompē-HS (βo = 200) 315,753 259.7 (o), 1518.1 (c)

Concord (βc = 800) 1,461 616
Pompē-C (βo = 200) 172,774 325 (o), 1415 (c)

FIGURE 5—Peak throughput and median latency for Pompē and
its baselines with n = 4 nodes spanning three geo-distributed data-
centers. Batch sizes are as in the single datacenter experiments in a
single datacenter. Pompē’s leader starts the consensus phase every
500 ms with ∆ = 400 ms.

Fortunately, the separation gives Pompē an additional
batching opportunity: each node can execute the ordering
phase once to assign a single timestamp to an ordered se-
quence of its own commands (or of commands from clients
that belong to the same organization as the node). Such batch-
ing does not affect Pompē’s ordering properties (e.g., ordering
linearizability) because each batch contains commands from
a single node. The throughput boost that comes from this addi-
tional source of batching can more than make up for Pompē’s
lost ground, but raises the question of how to fairly compare
the Pompē variants to their baselines.

We balance these different considerations in our experi-
ments as follows: if, in a configuration with n nodes, the
baseline’s consensus protocol uses a batch size βc = S(> 1),
then we allow each node in corresponding variant of Pompē
to use batches of size βo = S/n during its ordering phase.

Performance results. Figure 4 shows peak throughput and
median latency at peak throughput for Pompē and its base-
lines, for different batch sizes. Since Pompē-C and Pompē-HS
perform similarly compared with their respective baselines,
so we focus only on Pompē-HS.

Performance without batching. When βo = 1, Pompē-
HS’s median ordering latency is 28% of the median latency
of HotStuff with βc = 1, while its peak throughput is about
3.5× higher than HotStuff’s. The lower ordering latency is
due to Pompē’s ordering phase, which incurs only two RTTs
compared to the four RTTs required by HotStuff; the higher
throughput, perhaps surprisingly given that βo = 1, is instead
due to batching. In Pompē-HS, setting βo = 1 means that
nodes do not batch in the ordering phase; however, since
Pompē-HS does not start consensus until a time window has
elapsed, it can still collect commands from multiple clients:
for a 50 ms time window, we observed an effective batch size
of 82 commands. Unsurprisingly, the flip side of this higher
throughput is significantly higher consensus latency. Pompē-
HS starts the consensus phase every 50 ms; with ∆ = 10 ms,

642 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

FIGURE 6—Latency vs. throughput for HotStuff and Pompē-HS in a geo-distributed deployment. The left and right graphs show respectively
the maximum ordering latency and consensus latency experienced by different percentiles of the fastest commands. The experimental setup is
the same as in Figure 5. Pompē-HS achieves higher throughput at the cost of higher consensus latency, even as its low ordering latency lets
nodes know quickly when their commands are guaranteed to appear in the ledger.

every client waits on average 35 ms for the next consensus
phase, ultimately leading to a consensus latency of 47.7 ms.

Performance with batching. We fix the batch size for
HotStuff to βc = 800 commands, and accordingly set the
ordering-phase batch size of each of the four nodes in Pompē-
HS to βo = 200. Unsurprisingly, the throughput increases
significantly for both Pompē-HS and HotStuff, respectively
by 220× and 535× over the values we measured for Pompē-
HS (βo = 1) and HotStuff (βc = 1): both systems are CPU-
bound, and batching allows them to amortize the cost of
cryptographic operations across all commands in a batch. In
absolute terms, we find that Pompē-HS achieves 1.4× the
throughput of HotStuff; as discussed earlier, the reason is the
additional batching effect due to the 50 ms interval that in
Pompē-HS separates successive invocations of consensus.

6.2 Performance with a geo-distributed setup

We consider next a geo-distributed setup, where n = 4 nodes
are deployed in three separate datacenters, with one datacenter
running two nodes. We use the same batch size as in the single
datacenter setup (i.e., βc = 800 for baselines and βo = 200
for each node’s ordering phase for the corresponding Pompē
variants).

Peak throughput. Figure 5 shows our results. For HotStuff,
geo-replication causes throughput to drop dramatically, to
only 2.4% of its value for the same configuration in a sin-
gle datacenter. For geo-distributed Pompē-HS instead the
loss is much more contained: throughput is at 87.3% of its
single-datacenter value. Two main factors explain these re-
sults. First, as in the single-datacenter case, Pompē-HS can
take advantage of effective batching, now with a time interval
between successive proposal of 500 ms and ∆ = 400 ms;
second, HotStuff is hampered by its use of rotating leaders,
as a new leader does not propose a new batch until after
collecting enough votes for the previous leader’s batch: in a
geo-distributed setting, this delay can become significant and
negatively affect throughput.

Latency. Figure 6 shows the maximum ordering and consen-
sus latencies experienced by the fastest 50%, 90%, and 99%
of commands. The key take-away is that Pompē-HS achieves

higher throughput at the cost of higher consensus latencies.
As expected, in Pompē-HS both types of latency stay stable
until system saturation. HotStuff’s latency drops at the be-
ginning because, with more clients, it fills up a batch more
quickly while also increasing the throughput. Furthermore,
the ordering latency is lower than the median consensus la-
tency (since the latter adds more communication rounds to
the former) meaning that nodes can get early notification for
when their commands are guaranteed to appear in the ledger.

6.3 Scalability

To understand how well Pompē scales to a larger number
of nodes, we experiment with increasing values of n. We
vary the number of nodes in an experiment from 4 to 100.
Our results for Pompē-C (in comparison with its baseline
Concord) are qualitatively similar to our results for Pompē-
HS (in comparison with HotStuff), so we focus on Pompē-HS.

HotStuff uses the same batch size as before (i.e., βc = 800).
For Pompē-HS, we experiment with three configurations.

1. Light: We set βo = 800/n and allocate a single VM to each
node regardless of n.

2. Scale-up: We set βo = 800/n and, as n increases, so does
proportionally the number of VMs associated with each
node to equal ⌊n/4⌋. So, for example, for n = 4, we use
one VM per node; but when n = 10, each node uses two.

3. Fixed batch: We set βo = 200 regardless of n.

Figures 7 and 8 depict throughput and latency achieved by
Pompē and its baselines for different values of n.

Throughput. HotStuff scales well as n grows, whereas
throughput quickly degrades under Pompē-HS (light). This is
because batch sizes under Pompē-HS (light) are inversely pro-
portional to n, so throughput degrades as n increases. This is
confirmed by the scaling behavior of Pompē-HS (fixed batch)
where βo = 200 regardless of n. Of course, using a fixed βo

regardless of n may not be desirable.
Fortunately, we find that Pompē-HS (scale-up) can achieve

a behavior similar to Pompē-HS (fixed batch) without having
to use a fixed βo. In Pompē-HS (scale up), each node uses
multiple VMs to run the ordering phase, thereby avoiding

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 643

FIGURE 7—Peak throughput and median latency of different configurations of Pompē-HS and of HotStuff as a function of the number of
nodes (n) in a geo-distributed deployment. The light blue cross at n = 31 depicts the performance of Pompē-HS (scale up) with 3 VMs per
node; the blue square above it shows the predicted throughput when each node is assigned ⌊31/4⌋ = 7 VMs. The prediction is based on
benchmarks showing that the ordering phase scales near linearly as more VMs are assigned to each node. The blue squares connected by a
dotted line at n = 61 and n = 100 are similarly predicted rather than measured.

the throughput degradation experienced by Pompē-HS (light).
Our testbed has 100 nodes, so we could only run Pompē-HS
(scale-up) for n ∈ {4, 10, 16}. For higher values of n, we
predict the throughput of Pompē-HS (scale-up) using experi-
mental results from smaller-scale experiments and additional
benchmarks that we used to validate that the ordering phase
achieves a near-linear scaling as each node gets more VMs.

Latency. For both Pompē-HS and HotStuff, latency stays
relatively stable when the system scales out. This is because
latency is dominated by network communication in a geo-
distributed deployment.

6.4 Network overhead

Compared to its baselines, Pompē incurs higher network costs
to attach timestamps with each command and for executing a
separate ordering phase. To understand the increased network
costs, we use n = 4 and experiment with both Pompē and
its baselines. We experiment with Pompē-HS (βo = 1) and
HotStuff (βc = 1), and record the total number of bytes sent
by each node during the experiment. We find that Pompē-HS
incurs about 18% higher network costs compared to HotStuff,
which, we believe, is a tolerable price for the stronger ordering
properties ensured by Pompē.

7 Related work
Leader-based BFT protocols. There is a long line of work
on practical Byzantine consensus protocols [10, 17, 20, 31,
34, 41, 42, 49–52, 59, 65, 66], starting with the seminal work
of PBFT [16]. These works focus on improving performance,
round complexity, fault models, etc. Some works also focus
on using trusted hardware to improve fault thresholds [10, 19,
37, 46]. However, all of them employ a special leader node to
orchestrate both ordering and consensus, so they suffer from
both Byzantine dictatorship and Byzantine oligarchy.

There are some works that defend against faulty leaders,
but they focus only on preventing faulty leaders from affecting
the system’s performance or defenses for a restricted class of
attacks. For example, Aardvark [21] employs periodic leader
changes to prevent a faulty leader from exercising full control

over the system’s performance. It achieves this by having cor-
rect nodes set an expectation on minimal acceptable through-
put that a leader must ensure and trigger a leader election in
case the current leader fails to meet its expectation. While
Aardvark [21] focuses on achieving acceptable performance
in the presence of faulty leaders, Prime [5] targets a different
performance property: any transaction known to a correct
node is executed in a timely manner. The Prime Ordering pro-
tocol consists of a pre-ordering phase and a global ordering
phase. Unlike Pompē’s ordering phase, the pre-ordering phase
imposes only a partial order, rather than a timestamp-based
global ordering in Pompē.

Instead of monitoring leaders to detect (or prevent) certain
attack vectors, Pompē separates ordering from consensus,
which completely eliminates a leader’s power in selecting
which transactions to propose and in what order. More gener-
ally, our work provides the first systematic study of properties
desirable when employing BFT protocols for systems that
span multiple administrative domains, proves what are impos-
sible, and designs mechanisms to realize desirable properties
that are achievable.

Rotating leaders. BART [4] enables cooperative services to
tolerate both Byzantine faults and rational (selfish) behavior
under the new BAR (Byzantine, altruistic, and rational) model.
The consideration of rational behavior leads to an RSM de-
sign with rotating leaders, which has now become a standard
practice for blockchains based on BFT [3, 18, 68]. However,
the rotating leader paradigm still suffers from Byzantine dic-
tatorship because a Byzantine node can still dictate ordering
when it is in the leadership role, whereas Pompē achieves
stronger properties by separating ordering from consensus.

Leaderless BFT protocols. Recognizing the implications
of relying on a special leader, Lamport offers a leaderless
Byzantine Paxos protocol [44]. Unfortunately, it relies on
a synchronous consensus protocol to instantiate a “virtual”
leader, which requires at least f + 1 rounds, where f is the
maximum number of faulty nodes in the system and the du-
ration of each round must be set to an acceptable round trip
delays. When the number of nodes is high or when nodes

644 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

FIGURE 8—Scalability of Pompē-C and Concord in a geo-distributed deployment. Peak throughput and median latency with varying number
of nodes (n). We use βc = 800 for the baseline; see the text for different configurations of Pompē.

are geo-distributed, this protocol adds unacceptable latencies.
Democratic Byzantine Fault Tolerance (DBFT) [23] is an-
other leaderless Byzantine consensus protocol, which builds
on Psync, a binary Byzantine consensus algorithm. As in
Lamport’s leaderless protocol [44], Psync terminates in O(f)
message delays, where f is the number of Byzantine faulty
nodes, even though DBFT relies on a weak coordinator for a
fast path through optimistic execution.

EPaxos [55] is a Paxos [43] variant in which proposed
transactions are ordered without relying on a single leader.
But EPaxos ensures safety and liveness only in a crash fault
model, and it is unclear how to ensure those properties in a
Byzantine fault model, which is our target setting.

Building on the work of Cachin et al. [14, 15], Honeybad-
gerBFT [54] and BEAT [26] propose leaderless protocols
that preserve liveness even in asynchronous and adversarial
network conditions. To achieve these properties, they rely
on randomized agreement protocols, which bring significant
complexity and costs. Unfortunately, these works do not de-
fend against the formation of a Byzantine oligarchy nor do
they satisfy ordering linearizability.

Censorship-resistance. HoneybadgerBFT [54] and He-
lix [8] run consensus on transactions encrypted with a thresh-
old encryption scheme to prevent malicious nodes from cen-
soring transactions, but faulty nodes can always filter trans-
actions based on metadata, a point made by Herlihy and
Moir [35]. In contrast, Pompē’s separation of ordering from
consensus offers a simple mechanism to prevent censorship:
once a correct node executes the ordering phase, the transac-
tion is not only guaranteed to be included in the ledgers of
correct nodes, it will also be included in a position determined
by the assigned timestamp of the transaction.

Accountability and proofs. Herlihy and Moir [35] pro-
pose several mechanisms to hold participants accountable
in a consortium blockchain. These techniques extend and
generalize prior work on accountability [32, 33] and un-
trusted storage [48, 53]. Similarly, nodes can produce suc-
cinct (zero-knowledge) proofs of their correct operation,
which other nodes can efficiently verify [12, 58, 63, 64].
Recent work [45, 56] employs such proofs to reduce CPU
and network costs in large-scale replicated systems (e.g.,
blockchains). Unfortunately, such proofs do not prevent a

Byzantine leader node from deciding which commands to
propose and in what order.

Order fairness. Recent work by Kelkar et al. [38] also recog-
nizes the need to introduce a new ordering property for BFT,
which they characterize as order fairness. Their work shows
that a natural definition of Receive-Order-Fairness, which
states that the total order of commands in the consensus output
must follow the actual receiving order of at least a γ-fraction
of all nodes (if they agree), is impossible to achieve, due to
the Condorcet paradox. They relax Receive-Order-Fairness
and define Block-Order-Fairness, where ordering constraints
apply only to blocks of commands.

Starting from a similar motivation, our work takes a differ-
ent direction, with both theoretical and practical implications.

First, rather than trying to characterize the fairness of a
particular ordering, we introduce the notions of Byzantine
oligarchy and Byzantine democracy to focus on the degree to
which it is possible (and impossible) to curtail the influence of
Byzantine nodes in determining any given order of commands.
Thus, while Kelkar et al. observe that protocols that order
commands using timestamps from a quorum of nodes are not
suitable for ensuring fairness (as they suffer from the type of
manipulations described in Section 4.3), we are able to prove
(see Theorem 3.1) that any protocol is subject to these types
of manipulations in a Byzantine democracy, as long as we
uphold free will.

Further, we choose to express our ordering properties as
a function of the preferences of correct nodes, rather than
some γ-fraction of all the nodes (some of which could be
Byzantine); we believe this choice was instrumental in de-
riving clean definitions for ordering unanimity and ordering
linearizability.

Our different design choices have also significant practical
consequences. While Pompē can use any existing BFT pro-
tocol in its consensus phase, Kelkar et al. design a compiler
to automatically convert a standard consensus protocol into
one that satisfies order fairness. However, protocols output
by this compiler require more resources than a standard BFT
protocol for the same level of fault tolerance; for example, in
the same setting as in standard BFT (leader-based, partial syn-
chrony network model) with γ set to 1 (their best case), these
protocols require at least 4f + 1 nodes to tolerate f Byzan-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 645

tine failures, rather than the 3f + 1 nodes needed by Pompē.
Further, the practicality of these compiler-produced protocols
is unclear, since to date they appear to have been neither im-
plemented nor evaluated, whereas Pompē is competitive with
state-of-the-art BFT protocol implementations.

Permissionless blockchains. A trend in the blockchain com-
munity is to avoid energy-intensive proof-of-work mechanism.
This has led to permissionless blockchains that employ a BFT
protocol among a set of nodes chosen based on different mech-
anisms (e.g., verifiable random functions, financial stake, etc.)
to agree on a value [25, 30, 39, 40]. Pompē can be used as a
building block in some of these blockchains.

Social choice theory. Social choice theory studies desirable
properties in the context of elections. A seminal work in this
area is by Kenneth Arrow [7], who won the Nobel Prize in
Economics Sciences in 1972 for this work. Arrow’s work
defines properties such as non-dictatorship and unanimity,
which inspired our definitions of Byzantine oligarchy and or-
dering unanimity. Following Arrow’s work, Gibbard and Sat-
terthwaite defined the manipulation property and proved that
any voting rule is either dictatorial or manipulable [29, 61].
This property inspired our definition of Byzantine democracy.
Finally, in the past two decades, computer scientists became
interested in social choice theory, leading to the creation of
the field of computational social choice [11].

8 Discussion
Deployment models. Section 4 describes our protocol in
a simplified deployment model centered on nodes, without
explicitly mentioning clients, for ease of exposition. This is
a reasonable model in the context of our target application
of permissioned blockchains, where each node is owned and
operated by a separate organization: we can expect clients
that belong to an organization to submit their transactions to
a node owned by the same organization (so the incentives of
clients and nodes are aligned). This deployment model also
increases the opportunity for batching in the ordering phase
at each node on behalf of all clients in the same organization.

Nevertheless, other deployment models are possible (e.g.,
those involving clients explicitly without associating them
with trusted organizational nodes). Pompē’s separation of or-
dering from consensus makes the following possible: each
client executes the ordering phase with nodes for its com-
mands and nodes execute the consensus phase. The protocol
does have to account for the revised client/node communica-
tion pattern in the calculation of the delay (previously, ∆) in
the consensus phase to ensure liveness, as well as handling
duplicate requests from clients to different nodes to ensure
that one of the nodes is correct and will accept the request.

Powerful network adversaries. Our network model as-
sumes partial synchrony (as do prior BFT protocols). This
does not eliminate a network-level adversary from affect-
ing the assigned timestamps of commands. For example, a

powerful adversary that controls the entire network connect-
ing honest nodes can selectively reorder or delay messages
among honest nodes to bias timestamps assigned to com-
mands. Unfortunately, it appears impossible to completely
curb the influence of such powerful network adversaries.

Another commonly adopted network-adversary model [51]
assumes that an adversary cannot influence the network con-
necting correct nodes. In this model, an adversary does not
gain additional power in biasing the assigned timestamps
beyond what Byzantine nodes could already do.

Command dependencies or replay protection. As in prior
BFT protocols, Pompē does not consider dependencies among
different commands, nor does it prevent the same command
from appearing multiple times in the total order. However,
one can embed additional metadata inside commands (e.g.,
nonces, explicit dependencies, etc.), which correct nodes can
use at the time of execution (i.e., after Pompē’s consensus
phase outputs a total order) to enforce dependencies among
commands or to defend against replay attacks.

9 Concluding remarks
Pompē is a new, practical, and surprisingly simple BFT proto-
col that demonstrates an ideal world of Byzantine democracy,
where free will is respected, under the “constitution” of order-
ing linearizability, and is not subject to Byzantine oligarchy.
And this ideal world has been shown to operate competitively
against the traditional world with Byzantine dictatorship.

Pompē’s source code along with instructions to reproduce
our experimental results will be available from: https://
github.com/pompe-org.

Acknowledgments

We thank Frans Kaashoek (our shepherd) and the anonymous OSDI
reviewers for their thorough and insightful comments. Trevor Eberl,
Jim Jernigan, and Kris Zentner offered timely help with setting up
a large-scale cluster on Azure. The initial steps towards a theory
of Byzantine ordered consensus benefited from early conversations
with Florian Suri-Payer and Mahimna Kelkar, and the help of Mao-
fan Yin was invaluable in making it possible to use HotStuff as one
of our baselines. This work was supported in part by NSF grants
CSR-17620155 and CNS-CORE 2008667.

References
[1] Concord Byzantine fault tolerant state machine replication

library. https://github.com/vmware/concord-bft,
2018.

[2] libhotstuff: A general-purpose BFT state machine replication
library with modularity and simplicity.
https://github.com/hot-stuff/libhotstuff, 2018.

[3] State machine replication in the Libra blockchain.
https://developers.libra.org/docs/state-machine-
replication-paper, 2020.

[4] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin,
and C. Porth. BAR fault tolerance for cooperative services. In

646 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/pompe-org
https://github.com/pompe-org
https://github.com/vmware/concord-bft
https://github.com/hot-stuff/libhotstuff
https://developers.libra.org/docs/state-machine-replication-paper
https://developers.libra.org/docs/state-machine-replication-paper

Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 45–58, 2005.

[5] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Prime: Byzantine
replication under attack. IEEE Transactions on Dependable
and Secure Computing, 8(4):564–577, July 2011.

[6] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin,
K. Christidis, A. De Caro, D. Enyeart, C. Ferris,
G. Laventman, Y. Manevich, et al. Hyperledger fabric: a
distributed operating system for permissioned blockchains. In
Proceedings of the ACM European Conference on Computer
Systems (EuroSys), 2018.

[7] K. J. Arrow. Social choice and individual values, volume 12.
Yale University Press, 1951.

[8] A. Asayag, G. Cohen, I. Grayevsky, M. Leshkowitz,
O. Rottenstreich, R. Tamari, and D. Yakira. A fair consensus
protocol for transaction ordering. In Proceedings of the
International Conference on Network Protocols (ICNP), 2018.

[9] D. Austen-Smith and J. S. Banks. Positive political theory I:
Collective preference, volume 1. University of Michigan
Press, 2000.

[10] J. Behl, T. Distler, and R. Kapitza. Hybrids on steroids:
SGX-based high performance BFT. In Proceedings of the
ACM European Conference on Computer Systems (EuroSys),
2017.

[11] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D.
Procaccia. Handbook of computational social choice.
Cambridge University Press, 2016.

[12] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and
M. Walfish. Verifying computations with state. In
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 2013.

[13] E. Buchman. Tendermint: Byzantine fault tolerance in the age
of blockchains. Master’s thesis, The University of Guelph,
2016.

[14] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and
efficient asynchronous broadcast protocols. In Proceedings of
the International Cryptology Conference (CRYPTO), pages
524–541, 2001.

[15] C. Cachin and J. A. Poritz. Secure intrusion-tolerant
replication on the internet. In Proceedings of the Internal
Conference on Dependable Systems and Networks (DSN),
pages 167–176, 2002.

[16] M. Castro and B. Liskov. Practical Byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer
Systems (TOCS), 20(4):398–461, Nov. 2002.

[17] M. Castro, R. Rodrigues, and B. Liskov. BASE: Using
abstraction to improve fault tolerance. ACM Transactions on
Computer Systems (TOCS), pages 236–269, 2003.

[18] B. Y. Chan and E. Shi. Streamlet: Textbook streamlined
blockchains. Cryptology ePrint Archive, Report 2020/088,
2020.

[19] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz.
Attested append-only memory: Making adversaries stick to
their word. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), pages 189–204, 2007.

[20] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi,
M. Dahlin, and T. Riche. UpRight cluster services. In
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 277–290, 2009.

[21] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti.
Making Byzantine fault tolerant systems tolerate Byzantine
faults. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), pages
153–168, 2009.

[22] M. d. Condorcet. Essay on the application of analysis to the
probability of majority decisions. Paris: Imprimerie Royale,
1785.

[23] T. Crain, V. Gramoli, M. Larrea, and M. Raynal. DBFT:
Efficient leaderless byzantine consensus and its application to
blockchains. In Proceedings of the International Symposium
on Network Computing and Applications (NCA), 2018.

[24] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov,
L. Breidenbach, and A. Juels. Flash boys 2.0: Frontrunning,
transaction reordering, and consensus instability in
decentralized exchanges. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2020.

[25] P. Daian, R. Pass, and E. Shi. Snow white: Robustly
reconfigurable consensus and applications to provably secure
proof of stake. In Proceedings of the International Financial
Cryptography Conference, 2019.

[26] S. Duan, M. K. Reiter, and H. Zhang. BEAT: Asynchronous
BFT made practical. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), pages
2028–2041, 2018.

[27] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM),
35(2), Apr. 1988.

[28] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. In
Proceedings of the Symposium on Principles of Database
Systems, pages 1–7, 1983.

[29] A. Gibbard. Manipulation of voting schemes: a general result.
Econometrica: Journal of the Econometric Society, pages
587–601, 1973.

[30] Y. Gilad, R. Hemo, S. M. Micali, G. Vlachos, and
N. Zeldovich. Algorand: Scaling Byzantine agreements for
cryptocurrencies. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2017.

[31] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas,
M. K. Reiter, D.-A. Seredinschi, O. Tamir, and A. Tomescu.
SBFT: A scalable decentralized trust infrastructure for
blockchains. arxiv:1804/01626v1, Apr. 2018.

[32] A. Haeberlen, P. Kouznetsov, and P. Druschel. The case for
Byzantine fault detection. In Proceedings of the USENIX
Workshop on Hot Topics in System Dependability (HotDep),
2006.

[33] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview:
practical accountability for distributed systems. In
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 175–188, 2007.

[34] J. Hendricks, S. Sinnamohideen, G. R. Ganger, and M. K.
Reiter. Zzyzx: Scalable fault tolerance through Byzantine
locking. In Proceedings of the Internal Conference on
Dependable Systems and Networks (DSN), pages 363–372,
2010.

[35] M. Herlihy and M. Moir. Enhancing accountability and trust
in distributed ledgers. CoRR, abs/1606.07490, 2016.

[36] M. P. Herlihy and J. M. Wing. Linearizability: A correctness

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 647

condition for concurrent objects. ACM Transactions on
Programming Languages and Systems (TOPLAS), 12(3), July
1990.

[37] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V.
Mohammadi, W. Schröder-Preikschat, and K. Stengel.
CheapBFT: Resource-efficient Byzantine Fault Tolerance. In
Proceedings of the ACM European Conference on Computer
Systems (EuroSys), pages 295–308, 2012.

[38] M. Kelkar, F. Zhang, S. Goldfeder, and A. Juels.
Order-fairness for Byzantine consensus. In Proceedings of the
International Cryptology Conference (CRYPTO), 2020.

[39] A. Kiayias, A. Russell, B. David, and R. Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain
protocol. In Proceedings of the International Cryptology
Conference (CRYPTO), 2017.

[40] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi,
L. Gasser, and B. Ford. Enhancing Bitcoin security and
performance with strong consistency via collective signing. In
Proceedings of the USENIX Security Symposium, 2016.

[41] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. In
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 45–58, 2007.

[42] R. Kotla and M. Dahlin. High throughput Byzantine fault
tolerance. In Proceedings of the Internal Conference on
Dependable Systems and Networks (DSN), pages 575–584,
2004.

[43] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133–169, May 1998.

[44] L. Lamport. Leaderless Byzantine Paxos. In Proceedings of
the International Symposium on Distributed Computing
(DISC), pages 141–142, Dec. 2011.

[45] J. Lee, K. Nikitin, and S. Setty. Replicated state machines
without replicated execution. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2020.

[46] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda.
TrInc: Small Trusted Hardware for Large Distributed Systems.
In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 1–14,
2009.

[47] M. Lewis. Flash boys: A Wall Street revolt. W. W. Norton &
Company, 2014.

[48] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2004.

[49] J. Li and D. Maziéres. Beyond one-third faulty replicas in
Byzantine fault tolerant systems. In Proceedings of the
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2007.

[50] J. Liu, W. Li, G. O. Karame, and N. Asokan. Scalable
Byzantine consensus via hardware-assisted secret sharing.
IEEE Transactions on Computers, 68(1), 2019.

[51] S. Liu, P. Viotti, C. Cachin, V. Quéma, and M. Vukolic. XFT:
practical fault tolerance beyond crashes. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 485–500, 2016.

[52] J.-P. Martin and L. Alvisi. Fast Byzantine consensus. IEEE
Transactions on Dependable and Secure Computing,

3(3):202–215, July 2006.
[53] R. C. Merkle. A digital signature based on a conventional

encryption function. In Proceedings of the International
Cryptology Conference (CRYPTO), 1988.

[54] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The Honey
Badger of BFT Protocols. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), 2016.

[55] I. Moraru, D. G. Andersen, and M. Kaminsky. There is more
consensus in egalitarian parliaments. In Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP),
pages 358–372, 2013.

[56] A. Ozdemir, R. S. Wahby, and D. Boneh. Scaling verifiable
computation using efficient set accumulators. In Proceedings
of the USENIX Security Symposium, 2020.

[57] D. C. Parkes, C. Thorpe, and W. Li. Achieving trust without
disclosure: Dark pools and a role for secrecy-preserving
verification. In Proceedings of the Conference on Auctions,
Market Mechanisms and Their Applications (AMMA), 2015.

[58] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio:
Nearly practical verifiable computation. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), May 2013.

[59] D. Porto, J. a. Leitão, C. Li, A. Clement, A. Kate, F. Junqueira,
and R. Rodrigues. Visigoth fault tolerance. In Proceedings of
the ACM European Conference on Computer Systems
(EuroSys), pages 8:1–8:14, 2015.

[60] M. Russinovich, E. Ashton, C. Avanessians, M. Castro,
A. Chamayou, S. Clebsch, M. Costa, C. Fournet, M. Kerner,
S. Krishna, et al. CCF: A framework for building confidential
verifiable replicated services. Technical report, Microsoft
Research Technical Report MSR-TR-2019-16, 2019.

[61] M. A. Satterthwaite. Strategy-proofness and arrow’s
conditions: Existence and correspondence theorems for voting
procedures and social welfare functions. Journal of Economic
Theory, 10(2):187–217, 1975.

[62] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing
Surveys, 22(4):299–319, Dec. 1990.

[63] S. Setty, S. Angel, T. Gupta, and J. Lee. Proving the correct
execution of concurrent services in zero-knowledge. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Oct. 2018.

[64] S. Setty, S. Angel, and J. Lee. Verifiable state machines:
Proofs that untrusted services operate correctly. ACM SIGOPS
Operating Systems Review, 54(1):40–46, Aug. 2020.

[65] J. Sousa, A. Bessani, and M. Vukolic. A byzantine
fault-tolerant ordering service for the hyperledger fabric
blockchain platform. In 2018 48th annual IEEE/IFIP
international conference on dependable systems and networks
(DSN), pages 51–58. IEEE, 2018.

[66] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
Byzantine fault tolerant services. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), pages
253–267, 2003.

[67] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham.
HotStuff: BFT consensus in the lens of blockchain. CoRR,
abs/1803.05069, 2018.

[68] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham.

648 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

HotStuff: BFT consensus with linearity and responsiveness. In
Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), 2019.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 649

From Global to Local Quiescence:
Wait-Free Code Patching of Multi-Threaded Processes

Florian Rommel 1, Christian Dietrich 1, Daniel Friesel 2, Marcel Köppen 2,
Christoph Borchert 2, Michael Müller 2, Olaf Spinczyk 2, and Daniel Lohmann 1

1 Leibniz Universität Hannover 2 Universität Osnabrück

Abstract

Live patching has become a common technique to keep long-
running system services secure and up-to-date without caus-
ing downtimes during patch application. However, to safely
apply a patch, existing live-update methods require the entire
process to enter a state of quiescence, which can be highly
disruptive for multi-threaded programs: Having to halt all
threads (e.g., at a global barrier) for patching not only ham-
pers quality of service, but can also be tremendously difficult
to implement correctly without causing deadlocks or other
synchronization issues.

In this paper, we present WFPATCH, a wait-free approach
to inject code changes into running multi-threaded programs.
Instead of having to stop the world before applying a patch,
WFPATCH can gradually apply it to each thread individually
at a local point of quiescence, while all other threads can make
uninterrupted progress.

We have implemented WFPATCH as a kernel service and
user-space library for Linux 5.1 and evaluated it with Open-
LDAP, Apache, Memcached, Samba, Node.js, and MariaDB
on Debian 10 (“buster”). In total, we successfully applied
33 different binary patches into running programs while they
were actively servicing requests; 15 patches had a CVE num-
ber or were other critical updates. Applying a patch with
WFPATCH did not lead to any noticeable increase in request
latencies – even under high load – while applying the same
patch after reaching global quiescence increases tail latencies
by a factor of up to 41× for MariaDB.

1 Introduction

The internet has become a hostile place for always-online sys-
tems: Whenever a new vulnerability is disclosed, the respec-
tive fixes need to be applied as quickly as possible to prevent
the danger of a successful attack. However, it is not viable
for all systems to just restart them whenever a patch becomes
available, as the update-induced downtimes become too ex-
pensive. The prime example for this are operating-system

updates, where rebooting can take minutes. However, we in-
creasingly see similar issues with system services at the appli-
cation level: For example, if we want to update and restart an
in-memory database, like SAP HANA or, at smaller scale, an
instance of Memcached [11] or Redis [32], we either have to
persist and reload their large volatile state or we will provoke
a warm-up phase with decreased performance [26]. With the
advent of nonvolatile memory [24], these issues will become
even more widespread as process lifetimes increase [19] and
eventually even span OS reboots [35]. In general, downtimes
pose a threat to the service-level agreement as they provoke
request rerouting and increase the long-tail latency.

A possible solution to the update–restart problem is dy-
namic software updating through live patching, where the
patch is directly applied, in binary form, into the address space
of the running process. However, live patching can also cause
unacceptable service disruptions, as it commonly requires the
entire process to become quiescent: Before applying the patch,
we have to ensure that a safe state is reached (e.g., no call
frame of the patched function f exists on any call stack dur-
ing patching), which usually involves a global barrier over all
threads – with long and potentially unbounded blocking time.
In programs with inter-thread dependencies it is, moreover,
tremendously difficult to implement such a barrier without
risking deadlocks. To circumvent this, some approaches (such
as UpStare [22]) also allow patching active functions, which
involves expensive state transformation during patch applica-
tion. Others (like KSplice [3]) probe actively until the system
is in a safe state, which, however, is unbounded and may never
be reached. Moreover, even in these cases it is necessary to
halt all threads during the patch application. DynAMOS [23]
and kGraft [29] avoid this at the cost of additional indirection
handlers, but are currently restricted to the kernel itself as
they rely on supervisor mechanisms. So, while disruption-
free OS live patching is already available, live patching of
multi-threaded user-space servers with potentially hundreds
of threads is still an unsolved problem.

In a Nutshell We present WFPATCH, a wait-free live patch-
ing mechanism for multi-threaded programs. The fundamen-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 651

tal difference of WFPATCH is that we do not depend on a
safe state of global quiescence (which may never be reached)
before applying a patch to the whole process, but instead can
gradually apply it to each thread at a thread-specific point of
local quiescence. Thereby, (1) no thread is ever halted, (2) a
single hanging thread cannot delay or even prevent patching
of all other threads, and (3) the implementation is simpli-
fied as quiescence becomes a (composable) property of the
individual thread instead of their full orchestration. Techni-
cally, we install the patch in the background into an additional
address space (AS). This AS remains in the same process and
shares all memory except for the regions affected by the patch
– which then is applied by switching a thread’s AS.

A current limitation of WFPATCH is that we can only patch
read-only regions (.text and .rodata). In particular, we can-
not apply patches that change the layout of data structures
or global variables. However, WFPATCH is intended for hot
patching and not for arbitrary software updates and the vast
majority of software fixes are .text-only: In our evaluation
with OpenLDAP, Apache, Memcached, Samba, Node.js, and
MariaDB, this holds for 90 out of 104 patches (87%). For
CVE mitigations and other critical issues, it holds for 36 out
of 41 patches (88%).

This paper makes the following contributions:

• We analyze the qualitative and quantitative aspects of
global quiescence for hot patching and suggest local quies-
cence as an alternative (Section 2, Section 4).

• We present the WFPATCH wait-free code-injection ap-
proach for multi-threaded applications and its implementa-
tion for Linux (Section 3).

• We demonstrate and evaluate the applicability of WF-
PATCH with six multi-threaded server programs (Open-
LDAP, Apache, Memcached, Samba, Node.js, and Maria-
DB), to which we apply patches under heavy load (Sec-
tion 4).

The patching procedure itself is out of scope for this paper,
specifically, how binary patches are generated and what kind
of transformations take place when applying them to an AS.
Without loss of generality, we used a slightly modified version
of Kpatch [30] to generate the binary patches for this paper.
However, WFPATCH is mostly transparent in this regard and
could be combined with any patch generation framework. We
discuss its general applicability, the soundness and limitations
and other properties of WFPATCH in Section 5 and related
work in Section 6 before we conclude the paper in Section 7.

2 Problem Analysis: Quiescence

Most live-patching methods require the whole system to be
in a safe state before the binary patch gets applied. Thereby,
situations are avoided where the process still holds a reference
to memory that is modified by the update. For example, for a

Thread #1
...
work();
QP();

Thread #2
...
x=read();
QP();

Thread #3
while(1) {

wait(X);
QP();

}

Thread #4
while(1) {

signal(X);
QP();

}

Global-Quiescence Barrier

X

depends3

1 2

Figure 1: Problems of Global Quiescence. As all threads have
to synchronize at the global-quiescence barrier, problems in
individual threads can prolong the transition phase: (1) Long-
running computations introduce bounded delays, (2) I/O wait
leads to (potentially) unbounded barrier-wait times, and (3)
inter-thread dependencies force a specific arrival order to
avoid deadlocks.

patch that replaces a function f , the system is in a safe state
if no call frame for f exists on the execution stack (denoted
as activation safety in the literature [16]). Otherwise, it could
happen that a child of f returns to a now-altered code segment
and provokes a crash. While defining and reaching safe states
is relatively easy for single-threaded programs, it is much
harder for multi-threaded programs, like operating systems or
network services.

In general, a safe state of a running process is a predicate
Ψproc over its dynamic state S. For a multi-threaded process,
we can decompose this predicate into multiple predicates, one
per thread (th1, th2, . . .), and the whole process is patchable
iff all of its threads are patchable at the same time:

Ψproc(S)⇔Ψth1(S)∧Ψth2(S) . . .

One possibility to bring a process into the safe state is to
use global quiescence and insert quiescence points into the
control flow: When a thread visits a quiescence point its ΨthN
is true and we let the thread block at a barrier to keep the
thread in this patchable state. One after another, all threads
visit a quiescence point, get blocked at the barrier, and we
eventually reach Ψproc after all threads have arrived. In this
stopped world, we can apply all kinds of code patching and
object translations [17, 15] as we have a consistent view on
the memory.

However, global quiescence is problematic as it can take
– depending on the system’s complexity – a long or even
unbounded amount of time to reach. Furthermore, eager
blocking at quiescence points can result in deadlocks: If the
progress of thread A depends on the progress of thread B,
thread B must pass by its quiescence points until thread A
has reached ΨA(S). Even worse, in an arbitrary program, it
is possible that ΨC(S) and ΨD(S) contradict each other such

652 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

that Ψproc(S) can never be reached. Therefore, programmers
need an in-depth understanding of the system to apply global
quiescence without introducing deadlocks, and they must take
special precautions to ensure that it is reachable eventually.

Figure 1 illustrates these problems. For example, if any
thread in the system is performing a long-running computa-
tion when the patch request arrives, that is, Problem 1, the
others will reach the barrier, which is now activated, one by
one and stop doing useful work. During this transition-period
clients will notice significant delays in response times and
requests will queue-up or even time out. We have seen this
problem in most of the systems that we examined. For ex-
ample, Node.js threads perform long-running just-in-time
compilation of Javascript code.

Similarly, in Problem 2, a thread is waiting on an IO opera-
tion. During this potentially unbounded period, other threads
will reach the barrier. Again, the overall progress rate de-
teriorates before it becomes zero during the patching itself.
This happens, for instance, when the Apache web server is
transferring huge files to a client or executing a long-running
PHP script. In an extreme case, the system could even have
a thread that is waiting for interactive user input that never
comes. Both problems are hard to avoid without changing the
complete software structure by the programmer who has to
insert quiescence points. Sometimes I/O operations can be
quiescence points, but this is application-specific; for exam-
ple, an I/O operation deep in the call stack or with locks held
would be no suitable point for quiescence.

Problem 3 is more subtle and related to inter-thread depen-
dencies. In MariaDB, for instance, worker threads perform
database transactions and, thus, have to be synchronized. If a
thread that is holding a lock reaches the barrier and blocks,
a deadlock will occur if another thread tries to acquire that
lock. In this case, the second thread would block and never
reach the barrier to free the lock-holding thread. Therefore,
a lock-holding thread must not enter the barrier, although its
ΨthN(S) is true, to avoid the cyclic-wait situation between
barrier and lock. More generally speaking, applying global
quiescence correctly requires full knowledge about all inter-
thread dependencies where one thread’s progress depends on
another thread’s progress.

In this paper, we mitigate the aforementioned problems by
proposing the concept of local quiescence. Our main contri-
bution is the concept of address-space generations, that is,
slightly differing views of an AS that can be assigned on a
per-thread basis. This makes it possible to prepare a patch in
the background in a new AS and to migrate threads one-by-
one to the patched universe. A global barrier is not needed.
The approach is “wait-free” in the sense that a thread that has
reached a quiescence point (ΨthN(S) is true) can be patched
immediately. Sections 4.2 and 5 discuss how this approach
and its limitations apply to widely-used software projects.

Figure 2 illustrates the difference between the normal
“global quiescence” approach (upper half) and the proposed

Patch
Request

Listener 1 2 3

Conn. #1 1.1 2 1.2 1.3

Conn. #2 block() 2.1

1

3
1 PA

Background

Global Quiescence

t

Unpatched Patched I/O Wait Dependency Barrier Wait

signal()

Patch
Request

Listener 1 2 3

Conn. #1 1.1 1.2 1.3

Conn. #2 block() 2.1

Background

Patcher PA
t

Migration Phase

signal()

Figure 2: Live Patching a Multi-Threaded Server with Global
(upper half) vs. Local (lower half) Quiescence. The global
quiescence approach suffers from Problem 1–3 (see Figure 1)
while the threads with the local quiescence model can be
migrated to the patched state individually.

“local quiescence” (lower half). The scenario is a database
server with a “Listener” thread for accepting connections,
connection threads (“Conn. #1 and #2”) for each client con-
nection, and a “Background” thread for cleanup activities. The
patch request comes in asynchronously while the listener is
accepting the second connection. At this point in time “Conn.
#1” has already started a transaction and is holding a lock. In
the upper half (global quiescence) we find all three problems
again. For example, the computation time of 1.1 and 2.1 as
well as the I/O wait between 1.1 and 1.2 delay the patch appli-
cation. During this period, the listener does not accept any new
connections (request 3) and the background thread is blocked.
Furthermore, the programmer must make sure that “Conn. #1”
does not block at the barrier before executing 1.2 and releas-
ing the transaction lock, as this would lead the whole system
into a deadlock. With local quiescence, each thread can be
migrated to the patched program version individually. Thus,
no artificial delays are introduced and the quality of service is
unaffected. For all but one thread the patch is applied earlier
than in the global quiescence case. These seconds might be
crucial in the case of an active security attack. Furthermore,
deadlocks cannot occur as long as the patched version of the
code releases the transaction lock.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 653

Generation 0 Generation 1

A
dd

re
ss

Sp
ac

es
code

(1) wf_pin()

(2) wf_create()

data
&

stack

patchedshared R/O mapping

shared R/O mapping

data
&

stack
shared mapping

th
0

th
2

th
3

th
1

th
5

(3) wf_migrate()

T
hr

ea
ds

Figure 3: Process during the Wait-Free Patching

3 The WFPATCH Approach

Most previous live-patching mechanisms require a global safe
state before applying the changes to the address space (AS)
of the process. With our approach (see Figure 3), we reverse
and weaken this precondition with the help of the OS and a
user-space library: Instead of modifying the currently-used
AS, we create a (shallow) clone AS inside the same process,
apply the modifications there in the background, and migrate
one thread at a time to the new AS, whenever they reach a
local quiescence point, where their ΨthN becomes true. In the
migration phase, we require no barrier synchronization and
all threads make continuous progress. After the migration is
complete, we can safely drop the old AS.

While both AS generations exist, we synchronize memory
changes efficiently by sharing all unmodified mappings be-
tween old AS (Generation 0) and the new AS (Generation 1):
We duplicate the memory-management unit (MMU) config-
uration but reference the same physical pages. Thereby, all
memory writes are instantaneously visible in both ASs and
even atomic instructions work as expected. Only for patch-
affected pages, we untie the sharing lazily with existing copy
on write (COW) mechanisms.

3.1 System Interface

As WFPATCH requires a kernel extension for handling
multiple AS generations per process, we introduce four
new system calls: wf_create(), wf_delete(), wf_pin(), and
wf_migrate(). By the integration into the kernel, we are able
to modify the AS without halting the whole process.

With wf_create(), the kernel instantiates a new AS gener-
ation which is a clone of the process’s current AS. Any thread,
even from a signal handler, can invoke wf_create(). AS gen-
erations are identified by a numeric ID and can be deleted
with the wf_delete() system call. We keep AS generations
in sync and changes to the AS are equally performed on all
generations.

With wf_pin(), we can configure, in advance, memory re-
gions that are not shared between AS generations. Within
pinned regions, memory writes and page-protection changes
will only affect the AS generation of the current thread.
Thereby, we are able to have AS generations that differ only
in patched pages.

On creation, new AS generations host no threads, but indi-
vidual threads migrate explicitly by calling wf_migrate(AS).
On migration, the kernel modifies the thread control block
(TCB) to use the patched AS, and the thread continues im-
mediately once the system-call returns. For live patching,
threads invoke wf_migrate(), via our user-space library, at
their local-quiescence points.

3.2 Implementation for Linux
We implemented the WFPATCH kernel extension as a patch
with 2000 (added or changed) lines for Linux 5.1. We tested
and evaluated WFPATCH on the AMD64 architecture but it
should work on every MMU-capable architecture supported
by Linux. The basic idea is to clone address spaces in a fork-
like manner and rely mostly on the page-sharing mechanism
to keep clones lightweight and efficient. In contrast to fork,
we do not apply COW, and we synchronize mapping changes
between the generations.

The Linux virtual-memory subsystem manages ASs in two
layers: The lower layer is hardware dependent and consists
of page directories and tables, which have on AMD64 up
to 5 (sparsely-populated) indirection levels. On top of this,
virtual memory allocations (VMAs) group together the non-
connected pages into continuous ranges. VMAs contain infor-
mation for the page-fault handler (e.g. file backing), swapping,
and access control. Together, page directories and the list of
VMAs, are kept in the memory map (MM), which is attached
to a thread control block (TCB).

While Linux normally has a one-to-one relation between
MM and process, we discard this convention and let threads
in the same process have different MMs, which are siblings
of each other. Each AS generation has its own distinct MM,
which we keep synchronized with its siblings.

Besides adding a list of all existing siblings to the process,
we extended each MM to include a reference to a master MM.
We use this master MM, which is the process’s initial MM and
its very first generation, to keep track of all shared memory
pages. Furthermore, we use the master MM as a fallback for
lazily-instantiated page ranges. Therefore, the master persists
until the process exits. It cannot be deleted before, even if no
thread currently executes in this generation.

When the user calls wf_pin() on a memory region, we
mark underlying VMAs as non-shared between generations.
We allow pinning only on the granularity of whole VMAs and
before the first call to wf_create(), when the master MM is
the only MM in the process.

On wf_create(), we duplicate the calling thread’s MM

654 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

similar to the fork() system call when it creates a new child
process: For each VMA of the MM, we copy it and its as-
sociated page directories to the newly created sibling MM,
while all user-pages are physically shared between genera-
tions. While fork() marks all user pages as COW, we use
COW only for pinned VMAs, while most VMAs behave
as shared memory regions, which results in the automatic
synchronization of user data between generations. By using
Linux’s COW mechanism for the pinned regions, we are able
to lazily duplicate only those physical pages that are actually
modified by the patch. After duplication, we select a new
generation ID and insert the MM into the process’s sibling
list.

When a thread calls wf_migrate(), we modify its TCB to
point to the respective sibling MM. When the thread returns
from the system call, it automatically continues its execu-
tion in the selected AS generation. Furthermore, each thread
that inhabits a generation increases the reference count of
the generation by one. Thereby, we ensure that a generation
keeps existing as long as threads execute in this address space,
even after the user has instructed us to remove the generation
(by calling wf_delete()). Only after the last thread leaves a
deleted generation, we remove the MM and its page directo-
ries.

While the system call interface of WFPATCH is straight-
forward to implement, its integration with other system calls
and the page fault handler requires special attention: As some
system calls (e.g., mmap(), mprotect(), or munmap()), change
a process’s AS, we modified these system calls to apply their
effects, as long as they touch shared VMAs, not only to the
currently active MM but also to all siblings. However, modi-
fying the protection bits for regions in pinned mappings (via
mprotect()) affects the current MM only.

We also had to modify the page-fault handler, as Linux
allows VMAs and the underlying page directory to become
out of sync. For example, within a newly-created anonymous
VMA, no pages are mapped in the page directory, but they
are lazily allocated and mapped by the page-fault handler. By
having multiple sibling MMs, we have to make such lazy page
loads visible in all generations, when they happen in a shared
VMA. We accomplish this by updating not only the current
page directory, but also the page directory of the master MM.
Upon page faults, we first search the master MM for lazily
loaded pages, before allocating a new page.

In order to avoid race conditions between concurrent sys-
tem calls that modify a process’s AS, we use the master MM
as a read-write lock that protects all siblings at once. Nor-
mally, the MM linked in the TCB is used for this synchro-
nization, but this is insufficient for WFPATCH to synchronize
concurrent accesses. Therefore, we decided to use the master
MM as a locking proxy and automatically replaced all MM
locks with equivalent lock calls to the master MM by using a
Coccinelle [27, 28] script. This replacement alone is respon-
sible for 700 of the 2000 lines of changed source code. For

processes that do not have multiple generations, this locking
strategy imposes no further overhead as the initial MM is the
master MM.

In case a process with mutliple AS generations invokes
fork(), we clone solely the calling thread’s currently active
generation and make it the only generation in the AS of the
child process. This is sufficient, as fork() only copies the
currently active thread to the newly created process. In order
to maintain COW semantics between the forked AS and all
generations of the original AS, we have to mark the appropri-
ate page-table entries of all generations as COW pages (i.e.
set the read-only flag) – not only the entries of the two directly
involved MMs, as we normally would do. This poses a small
overhead when forking processes with multiple generations.

When a COW page gets resolved in an AS with multiple
generations, we must ensure that the newly copied page re-
places the old shared page in all generations, not just in the
current one. Therefore, the page fault handler removes the
corresponding page-table entry in all generations and maps
the new page into the master MM. The master MM fallback
mechanism will fill the siblings’ page-table entries again (with
the copied page) in case of a page fault.

As the AS generations are technically distinct MMs, the
migration of a thread to a new AS generation is treated like
a context switch between processes. Each generation gets its
own address-space identifier (ASID) on the processor. Thus,
there is no need for a TLB shootdown on AS migrations. Of
course, a TLB shootdown (for all generations) is still neces-
sary if access rights become more restricted.

While our kernel extension is a robust prototype, several
features are still missing (e.g., userfaultfd, a mechanism to
handle page faults in user space) and some are not extensively
tested (e.g., swapping, NUMA memory migration, memory
compaction). However, for none of these features, we see any
fundamental problem that would conflict with our approach
or cause a significant deterioration in the performance of the
overall system after adding full support.

3.3 User-Space Library

Our proposed system interface (see Section 3.1) allows a
process to create new AS generations, to migrate individual
threads, and to delete old generations. In order to utilize this
system-call interface for live patching with local quiescence,
we built a user-space library around this system-call interface.
In the following, we will describe its API as well as its usage
in a multi-threaded server with one thread per connection (see
Figure 4).

At start, the user initializes and configures our library with
wf_init(): With track_threads, she promises to signal the
birth and death of threads such that our library can keep track
of all currently active threads and delete old AS generations
after the last thread has migrated away. Alternatively, the
user can configure a callback that returns the current number

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 655

void worker(int fd) {
wf_thread_birth();
while (!done) {
x = read(fd);
work(x);
wf_quiescence();

}
wf_thread_death();

}

int main(void) {
wf_config_t config = {
.track_threads = 1,
.on_migration_start=&f,
};
wf_init(config);
wf_thread_birth();
signal(RTMIN, sigpatch);
...
while (true) {
int c = accept();
spawn_worker(c);
wf_quiescence();

}
}

void sigpatch(int) {
char *p;
p = find_patch();
wf_load_patch(p);

}

Figure 4: Usage of our User-Space Library

of threads. Furthermore, the user can install other callbacks
that we invoke at certain points of the migration cycle. In
the example, we invoke f() when the new AS is ready for
migration and, thereby, give the user the possibility to trigger
blocked threads in order to speed up the migration phase.
With the initialization, the library starts the patcher thread,
which pins the text segment, creates new AS generations, and
orchestrates the migration phase.

As initiation of live updates and the location of patch files is
application specific, we leave this to the user application and
only provide a library interface to start the patching applica-
tion (wf_load_patch()). This function instructs the patcher
thread to load a binary patch from the file system and apply
it in a new AS generation. In our current implementation,
wf_load_patch() supports ELF-format patches created by
Kpatch [30]. These patches are loaded, relocated, and all con-
tained functions are installed in the cloned text segment via
unconditional jumps at the original symbol addresses. Further-
more, all references within the patch to unmodified functions,
global variables, and shared-library functions are resolved
dynamically. Afterwards, the patcher marks the new AS as
ready for migration and sleeps until all thread have migrated.

At the thread-local quiescence points, the user has to call
wf_quiescence() periodically, which checks if a new AS
generation is available and ready for migration. If so, the
library calls wf_migrate() in the context of the current thread
and increases the number of migrated threads. After all threads
have migrated, the patcher thread is woken, deletes the old
AS generation and ends the migration phase.

4 Evaluation

We evaluate WFPATCH with six production-quality infrastruc-
ture services on a Linux 5.1 kernel running the Debian 10
Linux distribution (codename “buster”, released on 2019-07-
10). Table 1 provides a brief overview of the respective De-
bian packages for OpenLDAP, Apache HTTPD, Memcached,
Samba, Node.js, and MariaDB. We use the initial Debian 10

packages and prepare the server executables for dynamic
patching with global and local quiescence (Section 4.1). Our
goal is to apply all patches published by the Debian main-
tainers until 2020-05-09 for these binaries with our approach
(Section 4.2). This situation mimics a system administrator
who maintains a long-running server running one of these
services.

For quantitative evaluation, we measure and compare the
service latency while applying a binary patch with global
and local quiescence (Section 4.3), respectively, as well as
the memory and run-time overheads caused by WFPATCH
(Section 4.4).

4.1 Implementation of Quiescence
As outlined in Section 2, implementing global quiescence
in a complex multi-threaded program can be a difficult un-
dertaking causing three problems in general: Long-running
computations (Problem 1) and waiting for I/O (Problem 2)
prolong the transition period, which results in deteriorating
service quality, while inter-thread dependencies necessitate
stopping the threads in an application-specific order to avoid
deadlocks (Problem 3). In the following, we describe how
we encountered these three problems in our evaluation tar-
gets and how they manifest in their structure and fundamental
design decisions. Besides the steps we had to take in order
to achieve global quiescence, we also describe how we can
reach local quiescence for each of the projects we evaluated.
OpenLDAP The OpenLDAP server (slapd) uses a listener
thread that accepts new connections and dispatches requests
as work packages to a thread pool of variable, but limited
size (≤ 16 threads). Each work package is processed by a
single worker thread, which alternates between computation
and blocking I/O until the request is answered.

For global quiescence, we submit a special task to the thread
pool. The executing worker pauses all other workers with the
built-in pause-pool API, which can only be called from a
worker context, and visits a quiescence point on behalf all
worker threads. Since the listener thread waits indefinitely for
new connections, we need to introduce an artificial timeout
(1 second) to provoke quiescence points periodically. For
local quiescence, we only introduce a quiescence point before
the listener waits for a new connection and after a worker
thread completes a task.

As worker threads execute client requests as a single task
without visiting a quiescence point, complex requests (prob-
lem 1), slow client connections (problem 2), and large result
sets (problem 2) prolong the barrier-wait time.
Apache The default configuration of the Apache web server
(httpd) uses the built-in multi-processing module event,
which implements one dedicated listener thread and a config-
urable number of worker threads (default: 25). That listener
thread handles all new connections, all idle network sock-
ets, and all network sockets whose write buffers are full to

656 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

avoid blocking of the worker threads. In its main loop, the
listener thread periodically checks for activity on the listen-
ing, idle, and full network sockets by using the Linux system
call epoll() with a timeout of up to 30 seconds, which can
cause Problem 2. Once a network socket becomes active, the
listener thread unblocks the next free worker thread to serve
that socket.

We introduce one quiescence point into each main loop
of the listener and worker threads. For global quiescence,
however, we have to make sure that the listener thread enters
global quiescence after all worker threads have done. Other-
wise, some worker threads may block indefinitely because
the listener thread cannot unblock them anymore (Problem 3).
When returning from global quiescence, the listener’s timeout
queue needs to be fixed manually to account for the elapsed
time spent in global quiescence.

Implementing local quiescence in Apache is straightfor-
ward by just introducing the same quiescence points without
bothering about deadlocks nor timeouts.
Memcached Memcached is event-driven and uses 10
threads in the default configuration: Four worker threads wait
for network requests and the completion of asynchronous I/O
tasks. One listener thread accepts new connections and wakes
up at least every second to update a timestamp variable. Both
the workers and the listener use libevent to orchestrate event
processing. Furthermore, three background threads wait on
a condition variable, while two other threads use sleep() to
wake up periodically with a maximal period of one second.

For global quiescence, we use a built-in notify mechanism
to wake up the all workers immediately, even if they are
blocking in libevent. For the listener thread, we have to use
event_base_loopbreak() to interrupt the event-processing
loop. Unfortunately, this only sets a flag that the listener
checks within the aforementioned one-second period. Fur-
thermore, we have to signal the three condition variables to
wake up the associated maintenance threads, as they would
block indefinitely otherwise. The two sleeping threads will,
eventually, reach the quiescence point, but waking them is not
necessary to avoid deadlocks. For local quiescence, we use
the same quiescence points and the same wake-up strategy as
for global quiescence.

While the main operation of Memcached is event-driven
and, therefore, the threads do not block on I/O operations, the
periodic maintenance threads and the listener thread provoke
barrier-wait times of up to one second (Problem 2).
Samba For live patching, Samba’s smbd was especially chal-
lenging as it uses a combination of process-based and thread-
based parallelization. For each connection, which can live for
hours and days if established by a client mount, the process
is forked and uses internally a thread pool to parallelize re-
quests. This thread pool shrinks and grows dynamically with
the request load, while idling worker threads retire only after
a given timeout (1 second). Technically, these workers wait
on a condition variable with a one-second timeout and are

woken when a listener thread enqueues a received request. In
order to issue a patch request, the system administrator has to
inform all processes to initiate the patching process.

For global quiescence, we have to signal each worker’s
condition variable. A woken worker checks whether the bar-
rier is active and visits a quiescence point instead of retiring
early as an idle worker. For local quiescence, we just inserted
quiescence points after the condition wait and after a received
network request.

As each request is limited in size, smbd only suffers from
problem 2 when workers wait for a send operation to complete.
However, as the thread pool dynamically grows to up to 100
threads under heavy load, the overall barrier-wait peaks when
the server is most intensely used.
Node.js For asynchronous I/O operations, Node.js spawns
one thread that executes a libuv loop. For computation,
Node.js uses one work queue for immediate tasks executed by
a variable number (n) of worker threads, and a second queue
for delayed tasks, which is serviced by a dedicated thread.
Each worker executes tasks sequentially and offloads I/O to
the libuv thread.

For binary patching, we introduce quiescence points in the
I/O thread and after a worker completes a task. For global
quiescence, we submit n empty tasks to the immediate work
queue and one task to the delayed work queue. For the libuv

thread, we had to manually signal a semaphore to prevent
deadlocks (problem 3). For local quiescence, we only sub-
mit one task to the delayed work queue and use the same
quiescence points otherwise.

As all computation, including the just-in-time compilation,
is dispatched via work queues, a long job (problem 1) will
increase the barrier-wait time even though the Javascript exe-
cution model is inherently event-driven.
MariaDB MariaDB’s mysqld supports two thread models:
one thread per connection, which is the default, or a pool
of worker threads. In both cases, a separate listener thread
accepts new connections and passes them to connection or
worker threads, and a total of 30 helper threads handle of-
floaded I/O and housekeeping. We implemented patching
support for both thread models.

Judging from its public bug tracker, SQL query evalua-
tion appears to be MariaDB’s most error-prone component.
We therefore limit the global barrier to threads parsing or
executing SQL statements and do not add quiescence points
to listener or helper threads. Even so, our global quiescence
implementation faces all the three challenges outlined in Sec-
tion 2.

Slow queries, such as complex SELECT or large INSERT
statements, increase the barrier-wait time as threads perform
the computation (problem 1) without visiting a quiescence
point. Depending on the query and the size of the database,
this can lead to excessive wait times.

In both threading variants, idle threads are cached in an-
ticipation of new work before being retired. In one thread

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 657

per connection mode, the hard-coded timeout is five minutes;
for the thread pool, it defaults to one minute (problem 2).
As barrier-wait times of over a minute are unrealistic for any
global-quiescence integration, we utilize preexisting functions
to wake up all cached threads for patching. We introduce a
new global patch variable to distinguish between a wake up
due to a new connection, server shutdown, or patching in one
thread per connection mode.

MariaDB supports SQL transactions, which are an atomic
group of SQL statements whose effects are only visible to
other connections after the transaction has completed. As
MariaDB serializes transactions which access the same data
via locks, threads encounter request- and database-induced
dependencies (problem 3). If a thread reaches the barrier while
holding a transaction lock, other threads that try to get this
lock before their next visit at a quiescence point will deadlock.
In one thread per connection mode, we handle this by skipping
the barrier if the connection holds a transaction lock. For
the thread pool, this does not suffice: as each thread handles
several connections, waiting on the barrier is forbidden as
long as any open transaction is present.

For local quiescence, visiting a quiescence point is possible
regardless of the transaction state. Apart from that, we use the
same quiescence points and wake-up strategies as for global
quiescence.

Global vs. Local Quiescence Summarized, we encoun-
tered Problem 1 in three projects (OpenLDAP, Node.js,
MariaDB), Problem 2 in four projects (OpenLDAP,
Memcached, Samba, MariaDB), and Problem 3 in four
projects (OpenLDAP, Apache, Node.js, and MariaDB). While
Problem 1 and 2 in combination with global quiescence
only affect service quality, Problem 3 forced us to introduce
different application-specific dead-lock avoidance techniques
into our benchmarks. Thereby, we repeatedly experienced
set-backs and spurious deadlocks while navigating the often
complex web of existing inter-thread dependencies – achiev-
ing global quiescence was the hardest part of our evaluation!
In contrast, incorporating WFPATCH was straightforward as
we only had to identify the local-quiescence points before
patch application could start.

4.2 Binary Patch Generation
To demonstrate the applicability of live patching in running
user-space programs, we created a set of binary patches for
the aforementioned six network services (see Table 1). For
each project, we use the current version that is shipped with
Debian 10.0 as a baseline against which we apply patches. In
Debian, it is common to select one version of a project for
a specific Debian release and have the maintainer backport
critical patches onto that version.

For five projects (except MariaDB), we systematically in-
spected the Debian source package for maintainer-prepared
patches that touch the source code of the network service.

Debian patches reflect critical updates that an expert on the
service selected for this specific version. Therefore, we con-
sider these patches as a good candidate set for live patches
that a system administrator wants to apply. We also review
the subset of patches with a CVE entry to get statistics of
highly-critical security updates.

For MariaDB, the source package contains no patches: De-
bian follows MariaDB releases instead of backporting individ-
ual patches. Therefore, we processed all commits in the 10.3
branch of the MariaDB repository, starting with the 10.3.15
release shipped with Debian 10.0. Each set of commits that
references a single bug tracker entry classified as Bug with a
severity of at least Major related to mysqld is a source patch.
As the bug tracker does not reference CVE numbers, we use
patches with a severity of at least Critical instead.

From these source-code patches, we manually select those
which only influence the .text segment and do not alter data
structures or global variables, as such patches are currently
out of scope for our mechanism. In Table 1, we see that most
patches that are hand-selected by a maintainer are text-only
patches; for CVE patches, the correlation is even higher. For
MariaDB, where we have a large set of critical patches, 91
percent of the patches exclusively modify the program logic.
We therefore conclude that a mechanism which supports live
patching with a restriction to code-only changes is neverthe-
less a useful contribution for keeping running services up to
date.

As patch generation, in contrast to patch application, is
not among our intended contributions, we use the Kpatch
toolchain, which was developed for live-updating the Linux
kernel, to prepare binary patches from source code changes.
Unfortunately, due to shortcomings in Kpatch, we could not
create binary patches for all text-only changes. Especially
MariaDB and Node.js, which are implemented in C++, show
a low success rate. In the lower half of Table 1 we summa-
rize, over all generated binary patches, the average number of
changed object files, modified function bodies, and the size
of each patch text segment.

We verified our mechanism by applying each patch into the
corresponding service while processing requests. We success-
fully applied all binary patches generated by Kpatch with our
user-space library using thread migration at local quiescence
points.

In total, we successfully applied 33 different binary patches
including 15 CVE-relevant patches. For OpenLDAP, Apache,
and Samba, we were able to apply all generated patches se-
quentially into the running process. This was not possible for
MariaDB because the patches are not applicable to a common
base version due to the amount of patches that we could not
generate with Kpatch. Making the patches applicable sequen-
tially in MariaDB would have meant to backport them to the
initial version, like the Dabian maintainers did for the other
projects.

658 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

OpenLDAP
(slapd)

Apache
(httpd)

Memcached Samba
(smbd)

MariaDB*
(mysqld)

Node.js

Release 2.4.47 2.4.38 1.5.6 4.9.5 10.3.15 10.19.0

All Patches (CVE) [#] 13 (2) 10 (10) 1 (1) 2 (2) 74 (26) 4 (0)
.text Only (CVE) [#] 9 (2) 7 (7) 1 (1) 2 (2) 67 (24) 4 (0)

kpatch’able (CVE) [#] 9 (2) 7 (7) 1 (1) 2 (2) 16 (5) 0 (0)

�Mod. Files [#] 1.11 1.71 1 1 1.19 –
�Mod. Functions [#] 3.67 13.71 1 5.5 2.94 –
�Patch Size [KiB] 13.02 56.94 43.91 9.23 15 –

* For MariaDB, no Debian patches were available and MariaDB maintainers do not relate bugs to CVEs. We instead took patches with severity
≥Major from the project’s bug tracker as base; numbers in brackets denote patches with severity ≥ Critical.

Table 1: Evaluation projects and patches (of which CVE-related) since Debian 10.0 release

4.3 Request Latencies

In order to quantify the service quality benefits of local
quiescence and incremental thread migration over the bar-
rier method, we perform an end-to-end test for our selected
projects. For each project, we define a benchmark scenario
and measure the end-to-end request latencies encountered on
the client side, while we (a) generate new AS generations
and migrate threads, or (b) stop all threads at a global barrier.
For this, we extended our user-space library to also support
global-quiescence states via the barrier method. We period-
ically send patch requests to the same process and skip the
actual text-segment modification in these tests, while still in-
ducing barrier-wait times on the one side and AS-creation
overheads on the other side. Thereby, we achieve a high cov-
erage of different program states at patch-request time, while
keeping the comparison fair.

All experiments are conducted on a two machine setup.
The server process runs on a 48-core (96 hardware threads)
Intel Xeon Gold 6252 machine clocked at 2.10 GHz with 374
GiB of main memory. The clients execute on a 4-core Intel
Core i5-6400 machine running at 2.70 GHz with 32 GiB of
main memory. Both machines are connected by a Gigabit link
in a local-area network.

On the server side, we start the service, wait 3 seconds
for the clients to come up and then trigger a local-quiescence
migration or global-quiescence barrier sync every 1.5 seconds.
By this patch-request spreading, the impact of the barrier
method can cool down before the next cycle starts. On the
client side, we measure the end-to-end latency of each request.
In total, we simulate at least 1000 patch requests for each
benchmark.

For OpenLDAP, 200 parallel client connections send LDAP
searches that result in 50 user profiles from a database with
1000 records. For Apache, we use ApacheBench to download
a 4 MiB sample file 50,000 times using 10 parallel connec-
tions; due to the shared Gigabit link, a download takes about
350 ms when no threads are blocked on the global quiescence
barrier. For Memcached, 50 client connections request a ran-

dom key from a pool of 1000 cached objects of 64 KiB. For
MariaDB, which we operate in the one-thread-per-connection
mode, four sysbench oltp_read_only connections continu-
ously perform transactions with five simple SELECT state-
ments, while four background connections – whose latency
we do not monitor – execute transactions with 2000 state-
ments. For Node.js, we developed an example web service
that encodes a request parameter in a QR-code, wraps it in a
PDF, and sends the resulting “ticket” back to the client. We
use the wrk tool to simulate 10 parallel clients that repeatedly
request a new ticket. For Samba, we mount the exported file
system on the client machine (mount.cifs) and use the sys-
bench fileio benchmark with 32 threads, a block size of 16
KiB, and an R/W ratio of 1.5 to measure file I/O latencies.

Please be aware that these scenarios are chosen as examples
to demonstrate the possible impact of barrier synchronization.
Resulting latencies are highly dependent on the workload and
can be smaller, but also vastly larger in other scenarios. For
example, by executing long-running SQL queries on Maria-
DB or downloading large files from an Apache server, the
barrier-wait times, and therefore the latency of the global-
quiescence method, can be increased arbitrarily.

Figure 5 shows latency histograms (with logarithmic y
axis) for local and global quiescence, as well as the 99.5
response-time percentile. In all benchmarks, we see a signif-
icant increase in tail latency which ranges from a factor of
0.97× (Node.js) to 41× for MariaDB. While the results for
OpenLDAP, MariaDB, and Samba directly show the latency
impact of a global barrier, the other results require explana-
tions. For Memcached, three out of ten threads perform one-
second waits, resulting in latencies of up to one second. For
Apache, local quiescence shows a narrow latency distribution
with the predicted peak at 350 ms while global quiescence
shows a broadened distribution. This is due to the bench-
mark’s network-bound nature: the last worker to reach the
barrier enjoys the unshared 1 Gigabit link to finish its last
request, while all requests arriving after the patch request are
impacted by the barrier-wait time. In Node.js, the percentiles

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 659

101

103

105
P99.5 (=143.52ms)
Global Quiescence

0 20 40 60 80 100 120 140
OpenLDAP: Histogram of Request Latency [ms]

101

103

105

Nu
m

be
r o

f R
eq

ue
st

s

P99.5 (=9.56ms)
Local Quiescence

101

103
P99.5 (=601.00ms)
Global Quiescence

0 200 400 600 800 1000 1200 1400
Apache: Histogram of Request Latency [ms]

101

103

Nu
m

be
r o

f R
eq

ue
st

s

P99.5 (=541.00ms)
Local Quiescence

101

103
P99.5 (=236.08ms)
Global Quiescence

0 250 500 750 1000 1250 1500 1750
Node.js: Histogram of Request Latency [ms]

101

103

Nu
m

be
r o

f R
eq

ue
st

s

P99.5 (=243.15ms)
Local Quiescence

102

104

106
P99.5 (=855.90ms)
Global Quiescence

0 200 400 600 800 1000
Memcached: Histogram of Request Latency [ms]

102

104

106

Nu
m

be
r o

f R
eq

ue
st

s

P99.5 (=32.38ms)
Local Quiescence

101

103

105 P99.5 (=323.62ms)
Global Quiescence

0 200 400 600 800 1000
MariaDB: Histogram of Request Latency [ms]

101

103

105

Nu
m

be
r o

f R
eq

ue
st

s

P99.5 (=7.84ms)
Local Quiescence

102

105
P99.5 (=760.68ms)
Global Quiescence

0 500 1000 1500 2000 2500 3000 3500
Samba: Histogram of File I/O Latency [ms]

102

105

Nu
m

be
r o

f R
eq

ue
st

s

P99.5 (=55.69ms)
Local Quiescence

Figure 5: Request Latencies during Live Patching

0

50

100

150

Re
po

ns
es

 [1
/s

]

0.0 0.2 0.4 0.6 0.8 1.0
Response Time relative to Patch Request [s]

0

50

100

150

M
ax

. L
at

en
cy

 [m
s] Global Quiescence

Local Quiescence
Patch Request

Figure 6: OpenLDAP Response Rates during Quiescence

are almost equal as the longest encountered barrier-wait time
(18 ms) is still shorter than the average request duration’s jitter
(193±53 ms). However, we observe individual barrier-wait
times of more than 1.5 seconds.

For a deeper understanding of the encountered service qual-
ity directly after a patch request, we analyze OpenLDAP re-
sponses during 1000 patch requests. We correlate each re-
ceived response to the previous patch request and plot them
according to their relative receive time; zero being the patch
request. Figure 6 shows response rate and maximum observed
latency. After a patch request, the response rate in the global-
quiescence case rapidly decreases, while the latency stays at
its normal value. After the workers reach the barrier, no re-
sponses are recorded until the listener has reached the barrier.
After global quiescence is reached, slapd ramps up again and
processes the request backlog built up in the meantime. This
causes the response rate to spike, but those responses are so
late that we see a significant latency increase before the ser-

vice returns to normal operation. With WFPATCH, no impact,
neither on the response rate nor on the maximum latency, can
be observed.

4.4 Memory and Run-Time Overheads

For each patch application, our kernel extension duplicates
the MMU configuration, creates a new AS generation, and
performs one AS switch per thread in order to migrate it to the
new generation. To quantify the impact of these operations,
we measure the MMU configuration size and perform run-
time micro benchmarks of AS creation and switching times
for each server application. We run the benchmarks under load
(see Section 4.3) to provoke disturbance and lock contention
in the kernel.

We measure the memory overhead caused by duplicate
MMU configurations by sequentially applying as many
patches as possible. In Table 2, we report the difference in
MMU configuration size before and after the patch applica-
tion. As the other data-structure additions required for our
extension are negligible in size, this is the total memory over-
head during patch application. Due to the non-deletable mas-
ter MM (see Section 3.2), this overhead becomes permanent
for patched processes: starting with the first additional gen-
eration, we carry the load of this additional MM. We do not
introduce a memory overhead for processes which do not use
AS generations.

For the run-time overhead, we perform two micro bench-
marks. (1) The patcher thread creates a new AS generation
and immediately destroys it. (2) The patcher thread migrates
back and forth between two AS generations (2 switches). We

660 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Memory Runtime Penalty
[KiB] Create [µs] Switch [µs]

OpenLDAP 412 298±47 7±7
Apache 680 429±17 7±6
Memcached 132 88±23 7±6
MariaDB 516 1339±38 7±6
Node.js 1808 2171±139 8±7
Samba 256 672±54 5±5

Table 2: Address Space Management Overhead

Upstream [µs] WFPATCH [µs]

(a) Anonymous Mapping 0.40±0.12 0.42±0.15
(b) File Mapping 0.50±0.14 0.50±0.15
(c) Read Fault 0.87±0.18 0.87±0.20
(d) Write Fault 1.23±0.29 1.25±0.32
(e) COW Fault 1.79±0.35 1.81±0.39

Table 3: Steady-State Run-Time Overhead

execute each scenario a million times in a tight loop and report,
in Table 2, the average operation time alongside its standard
deviation. We see that the creation and destruction of AS gen-
erations scales with the size of the process’s virtual address
space. Only for Samba and MariaDB, the creation overhead is,
compared to the MM size, disproportionately higher than for
the other four benchmarks. This is caused by a higher num-
ber of file-backed VMAs in Samba and MariaDB that take
longer to duplicate. The wf_migrate() call is a constant-time
operation.

In the implementation of our approach, we tried to min-
imize overhead for applications that do not use WFPATCH.
Memory consumption overhead is limited to few additional
fields in the thread control block (2 pointers + 2 integer fields),
the memory map (3 pointers), and the structure that represents
a memory mapping (1 boolean field). In terms of run-time
overhead, WFPATCH adds code in two critical places in the
kernel: the mapping modification functions and the page-fault
handler. In order to assess the run-time impacts, we performed
micro benchmarks on our modified kernel and on an upstream
kernel with the same version and configuration. To evalu-
ate mapping modifications, we map and unmap either (a) an
anonymous memory region or (b) a file mapping and measure
the time of the mmap() system call. The results do not show a
significant difference between the kernels (see Table 3). For
page faults, we issue (c) a read operation or (d) a write op-
eration on a previously untouched portion of an anonymous
mapping. To also capture (e) copy-on-write resolution, we
write to a page that is also mapped by a forked process. Each
of the five measurements was repeated 10 million times.

5 Discussion

Benefits of Local Quiescence The main benefit of patch-
ing threads individually is the simplified establishment of
quiescence and the avoidance of a global barrier that causes a
deterioration in performance. Thereby, WFPATCH provides
latency hiding for Problem 1 and 2 (Section 4.1) and mitigates
Problem 3.

Nevertheless, in the light of the rare event of applying a live
patch to an application, the overhead and tail latency of global
quiescence may seem negligible. However, the benchmarks
presented in Section 4.3 do not necessarily represent a real-
world or worst-case scenario: We use a single client machine
with a fast, stable, and reliable local network connection to the
server. Furthermore, we aimed for a controlled and uniformly
distributed load pattern for the sake of reproducibility and in
order to fairly compare the relative impact of global vs. local
quiescence. In a real-world scenario, connection latencies
will vary wildly or may be even under control by an active
attacker. As barrier-synchronized global quiescence couples
the progress of all threads in the system, it is much more prone
to such latency variations – the latency impact is dictated by
the slowest (in case of an attacker: stalling) thread to reach
the barrier. With WFPATCH and local quiescence, all other
threads will not only continue working, but also have the
patch applied immediately. Even if a thread stalls forever, the
only damage is an AS generation that will never get freed,
while the patched server continues to answer requests.

Lightweight AS Generation For the lightweight AS gen-
eration, our current implementation copies the whole MM in
wf_create(), including VMAs and the page directories. This
leads to the differing memory and creation overheads that we
observed for our benchmark scenarios (Table 2).

While we consider these overheads as reasonable for the
purpose, they could nevertheless be reduced further if we
implement the different generations to share parts of their
page-directory structure. This is possible for shared VMAs,
as the underlying page tables always reference the same phys-
ical pages. In fact, we currently even pay for not sharing them
by extra efforts to keep page tables synchronized among AS
generations via the master MM. However, VMAs cover page
ranges with arbitrary start/end index, while the page-directory
tree covers page rages on a power-of-two basis, so implement-
ing such sharing is not trivial. To the best of our knowledge,
Linux itself does not employ page-table sharing between ad-
dress spaces, even though this would probably be beneficial
for the implementation of the fork system call.

Code Complexity The current implementation of WF-
PATCH adds a certain amount of complexity to the kernel (see
Section 3.2). This stems from its interaction with the already-
complex kernel memory-management subsystem. One reason
is that Linux targets numerous different architectures and
exploits most of their individual capabilities. Secondly, the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 661

kernel itself provides many features and often chooses perfor-
mance over simplicity (e.g., fine granular page table locking
or code duplication in the mapping functions). Apart from
that, WFPATCH’s complexity is also caused by the tight con-
nection between address spaces and processes in Linux. As
the idea of AS generations itself is straightforward, the com-
plexity of our kernel extension could be reduced significantly
if we decoupled the two concepts of address spaces and pro-
cesses in general. That would not only serve our approach,
but may even promote other ideas and development [21, 9],
such as the decoupling between threads and processes did.
Applicability The general applicability of WFPATCH is po-
tentially limited by (a) the restriction to .text/.rodata-patches
only and (b) the preparation of the respective target program.
With respect to (a) this depends on the intended use case:
We consider WFPATCH currently as an approach to apply
hot fixes to a server process under heavy load – in order to
prolong the time it needs to be restarted until the next mainte-
nance window. For this use case, our results show that the vast
majority of patches (87%) are .text-only and, therefore, appli-
cable; for critical patches (CVE mitigations) this number is
even higher (88%). Regarding (b), the WFPATCH user-space
library simplifies the preparation of the target program to
support hot patching, but like in other approaches that sup-
port multi-threaded applications, it is up to the developer to
identify and model the respective safe points to apply a patch.
With WFPATCH, however, it becomes significantly easier to
find these points as they need to be only locally quiescent.
In our evaluation, the hardest part of integrating WFPATCH
into the six multi-threaded server programs was the global
barrier we needed solely for the comparison between local
and global quiescence.
Soundness and Completeness Proving the soundness of a
dynamic update is an undecidable problem [14], even though
type checking and static analysis can help to mitigate the
situation in some cases [1]. With WFPATCH, we have the
additional complexity of incomplete patches, that is, some
threads still execute the old code, while others already use
the patched version. This, however, imposes additional cor-
rectness issues only if the code change actually influences
inter-thread data/control dependencies, such as the implemen-
tation of a producer–consumer protocol. In practice, this is a
rare situation – none of the analyzed 90 .text-only patches fell
into this category. Nevertheless, a possible solution in such
cases would be to gradually give up the wait-free property by
implementing group quiescence among the dependent threads,
while all other threads can still migrate wait-free at their local
quiescence point. Compared to global quiescence, group qui-
escence would still be less debilitating for overall response
time and easier to implement in a deadlock-free manner.

In general, if some thread has not yet passed its point of
local quiescence, it is either blocking somewhere in an I/O or
still actively processing a request that arrived before the patch
was triggered. In both cases, it is at most this one request that

may still be processed using the old version. This would also
be the case with global quiescence – only that with global
quiescence based on barriers all other threads have to wait
(see Figure 6); if global quiescence is determined by prob-
ing for a safe state (such as in Ksplice [3]), the other threads
continue processing requests using the unpatched version. If
the respective thread hangs forever, global quiescence based
on barriers would result in a deadlock, while with probing
the patch would never get applied. With WFPATCH, the patch
will be applied as far as possible: All new requests will be
processed with the new code – a server may even be patched
while under an active DDOS attack. Technically, an incom-
plete patch means that the process will stay in two (or even
more) ASs forever.

Overall, local and global quiescence make a different trade-
off between correctness requirements and ease of patch ap-
plicability: While applying patches with global quiescence
requires less upfront thought about the correctness of a patch
as it provokes no transition period, it may be hard or even
impossible to introduce the patch in the system. On the other
hand, although it is harder to show that a patch is suitable for
local-quiescence patching, finding local-quiescence points is
easier and patch application has only minimal impact on the
system’s operation. We believe that many time-critical up-
dates (e.g., additional security checks) have such a localized
impact on the code that the guarantees of local-quiescence
patching are sufficient for a large number of changes.

Generalizability For the sake of simplicity, we chose to
adapt the Kpatch binary-patch creation for our evaluation and
implemented a loader for such patches for user-space pro-
grams (Section 3.3). Thereby, we also inherit the limitations
of Kpatch regarding granularity and installation of patches:
Patches work at the granularity of functions; they are installed
by placing a jump at the original symbol address to redirect
the control flow to the patched version. This bears some over-
head, but is arguably the most widespread technique to apply
run-time patches [1, 23, 3, 29, 30, 5, 6]. Furthermore, only
quiescent (inactive) functions can be patched. While this limi-
tation is a lot less problematic with WFPATCH due to the fact
that quiescence is reduced to local quiescence (inactive in the
currently examined thread), it nevertheless prevents patching
of top-level functions.

It is important to note, though, that these are restrictions of
the employed patching mechanism, not of its wait-free appli-
cation offered by WFPATCH, which is the main contribution
of this work. Integration with more sophisticated patching
methods [17, 15, 22] could mitigate these limitations while
keeping the WFPATCH benefits. For instance, UpStare can
patch active functions by an advanced stack reconstruction
technique [22]. Hence, it does not require quiescence, but nev-
ertheless has to halt the whole process for patch application
and reconstruction of all stacks. In conjunction with WF-
PATCH, this expensive undertaking could be performed in the
background while other threads continue to make progress.

662 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Data Patching While our toolchain already supports the
introduction of new data structures and global variables, we
currently do not support patches that change existing data-
structures or the interpretation of data objects. Such patches
are generally difficult [36] as a transform function that mi-
grates the system state to the new representation must be
applied to all modified objects in existence. Current live-
patching systems rely on the developer to supply these trans-
form functions [17, 15], while language-oriented methods for
semi-automated transformer generation exists [20, 18, 25].

With local quiescence, state transfer becomes more dif-
ficult as two threads that touch the same data can execute
in different patching states. Therefore, an extension to data
patches would require bidirectional transform functions that
are able to migrate program state back and forth as needed.
MMU-based object migration on read and write accesses via
page faults can be used to trigger the migration of individ-
ual objects between AS generations. Similar mechanisms are
used to provide virtual shared memory on message-passing
architectures [2]. However, for thread-local state only a uni-
directional transform function is required.

Other Applications In a nutshell, WFPATCH provides
means for run-time binary modifications in the background,
which can then be applied wait-free to individual threads. Be-
sides run-time binary patching, the fundamental mechanism
could be useful for many further usage scenarios.

For example, every just-in-time (JIT) compiler has to inte-
grate newer, more optimized versions of functions into the call
hierarchy while the program is executing. With WFPATCH,
the JIT could prepare complex changes and rearrangements
across multiple functions in the background in a new AS gen-
eration and then apply them, without stopping user threads,
by migrating the benefiting threads incrementally to the up-
dated AS. Furthermore, as our kernel extension supports an
arbitrary number of AS generations, the JIT could provide
specialized thread-local function variants with the same start
address, keeping all function pointers valid.

In a similar manner, an OS kernel could transparently apply
path-specific kernel modifications [31] on a per-thread basis.
For example, the kernel could use a different IRQ subsys-
tem that is only used if a thread with real-time priority gets
interrupted.

AS generations can not only be used to provide a differing
code views between threads, but also data views. This can be
employed to provide isolation for security and safety purposes.
For example, a server application could make encryption keys
only be present in a special AS generation; the other gen-
erations would have an empty mapping in this place. Even
individual threads could live in their own AS generations in
order to keep sensible data private but share all the other map-
pings with their sibling threads. The major benefit compared
to using fork() with distinct processes is that all mappings
are shared by default and modifications to the mapping are
implicitly synchronized – the address spaces do not diverge.

Moreover, threads can easily switch back and forth between
generations. Litton et al. [21] made a similar suggestion in
form of thread-level address spaces, which, however are not
synchronized, thus being similar to fork() in this respect.

In general, WFPATCH is able to provide classical cross-
cutting concerns (debugging, tracing, logging) with a thread-
local view of the text segment. For example, a debugger may
limit the effect of trace- and breakpoints to the actually de-
bugged threads or use the unoptimized program only during
the debugging session. Also, the user could enable tracing,
logging, assertions, or behavioral sanitizers (e.g., Clang’s UB-
San) for individual threads.

6 Related Work

Dynamic patching of OS kernels has a long history in research
[13, 4, 5, 12] and is now actually used in production systems
[3, 29, 30]. In contrast, the suggested frameworks to patch
user-level processes [20, 25, 6, 22, 17, 15, 12] are still not
broadly employed.

The DAS [13] operating system incorporated an early run-
time updating solution on module-level granularity. It requires
absolute quiescence of a module to be patched, realized by
locks. K42 [4] exploits its strict object-oriented design to
enable live kernel updates. The event-driven nature with short-
lived and non-blocking threads makes it relatively easy to
define a safe state for concurrent patching.

The Proteos [12] microkernel provides built-in means for
process-level live updates based on automatic state transfer.
Like our wait-free patching technique, they employ MMU-
based address spaces, but unlike our approach the goal is not
a seamless thread-by-thread migration. Instead, the process is
halted during the update procedure, while the separate address
space provides for an easy rollback.

Most live-patching frameworks work on function-level
granularity [1, 23, 3, 29, 30, 5, 6], which can be considered
as a natural scope for changes while still providing for rela-
tively fine-grained updates. A patched version of the function
is loaded and installed via placing a trampoline jump at the
beginning of the old function body (function indirection). Bar-
rier blocking is the classical way to reach global quiescence
to safely apply the trampoline. Ksplice [3] avoids this by
polling for global quiescence instead: The whole kernel is
repeatedly stopped and checked for a safe state before the
function indirection gets installed. While this avoids a global
barrier, all threads have nevertheless to be halted for the check
and to apply the patch. Furthermore, probing is an unbounded
operation, so the patch may be applied late or never.

DynAMOS [23] and kGraft [29] also avoid global barriers
by extending the function indirection method: By (atomically)
placing additional redirection handlers between the trampo-
line and the jump target, they can decide on a per-call basis
which version of a function (original/updated) should be used.
This has some similarities to our address-space migration

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 663

technique as in both methods the patched and the unpatched
universe coexist while the transition is in progress; however,
in contrast to our approach, the redirection method induces
a performance penalty in this phase. Atomicity is reached
by rerouting the call through debug breakpoints during the
patch process; on SMP systems this furthermore requires IPIs
to all other cores to flush instruction caches. This approach
is limited to patching on function granularity and has only
been explored for kernel-level patching, whereas WFPATCH
targets user-level processes and allows for arbitrary large (or
small) in-place binary modifications, which in principle also
includes changes to (read-only) data.

LUCOS [5] tries to solve this by requiring the to-be-
patched kernel to run inside a modified XEN hypervisor,
which is able to atomically install trampoline calls by halting
the VM. The virtualization layer is also used to enable page-
granularity state synchronization between the different ver-
sions of a function. POLUS [6] brings this idea to user space
and relies on the underlying operating system (ptrace, signals
and mprotect) instead of a hypervisor. Again, all threads are
halted while the trampoline gets installed.

Ginseng [25] makes use of source-to-source compilation in
order to prepare C programs for dynamic updating. It inserts
indirection jumps for every function call and every data ac-
cess, but does not support multi-threaded programs. Function
indirections are also used by many other language-oriented
dynamic-variability methods, such as dynamic aspect weav-
ing [7, 10, 34] or function multiverses [33], which, however,
do not address quiescence in multi-threaded environments.

Ekiden [17] and Kitsune [15] provide dynamic updates by
replacing the whole executable code and transferring all pro-
gram state at dedicated update points, which constitute points
of global quiescence implemented by barriers in the case of
multi-threading. UpStare [22] goes one step further by allow-
ing run-time updates at arbitrary program states, enabled by
its stack reconstruction technique. However, updating multi-
threaded programs is also based on halting all threads. The
authors even suggest inserting the respective checks in long-
lived loops and to avoid blocking I/O.

Duan et al. present a comprehensive solution for patching
vulnerable mobile applications on the binary level [8]. How-
ever, patching takes place when the program starts and not
during later run time.

The idea of decoupling address spaces and processes has
also been described before: El Hajj et al. [9] provide freely
switchable address spaces in order to enlarge virtual memory
and to support persistent long-lived pointers. However, they
do not target live patching and their address spaces are in-
tended to be decoupled from each other, whereas WFPATCH
provides extra means to synchronize most regions among
address space generations.

Litton et al. [21] allow for multiple “light-weight execution
contexts” (lwC) per process and the possibility for threads to
switch between them. After creation, where the file-descriptor

table and the AS are copied (like fork), lwCs are decoupled
entities and can diverge significantly from each other. In con-
trast, our AS generations offer a gradually differing view of
the same AS without decoupling other parts of the execution
context (i.e. file-descriptor tables). Thereby, all threads retain
a synchronized view of process state, which is necessary for
incremental thread migration.

7 Conclusion

WFPATCH provides a wait-free approach to apply live code
patches to multi-threaded processes without “stopping the
world.” The fundamental principle of WFPATCH is that a code
change is not applied to the whole process at once, which re-
quires a state of global quiescence to be reached by all threads
simultaneously, but incrementally to each thread individually
at a thread-specific state of local quiescence. Hence, (1) no
thread is ever halted, (2) a single hanging thread cannot de-
lay or even prevent patching of all other threads, and (3) the
implementation gets easier as quiescence becomes a (compos-
able) local property. The incremental migration is provided
by means of multiple generations of the virtual address space
within the updated process. After preparation of an updated
address space, threads switch generations at their local quies-
cence points, while they are still able to communicate with
threads in other generations via shared memory mappings.

We implemented WFPATCH as a Linux 5.1 kernel exten-
sion and a user-space library, and evaluated our approach with
six major network services, including MariaDB, Apache and
Memcached. While live patching at points of global quies-
cence with a barrier increases the tail-latency of client requests
by up to a factor of 41×, we could not observe any disruption
in service quality when live patches were applied wait-free
with WFPATCH. In total, we successfully applied 33 differ-
ent binary patches into running programs while they were
actively servicing requests; 15 patches had a CVE number or
were other critical updates.

WFPATCH brings us closer to an ideal live patching solu-
tion for multi-threaded applications by solving the response-
time issue with a latency hiding patch-application mechanism.
This opens further research opportunities on advanced patch-
ing techniques.

Acknowledgments
We thank our anonymous reviewers and our shepherd Andrew
Baumann for their constructive feedback and the efforts they
made to improve this paper. We also thank Lennart Glauer for
his work on an early WFPATCH prototype.

This work was supported by the German Research Council
(DFG) under the grants LO 1719/3, LO 1719/4, SP 968/9-2.

The source code of WFPATCH and the evaluation artifacts
are available at:
https://www.sra.uni-hannover.de/p/wfpatch

664 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.sra.uni-hannover.de/p/wfpatch

References

[1] ALTEKAR, G., BAGRAK, I., BURSTEIN, P., AND
SCHULTZ, A. Opus: Online patches and updates for
security. In Proceedings of the 14th Conference on
USENIX Security Symposium - Volume 14 (Berkeley,
CA, USA, 2005), SSYM ’05, USENIX Association,
pp. 19–19.

[2] APPEL, A. W., AND LI, K. Virtual memory primi-
tives for user programs. In Proceedings of the fourth
international conference on Architectural support for
programming languages and operating systems (1991),
pp. 96–107.

[3] ARNOLD, J., AND KAASHOEK, M. F. Ksplice: au-
tomatic rebootless kernel updates. In Proceedings of
the ACM SIGOPS/EuroSys European Conference on
Computer Systems 2009 (EuroSys ’09) (New York, NY,
USA, Mar. 2009), J. Wilkes, R. Isaacs, and W. Schröder-
Preikschat, Eds., ACM Press, pp. 187–198.

[4] BAUMANN, A., HEISER, G., APPAVOO, J., SILVA,
D. D., KRIEGER, O., WISNIEWSKI, R. W., AND KERR,
J. Providing dynamic update in an operating system.
In Proceedings of the 2005 USENIX Annual Technical
Conference (2005), pp. 279–291.

[5] CHEN, H., CHEN, R., ZHANG, F., ZANG, B., AND
YEW, P.-C. Live updating operating systems using
virtualization. In Proceedings of the 2Nd International
Conference on Virtual Execution Environments (New
York, NY, USA, 2006), VEE ’06, ACM, pp. 35–44.

[6] CHEN, H., YU, J., CHEN, R., ZANG, B., AND YEW,
P.-C. Polus: A powerful live updating system. In
Proceedings of the 29th International Conference on
Software Engineering (Washington, DC, USA, 2007),
ICSE ’07, IEEE Computer Society, pp. 271–281.

[7] DOUENCE, R., FRITZ, T., LORIANT, N., MENAUD,
J. M., DEVILLECHAISE, M. S., AND SUEDHOLT, M.
An expressive aspect language for system applications
with Arachne. In Proceedings of the 4th International
Conference on Aspect-Oriented Software Development
(AOSD ’05) (Chicago, Illinois, Mar. 2005), P. Tarr, Ed.,
ACM Press, pp. 27–38.

[8] DUAN, R., BIJLANI, A., JI, Y., ALRAWI, O., XIONG,
Y., IKE, M., SALTAFORMAGGIO, B., AND LEE, W. Au-
tomating patching of vulnerable open-source software
versions in application binaries. In 2019 Network and
Distributed System Security Symposium (NDSS 2019)
(2019).

[9] EL HAJJ, I., MERRITT, A., ZELLWEGER, G., MILO-
JICIC, D., ACHERMANN, R., FARABOSCHI, P., HWU,

W.-M., ROSCOE, T., AND SCHWAN, K. Spacejmp: Pro-
gramming with multiple virtual address spaces. In Pro-
ceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages
and Operating Systems (New York, NY, USA, 2016),
ASPLOS ’16, Association for Computing Machinery,
p. 353–368.

[10] ENGEL, M., AND FREISLEBEN, B. Supporting auto-
nomic computing functionality via dynamic operating
system kernel aspects. In Proceedings of the 4th In-
ternational Conference on Aspect-Oriented Software
Development (AOSD ’05) (Chicago, Illinois, Mar. 2005),
P. Tarr, Ed., ACM Press, pp. 51–62.

[11] FITZPATRICK, B. Distributed caching with memcached.
Linux Journal 2004, 124 (Aug. 2004), 5–.

[12] GIUFFRIDA, C., KUIJSTEN, A., AND TANENBAUM,
A. S. Safe and automatic live update for operating
systems. In Proceedings of the 18th International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’13) (New
York, NY, USA, 2013), ACM Press, pp. 279–292.

[13] GOULLON, H., ISLE, R., AND LÖHR, K.-P. Dynamic
restructuring in an experimental operating system. IEEE
Transactions on Software Engineering SE-4, 4 (1978),
298–307.

[14] GUPTA, D., JALOTE, P., AND BARUA, G. A formal
framework for on-line software version change. IEEE
Transactions on Software Engineering 22, 2 (1996), 120–
131.

[15] HAYDEN, C. M., SAUR, K., SMITH, E. K., HICKS, M.,
AND FOSTER, J. S. Kitsune: Efficient, general-purpose
dynamic software updating for C. ACM Trans. Program.
Lang. Syst. 36, 4 (Oct. 2014), 13:1–13:38.

[16] HAYDEN, C. M., SMITH, E. K., HARDISTY, E. A.,
HICKS, M., AND FOSTER, J. S. Evaluating dynamic
software update safety using systematic testing. IEEE
Transactions on Software Engineering 38, 6 (2012),
1340–1354.

[17] HAYDEN, C. M., SMITH, E. K., HICKS, M., AND FOS-
TER, J. S. State transfer for clear and efficient runtime
updates. In 2011 IEEE 27th International Conference on
Data Engineering Workshops (Apr. 2011), pp. 179–184.

[18] HICKS, M., MOORE, J. T., AND NETTLES, S. Dynamic
software updating. SIGPLAN Not. 36, 5 (May 2001),
13–23.

[19] HSU, T. C.-H., BRÜGNER, H., ROY, I., KEETON, K.,
AND EUGSTER, P. NVthreads: Practical persistence for
multi-threaded applications. In Proceedings of the 12th

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 665

European Conference on Computer Systems (EuroSys
’17) (2017), ACM, pp. 468–482.

[20] LEE, I. DYMOS: A Dynamic Modification System. PhD
thesis, University of Wisconsin-Madison, 1983.

[21] LITTON, J., VAHLDIEK-OBERWAGNER, A., EL-
NIKETY, E., GARG, D., BHATTACHARJEE, B.,
AND DRUSCHEL, P. Light-weight contexts: An
OS abstraction for safety and performance. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16) (Savannah, GA, Nov. 2016),
USENIX Association, pp. 49–64.

[22] MAKRIS, K., AND BAZZI, R. A. Immediate multi-
threaded dynamic software updates using stack recon-
struction. In Proceedings of the 2009 Conference
on USENIX Annual Technical Conference (Berkeley,
CA, USA, 2009), USENIX ’09, USENIX Association,
pp. 31–31.

[23] MAKRIS, K., AND RYU, K. D. Dynamic and adap-
tive updates of non-quiescent subsystems in commod-
ity operating system kernels. In Proceedings of the
ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2007 (EuroSys ’07) (New York, NY, USA,
Mar. 2007), T. Gross and P. Ferreira, Eds., ACM Press,
pp. 327–340.

[24] MEENA, J. S., SZE, S. M., CHAND, U., AND TSENG,
T.-Y. Overview of emerging nonvolatile memory tech-
nologies. Nanoscale research letters 9, 1 (2014), 526.

[25] NEAMTIU, I., HICKS, M., STOYLE, G., AND ORIOL,
M. Practical dynamic software updating for c. In Pro-
ceedings of the 27th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (New
York, NY, USA, 2006), PLDI ’06, ACM, pp. 72–83.

[26] NISHTALA, R., FUGAL, H., GRIMM, S.,
KWIATKOWSKI, M., LEE, H., LI, H. C., MCELROY,
R., PALECZNY, M., PEEK, D., SAAB, P., STAFFORD,
D., TUNG, T., AND VENKATARAMANI, V. Scaling
memcache at facebook. In Presented as part of the 10th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13) (Lombard, IL, 2013),
USENIX, pp. 385–398.

[27] PADIOLEAU, Y., LAWALL, J. L., MULLER, G., AND
HANSEN, R. R. Documenting and automating collateral
evolutions in Linux device drivers. In Proceedings of
the ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008 (EuroSys ’08) (New York, NY,
USA, Mar. 2008), ACM Press.

[28] PALIX, N., THOMAS, G., SAHA, S., CALVÈS, C.,
LAWALL, J. L., AND MULLER, G. Faults in Linux:

Ten years later. In Proceedings of the 16th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’11) (New
York, NY, USA, 2011), ACM Press, pp. 305–318.

[29] PAVLÍK, V. kgraft: Live patching of the linux kernel,
2014. https://www.suse.com/media/presentation/kGraft.
pdf, visited 2019-08-05.

[30] POIMBOEUF, J., AND JENNINGS, S. Introducing
kpatch: Dynamic kernel patching, 2014. https://rhelblog.
redhat.com/2014/02/26/kpatch, visited 2019-08-05.

[31] PU, C., MASSALIN, H., AND IOANNIDIS, J. The Syn-
thesis kernel. Computing Systems 1, 1 (1988), 11–32.

[32] REDISLAB. Redis, 2019. http://redis.io, visited 2019-
07-21.

[33] ROMMEL, F., DIETRICH, C., RODIN, M., AND
LOHMANN, D. Multiverse: Compiler-assisted man-
agement of dynamic variability in low-level system
software. In Fourteenth EuroSys Conference 2019
(EuroSys ’19) (New York, NY, USA, 2019), ACM Press.

[34] SCHRÖDER-PREIKSCHAT, W., LOHMANN, D., GI-
LANI, W., SCHELER, F., AND SPINCZYK, O. Static and
dynamic weaving in system software with AspectC++.
In Proceedings of the 39th Hawaii International Confer-
ence on System Sciences (HICSS ’06) - Track 9 (2006),
Y. Coady, J. Gray, and R. Klefstad, Eds., IEEE Computer
Society Press.

[35] SELTZER, M., MARATHE, V., AND BYAN, S. An NVM
carol: Visions of nvm past, present, and future. In 2018
IEEE 34th International Conference on Data Engineer-
ing (ICDE) (2018), pp. 15–23.

[36] STOYLE, G., HICKS, M., BIERMAN, G., SEWELL, P.,
AND NEAMTIU, I. Mutatis mutandis: Safe and pre-
dictable dynamic software updating. In ACM SIGPLAN
Notices (01 2005), vol. 40, pp. 183–194.

666 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.suse.com/media/presentation/kGraft.pdf
https://www.suse.com/media/presentation/kGraft.pdf
https://rhelblog.redhat.com/2014/02/26/kpatch
https://rhelblog.redhat.com/2014/02/26/kpatch
http://redis.io

Testing Database Engines via Pivoted Query Synthesis

Manuel Rigger Zhendong Su
Department of Computer Science, ETH Zurich

Abstract
Database Management Systems (DBMSs) are used widely,
and have been extensively tested by fuzzers, which are suc-
cessful in finding crash bugs. However, approaches to finding
logic bugs, such as when a DBMS computes an incorrect
result set, have remained mostly untackled. To this end, we
devised a novel and general approach that we have termed
Pivoted Query Synthesis. The core idea of this approach is to
automatically generate queries for which we ensure that they
fetch a specific, randomly selected row, called the pivot row.
If the DBMS fails to fetch the pivot row, the likely cause is a
bug in the DBMS. We tested our approach on three widely-
used and mature DBMSs, namely SQLite, MySQL, and Post-
greSQL. In total, we found 121 unique bugs in these DBMSs,
96 of which have been fixed or verified, demonstrating that
the approach is highly effective and general. We expect that
the wide applicability and simplicity of our approach will
enable improving the robustness of many DBMSs.

1 Introduction

Database management systems (DBMSs) based on the rela-
tional model [10] are a central component in many applica-
tions, since they allow efficiently storing and retrieving data.
They have been extensively tested by random query gener-
ators such as SQLsmith [45], which have been effective in
finding queries that cause the DBMS process to crash (e.g.,
by causing a buffer overflow). Also fuzzers such as AFL [2]
are routinely applied to DBMSs. However, these approaches
cannot detect logic bugs, which we define as bugs that cause a
query to return an incorrect result, for example, by erroneously
omitting a row, without crashing the DBMS.

Logic bugs in DBMSs are difficult to detect automatically.
A key challenge for automatic testing is to come up with an
effective test oracle, that can detect whether a system behaves
correctly for a given input [21]. In 1998, Slutz proposed to
use differential testing [33] to detect logic bugs in DBMSs,
by constructing a test oracle that compares the results of a

query on multiple DBMSs, which the author implemented
in a tool RAGS [46]. While RAGS detected many bugs, dif-
ferential testing comes with the significant limitation that
the systems under test need to implement the same seman-
tics for a given input. All DBMSs support a common and
standardized language Structured Query Language (SQL) to
create, access, and modify data [8]. In practice, however, each
DBMS provides a plethora of extensions to this standard and
deviates from it in other parts (e.g., in how NULL values are
handled [46]). This vastly limits differential testing, and also
the author stated that the small common core and the dif-
ferences between different DBMSs were a challenge [46].
Furthermore, even when all DBMSs fetch the same rows,
it cannot be ensured that they work correctly, because they
might be affected by the same underlying bug.

To efficiently detect logic bugs in DBMSs, we propose
a general and principled approach that we termed Pivoted
Query Synthesis (PQS), which we implemented in a tool
called SQLancer. The core idea is to solve the oracle problem
for a single, randomly-selected row, called the pivot row, by
synthesizing a query whose result set must contain the pivot
row. We synthesize the query by randomly generating expres-
sions for WHERE and JOIN clauses, evaluating the expressions
based on the pivot row, and modifying each expression to
yield TRUE. If the query, when processed by the DBMS, fails
to fetch the pivot row, a bug in the DBMS has been detected.
We refer to this oracle as the containment oracle.

Listing 1 illustrates our approach on a test case that trig-
gered a bug that we found using the containment oracle in
the widely-used DBMS SQLite. The CREATE TABLE statement
creates a new table t0 with a column c0. Subsequently, an in-
dex is created and three rows with the values 0, 1, and NULL

are inserted. We select the pivot row c0=NULL and construct
the random WHERE clause c0 IS NOT 1. Since NULL IS NOT

1 evaluates to TRUE, we can directly pass the query to the
DBMS, expecting the row with value NULL to be contained
in the result. However, due to a logic bug in the DBMS, the
partial index was used based on the incorrect assumption that
c0 IS NOT 1 implied c0 NOT NULL, resulting in the pivot row

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 667

Listing 1: Illustrative example, based on a critical SQLite bug.
The check symbol denotes the expected, correct result, while
the bug symbol denotes the actual, incorrect one.
CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0(c0) VALUES (0), (1), (NULL);

SELECT c0 FROM t0 WHERE c0 IS NOT 1; -- {0} {0,

NULL}

not being fetched. We reported this bug to the SQLite de-
velopers, who stated that it existed since 2013, classified it
as critical and fixed it quickly. Even for this simple query,
differential testing would have been ineffective in detecting
the bug. The CREATE TABLE statement is specific to SQLite,
since, unlike other popular DBMSs, such as PostgreSQL and
MySQL, SQLite does not require the column c0 to be assigned
a column type. Furthermore, both MySQL’s and PostgreSQL’s
IS NOT cannot be applied to integers; they only provide an
operator IS DISTINCT FROM, which provides equivalent func-
tionality. All DBMSs provide an operator IS NOT TRUE, which,
however, has different semantics; for SQLite, it would fetch
only the value 0, and not expose the bug.

To demonstrate the generality of our approach, we imple-
mented it for three popular and widely-used DBMSs, namely
SQLite [49], MySQL [36], and PostgreSQL [40]. In total, we
found 96 unique bugs, namely 64 bugs in SQLite, 24 bugs
in MySQL, and 8 in PostgreSQL, demonstrating that the ap-
proach is highly effective and general. 61 of these were logic
bugs found by the containment oracle. In addition, we found
32 bugs by causing DBMS-internal errors, such as database
corruptions, and for 3 bugs we caused DBMS crashes (i.e.,
SEGFAULTs). One of the crashes that we reported for MySQL
was classified as a security vulnerability (CVE-2019-2879).
78 of the bugs were fixed by the developers, indicating that
they considered our bug reports useful.

Since our method is general and applicable to all DBMSs,
we expect that it will be widely adopted to detect logic bugs
that have so far been overlooked. In fact, after releasing a
preprint of the paper, we received a number of requests by
companies as well as individual developers indicating their
interest in implementing PQS to test the DBMSs that they
were developing. Among these, PingCAP publicly released a
PQS implementation that they have been successfully using
to find bugs in TiDB. For reproducibility and to facilitate
further research on this topic, we have released SQLancer at
https://github.com/sqlancer/. In addition, the artifact
associated with the paper contains SQLancer as well as a
database of all reported bugs [44]. PQS inspired complemen-
tary follow-up work, such as NoREC and TLP, which focus
on finding sub-categories of logic bugs [42, 43]. Despite this,
PQS has notable limitations; it only partly validates a query’s
result, and cannot be used, for example, to test aggregate func-
tions, the size of the result set, or its ordering. Furthermore,
the effort required to implement the technique depends on the

complexity of the operations to be tested, which can be high
for complex operators or functions.

In summary, we contribute the following:

• A general and highly-effective approach to finding bugs
in DBMSs termed Pivoted Query Synthesis (PQS).

• An implementation of PQS in a tool named SQLancer,
used to test SQLite, MySQL, and PostgreSQL.

• An evaluation of PQS, which uncovered 96 bugs.

2 Background

This section provides important background information on
relational DBMSs, SQL, and the DBMSs we tested.
Database management systems. We primarily aim to test
relational DBMSs, that is, those that are based on the re-
lational data model proposed by Codd [10]. Most widely-
used DBMSs, such as Oracle, Microsoft SQL, PostgreSQL,
MySQL, and SQLite are based on it. A relation R in this
model is a mathematical relation R⊆ S1×S2× ...×Sn where
S1, S2, ..., Sn are referred to as domains. More commonly, a
relation is referred to as a table and a domain is referred to
as a data type. Each tuple in this relation is referred to as a
row. SQL [8], a domain-specific language that is based on
relational algebra [11], is the most commonly used language
to interact with the DBMSs. ANSI first standardized SQL
in 1987, and it has since been developed further. In practice,
however, DBMSs lack functionality described by the SQL
standard and deviate from it. In this paper, we assume basic
familiarity with SQL.
Test oracles. An effective test oracle is crucial for automatic
testing approaches [21]. A test oracle assesses whether a given
test case has passed. Manually written test cases encode the
programmer’s knowledge who thus acts as a test oracle. In
this work, we are interested only in automatic test oracles,
which would allow comprehensively testing a DBMS. The
most successful automatic test oracle for DBMSs is based on
differential testing [46]. Differential testing refers to a tech-
nique where a single input is passed to multiple systems that
implement the same language to detect mismatching outputs,
which would indicate a bug. In the context of DBMSs, the
input corresponds to a database as well as a query, and the
systems to multiple DBMSs—when their fetched result sets
mismatch, a bug in one of the DBMS would be detected. How-
ever, SQL dialects vary significantly, making it difficult to use
differential testing effectively. This is also acknowledged by
industry. For example, Cockroach Labs state that they “are
unable to use Postgres as an oracle because CockroachDB
has slightly different semantics and SQL support, and generat-
ing queries that execute identically on both is tricky [...]” [22].
Furthermore, differential testing is not a precise oracle, as it
fails to detect bugs that affect all the systems.

668 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/sqlancer/

Table 1: The DBMSs we tested are popular, complex, and
have been developed for a long time.

Popularity Rank

DBMS DB-
Engines

Stack Over-
flow

LOC Released

SQLite 11 4 0.3M 2000
MySQL 2 1 3.8M 1995
PostgreSQL 4 2 1.4M 1996

Tested DBMSs. We focused on three popular and widely-
used open-source DBMSs: SQLite, MySQL, and PostgreSQL
(see Table 1). According to the DB-Engines Ranking [1] and
the Stack Overflow’s annual Developer Survey [38], these
DBMSs are among the most popular and widely-used ones.
Furthermore, the SQLite website speculates that SQLite is
likely used more than all other databases combined; most
mobile phones extensively use SQLite, it is used in most
popular web browsers, and many embedded systems (such as
television sets) [48]. All DBMSs are production-level systems,
and have been maintained and developed for about 20 years.

3 Pivoted Query Synthesis

We propose Pivoted Query Synthesis as an automatic test-
ing technique for detecting logic bugs in DBMSs. Our core
insight is that by considering only a single row at a time, a
conceptually-simple test oracle can be created that can effec-
tively detect logic bugs. Specifically, our idea is to select a
random row, to which we refer as the pivot row, from a set of
tables and views in the database. Subsequently, we randomly
generate a set of boolean predicates, which we then modify
so that they evaluate to TRUE for the values of the pivot row
based on an Abstract Syntax Tree (AST) interpreter. By using
these expressions in WHERE and JOIN clauses of an otherwise
randomly-generated query, we can ensure that the pivot row
must be contained in the result set. If it is not contained, a
bug has been found. Basing the approach on an AST inter-
preter provides us with an exact oracle. While implementing
this interpreter requires moderate implementation effort for
complex operators (such as regular expression operators),
other challenges that a DBMS has to tackle, such as query
planning, concurrent access, integrity, and persistence can be
disregarded by it. Furthermore, the AST interpreter can be
naively implemented without affecting the tool’s performance,
since it only operates on a single record, whereas the DBMS
has to potentially scan through all the rows of a database to
process a query.

3.1 Approach Overview

Figure 1 illustrates the detailed steps of PQS. First, we create
a database with one or multiple random tables, which we fill
with random data (see step 1). We ensure that each table,
and randomly generated view, holds at least one row, to en-
able selecting a random pivot row in step 2 . A pivot row is
only conceptually a row, and can be composed of columns
that refer to rows of multiple tables and/or views. Its purpose
is to use it to derive a test case as well as a test oracle to
validate the correctness of the DBMS. The pivot row shown
in Figure 1 consists of both columns from table t0 and t1.
In the next steps, we proceed by constructing a test oracle
based on the pivot row. To this end, we randomly create ex-
pressions based on the DBMS’ SQL grammar and valid table
column names (see step 3). We evaluate these expressions,
substituting column references by the corresponding values
of the pivot row. Then, we modify the expressions so that
they yield TRUE (see step 4). We use these expressions in
WHERE and/or JOIN clauses for a query that we construct (see
step 5). We pass this query to the DBMS, which returns a
result set (see step 6), which we expect to contain the pivot
row, potentially among other rows. In a final step, we check
whether the pivot row is indeed contained in the result set (see
step 7). If it is not contained, we have likely detected a bug
in the DBMS. For the next iteration, we either continue with
step 2 and generate new queries for a newly-selected pivot
row, or continue with 1 to generate a new database.

Our core idea is given by how we construct the test oracle
(see steps 2 to 7). Thus, Section 3.2 first explains how
we generate queries and check for containment, assuming
that the database has already been created. Section 3.3 then
explains step 1 , namely how we generate the tables and data.
Section 3.4 provides important implementation details.

3.2 Query Generation & Checking

The core idea of our approach is to construct a query for which
we anticipate that the pivot row is contained in the result set.
We randomly generate expressions to be used in WHERE and/or
JOIN clauses of the query, and ensure that each expression
evaluates to TRUE for the pivot row. This subsection describes
how we generate random predicates that we rectify and then
use in the query (i.e., steps 3 to 5).

Random predicate generation. In step 3 , we randomly
generate Abstract Syntax Trees (ASTs) up to a specified maxi-
mum depth by constructing a random expression tree based on
the database’s schema (i.e., the column names and types). For
SQLite and MySQL, SQLancer generates expressions of any
type, because they provide implicit conversions to boolean.
For PostgreSQL, which performs few implicit conversions,
the generated root node must produce a boolean value, which
we achieve by selecting one of the appropriate operators (e.g.,
a comparison operator). Algorithm 1 illustrates how generat-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 669

c1t0

t1

3 TRUE

-5

c0

c0 t0.c1t0.c0 t1.c0

3 TRUE -5

OR

NOT

t0.c1

>

t1.c0 3

 SELECT
 t0.c0, t0.c1, t1.c0
FROM t1, t2
WHERE
 NOT (NOT t0.c1
 OR (t1.c0 > 3))

DBMS

Randomly
select a row
from each table

Rectify the
expressions
to yield TRUE

Generate random
query that uses the
expressions in
WHERE or JOIN
clauses

Evaluate the query
using the DBMS

t0.c1t0.c0 t1.c0

3 TRUE -5

2 TRUE 0

Randomly
generate
tables and rows

1 2 4 5 6

TRUE -5

Generate random
expressions and
evaluate them based
on the selected rows

3

TRUE

FALSE

3-5

FALSE

FALSE

OR

NOT

t0.c1

>

t1.c0 3

TRUE -5

TRUE

NOT

Verify that the
row is contained
in the result set

7

t0.c1t0.c0 t1.c0

3 TRUE -5

2 FALSE ab

t0.c1t0.c0 t1.c0

3 TRUE -5

TRUE

Continue with 1 or 2

Figure 1: Overview of the approach implemented in SQLancer. Dotted lines indicate that a result is generated.

Function generateExpression(int depth):
node_types←{LIT ERAL, COLUMN}
if depth < maxdepth then

node_types← node_types∪{UNARY , . . . }
type← random(node_types)
switch type do

case LITERAL do
return Literal(randomLiteral());

case COLUMN do
return Column-

Value(randomTable().randomColumn());
case UNARY do

return
UnaryNode(generateExpression(depth+1),
UnaryNode.getRandomOperation());

case . . . do. . .
end

Algorithm 1: The generateExpression() function
generates a random AST.

ing the expressions is implemented for MySQL and SQLite.
The input parameter depth ensures that when a specified max-
imum depth is reached, a leaf node is generated. The leaf node
can either be a randomly-generated constant, or a reference
to a column in a table or view. If the maximum depth is not
yet reached, also other operators are considered (e.g., a unary
operator such as NOT). Generating these expressions is depen-
dent on which operators the respective DBMS supports. The
random expression generation by itself is not a contribution
of this paper; random query generators, such as RAGS [46]
and SQLsmith operate similarly [45]. We implemented the
expression generators manually for each DBMS under test,
based on the respective DBMS SQL dialect’s documentation;
as part of future work, we will consider automatically deriving
them based on the SQL dialect’s grammar.

Expression evaluation. After building a random expression
tree, we must check whether the condition yields TRUE for the

pivot row. To this end, every node must provide an execute()
method that computes the node’s result, which needs to be
manually implemented. Leaf nodes directly return their as-
signed constant value. Column nodes are assigned the value
that corresponds to their column in the pivot row. For example,
in Figure 1 step 3 , the leaf node t0.c1 returns TRUE, and the
constant node 3 returns an integer 3. Composite nodes com-
pute their result based on the literals returned by their children.
For example, the NOT node returns FALSE, because its child
evaluates to TRUE (see Algorithm 2). The node first executes
its subexpression, and then casts the result to a boolean; if the
result is a boolean value, the value is negated; otherwise NULL

is returned. Note that our implementation is simpler than AST
interpreters for programming languages [50], since all nodes
operate on literal values (i.e., they do not need to consider
mutable storage). It is also simpler than query engine models,
such as the well-known Volcano-style iteration model [16],
and widely-used models based on it, such as the vectorized
model or the data-centric code generation model, which all
need to consider multiple rows [26]. Since the bottleneck
of our approach is the DBMS evaluating the queries rather
than SQLancer, all operations are implemented naively and
do not perform any optimizations. Some operations require
moderate implementation effort nevertheless; for example,
the implementation of the LIKE regular expression operator
has over 50 LOC in SQLancer.

Expression rectification. After generating random expres-
sions, step 4 ensures that they evaluate to TRUE. SQL is
based on a three-valued logic. Thus, when evaluated in a
boolean context, an expression either yields TRUE, FALSE, or
NULL. To rectify an expression to yield TRUE, we use Algo-
rithm 3. For example, in Figure 1 step 4 , we modify the
expression by adding a preceding NOT, so that the expression
evaluates to TRUE. Note that our approach works also for other
logic systems (e.g., four-valued logic), by adjusting this step.
Alternatively, it could be checked that the pivot row is ex-

670 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Method NotNode::execute():
value← child.execute()
switch asBoolean(value) do

case TRUE do
result← FALSE

case FALSE do
result← T RUE

case NULL do
result← NULL

end
return result;

Algorithm 2: The execute() implementation of a NOT

node.

Function rectifyCondition(randexpr):
switch randexpr.execute() do

case TRUE do
result← randexpr

case FALSE do
result← NOT randexpr

case NULL do
result← randexpr ISNULL

end
return result;

Algorithm 3: The expression rectification step applied to
a randomly-generated expression.

pectedly not contained in the result set, by ensuring that the
expression evaluates to FALSE.

Query generation. In step 5 , we generate targeted queries
that fetch the pivot row. Most importantly, the expressions
evaluating to TRUE are used in WHERE clauses, which restrict
which rows a query fetches, and in JOIN clauses, which are
used to join tables. Since the expressions evaluate to TRUE, the
pivot row is guaranteed to be contained in the result set. JOIN
clauses are not treated specially; as we create the clause’s
predicate to yield TRUE for the pivot row, inner, full, left, and
right joins all behave in the same way as a WHERE clause with
respect to the pivot row. SELECT statements typically provide
various keywords to control the query’s behavior, from which
we randomly select applicable options. Specifically, we con-
sidered the following elements:

• DISTINCT clauses, which filter out duplicate rows, while
retaining the guarantee that the pivot row is contained in
the result set;

• GROUP BY clauses that contain all pivot row columns to
guarantee that the pivot row is contained in the result set;

• ORDER BY clauses, which influence only the order of the
result set, which is not validated by PQS;

• aggregate functions, which compute values over multiple
rows, when only a single row is present in a table, which
allows partially testing them;

• DBMS-specific query options, such as the MySQL-
specific FOR UPDATE clause, which must not influence
the result set.

These additional elements are an optional extension to our
core approach, and allowed PQS to find additional bugs by
stressing the DBMSs’ query optimizer. However, they do not
comprehensively test these features.
Checking containment. After using the DBMS to evaluate
the query in step 6 , checking whether the pivot row is part of
the result set is the last step of our approach. While the check-
ing routine could have been implemented in SQLancer, we
instead construct the query so that it checks for containment,
effectively combining steps 6 and 7 . DBMSs provide var-
ious operators to check for containment, such as the IN and
INTERSECT operators. For example, for checking containment
in Figure 1 step 7 , we can check whether the row (3, TRUE

, -5) is contained in the result set using the query shown in
Listing 2, which returns a row if the pivot row is contained.
Checking arbitrary expressions. An extension of the initial
idea of PQS is to use arbitrary expressions to specify which
data to fetch in the query of step 5 , rather than referring to
columns only. For example, rather than referring to t0.c0, we
might want to check whether t0.c0 + 1 evaluates correctly. To
this end, we can generalize the definition of a pivot row to
refer to arbitrary computed values. For example, the pivot row
value for t0.c0 + 1 must be 4, which can be derived based on
the expression evaluation mechanism already explained for
step 2 . In terms of implementation, this thus requires that
first the expressions to be used in step 5 must be generated,
so that they can be evaluated to derive the pivot row values as
part of step 2 .

3.3 Random State Generation
In step 1 , we generate a random database state. Similarly
to the generation of queries, we heuristically and iteratively
select a number of applicable options. The first step is fixed
and consists of creating a number of tables, using the CREATE

TABLE statement. Subsequent statements are chosen heuristi-
cally. Among the applicable options is the INSERT statement,
which allows inserting data rows. By generating Data Def-
inition Language as well as Data Manipulation Language
statements, we can explore a larger space of databases, some
of which exposed DBMS bugs. For example, we implemented
UPDATE, DELETE, ALTER TABLE, and CREATE INDEX commands

Listing 2: Checking containment using the INTERSECT opera-
tor in SQLite.
SELECT (3, TRUE, -5) INTERSECT SELECT t0.c0, t0.c1

, t1.c0 FROM t1, t2 WHERE NOT(NOT(t0.c1 OR (t1
.c0 > 3)));

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 671

for all databases, as well as DBMS-specific run-time options.
A number of commands that we implemented were unique
to the respective DBMS. Statements unique to MySQL were
REPAIR TABLE and CHECK TABLE. The statements DISCARD and
CREATE STATISTICS were unique to PostgreSQL. Since the
statements are chosen heuristically, the database state gen-
eration step might yield an empty database (e.g., because a
DELETE statement might have deleted all rows, or because a
table constraint might make it impossible to insert any rows);
in such a case, the current database is discarded and a new
database is created. The random database generation is not a
contribution of this paper; in fact, many database generation
approaches have been proposed, any of which could be paired
with PQS [5, 6, 17, 20, 27, 37].

3.4 Important Implementation Details

This section explains implementation decisions, which we
consider significant for the outcome of our study.

Error handling. We attempt to generate statements that are
correct both syntactically and semantically. However, gener-
ating semantically correct statements is sometimes impracti-
cal. For example, an INSERT might fail when a value already
present in a UNIQUE column is inserted again; preventing such
an error would require scanning every row in the respective ta-
ble. Rather than checking for such cases, which would involve
additional implementation effort and a run-time performance
cost, we defined a list of error messages that we might expect
when executing the respective statement. Often, we associated
an error message to a statement depending on presence or ab-
sence of specific keywords; for example, an INSERT OR IGNORE

is expected to ignore many error messages that would appear
without the OR IGNORE. If the DBMS returns an expected error,
it is ignored. Unexpected errors indicate bugs in the DBMS.
For example, in SQLite, a malformed database disk image
error message is always unexpected, since it indicates the
corruption of the database.

Performance. We optimized SQLancer to take advantage of
the underlying hardware. We parallelized the system by run-
ning each thread on a distinct database, which also resulted
in bugs connected to race conditions being found. To fully
utilize each CPU, we decreased the probability of SQL state-
ments being generated that cause low CPU utilization (such as
VACUUM in PostgreSQL). Typically, SQLancer generates 5,0000
to 20,000 statements per second, depending on the DBMS un-
der test. Since the DBMSs we tested processed queries much
faster than other statements, SQLancer generates 100,000 ran-
dom queries for each database. We implemented the system
in Java. However, any other programming language would
have been equally well suited, as the performance bottleneck
was the DBMS executing the queries.

Number of rows. We found most bugs by restricting the num-
ber of rows inserted to a low value (10–30 rows). A higher

number would have caused queries to time out when tables
are joined without a restrictive join clause. For example, in
a query SELECT * FROM t0, t1, t2, the largest result set for
100 rows in each table would already be |t0| ∗ |t1| ∗ |t2| =
1,000,000, significantly lowering the query throughput. A
potential concern is that this might prevent PQS from detect-
ing bugs that are triggered only for tables with many rows. We
believe that future work could tackle this by generating tar-
geted queries for which the cardinality of the result is bounded.

Database state. For the generation of many SQL statements,
knowledge of the database schema or other database state is
required; for example, to insert data, SQLancer must deter-
mine the name of a table and its columns. We query such
state dynamically from the DBMS, rather than tracking or
computing it ourselves, which would require additional imple-
mentation effort. For example, to query the name of the tables,
both MySQL and PostgreSQL provide an information table
information_schema.tables and SQLite a table sqlite_master.

Bailouts. For some operators or functions, corner-case behav-
ior (e.g., how an integer operation behaves on an integer over-
flow) might be difficult to implement, and—at least initially—
be less important to test. Unlike the DBMS, the expression
evaluation step in our approach is not required to compute a
result for every possible input; in our implementation, each
operation can bail out during evaluation by throwing an ex-
ception, indicating that a new expression should be generated.
We also use this mechanism to prevent reporting known bugs,
by bailing out when input is encountered that is known to
potentially trigger an already-reported bug.

Value caching. When randomly generating values, SQLancer
stores values in a cache, which are subsequently re-used with
a given probability. Our intuition was that this would more
likely trigger interesting corner cases (e.g., when comparing
the same values such as 3 > 3). Additionally, we expected
this to increase the chance of successfully generating rows
for tables that constraint a column to refer to another table
(i.e., foreign key constraints).

Implementation scope. Each testing implementation that we
realized is extensive, but incomplete. For each DBMS, we im-
plemented at least integer and string data types; for the SQLite
implementation, which is the most complete one, we also sup-
port floating-point numbers and binary data. We implemented
the generation of many common statements, operators, and
functions. Given the size of the implementation, exhaustively
enumerating all supported features is infeasible; the artifact
associated with the paper can be used to investigate which
features are supported. Section 5.3 gives an overview of the
size of each testing implementation.

672 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4 Evaluation

We evaluated whether the proposed approach is effective in
finding bugs in DBMSs. We expected it to detect logic bugs,
which cannot be found by fuzzers, rather than crash bugs.
This section overviews the experimental setup, bugs found,
and characterizes the SQL statements used to trigger the bugs.
We then present a DBMS-specific bug overview, where we
present interesting bugs and bug trends. To put these findings
into context, we measured the size of SQLancer’s components
and the coverage it reaches on the tested DBMSs.

4.1 Experimental Setup
To test the effectiveness of our approach, we implemented
SQLancer and tested SQLite, MySQL, and PostgreSQL in a
period of about three months. We conducted all experiments
using a laptop with a 6-core Intel i7-8850H CPU at 2.60 GHz
and 32 GB of memory running Ubuntu 19.04. Typically, we
enhanced SQLancer to test a new operator or DBMS feature,
let the tool run for several seconds up to a day, and inspected
the bugs found during this process. We automatically reduced
test cases to minimal versions [41], and reduced them further
manually when this helped to better demonstrate the under-
lying bug. Finally, we reported any new bugs found during
this process. Where possible, we waited for bug fixes before
continuing testing and implementing new features.
Baseline. There is no applicable baseline to which we could
compare our work. RAGS [46], which was proposed more
than 20 years ago, would be the closest related work, but
is not publicly available. Due to the small common SQL
core, we would expect that RAGS could not find most of
the bugs that we found. Khalek et al. worked on automating
testing DBMSs using constraint solving [3, 27], with which
they found a previously unknown bug. Also their tool is not
available publicly. SQLsmith [45], AFL [2] as well as other
random query generators and fuzzers [39] only detect crash
bugs in DBMSs. Thus, the only potential overlap between
these tools and SQLancer would be the crash bugs that we
found, which are not the focus of this work.
DBMS versions. For all DBMSs, we started testing the lat-
est release version, which was SQLite 3.28, MySQL 8.0.16,
and PostgreSQL 11.4. For SQLite, we switched to the latest
trunk version (i.e., the latest non-release version of the source
code) after the first bugs were fixed. For MySQL, we also
tested version 8.0.17 after it was released. For PostgreSQL,
we switched to the latest beta version (PostgreSQL Beta 2)
after opening duplicate bug reports. Eventually, we continued
to test the latest trunk version.
Bottleneck. We found that duplicate bugs were a significant
factor that slowed down our testing. After reporting a bug,
we typically waited for bug fixes before continuing our bug-
finding efforts; for bugs that were not quickly fixed, we at-
tempted to avoid generating bug-inducing test cases that trig-

Table 2: Total number of reported bugs and their status.
Closed

DBMS Fixed Verified Intended Duplicate

SQLite 64 0 4 2
MySQL 17 7 2 4
PostgreSQL 5 3 7 6

gered known bugs. For SQLite, the developers reacted to most
of our bug reports shortly after reporting them, and fixed is-
sues typically within a day. Consequently, we focused our
testing efforts on this DBMS. For SQLite, we also tested
VIEWS, non-default COLLATEs (which define how strings are
compared), floating-point support, and aggregate functions,
which we omitted for the other DBMSs. For MySQL, bug re-
ports were typically verified within a day by a tester. MySQL’s
development is not open to the general public. Although we
tried to establish contact with MySQL developers, we could
not obtain any information that went beyond what is visible
on the public bug tracker. Thus, it is likely that some of the
verified bug reports will subsequently be considered as dupli-
cates or classified to work as intended. Furthermore, although
MySQL is available as open-source software, only the code
for the latest release version is provided, so any bug fixes
could be verified only with the subsequent release. This was a
significant factor that restricted us in finding bugs in MySQL;
due to the increased effort of verifying whether a newly found
bug was already reported, we invested limited effort into test-
ing MySQL. For PostgreSQL, we received feedback to bug
reports within a day, and it typically took multiple days or
weeks until a bug was fixed, since possible fixes and patches
were discussed intensively on the mailing list. As we found
fewer bugs for PostgreSQL overall, the response time did not
restrict our testing efforts. Note that not all confirmed bugs
were fixed. For example, for one reported bug, a developer
decided to “put this on the back burner until we have some
consensus how to proceed on that”; from the discussion, we
speculate that the changes needed to address the bug properly
were considered too invasive.

4.2 Bug Reports Overview

Table 2 shows the number of bugs that we reported (121
overall). We considered 96 bugs as true bugs, as they resulted
in code fixes (78 reports), documentation fixes (8 reports), or
were confirmed by the developers (10 reports). Each such bug
was previously unknown and has a unique fix associated with
it, or has been confirmed by the developers to be a unique bug.
We opened 25 bug reports that we classified as false bugs,
because behavior exhibited in the bug reports was considered
to work as intended (13 reports) or because bugs that we
reported were considered to be duplicates (12 reports).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 673

Table 3: A classification of the true bugs by the bug kind.

DBMS Logic Error SEGFAULT

SQLite 46 16 2
MySQL 14 9 1
PostgreSQL 1 7 0
Sum 61 32 3

Severity levels. Only for SQLite, bugs were assigned a sever-
ity level by the DBMS developers. 14 bugs were classified as
Critical, 8 bugs as Severe, and 16 as Important. For 13 bugs,
we reported them on the mailing list and no entry in the bug
tracker was created. The other bug reports were assigned low
severity levels such as Minor. While the severity level was
not set consistently, this still provides evidence that we found
many critical bugs.
Bug classification. Table 3 shows a classification of the true
bugs. The containment oracle, which found all logic bugs,
accounts for most of the bugs that we found, which is expected,
since our approach mainly builds on this oracle. Perhaps
surprisingly, encountering unexpected errors also allowed us
to detect a large number of bugs. For PostgreSQL, we even
found 7 unexpected-error bugs, while finding only 1 logic
bug. We believe that this observation could be used when
using fuzzers to test DBMSs, for example, by checking for
specific error messages that indicate database corruptions.
Our approach also detected a number of crash bugs, one of
which was considered a security vulnerability in MySQL
(CVE-2019-2879). These bugs are less interesting, since they
could also have been found by traditional fuzzers. In fact, a
duplicate bug report was reported for PostgreSQL, based on
a SQLsmith finding, shortly after we found and reported it.

4.3 SQL Statements Overview
Test case length. Our automatically and manually reduced
test cases—which comprise both the statements used to gen-
erate the state, as well as the bug-inducing query—typically
comprised only a few SQL statements (3.71 LOC on average).
For 13 test cases, a single line was sufficient. Such test cases
were either SELECT statements that operated on constants, or
operations that set DBMS-specific options. The maximum
number of statements required to reproduce a bug was 8.
A PostgreSQL crash bug that had already been fixed when
we reported it required even 27 statements to be reproduced.
Overall, the small number of statements required to repro-
duce a bug suggests that statements and queries could be
systematically generated to efficiently, rather than randomly,
explore the space (e.g., such as the bounded black-box testing
approach implemented in ACE [35]).
Statement distribution. Figure 2 shows the distribution of
statements. Note that for some bug reports, we had to se-

lect the simplest test case among multiple failing ones, which
might skew these results. The CREATE TABLE and INSERT state-
ments are part of most bug reports for all DBMSs, which is
expected, since only few bugs can be reproduced without ma-
nipulating or fetching data from a table. 91.0% of the bug
reports included only a single table. The SELECT statement
also ranks highly, since the containment oracle relies on it.
In all DBMSs, the CREATE INDEX statements rank highly; es-
pecially for SQLite, we reported a number of bugs where
creating an index resulted in a malformed database image or
in a row not being fetched. We found that statements that com-
pute or recompute table state were error-prone, for example,
REPAIR TABLE and CHECK TABLE in MySQL, as well as VACUUM

and REINDEX in SQLite and PostgreSQL. DBMS-specific op-
tions, such as SET in MySQL and PostgreSQL, and PRAGMA in
SQLite also resulted in bugs being found. For PostgreSQL,
some test cases contained ANALYZE, which gathers statistics to
be used by the query planner.

Column constraints. Column constraints, which can be used
to restrict the values stored in a column, were often part of test
cases. The most common constraint was UNIQUE(appearing
in 21.9% of the test cases). Also PRIMARY KEY columns were
frequent (16.7%). Typically, the DBMSs enforce UNIQUE and
PRIMARY KEY by creating indexes; explicit indexes, created by
CREATE INDEX were more common, however (27.1%). Other
constraints were uncommon, for example, FOREIGN KEYs ap-
peared only in 1.0% of the bug reports.

5 Interesting Bugs

In this section, we present bugs that we found using PQS. We
chose bugs that we considered to be interesting, meaning that
the selection is necessarily subjective.

5.1 Containment Bugs

We consider bugs found by the containment oracle to be the
most interesting, and we designed PQS to specifically find
these kind of bugs.

First SQLite bug. Listing 3 shows a test case for the first bug
that we found with our approach, and where SQLite failed to
fetch a row. The COLLATE NOCASE clause instructs the DBMS
to ignore the casing when comparing strings; in this test case,
it unexpectedly caused the upper-case 'A' to be omitted from
the result set. The bug was classified as Severe and goes
back to when WITHOUT ROWID tables were introduced in 2013.
It is a typical bug that we found in SQLite, since it relies
on multiple features. As with this bug, 17 of our SQLite bug
reports included indexes, 11 included COLLATE sequences, and
5 WITHOUT ROWID tables.

SQLite skip-scan optimization bug. A number of SQLite
bugs stem from incorrect optimizations, such as the one in

674 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

mysql postgres sqlite

0.0 0.2 0.4 0.6 0.8 0.00 0.25 0.50 0.75 1.00 0.0 0.2 0.4 0.6 0.8
DROP INDEX

TRANSACTION
CREATE VIEW

VACUUM
REINDEX
ANALYZE

OPTION
UPDATE

ALTER TABLE
CREATE INDEX

INSERT
SELECT

CREATE TABLE

CREATE STATS
DISCARD
VACUUM
REINDEX
ANALYZE

OPTION
UPDATE

ALTER TABLE
CREATE INDEX

INSERT
SELECT

CREATE TABLE

REPAIR/CHECK TABLE
DROP/CREATE/USE DB

OPTION
UPDATE

ALTER TABLE
CREATE INDEX

INSERT
SELECT

CREATE TABLE

percentage of test cases that included this statement to reproduce the bug

legend
logic
error
segfault
not triggering

Figure 2: The distribution of the SQL statements used in the bug reports to reproduce the bug. A non-white filling indicates that a
statement of the respective category triggered the bug, which was exposed by the test oracle as indicated by the filling (i.e., it was
the last statement in the bug report).

Listing 3: The first bug that we found with our approach
involved a COLLATE index, and a WITHOUT ROWID table.
CREATE TABLE t0(c0 TEXT PRIMARY KEY)

WITHOUT ROWID;
CREATE INDEX i0 ON t0(c0 COLLATE NOCASE);
INSERT INTO t0(c0) VALUES ('A');
INSERT INTO t0(c0) VALUES ('a');

SELECT * FROM t0; -- {'a'} {'A', 'a'}

Listing 4: SQLite’s skip-scan optimization was implemented
incorrectly for DISTINCT.
CREATE TABLE t0(c0, c1, c2, c3, PRIMARY KEY (c3,

c2));
INSERT INTO t0(c2) VALUES (0) ,(0) ,(0) ,(0) ,(0),

(0) ,(0) ,(0) ,(0) ,(0),(NULL) ,(1) ,(0);
UPDATE t0 SET c1 = 0;
INSERT INTO t0(c0) VALUES (0), (0), (NULL), (0),

(0);
ANALYZE t0;
UPDATE t0 SET c2 = 1;
SELECT DISTINCT * FROM t0 WHERE c2 = 1; -- {NULL

|0|1|NULL} {NULL|0|1|NULL , 0|NULL|1|NULL ,

NULL|NULL|1|NULL}

Listing 4. For the query in this test case, the skip-scan op-
timization, where an index is used even if its columns are
not part of the WHERE clause, was implemented incorrectly for
DISTINCT queries. The bug was classified as Severe.

SQLite unexpected type. Listing 5 shows a bug where an
optimization for the LIKE operator was implemented incor-
rectly when applied to INT values. The operator was expected
to fetch the row, since it checks for an exact string match, but
omitted the row from the result set. While this is a minor bug,
it is nevertheless interesting, considering that only SQLite
allows storing a value of a type that does not match the col-
umn declaration. We found this feature to be error-prone, and
discovered 8 bugs related to it.
MySQL engine-specific bug. Unlike the other DBMSs we
tested, MySQL provides various engines that can be assigned
to tables. Listing 6 demonstrates one bug where a row was not

Listing 5: We discovered 4 bugs in a LIKE optimization, one
demonstrated by this test case.
CREATE TABLE t0(c0 INT UNIQUE COLLATE NOCASE);
INSERT INTO t0(c0) VALUES ('./');

SELECT * FROM t0 WHERE c0 LIKE './'; -- {}

{'./'}

Listing 6: We found 5 bugs using non-default engines in
MySQL.
CREATE TABLE t0(c0 INT);
CREATE TABLE t1(c0 INT) ENGINE = MEMORY;
INSERT INTO t0(c0) VALUES(0);
INSERT INTO t1(c0) VALUES(-1);
SELECT * FROM t0, t1 WHERE CAST(t1.c0 AS

UNSIGNED) > IFNULL("u", t0.c0); -- {} {0|-1}

Listing 7: Custom comparison operator results in incorrect
result.
CREATE TABLE t0(c0 TINYINT);
INSERT INTO t0(c0) VALUES(NULL);
SELECT * FROM t0 WHERE NOT(t0.c0 <=> 2035382037);

-- {} {NULL}

fetched when using the MEMORY engine. This was one of 5 bugs
that were triggered only when using a non-default engine.
This test case is also interesting, as it is one of 4 MySQL test
cases that relies on a cast to an unsigned integer, a type that is
not provided by the other DBMSs we tested.
MySQL value range bug. We found bugs in MySQL where
queries were handled incorrectly depending on the magnitude
of an integer or floating-point number. For example, Listing 7
shows a bug where the MySQL-specific <=> inequality opera-
tor, which yields a boolean value even when an argument is
NULL, yielded FALSE when the column value was compared
with a constant that was greater than what the column’s type
can represent.
MySQL double negation bug. Listing 8 shows an interest-
ing optimization bug that we found in MySQL. MySQL op-
timized away the double negation, which appears to be cor-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 675

Listing 8: Double negation bug in MySQL.
CREATE TABLE t0(c0 INT);
INSERT INTO t0(c0) VALUES(1);
SELECT * FROM t0 WHERE 123 != (NOT (NOT 123)); --

{} {1}

Listing 9: Table inheritance bug in PostgreSQL.
CREATE TABLE t0(c0 INT PRIMARY KEY, c1 INT);
CREATE TABLE t1(c0 INT) INHERITS (t0);
INSERT INTO t0(c0, c1) VALUES(0, 0);
INSERT INTO t1(c0, c1) VALUES(0, 1);

SELECT c0, c1 FROM t0 GROUP BY c0, c1; -- {0|0}

{0|0, 0|1}

Listing 10: This bug report caused the SQLite developers to
disallow double quotes in indexes.
CREATE TABLE t0(c0, c1);
INSERT INTO t0(c0, c1) VALUES ('a', 1);
CREATE INDEX i0 ON t0("C3");
ALTER TABLE t0 RENAME COLUMN c0 TO c3;

SELECT DISTINCT * FROM t0;--{'C3'|1} {'a'|1}

rect on the first sight. However, since MySQL’s flexible type
system allows, for example, integers as argument to the NOT

operator, this optimization is not generally correct. Applying
NOT to a non-zero integer value should yield 0, and negating
0 should yield 1, which is why the predicate in the WHERE

clause must yield TRUE. However, after optimizing away the
double negation, the predicate effectively corresponded to 123

!= 123, which evaluated to FALSE, and omitted the pivot row.
We considered this case as a duplicate, since the underlying
bug that this test case demonstrates seems to have been fixed
already in a version not released to the public. We believe
that the implicit conversions provided by MySQL (and also
SQLite) is one of the reasons that we found more bugs in
these DBMSs than in PostgreSQL.

PostgreSQL inheritance bug. In PostgreSQL, we found
only one logic bug. The bug was related to table inheritance,
a feature that only PostgreSQL provides (see Listing 9). Table
t1 inherits from t0, and PostgreSQL merges the c0 column in
both tables. As described in the PostgreSQL documentation,
t1 does not respect the PRIMARY KEY restriction of t0. This
was not considered when implementing the GROUP BY clause,
which caused PostgreSQL to omit one row in its result set.

SQLite double quote bug. Listing 10 shows a test case, for
which, after the RENAME operation, it is ambiguous whether the
index refers to a string or column. The SELECT fetches C3 as
a value for the column c3, which is incorrect in either case.
SQLite allowed both single quotes and double quotes to be
used to denote strings; depending on the context, either can
refer to a column name. After we reported the bug, a breaking
change that disallowed strings in double quotes when creating
indexes was introduced.

Listing 11: We found 4 malformed database errors in SQLite
using the error oracle, such as this one.
CREATE TABLE t1 (c0, c1 REAL PRIMARY KEY);
INSERT INTO t1(c0, c1) VALUES (TRUE,

9223372036854775807), (TRUE, 0);
UPDATE t1 SET c0 = NULL;
UPDATE OR REPLACE t1 SET c1 = 1;
SELECT DISTINCT * FROM t1 WHERE c0 IS NULL;--

Error: database disk image is malformed

Listing 12: Unexpected null value bug in PostgreSQL.
CREATE TABLE t0(c0 TEXT);
INSERT INTO t0(c0) VALUES('b'), ('a');
ANALYZE;
INSERT INTO t0(c0) VALUES (NULL);
UPDATE t0 SET c0 = 'a';
CREATE INDEX i0 ON t0(c0);
SELECT * FROM t0 WHERE 'baaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaa' > t0.c0; -- Error: found

unexpected null value in index "i0"

5.2 Error Bugs
While finding error bugs was not the main goal of our work,
they were common, which is why we discuss two such cases.
SQLite database corruption. Listing 11 shows a test case
where manipulating values in a REAL PRIMARY KEY column
resulted in a corrupted database. We found 4 such cases, as
indicated by malformed database schema errors. This specific
bug was introduced in 2015, and went undetected until we
reported it in 2019; it was assigned a Severe severity level.
PostgreSQL multithreaded error. Listing 12 shows a bug
that was triggered only when another thread opened a trans-
action, holding a snapshot with the NULL value. In order to
reproduce such bugs, we had to record and replay traces of
all executing threads. 4 reported PostgreSQL bugs (includ-
ing closed/duplicate ones) could be reproduced only when
running multiple threads.

5.3 Implementation Size and Coverage
Implementation effort. It is difficult to quantify the effort
that we invested in implementing support for each DBMS,
since, for example, we got more efficient in implementing
support over time. The LOC of code of the individual testing
components (see Table 4) reflects our estimates that we in-
vested the most effort to test SQLite, then PostgreSQL, and
then MySQL. The code part shared by the components is
rather small (918 LOC), which provides evidence for the dif-
ferent SQL dialects that they support. We believe that the
implementation effort for SQLancer is small when compared
to the size of the tested DBMSs. The LOC in this table were
derived after compiling the respective DBMS using default
configurations, and thus include only those lines reachable in
the binary. Thus, they are significantly smaller than the ones
we derived statically for the entire repositories in Table 1.

676 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 4: The size of SQLancer’s components specific and
common to the tested databases.

LOC Coverage

DBMS SQLancer DBMS Ratio Line Branch

SQLite 6,501 49,703 13.1% 43.0% 38.4%
MySQL 3,995 707,803 0.6% 24.4% 13.0%
PostgreSQL 4,981 329,999 1.5% 23.7% 16.6%

Coverage. To estimate how much code of the DBMSs we
tested, we instrumented each DBMS and ran SQLancer for
24 hours (see Table 4). The coverage appears to be low (less
than 50% for all DBMSs); however, this is expected, because
we were only concerned about testing data-centric SQL state-
ments. MySQL and PostgreSQL provide features such as
user management, replication, and maintenance functionali-
ties, which we did not test. Furthermore, all DBMSs provide
consoles to interact with the DBMS and programming APIs.
We currently do not test many data types, language elements
such transaction savepoints, many DBMS-specific functions,
configuration options, and operations that might conflict with
other threads running on a distinct database. The coverage
for SQLite is the highest, reflecting that we invested the most
effort in testing it, but also that it provides fewer features in
addition to its SQL implementation.

6 Discussion

Number of bugs and code quality. The number of bugs
that we found in the respective DBMSs depended on many,
difficult-to-quantify factors. We found most bugs in SQLite.
A significant reason for this is that we focused on this DBMS,
because the developers quickly fixed all bugs. Furthermore,
while the SQL dialect supported by SQLite is compact, we
perceived it to be the most flexible one; for example, column
types are not enforced, leading to bugs that were not present
in PostgreSQL, and to a lesser degree in MySQL. MySQL’s
release policy made it difficult to test it efficiently, limiting the
number of bugs that we found in this DBMS. In PostgreSQL,
we found the least number of bugs, and we believe that a
significant reason for this is that the SQL dialect support is
strict, and few implicit conversions are performed.

False positives. In principle, PQS does not report false posi-
tives; that is, bugs found by PQS are always real bugs. Never-
theless, false positives can be due to a limited understanding
of the DBMS operator’s expected behavior when implement-
ing the operator’s execute() method. Consequently, the 13
bug reports that were considered to work as intended were
either due to (1) an incorrect implementation of an operator
in PQS, or (2) a bug found by the error oracle where the
error was expected. False bug reports allowed us to refine our
implementation based on the DBMS developer’s feedback. In

8 cases, bug reports also led to documentation enhancements
or fixes.

Common bugs. Common bugs that we found among all
DBMSs were optimization bugs (i.e. where a performance
optimization caused correctness issues). Often, these were
related to indexes created either explicitly (i.e. using CREATE

INDEX) or implicitly (e.g., using a UNIQUE constraint), as de-
scribed in Section 4.3. A number of bugs were related to the
handling of NULL, which seems to be difficult to reason about
for DBMS developers. Most of the other bugs we found were
unique to the respective DBMS.

Existing test efforts. All three DBMSs are extensively tested.
For example, SQLite, for which we found most bugs, has 662
times as much test code and test scripts than source code [47].
The core is tested by three separate test harnesses. The TCL
tests comprise 45K test cases, the TH3 proprietary test har-
ness contains about 1.7 million test instances and provides
100% branch test coverage and 100% MC/DC test cover-
age [25], and the SQL Logic Test runs about 7.2 million
queries based on over 1 GB of test data. SQLite uses various
fuzzers such as a random query generator called SQL Fuzz,
a proprietary fuzzer dbsqlfuzz, and it is fuzzed by Google’s
OSS Fuzz project [14]. Other kinds of tests are also applied,
such as crash testing, to demonstrate that the database will not
go corrupt on system crashes or power failures. Considering
that SQLite and other DBMSs are tested this extensively, we
believe that it is surprising that SQLancer could find any bugs.

Deployment. One question is how DBMS developers would
use PQS during development. Similarly to fuzzers, dynamic
testing approaches like PQS cannot provide any guarantees
in terms of bug-finding outcomes. Consequently, it is also
unclear on how long SQLancer should be run to find all bugs
it would be able to find. In practice, it might be useful to
run SQLancer similarly to fuzzers, for example, either for a
limited period as part of an overnight continuous integration
process, or constantly to maximize the chances of finding new
bugs. Future work might investigate the systematic enumera-
tion of queries, while also pruning the infinitely large space
of possible queries, to give bounded guarantees.

Specification. In order to implement the expression evalua-
tion, we implemented AST interpreters that evaluate the oper-
ators based on the pivot row. This evaluation step essentially
encodes the specification against which the DBMS is checked.
We implemented the expression evaluation primarily based on
each DBMS’ documentation. Where we deemed the documen-
tation to be insufficient, we used a trial-and-error approach
to implement the correct semantics. In contrast to differen-
tial testing, where a difference in the semantics between two
DBMSs’ SQL dialect would result in repeated false positives,
diverging behavior in an implementation of PQS (e.g., caused
by implementation errors) can be addressed by code fixes. In
fact, this observation can be used to effectively test the PQS
implementation, by running it against the DBMS under test,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 677

rather than—or in addition to—using manually-written unit
tests.
Limitations. PQS has a number of limitations in terms of
what logic bugs it can find. PQS only partly validates a query’s
result, and thus, in general, is inapplicable to, for example,
check the correct insertion or deletion of records, detect con-
currency bugs, bugs related to transactions, or bugs in the
access control layer of DBMSs [19]. Conceptually, PQS can-
not detect duplicate rows that are mistakenly omitted from or
included in the result set, since duplicate records are indistin-
guishable for PQS. Consequently, it also cannot be used to
validate the cardinality of a result set, even when each of its
rows is once selected as a pivot row. PQS is not suited for test-
ing the OFFSET and LIMIT clauses, since they might exclude the
pivot row from the result set. Although PQS has found 3 bugs
in aggregate functions, it can only do so in corner cases, such
as when aggregate functions are used in a view that is queried,
or when a table contains only a single row, in which case the
result of the aggregate function can be determined easily. Sim-
ilarly, PQS cannot find bugs in window functions, which also
compute their result over multiple rows in a window. While
SQLancer generates ORDER BY clauses, PQS cannot validate
the result set’s ordering. Similarly, for GROUP BY clauses, PQS
cannot confirm that all duplicate values are grouped. PQS
cannot be used to test NOT EXISTS predicates that reference
tables (i.e., semi-joins), since the approach cannot ensure that
a row is not contained based on only the pivot row. Similarly,
while PQS can be used to test joins, it can only test for com-
binations where a JOIN clauses matches rows on both the left
and right side of a join; for example, for a LEFT JOIN, it is in-
applicable to test cases where only values for the left table are
fetched, but not the right one. PQS is unable to test the results
of ambiguous queries and queries that rely on nondetermin-
istic functions (such as used to generate random numbers),
since it is based on the assumption that the result set is unam-
biguous. It is also unable to test user-provided functions or
operators, unless they are re-implemented in PQS. Supporting
these makes interesting future work. PQS, as the first practical
technique for finding logic bugs in DBMSs, has demonstrated
its effectiveness by finding a wide variety of bugs such as in
operator implementations and optimizations.

Implementation effort. Since the supported SQL dialects
differ vastly between DBMSs, we had to implement DBMS-
specific components in SQLancer. It could be argued that the
implementation effort is too high, especially when the full sup-
port of a SQL dialect is to be tested, which could arguably be
similar to implementing a new DBMS. Indeed, we could not
test complex functions such as SQLite’s printf, which would
have required significant implementation effort. However,
we still argue that the implementation effort is reasonably
low, and allows testing significant parts of a DBMS. Speci-
ficially, based on our experiments, implementing sargable
predicates (e.g. those predicates for which the DBMS can use
an index), already allows finding the majority of optimiza-

tion bugs. Furthermore, our approach effectively evaluates
only literal expressions, and does not need to consider mul-
tiple rows. This obviates the need of implementing a query
planner, which typically is the most complex component of a
DBMS [13]. Furthermore, the performance of the evaluation
engine is insignificant; the performance bottleneck was the
DBMS evaluating the queries, rather than SQLancer. Thus,
we also did not implement any optimizations, which typically
require much implementation effort in DBMSs [15]. Finally,
we did not need to consider aspects such as concurrency and
multi-user control as well as integrity [53].

7 Related Work

Testing of software systems. This paper fits into the stream
of testing approaches for important software systems. Dif-
ferential testing [33] is a technique that compares the results
obtained by multiple systems that implement a common lan-
guage; if results deviate, one or multiple of the systems are
likely to have a bug. It has been used as a basis for many
approaches, for example, to test C/C++ compilers [51, 52],
symbolic execution engines [24], and PDF readers [30]. Meta-
morphic testing [9], where the program is transformed so that
the same result as for the original program is expected, has
been applied to various systems; for example, equivalence
modulo inputs is a metamorphic-testing-based approach that
has been used to find over one thousand bugs in widely-used
compilers [31]. As another example, metamorphic testing
has been successfully applied to test graphic shader com-
pilers [12]. We present PQS as a novel approach to testing
DBMSs, which solves the oracle problem in a novel way,
namely by checking whether a DBMS works correctly for
a specific query and row. We believe that our approach can
also be extended to test other software systems that have an
internal state, of which a single instance can be selected.

Metamorphic testing of DBMSs. PQS inspired two follow-
up testing approaches, namely Non-Optimizing Reference
Engine Construction (NoREC) [42] and Ternary Logic Par-
titioning (TLP) [43], both of which were implemented in
SQLancer. Conceptually, NoREC translates a query that is
potentially optimized by the DBMS (called the optimized
query) to a query that cannot effectively be optimized, thus de-
tecting optimization bugs—which are a subcategory of logic
bugs—when the two query’s result sets differ. TLP translates
a given query to multiple so-called partitioning queries, each
of which computes a part of the result, whose combined result
is then compared with the given query’s result sets. Both are
metamorphic testing approaches. Thus, the effort required
for implementing them is negligible; however, they cannot
establish a ground truth, which PQS can. NoREC could find
only 52.7% of the bugs detected by PQS, which is expected
due to its narrower scope [42]. Considering that our PQS
implementation could also check for non-containment, which

678 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

is a straightforward implementation enhancement, it could
have detected 82.4% of the NoREC bugs. The remaining bugs
found only by NoREC are due to bugs in the implementation
of the SUM() and COUNT() aggregate functions, which NoREC
uses for a more efficient implementation of the test oracle; it
does not provide testing support for aggregates in general.

Differential testing of DBMSs. Slutz proposed an approach
RAGS for finding bugs in DBMSs based on differential test-
ing [46]. In RAGS, queries are automatically generated and
evaluated by multiple DBMSs. If the results are inconsistent,
a bug has been found. As acknowledged by the author, the
approach was very effective, but applies to only a small set
of common SQL statements. In particular, the differences
in NULL handling, character handling, and numeric type co-
ercions were mentioned as problematic. Our approach can
detect bugs also in SQL statements unique to a DBMS, but
requires separate implementations for each DBMS.

Database fuzzing. SQLsmith is a popular tool that randomly
generates SQL queries to test various DBMSs [45]. SQLsmith
has been highly successful and has found over 100 bugs in
popular DBMSs such as PostgreSQL, SQLite and MonetDB
since 2015. However, it cannot find logic bugs found by our
approach. Similarly, general-purpose fuzzers such as AFL [2]
are routinely applied to DBMSs, and have found many bugs,
but also cannot detect logic bugs.

Consistency checking. Kingsbury has developed Jepsen, a
framework to test safety properties of distributed systems
(such as violations of consistency models), which found many
critical bugs in distributed DBMSs [28]. As part of Jepsen,
Kingsbury et al. proposed Elle [29], which is a transactional
consistency checker. In contrast to PQS, Jepsen aims to find
logic bugs primarily in the transaction processing of a DBMS.

Queries satisfying constraints. Some approaches improved
upon random query generation by generating queries that
satisfy certain constraints, such as cardinalities or coverage
characteristics. The problem of generating a query, whose
subexpressions must satisfy certain constraints, has been ex-
tensively studied [7, 34]; since this problem is complex, it is
typically tackled by an approximate algorithm [7, 34]. An al-
ternative approach was proposed by Bati et al. where queries
are selected and mutated based on whether they increase the
coverage of rarely executed code paths [4], increasing the
coverage of the DBMS component under test. Rather than
improved query generation, Lo et al. proposed an approach
where a database is generated based on specific requirements
on test queries [32]. While these approaches improve the
query and database generation, they do not help in automati-
cally finding errors, since they do not propose an approach to
automatically verify the queries’ results.

DBMS testing based on constraint solving. Khalek et al.
worked on automating testing DBMSs using constraint solv-
ing [3, 27]. Their core idea was to use a SAT-based solver
to automatically generate database data, queries, and a test

oracle. In their first work, they described how to generate
query-specific data to populate a database and enumerate the
rows that would be fetched to construct a test oracle [27].
They could reproduce previously-reported and injected bugs,
but discovered only one new bug. In follow-up work, they
also demonstrated how the SAT-based approach can be used
to automatically generate queries [3]. As with our approach,
they provide a test oracle, and additionally a targeted data
generation approach. While both approaches found bugs, our
approach found many previously undiscovered bugs. Further-
more, we believe that the simplicity of our approach could
make it wider applicable.

Testing other aspects. Rather than trying to improve the cor-
rectness of DBMSs, several approaches were proposed to test
other aspects of DBMSs. Poess et. al proposed a template-
based approach to generating queries suitable to benchmark
DBMSs, which they implemented in a tool QGEN [39]. Simi-
larly to random query generators, QGEN could also be used to
test DBMSs. Gu et al presented an approach to quantify an op-
timizer’s accuracy for a given workload by defining a metric
over different execution plans for this workload, which were
generated by using DBMS-specific tuning options [18]. Jung
et al. found performance bugs based on several versions of a
given DBMS [23]. Zheng et al. tested the ACID properties
provided by the DBMS in the presence of power faults [53].
These approaches, however, cannot be used to find logic bugs.

8 Conclusion

We have presented an effective approach for detecting bugs
in DBMSs, which we implemented in a tool SQLancer, with
which we found over 96 bugs in three popular and widely-
used DBMSs. The effectiveness of SQLancer is surprising,
considering the simplicity of our approach, and that we only
implemented a small subset of features that current DBMSs
support. There are a number of promising directions that
could help uncover additional bugs or improve PQS otherwise,
which we regard as future work. SQLancer generates tables
with a low number of rows to prevent timeouts of queries
when multiple tables are joined with non-restrictive condi-
tions. By generating targeted queries with conditions based
on table cardinalities [7, 34], we could test the DBMSs for a
large number of rows, better stressing the query planner [13].
A disadvantage of PQS is that it needs to be implemented
for every DBMS to be tested. As part of future work, this
effort could be reduced, for example, by providing common
building blocks that could be combined to implement oper-
ators and functions more efficiently. Finally, PQS could be
extended to also test for rows that are incorrectly fetched by
selecting a pivot row, ensuring that the randomly-generated
predicates evaluate to FALSE or NULL for it, and then check
that the pivot row is not contained in the result set.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 679

Acknowledgements

We thank the anonymous reviewers and our shepherd,
Yuanyuan Zhou, for their insightful feedback. We want to
thank all the DBMS developers for responding to our bug re-
ports as well as analyzing and fixing the bugs we reported. We
especially want to thank the SQLite developers, D. Richard
Hipp and Dan Kennedy, for taking all bugs we reported seri-
ously and fixing them quickly. Furthermore, we are grateful
for the feedback received by our colleagues at ETH Zurich.

References

[1] DB-Engines Ranking (December 2019), 2019. https:
//db-engines.com/en/ranking.

[2] american fuzzy lop, 2020. https://github.com/
google/AFL.

[3] Shadi Abdul Khalek and Sarfraz Khurshid. Automated
sql query generation for systematic testing of database
engines. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE
’10, pages 329–332, 2010.

[4] Hardik Bati, Leo Giakoumakis, Steve Herbert, and Alek-
sandras Surna. A genetic approach for random testing
of database systems. In Proceedings of the 33rd Inter-
national Conference on Very Large Data Bases, VLDB
’07, pages 1243–1251. VLDB Endowment, 2007.

[5] Carsten Binnig, Donald Kossmann, Eric Lo, and
M. Tamer Özsu. Qagen: Generating query-aware test
databases. In Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’07, page 341–352, New York, NY, USA, 2007.
Association for Computing Machinery.

[6] Nicolas Bruno and Surajit Chaudhuri. Flexible database
generators. In Proceedings of the 31st International
Conference on Very Large Data Bases, VLDB ’05, page
1097–1107. VLDB Endowment, 2005.

[7] Nicolas Bruno, Surajit Chaudhuri, and Dilys Thomas.
Generating queries with cardinality constraints for dbms
testing. IEEE Trans. on Knowl. and Data Eng.,
18(12):1721–1725, December 2006.

[8] Donald D. Chamberlin and Raymond F. Boyce. Sequel:
A structured english query language. In Proceedings of
the 1974 ACM SIGFIDET (Now SIGMOD) Workshop
on Data Description, Access and Control, SIGFIDET
’74, pages 249–264, 1974.

[9] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu.
Metamorphic testing: a new approach for generating
next test cases. Technical report, Technical Report
HKUST-CS98-01, Department of Computer Science,
Hong Kong, 1998.

[10] E. F. Codd. A relational model of data for large shared
data banks. Commun. ACM, 13(6):377–387, June 1970.

[11] E.F. Codd. Relational Completeness of Data Base Sub-
languages. Research report // San José Research Labo-
ratory: Computer sciences. IBM Corporation, 1972.

[12] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu,
and Paul Thomson. Automated testing of graph-
ics shader compilers. Proc. ACM Program. Lang.,
1(OOPSLA):93:1–93:29, October 2017.

[13] Leo Giakoumakis and César A Galindo-Legaria. Testing
sql server’s query optimizer: Challenges, techniques and
experiences. IEEE Data Eng. Bull., 31(1):36–43, 2008.

[14] Google. Announcing oss-fuzz: Continu-
ous fuzzing for open source software, 2016.
https://testing.googleblog.com/2016/12/
announcing-oss-fuzz-continuous-fuzzing.
html.

[15] Goetz Graefe. Query evaluation techniques for large
databases. ACM Comput. Surv., 25(2):73–169, June
1993.

[16] Goetz Graefe and William J. McKenna. The volcano
optimizer generator: Extensibility and efficient search.
In Proceedings of the Ninth International Conference
on Data Engineering, page 209–218, USA, 1993. IEEE
Computer Society.

[17] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken
Baclawski, and Peter J. Weinberger. Quickly generat-
ing billion-record synthetic databases. SIGMOD Rec.,
23(2):243–252, May 1994.

[18] Zhongxian Gu, Mohamed A. Soliman, and Florian M.
Waas. Testing the accuracy of query optimizers. In Pro-
ceedings of the Fifth International Workshop on Testing
Database Systems, DBTest ’12, pages 11:1–11:6, 2012.

[19] Marco Guarnieri, Srdjan Marinovic, and David Basin.
Strong and provably secure database access control. In
Proceedings of the 1st IEEE European Symposium on
Security and Privacy, pages 163–178. IEEE, 2016.

[20] Kenneth Houkjær, Kristian Torp, and Rico Wind. Simple
and realistic data generation. In Proceedings of the 32nd
International Conference on Very Large Data Bases,
VLDB ’06, page 1243–1246. VLDB Endowment, 2006.

[21] William E. Howden. Theoretical and empirical studies
of program testing. In Proceedings of the 3rd Inter-
national Conference on Software Engineering, ICSE
’78, pages 305–311, Piscataway, NJ, USA, 1978. IEEE
Press.

680 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://github.com/google/AFL
https://github.com/google/AFL
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html

[22] Matt Jibson. SQLsmith: Randomized sql testing in cock-
roachdb, 2019. https://www.cockroachlabs.com/
blog/sqlsmith-randomized-sql-testing/.

[23] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and
Woonhak Kang. Apollo: Automatic detection and diag-
nosis of performance regressions in database systems.
Proc. VLDB Endow., 13(1):57–70, September 2019.

[24] Timotej Kapus and Cristian Cadar. Automatic testing
of symbolic execution engines via program generation
and differential testing. In Proceedings of the 32Nd
IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2017, pages 590–600, Piscat-
away, NJ, USA, 2017. IEEE Press.

[25] Hayhurst Kelly J., Veerhusen Dan S., Chilenski John J.,
and Rierson Leanna K. A practical tutorial on modified
condition/decision coverage. Technical report, 2001.

[26] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas
Neumann, Andrew Pavlo, and Peter Boncz. Everything
you always wanted to know about compiled and vector-
ized queries but were afraid to ask. Proc. VLDB Endow.,
11(13):2209–2222, September 2018.

[27] S. A. Khalek, B. Elkarablieh, Y. O. Laleye, and S. Khur-
shid. Query-aware test generation using a relational
constraint solver. In Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE ’08, pages 238–247, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

[28] Kyle Kingsbury. Jepsen, 2020. https://github.com/
jepsen-io/jepsen.

[29] Kyle Kingsbury and Peter Alvaro. Elle: Inferring isola-
tion anomalies from experimental observations, 2020.

[30] Tomasz Kuchta, Thibaud Lutellier, Edmund Wong, Lin
Tan, and Cristian Cadar. On the correctness of electronic
documents: Studying, finding, and localizing inconsis-
tency bugs in pdf readers and files. Empirical Softw.
Engg., 23(6):3187–3220, December 2018.

[31] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler
validation via equivalence modulo inputs. In Proceed-
ings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI
’14, pages 216–226, 2014.

[32] Eric Lo, Carsten Binnig, Donald Kossmann,
M. Tamer Özsu, and Wing-Kai Hon. A frame-
work for testing dbms features. The VLDB Journal,
19(2):203–230, Apr 2010.

[33] William M McKeeman. Differential testing for software.
Digital Technical Journal, 10(1):100–107, 1998.

[34] Chaitanya Mishra, Nick Koudas, and Calisto Zuzarte.
Generating targeted queries for database testing. In Pro-
ceedings of the 2008 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’08, pages
499–510, 2008.

[35] Jayashree Mohan, Ashlie Martinez, Soujanya Ponna-
palli, Pandian Raju, and Vijay Chidambaram. Finding
crash-consistency bugs with bounded black-box crash
testing. In 13th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 18), pages 33–
50, Carlsbad, CA, October 2018. USENIX Association.

[36] MySQL. Mysql homepage, 2020. https://www.
mysql.com/.

[37] Andrea Neufeld, Guido Moerkotte, and Peter C. Locke-
mann. Generating consistent test data: Restricting the
search space by a generator formula. The VLDB Journal,
2(2):173–214, April 1993.

[38] Stack Overflow. Developer survey results 2019, 2019.

[39] Meikel Poess and John M. Stephens, Jr. Generating
thousand benchmark queries in seconds. In Proceedings
of the Thirtieth International Conference on Very Large
Data Bases - Volume 30, VLDB ’04, pages 1045–1053.
VLDB Endowment, 2004.

[40] PostgreSQL. Postgresql homepage, 2019.

[41] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide,
Chucky Ellison, and Xuejun Yang. Test-case reduction
for c compiler bugs. page 335–346, 2012.

[42] Manuel Rigger and Zhendong Su. Detecting optimiza-
tion bugs in database engines via non-optimizing refer-
ence engine construction. In Proceedings of the 2020
28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2020, 2020.

[43] Manuel Rigger and Zhendong Su. Finding bugs in
database systems via query partitioning. Proc. ACM
Program. Lang., 4(OOPSLA), 2020.

[44] Manuel Rigger and Zhendong Su. OSDI 20 Artifact
for "Testing Database Engines via Pivoted Query Syn-
thesis", 2020. https://doi.org/10.5281/zenodo.
4005704.

[45] Andreas Seltenreich. SQLSmith, 2020. https://
github.com/anse1/sqlsmith.

[46] Donald R Slutz. Massive stochastic testing of sql. In
VLDB, volume 98, pages 618–622, 1998.

[47] SQLite. How SQLite is tested, 2020. https://www.
sqlite.org/testing.html.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 681

https://www.cockroachlabs.com/blog/sqlsmith-randomized-sql-testing/
https://www.cockroachlabs.com/blog/sqlsmith-randomized-sql-testing/
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/jepsen
https://www.mysql.com/
https://www.mysql.com/
https://doi.org/10.5281/zenodo.4005704
https://doi.org/10.5281/zenodo.4005704
https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith
https://www.sqlite.org/testing.html
https://www.sqlite.org/testing.html

[48] SQLite. Most widely deployed and used database
engine, 2020. https://www.sqlite.org/
mostdeployed.html.

[49] SQLite. SQLite homepage, 2020. https://www.
sqlite.org/.

[50] Thomas Würthinger, Christian Wimmer, Andreas Wöß,
Lukas Stadler, Gilles Duboscq, Christian Humer, Gregor
Richards, Doug Simon, and Mario Wolczko. One vm
to rule them all. In Proceedings of the 2013 ACM In-
ternational Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, Onward!
2013, pages 187–204, 2013.

[51] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and understanding bugs in c compilers. In

Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI ’11, pages 283–294, 2011.

[52] Qirun Zhang, Chengnian Sun, and Zhendong Su. Skele-
tal program enumeration for rigorous compiler testing.
In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI 2017, pages 347–361, 2017.

[53] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin,
Mark Lillibridge, Elizabeth S. Yang, Bill W Zhao, and
Shashank Singh. Torturing databases for fun and profit.
In 11th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 14), pages 449–464,
Broomfield, CO, October 2014. USENIX Association.

682 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/
https://www.sqlite.org/

Gauntlet: Finding Bugs in Compilers for Programmable Packet Processing

Fabian Ruffy, Tao Wang, and Anirudh Sivaraman
New York University

Abstract
Programmable packet-processing devices such as pro-
grammable switches and network interface cards are becom-
ing mainstream. These devices are configured in a domain-
specific language such as P4, using a compiler to translate
packet-processing programs into instructions for different
targets. As networks with programmable devices become
widespread, it is critical that these compilers be dependable.

This paper considers the problem of finding bugs in com-
pilers for packet processing in the context of P416. We in-
troduce domain-specific techniques to induce both abnormal
termination of the compiler (crash bugs) and miscompilation
(semantic bugs). We apply these techniques to (1) the open-
source P4 compiler (P4C) infrastructure, which serves as a
common base for different P4 back ends; (2) the P4 back end
for the P4 reference software switch; and (3) the P4 back end
for the Barefoot Tofino switch.

Across the 3 platforms, over 8 months of bug finding, our
tool Gauntlet detected 96 new and distinct bugs (62 crash
and 34 semantic), which we confirmed with the respective
compiler developers. 54 have been fixed (31 crash and 23
semantic); the remaining have been assigned to a developer.
Our bug-finding efforts also led to 6 P4 specification changes.
We have open sourced Gauntlet at p4gauntlet.github.io
and it now runs within P4C’s continuous integration pipeline.

1 Introduction

Programmable packet-processing devices in the form of pro-
grammable switches and network interface cards (NICs) are
now common. Such devices provide network flexibility, allow-
ing network operators to customize their network, researchers
to experiment with new network algorithms, and equipment
vendors to upgrade features rapidly in firmware rather than
waiting for new hardware. At the core of this move to pro-
grammable packet processing are the domain-specific lan-
guages (DSLs) for packet processing, along with the compil-
ers that compile DSL programs.

Several commercial products now use such DSLs for packet
processing. For instance, Intel [4], Broadcom [8], Nvidia [39],
and Cisco [17] have switches and NICs programmable in
DSLs such as NPL [9] and P4 [7]. Other efforts (e.g., from
Google and the Open Networking Foundation (ONF)) use
the P4 language to model the behavior of fixed-function de-
vices [50].

These devices, whether fixed or programmable, are a crit-
ical part of the network infrastructure because they process
every packet going through the network. Hence, a miscom-
piled program can persistently affect packet processing. It
can also be very hard to track down miscompilations due
to the lack of sophisticated debugging support on these de-
vices. As network programmability becomes increasingly
common, these DSL compilers will need to be as dependable
as general-purpose compilers such as GCC and LLVM.

Motivated by these concerns, this paper considers the prob-
lem of finding bugs in compilers for packet processing. Be-
cause of the large open-source community around it, we build
our work on the P4 [7] language, but our ideas also extend to
similar DSLs such as NPL [9].

Bug finding in compilers is a well-studied topic, especially
in the context of C [15,41,42,70,74]. Past approaches (§2) to
bug finding in C compilers include fuzz testing by using ran-
domly generated C programs [41, 74], translation validation
(i.e., proving that a compiler correctly translated a given input
program to an output program) [48,52], and verification of in-
dividual compiler passes [45]. These prior approaches have to
contend with many difficulties inherent to a general-purpose
language like C, e.g., generating random programs that avoid
undefined and unspecified behavior [41,74], providing seman-
tics for pointers and memory aliasing [45], and inferring loop
invariants and simulation relations to successfully perform
translation validation [52].

Our key insight is that the restricted nature of a DSL such
as P4 allows us to avoid much of the complexity associated
with bug finding in general-purpose language compilers. In
particular, the simpler nature of P4 (e.g., no loops or pointers)
allowed us to more easily develop formal semantics, which

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 683

https://p4gauntlet.github.io

can then be used as the basis for both automated high-accuracy
translation validation and model-based testing [19]. We lever-
age this insight to build a compiler bug-finding tool for P4
called Gauntlet. Gauntlet uses three key ideas: random pro-
gram generation, translation validation, and model-based test-
ing. We now describe these ideas and show how the restric-
tions of P4 allows them to be simpler than prior work.

First, we use random program generation (§4) to produce
syntactically correct and well-typed P4 programs that still
induce P4 compiler crashes. Because P4 has very little un-
defined behavior [18, §7.1.6], random program generation is
considerably simpler for P4 than for C [74]. The generator
does not have to painstakingly avoid generating programs
with undefined and unspecified behavior, which can be in-
terpreted differently across different compilers. The smaller
and simpler grammar of P4 relative to C also simplifies the
development of a random program generator.

Second, we use translation validation (§5) [48, 52] to find
miscompilations in P4 compilers in which we can access the
transformed program after every compiler pass. Translation
validation has been used in the context of C compilers before,
but has suffered one of two shortcomings. It either needs con-
siderable manual effort per compiler pass (e.g., Crellvm [37]
requires several 100 lines of manual proof-generation code for
each pass; Alive [45] requires manual translation of optimiza-
tions into the Alive DSL) or suffers from a small rate of false
positives and false negatives (e.g., [34, 48]). Fundamentally,
this is inevitable for unrestricted C: proving program equiv-
alence in the presence of unbounded loops is undecidable.
In our case, however, the finite nature of P41 makes P4 pro-
gram equivalence decidable and addresses both shortcomings.
Thus, our use of translation validation is both precise and fully
automated, requiring manual effort only to develop semantics
for the P4 language—not manual effort per compiler pass.

Third, we use model-based testing (§6) to generate input-
output test packets for P4 programs based on the seman-
tics we had to develop for translation validation. We use
these test packet pairs to find miscompilations in black-box
and proprietary P4 compilers where we can not access the
transformed program after every compiler pass. Testing for
general-purpose languages [13] is effective at generating in-
puts that provide sufficient path coverage by finding inputs
satisfying path conditions. But without language semantics,
determining the correct output for these test inputs is hard.
By creating formal semantics for P4 for translation validation,
we are able to generate both input and output test packets,
which can then be used to test the implementation produced
by the compiler for a P4 program.

We applied Gauntlet to 3 platforms (§7): (1) the open-
source P4 compiler infrastructure (P4C) [12], which serves
as a common base for different P4 compiler implementations;
(2) the P4 back end for the open-source P4 behavioral model

1Finite in that input and output packets and state are finite bit vectors.
Loops are bounded (parsing [18, §12]) or forbidden (control flow [18, §13]).

(BMv2) [6], a reference software switch for P4; and (3) the
P4 back end for Barefoot Tofino, a high-speed programmable
switching chip [4]. Across these 3 platforms, and over 8
months of testing, we found a total of 96 new and distinct
bugs, all of which were confirmed and assigned to a compiler
developer. Our efforts also led to 6 changes [18, §A.1] to the
P4 specification. 54 of these bugs have already been fixed.
We analyze these bugs in detail and describe where they were
found, their root causes, and which commits introduced them.
Gauntlet has been merged into the continuous integration
pipeline of the official P4 reference compiler [57]. Our tools
are open source and available at p4gauntlet.github.io.
To our knowledge, Gauntlet is the first example of using
translation validation for compiler bug finding on a production
compiler as part of its continuous integration workflow.

While Gauntlet has been very effective, it is still restricted
in the kinds of bugs, compiler passes, and language constructs
it can handle. We describe these restrictions to motivate future
work (§8). Further, while we developed these bug-finding
techniques in the context of P4, we believe the lessons we
have learned (§7.4) apply beyond P4 to other DSLs with
simpler semantics relative to general-purpose languages (e.g.,
the HLO IR for the TensorFlow [1] XLA compiler [71]).

2 Background and Motivation

2.1 Approaches to Testing Compilers

Levels of compiler testing. A compiler must reject incorrect
programs with an appropriate error message and accurately
translate correct programs. However, a program can be cor-
rect to varying levels. McKeeman [46] provides a taxonomy
of these levels in the context of C (Table 1). Each level cor-
responds to the program getting deeper into the compiler be-
fore it is rejected (e.g., lexer, parser, type checker, optimizer,
code generator). The difficulty of generating test programs
also goes up with increasing input level. For instance, while
general-purpose fuzzers such as AFL [75] are sufficient to
stress test the lexer, more sophistication is required to gen-
erate syntactically correct and well-typed programs, which
are required to test the optimizer. In the context of the P4
compiler, we observed very limited success in bug finding
using a general-purpose fuzzer such as AFL. This is because
testing at the first few levels of Table 1 is already handled
adequately by P4’s open-source compiler test suite [12, §3.4].

Hence, for this paper, we only consider programs at the
higher levels: static, dynamic, and model-conforming. These
are programs that pass the lexing, parsing, type checking,
and semantic analysis phases of the compiler, but still trigger
compiler bugs. Like Csmith [74], we categorize bugs into
crash bugs and semantic bugs. A crash bug occurs when the
compiler abnormally terminates on an input program without
producing either an output program or a useful error message.
Crash bugs include segmentation faults, assertion violations,

684 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://p4gauntlet.github.io

Level Input Class Example of incorrect input
1 Sequence of ASCII characters Binary files
2 Sequence of words and spaces Variable name beginning with $
3 Syntactically correct Missing semicolon
4 Type correct Adding int to string
5 Statically conforming Undefined variables
6 Dynamically conforming Program throwing exceptions
7 Model-conforming Program producing wrong outputs

Table 1: McKeeman’s [46] 7 levels of C compiler correctness.

incomplete error messages, and out-of-memory errors. A
semantic bug occurs when the compiler produces an output
executable, but the executable’s behavior is different from the
input program, e.g., due to an incorrect program transforma-
tion in a compiler optimization pass. In P4, semantic bugs
manifest as any packet output that differs from the expected
packet output given an input packet. Crash bugs we are in-
terested in correspond to level 5 in Table 1; semantic bugs
correspond to levels 6 and 7.

Bug-finding strategies. We now look at how compiler bugs
are found. A key challenge in compiler bug finding is the
oracle problem. Given an input program to a compiler, the ex-
pected outcome (i.e., should it accept/reject the program and
what should the output be?) is unclear unless one consults an
all-knowing oracle. Below, we outline the major techniques
used to approximate this oracle knowledge.

In differential testing [46], given two compilers, which both
receive the same input program, if compiler A’s output (after
compiling and running the program) differs from compiler
B’s output, there is a bug in one of them. This works as long
as there are at least two independent compiler implementa-
tions for the same language. Csmith [74] is one example of
this approach; it feeds the same randomly generated C pro-
gram to multiple C compilers and checks whether the outputs
generated by executing the binary produced by each compiler
differ. Another example is Different Optimization Levels
(DOL) [15], which selectively omits compiler optimizations
and compares compiler outputs with and without these opti-
mization passes. If the end result differs after specific passes
have been skipped or added, it points to a bug. This technique
can be used in any compiler framework that supports selective
omission of optimizations.

Metamorphic testing [16] can serve a similar role as dif-
ferential testing, especially when multiple compilers are not
readily available or optimization passes can not be easily dis-
abled. Instead of feeding the same input program to different
compilers, different input programs that are expected to pro-
duce the same compiler output are fed to the same compiler.
The run-time outputs after compiling these different input
programs are compared to determine if there is a bug or not.
EMI is an example of this approach [41]. Given a randomly
generated C program P, and random input I to this program,
EMI uses the path coverage tool gcov [53] to identify dead
code in P when run on input I. EMI then prunes away this

dead code to produce new programs P′ whose output must
agree with P’s output when run on the input I. Then EMI
compiles and runs both P and P′ to check whether they indeed
produce the same output when given I as input.

Translation validation is a bug-finding technique that con-
verts the program before and after a compiler optimization
pass into a logical formula and checks if both programs/formu-
las are equivalent using a constraint solver [45, 48, 52, 76]. A
failed check indicates a semantic bug. Program equivalence
is an undecidable problem for Turing-complete languages
such as C, requiring manual assistance to perform translation
validation. Typical examples of manual assistance are (1)
simulation relations, which encode correspondences between
variables in two programs; and (2) loop invariants, required to
prove the equivalence of programs with loops. While it is pos-
sible to just unroll loops a constant number of times [34] or
learn these relations [48, 66], these techniques are not guaran-
teed to be precise and occasionally generate false alarms [37].
The occurrence of false alarms makes translation validation
an unlikely choice for recurring use in compiler testing for
general-purpose languages (e.g., for continuous integration).
This is because the number of false alarms typically exceeds
compiler developer tolerance.

2.2 Motivating Gauntlet’s Design

Random program generation for crash bugs. From EMI and
Csmith, we borrow the idea of generating random programs
that are lexically, syntactically, and semantically correct. Un-
like EMI and Csmith, however, our random program genera-
tion is simpler. It does not have to avoid undefined behavior,
which, by design, is quite limited in P416. Further, gener-
ating programs with undefined behavior helps us flag com-
piler passes that might exploit undefined behavior in counter-
intuitive ways [73]. We feed these randomly generated pro-
grams to the compiler to see if it generates a crash, typically a
failure of an assertion written by the P4 compiler developers.

Translation validation for semantic bugs. Differential and
metamorphic testing allow us to compare different run-time
outputs from compiled programs to detect semantic bugs.
However, we can not directly apply either to P4 compil-
ers. Differential testing requires two or more independent
compiler implementations that are comparable in their out-
put. P416 compilers for different hardware and software tar-
gets are not comparable because program behavior is target-
dependent [12, §2.1]. Presently there aren’t multiple indepen-
dent compilers for the same target. Developing an entirely
new compiler exclusively for the sake of testing the exist-
ing compiler is not productive because it can only be reused
for one target. Metamorphic testing [41], on the other hand,
requires the use of code-coverage tools such as gcov to de-
termine which parts of the program are touched by a given
input. Concurrent research [40] has proposed such tools for

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 685

P4, but these tools were not available when we commenced
work on Gauntlet.

On the other hand, P4’s domain-specific restrictions make
translation validation easier relative to general-purpose lan-
guages such as C. P4 programs are finite-state and finite-time,
which makes program equivalence decidable at a theoretical
level. At the practical level, P4’s lack of pointers, memory
aliasing, and unstructured control flow (e.g., goto) allow for
easier generation of language semantics. Furthermore, using
an SMT solver together with translation validation is more
precise than randomized testing approaches such as EMI
and Csmith because the solver exhaustively searches over all
packet inputs to a program to find semantic bugs.

To perform translation validation, we convert P4 programs
before and after a compiler pass into logic formulas and as-
sert equivalence of these formulas. To do so, we could have
converted P4 programs into C code and then asserted equality
using Klee’s equivalence-checking mode [13]. However, in-
stead, we directly converted P4 programs into logic formulas
in Z3 [20] for two reasons. First, the effort to convert P4 to
semantically equivalent C is about the same as producing Z3
formulas directly. The difficulty lies in correctly formalizing
all the language constructs of P4, not in the output format.
Second, generating Z3 formulas directly gives us more con-
trol and allows us to leverage domain-specific techniques to
optimize these formulas.

Model-based testing for black-box compilers. Some industry
compilers do not have an open specification of their internal
program representation or machine code format. In such
cases, we cannot use our translation validation technique
because it relies on comparing semantics before and after
the compiler has transformed the program. Instead, we reuse
the semantics we have generated for the input P4 program to
determine test cases (i.e., input-output packet pairs) for these
random programs. These test cases are then used to directly
check the implementations of the P4 programs produced by
these compilers. This is effectively model-based testing [19],
with the Z3 semantics serving as a model of the P4 program
and the compiler-generated binary being the entity under test.

2.3 Goals and Non-Goals

Find many, but not all bugs. Our goal is to find many crash
and semantic bugs in the P4 compiler, but our tool is not
exhaustive. Specifically, we do not intend to build or replace
a fully verified compiler like CompCert [43], given the large
labor and time cost associated with such an undertaking with
respect to the breadth of P4 back ends. We want to strengthen
existing P4 compilers, not write a safe replacement.

Check the compiler, not the programmer. We are not verify-
ing that a particular P4 program is devoid of certain kinds of
bugs. This problem is addressed by orthogonal work on P4
program verification [22, 25, 32, 44, 68] and P4 testing [67].

Although Gauntlet can in principle be used in for verifying a
P4 program, we have not designed it for such use cases. The
random programs we generate to find bugs in the P4 compiler
are much smaller and more targeted than a typical P4 switch
program. Our tool does not need to be able to generate and ef-
ficiently solve Z3 formulas for large P4 programs to tease out
compiler bugs, although it achieves acceptable performance
on large programs (Table 4).

Unlike p4v [44] and Vera [68], whose goal is to provide
semantics to find bugs in large programs such as switch.p4,
we have developed our semantics for efficient equality checks
of diverse, but relatively small, P4 programs. Because of
this difference in goals, we believe our semantics cover a
broader set of P4 language constructs and corner cases than
p4v and Vera—broad enough that we have found bugs in the
P4 specification.

Develop target-independent techniques. We designed our
tools to be as target-independent as possible and specialize
them to test the front and mid end of the compiler. While
we support restricted forms of back-end testing (§6), we do
so in a way that allows us to quickly integrate and adapt to
new back ends without having to understand detailed target-
specific behavior. In particular, we do not cover target-specific
semantics such as externs [18, §4.3]. We do this by gener-
ating programs that are defined in a target-neutral manner
with respect to P416’s semantics, i.e., we avoid generating
target-specific extern calls.

Only test mature compilers. We only test mature compilers
such as P4C and the corresponding behavioral model2 as
well as the commercial Tofino compiler. For example, P4C
supports other back ends such as the eBPF, uBPF, and PSA
targets, which are pre-alpha quality and preliminary compiler
toolchains. Finding bugs is likely unhelpful for the respective
compiler developers at this moment.

3 Background on P4

P4 is a statically typed DSL designed to describe computa-
tions on network packet headers. This paper focuses on P416,
the latest version of P4 [18]. Figure 1 shows the main P416
concepts, explained below.

Packages and targets. A P4 program consists of a set of
procedures; each procedure is loaded into a programmable
block of the target (e.g., a switch [4] or NIC [51]). These
programmable blocks correspond to various subsystems such
as the parser or the match-action pipeline. The package lists
the available programmable blocks in a target. One example
of a package for a target is the v1model, which models the
architecture of a particular BMv2 [6] software switch target,
referred to as “simple switch” [26]. For simplicity, we will

2Both have entered “permanent beta-status” since November 2019: https:
//github.com/p4lang/p4c/issues/2080

686 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/p4lang/p4c/issues/2080
https://github.com/p4lang/p4c/issues/2080

P
A
R
S
E
R

Match-Action Table

Extern Objects
(e.g., Register, Counter)

D
E
P
A
R
S
E
R

B
U
F
F
E
R

Data Plane
Control Blocks

P4 program

Target architecture model
(e.g., v1model, ebpf, tna, etc.)

P4 Compiler

Data Plane
Runtime Config

Control Plane

Table
Config

Action
Set

Generated
API

Control Plane
API

Load

Compile

Target-dependent

Target-specific Objects
(e.g., Metadata)

Figure 1: An example P4 compilation model.

refer to BMv2 as the target instead of simple switch.

P4 compilers. A P416 compiler translates a P416 program
and the target package model into target-dependent instruc-
tions. These target instructions are combined with the non-
programmable blocks (e.g., a fixed scheduler) to form the
target’s data plane. These instructions also specify how this
data plane can be accessed and configured by the control plane
(Figure 1). P4C [12] is the official open-source reference com-
piler infrastructure of the P416 language and implements the
current state of the specification. P4C employs a nanopass
design [65]: a composable library of front- and mid-end com-
piler passes that perform code analysis, transformation, and
optimization on input programs. We analyze these nanopasses
using translation validation.

Compiler back ends. To implement a P416 compiler, develop-
ers write P4C back ends, which use P4C’s front- and mid-end
passes along with their own back-end specific transforma-
tions, to translate P416 code at the conclusion of the mid end
into instructions for their own target. In this paper, we focus
on 2 production-grade P4C back ends: the Tofino [4] and
BMv2 [6] back ends.

Parsers and control blocks. A P4 parser is a finite state ma-
chine that transforms an incoming byte sequence received at
the target into a structured representation of header definitions.
For example, incoming bytes may be parsed as packets con-
taining Ethernet, IP, and TCP/UDP headers. A deparser con-
verts this representation back into a byte sequence. Control
blocks describe the per-packet operations that are performed
on the input header. These operations are expressed in the
form of the core primitives of the language: tables, actions,
metadata, and extern objects.

Tables. Tables are objects in the control block similar to a
Python dictionary. Table entries are match-action pairs in-
serted by the network’s control plane [14, 47]. When a table

is applied to a packet traversing the control block, its header
is compared against the match key of all match-action entries
in the table. If any entry’s key matches the header, the action
associated with the match is executed. Actions are procedures
that can modify state and/or input headers.

Calling conventions. P416 uses “copy-in/copy-out” [18, §6.7]
semantics for method calls. For any callable object in P4,
the parameter direction (also known as mode [36, §8.2]) ex-
plicitly specifies which parameters are read-only and which
parameters can be modified, with the modifications persisting
after function termination. Modifiable parameters are labelled
with the direction inout or out in the definition of the pro-
cedure. Read-only values are marked in. At the start of a
procedure call, the arguments are copied left-to-right into the
associated parameter slots. Parameters with out label remain
uninitialized. Once the procedure has terminated, all proce-
dure parameters with the label inout or out are copied back
towards the original input arguments.

Metadata. Metadata is programmer-defined or target-specific
data that is associated with a packet header, while it traverses
the target. Examples of metadata include the packet input
port, packet length, queue depth, or priority; this information
is interpreted by the target according to target-specific rules.
Metadata can also be modified during the execution of the
control block.

Externs. Externs are an extensibility mechanism, which al-
lows targets to describe built-in functionality. Externs are
object-like and have methods. Examples include calls to
checksum units, hash units, counters, and meters. P4’s “copy-
in/copy-out” semantics allow reasoning about externs to some
degree; we can discern which input arguments can take on an
arbitrary value and which arguments are read-only.

4 Random Program Generation

Gauntlet’s random program generator produces valid P416
programs to directly trigger a crash bug. If these programs
do not cause a compiler crash they serve as input for our
translation validation and model-based testing techniques.

4.1 Design

We require diverse input programs to exercise code paths
within many compiler passes—and hence bugs in those passes.
P4C already contains a sample of over 600 programs as part
of its test suite. During testing, the reference outputs of each
of the test programs are textually compared to the actual
outputs after the front- and mid-end passes to check for re-
gressions [12, §3.4]. However, this comparison technique is
inadequate for semantic bugs. Further, these programs are
typically used to test the lexer and parser, not deeper portions
of the compiler.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 687

P4Fuzz [2] is a tool that can generate random P4 programs.
However, when we tried using P4Fuzz, we found that the
programs generated by it are not complex enough to find a
large number of new crash or semantic bugs. For example,
P4Fuzz generates programs with complex declarations (e.g.,
structs within structs), but does not generate programs
with sufficiently complicated control flow. Hence, it does not
cause P4C to execute a diverse set of compiler passes. We
developed our own generator for random P4 programs that
works by generating random abstract syntax trees (ASTs).
With this generator we can exercise the majority of language
constructs in P4. This leads to diverse test programs covering
many combinations of P4 expressions. We can use these test
programs to find programs that lead to unexpected crashes.

Gauntlet’s random program generator is influenced by
Csmith [74] and follows its philosophy of generating only
well-formed input programs that pass the lexer, parser, and
type checker. The generator grows an AST corresponding to
the random program by probabilistically determining what
kind of AST node to add to the AST at each step. By adjusting
the probabilities of generating each AST node, we can steer
the generator towards the language constructs we want to fo-
cus on. We can also use these probabilities to keep the size of
the average generated program small, in both the number of
code lines as well as program paths. With this technique we
can find an ample number of semantic bugs while also avoid-
ing programs with too many paths; such “branch” programs
pose challenges for translation validation and model-based
testing.

Undefined behavior. We differ from Csmith in the treatment
of undefined behavior. Whereas CSmith tries to avoid gener-
ating expressions that lead to undefined behavior, we accom-
modate such language constructs (e.g., reading from variables
that are not initialized). We record the output affected by
undefined behavior as part of the logic formulas that we gen-
erate from P4 programs during translation validation (§5.2).
These formulas allow us to track changes in programs with
undefined behavior across compiler passes, which we use to
inform compiler developers of suspicious—but not necessar-
ily incorrect—compiler transformations [73].

4.2 Implementation
We implement our random P4 program generator as extension
to P4C. The generator uses the intermediate representation
(IR) of P4C to automatically grow an abstract syntax tree
(AST) by expanding branches of the tree at random. For
example, a block statement may generate up to (say) 10 state-
ments or declarations, which in turn may result in further sub
nodes. The generated IR AST is then converted into a P4
program using P4C’s ToP4 module. Our random program
generator can be specialized towards different compiler back
ends by providing a skeleton of the back-end-specific P4 pack-
age, back-end-specific restrictions, and which package blocks

NO

P4Ccompile

Semantic Bug

Crash Bug

bad

exit code

pass.p4pass.p4
pass.p4pass.p4

pass.p4pass.p4

pass.p4
pass.p4

pass.p4generate Z3

with Gauntlet

P4 program

YESequal?

emit IR

Figure 2: Translation validation in Gauntlet.

are to be filled in with randomly generated program snippets.
We have currently implemented two back ends for our ran-
dom program generator corresponding to the BMv2 [26] and
Tofino [4] targets.

Programs generated by our random program generator are
required to be syntactically sound and well-typed. Our aim is
not to test if P4C can correctly catch syntax and type errors
(levels 3 and 4 of Table 1). If P4C’s parser and type checker
(correctly) reject a generated program, we consider this to be
a bug in our random program generator. For example, if an
action parameter has a inout or out qualifier, only writable
variables may be passed as arguments.

5 Translation Validation

To detect semantic bugs, we employ translation valida-
tion [52], a classic technique from the compiler literature
in which an external tool certifies that a particular compiler
pass has correctly transformed a given input program.

5.1 Design

To perform translation validation for P4, we developed a
symbolic interpreter for the P416 language to transform P4
programs into Z3 formulas [20]. Figure 2 describes our work-
flow. To validate a P4 program, the symbolic interpreter
converts the program into a Z3 formula capturing its input-
output semantics. An equivalence checker then submits the
Z3 formulas of a program before and after a compiler pass
to the Z3 SMT solver. The solver tries to find an input that
violates equivalence of these two formulas. If it finds such
an input, this is a semantic bug. Translation validation has
two advantages over random testing. First, it can accurately
detect subtle differences in program semantics without any
knowledge about expected input packets or table entries. Sec-
ond, when we can access intermediate P4 programs after each
compiler pass, we can pinpoint the erroneous pass.

688 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5.2 Implementation

Like our random program generator, we wrote the interpreter
as an extension to P4C. We use the IR generated by the
P4C parser to determine the semantics of a P4 program.
Each programmable block of a P4 package represents an
independent Z3 formula. For example, the v1model pack-
age [26] of the BMv2 back end has 6 different independent
programmable blocks: Parser, VerifyChecksum, Ingress,
Egress, ComputeChecksum, and Deparser. For each block,
we generate a separate Z3 formula.

Developing the symbolic interpreter. Overall, it took us 5
months of implementation effort until our symbolic inter-
preter was reliable enough to find new semantic bugs in P4
compilers, instead of encountering false alarms that were ac-
tually interpreter bugs. The fact that P4C contains a sizeable
test suite [12, §3.4] was helpful in stress testing our interpreter
during development. We started our development process by
performing translation validation on programs in the P4C
test suite. A semantic bug on one of these test programs
is probably a false alarm and a bug in our interpreter. This
is because it is unlikely that the compiler miscompiles test
suite programs. The reference outputs of each test after the
front- and mid-end passes are tracked as part of regression
testing, and the reference outputs themselves are audited by
the compiler developers. We also continuously consulted with
the compiler developers to ensure our understanding of the
language semantics was correct.

However, we quickly realized that we also needed to gen-
erate random programs to achieve coverage and truly stress
test our symbolic interpreter. Subsequently, we co-evolved
the interpreter with our generator. We attribute part of our
success in finding bugs to this development technique, since
it forced us to consider many edge cases—more than P4C
does. The test suite for our interpreter now has over 600 P4C
tests plus over 100 of our own tests.

Eventually, our interpreter had become complete and trust-
worthy enough to perform translation validation for randomly
generated programs so as to trigger semantic bugs in P4C.
After we had detected the first semantic bug, we randomly
generated around 10000 programs every week and added the
resulting compiler bugs to our backlog. Adding support for
new P4 language features as part of random program genera-
tion typically first led to a crash in our interpreter. After we
fixed our own interpreter, we were frequently able to find new
semantic bugs in the P4 compiler that pertained to those lan-
guage features. Because any of the compiler passes may have
bugs, our symbolic interpreter does not rely on any compiler
pass of P4C. It only relies on the P4C parser and the ToP4
module to produce P4 code from the IR. Hence, we designed
our interpreter to handle any P4 program that successfully
passed the P4C parser, i.e., before the program is desugared
into any normalized form. This allows us to detect semantic
bugs in the earliest front-end passes.

1 struct Hdr { bit <8> a; bit <8> b; }
2
3 control ingress(inout Hdr hdr) {
4 action assign () { hdr.a = 1; }
5 table t {
6 key = hdr.a : exact;
7 actions = {
8 assign ();
9 NoAction ();
10 }
11 default_action = NoAction ();
12 }
13 apply {
14 t.apply();
15 }
16 }

(a) Simplified P4 program applying a table.

1 Input: t_table_key , t_action , hdr
2 Output: hdr_out
3
4 hdr_out =
5 if (hdr.a == t_table_key) :
6 if (1 == t_action) : Hdr(1, hdr.b)
7 otherwise : Hdr(hdr.a, hdr.b)
8 otherwise : Hdr(hdr.a, hdr.b)

(b) Its semantic interpretation in Z3 shown in functional form.

Figure 3: A P4 table converted to Z3 semantics.

Converting P4 programs into Z3 formulas. We now describe
briefly how we convert a P4 program into a Z3 logic formula.
Figure 3 shows an example. Conceptually, our goal is to
represent P4 programs in a functional form so that the input-
output behavior of the functional form is identical to the input-
output behavior of the P4 program. To determine function
inputs and outputs, we use the parameter directions of each P4
package. Parameters with the direction inout and out make
up the output Z3 data type of the function whereas parameters
with the in and inout are free Z3 variables that represent the
input of the function.

To determine the functional form, the symbolic interpreter
traverses each path through the P4 program, maintaining ex-
pressions representing path conditions for branching. Once
it reaches a portion of the program where execution ends, it
stores an if-then-else Z3 expression with the condition set to
the path condition and the return value set to a tuple consist-
ing of the inout and out parameters at that point. Ultimately,
the interpreter will return a single nested if-then-else Z3 ex-
pression, with each branch corresponding to a unique output
from the program under a set of conditions. Using this expres-
sion we can perform operations such as equivalence checking
between two Z3 formulas for translation validation or query-
ing Z3 to provide an output for particular input for test case
generation.

Handling tables. The contents of a table are unknown at
compile time. Since we want to make sure we cover any
possible table content, we interpret match-action pairs in
tables symbolically. Figure 3 describes a simplified exam-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 689

ple of how Gauntlet interprets tables within a control block.
Per match-action table call, we generate one symbolic match
(t_table_key) and one symbolic action variable (t_action),
which represent a single match key and its choice of action
respectively. We compare the symbolic packet header with
the symbolic match key (hdr.a == t_table_key). If the ex-
pression evaluates to true it implies the execution of a specific
action, which is chosen based on the value of the symbolic
action index (t_action). We express this as a series of nested
if-then-else statements per action available to the table. Fi-
nally, if the key does not match, the default action is selected.
For instance, in Figure 3, we execute action assign (action
id 1) iff the symbolic match variable (t_table_key) equals
the symbolic header (hdr.a) and the symbolic action variable
(t_action) equals 1. With this encoding we can avoid having
to use a separate symbolic match-action pair for every entry in
the match-action table, which is a prohibitively large number
of symbolic variables.

Header validity. The P416 specification does not explicitly
restrict the behavior of header validity. We model our seman-
tics to align with the implementation in P4C. We clarified
these assumptions with the compiler and specification main-
tainers [62]. If a previously invalid header is marked valid,
all fields in that header are initially undefined. If an invalid
header is returned in the final output, all fields in the header
are set to invalid as well.

Interpreting function calls. Any out parameter in a function
call is initially set undefined. If the function returns, we also
generate a new free Z3 variable. In our interpreter, externs
are treated as a function call that returns an arbitrary value.
In addition, each argument for a parameter that has the label
inout and out is set to a new free Z3 variable because the
behavior of extern is unknown. Copy-in/copy-out semantics,
albeit necessary to control side effects in extern objects, have
been a persistent source of bugs in the compiler. A significant
portion of the semantic bugs we identified were caused by
erroneous passes that perform incorrect argument evaluation
and side effect ordering in relation to copy-in/copy-out.

Checking equivalence between P4 programs. We use
p4test to emit a P4 program after each compiler pass.
p4test is a P4C back end used to test P4C. It does not pro-
duce any executable output but exercises all the default front-
and mid-end passes. We only examine passes that actually
modify the input program and ignore any emitted intermedi-
ate program that has a hash identical to its predecessor. We
explicitly reparse each emitted P4 file to also catch bugs in
the parser and the ToP4 module.

For an input program A and the transformed output pro-
gram B after a compiler pass we perform a pair-wise equiv-
alence check for each programmable block. We use our in-
terpreter to retrieve the Z3 formulas for all programmable
blocks of the program package and compare each individual
block of A to the corresponding block in B. The query for

the Z3 solver is a simple inequality. It is satisfiable only if
there is a Z3 assignment (e.g., a packet header input or table
match-action entry) in which the Z3 formula of A produces a
different output from B.

If the inequality query is satisfiable, it produces the assign-
ment that would lead to different results and saves the failed
passes for later analysis. With this technique we can precisely
pinpoint in which pass a semantic bug may have happened
and we can also infer the packet values we need to trigger
the bug. If the report turns out to be a false alarm and is not
confirmed by compiler developers, this is a bug in our sym-
bolic interpreter, which we fix. The generated Z3 formulas
could in principle be very large and checking could take a
long time. However, we use quantifier free formulas for the
equality check, which can be solved efficiently in Z3 [20].
Even very large expression trees can be compared under a
second.

Handling undefined behavior. We track changes in unde-
fined behavior in which the undefined portion of a P4 pro-
gram has more restricted (less undefined) behavior after a
compiler pass. This means we can identify scenarios where
the compiler transforms a program fragment based on unde-
fined behavior. While not immediately harmful, such changes
might still indicate problematic behavior in the compiler that
may be surprising to a programmer [73].

To track undefined behavior, any time a variable is affected
by undefined behavior (e.g., a header is set to invalid and
then valid) we label that variable “undefined.” This undefined
variable effectively acts as taint. Every read or write to this
undefined variable is tainted. When comparing Z3 formulas
before and after a pass, we can choose to replace tainted ex-
pressions with concrete values in the formula before a pass.3

With this, we can determine if a translation validation failure
was caused by undefined behavior. If we find a failure based
on undefined behavior, we classify it as unstable code [73] to
avoid confusion with real bugs.

6 Model-Based Testing

Our approach to translation validation is applicable only in
scenarios where we have access to the P4 IR (and hence the
P4 program). This is because it rests on having semantics
for P4. This is the case for P4C, which has a flag that allows
us to emit the input P4 program after every compiler pass
as a transformed P4 program [12, §3.3]. However, in the
back end, a P4 compiler employs back-end-specific passes
that translate P4 into proprietary formats. These formats are
undocumented, making it hard to provide semantics for them.
Hence, to find back-end bugs, we developed a bug-finding
approach based on model-based testing [19].

3We only replace tainted expressions in the “before” formula so that we
can detect compiler bugs where a previously well-defined expression turns
undefined, which is an actual compiler bug, not just an unsafe optimization.

690 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

NO

Semantic Bug

get semantics

record output

7 6 A

1 B F 2

7 6 A

1 B F 2

Crash Bug

bad

exit code

generate expected

output
match?

7 6 7 A

1 B F 2

7 6 7 A

1 B F 2

target

test_3
test_2

test_1

test_3
test_2

test_1

generate tests

YES

P4 compiler

Figure 4: Model-based testing in Gauntlet.

6.1 Design

In this approach, we reuse our symbolic interpreter to produce
a Z3 formula of a randomly generated P4 program (Figure 4).
With this Z3 formula, we can produce input packets that
traverse unique paths in the P4 program, by generating a path
condition for every unique program path and asking Z3 for an
input packet that satisfies this path condition. Using the same
Z3 formula, we can also determine the output packet for this
input packet. Thus, we generate a test case for each path and
feed this case into the testing framework of the compiler’s
target. If the framework reports a mismatch, we know that
there is likely a bug. This test technique can identify semantic
bugs without requiring access to the P4 program after every
intermediate compiler pass. However, unlike the translation
validation approach, it is harder to pinpoint the pass causing
the bug. This is effectively model-based testing [19] with the
Z3 formulas being the model and the compiler output being
the system under test.

6.2 Implementation

Model-based testing requires a back-end testing framework
that is capable of taking input packets and producing output
packets, which can then be matched against the expected out-
put from Z3. We test two back ends: (1) the BMv2 back end
that uses the simple test framework (STF) [10], which feeds
packets to a software test switch and records output packet
capture files and (2) the Tofino back end that uses the Packet
Test Framework (PTF) [5] to inject and receive packets. We
use the Tofino software simulator to check for semantic bugs
in Tofino. We initially reconfirmed every semantic bug we
found on the Tofino hardware target, but ultimately switched
to running only the simulator for faster testing. However, we
confirmed all Tofino bugs with the Tofino compiler develop-
ers.

Undefined variables. Variables affected by undefined behav-
ior (undefined variables) are difficult to model in model-based-

testing because any back end is free to perform arbitrary op-
erations on these variables. We were left with two choices:
(1) we could avoid undefined behavior in our P4 programs;
(2) alternatively, we could ascribe specific values to unde-
fined variables and check if these values conform with the
implementation of the particular target. We picked the second
approach because it allows independent testing of compiler
optimizations in the face of undefined language constructs.

Computing input and output for test cases. We do not have
control over program paths that involve undefined variables
because we cannot force a target to assign specific values to
such variables. Hence, we add conditions which will cause
Z3 to only give us solutions for specific restricted program
paths. For any path we can control (e.g., a branch that de-
pends on the value of an input header) we compute all the
possible input-output values that lead to a new path through
the P4 program. This technique is computationally expensive
because the number of paths can be exponential in the length
of the program. However, in practice, because our P4 pro-
grams have a relatively small number of branches, test-case
generation followed by testing on a P4 program still com-
pletes quickly. If members of an output header are undefined
we mark those bits as “don’t care” and ignore that portion of
the output packet. For any invalid header we omit its member
bits from the expected test output.

For every path, we feed path conditions into Z3 and re-
trieve a candidate set of input-output values that would cause
program execution to go down that path. Because there are
typically many solutions for these input-output values, we
configure the Z3 solver to give us a randomized, non-zero
input and its corresponding output value. In some back ends,
using zero values by default may mask erroneous behavior.
For example, since BMv2 initializes any undefined variable
with zero, the bug in program 5c would not have been caught,
had we not asked Z3 for a non-zero input-output pair.

6.3 Limitations

In contrast to translation validation that runs entirely on a
formal logic-based representation of the P4 program, model-
based testing has several limitations that are caused by need-
ing to run actual end-to-end tests on real targets.

Dropped packets in the testing framework. A key assump-
tion in the model-based-testing approach is that the generated
test cases can actually be fed to the testing framework of
the back end. However, the semantics of the generated P4
program do not describe hardware-specific restrictions. For
example, some devices impose minimum packet size require-
ments or drop packets with invalid MAC addresses. More
generally, we have found that test cases where the input pack-
ets have certain values in their headers can be dropped silently
by the back end without generating an output packet. Effec-
tively, there is a mismatch between the Z3 semantics, which

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 691

Bug Type Status P4C BMv2 Tofino

Crash
Filed 36 4 35
Confirmed 33 4 25
Fixed 27 4 8

Semantic
Filed 31 1 10
Confirmed 26 1 7
Fixed 22 1 0

Total 96 59 5 32

Table 2: Bug summary. Unfixed bugs have been assigned.

says that a certain output packet must be produced and the
back end’s semantics, which produces no output packet. In
such cases, we have had to discard these test cases, reducing
the breadth of coverage for testing the compiler.

Unknown interfaces between programmable blocks. P4 also
does not provide semantics on the treatment of packets in-
between the individual control or parser blocks. This is not
an issue for translation validation since we compare each
programmable block individually. For an end-to-end test,
however, we need to know how data is modified between
these blocks so that we know what output packet to expect.

Test case complexity. Paths with many branches can generate
a large number of distinct path conditions. Thus, millions of
input-output packet pairs might be generated. Since small
programs have sufficed so far for bug finding, we have not
run into these issues. In the future, we may need an efficient
path selection technique to tease out more complex bugs on
closed-source compilers.

7 Results

We now analyze the P4 compiler bugs found by Gauntlet. A
detailed breakdown can be found at p4gauntlet.github.io.
Our main findings are summarized below.

1. We confirmed a total of 96 new, distinct bugs across the
P4C framework and the BMv2 and Tofino P4 compilers.
Of these bugs, 62 are crash and 34 are semantic bugs.

2. Our efforts led to 6 P4 specification changes [18, §A.1].
3. We achieved this in the span of only 8 months of test-

ing with Gauntlet, and despite only generating random
programs from a subset of the P416 language.

4. Model-based testing is effective enough to find seman-
tic bugs in closed-source back ends such as the Tofino
compiler, despite us not having access to the internal IR.

7.1 Sources of Bugs

We distinguish the bugs we found into three primary sources:
bugs we found in the common P4C framework and bugs we
found in the compiler back ends for BMv2 and Tofino. Both

Location P4C BMv2 Tofino Total

Front End 38 - - 38
Mid End 21 - - 21
Back End - 5 32 37

Total 59 5 32 96

Table 3: Distribution of bugs in the P4 compilers.

the BMv2 and Tofino back ends use the P4C front- and mid-
end passes. Hence, most bugs detected in P4C also likely
apply to these back ends. Note that since the Tofino back end
is closed source, we don’t know which P4C passes it uses.

All semantic bugs in P4C were found by translation vali-
dation because we had full access to the compiler IR. Where
applicable, we reproduced the semantic bugs using model-
based testing and attached the failing input-output packet pair
with our bug report. All the semantic bugs in the Tofino
compiler were found with model-based testing.

Distribution of Bugs. Table 3 lists where we identified bugs.
The overall majority of bugs were found in the P4C front-
and mid-end framework, mainly because we concentrated on
these areas. The majority of the back end bugs were found in
the Tofino compiler. There are two reasons for this. First, the
Tofino back end is more complex than BMv2 as it compiles
for a high-speed hardware target. Second, we did not test the
BMv2 back end as extensively as other parts of the compiler.

Bugs in the P4C infrastructure. As Table 2 shows, we were
able to confirm 96 distinct bugs. 59 were uncovered in P4C,
with a comparable distribution of crash bugs (33) and seman-
tic bugs (26). Initially, the majority of bugs that we found
were crash bugs. However, after these crash bugs were fixed,
and as our symbolic interpreter became reliable, the semantic
bugs began to exceed the crash bugs.

In addition, 6 of the bugs we found led to corresponding
changes in the specification as they uncovered missing cases
or ambiguous behavior because our interpretation of a spe-
cific language construct clashed with the interpretation of
the compiler developers and language designers. We also
continuously checked out the master branch to test the latest
compiler improvements for bugs. Many bugs (16 out of 59)
were caused after recent merges of pull requests during the
months in which we used Gauntlet for testing. Gauntlet was
able to quickly detect these bugs. To catch such bugs as soon
they are introduced, the P4C developers have now integrated
Gauntlet into P4C’s continuous integration (CI) pipeline.

Bugs in the Tofino compiler. Model-based testing on the
Tofino compiler was also successful. We confirmed 25 crash
bugs and 7 semantic bugs in the Tofino compiler. These bugs
are all distinct from the bugs reported to P4C. The majority
of bugs present in P4C could be reproduced in the Tofino
compiler as well, because it uses P4C for its front and mid end.

692 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://p4gauntlet.github.io

Program Arch LoC Time (mm:ss)
tna_simple_switch.p4 TNA 1940 00:05
switch_tofino_x0.p4 TNA 5751 00:51
switch_tofino2_y0.p4 TNA2 6024 00:53
fabric.p4 V1Model 958 00:02
switch.p4 (from P414) V1Model 5894 10:20

Table 4: Time needed to get semantics from a P416 program.

Hence, our Tofino bug count does not include any front- and
mid-end crash and semantic bugs already present in P4C. We
also do not include Tofino compiler crashes that were caused
by a missed transformation in the P4C front end. The Tofino
back end was relying on these passes to correctly transform
specific P4 expressions. We filed two of these crashes in the
Tofino compiler as missed optimization issues in P4C.

Fixing the bugs. Out of the 96 new bugs we filed, 54 have
been fixed. The remaining bugs have been assigned a devel-
oper, but are still open because we filed them very recently,
they required a specification change to be resolved first, or
they have been de-prioritized in favor of more pressing bug
reports. We have received confirmation by the Tofino com-
piler developers that 8 bugs have already been resolved; the
remainder are targeted to be resolved by the next release.

7.2 Performance on Large P4 Programs
We also measured the time Gauntlet currently requires to
generate semantics for several large P4 programs (Table 4).
Generating semantics is the slowest part of our validation
check; comparing the equality of the generated formulas in
Z3 is typically fast. We have observed that retrieving seman-
tics for a single pass takes on the order of a minute for a large
program. We believe we can substantially improve this per-
formance for two reasons. First, large parts of our semantic
interpreter are written in Python as opposed to C++. Second,
we currently use a simple state-merging approach for parser
branches. This approach does not sufficiently address the scal-
ing challenge of dense branching. When run on switch.p4
retrieving semantics takes about 10 minutes. We note, how-
ever, that switch.p4 is not a representative switch program
as the code is autogenerated from old P414 code. Programs
like switch_tofino_x0.p4, which model the data plane of
a data center switch, only require a minute per pass.

7.3 Deep Dive into Bugs

Ripple effects. A common crash we observed occurs because
a compiler pass incorrectly transforms an expression or does
not process it at all. Back end compiler developers rely on
the front end to correctly transform the IR of the P4 program.
But, if a pass misses a language construct it is responsible for,
the back end often cannot handle the resulting expression and

1 control ig(inout Hdr h, ...) {
2 apply {
3 h.mac_src =
4 (h.mac_src > 2 ? 48w1 : 48w2) + h.mac_src;
5 }
6 }

(a) A bug caused by a defective pass.

1 control ig(inout Hdr h, ...) {
2 apply {
3 h.mac_src = (1 << h.modifier) + 8w1;
4 }
5 }

(b) A crash in the type checker.

1 control ig(inout Hdr h, ...) {
2 apply {
3 bool tmp = 1 != 8w2[7:0];
4 }
5 }

(c) An incorrect type checking error.

1 control ig(inout Hdr h, ...) {
2 action assign_eth_type(inout bit <8> val) {
3 h.eth_type[15:8] = 0xFF;
4 }
5 apply {
6 assign_eth_type(h.eth_type[7:0]);
7 }
8 }

(d) Incorrect deletion of an assignment.

1 control ig(inout Hdr h, ...) {
2 apply {
3 h.ipv4.setInvalid ();
4 h.ipv4.src_addr = 1;
5 h.eth.src_addr = h.ipv4.src_addr;
6 if (h.eth.src_addr != 1) {
7 h.ipv4.setValid ();
8 h.ipv4.src_addr = 1;
9 }
10 }
11 }

(e) An unsafe compiler optimization.

1 control ig(inout Hdr h, ...) {
2 action assign_and_exit(inout bit <16> val) {
3 val = 0xFFFF;
4 exit;
5 }
6 apply {
7 assign_and_exit(h.eth_type);
8 }
9 }

(f) Incorrect interpretation of exit statements.

Figure 5: Examples of bugs that were caught by Gauntlet.

generates an assertion failure. For example, in program 5a,
the front end SideEffectOrdering [10] pass should have
converted the conditional operator in line 3 into normal if-
then-else control flow. However because of the addition ex-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 693

pression, the pass failed to transform the conditional operator,
which ultimately caused an assertion to fire in the Tofino
back end [61]. In another case, the InlineFunctions [10]
pass did not fully inline all functions calls, causing a crash in
back ends that were not able to understand function calls and
expected them to have been inlined by then [58].

Crashes in the type checker. Many of the crashes (21 out of
33) were in the type checker infrastructure. The code in 5b
shows an expression that crashed type checking [60]. It is
not possible to shift this value since its width is unknown
at compile-time. This program was deemed illegal, but the
specification did not explicitly forbid it. The type checker
tried to infer a type regardless and crashed. This bug also
triggered an update to the P416 specification [27]. In other
cases, the type checker was incorrectly forbidding a valid
expression. In example 5c, the program was legal, but be-
cause a safety check in the StrengthReduction [10] pass
was incorrectly implemented, the resulting slice index was
overflowing and turned negative, which prompted the type
checker to terminate with an error message [60].

Handling side effects. Side effects from a function operate on
the concept of copy-in/copy-out semantics, described earlier.
However, these semantics, while seemingly simple, turn out to
be hard to implement correctly in the compiler. A particularly
tricky case can be seen in 5d [64].

In the program, a slice of a variable is passed as an inout
parameter. At the same time, a disjoint subset of the variable
is assigned within the function. The correct behavior here is
to leave the assignment unchanged, and copy back the sliced
portion of the variable alone. However, the compiler assumed
that the entire variable would be copied back and removed
the assignment in line 3, an incorrect optimization.

A large subset of the semantic bugs we found in P4C (at
least 11 out of 26) can be traced to incorrect handling of side
effects and copy-in/copy-out. Copy-in/copy-out is difficult to
handle because for a compiler pass that reorders expressions
or statements, side-effects can be translated incorrectly.

Unstable code. Even though the P416 language has limited
undefined behavior, we also found incidents of unstable
code [73]. This unstable code conforms with the specifi-
cation but may lead to instability in specific back end targets.
Dumitru et al. also discuss the potential safety consequences
of undefined variable access [24]. Program 5e is a concrete
example. The compiler collapses the assignment of line 4 into
line 5, setting h.eth.src_addr, which is still part of a valid
header, to 1. All of this is legal behavior, since read and write
operations on invalid header values are undefined as part of
the P4 specification. The compiler is free to perform these
optimizations. However, these changes may cause issues in
specific back ends, e.g., back ends in which assignments to
invalid headers are no-ops. In this case, the compiler has cho-
sen a particular subset interpretation of undefined behavior,
which may clash with the expectations of programmers for

that back end. We raised this with the compiler developers,
who agreed to print a warning [62].

Consequences of compiler changes. Once we started actively
monitoring the master branch of P4C we observed that many
(19 out 59) of the bugs we filed in P4C were caused by recent
merges into master. A notable example is a recent change
to the Predication [10] pass, which caused at least 6 (1
crash and 5 semantic) new bugs. We caught and filed these
bugs quickly during our weekly routine random code genera-
tion. The compiler pass has become so complicated that the
compiler maintainers are now relying on Gauntlet to ensure
correctness [3]. A P4 programmer also filed a bug on this
issue [28]. The report was considered a duplicate because
of our earlier reports, highlighting that the bugs we find do
affect actual P4 programmers.

Specification changes. Some of our bug reports kicked off
larger discussions and changes around the P4 language speci-
fication. Our bug reports and questions have led to at least 6
distinct specification changes. For example, a concern we had
about the validity of uninitialized headers (at what point does
a header variable become valid?) led to three clarification
pull requests on the specification and a suggestion to propose
more fundamental changes for the next language version [30].

Another prominent example was caused by am-
biguity in the specification. In example 5f, the
RemoveActionParameters [10] compiler pass moved
the statement in line 3 after the exit statement, because the
assumption was that exits called within functions ignores
the copy-in/copy-out semantics. We instead interpreted
exit statements to still respect copy-in/copy-out semantics
and caught the discrepancy. This is a significant difference.
A packet that traverses the control program could lose all
the modifications that have been written to its header, a
potential security risk. We filed this as a concern with
the open-source community [59] and our interpretation
was deemed reasonable, which required a specification
update [31]. The corresponding compiler changes resulted in
at least 3 new bugs, which we detected and filed.

Invalid transformations. Because P4C provides the option
to emit transformed programs after each pass as a valid P4
program, the compiler developers maintain an invariant that
each compiler pass in the front and mid end needs to emit
syntactically correct P4. We uncovered several bugs with how
P4 code is emitted and transformed across compiler passes.
We detected these bugs by reparsing each P4 program after it
had been emitted by the ToP4 compiler module. If the emitted
program can not be reparsed, it indicates a bug in one of three
compiler components: the ToP4 module, the P4C parser, or
the compiler pass. While these bugs typically do not harm
correctness, they affect compiler debugging. Overall, we
identified 4 bugs of invalid intermediate P4, all of which were
fixed; these 4 are not included in our count of 96. Additionally,
because we reparse P4 after each compiler pass, we found a

694 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

case where the emitted program being parsed incorrectly was
a symptom of a larger bug in the P4C parser [63].

7.4 Lessons Learned

P4C debugging support. P4C has several facilities that were
useful for bug finding. The ability to dump the intermediate
representation, specify which passes to dump, and the ToP4
tool, which converts the P4 IR to P4 programs accelerated our
development process. In addition, the compiler has compre-
hensive assert instrumentation with distinct messages, which
we used to identify unique crash bugs and to distinguish them
from valid error messages. The AST visitor library in P4C
allowed us to develop extensions like our random program
generator and interpreter.

P4C’s nanopass architecture, which factors the compiler
into a large number of “thin” passes, helps with bug fixing,
especially for semantic bugs that were narrowed down to one
pass by translation validation. A different architecture that
has fewer “thick” passes would need more developer effort to
fix semantic bugs. We also observed that almost all crash bugs
were assertion violations where an invariant was violated in a
particular compiler pass due to an incorrect or absent compiler
transformation from a previous pass. In the absence of such
assertions, these crash bugs could have easily manifested as
semantic bugs that are harder to detect.

Reporting bugs. This project would not have been possible
without the responsiveness and receptiveness of the P4 com-
munity. Our questions, concerns, and bug reports were an-
swered within a day and in great detail. The developers were
able to even dissect our initial questions and confusions into
bug reports, guiding us further in our development effort.
We were encouraged to participate in the language design
working group that discusses changes to the P4 specification.

Likewise, when we filed bugs for the closed-source and
proprietary Tofino compiler, we found the developers to be
receptive and responsive. Still, the pace of bug finding and
fixing with the Tofino compiler was slower than the open-
source compiler because of two unavoidable reasons. First,
we naturally didn’t have access to the company bug tracker
to assess the life cycle of our bug once it had been filed.
Second, the official binary of the Tofino compiler updates
less frequently than P4C, which can be rebuilt from source
after every commit. Hence, we would trigger the same bugs
repeatedly in our testing until a new Tofino compiler version
with a bug fix was released. Neither of these two problems
would manifest, if our tool was to be used internally as part
of the compiler development process for Tofino.

8 Future Work

New types of bugs. Gauntlet can not find compiler bugs that
affect performance or resource usage of generated code. For

a switching ASIC that guarantees line-rate performance, the
compiler must produce code that consumes a small number
of computational and memory units [33]. For software targets
where line rate performance is not guaranteed, the generated
code must have good performance. For example, the P4-eBPF
compiler, which converts P4 to eBPF/XDP [35] byte code,
occasionally produces code with poor performance [72]. We
are investigating methods that allow us to identify when a
compiler pass negatively affects performance and resource
usage. We anticipate that handling such bugs would require
techniques that are conceptually very different from our meth-
ods, which deal with correctness bugs.

Supporting aggressive compiler optimizations. Similar to
credible compilation [55], we plan to repurpose Gauntlet
as an attachable compiler plugin to facilitate development of
experimental compiler optimizations. During compilation,
if a newly added optimization produces semantically incor-
rect code, Gauntlet will notify the compiler to discard the
optimization. With this technique, a developer can integrate
potentially buggy code into the compiler while still guaran-
teeing a safe compilation process. However, for the plugin to
be useful, Gauntlet’s translation validation needs to be fast
enough so that compilation time remains acceptable.

Extending translation validation to the compiler back end.
So far we have applied translation validation only to com-
piler front and mid ends. This is because these passes allow
us to dump the P4 program before and after the pass has
run, allowing us to compare the before and after programs
for equality. The back end is typically proprietary, inacces-
sible, and uses an opaque intermediate representation. To
understand the constraints of these back ends we are cur-
rently working with industry compiler developers to integrate
translation validation into their compilers. We will develop
translation validation techniques that allow us to compare
a P4 program’s semantics with the semantics of a back end
language that is not P4.

Long-term study on translation validation in CI. Now that
translation validation is running as part of the CI pipeline of
P4C we would like to perform empirical, long-term studies.
We want to identify which passes frequently cause semantic
issues and understand why they do. We would also like to
observe how developer-friendly our tool is. For example to
avoid confusing compiler developers, we already had to make
sure that Gauntlet does not report changes in undefined be-
havior [29] or fails gracefully when Gauntlet does not support
a particular language construct [11].

Automatic test case reduction. We have not developed an
automatic test-case reduction suite (e.g., C-Reduce [54]) and
reduce buggy programs in a manual fashion. After our testing
pipeline has identified problematic programs in a randomly
generated batch, we inspect each P4 program individually.
We prune the random P4 program that caused the bug until
we get a sufficiently small program that can be attached to a

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 695

bug report. We are currently automating this process.

Better coverage of the compiler and P416 language. While
our symbolic interpreter provides semantics for the majority
of the P416 language constructs, we currently do not generate
programs that contain several P416 language features: extern
calls, method overloading, type definitions, variable bit vec-
tors, run-time indices, match types such as longest prefix or
ternary matches, type-inference for generic types in function
bodies, annotations, and various custom table properties. We
expect that adding most of these will be conceptually straight-
forward, although adding each language construct is a fair
amount of additional engineering. One particular construct
that we anticipate being hard to support is externs. While our
interpreter includes an extension model to add custom seman-
tics for each extern, extern behavior is very back-end-specific.
It is hard to develop accurate semantics for these externs with-
out detailed hardware knowledge of each target. We also do
not track how much of the compiler source code we actually
cover with our program generator. For future work, we would
like to measure the compiler code coverage of a generated P4
program with gcov to understand avenues for improvement.

9 Related Work

P4K [38] was an effort to formalize the P4 language using the
K-framework [56]. In the process of defining these semantics,
the authors found several issues in the P4 specification. P4K
supports the use of translation validation similar to our tool.
netdiff [23] uses symbolic execution to verify the equiva-
lence of data planes, such as those written in P4. They do
so by converting P4 and other data plane programs into the
SEFL language [69], which in turn can be converted to Z3.
The Z3 expressions corresponding to different data planes
can then be compared for equality. netdiff’s equivalence
checking technique is comparable to our translation validation
technique. However, neither P4K nor netdiff were explic-
itly designed for finding compiler bugs. To enable such bug
finding, we need both a source of random P4 programs and
a translation validation technique to compare intermediate
versions of these programs. Further, for some back ends such
as the Tofino compiler, translation validation is insufficient,
requiring us to use model-based testing instead.

p4pktgen [49] is a P4 test-case generation tool, similar
to our model-based testing technique. p4pktgen parses the
JSON file generated by the BMv2 back end and outputs a Z3
formula, which it uses to create test cases. Using p4pktgen,
the authors were able to find several bugs in how BMv2
executes JSON files. However, because it operates on out-
put JSON instead of the input P4 program, unlike Gauntlet,
p4pktgen can not find bugs in intermediate compiler passes.

petr4 [21] is a project with the goal of providing indepen-
dent and complete formal foundations for the P416 language.
petr4 is complementary to our work. While we are explic-

itly targeting the official P416 compiler and specialized our
tools to find bugs during compilation, petr4 aims to find in-
consistencies and mistakes in the official P416 specification
and type system. petr4 provides an interpreter that aims to
establish unambiguous semantics for a given P416 program.
This semantic interpretation can potentially be used to guide
the development of our own interpreter semantics.

10 Conclusion

This paper presented Gauntlet, a tool for finding bugs in
packet-processing compilers for languages such as P4. Gaunt-
let combines random program generation, translation valida-
tion, and model-based testing to find both crash and semantic
bugs in P4 compilers. It has been highly effective, uncovering
96 new and confirmed bugs. 54 of these have been fixed and
the rest have been assigned to a compiler developer. We have
open sourced Gauntlet at p4gauntlet.github.io and it now
runs as part of the CI infrastructure of P4C.

While we developed Gauntlet for P4, we believe the core
technique that makes Gauntlet effective is much more general.
In particular, Gauntlet exploits the fact that P4 is a DSL with
significant restrictions such as the lack of loops. These restric-
tions allow us to revive and simplify prior techniques such
as translation validation and take them much further in the
context of a DSL. For example, to our knowledge, Gauntlet is
the first instance of translation validation running as part of a
compiler’s CI infrastructure. We believe this ability to exploit
domain specificity for more effective compiler bug finding
will increasingly be applicable to other DSLs beyond P4.

Acknowledgements

We would like to thank our shepherd, Madan Musuvathi, and
the anonymous OSDI reviewers for their valuable feedback.
We would also like to thank Amy Ousterhout, Aurojit Panda,
Thomas Wies, Michael Walfish, Srinivas Narayana, and Mi-
hai Budiu for their insightful feedback on paper drafts and
the project. We are grateful to the P4 compiler team at Bare-
foot Networks and the open-source P4 community for their
feedback and willingness to engage with our bug reports. In
particular we would like to thank Mihai Budiu, Nate Fos-
ter, Andy Fingerhut, Han Wang, and Antonin Bas for their
prompt responses to our many bug reports. We also thank
Aatish Varma and Peixuan Gao for experimenting with using
AFL for finding bugs in P4C as part of their course project.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.

696 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://p4gauntlet.github.io

Tensorflow: A system for large-scale machine learning.
In USENIX OSDI, 2016.

[2] Andrei Alexandru Agape, Mădălin Claudiu Dănceanu,
René Rydhof Hansen, and Schmid Stefan. P4Fuzz:
Compiler fuzzer for dependable programmable data-
planes. In ACM ICDCN, 2021.

[3] anasyrmia. Fix: Predication issue #2345. https://
github.com/p4lang/p4c/pull/2564, 2020. Accessed:
2020-10-15.

[4] Barefoot. Industry-first co-packaged optics Ethernet
switch. https://www.barefootnetworks.com/technology/.
Accessed: 2020-10-15.

[5] Antonin Bas. PTF: Packet testing framework. https:
//github.com/p4lang/ptf. Accessed: 2020-10-15.

[6] Antonin Bas. The reference P4 software switch. https:
//github.com/p4lang/behavioral-model. Accessed:
2020-10-15.

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review,
2014.

[8] Broadcom. Trident4 / BCM56880 series. https://www.
broadcom.com/products/ethernet-connectivity/switchin
g/strataxgs/bcm56880-series. Accessed: 2020-10-15.

[9] Broadcom. NPL: Open, high-level language for devel-
oping feature-rich solutions for programmable network-
ing platforms. https://nplang.org/, 2019. Accessed:
2020-10-15.

[10] Mihai Budiu. The P416 reference compiler implemen-
tation architecture. https://github.com/p4lang/p4c/blob
/master/docs/compiler-design.pptx, 2018. Accessed:
2020-10-15.

[11] Mihai Budiu. Tuple elim. https://github.com/p4lang/p4
c/pull/2451, 2020. Accessed: 2020-10-15.

[12] Mihai Budiu and Chris Dodd. The P416 programming
language. ACM SIGOPS Operating Systems Review,
2017.

[13] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al.
KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In
USENIX OSDI, 2008.

[14] Martin Casado, Michael J Freedman, Justin Pettit, Jiany-
ing Luo, Nick McKeown, and Scott Shenker. Ethane:
Taking control of the enterprise. ACM SIGCOMM Com-
puter Communication Review, 2007.

[15] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong,
Hongyu Zhang, Lu Zhang, and Bing Xie. An em-
pirical comparison of compiler testing techniques. In
ACM/IEEE ICSE, 2016.

[16] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu.
Metamorphic testing: A new approach for generating
next test cases. arXiv preprint arXiv:2002.12543, 1998.

[17] Cisco. Cisco Silicon One. https://www.cisco.com/c/en/u
s/solutions/service-provider/innovation/silicon-one.html.
Accessed: 2020-10-15.

[18] The P4.org consortium. The P416 Language Specifica-
tion, version 1.2.1, June 2020.

[19] Siddhartha R Dalal, Ashish Jain, Nachimuthu
Karunanithi, JM Leaton, Christopher M Lott, Gardner C
Patton, and Bruce M Horowitz. Model-based testing in
practice. In ACM/IEEE ICSE, 1999.

[20] Leonardo De Moura and Nikolaj Bjørner. Z3: An
efficient SMT solver. In International conference on
Tools and Algorithms for the Construction and Analysis
of Systems, 2008.

[21] Ryan Doenges, Mina Tahmasbi Arashloo, Santi-
ago Bautista, Alexandar Chang, Newton Ni, Sam-
wise Parkinson, Rudy Peterson, Alaia Solko-Breslin,
Amanda Xu, and Nate Foster. Petr4: Formal founda-
tions for P4 data planes. In ACM POPL, 2021.

[22] Dragos Dumitrescu, Radu Stoenescu, Lorina Negreanu,
and Costin Raiciu. bf4: Towards bug-free P4 programs.
In ACM SIGCOMM, 2020.

[23] Dragos Dumitrescu, Radu Stoenescu, Matei Popovici,
Lorina Negreanu, and Costin Raiciu. Dataplane equiva-
lence and its applications. In USENIX NSDI, 2019.

[24] Mihai Valentin Dumitru, Dragos Dumitrescu, and
Costin Raiciu. Can we exploit buggy P4 programs?
In ACM SOSR, 2020.

[25] Matthias Eichholtz, Eric Campbell, Nate Foster, Guido
Salvaneschi, and Mira Mezini. How to avoid making
a billion-dollar mistake: Type-safe data plane program-
ming with SafeP4. arXiv preprint arXiv:1906.07223,
2019.

[26] Andy Fingerhut. Behavioral model targets. https:
//github.com/p4lang/behavioral-model/blob/master/tar
gets/README.md, 2018. Accessed: 2020-10-15.

[27] Andy Fingerhut. Forbid shifts with unknown widths.
https://github.com/p4lang/p4-spec/pull/814, 2020.
Accessed: 2020-10-15.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 697

https://github.com/p4lang/p4c/pull/2564
https://github.com/p4lang/p4c/pull/2564
https://www.barefootnetworks.com/technology/
https://github.com/p4lang/ptf
https://github.com/p4lang/ptf
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://nplang.org/
https://github.com/p4lang/p4c/blob/master/docs/compiler-design.pptx
https://github.com/p4lang/p4c/blob/master/docs/compiler-design.pptx
https://github.com/p4lang/p4c/pull/2451
https://github.com/p4lang/p4c/pull/2451
https://www.cisco.com/c/en/us/solutions/service-provider/innovation/silicon-one.html
https://www.cisco.com/c/en/us/solutions/service-provider/innovation/silicon-one.html
https://github.com/p4lang/behavioral-model/blob/master/targets/README.md
https://github.com/p4lang/behavioral-model/blob/master/targets/README.md
https://github.com/p4lang/behavioral-model/blob/master/targets/README.md
https://github.com/p4lang/p4-spec/pull/814

[28] Andy Fingerhut. Incorrect transformation in predication
pass. https://github.com/p4lang/p4c/issues/2345, 2020.
Accessed: 2020-10-15.

[29] Andy Fingerhut. Make stricter PSA tests that verify
packet_path and instance fields. https://github.com/p4l
ang/p4c/pull/2509, 2020. Accessed: 2020-10-15.

[30] Andy Fingerhut. Reducing requirements for initializing
headers. https://github.com/p4lang/p4-spec/issues/849,
2020. Accessed: 2020-10-15.

[31] Andy Fingerhut. Specify that copy-out behavior still
occurs after return/exit statements. https://github.com/p
4lang/p4-spec/pull/823, 2020. Accessed: 2020-10-15.

[32] Lucas Freire, Miguel Neves, Lucas Leal, Kirill
Levchenko, Alberto Schaeffer-Filho, and Marinho Bar-
cellos. Uncovering bugs in P4 programs with assertion-
based verification. In ACM SOSR, 2018.

[33] Xiangyu Gao, Taegyun Kim, Michael D. Wong, Divya
Raghunathan, Aatish Kishan Varma, Pravein Govindan
Kannan, Anirudh Sivaraman, Srinivas Narayana, and
Aarti Gupta. Switch code generation using program
synthesis. In ACM SIGCOMM, 2020.

[34] Chris Hawblitzel, Shuvendu K Lahiri, Kshama Pawar,
Hammad Hashmi, Sedar Gokbulut, Lakshan Fernando,
Dave Detlefs, and Scott Wadsworth. Will you still
compile me tomorrow? static cross-version compiler
validation. In ACM ESEC/FSE, 2013.

[35] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The EXpress Data Path: Fast
programmable packet processing in the operating sys-
tem kernel. In ACM CoNEXT, 2018.

[36] Jean D Ichbiah, Bernd Krieg-Brueckner, Brian A Wich-
mann, John GP Barnes, Olivier Roubine, and Jean-
Claude Heliard. Rationale for the design of the Ada
programming language. ACM SIGPLAN notices, 1979.

[37] Jeehoon Kang, Yoonseung Kim, Youngju Song, Juney-
oung Lee, Sanghoon Park, Mark Dongyeon Shin,
Yonghyun Kim, Sungkeun Cho, Joonwon Choi, Chung-
Kil Hur, et al. Crellvm: Verified credible compilation
for LLVM. In ACM PLDI, 2018.

[38] Ali Kheradmand and Grigore Rosu. P4K: A for-
mal semantics of P4 and applications. arXiv preprint
arXiv:1804.01468, 2018.

[39] Ariel Kit. Programming the entire data center in-
frastructure with the NVIDIA DOCA SDK. https:
//developer.nvidia.com/blog/programming-the-entire
-data-center-infrastructure-with-the-nvidia-doca-sdk/.
Accessed: 2020-10-15.

[40] Suriya Kodeswaran, Mina Tahmasbi Arashloo, Praveen
Tammana, and Jennifer Rexford. Tracking P4 program
execution in the data plane. In ACM SOSR, 2020.

[41] Vu Le, Mehrdad Afshari, and Zhendong Su. Com-
piler validation via equivalence modulo inputs. ACM
SIGPLAN Notices, 2014.

[42] Vu Le, Chengnian Sun, and Zhendong Su. Finding deep
compiler bugs via guided stochastic program mutation.
In ACM OOPSLA, 2015.

[43] Xavier Leroy. Formal certification of a compiler back-
end or: Programming a compiler with a proof assistant.
In ACM POPL, 2006.

[44] Jed Liu, William Hallahan, Cole Schlesinger, Milad
Sharif, Jeongkeun Lee, Robert Soulé, Han Wang, Călin
Caşcaval, Nick McKeown, and Nate Foster. p4v: Practi-
cal verification for programmable data planes. In ACM
SIGCOMM, 2018.

[45] Nuno P Lopes, David Menendez, Santosh Nagarakatte,
and John Regehr. Provably correct peephole optimiza-
tions with Alive. In ACM PLDI, 2015.

[46] William M McKeeman. Differential testing for software.
Digital Technical Journal, 1998.

[47] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. OpenFlow: Enabling
innovation in campus networks. ACM SIGCOMM Com-
puter Communication Review, 2008.

[48] George C Necula. Translation validation for an optimiz-
ing compiler. In ACM PLDI, 2000.

[49] Andres Nötzli, Jehandad Khan, Andy Fingerhut, Clark
Barrett, and Peter Athanas. p4pktgen: Automated test
case generation for P4 programs. In ACM SOSR, 2018.

[50] Brian O’Connor, Yi Tseng, Maximilian Pudelko,
Carmelo Cascone, Abhilash Endurthi, You Wang,
Alireza Ghaffarkhah, Devjit Gopalpur, Tom Everman,
Tomek Madejski, et al. Using P4 on fixed-pipeline and
programmable Stratum switches. In ACM/IEEE ANCS,
2019.

[51] Pensando. A new way of thinking about next-gen cloud
architectures. https://p4.org/p4/pensando-joins-p4.html.
Accessed: 2020-10-15.

[52] Amir Pnueli, Michael Siegel, and Eli Singerman. Trans-
lation validation. In International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems. Springer, 1998.

698 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/p4lang/p4c/issues/2345
https://github.com/p4lang/p4c/pull/2509
https://github.com/p4lang/p4c/pull/2509
https://github.com/p4lang/p4-spec/issues/849
https://github.com/p4lang/p4-spec/pull/823
https://github.com/p4lang/p4-spec/pull/823
https://developer.nvidia.com/blog/programming-the-entire-data-center-infrastructure-with-the-nvidia-doca-sdk/
https://developer.nvidia.com/blog/programming-the-entire-data-center-infrastructure-with-the-nvidia-doca-sdk/
https://developer.nvidia.com/blog/programming-the-entire-data-center-infrastructure-with-the-nvidia-doca-sdk/
https://p4.org/p4/pensando-joins-p4.html

[53] GNU Project. gcov–a test coverage program. https://gc
c.gnu.org/onlinedocs/gcc/Gcov.html, 1987. Accessed:
2020-10-15.

[54] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide,
Chucky Ellison, and Xuejun Yang. Test-case reduc-
tion for C compiler bugs. In ACM PLDI, 2012.

[55] Martin C Rinard. Credible compilation. Technical
report, Massachusetts Institute of Technology, 2003.

[56] Grigore Ros, u and Traian Florin S, erbănută. An overview
of the K semantic framework. The Journal of Logic and
Algebraic Programming, 2010.

[57] Fabian Ruffy. Add Travis validation tests for P4C.
https://github.com/p4lang/p4c/pull/2458. Accessed:
2020-10-15.

[58] Fabian Ruffy. BMV2 backend compiler bug unhandled
case. https://github.com/p4lang/p4c/issues/2291, 2020.
Accessed: 2020-10-15.

[59] Fabian Ruffy. Calling exit in actions after an assignment.
https://github.com/p4lang/p4c/issues/2225, 2020.
Accessed: 2020-10-15.

[60] Fabian Ruffy. Compiler bug: Null cst. https://gith
ub.com/p4lang/p4c/issues/2206, 2020. Accessed:
2020-10-15.

[61] Fabian Ruffy. Missing StrengthReduction for complex
expressions in actions. https://github.com/p4lang/p4c/is
sues/2279, 2020. Accessed: 2020-10-15.

[62] Fabian Ruffy. More questions on setInvalid. https:
//github.com/p4lang/p4c/issues/2323, 2020. Accessed:
2020-10-15.

[63] Fabian Ruffy. Question about parser behavior with right
shifts. https://github.com/p4lang/p4c/issues/2156, 2020.
Accessed: 2020-10-15.

[64] Fabian Ruffy. SimplifyDefUse incorrectly removes
assignment in actions with slices as arguments. https:
//github.com/p4lang/p4c/issues/2147, 2020. Accessed:
2020-10-15.

[65] Dipanwita Sarkar, Oscar Waddell, and R Kent Dybvig.
A nanopass infrastructure for compiler education. ACM
SIGPLAN Notices, 2004.

[66] Rahul Sharma, Eric Schkufza, Berkeley Churchill, and
Alex Aiken. Data-driven equivalence checking. In
ACM OOPSLA, 2013.

[67] Apoorv Shukla, Kevin Hudemann, Zsolt Vági, Lily
Hügerich, Georgios Smaragdakis, Stefan Schmid, Artur
Hecker, and Anja Feldmann. Towards runtime ver-
ification of programmable switches. arXiv preprint
arXiv:2004.10887, 2020.

[68] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici,
Lorina Negreanu, and Costin Raiciu. Debugging P4
programs with Vera. In ACM SIGCOMM, 2018.

[69] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and
Costin Raiciu. Symnet: Scalable symbolic execution
for modern networks. In ACM SIGCOMM, 2016.

[70] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin
Lerner. Equality saturation: A new approach to opti-
mization. In ACM POPL, 2009.

[71] The XLA Team. XLA – TensorFlow compiled. https:
//developers.googleblog.com/2017/03/xla-tensorflow-
compiled.html, 2017. Accessed: 2020-10-15.

[72] William Tu, Fabian Ruffy, and Mihai Budiu. P4C-XDP:
Programming the linux kernel forwarding plane using
P4. In Linux Plumbers Conference, 2018.

[73] Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, and
Armando Solar-Lezama. Towards optimization-safe
systems: Analyzing the impact of undefined behavior.
In ACM SOSP, 2013.

[74] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and understanding bugs in C compilers. In
ACM PLDI, 2011.

[75] Michał Zalewski. american fuzzy lop. https://lcamtuf.
coredump.cx/afl/. Accessed: 2020-10-15.

[76] Lenore Zuck, Amir Pnueli, Yi Fang, and Benjamin Gold-
berg. VOC: A translation validator for optimizing com-
pilers. Electronic notes in theoretical computer science,
2002.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 699

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://github.com/p4lang/p4c/pull/2458
https://github.com/p4lang/p4c/issues/2291
https://github.com/p4lang/p4c/issues/2225
https://github.com/p4lang/p4c/issues/2206
https://github.com/p4lang/p4c/issues/2206
https://github.com/p4lang/p4c/issues/2279
https://github.com/p4lang/p4c/issues/2279
https://github.com/p4lang/p4c/issues/2323
https://github.com/p4lang/p4c/issues/2323
https://github.com/p4lang/p4c/issues/2156
https://github.com/p4lang/p4c/issues/2147
https://github.com/p4lang/p4c/issues/2147
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

Aragog: Scalable Runtime Verification of Shardable Networked Systems

Nofel Yaseen�, Behnaz Arzani†, Ryan Beckett†, Selim Ciraci§, and Vincent Liu�
�University of Pennsylvania †Microsoft Research §Microsoft

Abstract
Network functions like firewalls, proxies, and NATs are in-
stances of distributed systems that lie on the critical path for
a substantial fraction of today’s cloud applications. Unfortu-
nately, validating these systems remains difficult due to their
complex stateful, timed, and distributed behaviors.

In this paper, we present the design and implementation
of Aragog, a runtime verification system for distributed net-
work functions that achieves high expressiveness, fidelity, and
scalability. Given a property of interest, Aragog efficiently
checks running systems for violations of the property with
a scale-out architecture consisting of a collection of global
verifiers and local monitors. To improve performance and
reduce communication overhead, Aragog includes an array of
optimizations that leverage properties of networked systems
to suppress provably unnecessary system events and to shard
verification over every available local and global component.
We evaluate Aragog over several network functions including
a NAT Gateway that powers Azure, identifying both design
and implementation bugs in the process.

1 Introduction

An emerging bottleneck to correctness and availability in
modern cloud systems are the various network functions (e.g.,
firewalls, NATs, and load balancers) that interpose on the ma-
jority of application requests flowing to, from, and between
servers in the cloud. Over time, these network functions (NFs)
have become increasingly complex. Today, many of these
functions are full-fledged distributed systems whose correct-
ness depends on the coordination of multiple devices as well
as on stored state and system timing.

Configuration errors and software bugs in these compo-
nents can have an outsized impact on SLAs [4] not only
because of the complexity of these systems, but also because
they are on the critical path of most application requests.
For instance, a production NAT gateway we verify in this
work manages (replicated) states for millions of flows and
errors in this system can lead to black holes, broken con-
nectivity, forwarding loops, and more. Public incident re-
ports from providers show multiple outages due to errors
like these [4, 19].

To improve availability, recent proposals suggest using
static verification to prove the correctness of these sys-
tems [21, 25, 29, 34, 40–42, 44]. While powerful, the need

to reason about every possible interleaving of inputs and con-
trol flows presents a significant obstacle to the application of
these techniques in today’s network functions. Attempting
to explore the full space of control flow paths often leads to
state/path explosion [25, 29, 40]. Mitigations to this problem,
broadly speaking, can be categorized in a few ways. The first
is to require the use of special programming languages or
other types of programmer interaction [21, 43]. The second is
to use model checking techniques to more efficiently explore
all possible system behaviors. Finally, many systems—to re-
duce the state space they must verify and to make verification
more tractable—limit the set of verifiable behaviors, e.g., to
those that are unordered [34], abstract [10], or restricted to a
single machine [42, 44].

While effective in many cases, each of these approaches
also comes with significant drawbacks. With the first, pro-
grammers are saddled with a substantial burden that can
overwhelm the development of the system. With the second,
model checking still typically relies on hand-written models
of functionality, which may be difficult to provide for a rapidly
evolving or complex system. Finally, limiting the scope of
verification fails to extend to the increasingly complex ser-
vices found in modern networks—services that arguably need
verification the most.

An alternative approach to static verification is runtime ver-
ification of distributed systems. In runtime verification, a tool
extracts information about the current state of a running sys-
tem (testbed, canary, or production) to verify that invariants
hold throughout execution [13,14,28,30,31,33,36,39]. Com-
pared to static verification, runtime verifiers only test inputs
and control flows that are seen in practice, thus improving
scalability and enabling verification of actual deployments
running over actual data. In return, they sacrifice a principled
exploration of the system’s behavior and the ability to catch
bugs early. We argue that these tradeoffs are a better fit for
our operators’ requirements.

We find today’s runtime verifiers cannot be applied as-is
to deployed network functions. The challenge (for network
functions) is the need, at runtime, to: (1) reason about the
coordination between events issued at different locations, (2)
efficiently aggregate global state after each event, and (3) scale
sub-linearly with the size of the original system—after all,
a verifier that requires the same amount of resources as the
system itself is untenable for most production environments.

In this paper, we present the design of a scale-out, runtime

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 701

verification tool for network functions called Aragog that over-
comes the above challenges. Aragog provides a simple, but
expressive language for describing violations of invariants,
with a focus on supporting network functions. Examples of
network-centric language features that are found in Aragog’s
Invariant Violation (IV) specifications, but that are uncommon
in other runtime verifiers are support for properties that are
parametric over the “location” of events, properties that refer-
ence stateful variables, the ability to execute partial matches
over packet fields, and support for temporal predicates.

Aragog translates these IV specifications to a set of sym-
bolic automata that can efficiently verify the current global
state of the system. In addition, to ensure that the system can
scale out to a near-unlimited number of machines, Aragog im-
plements the core of these checks on top of production stream
processing systems [2, 3]. To efficiently coordinate between
distributed verifiers, Aragog relies on hardware-supported
time synchronization protocols like PTP. Finally, to minimize
the overhead of the verification system, Aragog leverages
observations that network events/invariants are typically:

Flow- or connection-based: For most network functions, cor-
rectness is defined on a per-flow or per-connection basis. From
the IV specification, Aragog derives sharding keys that allow
it to distribute the verification task across independent work-
ers. These shards also expose boundaries on which we can
gracefully scale down to a sampled subset of the input.

Partially suppressible: Rather than aggregate all events in the
system to a logically centralized verifier, most network events
have limited windows of relevance depending on the state
of the system, e.g., only if the connection has recently been
closed. Aragog includes an optimization scheme to suppress
such messages before they ever leave the NF instance.

Aragog does not guarantee perfect accuracy under
asynchrony—to do so would require atomicity guarantees
in the critical path of the network functions. Aragog instead
handles these situations speculatively and notifies users
after-the-fact1 about transient inconsistency (§7.3). Despite
this, Aragog identified at least four bugs in an early (limited)
deployment of a real distributed network function: Azure’s
new NAT gateway (NATGW). These bugs were detected
within ∼100 ms of occurrence. Compare this to the hours our
operators typically spend searching for similar bugs.

To summarize, our work makes the following contributions:

• We present a case study of the needs of a large modern
network function from Microsoft’s Azure. The system
exhibits several interesting characteristics and suggests
key requirements for verifier design.

• We synthesize ideas from timed regular expressions, sym-
bolic automata, and parametric verification. To the best of

1This reporting happens in under 1 s. This delay is on the same order as
other alerting systems used in our production networks.

Figure 1: The architecture of our NATGW. The bolded blue
arrows show the sequence of communication to handle the
SYN packet of an incoming flow: it is sent to a random packet
worker, which forwards it to the flow decider in charge of
that flow. The flow decider chooses a target server and repli-
cates the mapping to other deciders, then installs it in the
original packet worker. The three dashed red arrows trace the
allocation of the mapping for the reverse flow.

our knowledge, ours is the first to demonstrate a concrete
need and method for combining these concepts.

• We introduce the design and implementation of Aragog,
a system for at-scale runtime verification. When needed,
Aragog can also run on traces (offline) and therefore com-
plement static verification to find implementation bugs in
distributed networked systems. Among other innovations,
Aragog includes a novel method for computing location-
dependent suppression of network events.

• We introduce a collection of Aragog invariant violations
for a set of distributed network functions, and we evaluate
Aragog on NATGW and a distributed firewall.

2 Motivation: A Cloud-scale NAT Gateway
Our work is grounded in experience with Azure’s large-scale
NF that we call NATGW. NATGW is a cloud-scale NAT gate-
way that balances incoming requests over available servers
and supports almost all external traffic.

Like many other NFs of similar scale [16, 35], NATGW is
implemented entirely in software, is distributed across a pool
of servers, and replicates state for fault tolerance. Routers use
ECMP-based anycast to randomly direct packets to NATGW
workers, which then rewrite the destination IP and port to
point at a target server. A similar translation occurs for packets
in the reverse direction (from the server to the client).

Figure 1 depicts the NATGW architecture. It is composed
of two types of nodes: packet workers and flow deciders.
Packet workers process every packet passing through the
NATGW, parsing its header, looking up the target server, and
rewriting the packet header to point to that target. The map-
ping of a flow to a target server is decided with the help of a
sharded set of flow deciders. The deciders cache and replicate
these mappings to other deciders to ensure availability.

Flow allocation. When a packet worker receives the first
packet of a new flow, it uses a hash of the 5-tuple to identify

702 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the “primary” flow decider that owns the flow and forwards
the packet to that decider. The primary then:

1. Decides the target server to which to send the new flow
and installs the mapping in the local flow cache.

2. Sends the reverse mapping to the flow decider that “owns”
the other end of the flow. Together, these two mappings
cover translation for both incoming and outgoing traffic.

3. With its counterpart primary, greedily copies the map-
pings to the cache of other flow deciders in a manner akin
to chain replication: decider i will try to copy to deciders
(i+1) mod N and (i+2) mod N, where N is the number
of deciders. If one is down, it switches to (i+3) mod N.

4. Installs the mapping into the originating packet worker.

After the above flow allocation, the packet worker can pro-
cess all subsequent packets of the flow without coordination
with any other node. If the packet worker fails, anycast redi-
rects the packet to another worker; the new worker will send
the packet to the primary flow decider, fetching the existing
mapping. If the flow decider fails, packet workers will query
the next deciders in the sequence until they find the mapping.

Flow mapping timeouts. All components time out their flow
mappings to ensure stale entries are eventually removed.

To ensure NATGW maintains mappings for active flows,
packet workers periodically send a keepalive message to the
primary decider. The primary forwards the keepalive to all
replicas, refreshing the timeout on every instance of the map-
ping in the system. In parallel, the primary forwards the
keepalive to the primary in charge of the reverse mapping.

Eventual consistency. This NATGW design exhibits some
interesting properties. One of them is a choice to allow for
temporary inconsistency in the presence of node failures in
order to satisfy certain practical and performance constraints.

For example, consider three replicas of a flow mapping
RP, RP+1, and RP+2, where RP is the primary. To delete the
mapping, RP would send a delete request to both of the other
nodes. Now imagine the message to RP+1 is dropped. Rather
than waiting for RP+1, the others will go ahead and delete
f . If, later, RP fails, packet workers will contact RP+1 for the
mapping, which will return a stale/inconsistent result until a
timeout or periodic sync eliminates the inconsistency.

There are known mitigations to the above behavior (e.g.,
querying a quorum on every packet or initiating a view change
algorithm on RP’s failure); however, these come with signifi-
cant performance costs. Instead, the NATGW is an example
of a deployed architecture that chooses eventual consistency
after careful consideration of its drawbacks and alternative
solutions. Our work is motivated by our operators’ experience
with such behaviors.

3 Design Goals

Our runtime verifier targets the following design goals:

Practicality. Network functions are complex; written in a
variety of languages; and frequently rely on external libraries,
drivers, and other components. NATGW, for example, is built
using libraries like DPDK and interacts with an ecosystem
of networking hardware and configurations. The intricacies
of the systems, the richness of their dependencies, and the
rapid evolution of all the associated components mean the
system is not easily modeled or accurately simplified. Instead,
verification should be of the end-to-end system, in situ.

In the same vein, Aragog should not place undue burden on
developers, e.g., by requiring engineers to perform non-trivial
proof writing (as mandated by many deductive reasoning
techniques). NATGW has over 40 thousand lines of code—
Aragog should avoid incurring a proportional overhead.

Expressiveness. Prior work has observed a gap between state-
of-the-art verification tools and the requirements of modern
networks [33]. In particular, it is challenging to specify in-
variants related to: (1) parametric variables over values like
locations or identifiers, (2) coordination between network de-
vices, and (3) timing of events. Moreover, since the number of
devices (e.g., flow deciders) may vary over time as the system
scales out, it is useful to express properties in a way that does
not require explicitly naming components. Aragog should
provide syntax and semantic support for these behaviors.

Scalability. Just as a single machine cannot handle all traffic
entering a large network, it also cannot be expected to ver-
ify the correctness of the entire network. Rather, the verifier
should scale out to arbitrary size and require fewer resources
than the original system. Therefore, Aragog should attempt
to minimize the number of messages exported from each NF,
e.g., by exporting events (resulting from the execution of the
NF) rather than packets (the inputs to the NF).

Graceful degradation of accuracy. As we describe in Sec-
tion 7.3, perfect precision and recall is impossible in an asyn-
chronous system without substantial overhead. Instead, Ar-
agog’s correctness goal is in the same spirit as NATGW’s:
perfect recall under the assumption of ‘partial synchrony’ [15]
and notifications of potential false positives/negatives after-
the-fact. Our operators find this is sufficient for most cases.

Near-real-time alerts. Diagnosing bugs manually can take
hours of operator time and the network could worsen the
longer the bug persists: Aragog should raise alerts within
seconds of observing the offending sequences of events.

4 Aragog’s Architecture

We present the design and implementation of a practical, ex-
pressive, and scalable verifier for large and complex NF de-
ployments. Our system, Aragog, is a combination of a lan-
guage for specifying invariant violations and a scale-out run-
time system. Aragog takes a grey-box approach, requiring
small changes to the underlying source code in order to export
events of interest to the verifier. Thus, Aragog verifies by:

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 703

Figure 2: The architecture of Aragog. NF instances generate
and feed events into a set of local state machines. The NF
instances use these state machines to determine if they can
hide unnecessary messages before exporting the rest to the
global verifier. These messages pass through a Kafka cluster
and are streamed to a set of Flink-based verification engines.

Specifying invariant violations over user-defined events.
To provide operators with sufficient expressiveness to check
network-level events, Aragog comes equipped with a new
language for specifying invariant violations that is based on
writing symbolic regular expressions over a global trace of
events (and their locations) in the system. Aragog’s language
includes a notion of parameterized “variables” that allows vio-
lations to be described in a way that holds for any combination
of variable instantiations subject to constraints.

Checking for invariant violations. NF developers export
any relevant events to Aragog. To scale up checking of the
event stream, Aragog does two things. The first is to auto-
matically analyze and split verification into local and global
components. The local level resides at the NF instances them-
selves, where Aragog infers (only using the state of the lo-
cal instance) whether it can safely suppress the event before
exporting it to the global Aragog verifier. The second is to
leverage the fact that most network invariants are defined
across related flows rather than globally—for instance, on the
granularity of a 5-tuple. As a result, events can be automati-
cally sharded across a cluster of scale-out stream processing
workers using Kafka [26] and Flink [11].

Note that, because the invariants are defined and checked
only across related flows, we only need to know the correct or-
dering for events pertaining to those flows: event timestamps
that use the sub-microsecond-scale synchronization of PTP
suffices for our needs. For many production networks, these
types of event exports are already common.

Overview. Figure 2 shows Aragog’s design. Users describe a
set of invariant violations that identify classes of incorrect be-
havior. Aragog translates these to a set of symbolic automata
and then splits the automata into local and global components.
It then deploys these to NF instances and global verifiers.

At runtime, NF instances stream events into the pipeline.
The local Aragog agent filters, maps, and shards events The
message brokers aggregate and compact those streams The
global verifiers determine, for the shard, whether a viola-
tion occurred. Kafka and Flink will automatically allocate

1 { "fields" : [
2 {"eventType" : 16},
3 {"nodeType" : 8},
4 {"sourceIPv4or6" : 8},
5 {"sourceIPv4or6==4" : [{"srcIP" : 32}],
6 "sourceIPv4or6==6" : [{"srcIP" : 128}]},
7 ...
8],
9 "constants" : {

10 "NAT_ALLOCATION" : 1, // eventTypes
11 "FLOWCACHE_CONSENSUS" : 769,
12 "PACKET_WORKER" : 0, // nodeTypes
13 ...
14 }}

Figure 3: A snippet of the NATGW JSON event schema.

resources and load balance requests to ensure scalability.

5 Specification Language

Users define both events and policies over the events using
two types of specifications that are inputs to Aragog: event
definitions and Invariant Violation (IV) specifications. While
both of these require the user to have some knowledge of the
inner workings of the NF to specify how it can fail, our net-
work operators determined that event-based violations struck
a reasonable balance between precision and ease-of-use.

5.1 Event Definitions

Users specify the format of the event messages that arrive
at the local verifier. Aragog expects these messages to be in
the form of packed arrays of raw binary data whose format is
defined with a JSON configuration file. For example, Figure 3
shows a selected subset of the definition for NATGW event
messages. ‘fields’ contains the ordered list of expected fields
in the message. Each field is defined by a JSON dictionary
specifying the field’s name and its length in bits—for instance,
the first 16 bits of the event message is an eventType.

Conditionals. In addition to specifying the length of each
field and their ordering, Aragog allows users to implement
simple conditional parsing logic. The example event defini-
tion shows one such use where srcIP can be either IPv4 or
IPv6. In the configuration shown, event messages include a
8-bit field that specifies the IP version number. Depending
on the value of that version number, the next field is either
a 32-bit or 128-bit srcIP field. These branches can define
entire sub-headers and can contain nested conditionals.

Named constants. Aragog also allows users to define named
constants representing integer values represented in decimal,
hexadecimal, or binary notation. We show four such constants
in Figure 3: two for values of the eventType field and one
for the nodeType field. These are intended for use in IV spec-
ifications to make them more readable.

704 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 FILTER((eventType == FLOWCACHE_PRIMARY_ADD
2 || eventType == FLOWCACHE_REMOVE_ENTRY)
3 && workerType == FD)
4 GROUPBY(srcIP, dstIP, srcPort, dstPort, proto)
5 MATCH
6 (eventType == FLOWCACHE_PRIMARY_ADD) @ $X
7 ((eventType == FLOWCACHE_REMOVE_ENTRY) @ NOT $X)*
8 (eventType == FLOWCACHE_PRIMARY_ADD) @ NOT $X

Figure 4: An example IV specification that ensures at most
one primary is ever active for a given flow.

5.2 Invariant-Violation (IV) Specifications

Aragog parses incoming event messages and checks them
against a set of user-defined policies that describe sequences
of events that violate the invariants of the system. Opera-
tors specify these policies using Aragog’s domain-specific
language, which we detail in this subsection.

Figure 4 shows an example specification for our NATGW.
The policy only pertains to a subset of events (lines 1–3), and
Aragog verifies it on a per-5-tuple basis (line 4). A violation
occurs when some node $X adds a primary mapping (line 6)
and then a different node (NOT $X) adds the same mapping
(line 8) without $X removing it. The full grammar for IV
specifications is shown in Figure 5. Briefly, an IV specification
consists of (1) a collection of event transformations followed
by (2) a regex-like expression over the generated events.

5.2.1 Transformations

Aragog allows users to define a set of policy-specific trans-
formations. In addition to enabling greater flexibility and
expressiveness, Aragog also uses these transformations to
perform an initial filtering and aggregation as well as to iden-
tify valid sharding strategies. Aragog currently supports three
transformations: GROUPBY, FILTER, and MAP.

Operators can use GROUPBY to indicate which events need
to be considered together and which can be considered sep-
arately. For example, when an operator wishes to guarantee
at most one primary is active (Figure 4) for each flow, the
GROUPBY is used to classify events into unique flows. Aragog
uses this transformation to both simplify policy logic and to
assist in the sharding of verification.

Operators can also use the FILTER transformation to in-
dicate which events should be considered at all and which
should be ignored. In the above example, we only care about
flow deciders—specifically when they add a flow as a primary
and when they delete the flow mapping from the cache; we
can filter events of any other type or from any other type of
node. FILTERs are critical for reducing the number of events
handled by the verification framework.

Finally, operators can use the MAP transformation to gen-
erate entirely new fields based on mathematical expressions
over existing fields of the event message.

〈IVspec〉 ::= 〈transformations〉 ‘MATCH’ 〈events〉

〈transformations〉 ::= 〈transformations〉 〈transformations〉
| ‘GROUPBY’ ‘(’ 〈fields〉 ‘)’
| ‘FILTER’ ‘(’ 〈filter_matches〉 ‘)’
| ‘MAP’ ‘(’ 〈field_expression〉 ‘,’ 〈field_name〉 ‘)’

〈fields〉 ::= 〈field_name〉 [‘,’ 〈fields〉]
| ‘LOCATION’ [‘,’ 〈fields〉]

〈filter_matches〉 ::= ‘(’ 〈filter_matches〉 ‘)’
| 〈filter_matches〉 ‘||’ 〈filter_matches〉
| 〈filter_matches〉 ‘&&’ 〈filter_matches〉
| 〈filter_match〉

〈filter_match〉 ::= 〈field_name〉 〈compare_op〉 〈field_name〉
| 〈field_name〉 〈compare_op〉 〈value〉

〈events〉 ::= ‘.’ ‘@’ 〈location_spec〉
| [‘!’] ‘(’ 〈event_match〉 ‘)’ ‘@’ 〈location_spec〉
| ‘(’ 〈events〉 ‘)’
| 〈events〉 〈events〉
| 〈events〉 〈regex_op〉
| ‘SHUFFLE’ ‘(’ 〈events_list〉 ‘)’
| ‘CHOICE’ ‘(’ 〈events_list〉 ‘)’

〈events_list〉 ::= 〈events〉 [‘,’ 〈events_list〉]

〈location_spec〉 ::= ‘ANY’
| 〈loc_matches〉

〈loc_matches〉 ::= [‘NOT’] ‘$’〈loc_name〉 [‘,’ 〈loc_matches〉]

〈event_match〉 ::= 〈field_match〉 [‘,’ 〈event_match〉]

〈field_match〉 ::= 〈terminal〉 〈compare_op〉 〈terminal〉

〈terminal〉 ::= 〈field_name〉
| 〈value〉
| ‘$’〈variable_name〉
| ‘TIME’

Figure 5: Grammar for Aragog’s IV specification language.
Tokens ending in ‘_name’ are identifiers that must begin with
a letter; the ‘compare_op’ token refers to the class of operators
‘==’, ‘!=’, ‘<’, etc; ‘value’ indicates a constant number; and
‘field_expression’ is a mathematical expression over fields.

5.2.2 Event Expressions

Users define invariant violations over the transformed event
streams by specifying sequences of events that result in a
violation of a particular policy. Users specify these sequences
with a regular-expression-like language, which describes pat-
terns over pre-defined elements. In Aragog’s case, the ele-
ments take the form of a set of matching operations over the
fields of the event message; the example in Figure 4 shows
matches on one such field, the eventType. A match can occur
at any point in the stream of events and triggers on every oc-
currence of the match, not just the first. For example, if events
A→ B→ A form a violation and (at runtime) we observe the
sequence CABABAC, Aragog will alert twice.

As in other regular languages, users can list the sequence
of expected elements and use operators like ‘*’, ‘+’, and ‘?’
to signify repetitions. Users can also leverage the functions
CHOICE and SHUFFLE. In CHOICE, an occurrence of any one of

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 705

1 FILTER(eventType == INIT || eventType == DROP)
2 GROUPBY(LOCATION)
3 MATCH
4 (eventType == INIT, srcIp == $S, dstIp == $D,

srcPort == $P, dstPort == $Q) @ ANY
5 (. @ ANY)*
6 (eventType == DROP, srcIp == $D, dstIp == $S,

srcPort == $Q, dstPort == $P) @ ANY

Figure 6: An example specification that checks that a stateful
firewall does not drop reverse traffic for an open connection.

the contained expressions matches. In SHUFFLE, the contained
events can arrive in any order, but must all arrive.

Event expressions come after the set of transformations and
must appear after a MATCH statement.

Locations. In distributed NFs, an important feature is that
correct behavior is defined not only on the events and their or-
der, but on where the events occurred. Therefore, every event
match is accompanied by a location specifiers. This is useful
for specifying matches, but it is also important for determin-
ing how we might partition evaluation of the IV specification
across both local and global verifiers (see Section 6). In both
cases, the goal is to determine whether each pair of events are
expected to occur at the same or at different NF instances.

Consider again the example in Figure 4. The example con-
tains a single named location, $X, corresponding to the orig-
inal primary node for the current flow. One way to use this
named location is to specify that another event in the sequence
must also occur at $X. Another, demonstrated in lines 7&8,
is to specify that the event occurs at a location distinct from
$X. Note that the syntax does not constrain the relationship
between the locations of the events of lines 7&8.

Every event can reference one or more named locations,
or it alternatively use the location ANY, which indicates no
special semantic meaning of the location of the event. In the
case of multiple locations, users specify multiple predicates
(one per location). For example, to ensure three events with
distinct locations: one could specify ev1 at ($X, NOT $Y); ev2
at (NOT $X, $Y); and ev3 at (NOT $X, NOT $Y).

One possible method of implementing locations is to enu-
merate all possible locations in the system and expand the
event expression accordingly. While this would allow the us-
age of more traditional state-machine evaluation techniques,
it would also lead to an unacceptably inefficient implementa-
tion. Further, any change in membership would require us to
fully recompile and re-install all IV specifications across the
system. Instead, Aragog lazily tracks all potential candidates
for location variables at runtime using a multi-leveled tree
data structure, which we describe in detail in Section 6.

Variables. Aragog generalizes the state tracking afforded to
locations in order to track other types of state in the IV speci-
fication. Examples of non-location stateful properties include
the IP/port NAT mappings of the NATGW and connection
tracking in a firewall. An example of the latter is shown in Fig-

1 MAP(srcIP < dstIP ? srcIP : dstIP, IP1)
2 MAP(srcIP < dstIP ? dstIP : srcIP, IP2)
3 MAP(srcIP < dstIP ? srcPort : dstPort, port1)
4 MAP(srcIP < dstIP ? dstPort : srcPort, port2)
5 FILTER(flag == FIN || flag == ACK || flag == FIN_ACK)
6 GROUPBY(IP1, IP2, port1, port2)
7 MATCH
8 (flag == FIN) @ $X
9 SHUFFLE(

10 (flag == FIN, TIME == $s) @ $Y,
11 (flag == ACK, TIME == $t) @ $Y)
12 (flag == SYN, TIME - min($s, $t) <= 30000) @ $X

Figure 7: An example of a timing violation specification that
checks the behavior of TCP’s TIME-WAIT state [22]. The
SYN must not arrive by a deadline. This specification assumes
that only packet sends are captured.

1 FILTER(flag == FIN || flag == FIN_ACK)
2 GROUPBY(IP1, IP2, port1, port2)
3 (eventType == FIN, TIME == $t) @ ANY
4 ((eventType != FIN_ACK, TIME - $t <= 30000) @ ANY)*
5 (TIME - $t > 30000) @ ANY

Figure 8: An example of a timing-related IV specification
that checks timely arrival of a FIN_ACK after a FIN. The
FIN_ACK must arrive by a deadline.

ure 6, which verifies that if an outbound flow from source IP
$S and destination IP $D is properly initialized, then packets
in the reverse direction are also allowed.

As these variables do not indicate or impose restrictions on
the location of the event, we do not use them for the partition-
ing procedure of Section 6.

Timing. Timeouts and deadlines are also common in NFs. To
specify them, users can use parameterized variables in con-
junction with a builtin TIME field to compare the time between
multiple events. For example, Figure 7 defines a violation of
the TIME-WAIT semantics of a TCP flow in which SYN
packets should not be sent within 30 s of a passive closer’s
FIN/ACK. The same SYN packet 31 s after the FIN/ACK
would not be a violation. On the other end of the spectrum,
Figure 8 defines a violation where a FIN-ACK does not arrive
in time (within 30 s of the FIN). Any intervening FIN-ACK
will mean that the violation does not match.

6 State Machine Generation

Aragog checks for invariant violations efficiently by trans-
lating each of the IV specifications into a state machine. In
contrast to traditional finite-state automata, Aragog requires
a combination of complex features, e.g., timing, arithmetic,
field/location variables, and regular expression-event patterns.

Aragog, thus, generates its state machines in three stages.
First, it creates a symbolic non-deterministic finite automaton
(SFA) [12] whose alphabet is based around a theory of arith-
metic and boolean algebra, and whose predicates can include
the placeholder variables described in the previous section.

706 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

S 1 2

ET==ADD
∧ ρ==$X

TRUE

ET==ADD
∧ ρ!=$X

ET==REMOVE
∧ ρ!=$X

Figure 9: SFA for Figure 4 with some field names and con-
stants abbreviated as well. ρ indicates location.

Second, it determinizes the SFA to a symbolic deterministic
finite automaton (SDFA) to reduce runtime overhead of state
machine execution. Finally, it constructs localized versions
of the SDFA that can be used to infer the global state of the
system from only locally observed events.

6.1 Constructing the SFA
We first convert all predicates on events into boolean logic
with equalities/inequalities by taking the conjunction of all
event field matches and the location specifier. For example, we
transform an event match (A==B, C==D) @ NOT $X to the
predicate (A==B ∧ C==D ∧ ρ!=$X), where ρ is the place-
holder for the event’s location, which we determinize at run-
time. A ‘!’ modifier on the event would negate this predicate.

Aragog performs an additional check on the sequence of
generated predicates to facilitate efficient variable checking
(Section 7.2). Specifically, it checks via reachability analysis
that all uses of variables in either an arithmetic expression
or non-equality comparison (<, ≤, >, and ≥) strictly follow
after their introduction via an equality comparison.

With the resulting predicates, Aragog constructs the SFA by
creating a start state, S, with a self-loop for any event (TRUE).
This self-loop ensures the pattern will match starting from
anywhere in the event trace. From the initial state S, Aragog
recursively builds out the state machine using Thompson’s
construction [38], treating CHOICE as a choice operator, and
expanding SHUFFLE to all permutations. Figure 9 shows a
(minimized) SFA for the example violation specification from
Figure 4. We mark the final state in the SFA as the accepting
state, which indicates a violation when reached.

The specified transitions may not cover the complete space
of possible events. All events that do not match any transition
out of the current state will never lead to a match.

Aragog next determinizes the SFA: it generates an effi-
ciently executable DSFA from the SFA using standard sym-
bolic automata techniques [12]. The result is a state machine
where all transitions are unambiguous and exhaustive. Fig-
ure 10 shows the DSFA for the example. Each state in the
DSFA stores the correesponding set of SFA states the machine
is in at that given point in time.

6.2 Local State Machines
Conceptually, the DSFA provides an efficient method for
checking whether a stream of events leads to an invariant
violation. In principle, we could simply funnel all events to a

{S} {S,1} {S,2}

ET==ADD
∧ ρ==$X

ET!=ADD
∨ ρ!=$X ET==ADD

∧ ρ!=$X

ET==REMOVE
∧ ρ==$X

(ET==REMOVE
∧ ρ!=$X) ∨
(ET==ADD
∧ ρ==$X)

ET==ADD
∧ ρ==$X

ET!=ADD ∨ ρ!=$X

Figure 10: DSFA for the SFA in Figure 4. Colored, dashed
edges represent suppressible transitions.

central verifier, which would then apply the relevant DSFA
transition and report a violations upon reaching an accepting
state. Unfortunately, doing so would require the verifier to
process all unfiltered events in the system. Instead, we further
improve Aragog’s scalability by generating a localized ver-
sion of the state machine that is executed on the same machine
as the NF before sending the event to the global verifier.

6.2.1 Suppressible Transitions
The local state machine needs to identify events that will not
impact the detection (or lack of detection) of a user-specified
violation whether or not it is sent to the global verifier. Our
key observation is that there are transitions in the global DSFA
that do not affect the end result of the state machine. We term
these transitions suppressible transitions. More formally:

Definition 1. An event stream s is either empty s = ε or it
consists of an event followed by another stream s = e · s′.

Definition 2. q e−→ q′ indicates that, from state q, event e tran-
sitions to state q′. We lift this to event streams inductively as
q ε−→ q, and q e·s−→ q′′ iff q e−→ q′ and q′ s−→ q′′ .

Definition 3. Transition t is suppressible if for any event e
matching t from state q, then (1) q e−→ q′ means q′ is not an
accepting state, and (2) for any event stream s, and accepting
state qa then q e·s−→ qa iff q s−→ qa.

In the running example DSFA in Figure 10, the three dashed
transitions are suppressible given the above definition. The
two self-loops are clearly suppressible (satisfy Definition 3)
since an event processed by such a loop will not change the
global state—(not) observing the event has no effect, and the
loops do not occur on accepting states. Perhaps less obvious
is that the bottom-most edge is also suppressible since, from
either state {S} or {S,2}, one needs to see the same two events
to get back to the accepting state {S,2}. For example, an ADD
event at $X followed by another at NOT $X will take either
state {S} or {S,2} back to {S,2}. We never mark transitions
with time constraints as suppressible—we assume the timing
of an otherwise irrelevant event might still be significant.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 707

Algorithm 1 Create a local state machine for a variable
1: input: Global DSFA G, variable V, filter F
2: output: Local DSFA L
3: procedure CREATELOCALDFA(G, V, F)
4: L := CopyStates(G)
5: for S← States(G) do
6: for T← Transitions(G, S) do
7: P := Predicate(G, T)
8: if SAT((F ∧P) 6⇒ (ρ =V)) then
9: AddTransition(L, TargetState(T), ε)

10: P′ := Simplify(P, ρ==V)
11: AddTransition(L, TargetState(T), P′)
12: return Determinize(L)

6.2.2 Local State Machine Construction

Aragog uses local knowledge to determine whether an event
will be processed by a suppressible transition. Since each local
component is unaware of what might be happening at other
components, it must conservatively account for all possibili-
ties. To determine (locally) whether an event is suppressible,
we create a local state machine for every location variable
in every IV specification such that each machine assumes it
is playing the role of that location (e.g., one machine for “I
might be $X in a violation” and another for “I might be $Y in
a violation”). In the example from Figure 10, there is only a
single local state machine: the one for $X.

The first step in creating a local state machine, L, is to
model the uncertainty other locations may introduce (Algo-
rithm 1). The algorithm takes the global state machine G, the
location variable V (e.g., $X), and a predicate F correspond-
ing to the user-defined FILTER statements. It returns a new
localized SDFA.

The algorithm considers each transition T in G where T
has predicate P, and checks whether the formula (F∧P) 6⇒
(ρ = V) is satisfiable (line 8). If it is, then there exists a
potential event that makes it through the filter F and uses
transition T but which takes place at a location other than V.
To model the fact that other NF instances might send events
that use this transition, the algorithm adds to L an epsilon (ε)
transition (line 9). An ε transition is one which the local SFA
can take immediately and unconditionally. It accounts for the
possibility of concurrent execution of other NF instances to
represent that the global state could be in either state (the one
before or the one after the ε transition).

In either case, the algorithm then adds a local transition
to L by simplifying the existing transition predicate (P) to
account for the fact that the location is known (line 11). It does
so by partially evaluating the predicate with the assumption
that ρ==V (line 10). In Figure 10, for example, the transition
(ET==REMOVE ∧ ρ==$X) is simplified to ET==REMOVE.

Figure 11 shows the local SFA for location $X and its deter-
minized (DSFA) form. By executing the DSFA in Figure 11
locally, an NF instance can learn some partial information
about the state of the overall system. For example, after seeing

{S} {S,1} {S,2}

ET==ADD
ET!=ADD, ε

FALSE, ε

ET==REMOVE

ET==ADD, ε

ET==ADD

ET!=ADD, ε

{{S}} {{S},{S,1},{S,2}}

ET==ADDET!=ADD

ET==REMOVE

ET!=REMOVE

Figure 11: Local machine for $X from Figure 10. SFA is
shown on top and its equivalent DSFA is shown below. Col-
ored, dashed edges indicate locally suppressible transitions.

an ADD event, the NF instance recognizes that (if it is $X) the
global state machine can be in any state: {S}, {S,1}, or {S,2}.
However, after locally processing a REMOVE event, the local
machine now knows it must be in state {S} once more.

6.2.3 Suppressing Events Locally
The local machine can hide events when it can prove they
would otherwise be processed by suppressible transitions in
the global machine. Algorithm 2 is used to create all the data
structures needed to suppress events locally. It takes the global
state machine G as input along with the user-defined filters F
and produces, as output, a collection of local state machines
(Li) as well as a negated condition (NC), explained below.

The algorithm works by iterating over every location or
variable in the IV specification (line 5) and calling Create-
LocalDFA to build the local state machine (line 6). It then
walks over each local transition (T) and attempts to mark the
transition as locally suppressible. To do so, it looks up all the
possible global states corresponding to this local state (line
11) and checks whether the local transition can process an
event that is also processed by, and is not suppressible for,
some global transition T′ from one of these states (line 16). If
not, then all events that trigger T must be part of a suppressible
transition in the global DSFA, so the event is suppressed.

In Figure 11, events matching ET!=ADD in state {{S}} are
suppressible: for each global state in the set ({S}), this event
must be processed by a suppressible global transition.

Negated condition. The final part of the algorithm (lines
20 to 23) computes a “negated condition.” This condition
captures the case where the local NF may not correspond
to any named location in the IV specification, e.g., the NF
instance is not $X, but it still may observe a relevant event
as NOT $X. We observe, in such a case, the current machine
can not possibly know anything about the global automaton

708 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 2 Construct local state machines
1: input: Global DSFA G, filter F
2: output: Local state Θ = 〈{L1, . . . ,Lk},NC〉
3: procedure LOCALIZE(G, F)
4: NC := false, LS := /0

5: for V← Variables(G) do
6: L := CreateLocalDFA(G, V, F)
7: for S← States(L) do
8: for T← Transitions(L, S) do
9: suppress := true

10: P := Predicate(L, T)
11: for S′ ← GlobalStates(L, S) do
12: for T′ ← Transitions(G, S′) do
13: if CanSuppress(G, T′) then
14: continue
15: P′ := Predicate(G, T′)
16: if SAT(P∧ (ρ =V)∧P′) then
17: suppress := false
18: if suppress then MarkSuppressed(L, T)
19: LS := LS ∪ {L}
20: for S′ ← States(G) do
21: for T′ ← Transitions(G, S′) do
22: if CanSuppress(G, T′) then continue
23: NC := NC ∨ Simplify(Predicate(G, T′), ρ==Fresh())
24: return 〈LS, NC〉

state since the other NF instances that also are not $X may
be sending events that match NOT $X transitions. The fix is
simple: the algorithm computes the disjunction of all the
transition predicates in the global state machine subject to the
knowledge that the location ρ does not match any variable
(line 23).

In the running example, the algorithm computes: (ET==ADD
∧ Z==$X) ∨ (ET==ADD ∧ Z!=$X) ∨ (ET==REMOVE ∧ Z==$X),
where Z is a fresh variable that is guaranteed to not match
any location in the predicate. The above condition simplifies
to ET==ADD. This means that the local machine must send
any FLOWCACHE_PRIMARY_ADD events to the global verifier
regardless of its local state.

Note that non-location variables may introduce some un-
certainty at the local verifier, which may not be sure what
other NF instances have observed for their value. To address
this, Aragog first tries to generate a predicate that accounts
for any possible variable assignment by enumerating all pos-
sible assignments from their ==/! = expressions, replacing
their occurrences in the negated condition, and computing
the disjunction of the resulting predicates. If any variables or
arithmetic operations remain in the disjunction, Aragog will
simply not suppress any events, which is always safe.

7 Runtime System
We next describe the Aragog runtime.

7.1 Workflow Overview
We begin with the common case: NF instances synchronized
via PTP send events—at runtime—to a co-located local agent

via traditional IPC mechanisms. This local agent applies trans-
formations, computes supressions using local state machines,
and then sends any non-suppressible events to the global veri-
fier via a set of Kafka brokers.

Filtering, mapping, and grouping. After ingesting
the stream of PTP-timestamped events, local Aragog
agents co-located with the NF first apply any applicable
transformations—FILTER, MAP or GROUPBY—to the raw
stream. As each IV specification can have a different set of
transformations, this may require Aragog to duplicate the
incoming stream of raw events (it tries to avoid doing so
when possible). The end result is a set of keyed event streams:
one stream for each combination of policy and GROUPBY key.

Computing suppression. The next step, also performed lo-
cally, is to determine whether events in each keyed stream are
suppressible. Aragog passes the events through the localized
state machines — one for each location referenced in each
IV specification. For a given event and IV, Aragog suppresses
the event when (1) all localized instances of the IV specifica-
tion would take a suppressible transition when fed the current
event and (2) the event does not satisfy the negated condition.
If either constraint is false, Aragog sends the event to a Kafka
queue for the given keyed event stream.

As a concrete example, Figure 12 shows processing of a
series of events with the specification in Figure 4 and with
the same GROUPBY key. The first event is an ADD event at flow
decider FD1. After seeing this event, FD1 will transition locally
from state q0 ({S}) to state q1 ({{S},{S,1},{S,2}}). Since
this transition is not suppressible, the event is sent to the veri-
fier. The next event is a REMOVE event that takes place at FD3.
This particular transition is suppressible and the negated con-
dition (ET==ADD) is not satisfied, thus, the event is suppressed.

This suppression can substantially reduce the number of
events received by the global verifier. For example, with three
replicas (including the primary), a correct execution of Fig-
ure 4 Aragog would receive—after suppression—just 2 out
of 4 events (the add and remove at the primary but not the 2
suppressed removes at nodes other than $X).

Global state machines. Pulling from Kafka is a cluster of
Flink instances running the global versions of the IV state
machines. Both the Kafka and Flink instances are automati-
cally provisioned, checkpointed, assigned GROUPBY keys, and
load balanced to worker nodes. As Flink does not guarantee
that events from different NF instances will arrive in order,
Aragog temporarily stores and reorders events in the Flink
workers with an efficient priority queue before passing them
to the associated state machine.

One challenge is how long to wait for delayed events. One
approach is to maintain a list of all NF instances along with
the timestamp of the last event they sent to this partition and
only process time t when we have seen events from all in-
stances up to t + latency. Unfortunately, most NF instances
do not interact with most flows/policies and sending ‘null’

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 709

Time

Time

ADD@FD1
q0→ q1

REMOVE@FD3
q0→ q0

REMOVE@FD2
q0→ q0

REMOVE@FD1
q1→ q0

ADD@FD2
q0→ q1

REMOVE@FD1
q0→ q0

ADD@FD1
q0→ q1

ADD@FD3
q0→ q1Local:

Global:

∗

{S}

FD1 ∗

{S,1} {S}

∗

{S}

FD2 ∗

{S,1} {S}

FD2 FD1 ∗

{S,2} {S,1} {S}

FD1 FD3 ∗

{S,2} {S,1} {S}

no events

violation! violation!

Figure 12: Distributed execution for the example from Figure 4 on an example sequence of events for N flow deciders. Time
progresses from left to right. Local events are shown along the bottom line with the local state of the flow decider. We use q0 =
{{S}} and q1 = {{S},{S,1},{S,2}}. The global verifier’s state is shown at the top. Red, dashed edges indicate suppressed events.

events to advance the timestamps of every partition would be
costly. Instead, Aragog relies on the assumption of a maxi-
mum latency tmax and handles violations of this assumption
with the techniques in Section 7.3.

Aragog will hold each event for tmax time before running it
through the global DSFA. While processing events for a given
IV specification, the verifiers will track all of the possible
states in which the associated state machine could be, as well
as all potential values of the IV specification’s variables (see
Section 7.2 for details). If any of the possible states is a ‘final’
state in the IV’s DSFA, Aragog will raise an alert.

Consistent sampling. If scaling is still challenging despite
sharding the verifier, filtering relevant events, and suppress-
ing events locally, Aragog provides a final mechanism that
lets users trade performance for completeness by sampling
a consistent set of events with consistent hashing based on
the GROUPBY key (e.g., a 5-tuple for NATGW). In this way,
each group is itself complete though false negatives remain
possible when violations occur for keys that are not sampled.

7.2 (Location) Variable Tracking
Aragog tracks all possible instantiations of variables (location
or otherwise) at runtime using a multi-level tree data structure
(shown at the top of Figure 12). Intuitively, the tree captures
the state the global automaton would be in for every possi-
ble instantiation, with the leaves of the tree as the state and
the interior nodes as variable assignments. Every variable is
assigned a single level of the tree.

Let the number of variables (location or otherwise) for an
IV specification be n. When the system starts, the DSFA is
in the start state, {S}, for all possible variable assignments.
This is represented as a degenerate tree with height n+1 and
a single leaf pointing at the start state {S}. The interior nodes
are all set to ∗, indicating no constraints on the n variables. For
every incoming event, we advance the DSFA using the state
and variable assignments of every leaf. Whenever a predicate
is encountered that references a variable, Vi, if Vi = ∗ is an
ancestor of the current leaf we split execution into a case
where Vi satisfies the predicate and a case where it does not.

The (n− i)-height subtree under Vi = ∗may need to be cloned.
In the example of Figure 12, there is only one variable ($X)

and, thus, only two levels in the tree. The system starts in the
degenerate case where $X= ∗. After the first ADD event arrives
at the verifier from FD1, we fork the tree to separate out the old
case and a new case for $X=FD1. When $X is FD1, the verifier
takes the transition (ET== ADD∧ρ == $X) to state {S,1}:
the current location ρ is FD1, and $X is also FD1. Otherwise
if $X!=FD1, it takes the self-loop transition to remain in {S}.
For the next event from FD1 (REMOVE), there is no new case to
fork, and applying the transition to both cases in the tree leads
to both being in state {S} once more. Therefore, the states are
collapsed together back to ∗. This process continues until the
second to last event where a violation is detected for the case
where $X= FD2 due to a duplicate add at FD1. The final event
(ADD at FD3) leads to a second violation, where now $X= FD1,
and is subsequently caught by the implementation.

7.3 Fault Tolerance
Failures and message drops/delays can cause Aragog to be-
come desynchronized from the ground-truth state of the sys-
tem. Even so, Aragog is able to guarantee both precision and
recall of typical network violations under the assumption of
‘partial synchrony’ [15], i.e., that there exists a time, ts, after
which there is some upper bound on message delivery time.
• Recall: Under a partial synchrony assumption, Aragog’s

practice of creating a self loop in the initial state of the
SFA means all violations whose trace begins after ts are
accurately modelled in the state machine and detected.
• Precision: Aragog’s precision guarantees are less com-

plete, but still hold in practice. Specifically, we observe
that all of the IV specifications we studied contained some
property where flow state would eventually be dropped
in reaction to a REMOVE_ENTRY or TCP FIN/RST event;
such transitions are common in networked systems and
ensure that any desynchronized state machine instances
will eventually transition back to the initial state.

In addition to the above, Flink provides guarantees that
successfully pulled events are processed by the state machine

710 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Network Function Invariant Description LoC States Transitions

NAT Gateway

nat_decider_open: After a PW goes into closed state, at least one replica also goes into closed state. 14 4 10
nat_consensus: All TCP flows are open only after consensus. 5 2 4
nat_open_to: Open flows are timed out after 4 minutes of inactivity. 5 4 12
nat_primary_single: There is a single primary per flow. 10 3 7
nat_primary_to: The NATGW does not start an idle timeout for active flows. 13 6 18
nat_same_consensus: After TCP flow U is terminated, the next flow for U achieves consensus. 12 5 15
nat_syn_to: Flows with a TCP handshake in progress timeout after 5 seconds of inactivity. 5 4 12
nat_udp_same_consensus: If UDP flow U times out, the next flow for U achieves consensus. 12 6 17

Firewall [5]
fw_consistency: all Firewall instances should block suspicious IPs after a block rule is added. 6 4 12
fw_client_init: Ensure a flow can only be open after a client initiates it. 4 2 4
fw_syn_first: Data packets are only allowed after a SYN is sent. 4 2 4

DHCP dhcp_reuse: Leased addresses are not re-used until expiration or release. 6 4 12
dhcp_overlap: Leases should not overlap between DHCP servers. 6 3 7

Table 1: List of example invariants that Aragog can implement for several common network functions and systems.

exactly once. End-to-end guarantees of exactly once delivery
between Flink and Kafka are also possible, but would incur
the overhead of atomic exporting of NF events, transactions,
and rollbacks. Instead, Aragog chooses to rely on partial syn-
chrony and to alert users after the fact when false positives
may have occurred. This can happen when an event arrives
with a timestamp earlier than the last processed event, two
events arrive from an NF instance with a gap in their sequence
numbers, or an NF instance (and its local agent) fail. Upon
restarting, the agent can immediately resume exporting events,
but the local state machine may be out of sync. In this case, it
can temporarily export all events (which is always safe) until
it can synchronize with the global verifier to rebuild the local
state machines from the global verifier’s state.

8 Implementation

We have implemented Aragog with more than 6,500 lines
of Java 8 code, packaged with Maven v3.6 and more than
2,000 lines of C++ code. The implementation consists of two
major components: the compiler and runtime system. It can
be found at: https://github.com/microsoft/aragog.

The compiler takes as inputs an event format specification
as described in Section 5.1 along with a set of IV specifica-
tions in the format of Section 5.2. For each IV specification,
it generates the global state machine, the resulting local state
machines, information about suppressible events, and a slew
of other metadata about variables, filters, and partitioning. The
lexer and parser use the ANTLR v4.7 [1] parser generator,
and the SFA construction and determinization use the open-
source symbolicautomata library [6], but with the addition
of a custom Z3-based [7] theory of Boolean Algebra designed
to support our IV specification language.

We built the runtime system on top of Apache Flink [2]
and Kafka [3]. These frameworks are designed for scalable
and robust stream processing and provide, intrinsically, fault-
tolerant and stateful processing, exactly-once semantics, load
balancing, flexible membership, checkpointing, etc. The local
agents, implemented in C++, ingest events directly, then filter,

map, and suppress events as necessary before sending them
to Kafka. The global verifiers, implemented in Java using
Apache Flink, pull from Kafka into a timestamp-based priority
queue from which events are dequeued after waiting for a
maximum delay; violations are logged to disk. We place
the verifiers off of the critical path to avoid any impact on
production traffic.

9 Evaluation
We evaluate Aragog in CloudLab [37] with a number of net-
work functions and along a number of dimensions.

The deployed NAT gateway (§2). We use two event traces
captured from two different builds of the NAT gateway to
evaluate Aragog. The builds capture the introduction of a set
of bugs that arose from the change of an interface between
two internal components, with V1 from before the change
and V2 from after. The traces are both for 7 flow deciders
over a 30 minute interval, but they export a different number
of packets (V1: 23.7M; V2: 9.0M) owing to changes in the
protocol. The production deployment of NATGW does not yet
support fine-grained clock synchronization, but our operators
plan to add it in the system’s next version. Instead, we capture
the event traces and correct for time drift using a set of known
synchronization points within the event stream. In total, there
are eight IV specifications for NATGW (see Table 1).

A distributed firewall. We also execute a collection of micro-
benchmarks using an open-source, stateful, and distributed
firewall implementation built on iptables, conntrackd, and
keepalived [5]). On the firewall, we check various invariant
violations, some of which were derived from [8]. The list of
specific invariant violations we check are listed in Table 1.

We deploy this firewall on a topology with four clients, four
internal hosts on a single LAN, and four firewall nodes inter-
posing between the two groups. The firewalls are configured
as two high-availability groups with one primary and one hot
standby each. Each primary-standby group shares a virtual IP
with the VRRP protocol. We base the traffic between external
hosts and internal servers on the traces provided in [9].

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 711

https://github.com/microsoft/aragog

Invariant Violation Version 1 Version 2

nat_decider_open 0 0
nat_consensus 0 0
nat_open_to 1 45019
nat_primary_single 0 0
nat_primary_to 1 29964
nat_same_consensus 536 259
nat_syn_to 0 2697
nat_udp_same_consensus 0 0

Table 2: Violations found in traces for NATGW versions. Note
that V1’s trace contains more events than V2’s, which may ac-
count for the difference in nat_same_consensus violations.

DHCP. To show the flexibility of Aragog and its language, we
also give examples of DHCP invariant violations in Table 1.
With our current implementation, the operator needs to write
just 6 lines to express the invariant violations. Each of the
state machines uses a small number of states and transitions.

Evaluation metrics. We evaluate Aragog along a number of
key dimensions: lines of code, throughput, latency, and CPU
overhead. In addition, our micro-benchmarks show Aragog’s
ability to scale as the number of nodes in the NF deployment
increase by demonstrating the benefits of our event suppres-
sion scheme. Finally, we find Aragog is able to identify bugs
in production systems. In particular, we were able to identify
four bugs in the NAT gateway which were confirmed by our
operators. Similarly, in the firewall, Aragog was able to find a
series of injected configuration errors over real traffic traces.

9.1 Bugs Identified by Aragog

NATGW Bugs. Running the traces through Aragog, we
discovered violations of nat_open_to, nat_primary_to,
nat_same_consensus, nat_syn_to, all of which were con-
firmed as caused by bugs by the NATGW team. Table 2 shows
the absolute number of violations observed for each.
nat_open_to was by far the most frequent violator in V2.

Discussions with our operators revealed that in V2, this vio-
lation (and that of nat_syn_to) were due to related bugs in
the code: it had taken operators over an hour to identify the
issues while Aragog identified it in under a minute. Although
nat_open_to also had a violation in V1, further examina-
tion revealed that the violation in V1 was due to an expected
consequence of eventual consistency—specifically one of the
replicas was getting update messages from the packet worker
but the primary did not and therefore started a timeout for the
flow. This led us to start checking for nat_primary_to.

Also prominent in both systems were violations of
nat_same_consensus. This violation occurred because the
flow was not closed or removed properly from one of the
replicas. The operators suspected this could be an issue, but
never had a method to test that hypothesis. Aragog confirmed
the problem and helped the developers to formulate the test
setup to reproduce the issue.

 10000

 100000

 1x10
6

 0 1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(E

v
e

n
ts

/s
)

Number of invariants

Version 1
Version 2

Figure 13: The throughput in events/second for an executor
of Aragog on the trace.

Bugs in the distributed firewall rules. For the firewall, we
manually injected bugs in the firewall configuration to test Ar-
agog’s ability to identify this category of errors. The injected
issues, for instance, always allowed external traffic from a
particular address range into the internal network, violating
fw_client_init. Aragog found all of them.

9.2 Throughput of Aragog
Aragog’s global verifier keeps track of the set of possible
states for each IV specification and the possible values for
each variable/location. Thus, Aragog’s throughput is directly
correlated with the number of IVs checked (Figure 13). To
evaluate this scaling, we run the V1/2 traces through all the
8 NATGW IV specifications using a single Task Slot on the
global verifier (running on an Intel(R) Xeon(R) E5-2450 pro-
cessor CPU @ 2.10GHz machine). We upload the entire trace
on Apache Kafka after local processing to measure the max-
imum throughput a single task slot of Apache Flink of the
global verifier can process. In Figure 13 we randomly se-
lect n among the NATGW invariant violations and see the
performance. As each type of invariant violation exhibits dif-
ferent resource requirements, we see more variance when the
number of type of invariant violations selected is low.

With a single task slot, our optimizations allow Aragog
to scale and process over 500,000 events per second for a
single invariant violation type (over 30,000 for 8). Adding
more task slots does not improve the performance as our
implementation is parallel in nature and a single task slot is
already using multiples core in a single machine.

Aragog scales linearly as we add more machines to the
global verifier (Figure 14). Scaling with multiple machines
avoids the bottleneck of CPU and I/O.

9.3 Overhead of Aragog
To measure the memory and CPU overhead of Aragog, we
study its behavior while verifying the distributed firewall. In
Figures 15, 16 and 17, data is divided into separate groups.
‘Primary’ represents the verifier running at the primary fire-
wall. ‘Backup’ represents the verifier running at the hot-
standby firewall. ‘Manager’ and ‘executor’ represent the
Apache Flink job manager and executors, respectively. The
global verifier runs on the executors.

712 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Process/Location Resource Spearman correlation

job manager CPU 0.14700
job manager memory −0.59379

executor CPU 0.78481
executor memory −0.38373

primary CPU 0.88916
primary memory −0.18253

backup CPU 0.93618
backup memory 0.24768

Table 3: Spearman Correlation between number of events/s
and resource utilization at different locations of verifier while
running the firewall.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 1 2 3 4

T
h

ro
u

g
h

p
u

t
(E

v
e

n
ts

/s
)

Number of Machines

Version 1
Version 2

Figure 14: Throughput of multiple Aragog verification server
checking all 8 types invariant violations

We see that in Figures 16 and 17, the overhead of the local
verifiers is low. This is important as the local components are
co-located with the production NF instances. To that end, the
CPU utilization of the local verifier increases linearly with
the number of flow events per second. We also observe the
CPU and memory usage for the local verifier is higher at the
primaries as they tend to generate more events. Memory at
the local components is much less correlated (Table 3), partly
due to Aragog’s small memory footprint (Figure 17).

The global verifier has higher CPU (Figure 15) and mem-
ory (Figure 17) than local verifiers as the global verifier is
implemented in Java using Apache Flink. We have set the
maximum memory of job manager to 1 GB and executor to
2 GB. In our graphs, we are plotting active memory in Java’s
heap for the global verifier rather than used memory to avoid
including memory waiting to be cleaned up by the Java GC.

Figure 18 shows the CDF of Aragog’s time to detection
for violations in the distributed firewall function. The time to
detection is low: in the median it takes roughly 70 ms from
the time the event was executed (the violation occurred) at
the NF instance until Aragog raises an alert.

9.4 Efficacy of Suppression
Each optimization in Aragog improves scalability by reducing
the number of events sent to the global verifier (reducing the
network overhead and the number of events processed at the
global verifier). Filters remove the need to send events that
are not pertinent and reduce the number of events sent to the
verifier by up to 61% for the NATGW (Table 4). Suppressible

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000 3500

C
P

U
 (

%
 U

ti
liz

a
ti
o

n
)

Number of flow events per second

manager
executor

Figure 15: CPU utilization by Aragog’s global component.
‘Manager’ and ‘executor’ refer to the Flink node designations.

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700 800

C
P

U
 (

%
 U

ti
liz

a
ti
o

n
)

Number of flow events per second

primary
backup

Figure 16: CPU utilization by Aragog’s local component. The
graph shows CPU utilization of the local verifier at both the
primary and backup firewall.

events can further reduce this number (by up to an additional
12% in our experiments).

10 Related Work

Runtime verification. Researchers have studied runtime veri-
fication extensively, with many papers dedicated to improving
its expressiveness and performance. We find that, unfortu-
nately, these existing systems are a poor fit for our setting.
For example, D3S [28] is a runtime verifier. Like Aragog, it
focuses on identifying bugs in distributed systems at runtime,
and its usage of C++ implementations to specify general-
purpose properties means that it can check a wider range of
properties than Aragog. On the other hand, Aragog is able to
leverage its domain-specific IV specification language (based
on regular expressions) to reduce overhead (e.g., with event
suppression). Similarly, while CrystalBall [39] can proac-
tively steer a distributed system away from bad states, it im-
poses restrictions on the target system’s architecture that make
sense for a distributed system, but not necessarily for a large-
scale NF. A third system, Pivot Tracing [31] tracks only causal
relationships and not unrelated events at different machines—
a property required by some of NATGW’s uniqueness in-
variants. We emphasize that none of the above implies strict
superiority. In particular, as Aragog is domain-customized for
NFs, it should not be used for more general cases (e.g., it may
not be able to verify systems like Chord or Paxos efficiently).

We also note that Aragog borrows ideas from two areas
within runtime verification. The first is verification of dis-
tributed systems, which is broadly separated into two cate-
gories based on whether the system assumes a synchronized

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 713

 10

 100

 1000

Global
Job Manager

Global
Executor

Local
Primary

Local
Backup

M
e

m
o

ry
 U

ti
liz

a
ti
o

n
 (

M
B

)

Figure 17: Memory utilization of verifier in MBytes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
D

F

Detection Latency (ms)

Figure 18: Latency (alert time – packet time) for detecting a
violation in the distributed firewall.

global clock [17]. In this respect, Aragog would be considered
a decentralized [14, 17] runtime verification system. The sec-
ond is parametric verification, which focuses on checking uni-
versally or existentially quantified expressions [13,20,30,36].
The location variables in Aragog are examples of parametric
variables. The main distinction of Aragog from these systems
is its combination of parametric and decentralized runtime
verification through its support for location variables. More-
over, Aragog’s efficient implementation of this combination
of features through its use of sharding and local symbolic
state machine partitioning is new in this context.

Static verification of NFs and distributed systems. Static
verification has as equally rich history, including in the do-
main of NFs and distributed systems [10, 34, 42, 44]. Static
verification approaches may provide exhaustive guarantees
of correctness, but often suffer from issues of scalability. For
this reason, many static verifiers (e.g., [42,44]) assume single-
machine middleboxes, while others (e.g., [25, 29, 40]) may
require checking an exponential number of states/paths. Lever-
aging hand-written NF models can improve scalability com-
pared to verifying source code, but requires tedious and error-
prone manual translation of NF models and divorces the veri-
fier from the behavior of the actual deployed system [10, 34].

Aragog makes a different set of tradeoffs, opting to sacrifice
principled exploration for improved scalability and giving
up the ability to catch bugs early for the ability to test real
implementations running over live data. We argue that these
tradeoffs are a better fit for our operators’ requirements.

Related to the above approaches is the use of semi-
automated theorem provers such as Dafny [27]. Users can
apply these tools to build systems that are provably correct. A
good example of this approach is IronFleet [21], which was

Version Generated After Filter After Suppression

V1 189M 92.9M (49.1%) 70.2M (37.1%)
V2 72.2M 36.7M (50.8%) 28.0M (38.8%)

Table 4: Total number of generated events, events processed
after filtering, and events processed after filtering and suppres-
sion for the NAT gateway with all 8 IV specifications.

used to build a verified, Paxos-based replicated-state-machine
library. On the other hand, a drawback of this approach is that
it requires significant development effort. IronFleet verifica-
tion, for example, involved tens of thousands of lines of proof.
In contrast, Aragog aims to be a lightweight (but sans proof-
of-correctness) alternative, requiring little to no developer
effort by catching bugs at run time.

Stateless dataplane verification. Dataplane verification
tools such a HSA [23] and Anteater [32] verify the correct-
ness of a static snapshot of network forwarding tables. Later
tools such as Veriflow [24] perform runtime verification by
constantly re-verifying the network state as changes occur.
Each of these tools reasons about all packet behaviors—a
challenging task—however, their reasoning is limited to veri-
fication of stateless network forwarding. In contrast, Aragog
focuses on verifying complex temporal and stateful proper-
ties of general-purpose distributed NFs. For example, Aragog
can ensure a stateful firewall correctly allows traffic only for
connections that are established by an internal sender.

11 Discussion and Conclusion

Aragog is a lightweight verification framework for verifying
distributed network functions. To scale to large systems with
minimal overhead, Aragog leverages a two-tiered setup with
local monitors at each NF instance sending events to (and
hiding events from) a collection of sharded global verifiers.
While Aragog can verify any distributed system, its scalability
will depend on whether the invariant violations of interest can
utilize its sharding and suppression optimization effectively.

Finally, as Aragog is the first to verify distributed network
functions at scale (and at runtime), there are a number of
aspects where follow up work may be needed. Included in this
set are explorations of other time synchronization protocols,
e.g., [18] or some other lightweight and precise event ordering
mechanisms. Also for future work are innovations in atomic
event export and transactions over streams in Aragog.

Acknowledgments

We gratefully acknowledge our shepherd Xi Wang and the
anonymous OSDI reviewers for all of their thoughtful reviews,
comments, and time. The authors would also like to thank
Geoff Outhred for his feedback and support of this work. This
work was funded in part by NSF grant CNS-1845749, DARPA
contract HR0011-17-C0047, and a Microsoft internship.

714 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Antlr. https://www.antlr.org/.
[2] Apache Flink: Stateful computations over data streams. https:

//flink.apache.org/.
[3] Apache Kafka. https://kafka.apache.org/.
[4] Maglev outage. https://status.cloud.google.com/

incident/cloud-networking/18013.
[5] NetFilter. http://conntrack-tools.netfilter.org/.
[6] A symbolic automata library. https://github.com/

lorisdanto/symbolicautomata.
[7] Z3. https://github.com/Z3Prover/z3.
[8] Ehab Al-Shaer, Hazem Hamed, Raouf Boutaba, and Masum

Hasan. Conflict classification and analysis of distributed fire-
wall policies. IEEE journal on selected areas in communica-
tions, 23(10):2069–2084, 2005.

[9] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jiten-
dra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta,
and Murari Sridharan. Data center TCP (DCTCP). In Proceed-
ings of the ACM SIGCOMM 2010 conference, pages 63–74,
2010.

[10] Kalev Alpernas, Roman Manevich, Aurojit Panda, Mooly Sa-
giv, Scott Shenker, Sharon Shoham, and Yaron Velner. Abstract
interpretation of stateful networks, 2017.

[11] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker
Markl, Seif Haridi, and Kostas Tzoumas. Apache Flink: Stream
and batch processing in a single engine. Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering,
36(4), 2015.

[12] Loris D’Antoni and Margus Veanes. The power of symbolic
automata and transducers. In Computer Aided Verification,
29th International Conference (CAV ’17), July 2017.

[13] Normann Decker, Martin Leucker, and Daniel Thoma. Moni-
toring modulo theories. In Erika Ábrahám and Klaus Havelund,
editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems, pages 341–356. Springer Berlin Heidelberg,
2014.

[14] M. Ali Dorosty, Fathiyeh Faghih, and Ehsan Khamespanah.
Decentralized runtime verification for LTL properties using
global clock, 2019.

[15] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Con-
sensus in the presence of partial synchrony. J. ACM,
35(2):288–323, April 1988.

[16] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith,
Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu,
Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein. Ma-
glev: A fast and reliable software network load balancer. In
13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’16), pages 523–535, 2016.

[17] Adrian Francalanza, Jorge A. Pérez, and César Sánchez. Run-
time Verification for Decentralised and Distributed Systems,
pages 176–210. 2018.

[18] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar,
Mendel Rosenblum, and Amin Vahdat. Exploiting a natural
network effect for scalable, fine-grained clock synchronization.
In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’18), pages 81–94, 2018.

[19] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Ko-
ley, and Amin Vahdat. Evolve or die: High-availability de-
sign principles drawn from googles network infrastructure. In
Proceedings of the 2016 ACM SIGCOMM Conference, pages
58–72, 2016.

[20] Klaus Havelund, Giles Reger, Daniel Thoma, and Eugen Ză-
linescu. Monitoring Events that Carry Data, pages 61–102.
2018.

[21] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob Lorch,
Bryan Parno, Michael Roberts, Srinath Setty, and Brian Zill.
IronFleet: Proving safety and liveness of practical distributed
systems. Communications of the ACM, 60:83–92, 06 2017.

[22] Information Sciences Institute. Transmission Control Protocol.
RFC 793, RFC Editor, September 1981.

[23] Peyman Kazemian, George Varghese, and Nick McKeown.
Header space analysis: Static checking for networks. In Pro-
ceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (NSDI ’12), pages 9–9, Berkeley,
CA, USA, 2012.

[24] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and
P. Brighten Godfrey. Veriflow: Verifying network-wide in-
variants in real time. SIGCOMM Comput. Commun. Rev.,
42(4):467–472, September 2012.

[25] Charles Killian, James W. Anderson, Ranjit Jhala, and Amin
Vahdat. Life, death, and the critical transition: Finding liveness
bugs in systems code. In 4th USENIX Symposium on Net-
worked Systems Design & Implementation (NSDI ’07), Cam-
bridge, MA, April 2007.

[26] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed
messaging system for log processing. In Proceedings of the
NetDB, volume 11, pages 1–7, 2011.

[27] K. Rustan M. Leino. Dafny: An automatic program verifier
for functional correctness. In Edmund M. Clarke and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelli-
gence, and Reasoning, pages 348–370, 2010.

[28] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen
Lian, Jian Tang, Ming Wu, M. Frans Kaashoek, and Zheng
Zhang. D3S: Debugging deployed distributed systems. In
Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’08), page 423–437,
USA, 2008.

[29] Jeffrey F. Lukman, Huan Ke, Cesar A. Stuardo, Riza O. Sum-
into, Daniar H. Kurniawan, Dikaimin Simon, Satria Priambada,
Chen Tian, Feng Ye, Tanakorn Leesatapornwongsa, Aarti
Gupta, Shan Lu, and Haryadi S. Gunawi. FlyMC: Highly
scalable testing of complex interleavings in distributed sys-
tems. In Proceedings of the Fourteenth EuroSys Conference
2019 (EuroSys ’19), New York, NY, USA, 2019.

[30] Qingzhou Luo, Yi Zhang, Choonghwan Lee, Dongyun Jin,
Patrick O’Neil Meredith, Traian Florin Şerbănuţă, and Grigore
Roşu. RV-Monitor: Efficient parametric runtime verification
with simultaneous properties. In Borzoo Bonakdarpour and
Scott A. Smolka, editors, Runtime Verification, pages 285–300,
2014.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 715

https://www.antlr.org/
https://flink.apache.org/
https://flink.apache.org/
https://kafka.apache.org/
https://status.cloud.google.com/incident/cloud-networking/18013
https://status.cloud.google.com/incident/cloud-networking/18013
http://conntrack-tools.netfilter.org/
https://github.com/lorisdanto/symbolicautomata
https://github.com/lorisdanto/symbolicautomata
https://github.com/Z3Prover/z3

[31] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot
Tracing: Dynamic causal monitoring for distributed systems.
In 2016 USENIX Annual Technical Conference (USENIX ATC
16), Denver, CO, June 2016.

[32] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Cae-
sar, P. Brighten Godfrey, and Samuel Talmadge King. Debug-
ging the data plane with Anteater. In Proceedings of the ACM
SIGCOMM 2011 Conference, pages 290–301, New York, NY,
USA, 2011.

[33] Tim Nelson, Nicholas DeMarinis, Timothy Adam Hoff, Ro-
drigo Fonseca, and Shriram Krishnamurthi. Switches are mon-
itors too! stateful property monitoring as a switch design crite-
rion. In Proceedings of the 15th ACM Workshop on Hot Topics
in Networks (HotNets ’16), page 99–105, New York, NY, USA,
2016.

[34] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv,
and Scott Shenker. Verifying reachability in networks with
mutable datapaths. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’17), pages 699–
718, Boston, MA, March 2017.

[35] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy,
Albert Greenberg, David A. Maltz, Randy Kern, Hemant Ku-
mar, Marios Zikos, Hongyu Wu, Changhoon Kim, and Naveen
Karri. Ananta: Cloud scale load balancing. In Proceedings of
the ACM SIGCOMM 2013 Conference, pages 207–218, 2013.

[36] Giles Reger, Helena Cuenca Cruz, and David Rydeheard.
MarQ: Monitoring at runtime with QEA. In Christel Baier and
Cesare Tinelli, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 596–610, 2015.

[37] Robert Ricci, Eric Eide, and CloudLab Team. Introducing
CloudLab: Scientific infrastructure for advancing cloud archi-
tectures and applications. ;login:, the magazine of USENIX &
SAGE, 39(6):36–38, 2014.

[38] Guangming Xing. Minimized thompson NFA. International
Journal of Computer Mathematics, 81:1097 – 1106, 2004.

[39] Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and Viktor
Kuncak. CrystalBall: Predicting and preventing inconsisten-
cies in deployed distributed systems. In Proceedings of the
6th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’09), page 229–244, USA, 2009.

[40] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng
Liu, Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and Li-
dong Zhou. MODIST: Transparent model checking of unmod-
ified distributed systems. In Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI ’09), page 213–228, USA, 2009.

[41] Yifei Yuan, Soo-Jin Moon, Sahil Uppal, Limin Jia, and Vyas
Sekar. NetSMC: A custom symbolic model checker for state-
ful network verification. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI ’20), pages
181–200, February 2020.

[42] Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Matteo
Rizzo, Luis Pedrosa, Katerina Argyraki, and George Candea.
Verifying software network functions with no verification ex-
pertise. In Proceedings of the 27th ACM Symposium on Op-
erating Systems Principles (SOSP ’19), page 275–290, New
York, NY, USA, 2019.

[43] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina
Argyraki, and George Candea. A formally verified NAT. In
Proceedings of the ACM SIGCOMM 2017 Conference, page
141–154, 2017.

[44] Kaiyuan Zhang, Danyang Zhuo, Aditya Akella, Arvind Kr-
ishnamurthy, and Xi Wang. Automated verification of cus-
tomizable middlebox properties with gravel. In 17th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI ’20), pages 221–239, Santa Clara, CA, February 2020.

716 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 19: Topology for the distributed firewall demo.

A Artifact Appendix

Aragog is available at: https://github.com/microsoft/aragog.
Instructions for installing and running the artifact can be found
in the README of this repository.

A.1 Code Structure

A.1.1 SFA generation

SFA generation has three dependencies: symbolic automata,
z3 and antlr. The primary classes are:

GenerateSFA.java: This is the main class. It takes the event
definition file and the IV specification file, and it outputs the
SFA in a form that can be accepted by the runtime verifiers.
Antlr is used to create the parse tree, which is then used to cre-
ate the global SFA using the class InvariantVisitor, which
recursively visits each node of the parse tree while construct-
ing the SFA. A DSFA is generated from this automata and
printed to a .sm.g file along with a DOT file representation.

GenerateLocalSFA.java: This class is called by GenerateSFA
to create local versions of the global SFA. Specifically, it
takes the SFA and locations as input and outputs the local
SFA for each location. The end result of this step is a series of
.sm.[1-9][0-9]* files, one series for each IV specification.

EventSolver: This class contains the theory of
BooleanAlgebra logic required to create the SFA. Please
refer to Section 6.1 of the paper for details.

A.1.2 Global Verifier

The global verifier has three dependencies: Apache Flink,
Apache Kafka, and antlr. The primary classes are:

Verifier.java: This is the main class. The program creates state
machines according to the provided .sm.g files and processes
them. The input event messages can come either from a file,
a socket, or Kafka. It parses the message, processes it, and
raises alerts if required. Everything is done in streams to allow
for parallelism.

Creation of the parser uses ParserFactory.java, which can
parse according to packetformat.json or some user-specified
custom parser.

GlobalSFAProcessor.java: This class is the runtime DSFA
processor. It takes events as input and outputs alerts. Con-
tained in this processor is functionality for reordering events
based on their timestamp, tracking stateful variables across
events, and advancing all possible instantiations of the DSFA.
Critical to the function of the DSFA is an expression tree of bi-
nary/boolean operators that assist in evaluating the predicates
attached to each transition in the DSFA. See the expressions

sub-directory for details.

A.1.3 Local Verifier

The local verifier has three dependencies: cppkafka,

rapidjson and antlr. The primary files are:

main.cpp: Like GenerateSFA.java of the global verifier, the
local C++ version is responsible for constructing the state
machine from the provided files and processing input events
coming from either a file or a socket. The overall flow of the
local verifier mirrors that of the global verifier, except that this
one is implemented in C++ with none of the Flink support
for automatic scaling and fault tolerance: after receiving an
event, the event is parsed using the PacketParser class and
sent to the local SFA processor (described below). The key
difference is that the objective of this version is to decide
whether the event should be suppressed and output it if not.
Events are only suppressed if all state machines agree that
they are suppressible.

SFAProcessor.cpp: This is the local, C++ version of
GlobalSFAProcessor.java. Like other portions of Aragog’s
local components, the local SFA processor implements a
stripped-down, slightly modified version of the global ver-
ifier’s functionality. In this case, the local node is tracking its
view of the global state of the system, given only the locally
observed events. As such, it does not need to worry about
event reordering or location-variable tracking, which simpli-
fies the implementation and leads to improved performance.

A.2 Firewall Demo
We include in the repository an example experiment involving
firewalls and verifiers that emulates a portion of the experi-
mental methodology of Section 9. This experiment expects
the user to have a small cluster of machines that can play the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 717

https://github.com/microsoft/aragog

role of each type of node. CloudLab is one viable option and
we include configurations to assist in allocating such a cluster.
The included code configures the topology of Figure 19.

The setup file, Setup/setup.sh, installs the required soft-
ware on each machine in the user’s cluster and also installs
IP route rules that create an overlay corresponding to the
topology referenced above.

Overall, the experiment consists of four external nodes,
four internal nodes on a single LAN, and four firewall nodes
interposing between the two groups. The firewalls are config-
ured as two high-availability groups with one primary and one
hot standby per group. Each primary-standby group shares
a virtual IP with the VRRP protocol. We base the traffic be-

tween external nodes and internal nodes on traffic models
from DCTCP [9].

The rules that are installed in the firewall are simple. In-
ternal nodes can communicate with each other and initiate
connections to external nodes. External nodes cannot initiate
connections to internal nodes.

Alongside the firewall, each firewall node also runs the
verifier, which computes filters and suppression. A single
global verifier node runs both the Apache Kafka and Apache
Flink deployments. Kafka is responsible for receiving and
pipelining the events from all of the local verifiers. Flink is
responsible for executing the global verifier.

718 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Automated Reasoning and Detection of Specious Configuration
in Large Systems with Symbolic Execution

Yigong Hu
Johns Hopkins University

Gongqi Huang
Johns Hopkins University

Peng Huang
Johns Hopkins University

Abstract

Misconfiguration is a major cause of system failures. Prior so-
lutions focus on detecting invalid settings that are introduced
by user mistakes. But another type of misconfiguration that
continues to haunt production services is specious configu-
ration—settings that are valid but lead to unexpectedly poor
performance in production. Such misconfigurations are subtle,
so even careful administrators may fail to foresee them.

We propose a tool called Violet to detect specious configu-
ration. We realize the crux of specious configuration is that
it causes some slow code path to be executed, but the bad
performance effect cannot always be triggered. Violet thus
takes a novel approach that uses selective symbolic execu-
tion to systematically reason about the performance effect of
configuration parameters, their combination effect, and the
relationship with input. Violet outputs a performance impact
model for the automatic detection of poor configuration set-
tings. We applied Violet on four large systems. To evaluate
the effectiveness of Violet, we collect 17 real-world specious
configuration cases. Violet detects 15 of them. Violet also
identifies 11 unknown specious configurations.

1 Introduction

Software is increasingly customizable. A mature program
typically exposes hundreds of parameters for users to control
scheduling, caching, etc. With such high customizability, it
is difficult to properly configure a system today, even for
trained administrators. Indeed, numerous studies and real-
world failures have repeatedly shown that misconfiguration is
a major cause of production system failures [32, 43, 45, 60].

The severity of the misconfiguration problem has motivated
solutions to detect [35, 61, 63], test [37, 57], diagnose [19, 21,
50, 52, 54] and fix [39, 48, 53] misconfiguration. While these
efforts help reduce misconfiguration, the problem remains
vexing [1–3, 5–10, 17, 18, 31]. They focus on catching invalid
settings introduced due to user mistakes. But another type of
misconfiguration that haunts production systems, yet not well

Best
Config

Suboptimal
Config

Invalid
Config

Specious
Config

Proper

Configuration Misconfiguration

Figure 1: Value space of a configuration

addressed, is valid but poor configuration. For simplicity, we
call them specious configuration.

Specious configuration has a broad scope. In this paper,
we focus on—and use the term to refer to—valid settings
that lead to extremely poor performance, which is a common
manifestation in production incidents. This scope of focus is
different from suboptimal configuration (Figure 1). The latter
happens when a setting does not yield the best performance,
but the performance is still acceptable. This scope is also
complementary to efforts on automated configuration perfor-
mance tuning [33, 51, 62, 64] to search for the best setting.

Take a real-world specious configuration that caused a ser-
vice outage as an example. An engineer changed the request
tracing code from a hard-coded policy (always tracing) to be
configurable with a tracing rate parameter. This rate parame-
ter was initially set to 0.0. To retain the same tracing behavior
as before, she decided to change the parameter to 1.0. Based
on her understanding, this change will turn on the tracing for
all message requests that come from internal users. But unfor-
tunately, there was a subtle caveat in the code that caused the
actual effect to be turning on tracing for all requests from all
users, which quickly overloaded all web servers as well as the
backend databases, leading to a catastrophic service outage.
Interestingly, before rolling out this specious configuration to
production, the change in fact went through a canary phase
on a small-scale testing cluster, which unfortunately did not
manifest dramatic failure symptoms.

Empirical evidence suggests that specious configuration
like the above is prevalent. Yin et al. [60] shows that miscon-
figuration in the form of legal parameters has similar or higher
percentage than illegal parameters. Facebook reports [49] that
more than half of the misconfiguration in their high-impact in-
cidents during a three-month period are subtle, “valid” config-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 719

urations. A recent study [51] on performance configurations
in distributed systems reports a similar finding.

To reduce specious-configuration-induced incidents, we
need to proactively detect it before production. However, what
makes specious configuration subtle to detect is that its value
is not a unconditionally poor choice. Rather, the setting is
only problematic under certain combination with some other
parameters, input, and/or environment. Currently, adminis-
trators either informally estimate the impact based on their
experience, or experimentally measure it by black-box test-
ing the program with configuration. However, neither of the
approaches is sufficient to reliably capture the pitfalls.

Through analyzing real-world cases (Section 2), we realize
that the crux of specious configuration lies in the fact that
some slow code path in the program or library gets executed;
but this effect can be only triggered with certain input, other
configurations, and environment. Therefore, we argue that
analytical approaches are needed to reason about the configu-
ration settings’ performance implications under a variety of
conditions. We propose a novel analytical tool called VIOLET
that uses symbolic execution [24, 38] to analyze the perfor-
mance effect of configuration at the code level.

The basic idea of Violet is to systematically explore the
system code paths with symbolic configuration and input,
identify the constraints that decide whether a path gets ex-
ecuted or not, and analytically compare different execution
paths that are explored. Violet derives a configuration perfor-
mance impact model as its analysis output. A Violet checker
leverages this model to contiguously catch specious config-
uration in the field. Making this basic idea work for large
system software faces several challenges, including the intri-
cate dependency among different parameters, the efficiency
of symbolic execution for performance analysis, complex in-
put structure, and path explosion problems. Violet leverages
program analysis and selective symbolic execution [26] to
address these challenges.

We implement a prototype of the Violet toolchain, with
its core tracer built as plugins on the S2E platform [26], the
static analyzer built on LLVM [40], and the trace analyzer
and checker built as standalone tools. We successfully apply
Violet on four large systems, MySQL, PostgreSQL, Apache
and Squid. Violet derives performance impact models for 471
parameters. To evaluate the effectiveness of Violet, we collect
17 real-world specious configuration cases. Violet detects
15 cases. In addition, Violet exposes 11 unknown specious
configuration, 8 of which are confirmed by developers.

In summary, this paper makes the following contributions:
• An analytical approach to detect specious configuration

using symbolic execution and program analysis.
• Design and implementation of an end-to-end toolchain

Violet, and scaling it to work on large system software.
• Evaluation of Violet on real-world specious configuration.

The source code of Violet is publicly available at:
https://github.com/OrderLab/violet

2 Background and Motivation
In this Section, we show a few cases of real-world specious
configuration from MySQL to motivate the problem and make
the discussion concrete. We analyze how specious configura-
tion affects system performance at the source code level. We
choose MySQL because it is representative as a large system
with numerous (more than 300) parameters, many of which
can be misconfigured by users and lead to bad performance.

2.1 Definition
A program expects its configuration parameters to obey cer-
tain rules, e.g., the path exists, the min heap size does not
exceed the max size. Invalid configurations violate those rules
and usually trigger assertions or errors.

We define specious configuration to be settings that are
valid but cause the software to experience bad performance
when deployed to production. Admittedly, bad performance
is a qualitative criterion. Like prior work, we focus on those
issues that cause severe degradation and hurt usability. Ulti-
mately, only users can judge whether the performance slow-
down is sub-optimal but tolerable or it is intolerable.

Specious configuration has two classes. One is purely about
performance, e.g., buffer size, number of threads. Another
class is settings that change the software functionality but
the changes also have performance impact. Both classes are
important and occur in real-world systems. For the latter class,
users might want the enabled functionality and are willing
to pay for the performance cost. Thus, whether the setting is
specious or not depends on users’ preferences. Our solution
addresses both forms. Its focus is to analyze and explain the
quantitative performance impact of different settings, so that
users can make better functionality-performance trade-offs.

2.2 Case Studies
autocommit parameter controls the transaction commit behav-
ior in MySQL. If autocommit is enabled, each SQL statement
forms a single transaction, so MySQL will automatically per-
form a commit. If autocommit is disabled, transactions need
to be explicitly committed with COMMIT statements. While
autocommit offers convenience (no explicit commit required)
and durability benefits, it also has a performance penalty since
every single query will be run in a transaction. For some users,
this performance implication may not be immediately appar-
ent (especially since it is enabled by default). Even if users are
aware of the performance trade-off, they might not know the
degree of performance loss, only to realize the degradation is
too much after deploying it to production. Indeed, there have
been user-reported issues due to this setting [13, 15, 60], and
the recommended fix is to disable autocommit, and manually
batch and commit multiple queries in one transaction.

To quantify the performance impact, we use sysbench [16]
to measure MySQL throughput with autocommit configura-

720 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/OrderLab/violet

0 8 16 24 32 40 48 56 64

of Sysbench Worker Threads

0
1000
2000
3000
4000
5000
6000

Q
P
S

autocommit=0

autocommit=1

(a) Normal workload.

0 8 16 24 32 40 48 56 64

of Sysbench Worker Threads

0
300
600
900

1200
1500
1800

Q
P
S autocommit=0

autocommit=1

(b) Insertion-intensive workload.

Figure 2: MySQL throughput for autocommit under two workloads.

 1 int write_row() {

 2 if (autocommit) {

 3 ...

 4 trx_commit_complete();

 5 } else {

 6 trx_mark_sql_stat_end();

 7 }

 8 }

 9

10

ulint trx_commit_complete() {

 if (flush_at_trx_commit==1) {

 log_group_write_buf();

 fil_flush();

 } else if (flush_at_trx_commit==2) {

 log_group_write_buf();

 } else {

 /* do nothing */

 }

}

costly operation

Figure 3: Simplified code snippet from MySQL related to
autocommit. The elements with orange-colored background represent
configuration variables, and the pink ones represent slow operations.

tion set to be ON and OFF. The size of the database is 10 tables
and 10K records per table. We run both a normal workload
that consists of 70% read, 20% write and 10% other opera-
tions, and an insert-intensive workload. Figure 2 shows the
result. We can see that in the normal workload (Figure 2a),
the performance difference between ON and OFF are small.
But in insertion-intensive workload (Figure 2b), enabling
autocommit causes dramatically worse (6×) performance.

Figure 3 shows the code relevant to autocommit. We can
see that the autocommit setting determines whether func-
tion trx_commit_complete() will be invoked. In this function,
another parameter flush_at_trx_commit1 further determines
which path gets executed. When that parameter is set to 1,
compared to 2, an additional fil_flush operation will be in-
curred, which has a complex logic but essentially will flush the
table writes cached by the OS to disk through the fsync sys-
tem call. The cost of fsync is the major contributor to the bad
performance of autocommit mode; if flush_at_trx_commit is
2 or 0, the performance impact of autocommit mode will be
much smaller. In addition, the function in which autocommit

is used—write_row()—is called when handling write type
queries but not select type queries. Therefore, the perfor-
mance hit only affects insertion/update-intensive workloads.

query_cache_wlock_invalidate controls the validation of
the query cache in MySQL. Normally, when one client ac-
quires a WRITE lock on a MyISAM table, other clients are not
blocked from issuing statements that read from the table if
the query results are present in the query cache. The effect of
setting this parameter to 1 is that upon acquisition of a WRITE

lock for a table, MySQL invalidates the query cache that refers
to the locked table, which has a performance implication.

As Figure 4 shows, enabling this parameter leads to the
free_query operation (Ê). Different from the autocommit

case, this operation itself is not costly. But for other clients
that attempt to access the table, they cannot use the associated

1Its full name in MySQL is innodb_flush_log_at_trx_commit. We abbre-
viate it and some other parameter names in this paper for readability.

void mysql_parse(THD *thd) {

 if (send_result_to_client(thd) <= 0) {

 mysql_execute_command(thd);

 }

}

int mysql_execute_command(THD *thd) {

 case SQLCOM_SELECT:

 open_and_lock_tables(thd, all_tables);

 break;

 case SQLCOM_LOCK_TABLES:

 lock_tables_open_and_lock_tables(thd);

 if (query_cache_wlock_invalidate)

 invalidate_query_block_list();

}

void invalidate_query_block_list() {

 free_query(list_root->block());

}

incoming queries not in query cache

free query cache1

2

3

0

Figure 4: Code affected by query_cache_wlock_invalidate.

uint64_t log_reserve_and_open(uint len) {
 if (len >= log->buf_size / 2) {
 log_buffer_extend((len + 1) * 2);
 }
 len_upper_limit = LOG_BUF_WRITE_MARGIN + (5 * len) / 4;
 if (log->buf_free + len_upper_limit > log->buf_size) {
 mutex_exit(&(log->mutex));
 log_buffer_flush_to_disk();
 goto loop;
 }
}

Figure 5: Code affected by innodb_log_buffer_size.

query cache (Ë), forcing them to open the table and wait (Ì)
while the write lock is held. Therefore, the effect is additional
synchronization that decreases the system concurrency, which
in turn can severely hurt the overall system query throughput.

Similar to autocommit, the performance effect depends on
the parameters, execution environment and workloads. Specif-
ically, the bad performance is only manifestable with the
combination of MyISAM tables, LOCK TABLES statements and
other clients doing select type queries on the locked table.

innodb_log_buffer_size determines the size of the buffer
for uncommitted transactions. The default value (8M) is usu-
ally fine. However if MySQL has transactions with large
blob/text fields, the buffer can fill up very quickly and incur
performance hit. As shown in Figure 5, the parameter setting
has two possible performance impacts: (1) if the length of a
new log is larger than half of the buf_size, the system will
extend the buffer first by calling log_buffer_extend, which
in normal cases mainly involves memory allocation. But if
other threads are also extending the buffer, additional syn-
chronization overhead is incurred. If the buffer has pending
writes, they will be flushed to disk first; (2) if the buf_size is
smaller than the free size plus the length of new log, MySQL
will trigger a costly synchronous buffer flush operation.

2.3 Code Patterns
Based on the above and other cases we analyze, we summarize
four common patterns on how a specious configuration affects
the performance of a system at the source code level:

1. The parameter causes some expensive operation like the
fsync system call to be executed.

2. The parameter incurs additional synchronization that
itself is not expensive but decreases system concurrency.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 721

3. The parameter directs the execution flow towards a slow
path, e.g., not using cached result.

4. The parameter triggers frequent crossings of some thresh-
old that leads to costly operations.

The general characteristic among them is that specious
configuration controls a system’s execution flows—different
values cause the program or its libraries to execute different
code paths. However, the performance impact is also context-
dependent—a specious configuration is bad only when its
value and other relevant factors together direct the system to
execute a path that is significantly slower than others.

2.4 Approaches to Detect Specious Config
To detect specious configuration, operators rely on experience
or manuals, which are neither reliable nor comprehensive. A
more rigorous practice is to test the system together with
configuration and quantitatively measure the end-to-end per-
formance like throughput. However, if the testing does not
have appropriate input or related parameters, the performance
issue will not be discovered. Also, because the testing is car-
ried out in a black-box fashion, the approach is experimental.
The results are tied to the testing environment, which may not
have the same hardware, dependencies or scale as the produc-
tion. For example, in the incident described in Section 1, that
specious configuration was tested, and the result showed a
slight increase of logging traffic to a dependent database. But
this increase was deemed small, so it passed the testing.

We argue that while the experimental approach is indispens-
able, it alone is insufficient to catch specious configuration.
We advocate developing analytical approaches for reasoning
about configurations’ performance effect from the system
code. The outcome from an analytical approach includes not
only a conclusion, but also answers to questions “how the
parameter affects what operations get executed?”, “what kind
of input will perform poorly/fine?”, “does the effect depend
on other parameters?”, etc. In addition, the analysis should
enable extrapolation to different contexts, so users can project
the outcome with respect to specific workload or environment.

A potential approach is static analysis. Indeed, we can
leverage the code patterns in Section 2.3 to detect potential
specious configuration. However, mapping them at concrete
code construct level requires substantial domain knowledge.
Also, the performance effect involves many complex factors
that are difficult to be deduced by pure static analysis.

The observations in Section 2.3 lead us to realize that the
crux is some slow path being conditionally executed. Thus, we
can transform the problem of detecting specious configuration
to the problem of finding slow execution flow plus deducing
the triggering conditions of the slow execution.

3 Overview of Violet
We propose an analytical approach for detecting specious
configuration, and design a tool called VIOLET. Violet aims

to comprehensively reason about the performance effect of
system configurations: (1) explore the system without being
limited by particular input; (2) analyze the performance effect
without being too tied to the execution environment.

Our insight is that the subtle performance effect of a
specious parameter is usually reflected in different code paths
getting executed, depending on conditions involving the pa-
rameter, input and other parameters, and these paths have
significant relative performance differences. Based on this in-
sight, Violet uses symbolic execution with assistance of static
analysis to thoroughly explore the influence of configuration
parameters on program execution paths, identify the condi-
tions leading to each execution, and compare the performance
costs along different paths. After these analyses, Violet de-
rives a configuration performance impact model that describes
the relationship between the performance effect and related
conditions. In this Section, we give an overview of Violet
(Figure 6). We describe the design of Violet in Section 4.

3.1 Symbolic Execution to Analyze Perfor-
mance Effect of Configurations

Background. Symbolic execution [24, 38] is a popular tech-
nique that systematically explores a program. Different from
testing that exercises a single path of the program with con-
crete input, symbolic execution explores multiple paths of the
program with symbolic input and memorizes the path con-
straints during its exploration. When a path of interest (e.g.,
with abort()) is encountered, the execution engine generates
an input that satisfies the constraint, which can be used as a
test case. Compared to random testing, symbolic execution
systematically explores possible program paths while avoid-
ing redundancy. Consider this snippet:
void foo(int n) { if (n > 1000) bar(n); else bazz(n); }

Testing may blindly test the program many times with dif-
ferent n, e.g., 1, 10, 20, etc., but they all exercise the same
path without triggering the call to bar(). If we use symbolic
execution, we can explore the two paths of foo by deriving
only two concrete values of n to satisfy the path constraints.

Basic Idea. Configuration is essentially one type of input to a
program. The basic idea of Violet is simple—make the param-
eters symbolic, measure the cost along each execution path
explored, and comparatively analyze the costs. The path con-
straints that the symbolic execution engine memorizes char-
acterize the conditions about whether and when a parameter
setting is potentially poor. Take Figure 3 as an example. Violet
makes variable autocommit symbolic. Function write_row

will fork at line 2. The first path goes into the if branch, with
a constraint autocommit == 1. When trx_commit_complete

is called in the first path, it encounters another parameter
flush_at_trx_commit, which is also made symbolic. Two ad-
ditional paths are forked within that function. While exploring
these paths, Violet records a set of performance cost metrics.

722 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

system
code

config

{ }

Violet
Static

Analyzer

config vars,
control dep

1

2

4

Critical

Path
Cost

Config.

Constraint

Workload

Predicate

selective
symbolic execution

config1

config2

Violet
Checker

Config
Perf

Model

binary

Violet
Trace

Analyzer

3

autocommit=true+
autocommit=false-

potential perf
regression!

validation
test case

differential
critical path

INSERT INTO tbl(col) VALUES(val1);

INSERT INTO tbl(col) VALUES(val2);

…

+ innobase_commit() => ... =>

 log_write_buf() => fil_io()

 latency: 3x
 logical cost: 2x system calls

Violet
Tracer

S2E

hooks

make_
symbolic

Figure 6: Overview of Violet.

Since the subtle performance effect of specious configu-
ration is often only triggered under specific input, besides
configuration parameters, Violet can also make the input sym-
bolic. For the example in Figure 3, the input will determine
whether the write_row function will be called or not. Only
insert type queries will invoke write_row. This input con-
straint will be recorded so the analysis later can identify what
class of input can trigger the specious configuration.

3.2 Violet Workflow

Figure 6 shows the workflow of Violet. The input to Violet is
system code and target configuration. We require source code
to identify the program variables corresponding to parame-
ters. In addition, as we discuss later (Section 4.3), Violet uses
static analysis to assist the discovery of dependent parame-
ters. To symbolically execute the target system, we leverage
a state-of-the-art symbolic execution platform S2E [26] and
insert hooks into the system code to make parameters and
input symbolic. We design the Violet execution tracer as S2E
plugins to record the performance results to a trace during
state exploration. The Violet trace analyzer conducts com-
parative cost analysis, differential critical path analysis, etc.
The output is a configuration performance impact model that
describes the relationship among configuration constraints,
cost, critical path, and input predicate.

Violet further provides a checker to deploy with the soft-
ware at user sites. The checker consumes the constructed
configuration impact model to continuously detect whether a
user-site configuration file or update can potentially lead to
poor performance. Upon the detection of potential specious
configuration, the Violet checker reports not only the absolute
performance result, but also the logical cost and critical path
to explain the danger. The checker also outputs a validation
test case based on the input predict that provides hints to users
about what input can expose the potential performance issue.

4 The Design of Violet

In this Section, we describe the Violet design (Figure 6). We
need to address several design challenges. First, configura-
tions have intricate dependencies among themselves and with
the input, but making all of them symbolic easily leads to state
space explosion. Second, conducting performance analysis
in symbolic execution is demanding due to lack of explicit

assertion point, mixed costs, overhead, etc. Third, deriving
performance model from code requires balance between being
generalizable (not too tailored to specific input or environ-
ment) and being realistic (reflects costs in real executions).

4.1 Make Config Variable Symbolic
The starting point for Violet is to make parameters symbolic.
A naïve way is to make the entire configuration file a sym-
bolic blob. While this approach is transparent to the target
program, it easily leads to path explosion even at the program
initialization stage. An improvement could be only making
the configuration value string symbolic during parsing. e.g.,
make_symbolic(value, 2); buf_size=atoi(value); But the exe-
cution would still spend significant time in the parsing (atoi).
Also the parameter value range will be limited by the string
size, e.g., only explore buf_size from 0 to 99.

We should identify the program variables that store configu-
ration parameters and directly make these variables symbolic.
Prior works [56,57] observe that the mature software typically
uses uniform interfaces such as an array of struct to store
parameters. Thus they annotate these interfaces to extract
variable mappings in static analysis. For Violet, we need to
additionally identify the parameter type and value constraints
defined by the program (e.g., 1 to 10) to restrict the symbolic
value. This is because we are only interested in exploring the
performance effect of valid values.

Since typically all the config variables are readily acces-
sible after some point during initialization, we take a simple
but accurate approach: insert a hook function directly in the
source code right after the parsing function and programmat-
ically enumerates these variables and make them symbolic
using their type and other info. In this hook function, we read
an external environment variable VIO_SYM_CONFIGS to decide
which target parameter(s) to make symbolic.

Take MySQL as an example. Its configuration parame-
ters are represented by a number of Sys_var_* data structures
in the code, depending on the parameter’s type. We add a
make_symbolic API to these data structures, which uses the
type, name, value range information to call the Violet library
to make the backing store symbolic. Figure 7 shows an ex-
ample of the added hook API. Then after MySQL finishes
parsing its configurations, we iterate through all configuration
variables (Figure 8), which are stored in a global linked list
called all_sys_vars. If the parameter is in the target set, we
invoke its new make_symbolic API.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 723

template <typename T>
class Sys_var_unsigned: public sys_var {
public:

 Sys_var_unsigned(const char *name, T min_val, T max_val, ...) {
 option.min_value= min_val;
 option.max_value= max_val;
 ...
 }
 bool global_update(THD *thd, set_var *var) {
 global_var(T)= var->save_result.ulonglong_value;
 return false;
 }
 ...
+ bool make_symbolic() {
+ violet_make_symbolic(global_var_ptr(), sizeof(T), option.name);
+ violet_assume((unsigned)(*global_var_ptr()) <= option.max_value);
+ violet_assume((unsigned)(*global_var_ptr()) >= option.min_value);
+ return true;
+ }
}

Figure 7: Add API to one config. data structure in MySQL.
static int get_options(int *argc_ptr, char ***argv_ptr)
{

 my_init_dynamic_array(&all_options, sizeof(my_option));
 for (opt= my_long_options; opt < my_options_end; opt++) {
 insert_dynamic(&all_options, (uchar*) opt);
 ...
 }
+ violet_parse_config_targets();
+ violet_make_mysql_options_symbolic();
 return 0;
}

+ void violet_make_mysql_options_symbolic()
+ {
+ for (sys_var *var=all_sys_vars.first; var; var= var->next)
+ if (is_config_in_targets(var->name.str))
+ var->make_symbolic();
+ }

Figure 8: Call symbolic hooks after config. parsing in MySQL.

4.2 Make Related Config Symbolic
The performance effect of a parameter usually depends on the
values of other parameters. Thus, if we only make one param-
eter symbolic while leaving other parameters concrete, we
will only explore incomplete execution paths and potentially
miss some problematic combination that leads to bad perfor-
mance. A straightforward solution is to make all parameters
symbolic. Since symbolic execution only forks if a symbolic
value is used branch conditions, this approach seems to be
feasible. However, the problem with this approach is that most
combinations of configuration parameters are unrelated but
will be explored during symbolic execution.

Figure 9 illustrates the problem. Suppose we are interested
in the performance effect of opty. If we simply make all
parameters (optx, opty, optz) symbolic in hope of exploring
the combination effect, there will be at least 6 execution paths
being explored. But opty is unrelated to optx and optz. The
performance impact of opty is only determined by the cost of
its branches. For large programs, the target parameter could
be used deep in the code. Including unrelated parameters in
the symbolic set can cause the symbolic execution to waste
significant time or get stuck before reaching the interesting
code place to explore the target parameter. The analysis result
can also cause confusions. For example, it might suggest only
when optx>100 && optz==FILE && opty is true will there be a
performance issue and miss detecting specious configuration
when opty is true but optx <= 100 or optz != FILE.

Therefore, instead of making all parameters symbolic, we
carefully choose the set of parameters to symbolically execute

void main() {

 if (optx > 100)

 init_x();

 ...

 if (opty)

 task1();

 else

 task2();

}

void init_x() {

 if (optz == FILE)

 create_file();

}

optx>100

opty

optz==FILE

opty

…

opty

path1 path2 path3

execution tree

path4

path5 path6

unrelated paramstarget param

Figure 9: Making unrelated parameters symbolic results in excessive
state explorations and confusing conclusions.

target par.

enabler par.
influenced par.
unrelated par.

symbolic config set

autocommit: {binlog_format,

flush_at_trx_commit}

int decide_logging_format(){

 if (binlog_format !=

 BINLOG_FORMAT_ROW){

 if (autocommit)

 set_stmt_unsafe();

 }

}

int init_server_components(){

 if (query_cache_type==0)

 disable_query_cache();

}

int write_row(){

 if (autocommit){

 trx_commit_complete();

 }

}

ulint trx_commit_complete(){

 if (flush_at_trx_commit==1){

 log_group_write_buf();

 fil_flush();

 }

}

Figure 10: Symbolic config set based on control dependencies.

together. In particular, related parameters are usually control
dependent on each other. We discover the parameter control
dependency with methods described in the following Section.

4.3 Discover Control Dependent Configs
Violet statically analyzes the control dependency relationship
of parameters to determine a reduced symbolic parameter set.
The static analysis result can significantly help mitigate the
path exploration problem during symbolic execution phase.

For a target parameter C, Violet identifies two kinds of re-
lated parameters to put in its symbolic set. The enabler param-
eters are those that C is control dependent on. The influenced
parameters are those that are control dependent on C. Fig-
ure 10 shows an example. For target parameter autocommit, it
is used in decide_logging_format and write_row, it has an en-
abler parameter binlog_format, which decides if autocommit
will be activated. autocommit itself influences the perfor-
mance effect of parameter flush_at_trx_commit. Thus, for
autocommit, the set of related parameters to make symbolic
together is {binlog_format,flush_at_trx_commit}.

Informally, program element Y is control dependent on ele-
ment X if whether Y ’s executed depends on a test at X . More
formally, control dependency is captured by postdominator
relationship in program Control Flow Graph (CFG). Node b
in the CFG postdominates node a if every path from a to the
exit node contains b. Y is control dependent on X if there is
a path X → Z1→ . . .→ Zn→ Y such that Y postdominates
all Zi and Y does not postdominate X . We use postdomina-
tor as a building block for our analysis. But our notion of
control dependency is broader than the classic definition. For
example, if (X) { if (Z1) { if (Z2) { if (Y) { foo(); } } }

} , the classic definition does not regard X and Y as being
control-dependent, because Y does not postdominate Z1 or Z2;

724 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

it regards Z2 and Y as being control-dependent. But for us, all
the four parameters are control dependent.

Our analysis is divided into two steps. The first step com-
putes the enabler parameters. Violet builds a call graph of the
program. For target parameter p, it locates the usage points of
p and extracts the call chains starting from the entry function
to the function f that encloses a usage point. If any caller g
in the call chain uses some other parameter q, we check if the
callsite in g that eventually reaches f is control dependent on
the usage point of parameter q in g. If so, q is added to the en-
abler parameter set of p. Violet identifies enabler parameters
within f through intra-procedural control dependency. Our
technical report [34] lists the algorithm.

In the second step, Violet calculates the influenced pa-
rameters from the computed enabler parameter sets of all
parameters. The related config set is a union of the in-
fluenced set and enabler set. We also capture control de-
pendency that involves simple data flow. For example,
void query_cache_init() {

 if (query_cache_type == 0)

 m_cache_is_disabled = TRUE;

}

bool is_disabled() {

 return m_cache_is_disabled;

}

any parameter that is control dependent on the regular variable
m_cache_is_disabled or return value of is_disabled() is also
considered to be related to parameter query_cache_type.

The static analysis result can be inaccurate due to impre-
cision in the alias analysis, call graph, infeasible path prob-
lem, etc. Our general principle is to be conservative and over-
approximate the set of related parameters for a target param-
eter. During symbolic execution, having a few false control
dependent parameters does not greatly affect the performance
or analysis conclusion and they can manifest through the
symbolic execution log if they do cause issues.

4.4 Execute Software Symbolically

After the target software is instrumented with the symbolic
execution hooks, Violet symbolically executes the software
with a concrete configuration file. The hook function reads
the VIO_SYM_CONFIGS environment variable and makes sym-
bolic the program variables corresponding to the specified
parameter. In addition, the function parses the control depen-
dency analysis (Section 4.3) result file and makes variables in
the related parameter set symbolic as well. Other parameters’
program variables get the concrete values from the configura-
tion file. Besides parameters, Violet can also make program
input symbolic to explore its influence on the configuration’s
performance impact. This is done through either symbolic
arguments (sym-args) or identifying the input program vari-
ables and inserting make_symbolic calls in the code.

4.5 Profile Execution Paths

To measure the symbolic parameters’ performance effect,
Violet implements a tracer on top of the symbolic execution
engine, specifically as a set of plugins on the S2E platform.

CallList

RetList

eip:

ret:
time:

0xb7b0f8

0x5f738a

cid:

ret:

time:

0x5f738a

10

90

eip:

ret:
time:

0xb7c164

0xb7b211

24

ret:

time:

0xb7b211

45

…

…

1 cid: 9

…

parentId: 0 parentId: 1

f1 EIP

f2(); return addr

f3 EIP

f4(); return addr

void f1() {

 ...

 f2();

}

void f3() {

 ...

 f4();

}

Figure 11: Match call/return records.

Measure Function Call Latency. We measure function call
latency by capturing the call and return signals emitted by
S2E during symbolic execution. To calculate the latency, a
straightforward way is to maintain a stack of call record and
pops the top element upon receiving a return signal. This
algorithm assumes that the call/return signals are paired and
the callee’s return signal comes before the caller’s. But we
observe this assumption does not always hold under S2E. We
use a safer method based on return addresses to calculate
latency. In particular, the Violet tracer records the EIP register
value, return address, and timestamp on each call and return
signal. The records are stored in two lists. Later, the tracer
matches call record list with return record list based on return
address fields (Figure 11). The latency for a matched function
call is the return record’s timestamp minus the call record’s
timestamp. The total latency of each state (execution path)
can be obtained from the latency of the root function call.

For multi-threaded programs, function calls from different
threads can get mixed up. To address this issue, the Violet
tracer stores the current thread id in each profile record and
partitions the call and return lists by thread id.

Re-Construct Call Paths. The tracer records the function
call profile to break down total latency and to enable dif-
ferential critical path analysis (§4.6). To get the call chain
relationship, instead of costly stack frame walk, the tracer
uses a simple method with little overhead that just assigns
each call record a unique incrementing cid. Later, the tracer
reconstructs the call chain by iterating through all call records
in order. If (1) call record A’s cid is larger than call record
B’s cid, (2) the return address of A is larger than B’s EIP (the
start address of that function), and (3) the difference of the
two addresses is smallest among all other pairs (i.e., B’s start
address is closest to the return address in A), then we assign
A’s parentId to be B’s cid and update the current distance.

Measure Logical Costs. Besides absolute latency, we also
measure a set of logical cost metrics by a similar method
of capturing low-level signals from S2E. In particular, for
each execution path, we measure the number of instructions,
the number of system calls, the number of file I/O calls, the
amount of I/O traffic, the number of synchronization opera-
tions, network calls, etc. These logical costs are useful to sur-
face performance issues other than just long latency. They are
also crucial for reducing the test environment’s biases and en-
abling extrapolation of the result to different settings. For ex-
ample, if the tracer finds one execution path has a much higher
number of write syscalls compared to other paths whereas

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 725

Configuration Constraint Cost Workload Predicate
autocommit!=0 && flush_log_at_trx_commit==1 2.6 s, {log_write_buf→fil_flush}, 17K syscalls, 100 I/O insts, . . . sql_command==INSERT

autocommit!=0 && flush_log_at_trx_commit==2 1.7 s, {log_write_buf}, 16.9K syscalls sql_command==INSERT

autocommit!=0 && flush_log_at_trx_commit!=1

&& flush_log_at_trx_commit!=2
1.2 s, {}, 16.9K syscall sql_command==INSERT

autocommit==0 0.6 s, {trx_mark_sql_stat_end}, 16.8K syscalls sql_command==SELECT||. . .

Table 1: Example raw cost table Violet generates for autocommit parameter from symbolic execution of MySQL code in Figure 3.

their latencies are similar. This could be an artifact of the test
server having a powerful hard disk or a large buffer cache.
But the software might perform poorly in a different envi-
ronment. The Violet tracer maintains a separate performance
profile for each execution path (state) so we can compare the
performance effect of different paths. We also need to record
the path constraints to identify the parameter combination
and the class of input that leads to the execution path. The
tracer records the final path constraint when an execution path
terminates or it exceeds some user-specified cost threshold.

4.6 Analyze State Traces
Once the symbolic execution finishes, the Violet trace ana-
lyzer parses the performance traces. It then builds a cost table.
Each row represents a state (path) that was explored in sym-
bolic execution. The analyzer does a pair-wise comparison of
performance in different rows. If the performance difference
ratio exceeds a threshold (default 100%), the analyzer marks
that state suspicious. The analyzer compares not only the ab-
solute latency metric but also the collected logical metrics.
Even if the latency difference does not exceed the threshold
but some logical metric does, the analyzer still marks the state.

Not all pair comparisons are equally meaningful when the
symbolic execution explored multiple symbolic variables. To
elaborate, assume our target parameter is autocommit, which
has a related parameter flush_log. Since both are made sym-
bolic, one state could represent constraint autocommit==0 &&

flush_log==1 and another state could represent constraint
autocommit==1 && flush_log==2. In this case, comparing the
costs of these two states is not very meaningful.

The analyzer tries to compare state pairs that are most
“similar” first. Determining the similarity of two paths can
be challenging. We use a simple approach: in one state’s
constraints formula, for each constraint involving a related
parameter, if it also appears in the other state’s formula, the
similarity count is incremented by one. This method is im-
precise as it merely checks the appearances, not constraint
equivalence. For our use cases, the inaccuracies are gener-
ally acceptable. Besides, the analyzer can compare all pairs
first, surface the bad state-pairs, and then we can decide the
meaningfulness of the suspicious pairs.

For each pair that has a significant performance differ-
ence, the analyzer computes the differential critical path. It
first finds the longest common subsequence of the call chain
records in the two states. Then it creates a diff trace that stores
the common records with performance metrics subtracted, as
well as the records that only appear in the slower state. The

analyzer finally locates the call record (excluding entry) with
the largest differential cost and constructs the critical call path
based on the cid and parentId of the call records.

When Violet makes the input symbolic, the path constraints
in each state will contain constraints about the input. The ana-
lyzer separates the input related constraints as input predicate.
This is useful to tell what class of input can expose the po-
tential performance issue for the combination of parameter
values that satisfies the configuration constraint in a state.
The final output from the Violet analyzer is the configuration
performance impact model that consists of the raw cost table
(Table 1) with configuration constraints, cost metrics, and in-
put predicate for each state, the state pairs that have significant
performance difference, and the differential critical paths.

4.7 Continuous Specious Config Checker
Violet provides a standalone checker tool to detect specious
configuration. It leverages the configuration performance im-
pact model from the analyzer and validates a concrete user
configuration file. The checker tool supports three modes:

1. Some config update introduces performance regression.
2. Some default parameter is poor for users’ specific setup.
3. Code upgrade or workload change make old setting poor.

For scenario 1, the checker references the cost table and lo-
cates the state(s) that have configuration constraints satisfying
the updated parameter’ old value and the parameter’s new
value. If the state pair has significant performance difference,
the checker alerts the operators and generates a test case
based on the input predicate for operators to confirm the per-
formance regression. For scenario 2, the checker validates if
the state that the default value lies in appears in some poor
state-pair. If so, it means this default value potentially per-
forms significantly worse than another value. For scenario
3, if the system code changes, Violet rebuilds the cost im-
pact table. The checker then identifies if some state in the
new table performs much worse compared to the old cost
table. If workload changes, the checker validates if cost table
rows that previously satisfy the input predicate perform worse
compared to rows that satisfy the input predicate now.

5 Scaling Violet to Large Software
In this section, we describe the challenges and our solutions
for scaling Violet to large software.

5.1 Choice of Symbolic Execution Engine
We initially build Violet on the KLEE [24] symbolic execu-
tion engine because it is widely used and convenient to exper-

726 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

iment with. However, while KLEE works well on moderate-
sized programs, it cannot handle large programs like MySQL.
KLEE models the environment (POSIX runtime and libc)
with simplified implementation. Large programs use many
libc or system calls that are unimplemented or implemented
partially/incorrectly, e.g., fcntl, pread, and socket. KLEE also
does not support symbolic execution of multi-threaded pro-
grams. We spent several months patching KLEE to fix the
environment model and add multi-threading support. When
we were finally able to run MySQL with KLEE, it took 40
minutes to just pass initialization even without symbolic data.

We thus decided to switch to the S2E platform [26]. S2E
uses real environment with complete OS and libraries. Execut-
ing large software would encounter almost no compatibility
issues. In addition, S2E uses QEMU and dynamic binary trans-
lation to execute a target program. For instructions that access
symbolic data, they are interpreted by the embedded KLEE
engine; but instructions that access concrete data are directly
executed on host CPU. Overall, while the choice of using real
environment in symbolic execution in general means slower
analysis compared to using simplified models like KLEE,
executing concrete instructions on host CPU offsets that slow-
ness and allows S2E to achieve significant speed-up. After
migrating Violet to S2E and with some minor adjustments,
we can start MySQL server within one minute.

5.2 Handle Complex Input Structure
Since specious configuration is often only triggered by certain
input, Violet makes input symbolic besides configuration. For
small programs, the input type is typically simple, e.g., an
integer, a string, which is easy to be made symbolic. However,
large programs’ input can have very complex structure. If we
make such complex input symbolic, the program may be stuck
in the input parsing code for a long time and the majority of
the input generated is invalid. For example, we make input
variable char *packet (32 bytes) in MySQL symbolic and
execute it in S2E for 1 hour, which generates several hundred
test cases, but none of which is a legal SQL query. Even after
adding some additional constraints, the result is similar.

This challenge is not unique to our problem domain. Com-
piler testing [58] or fuzzing [11] also faces this challenge
of how to generate valid input to programs like C compiler
or DBMS. We address this problem through a similar prac-
tice by introducing workload templates. Instead of having the
parser figure out a valid structure, we pre-define a set of input
templates that have valid structures. Then we parameterize
the templates so that they are not fixed, e.g., the query type,
insertion value, the number of queries, etc. In this way, we
can make the workload template parameters symbolic.

5.3 Reduce Profiling Overhead
Profiling large programs can incur substantial overhead. We
build Violet tracer using low-level signals emitted by S2E
rather than intrusive instrumentation. Nevertheless, symbolic

execution is demanding for performance analysis as the pro-
gram runs much slower compared to native execution. Fortu-
nately, Violet cares about the relative performance between
different paths. We can still identify specious configuration if
the relative differences roughly match the native execution,
which we find is true for most cases. Violet conducts differen-
tial analyses to capture performance anomalies. We describe
three additional optimizations in Violet tracer.

First, the Violet tracer controls the start and end of its func-
tion profiler. This is because if we enable the function profiler
at the very beginning, it can be overwhelmed by lots of irrele-
vant function calls. We add APIs in the tracer and will start
the tracer when the target system finishes initialization and
stop the tracer when the system enters the shutdown phase.

Second, the tracer avoids guest memory accesses and on-
the-fly calculation. Accessing memory in an execution state
goes through the emulated MMU in QEMU. Violet tracer
only accesses and stores key information (most from registers)
about the call/return signals. It defers the record matching,
call chain and latency calculation to path termination.

Third, Violet will disable state switching during latency
tracking if necessary. Since the function profiler calculates
the execution time by subtracting the return signal timestamp
from call signal timestamp, if S2E switches to execute an-
other state in between, the recorded latency will include the
state switching cost. This in general does not cause serious
problems because the costs occur in all states and roughly
cancels out with our differential analysis. But in rare cases,
the switching costs can distort the results. When this happens,
Violet will force S2E to disable state switching.

5.4 Path Explosion and Complex Constraints
A common problem with symbolic execution is path explo-
sion, especially when the symbolic value is used in library or
system calls. In addition, some library calls with symbolic
data yield complex constraints that make the symbolic execu-
tion engine spend a long time in solving the constraints.

Violet leverages a core feature in S2E, selective symbolic
execution [26], to address this problem. Selective symbolic
execution allows transition between concrete and symbolic
execution when crossing some execution boundary, e.g., a
system call. Violet uses the Strictly-Consistent Unit-Level
Execution consistency model, which silently concretizes the
symbolic value before entering the boundary and adds the
concretized constraint to the symbolic value after exiting the
boundary. This consistency model sacrifices completeness
but it would not invalidate the analysis result. To improve
completeness, we add some relaxation rules in Violet without
causing functionality errors: 1) if the library call does not add
side effect, such as strlen/strcmp, we make the return value
symbolic and remove the concretized constraint; 2) if the
library call has side effect but does not hurt the functionality,
such as printf, we directly remove the concretized constraint.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 727

Software Desc. Arch. Version SLOC Configs
Hook

MySQL Database Multi-thd 5.5.59 1.2M 330 197
Postgres Database Multi-proc 11.0 843K 294 165
Apache Web server Multi-proc-thd 2.4.38 199K 172 158
Squid Proxy server Multi-thd 4.1 178K 327 96

Table 2: Evaluated software. Hook: SLOC of core Violet hooks.
One issue we encounter with the S2E silent concretiza-

tion is that its concretize API will only concretize the sym-
bolic variable. The symbolic variable can taint other variables
(make them symbolic) when it is assigned to these variables,
but these tainted variables are not concretized during silent
concretization. Having these tainted variables remain sym-
bolic can add substantial overhead. We thus add a new API in
S2E, concretizeAll, that concretizes not only the given sym-
bolic variable but also its tainted variables. We implement
this API by recording in each write operation a mapping from
the symbolic expression to the target address in the memory
object. Later when concretizeAll is called, we will look up
the memory objects to find addresses that contain the same
symbolic expression and also concretize them.

6 Implementation
We implement the major Violet components in C/C++. The
Violet checker is implemented in Python. The Violet tracer is
written as S2E plugins and leverages S2E’s existing plugin to
capture low-level signals. The Violet static analyzer is built
on top of LLVM framework [40]. The Violet trace analyzer
is implemented as a standalone tool.

In function profiling, for efficiency, the tracer captures the
addresses instead of names of invoked functions. This means
the analyzer needs to resolve the addresses to names. The
problem is that the virtual address of the target program can
change in each run. We address this issue by modifying the
ELF loader of the S2E Linux kernel to expose the load_bias.
Then the tracer will record the offset from the load_bias. The
analyzer can then use the offsets to resolve the names.

7 Evaluation
We evaluate Violet to answer several key questions:
• How effective is Violet in detecting specious configuration?
• Can Violet expose unknown specious configuration?
• How useful is Violet’s checker to the user?
• What is the performance of Violet?

The experiments are conducted on servers with Dual Pro-
cessor of Intel Xeon E5-2630 (2.20GHz, 10 cores), 64 GB
memory, 1 TB HDD running a Ubuntu 16.04. Since S2E en-
gine runs in QEMU, we create a guest image of Debian 9.2.1
x86_64 with 4 GB memory for all the Violet tests.

7.1 Target Systems
We evaluate Violet on four popular and large (up to 1.2M
SLOC) open-source software (Table 2): MySQL, PostgreSQL,
Apache, and Squid. Violet can successfully analyze large

multi-threaded programs (MySQL and Squid) as well as multi-
process (PostgreSQL, Apache) programs.

The manual effort to use Violet on a target system is small,
mainly required in two steps: (1) add configuration hooks
(Section 4.1); (2) supply input templates (Section 5.2). The
other steps in the workflow are automated.

Table 2 shows SLOC of the core hooks we add to the four
systems. The hook size varies across systems. MySQL hooks
are largest in size mainly because the system defines many
(22) configuration types (Sys_var_*) so we need to add hook
(about 7 SLOC) to each type. But the overall effort for differ-
ent systems is small. The changes are typically contained in a
few places with other codes untouched. In addition, most soft-
ware rarely modifies the configuration data structure design,
so the effort can carry through versions.

For (2), users typically already have some workload profiles.
The effort needed is to parameterize and organize them into
our format. In our experience with the four evaluated software,
this process is straightforward and can be done in a few hours.

7.2 Detecting Known Specious Config
To evaluate the effectiveness of Violet we collect 17 real-
world specious configuration cases from the four systems.
Table 3 lists the case descriptions. We collect them from
ServerFault [14], dba [4], blog posts [12], and prior work [19].
A case is marked as detected when Violet explores at least
one poor state in its trace and the poor states enclose the
problematic parameter value(s).

In total, Violet detects 15 of the 17 cases. Table 4 shows
the detailed result. For each case, Table 4 lists the total states
Violet explored, poor states, related configs, and maximum
cost metric differences. The explored states include forks
from related configurations and the symbolic workload pa-
rameters. In most cases, the specious configuration requires
specific related settings to expose the issue. The high suc-
cess rate of Violet comes from its in-vivo multi-path profiling,
dependency analysis, and differential performance analysis.

Another aspect to interpret the high success rate is that
the 17 cases we collect admittedly have a selection bias—all
cases cause severe performance impact. This is reflected in
the max diff column. If a misconfiguration only introduces
mild performance issue, Violet may miss it due to the noises
in symbolic execution. However, Violet’s goal is to exactly
target specious configuration that has severe performance
impact, rather than suboptimal configurations.

Violet misses two Apache cases, c14 and c15. Triggering
them requires enabling the HTTP KeepAlive feature in the
workload. In our Apache workload templates, this feature is
not part of the workload parameters and is disabled by default.

We describe two representative cases. MySQL c1 is the
running example in the paper. Violet identifies four related
parameters for autocommit and explores 88 states in total, 4
of which are identified as poor. The configuration constraints

728 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Id. Application Configuration Name Data Type Description

c1 MySQL autocommit Boolean Determine whether all changes take effect immediately
c2 MySQL query_cache_wlock_invalidate Boolean Disable the query cache when after WRITE lock statement
c3 MySQL general_log Boolean Enable MySQL general log query
c4 MySQL query_cache_type Enumeration Method used for controlling the query cache type
c5 MySQL sync_binlog Integer Controls how often the MySQL server synchronizes binary log to disk
c6 MySQL innodb_log_buffer_size Integer Set the size of the buffer for transactions that have not been committed yet

c7 PostgreSQL wal_sync_method Enumeration Method used for forcing WAL updates out to disk
c8 PostgreSQL archive_mode Enumeration Force the server to swtich to a new WAL periodically and archive old WAL segments
c9 PostgreSQL max_wal_size Integer Maximum number of log file segments between automatic WAL checkpoints
c10 PostgreSQL checkpoint_completion_target Float Set a fraction of total time between checkpoints interval
c11 PostgreSQL bgwriter_lru_multiplier Float Set estimate of the number of buffers for the next background writing

c12 Apache HostNamelookup Enumeration Enables DNS lookups to log the host names of clients sending requests
c13 Apache Deny/Domain Enum/String Restrict access to the server based on hostname, IP address, or env variables
c14 Apache MaxKeepAliveRequests Integer Limits the number of requests allowed per connection
c15 Apache KeepAliveTimeOut Integer Seconds Apache will wait for a subsequent request before closing the connection

c16 Squid cache String Requests denied by this directive will not be stored in the cache
c17 Squid Buffered_logs Integer Whether to write access_log records ASAP or accumulate them in larger chunks

Table 3: Description of 17 known specious configuration cases we collect in the four evaluated software.

Id.

D
et

ec
t

Explored
States

Poor
States R

el
at

ed
C

on
fig

s

Cost
Metrics

Analysis
Time

Max
Diff*

c1 3 88 17 4 Latency 6 m25 s 14.5×
c2 3 24 3 1 Lat.&Sync. 3 m13 s 15.7×
c3 3 224 88 5 I/O 19 m41 s 2.0×
c4 3 787 100 2 Latency 53 m50 s 11.7×
c5 3 494 44 3 Latency 17 m56 s 29.9×
c6 3 891 12 5 I/O 112 m24 s 3.0×
c7 3 89 7 2 Lat.&I/O 4 m6 s 4.3×
c8 3 195 8 3 Latency 13 m8 s 1.8×
c9 3 110 2 3 Lat.&I/O 15 m20 s 3.5×
c10 3 231 13 7 Latency 23 m30 s 2.4×
c11 3 61 9 2 Latency 13 m17 s 8.6×
c12 3 34 4 2 Latency 7 m15 s 3.8×
c13 3 50 5 3 Latency 6 m10 s 8.9×
c14 7 112 0 2 Latency 3 m42 s 0.6×
c15 7 23 0 3 Latency 6 m12 s 0.2×
c16 3 81 1 0 Latency 433 m32 s 4.3×
c17 3 3 1 0 I/O 1 m32 s 2.0×

Table 4: Violet detection result. Poor states are what Violet considers
as suspicious. *: relative difference, α× means B = (1+α)∗A.

of the four poor states describe the combination conditions
for the 5 parameters to incur significant cost.

In c6, innodb_log_buffer_size controls the size of the log
buffer. Interestingly, in this case, Violet determines the latency
metric difference is not significant, but the I/O logical cost
metric is. Specifically, Violet explores almost 100 different
queries, and finds that in states with queries involving large
row changes and a relatively small buffer size, the I/O metric—
pwrite operations—is much larger than other states.

7.3 Comparison with Testing
We evaluate the 17 cases with testing as well. We use popular
benchmark tools sysbench and ab. For each case, we set the
target parameter and related parameters with concrete values
from one of the poor states discovered. We enumerate the
standard workloads in the benchmark to test the software with
the configurations. Since the absolute performance result are

difficult to judge, we use configurations from the good states
and collect performance result with them as a baseline. If the
performance difference ratio exceeds 100% (the same thresh-
old used by Violet), we consider the case detected. In total,
testing detects 10 cases, with a median time of 25 minutes.

Violet is not meant to replace configuration performance
testing. In theory, exhaustive testing can expose all cases, but
the cost of it is not affordable in practice. Violet systemati-
cally explores program states while avoids the redundancy in
exhaustive testing (Section 3.1). Even though in some cases,
as shown in Table 4, the Violet analysis time is relatively long,
Violet is exploring the performance effects thoroughly, includ-
ing the combination effect with other parameters and input.
Therefore, the performance impact models Violet derives are
complete. Once the exploration is done, the outcome can be
reused many times while testing needs to be done repeatedly.

Another challenge with testing is to find the baseline for
good performance. Our experiment above assumes the exis-
tence of good configuration, which users may not have. Violet,
in comparison, conducts in-vivo, multi-path analysis, so it nat-
urally has baselines to compare with. The analysis enables
Violet to collect deeper logical metrics, which can reveal per-
formance issues that end-to-end metrics may not find.

7.4 Exposing Unknown Specious Config
Besides detecting know specious configuration, we evaluate
whether Violet can expose unknown specious configuration.
We first apply Violet to derive performance models for all pa-
rameters if possible (Section 7.6). We then analyze the results
for parameters not in the known case dataset (Section 7.2).
We manually check (1) if some parameter’s default or sug-
gested value is in a poor state; (2) if a poor state of a parame-
ter contains related parameters that are undocumented. The
manual inspection involves checking the Violet output, the
descriptions in the official documentation and tuning guide,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 729

C1 C2 C3 C4 C5 C6 Overall

Case

0

20

40

60

80

100

A
c
c
u
ra

c
y
 (

\%
)

Group A Group B

Figure 12: Overall accuracy of judgment in the
user study.

C1 C2 C3 C4 C5 C6 Overall

Case

0

4

8

12

16

T
im

e
 (

m
in

u
te

) Group A Group B

Figure 13: Average decision time in the user
study.

MySQL PostgreSQL Apache Squid
100

101

102

103

104

T
im

e
 (

s
)

206
117

1171
554

Figure 14: Violet analysis times for the con-
figs in the four software.

Sys Configuration Performance Impact

Postgres vacuum_cost Default value 20 ms is significantly worse
_delay than low values for write workload.

Postgres archive_timeout Small values cause performance penalties.
Postgres random_page_cost Values larger than 1.2 (default 4.0) cause

bad perf on SSD for join queries.
Postgres log_statement Setting mod causes bad perf. for write work-

load when synchronous_commit is off.
Postgres parallel_setup_cost A higher value would avoid unnecessary

parallelism when executing join query

Postgres parallel_leader Enabling it can cause select join query
_participation to be slow if random_page_cost is high.

MySQL optimizer_search Default value would cause bad performance
_depth for join queries

MySQL concurrent_insert Enable concurrent_insert would cause bad
performance for read workload

Squid ipcache_size The default value is relatively small and
may cause performance reduction

Squid cache_log Enable cache_log with higher debug_option
would cause extra I/O

Squid store_objects Higher objects per bucket would enlarge
per_bucket the search time

Table 5: Unknown perf. effect of 11 parameters Violet identifies.

and running tests to confirm, which takes significant time. We
only carefully inspect a subset of the results.

The four systems are very mature and maintain high-quality
documentations, so it is not easy to find many errors in them.
Indeed, a significant portion of the poor states we examined
turns out to be already documented. Still we have identified
11 parameters that have potential bad performance effect and
the documentation is incomplete or incorrect.

Table 5 lists the cases. For example, our analysis of
vacuum_cost_delay shows that a higher value can incur large
cost for write-intensive workloads, but the default value is
20 ms. Interestingly, we find PostgreSQL 12 (our experiments
use v11) changes the default to 2 ms. For log_statement,
Violet discovers multiple poor states that are not mentioned
in the official document. Our analysis revels that setting
it to mod causes performance issues for write query when
synchronous_commit is off. Violet finds some unexpected
parameter combination that leads to bad performance, e.g.,
parallel_leader_participation and random_page_cost.

We reported our findings to the developers. Eight reports
are confirmed. Five lead to documentation or Wiki fixes. For
some confirmed cases, developers do not fix them because
they assume users should know the performance implications
or such performance description should not be put in the ref-
erence manual (e.g., “There are a lot of interactions between
settings, and mentioning all of them would be impossible”).

7.5 User Study on Violet Checker
To understand whether Violet checker helps users catch
specious configuration, we conduct a controlled user study
with 20 programmers (no authors are included). Fourteen are
undergraduate students who have taken the database class.
Six are graduate students. They all have decent experience
with databases and Unix tools. We further give a tutorial of
MySQL and PostgreSQL, the descriptions of the common
configuration, and available benchmark tools they can use.

We use 6 target parameters from MySQL and PostgreSQL.
For each parameter, we prepare two versions of configuration
files. In one version (bad), the parameter is set with the poor
value and the related parameters are also set appropriately that
would cause bad performance impact under a workload. In
another version (good), we set the target parameter to a good
value, or we change the related parameter values, or we tell
users the production workloads are limited to certain types
(e.g., read-intensive). So in total, we have 12 cases.

Each participant is given 6 configuration files. They need
to make a judgment regarding whether the configuration file
would cause potential performance issue. Since a configura-
tion file contains many parameters, we explicitly tell users
the set of parameters they can focus on, which disadvantages
Violet because users in practice do not have this luxury.

The participants are randomly assigned into two groups:
group A (w/ Violet checker help) and group B (w/o checker
help). Users in group B can run any tools to help them make
the decision. We also tell group A users that they do not have
to trust the checker output and are free to run other tools.

Figure 12 shows the accuracy of user study result for
each group. Overall, programmers w/o Violet checker’s help
have 30% misjudgment rate while programmers with Violet
checker’s help only have 5% misjudging rate. Figure 13 shows
the time for making a judgment. On average, participants
took 20.7% less time (9.6 min. versus 12.1 min.) to make a
judgment when they were provided with Violet checker. The
reason that time saving is not very large is partly because
we explicitly tell users the set of parameters, which creates a
biased advantage to group B users; and some of our group A
users are extra cautious and spend time running other tools.

7.6 Coverage of Analyzed Configs
We conduct a coverage test of Violet by applying Violet on
the four software and try to derive performance models for as
many parameters as possible. We manually filter the parame-

730 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

MySQL PostgreSQL Apache Squid Total
169 (51.2%) 210 (71.4%) 51 (29.6%) 176 (53.3%) 606 (53.9%)

Table 6: Number of configs Violet derives performance models for.
The number in parentheses is the percentage of total configs.

parA parB parC parD
=0 =1 =0 =1 =0 =1 =2 =0 =1 =2

Violet 12.0 23.0 9.81 10.19 9.05 10.92 10.74 4.68 4.77 5.27
S2E 10.8 21.0 7.67 8.94 6.24 7.77 7.92 3.57 3.91 4.59

Native 0.7 1.2 0.55 0.77 0.45 0.63 0.67 0.07 0.07 0.08

Table 7: Absolute latency (ms) for four parameters’ different settings
w/ Violet, vanilla S2E and native execution. parA: autcommit, parB:
synchronous_commit, parC: archive_mode, parD: HostNameLookup.

ters that are not related to performance based on the parameter
description (e.g., listen_addresses). Table 6 shows the result.
Violet successfully derives models for a total of 606 parame-
ters. The average ratio of analyzed parameters over the total
number of parameters for software is 53.9%. The average
number of states explored in these generated models is 23.
Apache and Squid have a relatively small number of param-
eters analyzed. This is because the configuration program
variables in the two systems are set via complex function
pointers and spread in different modules, which make it chal-
lenging to write hooks to enumerate all of them (Section 4.1).
For parameters that Violet did not generate impact models,
one reason is that they are used in code for special environ-
ment. Another reason is that the data type of some parameter
is too complex (e.g., timezone) to make symbolic.

7.7 Accuracy of Violet Profiling
Since symbolic execution can introduce significant overhead,
it seems that the latency traced by the symbolic engine will
not be accurate. However, we observe that while the absolute
latency under symbolic execution is indeed much larger than
native execution, the comparative results between different
paths are usually similar. We add a micro-benchmark experi-
ment to test the latency measurement from Violet, vanilla S2E
and native mode. Table 7 shows the result from four repre-
sentative parameters. Take parA as an example. The latency
results from Violet and S2E are much later than native result.
But the ration of setting 1 to setting 0 is similar: 1.92× for
Violet, 1.94× for S2E, and 1.71× for native execution.

7.8 False Positives
The Violet differential performance analysis in general can
absorb the performance noises in symbolic execution. But
we observe some false positives in the Violet performance
analysis output. For example, S2E somehow has a delay in
emitting the return signal of some system call functions like
gettimeofday, which causes Violet to record inaccurate la-
tency. These false positives are relatively easy to suppress by
discounting the cost of the noisy instructions.

We manually inspect the performance models of 10 random
parameters that Violet analyzes in the coverage experiment.

10 20 50 100 200

Diff threshold (%)

1

2

3

4

#
 o

f
p
o
o
r

s
ta

te
s

(n
o
rm

a
li
z
e
d
)

10 20 50 100 200

Diff threshold (%)

0

10

20

30

40

#
 o

f
fa

ls
e
 p

o
s
it

iv
e
s

archive_mode

autocommit

deny

lru_multipiler

query_cache_type

wal_sync_method

Figure 15: Sensitivity of the performance diff threshold (default
100%). For readability, the number of poor states is normalized by
values under the default threshold.

We check the accuracy of the reported bad states by verifying
them with sysbench. The false positive rate is 6.4%.

7.9 Performance
We measure the Violet analysis time for the 471 parameters
in the coverage experiment (Section 7.6). Figure 14 shows
the result in boxplots. The median analysis times are 206 s
(MySQL), 117 s (PostgreSQL), 1171 s (Apache), and 554 s
(Squid). On average, the log analyzer time is 68s. As ex-
plained in Section 7.3, even though for some parameters the
analysis time is relatively long, the benefit is that Violet de-
rives a thorough performance model for different settings of
the target parameter and the combined effect with other param-
eters and input. The outcome can be re-used many times by
the Violet checker. With the performance models, the checker
time is fast. On average the checking only takes 15.7 seconds.

7.10 Sensitivity Analysis
Violet uses a differential threshold (default 100%) to detect
the suspicious state from the trace log (Section 4.6). We eval-
uate the sensitivity of this threshold by measuring how many
poor state pairs Violet reports when analyzing a parameter
under threshold t. For each poor state pair Violet reports, we
run benchmarks on the native machine to check whether it is
false positive (performance difference is ≥ t%).

Figure 15 shows the result for six representative param-
eters. We can see that if the threshold is set to a relatively
lower value, the number of detected specious configuration
can dramatically increase, but at cost of higher false positives.

8 Limitations
Violet has several limitations that we plan to address in future
work. First, Violet explores the configuration under normal
conditions. Some specious configuration may be only used in
error handling. Exploring their effect requires specific faults.
One solution is to combine symbolic execution with fault in-
jection. Another potential solution is to use under-constrained
symbolic execution [46]. Second, our handling of floating
point type parameters is imperfect due to limited support in
existing symbolic execution engines. We currently explores
float parameters by choosing from a set of concrete floating-
point values in the valid value range. Third, we use concrete
(the host) hardware in the symbolic execution, which may not

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 731

capture specious configuration that is only visible in specific
hardware. We rely on logical cost metrics to surface such
issues. Lastly, Violet does not work on distributed systems.

9 Related Work
Misconfiguration detection and diagnosis. A wide body
of work has been done to detect and troubleshoot miscon-
figuration [20–22, 27, 30, 30, 48, 50, 52, 54, 61, 63]. For ex-
ample, ConfAid [21] uses dynamic taint tracking to locate
configuration errors that lead to failures; Strider [52] and
PeerPressure [50] take statistical approaches to identify mis-
configuration; EnCore [63] enhances statistical learning with
environment information to detect misconfiguration.

These solutions mainly target illegal configuration and have
limited effects on specious configuration. X-ray [19] targets
performance-related misconfiguration. Our work is inspired
by X-ray and is complementary to it. X-ray is a diagnosis tool
and uses deterministic record and replay of a specific program
execution. Violet focuses on detecting specious configuration
beforehand. Violet uses symbolic execution to explore the
performance effect in multiple execution paths. Violet is more
suitable for performance tuning/bug finding, whereas X-ray
is better at diagnosing misconfiguration that has occurred.

LearnConf [41] is recently proposed to detect performance
misconfiguration using static analysis. LearnConf summa-
rizes common code patterns of performance configuration
and uses simple formulas to approximate the performance
effect, e.g., linear relationship. It uses static analysis to iden-
tify these patterns and derive parameters to the formulas. The
solution is simpler compared to Violet, but its completeness
is limited because obtaining comprehensive code patterns is
hard. Moreover, the performance effect is often quite com-
plex, which cannot be accurately captured by simple formulas.
Static analysis also suffers from well-known inaccuracies for
large software. Violet explores a configuration’s influence
in the code without requiring or being limited by common
patterns; it analyzes the performance effect by executing the
code. Additionally, Violet explores the performance impact
of input and a large set of related configurations together.

Performance tuning of configuration. There is a wealth of
literature on automatic performance tuning, e.g., [33,44,51,55,
59, 62, 64]. They work basically by devising an approximate
function between configuration values and the performance
metrics measured through testing. While tunable parame-
ters are common specious configuration, performance tuning
and detecting specious configuration are two directions. The
former searches for settings that yield the best performance,
while the latter identifies settings that lead to extremely poor
performance. Violet takes an analytical approach to derive
configuration performance impact model from the code, in-
stead of exhaustive testing. The result from our in-vivo, multi-
path analysis is also less susceptible to noises and enables
extrapolation to different contexts.

System resilience to misconfiguration. ConfErr [37] uses
a human error model to inject misconfiguration. SPEX [57]
uses static analysis to extract configuration constraints and
generates misconfiguration by violating these constraints. The
injected misconfigurations are illegal values that can trigger
explicit errors like crash. Specious configuration typically
does not cause explicit errors.
Configuration languages. Better configuration languages
can help avoid misconfiguration. Several works make such
efforts [23, 25, 28, 29, 35, 42, 47]. PRESTO [29] proposes a
template language to generate device-native configuration.
ConfValley [35], proposes a declarative validation language
for generic software configuration. These new designs do not
prevent specious configuration from being introduced.
Symbolic execution in performance analysis. Symbolic ex-
ecution [24, 38] is typically used for finding functional bugs.
S2E [26] is the first to explore performance analysis in sym-
bolic execution as one use case to demonstrate the generality
of its platform. The Violet tracer leverages the advances made
by S2E, particularly its low-level signals, to build our custom
profiling methods (Section 4.5). Our tracer also addresses
several unique challenges to reduce the performance analy-
sis overhead (Section 5.3). Bolt [36] extracts performance
contracts of Network Function code with symbolic execu-
tion. Violet targets general-purpose software and analyzes
performance effect of system configuration.

10 Conclusion
Specious configuration is a common and challenging problem
for production systems. We propose an analytical approach
to tackle this problem and present a toolchain called Violet.
Violet uses symbolic execution and program analysis to sys-
tematically reason about the performance effect of config-
uration from code. The derived configuration performance
impact model is used for subsequent detections of specious
configuration. We successfully apply Violet on four large
system software and detect 15 out of 17 real-world specious
configuration cases. Violet exposes 11 unknown specious
configuration, 8 of which are confirmed by developers.

Acknowledgments
We would like to thank our shepherd, Jason Flinn, and the
anonymous OSDI reviewers for their thoughtful comments.
We appreciate the discussion and suggestions from Xi Wang.
We thank Varun Radhakrishnan and Justin Shafer for their
contributions to the Violet tool and study cases. We thank
our user-study participants and the open-source developers
who responded to our requests. We also thank the S2E authors,
especially Vitaly Chipounov for maintaining the S2E platform
and answering our questions. We thank Chunqiang Tang for
the prior collaboration that provided early motivation for this
work. This work is supported by the NSF CRII grant CNS-
1755737 and partly by NSF grant CNS-1910133.

732 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Amazon AWS S3 outage for several hours on February 28th, 2017.

https://aws.amazon.com/message/41926.

[2] Amazon EC2 and RDS service disruption on April 21st, 2011. http:
//aws.amazon.com/message/65648.

[3] AWS service outage on October 22nd, 2012. https://aws.amazon.com/
message/680342.

[4] Database administrators. https://dba.stackexchange.com.

[5] Facebook global outage for 2.5 hours on September 23rd,
2010. https://www.facebook.com/notes/facebook-engineering/

more-details-on-todays-outage/431441338919.

[6] Google API infrastructure outage on April 30th, 2013.
http://googledevelopers.blogspot.com/2013/05/google-api-

infrastructure-outage_3.html.

[7] Google compute engine incident #16007. https://status.cloud.

google.com/incident/compute/16007?post-mortem.

[8] Google service outage on January 24th, 2014. http://googleblog.

blogspot.com/2014/01/todays-outage-for-several-google.html.

[9] Microsoft Azure storage disruption in US south on December 28th,
2012. http://blogs.msdn.com/b/windowsazure/archive/2013/01/

16/details-of-the-december-28th-2012-windows-azure-storage-

disruption-in-us-south.aspx.

[10] Microsoft Azure storage disruption on February 22nd, 2013. http://
blogs.msdn.com/b/windowsazure/archive/2013/03/01/details-of-

the-february-22nd-2013-windows-azure-storage-disruption.aspx.

[11] Oss-fuzz: Continuous fuzzing for open source software. https://

github.com/google/oss-fuzz.

[12] Percona blogs. https://www.percona.com/blog.

[13] RDS MySQL insights: Top query "commit". https://serverfault.

com/questions/1029595/rds-mysql-insights-top-query-commit.

[14] Serverfault. https://serverfault.com.

[15] Slow InnoDB insert/update. https://www.serveradminblog.com/2014/
01/slow-innodb-insertupdate/.

[16] Sysbench. https://github.com/akopytov/sysbench.

[17] Cisco loses customer data in Meraki cloud muckup due to misconfig-
uration. https://www.theregister.co.uk/2017/08/06/cisco_meraki_
data_loss, Aug 6th, 2017.

[18] Amazon. AWS service outage on December 24th, 2012. http://aws.
amazon.com/message/680587.

[19] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating root-cause
diagnosis of performance anomalies in production software. In Pro-
ceedings of the 10th USENIX Conference on Operating Systems Design
and Implementation, OSDI’12, pages 307–320, 2012.

[20] M. Attariyan and J. Flinn. Using causality to diagnose configuration
bugs. In Proceedings of the 2008 USENIX Annual Technical Confer-
ence, ATC’08, pages 281–286, 2008.

[21] M. Attariyan and J. Flinn. Automating configuration troubleshooting
with dynamic information flow analysis. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’10, pages 1–11, 2010.

[22] L. Bauer, S. Garriss, and M. K. Reiter. Detecting and resolving policy
misconfigurations in access-control systems. In Proceedings of the
13th ACM Symposium on Access Control Models and Technologies,
SACMAT ’08, pages 185–194, 2008.

[23] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker. Don’t
mind the gap: Bridging network-wide objectives and device-level con-
figurations. In Proceedings of the 2016 ACM SIGCOMM Conference,
SIGCOMM ’16, pages 328–341, Florianopolis, Brazil, 2016.

[24] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, OSDI’08, pages 209–224, San Diego,
California, 2008.

[25] X. Chen, Y. Mao, Z. M. Mao, and J. Van der Merwe. Declarative
configuration management for complex and dynamic networks. In
Proceedings of the 6th International Conference, Co-NEXT ’10, pages
6:1–6:12, 2010.

[26] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for
in-vivo multi-path analysis of software systems. In Proceedings of
the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVI, pages
265–278, Newport Beach, California, USA, 2011.

[27] T. Das, R. Bhagwan, and P. Naldurg. Baaz: A system for detecting
access control misconfigurations. In Proceedings of the 19th USENIX
Conference on Security, USENIX Security’10, pages 11–11, 2010.

[28] J. DeTreville. Making system configuration more declarative. In Pro-
ceedings of the 10th Conference on Hot Topics in Operating Systems,
HOTOS’05, pages 11–11, 2005.

[29] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. Greenberg,
S. Rao, and W. Aiello. Configuration management at massive scale:
System design and experience. In Proceedings of the 2007 USENIX
Annual Technical Conference, ATC’07, pages 6:1–6:14, 2007.

[30] N. Feamster and H. Balakrishnan. Detecting BGP configuration faults
with static analysis. In Proceedings of the 2nd Conference on Sym-
posium on Networked Systems Design & Implementation, NSDI’05,
pages 43–56, 2005.

[31] Google. Twilio billing incident post-mortem: Breakdown, analy-
sis and root cause. https://www.twilio.com/blog/2013/07/billing-

incident-post-mortem-breakdown-analysis-and-root-cause.html.

[32] J. Gray. Why do computers stop and what can be done about it? In
Proc. Symposium on Reliability in Distributed Software and Database
Systems, pages 3–12, 1986.

[33] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu. Starfish: A self-tuning system for big data analytics. In In
CIDR, pages 261–272, 2011.

[34] Y. Hu, G. Huang, and P. Huang. Automated reasoning and detection
of specious configuration in large systems with symbolic execution
(technical report). http://arxiv.org/abs/2010.06356, 2020.

[35] P. Huang, W. J. Bolosky, A. Singh, and Y. Zhou. ConfValley: A sys-
tematic configuration validation framework for cloud services. In
Proceedings of the Tenth European Conference on Computer Systems,
EuroSys ’15, pages 19:1–19:16, Bordeaux, France, 2015.

[36] R. Iyer, L. Pedrosa, A. Zaostrovnykh, S. Pirelli, K. Argyraki, and
G. Candea. Performance contracts for software network functions.
In Proceedings of the 16th USENIX Conference on Networked Systems
Design and Implementation, NSDI’19, page 517–530, Boston, MA,
USA, 2019.

[37] L. Keller, P. Upadhyaya, and G. Candea. ConfErr: A tool for assess-
ing resilience to human configuration errors. In Proceedings of the
38th International Conference on Dependable Systems and Networks,
DSN’08, pages 157–166, 2008.

[38] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, July 1976.

[39] N. Kushman and D. Katabi. Enabling configuration-independent au-
tomation by non-expert users. In Proceedings of the 9th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’10,
pages 1–10, 2010.

[40] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization, CGO ’04,
pages 75–, Palo Alto, California, 2004.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 733

https://aws.amazon.com/message/41926
http://aws.amazon.com/message/65648
http://aws.amazon.com/message/65648
https://aws.amazon.com/message/680342
https://aws.amazon.com/message/680342
https://dba.stackexchange.com
https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919
https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919
http://googledevelopers.blogspot.com/2013/05/google-api-infrastructure-outage_3.html
http://googledevelopers.blogspot.com/2013/05/google-api-infrastructure-outage_3.html
https://status.cloud.google.com/incident/compute/16007?post-mortem
https://status.cloud.google.com/incident/compute/16007?post-mortem
http://googleblog.blogspot.com/2014/01/todays-outage-for-several-google.html
http://googleblog.blogspot.com/2014/01/todays-outage-for-several-google.html
http://blogs.msdn.com/b/windowsazure/archive/2013/01/16/details-of-the-december-28th-2012-windows-azure-storage-disruption-in-us-south.aspx
http://blogs.msdn.com/b/windowsazure/archive/2013/01/16/details-of-the-december-28th-2012-windows-azure-storage-disruption-in-us-south.aspx
http://blogs.msdn.com/b/windowsazure/archive/2013/01/16/details-of-the-december-28th-2012-windows-azure-storage-disruption-in-us-south.aspx
http://blogs.msdn.com/b/windowsazure/archive/2013/03/01/details-of-the-february-22nd-2013-windows-azure-storage-disruption.aspx
http://blogs.msdn.com/b/windowsazure/archive/2013/03/01/details-of-the-february-22nd-2013-windows-azure-storage-disruption.aspx
http://blogs.msdn.com/b/windowsazure/archive/2013/03/01/details-of-the-february-22nd-2013-windows-azure-storage-disruption.aspx
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://www.percona.com/blog
https://serverfault.com/questions/1029595/rds-mysql-insights-top-query-commit
https://serverfault.com/questions/1029595/rds-mysql-insights-top-query-commit
https://serverfault.com
https://www.serveradminblog.com/2014/01/slow-innodb-insertupdate/
https://www.serveradminblog.com/2014/01/slow-innodb-insertupdate/
https://github.com/akopytov/sysbench
https://www.theregister.co.uk/2017/08/06/cisco_meraki_data_loss
https://www.theregister.co.uk/2017/08/06/cisco_meraki_data_loss
http://aws.amazon.com/message/680587
http://aws.amazon.com/message/680587
https://www.twilio.com/blog/2013/07/billing-incident-post-mortem-breakdown-analysis-and-root-cause.html
https://www.twilio.com/blog/2013/07/billing-incident-post-mortem-breakdown-analysis-and-root-cause.html
http://arxiv.org/abs/2010.06356

[41] C. Li, S. Wang, H. Hoffmann, and S. Lu. Statically inferring perfor-
mance properties of software configurations. In Proceedings of the
Fifteenth European Conference on Computer Systems, EuroSys ’20,
Heraklion, Greece, 2020.

[42] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative
routing: Extensible routing with declarative queries. In Proceedings
of the 2005 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, SIGCOMM ’05, pages
289–300, 2005.

[43] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do Internet
services fail, and what can be done about it? In Proceedings of the
4th Conference on USENIX Symposium on Internet Technologies and
Systems (USITS), Seattle, WA, Mar. 2003.

[44] T. Osogami and T. Itoko. Finding probably better system configura-
tions quickly. In Proceedings of the Joint International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS
’06/Performance ’06, pages 264–275, Saint Malo, France, 2006.

[45] A. Rabkin and R. Katz. How Hadoop clusters break. IEEE Softw.,
30(4):88–94, July 2013.

[46] D. A. Ramos and D. Engler. Under-constrained symbolic execution:
Correctness checking for real code. In Proceedings of the 24th USENIX
Conference on Security Symposium, SEC’15, page 49–64, Washington,
D.C., 2015.

[47] A. Schüpbach, A. Baumann, T. Roscoe, and S. Peter. A declarative
language approach to device configuration. In Proceedings of the 6th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’11. ACM, March 2011.

[48] Y.-Y. Su, M. Attariyan, and J. Flinn. AutoBash: Improving configura-
tion management with operating system causality analysis. In Proceed-
ings of Twenty-first ACM SIGOPS Symposium on Operating Systems
Principles, SOSP ’07, pages 237–250, 2007.

[49] C. Tang, T. Kooburat, P. Venkatachalam, A. Chander, Z. Wen,
A. Narayanan, P. Dowell, and R. Karl. Holistic configuration manage-
ment at facebook. In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP ’15, pages 328–343, Monterey, California,
2015.

[50] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang. Automatic
misconfiguration troubleshooting with PeerPressure. In Proceedings
of the 6th Conference on Symposium on Opearting Systems Design &
Implementation, OSDI’04, pages 17–17, 2004.

[51] S. Wang, C. Li, H. Hoffmann, S. Lu, W. Sentosa, and A. I. Kistijantoro.
Understanding and auto-adjusting performance-sensitive configura-
tions. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’18, page 154–168, Williamsburg, VA, USA, 2018.

[52] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang, C. Yuan,
and Z. Zhang. Strider: A black-box, state-based approach to change
and configuration management and support. In Proceedings of the
17th USENIX Conference on System Administration, LISA ’03, pages
159–172, 2003.

[53] X. Wei, S. Shen, R. Chen, and H. Chen. Replication-driven live recon-
figuration for fast distributed transaction processing. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), ATC 17, pages 335–
347. USENIX Association, July 2017.

[54] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration debugging
as search: Finding the needle in the haystack. In Proceedings of
the 6th Conference on Symposium on Opearting Systems Design &
Implementation, OSDI’04, pages 6–6, 2004.

[55] B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and L. Zhang. A smart hill-
climbing algorithm for application server configuration. In Proceedings
of the 13th International Conference on World Wide Web, WWW ’04,
pages 287–296, New York, NY, USA, 2004.

[56] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy. Early
detection of configuration errors to reduce failure damage. In Proceed-
ings of the The 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’16, November 2016.

[57] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and
S. Pasupathy. Do not blame users for misconfigurations. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 244–259, 2013.

[58] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding
bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’11, page 283–294, San Jose, California, USA, 2011.

[59] T. Ye and S. Kalyanaraman. A recursive random search algorithm for
large-scale network parameter configuration. In Proceedings of the
2003 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’03, pages 196–
205, San Diego, CA, USA, 2003.

[60] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S. Pasu-
pathy. An empirical study on configuration errors in commercial and
open source systems. In Proceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles, SOSP ’11, pages 159–172,
2011.

[61] D. Yuan, Y. Xie, R. Panigrahy, J. Yang, C. Verbowski, and A. Kumar.
Context-based online configuration-error detection. In Proceedings of
the 2011 USENIX Conference on USENIX Annual Technical Confer-
ence, ATC’11, pages 28–28, 2011.

[62] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang,
T. Cheng, L. Liu, and et al. An end-to-end automatic cloud database
tuning system using deep reinforcement learning. In Proceedings of
the 2019 International Conference on Management of Data, SIGMOD
’19, page 415–432, Amsterdam, Netherlands, 2019.

[63] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and
Y. Zhou. EnCore: Exploiting system environment and correlation
information for misconfiguration detection. In Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, pages 687–700, 2014.

[64] Y. Zhu, J. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu, K. Song, and Y. Yang.
BestConfig: Tapping the performance potential of systems via auto-
matic configuration tuning. In Proceedings of the 2017 Symposium on
Cloud Computing, SoCC ’17, page 338–350, Santa Clara, California,
2017.

734 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Testing Configuration Changes in Context to Prevent Production Failures

Xudong Sun∗, Runxiang Cheng∗, Jianyan Chen, Elaine Ang, Owolabi Legunsen†, Tianyin Xu

University of Illinois at Urbana-Champaign †Cornell University

Abstract
Large-scale cloud services deploy hundreds of configuration
changes to production systems daily. At such velocity, con-
figuration changes have inevitably become prevalent causes
of production failures. Existing misconfiguration detection
and configuration validation techniques only check configu-
ration values. These techniques cannot detect common types
of failure-inducing configuration changes, such as those that
cause code to fail or those that violate hidden constraints.

We present ctests, a new type of tests for detecting failure-
inducing configuration changes to prevent production failures.
The idea behind ctests is simple—connecting production sys-
tem configurations to software tests so that configuration
changes can be tested in the context of code affected by the
changes. So, ctests can detect configuration changes that ex-
pose dormant software bugs and diverse misconfigurations.

We show how to generate ctests by transforming the many
existing tests in mature systems. The key challenge that we
address is the automated identification of test logic and oracles
that can be reused in ctests. We generated thousands of ctests
from the existing tests in five cloud systems.

Our results show that ctests are effective in detecting
failure-inducing configuration changes before deployment.
We evaluate ctests on real-world failure-inducing configura-
tion changes, injected misconfigurations, and deployed con-
figuration files from public Docker images. Ctests effectively
detect real-world failure-inducing configuration changes and
misconfigurations in the deployed files.

1 Introduction

1.1 Motivation
Large-scale cloud and Internet services evolve rapidly and
deploy hundreds to thousands of configuration changes to
production systems daily [35, 38, 53, 55]. For example, at
Facebook, thousands of configuration changes are committed
daily, outpacing the frequency of code changes [55]. Other
cloud services such as Google and Azure also frequently
deploy configuration changes [9, 10, 38].

The high velocity of configuration changes has led to preva-
lent configuration-induced failures. For example, faulty con-

∗Co-primary authors

figurations are the second largest cause of service disruptions
in a main Google production service [5]. At Facebook, 16%
of service-level incidents, including major outages [54], are
induced by configuration changes [55]. Similar levels of sever-
ity and prevalence of configuration-induced failures occur in
other cloud systems [19, 34, 40, 42, 74].

Based on our experience from analyzing hundreds of
configuration-induced incidents, failure-inducing configura-
tion changes are rarely caused by trivial mistakes (e.g., typos).
This rarity is attributed to the DevOps practices that enforce
change review and validation [6, 27, 55]. As a result, the root
causes of configuration-induced failures are often non-trivial;
they commonly reside in the program and not in the changed
configurations. Failures typically occur when valid configu-
ration changes expose dormant software bugs [55] and when
configuration changes violate undocumented, hidden config-
uration constraints. The root causes of the former are in the
program, while the latter are often due to configuration design
or implementation flaws [69]. Review and validation of con-
figuration changes alone can hardly detect failures resulting
from these root causes.

Researchers have proposed several configuration valida-
tion and misconfiguration detection techniques [70]. These
include new languages and frameworks for implementing
validators [6, 27, 55], detection techniques that use machine
learning and document analysis to infer correctness rules on
configuration values [38, 43, 44, 49, 50, 59, 61, 75, 77], and
type or constraint checkers [48, 67]. These techniques are
successful, but they are limited:

• Existing techniques only check configuration values and
cannot detect configuration changes that cause code to fail.

• Very few existing techniques can detect “legal misconfig-
urations” [71], which have syntactically and semantically
valid values but result in unexpected behavior.

• It is costly and hard for human-written or machine-learned
rules to check the often subtle, version-specific [78], and
inconsistent [69] configuration requirements.

1.2 Contributions
We present ctests, a new type of tests for detecting failure-
inducing configuration changes to prevent production failures.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 735

Ctests take a simple and effective approach—connecting soft-
ware tests with production system configurations. In this way,
ctests can test configuration changes in the context of code
that is affected by the changes. A ctest is parameterized by
a set of system configuration parameters. Running a ctest
instantiates each of its input parameters with a configuration
value from production or a value to be deployed to produc-
tion. Like regular software tests, ctests exercise system code
and assert that program behavior satisfies certain properties
(correctness, performance, security, etc). Ctests can be unit,
integration, or system tests.

Existing software testing techniques do not connect tests
to actual production system configurations. Rather, existing
testing techniques sample possible configurations through
systematic or random exploration of the enormous space
of configuration value combinations [37]. Systematic explo-
ration can be prohibitively expensive due to combinatorial
explosion [39], while random exploration can have a low
probability of covering all offending values that can cause
production failures. Ctests have neither the cost of systematic
exploration nor the low coverage of random exploration. By
connecting tests to production system configurations, ctests
can effectively detect failure-inducing configurations.

Ctests can test entire system configurations or incremental
configuration changes in the form of configuration file “diffs.”
Our ctest infrastructure (see §3) supports selectively running
only the ctests that are relevant to a configuration change,
instead of re-running all ctests. Selectively running ctests
saves testing time—most real-world configuration changes
modify only a few configuration values [55].

We show how to generate ctests by transforming the ex-
isting and abundant tests in mature software projects in an
automated fashion that reuses well-engineered test logic and
oracles. The main challenge that we address is the automated
identification of test logic and oracles that can be transformed
into ctests. Existing test logic may assume specific configu-
ration values. Such assumptions can be implicit (assuming
default values) or explicit (hardcoding certain values). Thus,
naïve parameterization will not always generate valid ctests.

Our transformation identifies and respects the intent of ex-
isting tests that assume specific configuration values. First,
configuration parameters whose values are explicitly re-
assigned in the test code are excluded from the input pa-
rameter set of a ctest. Then, the values of the parameters used
in candidate ctests are varied to observe the corresponding
test output. We exclude parameters whose values are hard-
coded in a test because such tests will fail on different but
valid values. Our tests-to-ctests transformation is mechanized
in a toolchain and we successfully generated 7,974 ctests by
transforming the existing test suites in five cloud systems.

Ctests address the following limitations of existing config-
uration validation and misconfiguration detection techniques:

• Ctests can detect failure-inducing configuration changes
where the root cause of the failure is in the code.

• Ctests can detect legal misconfigurations by capturing the
resulting unexpected system behavior.

• Ctests can be generated from existing tests, without incur-
ring the high cost of learning or codifying rules.

Our results show that ctests can effectively detect failure-
inducing configuration changes before deploying them
to production. We evaluated ctests using 64 real-world
configuration-induced failures, 1,055 diverse misconfigura-
tions generated by error injection rules, and 92 deployed con-
figuration files from publicly-available Docker images.

Ctests detected the failure-inducing configurations in
96.9% of the real-world failures. The ctests that detected
these real-world failures were transformed from the tests in
the older version of the systems on which the failures were
reported. That is, ctests could have detected these failures ear-
lier. Ctests also detected 10 misconfigurations in 7 deployed
files. Additionally, our ctest generation process exposed 14
previously unknown bugs, including a bug that users encoun-
tered after we reported it [24]. Developers confirmed 12 of
these 14 bugs and fixed 10 of them.

In summary, this paper makes the following contributions:

• Ctests enable a simple and effective approach for detecting
failure-inducing configuration changes.

• We present how to generate ctests by transforming the
many existing tests in mature systems.

• We show that ctests can effectively detect real-world
configuration-induced failures early, during testing.

2 Background and Examples
We describe how ctests address the limitations of existing tech-
niques for validating configuration values [6, 27, 48, 55, 67]
and techniques for detecting specific types of misconfigura-
tions [38, 43, 44, 49, 50, 59, 61, 62, 75, 77].

Checking configurations based on program behavior. A
key capability of ctests is to check how actual configuration
values impact program behavior. This capability is essential
for detecting configuration changes that result in code failures
or expose dormant bugs. In our experience, checking program
behavior can be more effective in capturing failure-inducing
configuration changes than checking configuration values
against rules (which are usually incomplete).

Figure 1 uses a real-world issue from HBase [21] to illus-
trate the capability of ctests. There, a ctest detects a miscon-
figuration that degrades performance (“too many handlers
can be counter-productive [56]”). The ctest is generated from
an existing test in the reported HBase version. It asserts on
the computed schedule with the expected behavior that han-
dler counts are not affected by configuration changes. The
offending value is “legal” [71] but the reported version had
no validation code to check the expected behavior.

736 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Configuration Change:
- hbase.ipc.server.callqueue.handler.factor = 0.1
+ hbase.ipc.server.callqueue.handler.factor = 2

public void testRpcScheduler() { ...
RpcScheduler scheduler = new SimpleRpcScheduler(conf);

scheduler.dispatch(...);

assertEquals(...);

}

@Ctest /* Generated from hbase/ipc/TestSimpleRpcScheduler.java */

AssertionError (the assertion is on a
schedule calculated based on the declared
handler count)

Impact: The misconfiguration caused unexpected behavior: the
resulting handler count degraded performance.

...

Initialize an RPC server using conf

...

...

The value range should be in range [0, 1].

Figure 1: A ctest that detects a real-world misconfiguration in
HBase [21] by checking expected system behavior. The ctest is
generated from a test available in the reported HBase version.

Configuration Change:
- hadoop.security.authorization = false
+ hadoop.security.authorization = true

public void testRefreshCallQueueProtocol() { ...
assertTrue(isMethodSupported("refreshCallQueue"));

}

@Ctest /* Generated from hdfs/TestIsMethodSupported.java */

AuthorizationException: Protocol interface
RefreshCallQueueProtocol is not known.

Impact: The configuration change caused a latent failure
manifested only upon callqueue refresh operations at runtime.

...

/* ipc/Server.java */

Root cause: The configuration change drives the execution to
a new branch where an unknown bug is exposed.

public void authorize(...) {
if (authorize) {
...

}
}

authorize = conf.getBoolean(
“hadoop.security.authorization”);

...

Figure 2: A ctest that detects a dormant bug exposed by a con-
figuration change in Hadoop [20]. The ctest is generated from a
test available in the reported Hadoop version.

Detecting dormant bugs exposed by valid configuration
changes. Ctests can detect not only misconfigurations but
also software bugs exposed by valid configuration changes.
Such bugs are common root causes of configuration-related
incidents (§1.1). Existing configuration validation and mis-
configuration detection techniques only check for erroneous
configuration values; they are fundamentally limited to detect-
ing failures with root causes outside the changed configura-
tions. Such software bugs inevitably occur, despite extensive
testing and static analysis. Some bugs can only be exposed
under specific configurations. Figure 2 shows a real-world
failure from Hadoop [20]. A failure-inducing configuration
change caused Hadoop to traverse new execution paths and
exposed a dormant software bug.

Detecting diverse misconfigurations. Many existing tech-
niques focus on detecting specific kinds of misconfigurations.
Ctests are generic. They can detect configuration changes
that lead to any kind of unexpected program behavior. So
ctests can detect misconfigurations that are hard for state-of-

the-art techniques to detect. Such misconfigurations involve
(1) custom regular expressions, user commands, and URIs
(statistical analyses and machine learning can detect outliers
but cannot deal with custom values [67]), (2) invalid content
referred to by path-related configurations (most existing tech-
niques only check metadata), (3) violations of undocumented
constraints that cannot be found by text-based document anal-
ysis [44, 59, 65], and (4) dependencies among multiple con-
figuration parameters [12]. Figures 8 and 9 show examples
of misconfigurations detected by ctests that are hard to detect
using existing techniques.

Incremental pre-deployment testing for every configura-
tion change. Ctests can help prevent failure-inducing config-
uration changes from being deployed to production systems.
The goal of ctests is to test every configuration change early,
during testing. Ctests can be run selectively on configuration
file “diffs” to save testing time (§3.2). Ctests do not suffer
from limitations of post-deployment configuration checking
(e.g., disallowing operations with side effects to avoid cor-
rupting production system states as in PCheck [67]).

3 Ctest Overview
The idea behind ctests is to connect production system con-
figurations to software tests, enabling the checking of config-
uration changes against program properties in the context of
code affected by the configuration changes. Ctests detect both
misconfigurations caused by assigning invalid values to con-
figuration parameters and bugs in the code that are exposed
by changing configuration parameters to new valid values.

3.1 Ctest Definition

A ctest, t̂(P̂), is a test t̂ that is parameterized by a set of system
configuration parameters P̂. Running a ctest instantiates each
parameter p ∈ P̂ with a concrete value. In particular, each
p ∈ P̂ in a ctest can be instantiated with a value from the
production system configuration or a configuration change
(in the form of a configuration file “diff”) to be deployed.
Note that P̂ is typically only a very small subset of all system
configuration parameters, denoted as P. That is, |P̂| � |P|.

Ctests can be unit, integration, or system tests. Like regular
software tests, a ctest can assert on different kinds of program
properties: correctness, performance, security, etc. Ctests can
be written from scratch by developers, or they can be gen-
erated from existing software tests (see §4). Our generation
procedure reuses test logic and assertions in existing tests
during transformation to ctests.

3.2 Ctest Usage

Ctests can check an entire system configuration, a configura-
tion change, or a configuration file. So, ctests can be used both
as a traditional configuration file checker and as an enabler
of configuration checking during continuous integration and

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 737

deployment [52]. Ctests are complementary to configuration
validation, similar to how software testing complements static
analysis for bug detection.

Ctests for checking entire system configurations. We de-
fine a system configuration as the values of all configuration
parameters in the system denoted as C =

⋃
i=1..|P|{(pi 7→ vi)}

(it assigns a value vi to every parameter pi in P). Running a
ctest, t̂(P̂), instantiates each parameter pi ∈ P̂ with its value
in the system configuration vi such that (pi 7→ vi) ∈ C. To
test the system configuration, C, all available ctests are run. C
passes if all ctests pass and fails if any ctest fails.

Ctests for checking configuration changes. In modern con-
tinuous integration and deployment, a configuration change
has the form of a configuration file “diff”. A diff typically
only changes the values of a small set of configuration pa-
rameters, PD [55]. It updates the system configuration from
C to C′ by changing each pd ∈ PD’s value from vd to v′d . For-
mally, we define a configuration diff D = {(pd 7→ v′d) | pd ∈
PD and (pd 7→ vd) ∈C and vd 6= v′d}.

For a given diff D, a ctest t̂(P̂) can be used to test D if
at least one configuration parameter in D is in its input pa-
rameter set P̂ (i.e., if PD∩ P̂ 6= /0). We use this test selection
criterion to re-run only the subset of ctests whose outcome
could be altered by D, instead of re-running all ctests after
every configuration change.

A selected ctest t̂(P̂) can be run before deploying D to pro-
duction by assigning values in D to the ctest’s parameters that
are in D and assigning values in C to the ctest’s parameters
that are not in D. Precisely, assign v′d to each pd ∈ P̂∩PD,
where (pd 7→ v′d) ∈ D; then, assign v to each p ∈ P̂− PD,
where (p 7→ v) ∈ C. Ctests with P̂∩PD = /0 do not need to
be run when testing D. A configuration diff, D, passes if all
selected ctests pass and fails if any selected ctest fails.

Ctests for checking configuration files. A configuration file
typically only assigns values to a subset of P. Parameters
whose values are not assigned in the configuration file receive
their default values. So, ctests treat a configuration file as a
diff which updates the default system configuration with the
configuration values that are set in the file.

Locating offending configuration values. If a ctest is newly
failing on a configuration diff, D, then the offending parame-
ters must be in P̂∩PD, unless the tests are flaky [8]. Parame-
ters in D are typically very few, e.g., 49.5% of configuration
changes have two-line revisions [55]. We discuss our experi-
ence on inspecting ctest failures in §7.

3.3 Creating a Ctest Infrastructure

Ctest infrastructure can be built on top of existing software
testing frameworks. Specifically, a ctest can be run in the
same way as a regular software test by instantiating the test’s
input parameters with system configuration values. We built
our current ctest infrastructure on top of the Maven build sys-

tem [36]—all the systems that we study use Maven to compile
and run their test suites (§5.1). It should be straightforward to
extend our infrastructure to support other build systems such
as Gradle [16], Bazel [7], and Buck [11].

Ctests should be run in a hermetic test environment (a com-
mon software testing practice [41]). Ctests are best run in the
same environmental setup as in production because ctests can
capture environment-specific, configuration-induced failures
(e.g., Figure 8). Our current infrastructure supports running
ctests in Linux containers.

Ctest selection. Ctest selection is critical for utilizing ctests
during continuous integration and deployment of configura-
tion diffs. Regression test selection, which reruns tests that
are affected by code changes [17], does not work for configu-
ration changes. We build our ctest selection mechanism using
the test selection criterion described in §3.2; it only runs ctests
that are parameterized by parameters in D.

Configuration versioning. We store the latest version of the
system configuration C to be updated after a configuration
diff passes ctest and is deployed (§3.2). So, our infrastructure
can instantiate ctests with updated parameter values in C.

4 Ctest Generation
Ctests can be generated by transforming existing tests in
mature software projects with reasonable manual effort. The
generated ctests inherit test logic and assertions from the
original tests. The inherited assertions hold for all correct
configuration values.

Ctest generation proceeds in two steps. First, the existing
tests are parameterized by system configuration parameters,
so that they can be run against different system configurations
(§3.2). We describe in §4.1 how to parameterize an existing
test t to obtain t̂(P) (or t̂ in short), where P represents all the
configuration parameters of the target system. Second, the
parameterized tests are transformed into ctests.

A parameterized test t̂ may not be directly usable as a ctest
if the original test t contains test logic or oracles that assume
specific configuration values. The resulting parameterized
test t̂ may fail incorrectly on valid configuration values if the
subsequently resulting ctest is run against new values that
are not the assumed values. So, if t̂ assumes specific values
of a configuration parameter p ∈ P, t̂ cannot be a ctest for p.
But t̂ can still be a ctest for another independent parameter,
say q ∈ P, if t̂ does not assume a value for q. In short, if t̂
assumes a value for p but not for q, t̂ can result in a ctest for q
but not for p. We address the challenge of identifying, among
all configuration parameters exercised by t̂, those that can be
included in the input parameter set P̂ of the resulting ctest
t̂(P̂). In this example, q ∈ P̂ and p /∈ P̂. We describe in §4.2
how to identify P̂ from P when generating a ctest t̂(P̂) from t̂.

One can optionally rewrite generated ctests to allow gener-
ated ctests check more configuration parameters or to generate

738 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 static {
2 ...
3 addDefaultResource("core-default.xml");
4 addDefaultResource("core-site.xml");
5 + addDefaultResource("core-ctest.xml");
6 }
7 /* conf/Configuration.java */

Figure 3: Parameterization by intercepting the configuration
APIs of Hadoop. After the interception, test code reads configu-
ration values from core-ctest.xml which is managed by our ctest
infrastructure. In this way, the test code can be instantiated with
values in core-ctest.xml.

new ctests. §4.3 presents two simple rewriting rules for deal-
ing with hardcoded parameter values and assertions.

In summary, given tests T = {ti | i = 1,2, ...,N f}, we gen-
erate a set of ctests T̂ = {t̂i(P̂i)}, where |T̂ | ≤ |T |. For each
ctest t̂i(P̂i), t̂i is the parameterized test and P̂i is the set of
configuration parameters that can be tested by the ctest. Each
ctest is generated from an existing test and checks one or
more parameters. To test to-be-deployed configurations, a
ctest instantiates all its input parameters.

Developer effort. To generate ctests from existing tests, de-
velopers need to instrument the configuration APIs of the
system. We discuss instrumentation in §4.1 and §4.2.1. After
instrumentation, ctest generation is mechanized.

4.1 Parameterization
The first step in generating ctests is to parameterize an existing
test t into t̂. so that t can be run by instantiating the parameters
with actual system configuration values. Parameterization
requires changing test code to read configuration values at
runtime, as provided by ctest infrastructure (§3.3), instead of
from default configuration files or other test files. To generate
large numbers of ctests, parameterization is automated.

We find that systematic parameterization can be done by
intercepting the configuration APIs that existing tests use
for reading configuration values. Figure 3 exemplifies our
interception of Hadoop’s configuration API. The idea is to
overwrite configuration values as the final step of configura-
tion loading. Thus, when the test code reads configuration
values from configuration APIs, the values come from the con-
figurations maintained by the ctest infrastructure (§3.3). Our
parameterization approach minimizes the changes needed and
avoids changing individual tests. Our approach is applicable
to many (if not all) modern cloud systems, but its implemen-
tation is project-specific. We implemented parameterization
for five cloud systems (§5.1) and validated its applicability to
other systems including Spark and OpenStack.

The parameterization step produces a parameterized test,
t̂(P), for each test t, where P is the set of all system config-
uration parameters. Parameterization is oblivious of the set
of configuration parameters exercised by each t̂; these are
automatically identified in §4.2.1.

4.2 Transformation
A parameterized test t̂(P) may not be a valid ctest—a ctest’s
parameter set P̂ should include only configuration parameters
that can be checked by the ctest—the test logic and oracles
should not assume specific parameter values.

Transforming a parameterized test into a ctest consists of
(1) identifying the set of configuration parameters that are
exercised by each test t, denoted as P (§4.2.1), and (2) for
each p ∈ P, determining whether the test logic and oracle of t
assume any specific value of p; if so, p /∈ P̂ (§4.2.2). Figure 4
shows ctest generation process that transforms from t to t̂(P̂).

t

Original Test

t̂(P) t̂(P) t̂(P̂)

Ctest

Parameterization
(§4.1)

Parameter Identification
(§4.2.1)

Ctest Generation
(§4.2.2)

Figure 4: Steps in the ctest generation process.

4.2.1 Identifying Parameters Exercised in Tests
Static or dynamic analysis can be used to identify P for each
test t. We implemented and experimented with both. Our static
analysis taints the statements that can be reached by t and
searches for configuration API usage (§4.1) among the tainted
statements. It was straightforward to identify configuration
API usages in test code. But, since test code commonly passes
configuration values to system code initialization, it is hard to
precisely collect the exact configuration API usage in system
code that may be reachable from tests. So, static analysis
often imprecisely produces a parameter set larger than P.

We chose dynamic analysis under the assumption that most
test cases are relatively deterministic [15]. Our dynamic anal-
ysis requires developers to instrument configuration GET and
SET APIs for reading and writing configuration values in the
target system, respectively.1 Our instrumentation inserts code
to log the stack trace of each API invocation and the config-
uration parameter involved. Figure 5 is an example of our
instrumentation for Hadoop. With instrumentation in place,
our dynamic analysis runs all existing tests and post-processes
the log for each test t to automatically identify (1) the set of
configuration parameters P exercised by t, and (2) parameters
written (via the SET API) in t (needed in §4.2.2).

Log processing is automated, as our instrumentation pro-
duces easily-parsed output. Our dynamic approach is simple,

1The GET and SET APIs are common configuration abstractions used
in cloud systems written in Java and Python [33, 48, 67, 69]. GET APIs are
of the form, “<T> get(Class<T> class, String parameter)”; they
take a parameter name and return a value. SET APIs are of the form, “void
set(Class<T> class, String parameter, <T> value)”; they reset
the original value of the given parameter with the input value. Typically, get
and set are declared in wrapper classes such as java.util.Properties
for Java and configparser for Python projects.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 739

1 public String get(String name) {
2 + String ctestParam = name;
3 String[] names = handleDeprecation(
4 deprecationContext.get(), name);
5 String value = null;
6 for(String n : names) {
7 + ctestParam = n;
8 value = substituteVars(
9 getProps().getProperty(n));

10 }
11 + LOG.warn("[CTEST][GET-API] " + ctestParam);
12 + CTestUtils.printStackTrace(ctestParam);
13 return value;
14 }
15 /* conf/Configuration.java */

Figure 5: Example Instrumentation for a GET API in HCom-
mon. The get method is the lowest level API used by high-level
GET APIs, e.g., getInt and getBool. handleDeprecation han-
dles deprecated parameters. SET APIs are instrumented similarly.

general, and reliable, requiring modest instrumentation effort
(§5.1). Instrumentation of configuration APIs is performed
during ctest generation. Instrumentation is neither performed
when running ctests nor added to the production system.

For completeness, we consider a test to exercise a parameter
if the test uses the parameter’s value as it executes. We do not
exclude tests based on potential effectiveness for exposing
misconfigurations or bugs. In general, such effectiveness is
hard to define or model. Our decision is also justified because
GETAPI invocations alone can expose misconfigurations (e.g.,
those due to type-casting errors [26]) or bugs (e.g., those
caused by failing to trim white space [25]).

4.2.2 Generating Parameter Sets for Ctests
For each test t̂(P) that is parameterized after the steps in §4.1
and §4.2.1, our toolchain automatically generates the ctest
t̂(P̂) by filtering out configuration parameters in P− P̂:

Respecting intended configuration resets. If a test explic-
itly resets a configuration parameter to a specific value, then
the test logic or its oracle depends on the new value. So, the
test cannot be applied to other valid values of the configuration
parameter. Our tool automatically identifies all configuration
parameters whose values are reset in a test t. It does so by
parsing the logs generated by instrumented SET APIs (§4.2.1)
and excluding parameters that are reset from P. Note that
we do not exclude configuration parameters from P that are
reset in the system (not test) code. System code can reset
configuration values in ways that should not impact ctests,
e.g., during dynamic configuration tuning.

Detecting implicit assumptions on configuration values.
In practice, not all parameter resets are performed using SET
APIs. Some tests implicitly assume specific parameter values.
Most tests with such implicit assumptions expect default pa-
rameter values and do not set them explicitly. If the default
value is unchanged, then the tests pass. Although such assump-

tions constitute bad software engineering practice (“brittle
assertions” in the literature [28]), we observe many such cases
in the existing test code. Therefore, we automatically iden-
tify and exclude from P̂ the parameters on which tests have
implicit assumptions.

Our intuition is that, if a test assumes specific values, then
it will fail on different but valid values. That is, if p ∈ P̂, then
t̂ should pass on all valid values of p. So, a configuration pa-
rameter on which a test makes an implicit assumption can be
identified by assigning a different valid value to the parameter
and observing the outcome of the existing test.

Our implementation validates whether t̂ makes implicit
assumptions on each p ∈ P by running t̂ with p instantiated
with a few valid values. If t̂ fails on a valid value, then t̂ makes
an assumption on the value of p, i.e., p /∈ P̂. In our experience
in generating thousands of ctests (§5), using up to three values
for validation is sufficient to identify configuration parameters
on which tests make implicit assumptions.

We use heuristics to automatically generate values for vali-
dation from the default value of each configuration parameter,
based on the parameter types. For numeric types, we halve
and double the original value. For Boolean values, we use the
negation. For environment-related values (e.g., path, address,
and port), we generate a similar but different value (e.g., a dif-
ferent port number). We use the regular expression described
in [77] to infer parameter value types.

These heuristics are not sound; they do not guarantee the
validity of generated values. However, the heuristics are sim-
ple and practical—only 1.6% of the generated values were
invalid due to hidden constraints (§5.3). Our heuristics could
not generate valid values for about 16% of parameters: enum
options, class names, and commands. We manually selected
valid values in these cases. Our future work includes integrat-
ing advanced inference tools [44, 47, 69] to infer valid values
for these parameter types.

The validation yields P̂ for each parameterized t̂ trans-
formed from t. If P̂ 6= /0, t̂(P̂) is a ctest for all p ∈ P̂.

4.3 Rewriting
In addition to the generated ctests, one can optionally manu-
ally rewrite an existing test to create a new ctest or rewrite a
generated ctest to check more configuration parameters. We
find two common patterns for rewriting, exemplified in Fig-
ure 6. First, many configuration resets in test code are used for
setting up the test environment, e.g., a test file, address, port,
etc. Those resets are not needed in ctests which are run with
actual environment variables. Figure 6a shows this rewriting
pattern. There, by simply removing the reset, the ctest can
check alluxio.master.rpc.port’s values. Note that remov-
ing hardcoded resets may require changing how the test reads
the configuration values, if the test code does not use stan-
dard APIs (discussed in §5.4). Second, some assertions in
the test code assume the default configuration values (§4.2.2)
which can be safely removed or rewritten to the actual values

740 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 @Ctest
2 void testStartStopPrimary() {
3 - conf.set("alluxio.master.rpc.port",
4 - TEST_PORT);
5 master = new AlluxioMasterProcess(conf);
6 master.start();
7 ...
8 }
9 /* master/AlluxioMasterProcessTest.java */

(a) Removing hardcoded resets. After removing the
conf.set() call, the alluxio.master.rpc.port parame-
ter’s value comes from system configuration. The rewritten ctest
can then test alluxio.master.rpc.port.

1 @Ctest
2 void testNameNodeXFrameOptionsEnabled() {
3 ...
4 header = conn.getHeaderField(
5 "X-FRAME-OPTIONS");
6 ...
7 assertTrue(header.endsWith(
8 - HttpServer.XFrameOption.SAMEORIGIN));
9 + conf.getTrimmed("dfs.xframe.value")));

10 }
11 /* namenode/TestNameNodeHttpServerXFrame.java */

(b) Rewriting hardcoded assertions. The rewritten ctest asserts
on the actual value of the dfs.xframe.value parameter not its
default value (SAMEORIGIN).

Figure 6: Two common patterns of test rewrites (§4.3).

being tested, as shown in Figure 6b. For both patterns, test
code is rewritten to read values from the system configuration
without changing the test logic.

5 Generating Thousands of Ctests
We share our experience in generating over 7900 ctests by
transforming existing tests in five mature and widely-used
open-source cloud systems: HCommon (Hadoop runtime and
core utilities), HDFS, HBase, ZooKeeper, and Alluxio. We
chose these projects for our evaluation (§6) because they are
widely studied, their configuration APIs represent the state-
of-the-art in modern cloud systems, and they expose many
configuration parameters (Table 1). We discuss the feasibility
of, and opportunities for, generating ctests in practice.

5.1 Evaluated Systems and their Test Suites

Table 1 shows the characteristics of the cloud systems that
we studied: tests, configuration parameters, and how much
instrumentation we performed.

Instrumentation effort. Our system-specific instrumentation
is modest because each system uses a few classes to imple-
ment the configuration APIs. In the worst case, we changed
only three classes each in ZooKeeper and Alluxio (“# Class”
column in Table 1). It takes more lines of instrumentation for
ZooKeeper than the others, because the GET and SET APIs

Software Test Coverage # Config. Instrum.
Stmt Cov. Meth Cov. Params LoC # Class

HCommon (2.8.5) 73.1% 74.0% 269 24 1
HDFS (2.8.5) 80.3% 79.6% 296 24 2
HBase (2.2.2) 69.5% 80.1% 205 29 2
ZooKeeper (3.5.6) 75.8% 84.3% 32 130 3
Alluxio (2.1.0) 70.8% 72.6% 515 34 3

Table 1: Characteristics of studied systems (test suites, configu-
ration parameters, and instrumentation efforts). The instrumen-
tation includes both parameterization (§4.1) and logging (§4.2.1).

Software Module # Tests # Config. Param.
Total Using Config. Total Used in Tests

HCommon hadoop-common 3268 1923 (58.8%) 269 232 (86.2%)
HDFS hadoop-hdfs 3957 3293 (83.2%) 296 284 (95.9%)
HBase hbase-server 2630 2035 (77.4%) 205 169 (82.4%)
ZooKeeper zookeeper-server 881 180 (20.4%) 32 32 (100.0%)
Alluxio core 1648 1117 (67.8%) 515 423 (82.1%)

Table 2: Characteristics of configuration parameters exercised
in software tests of the studied systems.

are implemented per configuration parameter;2 the other four
systems implement generic APIs as exemplified in Figure 5.

Test suites. The studied systems all have a good number of
tests, mostly at the unit- and integration-test levels. System-
level tests are rare, reflecting a common testing practice in
modern systems engineering [60]. Further, all five projects
enforce rigorous code commit policies that require every code
change to be covered by a test. Code coverage is high (“Test
Coverage” in Table 1), with at least 70% statement coverage.
Proprietary systems report even higher test coverage [29, 51].

We focus on the core modules of the studied systems
(“Module” in Table 2), which are likely to be used in pro-
duction. In the rest of this paper, we only use the tests in the
studied modules, even though tests in the other modules can
also be leveraged during ctest generation.

Table 2 shows the percentage of existing tests per mod-
ule that exercise configuration values (“Using Config.”) and
the percentage of configuration parameters exercised by tests
(“Used in Tests”). We collected these percentages from instru-
mented configuration API logs (see §4.2.1). Clearly, many
tests exercise configuration values and are candidates that
can be transformed into ctests. Furthermore, 82.1%–100.0%
of configuration parameters across the studied systems are
exercised by existing tests. So, most configuration parameters
have a chance of being checked by a generated ctest (§5.2).

5.2 Ctest Generation Results
We apply the automated approach in §4.2 to generate ctests
from the existing tests in the evaluated systems. We select
all 32 configuration parameters in ZooKeeper. For the other

2We are helping ZooKeeper to improve their APIs (e.g., [81]); using
ZooKeeper shows applicability of ctests across configuration APIs.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 741

Software Existing Tests Generated Ctests
Param. Tests → Ctests #Param. (Cov.)

HCommon 90 1870 → 1846 (98.7%) 90 (100.0%)
HDFS 90 3191 → 3148 (98.7%) 90 (100.0%)
HBase 90 1909 → 1687 (88.4%) 90 (100.0%)
ZooKeeper 32 180 → 176 (97.8%) 32 (100.0%)
Alluxio 90 1117 → 1117 (100.0%) 90 (100.0%)

Table 3: Ctest generation results. The results include only gener-
ated ctests (§4.2). The generated ctests have 100% coverage of the
configuration parameters.

systems, we randomly select 90 configuration parameters
that are exercised by the tests (“Used in Tests” in Table 2).
Note that we sampled 90 parameters mainly to bound our
manual inspection effort for analyzing effectiveness and false
negatives (Tables 8 and 9). The generation process is mostly
automated after API instrumentation.

Table 3 shows ctest generation results. Overall, 88.4%–
100% of existing tests that exercise the selected configuration
parameters were successfully transformed into ctests. Fur-
thermore, the generated ctests cover 100% of the selected
parameters, i.e., each parameter is checked by at least one
ctest. The small percentage of tests that could not be trans-
formed as ctests were hardcoded to specific values of all the
parameters that they exercise—a ctest is generated as long
as it can check at least one configuration parameter. Sec-
tion 6 discusses the effectiveness of the generated ctests for
detecting failure-inducing configurations in different settings.

5.3 Detecting Bugs and Hidden Constraints
Some valid configuration values caused ctests (§4.2.2) to un-
expectedly throw runtime exceptions instead of the failed
assertions that are typical manifestations of hardcoded tests.
We analyze these exceptions and find, surprisingly, that most
are caused by (1) previously unknown bugs in the code ex-
posed by configuration changes, or (2) hidden constraints
which made seemingly valid configuration values erroneous.
We include these ctests which are effective in capturing bugs
and misconfigurations in our evaluation.

Dormant bugs exposed by configuration changes. We find
14 previously unknown bugs in the latest versions of the five
evaluated systems. 12 of those bugs are confirmed and 10
were fixed by the developers after we reported them; 9 bugs
are considered “Major” or “Critical”. Real users encountered
a bug after we reported it [24]. 12 of the 14 bugs existed for
more than five years in these projects that routinely run static
analyses and perform testing. Figure 7 shows one of these
bugs, in which changing the value of the parameter to a valid
option TopAuditLogger will crash the NameNode of HDFS
because a default constructor is required but not implemented.

Hidden configuration constraints. We also discovered 11
hidden constraints that cause the generated values to result
in errors. We say these constraints are “hidden” because they

public void testStartupSafemode() {

fsn = new FSNamesystem(conf, fsImage);

}

FSNamesystem(Configuration conf, FSImage fsImage) {...
className = conf.get("dfs.namenode.audit.loggers");
logger = Class.forName(className).newInstance();
...

}

...

NoSuchMethodException
(BUG: TopAuditLogger has no

default constructor)
/* namenode/FSNamesystem.java */

@Ctest /* Generated from namenode/TestFSNamesystem.java */

Configuration Change
- dfs.namenode.audit.loggers = DefaultAuditLogger
+ dfs.namenode.audit.loggers = TopAuditLogger

...

Figure 7: A new bug that was exposed by a valid configuration
change and was captured by a ctest [23]. The bug crashes HDFS
NameNode due to missing a default constructor. The bug has been
fixed after we reported it.

Hidden Constraints
hbase.http.max.threads’s value has to be larger than the number of
threads needed by an external library (which is machine-dependent).

public void testGetMasterInfoPort() {...}
@Ctest /* Generated from hbase/TestInfoServer.java */

HBase used 5 threads
but 6 is needed by jetty./* jetty-server-9.3.27.v20190418.jar */

protected void doStart() {
if (needed > max)
throw new IllegalStateException(String.format(
“Insufficient threads...”));

}

max = conf.getInt(“hbase.http.max.threads”);
/* http/HttpServer.java */

...

Configuration Change
- hbase.http.max.threads = 10
+ hbase.http.max.threads = 5

Figure 8: A hidden constraint exposed by a ctest. The configura-
tion of HBase is constrained by an external library (Jetty).

were not documented and are not intuitive to discover. Fig-
ure 8 is an example of a hidden constraint—the configuration
parameter of HBase is constrained by an external library, Jetty.
Any configuration value that is smaller than the needed vari-
able’s value in Jetty will cause a runtime exception.

5.4 Rewriting Ctests
We further study the intended configuration resets in test code
(§4.2.2) to understand the opportunities and challenges of
rewriting tests. We focus on environment-related configura-
tion parameters—as discussed in §4.3, tests often reset con-
figuration values to set up test environments, which are not
needed by ctests. For this study, we selected 44 configuration
parameters with hardcoded environment settings, including
all four from ZooKeeper and 10 from the other four systems.
There are altogether 263 tests that reset at least one of the 44
parameters; 233 of these tests were transformed to generate
ctests but those ctests cannot check the reset parameters. The
233 generated ctests cover all 44 parameters (Table 3).

742 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

We manually applied the two test rewriting rules described
in Figure 6 to these 263 tests. Removing hardcoded resets
alone (Figure 6a) can enhance 86 tests for ctests to cover
8 parameters. Further, by removing or rewriting hardcoded
assertions (Figure 6b), we can enhance 16 more tests. In total,
the two test rewriting rules can cover 102 (38.8%) tests for
18 out of 44 parameters. The remaining tests either cannot
benefit from rewriting, or require significant changes beyond
the two simple patterns in Figure 6.

The test rewriting effort was small in HCommon, HDFS,
HBase, and Alluxio for which we rewrote 33 tests for 16
parameters using a total of 90 changed lines. Rewriting a
test in these four systems takes only two or three lines of
test code (Figure 6). The rewriting effort was much larger
in ZooKeeper, mainly because ZooKeeper does not utilize
similar configuration APIs (§5.1) as other systems—the test
code does not use SET APIs to reset the parameter value as in
Figure 6a. So, we wrote a new API to load actual configuration
values into the tests; our implementation has 14 lines of code.
With our new API, we were able to rewrite 69 tests for two
parameters, which takes a total of 103 changed lines.

6 Evaluation of Ctest Effectiveness
We used three experimental settings to extensively evaluate
ctests’ effectiveness for testing configurations in context:

1. real-world configuration-induced failures documented
in issue tracking databases;

2. diverse injected misconfigurations for configuration pa-
rameters that have different value types and semantics;

3. non-default configuration files collected from Docker
images hosted at DockerHub [14].

6.1 Evaluating Ctests on Real-world Failures
We evaluate the effectiveness of ctests for detecting failure-
inducing configurations that caused real-world failures. Our
goal is to see how many of these failures ctests could have
been detected earlier.

Configuration-induced failures used. We reproduced 64
real-world configuration-induced failures from the issue-
tracking database of the five systems (Table 4). Each fail-
ure was reported by real system users and was caused by a
configuration change (i.e., a value different from the default
was used). These 64 failures have diverse root causes, in-
cluding 51 misconfigurations and 13 software bugs exposed
by valid configuration changes.3 We collected failures from
issue-tracking systems instead of user forums or mailing lists
because: (1) failures recorded in issue-tracking databases tend
to have had large impact, and (2) issue-tracking databases
rigorously record the version of the systems on which the

3For seven failures, misconfigurations triggered bugs in the code. We
categorize them as “misconfigurations” in Table 4.

Software Misconfigs Bugs (Valid Configs) Total

HCommon 11 (84.6%) 2 (15.4%) 13
HDFS 21 (95.5%) 1 (4.5%) 22
HBase 8 (61.5%) 5 (38.5%) 13
ZooKeeper 8 (66.7%) 4 (33.3%) 12
Alluxio 3 (75.0%) 1 (25.0%) 4

Total 51 (76.9%) 13 (20.3%) 64

Table 4: Statistics on real-world configuration-induced failures
from issue-tracking databases used in ctest evaluation.

Root Cause # Failures # (%) Detected by Ctests
Gen Only Gen + Rewrite

Misconfigurations 51 41 (80.4%) 51 (100.0%)
` Corrupt config files 3 3 (100.0%) 3 (100.0%)
` Value type errors 3 3 (100.0%) 3 (100.0%)
` Out-of-range values 12 11 (91.7%) 12 (100.0%)
` Value semantic errors 22 16 (72.7%) 22 (100.0%)
` Dependency violations 10 7 (70.0%) 10 (100.0%)
` Resource violations 1 1 (100.0%) 1 (100.0%)

Bugs exposed by valid config 13 10 (76.9%) 11 (84.6%)

Total 64 51 (79.7%) 62 (96.9%)

Table 5: Ctest effectiveness in detecting real-world configura-
tion-induced failures of various root-cause types. Most types are
self-explanatory; value semantic errors refer to misconfigurations
that violate the semantics of the configuration parameter, including
invalid file paths, URI, IP addresses, permission masks, etc.

failures were reported, which is critical for reproducing fail-
ures. Importantly, we only generate ctests from the tests in
the reported version, not from tests in later versions.

Ctests evaluated. For each failure, we identify each config-
uration parameter pi and its value vi in the failure-inducing
configuration change (13 of 64 failures involve more than one
configuration parameter). We then generate ctests using the
method in §4 for pi. Further, we apply the two rewriting rules
in §5.4 to enhance 11 generated ctests.

6.1.1 Effectiveness
Table 5 shows the effectiveness of ctests in detecting the 64
real-world failures and the root causes of those failures.

The results are promising. 96.9% (62/64) of the failure-
inducing configurations are detected by ctests. All failures
due to misconfigurations are detected. Specifically, 79.7%
(51/64) of all failures are detected by using only generated
ctests; the other 17.2% (11/64) require rewriting of ctests
(§5.4). In 9 of the 11 failures that require rewriting, we only
remove unnecessary value resets (like in Figure 6a). In the
other two, we also change an assertion (like in Figure 6b).
The results show that existing tests contain effective test logic
and oracles needed to expose failure-inducing configuration
changes. By leveraging those test logic/oracles, ctests can
effectively detect failure-inducing configuration changes and
prevent them from being deployed to production.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 743

Failure Mode Count (Pct)

Unexpected runtime exceptions 31 (50.0%)
Exceptions thrown by configuration-checking code 27 (43.5%)
Failing assertions in ctest code 3 (4.8%)
Test timeout (the system hangs) 1 (1.6%)

Table 6: Failure modes of ctests when detecting the failures.

By checking the behavior of code that exercise configura-
tion parameters, ctests have generic ability to detect diverse
types of misconfigurations, as well as bugs exposed by valid
configuration changes (Table 5). That is, ctests are not de-
signed to detect specific types of misconfigurations or bugs.
We exemplified failures detected by ctests in Figures 1 and 2.
Table 6 shows the failure modes of ctests on the 62 detected
configuration-induced failures. Most failures manifested as
unexpected runtime exceptions (division by zero, array in-
dex out of bound exceptions, etc.) or exceptions thrown by
configuration-checking code. We show examples in Figures 2
and 7. Both types of exceptions would have the same impact
on production systems if the failure-inducing changes were
deployed. In three failures, test assertions fail because of un-
expected behavior. The last failure was a test timeout that
occurred because the configuration change caused the system
to hang (similar to Figure 9a).

Two of the 64 failures were not detected by ctests [2,80]. In
ALLUXIO-9810 [2], the root cause is a buggy shell script that
no test invoked. The root cause of ZOOKEEPER-2299 [80] is
a bug in a method that no test in the reported ZooKeeper
version exercised. Both bugs can be detected by extend-
ing the test suite. In fact, for ZOOKEEPER-2299, the latest
ZooKeeper version includes a test from which we have now
generated a ctest that detects this bug.

6.1.2 Comparison with State-of-the-Art Techniques
Table 7 compares ctests with two state-of-the-art configura-
tion checking techniques, PCheck [67] and Spellcheck [48].
Both PCheck and Spellcheck are designed for cloud systems
and do not require additional training data or rule sets.

None of the 13 failures induced by valid configuration
changes triggering bugs in code can be detected by existing
configuration validation or automatic misconfiguration detec-
tion techniques, because those techniques only check whether
configuration values are valid.

Ctests detected all misconfigurations among the real-world
failures, including many that are challenging for state-of-the-
art checking and detection techniques to detect. Spellcheck
only detects value-type errors. In our real-world configuration-
induced failure dataset (Table 5), only three failures were
caused by value-type errors.

The following misconfigurations detected by ctests cannot
be detected by PCheck: (1) two misconfigurations leading
to non-crashing behavior (e.g., Figure 1), (2) five miscon-
figurations involving operations that have side effects (e.g.,

Failures Spellcheck PCheck Ctest
Gen Only Gen+Rewrite

Misconfigs 51 3 41 41 51
Bugs 13 0 0 10 11

Total 64 3 41 51 62

Table 7: A comparison of Ctests, PCheck, and Spellcheck in de-
tecting misconfigurations and bugs exposed by valid configura-
tion changes (Table 5). We assume sound PCheck and Spellcheck
static analyses—these are upper bounds for PCheck and Spellcheck.

writing files), and (3) three misconfigurations that require
client-side interactions to expose. Note that PCheck performs
post-deployment configuration validation; PCheck does not
run tests but instruments deployed systems. Ctests detect mis-
configurations early, during pre-deployment testing. PCheck
has two limitations that ctests do not have: (1) PCheck can-
not have side effects in the production environment, and
(2) PCheck cannot deal with external dependencies and events
(e.g., client operations) [67]. Moreover, unlike PCheck, ctests
can find bugs resulting from valid configuration changes.

6.2 Evaluating Ctests on Diverse Misconfigurations
We ran ctests on injected misconfigurations to (1) systemat-
ically evaluate ctests’ effectiveness on many diverse config-
uration parameters with different value types and semantics,
and (2) experimentally evaluate ctests on misconfigurations
that were not in the failures from issue-tracking databases.

Injected misconfigurations. We generate up to three erro-
neous values for each of the 392 configuration parameters in
§5. We use the misconfiguration generation rules proposed for
misconfiguration injection testing [31,32,69]. But we exclude
rules such as case alternation and random fuzzing, which lead
to many false errors. Note that the misconfiguration gener-
ation rules are different from the heuristics for generating
valid values in §4.2.2. Specifically, we generate misconfigura-
tions based on the types and semantics of each configuration
parameter. For Boolean or enum types, we generate invalid
options. For numeric types, we generate values containing
alphabetic characters, and out-of-range values (smaller/larger
than the min/max value). For parameters without explicit data
ranges specified in the configuration file, we use the range
of their data type, e.g., INT_MAX as the maximum value of
integers. For strings, erroneous values are generated based on
the semantics of the parameter. We follow the fine-grained
rules defined in [32, 69]. For example, for file-path parame-
ters, we generate non-existent files, incorrect file content, and
incorrect file types. We reviewed each generated erroneous
value to reduce false errors.

Ctests evaluated. We use the generated ctests from §5. For
each erroneous value e generated for p, we create a configura-
tion diff De = {(p 7→ e)} that sets p’s value to e. We run all

744 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Software Complete Partial None N/A

HCommon 43 (48.3%) 22 (24.7%) 24 (27.0%) 1
HDFS 67 (77.9%) 12 (14.0%) 7 (8.1%) 4
HBase 52 (61.9%) 23 (27.4%) 9 (10.7%) 6
ZooKeeper 20 (90.9%) 2 (9.1%) 0 (0.0%) 10
Alluxio 43 (47.8%) 15 (16.7%) 32 (35.6%) 0

Table 8: Ctest effectiveness in detecting injected misconfigura-
tions per parameter. “Complete”, “Partial”, and “None” refer to
number of parameters with all, some (but not all), and none of the
injected misconfigurations detected, respectively. “N/A” refers to the
number of parameters in which all the generated misconfigurations
turned out to be valid due to the imprecision of error generation.

Misconfiguration
hadoop.security.random.device.file.path = INVALID_RANDEV

public void testRandomBytes() {
...
OsSecureRandom rand = new OsSecureRandom(conf);
// checkRandomBytes will timeout if secure random
// implementation always returns a constant value
checkRandomBytes(rand, ...);

}

@Ctest /* Generated from TestOsSecureRandom.java */

RuntimeException (not readable file)
TimeoutException (not rand device)

The random device
is used by the object
to get random bytes.

...

(a) Invalid file content. The ctest detects the misconfigurations by
testing the functionality of the random device.

Misconfiguration
hbase.regionserver.hlog.reader.impl = ProtobufLogReader
hbase.regionserver.hlog.writer.impl = SecureProtobufLogWriter

public void testWALTrailer() {
...
// Appends entries in the WAL and reads it.
doRead(...);

}

@Ctest /* Generated from wal/AbstractTestProtobufLog.java */

IOException (the log written by the hlog writer
cannot be read by the hlog reader on the region server)

The misconfiguration is latent (causing runtime exception) and undocumented.

...

(b) Non-interoperability (undocumented [22]). The ctest detects the
misconfigurations by testing the reader and writer together.

Figure 9: Non-trivial misconfigurations detected by ctests.

the ctests for p on each De and check whether any ctest fails
on e. Unlike in §6.1, we do not rewrite ctests in this evaluation
due to the larger size of experiments. So, our effectiveness
results are a lower bound.

6.2.1 Effectiveness on Injected Misconfigurations
Table 8 shows the effectiveness of ctests in detecting the
injected misconfigurations. Ctests detect all injected errors
for 47.8%–90.9% of parameters and at least one injected error
for 64.4%–100% of the parameters across the five systems.

Figure 9 shows two non-trivial misconfigurations detected
by ctests. In Figure 9a, a ctest detects an invalid random
device file path in HCommon by using the referred device to
generate random bytes. Very few existing misconfiguration
detection tools check file content; they mostly just check file
paths and metadata. In Figure 9b, most reader and writer

Software No Observable Symptom Test Inadequacy
Correction Mask No Exposure No Oracle

HCommon 14 (14.0%) 10 (10.0%) 56 (56.0%) 20 (20.0%)
HDFS 4 (11.8%) 8 (23.5 %) 9 (26.5%) 13 (38.2%)
HBase 25 (46.3%) 8 (14.8%) 19 (35.2%) 2 (3.7%)
ZooKeeper 2 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Alluxio 3 (2.7%) 0 (0.0%) 100 (90.9%) 7 (6.4%)

Total 48 (16.0%) 26 (8.7%) 184 (61.3%) 42 (14.0%)

Table 9: Root causes of false negatives among the injected mis-
configuration values.

1 if (snapRetainCount < 3) {
2 LOG.warn(
3 "Invalid autopurge.snapRetainCount: "
4 + snapRetainCount + ". Defaulting to 3");
5 snapRetainCount = 3;
6 }
7 /* quorum/QuorumPeerConfig.java */

(a) An example of error correcting code in ZooKeeper

1 try { ...
2 paths = conf.get("dfs.datanode.shared.file.

descriptor.paths")
3 fdFac = FileDescFactory.create(..., paths);
4 ...
5 } catch (IOException e) {
6 LOG.debug(
7 "Disabling ShortCircuitRegistry", e);
8 }
9 /* datanode/ShortCircuitRegistry.java */

(b) An example of partial-failure masking in HDFS

Figure 10: Two patterns that lead to false negatives during mis-
configuration injection.

implementations of HBase are interoperable, but a few are
not. Ctests checked the interoperability of a specific (reader,
writer) pair and detected this non-trivial misconfiguration.
The non-interoperability was neither documented nor checked
in the system code before we reported it [22]. Using the non-
interoperability configurations will fail HBase region servers.

The generated ctests failed to detect 28.4% (300 of 1055)
injected misconfigurations, i.e., false negatives. The results are
consistent with the evaluation of misconfigurations without
rewriting in §6.1. Recall that we do not rewrite tests in this
evaluation, which could improve ctest adequacy (§6.1).

We inspected the 300 false negatives. Table 9 shows root
causes of false negatives and their distribution. 75.3% of false
negatives are due to inadequacy of ctests that either does not
expose the effects of the misconfigurations or does not have
oracles to check the effects. Many of these effects are non-
functional (e.g., performance issues). Moreover, unlike real-
world failures (§6.1), many injected misconfigurations are
expected to be uncommon in practice. So, the systems have
no error-checking logic or test code. For example, in HDFS,
negative io.seqfile.compress.blocksize values cause se-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 745

inf inf inf inf inf8 8 16 40 84 4 8 20 42 2 4 10 2

Per-Ctest Time Budget (second)
0.0

0.2

0.4

0.6

0.8

1.0

Ef
fec

tiv
en

ess
 R

ati
o

HCommon HDFS HBase ZooKeeper Alluxio

Complete
Partial

Figure 11: Time-budget analysis results. The results show the
effectiveness of detecting misconfigurations if only ctests that finish
under each time budget are run. The inf budget is equivalent to
times from Table 8 where “Complete” and “Partial” are defined. We
use the shaded budgets for experiments in §6.3.

vere performance degradation: every append triggers data
compression. However, HDFS does not check against nega-
tive values nor have a test with performance-based oracles.

The remaining 24.7% of false negatives have no observable
effects because of the presence of error-correcting code (e.g.,
Figure 10a), or because the consequences were masked (e.g.,
Figure 10b) by the system. Ctests cannot detect misconfigura-
tions that have no observable effects.

6.2.2 Time-Budget Analysis
The per-parameter evaluation enables us to analyze the trade-
off between effectiveness and running time of ctests. To ana-
lyze this tradeoff, we performed a time-budget analysis. Our
time-budget analysis excludes ctests that do not finish under
a specified time budget and measures the effectiveness of the
remaining ctests for detecting misconfigurations. We have
not yet designed a test prioritization [45,72] scheme for ctests
(§7), so we use per-test budgets (the amount of time each
ctest is allowed to run) rather than a total-test-time budget
(the amount of time all ctests are allowed to run). Per-test
time budgets are well suited to test-suite parallelization, where
each test is run in a separate process. Ctests for time-budget
analysis run on an 8-core Intel i7-9700 CPU with 32 GB
memory and Ubuntu 18.04.

Figure 11 shows the results of time-budget analysis. We
observe that different budget ranges are needed for different
systems given their different test characteristics. For example,
ZooKeeper does not have many unit tests but relies mostly
on integration tests. So, ZooKeeper needs larger per-test time
budgets than other systems. Further, all ctests in HCommon
finish under two seconds, so there is no decline in effective-
ness across the time budgets shown. The key result from
Figure 11 is that smaller per-test budgets can still achieve
similar levels of effectiveness as running all the ctests for all
projects except for Zookeeper. We use the shaded budgets
in Figure 11 for evaluating ctests on real-world configuration
files in §6.3.2 because they achieve good time-effectiveness

Software # Files # Files that Fail Ctests # False
Tested Version/Env. Misconfig. Alarms

HCommon 20 16 4 0
HDFS 20 15 2 0
HBase 20 12 0 0
ZooKeeper 20 14 0 0
Alluxio 12 3 1 0

Table 10: Results of running ctests on real-world configuration
files collected from Docker images.

tradeoff. We use a minimal per-test budget of 4 seconds to
leave room for performance variability.

6.3 Evaluating Ctests on Configuration Files
We evaluate the effectiveness of ctests using configuration
files collected from public Docker images. The experiments
also enable us to measure the false positives and overhead
of ctests on real-world configuration files (these are hard to
systematically evaluate in §6.1 and §6.2).

Evaluated configuration files. We extract 92 configuration
files from Docker images hosted on DockerHub [14] using the
method described in [68]. We randomly sample 20 Docker
images from the most popular 300 image repositories on
DockerHub for the five systems. We only find 12 Alluxio
image repositories that use non-default configuration files on
DockerHub. We use the most recent image in each repository.
The average number of configuration parameters in these files
is 5.8 (the minimum is one and the maximum is 29).

Ctests evaluated. We generate ctests using the method in §4.
For each configuration file f , we create a diff D f = {(p 7→
v f)} for all v f explicitly set in f and run all the ctests that
cover at least one parameter in D f (see §3.2). We use the
selected per-test budget from §6.2.2 to run ctests on each
configuration file. We run ctests against the configuration files
on our server, rather than deploying the ctest infrastructure in
each image’s container to reduce the cost of resolving depen-
dencies and setting up environments (many images are built
from old OS distributions with incompatible dependencies).

6.3.1 Ctests Effectiveness on Configuration Files
Table 10 presents the effectiveness of ctests on real-world
configuration files. Surprisingly, many configuration files did
not pass the ctests. We inspected all failed ctests and found 85
of 537 values to be erroneous. 76 of 85 erroneous values are
correct in the container, but fail ctests because (1) certain files,
IP addresses and ports in the containers do not exist or are
not available on our server, and (2) the ctests are generated
from tests from a newer version of the system—the configu-
ration values in the images are no longer correct. We reported
one such case, ALLUXIO-3402 [1], where the configuration
parameter alluxio.user.file.metadata.load.type has the
value “Always” in an image, scality/alluxio. But, in the
latest Alluxio, an all-capitalized parameter value is required.

746 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Software Ctests with Budget # All Ctests
Ctests Runtime # Ctests Runtime Baseline

HCommon 1014.20 1.90 1019.55 3.42 3.84
HDFS 1850.75 37.48 2310.20 126.35 120.43
HBase 842.75 47.70 1053.65 99.47 140.86
ZooKeeper 39.55 6.79 76.95 26.29 19.98
Alluxio 796.5 1.66 796.5 1.66 1.44

Table 11: The number of ctests and their running time (in min-
utes) per configuration file using all ctests and ctests within time
budget (selected in §6.2.2). The numbers are averaged over all eval-
uated files. “Baseline” is the time for running the corresponding
original tests (not ctests).

So a ctest generated for the latest Alluxio fails. These results
show that ctests effectively detect misconfigurations caused
by version and environment changes [76].

Ctests also detect 9 misconfigurations of various types in
seven configuration files (Table 10), including malformed
files, value-type errors, and dependency violations, which are
misconfigurations in the native container. Based on our in-
spection on the seven Docker images, we suspect that some of
these configuration files may be managed by custom scripts
that overwrite those files. Unfortunately, we find no documen-
tation for five of the seven Docker images on DockerHub.

Zero false positives found. We expected a few false positives
due to tests that assume some values but were not identified
when generating parameter sets for ctests—the heuristics for
generating valid values for validation are unsound (§4.2.2).
However, we found no false positives (Table 10).

6.3.2 Ctest Running Time on Configuration Files
We measure the ctest-running time per configuration file. Ta-
ble 11 shows the average total ctest-running time per configu-
ration file when running ctests that finish within the per-test
time budgets selected in §6.2.2. HCommon, ZooKeeper and
Alluxio take less than ten minutes. HDFS and HBase have
longer-running tests and take few tens of minutes.

We run all ctests with the inf budget and compare it with
running the ctests under the time budget. There is no differ-
ence in the effectiveness of ctests, showing that the budgets
are sufficient. We also compare total running time of all ctests
with a baseline total time for running all the original software
tests from which the ctests are generated. The results show
that the running times of the ctests are similar to those of the
original software tests (“Baseline” in Table 11). The running
time for HBase is about 70% of its baseline because many
tests in HBase aborted the execution and failed quickly due
to the exceptions triggered by misconfigurations.

7 Discussion and Limitations
There is no silver bullet against configuration-induced failures.
Ctests offer a simple, effective way to detect failure-inducing
configurations, and are complementary to existing techniques.

The effectiveness of generated ctests depends on the ade-
quacy of the original tests. On the evaluated systems, which
have abundant tests, ctests outperform state-of-the-art tools.
However, ctests cannot be generated if there are no existing
tests, which is why no ctest exposed the two bugs in the evalua-
tion (§6.1.1). Mature software systems will likely benefit from
ctests because they have comprehensive test suites [29, 51].
For newer projects or projects with less comprehensive test
suites, the generation of ctests could be limited. Note that
the concept of ctests is not limited by the generation method
discussed in §4. Ctests can be implemented by developers,
just like they implement regular software tests.

Ctests cannot localize the root causes of configuration-
induced failures. Based on our analysis of ctest results (§6.2
and §6.3), root cause localization can usually be done effi-
ciently by analyzing the stack traces. However, a few failures
take considerable time to understand, due to (1) complexity of
configuration value propagation and transformation, or (2) un-
expected, hidden configuration constraints (e.g., Figure 8).
Fault localization [64] for configuration-induced failures can
be developed to automate root cause analysis.

Ctests can increase the cost of regression testing, which
is already expensive. Section 6.3.2 shows that running ctests
for the evaluated systems takes reasonable time. On the other
hand, we believe that the cost of running ctests can be sig-
nificantly reduced by developing ctest reduction, prioritiza-
tion and minimization techniques, as was done for regression
testing [72]. One direction is to analyze ctest code and to
understand how each ctest exercises configuration changes,
towards reducing and prioritizing ctests. Ctests running time
can also be further reduced by running ctests in parallel.

The ctest generation described in §4 is neither sound nor
complete. First, the heuristics for detecting implicit test as-
sumptions (§4.2.2) are unsound and could lead to false neg-
atives in detecting bugs. Our heuristics minimize false posi-
tives. Second, dynamically tracing test executions to identify
parameters exercised in tests (§4.2.1) is incomplete, because
configuration changes could lead to different execution paths.
Like any other form of testing, we do not claim completeness.

Like any other pre-deployment testing, ctests are funda-
mentally limited by a possible mismatch between the test
environment and the production environment. Such a mis-
match could lead to both false positives and false negatives.

8 Related Work
The severity and prevalence of configuration-induced fail-
ures [18, 19, 34, 35, 40, 42, 55, 74] has resulted in novel tech-
niques for misconfiguration troubleshooting and debugging [3,
4, 46, 61–63, 73]. Advanced techniques have also been devel-
oped for diagnosing production failures [10,13,30,79]. Ctests
proactively detect failure-inducing configuration changes to
prevent production failures in the first place.

Ctests is complementary to our prior work, PCheck [67].
We compared ctests with PCheck [67] in §6.1.2, despite

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 747

PCheck being a post-deployment technique. Note that PCheck
can only detect misconfigurations, because it considers only
statements on the data-flow path of each configuration value.
Differently, ctests can detect valid configuration changes that
expose bugs in the code, a common type of failure-inducing
configuration changes [55]. Techniques designed for pre- and
post-deployment have fundamentally different opportunities
and challenges. In our experience, it is difficult (if not impos-
sible) for auto-generated checking code to deal with many
sophisticated real-world misconfigurations. This was the main
motivation behind ctests which can exercise code and con-
figurations together. But post-deployment techniques such
as PCheck do not have problems caused by the mismatches
between the test and the production environments.

We mentioned in §3.2 that ctests are complementary to
configuration validation and misconfiguration detection [6,
27, 38, 43, 44, 49, 50, 55, 59, 61, 62, 66, 67, 75, 77], similar to
how software testing complements static bug detection tools.
Ctests can detect failure-inducing configuration changes that
are challenging for existing techniques to detect, e.g., valid
configuration changes that expose bugs. Most automated de-
tection techniques only focus on specific types of miscon-
figurations. For example, Rex [38] detects dependency vi-
olations between source-code files and configuration files
which should be updated together. Ctests are not specific to
any type of misconfigurations or softwre bugs—they detect
failure-inducing configuration changes based on the resulting
program behavior. A common class of existing validation/de-
tection techniques requires validation rules or training data
that either do not exist (e.g., for systems that we evaluate)
or are not available (we found no rule sets or training data
online). In contrast, ctests do not rely on external rule sets or
training data—they leverage existing abundant test cases.

Ctests complement software and system testing. In essence,
ctests enhance existing testing techniques to focus on the
actual configurations in production or configurations to be
deployed, given that testing all possible configurations is in-
feasible. A ctest is a parameterized test. But ctests differ from
traditional parameterized unit tests (PUTs) [57, 58] in goal,
parameter source, and generation method. The goal of PUTs
is to allow developers rerun the same test against different
inputs, to cover more program paths. The goal of ctests is to
connect production system configurations to software tests,
to find failure-inducing configuration changes. The inputs
to PUTs are either specified by developers or automatically
generated by symbolic execution, but the inputs to ctests are
read from the system configuration files or diffs.

9 Conclusion
This paper proposes ctests to connect software testing with
production system configurations to enable detecting failure-
inducing configurations during testing. We present how to
generate ctests from existing software tests that are abun-
dant in mature cloud systems. We show that ctests are ef-

fective in detecting real-world failure-inducing configura-
tions, including both misconfigurations and dormant soft-
ware bugs exposed by valid configuration changes. Our
goal of ctests is to make testing of configuration changes
a key component of configuration management and fill the
missing piece in the practice of treating configuration as
code. We have made all the code and datasets available at:
https://github.com/xlab-uiuc/openctest.

Acknowledgement
We thank the anonymous reviewers and our shepherd, Haryadi
Gunawi, for their insightful comments and feedback. We
thank Darko Marinov, Lalith Suresh, Neil Zhao, Madhusudan
Parthasarathy, Yongle Zhang, David Chou, and Justin Meza
for the invaluable discussions. We thank Qingrong Chen, An-
drew Yoo, Angello Astorga, Liia Butler, and Jonathan Osei-
Owusu for helping proofread the paper. This work was funded
in part by CCF-1816615, CCF-2029049, CNF-1956007, CCF-
2019277, a Facebook Distributed Systems Research award,
Microsoft Azure credits, and Google Cloud credits.

References
[1] ALLUXIO-3402. Backward compatibility for enum-

typed configuration. https://alluxio.atlassian.net/
browse/ALLUXIO-3402, 2020.

[2] ALLUXIO GITHUB ISSUE #9810. Alluxio worker fails
to start when using multiple storage media in single
tier on EMR. https://github.com/Alluxio/alluxio/
issues/9810, 2019.

[3] ATTARIYAN, M., CHOW, M., AND FLINN, J. X-ray: Au-
tomating Root-Cause Diagnosis of Performance Anomalies
in Production Software. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation
(OSDI’12) (October 2012).

[4] ATTARIYAN, M., AND FLINN, J. Automating Configuration
Troubleshooting with Dynamic Information Flow Analysis. In
Proceedings of the 9th USENIX Conference on Operating Sys-
tems Design and Implementation (OSDI’10) (October 2010).

[5] BARROSO, L. A., HÖLZLE, U., AND RANGANATHAN, P. The
Datacenter as a Computer: Designing Warehouse-Scale Ma-
chines. Morgan and Claypool Publishers, 2018.

[6] BASET, S., SUNEJA, S., BILA, N., TUNCER, O., AND ISCI,
C. Usable Declarative Configuration Specification and Valida-
tion for Applications, Systems, and Cloud. In Proceedings of
the 18th ACM/IFIP/USENIX Middleware Conference (Middle-
ware’17), Industrial Track (December 2017).

[7] Bazel: a fast, scalable, multi-language and extensible build
system. https://bazel.build/, 2020.

[8] BELL, J., LEGUNSEN, O., HILTON, M., ELOUSSI, L., YUNG,
T., AND MARINOV, D. DeFlaker: Automatically Detecting
Flaky Tests. In In Proceedings of the 40th International Con-
ference on Software Engineering (ICSE’18) (May 2018).

[9] BEYER, B., MURPHY, N. R., RENSIN, D. K., KAWAHARA,
K., AND THORNE, S. Site Reliability Workbook: Practical
Ways to Implement SRE. O’Reilly Media Inc., August 2018.

748 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/xlab-uiuc/openctest
https://alluxio.atlassian.net/browse/ALLUXIO-3402
https://alluxio.atlassian.net/browse/ALLUXIO-3402
https://github.com/Alluxio/alluxio/issues/9810
https://github.com/Alluxio/alluxio/issues/9810
https://bazel.build/

[10] BHAGWAN, R., KUMAR, R., MADDILA, C. S., AND PHILIP,
A. A. Orca: Differential Bug Localization in Large-Scale
Services. In Proceedings of the 13th USENIX Conference
on Operating Systems Design and Implementation (OSDI’18)
(October 2018).

[11] Buck: A fast build tool. https://buck.build/, 2020.
[12] CHEN, Q., WANG, T., LEGUNSEN, O., LI, S., AND XU, T.

Understanding and Discovering Software Configuration De-
pendencies in Cloud and Datacenter Systems. In In Proceed-
ings of the 2020 ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE’20) (November 2020).

[13] CUI, W., GE, X., KASIKCI, B., NIU, B., SHARMA, U.,
WANG, R., AND YUN, I. REPT: Reverse Debugging of Fail-
ures in Deployed Software. In Proceedings of the 13th USENIX
Conference on Operating Systems Design and Implementation
(OSDI’18) (October 2018).

[14] Docker Hub. https://www.docker.com/products/
docker-hub, 2020.

[15] FOWLER, M. Eradicating Non-Determinism in
Tests. https://martinfowler.com/articles/
nonDeterminism.html, April 2011.

[16] Gradle Build Tool. https://gradle.org/, 2020.
[17] GRAVES, T. L., HARROLD, M. J., KIM, J.-M., PORTER, A.,

AND ROTHERMEL, G. An Empirical Study of Regression
Test Selection Techniques. ACM Transactions on Software
Engineering and Methodology 10, 2 (April 2001), 184–208.

[18] GUNAWI, H. S., HAO, M., LEESATAPORNWONGSA, T.,
PATANA-ANAKE, T., DO, T., ADITYATAMA, J., ELIAZAR,
K. J., LAKSONO, A., LUKMAN, J. F., MARTIN, V., AND SA-
TRIA, A. D. What bugs live in the cloud? a study of 3000+
issues in cloud systems. In Proceedings of the 5th ACM Sym-
posium on Cloud Computing (SoCC’14) (November 2014).

[19] GUNAWI, H. S., HAO, M., SUMINTO, R. O., LAKSONO, A.,
SATRIA, A. D., ADITYATAMA, J., AND ELIAZAR, K. J. Why
Does the Cloud Stop Computing? Lessons from Hundreds of
Service Outages. In Proceedings of the 7th ACM Symposium
on Cloud Computing (SoCC’16) (October 2016).

[20] HADOOP-10508. RefreshCallQueue fails when autho-
rization is enabled. https://issues.apache.org/jira/
browse/HADOOP-10508, 2014.

[21] HBASE-22559. [RPC] set guard against
CALL_QUEUE_HANDLER_FACTOR_CONF_KEY.
https://issues.apache.org/jira/browse/HBASE-
22559, 2019.

[22] HBASE-23962. Improving the documentation for
‘hbase.regionserver.hlog.reader, writer.impl‘. https://
issues.apache.org/jira/browse/HBASE-23962, 2020.

[23] HDFS-15124. Crashing bugs in NameNode when using a
valid configuration for ‘dfs.namenode.audit.loggers‘. https:
//issues.apache.org/jira/browse/HDFS-15124,
2020.

[24] HDFS-15250. Setting ‘dfs.client.use.datanode.hostname‘
to true can crash the system because of unhandled Unre-
solvedAddressException. https://issues.apache.org/
jira/browse/HDFS-15250, 2020.

[25] HDFS-7684. The host:port settings of the daemons should be
trimmed before use. https://issues.apache.org/jira/
browse/HDFS-7684, 2015.

[26] HDFS-7727. Check and verify the auto-fence settings to
prevent failures of auto-failover. https://issues.apache.
org/jira/browse/HDFS-7727, 2015.

[27] HUANG, P., BOLOSKY, W. J., SIGH, A., AND ZHOU, Y. Con-
fValley: A Systematic Configuration Validation Framework for
Cloud Services. In Proceedings of the 10th ACM European
Conference in Computer Systems (EuroSys’15) (April 2015).

[28] HUO, C., AND CLAUSE, J. Improving Oracle Quality by De-
tecting Brittle Assertions and Unused Inputs in Tests. In Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE’14) (November
2014).

[29] IVANKOVIĆ, M., PETROVIĆ, G., JUST, R., AND FRASER,
G. Code Coverage at Google. In Proceedings of the 27th
ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ES-
EC/FSE’19) (August 2019).

[30] KASIKCI, B., SCHUBERT, B., PEREIRA, C., POKAM, G., AND

CANDEA, G. Failure Sketching: A Technique for Automated
Root Cause Diagnosis of In-Production Failures. In Proceed-
ings of the 25th ACM Symposium on Operating System Princi-
ples (SOSP’15) (October 2015).

[31] KELLER, L., UPADHYAYA, P., AND CANDEA, G. ConfErr: A
Tool for Assessing Resilience to Human Configuration Errors.
In Proceedings of the 38th IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN’08) (June
2008).

[32] LI, S., LI, W., LIAO, X., PENG, S., ZHOU, S., JIA, Z., AND

WANG, T. ConfVD: System Reactions Analysis and Evalua-
tion Through Misconfiguration Injection. IEEE Transactions
on Reliability 67, 4 (December 2018), 1393–1405.

[33] LILLACK, M., KÄSTNER, C., AND BODDEN, E. Tracking
Load-time Configuration Options. IEEE Transactions on Soft-
ware Engineering (TSE) 44, 12 (December 2018), 1269–1291.

[34] LIU, H., LU, S., MUSUVATHI, M., AND NATH, S. What bugs
cause production cloud incidents? In Proceedings of the 16th
Workshop on Hot Topics in Operating Systems (HotOS’19)
(May 2019).

[35] MAURER, B. Fail at Scale: Reliability in the Face of Rapid
Change. Communications of the ACM 58, 11 (November 2015),
44–49.

[36] Apache Maven. http://maven.apache.org/, 2020.

[37] MEDEIROS, F., KÄSTNER, C., RIBEIRO, M., GHEYI, R., AND

APEL, S. A Comparison of 10 Sampling Algorithms for Con-
figurable Systems. In Proceedings of the 38th International
Conference on Software Engineering (ICSE’16) (May 2016).

[38] MEHTA, S., BHAGWAN, R., KUMAR, R., ASHOK, B.,
BANSAL, C., MADDILA, C., BIRD, C., ASTHANA, S., AND

KUMAR, A. Rex: Preventing Bugs and Misconfiguration in
Large Services using Correlated Change Analysis. In Proceed-
ings of the 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’20) (February 2020).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 749

https://buck.build/
https://www.docker.com/products/docker-hub
https://www.docker.com/products/docker-hub
https://martinfowler.com/articles/nonDeterminism.html
https://martinfowler.com/articles/nonDeterminism.html
https://gradle.org/
https://issues.apache.org/jira/browse/HADOOP-10508
https://issues.apache.org/jira/browse/HADOOP-10508
https://issues.apache.org/jira/browse/HBASE-22559
https://issues.apache.org/jira/browse/HBASE-22559
https://issues.apache.org/jira/browse/HBASE-23962
https://issues.apache.org/jira/browse/HBASE-23962
https://issues.apache.org/jira/browse/HDFS-15124
https://issues.apache.org/jira/browse/HDFS-15124
https://issues.apache.org/jira/browse/HDFS-15250
https://issues.apache.org/jira/browse/HDFS-15250
https://issues.apache.org/jira/browse/HDFS-7684
https://issues.apache.org/jira/browse/HDFS-7684
https://issues.apache.org/jira/browse/HDFS-7727
https://issues.apache.org/jira/browse/HDFS-7727
http://maven.apache.org/

[39] MUKELABAI, M., NEŠIĆ, D., MARO, S., BERGER, T., AND

STEGHÖFER, J.-P. Tackling Combinatorial Explosion: A
Study of Industrial Needs and Practices for Analyzing Highly
Configurable Systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering
(ASE’18) (September 2018).

[40] NAGARAJA, K., OLIVEIRA, F., BIANCHINI, R., MARTIN,
R. P., AND NGUYEN, T. D. Understanding and Dealing with
Operator Mistakes in Internet Services. In Proceedings of the
6th USENIX Conference on Operating Systems Design and
Implementation (OSDI’04) (December 2004).

[41] NARLA, C., AND SALAS, D. Hermetic Servers. https:
//testing.googleblog.com/2012/10/hermetic-
servers.html, October 2012. Google Testing Blog.

[42] OPPENHEIMER, D., GANAPATHI, A., AND PATTERSON, D. A.
Why Do Internet Services Fail, and What Can Be Done About
It? In Proceedings of the 4th USENIX Symposium on Internet
Technologies and Systems (USITS’03) (March 2003).

[43] PALATIN, N., LEIZAROWITZ, A., SCHUSTER, A., AND

WOLFF, R. Mining for Misconfigured Machines in Grid Sys-
tems. In Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining
(KDD’06) (August 2006).

[44] POTHARAJU, R., CHAN, J., HU, L., NITA-ROTARU, C.,
WANG, M., ZHANG, L., AND JAIN, N. ConfSeer: Leveraging
Customer Support Knowledge Bases for Automated Miscon-
figuration Detection. In Proceedings of the 35th International
Conference on Very Large Data Bases (VLDB’15) (August
2015).

[45] QU, X. Configuration Aware Prioritization Techniques in
Regression Testing. In Proceedings of the 31st International
Conference on Software Engineering (ICSE’09) (May 2009).

[46] RABKIN, A., AND KATZ, R. Precomputing Possible Configu-
ration Error Diagnosis. In Proceedings of the 26th IEEE/ACM
International Conference on Automated Software Engineering
(ASE’11) (November 2011).

[47] RABKIN, A., AND KATZ, R. Static Extraction of Program
Configuration Options. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering (ICSE’11) (May
2011).

[48] RABKIN, A. S. Using Program Analysis to Reduce Misconfig-
uration in Open Source Systems Software. PhD thesis, Univer-
sity of California, Berkeley, 2012.

[49] SANTOLUCITO, M., ZHAI, E., DHODAPKAR, R., SHIM, A.,
AND PISKAC, R. Synthesizing Configuration File Specifica-
tions with Association Rule Learning. In Proceedings of 2017
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’17) (October
2017).

[50] SANTOLUCITO, M., ZHAI, E., AND PISKAC, R. Probabilistic
Automated Language Learning for Configuration Files. In
Proceedings of the 28th International Conference on Computer
Aided Verification (CAV’16) (July 2016).

[51] SAVOIA, A. Code coverage goal: 80% and no
less! https://testing.googleblog.com/2010/07/

code-coverage-goal-80-and-no-less.html, July 2010.
Google Testing Blog.

[52] SAVOR, T., DOUGLAS, M., GENTILI, M., WILLIAMS, L.,
BECK, K., AND STUMM, M. Continuous Deployment at Face-
book and OANDA. In Proceedings of the IEEE/ACM 38th
International Conference on Software Engineering (ICSE’16)
(May 2016).

[53] SHERMAN, A., LISIECKI, P., BERKHEIMER, A., AND WEIN,
J. ACMS: Akamai Configuration Management System. In
Proceedings of the 2nd USENIX Symposium on Networked
Systems Design and Implementation (NSDI’05) (May 2005).

[54] SHIEBER, J. Facebook blames a server config-
uration change for yesterday’s outage. https:
//techcrunch.com/2019/03/14/facebook-blames-
a-misconfigured-server-for-yesterdays-outage/,
March 2019.

[55] TANG, C., KOOBURAT, T., VENKATACHALAM, P., CHAN-
DER, A., WEN, Z., NARAYANAN, A., DOWELL, P., AND

KARL, R. Holistic Configuration Management at Facebook. In
Proceedings of the 25th ACM Symposium on Operating System
Principles (SOSP’15) (October 2015).

[56] THE APACHE HBASE REFERENCE GUIDE. Default Configu-
ration. https://hbase.apache.org/book.html#hbase_
default_configurations, 2020.

[57] TILLMANN, N., AND SCHULTE, W. Parameterized Unit Tests.
In Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering
(ESEC/FSE’05) (September 2005).

[58] TILLMANN, N., AND SCHULTE, W. Unit Tests Reloaded:
Parameterized Unit Testing with Symbolic Execution. IEEE
Software 23, 4 (July 2006), 38–47.

[59] TUNCER, O., BILA, N., ISCI, C., AND COSKUN, A. K. Con-
fEx: An Analytics Framework for Text-Based Software Config-
urations in the Cloud. Tech. Rep. RC25675 (WAT1803-107),
IBM Research, March 2018.

[60] WACKER, M. Just Say No to More End-to-End
Tests. https://testing.googleblog.com/2015/04/
just-say-no-to-more-end-to-end-tests.html, April
2015. Google Testing Blog.

[61] WANG, H. J., PLATT, J. C., CHEN, Y., ZHANG, R., AND

WANG, Y.-M. Automatic Misconfiguration Troubleshooting
with PeerPressure. In Proceedings of the 6th USENIX Con-
ference on Operating Systems Design and Implementation
(OSDI’04) (December 2004).

[62] WANG, Y.-M., VERBOWSKI, C., DUNAGAN, J., CHEN, Y.,
WANG, H. J., YUAN, C., AND ZHANG, Z. STRIDER: A
Black-box, State-based Approach to Change and Configuration
Management and Support. In Proceedings of the 17th Large
Installation Systems Administration Conference (LISA’03) (Oc-
tober 2003).

[63] WHITAKER, A., COX, R. S., AND GRIBBLE, S. D. Configura-
tion Debugging as Search: Finding the Needle in the Haystack.
In Proceedings of the 6th USENIX Conference on Operating
Systems Design and Implementation (OSDI’04) (December
2004).

750 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://testing.googleblog.com/2012/10/hermetic-servers.html
https://testing.googleblog.com/2012/10/hermetic-servers.html
https://testing.googleblog.com/2012/10/hermetic-servers.html
https://testing.googleblog.com/2010/07/code-coverage-goal-80-and-no-less.html
https://testing.googleblog.com/2010/07/code-coverage-goal-80-and-no-less.html
https://techcrunch.com/2019/03/14/facebook-blames-a-misconfigured-server-for-yesterdays-outage/
https://techcrunch.com/2019/03/14/facebook-blames-a-misconfigured-server-for-yesterdays-outage/
https://techcrunch.com/2019/03/14/facebook-blames-a-misconfigured-server-for-yesterdays-outage/
https://hbase.apache.org/book.html#hbase_default_configurations
https://hbase.apache.org/book.html#hbase_default_configurations
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html

[64] WONG, W. E., GAO, R., LI, Y., ABREU, R., AND WOTAWA, F.
A Survey on Software Fault Localization. IEEE Transactions
on Software Engineering (TSE) 42, 8 (August 2016), 707–740.

[65] XIANG, C., HUANG, H., YOO, A., ZHOU, Y., AND PASUPA-
THY, S. PracExtractor: Extracting Configuration Good Prac-
tices from Manuals to Detect Server Misconfigurations. In
Proceedings of the 2020 USENIX Annual Technical Confer-
ence (ATC’20) (July 2020).

[66] XIANG, C., WU, Y., SHEN, B., SHEN, M., HUANG, H., XU,
T., ZHOU, Y., MOORE, C., JIN, X., AND SHENG, T. Towards
Continuous Access Control Validation and Forensics. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS’19) (November 2019).

[67] XU, T., JIN, X., HUANG, P., ZHOU, Y., LU, S., JIN, L., AND

PASUPATHY, S. Early Detection of Configuration Errors to
Reduce Failure Damage. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’16) (November 2016).

[68] XU, T., AND MARINOV, D. Mining Container Image Repos-
itories for Software Configurations and Beyond. In In Pro-
ceedings of the 40th International Conference on Software En-
gineering (ICSE’18), New Ideas and Emerging Results (May
2018).

[69] XU, T., ZHANG, J., HUANG, P., ZHENG, J., SHENG, T.,
YUAN, D., ZHOU, Y., AND PASUPATHY, S. Do Not Blame
Users for Misconfigurations. In Proceedings of the 24th
ACM Symposium on Operating System Principles (SOSP’13)
(November 2013).

[70] XU, T., AND ZHOU, Y. Systems Approaches to Tackling
Configuration Errors: A Survey. ACM Computing Surveys
(CSUR) 47, 4 (July 2015).

[71] YIN, Z., MA, X., ZHENG, J., ZHOU, Y., BAIRAVASUN-
DARAM, L. N., AND PASUPATHY, S. An Empirical Study on
Configuration Errors in Commercial and Open Source Systems.
In Proceedings of the 23rd ACM Symposium on Operating Sys-
tems Principles (SOSP’11) (October 2011).

[72] YOO, S., AND HARMAN, M. Regression Testing Minimisa-
tion, Selection and Prioritization: A Survey. Software Testing,
Verification, and Reliability 22, 2 (March 2012), 67–120.

[73] YUAN, C., LAO, N., WEN, J.-R., LI, J., ZHANG, Z., WANG,
Y.-M., AND MA, W.-Y. Automated Known Problem Diagno-
sis with Event Traces. In Proceedings of the 1st ACM European
Conference on Computer Systems (EuroSys’06) (April 2006).

[74] YUAN, D., LUO, Y., ZHUANG, X., RODRIGUES, G., ZHAO,
X., ZHANG, Y., JAIN, P. U., AND STUMM, M. Simple Testing
Can Prevent Most Critical Failures: An Analysis of Production
Failures in Distributed Data-intensive Systems. In Proceedings
of the 11th USENIX Conference on Operating Systems Design
and Implementation (OSDI’14) (October 2014).

[75] YUAN, D., XIE, Y., PANIGRAHY, R., YANG, J., VERBOWSKI,
C., AND KUMAR, A. Context-based Online Configuration
Error Detection. In Proceedings of 2011 USENIX Annual
Technical Conference (USENIX ATC’11) (June 2011).

[76] ZHANG, G., AND LIU, L. Why Do Migrations Fail and What
Can We Do about It? In Proceedings of the 25th USENIX Large
Installation System Administration Conference (LISA’11) (De-
cember 2011).

[77] ZHANG, J., RENGANARAYANA, L., ZHANG, X., GE, N.,
BALA, V., XU, T., AND ZHOU, Y. EnCore: Exploiting System
Environment and Correlation Information for Misconfiguration
Detection. In Proceedings of the 19th International Confer-
ence on Architecture Support for Programming Languages and
Operating Systems (ASPLOS’14) (March 2014).

[78] ZHANG, S., AND ERNST, M. D. Which Configuration Option
Should I Change? In Proceedings of the 36th International
Conference on Software Engineering (ICSE’14) (May 2014).

[79] ZHANG, Y., RODRIGUES, K., LUO, Y., STUMM, M., AND

YUAN, D. The Inflection Point Hypothesis: A Principled
Debugging Approach for Locating the Root Cause of a Failure.
In Proceedings of the 26th ACM Symposium on Operating
System Principles (SOSP’19) (October 2019).

[80] ZOOKEEPER-2299. NullPointerException in LocalPeer-
Bean for ClientAddress. https://issues.apache.org/
jira/browse/ZOOKEEPER-2299, 2015.

[81] ZOOKEEPER-3721. PR #1266: ZOOKEEPER-3721: Mak-
ing the boolean configuration parameters consistent. https:
//github.com/apache/zookeeper/pull/1266, 2020.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 751

https://issues.apache.org/jira/browse/ZOOKEEPER-2299
https://issues.apache.org/jira/browse/ZOOKEEPER-2299
https://github.com/apache/zookeeper/pull/1266
https://github.com/apache/zookeeper/pull/1266

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

Pradeep Ambati‡ Íñigo Goiri‡ Felipe Frujeri‡ Alper Gun†

Ke Wang† Brian Dolan† Brian Corell† Sekhar Pasupuleti†

Thomas Moscibroda† Sameh Elnikety‡ Marcus Fontoura† Ricardo Bianchini‡ *

†Microsoft Azure ‡Microsoft Research

Abstract
Cloud providers rent the resources they do not allocate as
evictable virtual machines (VMs), like spot instances. In this
paper, we first characterize the unallocated resources in Mi-
crosoft Azure, and show that they are plenty but may vary
widely over time and across servers. Based on the characteri-
zation, we propose a new class of VM, called Harvest VM,
to harvest and monetize the unallocated resources. A Harvest
VM is more flexible and efficient than a spot instance, because
it grows and shrinks according to the amount of unallocated
resources at its underlying server; it is only evicted/killed
when the provider needs its minimum set of resources. Next,
we create models that predict the availability of the unallo-
cated resources for Harvest VM deployments. Based on these
predictions, we provide Service Level Objectives (SLOs) for
the survival rate (e.g., 65% of the Harvest VMs will survive
more than a week) and the average number of cores that can
be harvested. Our short-term predictions have an average
error under 2% and less than 6% for longer terms. We also
extend a popular cluster scheduling framework to leverage the
harvested resources. Using our SLOs and framework, we can
offset the rare evictions with extra harvested cores and achieve
the same computational power as regular-priority VMs, but at
91% lower cost. Finally, we outline lessons and results from
running Harvest VMs and our framework in production.

1 Introduction

Motivation. Cloud providers usually rent their resources to
customers as Infrastructure as a Service (IaaS) VMs. When
deployed, each VM consumes a fixed amount of resources
from the server where it lands. Customers can keep their VMs
for seconds or years [16] and may request more VMs over
time. Thus, providers need to provide the illusion of perfectly
elastic resources (e.g., by reserving demand growth buffers)
while operating the infrastructure with high availability (e.g.,
by transparently handling hardware failures). For these rea-
sons, they need to leave unallocated capacity.

*Ambati is affiliated with the Univ. of Massachusetts Amherst, but was
at Microsoft Research during this work. Gun and Wang are now with Google.

To monetize this unallocated capacity, providers offer VMs
with relaxed SLOs at discounted prices. Specifically, they
offer low-priority evictable VMs, often called spot VMs [1, 8,
14]. These VMs are evicted if their resources are needed by
regular-priority (or simply regular) on-demand VMs. Thus,
evictable VMs are ideal for customers to run batch jobs or
other workloads that can tolerate evictions, at very low cost.

Unfortunately, an evictable VM cannot consume all the
unallocated resources of a server unless it fits perfectly in it.
Even if it does, a large evictable VM will be promptly evicted
whenever even a single resource is needed by a newly arriv-
ing regular VM. Multiple small evictable VMs can allocate
the same amount of resources but will add overhead to oper-
ate more VMs. In addition, their larger number of evictions
introduce VM re-creation and application re-initialization
overheads that may even cause unavailability.

Given these limitations of existing evictable VMs, we argue
that there should be a new class of evictable VMs able to
dynamically and flexibly harvest all the unallocated resources
of any server on which they land.
Our work. We first characterize the unallocated resources
in Microsoft Azure. The characterization shows that there is
potential for harvesting these resources, but they fluctuate over
time and their availability is heterogeneous across servers and
clusters. The characterization unearths the dynamics of the
unallocated resources over multiple time durations.

Next, we propose a new class of evictable VM, called Har-
vest VM, as a novel way to monetize unallocated resources.
A Harvest VM has a minimum size in terms of its physical
resources, but it dynamically receives more or fewer physical
resources beyond this minimum, depending on the amount
of unallocated resources at its underlying server. A Harvest
VM is only evicted if its minimum size is needed for a regular
VM. In this paper, we focus on harvesting CPU cores.

Provisioning applications to run on harvested resources
is challenging. However, we can predict the availability and
amount of the unallocated resources in the datacenter. We
use these predictions to provide SLOs for Harvest VM de-
ployments. The SLO specifies the probability for a Harvest
VM to survive for a certain period and how many resources
it will get on average. For example, if a customer wants to
create 100 VMs, the SLO may indicate that 90% of them

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 753

will survive for more than 1 day, with an average of 10 cores.
The provider does not monitor or actively seek to meet each
individual SLO; instead, we retrain our prediction models
frequently and provide our SLO as a statistical estimate [12].
As such, our SLOs can be considered predictions or estimates
over large numbers of Harvest VMs, rather than guarantees.

Renting unallocated resources is cheap, but requires ap-
plications to manage the evictions. In addition, with Harvest
VMs, the amount of resources backing each VM can vary. Har-
vest VMs are most useful when the applications they run can
adapt to the number of available resources. For example, many
applications use thread pools and can naturally adapt their par-
allelism. Others can schedule more load on larger VMs. The
provider can hide these complexities by using Harvest VMs
to create cheap SaaS (Software-as-a-Service), PaaS (Platform-
as-a-Service), and FaaS (Function-as-a-Service) offerings.
In fact, Harvest VMs are ideal for cluster scheduling (e.g.,
Apache YARN [37], Kubernetes [22]) and serverless (e.g.,
AWS Lambda [32], Azure Functions [4]) frameworks. These
frameworks can schedule more tasks/functions on a Harvest
VM that has grown to use more physical cores, and stop
scheduling tasks/functions on one that has lost physical cores.
To demonstrate how to adapt these frameworks, we build Har-
vest Hadoop to schedule computation (e.g., data-processing,
machine learning training) on harvested resources.

Our evaluation shows that we accurately predict the unal-
located resources and provide SLOs. We predict the survival
rate of a VM for 1 hour with an average error under 2% and
lower than 6% for longer terms. We also predict the addi-
tional cores that can be harvested within a fraction of a core
on average. Our SLOs and framework allow us to run Hadoop
workloads on Harvest VMs at 91% lower cost to the customer
than regular VMs, by offsetting the rare evictions with addi-
tional harvested cores. Compared to standard evictable VMs,
the cost savings can reach 47%. Finally, we discuss lessons
and results from deploying Harvest VMs and Harvest Hadoop
in production to run internal workloads in Azure.
Summary. Our contributions are:
• We characterize the unallocated resources of a large cloud.
• We propose Harvest VMs to harvest unallocated resources.
• We build predictors for the availability of unallocated re-
sources and provide a new SLO for these resources.
• We build Harvest Hadoop, a cluster scheduling framework
to leverage Harvest VMs.
• We discuss lessons and results from our production deploy-
ment of Harvest VMs and Harvest Hadoop.

2 Background and related work

Deploying VMs. Each VM deployment targets a geograph-
ical region, which is partitioned into clusters of servers that
have the same hardware. Each region may have a different
number of clusters and hardware mix. A region-level sched-
uler decides which VMs go to which clusters based on several

factors (e.g., hardware required, maintenance tasks, available
capacity) [19]. These factors can cause clusters to have differ-
ent VM loads, even in the same region. Then, a cluster-level
scheduler decides which server in the cluster will run each
VM. When a VM is assigned to a server, a server-level agent
creates the VM and manages its lifecycle.
Evictable VMs. Providers sell their excess capacity at dis-
counted prices as evictable VMs [1, 8, 14]. These VMs are
evicted/killed when the provider needs the capacity (e.g., due
to a spike in the number of on-demand VMs). Providers notify
the VMs before they evict them: GCP and Azure provide a
30-second warning, whereas AWS gives 2 minutes.
Variable-resource VMs. Sharma et al. [33] recently pro-
posed Deflatable VMs, which change virtual resources dy-
namically (via hot-plugging/unplugging), and a multi-level
resource reclamation approach for explicitly adapting appli-
cations, operating systems, and hypervisors to the available
resources. They also combined reclamation with deflation-
aware VM scheduling. We believe that expecting the whole
stack to adapt is unrealistic in practice. Instead, we favor sim-
plicity and maintainability for production deployment: (1) we
minimize the changes to the cloud platform, so deploying
Harvest VMs is no different than deploying any other VM,
and the VM scheduler is unaware that Harvest VMs grow and
shrink; (2) we do not change the number of virtual cores, and
instead transparently vary the number of physical cores.

A more aggressive VM design could harvest the unallo-
cated cores and any allocated cores that are temporarily idle.
This is out of the scope of this paper. Instead, we focus on the
usability of core-harvesting VMs (aggressive or otherwise) in
practice with SLOs and software for them. Our SLOs can be
extended for aggressive harvesting, whereas Harvest Hadoop
can be used directly.

Like a Harvest VM, a burstable VM [7, 13] has a fixed
number of virtual cores and receives a minimum number
of physical cores. However, it is only allowed to burst (i.e.,
receive additional physical cores) up to its maximum size,
after accumulating enough “credits” by staying below a pre-
defined core utilization. A Harvest VM differs in that (1)
it harvests as many cores as are unallocated for as long as
they remain so, i.e. there is no concept of credit; and (2) it is
evictable. These characteristics mean that providing SLOs for
Harvest VMs is also quite different than for burstable VMs.
Resource harvesting. Other approaches to resource har-
vesting have either focused on running batch workloads
on idle machines (e.g. [25, 26]) or co-locating batch work-
loads with latency-sensitive services on bare-metal servers
(e.g. [23, 27, 38, 39, 46, 47]). In contrast, we focus on a virtu-
alized infrastructure where physical resources are reserved
for the VMs that allocate them (as is the norm in the pub-
lic cloud), and predict the availability and dynamics of the
unallocated resources to produce SLOs.
Characterization and SLOs. To indirectly characterize the
unallocated resources at cloud providers, prior work [2, 9, 31,

754 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Feb Mar Apr May Jun Jul Aug

C
or

es

VM 3

VM 2

VM 1

VM VM VM

Figure 1: Allocation of VMs on a server, including hypotheti-
cal VMs (dashed) that consume unallocated resources.

34] has analyzed publicly available traces of EC2 spot prices.
Using the traces, they tried to model the availability of spot
instances. In contrast, we use actual resource allocation data
from the entire Azure server fleet to characterize the resources
more accurately and comprehensively.

From the perspective of the provider, Carvalho et al. [12]
characterized the reclaimable resources in 6 Google clusters.
They aggregated the cluster-wide resources and predicted
their availability for long-term (6-month) SLOs. They did not
consider VM evictions or how the reclaimable resources vary
at each server. However, the majority of VMs live less than 1
day and get deployed in relatively small groups [16]. Hence,
we quantify the unallocated resources per server at a fine time
granularity. Moreover, our SLOs quantify VM survival rates
and average numbers of cores over horizons as short as 1 hour.

3 Characterizing unallocated resources

In this section, we characterize the potential for resource
harvesting and the dynamics of the unallocated capacity in
Azure. The characterization is affected by the Azure VM
scheduler [19]. However, the scheduler behaves similarly to
those of other providers [38] by tightly packing VMs while
ensuring that it can find big enough holes for large VMs.
Methodology. We analyze the resource allocation in Azure
from February to October 2019. The data we present does
not include confidential metrics, such as number of servers or
percentage of unallocated resources. However, the trends we
illustrate are enough for the purposes of this paper.

We compute the allocated resources in each server based on
the regular VMs running over time, i.e. we exclude resources
that have been allocated to existing evictable VMs. We ac-
count for the main resources (i.e., cores, memory, storage, and
network bandwidth) for both the VMs and the servers. We
then check if we could allocate in each server a hypothetical
evictable VM of a minimum size, for how long, and how many
unallocated resources it could potentially get.

In more than 80% of cases where we could not allocate
the hypothetical VM, the scarcest resource (i.e., the one that
prevents the allocation) is cores. This is not surprising as
Azure matches its hardware and VM sizes to have a single
dominant resource and simplify capacity management. In the

Unaware VM scheduler Aware VM scheduler

Mar Apr May Jun JulFeb Mar Apr May Jun Jul

C
or

es
 s

er
ve

r
2

C
or

es
 s

er
ve

r
1 VM VM

VMVMVM

VM 3
VM 2
VM 1

VM 4

VM

Figure 2: VM allocations on two servers in our characteri-
zation (left) and when the VM scheduler is aware of VMs
consuming unallocated capacity (right).

vast majority of remaining cases, disk space is the constraint.
Thus, if we can find unallocated cores at a server, the other
resources will most likely be unallocated as well.

Figure 1 shows an example server that runs 3 VMs over
six months with the allocation of cores on the Y-axis. In early
February, there are no VMs allocated to the server so we can
run a 1-core hypothetical VM (dashed box) during that time.
In late February, VM 1 starts and takes the full server so we
cannot run any other VM. Once VM 1 finishes, the server
becomes empty so we can run another hypothetical VM. VM
2 starts in late March but it only takes half of the server, so
we can keep running the hypothetical VM until VM3 starts.
In this period, we could place 3 hypothetical VMs with an
average lifetime of almost one month.

This figure shows the hypothetical VMs with a fixed size
but there are plenty of additional unallocated cores still left in
the server. For example, when the hypothetical VM can run,
at least half of the cores are unallocated.

Our characterization is pessimistic in that the unallocated
resources are actually more stable in practice. For example,
our characterization may find the scenario on the left side
of Figure 2, which shows two servers with real VMs and
hypothetical VMs. However, if the VM scheduler were to
actually allocate VMs to consume the unallocated resources,
it could allocate the real VMs differently to avoid evicting the
hypothetical VMs as on the right side of the figure.
Temporal patterns. A key aspect to quantify is how long
we could run a hypothetical evictable VM to consume unal-
located resources in each server. Figure 3 shows how many
servers could host a 1-core VM with 16GB of memory and
200GB of disk for a given time (e.g., 1 hour, 1 day) in a pop-
ular region. We do not list the actual numbers of servers on
the Y-axis for confidentiality reasons. Considering 1 hour
into the future, we can see a daily pattern where there are
more unallocated resources at night. For 1 day, we can see a
weekly pattern and how weekends have substantially more
unallocated resources. Once we consider the next week, the
temporal pattern is not as clear. Overall, the longer horizon
numbers show a decrease in unallocated resources over time.
These data show that it is important to account for the time of
day and day of the week (at least implicitly) when predicting
the unallocated resources, especially for shorter periods.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 755

Feb Mar Apr May Jun Jul Aug Sep Oct

N
um

be
r

of
 s

er
ve

rs

Current

1 hour

1 day

1 week

1 month

Figure 3: #servers with 1 unallocated core in a region.

0

20

40

60

80

100

Feb Mar Apr May Jun Jul Aug Sep Oct

S
ur

vi
va

l r
at

e
(%

)

1 hour

1 day

1 week

1 month

Figure 4: Survival rate with 1 unallocated core in a region.

From these numbers, we can compute the survival rate, i.e.
the percentage of these evictable VMs that would survive
for a given time (e.g., dividing the “1-hour” values by the
corresponding “Current” values computes the percentage of
VMs that would survive for 1 hour). Figure 4 shows this
survival rate over time. For example, it shows that in April,
an average of roughly 60% of the 1-core evictable VMs (at
most one per server) would survive for one week.
Cluster behaviors. As we discuss in Section 2, clusters may
behave differently even within a region. Figure 5 shows how
many servers could host a 1-core evictable VM in one specific
cluster in the same region as Figure 3. In both late May and
early June, the number of allocated VMs increased substan-
tially, each time leaving less unallocated capacity. This shows
that the amount of unallocated resources can change drasti-
cally over time. There are multiple reasons for such an effect,
but in this case it was due to a shift in load across clusters,
driven by the higher level across-clusters scheduler. These
results show that we must consider each cluster individually
when predicting the available unallocated resources.
Aggregating across all regions. So far, we have discussed
servers in 1 region. Now, we discuss aggregate data over all
regions. First, we consider the average durations over which
at least 1 core is unallocated at each server. Over all regions,
most servers can host a 1-core evictable VM for at least 1
hour on average. This number drops by 40% for 1 day and by
another 40% for 1 month. As expected, fewer servers have at
least 1 unallocated core for long periods (e.g., 1 month) than
short ones (e.g., 1 hour). Moreover, even when servers have
the same overall amount of unallocated capacity over time

Feb Mar Apr May Jun Jul Aug Sep Oct

N
um

be
r

of
 s

er
ve

rs

Current

1 hour

1 day

1 week

1 month

Figure 5: #servers with 1 unallocated core in a cluster.

0

20

40

60

80

100

1 hour 1 day 1 week 1 month
S

ur
vi

va
l r

at
e

(%
)

1 core

2 cores

4 cores

8 cores

16 cores

Figure 6: Survival rate of deployable evictable VMs as a
function of lifetime and minimum size.

(measured in core×hours), they may be able to host widely
different numbers of evictable VMs: servers that tend to have
short periods with unallocated cores can host many (short-
lived) evictable VMs, whereas those that tend to have long
periods with unallocated cores host fewer (long-lived) VMs.

Next, we consider the average survival rate of the deploy-
able 1-core VMs (at most one per server), again aggregating
across all regions. The purple bars in Figure 6 plot the average
survival rate for all deployable 1-core VMs for 1 hour, 1 day,
1 week, and 1 month. These four bars compute the average of
the curves in Figure 4 but for all regions. Almost 100% of the
VMs would survive for 1 hour, but only 80% of them would
survive for of 1 day and 32% would survive for 1 month.
Minimum unallocated cores. These results quantify the sur-
vival rate of 1-core evictable VMs. However, many servers
have more unallocated cores than 1. For example, only 55% of
the servers have 4 unallocated cores (i.e., capable of hosting
a 4-core evictable VM) for at least 1 hour on average.

Figure 6 also plots the average survival rate of other min-
imum sizes (at most one VM per server). Larger deployed
evictable VMs tend to survive longer than smaller ones, even
though they are less likely to find a server where to run. For
example, 88% of the 16-core VMs survive for 1 day or longer,
but only 80% of the 2-core VMs survive for that long. This
effect is due to the cluster-level scheduler trying to pack new
VMs tightly in servers that are already closer to being full.
Additional unallocated cores. The results above consider
evictable VMs that consume a minimum number of unallo-
cated cores. However, as shown in Figure 1, there are many

756 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

20

40

60

80

100

1 2 4 8 16 20

P
er

ce
nt

ag
e

(%
)

Number of cores

Min 1 core

Min 2 cores

Min 4 cores

Min 8 cores

Min 16 cores

Figure 7: Percentage of deployable evictable VMs that could
have received more cores, for each minimum size.

periods when there are additional unallocated resources in
the server. Figure 7 shows the percentage of evictable VMs
of each minimum size that could potentially have been as
large as 1, 2, 4, 8, 16, and 20 cores. For example, 78% of
1-core VMs could have gotten 4 or more cores, and 85% of
the 4-core evictable VMs could have gotten 8 or more cores.
These results illustrate that (1) a large percentage of the (more
numerous) small VMs could have been much larger; and (2)
a large percentage of the (less numerous) large VMs could
have been even larger. However, allocating a larger evictable
VM on a server increases the chance that it will be evicted
when the additional cores are needed for higher priority VMs.

Another important consideration is how stable the set of
additional cores is, i.e. how quickly the set changes due to
core allocations/deallocations. We find that 94% of these state
changes last for more than 1 second, 90% of them last for
more than 5 seconds, 50% of them last for more than 10
minutes, and 10% of them last more than 3 hours. Clearly,
the set of additional cores is stable enough that they could be
effectively harvested and used by applications.
Multiple VMs per server. So far, we have discussed deploy-
ing at most one evictable VM in each server. However, the
results above show that there are often enough unallocated
resources for more VMs and the amount of these resources
varies over time. Under these conditions, the provider can
maximize the amount of unallocated resources it monetizes
via evictable VMs with as many 1-core VMs as will fit in each
server at each point in time. Unfortunately, a larger number of
VMs per server increases management (more evictions) and
resource (more copies of the guest OS) overheads. The key
problem is that standard evictable VMs are not the ideal ab-
straction to maximize the use of unallocated resources while
keeping overheads down.
High-level takeaways. Our characterization shows that:
1. There are many unallocated resources that can be har-
vested. However, they fluctuate significantly over time. There
are plenty of unallocated resources for a short time but many
fewer for longer periods.
2. These resources are not evenly distributed across clusters.
A cluster’s allocation may also change drastically over time.
3. The available unallocated resources vary substantially de-

pending on amount (minimum size) and duration. Smaller
minimum sizes are more widely available but they do not
survive as long as larger minimum sizes.
4. There are many additional unallocated resources in each
server beyond this minimum size that can be harvested. The
additional resources vary over time at a fairly coarse granu-
larity, but trying to harvest them with standard evictable VMs
could cause many evictions and waste resources.

4 Harvest Virtual Machines

Section 3 shows that there are plenty of unallocated resources
that can be harvested, while takeaway #4 suggests that doing
so with standard evictable VMs is not ideal. Thus, we pro-
pose a new class of evictable VM, called Harvest VM, that
dynamically grows and shrinks to harvest as many unallo-
cated resources as available on the server where it runs. With
Harvest VMs, we maximize the resource harvesting at each
server, while keeping evictions and overheads down.
Overview. Users select a minimum size for each Harvest
VM. A Harvest VM starts with as many unallocated physical
resources as are available in its host server, but grows and
shrinks dynamically after that. For example, a Harvest VM
may have 4 physical cores as its minimum size. At server
selection time, this VM is assigned to a server that has at least
4 unallocated cores. Say this server has 20 cores. At creation
time, the Harvest VM would be created with 20 virtual cores
and would receive an initial number of physical cores equal to
the number of unallocated cores in the server (at least 4 cores,
of course). During its lifetime, the Harvest VM will grow (i.e.,
receive more physical resources) when a co-located regular
VM terminates and shrink (i.e., lose physical resources) when
a new regular VM lands on the same server. Since the Harvest
VM changes size only when other VMs arrive/terminate, these
changes occur fairly infrequently (Section 3). As a Harvest
VM has lower priority, it is evicted/killed if the cloud platform
needs its minimum size for a regular VM.

As an example, Figure 8 shows a server with 8 physical
cores that hosts 2 regular VMs with 2 cores each. At t0, a
Harvest VM with a minimum size of 2 cores lands on the
server. As there are unallocated cores, the Harvest VM grows
to 4 cores. At t1, VM 2 finishes and the Harvest VM grows to
6 cores. At t2, VM 3 with 4 cores lands on the server and the
Harvest VM shrinks to 2 cores (its minimum size). At t4, VM
4 with 2 cores lands on the server, causing the Harvest VM to
be evicted as it would have to shrink below its minimum size.
Production implementation in Azure. We create a new fam-
ily of hyperthreaded Harvest VMs that users can select from.
The family defines VM types with a minimum size of 1, 2, or
4 cores (i.e., 2, 4, and 8 hyperthreads, respectively). The small-
est Harvest VM has a minimum of 1 core, 16GB of memory,
200GB of disk with 3k IOPS, and 1Gbps of network band-
width. The resources for the larger sizes scale proportionally
to the number of minimum physical cores.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 757

VM 1 VM 2
Harvest

VM
t0

VM 1
Harvest

VM
t1

VM 1 VM 3
Harvest

VM
t2

VM 1 VM 3 VM 4t3

T
im

e

Figure 8: Harvest VM dynamically changing sizes over time.

Our current implementation only harvests physical cores;
the other resources stay fixed during the Harvest VMs’ life-
times. The Harvest VMs can grow to use all physical cores of
the server, as this fits nicely our current production uses (Sec-
tion 6), which can consume as many cores as are available.
For simplicity, the implementation does not allow more than
one Harvest VM per server. We discuss upcoming changes to
this design in Section 8.

Users can deploy many Harvest VMs to a region at the same
time. The provider deploys the Harvest VMs in the same way
that it deploys any other VM. Ultimately, each Harvest VM is
scheduled onto a server by a cluster-level VM scheduler. On
each server, Azure runs the Hyper-V hypervisor [29] and an
agent responsible for managing VMs locally, including VM
creation, termination, and physical core reassignment across
VMs. The agent uses hypercalls for assigning a Harvest VM
to a group of cores and capping the amount of CPU time
the group receives. To prevent cache interference between
a Harvest VM and the co-located regular VMs, the agent
constrains the Harvest VM to a subset of cache ways of the
last-level cache, using cache allocation technology [15].

The changes in the number of physical cores are not di-
rectly visible by the Harvest VM, as its number of virtual
cores does not change. However, the application or schedul-
ing framework running on a Harvest VM may want to take
advantage of any harvested cores. Thus, we expose the num-
ber of currently assigned physical cores to the Harvest VM
via the KVP mechanism of Hyper-V [30]. Applications or
frameworks can use this information to adapt their behaviors.
For example, a scheduling framework can assign more tasks
to a Harvest VM that has just received more cores.

The scheduler may evict a Harvest VM (1) when it needs
the minimum resources for a regular VM, or (2) proactively
to avoid the eviction latency when it expects that its minimum
resources will be needed soon. In either case, the scheduler
informs the Harvest VM about the upcoming eviction, and
gives it 30 seconds to shutdown cleanly. At deployment time,
users can specify whether they want another Harvest VM to
be created (on a different server) to replace an evicted one.
Comparison to standard evictable VMs. Unlike evictable
(e.g., spot) VMs, Harvest VMs are only evicted when the
provider needs their minimum resources for higher priority
VMs. In addition, Harvest VMs harvest additional unallocated

cores from the servers that host them. In Figure 8, using
evictable VMs to harvest those additional cores would have
caused them all to be killed at t2, whereas the Harvest VM
shrinks and avoids the high eviction overhead. Due to the
additional harvested cores, it takes many more evictable VMs
to harvest as many cores as Harvest VMs, implying higher
management and resource overheads. In Section 7.5, we show
that evictable VMs also imply higher costs to users.
Using Harvest VMs. Harvest VMs are most useful when
workloads can gracefully adapt to evictions and a time-
varying number of physical cores. First, workloads must be
able to continue operating correctly after VM evictions. An
eviction is similar to a server failure, so all practical distributed
applications are already capable of handling them. Embarrass-
ingly parallel applications handle these failures even more
easily. Regardless of application type, users often want new
(evictable) VMs to be created to replace evicted VMs, and
cloud platforms already provide this functionality. However,
as VM re-creation and application re-configuration are expen-
sive, users can make informed decisions about their Harvest
VM deployments using our SLOs.

Second, applications must be able to leverage additional
cores and degrade gracefully when cores are removed. To do
so, applications can check the number of currently assigned
physical cores and adapt accordingly. Core re-assignments
are much cheaper than VM re-creation and re-configuration,
so applications can more easily handle them. For example, the
application may create (destroy) software threads when more
(fewer) cores are available or have a thread pool where work
can wait for cores. Despite their lower overhead, users can
use our SLOs to know how many cores to expect per Harvest
VM, so they can provision enough threads and VMs.

Still, providers may decide that Harvest VMs are not ideal
as an IaaS offering. Instead, they can use them to implement
cheaper SaaS, PaaS, or FaaS offerings. In fact, our current
Azure deployment uses Harvest VMs to implement a core-
harvesting version of Hadoop.
Privacy/confidentiality. On individual servers, Harvest VMs
reveal the VM arrival and departure events. However, they
do not threaten the confidentiality of the cloud platform’s
resource utilization, as long as determined (and well-funded)
users are not allowed to deploy Harvest VMs to most servers.
To avoid this, the provider can simply establish an overall
quota of Harvest VMs in each region. The privacy of the
workloads is also protected, as Harvest VMs do not reveal
any info about (1) co-located regular VMs to the users of
Harvest VMs, or (2) their workloads to the provider or co-
located regular VM users. In addition, using Harvest VMs for
SaaS, PaaS, or FaaS adds an extra software layer that further
reduces the chance of leaking sensitive information.
Pricing and deployment cost. A detailed pricing discussion
is beyond our scope. Instead, we assume that users pay (in
$/(core×hours)) the same for their Harvest VM minimum
size as a standard evictable VM of equal size (evictable VMs

758 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

are already heavily discounted compared to regular VMs), and
get a further discount on any additional cores beyond the min-
imum (billing for these cores can be per-use or per-allocation
to the Harvest VM). This pricing scheme is beneficial for both
users, who can rent resources cheaply, and the provider, who
can aggressively monetize its unallocated capacity.

To compute the cost to the user of a deployment of multiple
Harvest VMs, we need to consider evictions. An eviction
forces the re-creation of the VM at another server, which takes
the time to instantiate the VM and restore the application.
This results in a loss in useful compute power (measured in
core×hours). Thus, the average cost per useful core hour (in
$/(core×hours)) of a deployment is:

minsize core hrs× price+additional core hrs×α× price
minsize core hrs+additional core hrs− recovery core hrs

where minsize core hrs is the total core hours for the VMs’
minimum size, additional core hrs is the total number of
cores hours harvested beyond the minimum size, α is the extra
discount the provider offers on the additional cores (α = 0
means those cores are free and α = 1 means they cost the
same as the minimum size cores), and recovery core hrs is the
total amount of core hours spent recovering from evictions.
Harvesting other unallocated resources. Our current im-
plementation only harvests cores. Many workloads can use
additional cores (e.g., ML training and most data analytics)
with stable needs for other resources. Yet, harvesting other
resources would make Harvest VMs more broadly beneficial,
so we are building prototypes for harvesting some of them.

Harvesting network and disk bandwidth are similar to core
harvesting (they are all compressible resources). Current hy-
pervisors manage bandwidth limits and set them up when
starting each VM. To harvest these resources, the server agent
can dynamically change the limits. For applications or frame-
works to be aware of changes, we expose these values to the
Harvest VM using our existing mechanisms.

Harvesting memory is more challenging. Current hypervi-
sors support dynamically changing the memory assigned to a
VM. When adding new memory, this shows as hot-plugged
memory in the VM. When removing memory, the guest OS
uses memory ballooning to make some part of it unavailable.
This may trigger swapping in the Harvest VM and the appli-
cations/frameworks should be aware. If the VM cannot free
up memory, the operation may crash (or ungracefully evict)
the VM. Other works discuss similar approaches [33].

For disk space, VMs usually mount a virtual disk (VHD)
for data. A naive option would be to extend and shrink the
VHD. Extending a VHD can be done while it is mounted, but
shrinking it requires unmounting and compressing. Another
option would be to add and remove full VHDs depending on
the disk space available in the server. Both approaches are
intrusive and require applications/frameworks to be aware.

5 Providing SLOs for Harvest VMs

Our characterization showed that the amount of unallocated
resources to run Harvest VMs varies over time, in terms of
temporal patterns (e.g., daily and weekly) and across-cluster
behavior changes (e.g., shift in load across clusters). More-
over, the VM scheduling dynamics produce numerous smaller
sets of unallocated resources that survive shorter times, and
fewer larger sets that survive longer. These factors make it
difficult for users to provision the right minimum size and
number of Harvest VMs.

To ease this task, we predict the survival rate of the Harvest
VMs and the amount of resources they are likely to receive
on average, and provide these predictions to users in the form
of an SLO. The SLO is a best-effort statistical estimate as
in prior work [12], so the provider should retrain the predic-
tion models frequently (e.g., every day). The provider need
not monitor or actively try to enforce each SLO individually,
which would be impractical. Nevertheless, the SLO enables
applications beyond just batch workloads to use Harvest VMs,
as long as they can tolerate the occasional eviction and the
core reassignments (Section 6).

Our predictions leverage machine learning (ML) models
and features we can collect in production.
User input and SLO definition. The user must first inform
her desired number of Harvest VMs (e.g., 100), minimum
size (e.g., 2 physical cores), and region. Based on these re-
quirements, we provide an SLO for the survival rate and the
number of additional cores for a set of predefined time hori-
zons: 1 hour, 1 day, 1 week, and 1 month. For example, the
survival rate SLO for each horizon can be: 60% of the Har-
vest VMs will likely survive at least 1 hour, 40% will likely
survive at least 1 day, 25% will likely survive at least 1 week,
and 15% will likely survive at least 1 month. We also provide
confidence intervals (e.g., between 55% and 70% will last 1
hour with 95% confidence).

For each horizon, our SLO also estimates the average num-
ber of additional cores. For example, the Harvest VMs will
likely receive an average of 5-7 cores with 95% confidence
for the first hour, 8-11 cores over the first day, etc.

If the SLO is not acceptable, users can change the number
and/or minimum size of the Harvest VMs they request. If no
SLO is acceptable after multiple tries, users may opt for a mix
of regular and Harvest VMs or select a different region. Once
the Harvest VMs are running, users can check for updated
SLOs, which become more accurate over time. Based on this
updated information, they can adapt their deployments.
ML models and features. To provide the SLO, we use ML
models to predict the survival rates and average sizes for each
time horizon. After experimenting with multiple modeling
approaches, we settled on Random Forest regressors [10].

The features we use in our models are as follows.
Cluster characteristics: This includes (1) number of servers,
(2) number of racks, (3) generation of the hardware (including

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 759

their sizes), and (4) total resources (e.g., cores and memory)
in the cluster. Clusters with similar characteristics (e.g., same
type of servers) are likely to have similar behaviors. This is
useful for new clusters without much historical data or clusters
that have not seen particular conditions (e.g., high allocation).
Cluster name: The identifier for the cluster helps improve the
prediction accuracy for a specific cluster. This complements
the cluster characteristics and still allows learning from the
historical data from similar clusters.
Total resources allocated: This includes the total number of
cores and memory (e.g., in GBs) currently allocated to regular
VMs in the cluster. Together with the cluster characteristics,
we can compute the allocation percentage.
Number of VMs: This is the total number of VMs currently
running in the cluster. The ratio between resources allocated
and the number of VMs gives insights on how large the VMs
in the cluster are. This is particularly useful to estimate the
sets of unallocated resources in the cluster for Harvest VMs.
Auto Regressive: These are previous time series values of
the outputs we want to forecast. This feature is especially
useful because, as our characterization shows, past values are
a reasonable indicator of the current values. Each output will
use values for different past periods. For example, if we are
predicting the survival rate for Harvest VMs in 1 day, this
would include the evictions we actually saw in the last day.
Moving Average: This is similar to the Auto Regressive fea-
ture, but it smooths the past values using averages. We use
multiple periods for the averages (e.g., 1 hour, 1 day). This
feature is useful to filter out peaks and reduce noise.
ML training and inference. We can train our models using
data from Harvest VMs that ran in production in the past. This
data includes the aspects that we want to predict (e.g., how
long the VM lasted for), the characteristics of the Harvest
VM (e.g., a minimum of 2 cores), and the state of the cluster
at each point in time. However, as Harvest VMs have not run
in production long enough, we use traces from production as
our training data in this paper (Section 7.1).

At model inference time (i.e., an SLO needs to be shown
to a user), we first check which cluster in the desired region
would potentially host the Harvest VMs that are being re-
quested, and use the cluster characteristics and name for the
cluster as input features for the inference. If the Harvest VM
deployment is to be split across multiple clusters, we then
predict for each one independently.
Discarded features. Other features’ impact on prediction
quality was small or even detrimental. Some of them are:
Number of VMs of each type: A VM type defines the number
of cores, memory size, if it has GPUs, etc. There are hundreds
of types and the model cannot make sense of them. Some fea-
tures we use (e.g., total number of VMs and cores allocated)
are proxies and enable our models to infer this data concisely.
Date/time: These features were used in [36]. We do not in-
clude them, as features like the total number of VMs already
carry implicit temporal patterns (e.g., weekdays vs weekends).

Predicting standard evictable VM survivability. Our sur-
vival rate predictions can be directly applied to standard
evictable VMs. In fact, we are working on a simpler version
of our model to provide survival rate predictions for evictable
VMs in production. The uses for these predictions are similar
to the ones for Harvest VMs.

6 Harvest Hadoop

Cluster scheduling frameworks, such as Apache YARN [37]
or Kubernetes [22], are good targets for Harvest VMs. A large
number of applications already run on them, and they can
be adapted to use Harvest VMs transparently to applications.
These frameworks are built to handle server/VM failures, so
they can be easily extended to manage evictions. Applications
built for these frameworks, like Spark [44], also manage the
straggler tasks that might result from an eviction. Moreover,
these frameworks can be modified to schedule more tasks on
a Harvest VM that has grown to use more cores, and stop
scheduling new tasks on a Harvest VM that has lost cores. To
demonstrate how to adapt these frameworks, we build Harvest
Hadoop to schedule computation on harvested resources.
Harvest Hadoop architecture. Harvest Hadoop is an ex-
tension to the Hadoop [3] ecosystem. Hadoop includes the
YARN cluster scheduler [37], which enables running many ap-
plications (e.g., Spark [44], Flink [11]) to leverage harvested
resources. It also includes the Hadoop Distributed File System
(HDFS), which is optimized for large data files.

A key goal for Harvest Hadoop was to minimize the number
of intrusive changes to YARN and HDFS, so that our system
would be simple and practical, and our changes could be more
easily contributed to open-source Hadoop. With this in mind,
we design Harvest Hadoop with the following main features:
• It executes the YARN and HDFS master processes (called
Resource Manager and Name Node, respectively) on regular
VMs, as it is expensive to manage the failure of the masters;
• It executes the YARN and HDFS worker processes (called
Node Manager and Data Node, respectively) on Harvest VMs;
• It uses storage within each Harvest VM simply as a cache
of remote data (from the provider’s highly available storage
service), as evictions do not leave enough time for fully de-
commissioning a storage server; and
• It introduces a Harvest VM Manager (HVM Manager) that
monitors the number of resources currently available to its
Harvest VM and the informs the master processes. The master
processes act accordingly at the next heartbeat.

We have contributed all the needed code changes to open-
source Hadoop 3.3.0 [40,41]. Figure 9 illustrates the architec-
ture, showing a server that has two regular VMs and a Harvest
VM consuming all the resources not used by the regular VMs.
Managing evictions. We leverage the decommissioning fea-
ture in YARN [42]. When the provider notifies the Harvest
VM that it will be evicted, the HVM Manager notifies the
YARN Resource Manager (RM) to kill the containers in that

760 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

HDFS
DataNode

YARN
Node

Manager

HVM
Manager

Harvest VM

HDFS
Name
Node

YARN
Resource
Manager

KVP
Hypervisor

Regular
VM

Regular
VM

RPC/REST Call

Heartbeat

Container
Container

Container

Figure 9: Architecture of Harvest Hadoop.

VM. If the worker gets evicted before killing all the contain-
ers, the RM will handle this as a failure and re-schedule the
containers. Otherwise, the applications can decide whether
they want to re-schedule any of their killed containers.

Evictions are more intrusive for data storage. We leverage
the decommissioning mechanisms available in HDFS [20].
The HVM manager catches the eviction notification from the
provider and tells the HDFS Name Node to start decommis-
sioning the corresponding Data Node. As the advance notice
to evict a VM is usually short (e.g., 30 seconds), there is little
time to decommission a full data node. This is the reason why
we only cache remote replicas in Harvest VMs, as we men-
tion above. HDFS replicates the cached files in other Harvest
VMs, and uses a write-back policy for them [21].

At Harvest Hadoop deployment time, the user specifies (as
an auto-scaler option) whether she wants her Harvest VM
deployment to be replenished by the cloud platform to its
original number of Harvest VMs when an eviction occurs.
Managing core reassignments. To adapt the scheduling, we
leverage the resource updates in the existing heartbeats to
the YARN RM. Zhang et al. took a similar approach in the
bare-metal scenario [47]. The HVM manager periodically
checks the number of cores assigned to its Harvest VM, and
it notifies the RM if the number has changed.

If the Harvest VM gets more cores, the RM can now assign
more containers to the VM. If the VM shrinks, the scheduler
can: (1) kill some containers and let the application handle
it as a failure, (2) run the containers in a deprived mode and
wait until the application terminates them, or (3) notify the
application to free up some containers.

Our current implementation uses a combination of the three
options. The RM first selects the containers that should be
killed based on their priorities and whether they are oppor-
tunistic [43]. Then, it notifies the applications in case they can
terminate the containers. After a grace period (30 seconds), if
the cores are still not enough, it will terminate the containers.
This period allows graceful termination and can correct for
the number of cores increasing again.
Harvesting other resources. We also modify Hadoop to be
aware of the VMs’ memory allocation, so it will work out-
of-the-box when Harvest VMs become capable of harvesting
memory. When the Harvest VM gets more memory, Harvest
Hadoop can just deploy more containers to it. However, when

the Harvest VM shrinks, we cannot run in deprived mode, un-
less the VM allows swapping to disk. For this reason, we keep
a buffer of unused unallocated memory. The HVM manager
notifies the Harvest VM when memory from this buffer is
allocated, so that it can free up some of its own memory. The
HVM manager kills the Harvest VM if the buffer is exhausted,
i.e. the Harvest VM cannot release memory fast enough.

Hadoop does not need changes to benefit from harvested
network and disk bandwidth, as applications can automati-
cally use any additional bandwidth that becomes available.

7 Evaluation

7.1 Methodology
Our evaluation focuses on two sets of results. First, we assess
the benefits of Harvest VMs and the accuracy of our SLOs.
Ideally, we would do this assessment based on real production
data. However, our SLOs are not in production yet. Moreover,
the set of conditions under which we can evaluate our SLOs is
limited with the production deployments of Harvest VMs. For
these reasons, we use a validated simulator and production
VM data for 25 clusters for our SLO evaluation.

Second, we explore the real implementation of Harvest
VMs and Harvest Hadoop in the provider’s production in-
frastructure. We use two large clusters: one running internal
production VM workloads, and another running VM work-
loads that stress the cluster.
Simulator. We use Azure’s own cluster simulator, which ex-
ecutes the real VM scheduler [19] code in assigning VMs
to physical servers. Thus, the simulator closely mimics the
constraints and preferences in the real scheduler. We feed the
simulator with production VM arrival traces, and add Har-
vest VMs continuously to fill the cluster (i.e., no new Harvest
VMs can be allocated). We run the simulations in real Har-
vest VMs, i.e. each harvested core allows us to run one more
(single-threaded) simulation in parallel.

We validate the simulator by comparing the number of
Harvest VMs that can be created in a real cluster (based on
logs of VM assignments to servers) and in simulation (replay-
ing the corresponding VM arrival trace). Figure 10 shows
this validation for Harvest VMs of 3 minimum sizes over 1
week, where dashed lines represent the real executions and
solid lines represent simulated executions. The curves match
closely because the simulator mimics the packing per server
accurately. We also validate using longer periods and other
clusters, and find an absolute average error of just 3%.

As inputs for our simulations, we use VM arrival data from
25 randomly selected clusters across 14 regions, including
relatively small satellite regions. The data was collected from
December 1st 2019 to March 1st 2020. We process the VM
arrival data to generate the allocation state of each server every
10 minutes. The clusters exhibit a wide range of behaviors in
terms of how highly allocated they are on average and how

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 761

01 Jul 02 Jul 03 Jul 04 Jul 05 Jul 06 Jul 07 Ju

N
um

be
r

of
 H

ar
ve

st
 V

M
s

1 core

2 cores

4 cores

Figure 10: Simulation validation over 1 week. Solid curves
are actual data; dashed curves are simulated.

stable the total allocated resources are over time. The number
of servers per cluster ranges from several hundred to several
thousand. There is no correlation between cluster size and
allocation percentage or stability. When training our models,
we use data from December 1st 2019 to January 15th 2020.
We use the other 45 days for evaluating predictions.
Real experiments. For our real experiments, we use the Har-
vest Hadoop implementation we describe in Section 6. We
configure the provider’s deployment system to replace any
Harvest VMs that get evicted, so that the overall number of
Harvest VMs stays fixed during our experiments.

We use two large clusters, which we call private and canary.
The private cluster has over 1700 servers and runs VMs that
implement a production key-value store. The VM load is
fairly stable over time. We create Harvest VMs in this cluster
and attach them to a Harvest-Hadoop-based production data
analytics and ML training system. We have deployed Harvest
VMs to other private clusters as well, but selected this one for
our results because it has been the most extensively used.

The canary cluster has around 650 servers and runs a syn-
thetic VM load that stresses the provider’s production infras-
tructure. This cluster is in the top percentile in terms of VM
creations and terminations, and produces many resource allo-
cation changes and evictions. For our experiments with this
cluster, we create full Hadoop clusters. Each cluster consists
of 3 Name Nodes and 2 Resource Managers (which run on
regular VMs) and Harvest VMs that we scale on demand. For
coordination, we also deploy a 5-node ZooKeeper 3.6.0 stamp
in the same regular VMs. We run synthetic jobs, including
MapReduce (e.g., TeraGen and TeraSort) and Spark.

7.2 Benefits of Harvest VMs

We start the evaluation by assessing the benefits of Harvest
VMs over standard evictable VMs in terms of numbers of
VMs and evictions. Our comparison simulates the 25 produc-
tion clusters in two scenarios: one in which we consume all
the clusters’ unallocated resources using evictable VMs, and
another where we consume them using Harvest VMs. We
place as many evictable 1-core VMs as will fit; larger sizes
would not consume many unallocated resources. In the Har-

N
um

be
r

of
 V

M
s

Clusters

Evictable Harvest

Figure 11: Number of VMs required to consume the unallo-
cated resources of 25 production clusters.

vest VMs scenario, 1 core is the minimum size and we only
place one Harvest VM per server. In both scenarios, each VM
has 16GB of memory and 200GB of disk.

Figure 11 shows the number of VMs required to consume
the unallocared resources with evictable and Harvest VMs
for each cluster. Across all clusters, we need between 8% and
10.7× (3.7× on average) more evictable VMs than Harvest
VMs. The number of evictions of evictable VMs is also much
higher by ∼ 3.6× on average. These results quantify our
earlier observation that standard evictable VMs incur higher
management and resource overheads than Harvest VMs.

7.3 Accuracy of SLOs for Harvest VMs

The accuracy of our SLOs hinges on our ability to accurately
predict survival rates and average numbers of harvested cores.
We start our evaluation with a detailed analysis of prediction
accuracy for a few sample clusters, and then offer a global
view of all clusters. The last part of the section evaluates our
ML model and studies its sensitivity to multiple parameters.
Detailed analysis. Let us first consider the accuracy of our
survival rate SLOs. For a cluster with fairly stable load, the
graphs on the left of Figure 12 show the number of Harvest
VMs with a minimum size of 4 cores that can be created (top),
those that would survive 1 day (middle), and their survival rate
after 1 day (bottom) over time. Each graph shows the actual
and predicted values (with 95% confidence intervals), as well
as the corresponding absolute errors. We plot predictions
and errors every 10 minutes, given the actual cluster state at
those times. For example, if the actual value is 100 and the
prediction is between 90 and 120 with 95% confidence, the
absolute error is 0%. Instead, if the actual value is 60, the
error is -33% (i.e., (60-90)/90) and the absolute error is 33%.
The vertical line at January 15th marks the split between the
training and test datasets. The graph on the right shows the
CDF of the errors comparing the actual survival rates to our
predictions with and without 95% confidence intervals, during
the test period. These would be the error distributions of our
1-day survival rate SLO.

The top graph shows that our predictions for the number
of VMs that can be created are very accurate, even though
the training data is almost a flat line and there are substantial
variations after January 15th. Our model recognizes that these
behaviors are unknown and leverages the data from other

762 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A
b
so

lu
te

 n
u
m

b
e
r Harvest VMs that can be created

A
b
so

lu
te

 n
u
m

b
e
r Harvest VMs that survive 1 day

Dec Jan 2020 Feb
0

50

100

S
u
rv

iv
a
l r

a
te

 (
%

) Harvest VM survival rate for 1 day

Actual
Error
Predicted (CI)

Error

50 0 50
Error (%)

0

20

40

60

80

100

C
D

F
(%

)

Error(CI)
Error

Figure 12: Predictions for Harvest VMs with 4-core minimum
size and their survival rates after 1 day for a stable cluster.

A
b
so

lu
te

 n
u
m

b
e
r Harvest VMs that can be created

A
b
so

lu
te

 n
u
m

b
e
r Harvest VMs that survive 1 day

Dec Jan 2020 Feb
0

50

100

S
u
rv

iv
a
l r

a
te

 (
%

) Harvest VM survival rate for 1 day

Actual
Error
Predicted (CI)

50 0 50
Error (%)

0

20

40

60

80

100
C
D

F
(%

)

Error(CI)
Error

Figure 13: Predictions for Harvest VMs with 4-core minimum
size and their survival rates after 1 day for the worst cluster.

clusters to provide a prediction that is not as precise. So, when
those variations occur, the confidence intervals widen. The
middle graph also shows very good accuracy when predicting
the number of VMs that would survive after 1 day. Most
importantly, the bottom graph and the CDFs to the right show
that 80% of the absolute errors are very close to 0%, and 95%
of them are lower than 15%, when compared to the predictions
with confidence intervals. Errors are larger when comparing
to exact predictions, but 90% of them are still lower than 20%.
These results show very good accuracy for our SLO.

For comparison, we now study the cluster with the largest
99th-percentile errors in our dataset in Figure 13. Again, we
assume 4-core Harvest VMs and 1 day survival. The top graph
shows very low absolute errors, despite the significant change
in behavior after January 15th. In contrast, the middle and bot-
tom graphs show significant errors at times, despite the wider
confidence intervals. The CDFs show the distribution of the
errors in our SLO prediction. In this case, 85% of the predic-
tions are within 10% and 95% within 20%. Thus, even in the
worst cluster, our SLO would still provide valuable guidelines
(e.g., an actual survival rate of 85% while we predicted 65%).

We now study the accuracy of our predictions of average
number of harvested cores. Figure 14 shows these predictions
for Harvest VMs with 1 (top), 2 (middle), and 4 (bottom)
minimum cores in another cluster with significant unallocated
capacity. The horizontal lines show the minimum and maxi-
mum numbers of cores for each VM. The figure shows that
a Harvest VM with a minimum size of 1 core gets between
6 and 14 cores in the cluster. During the test phase, the pre-
diction accuracy is very good, showing that our average cores
SLO would be accurate for this cluster. In addition, we can see

0

5

10

15

20
Min 1 core

Min/max cores
Error

0

5

10

15

20

Ph
ys

ic
a
l c

o
re

s

Min 2 core

Dec Jan 2020 Feb
0

5

10

15

20
Min 4 core

Actual
Error
Predicted (CI)

Figure 14: Prediction of unallocated cores in one cluster.

60

30

0

30

60

C3

Min 1 core

60

30

0

30

60

E
rr

o
r

(%
)

C3

Min 2 core

Clusters
60

30

0

30

60

C2 C1C3

Min 4 core

Figure 15: Prediction errors for the 1-day survival rate, as a
function of minimum size and cluster.

that the larger Harvest VMs get slightly more cores overall.
Results for all clusters. The results above illustrate the accu-
racy of our predictions for individual clusters. We now turn to
results for all clusters. Figure 15 plots the errors (in boxplot
format) when predicting 1-day survival rate with 95% confi-
dence, for each minimum size and cluster. Each box ranges
between the first and third error quartiles, with the line rep-
resenting the mean error, whereas the whiskers extend out to
the 2.5th and 97.5th percentiles. The clusters marked C1, C2,
and C3 are those from Figures 12, 13, and 14, respectively.
The vast majority of mean errors are around 0% and the bulk
of the errors are lower than 20% for most clusters.

Figure 16 plots the error distribution of the survival rate
without confidence intervals, for each horizon and minimum
size, aggregated across all clusters. As expected, short-term
predictions (i.e., current, 1-hour) have the lowest errors. The
short-term results show that >90% of the predictions have
no errors and the worst predictions have an error under 15%.
Interestingly, long-term predictions (i.e., 1-month) tend to be
more accurate than medium-term ones (i.e., 1-day, 1-week).
The reason is that small load changes have a larger impact
when predicting medium-term survival, whereas they often
get smoothed out in the long term.

The figure also shows that errors are balanced and there

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 763

25 0 25
Error (%)

0

20

40

60

80

100

C
D

F
(%

)

Min 1 core

25 0 25
Error (%)

Min 2 core

25 0 25
Error (%)

Min 4 core

Hour
Day
Week
Month

Figure 16: Prediction errors for time horizon and min size.

are not many more overpredictions than underpredictions (or
vice-versa). When we average all the absolute errors, both
current and 1-hour survival predictions exhibit errors lower
than 2%. The 1-day and 1-week average absolute errors are
roughly 6%, whereas the 1-month average absolute error is
just under 4%.

Our predictions of the average number of cores available
to Harvest VMs are even more accurate: the average error
is smaller than 2.3% (<0.9% considering the confidence in-
terval). When predicting the median and the 75th percentile
numbers of cores, the errors are below 4.1% (<1.5% consider-
ing the confidence interval). Even though our current Harvest
VM implementation does not harvest memory, targeting our
model to predict the memory available for harvesting also pro-
duces accurate results: the average absolute error is smaller
than 1.5% (<0.5% considering the confidence interval).
Prediction adaptability. During this work, our model has
been exposed to three versions of the VM scheduler that
changed the allocation behaviors over time. We periodically
re-train our model to capture these new behaviors. In addition,
the auto-regressive features are especially good at adjusting
to such changes. We have also evaluated our predictions with
multiple hardware generations (our results are for the two
most popular ones) and the model is able to adjust to them.

In summary, our predictions for both survival rate and aver-
age number of cores are accurate and robust for a wide range
of cluster characteristics and behaviors.
Impact of the ML model. For comparison against our Ran-
dom Forest model [24], we evaluated a Multi-Layer Per-
ceptron (MLP) [35], Gradient Boosting [17], Exponential
Smoothing (ETS) [18], and ARIMA [45]. MLP is a type of
neural network. It achieves the closest results to our model,
but we had to explore multiple combinations in the numbers
of layers and neurons per layer. Figure 17 shows a compari-
son between the prediction errors of the two models’ survival
rates (left) and number of cores (right). The predictions are
slightly worse using MLP and it does not provide confidence
intervals. Training times are not a concern for large cloud
providers. For context, one Random Forest training session
typically takes around 16 hours on one Harvest VM, using
45 days of data from all 25 clusters. A similar MLP training
session takes much longer, but we did not try using GPUs for

0

1

2

3

4

5

6

7

Total Hour Day Week Month

P
er

ce
nt

ag
e

(%
)

MLP

Random Forest

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Average 50th 75th

C
or

es

Figure 17: Avg absolute errors for Random Forest and MLP.

0

2

4

6

8

10

P
er

ce
nt

ag
e

(%
) Model per cluster

0

2

4

6

8

10

P
er

ce
nt

ag
e

(%
) Model from all clusters

Error

Error (CI)

Figure 18: Avg absolute errors using two model types.

it. Prediction times are negligible in both cases.
The other models do not compare as well. Random Forests

outperformed Gradient Boosting in both accuracy and perfor-
mance. ETS and ARIMA are well-behaved for certain clusters
and provide confidence intervals. However, they cannot incor-
porate other features (e.g., cluster characteristics) that improve
predictions in unseen situations. In contrast, Random Forests
can easily use data from other clusters when the cluster starts
to behave differently from its past (e.g., the load increase in
Figure 13). Nevertheless, our approach does incorporate the
auto-regressive and moving average aspects of ARIMA.
Impact of the features. Our model uses 31 features. Both
SHAP analysis [28] and a feature importance algorithm in-
dicate that the auto-regressive features are the most relevant.
However, the other features do improve prediction quality,
especially when the cluster starts to behave differently. The
features that we discarded do not improve our predictions.
Impact of global modeling. We can see the benefit of using
data from other clusters by comparing prediction errors from
25 per-cluster models vs a single model trained with data from
all 25 clusters. Figure 18 shows this comparison for survival
rates. The top graph shows the errors of the independent
models and the bottom one the errors for the single model.
The bottom graph shows lower errors in every case.

7.4 Harvest VMs and Harvest Hadoop
As we mention in Section 7.1, we experiment with Harvest
VMs and Harvest Hadoop in the Azure’s production infras-
tructure, using two clusters called private and canary.
Private cluster. We have been running Harvest VMs and
Harvest Hadoop in this cluster in production for more than
6 months. The organic regular-VM workload is a key-value

764 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5 mins Hour Day W M
0

20

40

60

80

100

Pe
rc

e
n
ta

g
e
 o

f
H

a
rv

e
st

 V
M

s
(%

)

Private

All
Evicted
Not evicted

5 mins Hour Day W M

Canary

Figure 19: Time to evict Harvest VMs in the two clusters.

store that uses full-server VMs but leaves many other servers
empty. Our Harvest VMs (mininum 2 cores) run on these
servers and execute Hadoop-based ML and data analytics jobs.
As the Harvest VMs run alone, they grow to consume all the
cores on their host servers. The left side of Figure 19 shows
their survival statistics over 3 months. The “Not Evicted” VMs
are those that terminated, instead of being evicted. Roughly
95% of the Harvest VMs that are evicted survive one hour or
more, and roughly 40% survive for one month. These dura-
tions match the production jobs nicely: this cluster ran 105k
tasks in a month, 90% of them ran for less than 10 minutes,
95% less than 1 hour, and only 1% longer than 6 hours. Inter-
estingly, roughly 90% of the not evicted Harvest VMs last for
more than a month. Over time, the organic load has increased
and we now have capacity for around 450 Harvest VMs.
Canary cluster. To stress Harvest Hadoop, we create full de-
ployments in the canary cluster, whose organic workload also
seeks to stress the platform and varies significantly. Each de-
ployment includes 100 workers in Harvest VMs of minimum
size 2, and executes various Hadoop benchmarks. The results
over 3 months appear on the right side of Figure 19. The
constantly varying organic load and our stress-benchmarking
result in only roughly 30% of the Harvest VMs that are evicted
surviving one hour or longer. Even the ones that are not
evicted are very short, and terminate before they are evicted.

To see these behaviors in more detail, we let a 100-VM
setup run for over a week, continuously executing the TeraGen
and Terasort benchmarks with 1000 map tasks. From these
experiments, Figure 20 shows the minimum, maximum, and
average number of cores the Harvest VMs got over the week.
Most of the time, the Harvest VMs got over 18 cores on
average. On March 29th there was a surge in load and the
average dropped to 15 cores. During this time, there was
at least one Harvest VM with only 2 cores. The figure also
shows the number of evictions per hour. During the load surge,
there were 19 evictions but in 30% of the hours there were
no evictions and in 75% there were 2 or fewer. After every
eviction, the auto-scaler replaced the evicted Harvest VM
with a new one trying to keep 100 workers at all times. For
most of the VM re-creations, accesses to the remote storage
service were not needed to re-hydrate the cache, because the
data could come from other cached replicas; the exceptions

0

5

10

15

20

03/25 03/26 03/27 03/28 03/29 03/30 03/31

0

5

10

15

20

N
um

be
r

of
 c

or
es

N
um

be
r of evictions per hour

Figure 20: Minimum, maximum, and average number of har-
vested cores and evictions over one week.

were the 19 evictions during the load surge, which actually
lost all cached replicas of certain files.

7.5 Cost comparisons

To compute the cost savings that Harvest VMs can accrue,
compared to standard evictable and regular VMs, we can
use the formula from Section 4. To use it, we need to in-
stantiate the time to recover from evictions in core×hours
(recovery core hrs), the prices per core×hour (price and α),
and the number of minimum (minsize core hrs) and addi-
tional (additional core hrs) Harvest VM core×hours. The
number of cores used by regular and standard evictable VMs
as equivalent to the minimum size of Harvest VMs.

We compute the recovery time for each evicted VM from
the experiments with the canary cluster. Specifically, an evic-
tion forces the re-creation of the VM at another server, which
takes roughly 30 seconds. In addition, Harvest Hadoop needs
to re-create its workers, which takes a minimum of 2 minutes
and 5 minutes at the 90th percentile. The breakdown for the
common case is 1 minute to get all the binaries (e.g., Java,
Hadoop, Docker, libraries), 30 seconds to setup and install
dependencies, around 10 seconds to setup the environment
(including security packages, compliance, and firewall setup),
and around 10 seconds to start the services (DataNode and
NodeManager) and heartbeat. Some stages are prone to long
tails, which usually occur when creating a few hundred Har-
vest VMs at the same time. For this analysis, we assume that
each eviction causes 5.5 minutes of recovery time.

To instantiate the prices, we use the amounts that Azure
charges for the VMs from which we derive the Har-
vest VM resource quantities. Specifically, we instantiate
the prices as $0.126/(core×hour) for a regular VM and
$0.019/(core×hour) for a standard evictable VM [5, 6]. We
use the latter price for the minimum size of the Harvest VMs
as well. By default, we assume that the discount for addi-
tional Harvest VM cores (beyond the minimum size) over the
evictable core price is 50%, i.e. α = 0.5. Below, we discuss
other values as well. As Harvest Hadoop can use as many
cores as Harvest VMs give it, it is immaterial whether the
provider charges for additional cores per-use or per-allocation.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 765

0.00

0.01

0.02

$/
(C

or
e

x
H

ou
rs

)

Clusters

Evictable Harvest

Figure 21: Costs when consuming the unallocated resources
of 25 production clusters.

Using data from the simulations in Section 7.2 (where we
consume as much of the unallocated resources as possible),
we combine the recovery time above with the average survival
rates for the 25 clusters and compute an average per-VM
recovery overhead of only 0.13%. Again for the 25 clusters,
we find that Harvest VMs receive an average of 7.2 additional
cores beyond the 1-core minimum.

With these parameters instantiated, we compute the cost per
useful core of Harvest VMs in the 25 clusters to range from
34% to 47% cheaper than standard evictable VMs. On aver-
age, Harvest VMs are 42% cheaper at $0.011/(core×hour).
Figure 21 illustrates these costs. The fact that evictable VMs
suffer many more evictions is a minor factor in these savings,
since survival times are much larger than recovery times for
both VM classes. Instead, the key reason for the large savings
is the additional cores that can be harvested at discounted
prices. When those cores are priced the same as the minimum
size (α = 1), there are almost no savings. When they are free
(α = 0), Harvest VMs cost $0.003/(core×hour) on average
across the clusters, i.e. a savings of 84%.

Compared to filling the unallocated capacity of the 25 clus-
ters with 1-core regular VMs, Harvest VMs are 91% cheaper
on average for α = 0.5. Here, the heavily discounted nature
of evictable cores dominates. Lower prices for the additional
cores increase these savings, whereas charging the same price
as for evictable/minimum cores lowers the savings to 85%.

8 Lessons from production deployment

Adapting applications and fast adoption. We initially
thought that the main users of Harvest VMs would be those
who could deploy lots of evictable VMs. However, after
discussing with internal teams, we soon realized that their
workloads could not benefit from additional cores without
modification. This made adoption harder, despite the much
lower price of Harvest VMs. Fortunately, many large users
at the provider rely on the Hadoop stack, so we devised Har-
vest Hadoop. These users then immediately and transparently
adopted Harvest VMs. We are now starting to adapt a FaaS
platform and Kubernetes for Harvest VMs.
Harvesting without evictions. Other potential users were
concerned about experiencing frequent evictions. They were
the motivation for our SLOs. Still, some would prefer not
to have any evictions. For them, we are considering regular-

priority Harvest VMs, which still have a (non-evictable) min-
imum size but can grow. For these VMs, the discount will
apply only to the cores used beyond the minimum size.
Unbalanced Harvest VMs. Our current implementation only
harvests cores, which may lead to VMs that cannot use some
cores because their memory becomes too small. For exam-
ple, some production VMs harvest 20 cores with only a fixed
16GB of memory. This imbalance is fine for some work-
loads but not others. Based on this, we started prototyping
harvesting of unallocated memory. Another option is to de-
fine Harvest VM types with larger (fixed) memories, but that
would make it harder to place them. The other resources have
not posed imbalance problems so far.
Multiple Harvest VMs per server. Our implementation al-
lows one Harvest VM per server because this works well for
our initial (Hadoop) customers. However, to address the im-
balance above and enable workloads that have less parallelism
per VM, we are implementing the ability for users to specify
a maximum size for each Harvest VM, and the fair sharing
of a server’s unallocated cores across multiple Harvest VMs.
Our models easily extrapolate to having multiple of them per
server. We need to add the maximum size of each Harvest
VM and the number of Harvest VMs in the cluster as features.
New VM family. We initially limited Harvest VMs to a few
pre-defined sizes (Section 4). However, some users needed
VMs with faster disks or a different hardware generation. So,
we had to create new types. For this reason, we plan to make
harvesting a feature that can be enabled for most VM types,
instead of being a separate family.
Impact on regular VM creation times. Our initial imple-
mentation of core reassignments had the unexpected side-
effect that regular VM creation could be slowed down signifi-
cantly on servers that were already hosting many VMs. The
problem only became noticeable when we started testing in
the canary cluster. Fixing it involved using a different API to
the hypervisor and made the overhead negligible.

9 Conclusion

In this paper, we first characterized the unallocated resources
of a large cloud provider. We then proposed to dynamically
harvest the unallocated resources using Harvest VMs. To
provide SLOs for these resources, we built an accurate ML-
based predictor for VM survival rates and average number
of cores. To demonstrate the use of Harvest VMs, we built a
cluster scheduling framework called Harvest Hadoop. Finally,
we discussed the lessons and results from our production
deployment of Harvest VMs and Harvest Hadoop in Azure.

Acknowledgements
We thank Rebecca Isaacs, our shepherd, the anonymous re-
viewers, David Irwin, and Stanko Novakovic for their many
helpful comments and suggestions.

766 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Amazon Elastic Compute Cloud. Amazon EC2 Spot
Instances, 2019. https://aws.amazon.com/ec2/
spot/.

[2] Pradeep Ambati and David Irwin. Optimizing the Cost
of Executing Mixed Interactive and Batch Workloads
on Transient VMs. In SIGMETRICS, 2019.

[3] Apache. Apache Hadoop, 2020. https://hadoop.
apache.org/.

[4] Microsoft Azure. Azure Functions. https://azure.
microsoft.com/en-us/services/functions/.

[5] Microsoft Azure. Ev3 and Esv3-series.
https://docs.microsoft.com/en-us/azure/
virtual-machines/ev3-esv3-series.

[6] Microsoft Azure. Pricing Calculator. https://azure.
microsoft.com/en-us/pricing/calculator/.

[7] Microsoft Azure. Introducing B-Series, Our
New Burstable VM Size, 2019. https:
//azure.microsoft.com/en-us/blog/
introducing-b-series-our-new-burstable-vm-size/.

[8] Microsoft Azure. Azure Spot Virtual Machines,
2020. https://azure.microsoft.com/en-us/
pricing/spot.

[9] O. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and
D. Tsafrir. Deconstructing Amazon EC2 Spot Instance
Pricing. ACM Transactions on Economics and Compu-
tation (TEAC), 1(3), 2013.

[10] Leo Breiman. Random Forests. Machine learning,
45(1):5–32, 2001.

[11] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
Flink: Stream and Batch Processing in a Single Engine.
Bulletin of the IEEE Computer Society Technical Com-
mittee on Data Engineering, 36(4), 2015.

[12] Marcus Carvalho, Walfredo Cirne, Francisco Brasileiro,
and John Wilkes. Long-Term SLOs for Reclaimed
Cloud Computing Resources. In SoCC, 2014.

[13] Amazon Elastic Compute Cloud. Burstable
Performance Instances, 2019. https://docs.
aws.amazon.com/AWSEC2/latest/UserGuide/
burstable-performance-instances.html.

[14] Google Cloud. Preemptible VM Instances, 2020.
https://cloud.google.com/compute/docs/
instances/preemptible.

[15] Intel Corp. Intel® CAT. https://software.intel.
com/content/www/us/en/develop/articles/
introduction-to-cache-allocation-technology.
html.

[16] Eli Cortez, Anand Bonde, Alexandre Muzi, Mark Russi-
novich, Marcus Fontoura, and Ricardo Bianchini. Re-
source Central: Understanding and Predicting Work-
loads for Improved Resource Management in Large
Cloud Platforms. In SOSP, 2017.

[17] Jerome H Friedman. Greedy Function Approximation:
A Gradient Boosting Machine. Annals of Statistics,
pages 1189–1232, 2001.

[18] Everette S Gardner Jr. Exponential Smoothing: The
State of the Art—Part II. International Journal of Fore-
casting, 22(4):637–666, 2006.

[19] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan,
Esaias E Greeff, David Dion, Star Dorminey, Shailesh
Joshi, Yang Chen, Mark Russinovich, and Thomas
Moscibroda. Protean: VM Allocation Service at Scale.
In OSDI, 2020.

[20] Apache Hadoop HDFS. HDFS DataNode Admin
Guide, 2020. https://hadoop.apache.org/docs/
current3/hadoop-project-dist/hadoop-hdfs/
HdfsDataNodeAdminGuide.html.

[21] Apache Hadoop HDFS. HDFS Provided Stor-
age, 2020. https://hadoop.apache.org/docs/
current3/hadoop-project-dist/hadoop-hdfs/
HdfsProvidedStorage.html.

[22] Kubernetes. Production-Grade Container Orchestration,
2020. https://kubernetes.io/.

[23] Jacob Leverich and Christos Kozyrakis. Reconciling
High Server Utilization and Sub-Millisecond Quality-
of-Service. In EuroSys, 2014.

[24] Andy Liaw, Matthew Wiener, et al. Classification and
Regression by Random Forest. R News, 2(3):18–22,
2002.

[25] Heshan Lin, Xiaosong Ma, Jeremy Archuleta, Wu-Chun
Feng, Mark Gardner, and Zhe Zhang. MOON: MapRe-
duce On Opportunistic eNvironments. In HPDC, 2010.

[26] Michael J Litzkow, Miron Livny, and Matt W Mutka.
Condor-A Hunter of Idle Workstations. In ICDCS, 1988.

[27] David Lo, Liqun Cheng, Rama Govindaraju,
Parthasarathy Ranganathan, and Christos Kozyrakis.
Heracles: Improving Resource Efficiency at Scale. In
ISCA, 2015.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 767

https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://docs.microsoft.com/en-us/azure/virtual-machines/ev3-esv3-series
https://docs.microsoft.com/en-us/azure/virtual-machines/ev3-esv3-series
https://azure.microsoft.com/en-us/pricing/calculator/
https://azure.microsoft.com/en-us/pricing/calculator/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://azure.microsoft.com/en-us/pricing/spot
https://azure.microsoft.com/en-us/pricing/spot
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/instances/preemptible
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://hadoop.apache.org/docs/current3/hadoop-project-dist/hadoop-hdfs/HdfsDataNodeAdminGuide.html
https://hadoop.apache.org/docs/current3/hadoop-project-dist/hadoop-hdfs/HdfsDataNodeAdminGuide.html
https://hadoop.apache.org/docs/current3/hadoop-project-dist/hadoop-hdfs/HdfsDataNodeAdminGuide.html
https://hadoop.apache.org/docs/current3/hadoop-project-dist/hadoop-hdfs/HdfsProvidedStorage.html
https://hadoop.apache.org/docs/current3/hadoop-project-dist/hadoop-hdfs/HdfsProvidedStorage.html
https://hadoop.apache.org/docs/current3/hadoop-project-dist/hadoop-hdfs/HdfsProvidedStorage.html
https://kubernetes.io/

[28] Scott M Lundberg and Su-In Lee. A Unified Approach
to Interpreting Model Predictions. In NIPS, 2017.

[29] Microsoft. Hyper-V Technology Overview,
2016. https://docs.microsoft.com/en-us/
windows-server/virtualization/hyper-v/
hyper-v-technology-overview.

[30] Microsoft. Hyper-V Integration Services,
2019. https://docs.microsoft.com/en-us/
virtualization/hyper-v-on-windows/
reference/integration-services.

[31] X. Ouyang, D. Irwin, and P. Shenoy. SpotLight: An
Information Service for the Cloud. In ICDCS, 2016.

[32] Amazon Web Services. AWS Lambda. https://aws.
amazon.com/lambda/.

[33] Prateek Sharma, Ahmed Ali-Edlin, and Prashant Shenoy.
Resource Deflation: A New Approach For Transient
Resource Reclamation. In EuroSys, 2019.

[34] Supreeth Shastri, Amr Rizk, and David Irwin. Tran-
sient Guarantees: Maximizing the Value of Idle Cloud
Capacity. In SuperComputing, 2016.

[35] Bruce W Suter. The Multilayer Perceptron as an Ap-
proximation to a Bayes Optimal Discriminant Function.
IEEE Transactions on Neural Networks, 1(4):291, 1990.

[36] Sean J Taylor and Benjamin Letham. Forecasting at
Scale. The American Statistician, 72(1):37–45, 2018.

[37] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, San-
jay Radia, Benjamin Reed, and Eric Baldeschwieler.
Apache Hadoop YARN: Yet Another Resource Negotia-
tor. In SoCC, 2013.

[38] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale Cluster Management at Google with Borg. In
EuroSys, 2015.

[39] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia
Tang. Bubble-flux: Precise Online QoS Management
for Increased Utilization in Warehouse Scale Computers.
In ISCA, 2013.

[40] Apache Hadoop YARN. Dynamic Resource Configura-
tion. https://issues.apache.org/jira/browse/
YARN-999.

[41] Apache Hadoop YARN. In case of long running
tasks, reduce node resource should balloon out resource
quickly by calling preemption API and suspending

running task. https://issues.apache.org/jira/
browse/YARN-999.

[42] Apache Hadoop YARN. Graceful Decommission of
YARN Nodes, 2020. https://hadoop.apache.org/
docs/current/hadoop-yarn/hadoop-yarn-site/
GracefulDecommission.html.

[43] Apache Hadoop YARN. Opportunistic Contain-
ers, 2020. https://hadoop.apache.org/docs/
current/hadoop-yarn/hadoop-yarn-site/
OpportunisticContainers.html.

[44] Matei Zaharia, Mosharaf Chowdhury, Michael J
Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
Computing with Working Sets. In HotCloud, 2010.

[45] G Peter Zhang. Time Series Forecasting Using a Hybrid
ARIMA and Neural Network Model. Neurocomputing,
50:159–175, 2003.

[46] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jna-
gal, Vrigo Gokhale, and John Wilkes. CPI2: CPU Per-
formance Isolation for Shared Compute Clusters. In
EuroSys, 2013.

[47] Yunqi Zhang, George Prekas, Giovanni Matteo Fu-
marola, Marcus Fontoura, Í Goiri, and Ricardo Bian-
chini. History-Based Harvesting of Spare Cycles and
Storage in Large-Scale Datacenters. In OSDI, 2016.

768 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/integration-services
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/integration-services
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/integration-services
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://issues.apache.org/jira/browse/YARN-999
https://issues.apache.org/jira/browse/YARN-999
https://issues.apache.org/jira/browse/YARN-999
https://issues.apache.org/jira/browse/YARN-999
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/GracefulDecommission.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/GracefulDecommission.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/GracefulDecommission.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/OpportunisticContainers.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/OpportunisticContainers.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/OpportunisticContainers.html

The CacheLib Caching Engine: Design and Experiences at Scale

Benjamin Berg1, Daniel S. Berger1,3, Sara McAllister1, Isaac Grosof1, Sathya Gunasekar2, Jimmy Lu2,
Michael Uhlar2, Jim Carrig2, Nathan Beckmann1, Mor Harchol-Balter1, and Gregory R. Ganger1

1Carnegie Mellon University, 2Facebook, 3Microsoft Research

Abstract
Web services rely on caching at nearly every layer of the
system architecture. Commonly, each cache is implemented
and maintained independently by a distinct team and is highly
specialized to its function. For example, an application-data
cache would be independent from a CDN cache. However, this
approach ignores the difficult challenges that different caching
systems have in common, greatly increasing the overall effort
required to deploy, maintain, and scale each cache.

This paper presents a different approach to cache devel-
opment, successfully employed at Facebook, which extracts
a core set of common requirements and functionality from
otherwise disjoint caching systems. CacheLib is a general-
purpose caching engine, designed based on experiences with
a range of caching use cases at Facebook, that facilitates the
easy development and maintenance of caches. CacheLib was
first deployed at Facebook in 2017 and today powers over 70
services including CDN, storage, and application-data caches.

This paper describes our experiences during the transition
from independent, specialized caches to the widespread adop-
tion of CacheLib. We explain how the characteristics of pro-
duction workloads and use cases at Facebook drove important
design decisions. We describe how caches at Facebook have
evolved over time, including the significant benefits seen from
deploying CacheLib. We also discuss the implications our ex-
periences have for future caching design and research.

1. Introduction
Large web services rely on caching systems to achieve high
performance and efficiency. For example, at Facebook, CDN
caches serve 70% of web requests, reducing latency by an or-
der of magnitude. A single caching server can replace tens of
backend database servers by achieving 20× higher throughput
and hit ratios exceeding 80%.

At Facebook, a wide variety of caching systems form an in-
tegral part of the system architecture. Facebook’s architecture
includes CDN caches, key-value application caches, social-
graph caches, and media caches (Figure 1). Caching plays a
similar role at Amazon [26], Twitter [42, 92], Reddit [33, 89],
and many other large web services.
Caching systems at Facebook. Historically, each caching
system at Facebook was implemented separately. For example,
Facebook separately designed CDN caches [86], key-value
caches [72], social-graph caches [17], storage caches [71],

CDN caches

Graph caches

Photo
Scaler

Media caches

Video Encoder

Session
info

Key-value caches

Server
info

Time
line

Followers

C C

C

C C

Storage
caches

C

C

Content
Votes

Content
Recom

mendations

C
C

Counter caches

Database
caches

C

Figure 1: Large web services rely on caching in many subsystems
to improve system performance and efficiency.

database caches [2], and many others. The belief was that
each of these highly specialized systems required a highly
specialized cache in order to implement complex consistency
protocols, leverage custom data structures, and optimize for a
desired hardware platform.

Although these caching systems serve different workloads
and require different features, they share many important en-
gineering and deployment challenges (Section 2). All of these
systems process millions of queries per second, cache working
sets large enough to require using both flash and DRAM for
caching, and must tolerate frequent restarts due to application
updates, which are common in the Facebook production envi-
ronment. As the number of caching systems at Facebook in-
creased, maintaining separate cache implementations for each
system became untenable. By repeatedly solving the same
hard engineering challenges, teams repeated each other’s ef-
forts and produced redundant code. Additionally, maintaining
separate caching systems prevented the sharing of efficiency
gains from performance optimizations between systems.

Hence, Facebook was faced with a tradeoff between gen-
erality and specialization. A more general-purpose caching
solution might lose some domain-specific optimizations for
individual systems, but it could reduce development over-
head and increase synergistic efficiency between systems.
The desire to balance this tradeoff gave rise to CacheLib, the
general-purpose caching engine.
This paper describes Facebook’s solution for scalable
cache deployment: CacheLib. CacheLib is a C++ library
that provides a common core of cache functionality, including
efficient implementations of cache indexes, eviction policies,
and stability optimizations for both DRAM and flash caches.
CacheLib exposes its features via a simple, thread-safe API
that allows programmers to easily build and customize scal-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 769

0

25

50

75

2017 2018 2019 2020

S
er

vi
ce

s
U

si
ng

C
ac

he
lib

 Building
new services
on CacheLib

Migrating
existing
services
to CacheLib

Figure 2: The number of Facebook services built using CacheLib
over time. For example, one service is Facebook’s key-value caching
system. Initial growth was due to migration of existing systems, but
more recently, many new systems are built using CacheLib.

able, highly concurrent caches. CacheLib is used both to build
standalone caching systems and to add in-process caches to
applications. Facebook’s CDN, social-graph cache, applica-
tion look-aside cache, and block-storage system all use caches
built and customized using CacheLib.

CacheLib has been deployed in production since 2017
and today powers over 70 different services. Figure 2 shows
CacheLib’s growth during this period. Initially, CacheLib re-
placed existing caches, but since mid-2018 it has facilitated
an explosive growth in caches throughout Facebook, leading
to a significant reduction in backend load.

1.1. Lessons Learned from CacheLib
Developing an effective general-purpose caching framework
has required not only understanding common caching use
cases within Facebook, but also understanding more general
trends in how caches will be deployed in the future. This
section describes instances where the conventional wisdom
about caching does not match our experience with Facebook’s
production environment.
Specialized caching systems can and should be built using
a general-purpose caching engine. At Facebook, CacheLib
has replaced existing specialized caches in several major ser-
vices and has spurred the adoption of caches in many new
applications. CacheLib offers a broader feature set than any
single specialized caching system. Having a common core of
features saves tens of thousands of lines of redundant code,
improves system stability, and makes it easy for developers to
deploy and tune new caches. Moreover, CacheLib serves as
an aggregation point for optimizations and best practices. As
a result, systems built on CacheLib achieve peak throughputs
of a million requests per second on a single production server
and hit ratios between 60 and 90%. To achieve this perfor-
mance, each caching system customizes its cache to use their
desired subset of CacheLib’s features. To accommodate as
many systems as possible, CacheLib’s feature set has grown
over time. As a result, features that once justified the construc-
tion of a specialized caching system are now available to any
CacheLib-based system.
Production workloads require caching at massive scale.
Prior workload studies of production systems [4, 5] have not
shared the popularity distribution of keys. Consequently, pop-

ular benchmarking tools [24, 59] and academic papers [19,
36, 41, 49, 53, 65, 66, 68, 74, 90, 94] assume a Zipf popularity
model with shape parameter α ≈ .9. This leads to the conclu-
sion that DRAM-based caches are sufficient in most situations.
We provide strong evidence that prior models have been too
optimistic about the cacheability of production workloads.

Because workloads at Facebook are less cacheable than
is generally assumed, caches at Facebook require massive
capacities to achieve acceptable hit ratios. Caching systems
at Facebook often comprise large distributed systems where
each node has hundreds of gigabytes of cache capacity. This
makes the use of flash for caching attractive. However, most
caching systems have historically targeted DRAM and do not
achieve acceptable performance using flash.
Caching is not a solved problem. CacheLib has continu-
ously added features since its initial deployment in 2017 as
new use cases and feature requests have come to light. These
new features have seen rapid, widespread adoption from both
existing CacheLib users and new systems developed using
CacheLib, so that the common core of CacheLib features has
grown with applications over time.

1.2. Bridging the Gap between Research and Production
Caching Systems

Just as developers at Facebook had historically developed spe-
cialized caching systems, we note that the caching literature
has often targeted specialized caching systems. This presents
an obstacle to the uptake of ideas from the research commu-
nity by industry, since the assumptions made by a specialized
research system rarely align perfectly with the realities of
a production environment. Our hope is that CacheLib can
reduce these obstacles by providing a platform for the explo-
ration of new ideas developed outside of Facebook. CacheLib
and a selection of Facebook workloads will be open-sourced 1.

2. Motivation: Caching Use Cases
Large web services rely on hundreds of specialized services,
which contain diverse use cases for caching. This section
describes the caching needs of a sample of six production
systems at Facebook.
Hierarchical and geo-distributed caches. Facebook’s
CDN focuses on serving HTTP requests for static media ob-
jects such as photos, audio, and video chunks from servers in
user proximity. Specifically, a goal of CDN servers deployed
outside of Facebook’s network is to reduce the number of
bytes sent over the wide-area network (byte miss rate). There
are also CDN servers within Facebook’s data centers; their
goal is to reduce the number of backend and storage queries
(object miss rate). Each CDN server uses a local cache, span-
ning both DRAM and flash.
Application look-aside caches. Web applications have a
wide range of caching needs. For example, applications must
cache database queries, user data, and usage statistics. Provid-

1For more information, visit www.cachelib.org

770 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ing a specialized caching service for each application would
be inefficient and hard to maintain. Thus, applications use
RPCs to access a set of shared caching services. Each caching
service consists of a large distributed system of caches.
In-process caches. Many applications cannot tolerate the
RPC overhead of a remote cache. CacheLib makes it easy for
these applications to include high-performance, in-process
caches that are decoupled from the application logic.

For example, some backend applications use a CacheLib
cache to store client session information which is used to
rate-limit clients. Specifically, these applications cache flow
counters that see very high bursts in request rates but can be
evicted once a flow slows down. In this case, the latency and
bandwidth requirements of the cache make remote caches
infeasible. Instead, applications instantiate a CacheLib cache
which provides zero-copy access to cached flow counters.
Machine-learning-model serving systems. User-facing
machine-learning applications benefit from caching in multi-
ple places. First, models often use inputs based on how users
interact with content (e.g., liking a piece of content). Con-
tent interaction counters are thus cached so applications can
quickly access the inputs required to generate a prediction
(e.g., ranking content). Second, because repeatedly generat-
ing predictions based on the same inputs is computationally
expensive, model predictions are also cached.
Storage-backend cache. Facebook uses large clusters of
servers with spinning disks to store blocks of persistent data.
Even with several caching layers in front of the block storage
servers, some blocks remain popular enough to exceed the
target IOPS of the disks. Storage servers use flash drives to
cache popular blocks and shield the spinning disks from load.
To support byte-range requests and append operations, these
flash caches are tightly integrated in the storage-system stack.
Database page buffer. Data structures and small objects are
stored in a variety of database systems. Database systems use
page caches to increase their throughput and decrease access
latencies. To support consistency and transactional operations,
page caches are tightly integrated with database logic.

Across Facebook, we find hundreds of different services
which implement a cache or whose efficiency could benefit
from a caching layer. These use cases span all layers of the
data-center stack and administrative domains. Research on
caching spans operating systems [16,52], storage systems [20,
58], distributed systems [8, 22, 66], network systems [9, 65],
databases [30], and computer architecture [7, 56, 91].

CacheLib handles these diverse use cases by providing a li-
brary of components that makes it easy to rapidly build perfor-
mant caches. In many cases, CacheLib caches have replaced
highly specialized caching systems at Facebook. CacheLib
is currently used in dozens of production systems, spanning
five of the six examples described above. Notably, CacheLib
is not currently used as a database page buffer (see Section
6). Hence, while CacheLib will not replace every special-

101 103 105 107

101

103

105

107

Lookaside, =0.9

101 103 105 107

101

103

105

SocialGraph, =0.55

101 103 105 107

101

103

105

Storage, =0.9

100 101 102 103 104

101

103

1 GB 1 TB

1 GB 1 TB

1 MB 1 GB 100 GB 1 TB

1 MB 1 GB 100 GB

CDN, =0.7

Object Popularity Rank

N
u
m

b
e
r

o
f
R
e
q
u
e
st

s

1 TB

1 MB

1 MB

Figure 3: Many services are hard to cache. Each graph plots the
number of requests per object as a function of object popularity rank
(log-log) for four production caching systems at Facebook. The green
dashed line shows the best-fit Zipf distribution for each workload.
Lower values of α indicate that a workload is harder to cache, hence
SocialGraph and CDN are harder to cache. Storage is not Zipfian.
Each sample consists of requests taken over 24 hours. The black
dashed vertical lines along the x-axis show the cumulative size of
the popular objects to the left of the line.

ized caching system, we have seen significant adoption of a
general-purpose caching engine at Facebook.

3. Shared Challenges Across Caching Systems
at Facebook

Despite the diversity of use cases for caching, our experience
scaling and maintaining caching systems has revealed a set
of core challenges that frequently overlap between use cases.
This section describes the common challenges at Facebook.

The data in this section was gathered between December
2019 and May 2020 from 4 important workloads from a va-
riety of caching use cases (Section 2). The Lookaside and
SocialGraph systems are both from application-data caches.
Lookaside is a service which provides on-demand caching to
a variety of applications. SocialGraph is specifically used to
cache information from the Facebook social graph. The Stor-
age system is a storage backend cache, and CDN is a cache
in Facebook’s CDN. Each workload represents the traffic to
one machine within its respective service.

3.1. Massive Working Sets
One central challenge at Facebook is massive working sets. A
working set describes the set of objects in a workload which
are popular enough to benefit from caching. A workload with
a larger working set requires a larger cache to produce the
same hit ratio as a workload with a smaller working set.

To measure working sets, one must account for both the
amount of popular data seen over time and the rate of change
in the popularity of data over time. Therefore, we present both
popularity distributions and churn rates at Facebook.
Popularity. The popularity distribution of a workload mea-
sures the frequency of each key over some time horizon

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 771

0 5 10 15 20 25
0.0

0.5

1.0
Lookaside

0 5 10 15 20 25
0.0

0.5

1.0
SocialGraph

0 5 10 15 20 25
0.0

0.5

1.0
Storage

0 5 10 15 20 25
0.0

0.5

1.0
CDN

Top 50%
Top 25%
Top 10%

Hours ago

Pr
ob

ab
ili

ty
 s

til
l i

n
to

p
Y%

Figure 4: Object popularity changes rapidly over time. Each graph
plots the probability that the top 10%-most-requested objects remain
popular after x hours. Across all workloads, there is a significant
drop off in popularity after even a single hour.

in a sampled trace. These frequencies indicate the relative
popularity of different objects in the system. Prior mea-
surements of CDN and web workloads indicate that highly-
skewed Zipf distributions are a common popularity distribu-
tion [5, 14, 24, 38, 41, 48, 83, 85]. Informally, in a Zipf distri-
bution “the most popular 20% of objects account for 80% of
requests”. Formally, in a Zipf distribution the i-th most popu-
lar object has a relative frequency of 1/iα. While some studies
indicate α as low as 0.56 [38, 40], most prior measurements
indicate 0.9 < α ≤ 1 [5, 14, 24, 41, 48, 85]. This parameter
range has become the standard evaluation assumption in many
recent system papers [19, 36, 41, 49, 53, 65, 66, 68, 74, 90, 94].

Figure 3 shows the popularity distributions on log-log scale
for four workloads at Facebook. At this scale, a Zipf distri-
bution would be a straight line with negative slope (−α).
Lookaside is the only system of the four whose popularity
distribution is Zipfian with α close to 1. Storage’s distribution
is much flatter at the head of the distribution, even though the
tail follows a Zipf distribution. Furthermore, although Zip-
fian, SocialGraph and CDN ’s distributions exhibit α = 0.55
and α = 0.7, respectively. Lower α means that a significantly
higher proportion of requests go to the tail of the popularity
distribution, which leads to a larger working set.

Churn. Churn refers to the change in the working set due
to the introduction of new keys and changes in popularity
of existing keys over time. The popular YCSB [24] work-
load generator assumes that there is no churn, i.e., each key
will remain equally popular throughout the benchmark. This
benchmark and the no-churn assumption is used widely in the
evaluation of system papers [19,36,49,53,65,66,68,74,90,94].

In Facebook production workloads, we find a high degree
of churn. We define an object to be popular if it is among
the 10% of objects that receive the most requests. Figure 4
shows how the set of popular objects changes over time. For
example, the blue bar at x = 3 shows the probability that an
object which was popular 3 hours ago is still in the top 10%-
most-requested objects. Across all workloads, over two-thirds
of popular objects in a given hour fall out of the top 10% after

10 B 100 B 1 KB 10 KB 100 KB 1 MB
Object Sizes

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(N

u
m

b
e
r

o
f
R
e
q
u
e
st

s)

Lookaside

StorageSocialGraph

CDN

Figure 5: Object sizes vary widely and small objects are common.
Distribution of value sizes for all four workloads. Object size is
shown on the X-axis on a log scale. The Y-axis shows a complimen-
tary CDF – the fraction of requests for objects which are less than a
given size. Object sizes are small in the Lookaside and SocialGraph
workloads. Storage and CDN split objects greater than 64 KB and
128 KB, respectively, across multiple keys.

just one hour. Such high churn applies independent of which
hour we use as the baseline, for different percentiles (e.g.,
top 25%), and with different time granularities (e.g., after 10
minutes, 50% of popular objects are no longer popular). This
high churn rate increases the importance of temporal locality
and makes it harder for caching policies to estimate object
popularity based on past access patterns.

3.2. Size Variability
In addition to popularity and churn, object sizes play a key
role in cache performance. Figure 5 shows the object size
distribution for four large use case. For Storage and CDN , we
find that 64KB and 128KB chunks, respectively, are very com-
mon, which result from dividing large objects into chunks. For
Lookaside and SocialGraph , we find object sizes spanning
more than seven orders of magnitude. Note the preponderance
of small objects, which arise from graph edges/nodes, RPC
computation results, and negative caching (see Section 4.3).

These findings restrict the design space for a general
caching system. For example, many existing caching sys-
tems [3, 32, 35, 37, 70, 75, 79, 87] store at most a single object
per cache line (64B). For a system such as SocialGraph , where
a significant fraction of objects are between 10B and 20B, this
approach wastes space. Another challenge is in-memory data
structures which are used as an index for objects on flash. The
per-object overhead differs across existing systems between
8B and 100B [32, 37, 70, 79, 86, 87]. For a system with a me-
dian object size of 100B, such as Lookaside , this means that
80GB - 1TB of DRAM is needed to index objects on a 1TB
flash drive. It is imperative to handle highly variable object
sizes while limiting memory and storage overhead.

3.3. Bursty Traffic
Another common theme is that Facebook’s traffic is quite
bursty. Figure 6 shows the actual request arrival rate com-
pared to a Poisson arrival sequence, which is often assumed
in system evaluations [53, 66, 73, 74, 84]. Figure 6 shows that
the actual arrival rate varies much more than Poisson suggests.

772 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

25000

50000

75000

100000

Lookaside

0

500000

1000000

1500000

SocialGraph

0.0 0.5 1.0 1.5 2.0
0

20000

40000

60000

80000

Storage

0.0 0.5 1.0 1.5 2.0
0

2000

4000

6000
CDN

Hour

N
um

be
r

of
 R

eq
ue

st
s

Figure 6: Requests are very bursty. Number of requests (blue) for
every two minutes over the 2 hour horizon compared to a Poisson
arrival sequence (orange) with the same mean number of arrivals.
The two hour window covers the peak traffic time within a day for
each service. CDN has particularly high short-term bursts.

This is particularly apparent for CDN , which has sharp bursts
of traffic on top of a fairly steady request rate. Variable arrival
rates make it hard to provision caching systems with sufficient
resources to maintain low latencies during a load spike.

3.4. Resource Management
To be efficient, caches should make use of all available re-
sources without exceeding them. This is particularly impor-
tant for DRAM. A common deployment scenario includes
CacheLib as well as application processes, and the kernel,
all of which consume DRAM. As the workload composition
or intensity changes, the memory available for caching can
vary widely. For example, caches which handle variable-sized
objects often have unpredictable levels of memory usage. At-
tempting to provision all available memory for caching can
therefore lead to memory over-commitment, a well known
challenge for in-process caches [78]. Specifically, a memory
spike in the application might lead to the cache being dropped
due to the kernel’s out-of-memory (OOM) killer. Many open-
source caching systems are not OOM-aware [87], leading
to significant operational challenges [77]. CacheLib dynami-
cally allocates and frees memory used by the cache to avoid
these crashes without leaving too much unused memory.

3.5. Computationally Costly Query for Empty Results
Caching systems typically focus on tracking and storing re-
sults for valid backend queries. However, some use cases
frequently send queries that have empty results, indicating
that the requested object does not exist. This occurs often in
database systems that track associations between users, where
a user might query for the set of acquaintances they have in
common with another user. Such queries are typically com-
putationally costly for the backend database. For example,
when querying the social graph, users frequently ask to see
the set of associations they share with another user, and find
that these associations do not exist. Hence, in SocialGraph ’s
workload, we measure that 55.6% of requests are for keys that
do not exist. The remaining 44.4% of requests ask for valid
objects, and the corresponding cache hit ratio among these

requests is 86.5%. Failure to cache empty results would thus
lower the cache hit ratio significantly.

3.6. Updating Cached Data Structures
Caches should efficiently support structured data. This is par-
ticularly important for in-process caches that directly interact
with application data structures. For instance, the rate lim-
iter described in Section 2 stores multiple fields in a single
cache object. Applications often want the ability to update
specific fields in a cached data structure without deserializing,
updating, and re-serializing the object.

3.7. Frequent Restarts
Finally, production caches frequently restart in order to pick
up code fixes and updates. This happens because engineering
teams require the ability not only to roll out new code quickly,
but to roll back changes quickly as well. For example, 75% of
Lookaside caches and 95% of CDN caches have an uptime
less than 7 days. Even systems such as Storage and Social-
Graph which have longer uptimes on average follow a regu-
lar monthly maintenance schedule which requires restarting
cache processes. Most caching systems are transient, meaning
that their content is lost upon application restart [37,55]. Tran-
sience is problematic because large caches take a long time to
warm up. It would take hours or even days for cache hit ratios
to stabilize following the restart of a transient cache at Face-
book. Prior work has suggested the alternative of warming a
cache after restart, but this requires an explicit warm-up phase
as part of routing [33, 72] or requires slow deployments [42].

3.8. Summary
While not every caching use case exhibits every challenge
above, each use case does exhibit multiple of these challenges.
We describe how CacheLib addresses these issues next in
Section 4. The power of using a general-purpose caching
engine to address these challenges is that all applications
which use CacheLib have access to every CacheLib feature if
and when it is needed.

4. Design and Implementation
CacheLib enables the construction of fast, stable caches for a
broad set of use cases. To address common challenges across
these use cases as described in Sections 2 and 3, we identify
the following features as necessary requirements for a general-
purpose caching engine.
Thread-safe cache primitives: To simplify programming
for applications that handle highly bursty traffic, CacheLib
provides a thread-safe API for reads, writes, and deletes. In
addition, thread-safety simplifies the implementation of con-
sistency and invalidation protocols. Concurrent calls to the
CacheLib API leave the cache in a valid state, respect lineariz-
ablility [47] if referencing a common key, and incur minimal
resource contention.
Transparent hybrid caching: To achieve high hit ratios
while caching large working sets, CacheLib supports caches
composed of both DRAM and flash, known as hybrid caches.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 773

Hybrid caches enable large-scale deployment of caches with
terabytes of cache capacity per node. CacheLib hides the
intricacies of the flash caching system from application pro-
grammers by providing the same byte-addressable interface
(Section 4.1) regardless of the underlying storage media. This
transparency allows application programmers to ignore when
and where objects get written across different storage me-
dia. It also increases the portability of caching applications,
allowing applications to easily run on a new hardware config-
urations as they become available.
Low resource overhead: CacheLib achieves high through-
put and low memory and CPU usage for a broad range of
workloads (Section 2). This makes CacheLib suitable for in-
process use cases where the cache must share resources with
an application. Low resource overheads allow CacheLib to
support use cases with many small objects.
Structured items: CacheLib provides a native implemen-
tation of arrays and hashmaps that can be cached and mu-
tated efficiently without incurring any serialization overhead.
Caching structured data makes it easy for programmers to
efficiently integrate a cache with application logic.
Dynamic resource monitoring, allocation, and OOM pro-
tection: To prevent crashes from temporary spikes in system
memory usage, CacheLib monitors total system memory us-
age. CacheLib dynamically allocates and frees memory used
by the cache to control the overall system memory usage.
Warm restarts: To handle code updates seamlessly, Cache-
Lib can perform warm restarts that retain the state of the
cache. This overcomes the need to warm up caches every
time they are restarted.

4.1. CacheLib API
The CacheLib API is designed to be simple enough to allow
application programmers to quickly build in-process caching
layers with little need for cache tuning and configuration.
At the same time, CacheLib must scale to support complex
application-level consistency protocols, as well as zero-copy
access to data for high performance. Choosing an API which
is both simple and powerful was an important concern in the
design of CacheLib.

The API centers around the concept of an Item, an ab-
stract representation of a cached object. The Item enables
byte-addressable access to an underlying object, independent
of whether the object is stored in DRAM or flash. Access to
cached Items is controlled via an ItemHandle which enables
reference counting for cached Items. When an ItemHandle
object is constructed or destroyed, a reference counter for
the corresponding Item is incremented or decremented, re-
spectively. An Item cannot be evicted from the cache unless
its reference count is 0. If an Item with a non-zero reference
count expires or is deleted, existing ItemHandles will remain
valid, but no new ItemHandles will be issued for the Item.

Figure 7 shows the basic CacheLib API. To insert a new
object into the cache, allocate may first evict another Item

ItemHandle allocate(PoolId id, Key key,
uint32_t size, uint32_t ttlSecs = 0)

bool insertOrReplace(const ItemHandle& handle)

ItemHandle find(Key key)

void* Item::getMemory()

void* Item::markNvmUnclean()

bool remove(Key key)

Figure 7: The CacheLib API uses an Item to represent a cached
object, independent of whether it is cached in DRAM or on flash.

(according to an eviction policy) as long as there are no out-
standing ItemHandles that reference it. The new Item can be
configured with an expiration time (TTL). It is created within
the given memory “pool” (see below), which can be individu-
ally configured to provide strong isolation guarantees. Any
new Items only become visible after an insertOrReplace
operation completes on a corresponding ItemHandle.

To access cached Items, find creates an ItemHandle
from a key, after which getMemory allows unsynchronized,
zero-copy access to the memory associated with an Item.
To atomically update an Item, one would allocate a new
ItemHandle for the key they wish to update, perform the
update using getMemory, and then make the update visible
calling insertOrReplace with the new ItemHandle. Be-
cause CacheLib clients access raw memory for performance,
CacheLib trusts users to faithfully indicate any mutations us-
ing the method markNvmUnclean. Finally, remove deletes the
Item identified by a key, indicating invalidation or deletion
of the underlying object.

struct MyType {int foo; char bar[10];}
TypedHandleImpl<Item, MyType> typedHandle{
cache->find(..)};

Figure 8: Typed ItemHandles allow CacheLib to natively store
structured objects. In addition to statically sized Items, CacheLib
also supports variably sized Items. For example, CacheLib imple-
ments a hashmap that can dynamically grow, offer zero-copy access
to its entries, and is treated as an evictable cache Item.

Figure 8 shows a simple example of CacheLib’s native
support for structured data. Structured Items are accessed
through a TypedHandle, which offers the same methods as an
ItemHandle. TypedHandles enable low-overhead access to
user-defined data structures which can be cached and evicted
just like normal Items. In addition to statically sized data
structures, CacheLib also supports variably-sized data struc-
tures; for example, CacheLib implements a simple hashmap
that supports range queries, arrays, and iterable buffers.

CacheLib implements these APIs in C++, with binding to
other languages such as Rust.

4.2. Architecture Overview
CacheLib is designed to be scalable enough to accommodate
massive working sets (Section 3.1) with highly variable sizes
(Section 3.2). To achieve low per-object overhead, a single

774 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

DRAM Cache

LOC

size ≥2kB

Admission Policy

evict

allocate

admit

evict

SOC

size <2kB
evict

ItemHandle

(a) allocate

Hashtable

DRAM Cache

miss

find

insert

LOC
B-tree

SOC

Bloom
filter

miss

hit

ItemHandle

(b) find

Figure 9: The find and allocate paths for a hybrid cache con-
structed using CacheLib.

CacheLib cache is composed of several subsystems, each of
which is tailored to a particular storage medium and object
size. Specifically, CacheLib consists of a DRAM cache and
a flash cache. The flash cache is composed of two caches:
the Large Object Cache (LOC) for Items ≥2KB in size and
Small Object Cache (SOC) for Items <2KB in size.

An allocate request is fulfilled by allocating space in
DRAM, evicting Items from DRAM if necessary. Evicted
Items are either admitted to a flash cache (potentially caus-
ing another eviction) or discarded. A find request succes-
sively checks for an object in DRAM, then LOC, then SOC.
This lookup order minimizes the average memory access
time [46] of the cache (see Appendix A). A find call re-
turns an ItemHandle immediately. If the requested object is
located on DRAM, this ItemHandle is ready to use. If the re-
quested object is located on flash, it is fetched asynchronously
and the ItemHandle becomes ready to use once the object
is in DRAM. An empty ItemHandle is returned to signify a
cache miss. These data paths are summarized in Figure 9.

We now describe CacheLib’s subsystems in more detail.
DRAM cache. CacheLib’s DRAM cache uses a chained hash
table to perform lookups. The DRAM cache can be parti-
tioned into separate pools, each with its own eviction pol-
icy. Programmers select a particular PoolId when calling
allocate (see Figure 7), allowing the isolation of different
types of traffic within a single cache instance.

For performance, cache memory is allocated using slab
classes [6, 22, 37] which store objects of similar sizes. Cache-
Lib uses 4MB slabs and implements a custom slab allocator.
Each slab requires 7B of DRAM (3B of internal metadata +
4B to identify the size of objects in the slab). Because Cache-
Lib workloads often include many objects of a specific size
(e.g., 80B), the sizes corresponding to each slab class are con-
figured on a per-workload basis to minimize fragmentation.
Further optimizations for objects smaller than 64B or larger
than 4MB are described in Section 4.3.

Each slab class maintains its own eviction policy state.
CacheLib is designed to support the continual development
of new eviction policies, and currently supports LRU, LRU
with multiple insertion points, 2Q [54,93], and TinyLFU [31].
These eviction policies differ in their overheads and their

Item Metadata DRAM Overhead Data Type

Eviction policy state 12B 1x4B timestamp,
2x4B pointers

Item creation timestamp 4B 4B timestamp
Expiration time (for TTLs) 4B 4B timestamp
Key size + object size 4B 4B size_t
Reference counting 2B 13b public ref count,

3b internal ref count
Hash table chaining 4B 4B pointer
Flags 1B 8 binary flags

Table 1: CacheLib’s DRAM cache uses 31B of metadata per Item.

biases towards either recency or frequency, and are thus con-
figured on a per-workload basis as well. To approximate a
global eviction policy, memory is rebalanced between slab
classes using known rebalancing algorithms [72]. To support
these policies, among other features, CacheLib dedicates 31B
of DRAM overhead per item. Table 1 describes the metadata
which comprises this DRAM overhead.

To guarantee atomic metadata operations, CacheLib relies
on a variety of known optimization techniques [35, 62, 64],
including fine-grained locking, user-space mutexes, and C++
atomics. This is particularly important for eviction policies,
where naive implementations lead to lock contention and limit
throughput [6, 9, 10, 61]. For example, under LRU, popular
Items frequently compete to be reset to the most-recently-
used (MRU) position. This is particularly common at Face-
book due to our high request rates (see Figure 6). CacheLib
adopts a simple solution to reduce contention: Items that
were recently reset to the MRU position are not reset again
for some time T [9,87]. As long as T is much shorter than the
time it takes an object to percolate through the LRU list (i.e.,
eviction age), this simplification does not affect hit ratios in
practice. CacheLib also uses advanced locking mechanisms
such as flat combining [45] to reduce resource contention.
Flash cache. When Items are evicted from the DRAM cache,
they can optionally be written to a flash cache. Due to high
popularity churn (Section 3), the content cached on flash
changes continually. Hence, in addition to maintaining low
per-object overhead, CacheLib must contend with the limited
write endurance of flash cells.

To reduce the rate of writes to flash, CacheLib selectively
writes objects to the flash cache. If an object exists on flash
and was not changed while in DRAM, it is not written back to
flash. Otherwise, CacheLib admits objects to flash according
to a configurable admission policy. CacheLib’s default admis-
sion policy is to admit objects to the flash cache with a fixed
probability p [57]. Adjusting the probability p allows fine-
grained control over write rate to flash. Section 5 describes
our experience with more complex admission policies.

Another consideration for flash endurance is write amplifi-
cation which happens when the number of bytes written to
the device is larger than the number of bytes inserted into
the cache. For instance, CacheLib performs extra writes to

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 775

store metadata and is forced to write at block granularities.
We distinguish between application-level write amplification,
which occurs when CacheLib itself writes more bytes to flash
than the size of the inserted object, and device-level write
amplification, which is caused by the flash device firmware.
CacheLib’s flash caches are carefully designed to balance
both sources of write amplification and DRAM overhead.

The Large Object Cache (LOC) is used to store objects
larger than 2KB on flash. Because LOC objects are larger
than 2KB, the number of unique objects in a LOC will only
number in the millions. It is therefore feasible to keep an
in-memory index of the LOC. The LOC uses segmented B+
trees [23, 34, 63] in DRAM to store the flash locations of
Items. Items are aligned to 4KB flash pages, so the flash
location is a 4B, 4KB-aligned address. This allows the LOC
to index up to 16TB of flash storage space.

The LOC uses flash to further limit the size of the DRAM
index. Keys are hashed to 8B. The first 4B identify the B+-
tree segment, and the second 4B are used as a key within in a
tree segment to lookup a flash location. A hash collision in
the DRAM index will cause CacheLib to believe it has found
an object’s flash location. Hence, LOC stores a copy of each
object’s full key on flash as part of the object metadata and val-
idates the key after the object is fetched off flash. Each flash
device is partitioned into regions which each store objects of
a different size range. Hence, the object size can be inferred
from where it is located on flash, without explicitly storing ob-
ject sizes in DRAM. CacheLib can then retrieve the object via
a single flash read for the correct number of bytes. To reduce
the size of addresses stored in DRAM, every 4KB flash page
stores at most a single object and its metadata. This is space-
efficient because LOC only stores objects larger than 2KB.
Objects larger than 4KB can span multiple pages. Because
the LOC reads and writes at the page level, any fragmentation
also causes application-level write amplification.

To amortize the computational cost of flash erasures, the
LOC’s caching policy evicts entire regions rather than indi-
vidual objects. (Region size is configurable, e.g., 16MB.) By
default, FIFO is used so that regions are erased in strictly
sequential order [60]. Writing sequentially improves the per-
formance of the flash translation layer and greatly reduces
device-level write amplification (see Section 5.2). If FIFO
eviction evicts a popular object, it may be readmitted to the
cache [86]. Alternatively, LOC supports a pseudo-LRU pol-
icy which tracks recency at region granularity. A request for
any object in a region logically resets the region to the MRU
position. Evictions erase the entire region at the LRU position.

The Small Object Cache (SOC) is used to store objects
smaller than 2KB on flash. Because billions of small objects
can fit on a single 1TB flash device, an exact lookup index
(with associated per-object metadata) would use an unrea-
sonably large amount of DRAM [32]. Hence, SOC uses an
approximate index that scales with the number of flash pages.

SOC hashes keys into sets.Each set identifies a 4KB flash

Key-Hash

Filter 1

Filter 2...

...

(III) Recalculate
 bloom filter.

(II) Add item and rewrite flash page.
 If page full, evict the oldest item (FIFO).

(I) Find set.

1: key1 val1 key2 val2 ...

key1 val1 ...2: new key new value

Figure 10: SOC alloc proceeds by hashing into sets (I). CacheLib
then rewrites the page (II), possibly evicting an object (following
FIFO order). Finally, CacheLib recalculates the bloom filter with
the Items currently stored in this set’s 4KB page (III).

Key-Hash

Filter 1 1: key1 val1 key2 val2 key3 val3 ...

key1 val1 key2 val2 key3 val3 ...Filter 2 ...

...
(III) Read flash page, if present in filter.(II) Check DRAM

 bloom filter.
(I) Find set.

2:

Figure 11: SOC find proceeds by hashing into sets (I) and then
checking a bloom filter, which indicates whether an object is likely
to be stored on flash (II). If the bloom filter does not contain the key,
the object is definitely not present on flash. Otherwise, CacheLib
reads the 4KB flash cache and searches for the key (III).

page which is used to store multiple objects. Objects are
evicted from sets in FIFO order. A naive implementation
of this design would always read a set’s page off flash to
determine whether it contains a particular object. As an opti-
mization, CacheLib maintains an 8B Bloom filter in DRAM
for each set, each with 4 probes. This filter contains the keys
stored on the set’s flash page and prevents unnecessary reads
more than 90% of the time [11, 12]. Figure 10 shows the
alloc path, and Figure 11 shows the find path.

Controlling write amplification in the SOC is particularly
challenging. Admitting an object to the SOC requires writing
an entire 4KB flash page, and is thus a significant source of
application-level write amplification. This also applies to the
remove operation, which removes an object from flash. Simi-
larly, because keys are hashed to sets, admitting a stream of
objects to the SOC causes random writes that result in higher
device-level write amplification. Furthermore, the SOC only
supports eviction policies that do not require state updates on
hits, such as FIFO, since updating a set on a hit would require
a 4KB page write. These challenges highlight the importance
of advanced admission policies (see Section 5.2).

4.3. Implementation of Advanced Features
CacheLib supports many applications with demanding re-
quirements. To support these applications efficiently, Cache-
Lib implements several advanced features, making them avail-
able to all CacheLib-based services under the same, general-
purpose CacheLib API. We describe the implementation of
four important features: structured items, caching large and
small objects, warm restarts, and resource monitoring, corre-
sponding to challenges already discussed in Section 3.
Structured items. Because CacheLib provides raw access to
cached memory, flat data structures can be easily cached using
the CacheLib API. In addition, CacheLib natively supports
arrays and maps. CacheLib supports an Array type for fixed-
size objects at no additional overhead for each entry in the
array. The Map type supports variable object sizes, and comes

776 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

in ordered and unordered variants. The overhead for each Map
entry is 4B to store its size.
Caching large and small objects in DRAM. To store ob-
jects larger than 4MB in size, CacheLib chains multiple
DRAM Items together into one logical large item. This chain-
ing requires an additional 4B next pointer per object in the
chain. The most common use case for large objects is the
storage of structured items. While it is uncommon for a sin-
gle, logical object to be larger than 4MB, we frequently see
Arrays or Maps that comprise more than 4MB in aggregate.

CacheLib also features compact caches, DRAM caches
designed to cache objects smaller than a cache line (typically
64B or 128B). Compact caches store objects with the same
key size and object size in a single cache line [18, 29, 46, 80].
Compact caches are set-associative caches, where each cache
line is a set which is indexed by a key’s hash. LRU eviction is
done within each set by repositioning objects within a cache
line. Compact caches have no per-object overhead.

One prominent example of using compact caches is Cache-
Lib’s support for negative caching. Negative cache objects in-
dicate that a backend query has previously returned an empty
result. Negative cache objects are small, fixed-size objects
which only require storing a key to identify the empty query.
As discussed in Section 3.5, negative caching improves hit
ratios drastically in SocialGraph . Negative caching is not
used by Lookaside , Storage , or CDN , but it is employed by 4
of the 10 largest CacheLib-based systems.

Both of these features reinforce CacheLib’s overarching
design, which is to provide specialized solutions for objects
of different sizes in order to keep per-object overheads low.
Dynamic resource usage and monitoring. CacheLib mon-
itors the total system memory usage and continuously
adapts the DRAM cache size to stay below a specified
bound. CacheLib exposes several parameters to control
the memory usage mechanism. If the system free mem-
ory drops below lowerLimitGB bytes, CacheLib will iter-
atively free percentPerIteration percent of the differ-
ence between upperLimitGB and lowerLimitGB until sys-
tem free memory rises above upperLimitGB. A maximum
of maxLimitPercent of total cache size can be freed by this
process, preventing the cache from becoming too small. Al-
though freeing memory may cause evictions, this feature is
designed to prevent outright crashes which are far worse for
cache hit ratios (see Figure 15). As system free memory in-
creases, CacheLib reclaims memory by an analogous process.
Warm restarts. CacheLib implements warm restarts by allo-
cating DRAM cache space using POSIX shared memory [76].
This allows a cache to shut down while leaving its cache state
in shared memory. A new cache can then take ownership of
the cache state on start up. The DRAM cache keeps its index
permanently in shared memory by default. All other DRAM
cache state is serialized into shared memory during shutdown.
The LOC B-tree index and SOC Bloom filters are serialized
and written in a dedicated section on flash during shutdown.

●●
●
●
●
●
● ●

●
●

● ● ●

0

25

50

75

100

816 32 64 128

Cache Size [GB]

H
it

R
at

io
 [%

]

● CacheLib Memcached

●●●●● ● ●● ●● ●● ●● ●
●● ●●

●●●●
●●●●
●●●●
●
●
●

0.0

0.5

1.0

1.5

2.0

30 50 70 90

Hit Ratio [%]

[M
ill

io
ns

 o
ps

/s
ec

]

● CacheLib Memcached

T
hr

ou
gh

pu
t

Figure 12: A comparison of CacheLib to Memcached for a range
of cache sizes. CacheLib and Memcached achieve similar hit ratios,
but CacheLib achieves much higher throughput.

5. Evaluation
In evaluating CacheLib, we aim to show that CacheLib’s
API and feature set is flexible enough to implement common
use cases both inside and outside Facebook. Specifically, we
show that CacheLib-based systems can easily achieve perfor-
mance that is competitive with specialized solutions without
requiring any specialization of the core caching engine. We
also show how CacheLib’s widespread adoption has had a
significant impact on the Facebook production environment.

5.1. System Comparisons
We drive our experiments using CacheBench, the cache bench-
marking tool that ships with CacheLib. For the sake of compar-
ison, we extend CacheBench to target an in-process version
of Memcached [37], as well as HTTP proxy (CDN) caches.

CacheBench provides a modular request generator by sam-
pling from configurable popularity, key size, and object size
distributions. To emulate churn, CacheBench continuously
introduces new keys at a configurable rate. We instantiate
these parameters from the measurements for the application
look-aside and CDN use cases presented in Section 3.
Application look-aside cache. Before CacheLib was devel-
oped, several teams at Facebook used an internal variant of
Memcached as a look-aside cache. However, applications now
use a CacheLib-based look-aside cache. We therefore com-
pare CacheLib to a minimally changed Memcached v1.6.6,
which is the latest version and incorporates many recent op-
timizations. For fairness, we configure CacheLib and Mem-
cached to both use their implementations of LRU eviction.
To implement the look-aside pattern, CacheBench configures
CacheLib to implement a “set” as an allocate followed by
insertOrReplace and a “get” by find and a subsequent
access to the ItemHandle’s getMemory method.

We evaluate CacheLib and Memcached on a range of cache
sizes using 32 threads each. When the cache is small, the hit
ratio is low, which stresses the eviction code paths (set oper-
ations). When the cache is large, the hit ratio is high, which
stresses the LRU-head update code paths (get operations).

Figure 12 shows the hit ratios and throughputs for cache
sizes between 8 and 144GB and a typical working set of 100
million objects. Memcached and CacheLib achieve similar hit

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 777

● ● ● ●
●

● ●0

10

20

30

40

16b 128b 1kB 8kB 64kB 512kb

Object Size

T
hr

ou
gh

pu
t

(T
ho

us
an

d
re

q
/ s

ec
)

●

CacheLib

ATS

Nginx

Figure 13: Comparison of CacheLib to ATS and NGINX HTTP flash
caching systems for different object sizes. CacheLib significantly
improves throughput for most object sizes.

ratios, with Memcached slightly higher at small cache sizes
and slightly lower at large cache sizes. Across all cache sizes,
CacheLib achieves higher throughputs than Memcached, pro-
cessing up to 60% more requests per second than Memcached.

CacheLib’s higher throughput is largely due to optimiza-
tions that reduce lock contention. For example, CacheLib uses
flat combining (see Section 4.2) to reduce contention on the
LRU list head. Also, CacheLib uses T = 60 seconds (see Sec-
tion 4.2) in this experiment. For T = 10 seconds, CacheLib
consistently outperforms Memcached’s hit ratio, at the cost of
lower throughput. In production, most deployments use the
default T = 60 seconds.
HTTP server cache. Hybrid DRAM-flash caches are preva-
lent at Facebook. For example, hybrid caches are used as CDN
proxy caches. We compare a CacheLib-based HTTP server
cache to NGINX and Apache Traffic Server (ATS), which
are widely used to build flash-based CDNs [1, 44, 69, 82].
The CacheLib implementation is a FastCGI server with an
NGINX frontend. Each system uses its default configuration
for a 512GB flash cache. The systems fetch misses from a
high-performance origin backend that is never the bottleneck.

To illustrate the effect of object size on flash cache perfor-
mance, we configured all object sizes to be equal and then
repeated the experiment for a range of object sizes. To keep
hit ratios constant across trials, we adjusted the number of
unique objects to maintain a constant working set size.

Figure 13 shows that CacheLib’s explicit handling of
small objects for flash caching provides a sizable advantage
over NGINX and ATS. As the object size becomes larger,
this advantage wanes. Eventually object sizes become large
enough that all three systems become network-bound and
their throughputs drop precipitously.

We observe that NGINX performs particularly well when
object sizes are between 4KB and 16KB, outperforming
CacheLib slightly when objects sizes are 8KB. We were un-
able to pinpoint the cause of this trend. Nonetheless, CacheLib
compares favorably to both NGINX and ATS across a wide
range of object sizes.
LSM tree-based stores. It is natural to ask whether existing
storage systems that target flash devices could be used as flash
caching systems. In particular, Facebook’s RocksDB [13] key-
value store provides hybrid DRAM and flash storage by using

a Log-Structured Merge-Tree (LSM Tree). We investigated
whether RocksDB could be used as a hybrid look-aside cache
for application data by deploying RocksDB in production to
cache data from the SocialGraph workload.

RocksDB trades off higher space usage in favor of lower
write and delete latencies, using tombstones to defer deletes
operations until compaction time [13]. However, most com-
paction methods are computationally expensive and must be
done sparingly. It is therefore infeasible to use RocksDB’s
Delete method to perform targeted evictions of objects, since
compaction does not happen frequently enough for deletes
to control the flash footprint of the cache. If RocksDB fills a
flash device, it begins failing write and delete operations. This
is particularly problematic in the SocialGraph system, which
relies on deletes to maintain cache consistency. If a Social-
Graph cache fails a certain number of deletes, the policy is to
perform a cold restart (see Figure 15) to restore consistency.

As an alternative, we tested RocksDB using FIFO com-
paction, which simply evicts the oldest data when the size of
the store exceeds its desired size. This compaction method
is lightweight enough to run constantly and effectively limit
RocksDB’s flash usage. Evicting the oldest data will tend to
evict the least recently updated objects, but these are gener-
ally not the same as the least recently used objects. RocksDB
does not provide facilities for tracking which blocks con-
tain recently used objects. Due to its simple eviction policy,
RocksDB achieved only a 53% hit ratio compared to Cache-
Lib’s 76% hit ratio when tested with a production SocialGraph
workload. Additionally, RocksDB under FIFO compaction
suffers from severe read amplification and thus required 50%
higher CPU utilization than CacheLib in order to meet produc-
tion throughput levels. Hence, although some of the principles
of LSM tree-based solutions can be carried over to the de-
sign of flash caches, we conclude that RocksDB itself is not
suitable for caching at Facebook.

5.2. Characterizing CacheLib in Production
We quantify the impact that CacheLib has had on the Face-
book production environment by considering the notable
caching improvements that CacheLib has introduced.
DRAM overhead. By design, the DRAM overheads of the
LOC and SOC are small; in production we measure less than
0.1% and 0.2%, respectively. The DRAM Cache has gen-
erally low (< 7%) overhead. There are two main sources
of DRAM overhead: slab class fragmentation and metadata
overhead (Section 4.2). Tuning CacheLib’s slab classes is
crucial to limit fragmentation. Tuning currently happens man-
ually. Without tuning, fragmentation overhead would more
than double in many clusters. Unfortunately, we are not aware
of automated tuning algorithms for slab-class boundaries2. A
detailed analysis of DRAM overhead appears in Appendix B.

2Prior work has considered how to partition cache space between fixed
slab classes [22] but not how to optimally define boundaries in the first place.
Conceptually, this problem resembles the facility placement problem on a
line [15], but we are not aware of optimal algorithms.

778 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Flash endurance. CacheLib is designed to limit the rate of
writes to flash in order to prolong flash device lifetimes (see
Section 4.2). We now evaluate the effectiveness of this design.

The LOC incurs application-level write amplification due
to fragmentation from the use of 4KB pages and size classes.
Fragmentation is generally small, but Storage and CDN
caches have 4.9% and 7% fragmentation overhead, respec-
tively. To further reduce write amplification, CacheLib has
recently introduced a new feature which buffers all writes to
a region before flushing it to disk. This allows the applica-
tion to write in sizes aligned to as low as 512 bytes, reducing
fragmentation in CDN caches from 7% to 2%.

The LOC’s use of FIFO eviction instead of LRU allows
CacheLib to write to flash sequentially. Writing sequentially
reduced device-level write amplification from 1.5× to 1.05×
at the expense of slight increase in application-level write
amplification. The net effect was a 15% reduction in the
number of NAND writes to the flash device per second.

The SOC incurs application-level write amplification due
to always writing 4KB (even as object sizes < 2KB). On aver-
age, we measure this to be around 6.5× the number of inserted
bytes. The SOC also incurs significant device-level write am-
plification from writing random 4KB pages [43]. We measure
this overhead to be between between 1.1× (for Lookaside)
and 1.4× (for Storage) depending on the workload.

To achieve these levels of device-level write amplification,
flash is typically overprovisioned by 50%. This overprovision-
ing is offset by the space efficiency of the SOC and the low
cost of flash relative to DRAM, but reducing flash overprovi-
sioning while maintaining the current level of performance is
an open challenge at Facebook.

To further limit the number of bytes written to a flash de-
vice, CacheLib uses admission policies for flash caches. The
default CacheLib admission policy, which admits objects with
a fixed probability, prolongs flash device lifetimes, but also
decreases hit ratios by rejecting objects at random. Cache-
Lib also includes reject first admission policies, which reject
objects the first n times they are evicted from DRAM.

Recently, CacheLib was updated to include a more ad-
vanced admission policy, similar to the Flashield policy pro-
posed in [32], which makes flash admission decisions by
trying to predict an object’s future popularity. Flashield’s pre-
dictions are based on how many hits an object receives while
in DRAM. At Facebook, however, many objects do not stay
in DRAM long enough to get multiple hits. Thus, CacheLib
implements efficient tracking of object request frequencies be-
yond their DRAM-cache lifetimes. These frequencies are then
used to predict how many hits an object would receive if ad-
mitted to flash. Our experience with this advanced admission
policy is described in detail in Appendix C. The advanced
admission policy reduced the rate of writes to flash by 44%
in SocialGraph without decreasing hit ratios.
Hit ratios. CacheLib’s DRAM cache initially used a variant
of the LRU eviction policy. A notable improvement in hit

Lookaside SocialGraph Storage CDN

 0 50 100 0 50 100 0 50 100 0 50 100
P0

P25

P50

P75

P100

Per−Server Hit Ratio [%]C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Cache
Layer

L1

L2

Figure 14: Distribution of hit ratios for servers in the top four
CacheLib users during a typical day.

0

25

50

75

100

−4 0 4 8

Time [Hours]

H
it

R
at

io
 [%

]

Without
Warm
Restart

With Warm
Restart

0

25

50

75

100

−40 0 40 80 120

Time [Hours]

H
it

R
at

io
 [%

]

Without
Warm Restart

With Warm Restart

Figure 15: SocialGraph L1 cache (left) and L2 cache (right) hit
ratios during a cache restart. Hit ratios suffer when warm restarts
are disabled.

ratios across systems occurred when we deployed a 2Q-based
eviction policy [54]. For example, the hit ratio for SocialGraph
caches increased by 5 percentage points and the hit ratio for
CDN caches increased by 9 percentage points.

An even larger improvement in hit ratios resulted from the
deployment of high-capacity hybrid DRAM-flash caches. Ser-
vices requiring massive cache capacities generally consist of
a two-layer hierarchy where “L1” DRAM-only cache forward
misses to “L2” hybrid DRAM-flash caches. To see the im-
provement due to hybrid caches, we compare SocialGraph ’s
L2 caches from a deployment which uses hybrid caches to
SocialGraph ’s L2 caches from a deployment which still uses
DRAM-only caches. The DRAM-only L2 caches for Social-
Graph currently achieve a 25% hit ratio. The hybrid-cache
L2 offers 20× more cache capacity, achieves a 60% hit ratio,
and costs 25% less than the DRAM-only deployment.

Figure 14 shows hit ratio distributions for L1 and L2 caches
for Lookaside, SocialGraph , and CDN clusters, some of
the largest CacheLib deployments. L1 caches achieve much
higher hit ratios than L2 caches, with median hit ratios rang-
ing from 75% (CDN) to 92% (SocialGraph) while median
L2 cache hit ratios range from 67% (CDN) to 75% (Social-
Graph). The combined hit ratios of these systems are very
high: ranging between 95-99%.
Impact of warm restarts. Figure 15 shows the hit ratios of
L1 and L2 SocialGraph caches restarting without performing
a warm restart. Without this feature enabled, a cache restart
causes a dip in hit ratio, which slowly returns to normal. This
is particularly damaging in L2 hybrid caches where large-
capacity caches can take several days to “warm-up”. Such a
hit ratio dip can translate into temporary overload on backend
systems, which assume a relatively stable arrival rate.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 779

6. Experience and Discussion
Facebook’s experience with CacheLib reveals a great deal
about the trajectory of modern caching systems.

New features are adopted by many systems. One might
expect that many CacheLib features end up being suitable for
only a small number of services. However, our experience
shows a trend in the opposite direction: features developed
for one particular service are frequently adopted by many
other CacheLib-based services. For example, hybrid caches
and efficient object expirations (TTLs), were both added after
the initial deployment of CacheLib. Today, hybrid caches are
used by five large CacheLib use cases. Object expirations
were originally added to enforce fair sharing in look-aside
caches, but were later adopted by CDN caches, which need
to refresh static content periodically. Nevertheless, not every
feature is used by every system. Using a general-purpose
caching engine is not equivalent to developing a single, one-
size-fits-all approach to caching. Instead, we aim to benefit
from extracting common caching functionality while still
allowing a high degree of flexibility for cache customization.

Performance improvements help many systems. Even
small performance improvements in CacheLib (see Sec-
tion 5.2) have an outsized impact due to the broad deployment
of CacheLib-based systems at Facebook. Deploying new fea-
tures typically involves a simple code update or configuration
change. The ability to make centralized improvements mo-
tivates a continuous effort to optimize the CacheLib code
base. For example, while writing this paper, the LOC index
implementation (see Section 4) changed to use a new sparse
hashmap implementation, lowering CPU utilization by 0.5%
with no change in memory overhead. While a 0.5% CPU de-
crease in a single system may not be worth the development
cost, a 0.5% decrease across all of Facebook’s hybrid caches
amounts to a massive resource savings. This highlights the
advantage of a common engine over specialization.

Improved stability. Another benefit of a common caching
engine is improved stability due to the reduction of previ-
ously disjoint implementations to a single mature, well-tested
platform. As new systems are built, using CacheLib greatly re-
duces the number of new lines of code that must be introduced
into the production environment. This reduces the potential
for production incidents and outages. CacheLib also provides
explicit mechanisms for stability informed by years of experi-
ence deploying caches in the production environment.

No single caching system dominates. One can ask
whether it might be sufficient to focus CacheLib engineer-
ing efforts on accommodating a small set of use cases instead
of deploying CacheLib widely. To answer this question, we
compare the total amounts of DRAM cache used by each sys-
tem3. Figure 16 shows that the top ten users account for 89%
of all DRAM cache usage, but no single service dominates.
For example, the top two services account for only 25% and

3Not all services use hybrid caches, especially throughput-focused L1
caches.

20% of DRAM usage, respectively. Hence, unless CacheLib
can accommodate many diverse use cases, the overall gains
from optimizing CacheLib would be limited.

Storage

CDN

Social
Graph

20%

25%
18%

19%Look
aside

Figure 16: A wide range of Face-
book services are built using Cache-
Lib. We measure a service’s deploy-
ment size in terms of its total DRAM
cache size. No service has more
than 25% of the total cache space
across Facebook services.

Flash caching signals a paradigm shift. One might think
that cache hit ratios are generally high, and hence expect little
benefit from the additional cache capacity afforded by flash.
While this is true in some cases, high hit ratios do not always
imply that additional cache capacity is futile. Specifically,
engineers provision caches to equalize the marginal cost of the
next byte of DRAM with the marginal benefit of the ensuing
increase in hit ratio. Flash caches alter this cost calculation,
lowering the marginal cost of additional cache capacity by
an order of magnitude. This makes it worthwhile to not only
increase cache capacities dramatically, but to deploy new
hybrid caches that did not make sense with DRAM alone.

Additionally, the benefit of a cache hit is no longer strictly
a latency proposition for most systems. While a classical
view of caching suggests that caching is only worthwhile if
it reduces average memory access time [46], this ignores the
knock-on effects of a cache miss such as increased network
congestion, backend load, and backend power usage. From
this perspective, a cache hit in flash is as valuable as a DRAM
hit, even though flash is several orders-of-magnitude slower
than DRAM. This again tips the scales of the marginal cost
calculation in favor of deploying flash caches.

CacheLib does not always lead to performance gains.
CacheLib-based systems have not always outperformed the
specialized systems they replaced from the outset. For ex-
ample, the first CacheLib-based implementation of the CDN
system was not able to match the performance of the original
CDN system, which optimized for flash caching by imple-
menting advanced eviction policies with low flash write rates.
The first CacheLib-based implementation of CDN achieved a
10% lower hit ratio and 20% higher flash write rate than the
specialized system in testing.

Before the CacheLib-based implementation of CDN was
deployed, optimizations were added to CacheLib to improve
the hybrid caching mechanism. The LOC eviction policy was
expanded from pure FIFO eviction to include a readmission
policy which can readmit frequently requested objects when
they are evicted. Write buffers were also added between the
DRAM and flash caches. These buffers reduce application-
level write amplification by reducing the internal fragmenta-
tion due to 4KB aligned writes. The write buffers also allow
CacheLib to issue fewer, larger writes to flash, which reduces
device-level write amplification.

780 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The improved LOC eviction policy achieved a hit ratio
close to that of the specialized system while performing 10%
fewer writes to flash than the specialized system. Both of
these optimizations add almost no overhead if turned off, and
ended up improving the performance of other CacheLib-based
systems as well. Lookaside , for example, saw a 25% reduction
in P99 flash read latency, and a 2% reduction in flash write
rate after these changes.

The CDN example illustrates the common case in balanc-
ing the generalization-versus-specialization tradeoff: Cache-
Lib does not always address the needs of every use case from
the outset. However, the features needed by specialized sys-
tems are often not fundamentally incompatible with the design
of CacheLib. If one is willing to invest time into building the
necessary features into CacheLib, they will gain access to
CacheLib’s full feature set while exporting new optimizations
to the rest of the Facebook’s caching systems.

CacheLib does not work for every use case. Although
CacheLib handles many use cases, we are aware of limita-
tions that have prevented some from adopting CacheLib. For
instance, some ad-serving systems rely on caching nested data
structures. In order to control its memory usage and quickly
serialize Items from DRAM into flash, CacheLib only sup-
ports data structures that map into a flat address space. These
ad-serving systems were thus unable to adopt CacheLib.

Another example is RocksDB, which wanted to use Cache-
Lib to implement its internal page buffer. CacheLib’s C++
API leverages object constructors and destructors to per-
form reference counting for ItemHandle objects. This ul-
timately prevented programmers from integrating CacheLib
with RocksDB’s C-style code base. However, the ease of au-
tomatic reference counting has led to widespread adoption of
CacheLib for C++- and Rust-based use cases.

7. Related Work
There is vast body of research on caching systems including
in-depth descriptions of individual production caches. We
review prior work from industry and academia relevant in the
context of web and data center caches.
Production caching systems. Caching systems are found
within many major web services. Akamai’s geo-distributed
CDN [9, 28, 39, 67, 81, 85], Microsoft’s web caching sys-
tems [8], Amazon’s use of aggregation caches [26], and Face-
book’s many individual caching systems [5, 48, 71, 72, 86] are
all documented in the literature. Similarly, Twitter [42, 92]
and Reddit [33, 89] frequently talk about their DRAM caches
based on open-source caching systems. CacheLib addresses a
superset of the challenges faced by these individual systems,
providing a single, general-purpose caching engine.
Research caching systems. Academic research has consid-
ered optimizing many different aspects of caching systems.
These include building highly concurrent systems [6, 9, 35,
62, 64] and improving hit ratios [6, 9, 10, 21, 50, 51, 61, 88].
Facebook’s goal is to use CacheLib as a platform to more

easily evaluate and deploy systems based on this research.
While the literature mainly focuses on DRAM caching,

there is some prior work on flash caching [32, 57, 60, 86].
CacheLib incorporates ideas from [86] and [60] to reduce
write amplification by doing FIFO eviction on flash. Likewise,
CacheLib includes the admission policy of [57] and a variant
of the admission policy from [32] (see Appendix C).

Although dynamic cache partitioning is possible in Cache-
Lib, the impact of existing research on cache partitioning
policies is limited at Facebook. Partitioning can be used to
eliminate performance cliffs in a cache’s hit ratio as a function
of size [7,22,88], but performance cliffs are not a major issue
at Facebook. As the authors of RobinHood [8] note in their
work, the RobinHood partitioning scheme is limited when
infrastructure is shared between different backend systems,
which is the case at Facebook. Additionally, the computa-
tional overhead of retrieving the size of objects stored on
flash is too high to use size-aware sharding [27] in practice.

8. Conclusions
Caching is an important component of modern data-center
applications, and this paper has only scratched the surface
of its many challenges and opportunities. CacheLib shows
that it is feasible to build a general-purpose caching engine
to address a wide variety of caching use cases. In sharing
our experience of building and deploying CacheLib, we hope
to solicit ideas and feedback from the growing community
of caching researchers and to encourage other production
systems to share their architectures and workloads. We hope
that CacheLib will serve as an aggregation point for best
practices in industry and academia, enabling a continual im-
provement in performance and facilitating the deployment
of caches in many new applications. There are many excit-
ing directions to explore in future caching systems, including
(i) better resource-management policies (e.g., eviction/admis-
sion policies, memory management); (ii) emerging hardware
platforms (e.g., FPGA acceleration, non-volatile memories,
zoned-namespace SSDs); and (iii) novel application features
(e.g., as seen in negative caching). We look forward to grow-
ing CacheLib to address these challenges and many others.

Appendix
A. Cache Lookup Order and Latency
CacheLib uses the lookup sequence 1) DRAM cache, 2) LOC,
3) SOC. Note that an object’s size is not known in advance. So,
after a DRAM cache miss, CacheLib does not know whether
the object is stored in the LOC or the SOC. Thus, it has to
query one of them first, and on a miss, query the other.

The order for CacheLib’s lookup order is motivated by the
following analysis of average lookup penalties (also known
as average memory access time, AMAT [46]). We consider
the lookup penalty for each cache component as the time
to determine that an object is not cached in this component.
Our key assumption is that reading from DRAM is orders of
magnitude faster than flash reads (e.g., 100ns compared to

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 781

16us [25]). Thus, the lookup penalty for the DRAM cache is
a few memory references (say 500ns).

To calculate the penalty for the LOC, recall that the LOC
stores neither an object’s key nor the object’s exact size in
memory to reduce DRAM metadata overhead. The LOC is
indexed via 4-byte hash-partitioned B-trees, which each use
4-byte hashes to identify an object’s offset. If the overall
8-byte-hash does not have a hash collision, then the LOC’s
lookup penalty constitutes a few memory references (say 1us,
due to hash operations). If there is a hash collision, the LOC
requires a flash read (16us) to compare the object key and
determine the miss status. Assuming the smallest LOC object
size (2KB) and 1TB of flash, at most 536 million objects are
stored in the LOC. Thus, the probability of an 8-byte-hash
collision can be calculated to be less than one in a million and
the LOC’s average lookup penalty is slightly more than 1us.

To calculate the penalty for the SOC, recall that the SOC
does not use an in-memory index. The SOC uses a per-page
Bloom filter (say 1us) to opportunistically determine the miss
status. However, as these Bloom filters are small, their error
rate is 10%. In case of a Bloom filter error, the SOC requires
a flash read (16us) to compare the object key. The SOC’s
average lookup penalty is thus 2.6us.

The average latency (AMAT) of CacheLib with the default
order (1) DRAM cache, (2) LOC, (3) SOC is as follows, where
L denotes lookup latency and H hit ratio: L(DRAM)+

(
1−

H(DRAM)
)
×
(

L(LOC)+
(
1−H(LOC)

)
×L(SOC)

)
. With the

order of SOC and LOC inverted, the average latency would
increase by several microseconds, depending on the LOC and
SOC hit ratios. Thus CacheLib queries the SOC last.

B. Details on DRAM Overheads
DRAM Cache. We measure CacheLib’s DRAM cache
overhead as the ratio between its total memory footprint
and the sum of cached key and value sizes. We fur-
ther break up overheads into slab-class fragmentation and
metadata. Across Lookaside, Storage, and SocialGraph ,
we find that overall overheads are between 2.6 and 7%
and evenly divided between fragmentation and metadata.

Lookaside Storage SocialGraph

Fragmentation 3.9% 3% 1.6%
Metadata 3% 4% 1%

Overall overhead 6.9% 7% 2.6%

Large Object Cache. Recall that, while the LOC uses an
8-byte hash, 4-bytes are used to partition B-tree and thus do
not need to be counted. So, the LOC stores 4-bytes for key
hashes, 4-bytes for flash offsets, and an average of 2.5-bytes
per item for B-tree pointers. For the small LOC object, this
is 0.61%. In production systems, this overhead is low and
ranges from to 0.01% (Storage) to 0.1% (Lookaside).

C. Advanced Admission Policies for Flash
One significant challenge in using flash for caching is respect-
ing the limited write endurance of flash devices. If all DRAM
evictions in a hybrid cache were admitted to flash, we would
observe write rates 50% above the rate which allows flash de-
vices to achieve their target life span. A flash admission policy
thus plays an important role in CacheLib’s performance.

Flashield [32] is a recently proposed flash admission policy.
Flashield relies on observing an object as it traverses the
DRAM portion of a hybrid cache. When an object is evicted
from DRAM, Flashield makes a flash admission decision
based on how often the object was accessed while in DRAM.

Unfortunately, DRAM lifetimes at Facebook are too short
for Flashield to be effective. A significant number of objects
are popular enough to produce hits if stored on flash, but do
not receive DRAM cache hits. In fact, for an L2 Lookaside
cache, only 14% of objects being considered for flash admis-
sion have received either a read or a write while in DRAM.

To adapt the main idea behind Flashield to Facebook’s en-
vironment, CacheLib explicitly gathers features about objects
beyond their DRAM-cache lifetime. We use Bloom filters
to record the past six hours of accesses4. Additionally, we
change the admission policy’s prediction metrics from the
abstract notion of “flashiness” to instead directly predict the
number of reads an object is expected to receive in the future.

Our advanced admission policy was trained and deployed
in production for SocialGraph . The default admission policy
for CacheLib flash caches is to admit objects with a fixed
probability that keeps flash write rates below a target rate in
expectation. Compared to this default admission policy, the
advanced admission policy wrote 44% fewer bytes to the flash
device without decreasing the cache hit ratio. Hence, while
training the models required for the advanced admission pol-
icy can be cumbersome, this policy gain significantly extend
the lifetime of flash devices in production.

Acknowledgements
This work is supported by NSF-CMMI-1938909, NSF-CSR-
1763701, NSF-XPS-1629444, a 2020 Google Faculty Re-
search Award, and a Facebook Graduate Fellowship. We also
thank the members and companies of the PDL Consortium
(Alibaba, Amazon, Datrium, Facebook, Google, HPE, Hitachi,
IBM, Intel, Microsoft, NetApp, Oracle, Pure Storage, Sales-
force, Samsung, Seagate, Two Sigma and Western Digital)
and VMware for their interest, insights, feedback, and sup-
port.

4Specifically, we are using 6 Bloom filters, each set to hold 1 hour of
accesses. Each hour, the oldest Bloom filter is reset and used to track the
upcoming hour. These Bloom filters are configured for 0.02% false positives
at maximum observed query rate. The space efficiency of Bloom filters is
necessary to avoid using up too much DRAM - using 8 bytes per stored key
to store history would be too much space overhead.

782 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Companies using apache traffic server. https:

//trafficserver.apache.org/users.html. Ac-
cessed: 2019-04-22.

[2] Lior Abraham, John Allen, Oleksandr Barykin, Vinayak
Borkar, Bhuwan Chopra, Ciprian Gerea, Daniel Merl,
Josh Metzler, David Reiss, Subbu Subramanian, et al.
Scuba: diving into data at facebook. VLDB, 6(11):1057–
1067, 2013.

[3] Apache. Traffic Server, 2019. Available at https://
trafficserver.apache.org/, accessed 04/13/19.

[4] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba
Borthakur, and Mark Callaghan. Linkbench: a database
benchmark based on the facebook social graph. In ACM
SIGMOD, pages 1185–1196, 2013.

[5] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a
large-scale key-value store. In ACM SIGMETRICS,
volume 40, pages 53–64, 2012.

[6] Nathan Beckmann, Haoxian Chen, and Asaf Cidon.
Lhd: Improving hit rate by maximizing hit density. In
USENIX NSDI., pages 1–14, 2018.

[7] Nathan Beckmann and Daniel Sanchez. Talus: A simple
way to remove cliffs in cache performance. In IEEE
HPCA., pages 64–75, 2015.

[8] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Mor
Harchol-Balter, and Siddhartha Sen. RobinHood: Tail
latency-aware caching - dynamically reallocating from
cache-rich to cache-poor. In USENIX OSDI, 2018.

[9] Daniel S. Berger, Ramesh Sitaraman, and Mor Harchol-
Balter. Adaptsize: Orchestrating the hot object memory
cache in a cdn. In USENIX NSDI, pages 483–498, March
2017.

[10] Aaron Blankstein, Siddhartha Sen, and Michael J Freed-
man. Hyperbolic caching: Flexible caching for web
applications. In USENIX ATC, pages 499–511, 2017.

[11] Burton H Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[12] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy,
Sushil Singh, and George Varghese. An improved con-
struction for counting bloom filters. In European Sym-
posium on Algorithms, pages 684–695, 2006.

[13] Dhruba Borthakur. Under the hood: Building and
open-sourcing rocksdb, 2013. Facebook Engineering
Notes, available at http://bit.ly/2m02DGV, accessed
09/02/19.

[14] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott
Shenker. Web caching and Zipf-like distributions: Ev-
idence and implications. In IEEE INFOCOM, pages
126–134, 1999.

[15] Jack Brimberg and Abraham Mehrez. Location and
sizing of facilities on a line. Top, 9(2):271–280, 2001.

[16] Tanya Brokhman, Pavel Lifshits, and Mark Silberstein.
GAIA: An OS page cache for heterogeneous systems.
In USENIX ATC, pages 661–674, 2019.

[17] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, et al. TAO: Face-
book’s distributed data store for the social graph. In
USENIX ATC, pages 49–60, 2013.

[18] Brad Calder, Chandra Krintz, Simmi John, and Todd
Austin. Cache-conscious data placement. In ACM SIG-
PLAN Notices, volume 33, pages 139–149, 1998.

[19] Badrish Chandramouli, Guna Prasaad, Donald Koss-
mann, Justin Levandoski, James Hunter, and Mike Bar-
nett. Faster: A concurrent key-value store with in-place
updates. In ACM SIGMOD, pages 275–290, 2018.

[20] Zhifeng Chen, Yan Zhang, Yuanyuan Zhou, Heidi Scott,
and Berni Schiefer. Empirical evaluation of multi-level
buffer cache collaboration for storage systems. In ACM
SIGMETRICS, pages 145–156, 2005.

[21] Ludmila Cherkasova. Improving WWW proxies perfor-
mance with greedy-dual-size-frequency caching policy.
Technical report, Hewlett-Packard Laboratories, 1998.

[22] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Cliffhanger: Scaling performance cliffs in
web memory caches. In USENIX NSDI, pages 379–392,
2016.

[23] Douglas Comer. Ubiquitous b-tree. ACM Computing
Surveys (CSUR), 11(2):121–137, 1979.

[24] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In ACM SoCC, pages 143–
154, 2010.

[25] Jeff Dean and P Norvig. Latency numbers every pro-
grammer should know, 2012.

[26] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: amazon’s highly avail-
able key-value store. In ACM SOSP, volume 41, pages
205–220, 2007.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 783

[27] Diego Didona and Willy Zwaenepoel. Size-aware shard-
ing for improving tail latencies in in-memory key-value
stores. In USENIX NSDI, pages 79–94, 2019.

[28] John Dilley, Bruce M. Maggs, Jay Parikh, Harald
Prokop, Ramesh K. Sitaraman, and William E. Weihl.
Globally distributed content delivery. IEEE Internet
Computing, 6(5):50–58, 2002.

[29] Ulrich Drepper. What every programmer should know
about memory. Technical report, Red Hat, Inc., Novem-
ber 2007.

[30] Gil Einziger, Ohad Eytan, Roy Friedman, and Ben
Manes. Adaptive software cache management. In ACM
Middleware, pages 94–106, 2018.

[31] Gil Einziger and Roy Friedman. Tinylfu: A highly effi-
cient cache admission policy. In IEEE Euromicro PDP,
pages 146–153, 2014.

[32] Assaf Eisenman, Asaf Cidon, Evgenya Pergament,
Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,
and Sachin Katti. Flashield: a hybrid key-value cache
that controls flash write amplification. In USENIX NSDI,
pages 65–78, 2019.

[33] Daniel Ellis. Caching at reddit, January 2017.
Available at https://redditblog.com/2017/01/
17/caching-at-reddit/, accessed 09/02/19.

[34] Ramez Elmasri and Sham Navathe. Fundamentals of
database systems. 7 edition, 2015.

[35] Bin Fan, David G Andersen, and Michael Kaminsky.
MemC3: Compact and concurrent memcache with
dumber caching and smarter hashing. In USENIX NSDI,
pages 371–384, 2013.

[36] Bin Fan, Hyeontaek Lim, David G Andersen, and
Michael Kaminsky. Small cache, big effect: Provable
load balancing for randomly partitioned cluster services.
In ACM SoCC, page 23, 2011.

[37] Brad Fitzpatrick. Distributed caching with memcached.
Linux journal, 2004(124):5, 2004.

[38] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban
Mahanti. Youtube traffic characterization: a view from
the edge. In ACM IMC, pages 15–28, 2007.

[39] David Gillman, Yin Lin, Bruce Maggs, and Ramesh K
Sitaraman. Protecting websites from attack with secure
delivery networks. IEEE Computer, 48(4):26–34, 2015.

[40] Lei Guo, Enhua Tan, Songqing Chen, Zhen Xiao, and
Xiaodong Zhang. The stretched exponential distribution
of internet media access patterns. In ACM PODC, pages
283–294, 2008.

[41] Syed Hasan, Sergey Gorinsky, Constantine Dovrolis,
and Ramesh K Sitaraman. Trade-offs in optimizing the
cache deployments of cdns. In IEEE INFOCOM, pages
460–468, 2014.

[42] Mazdak Hashemi. The infrastructure behind
twitter: Scale, January 2017. Available at
https://blog.twitter.com/engineering/
en_us/topics/infrastructure/2017/
the-infrastructure-behind-twitter-scale.
html, accessed 09/02/19.

[43] Jun He, Sudarsun Kannan, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. The unwritten contract
of solid state drives. In ACM EuroSys, pages 127–144,
2017.

[44] Leif Hedstrom. Deploying apache traffic server, 2011.
Oscon.

[45] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir.
Flat combining and the synchronization-parallelism
tradeoff. In Proceedings of the twenty-second annual
ACM symposium on Parallelism in algorithms and ar-
chitectures, pages 355–364, 2010.

[46] John L Hennessy and David A Patterson. Computer ar-
chitecture: a quantitative approach. Elsevier, 4 edition,
2011.

[47] Maurice P Herlihy and Jeannette M Wing. Linearizabil-
ity: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems,
12(3):463–492, 1990.

[48] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt
Lloyd, Sanjeev Kumar, and Harry C Li. An analysis of
Facebook photo caching. In ACM SOSP, pages 167–181,
2013.

[49] Sai Huang, Qingsong Wei, Dan Feng, Jianxi Chen, and
Cheng Chen. Improving flash-based disk cache with
lazy adaptive replacement. ACM Transactions on Stor-
age, 12(2):1–24, 2016.

[50] Akanksha Jain and Calvin Lin. Back to the future: lever-
aging belady’s algorithm for improved cache replace-
ment. In ACM/IEEE ISCA, pages 78–89, 2016.

[51] Jaeheon Jeong and Michel Dubois. Cache replacement
algorithms with nonuniform miss costs. IEEE Transac-
tions on Computers, 55(4):353–365, 2006.

[52] Song Jiang, Xiaoning Ding, Feng Chen, Enhua Tan, and
Xiaodong Zhang. Dulo: an effective buffer cache man-
agement scheme to exploit both temporal and spatial
locality. In USENIX FAST, volume 4, pages 8–8, 2005.

784 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[53] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In ACM SOSP, pages 121–136,
2017.

[54] Theodore Johnson and Dennis Shasha. 2Q: A low over-
head high performance buffer management replacement
algorithm. In VLDB, pages 439–450, 1994.

[55] Poul-Henning Kamp. Varnish notes from the architect,
2006. Available at https://www.varnish-cache.
org/docs/trunk/phk/notes.html, accessed
09/12/16.

[56] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon
Wei, and David Brooks. Profiling a warehouse-scale
computer. In ACM/IEEE ISCA, pages 158–169, 2015.

[57] Eunji Lee and Hyokyung Bahn. Preventing fast wear-out
of flash cache with an admission control policy. Journal
of Semiconductor technology and science, 15(5):546–
553, 2015.

[58] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. Kvell: the design and implementation of
a fast persistent key-value store. In ACM SOSP, pages
447–461, 2019.

[59] Jacob Leverich. The mutilate memcached load genera-
tor, August 2012. Available at https://github.com/
leverich/mutilate, accessed 08/20/19.

[60] Cheng Li, Philip Shilane, Fred Douglis, and Grant Wal-
lace. Pannier: Design and analysis of a container-based
flash cache for compound objects. ACM Transactions
on Storage, 13(3):24, 2017.

[61] Conglong Li and Alan L Cox. Gd-wheel: a cost-aware
replacement policy for key-value stores. In EUROSYS,
pages 1–15, 2015.

[62] Sheng Li, Hyeontaek Lim, Victor W Lee, Jung Ho Ahn,
Anuj Kalia, Michael Kaminsky, David G Andersen,
O Seongil, Sukhan Lee, and Pradeep Dubey. Architect-
ing to achieve a billion requests per second throughput
on a single key-value store server platform. In ACM
ISCA, pages 476–488, 2015.

[63] Yinan Li, Bingsheng He, Robin Jun Yang, Qiong Luo,
and Ke Yi. Tree indexing on solid state drives. Pro-
ceedings of the VLDB Endowment, 3(1-2):1195–1206,
2010.

[64] Hyeontaek Lim, Dongsu Han, David G Andersen, and
Michael Kaminsky. MICA: A holistic approach to fast
in-memory key-value storage. In USENIX NSDI, pages
429–444, 2014.

[65] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind
Krishnamurthy, and Kishore Atreya. Incbricks: Toward
in-network computation with an in-network cache. In
ACM ASPLOS, pages 795–809, 2017.

[66] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and
Ion Stoica. Distcache: Provable load balancing for
large-scale storage systems with distributed caching. In
USENIX FAST, pages 143–157, 2019.

[67] Bruce M Maggs and Ramesh K Sitaraman. Algorithmic
nuggets in content delivery. ACM SIGCOMM CCR,
45:52–66, 2015.

[68] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache craftiness for fast multicore key-value storage. In
ACM EuroSys, pages 183–196, 2012.

[69] Tony Mauro. Why netflix chose nginx as the
heart of its cdn. https://www.nginx.com/blog/
why-netflix-chose-nginx-as-the-heart-of-its-cdn.
Accessed: 2020-04-22.

[70] Domas Mituzas. Flashcache at facebook: From 2010 to
2013 and beyond, October 2013. Facebook Engineer-
ing, available at https://bit.ly/3cMXfvT, accessed
04/23/20.

[71] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy,
Cory Hill, Ernest Lin, Weiwen Liu, Satadru Pan, Shiva
Shankar, Viswanath Sivakumar, Linpeng Tang, et al. f4:
Facebook’s warm BLOB storage system. In USENIX
OSDI, pages 383–398, 2014.

[72] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In USENIX NSDI, pages 385–
398, 2013.

[73] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and
John Ousterhout. Arachne: core-aware thread manage-
ment. In USENIX OSDI, pages 145–160, 2018.

[74] KV Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion
Stoica, and Kannan Ramchandran. Ec-cache: Load-
balanced, low-latency cluster caching with online era-
sure coding. In USENIX OSDI, pages 401–417, 2016.

[75] Redis, 2019. https://redis.io/, accessed 04/23/20.

[76] Kay A. Robbins and Steven Robbins. Practical UNIX
Programming: A Guide to Concurrency, Communica-
tion, and Multithreading. Prentice-Hall, 2003.

[77] Emanuele Rocca. Running Wikipedia.org, June
2016. Available at https://www.mediawiki.org/

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 785

wiki/File:WMF_Traffic_Varnishcon_2016.pdf,
accessed 09/12/16.

[78] Goldwyn Rodrigues. Taming the oom killer. LWN,
February 2009.

[79] Mohit Saxena, Michael M. Swift, and Yiying Zhang.
Flashtier: A lightweight, consistent and durable storage
cache. In ACM EuroSys, page 267–280, 2012.

[80] Chris Sears. The elements of cache programming style.
In USENIX ALS, pages 283–298, October 2000.

[81] Ramesh K. Sitaraman, Mangesh Kasbekar, Woody
Lichtenstein, and Manish Jain. Overlay networks: An
Akamai perspective. In Advanced Content Delivery,
Streaming, and Cloud Services. John Wiley & Sons,
2014.

[82] Zhenyu Song, Daniel S Berger, Kai Li, and Wyatt Lloyd.
Learning relaxed belady for content distribution network
caching. In USENIX NSDI, pages 529–544, 2020.

[83] Kunwadee Sripanidkulchai, Bruce Maggs, and Hui
Zhang. An analysis of live streaming workloads on
the internet. In ACM IMC, pages 41–54, 2004.

[84] Akshitha Sriraman and Thomas F Wenisch. µtune: Auto-
tuned threading for OLDI microservices. In USENIX
OSDI, pages 177–194, 2018.

[85] Aditya Sundarrajan, Mingdong Feng, Mangesh Kas-
bekar, and Ramesh K Sitaraman. Footprint descriptors:
Theory and practice of cache provisioning in a global
cdn. In ACM CoNEXT, pages 55–67, 2017.

[86] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar,
and Kai Li. RIPQ: advanced photo caching on flash for
facebook. In USENIX FAST, pages 373–386, 2015.

[87] Francisco Velázquez, Kristian Lyngstøl, Tollef
Fog Heen, and Jérôme Renard. The Varnish Book for
Varnish 4.0. Varnish Software AS, March 2016.

[88] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad,
and Nohhyun Park. Cache modeling and optimization
using miniature simulations. In USENIX, pages 487–
498), 2017.

[89] Neil Williams. Reddit’s architecture, November 2017.
QCon SF slide set, available at https://qconsf.com/
sf2017/system/files/presentation-slides/
qconsf-20171113-reddits-architecture.pdf,
accessed 09/02/19.

[90] Xingbo Wu, Fan Ni, Li Zhang, Yandong Wang, Yufei
Ren, Michel Hack, Zili Shao, and Song Jiang. Nvm-
cached: An nvm-based key-value cache. In ACM
SIGOPS Asia-Pacific Workshop on Systems, pages 1–
7, 2016.

[91] Yuejian Xie and Gabriel H Loh. Pipp: promo-
tion/insertion pseudo-partitioning of multi-core shared
caches. ACM SIGARCH Computer Architecture News,
37(3):174–183, 2009.

[92] Yao Yue. Cache à la carte: a framework for in-
memory caching, September 2015. Strange Loop slide
set, available at https://www.youtube.com/watch?
v=pLRztKYvMLk, accessed 09/02/19.

[93] Yuanyuan Zhou, James Philbin, and Kai Li. The multi-
queue replacement algorithm for second level buffer
caches. In USENIX ATC, pages 91–104, 2001.

[94] Timothy Zhu, Anshul Gandhi, Mor Harchol-Balter, and
Michael A Kozuch. Saving cash by using less cache. In
USENIX HOTCLOUD, 2012.

786 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Twine: A Unified Cluster Management System for Shared Infrastructure

Chunqiang Tang Kenny Yu Kaushik Veeraraghavan Jonathan Kaldor

Scott Michelson Thawan Kooburat Aravind Anbudurai Matthew Clark Kabir Gogia

Long Cheng Ben Christensen Alex Gartrell Maxim Khutornenko Sachin Kulkarni

Marcin Pawlowski Tuomas Pelkonen Andre Rodrigues Rounak Tibrewal

Vaishnavi Venkatesan Peter Zhang

Facebook Inc.

Abstract

We present Twine, Facebook’s cluster management system

which has been running in production for the past decade.

Twine has helped convert our infrastructure from a collection

of siloed pools of customized machines dedicated to individ-

ual workloads, into a large-scale shared infrastructure with

fungible hardware.

Our goal of ubiquitous shared infrastructure leads us to

some decisions counter to common practices. For instance,

rather than deploying an isolated control plane per cluster,

Twine scales a single control plane to manage one million

machines across all data centers in a geographic region and

transparently move jobs across clusters.

Twine accommodates workload-specific customization in

shared infrastructure, and this approach further departs from

common practices. The TaskControl API allows an applica-

tion to collaborate with Twine to handle container lifecycle

events, e.g., restarting a ZooKeeper deployment’s followers

first and its leader last during a rolling upgrade. Host pro-

files capture hardware and OS settings that workloads can

tune to improve performance and reliability; Twine dynam-

ically allocates machines to workloads and switches host

profiles accordingly.

Finally, going against the conventional wisdom of prioritiz-

ing stacking workloads on big machines to increase utiliza-

tion, we universally deploy power-efficient small machines

outfit with a single CPU and 64GB RAM to achieve higher

performance per watt, and we leverage autoscaling to improve

machine utilization.

We describe the design of Twine and share our experience

in migrating Facebook’s workloads onto shared infrastructure.

1 Introduction

The advent of computation as a utility has led organizations

to consolidate their workloads onto shared infrastructure, a

common pool of resources to run any workload. Cluster

management systems help organizations utilize shared infras-

tructure effectively through automation, standardization, and

economies of scale. Cluster management systems have made

large progress in the past decade, from Mesos [17], Borg [39],

to Kubernetes [23]. Existing systems, however, still have

limitations in supporting large-scale shared infrastructure:

1. They usually focus on isolated clusters, with limited

support for cross-cluster management as an afterthought.

These silos may strand unused capacity in clusters.

2. They rarely consult an application about its lifecycle

management operations, making it more difficult for the

application to uphold its availability. For example, they

may unknowingly restart an application before it has

built another data replica, rendering the data unavailable.

3. They rarely allow an application to provide its preferred

custom hardware and OS settings to shared machines.

Lack of customization may negatively impact applica-

tion performance on shared infrastructure.

4. They usually prefer big machines with more CPUs and

memory in order to stack workloads and increase utiliza-

tion. If not managed well, underutilized big machines

waste power, often a constrained resource in data centers.

These limitations can lead to underdelivery of the promise of

shared infrastructure: (1) artificially caps the sharing scope to

one cluster; (2) & (3) highlight the tension between shared in-

frastructure’s preference for standardization and applications’

needs for customization; (4) calls for a shift of focus from

single-machine utilization to global optimization.

In this paper, we describe how we address the above limita-

tions in Twine, Facebook’s cluster management system. Our

two insights are 1) we scale a single Twine control plane

to manage one million machines across data centers in a

geographic region while providing high reliability and per-

formance guarantees, and 2) we support workload-specific

customization, which allows applications to run on shared

infrastructure without sacrificing performance or capabilities.

Twine packages applications into Linux containers and

manages the lifecycle of machines, containers, and applica-

tions. A task is one instance of an application deployed in a

container, and a job is a group of tasks of the same application.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 787

A single control plane to manage one million machines.

A region consists of multiple data centers, and a data center is

usually divided into clusters of tens of thousands of machines

connected by a high-bandwidth network. As with Borg [39]

and Kubernetes [23], an isolated control plane per cluster

results in stranded capacity and operational burden because

workloads cannot easily move across clusters. For example,

power-hungry jobs colocated in a cluster can trigger power

capping [26, 41], affecting service throughput until humans

move the problematic jobs to other clusters.

Similarly, large-scale hardware refresh in a cluster may

result in idle machines and operational overhead. Our current

hardware refresh granularity is 25% of a data center. Figure 1

shows the duration for all owners of thousands of jobs to

migrate jobs out of a cluster prior to a hardware refresh in

2016. The P50 is at 7.5 days and the P100 is at 87 days. A

large portion of the cluster sat idle in these ≈80 days while

waiting for all jobs to migrate.

0 10 20 30 40 50 60 70 80 90
Days to Close Work Tickets for Machine Refresh

0%
20%
40%
60%
80%

100%

%
 C

lo
se

d
Ti

ck
et

s

Figure 1: CDF of time to close job-migration work tickets.

To address the problems above, we scaled a single Twine

control plane to manage one million machines across all data

centers in a region. Unlike Kubernetes Federation [25], Twine

scales out natively without an additional federation layer.

Collaborative lifecycle management. Cluster manage-

ment systems generally lack visibility into how an application

manages its internal state, leading to suboptimal handling of

hardware and software lifecycle events that impact application

availability. Figure 2 provides a stateful service example.

A

C

1

B

D

2

A

B

3

C

4

B

5

A

D

6

C

D

7

Task 4 fails

Figure 2: Replicas of data shards A-D are distributed across tasks 1-7. Tasks 1

and 3 should not be restarted concurrently for a software upgrade, as shard A

would lose two replicas and become unavailable. If the machine hosting task

4 were to fail or be restarted for a kernel or firmware upgrade, the cluster

management system would need to ensure that neither task 1 nor 7 is restarted

concurrently in order to keep shard C available.

Twine provides a novel TaskControl API to allow appli-

cations to collaborate with Twine in handling task lifecycle

events that impact availability. For example, an application

may postpone a task restart and rebuild a lost data replica first.

Host-level customization. Hardware and OS settings may

significantly impact application performance. For example,

our web tier achieves 11% higher throughput by tuning OS

settings. Twine leverages entitlements, our quota system, to

handle hardware and OS tuning. For example, an entitlement

for a business unit may allow it to use up to 30,000 machines.

We associate each entitlement with a host profile, a set of host

customizations that the entitlement owner can tune. Out of a

shared machine pool, Twine dynamically allocates machines

to entitlements and switches host profiles accordingly.

Power-efficient machines. Facebook’s workloads have

grown faster than our data center buildup. Power scarcity

motivated us to maximize performance per watt, either by

employing universal stacking on big machines or deploying

power-efficient small machines. We found it challenging to

stack large workloads on big machines effectively. Further,

unlike a public cloud that needs to support diverse customer

requirements, we only need to optimize for our internal work-

loads. These factors led to us to adopt small machines with a

single CPU and 64GB RAM [32].

Shared infrastructure. As we evolved Twine to support

large-scale shared infrastructure, we have been migrating our

workloads onto a single shared compute pool, twshared, and a

single shared storage pool. Twine supports both pools, but we

focus on twshared in this paper. twshared hosts thousands of

systems, including frontend, backend, ML, stream processing,

and stateful services. While twshared does not host durable

storage systems, it provides TBs of local flash to support

stateful services that store state derived from durable storage

systems. Figure 3 shows twshared’s growth.

2013 2014 2015 2016 2017 2018 2019 2020
Year

0%
10%
20%
30%
40%
50%
60%

tw
sh

ar
ed

 /
to

ta
l f

le
et

Figure 3: Growth of twshared. twshared was created in 2013, but adoption

was limited in its first six years. We enhanced Twine and rebooted the

adoption effort in 2018. twshared hosts 56% of our fleet as of October 2020,

in contrast to 15% in January 2019. We expect that all compute services,

≈85% of our fleet, will run on twshared by early 2022, while the remaining

15% will run in a separate shared storage pool.

twshared has become our ubiquitous compute pool, as all

new compute capacity lands only in twshared. We had broad

conversations with colleagues in industry and are unaware

of any large company that has achieved near 100% shared

infrastructure consolidation.

The rest of the paper is organized as follow. §2 presents the

design and implementation of Twine. §3 and §4 describe how

we scale Twine to manage one million machines and do so

reliably. §5 evaluates Twine. §6 shares our experience with

driving twshared adoption. §7 describes lessons learned. §8

summarizes related work. Finally, §9 concludes the paper.

788 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Resource

Broker (RB)

Allocator

Scheduler

Ops Planner

Agent

Task Task

Health Check

Service (HCS)

Front End

ReBalancer

Capacity Portal

Application-Level Schedulers
with built-in TaskControllers
(batch/ML/stream/stateful)

Service

Resource

Manager (SRM)

Conveyor
Service Owner’s

TaskController

Sidekick

Managed MachineData CenterRegion

switch host
profile

monitor availability

enable/disable
machines

schedule
maintenance

manage tasks

mark
machine
usage

autom
ate

releases

resize
jobs

request

resources

▪ negotiate task restart/move

▪ notify unavailability events

continuous optimization
through task moves

allocate tasks

service accounting
hierarchy

specify entitlement
capacity

perform application
level drain

TaskControl

Figure 4: The Twine Ecosystem. Note a potential terminology confusion. The Twine scheduler corresponds to the Kubernetes [23] controllers, whereas the

Twine allocator corresponds to the Kubernetes scheduler.

2 Twine Design and Implementation

Facebook currently operates out of 12 geo-distributed regions,

with several more under construction. Each region consists

of multiple data center (DC) buildings. A main switchboard

(MSB) [41] is the largest fault domain in a DC with sufficient

power and network isolation to fail independently. A DC

consists of tens of MSBs each powering tens of rows that feed

tens of racks of servers as shown in Figure 5.

Region

Data
Center

Data Center

Main
Switchboard

(MSB)

Main Switchboard (MSB)

Power
Row

Power Row

Rack

Rack

Machine

Machine

Figure 5: Data center topology.

Historically, a cluster was a subunit within a DC consist-

ing of about ten thousand machines connected by a high-

bandwidth network and managed by an isolated Twine con-

trol plane. Over time, our network transitioned to a fabric

architecture [2, 14] that provides high bandwidth both within

a DC and across DCs in a region, empowering a single Twine

control plane to manage jobs across DCs.

2.1 Twine Ecosystem

Figure 4 shows an overview of Twine. The Capacity Portal

allows users to request or modify entitlements, which asso-

ciate capacity quotas with business units defined in the service

accounting hierarchy. With a granted entitlement, a user de-

ploys jobs through the front end. The scheduler manages

job and task lifecycle, e.g., orchestrating a job’s software re-

lease. If a job has a TaskController, the scheduler coordinates

with the TaskController to make decisions, e.g., delaying a

task restart to rebuild a lost data replica first. The allocator

assigns machines to entitlements and assigns tasks to ma-

chines. ReBalancer runs asynchronously and continuously to

improve the allocator’s decisions, e.g., better balancing the

utilization of CPU, power, and network. Resource Broker

(RB) stores machine information and unavailability events

that track hardware failures and planned maintenance. DC

operators schedule planned maintenance through Ops Plan-

ner. The Health Check Service (HCS) monitors machines and

updates their status in RB. The agent runs on every machine

to manage tasks. Sidekick switches host profiles as needed.

Service Resource Manager (SRM) autoscales jobs in response

to load changes. Conveyor is our continuous delivery system.

2.2 Entitlements

Conceptually, an entitlement is a pseudo cluster that uses

a set of dynamically allocated machines to host jobs. An

entitlement grants a business unit a quota expressed as a count

of machines of certain types (e.g., 2,000 Skylake machines)

or as Relative Resource Units (RRU) akin to ECU in AWS.

A machine is either free or assigned to an entitlement, and

it can be dynamically reassigned from one entitlement to an-

other. An entitlement can consist of machines from different

DCs in a region. Existing cluster management systems bind a

job to a physical cluster. In contrast, Twine binds a job to an

entitlement. Jobs in an entitlement stack with one another on

machines assigned to the entitlement.

By default, Twine spreads tasks of the same job across DCs

and MSBs as shown in Figure 6. This reduces buffer capacity

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 789

needed for fault tolerance [29]. Suppose a job’s tasks are

spread across 12 MSBs in one DC. We need 1
12

≈ 8.3% of

buffer capacity to guard against the failure of one MSB. If the

job’s tasks are spread across five DCs’ 60 MSBs, the needed

buffer reduces to 1
60

≈ 1.7%. For workloads that require better

locality for compute and storage, Twine allows an entitlement

to override the default spread policy and pin its machines and

jobs to a specific DC. These workloads are in the minority.

Main Switchboard (MSB) 1

M1 M2

A

C

Region

M3

A

B

Entitlement 1

M1 M3 M4

Entitlement 2

M2 M5 M6

Main Switchboard (MSB) 2

M4 M5

B

C

M6

C

A

Figure 6: Entitlement example. Entitlement 1 consists of machines M1,

M3, and M4 from different MSBs. Jobs A and B are bound to Entitlement

1, and job C is bound to Entitlement 2. Jobs A and B stack their tasks on

machine M3. As job C grows, Twine adds machine M6 to Entitlement 2.

The allocator assigns machines to entitlements, and it also

assigns tasks to machines in an entitlement. For an entitle-

ment with a quota of N machines, the number of machines

actually assigned to the entitlement may vary between 0 and

N, depending on the actual needs of jobs running in the enti-

tlement. Figure 7 depicts an example of how an entitlement

changes over time.

DM7

D EM7 EM8

DM7

(3)

(2)

(1)

(2)

Free machines

in the region

(None)

Machines allocated

to the entitlement

Start Job D

Start Job E

Stop Job E

Time

Figure 7: Allocation of machines and tasks. Initially, no machine is assigned

to the entitlement. When job D starts, the allocator assigns machine M7 to the

entitlement. When job E starts, the allocator stacks one task on M7 and adds

machine M8 to the entitlement to run E’s other task. When job E stops, the

allocator returns M8 to the free machine pool for use by other entitlements.

We optimized the allocator to make quick decisions when

starting tasks; this optimization limits computation time and

leads to best-effort outcomes. The addition or removal of ma-

chines and workload evolution may result in hotspots in CPU,

power, or network. ReBalancer runs asynchronously and

continuously to improve upon the allocator’s allocation deci-

sions by swapping machines across entitlements or moving

tasks across machines. ReBalancer uses a constraint solver to

perform these time-consuming global optimizations.

Entitlements help automate job movements across clusters.

Consider a cluster-wide hardware refresh. We first add new

machines from other clusters into the regional free machine

pool (see the right side of Figure 7). Then the allocator moves

tasks from machines undergoing hardware refresh to new

machines acquired from the free machine pool, requiring no

actions from the job owner. To migrate a task, Twine stops

the task on the old machine and restarts it on the new machine.

We do not use live container migration.

2.3 Allocator

One instance of Resource Broker (RB) is deployed to each DC.

RB records whether a machine in the DC is free or assigned to

an entitlement. A regional allocator fetches this information

from all RBs in the same region, maintains an in-memory

write-through cache, and subscribes to future changes.

The scheduler calls the allocator to perform a job allocation

when a new job starts, an existing job changes size, or a

machine fails. The allocation request contains an entitlement

ID, an allocation policy, and a per-task map of which tasks

need to be allocated or freed. The allocation policy includes

hard requirements (e.g., using Skylake machines only) and

soft preferences (e.g., spreading tasks across fault domains).

The allocator maintains an in-memory index of all ma-

chines and their properties to support hard requirement

queries, such as “all Skylake machines with available

CPU ≥ 2RRU and available memory ≥ 5GB.” It needs to

search machines beyond the ones already assigned to the en-

titlement because it may need to add more machines to the

entitlement to host the job. After applying hard requirements,

it applies soft preferences to sort the remaining machines.

A soft preference is expressed as a combination of 1) a ma-

chine property to partition machines into different bins with

the same property value, and 2) a strategy to allocate tasks to

these machine bins. For example, the allocator spreads tasks

across fault domains by using a soft preference with fault

domain as the machine property, and the strategy that assigns

tasks evenly to the machine bins that represent fault domains.

The allocator uses multiple threads to perform concurrent

allocations for different jobs, and relies on optimistic con-

currency control to resolve conflicts. Before committing an

allocation, a thread verifies that all impacted machines still

have sufficient resources left for the allocation. If the verifica-

tion fails, it retries a different allocation.

To avoid repeating the costly machine selection process,

the allocator caches the allocation results at the job level. The

allocator invalidates a cache entry if the job allocation request

changes or the properties of the machines hosting the tasks

change. The cache hit ratio is typically above 99%.

2.4 Scheduler

The scheduler manages the lifecycle of jobs and tasks. As

the central orchestrator, the scheduler drives changes across

790 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Twine components in response to different lifecycle events,

including hardware failures, maintenance operations, power

capping [41], kernel upgrades, job software releases, job

resizing, task canary, and ReBalancer moving tasks.

The scheduler handles a machine failure as follows. When

the Health Check Service detects a machine failure, it creates

an unavailability event in Resource Broker, which notifies

the allocator and scheduler. The scheduler disables the af-

fected tasks in the service discovery system so that clients

stop sending traffic to these tasks. A job is impacted by the

machine failure if it has tasks running on the machine. If an

impacted job has a TaskController, the scheduler informs the

TaskController of the affected tasks. After the TaskController

acknowledges that these tasks can be moved, the scheduler

requests the allocator to deallocate the tasks and allocate new

instances of the tasks on other machines. The scheduler in-

structs agents to start the new tasks accordingly. Finally, the

scheduler enables the tasks in the service discovery system

so that clients can send traffic to the newly started tasks.

The scheduler paces changes to a job’s tasks to avoid ap-

plication downtime. For example, regardless of reasons (e.g.,

hardware failure or software upgrade), if a job’s total unavail-

able tasks exceed a user-configured threshold, no more tasks

can be restarted for a software release. The scheduler has built-

in support for commonly used lifecycle policies and offers

the TaskControl API to implement more complex policies.

2.5 TaskControl

An application often knows best how to safely handle hard-

ware or software lifecycle events that affect its availability,

but it cannot inform the cluster management system how to

orchestrate these actions. Figure 2 depicts one example. An-

other example is a ZooKeeper deployment that wishes to

apply a software release to its followers first and its leader

last [8]. Otherwise, an n-member ZooKeeper ensemble in

the worst case experiences n leader failovers during a release.

We designed the TaskControl API to allow applications to

collaborate with Twine when deciding which task operations

to proceed and which to postpone, as depicted in Figure 8.

Unlike software releases, maintenance events like a power

device replacement cannot be blocked indefinitely by a

TaskController; the scheduler gives the TaskController ad-

vance notices with a deadline to react. Upon reaching the

deadline, the scheduler stops the remaining tasks on the af-

fected machines, allowing maintenance to proceed. Before

the deadline, a TaskController has multiple options: 1) move

the tasks to other machines, 2) stop the tasks on the current

machine and restart them after the maintenance completes,

or 3) do nothing and keep the tasks running. For example, a

top-of-rack switch maintenance typically incurs only a few

minutes of network downtime, and a stateful service may pre-

fer option 3 because rebuilding a data replica elsewhere takes

longer than the maintenance itself.

service TaskController {

TaskControlResponse process(TaskControlRequest request);

}

struct TaskControlRequest {

string jobHandle;

list<> request; // Pending task operations to be approved.

list<> completed; // Completed task operations.

list<> advanceNotices; // Upcoming planned maintenance.

list<> allUnhealthyTasks; // Tasks unhealthy due to any reason.

int sequenceNumber; // Increase after each call.

}

struct TaskControlResponse {

list<> ack; // Approved task operations.

}

(a) TaskControl API.

Scheduler

Time

TaskController

S0

S1
request=[t0,	t1]		completed=[]

ack=[t1]

S2
request=[t0]						completed=[t1]

ack=[t0]

S3
request=[]						completed=[t0]

ack=[]

Update Job

(b) Calling sequence of the TaskControl API when handling a job update. The job has

two tasks: t0 and t1. At time S0, the user initiates a job update. At time S1, the sched-

uler requests the approval of updates on tasks t0 and t1, with request=[t0,t1]. The

application’s TaskController can selectively approve updates for any subset of tasks

in any order. It approves the update on task t1 by replying ack=[t1], but delays the

update on task t0 to keep one task available. At time S2, the scheduler completes the

update on task t1 with completed=[t1], and requests an update on the remaining task

t0. This time, the TaskController approves the request.

Figure 8: TaskControl API and an example of the calling sequence.

2.6 Host Profiles

Our fleet runs thousands of different services, and Figure 9

shows that the 50 largest services consume ≈70% of all ca-

pacity. Similar capacity skew exists in Borg as well [36].

1 10 100 1000 10000
Number of Services (Log Scale)

0%
20%
40%
60%
80%

100%

%
 M

ac
hi

ne
s

Figure 9: CDF of machines used by services. A small number of services

dominate the capacity consumption. Note that the x-axis is in log scale.

Our efficiency effort focuses on these large services, and we

find that host-level customization is important for maximizing

their performance. For example, customizations help our

large web tier achieve 11% higher throughput. However,

some custom settings may be beneficial for one service but

detrimental to another. As an example, a combination of

explicit 2MB and 1GB hugepages improves the web tier’s

throughput by 4%; however, most services are incapable of

utilizing explicit hugepages and enabling this setting globally

would lead to unusable memory.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 791

We resolved the conflict between host-level customization

and sharing machines in a common pool via host profiles,

a framework to control host-level customizations on entitle-

ments. An entitlement is associated with one host profile;

all machines in the entitlement share the same host profile.

When a machine is reassigned from one entitlement to an-

other, Sidekick automatically applies the target entitlement’s

host profile. By fully automating the process of machine al-

location and host customization in our shared infrastructure,

we can perform fleet-wide optimizations (e.g., swapping ma-

chines across entitlements to eliminate hotspots in network

or power) without sacrificing workload performance. Sup-

ported host profile settings include kernel versions, sysctls

(e.g., hugepages and kernel scheduler settings), cgroupv2

(e.g., CPU controller), storage (e.g., XFS or brtfs), NIC set-

tings, CPU Turbo Boost, and hardware prefetch.

2.7 Application-Level Schedulers

As shown at the top of Figure 4, multiple application-level

schedulers are built atop Twine to better support vertical work-

loads such as stateful [16], batch [21], machine learning [13],

stream processing [28], and video processing [18]. Twine

provides containers as resources for these application-level

schedulers to manage and delegates task lifecycle manage-

ment to them through TaskControl.

Shard Manager (SM) [16] is an example of an application-

level scheduler. It is widely used at Facebook to build sharded

services like the one in Figure 2. It has two major components:

the SM client library and the SM scheduler. The library

is linked into a sharded service and provides two APIs for

the service to implement: add_shard() and drop_shard().

The SM scheduler decides the shards each Twine task will

host and calls the service’s add_shard() implementation to

prepare the task to serve requests for those shards. To balance

load, SM may migrate a shard from task T1 to task T2 by

informing T1 to drop_shard() and T2 to add_shard().

The SM scheduler integrates with Twine through TaskCon-

trol and can handle the complex situations depicted in Fig-

ure 2. In another example, Twine gives SM advance notice

about an upcoming maintenance on a machine. If the mainte-

nance duration is short and the shards hosted by the machine

have replicas elsewhere, SM may do nothing; otherwise, SM

may migrate the impacted shards out of the machine.

2.8 Small Machines and Autoscaling

To achieve higher performance per watt, our server fleet uses

millions of small machines [32], each with one 18-core CPU

and 64GB RAM. We have worked with Intel to define low-

power processors optimized for our environment, e.g., re-

moving unneeded NUMA components. Four small machines

are tightly packed into one sled, sharing one multi-host NIC.

They are replacing our big machines, each with dual CPUs,

256GB RAM, and a dedicated NIC. Under the same rack-

level power budget, a rack holds either 92 small machines or

30 big machines. A small-machine rack delivers 57% higher

total compute capacity measured in RRU. Averaged across

all our services, using small machines led to 18% savings in

power and 17% savings in total cost of ownership (§5.4).

We are consolidating all our compute services onto small

machines, as opposed to offering a variety of high-memory or

high-CPU machine types. This unification simplifies down-

stream supply chain and fleet management. It also improves

machine fungibility across services, as we can easily reuse a

machine across all compute services. Our consolidation jour-

ney has been challenging (§7.4), as some services initially did

not fit the limited 64GB in our small machines. To address

this, we used several common software architectural changes:

• Shard a service so that each instance consumes less mem-

ory. Our Shard Manager platform (§2.7) helps develop-

ers easily build sharded services running on Twine.

• Exploit data locality to move in-memory data to an ex-

ternal database and use the smaller memory as a cache.

• Exploit data locality to provide tiered memory on top of

64GB RAM and TBs of local flash. For example, when

migrating TAO [7], our social graph cache, from big

machines to small machines, CacheLib [5] transparently

provided tiered memory to improve cache hit ratio and

reduce load on the external database by ≈30%.

Our largest services fully utilize small machines without

stacking. We rely on Autoscaling to free up underutilized

machines. Active Last Minute (ALM) is the number of people

who use our online products within a one-minute interval.

The load of many services correlates with ALM. Service

Resource Manager (SRM) uses historical data and realtime

measurements to continuously adjust task count for ALM-

tracking services and frees up underutilized machines in their

entirety for other workloads to use. This work has allowed us

to successfully build a large-scale shared infrastructure that

consists primarily of small machines.

3 Scaling to One Million Machines

We designed Twine to manage all machines that can fit in a

region’s 150MW power budget. Although none of our regions

host one million machines yet, we are close and anticipate

reaching that scale in the near future. Two principles help

Twine scale to one million machines and beyond: 1) sharding

as opposed to federation, and 2) separation of concerns.

3.1 Scale Out via Sharding

To scale out, we shard Twine schedulers by entitlements, as

depicted in Figure 10. We assign newly-created entitlements

to shards with the least load. Entitlements can change size

and can migrate across shards. If a shard becomes overloaded,

792 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Twine can transparently move an entitlement in the shard

to another shard without restarting tasks in the entitlement.

Twine can also migrate an individual job from one entitlement

to another. To do this, Twine performs a rolling update of the

job until all tasks restart on machines belonging to the new

entitlement. We automate the execution of these migrations,

but humans still decide when and what to migrate. Since

migrations happen rarely, we do not automate these further.

Front End

Resource

Broker, DC1

Scheduler Shard 1

Resource

Broker, DC2

Resource

Broker, DC3

Resource

Broker, DC4

E1 E2 E3

Scheduler Shard 2

E4 E5

Scheduler Shard 3

E6 E7 E8

Allocator

Shared Regional Free Machine Pool

Figure 10: Sharding a scheduler by entitlements. Each scheduler shard man-

ages a different subset of entitlements for the region. Scheduler Shard 1

manages entitlements E1, E2, and E3. The front end maintains an entitlement-

to-shard map and forwards requests to the responsible shards. Each data

center has a Resource Broker (RB) managing the machines in that data

center. Conceptually, all RBs in a region jointly maintain a free machine

pool shared by all entitlements in the region. We also shard the allocator

by entitlements and there is a 1:1 mapping between a scheduler shard and

an allocator shard. We do not show allocator sharding in the figure as it

currently manages a small fraction of our fleet and is still in the process of

broader production deployment.

With sharding, the scheduler can easily scale to one million

machines. Each data point in Figure 11 plots the P99 CPU

utilization of a scheduler shard. The largest shard manages

≈170K machines, using up to 40 cores and 80GB memory.

We are moving towards smaller shards to reduce the impact of

a shard failure. Assuming each shard manages 50K machines

in the future, a single Twine deployment can manage 1M

machines with 20 shards. We believe Twine can easily scale

beyond 1M machines by adding more shards.

0

10

20

30

40

0 50 100 150 200

C
P

U
 U

sa
g
e

(c
o
re

s)

Managed Machines (thousands)

Figure 11: P99 CPU usage of production scheduler shards over one week.

The simplicity of scheduler sharding comes with a theoreti-

cal limitation: a single job must fit in a single scheduler shard.

This is not a practical limitation. Currently, the largest sched-

uler shard manages ≈170K machines; the largest entitlement

uses ≈60K machines; and the largest job has ≈15K tasks.

0

10

20

30

40

10 100 1000 10000

C
P

U
 U

sa
g
e

(c
o
re

s)

Managed Machines in Logscale (thousands)

Figure 12: P99 CPU usage of production allocators over one week.

Each data point in Figure 12 plots the P99 CPU utiliza-

tion of a production allocator. At its peak, a large allocator

performs ≈1,000 job allocations per second, with an aver-

age job size of 36 tasks. We run a few deployments of the

scheduler and allocator at the global level to manage machines

and jobs across multiple regions (§7.3). Our largest global

allocator currently manages more than one million machines

across regions. The allocator is scalable because it has a high

cache hit ratio (§2.3), does not handle allocations for short-

lived batch jobs (§3.2), and does not perform time-consuming

optimizations (§3.2).

3.2 Scale Out via Separation of Concerns

We avoid Kubernetes’ centralized architecture where all com-

ponents interact through one central API server and share one

persistent store. These centralized components become bottle-

necks and limit Kubernetes’ scalability to 5K machines. We

shard all Twine components and scale them out independently.

Sharded components include the front end, scheduler, allo-

cator, Resource Broker, Health Check Service, and Sidekick.

Further, each stateful Twine component (front end, scheduler,

allocator, and RB) has its own separate persistent store for

metadata. Like Kubernetes [23] and unlike Borg [39], we

use external persistent stores for components, as opposed to

building the stores directly into components. This allows us to

independently shard and scale out persistent stores as needed.

Separation of allocation and optimization responsibilities

helps the allocator scale. The allocator makes quick decisions

when starting tasks, whereas ReBalancer asynchronously runs

a constraint solver to perform time-consuming global opti-

mizations such as balancing CPU, network, and power.

Separation of responsibilities between Twine and

application-level schedulers helps Twine scale further.

Application-level schedulers handle many fine-grained re-

source allocation and lifecycle operations without involving

Twine. For example, the Twine scheduler and allocator do not

directly manage batch jobs, whose lifetime might last just a

few seconds and cause high scheduling loads. The application-

level batch scheduler acquires resources from Twine in the

form of Twine tasks. It reuses these tasks over a long pe-

riod of time to host different batch jobs, avoiding frequent

host profile changes. The batch scheduler can create nested

containers inside the tasks, similar to that in Mesos [17].

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 793

3.3 Comparison of Sharding and Federation

We acknowledge that Twine’s scale of managing millions of

machines is not unique, as Borg [39] and several public clouds

likely manage infrastructure of that scale as well; however, we

believe that Twine’s approach is unique. Other cluster man-

agement systems scale out by deploying one isolated control

plane per cluster and operate many siloed clusters. They pre-

allocate machines to a cluster; once a job starts in a cluster, it

stays with the cluster. This lack of mobility results in stranded

capacity when some clusters are overloaded while others are

idle. It also causes operational burden during cluster-wide

maintenance such as hardware refresh, as shown in Figure 1.

To avoid stranded capacity, we can introduce mobility by

moving either jobs or machines. To that end, the federation

approach (e.g., Kubernetes Federation [25]) allows a job to

be split across multiple static clusters, whereas Twine dynam-

ically moves machines in and out of entitlements. Figure 13

compares these two approaches.

Federation Manager

Cluster

Manager

B

Job B grows

into Cluster 2 as

Cluster 1 runs

out of available

machines

A

Cluster

Manager

C

Federation Manager

Cluster

Manager

B

B

A

Cluster

Manager

B

C

Cluster 1 Cluster 2 Cluster 1 Cluster 2

(a) Federation approach. This approach uses a Cluster Manager per cluster and intro-

duces an additional Federation Manager layer. Each cluster has a set of statically con-

figured machines. As job B in Cluster 1 keeps growing, it overflows into Cluster 2.

Resource Broker

Scheduler &

Allocator

Scheduler &

Allocator

A

B

C

Entitlement 1

Entitlement 2

Free Machine Pool

Resource Broker

Scheduler &

Allocator

Scheduler &

Allocator

A

B

C

Entitlement 1

Entitlement 2

Free Machine Pool

B

B

Job B grows and

stays in Entitlement 1

as more machines

are added to

Entitlement 1

(b) Twine’s sharding approach. As job B grows, Twine adds more machines to

Entitlement 1, and job B stays with the same entitlement and scheduler shard.

Figure 13: The two figures above contrast how federation and sharding sup-

port a job growing over time without stranding capacity in isolated clusters.

The federation approach can support complex multi-region,

hybrid-cloud, or multi-cloud deployments, but it adds com-

plexity as a scale-out solution. In order to provide a seamless

user experience, the Federation Manager in Figure 13a has to

perform complex coordination for a job whose metadata and

management operations are split among multiple distributed

Cluster Managers. In contrast, Twine is simpler for scaling

out because a job is exclusively managed by one scheduler

shard, and Resource Broker provides a simple interface to

manage the shared regional pool of machines.

4 Availability and Reliability

Compared with the traditional approach of deploying one

control plane per cluster, Twine’s regional control plane incurs

additional risks: 1) a control plane failure may impact all

jobs in a region as opposed to just a cluster, and 2) network

partitions may result in a regional Twine scheduler unable to

manage an isolated DC.

Design principles. We observe several design principles to

mitigate the risks listed above.

• All components are sharded: Each shard manages a

small fraction of machines and jobs in a region, limiting

the impact of a shard failure. Assuming Twine uses

20 scheduler shards to manage a 150MW region, each

scheduler shard manages 7.5MW worth of machines,

which is no bigger than a traditional cluster.

• All components are replicated: Consider schedulers

for example: replicas of a scheduler shard sit in differ-

ent DCs and elect a leader to process requests. If the

leader fails or its network is partitioned from other DCs,

a follower in another DC becomes the new leader.

• Tasks keep running: Even if all Twine components

fail, existing tasks continue to run. New jobs cannot

be created and existing tasks cannot be updated until

Twine recovers. If a DC is partitioned from the scheduler,

existing tasks in the DC continue to run.

• Rate-limit destructive operations: It is possible that

a bug or fault might cause Twine to perform a large

number of destructive operations quickly, e.g., shuffling

tasks across machines at a fast pace. We protect against

this failure by ensuring all components have fail-safe

mechanisms to rate-limit destructive operations.

• Network redundancy: Fabric Aggregator connects our

data centers in a region and can “suffer many simulta-

neous failures without compromising the overall per-

formance of the network [14].” We did not experience

within-region network partitioning as a major challenge.

Operational principles. In addition to the design principles

listed above, we observe several operational principles.

• Twine manages itself: To avoid developing yet another

cluster management tool to manage Twine installations,

all Twine components, except for the agent, run as Twine

jobs. We developed automation to bootstrap the Twine

ecosystem starting from scratch. The Twine agent has

no dependencies on other Twine components and our

bootstrapping mechanism directly sends commands to

agents to start other Twine components as Twine tasks.

794 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

• Twine manages its dependencies: As we built confi-

dence in Twine’s bootstrapping automation, we ran all

systems that Twine depends on as normal Twine jobs,

including ZooKeeper, Delos [4], Configerator [35], and

a few other systems for storage, security, and continuous

delivery. Twine managing itself and its dependencies im-

proves reliability by eliminating the risk associated with

maintaining specialized cluster management tools [8].

• Gradual but frequent software release: A new release

progresses gradually across regions and shards so that

a bug does not hit the entire fleet instantaneously. All

components are released weekly or more frequently to

lower the risk associated with large changesets.

• Recurring large-scale failure test [38]: This happens

regularly in production to verify Twine’s reliability.

These principles help us run Twine reliably. We share one

anecdote where rate-limiting mitigated the risk caused by

the complex interplay of four concurrent events: 1) shifting

traffic from region X to region Y , 2) performing a load test

in region Y , 3) adding new server racks to region Y before

removing old racks, and 4) software upgrade for the web tier.

The first three events led to increased power consumption

in region Y and power capping on many machines. The

scheduler rate-limited the number of tasks moving away from

power-capped machines. This rate-limiting halted the web

tier’s software upgrade and protected against further loss of

capacity. In this incident, rate-limiting provided a safety net

before we debugged the incident.

5 Evaluation

Our evaluation answers the following questions:

1. How does TaskControl deal with complex scenarios that

impact an application’s availability?

2. How effective is autoscaling for production use?

3. How effective are host profiles in improving perfor-

mance? What is the overhead of switching host profiles?

4. How cost effective are small machines in replacing big

machines?

5.1 TaskControl

Figure 14 demonstrates how TaskControl handles the complex

situation of a software release and machine failures happen-

ing concurrently. This experiment uses a caching service

managed by Shard Manager (§2.7). The cache’s data are par-

titioned into 15,000 shards, and each shard runs three replicas.

The 45,000 shard replicas are hosted by 1,000 Twine tasks.

Shard Manager’s TaskController helps minimize the risk of a

shard losing more than one replica, i.e., driving Figure 14b’s

2 replicas down curve towards zero.

0
150
300
450
600
750

0 150 300 450 600 750 900 1050 1200

T
as

k
 r

es
ta

rt

re
q

u
es

ts

Time (seconds)

Requested but not acked task restarts

A batch of just acked task restarts

Failure Duration

(a) Acknowledged and pending task-restart requests.

0
2500
5000
7500

10000
12500

0 150 300 450 600 750 900 1050 1200

S
h

ar
d
s

w
it

h

re
p
li

ca
s

d
o
w

n

Time (seconds)

1 replica down

2 replicas down

Failure Duration

(b) Shards with some replicas down.

Figure 14: TaskControl helps a stateful service uphold its availability in the

event of a concurrent software release and hardware failures.

Let Tx denote the moment of x seconds into the experiment.

At T0, the user initiates a rolling update of the service. In Fig-

ure 14a, at T0, the TaskController allows 274 tasks to update

concurrently (the bottom curve). It does not allow any of the

other 726 tasks to update (the top curve) because that would

cause some shards to lose their second replicas. In Figure 14b,

at T0, 12,264 shards lose one replica (the top curve) because

they are hosted by the 274 tasks undergoing update. No shard

loses its second replica (the bottom curve) because of the

TaskController’s precise shard availability calculation.

During the Failure Duration in the figures (between

T120 and T415), we inject the failure of one MSB that kills

50 tasks causing 1,292 shards to lose their second replicas,

because those shards are also hosted by the 274 tasks under-

going update. The spike in Figure 14b’s bottom curve reflects

the impact on the 1,292 shards.

By T240, the 274 tasks are updated and become healthy.

As a result, even if the 50 tasks in the failed MSB are still

down, shards with 2 replicas down drop to zero (the bot-

tom curve in Figure 14b). At T240, the TaskController care-

fully selects the second batch of 214 tasks to update, ensuring

no overlap between the shards hosted by the 214 tasks and

the shards hosted by the 50 tasks in the failed MSB (see Ack

excludes failed shards in Figure 14a). This careful task

selection keeps Figure 14b’s 2 replicas down curve at zero

throughout the rest of the experiment.

5.2 Autoscaling

Currently, we autoscale ≈800 services. Figure 15 shows the

efficacy of autoscaling on our web tier, which is our largest

service. Autoscaling frees up to 25% of the web tier’s ma-

chines during off-peak hours. The bottom curve represents

the web tier’s CPU utilization. The middle curve represents

the web tier’s real job size, i.e., the number tasks in the job.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 795

Mar 12 Mar 13 Mar 14 Mar 15 Mar 16 Mar 17

Recommended job size
Real job size
CPU utilization of the web tier (different y-axis)

Figure 15: Autoscaling the web tier. The CPU spikes are caused by the

continuous-delivery process restarting tasks.

The top curve represents autoscaling’s recommendation for

the job’s ideal size. The CPU utilization closely follows the

recommended job size, demonstrating the prediction’s ac-

curacy. Usually, the real job size also closely follows the

recommended job size, but we intentionally choose a week

when they diverged during peak hours.

During the week of March 12, 2020, our online products

experienced a drastic traffic growth [19] related to COVID-19,

causing a temporary capacity shortage. As a result, the real

job size could not grow to follow the recommended job size

during peak hours. The web tier’s TaskController adapted

to this unexpected situation without any manual interven-

tion. During peak hours, it advanced the continuous-delivery

software releases more slowly, bringing down fewer tasks con-

currently to limit temporary capacity losses. During non-peak

hours, it advanced software releases at a normal pace.

5.3 Host Profiles

1.6%

9.7% 10.2%

0%
2%
4%
6%
8%

10%
12%

CPU affinity addt'l BPF cfg addt'l sysctl

Im
p
ro

v
em

en
t

o
v

er

b
as

el
in

e

Host Profile Configuration

Figure 16: Host profiles improve the throughput of memcache.

Host profile’s impact on application performance. We use

memcache as an example to demonstrate how host profiles

help improve application performance. We deploy a highly

optimized version of memcache [30] on tens of thousands of

machines. Figure 16 compares three host profiles versus the

default settings. The baseline achieves 930K lookups per sec-

ond on an 18-core/36-hyperthread machine. This extremely

high throughput drives the need for host customization.

The CPU affinity host profile improves the throughput

by dedicating 12 hyperthreads to handling NIC IRQs, one

hyperthread to memcache’s busy-loop thread, and 23 hyper-

threads to memcache’s worker threads. This separation avoids

unnecessary interrupts and context switches. Addl’t BPF

cfg further reduces the overhead of certain BPF programs by

lowering the packet sampling rate and disabling certain packet

marking. Addl’t sysctl further tunes 17 CPU schedul-

ing and network settings, where improvements in reliability

are more important than the mild performance gains. For

example, based on lessons from past incidents, we tuned

net.ipv4.tcp_mem to alleviate TCP’s memory pressure un-

der high loads in order to prevent cascading failures.

Overhead of switching host profiles. Figure 17 shows the

host profile switching time. We discuss both ends of the

performance spectrum. The P90 for enabling CPU Turbo

takes 3.0 seconds. The P90 for enabling HugePages takes

244 seconds, as memory fragmentation sometimes causes

the Linux kernel to fail to allocate hugepages and a machine

reboot may be needed to finish the operation. To alleviate the

problem, we recently developed a kernel improvement [33]

that achieves above 95% success rate for hugepage allocation;

we are still in the process of deploying it to production.

3.0 3.6 4.1 5.1 5.6 7.3 8.5 12.2
27.9

244.0

1

10

100

CPU

Turbo

A B C D E F G H Huge

PagesT
im

e
(s

ec
o
n
d
s)

(l
o
g
 s

ca
lo

e)

Figure 17: P90 host profile switching time for different host profiles.

On average, a machine changes its host profile once every

two days; hence the overall overhead is negligible. Figure 18

depicts how autoscaling impacts host profile changes.

Figure 18: Autoscaling is the biggest driver for host profile changes. The

load of an active last minute (ALM) tracking service is proportional to the

number of people using our online products. In response to our products’

changing load, Twine moves machines to entitlements running ALM-tracking

services during hour 3 to 8 and to entitlements running non-ALM-tracking

services during hour 13 to 20, respectively.

5.4 Power-efficient Small Machines

The total cost of ownership (TCO) of a machine includes the

hardware cost, power consumption, and operating expense.

We compare the TCO of small machines vs. big machines

using the following metrics:

• B: The TCO of a big machine (dual CPUs and 256GB

RAM) is B times that of a small machine (one CPU and

64GB RAM).

796 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

• S: A service needs S number of small machines to re-

place a big machine and achieve the same performance.

• S
B

: Relative TCO (RTCO) of a service running on small

machines vs. on big machines.

Figure 19 shows the RTCO of 22 fleet-wide representative

services. One service has worse than 100% RTCO, seven

use the maximum prescribed 100% RTCO, and a majority of

services are able to achieve a better RTCO.

33%

48%

67%
73% 73% 76% 77% 80% 83%

88%
93% 93% 95% 97% 100%100%100%100%100%100%100%

110%

R
e
la

ti
v

e

T

C
O

Different Services

Figure 19: The relative total cost of ownership of services running on small

machines vs. on big machines. Smaller numbers mean bigger savings.

The first service in Figure 19 achieves a low 33% RTCO

by adopting Shard Manager (§2.7). The service is sharded;

its biggest shard has 20x higher load than its smallest shard

and the load varies. The service’s previous static-sharding

solution did not work well, whereas Shard Manager is able

to balance the load via shard migration. After switching to

small machines, the service better utilizes the overall higher

CPU count of small machines under the same TCO.

The second service achieves a 48% RTCO by moving from

an in-memory data store to an external flash-based database.

Its 48% RTCO includes the cost of the database, which is

only a small part of the total TCO.

The service with 76% RTCO is TAO [7], our social graph

cache. CacheLib [5] provides transparent tiered memory on

top of 64GB RAM and TBs of local flash to replace 256GB

RAM (§2.8). Its 76% RTCO includes the cost of flash.

One outlier service has 110% RTCO, meaning it costs 10%

more to run on small machines. The memory is used to store

certain data indices and ML models that rank the indices.

We are improving the service to target 90% RTCO, e.g., by

leveraging CacheLib [5] to provide tiered memory.

Across all services in our fleet beyond the examples in

Figure 19, we achieved an average 83% RTCO, i.e., 17% fleet-

wide TCO savings. This also includes 18% power savings.

Overall, we have been successful at using small machines.

6 Experience with Shared Infrastructure

As described in §1, Twine has allowed us to grow twshared,

our shared compute pool, from ≈15% in 2019 to ≈56% in

2020. We share our experience with growing twshared.

6.1 Economies of Scale in twshared

Shared infrastructure provides economies of scale by reducing

hardware, development, and operational costs. Examples:

• Capacity buffer consolidation. As services migrated

into twshared, we consolidated siloed buffers for soft-

ware releases, maintenance, fault tolerance, and growth

into centralized buffers, improving utilization by ≈3%.

• Turbo Boost. We aggressively enabled Turbo on proces-

sor cores and relied on ReBalancer to mitigate power

hotspots, improving utilization by ≈2% in 2020.

• Autoscaling. Autoscaling freed up over-provisioned ca-

pacity, reclaiming ≈2% of capacity in 2020.

As shown in Figure 20, as of October 2020, twshared’s

average memory and CPU utilization are ≈40% and ≈30%,

respectively. For comparison, the figure also shows utilization

for private pools, our legacy pools of customized machines

dedicated to individual workloads. We plan to improve utiliza-

tion through multiple approaches, such as the one described

below. Our fleet is dominated by user-facing services that

provision capacity for peak load. Autoscaling frees some of

this over-provisioned capacity during off-peak hours and pro-

vides it as opportunistic capacity for other workloads to use.

Unfortunately, we do not yet provide service-level objectives

(SLOs) on the availability of opportunistic capacity, which

is limiting adoption and usage of all available capacity. As

we establish SLOs for opportunistic capacity, improve stack-

ing, and consolidate capacity buffers, we expect twshared’s

utilization to increase.

Apr May Jun Jul Aug Sep Oct
Month in 2020

0%

10%

20%

30%

40%

50%

%
 U

til
iza

tio
n

twshared memory
twshared CPU

private pool memory
private pool CPU

Figure 20: Daily average CPU and memory utilization of twshared and

private pools circa October 2020.

6.2 Path to Shared Infrastructure

We had broad conversations with colleagues in industry and

learned that while partial consolidation of workloads is com-

mon, no large company has achieved near 100% shared in-

frastructure consolidation. Further, we learned that cultural

challenges are as significant as technical challenges. Below,

we describe our strategy and major milestones towards mi-

grating all non-storage workloads into twshared.

Make Twine capable of supporting a large shared pool.

Scalability, entitlements, host profiles, and TaskControl are

Twine’s important features that enabled workload consolida-

tion. The flexibility offered by host profiles and TaskControl

ensures that twshared can support both 1) the general needs

of thousands of services, and 2) the specialized needs of a

smaller set of services that consume the majority of capacity.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 797

Twshared

(13%)

Private pools

managed by Twine

(65%)

Spare

(8%)

Private pools not

managed by Twine

(14%)

Figure 21: Breakdown of machines in our fleet as of August 2018. Each

small rectangle inside a category represents a private pool, and its size

is proportional to the number of machines in the private pool. There were

hundreds of private pools, many of which were small in size. The percentages

at the top reflect the number of machines in each category relative to all

machines globally. From August 2018 to October 2020, the breakdown

evolved from [8%, 14%, 65%, 13%] to [13%, 5%, 26%, 56%], where the

numbers match the left-to-right categories in the figure.

Publicize the growth and health of twshared. We devel-

oped a tool to show the realtime breakdown of our fleet and

the growth of twshared. A snapshot is shown in Figure 21.

We consolidated the fragmented mechanisms of measuring

machine health into the Health Check Service. Continuous

improvements have resulted in twshared running healthier

than private pools, 99.6% vs. 98.3%.

Set a strong example for others to follow. Early on, we

targeted the web tier, our largest private pool. It directly serves

external users of our company’s products and any outage

would be immediately noticeable. We finished migrating the

web tier into twshared mid-2019. As the web tier team is

highly respected in the company, their testimony motivated

others to follow.

Make migration mandatory. After the web tier migration,

we gained company-wide support for mandatory migration.

Further, we established that all new compute capacity will

land only in twshared. This mandate, along with Twine’s

flexibility of supporting customization through TaskCon-

trol and host profiles, has made twshared our ubiquitous

compute pool.

6.3 Case Study of twshared Migration

PGx is a large product group that runs hundreds of diverse

services on hundreds of thousands of machines. Their services

vary in size from a few machines to tens of thousands, and

in complexity from computationally intensive ML training

to latency-sensitive ad delivery. Previously, their fleet was

fragmented into tens of private pools per region. The first

PGx service migrated into twshared in January 2020; as of

September 2020, more than 70% of PGx machines run in

twshared. Given the size and diversity of their services, we

expect the migration to finish in late 2021.

PGx services use hundreds of twshared entitlements; if a

service runs in multiple regions, it needs one entitlement per

0 100 200 300 400 500 600 700 800
Number of Entitlements for PGx Services

0%
20%
40%
60%
80%

100%

%
 M

ac
hi

ne
s

Figure 22: CDF of PGx entitlement size. The distribution is highly skewed.

The largest 54 entitlements account for 70% of PGx capacity in twshared.

region. Figure 22 shows the size distribution with the biggest

entitlement running ≈2K jobs on ≈15K machines.

Accommodating workload-specific requirements helps on-

board PGx services onto twshared. For instance, many PGx

services run A/B tests in production, e.g., to evaluate the ef-

fectiveness of a new model–these services need to explicitly

configure the processor generation for their tasks to prevent

performance variations between hardware types from pollut-

ing their test results.

The capacity guaranteed by entitlements and private pools

account for 55% of PGx machines. The remaining 45% are

from opportunistic sources including capacity buffers, ma-

chines freed up by autoscaling, and unused portions of other

teams’ entitlements. Optimus is an application-level sched-

uler that runs atop Twine to manage opportunistic capacity.

When opportunistic capacity is not available, some services

gracefully degrade their quality of service.

Jobs with a TaskController consume 36% of PGx capacity

in twshared; in total these jobs use three different TaskCon-

trollers, including the one from Shard Manager [16]. About

95% of PGx capacity is consumed by entitlements that use

some combination of these three host profile settings:

1. If a service does frequent flash writes, it prefers the flash

drive to expose only a fraction of the flash capacity in

order to reduce write amplification and burn rate.

2. If a service can fully utilize a whole machine and does

not stack with other services, we disable the cgroup2

CPU controller to eliminate its overhead.

3. Because our data centers are power constrained and CPU

Turbo consumes extra power, we enable Turbo only for

services that can benefit significantly from Turbo and are

running in selected data centers with sufficient power.

Overall, our experience with PGx indicates that, despite

the significant upfront effort needed for migration, even large

and varied services are motivated to adopt shared infrastruc-

ture that reduces their operational burden. PGx’ success in

using opportunistic capacity at a large scale has spurred us to

develop SLO guarantees and drive broader adoption (§6.1).

Entitlements, TaskControl, and host profiles enable customiza-

tion in a shared pool and were the features that enabled the

migration. On the other hand, PGx services have grown to

hundreds of entitlements within 9 months, motivating us to

address entitlement fragmentation (§7.1).

798 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

7 Lessons Learned

Evolving Twine and growing twshared has taught us several

lessons. We share some highlights and lowlights below.

7.1 Entitlement Fragmentation

We overloaded entitlements with two responsibilities: fleet

partitioning and quota management. Entitlements partition

millions of machines into smaller units that can be effectively

managed by scheduler shards. Twine jobs can only stack

within the same entitlement, implying that an entitlement be

sized at a few thousand machines, similar to a Borg [39] cell.

On the other hand, leveraging entitlements for quota man-

agement results in small entitlements. For example, an impor-

tant service may wish for an entitlement with 10 tasks rather

than a larger entitlement shared with other services to protect

against the risk that a rogue service grows unexpectedly and

uses up the entitlement quota.

We are in the process of splitting an entitlement’s respon-

sibility into two new abstractions: a materialization for fleet

partitioning and a stackable reservation for quota manage-

ment. A materialization functions as a pseudo cluster, has a

host profile associated with it, and is always large enough to

enable job stacking across thousands of machines.

7.2 Controlled Customization

Our goal is ubiquitous shared infrastructure. A difficult les-

son we learned from the first six years of operating twshared

was that customization is key to migrating services over. For

instance, without host profiles, our web tier and memcache ser-

vices would not run in twshared as their performance would

regress by 11% and 10.2% respectively. TaskControl has pro-

vided a path for stateful services such as TAO [7] and MySQL

to deprecate their custom cluster management tooling and

adopt Twine and shared infrastructure.

We prioritize maintainability when deciding what cus-

tomization to permit. Currently, we offer 17 host profiles

and 16 TaskControllers to support thousands of services. Our

recent migration of ≈70% of a large product group’s ser-

vices into twshared (§6.3) leveraged existing host profiles

and TaskControllers.

In hindsight, we permitted some customizations that ap-

peared useful initially, but later became barriers for fleet-wide

optimizations. For example, a job’s tasks are identical by de-

fault, but we provided the ability to customize individual tasks,

including the executables to run, command line options, en-

vironment variables, and restart policies. Developers abused

this customization to implement simple sharding so that each

task does different work. Autoscaling changes the number

of tasks in a job and breaks the job’s task customization. As

we enable autoscaling for all ALM-tracking services, we are

removing task customization and migrating these services to

use Shard Manager [16] instead.

7.3 Supporting Global Services

Many developers wish to run a global service without wor-

rying about operational challenges: which regions to deploy

to, how much capacity is needed in each region, and how

to handle regional failures. We currently operate multiple

global Twine deployments that spread a global job’s tasks

across regions, similar to how a regional Twine deployment

spreads a regional job’s tasks across data centers in a region.

Currently, global jobs account for 8% of all our jobs.

We have learned over time that global Twine deployments

did not provide the right abstraction for managing global ser-

vices. Machines in a region are largely fungible due to the

high network bandwidth and low latency within a region, but

this is not true for machines distributed across regions. Hence,

it is better to explicitly decompose a service’s global capacity

needs into capacity needs for specific regions, as opposed to

global allocators making ad hoc decisions on which regions

to get machines from. We are replacing global Twine de-

ployments with a new Federation system built atop regional

Twine deployments to provide stronger capacity guarantees

and more holistic support for a global-service abstraction.

7.4 Challenges with Small Machines

Our decision to leverage small machines brings with it nu-

merous trade-offs. The effort to rearchitect and reimplement

memory-capacity-bound services was higher than we antic-

ipated. On the other hand, we leveraged this opportunity to

holistically modernize our legacy services, e.g., moving from

static sharding to dynamic sharding for better load balancing.

As small machines run contrary to the industry practice of fa-

voring big machines; we need to work closely with hardware

vendors to optimize machines for our internal workloads, e.g.,

removing unneeded NUMA components.

That said, the 18% power efficiency win (§5.4) from small

machines has been worth the above trade-offs. We intend

to continue using small machines in the coming years, but

are also prepared to evolve our hardware strategy as needed.

Two factors lead to our decision of adopting small machines:

1) our legacy large services were optimized for utilizing en-

tire machines running in private pools, and 2) our stacking

technology needed to mature and improve support for perfor-

mance isolation [42]. As our services undergo architectural

changes to run effectively in twshared, and we improve our

stacking technology, we may revisit our hardware strategy.

8 Related Work

Scalability and scheduling performance. Kubernetes [25]

and Hydra [9] scale out through federation, whereas Twine

scales out through sharding. Figures 13 compares the two

approaches. A large body of work [6, 15, 20, 31] focuses on

improving batch scheduling throughput and latency. Twine

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 799

delegates the handling of short-lived batch jobs to application-

level batch schedulers. This separation of concerns helps

Twine scale, as discussed in §3.2.

Entitlements. Twine has some similarity to the two-level

schedulers (Mesos [17], YARN [37], Apollo [6], and

Fuxi [44]), with Twine entitlements as resource offers and

Twine scheduler shards as Application Masters (or frame-

works in Mesos). However, the bottom-level Resource Man-

ager (or Master in Mesos) is designed for the scale of a single

cluster. In contrast to the single-master two-level architec-

ture, we propose a three-level architecture with sharding so

our design scales out: Resource Broker manages machines,

Twine scheduler manages containers, and Application-level

schedulers manage workloads such as batch and ML.

Kubernetes’ cluster autoscaler [24] can respond to work-

load growth by provisioning VMs in a public cloud and adding

them to a node pool. Kubernetes’ resizable node pool cor-

responds to Twine’s entitlement, and a public cloud’s avail-

able resources correspond to Twine’s shared free machine

pool maintained by Resource Broker. Decoupling Kuber-

netes and cloud makes the setup flexible, but also misses

optimization opportunities compared with Twine’s integrated

ecosystem. Multiple Kubernetes clusters run independently

without coordination, whereas Twine’s ReBalancer performs

global optimization across entitlements, and an entitlement

can be migrated across scheduler shards.

TaskControl. The two-level schedulers (Mesos [17],

YARN [37], Apollo [6], and Fuxi [44]) allow their appli-

cations to provide custom Application Masters. The interface

with Application Masters is for negotiating resource alloca-

tion, e.g., “requesting N containers with X CPU and Y mem-

ory,” whereas the TaskControl API is for negotiating lifecycle

management, e.g., “delaying restarting task T .”

Kubernetes [23]’s custom controllers provide a universal

extension framework that can be used to implement various

custom functions like autoscaling and injecting sidecars for

traffic routing. In contrast, TaskControl exclusively focuses

on allowing or delaying task lifecycle operations. This nar-

row interface strikes a balance between standardization and

customization (§7.2) and prevents proliferation of customiz-

ing all aspects of the Twine control plane. We are unaware

of any Kubernetes custom controller that specifically offers

extension points to allow or delay task lifecycle operations.

Azure supports update domains and fault domains [3] and

the example stateful service in Figure 2 can improve availabil-

ity by spreading its data shards’ replicas across those domains.

However, in the event of a machine failure, Azure may still

proceed with a rolling update that can lead to unavailable

shards because it does not know precisely how the shard repli-

cas are spread across fault domains and update domains.

Host profiles. Paragon [12] schedules a job on machines

that are beneficial to the job’s performance, but it does not

reconfigure a machine.

Some systems statically partition machines in a cluster and

preconfigure their hardware and OS settings to suit different

workloads. Others dynamically adjust predetermined settings

(e.g., Turbo [40]) based on runtime profiling, while disallow-

ing other customizations (e.g., btrfs vs. ext4). We believe

that Twine is the first system that 1) allows workloads to pro-

vide customized hardware and OS settings to run in a shared

machine pool and 2) dynamically reconfigures a machine just-

in-time as the workload is scheduled onto the machine. On

average, Twine reconfigures a machine once every two days,

primarily due to Autoscaling (see Figure 18).

Power-efficient hardware. A large body of work studies

power-efficient computing [1, 10, 27]. Our infrastructure is

unique in 1) using power-efficient small machines as a uni-

versal computing platform, and 2) consolidating towards a

single compute machine type (one CPU and 64GB RAM), as

opposed to offering a variety of high-memory or high-CPU

machine types. Both approaches required our workloads to

make software architectural changes that would be challeng-

ing in a public cloud with external customer workloads.

Overcommitment and autoscaling. Past work overcommits

CPU and memory by colocating batch jobs and online ser-

vices [11, 22, 39, 43]. Twine does not overcommit CPU or

memory by default, although a job owner can explicitly con-

figure their job to do so. On the other hand, we overcommit

power by default [41], as power is our most constrained re-

source. Twine helps mitigate power hotspots by relocating

tasks across data centers. Twine’s SRM uses historical data

to predictably adjust the number of tasks in a job. Borg’s

Autopilot [34] adjusts the CPU and memory allocated to each

task–this is an area of future work for Twine.

9 Conclusion

We identify existing cluster management systems’ limitations

in supporting large-scale shared infrastructure. We describe

our novel solution that allowed us to scale Twine to manage

one million machines in a region, move jobs across phys-

ical clusters, collaborate with applications to manage their

lifecycle, support host customization in a shared pool, use

power-efficient small machines to achieve higher performance

per watt, and employ autoscaling to improve machine utiliza-

tion. We share our experience with twshared and our strategy

towards ubiquitous shared infrastructure.

Acknowledgments

This paper presents the engineering work of several teams

at Facebook that have built Twine and its ecosystem over

the past decade. We thank Niket Agarwal, Marius Eriksen,

Tianyin Xu, Murray Stokely, Seth Hettich, and the OSDI

reviewers for their insightful feedback.

800 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] David G Andersen, Jason Franklin, Michael Kaminsky,

Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan.

FAWN: A Fast Array of Wimpy Nodes. In Proceedings

of the 22nd ACM Symposium on Operating Systems

Principles, 2009.

[2] Alexey Andreyev. Introducing data center fabric, the

next-generation Facebook data center network, 2014.

https://engineering.fb.com/production-eng

ineering/introducing-data-center-fabric-t

he-next-generation-facebook-data-center-n

etwork/.

[3] Azure update domain and fault domain, 2019.

https://docs.microsoft.com/en-us/azure/vi

rtual-machines/availability.

[4] Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mihir

Dharamshi, Ahmed Jafri, Xiao Shi, Santosh Ghosh,

Hazem Hassan, Aaryaman Sagar, Rhed Shi, Jingming

Liu, Filip Gruszczynski, Xianan Zhang, Huy Hoang,

Ahmed Yossef, Francois Richard, and Yee Jiun Song.

Virtual Consensus in Delos. In Proceedings of the 14th

USENIX Symposium on Operating Systems Design and

Implementation, 2020.

[5] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac

Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar,

Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, and

Gregory R. Ganger. The CacheLib Caching Engine:

Design and Experiences at Scale. In Proceedings of the

14th USENIX Symposium on Operating Systems Design

and Implementation, 2020.

[6] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jin-

gren Zhou, Zhengping Qian, Ming Wu, and Lidong

Zhou. Apollo: Scalable and Coordinated Scheduling

for Cloud-Scale Computing. In Proceedings of the 11th

USENIX Symposium on Operating Systems Design and

Implementation, 2014.

[7] Nathan Bronson, Zach Amsden, George Cabrera, Prasad

Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony

Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov,

Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat

Venkataramani. TAO: Facebook’s Distributed Data

Store for the Social Graph. In Proceedings of the 2013

USENIX Annual Technical Conference, 2013.

[8] Christopher Bunn. Containerizing ZooKeeper with

Twine: Powering container orchestration from within,

2020. Facebook blog post. https://engineering.

fb.com/developer-tools/zookeeper-twine/.

[9] Carlo Curino, Subru Krishnan, Konstantinos Karana-

sos, Sriram Rao, Giovanni M. Fumarola, Botong

Huang, Kishore Chaliparambil, Arun Suresh, Young

Chen, Solom Heddaya, Roni Burd, Sarvesh Sakalanaga,

Chris Douglas, Bill Ramsey, and Raghu Ramakrishnan.

Hydra: a federated resource manager for data-center

scale analytics. In Proceedings of the 16th USENIX

Symposium on Networked Systems Design and Imple-

mentation, 2019.

[10] Adrian M. Caulfield, Laura M. Grupp, and Steven

Swanson. Gordon: Using Flash Memory to Build Fast,

Power-efficient Clusters for Data-Intensive Applications.

In Proceedings of the 14th International Conference on

Architectural Support for Programming Languages and

Operating Systems, 2009.

[11] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark

Russinovich, Marcus Fontoura, and Ricardo Bianchini.

Resource Central: Understanding and Predicting Work-

loads for Improved Resource Management in Large

Cloud Platforms. In Proceedings of the 26th ACM

Symposium on Operating Systems Principles, 2017.

[12] Christina Delimitrou and Christos Kozyrakis. Paragon:

QoS-Aware Scheduling for Heterogeneous Datacenters.

In Proceedings of the 18th International Conference on

Architectural Support for Programming Languages and

Operating Systems, 2013.

[13] Jeffrey Dunn. Introducing FBLearner Flow: Facebook’s

AI backbone, 2016. https://engineering.fb.com

/ml-applications/introducing-fblearner-flo

w-facebook-s-ai-backbone/.

[14] João Ferreira, Naader Hasani, Sreedhevi Sankar, Jimmy

Williams, and Nina Schiff. Fabric Aggregator: A

flexible solution to our traffic demand, 2014. Facebook

blog post. https://engineering.fb.com/data-c

enter-engineering/fabric-aggregator-a-fle

xible-solution-to-our-traffic-demand/.

[15] Ionel Gog, Malte Schwarzkopf, Adam Gleave,

Robert N.M. Watson, and Steven Hand. Firmament:

Fast, Centralized Cluster Scheduling at Scale. In Pro-

ceedings of the 12th USENIX Symposium on Operating

Systems Design and Implementation, 2016.

[16] Gerald Guo and Thawan Kooburat. Scaling services

with Shard Manager, 2020. Facebook blog post. http

s://engineering.fb.com/production-enginee

ring/scaling-services-with-shard-manager/.

[17] Benjamin Hindman, Andy Konwinski, Matei Zaharia,

Ali Ghodsi, Anthony D Joseph, Randy H Katz, Scott

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 801

https://engineering.fb.com/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://docs.microsoft.com/en-us/azure/virtual-machines/availability
https://docs.microsoft.com/en-us/azure/virtual-machines/availability
https://docs.microsoft.com/en-us/azure/virtual-machines/availability
https://engineering.fb.com/developer-tools/zookeeper-twine/
https://engineering.fb.com/developer-tools/zookeeper-twine/
https://engineering.fb.com/ml-applications/introducing-fblearner-flow-facebook-s-ai-backbone/
https://engineering.fb.com/ml-applications/introducing-fblearner-flow-facebook-s-ai-backbone/
https://engineering.fb.com/ml-applications/introducing-fblearner-flow-facebook-s-ai-backbone/
https://engineering.fb.com/data-center-engineering/fabric-aggregator-a-flexible-solution-to-our-traffic-demand/
https://engineering.fb.com/data-center-engineering/fabric-aggregator-a-flexible-solution-to-our-traffic-demand/
https://engineering.fb.com/data-center-engineering/fabric-aggregator-a-flexible-solution-to-our-traffic-demand/
https://engineering.fb.com/production-engineering/scaling-services-with-shard-manager/
https://engineering.fb.com/production-engineering/scaling-services-with-shard-manager/
https://engineering.fb.com/production-engineering/scaling-services-with-shard-manager/

Shenker, and Ion Stoica. Mesos: A Platform for Fine-

Grained Resource Sharing in the Data Center . In Pro-

ceedings of the 8th USENIX Symposium on Networked

Systems Design and Implementation, 2011.

[18] Qi Huang, Petchean Ang, Peter Knowles, Tomasz

Nykiel, Iaroslav Tverdokhlib, Amit Yajurvedi,

Paul Dapolito IV, Xifan Yan, Maxim Bykov, Chuen

Liang, Mohit Talwar, Abhishek Mathur, Sachin

Kulkarni, Matthew Burke, and Wyatt Lloyd. SVE:

Distributed Video Processing at Facebook Scale. In

Proceedings of the 26th Symposium on Operating

Systems Principles, 2017.

[19] Mike Isaac and Sheera Frenkel. Facebook

Is ‘Just Trying to Keep the Lights On’ as Traf-

fic Soars in Pandemic. The New York Times,

2020. https://www.nytimes.com/2020/03/24/te

chnology/virus-facebook-usage-traffic.html.

[20] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi

Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:

Fair Scheduling for Distributed Computing Clusters. In

Proceedings of the 22nd ACM Symposium on Operating

Systems Principles, 2009.

[21] Rui Jian and Hao Lin. Tangram: Distributed Scheduling

Framework for Apache Spark at Facebook, 2019.

https://databricks.com/session/tangram-dis

tributed-scheduling-framework-for-apache-s

park-at-facebook.

[22] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,

Shravan Matthur Narayanamurthy, Alexey Tumanov,

Jonathan Yaniv, Ruslan Mavlyutov, Íñigo Goiri, Subru

Krishnan, Janardhan Kulkarni, and Sriram Rao. Mor-

pheus: Towards Automated SLOs for Enterprise Clus-

ters. In Proceedings of the 12th USENIX Symposium on

Operating Systems Design and Implementation, 2016.

[23] Kubernetes, 2020. https://kubernetes.io/.

[24] Kubernetes cluster autoscaler, 2020.

https://github.com/kubernetes/autoscaler

/tree/master/cluster-autoscaler.

[25] Kubernetes Federation, 2020. https:

//github.com/kubernetes/community/tree/m

aster/sig-multicluster.

[26] Shaohong Li, Xi Wang, Xiao Zhang, Vasileios Kon-

torinis, Sree Kodakara, David Lo, and Partha Ran-

ganathan. Thunderbolt: Throughput-Optimized,

Quality-of-Service-Aware Power Capping at Scale. In

Proceedings of the 14th USENIX Symposium on Oper-

ating Systems Design and Implementation, 2020.

[27] Toni Mastelic, Ariel Oleksiak, Holger Claussen, Ivona

Brandic, Jean-Marc Pierson, and Athanasios V Vasi-

lakos. Cloud Computing: Survey on Energy Efficiency.

Acm computing surveys (csur), 47(2):1–36, 2014.

[28] Yuan Mei, Luwei Cheng, Vanish Talwar, Michael Y.

Levin, Gabriela Jacques-Silva, Nikhil Simha, Anirban

Banerjee, Brian Smith, Tim Williamson, Serhat Yilmaz,

Weitao Chen, and Guoqiang Jerry Chen. Turbine: Face-

book’s Service Management Platformfor Stream Pro-

cessing. In Proceedings of the 36th IEEE International

Conference on Data Engineering, 2020.

[29] Aravind Narayanan, Elisa Shibley, and Mayank Pundir.

Fault tolerance through optimal workload placement,

2020. Facebook blog post. https://engineering.

fb.com/data-center-engineering/fault-toler

ance-through-optimal-workload-placement/.

[30] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc

Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,

Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,

Tony Tung, and Venkateshwaran Venkataramani. Scal-

ing Memcache at Facebook. In Proceedings of the 10th

USENIX Symposium on Networked Systems Design and

Implementation, 2013.

[31] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and

Ion Stoica. Sparrow: Distributed, Low Latency Schedul-

ing. In Proceedings of the 24th ACM Symposium on

Operating Systems Principles, 2013.

[32] Vijay Rao and Edwin Smith. Facebook’s new server

design delivers on performance without sucking up

power, 2016. https://engineering.fb.com/dat

a-center-engineering/facebook-s-new-front

-end-server-design-delivers-on-performance

-without-sucking-up-power/.

[33] Roman Gushchin. Hugetlb: optionally allocate gigantic

hugepages using cma, 2020. https://lkml.org/l

kml/2020/3/9/1135.

[34] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski,

Przemyslaw Zych, Przemyslaw Broniek, Jarek Kus-

mierek, Pawel Nowak, Beata Strack, Piotr Witusowski,

Steven Hand, and John Wilkes. Autopilot: workload

autoscaling at Google. In Proceedings of the 15th ACM

European Conference on Computer Systems, 2020.

[35] Chunqiang Tang, Thawan Kooburat, Pradeep Venkat-

achalam, Akshay Chander, Zhe Wen, Aravind

Narayanan, Patrick Dowell, and Robert Karl. Holistic

Configuration Management at Facebook. In Proceed-

ings of the 25nd ACM Symposium on Operating Systems

Principles, 2015.

802 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.nytimes.com/2020/03/24/technology/virus-facebook-usage-traffic.html
https://www.nytimes.com/2020/03/24/technology/virus-facebook-usage-traffic.html
https://databricks.com/session/tangram-distributed-scheduling-framework-for-apache-spark-at-facebook
https://databricks.com/session/tangram-distributed-scheduling-framework-for-apache-spark-at-facebook
https://databricks.com/session/tangram-distributed-scheduling-framework-for-apache-spark-at-facebook
https://databricks.com/session/tangram-distributed-scheduling-framework-for-apache-spark-at-facebook
https://kubernetes.io/
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/community/tree/master/sig-multicluster
https://github.com/kubernetes/community/tree/master/sig-multicluster
https://github.com/kubernetes/community/tree/master/sig-multicluster
https://engineering.fb.com/data-center-engineering/fault-tolerance-through-optimal-workload-placement/
https://engineering.fb.com/data-center-engineering/fault-tolerance-through-optimal-workload-placement/
https://engineering.fb.com/data-center-engineering/fault-tolerance-through-optimal-workload-placement/
https://engineering.fb.com/data-center-engineering/facebook-s-new-front-end-server-design-delivers-on-performance-without-sucking-up-power/
https://engineering.fb.com/data-center-engineering/facebook-s-new-front-end-server-design-delivers-on-performance-without-sucking-up-power/
https://engineering.fb.com/data-center-engineering/facebook-s-new-front-end-server-design-delivers-on-performance-without-sucking-up-power/
https://engineering.fb.com/data-center-engineering/facebook-s-new-front-end-server-design-delivers-on-performance-without-sucking-up-power/
https://lkml.org/lkml/2020/3/9/1135
https://lkml.org/lkml/2020/3/9/1135

[36] Muhammad Tirmazi, Adam Barker, Nan Deng, Md Eht-

esam Haque, Zhijing Gene Qin, Steven Hand, Mor

Harchol-Balter, and John Wilkes. Borg: the Next Gen-

eration. In Proceedings of the 15th ACM European

Conference on Computer Systems, 2020.

[37] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Dou-

glas, Sharad Agarwal, Mahadev Konar, Robert Evans,

Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth

Seth, et al. Apache Hadoop YARN: Yet Another Re-

source Negotiator. In Proceedings of the 4th annual

Symposium on Cloud Computing, 2013.

[38] Kaushik Veeraraghavan, Justin Meza, Scott Michel-

son, Sankaralingam Panneerselvam, Alex Gyori, David

Chou, Sonia Margulis, Daniel Obenshain, Shruti Pad-

manabha, Ashish Shah, et al. Maelstrom: Mitigating

Datacenter-level Disasters by Draining Interdependent

Traffic Safely and Efficiently. In Proceedings of the

13th USENIX Symposium on Operating Systems Design

and Implementation, 2018.

[39] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,

David Oppenheimer, Eric Tune, and John Wilkes. Large-

scale cluster management at Google with Borg. In

Proceedings of the 10th ACM European Conference on

Computer Systems, 2015.

[40] Jons-Tobias Wamhoff, Stephan Diestelhorst, Christof

Fetzer, Patrick Marlier, Pascal Felber, and Dave Dice.

The TURBO Diaries: Application-controlled Frequency

Scaling Explained. In Proceedings of the 2014 USENIX

Annual Technical Conference, 2014.

[41] Qiang Wu, Qingyuan Deng, Lakshmi Ganesh, Chang-

Hong Hsu, Yun Jin, Sanjeev Kumar, Bin Li, Justin Meza,

and Yee Jiun Song. Dynamo: Facebook’s Data Center-

Wide Power Management System. ACM SIGARCH

Computer Architecture News, 44(3), 2016.

[42] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jna-

gal, Vrigo Gokhale, and John Wilkes. CPI2: CPU

performance isolation for shared compute clusters. In

Proceedings of the 8th ACM European Conference on

Computer Systems, 2013.

[43] Yunqi Zhang, George Prekas, Giovanni Matteo Fu-

marola, Marcus Fontoura, Íñigo Goiri, and Ricardo

Bianchini. History-Based Harvesting of Spare Cycles

and Storage in Large-Scale Datacenters. In Proceedings

of the 12th USENIX Symposium on Operating Systems

Design and Implementation, 2016.

[44] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong

Tang, and Jie Xu. Fuxi: a Fault-Tolerant Resource Man-

agement and Job Scheduling System at Internet Scale.

Proceedings of the VLDB Endowment, 7(13):1393–

1404, 2014.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 803

FIRM: An Intelligent Fine-Grained Resource Management Framework

for SLO-Oriented Microservices

Haoran Qiu1 Subho S. Banerjee1 Saurabh Jha1 Zbigniew T. Kalbarczyk2

Ravishankar K. Iyer1,2

1Department of Computer Science 2Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

Abstract
User-facing latency-sensitive web services include numerous

distributed, intercommunicating microservices that promise

to simplify software development and operation. However,

multiplexing of compute resources across microservices is

still challenging in production because contention for shared

resources can cause latency spikes that violate the service-

level objectives (SLOs) of user requests. This paper presents

FIRM, an intelligent fine-grained resource management frame-

work for predictable sharing of resources across microser-

vices to drive up overall utilization. FIRM leverages online

telemetry data and machine-learning methods to adaptively

(a) detect/localize microservices that cause SLO violations,

(b) identify low-level resources in contention, and (c) take ac-

tions to mitigate SLO violations via dynamic reprovisioning.

Experiments across four microservice benchmarks demon-

strate that FIRM reduces SLO violations by up to 16× while

reducing the overall requested CPU limit by up to 62%. More-

over, FIRM improves performance predictability by reducing

tail latencies by up to 11×.

1 Introduction

User-facing latency-sensitive web services, like those at Net-

flix [68], Google [77], and Amazon [89], are increasingly

built as microservices that execute on shared/multi-tenant

compute resources either as virtual machines (VMs) or as

containers (with containers gaining significant popularity of

late). These microservices must handle diverse load char-

acteristics while efficiently multiplexing shared resources

in order to maintain service-level objectives (SLOs) like

end-to-end latency. SLO violations occur when one or more

“critical” microservice instances (defined in §2) experience

load spikes (due to diurnal or unpredictable workload pat-

terns) or shared-resource contention, both of which lead to

longer than expected times to process requests, i.e., latency

spikes [4,11,22,30,35,44,53,69,98,99]. Thus, it is critical to

efficiently multiplex shared resources among microservices

to reduce SLO violations.

0 50 100 150 200 250 300

Time (s)

400

800

99
%
ile

L
at
en
cy

(m
s)

0

200

400

C
P
U
U
ti
l

(%
)

50
100
150

P
er
-c
or
e

D
R
A
M

A
cc
es
s with FIRM without FIRM

Figure 1: Latency spikes on microservices due to low-level

resource contention.

Traditional approaches (e.g., overprovisioning [36, 87], re-

current provisioning [54,66], and autoscaling [39,56,65,81,84,

88,127]) reduce SLO violations by allocating more CPUs and

memory to microservice instances by using performance mod-

els, handcrafted heuristics (i.e., static policies), or machine-

learning algorithms.

Unfortunately, these approaches suffer from two main prob-

lems. First, they fail to efficiently multiplex resources, such as

caches, memory, I/O channels, and network links, at fine gran-

ularity, and thus may not reduce SLO violations. For example,

in Fig. 1, the Kubernetes container-orchestration system [20]

is unable to reduce the tail latency spikes arising from con-

tention for a shared resource like memory bandwidth, as its

autoscaling algorithms were built using heuristics that only

monitor CPU utilization, which does not change much dur-

ing the latency spike. Second, significant human-effort and

training are needed to build high-fidelity performance models

(and related scheduling heuristics) of large-scale microservice

deployments (e.g., queuing systems [27, 39]) that can capture

low-level resource contention. Further, frequent microservice

updates and migrations can lead to recurring human-expert-

driven engineering effort for model reconstruction.

FIRM Framework. This paper addresses the above prob-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 805

lems by presenting FIRM, a multilevel machine learning (ML)

based resource management (RM) framework to manage

shared resources among microservices at finer granularity

to reduce resource contention and thus increase performance

isolation and resource utilization. As shown in Fig. 1, FIRM

performs better than a default Kubernetes autoscaler because

FIRM adaptively scales up the microservice (by adding local

cores) to increase the aggregate memory bandwidth alloca-

tion, thereby effectively maintaining the per-core allocation.

FIRM leverages online telemetry data (such as request-tracing

data and hardware counters) to capture the system state, and

ML models for resource contention estimation and mitigation.

Online telemetry data and ML models enable FIRM to adapt

to workload changes and alleviate the need for brittle, hand-

crafted heuristics. In particular, FIRM uses the following ML

models:

• Support vector machine (SVM) driven detection and lo-

calization of SLO violations to individual microservice

instances. FIRM first identifies the “critical paths,” and

then uses per-critical-path and per-microservice-instance

performance variability metrics (e.g., sojourn time [1]) to

output a binary decision on whether or not a microservice

instance is responsible for SLO violations.

• Reinforcement learning (RL) driven mitigation of SLO vio-

lations that reduces contention on shared resources. FIRM

then uses resource utilization, workload characteristics, and

performance metrics to make dynamic reprovisioning deci-

sions, which include (a) increasing or reducing the partition

portion or limit for a resource type, (b) scaling up/down,

i.e., adding or reducing the amount of resources attached to

a container, and (c) scaling out/in, i.e., scaling the number

of replicas for services. By continuing to learn mitigation

policies through reinforcement, FIRM can optimize for

dynamic workload-specific characteristics.

Online Training for FIRM. We developed a performance

anomaly injection framework that can artificially create re-

source scarcity situations in order to both train and assess the

proposed framework. The injector is capable of injecting re-

source contention problems at a fine granularity (such as last-

level cache and network devices) to trigger SLO violations.

To enable rapid (re)training of the proposed system as the un-

derlying systems [67] and workloads [40,42,96,98] change in

datacenter environments, FIRM uses transfer learning. That

is, FIRM leverages transfer learning to train microservice-

specific RL agents based on previous RL experience.

Contributions. To the best of our knowledge, this is the

first work to provide an SLO violation mitigation framework

for microservices by using fine-grained resource management

in an application-architecture-agnostic way with multilevel

ML models. Our main contributions are:

1. SVM-based SLO Violation Localization: We present (in

§3.2 and §3.3) an efficient way of localizing the microser-

vice instances responsible for SLO violations by extracting

critical paths and detecting anomaly instances in near-real

time using telemetry data.

2. RL-based SLO Violation Mitigation: We present (in §3.4)

an RL-based resource contention mitigation mechanism

that (a) addresses the large state space problem and (b)

is capable of tuning tailored RL agents for individual mi-

croservice instances by using transfer learning.

3. Online Training & Performance Anomaly Injection: We

propose (in §3.6) a comprehensive performance anomaly

injection framework to artificially create resource con-

tention situations, thereby generating the ground-truth data

required for training the aforementioned ML models.

4. Implementation & Evaluation: We provide an open-source

implementation of FIRM for the Kubernetes container-

orchestration system [20]. We demonstrate and vali-

date this implementation on four real-world microservice

benchmarks [34, 116] (in §4).

Results. FIRM significantly outperforms state-of-the-art

RM frameworks like Kubernetes autoscaling [20, 55] and

additive increase multiplicative decrease (AIMD) based meth-

ods [38, 101].

• It reduces overall SLO violations by up to 16× compared

with Kubernetes autoscaling, and 9× compared with the

AIMD-based method, while reducing the overall requested

CPU by as much as 62%.

• It outperforms the AIMD-based method by up to 9× and

Kubernetes autoscaling by up to 30× in terms of the time

to mitigate SLO violations.

• It improves overall performance predictability by reducing

the average tail latencies up to 11×.

• It successfully localizes SLO violation root-cause microser-

vice instances with 93% accuracy on average.

FIRM mitigates SLO violations without overprovisioning

because of two main features. First, it models the dependency

between low-level resources and application performance in

an RL-based feedback loop to deal with uncertainty and noisy

measurements. Second, it takes a two-level approach in which

the online critical path analysis and the SVM model filter

only those microservices that need to be considered to miti-

gate SLO violations, thus making the framework application-

architecture-agnostic as well as enabling the RL agent to be

trained faster.

2 Background & Characterization

The advent of microservices has led to the development and

deployment of many web services that are composed of “mi-

cro,” loosely coupled, intercommunicating services, instead

of large, monolithic designs. This increased popularity of

service-oriented architectures (SOA) of web services has been

made possible by the rise of containerization [21, 70, 92, 108]

and container-orchestration frameworks [19, 20, 90, 119] that

enable modular, low-overhead, low-cost, elastic, and high-

efficiency development and production deployment of SOA

microservices [8,9,33,34,46,68,77,89,104]. A deployment of

806 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Nginx (N)

video (V)

text (T)

writeTimeline

composePost (C)

followUser

recommender

uniqueID

urlShorten

video

image

text

userTag

favorite

search

readPost blockedUser

ads

login

composePost

index0

index1

indexn

postStorage

writeTimeline

writeGraph

memcached

mongoDB

memcached

mongoDB

memcached

mongoDB

userInfo

readTimeline

memcached

mongoDB

memcached

mongoDB

...

Nginx

Client Request

(b) Execution History Graph(a) Service Dependency Graph

N

V

U I

T

W

C

CP3

CP2CP1 Requests

in Sequential

Requests

in Parallel

memcached mongoDB

Non-User-Facing

Timeline
Service Response

s s s sr r r r

r s r s

r s

s

ss

s

s

s s

r

r

r

r

r

r

r

r

r s

s

userTag (U)

uniqueID (I)

(W: run in background)

s Send r Receive Anomaly

Figure 2: Microservices overview: (a) Service dependency graph of Social Network from the DeathStarBench [34] benchmark;

(b) Execution history graph of a post-compose request in the same microservice.

400 500 600 700

Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D
F

Max-CP

Min-CP

(a) Social network service.

600 800 1000

Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D
F

Max-CP

Min-CP

(b) Media service.

300 400 500 600

Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D
F

Max-CP

Min-CP

(c) Hotel reservation service.

400 600

Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D
F

Max-CP

Min-CP

(d) Train-ticket booking service.

Figure 3: Distributions of end-to-end latencies of different microservices in the DeathStarBench [34] and Train-Ticket [116]

benchmarks. Dashed and solid lines correspond to the minimum and maximum critical path latencies on serving a request.

such microservices can be visualized as a service dependency

graph or an execution history graph. The performance of a

user request, i.e., its end-to-end latency, is determined by the

critical path of its execution history graph.

Definition 2.1. A service dependency graph captures

communication-based dependencies (the edges of the graph)

between microservice instances (the vertices of the graph),

such as remote procedure calls (RPCs). It tells how requests

are flowing among microservices by following parent-child

relationship chains. Fig. 2(a) shows the service dependency

graph of the Social Network microservice benchmark [34].

Each user request traverses a subset of vertices in the graph.

For example, in Fig. 2(a), post-compose requests traverse

only those microservices highlighted in darker yellow.

Definition 2.2. An execution history graph is the space-

time diagram of the distributed execution of a user request,

where a vertex is one of send_req, recv_req, and compute,

and edges represent the RPC invocations corresponding to

send_req and recv_req. The graph is constructed using the

global view of execution provided by distributed tracing of

all involved microservices. For example, Fig. 2(b) shows the

execution history graph for the user request in Fig. 2(a).

Definition 2.3. The critical path (CP) to a microservice m

in the execution history graph of a request is the path of

maximal duration that starts with the client request and ends

with m [64, 125]. When we mention CP alone without the

target microservice m, it means the critical path of the “Service

Response” to the client (see Fig. 2(b)), i.e., end-to-end latency.

To understand SLO violation characteristics and study

the relationship between runtime performance and the un-

derlying resource contention, we have run extensive perfor-

mance anomaly injection experiments on widely used mi-

croservice benchmarks (i.e. DeathStarBench [34] and Train-

Ticket [116]) and collected around 2 TB of raw tracing data

(over 4.1×107 traces). Our key insights are as follows.

Insight 1: Dynamic Behavior of CPs. In microservices,

the latency of the CP limits the overall latency of a user request

in a microservice. However, CPs do not remain static over

the execution of requests in microservices, but rather change

dynamically based on the performance of individual service

instances because of underlying shared-resource contention

and their sensitivity to this interference. Though other causes

may also lead to CP evolution at real-time (e.g., distributed

rate limiting [86], and cacheability of requested data [2]),

it can still be used as an efficient manifestation of resource

interference.

For example, in Fig. 2(b), we show the existence of three

different CPs (i.e., CP1–CP3) depending on which microser-

vice (i.e., V , U , T) encounters resource contention. We ar-

tificially create resource contention by using performance

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 807

Table 1: CP changes in Fig. 2(b) under performance anomaly

injection. Each case is represented by a <service,CP> pair.

N, V , U , I, T , and C are microservices from Fig. 2.

Case
Average Individual Latency (ms)

Total (ms)
N V U I T C

<V,CP1> 13 603 166 33 71 68 614 ± 106

<U,CP2> 14 237 537 39 62 89 580 ± 113

<T,CP3> 13 243 180 35 414 80 507 ± 75

40 60 80 100

Individual Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D
F

Text

Compose

100 125 150

Total Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D
F Before

Text

Compose

Figure 4: Improvement of end-to-end latency by scaling

“highest-variance” and “highest-median” microservices.

anomaly injections.1 Table 1 lists the changes observed in the

latencies of individual microservices, as well as end-to-end la-

tency. We observe as much as 1.2–2× variation in end-to-end

latency across the three CPs. Such dynamic behavior exists

across all our benchmark microservices. Fig. 3 illustrates the

latency distributions of CPs with minimum and maximum

latency in each microservice benchmark, where we observe

as much as 1.6× difference in median latency and 2.5× dif-

ference in 99th percentile tail latency across these CPs.

Recent approaches (e.g., [3,47]) have explored static identi-

fication of CPs based on historic data (profiling) and have built

heuristics (e.g., application placement, level of parallelism)

to enable autoscaling to minimize CP latency. However, our

experiment shows that this by itself is not sufficient. The re-

quirement is to adaptively capture changes in the CPs, in

addition to changing resource allocations to microservice

instances on the identified CPs to mitigate tail latency spikes.

Insight 2: Microservices with Larger Latency Are Not

Necessarily Root Causes of SLO Violations. It is impor-

tant to find the microservices responsible for SLO violations

to mitigate them. While it is clear that such microservices

will always lie on the CP, it is less clear which individual

service on the CP is the culprit. A common heuristic is to

pick the one with the highest latency. However, we find that

that rarely leads to the optimal solution. Consider Fig. 4. The

left side shows the CDF of the latencies of two services (i.e.,

composePost and text) on the CP of the post-compose re-

quest in the Social Network benchmark. The composePost

service has a higher median/mean latency while the text ser-

vice has a higher variance. Now, although the composePost

1Performance anomaly injections (§3.6) are used to trigger SLO vio-

lations by generating fine-grained resource contention with configurable

resource types, intensity, duration, timing, and patterns, which helps with

both our characterization (§2) and ML model training (§3.4).

250 500 750 1000 1250 1500 1750 2000 2250

Load (# requests/s)

104

106

108

104

106

108

Scale Up Scale Out CPU Memory

E
n
d
-t
o-
E
n
d
L
at
en
cy

(u
s)

Figure 5: Dynamic behavior of mitigation strategies: Social

Network (top); Train-Ticket Booking (bottom). Error bars

show 95% confidence intervals on median latencies.

service contributes a larger portion of the total latency, it

does not benefit from scaling (i.e., getting more resources),

as it does not have resource contention. That phenomenon is

shown on the right side of Fig. 4, which shows the end-to-

end latency for the original configuration (labeled “Before”)

and after the two microservices were scaled from a single to

two containers each (labeled “Text” and “Compose”). Hence,

scaling microservices with higher variances provides better

performance gain.

Insight 3: Mitigation Policies Vary with User Load and

Resource in Contention. The only way to mitigate the ef-

fects of dynamically changing CPs, which in turn cause dy-

namically changing latencies and tail behaviors, is to effi-

ciently identify microservice instances on the CP that are

resource-starved or contending for resources and then provide

them with more of the resources. Two common ways of doing

so are (a) to scale out by spinning up a new instance of the

container on another node of the compute cluster, or (b) to

scale up by providing more resources to the container via

either explicitly partitioning resources (e.g., in the case of

memory bandwidth or last-level cache) or granting more re-

sources to an already deployed container of the microservice

(e.g., in the case of CPU cores).

As described before, recent approaches [23, 38, 39, 56, 65,

84, 94, 101, 127]) address the problem by building static poli-

cies (e.g., AIMD for controlling resource limits [38, 101],

and rule/heuristics-based scaling relying on profiling of his-

toric data about a workload [23, 94]), or modeling perfor-

mance [39, 56]. However, we found in our experiments with

the four microservice benchmarks that such static policies

are not well-suited for dealing with latency-critical workloads

because the optimal policy must incorporate dynamic contex-

tual information. That is, information about the type of user

requests, and load (in requests per second), as well as the crit-

ical resource bottlenecks (i.e, the resource being contended

for), must be jointly analyzed to make optimal decisions. For

example, in Fig. 5 (top), we observe that the trade-off between

808 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

scale-up and scale-out changes based not only on the user load

but also on the resource type. At 500 req/s, scale-up has a bet-

ter payoff (i.e, lower latency) than scale-out for both memory-

and CPU-bound workloads. However, at 1500 req/s, scale-out

dominates for CPU, and scale-up dominates for memory. This

behavior is also application-dependent because the trade-off

curve inflection points change across applications, as illus-

trated in Fig. 5 (bottom).

3 The FIRM Framework

In this section, we describe the overall architecture of the

FIRM framework and its implementation.

1. Based on the insight that resource contention manifests as

dynamically evolving CPs, FIRM first detects CP changes

and extracts critical microservice instances from them. It

does so using the Tracing Coordinator, which is marked

as 1 in Fig. 6.2 The tracing coordinator collects tracing

and telemetry data from every microservice instance and

stores them in a centralized graph database for processing.

It is described in §3.1.

2. The Extractor detects SLO violations and queries the Trac-

ing Coordinator with collected real-time data (a) to extract

CPs (marked as 2 and described in §3.2) and (b) to local-

ize critical microservice instances that are likely causes of

SLO violations (marked as 3 and described in §3.3).

3. Using the telemetry data collected in 1 and the critical in-

stances identified in 3 , FIRM makes mitigation decisions

to scale and reprovision resources for the critical instances

(marked as 4). The policy used to make such decisions

is automatically generated using RL. The RL agent jointly

analyzes contextual information about resource utilization

(i.e., low-level performance counter data collected from

the CPU, LLC, memory, I/O, and network), performance

metrics (i.e, per-microservice and end-to-end latency distri-

butions), and workload characteristics (i.e., request arrival

rate and composition) and makes mitigation decisions. The

RL model and setup are described in §3.4.

4. Finally, actions are validated and executed on the under-

lying Kubernetes cluster through the deployment module

(marked as 5 and described in §3.5).

5. In order to train the ML models in the Extractor as well

as the RL agent (i.e., to span the exploration-exploitation

trade-off space), FIRM includes a performance anomaly

injection framework that triggers SLO violations by gener-

ating resource contention with configurable intensity and

timing. This is marked as 6 and described in §3.6.

3.1 Tracing Coordinator

Distributed tracing is a method used to profile and monitor

microservice-based applications to pinpoint causes of poor

2Unless otherwise specified, * refers to annotations in Fig. 6.

Microservices Deployment & Service Dependency Graph

Nginx

PHP-FPMLoad

Balancer

Tracing Module

Microservice

Instance

Replica Set

 P
e
rfo

rm
a
n
c
e
-A

n
o
m

a
ly

 In
je

c
to

r

Extractor Critical Paths (Algo. 1)

Critical Instances
(Algo. 2)

Execution

History Graph
Telemetry

Data
RL-based
Resource

Estimator

R
e
a
llo

c
a
tio

n
 A

c
tio

n
s

Performance

Counters

Candidates
4

2

6

Tracing

Coordinator

(Sec §3.1)

1

 Deployment Module5

(Sec §3.4)(Sec §3.2
§3.3)

cr i t i cal Component ()

l ongest Pat h()CPs

3

CPU LLC Memory

Network I/O Replicas

Controlled Resources

Figure 6: FIRM architecture overview.

performance [111–115]. A trace captures the work done by

each service along request execution paths, i.e., it follows the

execution “route” of a request across microservice instances

and records time, local profiling information, and RPC calls

(e.g., source and destination services). The execution paths

are combined to form the execution history graph (see §2).

The time spent by a single request in a microservice instance

is called its span. The span is calculated based on the time

when a request arrives at a microservice and when its response

is sent back to the caller. Each span is the most basic single

unit of work done by a microservice.

The FIRM tracing module’s design is heavily inspired

by Dapper [95] and its open-source implementations, e.g.,

Jaeger [112] and Zipkin [115]. Each microservice instance is

coupled with an OpenTracing-compliant [75] tracing agent

that measures spans. As a result, any new OpenTracing-

compliant microservice can be integrated naturally into the

FIRM tracing architecture. The Tracing Coordinator, i.e., 1 ,

is a stateless, replicable data-processing component that col-

lects the spans of different requests from each tracing agent,

combines them, and stores them in a graph database [72]

as the execution history graph. The graph database allows

us to easily store complex caller-callee relationships among

microservices depending on request types, as well as to effi-

ciently query the graph for critical path/component extraction

(see §3.2 and §3.3). Distributed clock drift and time shifting

are handled using the Jaeger framework. In addition, the Trac-

ing Coordinator collects telemetry data from the systems run-

ning the microservices. The data collected in our experiments

is listed in Table 2. The distributed tracing and telemetry col-

lection overhead is indiscernible, i.e., we observed a <0.4%

loss in throughput and a <0.15% loss in latency. FIRM had a

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 809

Table 2: Collected telemetry data and sources.

cAdvisor [13] & Prometheus [82]

cpu_usage_seconds_total, memory_usage_bytes,

fs_write/read_seconds, fs_usage_bytes,

network_transmit/receive_bytes_total, processes

Linux perf subsystem [79]

offcore_response.*.llc_hit/miss.local_DRAM,

offcore_response.*.llc_hit/miss.remote_DRAM

maximum CPU overhead of 4.6% for all loads running in our

experiments on the four benchmarks [34, 116]. With FIRM,

the network in/out traffic without sampling traces increased

by 3.4%/10.9% (in bytes); the increase could be less in pro-

duction environments with larger message sizes [63].

3.2 Critical Path Extractor

The first goal of the FIRM framework is to quickly and ac-

curately identify the CP based on the tracing and telemetry

data described in the previous section. Recall from Def. 2.3

in §2 that a CP is the longest path in the request’s execution

history graph. Hence, changes in the end-to-end latency of an

application are often determined by the slowest execution of

one or more microservices on its CP.

We identify the CP in an execution history graph by using

Alg. 1, which is a weighted longest path algorithm proposed

to retrieve CPs in the microservices context. The algorithm

needs to take into account the major communication and com-

putation patterns in microservice architectures: (a) parallel,

(b) sequential, and (c) background workflows.

• Parallel workflows are the most common way of processing

requests in microservices. They are characterized by child

spans of the same parent span that overlap with each other

in the execution history graph, e.g., U , V , and T in Fig. 2(b).

Formally, for two child spans i with start time sti and end

time eti, and j with st j,et j of the same parent span p, they

are called parallel if (st j < sti < et j) ∨ (sti < st j < eti).
• Sequential workflows are characterized by one or more

child spans of a parent span that are processed in a seri-

alized manner, e.g., U and I in Fig. 2(b). For two of p’s

child-spans i and j to be in a sequential workflow, the time

ti→p≤ tp→ j, i.e., i completes and sends its result to p before

j does. Such sequential relationships are usually indicative

of a happens-before relationship. However, it is impossible

to ascertain the relationships merely by observing traces

from the system. If, across a sufficient number of request

executions, there is a violation of that inequality, then the

services are not sequential.

• Background workflows are those that do not return values to

their parent spans, e.g., W in Fig. 2(b). Background work-

flows are not part of CPs since no other span depends on

their execution, but they may be considered responsible

for SLO violations when FIRM’s Extractor is localizing

Algorithm 1 Critical Path Extraction

Require: Microservice execution history graph G

Attributes: childNodes, lastReturnedChild

1: procedure LONGESTPATH(G, currentNode)

2: path←∅

3: path.add(currentNode)

4: if currentNode.childNodes == None then

5: Return path

6: end if

7: lrc← currentNode.lastReturnedChild

8: path.extend(LONGESTPATH(G, lrc))

9: for each cn in currentNode.childNodes do

10: if cn.happensBefore(lrc) then

11: path.extend(LONGESTPATH(G, cn))

12: end if

13: end for

14: Return path

15: end procedure

Algorithm 2 Critical Component Extraction

Require: Critical Path CP, Request Latencies T

1: procedure CRITICALCOMPONENT(G, T)

2: candidates←∅

3: TCP← T.getTotalLatency() ⊲ Vector of CP latencies

4: for i ∈CP do

5: Ti← T.getLatency(i)
6: T99← Ti.percentile(99)
7: T50← Ti.percentile(50)
8: RI← PCC(Ti,TCP) ⊲ Relative Importance

9: CI← T99/T50 ⊲ Congestion Intensity

10: if SV M.classi f y(RI,CI) == True then

11: candidates.append(i)
12: end if

13: end for

14: Return candidates

15: end procedure

critical components (see §3.3). That is because background

workflows may also contribute to the contention of under-

lying shared resource.

3.3 Critical Component Extractor

In each extracted CP, FIRM then uses an adaptive, data-driven

approach to determine critical components (i.e., microservice

instances). The overall procedure is shown in Alg. 2. The

extraction algorithm first calculates per-CP and per-instance

“features,” which represent the performance variability and

level of request congestion. Variability represents the single

largest opportunity to reduce tail latency. The two features are

then fed into an incremental SVM classifier to get binary deci-

sions, i.e., on whether that instance should have its resources

810 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

re-provisioned or not. The approach is a dynamic selection

policy that is in contrast to static policies, as it can classify

critical and noncritical components adapting to dynamically

changing workload and variation patterns.

In order to extract those microservice instances that are

potential candidates for SLO violations, we argue that it is

critical to know both the variability of the end-to-end latency

(i.e., per-CP variability) and the variability caused by con-

gestion in the service queues of each individual microservice

instances (i.e., per-instance variability).

Per-CP Variability: Relative Importance. Relative im-

portance [62, 110, 122] is a metric that quantifies the strength

of the relationship between two variables. For each critical

path CP, its end-to-end latency is given by TCP = ∑i∈CP Ti,

where Ti is the latency of microservice i. Our goal is to de-

termine the contribution that the variance of each variable

Ti makes toward explaining the total variance of TCP. To

do so, we use the Pearson correlation coefficient [12] (also

called zero-order correlation), i.e., PCC(Ti,TCP), as the mea-

surement, and hence the resulting statistic is known as the

variance explained [31]. The sum of PCC(Ti,TCP) over all mi-

croservice instances along the CP is 1, and the relative impor-

tance values of microservices can be ordered by PCC(Ti,TCP).
The larger the value is, the more variability it contributes to

the end-to-end CP variability.

Per-Instance Variability: Congestion Intensity. For

each microservice instance in a CP, congestion intensity is

defined as the ratio of the 99th percentile latency to the me-

dian latency. Here, we chose the 99th percentile instead of the

70th or 80th percentile to target the tail latency behavior. The

chosen ratio explains per-instance variability by capturing

the congestion level of the request queue so that it can be

used to determine whether it is necessary to scale. For exam-

ple, a higher ratio means that the microservice could handle

only a subset of the requests, but the requests at the tail are

suffering from congestion issues in the queue. On the other

hand, microservices with lower ratios handle most requests

normally, so scaling does not help with performance gain.

Consequently, microservice instances with higher ratios have

a greater opportunity to achieve performance gains in terms

of tail latency by taking scale-out or reprovisioning actions.

Implementation. The logic of critical path extraction is

incorporated into the construction of spans, i.e., as the al-

gorithm proceeds (Alg. 1), the order of tracing construction

is also from the root node to child nodes recursively along

paths in the execution history graph. Sequential, parallel, and

background workflows are inferred from the parent-child re-

lationships of spans. Then, for each CP, we calculate fea-

ture statistics and feed them into an incremental SVM classi-

fier [29,58] implemented using stochastic gradient descent op-

timization and RBF kernel approximation by scikit-learn

libraries [91]. Triggered by detected SLO violations, both

critical path extraction and critical component extraction are

stateless and multithreaded; thus, the workload scales with

RL Agent

CPU

Utilization

Memory

Bandwidth

LLC

Bandwidth

LLC

Capacity

Disk I/O

Bandwidth

Network

Bandwidth

Microservices

Managed by FIRM

Actions (at)

Performance & Resource Measurements

States (st)

T
e
le

m
e
tr

y

Rewards (rt)
SLO

Utilization

Actor

Critic

Vt

SLO

Violation

Arrival

Rate

Figure 7: Model-free actor-critic RL framework for estimat-

ing resources in a microservice instance.

the size of the microservice application and the cluster. They

together constitute FIRM’s extractor (i.e., 2 and 3). Exper-

iments (§4.2) show that it reports SLO violation candidates

with feasible accuracy and achieves completeness with §3.4

by choosing a threshold with a reasonable false-positive rate.

3.4 SLO Violation Mitigation Using RL

Given the list of critical service instances, FIRM’s Resource

Estimator, i.e., 4 , is designed to analyze resource contention

and provide reprovisioning actions for the cluster manager

to take. FIRM estimates and controls a fine-grained set of

resources, including CPU time, memory bandwidth, LLC ca-

pacity, disk I/O bandwidth, and network bandwidth. It makes

decisions on scaling each type of resource or the number of

containers by using measurements of tracing and telemetry

data (see Table 2) collected from the Tracing Coordinator.

When jointly analyzed, such data provides information about

(a) shared-resource interference, (b) workload rate variation,

and (c) request type composition.

FIRM leverages reinforcement learning (RL) to optimize

resource management policies for long-term reward in dy-

namic microservice environments. We next give a brief RL

primer before presenting FIRM’s RL model.

RL Primer. An RL agent solves a sequential decision-

making problem (modeled as a Markov decision process) by

interacting with an environment. At each discrete time step

t, the agent observes a state of the environment st ∈ S, and

performs an action at ∈ A based on its policy πθ(s) (param-

eterized by θ), which maps state space S to action space A.

At the following time step t + 1, the agent observes an im-

mediate reward rt ∈ R given by a reward function r(st ,at);
the immediate reward represents the loss/gain in transitioning

from st to st+1 because of action at . The tuple (st ,at ,rt ,st+1) is

called one transition. The agent’s goal is to optimize the pol-

icy πθ so as to maximize the expected cumulative discounted

reward (also called the value function) from the start distri-

bution J = E[G1], where the return from a state Gt is defined

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 811

to be ∑
T
k=0 γ

krt+k. The discount factor γ ∈ (0,1] penalizes the

predicted future rewards.

Two main categories of approaches are proposed for policy

learning: value-based methods and policy based methods [5].

In value-based methods, the agent learns an estimate of the

optimal value function and approaches the optimal policy by

maximizing it. In policy-based methods, the agent directly

tries to approximate the optimal policy.

Why RL? Existing performance-modeling-based [23, 38,

39,56,94,101,127] or heuristic-based approaches [6,7,37,65,

84] suffer from model reconstruction and retraining problems

because they do not address dynamic system status. Moreover,

they require expert knowledge, and it takes significant effort to

devise, implement, and validate their understanding of the mi-

croservice workloads as well as the underlying infrastructure.

RL, on the other hand, is well-suited for learning resource

reprovisioning policies, as it provides a tight feedback loop

for exploring the action space and generating optimal policies

without relying on inaccurate assumptions (i.e., heuristics

or rules). It allows direct learning from actual workload and

operating conditions to understand how adjusting low-level re-

sources affects application performance. In particular, FIRM

utilizes the deep deterministic policy gradient (DDPG) algo-

rithm [59], which is a model-free, actor-critic RL framework

(shown in Fig. 7). Further, FIRM’s RL formulation provides

two distinct advantages:

1. Model-free RL does not need the ergodic distribution of

states or the environment dynamics (i.e., transitions be-

tween states), which are difficult to model precisely. When

microservices are updated, the simulations of state transi-

tions used in model-based RL are no longer valid.

2. The Actor-critic framework combines policy-based and

value-based methods (i.e., consisting of an actor-net and

a critic-net as shown in Fig. 8), and that is suitable for

continuous stochastic environments, converges faster, and

has lower variance [41].

Learning the Optimal Policy. DDPG’s policy learning is

an actor-critic approach. Here the “critic” estimates the value

function (i.e., the expected value of cumulative discounted

reward under a given policy), and the “actor” updates the

policy in the direction suggested by the critic. The critic’s

estimation of the expected return allows the actor to update

with gradients that have lower variance, thus speeding up the

learning process (i.e., achieving convergence). We further as-

sume that the actor and critic are represented as deep neural

networks. DDPG also solves the issue of dependency between

samples and makes use of hardware optimizations by intro-

ducing a replay buffer, which is a finite-sized cache D that

stores transitions (st ,at ,rt ,st+1). Parameter updates are based

on a mini-batch of size N sampled from the reply buffer. The

pseudocode of the training algorithm is shown in Algorithm

3. RL training proceeds in episodes and each episode consists

of T time steps. At each time step, both actor and critic neural

nets are updated once.

Algorithm 3 DDPG Training

1: Randomly init Qw(s,a) and πθ(a|s) with weights w & θ.

2: Init target network Q′ and π
′ with w′← w & θ

′← θ

3: Init replay buffer D←∅

4: for episode = 1, M do

5: Initialize a random process N for action exploration

6: Receive initial observation state s1

7: for t = 1,T do

8: Select and execute action at = πθ(st)+Nt

9: Observe reward rt and new state st+1

10: Store transition (st ,at ,rt ,st+1) in D

11: Sample N transitions (si,ai,ri,si+1) from D

12: Update critic by minimizing the loss L(w)
13: Update actor by sampled policy gradient ∇θJ

14: w′← γw+(1− γ)w′

15: θ
′← γθ+(1− γ)θ′

16: end for

17: end for

In the critic, the value function Qw(st ,at) with parameter

w and its corresponding loss function are defined as:

Qw(st ,at) = E[r(st ,at)+ γQw(st+1,π(st+1))]

L(w) =
1

N
∑

i

(ri + γQ′w′(si+1,π
′
θ′
(si+1))−Qw(si,ai))

2
.

The target networks Q′
w′
(s,a) and π

′
θ′
(s) are introduced in

DDPG to mitigate the problem of instability and divergence

when one is directly implementing deep RL agents. In the

actor component, DDPG maintains a parametrized actor func-

tion πθ(s), which specifies the current policy by deterministi-

cally mapping states to a specific action. The actor is updated

as follows:

∇θJ =
1

N
∑

i

∇aQw(s = si,a = π(si))∇θπθ(s = si).

Problem Formulation. To estimate resources for a mi-

croservice instance, we formulate a sequential decision-

making problem which can be solved by the above RL

framework. Each microservice instance is deployed in a

separate container with a tuple of resource limits RLT =
(RLTcpu,RLTmem,RLTllc,RLTio,RLTnet), since we are consid-

ering CPU utilization, memory bandwidth, LLC capacity,

disk I/O bandwidth, and network bandwidth as our resource

model.3 This limit for each type of resource is predetermined

(usually overprovisioned) before the microservices are de-

ployed in the cluster and later controlled by FIRM.

At each time step t, utilization RUt for each type of resource

is retrieved using performance counters as telemetry data

in 1 . In addition, FIRM’s Extractor also collects current

3The resource limit for the CPU utilization of a container is the smaller

of R̂i and the number of threads × 100.

812 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

S
ta

te
s
 (

S
t)

S
ta

te
s
 (

S
t)

A
c
ti
o
n
s
 (

A
t)?

?
(s

)

Q
w
(s

,a
)

Actor Net Critic Net

..
.

..
.

..
.

..
.

..
.

T
a
n
h

T
a
n
h

Figure 8: Architecture of actor-critic nets.

latency, request arrival rate, and request type composition

(i.e., percentages of each type of request). Based on these

measurements, the RL agent calculates the states listed in

Table 3 and described below.

• SLO maintenance ratio (SMt) is defined as SLO_latency/

current_latency if the microservice instance is deter-

mined to be the culprit. If no message arrives, it is assumed

that there is no SLO violation (SMt = 1).

• Workload changes (WCt) is defined as the ratio of the ar-

rival rates at the current and previous time steps.

• Request composition (RCt) is defined as a unique value

encoded from an array of request percentages by using

numpy.ravel_multi_index() [74].

For each type of resources i, there is a predefined resource

upper limit R̂i and a lower limit
ˇ
Ri (e.g., the CPU time limit

cannot be set to 0). The actions available to the RL-agent is

to set RLTi ∈ [R̂i,
ˇ
Ri]. If the amount of resource reaches the

total available amount, then a scale-out operation is needed.

Similarly, if the resource limit is below the lower bound, a

scale-in operation is needed. The CPU resources serve as one

exception to the above procedure: it would not improve the

performance if the CPU utilization limit were higher than the

number of threads created for the service.

The goal of the RL agent is, given a time duration t, to deter-

mine an optimal policy πt that results in as few SLO violations

as possible (i.e., minπt SMt) while keeping the resource utiliza-

tion/limit as high as possible (i.e., maxπt RUt/RLTt). Based

on both objectives, the reward function is then defined as

rt = α · SMt · |R |+(1−α) ·∑
|R |
i RUi/RLTi, where R is the

set of resources.

Transfer Learning. Using a tailored RL agent for every

microservice instead of using the shared RL agent should im-

prove resource reprovisioning efficiency, as the model would

be more sensitive to application characteristics and features.

However, such an approach is hard to justify in practice (i.e.,

for deployment) because of the time required to train such tai-

lored models for user workloads, which might have significant

churn. FIRM addresses the problem of rapid model training

by using transfer learning in the domain of RL [14, 105, 106],

whereby agents for SLO violation mitigation can be trained

for either the general case (i.e., any microservices) or the

Table 3: State-action space of the RL agent.

State (st)

SLO Maintenance Ratio (SMt), Workload Changes (WCt),

Request Composition (RCt), Resource Utilization (RUt)

Action Space (at)

Resource Limits RLTi(t), i∈ {CPU, Mem, LLC, IO, Net}

Table 4: RL training parameters.

Parameter Value

Time Steps × # Minibatch 300 × 64

Size of Replay Buffer 105

Learning Rate Actor (3×10−4), Critic (3×10−3)

Discount Factor 0.9

Soft Update Coefficient 2×10−3

Random Noise µ (0), σ (0.2)

Exploration Factor ε (1.0), ε-decay (10−6)

specialized case (i.e., “transferred” to the behavior of indi-

vidualized microservices). The pre-trained model used in the

specialized case is called the base model or the source model.

That approach is possible because prior understanding of a

problem structure helps one solve similar problems quickly,

with the remaining task being to understand the behavior of

updated microservice instances. Related work on base model

selection and task similarity can be found in [105, 106], but

the base model that FIRM uses for transfer learning is always

the RL model learned in the general case because it has been

shown in evaluation to be comparable with specialized mod-

els. We demonstrate the efficacy of transfer learning in our

evaluation described in §4. The RL model that FIRM uses

is designed to scale since both the state space and the action

space are independent of the size of the application or the

cluster. In addition to having the general case RL agent, the

FIRM framework also allows for the deployment of special-

ized per-microservice RL agents.

Implementation Details. We implemented the DDPG

training algorithm and the actor-critic networks using

PyTorch [83]. The critic net contains two fully connected

hidden layers with 40 hidden units, all using ReLU activation

function. The first two hidden layers of the actor net are fully

connected and both use ReLU as the activation function while

the last layer uses Tanh as the activation function. The actor

network has 8 inputs and 5 outputs, while the critic network

has 23 inputs and 1 output. The actor and critic networks

are shown in Fig. 8, and their inputs and outputs are listed

in Table 3. We chose that setup because adding more layers

and hidden units does not increase performance in our ex-

periments with selected microservice benchmarks; instead,

it slows down training speed significantly. Hyperparameters

of the RL model are listed in Table 4. We set the time step

for training the model to be 1 second, which is sufficient for

action execution (see Table 6). The latencies of each RL train-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 813

Table 5: Types of performance anomalies injected to mi-

croservices causing SLO violations.

Performance Anomaly Types Tools/Benchmarks

Workload Variation wrk2 [123]

Network Delay tc [107]

CPU Utilization iBench [24], stress-ng [100]

LLC Bandwidth & Capacity iBench, pmbw [80]

Memory Bandwidth iBench [24], pmbw [80]

I/O Bandwidth Sysbench [102]

Network Bandwidth tc [107], Trickle [117]

ing update and inference step are 73 ± 10.9 ms and 1.2 ± 0.4

ms, respectively. The average CPU and memory usage of the

Kubernetes pod during the training stage are 210 millicores

and 192 Mi, respectively.

3.5 Action Execution

FIRM’s Deployment Module, i.e., 5 , verifies the actions

generated by the RL agent and executes them accordingly.

Each action on scaling a specific type of resource is limited

by the total amount of the resource available on that physical

machine. FIRM assumes that machine resources are unlimited

and thus does not have admission control or throttling. If

an action leads to oversubscribing of a resource, then it is

replaced by a scale-out operation.

• CPU Actions: Actions on scaling CPU utilization are ex-

ecuted through modification of cpu.cfs_period_us and

cpu.cfs_quota_us in the cgroups CPU subsystem.

• Memory Actions: We use Intel MBA [49] and Intel

CAT [48] technologies to control the memory bandwidth

and LLC capacity of containers, respectively.4

• I/O Actions: For I/O bandwidth, we use the blkio subsys-

tem in cgroups to control input/output access to disks.

• Network Actions: For network bandwidth, we use the Hi-

erarchical Token Bucket (HTB) [45] queueing discipline

in Linux Traffic Control. Egress qdiscs can be directly

shaped by using HTB. Ingress qdiscs are redirected to the

virtual device ifb interface and then shaped through the

application of egress rules.

3.6 Performance Anomaly Injector

We accelerate the training of the machine learning models

in FIRM’s Extractor and the RL agent through performance

anomaly injections. The injection provides the ground truth

data for the SVM model, as the injection targets are con-

trolled and known from the campaign files. It also allows the

RL agent to quickly span the space of adverse resource con-

tention behavior (i.e., the exploration-exploitation trade-off

4Our evaluation on IBM Power systems (see §4) did not use these actions

because of a lack of hardware support. OS support or software partitioning

mechanisms [60, 85] can be applied; we leave that to future work.

in RL). That is important, as real-world workloads might not

experience all adverse situations within a short training time.

We implemented a performance anomaly injector, i.e., 6 , in

which the injection targets, type of anomaly, injection time,

duration, patterns, and intensity are configurable. The injector

is designed to be bundled into the microservice containers as a

file-system layer; the binaries incorporated into the container

can then be triggered remotely during the training process.

The injection campaigns (i.e., how the injector is configured

and used) for the injector will be discussed in §4. The injec-

tor comprises seven types of performance anomalies that can

cause SLO violations. They are listed in Table 5 and described

below.

Workload Variation. We use an HTTP benchmarking tool

wrk2 as the workload generator. It performs multithreaded,

multiconnection HTTP request generation to simulate client-

microservice interaction. The request arrival rate and distribu-

tion can be adjusted to break the predefined SLOs.

Network Delay. We use Linux traffic control (tc) to add

simulated delay to network packets. Given the mean and

standard deviation of the network delay latency, each network

packet is delayed following a normal distribution.

CPU Utilization. We implement the CPU stressor based

on iBench and stree-ng to exhaust a specified level of CPU

utilization on a set of cores by exercising floating point, inte-

ger, bit manipulation and control flows.

LLC Bandwidth & Capacity. We use iBench and pmbw

to inject interference on the Last Level Cache (LLC). For

bandwidth, the injector performs streaming accesses in which

the size of the accessed data is tuned to the parameters of the

LLC. For capacity, it adjusts intensity based on the size and

associativity of the LLC to issue random accesses that cover

the LLC capacity.

Memory Bandwidth. We use iBench and pmbw to generate

memory bandwidth contention. It performs serial memory

accesses (of configurable intensity) to a small fraction of the

address space. Accesses occur in a relatively small fraction

of memory in order to decouple the effects of contention in

memory bandwidth from contention in memory capacity.

I/O Bandwidth. We use Sysbench to implement the file

I/O workload generator. It first creates test files that are larger

than the size of system RAM. Then it adjusts the number of

threads, read/write ratio, and sleeping/working ratio to meet

a specified level of I/O bandwidth. We also use Tricle for

limiting the upload/download rate of a specific microservice

instance.

Network Bandwidth. We use Linux traffic control (tc) to

limit egress network bandwidth. For ingress network band-

width, an intermediate function block (ifb) pseudo interface

is set up, and inbound traffic is directed through that. In that

way, the inbound traffic then becomes schedulable by the

egress qdisc on the ifb interface, so the same rules for egress

can be applied directly to ingress.

814 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4 Evaluation

4.1 Experimental Setup

Benchmark Applications. We evaluated FIRM on a set of

end-to-end interactive and responsive real-world microservice

benchmarks: (i) DeathStarBench [34], consisting of Social

Network, Media Service, and Hotel Reservation microservice

applications, and (ii) Train-Ticket [128], consisting of the

Train-Ticket Booking Service. Social Network implements a

broadcast-style social network with unidirectional follow rela-

tionships whereby users can publish, read, and react to social

media posts. Media Service provides functionalities such as

reviewing, rating, renting, and streaming movies. Hotel Reser-

vation is an online hotel reservation site for browsing hotel

information and making reservations. Train-Ticket Booking

Service provides typical train-ticket booking functionalities,

such as ticket inquiry, reservation, payment, change, and user

notification. These benchmarks contain 36, 38, 15, and 41

unique microservices, respectively; cover all workflow pat-

terns (see §3.2); and use various programming languages

including Java, Python, Node.js, Go, C/C++, Scala, PHP, and

Ruby. All microservices are deployed in separate Docker

containers.

System Setup. We validated our design by implementing

a prototype of FIRM that used Kubernetes [20] as the under-

lying container orchestration framework. We deployed the

four microservice benchmarks with FIRM separately on a

Kubernetes cluster of 15 two-socket physical nodes without

specifying any anti-colocation rules. Each server consists of

56–192 CPU cores and RAM that varies from 500 GB to

1000 GB. Nine of the servers use Intel x86 Xeon E5s and E7s

processors, while the remaining ones use IBM ppc64 Power8

and Power9 processors. All machines run Ubuntu 18.04.3

LTS with Linux kernel version 4.15.

Load Generation. We drove the services with various

open-loop asynchronous workload generators [123] to rep-

resent an active production environment [17, 97, 118]. We

uniformly generated workloads for every request type across

all microservice benchmarks. The parameters for the work-

load generators were the same as those for DeathStarBench

(which we applied to Train-Ticket as well), and varied from

predictable constant, diurnal, distributions such as Poisson, to

unpredictable loads with spikes in user demand. The work-

load generators and the microservice benchmark applications

were never co-located (i.e., they executed on different nodes

in the cluster). To control the variability in our experiments,

we disabled all other user workloads on the cluster.

Injection and Comparison Baselines. We used our per-

formance anomaly injector (see §3.6) to inject various types of

performance anomalies into containers uniformly at random

with configurable injection timing and intensity. Following the

common way to study resource interference, our experiments

on SLO violation mitigation with anomalies were designed to

be comprehensive by covering the worst-case scenarios, given

the random and nondeterministic nature of shared-resource

interference in production environments [22, 78]. Unless oth-

erwise specified, (i) the anomaly injection time interval was

in an exponential distribution with λ = 0.33s−1, and (ii) the

anomaly type and intensity were selected uniformly at ran-

dom. We implemented two baseline approaches: (a) the Ku-

bernetes autoscaling mechanism [55] and (b) an AIMD-based

method [38,101] to manage resources for each container. Both

approaches are rule-based autoscaling techniques.

4.2 Critical Component Localization

Here, we use the techniques presented in §3.2 and §3.3 to

study the effectiveness of FIRM in identifying the microser-

vices that are most likely to cause SLO violations.

Single anomaly localization. We first evaluated how well

FIRM localizes the microservice instances that are responsi-

ble for SLO violations under different types of single-anomaly

injections. For each type of performance anomaly and each

type of request, we gradually increased the intensity of in-

jected resource interference and recorded end-to-end latencies.

The intensity parameter was chosen uniformly at random be-

tween [start-point, end-point], where the start-point is the in-

tensity that starts to trigger SLO violations, and the end-point

is the intensity when either the anomaly injector has consumed

all possible resources or over 80% of user requests have been

dropped or returned time. Fig. 9(a) shows the receiver oper-

ating characteristic (ROC) curve of root cause localization.

The ROC curve captures the relationship between the false-

positive rate (x-axis) and the true-positive rate (y-axis). The

closer to the upper-left corner the curve is, the better the per-

formance. We observe that the localization accuracy of FIRM,

when subject to different types of anomalies, does not vary

significantly. In particular, FIRM’s Extractor module achieved

near 100% true-positive rate, when the false-positive rate was

between [0.12,0.16].

Multi-anomaly localization. There is no guarantee that

only one resource contention will happen at a time under

dynamic datacenter workloads [40, 42, 96, 98] and therefore

we also studied the container localization performance under

multi-anomaly injections and compared machines with two

different processor ISAs (x86 and ppc64). An example of the

intensity distributions of all the anomaly types used in this ex-

periment are shown in Fig. 9(c). The experiment was divided

into time windows of 10 s, i.e., Ti from Fig. 9(c)). At each time

window, we picked the injection intensity of each anomaly

type uniformly at random with range [0,1]. Our observations

are reported in Fig. 9(b). The average accuracy for localiz-

ing critical components in each application ranged from 92%

to 94%. The overall average localization accuracy was 93%

across four microservice benchmarks. Overall, we observe

that the accuracy of the Extractor did not differ between the

two sets of processors.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 815

0.00 0.25 0.50 0.75 1.00

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

Pure
Chance

Avg AUC = 0.978

Workload

CPU

Memory

LLC

Disk I/O

Network

(a) ROC under single-anomaly.

Intel Xeon IBM Power
0.0

0.2

0.4

0.6

0.8

1.0

A
ve
ra
ge

A
cc
u
ra
cy

93
.5

94
.6

94
.1

92
.9

93
.6

92
.8 94
.5

94
.4

Social Network

Media Service

Hotel Reservation

Train-Ticket Booking

(b) Average accuracy under multi-anomaly.

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

T
10

T
11

T
12

Timeline

Workload

CPU

Memory

LLC

Disk I/O

NetworkIn
te
rf
er
en
ce

S
ou
rc
es

0.00

0.25

0.50

0.75

1.00

In
te
n
si
ty

(c) Anomaly injection intensity and timing.

Figure 9: Critical Component Localization Performance: (a) ROC curves for detection accuracy; (b) Variation of localization

accuracies across processor architectures; (c) Anomaly-injection intensity, types, and timing.

0 5000 10000 15000 20000

Episode

0

500

1000

T
ot
al

R
ew

ar
d

One-for-All

One-for-Each

Transferred

(a) Total reward.

0 5000 10000 15000

Episode

0

20

40

60

M
it
ig
at
io
n
T
im

e
(s
)

K8S Autoscaling

AIMD

FIRM (Single-RL)

FIRM (Multi-RL)

(b) SLO mitigation time.

Figure 10: Learning curve showing total reward during train-

ing and SLO mitigation performance.

4.3 RL Training & SLO Violation Mitigation

To understand the convergence behavior of FIRM’s RL agent,

we trained three RL models that were subjected to the same

sequence of performance anomaly injections (described in

§4.1). The three RL models are: (i) a common RL agent for

all microservices (one-for-all), (ii) a tailored RL agent for

a particular microservice (one-for-each), and (iii) a transfer-

learning-based RL agent. RL training proceeds in episodes

(iterations). We set the number of time steps in a training

episode to be 300 (see Table 4), but for the initial stages, we

terminate the RL exploration early so that the agent could

reset and try again from the initial state. We did so because

the initial policies of the RL agent are unable to mitigate SLO

violations. Continuously injecting performance anomalies

causes user requests to drop, and thus only a few request traces

were generated to feed the agent. As the training progressed,

the agent improved its resource estimation policy and could

mitigate SLO violations in less time. At that point (around

1000 episodes), we linearly increased the number of time

steps to let the RL agent interact with the environment longer

before terminating the RL exploration and entering the next

iteration.

We trained the abovementioned three RL models on the

Train-Ticket benchmark. We studied the generalization of the

RL model by evaluating the end-to-end performance of FIRM

on the DeathStarBench benchmarks. Thus, we used Death-

StarBench as a validation set in our experiments. Fig. 10(a)

shows that as the training proceeded, the agent was getting

better at mitigation, and thus the moving average of episode

rewards was increasing. The initial steep increase benefits

from early termination of episodes and parameter exploration.

Transfer-learning-based RL converged even faster (around

2000 iterations5) because of parameter sharing. The one-for-

all RL required more iterations to converge (around 15000

iterations) and had a slightly lower total reward (6% lower

compared with one-for-each RL) during training.

In addition, higher rewards, for which the learning algo-

rithm explicitly optimizes, correlate with improvements in

SLO violation mitigation (see Fig. 10(b)). For models trained

in every 200 episodes, we saved the checkpoint of parameters

in the RL model. Using the parameter, we evaluated the model

snapshot by injecting performance anomalies (described in

§4.1) continuously for one minute and observed when SLO

violations were mitigated. Fig. 10(b) shows that FIRM with

either a single-RL agent (one-for-all) or a multi-RL agent

(one-for-each) improved with each episode in terms of the

SLO violation mitigation time. The starting policy at itera-

tion 0–900 was no better than the Kubernetes autoscaling

approach, but after around 2500 iterations, both agents were

better than either Kubernetes autoscaling or the AIMD-based

method. Upon convergence, FIRM with a single-RL agent

achieved a mitigation time of 1.7 s on average, which outper-

formed the AIMD-based method by up to 9× and Kubernetes

autoscaling by up to 30× in terms of the time to mitigate SLO

violations.

4.4 End-to-End Performance

Here, we show the end-to-end performance of FIRM and its

generalization by further evaluating it on DeathStarBench

benchmarks based on the hyperparameter tuned during train-

ing with the Train-Ticket benchmark. To understand the 10–

30× improvement demonstrated above, we measured the 99th

percentile end-to-end latency when the microservices were

being managed by the two baseline approaches and by FIRM.

Fig. 11(a) shows the cumulative distribution of the end-to-end

51000 iterations correspond to roughly 30 minutes with each iteration

consisting of 300 time steps.

816 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2000 4000 6000 8000 10000 12000

(a) End-to-end Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Better

0 100 200 300 400 500

(b) Requested CPU Limit %

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Better

0 2000 4000 6000 8000 10000 12000

(c) # of Dropped Requests

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Better

FIRM (Transferred Single-RL) FIRM (Multi-RL) AIMD K8S Auto-scaling

Figure 11: Performance comparisons (CDFs) of end-to-end latency, requested CPU limit, and the number of dropped requests.

latency. We observed that the AIMD-based method, albeit

simple, outperforms the Kubernetes autoscaling approach by

1.7× on average and by 1.6× in the worst case. In contrast,

FIRM:

1. Outperformed both baselines by up to 6× and 11×, which

leads to 9× and 16× fewer SLO violations;

2. Lowered the overall requested CPU limit by 29–62%, as

shown in Fig. 11(b), and increased the average cluster-level

CPU utilization by up to 33%; and

3. Reduced the number of dropped or timed out user requests

by up to 8× as shown in Fig. 11(c).

FIRM can provide these benefits because it detects SLO vio-

lations accurately and addresses resource contention before

SLO violations can propagate. By interacting with dynamic

microservice environments under complicated loads and re-

source allocation scenarios, FIRM’s RL agent dynamically

learns the policy, and hence outperforms heuristics-based ap-

proaches.

5 Discussion

Necessity and Challenges of Modeling Low-level Re-

sources. Recall from §2 that modeling of resources at a fine

granularity is necessary, as it allows for better performance

without overprovisioning. It is difficult to model the depen-

dence between low-level resource requirements and quantifi-

able performance gain while dealing with uncertain and noisy

measurements [76, 120]. FIRM addresses the issue by mod-

eling that dependency in an RL-based feedback loop, which

automatically explores the action space to generate optimal

policies without human intervention.

Why a Multilevel ML Framework? A model of the states

of all microservices that is fed as the input to a single large

ML model [81, 126] leads to (i) state-action space explosion

issues that grow with the number of microservices, thus in-

creasing the training time; and (ii) dependence between the

microservice architecture and the ML-model, which sacrifices

the generality. FIRM addresses those problems by incorporat-

ing a two-level ML framework. The first level ML model uses

SVM to filter the microservice instances responsible for SLO

violations, thereby reducing the number of microservices that

need to be considered in mitigating SLO violations. That en-

Table 6: Avg. latency for resource management operations.

Operation
Partition (Scale Up/Down) Container Start

CPU Mem LLC I/O Net Warm Cold

Mean (ms) 2.1 42.4 39.8 2.3 12.3 45.7 2050.8

Std Dev (ms) 0.3 11.0 9.2 0.4 1.1 6.9 291.4

ables the second level ML model, the RL agent, to be trained

faster and removes dependence on the application architecture.

That, in turn, helps avoid RL model reconstruction/retraining.

Lower Bounds on Manageable SLO Violation Dura-

tion for FIRM. As shown in Table 6, the operations to scale

resources for microservice instances take 2.1–45.7 ms. Thus,

that is the minimum duration of latency spikes that any RM

approach can handle. For transient SLO violations, which last

shorter than the minimum duration, the action generated by

FIRM will always miss the mitigation deadline and can poten-

tially harm overall system performance. Worse, it may lead to

oscillations between scaling operations. Predicting the spikes

before they happen, and proactively taking mitigation actions

can be a solution. However, it is a generally-acknowledged

difficult problem, as microservices are dynamically evolving,

in terms of both load and architectural design, which is subject

to our future work.

Limitations. FIRM has several limitations that we plan

to address in future work. First, FIRM currently focuses on

resource interference caused by real workload demands. How-

ever, FIRM lacks the ability to detect application bugs or

misconfigurations, which may lead to failures such as mem-

ory leak. Allocating more resources to such microservice

instances may harm the overall resource efficiency. Other

sources of SLO violations, including global resource sharing

(e.g., network switches or global file systems) and hardware

causes (e.g., power-saving energy management), are also be-

yond FIRM’s scope. Second, the scalability of FIRM is lim-

ited by the maximum scalability of the centralized graph

database, and the boundary caused by the network traffic

telemetry overhead. (Recall the lower bound on the SLO vio-

lation duration.) Third, we plan to implement FIRM’s tracing

module based on side-car proxies (i.e., service meshes) [15]

that minimizes application instrumentation and has wider

support of programming languages.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 817

6 Related Work

SLO violations in cloud applications and microservices are a

popular and well-researched topic. We categorize prior work

into two buckets: root cause analyzers and autoscalers. Both

rely heavily on the collection of tracing and telemetry data.

Tracing and Probing for Microservices. Tracing for

large-scale microservices (essentially distributed systems)

helps understand the path of a request as it propagates through

the components of a distributed system. Tracing requires ei-

ther application-level instrumentation [18,32,57,95,111–115]

or middleware/OS-level instrumentation [10,16,63,109] (e.g.,

Sieve [109] utilizes a kernel module sysdig [103] which pro-

vides system calls as an event stream containing tracing infor-

mation about the monitored process to a user application).

Root Cause Analysis. A large body of work [16, 35, 50,

52, 61, 63, 93, 109, 121, 124] provides promising evidence

that data-driven diagnostics help detect performance anoma-

lies and analyze root causes. For example, Sieve [109] lever-

ages Granger causality to correlate performance anomaly

data series with particular metrics as potential root causes.

Pinpoint [16] runs clustering analysis on Jaccard similarity

coefficient to determine the components that are mostly corre-

lated with the failure. Microscope [61] and MicroRCA [124]

are both designed to identify abnormal services by construct-

ing service causal graphs that model anomaly propagation

and by inferring causes using graph traversal or ranking algo-

rithms [51]. Seer [35] uses deep learning to learn spatial and

temporal patterns that translate to SLO violations. However,

none of these approaches addresses the dynamic nature of

microservice environments (i.e., frequent microservice up-

dates and deployment changes), which require costly model

reconstruction or retraining.

Autoscaling Cloud Applications. Current techniques for

autoscaling cloud applications can be categorized into four

groups [65, 84]: (a) rule-based (commonly offered by cloud

providers [6, 7, 37]), (b) time series analysis (regression

on resource utilization, performance, and workloads), (c)

model-based (e.g., queueing networks), or (d) RL-based.

Some approaches combine several techniques. For instance,

Auto-pilot [88] combines time series analysis and RL al-

gorithms to scale the number of containers and associated

CPU/RAM. Unfortunately, when applied to microservices

with large scale and complex dependencies, independent scal-

ing of each microservice instance results in suboptimal so-

lutions (because of critical path intersection and insight 2

in §2), and it is difficult to define sub-SLOs for individual

instances. Approaches for autoscaling microservices or dis-

tributed dataflows [39,56,81,126,127] make scaling decisions

on the number of replicas and/or container size without con-

sidering low-level shared-resource interference. ATOM [39]

and Microscaler [127] do so by using a combination of queue-

ing network- and heuristic-based approximations. ASFM [81]

uses recurrent neural network activity to predict workloads

and translates application performance to resources by using

linear regression. Streaming and data-processing scalers like

DS2 [56] and MIRAS [126] leverage explicit application-level

modeling and apply RL to represent the resource-performance

mapping of operators and their dependencies.

Cluster Management. The emergence of cloud comput-

ing motivates the prevalence of cloud management platforms

that provide services such as monitoring, security, fault tol-

erance, and performance predictability. Examples include

Borg [119], Mesos [43], Tarcil [28], Paragon [25], Quasar [26],

Morpheus [54], DeepDive [73], and Q-clouds [71]. In this

paper, we do not address the problem of cluster orchestration.

FIRM can work in conjunction with those cluster manage-

ment tools to reduce SLO violations.

7 Conclusion

We propose FIRM, an ML-based, fine-grained resource man-

agement framework that addresses SLO violations and re-

source underutilization in microservices. FIRM uses a two-

level ML model, one for identifying microservices responsible

for SLO violations, and the other for mitigation. The com-

bined ML model reduces SLO violations up to 16× while

reducing the overall CPU limit by up to 62%. Overall, FIRM

enables fast mitigation of SLOs by using efficient resource

provisioning, which benefits both cloud service providers

and microservice owners. FIRM is open-sourced at https:

//gitlab.engr.illinois.edu/DEPEND/firm.git.

8 Acknowledgment

We thank the OSDI reviewers and our shepherd, Rebecca

Isaacs, for their valuable comments that improved the pa-

per. We appreciate K. Atchley, F. Rigberg, and J. Appleq-

uist for their insightful comments on the early drafts of this

manuscript. This research was supported in part by the U.S.

Department of Energy, Office of Science, Office of Advanced

Scientific Computing Research, under award No. 2015-02674.

This work is partially supported by the National Science

Foundation (NSF) under grant No. 2029049; by a Sandia

National Laboratories6 under contract No. 1951381; by the

IBM-ILLINOIS Center for Cognitive Computing Systems

Research (C3SR), a research collaboration that is part of the

IBM AI Horizon Network; and by Intel and NVIDIA through

equipment donations. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the

NSF, Sandia National Laboratories, IBM, NVIDIA, or, Intel.

Saurabh Jha is supported by a 2020 IBM PhD fellowship.

6Sandia National Laboratories is a multimission laboratory managed

and operated by National Technology and Engineering Solutions of Sandia,

LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under

contract DE-NA0003525.

818 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://gitlab.engr.illinois.edu/DEPEND/firm.git
https://gitlab.engr.illinois.edu/DEPEND/firm.git

References

[1] Ivo Adan and Jacques Resing. Queueing theory. Eind-

hoven University of Technology Eindhoven, 2002.

[2] Bernhard Ager, Fabian Schneider, Juhoon Kim, and

Anja Feldmann. Revisiting cacheability in times of

user generated content. In 2010 INFOCOM IEEE

Conference on Computer Communications Workshops,

pages 1–6. IEEE, 2010.

[3] Younsun Ahn, Jieun Choi, Sol Jeong, and Yoonhee

Kim. Auto-scaling method in hybrid cloud for sci-

entific applications. In Proceedings of the 16th Asia-

Pacific Network Operations and Management Sympo-

sium, pages 1–4. IEEE, 2014.

[4] Ioannis Arapakis, Xiao Bai, and B. Barla Cambazoglu.

Impact of response latency on user behavior in web

search. In Proceedings of The 37th International ACM

SIGIR Conference on Research & Development in In-

formation Retrieval, pages 103–112, 2014.

[5] Kai Arulkumaran, Marc Peter Deisenroth, Miles

Brundage, and Anil Anthony Bharath. A brief sur-

vey of deep reinforcement learning. arXiv preprint

arXiv:1708.05866, 2017.

[6] AWS auto scaling documentation. https://docs.

aws.amazon.com/autoscaling/index.html,

Accessed 2020/01/23.

[7] Azure autoscale. https://azure.microsoft.

com/en-us/features/autoscale/, Accessed

2020/01/23.

[8] Armin Balalaie, Abbas Heydarnoori, and Pooyan

Jamshidi. Migrating to cloud-native architectures using

microservices: An experience report. In Proceedings

of the European Conference on Service-Oriented and

Cloud Computing, pages 201–215. Springer, 2015.

[9] Armin Balalaie, Abbas Heydarnoori, and Pooyan

Jamshidi. Microservices architecture enables DevOps:

Migration to a cloud-native architecture. IEEE Soft-

ware, 33(3):42–52, 2016.

[10] Paul Barham, Austin Donnelly, Rebecca Isaacs, and

Richard Mortier. Using Magpie for request extraction

and workload modelling. In OSDI, volume 4, pages

18–18, 2004.

[11] Luiz André Barroso and Urs Hölzle. The datacen-

ter as a computer: An introduction to the design of

warehouse-scale machines. Synthesis Lectures on Com-

puter Architecture, 4(1):1–108, 2009.

[12] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Is-

rael Cohen. Pearson correlation coefficient. In Noise

Reduction in Speech Processing, pages 1–4. Springer,

2009.

[13] cAdvisor. https://github.com/google/

cadvisor, Accessed 2020/01/23.

[14] Luiz A. Celiberto Jr, Jackson P. Matsuura,

Ramón López De Màntaras, and Reinaldo A.C.

Bianchi. Using transfer learning to speed-up reinforce-

ment learning: A case-based approach. In Proceedings

of 2010 Latin American Robotics Symposium and

Intelligent Robotics Meeting, pages 55–60. IEEE,

2010.

[15] Ramaswamy Chandramouli and Zack Butcher. Build-

ing secure microservices-based applications using

service-mesh architecture. NIST Special Publication,

800:204A, 2020.

[16] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Ar-

mando Fox, and Eric Brewer. Pinpoint: Problem de-

termination in large, dynamic internet services. In

Proceedings International Conference on Dependable

Systems and Networks, pages 595–604. IEEE, 2002.

[17] Shuang Chen, Shay GalOn, Christina Delimitrou, Sri-

latha Manne, and Jose F. Martinez. Workload char-

acterization of interactive cloud services on big and

small server platforms. In Proceedings of 2017 IEEE

International Symposium on Workload Characteriza-

tion (IISWC), pages 125–134. IEEE, 2017.

[18] Michael Chow, David Meisner, Jason Flinn, Daniel

Peek, and Thomas F Wenisch. The mystery machine:

End-to-end performance analysis of large-scale inter-

net services. In Proceedings of the 11th USENIX Sym-

posium on Operating Systems Design and Implementa-

tion (OSDI 14), pages 217–231, 2014.

[19] Docker Swarm. https://www.docker.com/

products/docker-swarm, Accessed 2020/01/23.

[20] Kubernetes. https://kubernetes.io/, Accessed

2020/01/23.

[21] CoreOS rkt, a security-minded, standards-based con-

tainer engine. https://coreos.com/rkt/, Accessed

2020/01/23.

[22] Jeffrey Dean and Luiz André Barroso. The tail at scale.

Communications of the ACM, 56(2):74–80, 2013.

[23] Jiang Dejun, Guillaume Pierre, and Chi-Hung Chi. Re-

source provisioning of web applications in heteroge-

neous clouds. In Proceedings of the 2nd USENIX

Conference on Web Application Development, pages

49–60. USENIX Association, 2011.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 819

https://docs.aws.amazon.com/autoscaling/index.html
https://docs.aws.amazon.com/autoscaling/index.html
https://azure.microsoft.com/en-us/features/autoscale/
https://azure.microsoft.com/en-us/features/autoscale/
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://www.docker.com/products/docker-swarm
https://www.docker.com/products/docker-swarm
https://kubernetes.io/
https://coreos.com/rkt/

[24] Christina Delimitrou and Christos Kozyrakis. iBench:

Quantifying interference for datacenter applications.

In Proceedings of 2013 IEEE International Symposium

on Workload Characterization (IISWC), pages 23–33.

IEEE, 2013.

[25] Christina Delimitrou and Christos Kozyrakis. Paragon:

QoS-aware scheduling for heterogeneous datacenters.

ACM SIGPLAN Notices, 48(4):77–88, 2013.

[26] Christina Delimitrou and Christos Kozyrakis. Quasar:

Resource-efficient and QoS-aware cluster management.

ACM SIGPLAN Notices, 49(4):127–144, 2014.

[27] Christina Delimitrou and Christos Kozyrakis. Am-

dahl’s law for tail latency. Communications of the

ACM, 61(8):65–72, 2018.

[28] Christina Delimitrou, Daniel Sanchez, and Christos

Kozyrakis. Tarcil: Reconciling scheduling speed and

quality in large shared clusters. In Proceedings of the

Sixth ACM Symposium on Cloud Computing, pages

97–110, 2015.

[29] Christopher P. Diehl and Gert Cauwenberghs. SVM

incremental learning, adaptation and optimization. In

Proceedings of 2003 International Joint Conference on

Neural Networks, volume 4, pages 2685–2690. IEEE,

2003.

[30] Jianru Ding, Ruiqi Cao, Indrajeet Saravanan, Nathaniel

Morris, and Christopher Stewart. Characterizing ser-

vice level objectives for cloud services: Realities and

myths. In Proceedings of 2019 IEEE International

Conference on Autonomic Computing (ICAC), pages

200–206. IEEE, 2019.

[31] Rob Eisinga, Manfred Te Grotenhuis, and Ben Pelzer.

The reliability of a two-item scale: Pearson, Cronbach,

or Spearman-Brown? International Journal of Public

Health, 58(4):637–642, 2013.

[32] Rodrigo Fonseca, George Porter, Randy H. Katz, and

Scott Shenker. X-trace: A pervasive network tracing

framework. In Proceedings of the 4th USENIX Sympo-

sium on Networked Systems Design & Implementation

(NSDI 07), pages 271–284, 2007.

[33] Yu Gan and Christina Delimitrou. The architectural

implications of cloud microservices. IEEE Computer

Architecture Letters, 17(2):155–158, 2018.

[34] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,

Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,

Brian Ritchken, Brendon Jackson, et al. An open-

source benchmark suite for microservices and their

hardware-software implications for cloud & edge sys-

tems. In Proceedings of the Twenty-Fourth Interna-

tional Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages

3–18, 2019.

[35] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan

He, Meghna Pancholi, and Christina Delimitrou. Seer:

Leveraging big data to navigate the complexity of per-

formance debugging in cloud microservices. In Pro-

ceedings of the Twenty-Fourth International Confer-

ence on Architectural Support for Programming Lan-

guages and Operating Systems, pages 19–33, 2019.

[36] Mrittika Ganguli, Rajneesh Bhardwaj, Ananth Sankara-

narayanan, Sunil Raghavan, Subramony Sesha, Gilbert

Hyatt, Muralidharan Sundararajan, Arkadiusz Chylin-

ski, and Alok Prakash. CPU overprovisioning

and cloud compute workload scheduling mechanism,

March 20 2018. US Patent 9,921,866.

[37] Google cloud load balancing and scaling.

https://cloud.google.com/compute/docs/

load-balancing-and-autoscaling, Accessed

2020/01/23.

[38] Panos Gevros and Jon Crowcroft. Distributed resource

management with heterogeneous linear controls. Com-

puter Networks, 45(6):835–858, 2004.

[39] Alim Ul Gias, Giuliano Casale, and Murray Woodside.

ATOM: Model-driven autoscaling for microservices.

In Proceedings of 2019 IEEE 39th International Con-

ference on Distributed Computing Systems (ICDCS),

pages 1994–2004. IEEE, 2019.

[40] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and

Alfons Kemper. Workload analysis and demand pre-

diction of enterprise data center applications. In Pro-

ceedings of 2007 IEEE 10th International Symposium

on Workload Characterization, pages 171–180. IEEE,

2007.

[41] Ivo Grondman, Lucian Busoniu, Gabriel A.D. Lopes,

and Robert Babuska. A survey of actor-critic reinforce-

ment learning: Standard and natural policy gradients.

IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), 42(6):1291–1307,

2012.

[42] Kim Hazelwood, Sarah Bird, David Brooks, Soumith

Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed

Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. Ap-

plied machine learning at Facebook: A datacenter

infrastructure perspective. In Proceedings of 2018

IEEE International Symposium on High Performance

Computer Architecture (HPCA), pages 620–629. IEEE,

2018.

820 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://cloud.google.com/compute/docs/load-balancing-and-autoscaling
https://cloud.google.com/compute/docs/load-balancing-and-autoscaling

[43] Benjamin Hindman, Andy Konwinski, Matei Zaharia,

Ali Ghodsi, Anthony D. Joseph, Randy H. Katz, Scott

Shenker, and Ion Stoica. Mesos: A platform for fine-

grained resource sharing in the data center. In Proceed-

ings of the 8th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI), volume 11,

pages 295–208, 2011.

[44] Todd Hoff. Latency is everywhere and it costs

you sales: How to crush it, July 2009. http:

//highscalability.com/latency-everywhere-

and-it-costs-you-sales-how-crush-it, Ac-

cessed 2020/01/23.

[45] HTB - Hierarchical Token Bucket. https://linux.

die.net/man/8/tc-htb, Accessed 2020/01/23.

[46] Steven Ihde and Karan Parikh. From a mono-

lith to microservices + REST: The evolution of

LinkedIn’s service architecture, March 2015. https:

//www.infoq.com/presentations/linkedin-

microservices-urn/, Accessed 2020/01/23.

[47] Alexey Ilyushkin, Ahmed Ali-Eldin, Nikolas Herbst,

Alessandro V. Papadopoulos, Bogdan Ghit, Dick

Epema, and Alexandru Iosup. An experimental perfor-

mance evaluation of autoscaling policies for complex

workflows. In Proceedings of the 8th ACM/SPEC on

International Conference on Performance Engineering,

pages 75–86, 2017.

[48] Intel cache allocation technology. https://github.

com/intel/intel-cmt-cat, Accessed 2020/01/23.

[49] Intel memory bandwidth allocation. https://github.

com/intel/intel-cmt-cat, Accessed 2020/01/23.

[50] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski.

Performance monitoring and root cause analysis for

cloud-hosted web applications. In Proceedings of the

26th International Conference on World Wide Web,

pages 469–478, 2017.

[51] Glen Jeh and Jennifer Widom. Scaling personalized

web search. In Proceedings of the 12th International

Conference on World Wide Web, pages 271–279, 2003.

[52] Saurabh Jha, Shengkun Cui, Subho Banerjee, Tianyin

Xu, Jeremy Enos, Mike Showerman, Zbigniew T.

Kalbarczyk, and Ravishankar K. Iyer. Live forensics

for HPC systems: A case study on distributed storage

systems. In Proceedings of the International Confer-

ence for High-Performance Computing, Networking,

Storage and Analysis, 2020.

[53] Anshul Jindal, Vladimir Podolskiy, and Michael

Gerndt. Performance modeling for cloud microservice

applications. In Proceedings of the 2019 ACM/SPEC

International Conference on Performance Engineering,

pages 25–32, 2019.

[54] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,

Shravan Matthur Narayanamurthy, Alexey Tumanov,

Jonathan Yaniv, Ruslan Mavlyutov, Íñigo Goiri, Subru

Krishnan, Janardhan Kulkarni, and Sriram Rao. Mor-

pheus: Towards automated SLOs for enterprise clusters.

In Proceedings of the 12th USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI

16), pages 117–134, 2016.

[55] Autoscaling in Kubernetes. https://

kubernetes.io/blog/2016/07/autoscaling-

in-kubernetes/, Accessed 2020/01/23.

[56] Vasiliki Kalavri, John Liagouris, Moritz Hoffmann,

Desislava Dimitrova, Matthew Forshaw, and Timothy

Roscoe. Three steps is all you need: Fast, accurate,

automatic scaling decisions for distributed streaming

dataflows. In Proceedings of the 13th USENIX Sympo-

sium on Operating Systems Design and Implementa-

tion (OSDI 18), pages 783–798, 2018.

[57] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison

Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win Ong,

Bill Schaller, Pingjia Shan, Brendan Viscomi, et al.

Canopy: An end-to-end performance tracing and anal-

ysis system. In Proceedings of the 26th Symposium on

Operating Systems Principles, pages 34–50, 2017.

[58] Pavel Laskov, Christian Gehl, Stefan Krüger, and

Klaus-Robert Müller. Incremental support vector learn-

ing: Analysis, implementation and applications. Jour-

nal of Machine Learning Research, 7(Sep):1909–1936,

2006.

[59] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander

Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David

Silver, and Daan Wierstra. Continuous control

with deep reinforcement learning. arXiv preprint

arXiv:1509.02971, 2015.

[60] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang,

Xiaodong Zhang, and P. Sadayappan. Gaining insights

into multicore cache partitioning: Bridging the gap

between simulation and real systems. In Proceedings

of 2008 IEEE 14th International Symposium on High

Performance Computer Architecture, pages 367–378.

IEEE, 2008.

[61] Jinjin Lin, Pengfei Chen, and Zibin Zheng. Micro-

scope: Pinpoint performance issues with causal graphs

in micro-service environments. In Proceedings of Inter-

national Conference on Service-Oriented Computing,

pages 3–20. Springer, 2018.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 821

http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
https://linux.die.net/man/8/tc-htb
https://linux.die.net/man/8/tc-htb
https://www.infoq.com/presentations/linkedin-microservices-urn/
https://www.infoq.com/presentations/linkedin-microservices-urn/
https://www.infoq.com/presentations/linkedin-microservices-urn/
https://github.com/intel/intel-cmt-cat
https://github.com/intel/intel-cmt-cat
https://github.com/intel/intel-cmt-cat
https://github.com/intel/intel-cmt-cat
https://kubernetes.io/blog/2016/07/autoscaling-in-kubernetes/
https://kubernetes.io/blog/2016/07/autoscaling-in-kubernetes/
https://kubernetes.io/blog/2016/07/autoscaling-in-kubernetes/

[62] Richard Harold Lindeman. Introduction to bivariate

and multivariate analysis. Technical report, Scott Fores-

man & Co, 1980.

[63] Haifeng Liu, Jinjun Zhang, Huasong Shan, Min Li,

Yuan Chen, Xiaofeng He, and Xiaowei Li. JCallGraph:

Tracing microservices in very large scale container

cloud platforms. In Proceedings of International Con-

ference on Cloud Computing, pages 287–302. Springer,

2019.

[64] Keith Gerald Lockyer. Introduction to Critical Path

Analysis. Pitman, 1969.

[65] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A.

Lozano. A review of auto-scaling techniques for elastic

applications in cloud environments. Journal of Grid

Computing, 12(4):559–592, 2014.

[66] Michael David Marr and Matthew D. Klein. Auto-

mated profiling of resource usage, April 26 2016. US

Patent 9,323,577.

[67] Jason Mars and Lingjia Tang. Whare-Map: Hetero-

geneity in "homogeneous" warehouse-scale comput-

ers. In Proceedings of the 40th Annual International

Symposium on Computer Architecture, pages 619–630,

2013.

[68] Tony Mauro. Adopting microservices at Netflix:

Lessons for architectural design, February 2015.

https://www.nginx.com/blog/microservices-

at-netflix-architectural-best-practices/,

Accessed 2020/01/23.

[69] Matt McGee. It’s official: Google now counts

site speed as a ranking factor, April 2010.

https://searchengineland.com/google-now-

counts-site-speed-as-ranking-factor-39708,

Accessed 2020/01/23.

[70] Dirk Merkel. Docker: Lightweight linux containers

for consistent development and deployment. Linux

Journal, 2014(239):2–2, 2014.

[71] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah.

Q-Clouds: Managing performance interference effects

for QoS-aware clouds. In Proceedings of the 5th Eu-

ropean Conference on Computer Systems, pages 237–

250, 2010.

[72] Neo4j: Native Graph Database. https://github.

com/neo4j/neo4j, Accessed 2020/01/23.

[73] Dejan Novaković, Nedeljko Vasić, Stanko Novaković,

Dejan Kostić, and Ricardo Bianchini. DeepDive: Trans-

parently identifying and managing performance inter-

ference in virtualized environments. In Proceedings of

2013 USENIX Annual Technical Conference (USENIX

ATC), pages 219–230, 2013.

[74] NumPy. https://numpy.org/doc/stable/index.

html, Accessed 2020/01/23.

[75] OpenTracing. https://opentracing.io/, Ac-

cessed 2020/01/23.

[76] Karl Ott and Rabi Mahapatra. Hardware performance

counters for embedded software anomaly detection. In

Proceedings of 2018 IEEE 16th Intl. Conf. on Depend-

able, Autonomic and Secure Computing, the 16th Intl.

Conf. on Pervasive Intelligence and Computing, the 4th

Intl. Conf. on Big Data Intelligence and Computing

and Cyber Science and Technology Congress, pages

528–535. IEEE, 2018.

[77] Dan Paik. Adapt or Die: A microservices

story at Google, December 2016. https:

//www.slideshare.net/apigee/adapt-or-die-

a-microservices-story-at-google, Accessed

2020/01/23.

[78] Panagiotis Patros, Stephen A. MacKay, Kenneth B.

Kent, and Michael Dawson. Investigating resource in-

terference and scaling on multitenant PaaS clouds. In

Proceedings of the 26th Annual International Confer-

ence on Computer Science and Software Engineering,

pages 166–177, 2016.

[79] perf. http://man7.org/linux/man-pages/man1/

perf.1.html, Accessed 2020/01/23.

[80] pmbw: Parallel Memory Bandwidth Benchmark.

https://panthema.net/2013/pmbw/, Accessed

2020/01/23.

[81] Issaret Prachitmutita, Wachirawit Aittinonmongkol,

Nasoret Pojjanasuksakul, Montri Supattatham, and

Praisan Padungweang. Auto-scaling microservices on

IaaS under SLA with cost-effective framework. In Pro-

ceedings of 2018 Tenth International Conference on

Advanced Computational Intelligence (ICACI), pages

583–588. IEEE, 2018.

[82] The Prometheus monitoring system and time se-

ries database. https://github.com/prometheus/

prometheus, Accessed 2020/01/23.

[83] PyTorch. https://pytorch.org/, Accessed

2020/01/23.

[84] Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar

Buyya. Auto-scaling web applications in clouds: A tax-

onomy and survey. ACM Computing Surveys (CSUR),

51(4):1–33, 2018.

822 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://searchengineland.com/google-now-counts-site-speed-as-ranking-factor-39708
https://searchengineland.com/google-now-counts-site-speed-as-ranking-factor-39708
https://github.com/neo4j/neo4j
https://github.com/neo4j/neo4j
https://numpy.org/doc/stable/index.html
https://numpy.org/doc/stable/index.html
https://opentracing.io/
https://www.slideshare.net/apigee/adapt-or-die-a-microservices-story-at-google
https://www.slideshare.net/apigee/adapt-or-die-a-microservices-story-at-google
https://www.slideshare.net/apigee/adapt-or-die-a-microservices-story-at-google
http://man7.org/linux/man-pages/man1/perf.1.html
http://man7.org/linux/man-pages/man1/perf.1.html
https://panthema.net/2013/pmbw/
https://github.com/prometheus/prometheus
https://github.com/prometheus/prometheus
https://pytorch.org/

[85] Nauman Rafique, Won-Taek Lim, and Mithuna Thot-

tethodi. Architectural support for operating system-

driven CMP cache management. In Proceedings of

the 15th International Conference on Parallel Archi-

tectures and Compilation Techniques, pages 2—-12.

Association for Computing Machinery, 2006.

[86] Barath Raghavan, Kashi Vishwanath, Sriram Ramab-

hadran, Kenneth Yocum, and Alex C Snoeren. Cloud

control with distributed rate limiting. ACM SIG-

COMM Computer Communication Review, 37(4):337–

348, 2007.

[87] Charles Reiss, Alexey Tumanov, Gregory R. Ganger,

Randy H. Katz, and Michael A. Kozuch. Heterogene-

ity and dynamicity of clouds at scale: Google trace

analysis. In Proceedings of the Third ACM Symposium

on Cloud Computing (SoCC 12), pages 1–13, 2012.

[88] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski,

Przemyslaw Zych, Przemyslaw Broniek, Jarek Kus-

mierek, Pawel Nowak, Beata Strack, Piotr Witusowski,

Steven Hand, et al. Autopilot: workload autoscaling

at Google. In Proceedings of the Fifteenth European

Conference on Computer Systems, pages 1–16, 2020.

[89] Cristian Satnic. Amazon, Microservices and

the birth of AWS cloud computing, April 2016.

https://www.linkedin.com/pulse/amazon-

microservices-birth-aws-cloud-computing-

cristian-satnic/, Accessed 2020/01/23.

[90] Malte Schwarzkopf, Andy Konwinski, Michael Abd-

El-Malek, and John Wilkes. Omega: Flexible, scalable

schedulers for large compute clusters. In Proceedings

of the 8th ACM European Conference on Computer

Systems, pages 351–364, 2013.

[91] scikit-learn. https://scikit-learn.org/stable/,

Accessed 2020/01/23.

[92] S. Senthil Kumaran. Practical LXC and LXD:

Linux Containers for Virtualization and Orchestration.

Springer, 2017.

[93] Syed Yousaf Shah, Xuan-Hong Dang, and Petros Zer-

fos. Root cause detection using dynamic dependency

graphs from time series data. In Proceedings of

2018 IEEE International Conference on Big Data (Big

Data), pages 1998–2003. IEEE, 2018.

[94] Upendra Sharma, Prashant Shenoy, Sambit Sahu, and

Anees Shaikh. A cost-aware elasticity provisioning

system for the cloud. In Proceedings of 2011 31st

International Conference on Distributed Computing

Systems, pages 559–570. IEEE, 2011.

[95] Benjamin H. Sigelman, Luiz André Barroso, Mike Bur-

rows, Pat Stephenson, Manoj Plakal, Donald Beaver,

Saul Jaspan, and Chandan Shanbhag. Dapper, a large-

scale distributed systems tracing infrastructure. Tech-

nical report, Google, Inc., 2010.

[96] Akshitha Sriraman and Abhishek Dhanotia. Ac-

celerometer: Understanding acceleration opportunities

for data center overheads at hyperscale. In Proceed-

ings of the Twenty-Fifth International Conference on

Architectural Support for Programming Languages and

Operating Systems, pages 733–750, 2020.

[97] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F.

Wenisch. SoftSKU: optimizing server architectures for

microservice diversity@ scale. In Proceedings of the

46th International Symposium on Computer Architec-

ture, pages 513–526, 2019.

[98] Akshitha Sriraman and Thomas F. Wenisch. µsuite: a

benchmark suite for microservices. In Proceedings of

the 2018 IEEE International Symposium on Workload

Characterization (IISWC), pages 1–12. IEEE, 2018.

[99] Akshitha Sriraman and Thomas F. Wenisch. µtune:

Auto-tuned threading for OLDI microservices. In Pro-

ceedings of the 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18), pages

177–194, 2018.

[100] stress-ng. https://wiki.ubuntu.com/Kernel/

Reference/stress-ng, Accessed 2020/01/23.

[101] Sonja Stüdli, M. Corless, Richard H. Middleton, and

Robert Shorten. On the modified AIMD algorithm

for distributed resource management with saturation of

each user’s share. In Proceedings of 2015 54th IEEE

Conference on Decision and Control (CDC), pages

1631–1636. IEEE, 2015.

[102] Sysbench. https://github.com/akopytov/

sysbench, Accessed 2020/01/23.

[103] Sysdig. https://sysdig.com/, Accessed

2020/01/23.

[104] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl.

Processes, motivations, and issues for migrating to mi-

croservices architectures: An empirical investigation.

IEEE Cloud Computing, 4(5):22–32, 2017.

[105] Matthew E. Taylor, Gregory Kuhlmann, and Peter

Stone. Autonomous transfer for reinforcement learn-

ing. In Proceedings of 2008 International Conference

of Autonomous Agents and Multi-Agent Systems (AA-

MAS), pages 283–290, 2008.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 823

https://www.linkedin.com/pulse/amazon-microservices-birth-aws-cloud-computing-cristian-satnic/
https://www.linkedin.com/pulse/amazon-microservices-birth-aws-cloud-computing-cristian-satnic/
https://www.linkedin.com/pulse/amazon-microservices-birth-aws-cloud-computing-cristian-satnic/
https://scikit-learn.org/stable/
https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
https://sysdig.com/

[106] Matthew E. Taylor and Peter Stone. Transfer learning

for reinforcement learning domains: A survey. Journal

of Machine Learning Research, pages 1633–1685, Jul

2009.

[107] tc: Traffic Control in the Linux kernel. https://

linux.die.net/man/8/tc, Accessed 2020/01/23.

[108] Jörg Thalheim, Pramod Bhatotia, Pedro Fonseca, and

Baris Kasikci. Cntr: Lightweight OS containers. In

Proceedings of 2018 USENIX Annual Technical Con-

ference (USENIX ATC ’18), pages 199–212, 2018.

[109] Jörg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus,

Pramod Bhatotia, Ruichuan Chen, Bimal Viswanath,

Lei Jiao, and Christof Fetzer. Sieve: Actionable in-

sights from monitored metrics in distributed systems.

In Proceedings of the 18th ACM/IFIP/USENIX Mid-

dleware Conference, pages 14–27, 2017.

[110] Scott Tonidandel and James M. LeBreton. Relative

importance analysis: A useful supplement to regression

analysis. Journal of Business and Psychology, 26(1):1–

9, 2011.

[111] Instana. https://docs.instana.io/, Accessed

2020/01/23.

[112] Jaeger: Open source, end-to-end distributed trac-

ing. https://jaegertracing.io/, Accessed

2020/01/23.

[113] Lightstep distributed tracing. https://lightstep.

com/distributed-tracing/, Accessed 2020/01/23.

[114] SkyWalking: An application performance moni-

toring system. https://github.com/apache/

skywalking, Accessed 2020/01/23.

[115] OpenZipkin: A distributed tracing system. https:

//zipkin.io/, Accessed 2020/01/23.

[116] Train-Ticket: A train-ticket booking system based on

microservice architecture. https://github.com/

FudanSELab/train-ticket, Accessed 2020/01/23.

[117] Trickle: A lightweight userspace bandwidth shaper.

https://linux.die.net/man/1/trickle, Ac-

cessed 2020/01/23.

[118] Takanori Ueda, Takuya Nakaike, and Moriyoshi Ohara.

Workload characterization for microservices. In

Proceedings of 2016 IEEE International Symposium

on Workload Characterization (IISWC), pages 1–10.

IEEE, 2016.

[119] Abhishek Verma, Luis Pedrosa, Madhukar R. Ko-

rupolu, David Oppenheimer, Eric Tune, and John

Wilkes. Large-scale cluster management at Google

with Borg. In Proceedings of the European Confer-

ence on Computer Systems (EuroSys), pages 1–17, Bor-

deaux, France, 2015.

[120] Xueyang Wang, Sek Chai, Michael Isnardi, Sehoon

Lim, and Ramesh Karri. Hardware performance

counter-based malware identification and detection

with adaptive compressive sensing. ACM Transac-

tions on Architecture and Code Optimization (TACO),

13(1):1–23, 2016.

[121] Jianping Weng, Jessie Hui Wang, Jiahai Yang, and

Yang Yang. Root cause analysis of anomalies of multi-

tier services in public clouds. IEEE/ACM Transactions

on Networking, 26(4):1646–1659, 2018.

[122] Scott White and Padhraic Smyth. Algorithms for es-

timating relative importance in networks. In Proceed-

ings of the Ninth ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, pages

266–275, 2003.

[123] wrk2: An HTTP benchmarking tool based mostly

on wrk. https://github.com/giltene/wrk2, Ac-

cessed 2020/01/23.

[124] Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao.

MicroRCA: Root cause localization of performance

issues in microservices. In Proceedings of 2020

IEEE/IFIP Network Operations and Management Sym-

posium (NOMS), pages 1–9, 2020.

[125] Cui-Qing Yang and Barton Miller. Critical path anal-

ysis for the execution of parallel and distributed pro-

grams. In Proceedings of the 8th International Con-

ference on Distributed Computing Systems (ICDCS),

pages 366–367, 1988.

[126] Zhe Yang, Phuong Nguyen, Haiming Jin, and Klara

Nahrstedt. Miras: Model-based reinforcement learn-

ing for microservice resource allocation over scientific

workflows. In Proceedings of 2019 IEEE 39th Interna-

tional Conference on Distributed Computing Systems

(ICDCS), pages 122–132. IEEE, 2019.

[127] Guangba Yu, Pengfei Chen, and Zibin Zheng. Mi-

croscaler: Automatic scaling for microservices with an

online learning approach. In Proceedings of 2019 IEEE

International Conference on Web Services (ICWS),

pages 68–75. IEEE, 2019.

[128] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wen-

hai Li, and Dan Ding. Fault analysis and debugging

of microservice systems: Industrial survey, benchmark

system, and empirical study. IEEE Transactions on

Software Engineering, 14(8):1–1, 2018.

824 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://linux.die.net/man/8/tc
https://linux.die.net/man/8/tc
https://docs.instana.io/
https://jaegertracing.io/
https://lightstep.com/distributed-tracing/
https://lightstep.com/distributed-tracing/
https://github.com/apache/skywalking
https://github.com/apache/skywalking
https://zipkin.io/
https://zipkin.io/
https://github.com/FudanSELab/train-ticket
https://github.com/FudanSELab/train-ticket
https://linux.die.net/man/1/trickle
https://github.com/giltene/wrk2

A Artifact Appendix

A.1 Abstract

FIRM is publicly available at https://gitlab.engr.

illinois.edu/DEPEND/firm.git. We provide implemen-

tations for FIRM’s SVM-based critical component extraction,

RL-based SLO violation mitigation, and the performance

anomaly injection. In addition, we provide a tracing data set

of the four microservice benchmarks deployed on our dedi-

cated Kubernetes cluster of 15 physical nodes. The data set

was generated by running open-loop workload generation and

performance anomaly injection.

A.2 Artifact Check-list

• Algorithm: FIRM’s critical component extraction includes an

algorithm to find the weighted longest path (i.e., critical path

analysis) from the execution history graph of microservices.

• Model: FIRM’s two-level machine learning architecture includes

an SVM-based critical component extraction model and an RL-

based SLO violation mitigation model. The latter one is designed

based on deep deterministic policy gradient (DDPG).

• Data set: The artifact includes a tracing data set collected by

running four microservice benchmarks [34, 116] in a 15-node

Kubernetes cluster. The microservice benchmarks are driven by

workload generation and performance anomaly injection.

• Hardware: Experiments can run on a cluster of physical nodes

with Intel Cache Allocation Technology (CAT) [48] and Intel

Memory Bandwidth Allocation (MBA) [49] enabled.

• Required disk space: Neo4j [72] requires 10 GB minimum block

storage, and the storage size depends on the size of the database.

• Set-up instructions: Set-up instructions are available at the

README.md file in the repository.

• Public link: https://gitlab.engr.illinois.edu/DEPEND/

firm.git

• Code licenses: Apache License Version 2.0

• Data licenses: CC0 License

A.3 Description

A.3.1 How to Access

The artifact is publicly available at https://gitlab.engr.

illinois.edu/DEPEND/firm.git.

A.3.2 Hardware Dependencies

Experiments can be run on a cluster of physical nodes with

processors that have Intel CAT and MBA technologies en-

abled. They are required for last-level cache partitioning and

memory bandwidth partitioning respectively.

A.3.3 Software Dependencies

Software dependencies are specified at the README.md file,

which includes Kubernetes, Docker-Compose, and Docker.

A.3.4 Data Sets

The tracing data sets of four microservice benchmarks de-

ployed on our dedicated Kubernetes cluster consisting of 15

heterogeneous nodes are also available. The data sets are

not sampled and are from selected types of requests in each

benchmark, i.e., compose-posts in the social network applica-

tion, compose-reviews in the media service application, book-

rooms in the hotel reservation application, and reserve-tickets

in the train ticket booking application. A detailed description

is available at data/README.md.

A.4 Installation

Installation instructions are specified at the README.md file in

the repository.

A.5 Experiment Workflow

Experiments on physical clusters start from deploying the Ku-

bernetes with FIRM. Microservice applications instrumented

with the OpenTracing [75] standard are then deployed in the

Kubernetes cluster. One can also use the instrumented mi-

croservice benchmarks in the repository for experiments. To

drive the experiments, workload generators and performance

anomaly injectors should be configured and installed accord-

ingly. Then the training of FIRM’s ML models is divided into

two phases. In the first phase, the workflow stops at the SLO

violation localization. The SVM model is trained with the

feature data retrieved from the tracing coordinator and the

label data from the performance anomaly injection campaign.

In the second phase, the workflow continues and FIRM’s RL

agent is trained by interacting with the environment.

A.6 Experiment Customization

FIRM’s multilevel ML modeling provides the flexibility of

customizing the algorithms for both SLO violation localiza-

tion and mitigation. The SVM model can be replaced by other

supervised learning models or other heuristics-based meth-

ods. The DDPG algorithm used by the RL agent can also be

replaced by other RL algorithms. The repository consists of

the implementations of other alternative RL models such as

proximal policy optimization (PPO) and policy gradient.

In addition, different types of resources in control are also

configurable in the RL agent and the performance anomaly

injector. That pluggability allows one to add or remove re-

sources, and to change the actions associated with each type

of resource.

A.7 AE Methodology

Submission, reviewing and badging methodology:

• https://www.usenix.org/conference/osdi20/

call-for-artifacts

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 825

https://gitlab.engr.illinois.edu/DEPEND/firm.git
https://gitlab.engr.illinois.edu/DEPEND/firm.git
https://gitlab.engr.illinois.edu/DEPEND/firm.git
https://gitlab.engr.illinois.edu/DEPEND/firm.git
https://gitlab.engr.illinois.edu/DEPEND/firm.git
https://gitlab.engr.illinois.edu/DEPEND/firm.git
https://www.usenix.org/conference/osdi20/call-for-artifacts
https://www.usenix.org/conference/osdi20/call-for-artifacts

Building Scalable and Flexible Cluster Managers Using Declarative Programming

Lalith Suresh, João Loff1, Faria Kalim2, Sangeetha Abdu Jyothi3, Nina Narodytska, Leonid Ryzhyk,

Sahan Gamage, Brian Oki, Pranshu Jain, Michael Gasch

VMware, 1IST (ULisboa) / INESC-ID, 2UIUC, 3UC Irvine and VMware

Abstract

Cluster managers like Kubernetes and OpenStack are noto-

riously hard to develop, given that they routinely grapple with

hard combinatorial optimization problems like load balanc-

ing, placement, scheduling, and configuration. Today, clus-

ter manager developers tackle these problems by developing

system-specific best effort heuristics, which achieve scalabil-

ity by significantly sacrificing the cluster manager’s decision

quality, feature set, and extensibility over time. This is prov-

ing untenable, as solutions for cluster management problems

are routinely developed from scratch in the industry to solve

largely similar problems across different settings.

We propose DCM, a radically different architecture where

developers specify the cluster manager’s behavior declara-

tively, using SQL queries over cluster state stored in a rela-

tional database. From the SQL specification, the DCM com-

piler synthesizes a program that, at runtime, can be invoked

to compute policy-compliant cluster management decisions

given the latest cluster state. Under the covers, the generated

program efficiently encodes the cluster state as an optimiza-

tion problem that can be solved using off-the-shelf solvers,

freeing developers from having to design ad-hoc heuristics.

We show that DCM significantly lowers the barrier to build-

ing scalable and extensible cluster managers. We validate our

claim by powering three production-grade systems with it: a

Kubernetes scheduler, a virtual machine management solu-

tion, and a distributed transactional datastore.

1 Introduction

Today’s data centers are powered by a variety of cluster man-

agers like Kubernetes [10], DRS [47], Openstack [15], and

OpenShift [14]. These systems configure large-scale clusters

and allocate resources to jobs. Whether juggling containers,

virtual machines, micro-services, virtual network appliances,

or serverless functions, these systems must enforce numerous

cluster management policies. Some policies represent hard

constraints, which must hold in any valid system configura-

tion; e.g., “each container must obtain its minimal requested

amount of disk space”. Others are soft constraints, which re-

flect preferences and quality metrics; e.g., “prefer to scatter

replicas across as many racks as possible”. A cluster manager

therefore solves a challenging combinatorial optimization

problem of finding configurations that satisfy hard constraints

while minimizing violations of soft constraints.

Despite the complexity of the largely similar algorith-

mic problems involved, cluster managers in various con-

texts tackle the configuration problem using custom, system-

specific best-effort heuristics—an approach that often leads

to a software engineering dead-end (§2). As new types of poli-

cies are introduced, developers are overwhelmed by having

to write code to solve arbitrary combinations of increasingly

complex constraints. This is unsurprising given that most

cluster management problems involve NP-hard combinato-

rial optimization that cannot be efficiently solved via naive

heuristics. Besides the algorithmic complexity, the lack of

separation between the cluster state, the constraints, and the

constraint-solving algorithm leads to high code complexity

and maintainability challenges, and hinders re-use of clus-

ter manager code across different settings (§2). In practice,

even at a large software vendor we find policy-level feature

additions to cluster managers take months to develop.

Our contribution This paper presents Declarative Cluster

Managers (DCM), a radically different approach to building

cluster managers, wherein the implementation to compute

policy-compliant configurations is synthesized by a compiler

from a high-level specification.

Specifically, developers using DCM maintain cluster state

in a relational database, and declaratively specify the con-

straints that the cluster manager should enforce using SQL.

Given this specification, DCM’s compiler synthesizes a pro-

gram that, at runtime, can be invoked to pull the latest cluster

state from the database and compute a set of policy-compliant

changes to make to that state (e.g., compute optimal place-

ment decisions for newly launched virtual machines). The

generated program – an encoder – encodes the cluster state

and constraints into an optimization model that is then solved

using a constraint solver.

In doing so, DCM significantly lowers the barrier to build-

ing cluster managers that achieve all three of scalability, high

decision quality, and extensibility to add new features and

policies. In contrast, today’s cluster managers use custom

heuristics that heavily sacrifice both decision quality and ex-

tensibility to meet scalability goals (§2).

For scalability, our compiler generates implementations

that construct highly efficient constraint solver encodings that

scale to problem sizes in large clusters (e.g., 53% improved

p99 placement latency in a 500 node cluster over the heavily

optimized Kubernetes scheduler, §6.1).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 827

For high decision quality, the use of constraint solvers

under-the-covers guarantees optimal solutions for the speci-

fied problems, with the freedom to relax the solution quality if

needed (e.g., 4× better load balancing in a commercial virtual

machine resource manager, §6.2).

For extensibility, DCM enforces a strict separation between

the a) cluster state, b) the modular and concise representation

of constraints in SQL, and c) the solving logic. This makes

it easy to add new constraints and non-trivial features (e.g.,

making a Kubernetes scheduler place both pods and virtual

machines in a custom Kubernetes distribution, §6.3).

Several research systems [46, 53, 57, 78, 92] propose to

use constraint solvers for cluster management tasks. These

systems all involve a significant amount of effort from opti-

mization experts to handcraft an encoder for specific problems

with simple, well-defined constraints – let alone encode the

full complexity and feature sets of production-grade cluster

managers (e.g., Kubernetes has 30 policies for driving ini-

tial placement alone). Even simple encoders are challenging

to scale to large problem sizes and are not extensible even

when they do scale (§8). In fact, for these reasons, constraint

solvers remain rarely used within production-grade cluster

managers in the industry-at-large: none of the open-source

cluster managers use solvers and, anecdotally, nor do widely

used enterprise offerings in this space.

Instead, with DCM, developers need not handcraft heuris-

tics nor solver encodings to tackle challenging cluster man-

agement problems.

Providing a capability like DCM is fraught with challenges.

First, cluster managers operate in a variety of modes and

timescales: from incrementally placing new workloads at mil-

lisecond timescales, to periodically performing global recon-

figuration (like load balancing or descheduling); we design a

programming model that is flexible enough to accommodate

these various use cases within a single system (§3). Second,

constraint solvers are not a panacea and are notoriously hard

to scale to large problem sizes. DCM’s compiler uses care-

fully designed optimization passes that bridge the wide chasm

between a high-level SQL specification of a cluster manage-

ment problem and an efficient, low-level representation of an

optimization model – doing so leverages the strengths of the

constraint solver while avoiding its weaknesses (§4).

Summary of results We report in-depth about our experi-

ence building and extending a Kubernetes Scheduler using

DCM. We implement existing policies in Kubernetes in under

20 lines of SQL each. On a 500 node Kubernetes cluster on

AWS, DCM improves 95th percentile pod placement latencies

by up to 2×, is 10× more likely to find feasible placements in

constrained scenarios, and correctly preempts pods 2× faster

than the baseline scheduler. We also report simulation results

with up to 10K node clusters and experiment with non-trivial

extensions to the scheduler, like placing both pods and VMs

within a custom Kubernetes distribution. We also use DCM

DCM Runtime

DCM

Compiler

Solver

Encoder

Schema.sql Constraints.sql

2. Encoder

fetches required

input data from

database

3. Encoder generates

optimization model

and invokes solver 4. Solution

5. Return new

configuration

Optimization

model
Code

generate

User codeUser code

1. User code invokes

generated code via runtime

Figure 1: DCM architecture. Dotted lines show the compila-

tion flow. Solid lines show runtime interactions between the

DCM runtime, user code and the cluster state DB.

to power a commercial virtual machine management solution

where we improved load balancing quality by 4×. Lastly, we

briefly discuss a distributed transactional datastore where we

implemented several features with a few lines of SQL.

2 Motivation

Our motivating concern is that ad-hoc solutions for cluster

management problems are regularly built from scratch in the

industry, due to the wide range of specialized data-center en-

vironments and workloads that organizations have, for which

off-the-shelf solutions do not suffice. Even beyond dedi-

cated cluster managers like Kubernetes [10], OpenStack [15],

and Nomad [50], similar capabilities are routinely embed-

ded within enterprise-grade distributed systems like databases

and storage systems: e.g., for policy-based configuration, data

replication, or load-balancing across machines, all of which

are combinatorial optimization problems.

Today, developers handcraft heuristics to solve these clus-

ter management problems that incur significant engineering

overhead. First, the heuristics are hard to scale to clusters with

hundreds to thousands of nodes; they often require purpose-

built and inflexible pre-computing and caching optimizations

to remain tractable [40,95]. Even then, the heuristics are chal-

lenging to get right as developers have to account for arbitrary

combinations of constraints. Second, the heuristics sacrifice

decision quality to scale (e.g., load balancing quality), which

is not surprising given that combinatorial optimization prob-

lems cannot be solved efficiently via naive heuristics. Third,

they lead to complex code that makes it hard to extend and

evolve the cluster manager over time; it is not uncommon for

policy-level feature additions to take multiple months’ worth

of effort to deliver.

We illustrate the above challenges using Kubernetes as a

representative example.

Kubernetes example The Kubernetes Scheduler is respon-

sible for assigning groups of containers, called pods, to cluster

828 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Policy Description

H1-4 Avoid nodes with resource overload, unavailability or errors

H5 Resource capacity constraints: pods scheduled on a node must not exceed

node’s CPU, memory, and disk capacity

H6 Ensure network ports on host machine requested by pod are available

H7 Respect requests by a pod for specific nodes

H8 If pod is already assigned to a node, do not reassign

H9 Ensure pod is in the same zone as its requested volumes

H10-11 If a node has a ‘taint’ label, ensure pods on that node are configured to

tolerate those taints

H12-13 Node affinity/anti-affinity: pods are affine/anti-affine to nodes according

to configured labels

H14 Inter-pod affinity/anti-affinity: pods are affine/anti-affine to each other

according to configured labels

H15 Pods of the same service must be in the same failure-domain

H16-20 Volume constraints specific to GCE, AWS, Azure.

S1 Spread pods from the same group across nodes

S2-5 Load balance pods according to CPU/Memory load on nodes

S6 Prefer nodes that have matching labels

S7 Inter-pod affinity/anti-affinity by labels

S8 Prefer to not exceed node resource limits

S9 Prefer nodes where container images are already available

Figure 2: Policies from the baseline Kubernetes scheduler,

showing both hard (H) constraints and soft (S) constraints.

nodes (physical or virtual machines). Each pod has a number

of user-supplied attributes describing its resource demand

(CPU, memory, storage, and custom resources) and place-

ment preferences (the pod’s affinity or anti-affinity to other

pods or nodes). These attributes represent hard constraints

that must be satisfied for the pod to be placed on a node (H1–

H20 in Table 2). Kubernetes also supports soft versions of

placement constraints, with a violation cost assigned to each

constraint (S1–S9 in Table 2). Like other task-by-task sched-

ulers [15, 94, 95], the Kubernetes default scheduler uses a

greedy, best-effort heuristic to place one task (pod) at a time,

drawn from a queue. For each pod, the scheduler tries to find

feasible nodes according to the hard constraints, score them

according to the soft constraints, and pick the best-scored

node. Feasibility and scoring are parallelized for speed.

Decision quality: not guaranteed to find feasible, let alone

optimal, placements Pod scheduling is a variant of the mul-

tidimensional bin packing problem [18, 21], which is NP-

hard and cannot, in the general case, be solved efficiently

with greedy algorithms. This is especially the case when the

scheduling problem is tight due to workload consolidation

and users increasingly relying on affinity constraints for per-

formance and availability.

To remain performant, the Kubernetes scheduler only con-

siders a random subset of nodes when scheduling a pod, which

might miss feasible nodes [93]. Furthermore, the scheduler

may commit to placing a pod and deny feasible choices from

pods that are already pending in the scheduler’s queue (a

common weakness among task-by-task schedulers [40]).

Feature limitations: best-effort scheduling does not support

global reconfiguration Many scenarios require the sched-

uler to simultaneously reconfigure arbitrary groups of pods

Node 1 Node 2

Pod

2

Constraints

1. Pod 1 and Pod

2 cannot be in

the same zone

(anti-affinity)

2. Pod 1 is affine

to node 1.

Zone 1

Node 1 Node 2

Pod

2

Zone 1

Scheduler

Queue

Pod

1 Pod

1

Without cross-node preemption

(Pod 1 cannot be placed)

With cross-node preemption

(Lower prio. pod preempted)

X
X

Low Priority

High Priority

Figure 3: An anti-affinity constraint prevents Pod 1 and Pod

2 from being in the same zone, pod 1 is affine to node 1, and

pod 2 has a lower priority than pod 1. Placing pod 1 on node

1 requires evicting pod 2 on node 2.

and nodes. For instance, Figure 3 shows a scenario where a

high priority pod (pod 1) can only be placed on node 1, but to

do so, the scheduler has to preempt a lower priority pod on

node 2. Computing this rearrangement requires simultaneous

reasoning about resource and affinity constraints spanning

multiple pods and nodes, which cannot be achieved in the

current architecture. Thus, although such global reconfigu-

ration is in high demand among users, it is unsupported in

Kubernetes [60, 64].

Extensibility: Best-effort scheduling leads to complex code

Similar to Borg [40, 95], Kubernetes needs careful engineer-

ing to keep scheduling tractable at scale. Several policies like

inter-pod affinity (Table 2-H14) and service affinities (Table 2-

H15) are compute intensive because they require reasoning

over groups of pods. These policies are kept tractable using

carefully designed caching and pre-computing optimizations

that are fragile in the face of evolving requirements. For exam-

ple, it is hard to extend inter-pod affinity policies to specify the

number of pods per node [58,59,61–63], and there are discus-

sions among developers to restrict these policies to make the

code efficient [60]. For similar reasons, there are discussions

among developers to remove the service affinity policy due to

accumulating technical debt around its pre-computing opti-

mizations [69]. Such complexity accumulates to make entire

classes of policies requested by users difficult to implement

in the scheduler [60, 64, 73].

Beyond policy-level extensions, the tight coupling be-

tween the cluster state representation in the scheduler’s data-

structures and the scheduling logic makes it near impossible

to introduce changes to the underlying abstractions (e.g., ex-

tending the scheduler to also place tasks other than pods, like

virtual machines [71]) without a complete rewrite [66].

3 Declarative Programming with DCM

Our position is that developers should specify cluster man-

agement policies using a high-level declarative language, and

let an automated tool like DCM generate the logic that effi-

ciently computes policy-compliant decisions. Architecturally,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 829

it allows the behavior of the cluster manager to be described

and evolved independently of the implementation details.

We use SQL as the declarative language for specifying

policies for multiple reasons. First, it allows us to consistently

describe and manipulate both the cluster state and the con-

straints on that state. Second, it is a battle-tested and widely

known language, which aids adoption. Third, it is sufficiently

expressive that we have not felt the need for designing yet

another DSL (§4.1.1).

We now demonstrate DCM’s capabilities and programming

model with a simplified guide to building a Kubernetes sched-

uler with it. Our scheduler operates as a drop-in replacement

for the default scheduler (§2), supporting all of its capabilities

and adding new ones.

The workflow in a DCM-powered scheduler consists of

three steps (Figure 1). First, the scheduler stores the clus-

ter state in an SQL database based on an SQL schema de-

signed by the developer. Second, the developer extends the

schema with scheduling constraints, also written in SQL. The

compiler generates an encoder based on the constraints and

schema. Third, at runtime, the scheduler invokes the generated

encoder via the DCM library as new pods are added to the

system. The generated encoder pulls the required cluster state

from the database, produces and solves an optimization model

that is parameterized by that state, and outputs the required

scheduling decisions.

Cluster state database Kubernetes stores all state (of

nodes and pods) in an etcd [36] cluster. The default sched-

uler maintains a cache of relevant parts of this state locally

using in-memory data structures. In DCM, we replace this

cache with an in-memory embedded SQL database (H2 [4])

and specify an SQL schema (tables and views) to represent

the cluster state. Currently, the schema uses 18 tables and 12

views to describe the set of pods, nodes, volumes, container

images, pod labels, node labels, and other cluster state. The

developer annotates some columns in the schema as deci-

sion variables, i.e., variables to be assigned automatically by

DCM. For example, a placement decision of a pod on a node

is represented by the table in Figure 4 with decision variables

(node_name) annotated as @variable_columns and other

input variables supplied by the database.

Constraints Next, the developer specifies constraints

against the cluster state as a collection of SQL views. DCM

supports both hard and soft constraints, encompassing all the

cluster management policies that the system must enforce.

Hard constraints are specified as SQL views with the anno-

tation @hard_constraint. For example, consider the con-

straint in Figure 5, which states that pod P can be scheduled

on node N if N has not been marked unschedulable by the

operator, is not under resource pressure, and reports as being

ready to accept new pods. We implement this by declaring a

view, constraint_node_predicates, with a check clause

-- @variable_columns (node_name)

create table pods_to_assign

(

pod_name varchar(100) not null primary key,

status varchar(10) not null,

namespace varchar(100) not null,

node_name varchar(100),

... -- more columns

);

Figure 4: A table describing pods waiting to be scheduled. The

@variable_columns annotation indicates that the node_name col-

umn should be treated as a set of decision variables. Other columns

are input variables, whose values are supplied by the database.

create view valid_nodes as

select node_name from node_info

where unschedulable = false and memory_pressure = false

and out_of_disk = false and disk_pressure = false

and pid_pressure = false and network_unavailable = false

and ready = true;

-- @hard_constraint

create view constraint_node_predicates as

select * from pods_to_assign

check (node_name in (select node_name from valid_nodes));

Figure 5: A hard constraint to ensure pods that are pending place-

ment are never assigned to nodes that are marked unschedulable by

the operator, are under resource pressure, or do not self-report as

being ready to accept new pod requests.

that asserts that all pods must be assigned to nodes from the

valid_nodes view computed in the database.

Soft constraints are also specified as SQL views with anno-

tation @soft_constraint and contain a single record stor-

ing an integer value. DCM ensures that the computed solution

maximizes the sum of all soft constraints. For example, con-

sider CPU utilization load balancing policy across nodes in a

cluster (Figure 6). We first write a convenience view (spare_-

capacity_per_node) that computes the spare CPU capacity

after pod placement. We then describe a soft constraint view

(constraint_load_balance_cpu) on the minimum spare

capacity in the cluster. This forces DCM to compute solutions

that maximize the minimum CPU utilization of nodes, thereby

spreading pods across the cluster.

Compiler and runtime The DCM interface for program-

mers is shown in (Figure 8). The first step is invoking the

DCM compiler using the schema and constraints as input.

This generates a program (e.g., a Java program – §4.1.2) that

pulls the required tables from the database, constructs an op-

timization model, and solves it using a constraint solver. The

generated program is compiled using the relevant toolchain

(e.g., javac – §4.1.2) and loaded into memory. The compiler

returns a Model object that wraps the loaded program.

When pods are added to the system, the scheduler updates

the relevant tables (like pods_to_assign). The scheduler

830 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

create view spare_capacity_per_node as

select (node.available_cpu_capacity

- sum(pods_to_assign.cpu_request)) as cpu_spare

from node join pods_to_assign

on pods_to_assign.node_name = node.name

group by node.name;

-- @soft_constraint

create view constraint_load_balance_cpu as

select min(cpu_spare) from spare_capacity_per_node;

Figure 6: A soft constraint that maximizes the minimum spare CPU

capacity in the cluster for load balancing.

-- @hard_constraint

create view constraint_node_affinity as

select * from pods_to_assign

check (pods_to_assign.has_requested_node_affinity = false

or pods_to_assign.node_name in

(select node_name

from candidate_nodes_for_pods

where pods_to_assign.pod_name =

candidate_nodes_for_pods.pod_name));

Figure 7: A membership constraint to describe node affinity (the

pod must only be assigned to nodes it is affine to, as computed in

another view candidate_nodes_for_pods)

then invokes model.solve() (Figure 8) to find an optimal

placement for these pods by assigning values to pods_to_as-

sign.node_name according to the specified constraints. The

call returns a copy of the pods_to_assign table with the

node_name column reflecting the computed optimal place-

ment. The scheduler then uses this data to issue placement

commands for each pod via the Kubernetes scheduling API

(the same API used by the default scheduler).

Note that DCM treats the state database as the input to

every call to model.solve(). It does not (and cannot) as-

sume the cluster configuration changes based on the computed

solution, because the caller may choose not to apply the solu-

tion, there may be errors during reconfiguration or numerous

other external events. This is in sharp contrast to prior art that

uses handcrafted solver encodings for specific cluster man-

agement tasks, where all the cluster state is duplicated within

the solver’s memory [40, 53, 57, 92] (§8).

Supporting diverse cluster management tasks and tun-

able search scopes DCM enables developers to arbitrarily

tune the search space of a problem by controlling the data

within the input tables and views. For example, consider the

the set of pods in the pods_to_assign table. For fast in-

cremental initial placement, we can populate the table with

a fixed size batch of newly created pods only, and compute

placement decisions for the entire batch at a time. For a pod

preemption model (a kind of global reconfiguration), we pop-

ulate the same table with previously placed pods and specify

additional constraints that assign a bounded number of pods

to a “null node“ (representing preemption). Similarly, the

Operation Description

model = DCM.compile(schema) Invoke DCM compiler to synthesize an en-

coder from the SQL schema and constraints

model.connect(db) Establish JDBC connection to the state DB

model.solve(timeout) Solve constraints and return a set of tables

Figure 8: DCM interface

scheduler may dynamically sample the subset of nodes to be

considered for placement in a given iteration.

In this manner, DCM allows developers to easily instanti-

ate models that solve different sub-problems within a clus-

ter manager. We implemented three models in our Kuber-

netes scheduler: one for fast initial placement, a slower

timescale pre-emption model, and an admin-triggered tool

for de-scheduling [68] which can be used to recover capacity

from highly utilized nodes by terminating pods.

4 DCM Design

As we show in §3, DCM enables programmers to specify

cluster management policies using a high-level declarative

language familiar to most programmers, and code generate

the logic that efficiently computes policy-compliant decisions.

However, we have to address several key challenges to realize

such a capability.

First, given the amount of expertise that is typically re-

quired to handcraft efficient optimization models and encod-

ings, it is non-trivial to bridge the gap between the SQL repre-

sentation of a problem and the generation of a corresponding

encoder that interacts with solvers via their respective low-

level APIs. We discuss how the DCM compiler synthesizes

efficient encoders in §4.1.

Second, given that programmers need systematic ways to

test and debug the policies that they write, we describe how we

leverage a common solver capability of finding unsatisfiable

cores to aid in debugging (§4.2).

4.1 DCM compiler

The DCM compiler generates an encoder that produces op-

timization models according to the database schema and the

constraints specified by the developer.

4.1.1 Syntax and expressiveness

The compiler accepts input SQL tables with variable columns

of type integer, boolean, and string (floating point is sup-

ported if the backend solver supports it, like Gecode [2]).

The compiler supports a subset of the SQL query language

for constraint specification, including most commonly used

constructs (inner join, anti-join, group by, aggregate queries,

sub-queries, correlated sub-queries as seen in Figures 5 and 6,

ARRAY columns), arithmetic and logical expressions (standard

Boolean operators, linear arithmetic, comparisons over inte-

gers, and equality checks over strings), standard SQL aggre-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 831

for (int t1_it = 0; t1_it < t1.size(); t1_it++) {
for (int t2_it = 0; t2_it < t2.size(); t2_it++) {
if (t1.get(t1_it).getB() == t2.get(t2_it).getB()

&& t2_e. get(t2_it).getE() == 10) {
IntVar i1 = model.newIntVar(...);
model.addProductEquality(i1,

new IntVar[]{t1.get(t1_it).getCVar(),
t2.get(t2_it).getDVar()});

model.addEquality(t1_c[t1_it], i1);
}

}}

create view constraint_1 as
select * from t1 join t2 on t1.b = t2.b
where t2.e == 10
check(t1.c * t2.d = t2.c)

[check(t1_c[i] * t2_d[i] == t2_c[j])
| i -> range(t1), j -> range(t2),

where t1.b == t2.b AND t2.e == 10]

Phase 1, SQL

Parsing, program

analysis

Phase 2, IR

Convert to list

comprehension IR,

optimization passes

Phase 3, Backend

Backend-specific

optimization passes,

generate code to

efficiently traverse

input tables and

encode checks into

low-level constraints

Figure 9: System compiler workflow, showing a simple SQL

query, its representation in the IR as a list comprehension, and

a simplified version of the corresponding generated code by

our or-tools backend.

gate functions (sum, min, max, count), and additional aggre-

gates that help in constraint modeling (e.g., the all_differ-

ent aggregate which enforces pair-wise inequalities among a

set of variables (§4.1.3)). The compiler is extensible, allow-

ing user-defined aggregates to be added with a few lines of

code. We also take special care in dealing with SQL nulls,

depending on the backend.

Both SQL tables and views computed in the database can

be used as input relations for hard and soft constraints (Fig-

ures 5 and 6). This allows developers to efficiently construct

inputs for a DCM model by exploiting the full extent of the

SQL syntax and capabilities supported by the database. For

example, the database can efficiently process joins to compute

the required inputs for a model.

Using this syntax, we were able to compactly specify all

hard and soft constraints encountered in our case studies,

including resource capacity, affinity, anti-affinity, and load

balancing constraints along various axes. SQL is signifi-

cantly more concise than the low-level interfaces supported by

solvers, with an SQL view compiling down to many low-level

constraints.

4.1.2 Compiler workflow

Figure 9 shows the compiler’s workflow in generating an

encoder from the high-level SQL. The example shown is

simplified Java generated by our OR-tools backend.

Phase 1, SQL Internally, the SQL parser first extracts all

table and view definitions from the supplied database schema,

and produces syntax trees for all the hard and soft constraints.

It then performs a series of passes over the queries to in-

fer whether parts of the constraints can be evaluated in the

database. For example, 1) simple sub-queries that do not in-

volve variables are better evaluated in the database rather than

in the generated encoder or the solver, 2) some backends (like

Minizinc) cannot efficiently compute the groups produced by

an SQL group by because they cannot represent tuples – we

can compute these groups in the database as well.

Phase 2, Intermediate representation Next, the compiler

converts the query to an intermediate representation (IR)

based on list-comprehension syntax [37]. In Figure 9, the SQL

query is simplified in the IR as nested for loops and a filter-

ing condition (instead of tables and predicates across various

clauses of the SQL query). In general, the list comprehension

syntax makes it easy to apply standard query optimization al-

gorithms (like unnesting subqueries). It has been well-studied

in the database community [23, 24, 37, 45, 55, 56].

Phase 3, Backend The compiler backend generates a pro-

gram that produces an optimization model by interacting with

the interfaces exposed by specific solver toolkits, e.g., setting

up linear inequalities for an ILP solver. The IR facilitates

support for multiple backends, allowing systems to benefit

from different types of solvers. Regardless of the backend,

the generated encoders prepare optimization models where

variables and constraints are parameterized by the content

of the cluster state database. At runtime, the encoder binds

these variables to values extracted from the database before

dispatching the optimization model to the solver.

OR-tools CP-SAT: Our ‘flagship’ backend generates en-

coders for the Google OR-tools CP-SAT solver [3]. It gener-

ates Java code to pull cluster state from the database at runtime

and iterate over the state to encode constraints efficiently us-

ing the CP-SAT solver APIs. It translates joins into hash-table

based accesses when feasible (e.g., equality-based joins using

primary keys, unique columns specified via the use of SQL

distinct), or into nested for loops otherwise (Figure 9). We

generate several utility classes to aid the encoding (like type-

safe tuple classes to refer to records from different tables).

The backend performs common sub-expression elimination

within the generated code fragments (e.g., when computing a

complex expression within if or for blocks).

MiniZinc: Our initial DCM prototype interacted with the

MiniZinc toolkit [80], which exposes a high-level constraint

modeling language, and thereby supports integration with a

variety of solvers. However, despite our best efforts, we could

not scale it to clusters larger than 50-100 nodes due to the

limited control we have over Minizinc encodings. However,

we use it to interface with tools for debugging models §4.2.

4.1.3 Generating scalable encodings

We now discuss details of our backend for the Google

OR-tools CP-SAT solver [3]. A CP-solver encoding speci-

fies different constraints over input variables. For example,

to encode a simple intermediate expression a = (b < 10), we

need to introduce a constraint b < 10, and link the truth value

832 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

// Unfixed arity

sum([1 | i -> range(t1)

where t1.c1[i] = 10])

// Fixed arity

sum([(t1.c1[i] = 10)

| i -> range(t1)])

Figure 10: Two equivalent IR expressions to compute the sum

over a subset of a variable column (t1.c1).

24564 ms
6236 ms 5002 ms

150 ms 85 ms

10

1000

100000

MiniZinc
Fixed Arity

Fixed
Arity

Scalar
Product

Cumulative
Global

Half
Reification

T
im

e
 (

m
s
)

Figure 11: Effect of different optimizations in our or-tools

backend on the runtime of a benchmark model (Figure 6). Not

shown are option types, where runtimes exceed a minute.

of that constraint to a by introducing two more constraints

a → (b < 10) and ¬a → (b ≥ 10) (a process called full reifi-

cation). At a high-level, CP-solvers find feasible solutions

via a combination of search and propagation: at each node of

the search tree, the solver iteratively changes the domain of

a variable, causing constraints linked to that variable to up-

date other variables they are linked to, and so on until a fixed

point is reached. Therefore, every additional constraint and

auxiliary variable we introduce impacts solver performance.

In short, like any constraint solver, the CP-SAT solver’s

performance is highly sensitive to the encoding (two equiva-

lent encodings often result in vastly different solver runtimes).

Hence, we employ various optimizations in DCM compiler

based on structural information extracted from the SQL pro-

gram and IR, to generate encoders that produce efficient mod-

els.

The key takeaway is that a literal translation of SQL queries

into an encoding is not scalable, we therefore have to find

smarter encodings. We do so by using re-writing rules that

mimic what an optimization expert would otherwise handcraft

into an encoder. We describe the impact of these rules using

a benchmark that is bottlenecked by the spare_capacity_-

per_node view in Figure 6.

Re-writing to use fixed arity Consider the two expressions

in our IR shown in Figure 10. Both these statements corre-

spond to a high-level SQL operation to compute the number

of elements in a variable column with values equal to 10.

In the first case, we cannot statically determine the size of

the filtered list in our encoder, because the values of the vari-

ables (and therefore the arity of the list to sum) are not fixed

yet. The general way to encode such an expression is to use

option types [75], where a variable might be ‘absent’. How-

ever, several auxiliary variables and constraints need to be

introduced to encode such an expression using option types.

This problem is exacerbated by the join in spare_capac-

ity_per_node, and where we do not know the arity of the

produced table. An option type encoding for 1000 nodes and

50 pods for this view produces roughly 200K auxiliary vari-

ables and 400K constraints, and makes our benchmark take

more than a minute to complete.

Another approach is to avoid option types, and instead,

compute a sum of predicates (Figure 10), which achieves the

same result because the predicates evaluate to 0 or 1. Doing

so keeps the number of auxiliary variables proportional to the

number of predicates to evaluate, and brings the benchmark’s

runtime from minutes to 6.2s (Figure 11). The same encoding

in MiniZinc takes 24s to solve, representing the inefficiencies

introduced by high-level modeling frameworks.

Re-writing to use scalar products Re-writing to use fixed

arity introduces O(|pods| ∗ |nodes|) reified boolean variables

and constraints to encode whether a particular combination

of rows from both tables appear in the final result set, which

is then used to compute the sums required to specify hard

constraints (like capacity bounds) and soft constraints (like

load balancing requirements). Rather than naively iterate row

by row to create several auxiliary variables that are summed

to compute the load, our compiler infers that we are effec-

tively computing a scalar product between two vectors, which

can be expressed more efficiently with fewer auxiliary vari-

ables, which improves runtime by 20% (Figure 11). However,

this does not still eliminate the O(|pods| ∗ |nodes|) boolean

variables and is still prohibitively slow for large clusters.

Re-writing to use global constraints Global constraints

are constraints over groups of variables for which solvers

implement specialized and efficient propagator algorithms

that dramatically reduce the search space of the problem. En-

coding a problem using global constraints is key to scaling

optimization models to large problem sizes because they typi-

cally avoid the need to generate too many auxiliary variables

and constraints that burden the solver.

The join discussed above can be further optimized by using

global constraints. Observe that we compute the load so that

we can specify a capacity constraint on it (the load should be

less than a constant). We can therefore detect this possibility

and generate code to encode the join and the capacity con-

straint together as an interval packing problem: given a set

of interval variables I1, I2 . . . In of lengths S1,S2 . . .Sn, with de-

mands D1,D2...Dn pack them onto a timeline represented by

the intervals, such that the total demand at any given instant

of time is less than a capacity C (here, each interval variable

represents a cell on the variable column, whereas the timeline

represents rows on the column being joined to). This allows us

to use a well known global constraint, cumulative. Crucially,

this non-trivial encoding only introduces O(|pods|+ |nodes|)
auxiliary variables (instead of O(|pods| ∗ |nodes|)), that al-

lows us to scale that SQL query to large cluster sizes, leading

to a 96% reduction in runtime over the previous optimization

in our benchmark (Figure 11).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 833

Another example of a global constraint is the all_differ-

ent constraint that ensures a group of variables take different

values (a common pattern in various anti-affinity policies). We

also leverage membership global constraints where possible

to encode the SQL IN operator.

As we mention in §4.1.1, we provide a suite of custom

aggregate functions that developers may use in their models:

these functions take advantage of the above global constraints

under the covers.

Full- versus half-reification We already mentioned full

reification (e.g., a ↔ (b < 10)). In several cases, it is both

correct and more efficient to only introduce half reified con-

straints of the form a → (b < 10), because it introduces only

half the constraints. Doing so is particularly effective to en-

code soft constraints for placement preferences in the fol-

lowing form: b → (var = A∨ var = B . . .) (the solver tries

to maximize b, which coaxes var to draw from a pool of

preferred values). Again, using structural information from

the IR, we can statically determine when we only need half-

reified expressions. In our benchmark, this further yields a

43% improvement in performance (Figure 11).

4.2 Testing and debugging models

An important concern in using DCM is understanding why

the cluster manager failed in finding a valid solution (e.g., a

pod placement decision). Did the cluster run out of resources?

Did the user mistakenly specify mutually contradicting con-

straints, e.g., affinity and anti-affinity over the same group

of pods? Or was there a bug in the developer’s constraint

specification? DCM improves debuggability by taking advan-

tage of a common solver capability: identifying unsatisfiable

cores [72]. An unsatisfiable core is a minimal subset of model

constraints and inputs that suffices to make the overall prob-

lem unsatisfiable (e.g., a single input variable that cannot

simultaneously satisfy two contradicting constraints).

We leverage this capability by providing a translation layer

that extracts an unsatisfiable core from the solver and identi-

fies corresponding SQL constraints and records in the tables

that lead to a contradiction. We found this invaluable when de-

bugging complex scenarios involving affinity and anti-affinity

constraints. For example, a common pattern we experienced

when adding and testing new affinity policies was that the new

policy tightened the problem, and therefore triggered a viola-

tion of some other constraint in the system (such as resource

capacity constraints). Rather than suspect a bug in our spec-

ification of the new policy, the unsatisfiable core rightfully

points us to the contradiction between the capacity constraint

and the affinity requirement.

4.3 Implementation

Our DCM implementation is 6.1K LoC in Java for the library

and an additional 2.7K LoC for tests. Of this, the OR-tools

and MiniZinc backends take up roughly 2K and 1K LOC,

respectively. We use the JOOQ library [8] to conveniently in-

terface with different SQL databases. All our experiments use

the OR-Tools backend, given that MiniZinc simply does not

scale to large cluster sizes. Our implementation is available

as an open-source project [17].

5 Experience using DCM

We now describe the three case studies we applied DCM to,

and qualitatively assess the development effort to do so. The

case studies are presented in the reverse chronological order

in which we applied DCM; we found that the overall design

and SQL-based programming model were stable throughout

the process, even though we did harden DCM along the way.

DCM’s ability to compute unsatisfiable cores (§4.2) were

invaluable in all these efforts.

Kubernetes scheduler This use case is both our most re-

cent and most comprehensive application of DCM. Like the

Kubernetes default scheduler, our scheduler also runs as a pod

within Kubernetes and uses the same REST APIs and hooks

to consume and actuate upon the Kubernetes’ cluster state.

Our scheduler consumes the same cluster metadata (informa-

tion about nodes, pods, labels, and other input information)

as the default scheduler to make scheduling decisions. Our

scheduler uses an embedded in-memory SQL database (H2)

as a cache of the cluster state, which is used to serve inputs to

model.solve() (§3). It computes scheduling decisions for

a batch of pods at a time.

Our scheduler is implemented in ~1.5K lines of Java code,

with 1.8K lines of code for tests. Roughly half the scheduler’s

code is boilerplate to subscribe to Kubernetes’ state and store

it in an in-memory SQL database (H2 [4]). All the tables,

views, and policies amount to ~550 lines of SQL. We imple-

mented all policies in Table 2, except H16-20, as they were

specific to volume management on GCE, AWS, and Azure.

Of the 550 lines of SQL, roughly two-thirds describe input

tables and views that are executed entirely in the database,

whereas the rest were used to describe constraints. We were

able to handle heavy and complex joins in the database (e.g.

computing groups of pods that repel each other due to in-

ter pod anti-affinity). Support for SQL ARRAY columns was

critical to bounding the size of inputs to DCM.

We spent the vast majority of our effort trying to under-

stand Kubernetes’ semantics. Particularly, Kubernetes’ match

expression logic, a DSL used to filter objects based on la-

bels, was widely used within several policies supported by

the scheduler (taints, tolerations, node/pod (anti) affinities,

etc.). Its semantics differed arbitrarily across policies (multi-

ple affinity requirements for nodes were treated as a logical

OR, whereas the equivalent for pods was treated as a logical

AND [11, 12, 90]). Once we understood the semantics, trans-

lating the requirements into SQL was straightforward: it took

834 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

a few hours per policy to design and code (i) the schema and

constraints, (ii) the logic to write Kubernetes’ state into the

database, and (iii) the required unit and integration tests.

Most of the time and effort in performance engineering the

scheduler went into ensuring that the views executed by the

database used the right indexes. While these views could all

be expressed concisely in SQL (<20 LOC), the most concise

SQL was sometimes not the most performant. For example,

an OR in some join predicates caused H2 to not use indexes

and revert to scans. We had to split these queries into two and

UNION the results together to meet our performance needs [6].

In another case, we used triggers to simulate materialized

views [5], to incrementally update resource reservation coun-

ters on each node as pods were placed (rather than compute

these statistics each time using a join during pod placement).

VM load balancing utility We built a tool for suggesting

VM migrations in a commercial data-center management

solution. The system has a resource manager that makes

VM placement decisions at various timescales. At slower

timescales (e.g., every five minutes), the system introspects

the state of the entire cluster and identifies a series of VM

migrations to make, with the objective of reducing the overall

standard deviation of node resource utilization (along multiple

resource dimensions). We apply DCM to improve load balanc-

ing in §6.2. The load balancing and capacity constraints we

introduced were structurally similar to the ones we specified

in our Kubernetes use case.

Distributed transactional datastore We implemented a

management plane from scratch for a distributed transactional

data platform used in a commercial product. Nodes in the

system assume one or more ‘roles’, such as being a serial-

izer (as in Megastore [20], Omid [25]), a backup serializer,

data nodes (that host data shards and replicas), or manage-

ment nodes. We apply DCM to the management node logic,

supporting several requirements provided by engineers. We

replicated existing failure handling policies and added new

capabilities like distributing roles across nodes, and rack-

aware placement of data shards. All policies used <10 lines

of SQL, as the system was simple compared to our other use

cases.

6 Evaluation

The premise of our work is that DCM is a viable approach

to building cluster managers that can (Q1) scale, (Q2) com-

pute high-quality decisions, and (Q3) be easily extended. We

answer these questions as follows:

Q1: For scalability: we study the Kubernetes scheduler we

built using DCM and evaluate it on a 500 node cluster on

Amazon EC2 using workload characteristics from Azure [77].

We use simulations to study scalability up to 10K nodes.

Q2: For decision quality: we study scenarios involving our

Kubernetes scheduler as well as the load balancer we built for

the commercial virtual machine management platform.

Q3: For extensibility: we were able to express all cluster

management policies in our three use cases using SQL. In

addition, we discuss a non-trivial extension we built for our

Kubernetes scheduler using DCM.

6.1 Q1: Scalability evaluation

We set up a 500 node Kubernetes cluster running on AWS.1

We use t3.2xlarge instances (8 vCPUs, 32 GB RAM) for the

Kubernetes master node and t3.small instances for worker

nodes, given that in these experiments, the focus is on the

schedulers running on the master node.

Workload We use a publicly available trace from

Azure [77], that describes a month’s worth of workload infor-

mation for two million VMs in 20192. It gives us a trace of

replicas that were launched, with their corresponding CPU

and memory reservations. We replay 14 hours worth of traces

and speed them up by 20× to achieve arrival rates seen in

Borg clusters at Google [95] (median/peak of 100/500 pod

creations per second). We then replay three variants of the

workload, each with a fraction F of replica groups configured

with inter-pod anti affinities within the group; F = 100% is a

Kubernetes best practice for availability reasons [1], and users

even run automated tools like kube-score [9] to prevent

pods from being deployed without anti-affinities configured.

The anti-affinity policy is a challenging constraint because

it requires reasoning across groups of pods and uses several

handcrafted performance optimizations in the Kubernetes de-

fault scheduler (§2). In addition, the workload also exercises

most hard and soft constraints shown in Table 2.

End-to-end latency results Figure 12 shows the end-to-

end latency for bringing up pods on the AWS cluster, for

different values of F. The latency is measured from when

the workload generator issues a pod creation command to

when the pod first changes its status to Running. The default

scheduler’s end-to-end latency degrades as more pods are con-

figured with anti-affinity constraints, with its 95th percentile

latency degrading from 4.14s at F = 0 to 12.45s at F = 100.

On the other hand, DCM incurs a higher latency than the de-

fault scheduler at F = 0 due to the added latency in its critical

path from the database and solver (p95 of 5.33s). However,

DCM’s end-to-end latency characteristics are insensitive to

the fraction of pods configured with constraints (ECDFs for

DCM are identical across all F , Figure 12). At F = 100, DCM

improves the 95th percentile end-to-end latency over the de-

fault scheduler by 53% (5.9s vs 12.45s).

1Kubernetes requires careful configuration and tuning to scale beyond

500 nodes. Even at this size, we had to overcome several issues around

networking, kubelet failures, and API throttling to stabilize the cluster [27,70].

We defer to simulations to stress DCM beyond 500 nodes.
2Our results are qualitatively similar when using the 2017 trace.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 835

F
=

0
%

F
=

5
0

%
F

=
1

0
0

%

1 2 3 4 5 6 7 8 9 1011121314151617181920

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

End−to−end pod creation latency (s)

E
C

D
F

DCM default−scheduler (sampling)

Figure 12: End-to-end pod creation latency on a 500 node

AWS cluster, using workload characteristics from the Azure

2019 trace [77] (trace sped up by 20×). F is the percentage

of pods configured with anti-affinity constraints.

Note that our scheduler evaluates all nodes per scheduling

decision, whereas the default scheduler only evaluates half

the nodes in the cluster for scalability reasons (the number of

nodes sampled depends on the total cluster size [93]). When

we configured the Kubernetes scheduler to evaluate all nodes,

its average latency doubled over DCM. Furthermore, the de-

fault scheduler incurs a significant amount of engineering

complexity in the form of caching and pre-computing opti-

mizations for the sole purpose of speeding up anti-affinity

predicates. In contrast, DCM only required a simple SQL

specification of the same constraints using 4 SQL views.

Per-pod scheduling latency Figure 13 shows the per-pod

scheduling latency for DCM versus the baseline. For DCM,

we measure the amortized latency over a batch of pods (maxi-

mum batch size of 50 pods), which includes the time taken

for querying data from the database, creating a model based

on the input data, running the solver, and returning results

to the calling code. For Kubernetes, to be conservative, we

only measure the time taken to execute all predicates and

priorities for a pod once that pod is pulled from the sched-

uler’s work queue. DCM’s scheduling latency is competitive

with the baseline at F = 0: DCM experiences a median (p95)

pod scheduling latency of 3.11ms (14.46ms) versus 2.55ms

(6.19ms) for the default scheduler. However, DCM’s per-pod

scheduling latency is similar across all tested values of F ,

whereas the default scheduler’s latency increases significantly

with F . At F = 100, DCM improves average latency by 1.6×

(5.13ms versus 8.04ms). The p95 latency for DCM to sched-

ule a batch of pods stayed under 250ms in all cases. DCM’s

ability to schedule a batch of pods at a time is what leads

to larger absolute savings in end-to-end latency (Figure 12)

versus the per-pod scheduling latency.

F
=

0
%

F
=

5
0

%
F

=
1

0
0

%

1 2 3 4 5 10 20 30 4050 100

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Scheduling Latency (ms)

E
C

D
F

DCM default−scheduler (sampling)

Figure 13: Per-pod scheduling latency at 20× trace speed up

(log-scale). Despite our use of a full-featured SQL database

and a constraint solver in the critical path, DCM improves

per-pod scheduling latency at higher values of F .

#Nodes N=500 N=5K N=10K

#Variables 5524 45983 91010

Table 1: Average number of model variables before the OR-

tools presolve phase.

DCM scheduling latency breakdown Figure 14 breaks

down the scheduling latency in DCM by its various

phases: the time to fetch inputs from the database

(database), to encode the inputs into an optimization model

(modelCreation), and to run the solver (orToolsTotal).

We also plot the time spent within the or-tools presolve phase

(presolve), where the solver applies several complex op-

timizations to simplify the supplied encoding. dcmSolve

subsumes modelCreation and orToolsTotal. The sum of

dcmSolve and database equals the total scheduling latency.

At a cluster size of 500 and F = 0, fetching the required in-

puts from the database is inexpensive (mean 0.58ms per-pod)

compared to invoking the solver (2.8ms per-pod) (Figure 14).

DCM’s generated code is highly efficient at model creation,

contributing an average latency of 450µs per-pod. Similarly,

presolve times are also low, staying around 2.5ms for 95%

of cases. As we increase F , the database’s latency gradually

increases (mean 0.88ms) due to the views computed in the

database for finding groups of pods that repel each other, but

the increase remains small relative to the overall latency. Im-

portantly, solver latency is largely unaffected by the more

complex constraints.

Effect of increased cluster sizes To study the impact of

cluster size and scale on DCM, we turn to simulations. This

is straightforward to do in our scheduler implementation: we

simply mock the Kubernetes API, mimicking cluster sizes of

500, 5000, and 10000 nodes. It allows us to replay the same

Azure traces against an identical DCM scheduler, but subject

the system to a variety of scales and loads. To stress DCM,

836 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

F
=

0
%

F
=

5
0

%
F

=
1

0
0

%

0.01 0.10 1.00 10.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Latency (ms)

E
C

D
F

database

dcmSolve

modelCreation

orToolsTotal

presolve

Figure 14: Scheduling latency breakdown between time spent

fetching input data from the database (database), our gener-

ated code creating an optimization model (modelCreation),

the ‘pre-solve’ phase in or-tools (presolve), and the total

solve time in or-tools (orToolsTotal).

we speed up the trace by 100× and set F = 100%.

We observe the scheduling latency breakdowns again in

Figure 15. At 5K node scale, the per-pod scheduling latency

is under 13ms (and 690ms per batch) 99% of the time. At

10K node scale, however, the p99 per-pod scheduling latency

is 30ms and 1.6s per batch, which is high. To dig deeper,

note that the relative contributions of the database and the

constraint solver to the overall latency widen with increasing

cluster size. As we mentioned before, our scheduler consid-

ers all nodes when placing pods, which shifts more of the

burden to the solver as cluster sizes increase. We note that

the presolve phase is the primary contributor to the over-

all latency. This is because of an API limitation in OR-tools

around creating interval variables (§4.1.3).

In particular, there are steps within the solver’s presolve

pass that we could perform efficiently during model creation,

but the OR-tools API is not rich enough to permit. This forces

our generated code to construct models with redundant vari-

ables (proportional to the number of nodes) that the solver

internally tidies up into a more compact encoding (specifically,

when encoding our capacity constraints). Table 1 shows the

average model sizes generated by our encoder – the presolve

phase trims these models down by an order of magnitude.

The added cost of repeatedly performing this step on every

scheduling decision is acceptable at cluster sizes of up to 5000

nodes (< 1ms at N = 500 and < 8ms at N = 5K, Figure 15).

We are reaching out to the or-tools developers to see if the

API can be augmented to avoid this cost.

6.2 Q2: Decision quality evaluation

Kubernetes packing efficiency for higher consolidation

We now evaluate a common enterprise data center scenario,

N
=

5
0

0
N

=
5

0
0

0
N

=
1

0
0

0
0

0.1 1.0 10.0 100.0

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Latency (ms)

E
C

D
F

database

dcmSolve

modelCreation

orToolsTotal

presolve

Figure 15: Simulation: scheduling latency breakdown at dif-

ferent cluster sizes. Per-pod scheduling latencies stay under

30ms even at 10K node scale. At 5K and 10K node scales,

the presolve phase of the solver dominates.

where cluster sizes are typically small (under fifty nodes), but

consolidation rates need to be kept high. In such scenarios, it

is imperative for schedulers to find feasible and dense pack-

ings. We use a common pod affinity/anti-affinity pattern seen

in production workloads [67], where nginx [13] servers in a

web application need to be co-located on the same machine

as an in-memory Redis cache [84]. We create 30 such ap-

plications, each with 10 pods, with pod CPU and memory

requirements following an exponential distribution. We gen-

erate 35 such workloads, which leads to a different arrival

sequence of resource demands per experiment.

We find that DCM places 100% of pods in 29 out of 35

experiments, and in the worst case, places at least 93% of

pods across all runs. In contrast, the baseline scheduler packs

all pods only in 3 out of 35 instances. This highlights DCM’s

effectiveness at placing groups of pods. Instead, the base-

line myopically places one pod at a time, causing it to make

decisions that prevent future pods from being placed. Note,

if the pods appear well spaced apart in time, or DCM uses

smaller batching sizes, its performance will approach that of

the baseline.

Kubernetes placement convergence time for preemptions

We now test DCM’s effectiveness in making global recon-

figuration decisions. We replay a workload used to test Ku-

bernetes’ preemption logic [65], that creates 3 sets of pods

with different priorities. The resource demands are set to ac-

commodate only the highest priority pods on the cluster, and

the lower priority pods should either not be placed or be pre-

empted. The default scheduler invokes its preemption logic

on a pod-by-pod basis and uses a set of heuristics to deter-

mine when to retry pods it could not place (e.g according

to a backoff policy, and retrying when nodes report status

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 837

0.00
0.25
0.50
0.75
1.00

40 50 60 70 80

Memory load (%)

E
C

D
F

Baseline DCM

Figure 16: VM load balancing use case: memory load distri-

bution across hosts with and without DCM.

B
a

s
e

lin
e

D
C

M

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

0

25

50

75

0

25

50

75

Host

M
e

m
o

ry
 l

o
a

d
 (

%
)

Figure 17: Load distribution before and after using DCM. The

X-axis represents hosts, the Y-axis represents the memory

utilization per host. Hosts have different capacities, and boxes

in each bar represent VM sizes, scaled to the host’s capacity.

updates). In doing so, the baseline scheduler takes almost 100

seconds to place all high priority pods. Instead, DCM initially

places low priority pods and systematically replaces them

with higher priority pods in phases as new pod requests arrive,

by invoking its preemption model to look at the state of all

nodes (§3). In doing so, the scheduler converges to placing

all high priority pods in just under 50 seconds, twice as fast

as the baseline scheduler.

VM load balancing quality evaluation We test our VM

load balancing tool (§4.3) using a trace from a bug report

submitted by a customer. This production cluster has 16 hosts

with heterogeneous CPU and memory capacities, and 524

VMs with a range of CPU and memory sizes. The baseline

system’s heuristic-based load balancer could not identify VM

migrations to improve the load distribution of the cluster,

which led to the bug report. Figure 16 (baseline) shows the

memory utilization of every host as per the trace (we only

show memory utilization because there were no CPU resource

reservations by the VMs). Figure 17 shows the VM sizes,

scaled according to each host’s capacity.

With DCM, we specified the necessary hard constraints

(capacity and affinity requirements) and a soft constraint that

minimizes the load difference between the most and least

utilized node. We then asked the tool to identify twenty VM

migrations, which significantly improved the load distribution

(Figure 16). With the baseline, the most loaded and least

loaded nodes were at 85% and 39% utilization, whereas DCM

found moves to spread utilization between 52% and 67%.

DCM took a second to make its decision, whereas the baseline

heuristic takes roughly five seconds.

6.3 Q3: Extensibility

We validate our hypothesis that DCM enables building exten-

sible cluster managers. §5 discusses the ease with which we

added policies to all three case studies, taking only a few hours

per policy to design, implement, and test. In this section, we

focus on a more challenging test of extensibility by discussing

a non-trivial modification to our Kubernetes scheduler.

Our case study involves a custom Kubernetes distribution

where the Kubernetes control plane deploys both pods and

VMs (the nodes run both pods and VMs). A challenge here

is that the default scheduler’s implementation is intricately

coupled to the Kubernetes data-structures that represent pods

(for example, every predicate and priority implementation

expects a pod object). VMs, as a Kubernetes object that can

also be placed on nodes, is beyond the Kubernetes scheduler’s

resource management model. This scheduling inflexibility is a

known pain point in the Kubernetes community [66] The only

option today is for the Kubernetes scheduler to coordinate

with another scheduler that can deploy VMs. This is, therefore,

a good case study to validate DCM’s extensibility goal.

We extend the Kubernetes scheduler we built using DCM

to jointly reason about pods and VMs. From a placement

standpoint, pods and VMs are simply tasks that need to be

assigned to nodes, and only represent a slightly different set

of constraints (for example, VMs can be migrated but pods

cannot, because most of the Kubernetes ecosystem does not

assume pods can be migrated).

Most of our effort went into the Java code and boiler-

plate required to subscribe to the Kubernetes API to learn

about new VM creations (specifically, a Kubernetes Custom

Resource [85]) and writing these obtained objects into our

database. On the SQL side, however, these capabilities only

involved minimal changes to the DCM-based Kubernetes

scheduler: we added four constraints in total and made a

cosmetic change to the SQL schema for readability (replac-

ing instances of pods_to_assign with tasks_to_assign).

The minimal effort here was possible only because DCM en-

forces a declarative approach to specifying the cluster state

and the constraints on it.

838 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

7 Discussion and future work opportunities

Solver Scalability Cluster sizes in enterprises are typically

modest and well within Kubernetes’ scalability targets. This

is a scale that we are confident DCM excels at (§6.1).

Pushing DCM to hyperscale needs, however, is an interest-

ing area for future work. While the techniques described in

§4.1.3 are required for scalability, there will inevitably be a

point where it is better to partition a problem, something that

DCM cannot perform automatically for the developer. For

example, in a cluster with 100K nodes, it is likely overkill to

evaluate every single node in the cluster for an optimal place-

ment decision. Instead, the 100K nodes can be partitioned

into 10 or 20 groups that are somewhat similar in composition

(analogous to Borg cells [95] or sub-clusters in Hydra [29]).

A DCM model (or a custom heuristic) could pick a group to

place a workload in, followed by another model that places

the workload within the selected group (the second model, in

this case, would use as input, a table/view with only nodes

from the selected group). Another approach would be to eval-

uate multiple such groups in parallel and pick the result with

the best objective function. We explicitly designed DCM’s

programming model for such flexibility.

There are several further opportunities for improving per-

formance that we have not yet explored. For example, solvers

can be configured to return good-enough (as opposed to opti-

mal) results, when the current best solution is within a certain

bound, to improve performance.

Database scalability In-memory, incremental view main-

tenance is key to scaling the database side. For now, we had

to simulate materialized views using triggers in H2 (§5). H2’s

simplicity also meant that its optimizer did not perform sev-

eral natural query transformations that more mature engines

do, which required us to write more complex SQL than was

required (§5). This is additional work that would not be re-

quired with an incremental engine. We are currently integrat-

ing DCM with the Differential Datalog (ddlog) engine [86].

Expressiveness of SQL So far, across all use cases (§5),

we are yet to find a policy we could not express using this

model. We are confident of SQL’s expressive power for sev-

eral reasons.

SQL shines at concisely cross-referencing state across dif-

ferent tables, a capability that has been useful in a broad

range of contexts (e.g., SQCK [48]). We simply leverage that

strength of SQL to both represent complex cluster state and

concisely specify constraints spanning several tables; the ac-

tual check clauses and objective function expressions within

these constraint queries are typically comparable to what is

shown in Figures 5, 6, and 7.

The more complex SQL we have written are for views exe-

cuted in the database, which become inputs for the generated

code (§4.1.1, §5). There is a lot of expressive power here;

for example, developers may use a database’s user-defined

functions for specific input transformations if required, but we

have not yet needed to do so (even for handling Kubernetes’s

match expression DSL, §5).

At the same time, DCM does require expressing policies

in terms of intent, rather than the exact steps of an algorithm.

We anticipate that this will pose a learning curve for some

developers.

Generality of optimizations DCM cannot prevent users

from writing SQL that generates inefficient code, a com-

mon challenge for declarative programming models (SQL

databases provide tools for users to inspect query plans for this

reason, like the EXPLAIN query). For now, our compiler warns

developers when it emits inefficient code (e.g., cross products

across tables without indexes), and exposes detailed diagnos-

tics to understand runtime performance (e.g., Figure 14 and

Table 1).

We provide a suite of aggregate functions (like all_dif-

ferent) that we encourage developers to use because it leads

to clearer policies and makes it straightforward to generate

efficient code that uses global constraints (§4.1.1). So far, we

only added functions if they were useful across several use

cases. It is similar with rewrite rules: we only add ones that

have broad utility (e.g., we find the fixed-arity rule applying

to most uses of SUM/COUNT).

8 Related work

Use of solvers for resource management A large body

of work has used solvers for resource management, includ-

ing CP solvers [51] to pack and migrate VMs; flow network

solvers [40, 53] and MIPs [38, 42–44, 91, 92] for job schedul-

ing, and ILPs for traffic engineering [30]. These systems use

handcrafted encoders written by optimization experts for spe-

cific problems. Even in the industry, we find that the few

organizations that use solvers for such tasks typically have

dedicated teams of optimization experts. In contrast, we gener-

ate scalable encoders from a declarative specification written

using SQL. Our programming model significantly lowers the

barrier to powering systems with constraint solvers – develop-

ers express policies directly against the cluster state, without

having to translate them into the low-level mathematical for-

malisms of solver encodings.

We sketched out the initial idea for DCM in a workshop

paper [89]. In this paper, we extend this preliminary work with

a detailed design and implementation, and a comprehensive

evaluation using three case studies.

Quincy [53] and Firmament [40] use flow network solvers

for scheduling, which yield quick solve times (sub-second,

even for topologies with thousands of nodes), but cannot

model many classes of constraints, including inter-task con-

straints like affinity/anti-affinity [41]. Compared to DCM,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 839

they involve a high degree of modeling complexity: develop-

ers need to map scheduling constraints to flow network con-

structs like vertices, arcs, and flows, which make it challenging

to apply to general systems like Kubernetes. For example, the

experimental Poseidon Kubernetes scheduler [88] is based

on Firmament, but the developers found constraints like inter-

pod affinity both hard to implement [87] and scale [16] (up to

3× slower than the default scheduler evaluating all nodes).

Wrasse [82] uses a DSL based on a balls and bins abstrac-

tion to specify resource allocation constraints and a GPU-

based solver to find solutions. Its low-level modeling language

makes it hard to express complex constraints; it supports re-

source capacity constraints, but not other important classes of

constraints like affinities and load balancing.

Some production systems use meta-heuristic search for

resource management. VMware DRS [47] uses a greedy hill-

climbing search, and Service Fabric [76] uses simulated an-

nealing. Several systems employ a variety of heuristics for

resource management [26, 28, 29, 32, 33, 39, 54]. These works

neither use declarative programming techniques nor benefit

from solver-based optimal solutions to enforce policies.

Simplifying systems using relational languages Several

works have used the strengths of relational languages to sim-

plify systems programming. Boom Analytics [19] uses the

Overlog language to build an HDFS/Hadoop clone with com-

parable performance. P2 [74] also uses Overlog, but to declar-

atively specify peer-to-peer overlays. Ravel [96] is an SDN

controller that uses SQL databases to abstract and manipu-

late network state. SQCK [48] simplifies filesystem checker

implementations by using declarative queries to validate com-

plex filesystem images instead of writing low-level C code.

DCM builds on the above ideas and not only uses a relational

database to store and manipulate cluster state but also code

generates logic to search for new configurations based on

constraints written in SQL.

Network configuration synthesis Network configuration

synthesis from high-level specification [22, 34, 35] for BGP

and OSPF is orthogonal to dynamic cluster management with

constraint specification by DCM. ConfigAssure [79] and Al-

loy [78] use model finding to identify configurations that

satisfy a specification given by an administrator (or detect

errors in existing ones). Alloy uses a DSL for specification,

whereas ConfigAssure uses the Prolog language. DCM, on

the other hand, works on top of standard SQL databases and is

capable of supporting optimization goals as well. The tested

use cases for ConfigAssure and Alloy are well within scope

for DCM.

DSLs for infrastructure automation Many configuration

management tools use custom DSLs. Hewson et al. [52]

propose an object-oriented DSL to specify a configuration

for a data-center, which is enforced by a constraint solver.

PoDIM [31] does not use a solver but uses an SQL-like DSL to

specify requirements for a configuration. Configuration man-

agement tools like Puppet [81], Ansible [83], Terraform [49],

and Helm [7] all use custom DSLs to configure and deploy

infrastructure repeatably. These systems target a different use

case than DCM: they are not designed to solve optimization

tasks within a dynamic distributed system at short timescales

but instead target infrastructure deployment, which runs at

much slower timescales.

9 Conclusion

Cluster management logic is notoriously hard to develop,

given that they routinely involve combinatorial optimization

tasks that cannot be efficiently solved using best-effort heuris-

tics. With DCM, we propose building cluster managers where

the implementation to compute policy-compliant decisions

is synthesized by a compiler from a high-level specification.

DCM significantly lowers the barrier to building cluster man-

agers that scale, compute high-quality decisions, and are easy

to evolve with new features over time. We validate our thesis

by applying DCM to three production use cases: we built a

Kubernetes scheduler that is faster and more flexible than the

heavily optimized default scheduler, improved load balancing

quality in a virtual machine management solution, and easily

added features to a distributed transactional data store.

Acknowledgements

We thank our shepherd Lidong Zhou and the anonymous

reviewers for their valuable feedback. We are grateful to Mihai

Budiu, Jon Howell, Sujata Banerjee, and Jacques Chester for

their valuable inputs that helped shape this project.

References

[1] 10 most common mistakes using Kuber-

netes. https://blog.pipetail.io/posts/

2020-05-04-most-common-mistakes-k8s/.

[2] Gecode. https://www.gecode.org/.

[3] Google OR-Tools. https://developers.google.

com/optimization/.

[4] H2 Database. https://github.com/h2database/

h2database/.

[5] H2 Database Features: Triggers. https:

//h2database.com/html/features.html#

triggers.

[6] H2 Database: Performance. https://h2database.

com/html/performance.html.

[7] Helm. https://helm.sh/.

840 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[8] JOOQ. https://github.com/jOOQ/jOOQ.

[9] Kube Score. https://github.com/zegl/

kube-score.

[10] Kubernetes. http://github.com/kubernetes/

kubernetes.

[11] Kubernetes Issue 52141: Multiple matchExpres-

sions in nodeSelectorTerms works unexpectedly.

https://github.com/kubernetes/kubernetes/

issues/52141.

[12] Kubernetes Issue 70394: s/ORed/ANDed/ node-

SelectorTerms matchExpressions. https:

//github.com/kubernetes/kubernetes/pull/

70394#issuecomment-434127780.

[13] Nginx. http://nginx.org/en/docs/http/load_

balancing.html.

[14] Openshift. https://www.openshift.com/.

[15] Openstack. https://www.openstack.org/.

[16] Poseidon benchmarks. https://github.com/

kubernetes-sigs/poseidon/blob/master/

docs/benchmark/README.md.

[17] Declarative Cluster Management Github

Repository. https://github.com/vmware/

declarative-cluster-management/, 2019.

[18] Susanne Albers and Michael Mitzenmacher. Average-

case analyses of first fit and random fit bin packing.

Random Structures & Algorithms, 16(3):240–259, 2000.

[19] Peter Alvaro, Tyson Condie, Neil Conway, Khaled

Elmeleegy, Joseph M. Hellerstein, and Russell Sears.

Boom analytics: Exploring data-centric, declarative pro-

gramming for the cloud. In Proceedings of the 5th Eu-

ropean Conference on Computer Systems, EuroSys ’10,

page 223–236, New York, NY, USA, 2010. Association

for Computing Machinery.

[20] Jason Baker, Chris Bond, James C. Corbett, JJ Fur-

man, Andrey Khorlin, James Larson, Jean-Michel Leon,

Yawei Li, Alexander Lloyd, and Vadim Yushprakh.

Megastore: Providing scalable, highly available storage

for interactive services. In Proceedings of the Confer-

ence on Innovative Data system Research (CIDR), pages

223–234, 2011.

[21] Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko.

Improved approximation algorithms for multidimen-

sional bin packing problems. In 2006 47th Annual

IEEE Symposium on Foundations of Computer Science

(FOCS’06), pages 697–708. IEEE, 2006.

[22] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra

Padhye, and David Walker. Network configuration syn-

thesis with abstract topologies. In Proceedings of the

38th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI 2017, pages

437–451, New York, NY, USA, 2017. ACM.

[23] Kevin Beyer, Don Chambérlin, Latha S. Colby, Fatma

Özcan, Hamid Pirahesh, and Yu Xu. Extending XQuery

for Analytics. In Proceedings of the 2005 ACM SIG-

MOD International Conference on Management of Data,

SIGMOD ’05, pages 503–514, New York, NY, USA,

2005. ACM.

[24] Scott Boag, Don Chamberlin, Mary F Fernández,

Daniela Florescu, Jonathan Robie, Jérôme Siméon, and

Mugur Stefanescu. XQuery 1.0: An XML query lan-

guage. http://www.w3.org/TR/xquery, 2002. Re-

trieved March 2019.

[25] Edward Bortnikov, Eshcar Hillel, Idit Keidar, Ivan Kelly,

Matthieu Morel, Sameer Paranjpye, Francisco Perez-

Sorrosal, and Ohad Shacham. Omid, reloaded: Scal-

able and highly-available transaction processing. In

15th USENIX Conference on File and Storage Technolo-

gies (FAST 17), pages 167–180, Santa Clara, CA, 2017.

USENIX Association.

[26] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jin-

gren Zhou, Zhengping Qian, Ming Wu, and Lidong

Zhou. Apollo: Scalable and coordinated scheduling

for cloud-scale computing. In Proceedings of USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI), pages 285–300, Broomfield, CO, Oc-

tober 2014. USENIX Association.

[27] Architecting Kubernetes clusters. https://learnk8s.

io/kubernetes-node-size.

[28] Carlo Curino, Djellel E. Difallah, Chris Douglas,

Subru Krishnan, Raghu Ramakrishnan, and Sriram Rao.

Reservation-based scheduling: If you’re late don’t blame

us! In Proceedings of the ACM Symposium on Cloud

Computing (SoCC), SOCC ’14, pages 2:1–2:14, New

York, NY, USA, 2014. ACM.

[29] Carlo Curino, Subru Krishnan, Konstantinos Karana-

sos, Sriram Rao, Giovanni M. Fumarola, Botong Huang,

Kishore Chaliparambil, Arun Suresh, Young Chen,

Solom Heddaya, Roni Burd, Sarvesh Sakalanaga, Chris

Douglas, Bill Ramsey, and Raghu Ramakrishnan. Hy-

dra: A federated resource manager for data-center scale

analytics. In 16th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 19), pages

177–192, Boston, MA, February 2019. USENIX Asso-

ciation.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 841

[30] Emilie Danna, Subhasree Mandal, and Arjun Singh. A

practical algorithm for balancing the max-min fairness

and throughput objectives in traffic engineering. In 2012

Proceedings IEEE INFOCOM, pages 846–854. IEEE,

2012.

[31] Thomas Delaet and Wouter Joosen. Podim: A language

for high-level configuration management. In LISA, vol-

ume 7, pages 1–13, 2007.

[32] Christina Delimitrou and Christos Kozyrakis. Paragon:

QoS-aware scheduling for heterogeneous datacenters. In

Proceedings of the eighteenth international conference

on Architectural support for programming languages

and operating systems, ASPLOS ’13, pages 77–88, New

York, NY, USA, 2013. ACM.

[33] Christina Delimitrou and Christos Kozyrakis. Quasar:

Resource-efficient and QoS-aware cluster management.

SIGARCH Comput. Archit. News, 42(1):127–144, Febru-

ary 2014.

[34] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,

and Martin Vechev. Network-wide configuration syn-

thesis. In Rupak Majumdar and Viktor Kunčak, editors,

Computer Aided Verification, pages 261–281, Cham,

2017. Springer International Publishing.

[35] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,

and Martin Vechev. NetComplete: Practical network-

wide configuration synthesis with autocompletion. In

15th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 18), pages 579–594, Renton,

WA, 2018. USENIX Association.

[36] etcd. etcd. https://github.com/coreos/etcd,

2014.

[37] Leonidas Fegaras and David Maier. Optimizing ob-

ject queries using an effective calculus. ACM Trans.

Database Syst., 25(4):457–516, December 2000.

[38] Panagiotis Garefalakis, Konstantinos Karanasos, Pe-

ter Pietzuch, Arun Suresh, and Sriram Rao. Medea:

Scheduling of long running applications in shared pro-

duction clusters. In Proceedings of the Thirteenth Eu-

roSys Conference, EuroSys ’18, New York, NY, USA,

2018. Association for Computing Machinery.

[39] Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica.

Choosy: Max-min fair sharing for datacenter jobs with

constraints. In Proceedings of the 8th ACM European

Conference on Computer Systems, EuroSys ’13, page

365–378, New York, NY, USA, 2013. Association for

Computing Machinery.

[40] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert

N. M. Watson, and Steven Hand. Firmament: Fast, cen-

tralized cluster scheduling at scale. In 12th USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI 16), pages 99–115, Savannah, GA,

2016. USENIX Association.

[41] Ionel Corneliu Gog. Flexible and efficient computation

in large data centres, 2018.

[42] Robert Grandl, Ganesh Ananthanarayanan, Srikanth

Kandula, Sriram Rao, and Aditya Akella. Multi-

resource packing for cluster schedulers. In Proceed-

ings of the 2014 ACM Conference on SIGCOMM, SIG-

COMM ’14, page 455–466, New York, NY, USA, 2014.

Association for Computing Machinery.

[43] Robert Grandl, Mosharaf Chowdhury, Aditya Akella,

and Ganesh Ananthanarayanan. Altruistic schedul-

ing in multi-resource clusters. In Proceedings of the

12th USENIX Conference on Operating Systems Design

and Implementation, OSDI’16, page 65–80, USA, 2016.

USENIX Association.

[44] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya

Akella, and Janardhan Kulkarni. Graphene: Packing and

dependency-aware scheduling for data-parallel clusters.

In Proceedings of the 12th USENIX Conference on Op-

erating Systems Design and Implementation, OSDI’16,

page 81–97, USA, 2016. USENIX Association.

[45] Torsten Grust. Monoid Comprehensions as a Target for

the Translation of OQL. In Workshop on performance

enhancement in object bases, Schloss Dagstuhl, 1996.

[46] B. Guenter, N. Jain, and C. Williams. Managing cost,

performance, and reliability tradeoffs for energy-aware

server provisioning. In 2011 Proceedings IEEE INFO-

COM, pages 1332–1340, April 2011.

[47] Ajay Gulati and Xiaoyun Zhu. VMware distributed

resource management: design, implementation, and

lessons learned. VMware Technical Journal, 1(1):45–64,

2012.

[48] Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. SQCK:

A declarative file system checker. In Proceedings of the

8th USENIX Conference on Operating Systems Design

and Implementation, OSDI’08, page 131–146, USA,

2008. USENIX Association.

[49] HashiCorp. Terraform. https://www.terraform.

io/, 2014.

[50] HashiCorp. Nomad. https://www.nomadproject.

io/docs/internals/scheduling.html, 2015.

842 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[51] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud,

Gilles Muller, and Julia Lawall. Entropy: A consol-

idation manager for clusters. In Proceedings of the

2009 ACM SIGPLAN/SIGOPS international conference

on Virtual execution environments, pages 41–50. ACM,

2009.

[52] John A Hewson, Paul Anderson, and Andrew D Gordon.

A declarative approach to automated configuration. In

LISA, volume 12, pages 51–66, 2012.

[53] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi

Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:

Fair scheduling for distributed computing clusters. In

ACM Symposium on Operating systems principles

(SOSP), pages 261–276. ACM, 2009.

[54] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,

Shravan Matthur Narayanamurthy, Alexey Tumanov,

Jonathan Yaniv, Ruslan Mavlyutov, Íñigo Goiri, Subru

Krishnan, Janardhan Kulkarni, and Sriram Rao. Mor-

pheus: Towards automated SLOs for enterprise clusters.

In Proceedings of the 12th USENIX Conference on Op-

erating Systems Design and Implementation, OSDI’16,

page 117–134, USA, 2016. USENIX Association.

[55] Manos Karpathiotakis, Ioannis Alagiannis, and Anas-

tasia Ailamaki. Fast queries over heterogeneous data

through engine customization. Proc. VLDB Endow.,

9(12):972–983, August 2016.

[56] Manos Karpathiotakis, Ioannis Alagiannis, Thomas Hei-

nis, Miguel Branco, and Anastasia Ailamaki. Just-in-

time data virtualization: Lightweight data management

with vida. In Proceedings of the 7th Biennial Conference

on Innovative Data Systems Research (CIDR), number

EPFL-CONF-203677, 2015.

[57] Arie MCA Koster, Manuel Kutschka, and Christian

Raack. Towards robust network design using integer

linear programming techniques. In Next Generation In-

ternet (NGI), 2010 6th EURO-NF Conference on, pages

1–8. IEEE, 2010.

[58] Kubernetes. Add a new predicate: max replicas

limit per node. https://github.com/kubernetes/

kubernetes/pull/71930, 2018.

[59] Kubernetes. Add max number of replicas per node/topol-

ogyKey to pod anti-affinity. https://github.com/

kubernetes/kubernetes/issues/40358, 2018.

[60] Kubernetes. Affinity/Anti-Affinity Optimization of

Pod Being Scheduled #67788. https://github.com/

kubernetes/kubernetes/pull/67788, 2018.

[61] Kubernetes. Allow Minimum (or Maximum) Pods per

failure zone. https://github.com/kubernetes/

kubernetes/issues/66533, 2018.

[62] Kubernetes. Maximum of N per topology value.

https://github.com/kubernetes/kubernetes/

pull/41718, 2018.

[63] Kubernetes. MaxPodsPerNode - be able to set

hard and soft limits for deployments / replicasets.

https://github.com/kubernetes/kubernetes/

issues/63560, 2018.

[64] Kubernetes. Pod priorities and preemption.

https://kubernetes.io/docs/concepts/

configuration/pod-priority-preemption/,

2018.

[65] Kubernetes. Scheduler sometimes preempts unnec-

essary pods. https://github.com/kubernetes/

kubernetes/issues/70622, 2018.

[66] Kubernetes. Add custom resource scheduling.

https://github.com/kubernetes/kubernetes/

issues/82118, 2019.

[67] Kubernetes. Assigning Pods to Nodes.

https://kubernetes.io/docs/concepts/

configuration/assign-pod-node/

#more-practical-use-cases, 2019.

[68] Kubernetes. Kubernetes Descheduler. https:

//github.com/kubernetes-sigs/descheduler,

2020.

[69] Kubernetes mailing list. Let’s remove ServiceAffinity

. https://groups.google.com/forum/#!topic/

kubernetes-sig-scheduling/ewz4TYJgL0M,

2018.

[70] Kubernetes Master Tier For 1000 Nodes Scale. https:

//tinyurl.com/y97ysbrd.

[71] KubeVirt. https://kubevirt.io/.

[72] Kevin Leo and Guido Tack. Debugging unsatisfiable

constraint models. In Domenico Salvagnin and Michele

Lombardi, editors, Integration of AI and OR Techniques

in Constraint Programming, pages 77–93, Cham, 2017.

Springer International Publishing.

[73] Kubernetes Topology Manager Limitations.

https://kubernetes.io/docs/tasks/

administer-cluster/topology-manager/

#known-limitations.

[74] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein,

Petros Maniatis, Timothy Roscoe, and Ion Stoica. Im-

plementing declarative overlays. In Proceedings of the

Twentieth ACM Symposium on Operating Systems Prin-

ciples, SOSP ’05, page 75–90, New York, NY, USA,

2005. Association for Computing Machinery.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 843

[75] Christopher Mears, Andreas Schutt, Peter J. Stuckey,

Guido Tack, Kim Marriott, and Mark Wallace. Mod-

elling with option types in MiniZinc. In Helmut Si-

monis, editor, Integration of AI and OR Techniques in

Constraint Programming, pages 88–103, Cham, 2014.

Springer International Publishing.

[76] Microsoft. Service Fabric. https://tinyurl.com/

y728dctp, 2016.

[77] Microsoft. Azure Public Dataset. https://github.

com/Azure/AzurePublicDataset, 2017.

[78] Sanjai Narain et al. Network configuration management

via model finding. In LISA, volume 5, pages 15–15,

2005.

[79] Sanjai Narain, Gary Levin, Sharad Malik, and Vikram

Kaul. Declarative infrastructure configuration synthesis

and debugging. J. Network Syst. Manage., 16:235–258,

09 2008.

[80] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket,

Sebastian Brand, Gregory J. Duck, and Guido Tack.

MiniZinc: Towards a standard CP modelling language.

In Christian Bessière, editor, Principles and Practice of

Constraint Programming – CP 2007, pages 529–543,

Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[81] Puppet Labs. Puppet. https://puppet.com/, 2005.

[82] Anshul Rai, Ranjita Bhagwan, and Saikat Guha. Gen-

eralized resource allocation for the cloud. In Proceed-

ings of the Third ACM Symposium on Cloud Comput-

ing, SoCC ’12, pages 15:1–15:12, New York, NY, USA,

2012. ACM.

[83] Red Hat. Ansible. https://www.ansible.com/,

2012.

[84] Redis. Redis. http://redis.io/, 2009.

[85] Kubernetes Custom Resources. https:

//kubernetes.io/docs/concepts/

extend-kubernetes/api-extension/

custom-resources/.

[86] Leonid Ryzhyk and Mihai Budiu. Differential datalog.

In Datalog 2.0, Philadelphia, PA, June 4-5 2019.

[87] SIG Scheduling. Affinity/Anti-Affinity Update

. https://groups.google.com/forum/#!msg/

kubernetes-sig-scheduling/nHWb9zCMOyo/

tkbtFf8lBgAJ, 2018.

[88] SIG Scheduling. Poseidon . http://github.com/

kubernetes-sigs/poseidon, 2018.

[89] Lalith Suresh, João Loff, Nina Narodytska, Leonid

Ryzhyk, Mooly Sagiv, and Brian Oki. Synthesizing

cluster management code for distributed systems. In

Proceedings of the Workshop on Hot Topics in Operat-

ing Systems, HotOS ’19, page 45–50, New York, NY,

USA, 2019. Association for Computing Machinery.

[90] Assigning Pods to Nodes: affinity and anti affin-

ity. https://kubernetes.io/docs/concepts/

scheduling-eviction/assign-pod-node/

#affinity-and-anti-affinity.

[91] Alexey Tumanov, James Cipar, Gregory R. Ganger, and

Michael A. Kozuch. Alsched: Algebraic scheduling of

mixed workloads in heterogeneous clouds. In Proceed-

ings of the Third ACM Symposium on Cloud Computing,

SoCC ’12, New York, NY, USA, 2012. Association for

Computing Machinery.

[92] Alexey Tumanov, Timothy Zhu, Jun Woo Park,

Michael A. Kozuch, Mor Harchol-Balter, and Gregory R.

Ganger. Tetrisched: Global rescheduling with adaptive

plan-ahead in dynamic heterogeneous clusters. In Pro-

ceedings of the European Conference on Computer Sys-

tems (EuroSys), EuroSys ’16, pages 35:1–35:16, New

York, NY, USA, 2016. ACM.

[93] Kubernetes Scheduler Performance Tun-

ing. https://kubernetes.io/docs/

concepts/scheduling-eviction/

scheduler-perf-tuning/.

[94] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Dou-

glas, Sharad Agarwal, Mahadev Konar, Robert Evans,

Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth

Seth, Bikas Saha, Carlo Curino, Owen O’Malley, San-

jay Radia, Benjamin Reed, and Eric Baldeschwieler.

Apache Hadoop YARN: Yet another resource negotiator.

In Proceedings of the 4th Annual Symposium on Cloud

Computing, SOCC ’13, pages 5:1–5:16, New York, NY,

USA, 2013. ACM.

[95] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,

David Oppenheimer, Eric Tune, and John Wilkes. Large-

scale cluster management at Google with Borg. In Pro-

ceedings of the European Conference on Computer Sys-

tems (EuroSys), pages 18:1–18:17, Bordeaux, France,

2015. ACM.

[96] Anduo Wang, Xueyuan Mei, Jason Croft, Matthew Cae-

sar, and Brighten Godfrey. Ravel: A database-defined

network. In Proceedings of the Symposium on SDN

Research, SOSR ’16, New York, NY, USA, 2016. Asso-

ciation for Computing Machinery.

844 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Protean: VM Allocation Service at Scale
Ori Hadary Luke Marshall Ishai Menache Abhisek Pan

Esaias E Greeff David Dion Star Dorminey Shailesh Joshi
Yang Chen Mark Russinovich Thomas Moscibroda ∗

Microsoft Azure and Microsoft Research

Abstract
We describe the design and implementation of Protean – the
Microsoft Azure service responsible for allocating Virtual
Machines (VMs) to millions of servers around the globe. A
single instance of Protean serves an entire availability zone
(10-100k machines), facilitating seamless failover and scale-
out to customers. The design has proven robust, enabling a
substantial expansion of VM offerings and features with min-
imal changes to the core infrastructure. In particular, Protean
preserves a clear separation between policy and mechanisms.
From a policy perspective, a flexible rule-based Allocation
Agent (AA) allows Protean to efficiently address multiple
constraints and performance criteria, and adapt to different
conditions. On the system side, a multi-layer caching mecha-
nism expedites the allocation process, achieving turnaround
times of few milliseconds. A slight compromise on allocation
quality enables multiple AAs to run concurrently on the same
inventory, resulting in increased throughput with negligible
conflict rate. Our results from both simulations and produc-
tion demonstrate that Protean achieves high throughput and
utilization (85-90% on a key utilization metric), while satis-
fying user-specific requirements. We also demonstrate how
Protean is adapted to handle capacity crunch conditions, by
zooming in on spikes caused by COVID-19.

1 Introduction

The Cloud has revolutionized the way computing resources
are consumed. Providers allow end-users easy access to se-
cure, elastic and state-of-the-art resources, while applying
efficient management techniques in order to optimize their
return on investment. In particular, resource virtualization
is used to maximize the utilization of the underlying hard-
ware. Consequently, one of the most crucial components in
the cloud stack is the Virtual Machine (VM) allocator, which
assigns VM requests to the physical hardware. Indeed, sub-
optimal placement decisions can result in fragmentation (and
in turn, unnecessary over-provisioning of physical resources),
performance impact and service delays, and even rejection of
incoming requests and customer impacting allocation failures.

In this paper, we describe in detail the VM allocator for
Azure – one of the leading cloud service providers in the

∗O.H, L.M, I.M and A.P contributed equally to this paper.

world. Azure provides and manages infrastructure for SAAS,
PAAS and IAAS workloads. Its fleet consists of millions of
physical machines spanning more than a hundred countries.
Azure offers more than 500 different VM types tailored to
a vast array of application requirements reflected in the vir-
tual resource specification of each VM. VMs serve as the
primary units of (multi-dimensional) resource allocation, and
the means through which customers are able to leverage the
rich array of computing services offered by Azure; see §2 for
an analysis of Azure workloads.

The rapid growth of Azure both in terms of its feature set
and massive geo-scale mandated that its core VM allocator be
designed in a robust manner. First, the allocator logic must be
extensible – to efficiently facilitate new features, constraints
and offerings over time. Second, close attention was given to
flexibility – in our context, the ability to configure the allocator
to different working conditions and scenarios. Third, the core
algorithms had to be highly optimized: Given Azure’s scale,
even 1% in fragmentation reduction can lead to cost savings
in the order of $100M per year.

From an operational perspective, the total demand in Azure
is in the order of millions of VMs per day. Such large scale
leads to a complicated system challenge – satisfying this high
request rate while maintaining fast response times and high
resource utilization. In principle, an allocation service needs
to control a sufficiently large inventory of underlying capac-
ity (or domain), so that new requests assigned to the domain
can be accommodated, and customers within the domain can
scale-out (namely, get additional VMs upon request). How-
ever, controlling a large inventory inherently impacts the la-
tency of an allocation. To avoid unacceptable delays, a design
must include efficient mechanisms for determining the phys-
ical placement of the VM. In addition, to achieve adequate
throughput, the system architecture may incorporate multiple
allocation processes [43]. Parallelizing the allocation logic
introduces new challenges, such as sustaining high resource
utilization while keeping conflicts to a minimum.

While some of these challenges have been discussed in
similar contexts [17, 38, 43, 48], most previous works either
do not provide full details on the design and implementation,
or resort to simulation studies (or small size implementations)
without providing comprehensive evaluation from a global-
scale production deployment. In this paper, we describe the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 845

design, implementation and evaluation of Protean, the core
allocation service governing all VM placement and resource
allocation in Azure. An instance of Protean operates at the
granularity of an availability zone (typically 10-100 thousands
of machines), which allows for high acceptance rates and
seamless scale-out capabilities.

To achieve the desired robustness while controlling such
large inventories, Protean’s design provides a clear separation
between policy and system mechanisms. Policy is expressed
through a flexible rule-based Allocation Agent (AA), which
addresses multiple constraints and performance criteria for
allocating VMs. AA’s logic is inherently extensible; rules can
be refined and added with minimal disruption to the system.
Crucially, the rule-based semantics foster explainability, and
force clear and conscious trade-offs between the numerous
metrics and optimization criteria. On the system side, a multi-
layer caching infrastructure keeps track of previous allocation
outcomes through efficient update mechanisms, resulting in
an order of magnitude reduction in turnaround time compared
to a system without this caching layer. Notably, the memory
footprint of the cache is manageable (e.g., around 1GB for
10k machines), and scales sublinearly with the number of ma-
chines. By slightly compromising on the allocation quality,
we enable multiple AAs to run concurrently, resulting in in-
creased throughput with negligible conflict rate. The number
of AAs, as well as key rule parameters, are tuned at a slow
time-scale using production data.

Our results from real production measurements and a vari-
ety of simulations demonstrate that Protean achieves low la-
tency (typically 20ms per VM), while satisfying user-specific
requirements and values of 85-90% for a key utilization met-
ric. Importantly, Protean can easily satisfy the peak demands
observed in production (up to 2000 requests per second), and
may sustain much higher throughput if needed, as demon-
strated in simulations §6.2. In addition, we show how Protean
adapts to different conditions, by focusing on recent capacity
challenges during the COVID-19 crisis. In particular, we dis-
cuss how Protean seamlessly allowed critical control-plane
policy changes that were required to support the sudden in-
crease in demand. In summary, our main contributions are:

• We provide a detailed analysis of the workload and inven-
tory of Azure. Our analysis (§2) reveals key characteristics,
which motivate Protean’s design.
• We design a flexible rule-based allocation agent (§3), which

allows operators to incorporate new logic and explain allo-
cation outcomes to customers.

• To our knowledge, we provide the first detailed account of
the allocation logic and key implementation details of a
core VM allocator in a leading public cloud provider. Our
implementation includes a novel caching infrastructure
tailored to expedite the VM allocation process (§5).

• We evaluate Protean using extensive measurements from
geo-scale production, and augment these evaluations with

Azure

Region

Availability Zone Protean

Datacenter

Cluster

Cluster

Rack

Rack

Rack

Machines

Figure 1: Azure Cloud Topology: Regions consist of avail-
ability zones, each of which comprise several datacenters that
house racks of servers.

low and high fidelity simulators where necessary (§6). Our
results show that Protean achieves low latency and high
throughput while sustaining high utilization under diverse
operating conditions.

2 Background and Motivation

2.1 Azure – A Global-Scale Public Cloud

The inventory. The global Azure inventory is arranged in a
hierarchy of regions and availability zones, exposed directly
to the customer. A region can have up to three zones, each in
turn consisting of one or more datacenters (see Fig. 1). Each
datacenter is divided into clusters and racks. There is no strict
upper bound on the size of a zone or a datacenter. Our larger
zones have over a hundred thousand machines, spread over
more than a hundred clusters, with each cluster having around
a thousand machines. The smaller zones have only around a
thousand machines.

The inventory within a zone is typically heterogeneous,
with machines ranging across multiple hardware generations
and Stock Keeping Unit (SKU) configurations, including spe-
cial servers for HPC, GPUs, etc. Table 1 summarizes the
distribution of the different hardware generations for one of
the zones. In this case, the bulk of the inventory belongs to
two generations, while the others represent a generation that is
being decommissioned, and a new generation that is in early-
stage deployment. In contrast to zone heterogeneity, a cluster
is a homogeneous set of machines (e.g., identical SKUs and
configurations) spanning multiple racks; each cluster supports
most VM types. In §3.2 we discuss how we exploit cluster
homogeneity to improve request latency.
The workload. As mentioned, Azure exposes numerous op-
tions for renting VMs. Users specify their requirements in

846 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Gen Cores Per Machine # Machines

3 10 7295
4 24 34208
5 40 18016
6 48 2064

Table 1: Distribution of hardware generations for a zone. In-
dividual similar SKUs are aggregated within each generation.

the form of an service request. Each zone may accommo-
date millions of requests per day. A service request consists
of one or more VM requests, grouped as a tenant. The ten-
ant service model expresses the relationships and constraints
imposed on these VMs. An allocation succeeds only if all
the requested VMs within a tenant are successfully allocated
(gang-scheduling). A service model specifies the type of each
VM (which in turn determines the core, memory, disk, or net-
work requirements for the VM), fault domain requirements,
and priority of the service. By default, the tenant VMs can
be spread across the entire zone. However, a tenant can re-
quest all its VMs to be co-located within specific inventory
boundaries such as a datacenter or a row, or conversely, can
forbid too many of its VMs from being placed on the same
machine or rack. A tenant can even specify that no VMs from
any other tenant be placed on the machine that hosts its VMs.

A customer can resize (scale in/out) or delete an existing
tenant, or create a new tenant. Platform initiated requests
due to unexpected machine failures, planned maintenance,
or decommissioning of machines can lead to reallocation of
some or all tenant VMs. Note that higher-level services can
stitch together multiple tenants to expose alternative grouping
semantics to customers, such as jobs with tasks that can be
incrementally scheduled, or auto-scaled group of identical
VMs (e.g., virtual machine scale sets [4]). These services
are responsible for breaking the groups of VMs into tenants
before sending service requests to Protean.
Protean – a zone allocation service. Azure operates an allo-
cation service for each zone, termed Protean.1 Requests are
assigned to each zone either directly by the customer, or by
a higher-level service. The main role of Protean is to find a
physical placement (machine) for each VM in an allocation
request, subject to explicit requirements and constraints spec-
ified in the underlying service model, as well as other internal
operational considerations. To cope with large request loads,
Protean employs multiple Allocation Agents (AAs), which run
in parallel. Similar to [43], each agent is aware of the entire
inventory and can choose any eligible machine from the in-
ventory to host a VM. The authoritative state of the inventory
is maintained in a persistent store. Each AA maintains its own
view of the inventory, which is updated periodically and in
response to allocation or inventory related events.

1Protean means able to change frequently, versatile.

2.2 Workload Analysis

We next analyze some properties of our workload, with a focus
on characteristics that have influenced Protean’s design.
Demand is heterogeneous. Our zones exhibit workloads
which are fairly diverse in nature. We observe a large num-
ber of different VM types, see Table 2. The distribution is
generally nonuniform – some VM types may account for up
to 50% of the workload, while others are rare. To give more
insight into the challenge pertaining to packing the VMs, Ta-
ble 3 shows the distribution of CPU requirements, measured
in number of cores. We observe that most VMs require a
small number of cores, but some require half or even an entire
server.

VM Type Zone1 (%) Zone2 (%)

A 4.6 0.1
B 3.5 3.6
C 6.5 12.9
D 0.7 8.4
E 1.9 3.7
F 3.2 4.4
G 0.6 3.1
H 0.8 2.2
I 2.4 7.4
J 23.7 31.6
K 21.3 2.1
L 3.5 0.4
M 0.0 2.2

Table 2: Distribution of VM types for selected zones. VM
types having < 2% in both zones are excluded. We avoid using
real VM type names to preserve confidentiality.

Subsequent requests are similar. While our system supports
many VM types, we observe that subsequent requests are
fairly “similar”. For example, Fig. 2 shows the reuse distance,
which for each request of VM type v, measures the number
of unique VM types requested since the last time that v was
requested. We observe that more than 80% of requests have
zero reuse distance, while the majority has distance less than
five. This behavior can be attributed to a combination of
factors, such as large service requests that ask for the same
type of VM, and having a relatively small set of popular VM

VM Cores Zone1 (%) Zone2 (%)

1 17.1 27.0
2 37.4 52.4
4 32.0 10.5
8 8.9 4.5

> 10 4.3 2.6
> 20 0.3 3.1

Table 3: Distribution of VM resources for selected zones.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 847

0 1 2 3 4 5 6+

20
50
80

D
en

si
ty

(%
)

Figure 2: Reuse distance
for VM requests in a zone
for an entire day.

SUN MON TUES WED THU FRI SAT
0

10k
20k
30k
40k

#
R

eq
ue

st
s

Figure 3: Number of VM requests for a zone.
Counted over each hour, and averaged over day-
of-week for five weeks (shaded area is standard
deviation).

0 4 8 12 16 20 24
0

1k

2k

Time-of-day (hours)

re
qs

/s
ec

Figure 4: Requests per second for a zone on
a single day, with max over 5 min intervals.

types (see Table 2). This “locality” property plays a key role
in our design for the allocation agent.

VM lifetime varies substantially. We observe that most VM
lifetimes are short, in the order of several minutes. However,
some VMs can stay in the system “forever” – for weeks
and months. See Figure 5 for empirical lifetime distributions
across representative zones.

1 10 100 103 104 105 106 1070

5

10 HOUR DAY YEAR

Lifetime (mins)

D
en

si
ty

(%
)

Zone1 Zone2

Figure 5: Zone-based VM lifetime distributions. The data rep-
resents VMs that were alive during a ten-day period in March
2020. The lifetime of VMs that remained alive when the data
was collected (June 2020) may be longer than reported.

Demand has spikes and diurnal pattern. Fig. 3 shows the
request count over a week in one of our busier zones, aver-
aged over day-of-week for 5 weeks. We observe some diurnal
patterns, e.g., typically less usage overnight. Demand can also
have large spikes throughout the day, as seen in Fig. 4. Note
that the demand reaches above 2k requests per second. This
behavior forces us to provision for the peak by employing
multiple AAs for each Protean instance (see §4). At the same
time, we exploit the off-peak periods to better prepare the
AAs for future allocations (see §5.2).

Tenants sizes are typically small, but can be huge. Our
analysis on two large zones indicates that 94% of requests
are for a single VM. 99% of requests are for five or less
VMs. We also observe a few requests for hundreds of VMs;
naturally, such requests would pose additional challenges (e.g.,
spreading the VMs across different fault domains).

2.3 Takeaways
Scale and uncertainty. Our analysis demonstrates that the
incoming demand is highly variable. Because Protean latency
and throughput requirements cannot be compromised, our
design has to account for extreme demand conditions. Fur-
thermore, Protean has to accommodate small and large re-
gions, which requires flexible configurations (for example,
the number of AAs).
Opportunity for caching. We have provided evidence that
subsequent requests are similar over time. This motivates
the “caching” of placement evaluation logic, and reuse across
multiple requests – this idea is central in our design and
facilitates scaling to large zones and regions.
The packing challenge. Our workload is highly diverse –
numerous VM types of different sizes, high variability in
lifetimes (which are unknown in advance). This poses a sub-
stantial challenge in adequately “packing” the VM in physical
servers. Algorithmically, a simplified version of our packing
problem already maps to dynamic bin packing [11], which
is an NP-hard problem in the offline setting (i.e., assuming
all VM arrivals are known), with quite bad competitive ra-
tio in the online setting [6]. In our practical setting, we have
other elements that make the problem even more challenging
(multiple priorities, fault domain requirements, etc.). Supple-
mentary to this paper, we release a new trace that can be
used by the research community to design and test different
packing algorithms [3].

3 Rule-Based Allocation Agent

In this section, we describe the main design principles of
Protean’s allocation agent.

3.1 Metrics and Constraints
Metrics. Protean targets several metrics related to both per-
formance and quality of the allocation. The key metrics are:

• Latency. A single VM allocation should be satisfied
promptly, typically within 20 ms.

• Throughput. Protean should be able to handle peak de-
mands without delaying or throttling requests.

848 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

• Acceptance. Protean should minimize the rejection rate. A
rejection occurs when a VM request cannot be satisfied.

We note that latency is not important in isolation (although
might become excessive for large tenants). Nonetheless, lower
latency facilitates higher throughput. Intuitively, when latency
is lower, requests can be processed by fewer AAs, resulting
in fewer conflicts and likely higher throughput. Furthermore,
lower latency decreases the probability that an individual AA
drifts from the true state of the inventory, which improves
allocation quality. Naturally, the three metrics above depend
on the size of the inventory. Latency and throughput become
more challenging with larger inventories, but accepting re-
quests becomes easier. We are also interested in efficient us-
age of compute resources; we will formally define utilization-
related metrics in §6.

Requirements and constraints.
Addressing multiple considerations. First and foremost,
Protean must make correct assignments; for example, an allo-
cation cannot violate the capacity of a machine. Additionally,
the request may include certain constraints that the allocation
must satisfy. For example, certain VMs may require a specific
type of hardware (e.g., GPUs). Furthermore, a service request
for multiple VMs may require that the VMs are spread across
multiple fault domains (typically across different racks).
Tenant experience. Protean should avoid allocations on ma-
chines that are not in a “ready” state; have not been updated
with the latest host environment; or are likely to fail in the near
future. If a machine fails, then its hosted VMs must be allo-
cated to other machines. Low priority VMs are used by Azure
offerings, such as Batch [1] and Spot Virtual Machines [2].
While these VMs are allowed to be preempted, Protean still
aims to minimize their eviction rates.
Adaptability. Protean must allow for an easy configuration of
allocation logic, and adjust for different conditions.
Extensibility and interpretability. Protean should be easily and
safely extendable, in order to enable engineers to incorporate
new allocation logic. Accordingly, the allocation logic should
allow for incremental changes, and performing A/B testing
in production. Moreover, Protean should enable operators to
interpret the allocation decisions (e.g., “why did the request
fail?”, “why was machine x chosen for VM request v?”);
explaining allocation outcomes is regarded as one of the main
challenges in large-scale cloud scheduling [46].

3.2 Allocation Rules
As discussed above, Protean has to account for multiple con-
siderations simultaneously. First, strict placement constraints
need to be enforced (e.g., a VM has to be allocated to a spe-
cific hardware type); other placement considerations can be
viewed as “preferred”, for example, it is better to place the VM
on a server that is perceived as healthy, has certain disk con-
figuration, etc. On top of that, Protean targets “high-quality”

𝑲𝟐:

Validator
Rules

Preference
Rules

𝐑𝑲𝟐𝐑𝟏

Validator
Rules

Preference
Rules

𝟏:

soft filtering

Figure 6: Rule based selection.

allocations; for example, packing the servers efficiently by
minimizing fragmentation, balancing allocations across racks,
avoiding lower-priority VMs evictions, etc. Due to the nu-
merous dimensions involved, Protean’s allocation logic is
organized as a set of rules. The rules determine which ma-
chine will be assigned for each individual VM. A service
request for k VMs will invoke the rule logic k times.

Rules are classified into either validator or preference rules.
A validator rule accounts for hard constraints, whereas a pref-
erence rule can be viewed as a soft constraint. The rules are
arranged in a two-level hierarchy – cluster selection rules
followed by machine selection rules (Fig. 6). In total, there
are currently around one hundred rules.
Cluster and machine selection rules. Cluster selection rules
effectively reduce the time complexity of the selection pro-
cess by limiting the scope of the machine selection rules to
a small number of clusters in a zone. Because clusters are
homogeneous (see §2), we implement several cluster valida-
tor rules which filter out clusters that are not relevant for the
VM request (e.g., a VM that requires a GPU machine can by
hosted only on a cluster with GPU machines). In addition, a
few cluster preference rules are used to sort the valid clusters
(e.g., we prefer emptier clusters to balance the available ca-
pacity across clusters). Based on that, Protean chooses the k
highest-quality clusters, where k ∈ [8,16] is a configurable
parameter; the inventory for the machine selection rules will
in turn consist of the machines in these clusters. The parame-
ter k is set based on a tradeoff between exposing a large set
of machines for making high-quality decisions and sustaining
adequate latency.

In turn, machine selection rules again consist of validator
rules that exclude specific machines from being considered,
followed by preference rules which eventually select a small
number of machines that are the best match for the particular
VM. A randomized tie-breaking rule picks one of these ma-
chines for the physical assignment of the VM. In what follows
we provide a more formal description of rule semantics, as
well as some examples.
Validator rules. Each validator rule implements the Boolean
method IsValid(x,v) to indicate whether an object x is a valid
candidate for placing VM v; an object can be either a cluster or

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 849

a machine, depending on the rule. Validator rules are used to
prune the set of objects in the inventory to a subset of objects
that are valid candidates for placing the VM. Examples: (1)
AreNodeResourcesValid(x, v) checks whether machine x has
enough available capacity to accommodate VM v. The method
returns true if all resource dimensions can be fulfilled (CPU,
memory, disk, etc.). (2) IsTypeSupported(x, v) checks whether
cluster x is compatible with the VM type corresponding to v.
Preference rules. A preference rule quantifies the extent to
which each candidate object x (either a cluster or a machine,
depending on the rule) is a good fit for the VM. Each prefer-
ence rule r accounts for a specific consideration (e.g., packing
quality, balancing, cluster/machine quality, etc.) through a
numeric score Sr(x,v). We use the convention that a lower
score is better. Examples: (1) BestFit(x,v) assigns a score
∑i wi(ai(x)− di(v)), where ai(x) is the availability of “re-
source” i (e.g., CPU cores, memory, SSD)2 in machine x,
di(v) is the requirement of the VM for that resource, and wi is
the weight of the resource which quantifies its scarcity (intu-
itively, the higher wi the scarcer the resource). A lower score
here implies that the machine is a better fit for that VM, since
it is closer to being fully packed; we note that similar packing
heuristics have been proposed in [39]. (2) PreferNonEmp-
tyMachines(x,v) This rule prefers to use machines that are
non empty, primarily in order to improve packing quality.
(3) PreferEmptierClusters(x,v) This rule quantifies how many
empty cores cluster x has. The idea here is to balance the
available capacity among clusters. This is done to minimize
the probability that the cluster capacity is exhausted, which
is important from several perspectives. For example, some
customers require affinity within the cluster, and would not
be able to scale out if the cluster is completely full.

3.3 Accounting for Multiple Rules

As illustrated in Fig. 6, the sequence of validator rules filters
out objects (clusters, machines) that are not eligible for the
particular VM. One of the main challenges in the design of
Protean was: how to account for multiple preference rules?
The inherent issue here is that different rules represent differ-
ent and hard-to-compare preferences. We describe below the
principles of our approach.
Compare method. Each preference rule r implements the
Compare(x,y | v) method to compare two objects x and y
based on their scores; the method returns 0 if scores are equal,
1 if Sr(x,v)< Sr(y,v), or −1 otherwise.
Comparisons and sorting. Each preference rule expresses
its relative importance using a weight (or gain value). Two
objects are compared according to an aggregate score com-

2Protean currently does not account for power. Power budgets are defined
for different aggregations of servers: chassis, racks, rows, etc. A separate
power-capping system [31] ensures that power usage does not exceed the
budget; since power consumption falls within the budget at high percentiles,
capping engages rarely.

puted as the sum of products of the compare value returned by
each rule compare method and its weight. Using the pairwise
comparisons, Protean computes a sorted list of the entire set
of objects based on their aggregate preference scores.
Weight assignment. While our system allows to set any pos-
itive value for the rule weights, we have chosen to set the
weights in a way that imposes strict ordering between the
preference rules. The rules are assigned weights according
to an order-preserving encoding (i.e., weights are exponen-
tially apart from each other), such that, effectively, any rule
can only express a preference among objects that have been
preferred by the previous rule. Accordingly, the entire set of
rules (including validator rules) can be regarded as a filtering
process in which the set of preferred objects is narrowed as
more rules are considered; see §3.4 for discussion.
Quantization. Having a strict prioritization among the pref-
erence rules, requires “smoothing” the preference rules, so
that all rules can contribute. We do so by quantizing the score
of some rules into a small number of buckets (e.g., rules with
a continuous score, such as BestFit). For example, we may ap-
ply the transformation dS ·Ne, where S ∈ [0,1] is the original
(continuous) score and N is the number of buckets. The rule
ordering and the specific quantization values entail domain
knowledge and understanding of business needs and prefer-
ences. Their setting is based on trial and error, building on
simulation results as well as production telemetry.

3.4 Discussion
We conclude this section by discussing how the rule-based
allocator helps us achieve our design goals.
Addressing multiple considerations. Having multiple rules
allows us to address multiple hard constraints, and explicitly
influence the quality of the allocation through designated rules
(e.g., best-fit for packing). The fundamental requirement of
making “correct” allocations will manifest itself in certain
system mechanisms; for example, ensuring that decisions are
made based on the true state of the zone (§5).
User experience. By design, Protean will not fail a VM re-
quest if there exists a feasible assignment for that VM. This
holds because (i) Protean chooses clusters that contain fea-
sible nodes; (ii) Protean considers all nodes in the selected
clusters. In addition, Protean has rules that target better user
experience (e.g., prefer “healthier” machines).
Adaptability. The rules themselves can be customized and
refined as needed. For example, if a specific rule is too “ag-
gressive”, a simple configuration change can make it softer,
e.g., by making the quantization coarser. As a concrete exam-
ple, we describe in §6 how Protean has been adapted to tackle
a capacity crunch during the Covid-19 crisis.
Extensibility and robustness. Our rule-based allocator is in-
herently extensible and robust. It is not too difficult to insert
a new rule, or to modify or delete an existing one; two main
design choices enable that: (i) rather than using a general

850 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Agent’s View
of Inventory

Protean

Client Services

Allocation Agent

NoYes

Inventory changes
unrelated to placement

Conflict Detector and Placement Store

Allocation Request Commit Request
Allocation Placement Updates Other Inventory Updates

Conflict?

Cached
Evaluation

State

Authoritative
Placement Inventory

Load Balancer

Pub/Sub Service

Figure 7: Protean System Architecture

weighted score function, Protean maintains a ranking of the
rules, and auto-generates weights that maintain the exponen-
tial distance property; (ii) the internal rule scores are not
factored in the sorting of the machines, which makes the de-
sign or modification of rules more robust. This is enabled by
using the rule compare method as a building block.
Interpretability. Strict ordering allows for better inter-
pretability. For example, we can infer why a certain machine
was not chosen for a particular VM request. More broadly,
we can aggregate statistics to determine how aggressive each
rule is (e.g., what fraction of objects it “filters on average”).
This evaluation helps us adjust the quantization of rules and
their ordering if needed; see §6 for an example.

4 Architecture

In this section, we provide a high-level overview of Protean,
and describe how the AA handles a service request.
Protean operation. Fig. 7 describes the high-level system
architecture of Protean. Protean employs multiple Allocation
Agents (AAs) that operate concurrently, following an opti-
mistic concurrency model. The AAs are organized to run
in multiple machines. Each machine hosts a single process,
which in turn creates multiple worker threads, one thread per
AA. Allocation requests from clients are routed to these pro-
cesses through a load-balancer. Within a process, the requests
are stored in a shared work-queue until they are picked up and
processed by a free AA. The number of AAs is determined ac-
cording to the peak instantaneous demand in the zone, while
the number of AAs per machine depends on the memory foot-
print of each AA. Each AA makes allocation decisions based
on its own (possibly stale) view of the inventory, and after
processing a request successfully, tries to commit the result to
a replicated store. The replicated store performs conflict de-
tection, and serializes the commits to the same node (commits
to different nodes are handled in parallel). Further, it stores all
inventory information that is modified by the VM placement

Algorithm 1: Service allocation algorithm
1 def ALLOCATE_SERVICE(v1, . . . ,vn, retries):
2 v1, . . . ,vn← ORDER(v1, . . . ,vn)
3 for i = 1 to n do
4 mi =ASSIGN_MACHINE_TO_VM(vi)
5 if IS_INVALID_MACHINE(mi) then
6 return FAILED

7 if COMMIT(m1, . . . ,mn) then
8 return SUCCEEDED

9 else if retries < MAX_RETRIES then
10 return QUEUE FOR RETRY

11 else
12 return FAILED

decisions from AAs. The replicated store functions as the
authoritative source for the latest placement-related inventory
state, and publishes all changes through a publish-subscribe
(pub/sub) service.

Changes in the inventory that are not influenced by place-
ment decisions, such as changes in machine health or capa-
bilities, are also published via the pub/sub service. The AAs
learn about inventory changes primarily through the updates
produced by the pub/sub service. Additionally, on commit
failures due to conflicts, they learn about the latest placement-
related information for the conflicting machines as part of the
failure notification.
Service allocation workflow. A service request may consist
of multiple VM requests that are processed sequentially by
a single AA. Algorithm 1 summarizes how Protean handles
a service request. ORDER determines the order in which the
VM requests will be processed. The goal of the ordering is
to minimize the risk that a request is rejected due to fault do-
main considerations. ASSIGN_MACHINE_TO_VM attempts to
assign a machine to a single VM by applying the rule logic; it
is applied sequentially for each of the requested VMs (see §5
for implementation details). If the AA succeeds in assigning
machines for all of the requested VMs, COMMIT tries to com-
mit the service allocation result to the authoritative store. The
commit fails if any of the VM-Machine assignments is invali-
dated because of a conflicting assignment made by another
AA. On commit failures, the allocator state is rolled back and
the entire request is re-queued for retry. The number of retries
is configurable. We allow for a relatively high number of re-
tries (more than 10) to avoid unnecessary allocation failures;
however this has a negligible effect in production (e.g., the
99.9-percentile allocations succeed after three retries). The
commit stage is pipelined with the previous stages, so that the
AA is free to process the next request while a commit is in
flight.

5 Protean Implementation

In this section, we describe our caching framework, which
substantially expedites the ASSIGN_MACHINE_TO_VM pro-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 851

cedure (§5.1–5.2). We also discuss our flexible conflict detec-
tion and reduction mechanisms (§5.3).

5.1 Preliminaries
To make high quality assignments, the AA initially considers
the entire set of machines in the inventory as candidates.
Cluster selection. As discussed in §3.2, the AA starts the
selection process by filtering and sorting clusters instead of
machines. Since a zone has at most a few hundred clusters
today, filtering and sorting the clusters is very fast (a couple
of milliseconds at most). Accordingly, the cluster selection
phase does not require any additional enhancements (such as
caching past selection decisions). The output of this phase is
the best 8 to 16 clusters; their machines (typically 10-15k)
are the candidates for the machine selection process.
Machine selection – basic complexity. Recall that the
machine-selection logic first trims the set of candidate ma-
chines to the set of valid machines by evaluating all validator
rules for each machine. Then, it builds a comparison-based
total ordering of the machines in the valid set, based on
the suitability of each machine in hosting the VM (§3.3).
Finally, a machine is randomly selected from the set of
best machines. Building an evaluation result – the ordered
list of valid machines – incurs a runtime complexity of
N ∑

K1
i=1 Tv(i)+N logN

(
∑

K2
i=1 Tp(i)

)
, where N is the number

of candidate machines, K1 the number of validator rules, K2
the number of preference rules, Tv(i) the time to compute Is-
Valid for the ith validator rule, and Tp(i) the time to compute
Compare for the ith preference rule. If the AA attempted to
build this evaluation result from scratch for every request, it
would exceed the required latency bounds for anything more
than just a couple of thousand machines.
Motivation for caching. First, we observe “Locality in re-
quests". Each VM request is characterized by a vector of trait
values. Example traits include: VM-Type, priority, and Re-
quireIsolation (i.e., the VM should be on a machine of its
own). There are tens of traits, each of which can take several
values (including a “don’t care” or empty option). In Sec. §2.2
we show that requests exhibit “locality” when zooming in on
a single dimension (VM type). We note that this phenomenon
carries over to the entire vector: there are a few value vec-
tors commonly used across multiple requests, especially if
they are chronologically close. The second observation is that
the inventory state changes slowly. The state of a machine
can change because of allocation-related events (addition,
suspension, or deletion of VMs), or because of changes in
health or other conditions of a VM or a machine. However,
allocation-related events are the dominant reason for such
changes. Hence the machines that change between consecu-
tive executions of the AA are primarily the machines whose
states were altered as a result of allocation decisions made by
other AAs running in parallel. Since the number of parallel
AAs is relatively small, there are typically not many such

changes. These characteristics would allow us to drastically
reduce the amount of computation performed in an execution
of the machine selection logic by caching and reusing an eval-
uation “state” from previous executions. Intuitively, the only
computation that is required is to update the state to incorpo-
rate the impact of inventory changes since the previous run.
We next discuss the details of our caching approach.

5.2 Caching for Efficient Machine Selection
Each AA maintains a collection of cached objects, which
together hold the information required for machine selection.

5.2.1 Caching Rule State

Caching internal rule state for efficient execution. Rules
are the basic building blocks of the selection process. So,
first and foremost, we use caching to improve the execution
time for IsValid and Compare methods of the rules (Tv(i) and
Tp(i) respectively). Specifically, every rule type implements
these methods. The instantiations of each rule type, termed
rule objects, are cached for reuse. A newly created rule ob-
ject computes and stores all the information that it requires
to execute the IsValid or Compare method in constant time.
Usually this information is stored on a per machine basis. For
example, the PreferNonEmptyMachines rule (see §3.2) stores
a <MachineID, Boolean> dictionary that tracks whether each
machine is empty or not.
Just-in-time updates of rule state. Every time a cached rule
object is used, its internal state has to be brought up-to-date
before its IsValid or Compare method can be called. To that
end, along with the IsValid or Compare method, each rule
implements the Update(x1, . . . ,xm) method in order to update
its stored state. The Update method is called immediately
before the rule object is used. Its argument, (x1, . . . ,xm), rep-
resents the latest state for machines that have changed from
the last time the object was updated. Every rule can execute
its IsValid or Compare function in constant time once it has
updated its state with the latest changes.
Splitting rule state into multiple objects. The stored state
of a rule object may depend on one or more request traits.
For example, the AreNodeResourcesValid rule depends on
the requested VM-Type, and hence must cache the Boolean
whether the machine has enough capacity for each <Machine,
VM-Type> pair. We observe, however, that to process a partic-
ular VM request, the rule object only needs the information
for the VM-Type value of that request. Updating the state for
every other VM-Type value would increase the just-in-time
update time, and in turn the request processing time. Hence,
instead of creating a single rule object for all requests, a rule
object is created on demand for every VM-Type value. A
rule object for a particular VM-Type value is used for all re-
quests asking for that value. In effect, requests are divided
into equivalence classes based on the relevant trait value, and

852 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Time Request Cached Objects Hits Misses (Create New)

T1 req(x1,y1) None None
Eval(x1,y1)

R1(x1,y1) R2(x1)

Eval(x1,y1) Eval(x1,y2)T2 req(x1,y2) R1(x1,y1) R2(x1)
R2(x1) R1(x1,y2)

T3 req(x1,y1)
Eval(x1,y1) Eval(x1,y2) Eval(x1,y1)

∗ None
R1(x1,y1) R2(x1) R1(x1,y2)

Table 4: Example cache timeline. ∗If Eval(x1,y1) needs to be updated then
R1(x1,y1) and R2(x1) would also be requested (and have cache hits).

Eval(x1,y1)

R1(x1,y1)

Eval(x1,y2)

R1(x1,y2)R2(x1)

Figure 8: Cache hierarchy for the ex-
ample in Table 4.

a single rule object handles all requests belonging to a class.
For rules depending on multiple request traits, each unique
combination of the trait values define a new equivalence class
of requests for that rule. For the special case where a rule
does not depend on any request trait (e.g., PreferNonEmpty-
Machine), a single rule object is used for all requests. This
rule object specialization technique substantially reduces pro-
cessing latency, and further decreases the effective memory
size needed for caching.
Caching rule objects. Rule object references are stored in a
constant size pool. The size is determined through trial-and-
error based on memory footprint and hit-rate considerations.
A rule object is identified by its type and the request trait value
combination that it is associated with. Rule objects are evicted
from the pool either if it is full (following a standard LRU
eviction policy), or if they reach a certain age. Age-based
eviction allows us to reduce the memory footprint during
periods of low load.

5.2.2 Caching Rule Evaluation State

Caching the rule objects helps in substantially reducing Tv(i)
and Tp(i). However, without any additional enhancements, we
would still pay the sorting complexity of N logN. Hence, we
introduce additional objects termed RuleEvaluation objects.
A rule evaluation object essentially holds the complete state
of the evaluation, for a specific vector of trait values (see
§5.1). The state includes the evaluation result (sorted list of
machines) and references to relevant rule objects whose trait
values match the respective values in the entire vector of trait
values. A RuleEvaluation object is created after computing
the evaluation result for a new vector of trait values, which
serves as the identifier for the object). The object will then be
reused for all requests that map to this identifier.
Updating the RuleEvaluation object. Similar to the rule ob-
jects, a cached RuleEvaluation object is brought up-to-date
before it is used. However, unlike rule objects, RuleEvalua-
tion objects use a common Update method, whose goal is to
update the evaluation result with the changed machines. The
method proceeds as follows: (1) the cached rule objects are
brought up-to-date by calling their Update methods; (2) the
modified machines are removed from the evaluation result;
(3) the validator rules are run for each of these machines to

determine which machines are valid; (4) valid machines are
inserted back into the ordered list with an updated position.
Because each insertion takes logN time, the Update method
has runtime complexity of M logN, where M is the number of
machines with modified state. This is a substantial reduction
in complexity, because M � N (M is in the order of tens).
RuleEvaluation objects are cached in another constant size
memory pool, with an LRU eviction policy.
Example. Consider an example scenario where each request
can have two traits X ∈ {x1,x2} and Y ∈ {y1,y2}; and the
allocation logic is expressed through two rules: R1, which de-
pends on traits X and Y , and R2, which depends on X . Figure 8
shows the various rule and RuleEvaluation objects that are
created and reused as the allocation engine serves incoming re-
quests with different trait values. The accompanying Table 4
shows the hierarchy of objects that are created and cached as
a consequence of processing the requests. The first request at
time T1 has trait values X = x1 and Y = y1, and accordingly
two new rule objects R1(x1,y1) and R2(x1), and an evaluation
object Eval(x1,y1) are created. The second request at time
T2 uses a different value y2 for trait Y, and hence cannot reuse
Eval(x1,y1) or R1(x1,y1) objects. It reuses R2(x1) since the
trait value for X does not change, and creates new objects
R1(x1,y2) and Eval(x1,y2). The third request at time T3 uses
the same trait values as the first, and hence is able to reuse
all three objects that were created during the processing of
the first request. Overall, two RuleEvaluation objects are cre-
ated, corresponding to the two trait value vectors {x1,y1} and
{x1,y2}. They share a single object for rule R2, but use two
separate objects for rule R1.

5.2.3 Additional Cache Hierarchies

Multiple rules often depend on the same part of the state. For
example, multiple rules need to track whether machines are
empty (e.g., BestFit and a rule that attempts to balance capac-
ity across racks). For such cases, we encapsulate the shared
part of the state in a Shared-Cache type, which multiple rules
can refer to. Just like a Rule, a Shared-Cache implements the
Update method, and declares any request traits it depends on.
Shared-Caches play a huge role in reducing memory usage.
These objects are cached in their own constant size memory
pool. As mentioned, a cached object may depend on other

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 853

cached objects. The rule selection engine thus ensures that all
dependencies are updated before the object is updated. Our
cache hierarchy embeds desirable properties. For example,
when a new RuleEvaluation object is created, it may often
rely on existing rule and shared-cache objects.

5.2.4 Efficiently Updating the Cache

Tracking and updating mechanisms. Recall that each AA
maintains its own private caches. Since each cached object
can in principle be updated just before it is used, objects can
exist at different levels of staleness. To facilitate seamless
updates, each AA has a journal that keeps track of changes to
any machine in the inventory. The journal maintains a global
revision number which is incremented upon every update.
In addition, the journal stores only the latest machine state
for every machine. Every cached object stores the highest
revision number it has seen, which corresponds the latest
inventory update it has consumed. An object brings itself
up to date by reading only the journal records with higher
revision numbers. Consequently, the update operation has
runtime complexity at the order of the number of machines
that were modified, rather than the entire inventory. The AA
updates the journal during an ongoing evaluation to record
each VM placement decision that it is making. In addition, the
AA updates the journal between evaluations by processing
enqueued incoming changes from the pub/sub service or the
placement store.
Background updates. An up-to-date cache can handle a re-
quest in few ms by simply extracting the best machine(s).
However, when this is not the case, just-in-time cache update
times can be a significant part of the total VM request latency.
Nonetheless, because the system has multiple AAs that are
provisioned to handle the rare periods of peak load, they re-
main inactive for most of the time. Hence, when an AA has
no requests to process, it is used to opportunistically update
the caches (starting with RuleEvaluation cache objects and
proceeding recursively).

5.2.5 Discussion

Design advantages. One clear advantage of our caching ap-
proach over other alternatives (e.g., node sampling or strict
partitioning the inventory) is that Protean can sustain low la-
tency and high throughput without giving up on allocation
opportunities. Another appealing property of our implementa-
tion is that the complexity of creating, reusing, and updating
a rule object is almost completely hidden from the creator of
a rule. A rule only has to implement the IsValid (or Compare)
and Update methods and declare the request traits it depends
on. The rest is handled by the machine selection engine within
the AA. This clear separation between the rules and the eval-
uation engine has been instrumental in the extensibility and
adaptability of Protean.

Global rules. There are a few machine selection rules that
do not express preference for individual machines, but rather
among groups of machines (e.g., prefer the least used rack).
We refer to such rules as global rules. Most global rules reason
about clusters and hence are part of cluster selection. However,
a few rules also reason about racks, and hence are part of the
machine selection stage. Global rules require us to adjust our
caching methodology. To understand the issue, observe that
for such rules, a change in a single machine within the group
might impact the value of all other machines in that group
(e.g., an allocation to a single machine in a rack might make
the rack less attractive than another rack). Hence, a single ma-
chine change makes all machines in the group ‘dirty’, and the
cached objects would require updating all the machines in the
group. To still benefit from our caching infrastructure, we use
a divide and conquer approach: in a nutshell, we divide the
machine inventory into cells. Each cell consists of a subset of
machines who are considered identical from the perspective
of all the global rules. We apply our caching mechanisms
separately for each cell; that means that we maintain a sorted
list of valid machines (the filtering and sorting is done based
on all non-global rules). To obtain the actual evaluation result,
we pick the best machine from each cell, and do the required
comparisons and sorting based on all rules. While these com-
parisons slow the evaluation time, we note that the original
complexity term of N logN reduces to Nc logNc, where Nc is
the number of cells. In our current setting, cells correspond
to racks. The number of racks after cluster selection is in the
order of a hundred, hence Nc� N.

5.3 Conflict Detection and Reduction
Occasional spikes of thousands of requests push all AAs to
work at full tilt. Naturally, chances of commit failures due to
conflicts increase considerably during such periods. Conflicts
reduce the effective throughput and increase outright failures;
as a request fails after a fixed number of retries. We employ
the following strategies to reduce such failures.
Fine-grained conflict detection. We built a conflict-
detection mechanism which allows commits to succeed even
when the AA makes a placement decision based on an out-
dated view of a machine. The logic verifies that the new place-
ment decision does not over-commit the machine resources
or violate other anti-colocation constraints (such as placing
a new VM on a machine that already hosts a VM requiring
isolation). If so, it merges the new placement decision with
the current state of the machine as part of the commit. This
mechanism has led to 25% drop in conflicts in one of our
busiest zones, compared to the simpler strategy of rejecting
all out-dated placement decisions.
Trading allocation quality for conflict reduction. Conflicts
increase during high-load periods, not only because of rapid
inventory changes, but also because AAs apply the same logic;
AAs are likely to identify highly overlapping sets of best ma-

854 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

chines if their respective requests are similar. The number
of machines in this set might be very small, so that even a
random selection from it may lead to a conflict with high prob-
ability. To address this challenge, the AA employs an hybrid
strategy for selecting a machine in its final step. In periods
with no conflicts, it selects from the set of best machines. Al-
ternatively, it may use a more permissive conflict-avoidance
scheme; this scheme randomly selects a machine from the
top N0 machines, where N0 is a configurable parameter (note
that the top N0 machines may differ in their desirability).
The conflict-avoidance scheme is enabled with a probability
proportional to the ratio of conflict failures to total commit
attempts, measured using a rolling window of the most recent
commit attempts. The conflict-avoidance scheme is instru-
mental in satisfying demand at high-load periods; since such
periods are infrequent, it has little effect on allocation quality.

6 Evaluation

6.1 Methodology

Production measurements. Since Protean is fully deployed
across all regions of Azure, it is natural to evaluate it using
measurements from production. Our infrastructure collects
numerous diagnostic metrics and structured logs, which are
used for monitoring and evaluation. These metrics and logs
are aggregated into a central and easily accessible source,
which allows custom queries for specific data extraction. Pro-
duction measurements is the default method in our evaluation;
we will mention explicitly when we use simulations.
Simulations. Simulations are incredibly useful for evaluating
what-if scenarios, such as the effect of different inventory
sizes, different rule configurations, etc. Our simulations use
real traces and configurations as input, and can be considered
a reasonably accurate representation of reality. In particular,
the simulated workload includes both traces from production,
as well as realistic probabilistic models of VM requests, de-
rived from historical traces. We built two types of simulators.
The high-fidelity simulator uses the actual production code of
Protean to perform the allocations, and outputs large amounts
of data for debugging purposes. Our low-fidelity simulator in-
cludes a lightweight emulation of the allocator (e.g., supports
a subset of the rules). This simulator still provides an excellent
approximation of the system, is orders-of-magnitude faster,
and especially useful for large scale evaluations.

6.2 Performance and Scale

Here we evaluate key mechanisms and design choices that
help Protean scale. We focus on the caching mechanism and
the effect of multiple AAs.
Cache evaluation: Hit-rate, latency and update overhead.
As discussed in §2, the nature of our workload motivates the

0 4 8 12 16 20 24
0

25
50
75

100

Time-of-day (hours)

H
it-

ra
tio

(%
)

FdEmptyNodes RuleEvaluation
BestFit NodeResources

13%

100%

13%

Figure 9: Cache-hit ratio over time for some caches. The
frequency of requests for each cache is shown on the right.

SUN MON TUES WED THU FRI SAT

10

100

Ti
m

e
(m

s)

Cache-miss Cache-hit

Figure 10: Latency in a large zone; average (+standard devia-
tion) per hour per day, over two months.

use of caching. Our first goal is to understand the effective-
ness of the hierarchical cache architecture. Towards that end,
Fig. 9 shows typical hit-ratio patterns in one of our zones,
focusing on four different cacheable classes over a day period
(taking into account all cached objects for each class). The
FdEmptyNodes and BestFit are cached rules; NodeResources
is a Shared-Cache; and RuleEvaluation corresponds to the
RuleEvaluation class. The stacked bar to the right of the fig-
ure shows the frequency of cache requests as a percentage of
allocation requests (NodeResources cache is requested only
in 0.16% of allocations, hence barely noticed). Lower-level
caches are only requested when higher-level caches miss, so
to interpret the results, both the request frequency and hit-ratio
should be considered. For example, the NodeResources cache
has a hit-ratio around 20%, but is less frequently accessed –
compared to RuleEvalution, which has a much higher hit-ratio
and is accessed on every request.

The resulting benefit of our cache and high hit-rates for
evaluation caches is improved latency. This can be clearly
seen from Fig. 10, which depicts the effect of a cache hit/miss
for the RuleEvaluation cache. Given our high hit-rate, the
overall average latency is close to 20 ms per allocation. A
cache-miss still uses many lower-level caches so that the la-
tency is typically 70-80ms. We note that Protean’s latency is
affected by additional functionality beyond the allocation pro-
cess itself, such as tracking and outputting debug information
about every allocation.

To gain further insights into the cache operation and re-
sulting latencies, we track the average number of machines
updated per allocation in one of our zones (∼30k machines),
over an entire day. Cache hits/misses have a significant impact
on the number of updated machines: approximately 50 for a

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 855

1,000 10,000
1

10

100

1,000

Machines

Ti
m

e
(m

s)

Cache-miss Cache-hit Baseline

Figure 11: Median latency vs inventory size over one-month.
Baseline results are based on high-fidelity simulation.

1,000 10,000
0.1

1

10

Machines

M
em

or
y

(G
iB

)

Figure 12: Memory used per AA vs inventory size. Average
(+standard deviation) over a month over all zones.

hit verses 2000 for a miss. A hit thus translates to less over-
head in the allocation process and in turn, to lower latency.
Notably, the number of updates is relatively small even in
case of a miss (6.6% of the machines). This can be attributed
to two main factors. First, the cluster selection process filters
out a large part of the inventory. In particular, we observe
through simulations that cluster selection rules filter out up
to 20% of the inventory for zones of 10k machines or more.
Second, a substantial part of inventory updates occur asyn-
chronously via background resolve. Indeed, our production
measurements indicate that 80-96% of machine updates are
done by that mechanism.
Scaling with inventory. Fig. 11 shows the inventory size ef-
fect on latency under three different scenarios. The first two
scenarios correspond to cache hit or miss for RuleEvaluation
cache, where the results represent production measurements
of zones with different sizes. To further examine the effective-
ness of mechanisms, we include a third scenario (“baseline”)
where the caching and cluster selection are disabled; because
we would rather not disable these mechanisms in production,
we use our high-fidelity simulator to obtain the results; ob-
serve that the median latency reaches around 1000 ms for
larger zones. In addition to latency performance, it is also
important to examine the cache’s memory footprint. Fig. 12
shows the memory required per AA, as a function of inven-
tory size. The fitted line, obtained via regression, shows that
the growth of our the memory footprint is sublinear (∼ x0.73),
which helps keep memory sizes manageable at scale.
Multiple allocation agents. Multiple allocators influence im-
portant metrics, such as the number of conflicts, delay and

0 20 40 60 80
0

100

200

Time horizon (s)

A
llo

ca
tio

ns
/s

ec

Requests 1 2 5

Figure 13: [Simulation] Throughput (allocations per second)
over a selected time horizon, for various number of AAs. The
bars represent the requests, and the curves represent their pro-
cessing. A shorter x-axis “span” means better performance.

0 10 20 30 40 50 60
0

500

1,000

1,500

2,000

Allocators
R

at
e

(p
er

se
c)

Conflicts Conflicts w/o avoidance
Throughput Throughput w/o avoidance

Figure 14: [Simulation] 99th percentile of conflicts per second
and corresponding throughput. Uses production trace as input.

throughput. Since the number of AAs in production is fixed,
we use our low-fidelity simulator for the experiments: we
emulate an heterogeneous inventory of one of our zones with
nearly 25k machines. We replay an actual request trace of
an entire day. We use the same conflict-avoidance (see §5.3)
parameters (100 machines allowed for final random selection,
rolling window size of 50 commits) and number of retries
before rejection (20) as in production. To expedite the low-
fidelity simulations, the actual cache infrastructure is not inte-
grated in the simulator. To mimic the cache, we use a realistic
statistical model, derived from production measurements of
the same zone over a month period. A cache hit/miss is de-
termined using a Bernoulli random variable, with an average
hit-ratio (p = 0.9) obtained from production; a hit results in
14ms latency, whereas a miss incurs a higher latency of 88ms.

Our first experiment examines how different number of
AAs handle a spike in demand (see Fig. 13). The key take-
away here is that a single allocator struggles to satisfy the load
in a reasonable time, causing excess delays to requests. With
five AAs, the requests are handled in more than 3x less time
(adding more AAs yields similar results). Our second experi-
ment (Fig. 14) replays another trace from the same zone; the
figure depicts the 99th percentile for the conflicts per second,
as well as the throughput observed during the same time. Our
collision-avoidance strategy provides clear gains: note that
throughput increases substantially with the number of AAs
with little effect on conflicts.

856 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 100 200 300 400 500
0

10k

20k

Allocators

R
at

e
(p

er
se

c)

0.1

R
ej

ec
tio

ns
(%

)

Conflicts Throughput Rejections

Figure 15: [Simulation] Scale test. 99th percentile of conflicts
per second with corresponding throughput and rejection rate.

Our system easily handles the request volume currently
seen in production. It is of natural interest to study (via simu-
lations) the possible performance trends at higher scale. To-
wards that end, we take an existing request trace and speed
up time by factors of up to 1000x. Fig. 15 shows throughput,
conflicts and rejection rates as we scale up the demand, verses
the number of AAs handling the requests; the simulations use
our standard avoidance scheme. We observe that although
throughput reaches over 10k requests per second, this comes
at the expense of significant conflicts which in turn affect
the rejection rate. The throughput eventually plateaus, likely
due to a combination of fixed inventory size and increasing
conflicts. In a production setting, we would have several op-
tions to deal with increased demand (e.g., tune the avoidance
scheme, or longer-term increase of inventory size).

6.3 Allocation Quality

Quality vs. performance tradeoff. There are different crite-
ria for quantifying quality; for example, balancing allocations
across multiple fault domains is important for satisfying large
service requests. In this section, we zoom in on a key effi-
ciency metric – packing density – which measures the average
number of allocated cores on non-empty machines (certain
machines must be kept empty, e.g., for failover of large VMs).
Formally, the packing density at time t is the ratio between
the number of allocated cores, and the number of non-empty
machines times the number of cores in each machine. We
note that packing density can be defined similarly for other
resources, such as memory; we focus on CPU because it is
typically the bottleneck resource. Table 5 summarizes a set
of experiments in one of our zones, using the low-fidelity
simulator on a 5 month trace. The different rows correspond
to different parameter configurations of the BestFit rule; in
particular, the configurations differ by the number of buckets
(see §3.2), where ∞ means no quantization. Recall that the
more buckets we use the finer is the quantization of the score,
which allows for better discrimination of machines by the
packing quality. On the flip side, a finer quantization means
that downstream rules are left with fewer candidate machines.
The results demonstrate some interesting trends. As expected,
the packing density (denoted PD %) increases with the num-

Buckets PD (%) Post-BestFit (%) P99 Conflicts / min

1 83.5 27.6 13.4
2 84.3 25.0 13.5
3 86.3 21.0 11.6
4 87.3 16.5 12.0
5 87.8 13.7 10.7
∞ 89.1 2.3 18.0

Table 5: [Simulation] The trade-off between packing and
robust allocations. PD (%) is the packing density averaged
over five months.

ber of buckets; note that the most significant increase is from
two to three buckets. More buckets increases the packing den-
sity by a little, however at the cost of filtering out a substantial
percent of candidate machines (Post-BestFit). The effect is
magnified at the extreme of no quantization, where very few
candidate machines are left. As a consequence, not only down-
stream rules become meaningless, but also the conflict rate
increases. This is because different allocators are more likely
to pick the same machine for allocation. In view of the above
analysis, we currently use three buckets in production.
Adapting to COVID-19 capacity crunch. As a consequence
of the COVID-19 pandemic, Azure observed a sharp increase
in demand. As an immediate response, we increased the uti-
lization limits in each cluster by 1%. These limits are used
to leave enough buffers for in-cluster scale-outs as well as to
account for failures. The increase was done easily by modify-
ing configurable threshold values in a cluster validator rule
IsClusterBelowLimit(x,v). This limit change slightly increased
the risk for scale-outs and fail-overs. To mitigate the risk, we
used Protean to identify fragmented machines, and recom-
mend migration targets that would improve packing (what-if
analysis). A supplementary VM migration mechanism used
these recommendations to live-migrate some VMs (targeting
first-party VMs only), resulting in improved packing density.
Fig. 16 shows both the average utilization (i.e., ratio between
number of allocated cores and total number of cores in Azure)
and the packing density over our entire fleet. The dashed lines
indicates the point of time at which the above changes were
made. The net effect of Protean adaptation was a sizeable in-
crease in utilization, facilitated by a significant improvement
in packing density. We also depict in the same figure the rela-
tive trends for the overall capacity fulfillment rate (CFR) – the
fraction of allocations that are successfully deployed. CFR
dipped slightly in mid-March, but went up again exceeding
its target of four nines by mid-April.

7 Related Work

Resource management for large compute clusters. Nu-
merous systems have been implemented for various do-
mains, including batch scheduling for HPC applications

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 857

JAN FEB MAR APR MAY

70

80

90

Pe
rc

en
t(

%
)

C
FR

(o
m

itt
ed

)

Packing Density Utilization CFR

Figure 16: CPU usage across Azure. Absolute capcity fulfill-
ment rate (CFR) values are omitted for confidentiality (hence,
the CFR y-axis is not labeled). The curve represents the rela-
tive trend and scaled to fit the graph.

[25, 44, 45], big-data analytics [7, 20, 23, 28, 38, 40, 47, 52],
stream-processing [34], AI [36], etc. More related to our
context is the work on hyper-scale cloud computing clus-
ters, see [8, 12, 15–17, 43, 48] and references therein. Our
cloud workload analysis adds to a body of work on this topic,
e.g., [5, 10, 12, 18, 26, 30, 35, 42, 46, 50].
Scheduler types. One useful way to classify large-scale
schedulers is based on how they process work items (jobs,
tasks, VMs, etc.). Centralized monolithic schedulers [21, 24,
52] use a single agent to process requests. They avoid concur-
rency issues, yet are harder to scale. A subset of these sched-
ulers, optimizes placement decisions by batch-processing mul-
tiple jobs together [19, 21, 24]. Our demanding latency and
throughout requirements preclude using these approaches.
To cope with scale and management complexities, two-level
schedulers [23, 47] perform course-grained resource manage-
ment, while leaving the fine-grained scheduling to application
frameworks. Similarly, distributed schedulers [36, 38, 41] de-
centralize the scheduling logic by employing sophisticated
queue management strategies at the target machines (see also
works on hybrid schedulers [13,14,29]). Two-level or various
distributed approaches are less applicable for VM schedul-
ing, which is inherently IaaS-centric. Our AA is centralized,
while target machines create their assigned VMs according to
a simple FCFS policy.
Concurrent schedulers. Similar to Sparrow [38], Apollo [7]
and Omega [43], Protean is a concurrent scheduler which em-
ploys multiple agents over a shared inventory. Omega handles
conflicts immediately as part of scheduling, whereas Apollo
and Mercury allow conflicting scheduling decisions to queue
on target nodes while deferring conflict resolution. As in [43],
we use multiple concurrent allocation agents and a conflict
resolution model. Indeed, our customers prefer VM requests
to fail early rather than waiting longer in hope for success;
this allows higher level services to quickly try other alterna-
tives, such as using another zone or modifying some request
properties.
Allocation scope. Cluster selection and caching allow
Protean to make resource assignment decisions based on
the entire inventory, similar to [7, 15]. Alternatively, sched-
ulers can statically partition the inventory [49], or use random

sampling to make a decision using a subset of the inven-
tory [17, 38, 48]. Protean shares similarities with Google’s
Borg [48]. Borg employs other optimizations for scalability,
such as caching node preference scores until the node changes,
and avoiding duplicate work by evaluating decisions for only
a single task within a group of identical tasks. Protean caches
not only node-centric data, but also rule and evaluation out-
comes that can be used across different requests. In addition,
Borg introduces the notion of equivalent classes, where fea-
sibility and scoring is determined only for a single task out
of identical tasks in a job. Protean extends this idea by con-
sidering requests across tenants to be equivalent if they share
the same trait values. Finally, unlike Borg, we do not employ
sampling (termed “relaxed randomization”), but rather use
other techniques to help with scale (multi-layer caching and
cluster selection).

Resource efficiency. Cloud schedulers attempt to increase
actual resource usage through a variety of techniques, e.g., re-
claiming unused resources, harvesting, profiling, heterogene-
ity and interference awareness [9, 12, 15, 16, 22, 27, 32, 33, 37,
48, 51, 53]. Protean’s flexible rule-based logic facilitates dy-
namic resource adjustment and interference mitigation strate-
gies; their description is outside the scope of this paper.

8 Conclusion

We describe Protean, the VM allocation service of Azure.
Our design separates policy from mechanisms, which has al-
lowed us to successfully expand our VM offerings over the
years. A flexible rule-based allocator facilitates refining the
allocation logic and explaining it to customers. VM requests
are processed in milliseconds, due to a hierarchical caching
framework. Results from production demonstrate that Protean
sustains adequate trade-offs between performance and qual-
ity.

Acknowledgements

We are grateful to our shepherd, John Wilkes, and the anony-
mous reviewers for their detailed and thoughtful feedback.
We would like to acknowledge the contributions of the en-
gineers who have been involved in the design, implementa-
tion, and maintenance of Protean over the years - Jason Chu,
Chris Cowdery, Dustin Dobransky, Eric Hao, Ryan Hidalgo,
Valentina Li, John Miller, Mukund Nigam, Jason Seo, Kan-
ishk Thareja, Karel Trueba, Yiran Wei and Brian Yan. We
also thank Saurabh Agarwal, Girish Bablani, Ricardo Bian-
chini, Íñigo Goiri, Marcus Fontoura and Saad Syed for helpful
discussions.

858 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Azure batch, 2020. https://docs.microsoft.com/
en-us/azure/batch/batch-low-pri-vms.

[2] Azure spot virtual machines, 2020. https://azure.
microsoft.com/en-us/pricing/spot/.

[3] Azure VM packing trace (public dataset), 2020. https:
//github.com/Azure/AzurePublicDataset.

[4] Azure’s virtual machine scale sets, 2020.
https://docs.microsoft.com/en-us/
azure/virtual-machine-scale-sets/
virtual-machine-scale-sets-autoscale-overview.

[5] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger,
Garth A. Gibson, Elisabeth Baseman, and Nathan De-
Bardeleben. On the diversity of cluster workloads and its
impact on research results. In USENIX Annual Technical
Conference (ATC), pages 533–546. USENIX Associa-
tion, July 2018.

[6] Yossi Azar and Danny Vainstein. Tight bounds for clair-
voyant dynamic bin packing. ACM Trans. Parallel Com-
put., 6(3):15:1–15:21, 2019.

[7] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jin-
gren Zhou, Zhengping Qian, Ming Wu, and Lidong
Zhou. Apollo: Scalable and coordinated scheduling
for cloud-scale computing. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pages 285–300, 2014.

[8] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, Omega, and Kubernetes.
Queue, 14(1):70–93, January 2016.

[9] Marcus Carvalho, Walfredo Cirne, Francisco Brasileiro,
and John Wilkes. Long-term SLOs for reclaimed cloud
computing resources. In Proceedings of the ACM Sym-
posium on Cloud Computing (SoCC), pages 1–13, 2014.

[10] Yue Cheng, Zheng Chai, and Ali Anwar. Characteriz-
ing co-located datacenter workloads: An Alibaba case
study. In Proceedings of the 9th Asia-Pacific Workshop
on Systems (APSys), 2018.

[11] Edward G Coffman, Jr, Michael R Garey, and David S
Johnson. Dynamic bin packing. SIAM Journal on Com-
puting, 12(2):227–258, 1983.

[12] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bianchini.
Resource central: Understanding and predicting work-
loads for improved resource management in large cloud
platforms. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP), pages 153–167,
2017.

[13] Pamela Delgado, Diego Didona, Florin Dinu, and Willy
Zwaenepoel. Job-aware scheduling in eagle: Divide
and stick to your probes. In Proceedings of the Seventh
ACM Symposium on Cloud Computing (SoCC), page
497–509, 2016.

[14] Pamela Delgado, Florin Dinu, Anne-Marie Kermar-
rec, and Willy Zwaenepoel. Hawk: Hybrid datacenter
scheduling. In Proceedings of the 2015 USENIX Con-
ference on Usenix Annual Technical Conference (ATC),
page 499–510, 2015.

[15] Christina Delimitrou and Christos Kozyrakis. Paragon:
QoS-aware scheduling for heterogeneous datacenters. In
Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), page 77–88, 2013.

[16] Christina Delimitrou and Christos Kozyrakis. Quasar:
Resource-efficient and QoS-aware cluster management.
In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), page 127–144, 2014.

[17] Christina Delimitrou, Daniel Sanchez, and Christos
Kozyrakis. Tarcil: reconciling scheduling speed and
quality in large shared clusters. In Proceedings of the
ACM Symposium on Cloud Computing (SoCC), pages
97–110, 2015.

[18] Sheng Di, Derrick Kondo, and Walfredo Cirne. Char-
acterization and comparison of cloud versus grid work-
loads. In Proceedings of the 2012 IEEE International
Conference on Cluster Computing (CLUSTER), page
230–238, 2012.

[19] Panagiotis Garefalakis, Konstantinos Karanasos, Pe-
ter Pietzuch, Arun Suresh, and Sriram Rao. Medea:
Scheduling of long running applications in shared pro-
duction clusters. In Proceedings of the Thirteenth Eu-
roSys Conference, 2018.

[20] Andrey Goder, Alexey Spiridonov, and Yin Wang.
Bistro: Scheduling data-parallel jobs against live pro-
duction systems. In 2015 USENIX Annual Technical
Conference (ATC), pages 459–471. USENIX Associa-
tion, July 2015.

[21] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert
N. M. Watson, and Steven Hand. Firmament: Fast,
centralized cluster scheduling at scale. In Proceedings
of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI), page 99–115, 2016.

[22] Jaeung Han, Seungheun Jeon, Young-ri Choi, and Jae-
hyuk Huh. Interference management for distributed
parallel applications in consolidated clusters. In Pro-
ceedings of the Twenty-First International Conference

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 859

https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms
https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms
https://azure.microsoft.com/en-us/pricing/spot/
https://azure.microsoft.com/en-us/pricing/spot/
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-autoscale-overview
https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-autoscale-overview
https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-autoscale-overview

on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), page 443–456, 2016.

[23] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D Joseph, Randy H Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In Sympo-
sium on Networked Systems Design and Implementation
(NSDI), volume 11, pages 22–22, 2011.

[24] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
Fair scheduling for distributed computing clusters. In
Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles (SOSP), page 261–276,
2009.

[25] David B. Jackson, Quinn Snell, and Mark J. Clement.
Core algorithms of the Maui scheduler. In Revised
Papers from the 7th International Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP),
page 87–102. Springer-Verlag, 2001.

[26] C. Jiang, G. Han, J. Lin, G. Jia, W. Shi, and J. Wan.
Characteristics of co-allocated online services and batch
jobs in internet data centers: A case study from Alibaba
cloud. IEEE Access, 7:22495–22508, 2019.

[27] Tatiana Jin, Zhenkun Cai, Boyang Li, Chengguang
Zheng, Guanxian Jiang, and James Cheng. Improving
resource utilization by timely fine-grained scheduling.
In Proceedings of the Fifteenth European Conference
on Computer Systems (EuroSys), 2020.

[28] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,
Shravan Matthur Narayanamurthy, Alexey Tumanov,
Jonathan Yaniv, Ruslan Mavlyutov, Íñigo Goiri, Subru
Krishnan, Janardhan Kulkarni, et al. Morpheus: To-
wards automated SLOs for enterprise clusters. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI, pages 117–134, 2016.

[29] Konstantinos Karanasos, Sriram Rao, Carlo Curino,
Chris Douglas, Kishore Chaliparambil, Giovanni Matteo
Fumarola, Solom Heddaya, Raghu Ramakrishnan, and
Sarvesh Sakalanaga. Mercury: Hybrid centralized and
distributed scheduling in large shared clusters. In Pro-
ceedings of the 2015 USENIX Conference on Usenix An-
nual Technical Conference (ATC), page 485–497, 2015.

[30] Cinar Kilcioglu, Justin M. Rao, Aadharsh Kannan, and
R. Preston McAfee. Usage patterns and the economics
of the public cloud. In Proceedings of the 26th Inter-
national Conference on World Wide Web (WWW), page
83–91, 2017.

[31] Alok Kumbhare, Reza Azimi, Ioannis Manousakis,
Anand Bonde, Felipe Frujeri, Nithish Mahalingam,
Pulkit Misra, Seyyed Ahmad Javadi, Bianca Schroeder,
Marcus Fontoura, and Ricardo Bianchini. Prediction-
based power oversubscription in cloud platforms, 2020.

[32] Jason Mars and Lingjia Tang. Whare-map: Heterogene-
ity in “homogeneous” warehouse-scale computers. In
Proceedings of the 40th Annual International Sympo-
sium on Computer Architecture (ISCA), page 619–630,
2013.

[33] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron,
and Mary Lou Soffa. Bubble-up: Increasing utilization
in modern warehouse scale computers via sensible co-
locations. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture (Micro),
page 248–259, 2011.

[34] Yuan Mei, Luwei Cheng, Vanish Talwar, Michael Y.
Levin, Gabriela Jacques-Silva, Nikhil Simha, Anirban
Banerjee, Brian Smith, Tim Williamson, Serhat Yilmaz,
Weitao Chen, and Guoqiang Jerry Chen. Turbine: Face-
book’s service management platform for stream process-
ing. In Proceedings of the 36th International Conference
on Data Engineering (ICDE). IEEE, 2020.

[35] Asit K. Mishra, Joseph L. Hellerstein, Walfredo Cirne,
and Chita R. Das. Towards characterizing cloud back-
end workloads: Insights from Google compute clusters.
SIGMETRICS Perform. Eval. Rev., 37(4):34–41, March
2010.

[36] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A distributed framework for emerg-
ing AI applications. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Imple-
mentation (OSDI), page 561–577, 2018.

[37] Kay Ousterhout, Christopher Canel, Sylvia Ratnasamy,
and Scott Shenker. Monotasks: Architecting for per-
formance clarity in data analytics frameworks. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles (SOSP), page 184–200, 2017.

[38] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and
Ion Stoica. Sparrow: Distributed, low latency schedul-
ing. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles (SOSP), page
69–84, 2013.

[39] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi
Wieder. Heuristics for vector bin packing. Technical re-
port, 2011. Available from https://www.microsoft.
com/en-us/research/wp-content/uploads/2011/
01/VBPackingESA11.pdf.

860 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.microsoft.com/en-us/research/wp-content/uploads/2011/01/VBPackingESA11.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2011/01/VBPackingESA11.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2011/01/VBPackingESA11.pdf

[40] Hang Qu, Omid Mashayekhi, David Terei, and Philip
Levis. Canary: A scheduling architecture for
high performance cloud computing. arXiv preprint
arXiv:1602.01412, 2016.

[41] Jeff Rasley, Konstantinos Karanasos, Srikanth Kandula,
Rodrigo Fonseca, Milan Vojnovic, and Sriram Rao. Ef-
ficient queue management for cluster scheduling. In
Proceedings of the Eleventh European Conference on
Computer Systems (EuroSys), 2016.

[42] Charles Reiss, Alexey Tumanov, Gregory R. Ganger,
Randy H. Katz, and Michael A. Kozuch. Heterogeneity
and dynamicity of clouds at scale: Google trace analysis.
In Proceedings of the Third ACM Symposium on Cloud
Computing (SoCC), 2012.

[43] Malte Schwarzkopf, Andy Konwinski, Michael Abd-
El-Malek, and John Wilkes. Omega: flexible, scalable
schedulers for large compute clusters. In Proceedings
of the 8th ACM European Conference on Computer
Systems (EuroSys), pages 351–364, 2013.

[44] Garrick Staples. Torque resource manager. In Proceed-
ings of the 2006 ACM/IEEE Conference on Supercom-
puting (SC), page 8–es, 2006.

[45] Douglas Thain, Todd Tannenbaum, and Miron Livny.
Distributed computing in practice: the Condor expe-
rience. Concurrency and computation: practice and
experience, 17(2-4):323–356, 2005.

[46] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. Borg: the next generation. In
Proceedings of the Fifteenth European Conference on
Computer Systems (EuroSys), pages 1–14, 2020.

[47] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, et al. Apache Hadoop YARN: Yet another re-
source negotiator. In Proceedings of the 4th Annual

Symposium on Cloud Computing (SoCC), pages 1–16,
2013.

[48] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In Pro-
ceedings of the Tenth European Conference on Com-
puter Systems (EuroSys), pages 1–17, 2015.

[49] Zhijun Wang, Huiyang Li, Zhongwei Li, Xiaocui Sun,
Jia Rao, Hao Che, and Hong Jiang. Pigeon: An effective
distributed, hierarchical datacenter job scheduler. In Pro-
ceedings of the ACM Symposium on Cloud Computing
(SoCC), page 246–258, 2019.

[50] John Wilkes. More Google cluster data.
Google research blog, Nov 2011. Available
from https://ai.googleblog.com/2011/11/
more-google-cluster-data.html.

[51] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia
Tang. Bubble-flux: Precise online QoS management for
increased utilization in warehouse scale computers. In
Proceedings of the 40th Annual International Sympo-
sium on Computer Architecture (ISCA), page 607–618,
2013.

[52] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay
scheduling: A simple technique for achieving locality
and fairness in cluster scheduling. In Proceedings of
the 5th European Conference on Computer Systems (Eu-
roSys), page 265–278, 2010.

[53] Yunqi Zhang, George Prekas, Giovanni Matteo Fu-
marola, Marcus Fontoura, Íñigo Goiri, and Ricardo Bian-
chini. History-based harvesting of spare cycles and stor-
age in large-scale datacenters. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pages 755–770, 2016.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 861

https://ai.googleblog.com/2011/11/more-google-cluster-data.html
https://ai.googleblog.com/2011/11/more-google-cluster-data.html

Ansor: Generating High-Performance Tensor Programs for Deep Learning

Lianmin Zheng 1, Chengfan Jia 2, Minmin Sun 2, Zhao Wu 2, Cody Hao Yu 3 ,
Ameer Haj-Ali 1, Yida Wang 3, Jun Yang 2, Danyang Zhuo 1,4 ,

Koushik Sen 1, Joseph E. Gonzalez 1, Ion Stoica 1

1 UC Berkeley, 2Alibaba Group, 3Amazon Web Services, 4 Duke University

Abstract
High-performance tensor programs are crucial to guarantee

efficient execution of deep neural networks. However, obtain-
ing performant tensor programs for different operators on
various hardware platforms is notoriously challenging. Cur-
rently, deep learning systems rely on vendor-provided kernel
libraries or various search strategies to get performant tensor
programs. These approaches either require significant engi-
neering effort to develop platform-specific optimization code
or fall short of finding high-performance programs due to
restricted search space and ineffective exploration strategy.

We present Ansor, a tensor program generation framework
for deep learning applications. Compared with existing search
strategies, Ansor explores many more optimization combina-
tions by sampling programs from a hierarchical representation
of the search space. Ansor then fine-tunes the sampled pro-
grams with evolutionary search and a learned cost model to
identify the best programs. Ansor can find high-performance
programs that are outside the search space of existing state-of-
the-art approaches. In addition, Ansor utilizes a task scheduler
to simultaneously optimize multiple subgraphs in deep neural
networks. We show that Ansor improves the execution perfor-
mance of deep neural networks relative to the state-of-the-art
on the Intel CPU, ARM CPU, and NVIDIA GPU by up to
3.8⇥, 2.6⇥, and 1.7⇥, respectively.

1 Introduction

Low-latency execution of deep neural networks (DNN) plays
a critical role in autonomous driving [14], augmented real-
ity [3], language translation [15], and other applications of
AI. DNNs can be expressed as a directed acyclic compu-
tational graph (DAG), in which nodes represent the opera-
tors (e.g., convolution, matrix multiplication) and directed
edges represent the dependencies between operators. Existing
deep learning frameworks (e.g., Tensorflow [1], PyTorch [39],
MXNet [10]) map the operators in DNNs to vendor-provided
kernel libraries (e.g., cuDNN [13], MKL-DNN [27]) to

achieve high performance. However, these kernel libraries
require significant engineering effort to manually tune for
each hardware platform and operator. The significant manual
effort required to produce efficient operator implementations
for each target accelerator limits the development and innova-
tion of new operators [7] and specialized accelerators [35].

Given the importance of DNNs’ performance, researchers
and industry practitioners have turned to search-based com-
pilation [2, 11, 32, 49, 59] for automated generation of tensor
programs, i.e., low-level implementations of tensor operators.
For an operator or a (sub-)graph of multiple operators, users
define the computation in a high-level declarative language
(§2), and the compiler then searches for programs tailored
towards different hardware platforms.

To find performant tensor programs, it is necessary for a
search-based approach to explore a large enough search space
to cover all the useful tensor program optimizations. However,
existing approaches fail to capture many effective optimiza-
tion combinations, because they rely on either predefined
manually-written templates (e.g., TVM [12], FlexTensor [59])
or aggressive pruning by evaluating incomplete programs
(e.g., Halide auto-scheduler [2]), which prevents them from
covering a comprehensive search space (§2). The rules they
use to construct the search space are also limited.

In this paper, we explore a novel search strategy for gener-
ating high-performance tensor programs. It can automatically
generate a large search space with comprehensive coverage of
optimizations and gives every tensor program in the space a
chance to be chosen. It thus enables to find high-performance
programs that existing approaches miss.

Realizing this goal faces multiple challenges. First, it re-
quires automatically constructing a large search space to cover
as many tensor programs as possible for a given computation
definition. Second, we need to search efficiently without com-
paring incomplete programs in the large search space that can
be orders of magnitude larger than what existing templates
can cover. Finally, when optimizing an entire DNN with many
subgraphs, we should recognize and prioritize the subgraphs
that are critical to the end-to-end performance.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 863

To this end, we design and implement Ansor, a framework
for automated tensor program generation. Ansor utilizes a
hierarchical representation to cover a large search space. This
representation decouples high-level structures and low-level
details, enabling flexible enumeration of high-level structures
and efficient sampling of low-level details. The space is con-
structed automatically for a given computation definition.
Ansor then samples complete programs from the search space
and fine-tunes these programs with evolutionary search and a
learned cost model. To optimize the performance of DNNs
with multiple subgraphs, Ansor dynamically prioritizes sub-
graphs of the DNNs that are more likely to improve the end-
to-end performance.

We evaluate Ansor on both standard deep learning bench-
marks and emerging new workloads against manual libraries
and state-of-the-art search-based frameworks. Experiment re-
sults show that Ansor improves the execution performance
of DNNs on the Intel CPU, ARM CPU, and NVIDIA GPU
by up to 3.8⇥, 2.6⇥, and 1.7⇥, respectively. For most com-
putation definitions, the best program found by Ansor is out-
side the search space of existing search-based approaches.
The results also show that, compared with existing search-
based approaches, Ansor searches more efficiently, generating
higher-performance programs in a shorter time, despite its
larger search space. Ansor can match the performance of a
state-of-the-art framework with an order of magnitude less
search time. Besides, Ansor enables automatic extension to
new operators by only requiring their mathematical definitions
without manual templates.

In summary, this paper makes the following contributions:
• A mechanism to generate a large hierarchical search

space of tensor programs for a computational graph.

• An evolutionary strategy with a learned cost model to
fine-tune the performance of tensor programs.

• A scheduling algorithm based on gradient descent to
prioritize important subgraphs when optimizing the end-
to-end performance of DNNs.

• An implementation and comprehensive evaluation of the
Ansor system demonstrating that the above techniques
outperform state-of-the-art systems on a variety of DNNs
and hardware platforms.

2 Background

The deep learning ecosystem is embracing a rapidly growing
diversity of hardware platforms including CPUs, GPUs, FP-
GAs, and ASICs. In order to deploy DNNs on these platforms,
high-performance tensor programs are needed for the opera-
tors used in DNNs. The required operator set typically con-
tains a mixture of standard operators (e.g., matmul, conv2d)
and novel operators invented by machine learning researchers
(e.g., capsule conv2d [23], dilated conv2d [57]).

C = compute((N, M), lambda i, j: sum(A[i, k]*B[k, j], [k]))

Matrix	Multiplication	 				!",	% = ∑ (",)*),	%�
)

Figure 1: The computation definition of matrix multiplication.

To deliver portable performance of these operators on a
wide range of hardware platforms in a productive way, multi-
ple compiler techniques have been introduced (e.g., TVM [11],
Halide [41], Tensor Comprehensions [49]). Users define the
computation in a form similar to mathematical expressions
using a high-level declarative language, and the compiler gen-
erates optimized tensor programs according to the definition.
Figure 1 shows the computation definition of matrix multipli-
cation in the TVM tensor expression language. Users mainly
need to define the shapes of the tensors and how each element
in the output tensor is computed.

However, automatically generating high-performance ten-
sor programs from a high-level definition is extremely dif-
ficult. Depending on the architecture of the target platform,
the compiler needs to search in an extremely large and com-
plicated space containing combinatorial choices of optimiza-
tions (e.g., tile structure, tile size, vectorization, paralleliza-
tion). Finding high-performance programs requires the search
strategy to cover a comprehensive space and explore it effi-
ciently. We describe two recent and effective approaches in
this section and other related work in §8.

Template-guided search. In template-guided search, the
search space is defined by manual templates. As shown in Fig-
ure 2a, the compiler (e.g., TVM) requires the user to manually
write a template for a computation definition. The template
defines the structure of the tensor programs with some tunable
parameters (e.g., tile size and unrolling factor). The compiler
then searches for the best values of these parameters for a spe-
cific input shape configuration and a specific hardware target.
This approach has achieved good performance on common
deep learning operators. However, developing templates re-
quires substantial effort. For example, the code repository of
TVM already contains more than 15K lines of code for these
templates. This number continues to grow as new operators
and new hardware platforms emerge. Besides, constructing a
quality template requires expertise in both tensor operators
and hardware. It takes non-trivial research effort [32, 55, 59]
to develop quality templates. Despite the complexity of tem-
plate design, manual templates only cover limited program
structures because manually enumerating all optimization
choices for all operators is prohibitive. This approach typi-
cally requires defining one template for each operator. Flex-
Tensor [59] proposes a general template to cover multiple
operators, but its template is still designed for single operator
granularity, which fails to include optimizations involving
multiple operators (e.g., operator fusion). The search space
of optimizing a computational graph with multiple operators
should contain different ways to compose the operators. A
template-based approach fails to achieve this because it can-
not break down their fixed templates and re-compose them

864 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

...

(a) Template-guided Search

Fixed Manual Template

for i.0 in range():
for j.0 in range():
for k.0 in range():

for i.1 in range():
for j.1 in range():

C[...] += A[...] * B[...]
for i.2 in range():

for j.2 in range():
D[...] = max(C[...], 0.0)

?
?
?
?
?

?

?
?

(b) Sequential Construction Based Search

...

Incomplete Program
for i.0 in range(512):

for j.0 in range(512):
D[...] = max(C[...], 0.0)

How	to	build	the	next	statement	 ?

Candidate	1

Candidate	2

Candidate	3

Candidate	4

Pruned

Pruned

Kept

Kept Evolutionary fine-tuning

Better	Programs

Low-level detail sampling

...
for ...

for ...
for ...

for ...
...

for ...
for ...
for ...

for ...
...

for ...
for ...

for ...
for ...

(c) Ansor’s Hierarchical Approach

High-level structure generation

......
for i.0 in range(64):

for j.0 in range(64):
for k.0 in range(512):

for i.1 in range(8):
for j.1 in range(8):

D[...] = ...

Complete Programs

?
?

?

?

?

Beam Search with Early PruningParameter Serach

Figure 2: Search strategy comparison. The pseudo-code shows tensor programs with loop nests. The question marks in orange
background denote low-level parameters.

during the search.
Sequential construction based search. This approach de-

fines the search space by decomposing the program construc-
tion into a fixed sequence of decisions. The compiler then
uses an algorithm such as beam search [34] to search for good
decisions (e.g., Halide auto-scheduler [2]). In this approach,
the compiler constructs a tensor program by sequentially un-
folding all nodes in the computational graph. For each node,
the compiler makes a few decisions on how to transform it
into low-level tensor programs (i.e., deciding computation
location, storage location, tile size, etc.). When all nodes are
unfolded, a complete tensor program is constructed. This ap-
proach uses a set of general unfolding rules for every node,
so it can search automatically without requiring manual tem-
plates. Because the number of possible choices of each de-
cision is large, to make the sequential process feasible, this
approach keeps only top-k candidate programs after every de-
cision. The compiler estimates and compares the performance
of candidate programs with a learned cost model to select the
top-k candidates; while other candidates are pruned. During
the search, the candidate programs are incomplete because
only part of the computational graph is unfolded or only some
of the decisions are made. Figure 2b shows this process.

However, estimating the final performance of incomplete
programs is difficult in several respects: (1) the cost model
trained on complete programs cannot accurately predict the
final performance of incomplete programs. The cost model
can only be trained on complete programs because we need
to compile programs and measure their execution time to
get the labels for training. Directly using this model to com-
pare the final performance of incomplete programs will result
in poor accuracy. As a case study, we train our cost model
(§5.2) on 20,000 random complete programs from our search
space and use the model to predict the final performance of
incomplete programs. The incomplete programs are obtained
by only applying a fraction of loop transformations of the
complete programs. We use two ranking metrics for evalua-
tion: the accuracy of pairwise comparison and the recall@k

Figure 3: Pairwise comparison accuracy and top-k recall curve
on random partial programs. In both subfigures, higher values
are better.

score of top-k programs 1 (k = 10). As shown in Figure 3,
the two curves start from 50% and 0% respectively, meaning
that random guess with zero information gives 50% pairwise
comparison accuracy and 0% top-k recall. The two curves
increase quickly as the programs become complete, which
means the cost model performs very well for complete pro-
grams but fails to accurately predict the final performance of
incomplete programs. (2) The fixed order of sequential deci-
sions limits the design of the search space. For example, some
optimization needs to add new nodes to the computational
graph (e.g., adding cache nodes, using rfactor [46]). The
number of decisions for different programs becomes different.
It is hard to align the incomplete programs for a fair compari-
son. (3) Sequential construction based search is not scalable.
Enlarging the search space needs to add more sequential con-
struction steps, which, however, leads to a worse accumulated
error.

Ansor’s hierarchical approach As shown in Figure 2c,
Ansor is backed by a hierarchical search space that decouples
high-level structures and low-level details. Ansor constructs
the search space for a computational graph automatically,
eliminating the need to manually develop templates. Ansor
then samples complete programs from the space and performs
fine-tuning on complete programs, avoiding the inaccurate es-
timation of incomplete programs. Figure 2 shows the key dif-

1recall@k of top-k = |G\P|
k , where G is the set of top-k programs according

to the ground truth and P is the set of top-k programs predicted by the model.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 865

ference between Ansor’s approach and existing approaches.

3 Design Overview

Ansor is an automated tensor program generation framework.
Figure 4 shows the overall architecture of Ansor. The input
of Ansor is a set of to be optimized DNNs. Ansor uses the
operator fusion algorithm from Relay [42] to convert DNNs
from popular model formats (e.g., ONNX [6], TensorFlow
PB) to partitioned small subgraphs. Ansor then generates
tensor programs for these subgraphs. Ansor has three major
components: (1) a program sampler that constructs a large
search space and samples diverse programs from it; (2) a
performance tuner that fine-tunes the performance of sampled
programs; (3) a task scheduler that allocates time resources
for optimizing multiple subgraphs in the DNNs.

Program sampler. One key challenge Ansor has to ad-
dress is generating a large search space for a given computa-
tional graph. To cover diverse tensor programs with various
high-level structures and low-level details, Ansor utilizes a
hierarchical representation of the search space with two lev-
els: sketch and annotation (§4). Ansor defines the high-level
structures of programs as sketches and leaves billions of low-
level choices (e.g., tile size, parallel, unroll annotations) as
annotations. This representation allows Ansor to enumerate
high-level structures flexibly and sample low-level details ef-
ficiently. Ansor includes a program sampler that randomly
samples programs from the space to provide comprehensive
coverage of the search space.

Performance tuner. The performance of randomly sam-
pled programs is not necessarily good. The next challenge
is to fine-tune them. Ansor employs evolutionary search and
a learned cost model to perform fine-tuning iteratively (§5).
At each iteration, Ansor uses re-sampled new programs as
well as good programs from previous iterations as the ini-
tial population to start the evolutionary search. Evolutionary
search fine-tunes programs by mutation and crossover which
perform out-of-order rewrite and address the limitation of
sequential construction. Querying the learned cost model is
orders of magnitude faster than actual measurement, so we
can evaluate thousands of programs in seconds.

Task scheduler. Using program sampling and performance
fine-tuning allows Ansor to find high-performance tensor pro-
grams for a computational graph. Intuitively, treating a whole
DNN as a single computational graph and generating a full
tensor program for it could potentially achieve the optimal
performance. This, however, is inefficient because it has to
deal with the unnecessary exponential explosion of the search
space. Typically, the compiler partitions the large computa-
tional graph of a DNN into several small subgraphs [11, 42].
This partition has a negligible effect on the performance
thanks to the layer-by-layer construction nature of DNNs.
This brings the final challenge of Ansor: how to allocate time
resources when generating programs for multiple subgraphs.

Deep	Learning	Models

Subgraph	1

Task Scheduler

Subgraph	2 Subgraph	3 · ·	·	

Program Sampler

Sketch	Generation Random	Annotation

Performance Tuner

Evolutionary	Search Learned	Cost	Model

Intel	CPU

Measurer

ARM	CPU NVIDIA	GPU · ·	·	

Section 6

Section 5

Section 4

Partitioned subgraphs

One subgraph

A batch of initial programs

A batch of opimized programs

Execution time of programs
(training data for future iterations)

Figure 4: System Overview. The gray arrows show the flow
of extracting subgraphs from deep learning models and gen-
erating optimized programs for them. The green arrows mean
the measurer returns profiling data to update the status of all
components in the system.

The task scheduler (§6) in Ansor uses a scheduling algorithm
based on gradient descent to allocate resources to the sub-
graphs that are more likely to improve the end-to-end DNN
performance.

4 Program Sampling

The search space an algorithm explores determines the best
programs it can find. The considered search spaces in existing
approaches are limited by the following factors: (1) Manual
enumeration (e.g., TVM [12]). It is impractical to manually
enumerate all possible choices by templates, so existing man-
ual templates only cover a limited search space heuristically.
(2) Aggressive early pruning (e.g., Halide auto-scheduler [2]).
Aggressive early pruning based on evaluating incomplete pro-
grams prevents the search algorithm from exploring certain
regions in the space.

In this section, we introduce techniques to push the bound-
ary of the considered search space by addressing the above
limitations. To solve (1), we automatically expand the search
space by recursively applying a set of flexible derivation rules.
To avoid (2), we randomly sample complete programs in the
search space. Since random sampling gives an equal chance
to every point to be sampled, our search algorithm can po-
tentially explore every program in the considered space. We
do not rely on random sampling to find the optimal program,
because every sampled program is later fined-tuned (§5).

To sample programs that can cover a large search space, we
define a hierarchical search space with two levels: sketch and
annotation. We define the high-level structures of programs
as sketches and leave billions of low-level choices (e.g., tile

866 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

No Rule Name Condition Application
1 Skip ¬IsStrictInlinable(S, i) S0 = S; i0 = i�1
2 Always Inline IsStrictInlinable(S, i) S0 = Inline(S, i); i0 = i�1
3 Multi-level Tiling HasDataReuse(S, i) S0 = MultiLevelTiling(S, i); i0 = i�1
4 Multi-level Tiling with Fusion HasDataReuse(S, i)^HasFusibleConsumer(S, i) S0 = FuseConsumer(MultiLevelTiling(S, i), i); i0 = i�1
5 Add Cache Stage HasDataReuse(S, i)^¬HasFusibleConsumer(S, i) S0 = AddCacheWrite(S, i); i = i0

6 Reduction Factorization HasMoreReductionParallel(S, i) S0 = AddR f actor(S, i); i0 = i�1
... User Defined Rule

Table 1: Derivation rules used to generate sketches. The condition runs on the current state s = (S, i). The application derives the
next state s0 = (S0, i0) from the current state s. Note that some function (e.g., AddR f actor, FuseConsumer) can return multiple
possible values of S0. In this case we collect all possible S0, and return multiple next states s0 for a single input state s.

size, parallel, unroll annotations) as annotations. At the top
level, we generate sketches by recursively applying a few
derivation rules. At the bottom level, we randomly annotate
these sketches to get complete programs. This representation
summarizes a few basic structures from billions of low-level
choices, enabling the flexible enumeration of high-level struc-
tures and efficient sampling of low-level details.

While Ansor supports both CPU and GPU, we explain the
sampling process for CPUs in §4.1 and §4.2 as an example.
We then discuss how the process is different for GPU in §4.3.

4.1 Sketch Generation
As shown in Figure 4, the program sampler accepts partitioned
subgraphs as input. The first column in Figure 5 shows two
examples of the input. The input has three equivalent forms:
the mathematical expression, the corresponding naive pro-
gram obtained by directly expanding the loop indices, and the
corresponding computational graph (directed acyclic graph,
or DAG).

To generate sketches for a DAG with multiple nodes, we
visit all the nodes in a topological order and build the structure
iteratively. For computation nodes that are compute-intensive
and have a lot of data reuse opportunities (e.g., conv2d, mat-
mul), we build basic tile and fusion structures for them as the
sketch. For simple element-wise nodes (e.g., ReLU, element-
wise add), we can safely inline them. Note that new nodes
(e.g., caching nodes, layout transform nodes) may also be
introduced to the DAG during the sketch generation.

We propose a derivation-based enumeration approach to
generate all possible sketches by recursively applying several
basic rules. This process takes a DAG as an input and returns
a list of sketches. We define the State s = (S, i), where S is
the current partially generated sketch for the DAG, and i is the
index of the current working node. The nodes in a DAG are
sorted in a topological order from output to input. The deriva-
tion begins from the initial naive program and the last node, or
the initial state s = (naive program, index o f the last node).
Then we try to apply all derivation rules to the states re-
cursively. For each rule, if the current state satisfies the ap-
plication condition, we apply the rule to s = (S, i) and get
s0 = (S0, i0) where i0 i. This way the index i (working node)

decreases monotonically. A state becomes a terminal state
when i = 0. During enumeration, multiple rules can be ap-
plied to one state to generate multiple succeeding states. One
rule can also generate multiple possible succeeding states.
So we maintain a queue to store all intermediate states. The
process ends when the queue is empty. All s.S in terminal
states form a sketch list at the end of the sketch generation.
The number of sketches is less than 10 for a typical subgraph.

Derivation rules. Table 1 lists derivation rules we used
for the CPU. We first provide the definition of the used
predicates and then describe the functionality of each rule.
IsStrictInliable(S, i) indicates if the node i in S is a sim-
ple element-wise operator that can always be inlined (e.g.,
element-wise add, ReLU). HasDataReuse(S, i) indicates if
the node i in S is a compute-intensive operator and has
plentiful intra-operator data reuse opportunity (e.g., mat-
mul, conv2d). HasFusibleConsumer(S, i) indicates if the
node i in S has only one consumer j and node j can be
fused into node i (e.g., matmul + bias_add, conv2d + relu).
HasMoreReductionParallel(S, i) indicates if the node i in S
has little parallelism in space dimensions but has ample paral-
lelism opportunity in reduction dimensions. (e.g., computing
2-norm of a matrix, matmul C2⇥2 = A2⇥512 ·B512⇥2). We per-
form static analysis on the computation definitions to get the
values for these predicates. The analysis is done automatically
by parsing the read/write pattern in the mathematical expres-
sions. Next, we introduce the functionality of each derivation
rule.

Rule 1 just simply skips a node if it is not strictly inlinable.
Rule 2 always inlines strictly inlinable nodes. Since the condi-
tions of rule 1 and rule 2 are mutually exclusive, a state with
i > 1 can always satisfy one of them and continue to derive.

Rules 3, 4, and 5 deal with the multi-level tiling and fusion
for nodes that have data reuse. Rule 3 performs multi-level
tiling for data reusable nodes. For CPU, we use a “SSRSRS”
tile structure, where “S” stands for one tile level of space
loops and “R” stands for one tile level of reduction loops.
For example, in the matmul C(i, j) = Âk A[i,k]⇥B[k, j], i and
j are space loops and k is a reduction loop. The “SSRSRS”
tile structure for matmul expands the original 3-level loop
(i, j,k) into a 10-level loop (i0, j0, i1, j1,k0, i2, j2,k1, i3, j3).
Although we do not permute the loop order, this multi-level

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 867

tiling can also cover some cases of reordering. For example,
the above 10-level loop can be specialized to just a simple
reorder (k0, j2, i3) by setting the length of other loops to one.
The "SSRSRS" tile structure is general for compute-intensive
dense operators (e.g., matmul, conv2d, conv3d) in deep learn-
ing, because they all consist of space loops and reduction
loops.

Rule 4 performs multi-level tiling and also fuses the fusible
consumers. For example, we fuse the element-wise nodes
(e.g., ReLU, bias add) into the tiled nodes (e.g., conv2d, mat-
mul). Rule 5 adds a caching node if the current data-reusable
node does not have a fusible consumer. For example, the fi-
nal output node in a DAG does not have any consumer, so it
directly writes results into main memory by default and this
is inefficient due to the high latency of memory accesses. By
adding a cache node, we introduce a new fusible consumer
into the DAG, then rule 4 can be applied to fuse this newly
added cache node into the final output node. With the cache
node fused, now the final output node writes its results into a
cache block, and the cache block will be written to the main
memory at once when all data in the block is computed.

Rule 6 can use rfactor [46] to factorize a reduction loop
into a space loop to bring more parallelism.

Examples. Figure 5 shows three examples of the gener-
ated sketches. The sketches are different from the manual
templates in TVM, because the manual templates specify
both high-level structures and low-level details while sketches
only define high-level structures. For the example input 1, the
sorted order of the four nodes in the DAG is (A,B,C,D). To
derive the sketches for the DAG, we start from output node
D(i = 4) and apply rules to the nodes one by one. Specifically,
the derivation for generated sketch 1 is:

Input 1 !s(S0, i = 4) Rule 1���! s(S1, i = 3) Rule 4���!

s(S2, i = 2) Rule 1���! s(S3, i = 1) Rule 1���! Sketch 1

For the example input 2, the sorted order of the five nodes
is (A,B,C,D,E). Similarly, we start from the output node
E(i = 5) and apply rules recursively. The generated sketch 2
is derived by:

Input 2 !s(S0, i = 5) Rule 5���! s(S1, i = 5) Rule 4���!

s(S2, i = 4) Rule 1���! s(S3, i = 3) Rule 1���!

s(S4, i = 2) Rule 2���! s(S5, i = 1) Rule 1���! Sketch 2

Similarly, the generated sketch 3 is derived by:

Input 2 !s(S0, i = 5) Rule 6���! s(S1, i = 4) Rule 1���!

s(S2, i = 3) Rule 1���! s(S3, i = 2) Rule 2���!

s(S4, i = 1) Rule 1���! Sketch 3

Customization. While the presented rules are practical
enough to cover the structures for most operators, there are al-
ways exceptions. For example, some special algorithms (e.g.,

Winograd convolution [30]) and accelerator intrinsics (e.g.,
TensorCore [37]) require special tile structures to be effec-
tive. Although the template-guided search approach (in TVM)
can craft a new template for every new case, it needs a great
amount of design effort. On the other hand, the derivation-
based sketch generation in Ansor is flexible enough to gen-
erate the required structures for emerging algorithms and
hardware, as we allow users to register new derivation rules
and integrate them seamlessly with existing rules.

4.2 Random Annotation
The sketches generated by the previous subsection are incom-
plete programs because they only have tile structures without
specific tile sizes and loop annotations, such as parallel, unroll,
and vectorization. In this subsection, we annotate sketches to
make them complete programs for fine-tuning and evaluation.

Given a list of generated sketches, we randomly pick one
sketch, randomly fill out tile sizes, parallelize some outer
loops, vectorize some inner loops, and unroll a few inner
loops. We also randomly change the computation location
of some nodes in the program to make a slight tweak to
the tile structure. All “random” in this subsection means a
uniform distribution over all valid values. If some special
algorithms require custom annotations to be effective (e.g.,
special unrolling), we allow users to give simple hints in the
computation definition to adjust the annotation policy. Finally,
since changing the layout of constant tensors can be done in
compilation time and brings no runtime overhead, we rewrite
the layouts of the constant tensors according to the multi-level
tile structure to make them as cache-friendly as possible. This
optimization is effective because the weight tensors of convo-
lution or dense layers are constants for inference applications.

Examples of random sampling are shown in Figure 5. The
sampled program might have fewer loops than the sketch
because the loops with length one are simplified.

4.3 GPU Support
For GPU, we change the multi-level tiling structure from
"SSRSRS" to "SSSRRSRS" to match the architecture of GPU.
The loops in the first three space tiles are bound to BlockIdx,
virtual thread (for reducing bank conflicts), and ThreadIdx,
respectively. We add two sketch derivation rules, one for uti-
lizing shared memory by inserting a caching node (similar to
Rule 5) and the other for cross-thread reduction (similar to
Rule 6).

5 Performance Fine-tuning
The programs sampled by the program sampler have good cov-
erage of the search space, but their qualities are not guaranteed.
This is because the optimization choices, such as tile struc-
ture and loop annotations, are all randomly sampled. In this

868 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

* The mathmetical expression:
! ", $ = &'[",)]

�

,
	×	/[), $]

0 ", $ = max	(! ", $, 0.0)
where 0 ≤ ", $,) < 512
* The corresponding naive program:
for i in range(512):

for j in range(512):
for k in range(512):

C[i, j] += A[i, k] * B[k, j]
for i in range(512):

for j in range(512):
D[i, j] = max(C[i, j], 0.0)

* The corresponding DAG:

Example Input 1:
parallel i.0@j.0@i.1@j.1 in range(256):

for k.0 in range(32):
for i.2 in range(16):

unroll k.1 in range(16):
unroll i.3 in range(4):

vectorize j.3 in range(16):
C[...] += A[...] * B[...]

for i.4 in range(64):
vectorize j.4 in range(16):

D[...] = max(C[...], 0.0)

Sampled program 1

parallel i.2 in range(16):
for j.2 in range(128):
for k.1 in range(512):

for i.3 in range(32):
vectorize j.3 in range(4):

C[...] += A[...] * B[...]
parallel i.4 in range(512):

for j.4 in range(512):
D[...] = max(C[...], 0.0)

Sampled program 2

for i.0 in range(TILE_I0):
for j.0 in range(TILE_J0):
for i.1 in range(TILE_I1):

for j.1 in range(TILE_J1):
for k.0 in range(TILE_K0):

for i.2 in range(TILE_I2):
for j.2 in range(TILE_J2):

for k.1 in range(TILE_I1):
for i.3 in range(TILE_I3):

for j.3 in range(TILE_J3):
C[...] += A[...] * B[...]

for i.4 in range(TILE_I2 * TILE_I3):
for j.4 in range(TILE_J2 * TILE_J3):
D[...] = max(C[...], 0.0)

Generated sketch 1

for i in range(8):
for k in range(512):
C[i, k] = max(A[i, k], 0.0) if k < 400 else 0

for i in range(8):
for j in range(4):
for k_o in range(TILE_K0):

for k_i in range(TILE_KI):
E.rf[...] += C[...] * D[...]

for i in range(8):
for j in range(4):

for k_i in range(TILE_KI):
E[...] += E.rf[...]

Generated sketch 3

parallel i in range(8):
for k in range(512):

C[i, k] = ...
for j in range(4):
unroll k_o in range(32):

vectorized k_i in range(16):
E.rf[...] += C[...] * D[...]

parallel i in range(8):
for j in range(4):
unroll k_i in range(16):

E[...] += E.rf[...]

Sampled program 4

* The mathmetical expression:
/ ", = = max	(' ", = , 0.0)
![",)] = >	/[",)],) < 400

							0			,) ≥ 400
A ", $ = &![",)]

�

,
	×	0[), $]

where 0 ≤ " < 8, 0 ≤ $ < 4,		
0 ≤) < 512,	0 ≤ = < 400

* The corresponding naive program:
for i in range(8):

for l in range(400):
B[i, l] = max(A[i, l], 0.0)

for i in range(8):
for k in range(512):
C[i, k] = B[i, k] if k < 400 else 0

for i in range(8):
for j in range(4):
for k in range(512):

E[i, j] += C[i, k] * D[k, j]

* The corresponding DAG:

Example Input 2:

parallel i.0 in range(8):
for k in range(512):
C[i, j] = max(A[i,k], 0.0)

if k < 400 else 0
for k.0 in range(512):
vectorize j.3 in range(4):

E.cache[...] += C[...] * D[...]
vectorize j.4 in range(4):

E[...] = E.cache[...]

Sampled program 3

for i in range(8):
for k in range(512):
C[i, j] = max(A[i,k], 0.0) if k<400 else 0

for i.0 in range(TILE_I0):
for j.0 in range(TILE_J0):
for i.1 in range(TILE_I1):

for j.1 in range(TILE_J1):
for k.0 in range(TILE_K0):

for i.2 in range(TILE_I2):
for j.2 in range(TILE_J2):

for k.1 in range(TILE_I1):
for i.3 in range(TILE_I3):

for j.3 in range(TILE_J3):
E.cache[...] += C[...] * D[...]

for i.4 in range(TILE_I2 * TILE_I3):
for j.4 in range(TILE_J2 * TILE_J3):
E[...] = E.cache[...]

Generated sketch 2A

B
C D

A

D

B C
E

Figure 5: Examples of generated sketches and sampled programs. This figure shows two example inputs, three generated sketches
and four sampled programs. The code example is pseudo code in a python-like syntax.

section, we introduce the performance tuner that fine-tunes
the performance of the sampled programs via evolutionary
search and a learned cost model.

The fine-tuning is performed iteratively. At each iteration,
we first use evolutionary search to find a small batch of promis-
ing programs according to a learned cost model. We then mea-
sure these programs on hardware to get the actual execution
time cost. Finally, the profiling data got from measurement is
used to re-train the cost model to make it more accurate.

The evolutionary search uses randomly sampled programs
as well as high-quality programs from the previous mea-
surement as the initial population and applies mutation and
crossover to generate the next generation. The learned cost
model is used to predict the fitness of each program, which is
the throughput of one program in our case. We run evolution
for a fixed number of generations and pick the best programs
found during the search. We leverage a learned cost model be-
cause the cost model can give relatively accurate estimations
of the fitness of programs while being orders of magnitudes

faster than the actual measurement. It allows us to compare
tens of thousands of programs in the search space in seconds,
and pick the promising ones to do actual measurements.

5.1 Evolutionary Search

Evolutionary search [54] is a generic meta-heuristic algorithm
inspired by biological evolution. By iteratively mutating high-
quality programs, we can generate new programs with poten-
tially higher quality. The evolution starts from the sampled
initial generation. To generate the next generation, we first se-
lect some programs from the current generation according to
certain probabilities. The probability of selecting a program is
proportional to its fitness predicted by the learned cost model
(§5.2), meaning that the program with a higher performance
score has a higher probability to be selected. For the selected
programs, we randomly apply one of the evolution operations
to generate a new program. Basically, for decisions we made
during sampling (§4.2), we design corresponding evolution

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 869

operations to rewrite and fine-tune them.
Tile size mutation. This operation scans the program and

randomly selects a tiled loop. For this tiled loop, it divides a
tile size of one tile level by a random factor and multiplies this
factor to another level. Since this operation keeps the product
of tile sizes equal to the original loop length, the mutated
program is always valid.

Parallel mutation. This operation scans the program and
randomly selects a loop that has been annotated with parallel.
For this loop, this operation changes the parallel granularity
by either fusing its adjacent loop levels or splitting it by a
factor.

Pragma mutation. Some optimizations in a program are
specified by compiler-specific pragma. This operation scans
the program and randomly selects a pragma. For this pragma,
this operation randomly mutates it into another valid value.
For example, our underlying code generator supports auto
unrolling with a maximum number of steps by providing an
auto_unroll_max_step=N pragma. We randomly tweak the
number N.

Computation location mutation. This operation scans the
program and randomly selects a flexible node that is not multi-
level tiled (e.g., a padding node in the convolution layer). For
this node, the operation randomly changes its computation
location to another valid attach point.

Node-based crossover. Crossover is an operation to gener-
ate new offspring by combining the genes from two or more
parents. The genes of a program in Ansor are its rewriting
steps. Every program generated by Ansor is rewritten from
its initial naive implementation. Ansor preserves a complete
rewriting history for each program during sketch generation
and random annotation. We can treat rewriting steps as the
genes of a program because they describe how this program
is formed from the initial naive one. Based on this, we can
generate a new program by combining the rewriting steps
of two existing programs. However, arbitrarily combining
rewriting steps from two programs might break the depen-
dencies in steps and create an invalid program. As a result,
the granularity of crossover operation in Ansor is based on
nodes in the DAG, because the rewriting steps across different
nodes usually have less dependency. Ansor randomly selects
one parent for each node and merges the rewriting steps of
selected nodes. When there are dependencies between nodes,
Ansor tries to analyze and adjust the steps with simple heuris-
tics. Ansor further verifies the merged programs to guarantee
the functional correctness. The verification is simple because
Ansor only uses a small set of loop transformation rewrit-
ing steps, and the underlying code generator can check the
correctness by dependency analysis.

The evolutionary search leverages mutation and crossover
to generate a new set of candidates repeatedly for several
rounds and outputs a small set of programs with the highest
scores. These programs will be compiled and measured on the
target hardware to obtain the real running time cost. The col-

lected measurement data is then used to update the cost model.
In this way, the accuracy of the learned cost model is grad-
ually improved to match the target hardware. Consequently,
the evolutionary search gradually generates higher-quality
programs for the target hardware platform.

Unlike the search algorithms in TVM and FlexTensor that
can only work in a fixed grid-like parameter space, the evolu-
tionary operations in Ansor are specifically designed for ten-
sor programs. They can be applied to general tensor programs
and can handle a search space with complicated dependency.
Unlike the unfolding rules in Halide auto-scheduler, these op-
erations can perform out-of-order modifications to programs,
addressing the sequential limitations.

5.2 Learned Cost Model

A cost model is necessary for estimating the performance of
programs quickly during the search. We adopt a learned cost
model similar to related works [2, 12] with newly designed
program features. A system based on learned cost models
has great portability because a single model design can be
reused for different hardware backends by feeding in different
training data.

Since our target programs are mainly data parallel tensor
programs, which are made by multiple interleaved loop nests
with several assignment statements as the innermost state-
ments, we train the cost model to predict the score of one in-
nermost non-loop statement in a loop nest. For a full program,
we make predictions for each innermost non-loop statement
and add the predictions up as the score. We build the feature
vector for an innermost non-loop statement by extracting fea-
tures in the context of a full program. The extracted features
include arithmetic features and memory access features. A
detailed list of extracted features is in an appendix of the
extended version of this paper [58].

We use weighted squared error as the loss function. Be-
cause we mostly care about identifying the well-performing
programs from the search space, we put more weight on
the programs that run faster. Specifically, the loss func-
tion of the model f on a program P with throughput y is
loss(f ,P,y) = wp(Âs2S(P) f (s)� y)2 = y(Âs2S(P) f (s)� y)2

where S(P) is the set of innermost non-loop statements in
P. We directly use the throughput y as weight. We train a
gradient boosting decision tree [9] as the underlying model
f . A single model is trained for all tensor programs coming
from all DAGs, and we normalize the throughput of all pro-
grams coming from the same DAG to be in the range of [0,1].
When optimizing a DNN, the number of measured programs
are typically less than 30,000. Training a gradient boosting
decision tree is very fast on such a small data sets, so we train
a new model every time instead of doing incremental updates.

870 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

6 Task Scheduler

A DNN can be partitioned into many independent subgraphs
(e.g., conv2d + relu). For some subgraphs, spending time in
tuning them does not improve the end-to-end DNN perfor-
mance significantly. This is due to two reasons: either (1) the
subgraph is not a performance bottleneck, or (2) tuning brings
only minimal improvement in the subgraph’s performance.

To avoid wasting time on tuning unimportant subgraphs,
Ansor dynamically allocates different amounts of time re-
sources to different subgraphs. Take ResNet-50 for example, it
has 29 unique subgraphs after the graph partitioning. Most of
these subgraphs are convolution layers with different shapes
configurations (input size, kernel size, stride, etc). We need
to generate different programs for different convolution lay-
ers because the best tensor program depends on these shape
configurations. In reality, users may have multiple DNNs for
all their applications. This leads to more subgraphs as well as
more opportunities to reduce the total tuning time, because
we can share and reuse knowledge between subgraphs. A
subgraph can also appear multiple times in a DNN or across
different DNNs.

We define a task as a process performed to generate high-
performance programs for a subgraph. It means that optimiz-
ing a single DNN requires finishing dozens of tasks (e.g., 29
tasks for ResNet-50). Ansor’s task scheduler allocates time
resources to tasks in an iterative manner. At each iteration,
Ansor selects a task, generates a batch of promising programs
for the subgraph, and measures the program on hardware. We
define such an iteration as one unit of time resources. When
we allocate one unit of time resources to a task, the task ob-
tains an opportunity to generate and measure new programs,
which also means the chance to find better programs. We next
present the formulation of the scheduling problem and our
solution.

6.1 Problem Formulation

When tuning a DNN or a set of DNNs, a user can have various
types of goals, for example, reducing a DNN’s latency, meet-
ing latency requirements for a set of DNNs, or minimizing
tuning time when tuning no longer improves DNN perfor-
mance significantly. We thus provide users a set of objective
functions to express their goals. Users can also provide their
own objective functions.

Suppose there are n tasks in total. Let t 2 Zn be the allo-
cation vector, where ti is the number of time units spent on
task i. Let the minimum subgraph latency task i achieves be
a function of the allocation vector gi(t). Let the end-to-end
cost of the DNNs be a function of the latency of the sub-
graphs f (g1(t),g2(t), ...,g3(t)). Our objective is to minimize
the end-to-end cost:

minimize f (g1(t),g2(t), ...,g3(t))

f1 = Âm
j=1 Âi2S(j) wi ⇥gi(t)

f2 = Âm
j=1 max(Âi2S(j) wi ⇥gi(t),L j)

f3 =�(’m
j=1

B j
Âi2S(j) wi⇥gi(t)

)
1
m

f4 = Âm
j=1 Âi2S(j) wi ⇥max(gi(t),ES(gi, t))

Table 2: Examples of objective functions for multiple neural
networks

To minimize the end-to-end latency of a single DNN, we
can define f (g1,g2, ...,gn) = Ân

i=1 wi ⇥gi, where wi is the
number of appearances of task i in the DNN. This formu-
lation is straightforward because f is an approximation of the
end-to-end DNN latency.

When tuning a set of DNNs, there are several options. Ta-
ble 2 shows a number of example objective functions for
tuning multiple DNNs. Let m be the number of DNNs, S(j) is
the set of tasks that belong to DNN j. f1 adds up the latency
of every DNN, which means to optimize the cost of a pipeline
that sequentially runs all DNNs once. In f2, we define L j as
the latency requirement of DNN j, meaning that we do not
want to spend time on a DNN if its latency has already met
the requirement. In f3, we define B j as the reference latency
of a DNN j. As a result, our goal is to maximize the geo-
metric mean of speedup against the given reference latency.
Finally in f4, we define a function ES(gi, t) that returns an
early stopping value by looking at the history of latency of
task i. It can achieve the effect of per-task early stopping.

6.2 Optimizing with Gradient Descent
We propose a scheduling algorithm based on gradient descent
to efficiently optimize the objective function. Given the cur-
rent allocation t, the idea is to approximate the gradient of the
objective function ∂ f

∂ti
in order to choose the task i such that

i = argmaxi |
∂ f
∂ti
|. We approximate the gradient by making an

optimistic guess and considering the similarity between tasks.
The derivation is in an appendix of the extended version of
this paper [58]. We approximate the gradient by

∂ f
∂ti

⇡ ∂ f
∂gi

(agi(ti)�gi(ti �Dt)
Dt

+

(1�a)(min(�gi(ti)
ti

,b Ci

maxk2N(i)Vk
�gi(ti))))

where Dt is a small backward window size, gi(ti) and gi(ti �
Dt) are known from the history of allocations. N(i) is the
set of similar tasks of i, Ci is the number of floating point
operation in task i and Vk is the number of floating point
operation per second we can achieve in task k. The parameter
a and b control the weight to trust some predictions.

To run the algorithm, Ansor starts from t = 0 and warms
up with a round of round-robin to get an initial allocation
vector t = (1,1, ...,1). After the warm-up, at each iteration, we

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 871

compute the gradient of each task and pick argmaxi |
∂ f
∂ti
|. Then

we allocate the resource unit to task i and update the allocation
vector ti = ti + 1. The optimization process continues until
we run out of the time budget. To encourage exploration, we
adopt a e-greedy strategy [47], which preserves a probability
of e to randomly select a task.

Taking the case of optimizing for a single DNN’s end-to-
end latency for example, Ansor prioritizes a subgraph that has
a high initial latency because our optimistic guess says we
can reduce its latency quickly. Later, if Ansor spends many
iterations on it without observing a decrease in its latency,
Ansor leaves the subgraph because its | ∂ f

∂ti
| decreases.

7 Evaluation

The core of Ansor is implemented in C++ with about 12K
lines of code (3K for the search policy and 9K for other infras-
tructure). Ansor generates programs in its own intermediate
representation (IR). These programs are then lowered to TVM
IR for code generation targeting various hardware platforms.
Ansor only utilizes TVM as a deterministic code generator.

We evaluate the performance of generated programs on
three levels: single operator, subgraph, and entire neural net-
work. For each level of evaluation, we compare Ansor against
the state-of-the-art search frameworks and hardware-specific
manual libraries. We also evaluate the search efficiency and
the effectiveness of each component in Ansor.

The generated tensor programs are benchmarked on
three hardware platforms: an Intel CPU (18-core Platinum
8124M@3.0 GHz), an NVIDIA GPU (V100), and an ARM
CPU (4-core Cortex-A53@1.4GHz on the Raspberry Pi 3b+).
We use float32 as the data type for all evaluations.

7.1 Single Operator Benchmark
Workloads. We first evaluate Ansor on a set of common
deep learning operators, including 1D, 2D, and 3D convolu-
tion (C1D, C2D, and C3D respectively), matrix multiplica-
tion (GMM), group convolution (GRP), dilated convolution
(DIL) [57], depth-wise convolution (DEP) [24], transposed 2D
convolution (T2D) [40], capsule 2D convolution (CAP) [23],
and matrix 2-norm (NRM). For each operator, we select 4
common shape configurations and evaluate them with two
batch sizes (1 and 16). In total, there are 10 operators ⇥4
shape configurations ⇥2 batch size = 80 test cases. The shape
configurations used can be found in an appendix of the ex-
tended version of this paper [58]. We run these test cases on
the Intel CPU.

Baselines. We include PyTorch (v1.5) [39], Halide auto-
scheduler (commit: 1f875b0) [2], FlexTensor (commit:
7ac302c) [59], and AutoTVM (commit: 69313a7) [12] as
baselines. PyTorch is backed by the vendor-provided kernel
library MKL-DNN [27]. Halide auto-scheduler is a sequential
construction based search framework for Halide. AutoTVM

and FlexTensor are template-guided search frameworks based
on TVM. Since Halide auto-scheduler does not have a pre-
trained cost model for AVX-512, we disabled AVX-512 for
the evaluation in §7.1 and §7.2. For every operator, we use
the best layout available in each framework, but the input and
output tensors must not be packed.

Search settings. We let search frameworks (i.e., Halide
auto-scheduler, FlexTensor, AutoTVM, and Ansor) to run
search or auto-tuning with up to 1,000 measurement trials
per test case. This means each framework can measure at
most 80⇥1,000 programs for auto-tuning in this evaluation.
Using the same number of measurement trials makes it a fair
comparison without involving implementation details. In addi-
tion, using 1,000 measurement trials per test case is typically
enough for the search to converge in these frameworks.

Normalization. Figure 6 shows the normalized perfor-
mance. For each test case, we normalize the throughputs to
the best performing framework. We then plot the geometric
mean of the four shapes of each operator. The geometric mean
is also normalized to the best performing framework, so the
best framework has a normalized performance of 1 in the
figure. The error bar denotes the standard deviation of the
normalized throughput of four shapes of each operator.

Results. As shown in the Figure 6, Ansor performs the
best or equally the best in all operator and batch size set-
tings. Ansor outperforms existing search frameworks by
1.1�22.5⇥. The performance improvements of Ansor come
from both its large search space and effective exploration strat-
egy. For most operators, we found the best program generated
by Ansor is outside the search space of existing search frame-
works because Ansor is able to explore more optimization
combinations. For example, the significant speedup on NRM
is because Ansor can parallelize reduction loops, while other
frameworks do not. The large speedup on T2D is because
Ansor can use correct tile structures and unrolling strategies to
let the code generator simplify the multiplication of zeros in
strided transposed convolution. In contrast, other frameworks
fail to capture many effective optimizations in their search
space, making them unable to find the programs that Ansor
does. For example, the unfolding rules in Halide do not split
the reduction loop in GMM and do not split reduction loops
in C2D when padding is computed outside of reduction loops.
The templates in AutoTVM have limited tile structures, as
they cannot cover the structure of “Generated Sketch 1” in
Figure 5. The template in FlexTensor does not change the
computation location of padding. The template in FlexTensor
fails to run for reduction operators like NRM.

Ablation study. We run four variants of Ansor on a convo-
lution operator and report the performance curve. We pick the
last convolution operator in ResNet-50 with batch size=16 as
the test case, because its search space is sufficiently large to
evaluate the search algorithms. Other operators share a sim-
ilar pattern. In Figure 7, each curve is the median of 5 runs.
“Ansor (ours)” uses all our introduced techniques. “Beam

872 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 6: Single operator performance benchmark on a 20-
core Intel-Platinum-8269CY. The y-axis is the throughput
normalized to the best throughput for each operator.

Figure 7: Ablation study of four variants of Ansor on a con-
volution operator. The y-axis is the throughput relative to the
throughput of the best program.

Search” means we prune incomplete programs with the cost
model during the sampling process and do not use fine-tuning.
“No fine-tuning” is based on “Ansor (ours)” but disables fine-
tuning and only relies on random sampling. “Limited space”
is also based on “Ansor (ours)” but limits the search space
to make it similar to the space in existing manual templates
(e.g., limit tiling level, innermost tile sizes, and computation
location). As demonstrated by Figure 7, dropping either the
large search space or efficient fine-tuning decreases the final
performance significantly. The aggressive early pruning in
“Beam search” throws away incomplete programs with good
final performance due to inaccurate estimation.

7.2 Subgraph Benchmark
We perform the subgraph benchmark on two common sub-
graphs in DNNs. The “ConvLayer” is a subgraph consisting
of 2D convolution, batch normalization [28], and ReLU ac-
tivation, which is a common pattern in convolutional neural
networks. The “TBS” is a subgraph consisting of two matrix
transposes, one batch matrix multiplication, and a softmax,
which is a pattern in the multi-head attention [51] in language
models. Similar to the single operator benchmark (§7.1), we
select four different shape configurations and two batch sizes,
run auto-tuning with up to 1,000 measurement trails per test
case, and report the normalized performance. We use the

Figure 8: Subgraph performance benchmark on a 20-core
Intel-Platinum-8269CY and an NVIDIA V100. "@C" denotes
CPU results and "@G" denotes GPU results. The y-axis is
the throughput normalized to the best throughput for each
subgraph.

same set of baseline frameworks and run the benchmark on
the Intel CPU and the NVIDIA GPU. We do not report the
performance of Halide auto-scheduler on GPU because as of
writing the paper its GPU support is still in an experimental
stage. FlexTensor fails to run on complicated subgraphs like
“TBS”.

Figure 8 shows that Ansor outperforms manual libraries
and other search frameworks by 1.1�14.2⇥. Ansor can gen-
erate high-performance programs consistently for these sub-
graphs on both platforms. FlexTensor performs well for single
operators but shows less advantage for subgraphs because it
lacks the support of operator fusion.

7.3 End-to-End Network Benchmark
Workloads. We benchmark the end-to-end inference execu-
tion time of several DNNs, which include ResNet-50 [22]
and MobileNet-V2 [43] for image classification, 3D-ResNet-
18 [21] for action recognition, DCGAN [40] generator for
image generation, and BERT [15] for language understanding.
We benchmark these DNNs on three hardware platforms. For
the server-class Intel CPU and NVIDIA GPU, we report the
results for batch size 1 and batch size 16. For the ARM CPU
in the edge device, real-time feedback is typically desired, so
we only report the results for batch size 1.

Baselines and Settings. We include PyTorch (v1.5 with
torch script), TensorFlow (v2.0 with graph mode), TensorRT
(v6.0 with TensorFlow integration) [38], TensorFlow Lite
(V2.0), and AutoTVM as baseline frameworks. We do not in-
clude Halide auto-scheduler or FlexTensor because they lack
the support of widely-used deep learning model formats (e.g.,
ONNX, TensorFlow PB) and high-level graph optimizations.
As a result, we expect that the end-to-end execution time they
can achieve will be the sum of the latency of all subgraphs in
a DNN. In contract, AutoTVM can optimize a whole DNN
with its manual templates and various graph-level optimiza-
tions (e.g., graph-level layout search [32], graph-level constant

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 873

(a) Intel CPU

(b) NVIDIA GPU

(c) ARM CPU
Figure 9: Network inference performance benchmark on three
hardware platforms. The y-axis is the throughput relative to
the best throughput for each network.

folding [42]) which improve the performance significantly.
Ansor also performs layout rewrite as described in §4.2. We
let both AutoTVM and Ansor run auto-tuning until they use
to 1000⇥n measurement trials on each DNN, where n is the
number of subgraphs in the DNN. This is typically enough for
them to converge. We set the objective of the task scheduler
as minimizing the total latency of one DNN and generate
programs for these networks one by one. On the other hand,
PyTorch, TensorFlow, TensorRT, and TensorFlow Lite are all
backed by static kernel libraries (MKL-DNN on Intel CPU,
CuDNN on NVIDIA GPU, and Eigen on ARM CPU) and do
not need auto-tuning. We enable AVX-512 for all frameworks
on the Intel CPU in this network benchmark.

Results. Figure 9 shows the results on the Intel CPU,

Figure 10: Network performance auto-tuning curve. The y-
axis is the speedup relative to AutoTVM.

NVIDIA GPU and ARM CPU 2. Overall, Ansor performs the
best or equally the best in all cases. Compared with search-
based AutoTVM, Ansor matches or outperforms it in all cases
with 1.0�21.8⇥ speedup. Compared with the best alterna-
tive, Ansor improves the execution performance of DNNs on
the Intel CPU, ARM CPU, and NVIDIA GPU by up to 3.8⇥,
2.6⇥, and 1.7⇥, respectively. The reason for the significant
speedup on DCGAN is that DCGAN mainly consists of trans-
posed 2D convolution (T2D), which can be well optimized by
Ansor, as shown and explained in the single operator bench-
mark (§7.1). AutoTVM performs very well for ResNet-50 on
the Intel CPU thanks to its highly-optimized templates for
2D convolution and global layout search [32]. Ansor does
not run a global layout search but does rewrite the layout of
weight tensors as described in §4.2. Ansor uses more levels
of tiling so it packs weight tensors into more levels. The lay-
out rewrite brings about 40% improvement to ResNet-50 in
Ansor. Compared with vendor-specific static libraries, Ansor
has more advantages on uncommon shapes and small batch
sizes, because it is not easy to manually optimize for these
cases.

Ablation study. We run variants of Ansor on two test cases
in Figure 10. In the left figure, we run four variants of Ansor to
generate programs for a single mobilenet-V2. In the right fig-
ure, we run these variants for both mobilenet-V2 and ResNet-
50. We set the objective function of the task scheduler to be the
geometric mean of speedup against AutoTVM. As shown in
Figure 10, “No task scheduler” means we use a round-robin
strategy to allocate equal time resources to all subgraphs.
“Limited space” is based on “Ansor (ours)” but limits the
search space. “No fine-tuning” is also based on “Ansor (ours)”
but disables fine-tuning and relies on random sampling only.
As can be seen in Figure 10, “Limited space” performs the
worst in terms of the final achieved performance, proving that
the best programs are not included in the limited space. The
final achieved performance can be improved by enlarging the
search space, as depicted in “No fine-tuning”. However, in
the right figure, randomly assigning tile sizes and annotations

23D-ResNet and DCGAN are not yet supported by TensorFlow Lite on
the ARM CPU.

874 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

still cannot beat AutoTVM in the given time budget. After
enabling fine-tuning, “No task scheduler” outperforms Au-
toTVM in both cases. Finally, “Ansor (ours)” employs the
task scheduler to prioritize performance bottlenecks (e.g., sub-
graphs contain 3x3 convolution), so it performs the best in
both search efficiency and the final achieved performance.

7.4 Search Time
Ansor searches efficiently and can outperform or match Au-
toTVM with less search time. Ansor slices the time and uti-
lizes the task scheduler to simultaneously optimize all sub-
graphs together. In contrast, AutoTVM and other systems do
not have a task scheduler, so they generate programs for all
subgraphs one by one with a predefined budget of measure-
ment trials for each subgraph. Ansor saves the search time
by prioritizing important subgraphs, while AutoTVM spends
predefined time budget on every subgraph, which may be a
waste on the unimportant subgraphs.

Table 3 shows the search time required for Ansor to match
the performance of AutoTVM on the Intel CPU network
benchmark (§7.3). We list the search time in two metrics:
number of measurements and wall-clock time. “Number of
measurements” is a metric agnostic to the implementation
of measurement and the overhead of search algorithm, while
“Wall-clock time” takes these factors into account. As shown
in the table, Ansor can match the performance of AutoTVM
with an order of magnitude less search time. In Table 3a the
saving in search time comes from the task scheduler, effi-
cient fine-tuning, and comprehensive coverage of effective
optimizations. In Table 3b, Ansor shows more time-saving
in wall-clock time. This is because Ansor does not introduce
much search overhead and has a better implementation of the
measurement (on the Intel CPU, Ansor can get accurate mea-
surement results with fewer repetitions by explicitly flushing
the cache for some tensors). On other backends, Ansor can
match the performance of AutoTVM with a similar saving in
search time.

Typically, it takes several hours for Ansor to generate fully-
optimized programs for a DNN on a single machine. This is
acceptable for inference applications because it is a one-shot
effort before deployment. In addition, the whole architecture
of Ansor can be parallelized very easily.

7.5 Cost Model Evaluation
In this subsection, we evaluate the prediction quality of the
learned cost model. We use 25,000 programs measured dur-
ing tuning ResNet-50 on the Intel CPU as the data set. We
randomly pick 20,000 programs as the training set and use
the remaining 5,000 programs as the test set. We train the cost
model and let it make predictions for the test set.

Figure 11 plots the predicted throughputs vs. measured
throughputs. The measured throughputs are normalized to

AutoTVM Ansor Time-saving
ResNet-50 21,220 6,403 3.3 ⇥
Mobilenet-V2 31,272 1,892 16.5 ⇥
3D-ResNet 5,158 1,927 2.7 ⇥
DCGAN 3,003 298 10.1 ⇥
BERT 6,220 496 12.5 ⇥

(a) The number of measurements.

AutoTVM Ansor Time-saving
ResNet-50 39,250 4,540 8.6 ⇥
Mobilenet-V2 58,468 660 88.6 ⇥
3D-ResNet 7,594 2,296 3.3 ⇥
DCGAN 4,914 420 11.7 ⇥
BERT 12,007 266 45.1 ⇥

(b) Wall-clock time (seconds)

Table 3: The number of measurements and wall-clock time
used for Ansor to match the performance of AutoTVM on the
Intel CPU (batch size=1).

Figure 11: Measured throughputs vs. predicted throughputs.

the best performing programs in the test set. The predicted
throughputs are the output of the model, so they can be neg-
ative. In Figure 11a, the points scatter around the diagonal
line, meaning that the model makes accurate predictions. The
distribution is not uniform because the data set is collected
during the search. Good programs have a higher probability
to be chosen for measurements, so most of the programs are
in the top right corner. The points with measured through-
put 0.0 are programs that are invalid or killed due to timeout
during measurements. In Figure 11b, we sort the 5000 points
according to the predictions from the slowest to the fastest,
and use the relative ranking as x-axis. So the points are dis-
tributed uniformly over x-axis. It shows the distribution of
performance of the explored programs better.

The model archives 0.079 RMSE, 0.958 R2 correlation,
0.851 pairwise comparison accuracy, and 0.624 recall@30 of
top-30 programs (see the definition at footnote 1) on the test
set.

8 Related Work

Automatic tensor program generation based on schedul-
ing languages. Halide [41] introduces a scheduling language

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 875

that can describe loop optimization primitives. This language
is suitable for both manual optimization and automatic search.
Halide has three versions of auto-scheduler based on differ-
ent techniques [2, 31, 36]. The latest one with beam search
and learned cost model performs the best among them, which
is also used in our evaluation. TVM [11] utilizes a similar
scheduling language and includes a template-guided search
framework AutoTVM [12]. FlexTensor [59] proposes general
templates that can target a set of operators, but its templates
are designed for single operators. It is hard to use these tem-
plates for optimizations involving multiple operators (e.g., op-
erator fusion). A concurrent work ProTuner [19] uses Monte
Carlo tree search to solve the inaccurate estimation prob-
lem in Halide auto-scheduler. ProTuner mainly targets im-
age processing workloads, while Ansor targets deep learning
workloads and introduces new search space and other opti-
mizations.

Polyhedral compilation models. The polyhedral compila-
tion model [8,52,53] formulates the optimization of programs
as an integer linear programming (ILP) problem. It optimizes
a program with affine loop transformation that minimizes the
data reuse distance between dependent statements. Tiramisu
[5] and TensorComprehensions [49] are two polyhedral com-
pilers that also target the deep learning domain. Tiramisu pro-
vides a scheduling language similar to the Halide language,
and it needs manual scheduling. TensorComprehensions can
search for GPU code automatically, but it is not yet meant to
be used for compute-bounded problems [11]. It cannot outper-
form TVM on operators like conv2d and matmul [11,48]. This
is because of the lack of certain optimizations [50] and the
inaccurate implicit cost model in the polyhedral formulation.

Graph-level optimization for deep learning. Graph-level
optimizations treat an operator in the computational graph
as a basic unit and perform optimization at graph level with-
out changing the internal implementations of operators. The
common optimizations at graph level include layout optimiza-
tions [32], operator fusion [11, 38, 60], constant folding [42],
auto-batching [33], automatic generation of graph substitu-
tion [29] and so forth. The graph-level optimizations are typ-
ically complementary to operator-level optimizations. Graph-
level optimizations can also benefit from high-performance
implementations of operators. For example, general opera-
tor fusion relies on the code generation ability of Ansor. We
leave the joint optimization of Ansor and more graph-level
optimization as future work.

Search-based compilation and auto-tuning. Search
based compilation and auto-tuning have already shown their
effectiveness in domains other than deep learning. Stock
[44] is a super-optimizer based on random search. Stock
searches for loop-free hardware instruction sequences, while
Ansor generates tensor programs with nests of loops. Open-
Tuner [4] is a general framework for program auto-tuning
based on multi-armed bandit approaches. OpenTuner relies
on user-specified search space, while Ansor constructs the

search space automatically. Traditional high-performance li-
braries such as ATLAS [56] and FFTW [16] also utilize
auto-tuning. More recent works NeuroVectorizer [18] and
AutoPhase [20, 26] use deep reinforcement learning to au-
tomatically vectorize programs and optimize the compiler
phase ordering.

9 Limitations and Future work

One of Ansor’s limitations is that Ansor cannot optimize
graphs with dynamic shapes [45]. Ansor requires the shapes
in the computational graph to be static and known in ad-
vance to do analysis, construct the search space, and perform
measurements. How to generate programs for symbolic or
dynamic shape is an interesting future direction. Another
limitation is that Ansor only supports dense operators. To
support sparse operators (e.g., SpMM) that are commonly
used in sparse neural networks [17] and graph neural net-
works [25], we expect that a large portion of Ansor can still
be reused, but we need to redesign the search space. Lastly,
Ansor only performs program optimizations at a high level but
relies on other code generators (e.g., LLVM and NVCC) to
do platform-dependent optimizations (e.g., instruction selec-
tion). Ansor comes short of utilizing the special instructions,
such as Intel VNNI, NVIDIA Tensor Core, and ARM Dot for
mixed-precision and low-precision operators, which are not
handled well by the off-the-shelf code generators currently.

10 Conclusion

We propose Ansor, an automated search framework that
generates high-performance tensor programs for deep neu-
ral networks. By efficiently exploring a large search space
and prioritizing performance bottlenecks, Ansor finds high-
performance programs that are outside the search space of
existing approaches. Ansor outperforms existing manual li-
braries and search-based frameworks on a diverse set of neural
networks and hardware platforms by up to 3.8⇥. By automat-
ically searching for better programs, we hope that Ansor will
help bridge the gap between the increasing demand in com-
puting power and limited hardware performance. Ansor is
integrated into the Apache TVM open-source project 3.

11 Acknowledgement

We would like to thank Weizhao Xian, Tianqi Chen, Frank
Luan, anonymous reviewers, and our shepherd, Derek Mur-
ray, for their insightful feedback. In addition to NSF CISE
Expeditions Award CCF-1730628, this research is supported
by gifts from Alibaba Group, Amazon Web Services, Ant
Group, CapitalOne, Ericsson, Facebook, Futurewei, Google,
Intel, Microsoft, Nvidia, Scotiabank, Splunk, and VMware.

3https://tvm.apache.org/

876 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: a system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16), pages 265–283,
2016.

[2] Andrew Adams, Karima Ma, Luke Anderson, Riyadh
Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner,
Steven Johnson, Kayvon Fatahalian, Frédo Durand, et al.
Learning to optimize halide with tree search and ran-
dom programs. ACM Transactions on Graphics (TOG),
38(4):1–12, 2019.

[3] Hassan Abu Alhaija, Siva Karthik Mustikovela, Lars
Mescheder, Andreas Geiger, and Carsten Rother. Aug-
mented reality meets deep learning for car instance seg-
mentation in urban scenes. In British machine vision
conference, volume 1, page 2, 2017.

[4] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni,
Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May
O’Reilly, and Saman Amarasinghe. Opentuner: an ex-
tensible framework for program autotuning. In Proceed-
ings of the 23rd international conference on Parallel
architectures and compilation, pages 303–316, 2014.

[5] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane,
Emanuele Del Sozzo, Abdurrahman Akkas, Yunming
Zhang, Patricia Suriana, Shoaib Kamil, and Saman Ama-
rasinghe. Tiramisu: a polyhedral compiler for express-
ing fast and portable code. In 2019 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimiza-
tion (CGO), pages 193–205. IEEE, 2019.

[6] Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: open neural
network exchange, 2019.

[7] Paul Barham and Michael Isard. Machine learning sys-
tems are stuck in a rut. In Proceedings of the Workshop
on Hot Topics in Operating Systems, pages 177–183,
2019.

[8] Uday Bondhugula, Albert Hartono, Jagannathan Ra-
manujam, and Ponnuswamy Sadayappan. A practical
automatic polyhedral parallelizer and locality optimizer.
In Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
pages 101–113, 2008.

[9] Tianqi Chen and Carlos Guestrin. Xgboost: a scalable
tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery
and data mining, pages 785–794, 2016.

[10] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. Mxnet: a flexible and efficient ma-
chine learning library for heterogeneous distributed sys-
tems. arXiv preprint arXiv:1512.01274, 2015.

[11] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. Tvm: an auto-
mated end-to-end optimizing compiler for deep learning.
In 13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 18), pages 578–594,
2018.

[12] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang,
Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. Learning to optimize tensor programs.
In Advances in Neural Information Processing Systems,
pages 3389–3400, 2018.

[13] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan
Shelhamer. cudnn: efficient primitives for deep learning.
arXiv preprint arXiv:1410.0759, 2014.

[14] Marius Cordts, Mohamed Omran, Sebastian Ramos,
Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The
cityscapes dataset for semantic urban scene understand-
ing. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3213–3223, 2016.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[16] Matteo Frigo and Steven G Johnson. Fftw: an adap-
tive software architecture for the fft. In Proceedings
of the 1998 IEEE International Conference on Acous-
tics, Speech and Signal Processing, ICASSP’98 (Cat. No.
98CH36181), volume 3, pages 1381–1384. IEEE, 1998.

[17] Trevor Gale, Erich Elsen, and Sara Hooker. The state
of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

[18] Ameer Haj-Ali, Nesreen K Ahmed, Ted Willke,
Yakun Sophia Shao, Krste Asanovic, and Ion Stoica.
Neurovectorizer: end-to-end vectorization with deep
reinforcement learning. In Proceedings of the 18th
ACM/IEEE International Symposium on Code Genera-
tion and Optimization, pages 242–255, 2020.

[19] Ameer Haj-Ali, Hasan Genc, Qijing Huang, William
Moses, John Wawrzynek, Krste Asanović, and Ion Sto-
ica. Protuner: tuning programs with monte carlo tree
search. arXiv preprint arXiv:2005.13685, 2020.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 877

[20] Ameer Haj-Ali, Qijing Huang, William Moses, John
Xiang, John Wawrzynek, Krste Asanovic, and Ion Sto-
ica. Autophase: juggling hls phase orderings in random
forests with deep reinforcement learning. In Third Con-
ference on Machine Learning and Systems (ML-Sys),
2020.

[21] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh.
Can spatiotemporal 3d cnns retrace the history of 2d
cnns and imagenet? In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 6546–6555, 2018.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[23] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst.
Matrix capsules with em routing. 2018.

[24] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[25] Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng,
Mu Li, Zheng Zhang, Zhiru Zhang, and Yida Wang.
Featgraph: A flexible and efficient backend for
graph neural network systems. arXiv preprint
arXiv:2008.11359, 2020.

[26] Qijing Huang, Ameer Haj-Ali, William Moses, John Xi-
ang, Ion Stoica, Krste Asanovic, and John Wawrzynek.
Autophase: compiler phase-ordering for hls with deep
reinforcement learning. In 2019 IEEE 27th Annual In-
ternational Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 308–308. IEEE,
2019.

[27] Intel. Intel R� math kernel library for deep learning net-
works, 2017.

[28] Sergey Ioffe and Christian Szegedy. Batch normaliza-
tion: accelerating deep network training by reducing in-
ternal covariate shift. arXiv preprint arXiv:1502.03167,
2015.

[29] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. Taso: optimizing
deep learning computation with automatic generation
of graph substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 47–
62, 2019.

[30] Andrew Lavin and Scott Gray. Fast algorithms for con-
volutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 4013–4021, 2016.

[31] Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo
Durand, and Jonathan Ragan-Kelley. Differentiable
programming for image processing and deep learning
in halide. ACM Transactions on Graphics (TOG),
37(4):139, 2018.

[32] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma,
and Yida Wang. Optimizing cnn model inference on
cpus. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 1025–1040, 2019.

[33] Moshe Looks, Marcello Herreshoff, DeLesley Hutchins,
and Peter Norvig. Deep learning with dynamic compu-
tation graphs. arXiv preprint arXiv:1702.02181, 2017.

[34] Mark F. Medress, Franklin S Cooper, Jim W. Forgie,
CC Green, Dennis H. Klatt, Michael H. O’Malley, Ed-
ward P Neuburg, Allen Newell, DR Reddy, B Ritea, et al.
Speech understanding systems: report of a steering com-
mittee. Artificial Intelligence, 9(3):307–316, 1977.

[35] Thierry Moreau, Tianqi Chen, Luis Vega, Jared Roesch,
Eddie Yan, Lianmin Zheng, Josh Fromm, Ziheng Jiang,
Luis Ceze, Carlos Guestrin, et al. A hardware–software
blueprint for flexible deep learning specialization. IEEE
Micro, 39(5):8–16, 2019.

[36] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet,
Jonathan Ragan-Kelley, and Kayvon Fatahalian. Auto-
matically scheduling halide image processing pipelines.
ACM Transactions on Graphics (TOG), 35(4):83, 2016.

[37] Nvidia. Nvidia tensor cores, 2017.

[38] Nvidia. Nvidia tensorrt: programmable inference accel-
erator, 2017.

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: an imperative style, high-performance deep
learning library. In Advances in Neural Information
Processing Systems, pages 8024–8035, 2019.

[40] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[41] Jonathan Ragan-Kelley, Connelly Barnes, Andrew
Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. Halide: a language and compiler for optimiz-
ing parallelism, locality, and recomputation in image

878 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

processing pipelines. Acm Sigplan Notices, 48(6):519–
530, 2013.

[42] Jared Roesch, Steven Lyubomirsky, Marisa Kirisame,
Josh Pollock, Logan Weber, Ziheng Jiang, Tianqi Chen,
Thierry Moreau, and Zachary Tatlock. Relay: a high-
level compiler for deep learning. arXiv preprint
arXiv:1904.08368, 2019.

[43] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: in-
verted residuals and linear bottlenecks. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 4510–4520, 2018.

[44] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochas-
tic superoptimization. ACM SIGARCH Computer Archi-
tecture News, 41(1):305–316, 2013.

[45] Haichen Shen, Jared Roesch, Zhi Chen, Wei Chen,
Yong Wu, Mu Li, Vin Sharma, Zachary Tatlock, and
Yida Wang. Nimble: Efficiently compiling dynamic
neural networks for model inference. arXiv preprint
arXiv:2006.03031, 2020.

[46] Patricia Suriana, Andrew Adams, and Shoaib Kamil.
Parallel associative reductions in halide. In 2017
IEEE/ACM International Symposium on Code Gener-
ation and Optimization (CGO), pages 281–291. IEEE,
2017.

[47] Richard S Sutton and Andrew G Barto. Reinforcement
learning: an introduction. MIT press, 2018.

[48] Philippe Tillet, HT Kung, and David Cox. Triton: an
intermediate language and compiler for tiled neural net-
work computations. In Proceedings of the 3rd ACM
SIGPLAN International Workshop on Machine Learn-
ing and Programming Languages, pages 10–19, 2019.

[49] Nicolas Vasilache, Oleksandr Zinenko, Theodoros
Theodoridis, Priya Goyal, Zachary DeVito, William S
Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. Tensor comprehensions: framework-agnostic
high-performance machine learning abstractions. arXiv
preprint arXiv:1802.04730, 2018.

[50] Nicolas Vasilache, Oleksandr Zinenko, Theodoros
Theodoridis, Priya Goyal, Zachary Devito, William S
Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. The next 700 accelerated layers: from mathe-
matical expressions of network computation graphs to
accelerated gpu kernels, automatically. ACM Transac-
tions on Architecture and Code Optimization (TACO),
16(4):1–26, 2019.

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Ad-
vances in neural information processing systems, pages
5998–6008, 2017.

[52] Sven Verdoolaege. Presburger formulas and polyhedral
compilation. 2016.

[53] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen,
Jose Ignacio Gomez, Christian Tenllado, and Francky
Catthoor. Polyhedral parallel code generation for cuda.
ACM Transactions on Architecture and Code Optimiza-
tion (TACO), 9(4):1–23, 2013.

[54] Pradnya A Vikhar. Evolutionary algorithms: a critical
review and its future prospects. In 2016 International
conference on global trends in signal processing, infor-
mation computing and communication (ICGTSPICC),
pages 261–265. IEEE, 2016.

[55] Leyuan Wang, Zhi Chen, Yizhi Liu, Yao Wang, Lianmin
Zheng, Mu Li, and Yida Wang. A unified optimization
approach for cnn model inference on integrated gpus.
In Proceedings of the 48th International Conference on
Parallel Processing, pages 1–10, 2019.

[56] R Clinton Whaley and Jack J Dongarra. Automatically
tuned linear algebra software. In SC’98: Proceedings
of the 1998 ACM/IEEE conference on Supercomputing,
pages 38–38. IEEE, 1998.

[57] Fisher Yu and Vladlen Koltun. Multi-scale context
aggregation by dilated convolutions. arXiv preprint
arXiv:1511.07122, 2015.

[58] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, et al. Ansor: generating
high-performance tensor programs for deep learning.
https://arxiv.org/abs/2006.06762, 2020.

[59] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and
Kaiwen Sheng. Flextensor: an automatic schedule ex-
ploration and optimization framework for tensor compu-
tation on heterogeneous system. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 859–873, 2020.

[60] Zhen Zheng, Pengzhan Zhao, Guoping Long, Feiwen
Zhu, Kai Zhu, Wenyi Zhao, Lansong Diao, Jun Yang,
and Wei Lin. Fusionstitching: boosting memory inten-
sive computations for deep learning workloads. arXiv
preprint arXiv:2009.10924, 2020.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 879

RAMMER: Enabling Holistic Deep Learning Compiler Optimizations with rTasks

Lingxiao Ma∗ †� Zhiqiang Xie∗‡� Zhi Yang† Jilong Xue� Youshan Miao�

Wei Cui� Wenxiang Hu� Fan Yang� Lintao Zhang� Lidong Zhou�

†Peking University ‡ShanghaiTech University �Microsoft Research

Abstract
Performing Deep Neural Network (DNN) computation on
hardware accelerators efficiently is challenging. Existing
DNN frameworks and compilers often treat the DNN op-
erators in a data flow graph (DFG) as opaque library func-
tions and schedule them onto accelerators to be executed
individually. They rely on another layer of scheduler, often
implemented in hardware, to exploit the parallelism available
in the operators. Such a two-layered approach incurs signif-
icant scheduling overhead and often cannot fully utilize the
available hardware resources. In this paper, we propose RAM-
MER, a DNN compiler design that optimizes the execution
of DNN workloads on massively parallel accelerators. RAM-
MER generates an efficient static spatio-temporal schedule
for a DNN at compile time to minimize scheduling overhead.
It maximizes hardware utilization by holistically exploiting
parallelism through inter- and intra- operator co-scheduling.
RAMMER achieves this by proposing several novel, hardware
neutral, and clean abstractions for the computation tasks and
the hardware accelerators. These abstractions expose a much
richer scheduling space to RAMMER, which employs several
heuristics to explore this space and finds efficient schedules.
We implement RAMMER for multiple hardware backends
such as NVIDIA GPUs, AMD GPUs, and Graphcore IPU.
Experiments show RAMMER significantly outperforms state-
of-the-art compilers such as TensorFlow XLA and TVM by
up to 20.1×. It also outperforms TensorRT, a vendor opti-
mized proprietary DNN inference library from NVIDIA, by
up to 3.1×.

1 Introduction

Deep neural network (DNN) is now a widely adopted ap-
proach for image classification, natural language process-
ing, and many other AI tasks. Due to its importance, many
computational devices, such as CPU, GPU, FPGA, and spe-
cially designed DNN accelerators have been leveraged to

∗Both authors contributed equally.

perform DNN computation. Efficient DNN computation on
these devices is an important topic that has attracted much
research attention in recent years [23, 28, 32, 40, 52]. One of
the key factors that affect the efficiency of DNN computa-
tion is scheduling, i.e. deciding the order to perform various
pieces of computation on the target hardware. The impor-
tance of scheduling in general is well known and has been
thoroughly studied [20, 39]. However, there is little work
discussing scheduling for DNN computation on hardware
devices specifically.

The computational pattern of a deep neural network is usu-
ally modeled as a data flow graph (DFG), where each node
corresponds to an operator, which represents a unit of com-
putation such as matrix multiplication, while an edge depicts
the dependency between operators. This representation natu-
rally contains two levels of parallelism. The first level is the
inter-operator parallelism, where operators that do not have
dependencies in the DFG may run in parallel. The second
level is the intra-operator parallelism, where an operator such
as matrix multiplication has inherent internal data parallelism
and can leverage hardware accelerators that can perform par-
allel computation, such as a GPU.

To exploit the two levels of parallelism, current practice
adopts a two-layered scheduling approach. An inter-operator
DFG layer scheduler takes the data flow graph and emits oper-
ators that are ready to be executed based on the dependencies.
In addition, an intra-operator scheduler takes an operator and
maps it to the parallel execution units in the accelerator. This
layering design has a fundamental impact on the system archi-
tectures of the existing DNN tool sets. For example, the DFG
layer scheduler is typically implemented in deep learning
frameworks such as TensorFlow [18] or ONNX Runtime [14].
The operator layer scheduler, on the other hand, is often hid-
den behind the operator libraries such as cuDNN [12] and
MKL-DNN [9], and sometimes implemented directly in hard-
ware, as is the case for GPUs.

While widely adopted by existing frameworks and acceler-
ators, such a two-layer scheduling approach incurs fundamen-
tal performance limitations. The approach works well only

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 881

when the overhead of emitting operators is largely negligible
compared to the execution time of operators, and when there
is sufficient intra-operator parallelism to saturate all process-
ing units in an accelerator. This unfortunately is often not
the case in practice. DNN accelerators keep on increasing
performance at a much faster pace than CPUs, thus making
the operator emitting overhead more and more pronounced.
This is exacerbated for DNN inference workloads when the
batch size is small, which limits the intra-operator parallelism.
Moreover, the two-layer scheduling approach overlooks the
subtle interplay between the upper and lower layers: to op-
timize the overall performance, a system could reduce the
degree of intra-operator parallelism in order to increase the
level of inter-operator parallelism (§ 2).

To mitigate these limitations, we present RAMMER, a deep
learning compiler that takes a holistic approach to manage the
parallelism available in the DNN computation for scheduling.
It unifies the inter- and intra-operator scheduling through a
novel abstraction called rTask. rTask enables the scheduler to
break the operator boundary and allows fine-grained schedul-
ing of computation onto devices. Instead of the existing design
that breaks scheduling into two pieces managed by software
and hardware separately, RAMMER is a unified software-only
solution, which makes it less dependent on underlying hard-
ware and thus can be adopted by diverse DNN accelerators.
In RAMMER, we make the following design decisions.

First, to exploit the intra-operator parallelism through a
software compiler, RAMMER redefines a DNN operator as
an rTask-operator or rOperator. An rOperator consists of
multiple independent, homogeneous rTasks, each is a mini-
mum schedulable unit runs on a single execution unit of an
accelerator (e.g., a streaming multiprocessor SM in a GPU).
Thus, rTask as the fine-grained intra-operator information is
exposed to the RAMMER scheduler. RAMMER treats a DNN
as a data flow graph of rOperator nodes, hence it can still see
the coarse-grained inter-operator (DFG) dependencies.

Unfortunately, certain modern accelerators such as GPU do
not expose interfaces for intra-operator (i.e., rTask) schedul-
ing. To address this challenge, as a second design decision
RAMMER abstracts a hardware accelerator as a virtualized
parallel device (vDevice), which contains multiple virtualized
execution units (vEU). The vDevice allows several rTasks,
even from different operators, to run on a specified vEU in
a desired order. Moreover, a vEU can run a barrier rTask
that waits for the completion of a specified set of rTasks,
thus ensuring the correct execution of rTasks from dependent
operators. The vDevice maps a vEU to one of the physical
execution units in an accelerator to perform the actual com-
putation of rTasks.

Finally, fine-grained scheduling could incur significant run-
time overheads, even more so than the operator scheduling
overhead discussed previously. To address this issue, RAM-
MER moves the scheduling decision from runtime to compile
time. This is driven by the observation that most DNN’s DFG

is available at the compile time, and the operators usually
exhibit deterministic performance characteristics. Therefore,
the runtime performance can be obtained through compile
time profiling [45]. This not only avoids unnecessary runtime
overheads, but also allows a more costly scheduling policy to
fully exploit the inter- and intra- operator parallelism together.

RAMMER is compatible with optimizations developed in
existing DNN compilers. RAMMER can import a data-flow
graph from other frameworks like TensorFlow. Such a DFG
can be optimized with techniques employed by a traditional
graph optimizer such as [18]. An rOperator can also be opti-
mized by an existing kernel tuner [23]. Our experience shows
that, on top of existing optimizations, RAMMER can provide
significant additional performance improvement, especially
for DNN inference workloads.

RAMMER is hardware neutral. The abstractions proposed,
such as rTask, rOperator and vEU are applicable to any mas-
sively parallel computational devices with homogeneous exe-
cution units. This includes almost all the computational de-
vices proposed for DNN workloads. In this paper, in addi-
tion to describe in detail how RAMMER is implemented on
NVIDIA GPUs, we will also discuss our experience retarget-
ing RAMMER for several alternative computing devices.

We have implemented RAMMER with 52k lines of C++
code and open-sourced the code1. Our evaluation on 6 DNN
models shows that RAMMER significantly outperforms state-
of-the-art compilers like XLA and TVM on both NVIDIA and
AMD GPUs, with up to 20.1× speedup. RAMMER even out-
performs TensorRT [13], a vendor optimized DNN inference
library from NVIDIA, with up to 3.1× gain.

Our experience on RAMMER strongly suggests that the cur-
rent industry-prevalent practice of vendor supplying highly
optimized DNN operator implementations in a library form
(such as cuDNN and MKL-DNN) is sub-optimal. This prac-
tice will incur significant efficiency cost for DNN workloads.
The situation will become even worse in the coming years as
modern accelerators keep on increasing the available hard-
ware parallelism while new DNN architectures strive to save
computation by replacing larger operators with many smaller
ones [49,54]. We recommend vendors to supply optimized im-
plementations in other forms, such as our proposed rOperator
and vEU abstractions, in order to enable holistic optimization
that can fully utilize hardware resources.

2 Motivation

In this section, we highlight some results to illustrate the
limitation of the two-layer design of existing deep learning
frameworks. Without loss of generality, we experiment with
TensorFlow [18], a state-of-the-art DNN framework, on an
NVIDIA GPU, using the same settings as in §5.

1https://github.com/microsoft/nnfusion

882 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/microsoft/nnfusion

 0

 20

 40

 60

 80

 100

BS=1
BS=16

BS=1
BS=16

BS=1
BS=16

BS=1
BS=16

BS=1
BS=16

BS=1
BS=16

G
P

U
 u

ti
li

za
ti

on
 (

%
)

19%

62%

12%

57% 62%

83%

17%
30%

10% 4% 2% 6%

Seq2SeqLSTMDeepSpeech2AlexNetNASNetResNeXt

Figure 1: The average GPU utilization on different DNN
model with different batch size (BS). The utilization only
accounts for kernel execution, excluding other stages like
operator emitting.

 0

 50

 100

 150

 200

BS=1
BS=16

BS=1
BS=16

BS=1
BS=16

BS=1
BS=16

BS=1
BS=16

BS=1
BS=16

T
im

e
(m

s)

Kernel time
Overhead

49%16%
64%33%

38%55%

56%35%

59%

35%

65%54%

Seq2SeqLSTMDeepSpeech2AlexNetNASNetResNeXt

Figure 2: The average kernel time and end-to-end execution
time on different DNN model with different batch size (BS).

Hardware-managed intra-operator scheduling leads to
low GPU utilization. The two-layer design delegates the
intra-operator scheduling to the hardware scheduler in an ac-
celerator like GPU. Figure 1 shows that such an approach
could lead to low GPU utilization across different DNN mod-
els. When the batch size is 1, the GPU utilization could be
as low as 2% for Seq2Seq model. Even when the batch size
is increased to 16, the average GPU utilization across the 6
models is merely 40% 2. To improve the scheduling efficiency,
modern GPUs support the multi-streaming mechanism that
allows independent operators to run concurrently. However,
our measurement in §5 shows that multi-streaming often hurts
rather than improves the overall performance.

High inter-operator scheduling overheads. The two-
layer approach also incurs a higher inter-operator scheduling
overheads. Here, we regard the time not spent doing actual
computation in the GPU as the overhead for inter-operator
scheduling. This overhead includes various operations to sup-
port operator emitting, including kernel launching, context
initialization, communication between host and GPU, and so
on. The percentage shown above each bar in Figure 2 depicts
how much time the DNN model is not spent in the actual
GPU computation. From the figure it is clear that the over-
head of inter-operator scheduling is quite significant. When
batch size is 1, the average overhead is 55% across the 6 DNN

2Note that the LSTM’s GPU utilization is slightly higher when batch
size is 1 compared to that when batch size is 16, because TensorFlow uses
different kernel implementations of GEMM for different batch sizes.

Launch op0 Launch op0 and op1

(a) (b)

Execution time Execution time

Execution units Execution units

Operator 0

Operator 1
Operator 0 Operator 1

Launch op1

EU EUEUEUEU EU EU EUEUEUEU EU

0 0 0 0 0 0

1 1

0 0 0 0 1 1

Figure 3: An illustration of (a) the inefficiency scheduling in
existing approach; and (b) an optimized scheduling plan.

 0
 10
 20
 30
 40
 50
 60

 0 200 400 600 800 1000 1200 1400 1600 1800

O
pe

ra
to

r
ti

m
e

(u
s)

Operator ID (sorted by average latency)

Averaged Time
Standard Error

Figure 4: The profiled kernel time of all the operators in
ResNeXt model. Each data point ran 1,000 times

models. Increasing the batch size to 16 slightly improves the
situation, while the overhead is still not negligible (between
16% and 55%). Modern DNN compilers, including the one in
TensorFlow, employs a technique called kernel fusion [17,23],
which merges several DNN operators into a single one when
allowed. However, our results in §5 show that this technique
cannot reduce the overhead significantly.

Interplay between inter- and intra-operator scheduling.
Separating scheduling into two layers ignores the subtle in-
terplay between inter-operator and intra-operator scheduling,
which may lead to suboptimal performance. For example, Fig-
ure 3(a) shows two independent operators being scheduled
to a GPU. For operator 0, to maximize its performance, the
system may choose the fastest implementation with a high
degree of parallelism. Thus operator 0 could greedily span all
the parallel execution units (EUs) of an accelerator (in this
case the streaming multiprocessors of the GPU), while each
EU may not be fully utilized. Since operator 0 occupies all
the EUs, operator 1 has to wait for available resource. A better
scheduler could reduce the degree of parallelism of operator 0
to increase the level of inter-operator parallelism, by mapping
operator 1 alongside operator 0, as illustrated by Figure 3(b).
We will discuss more details of this issue in §3.3 and §5.

Opportunities. Given the fundamental limitations of the
two-layer design observed above, it is desirable to manage the
scheduling of inter and intra-operator together. However, a
naive implementation of this approach may incur even higher
overheads than the already significant inter-operator schedul-
ing overheads. Fortunately, most DNN’s DFG is available at

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 883

(b)

matmul
relu

conv
add

(a)

EU EU EU EU

DFG Scheduler

Operator scheduler

Operator

DFG of rOperators

rProgram

DFG of operators

rTasks

rTask-aware DFG compiler

operator

dynamic dispatch

Virtualized parallel device

static map

EU EU EU EU

Figure 5: System overview of DNN computation in (a) exist-
ing DNN frameworks, and (b) RAMMER, where each node
in a DFG is an rOperator that explicitly exposes the intra-
operator parallelism through rTask; Rather than dynamically
scheduling each rOperator, RAMMER compiles the DFG into
a static execution plan called rProgram (composed of rTasks)
and maps it to hardware by a software device abstraction
called vDevice.

the compile time, and the operators often exhibit deterministic
performance, therefore, their execution times can be obtained
through compile time profiling [45]. For example, Figure 4
shows the averaged GPU kernel time and the variance of all
the operators in the ResNeXt [49] model. The kernel run-time
weighted average of standard deviations among all operators
is only 7%. This allows us to move the scheduling from run-
time to compile-time, by generating an offline schedule plan
to reduce runtime overhead.

3 RAMMER’s Design

The observations in §2 motivate RAMMER, a DNN compiler
framework that manages both inter and intra-operator schedul-
ing. Figure 5 shows the key differences between an existing
deep learning framework and RAMMER. First, the input to
RAMMER is a data-flow graph where a node is an rOperator,
rather than a traditional operator. An rOperator explicitly ex-
poses rTask, a fine-grained computation unit that could run on
a parallel execution unit in an accelerator. We discuss details
of rTask in §3.1. Second, instead of separating the two-layer
scheduling between software and hardware, RAMMER intro-
duces rTask-aware DFG compiler to manage the inter and
intra-operator scheduling in one place. The rTask-aware DFG
compiler will generate a static execution plan for runtime
execution. Often, it is not efficient or not possible to pack
the entire DNN computation in a single accelerator device
invocation. Therefore, the execution plan is breaking into

1 interface Operator { void compute(); };
2 interface rOperator {
3 void compute_rtask(size_t rtask_id);
4 size_t get_total_rtask_num();
5 };

Figure 6: The execution interfaces of traditional operator and
rOperator. More details in §4.

multiple rPrograms, each contains a piece of computation
to be carried out on the hardware. Instead of emitting one
operator at a time for an accelerator, RAMMER emits an rPro-
gram at a time. The details of the rTask-aware DFG compiler
will be discussed in §3.3. To carry out the execution plan,
RAMMER abstracts a hardware accelerator as a virtualized
parallel device (vDevice), which includes multiple virtualized
execution units (vEUs). The vDevice provides the scheduling
and synchronization capabilities at the rTask level so that
the rProgram can be mapped to the corresponding vEUs at
compile time. The vEUs, together with the vDevice will be
mapped to the hardware at runtime. We introduce virtualized
device in §3.2.

3.1 rOperator
An rOperator is defined as a group of independent, homoge-
neous rTasks (short for RAMMER task), where an rTask is
the minimum computation unit in an operator to be executed
on a processing element of the accelerator device. The con-
cept of rTask naturally aligns with the parallel architecture of
DNN accelerators, e.g., the SIMD architecture of GPU. To
maximize efficiency, the computation on such an accelera-
tor needs to be divided into multiple parallel (homogeneous)
tasks. Each of these parallel tasks can be represented by an
rTask, thereby exposing the intra-operator parallelism not
only to the underlying hardware, but to the RAMMER compiler.
Given that an rTask is logically identical to a parallel task,
RAMMER relies on external tools to partition an rOperator
into rTasks (e.g., TVM [23]). In another word, RAMMER uses
external heuristics to decide a reasonable granularity of rTask.

As a concrete example, a matrix multiplication operator can
be divided into multiple homogeneous rTasks, each computes
a tile of the output matrix, while the tiling strategy is assumed
to be given. If a complicated DNN operator can hardly be
divided into independent homogeneous rTasks (e.g., Separa-
bleConv2D [7]), it can be represented as multiple dependent
rOperators, each can be partitioned into rTasks.

An rTask is indexed by a logical rtask_id. The rTasks in
an rOperator are numbered continuously. To execute an rTask,
the parallel execution unit could call the compute_rtask()
interface (line 3 Figure 6). To generate an rProgram,
RAMMER needs to know the total number of rTasks
in an operator. This is available through the interface
get_total_rtask_num(). In contrast, a traditional opera-

884 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

tor has only one interface compute()(line 1 Figure 6). The
implementation of an rOperator is called rKernel, which real-
izes the concrete rTask computation logics and decides the
total number of rTasks. One rOperator might have multiple
versions of rKernels based on different tiling strategies, e.g.,
trading off between resource efficiency and overall execution
time.

The rOperator abstraction allows RAMMER to expose both
inter- and intra-operator parallelisms. This opens up a new
space to optimize DNN computation holistically.

3.2 Virtualized Parallel Device
Modern accelerators do not provide interfaces to map an
rTask to a desired execution unit directly. For example, a GPU
only allows to execute one operator (in the form of a kernel)
at a time. To address this challenge, RAMMER abstracts a
hardware accelerator as a software-managed virtual device
called virtualized parallel device (vDevice). A vDevice further
presents multiple parallel virtual execution units (vEUs), each
of them can execute rTasks independently.

With vDevice, RAMMER organizes the computation
of rTask-aware DFG as an rProgram on a vDevice.
An rProgram is represented as two dimensional array of rTask
prog[vEU_id][order], where vEU_id denotes the vEU the
rTask is assigned to, and order denotes the execution order
of the rTask in this vEU. For example, prog[0][0] denotes
the first rTask to be executed in vEU 0. To ensure the correct
execution of dependent rTasks in a plan, RAMMER introduces
barrier-rTask. A barrier-rTask takes the argument of a list
of pairs <vEU_id, order>. The barrier-rTask will wait until
the completion of all rTasks indexed by each pair. The barrier-
rTask provides a fine-grained synchronization mechanism to
enable rTask schedule plan execution.

For the execution of DNN computation, a vDevice needs
to be mapped to a physical accelerator at runtime. We will
discuss how RAMMER implements the mapping of vDevice
to different hardware accelerators in §4.

3.3 rTask-aware DFG Compiler
The rTask abstraction and the fine-grained rTask execution ca-
pability exposed by the vDevice open up a large optimization
space. RAMMER aims to generate a high-quality schedule in
this space, represented as a sequence of rPrograms. To this
end, the rTask-aware DFG compiler separates the scheduling
mechanism from its policy. On the mechanism side, it pro-
vides two capabilities: (1) Two scheduling interfaces for a
policy to generate an execution plan. (2) A profiler to supply
profiling information requested by a scheduling policy.

Scheduling interfaces. RAMMER’s rTask-aware DFG
compiler introduces two scheduling interfaces, Append and
Wait. Append(task_uid, vEU_id) assigns an rTask from

Algorithm 1: Wavefront Scheduling Policy
Data: G: DFG of rOperator, D: vDevice
Result: Plans: rPrograms

1 Function Schedule(G, D):
2 Pcurr = {};
3 for W = Wavefront(G) do
4 P1 = ScheduleWave(W , Pcurr , D);
5 P2 = ScheduleWave(W , {}, D);
6 if time(P1)≤ time(Pcurr)+ time(P2) then
7 Pcurr = P1;
8 else
9 Plans.push_back(Pcurr);

10 Pcurr = P2;
11 return Plans;
12 Function ScheduleWave(W, P, D):
13 SelectRKernels(W , P);
14 for op ∈W do
15 for r ∈ op.rTasks do
16 vEU = SelectvEU(op, P, D);
17 P.Wait(r, Predecessor(op).rTasks);
18 P.Append(r, vEU);
19 return P;

an operator to the specified vEU in a sequential order. Here
task_uid is a global identifier for an rTask, which is essen-
tially the operator id combined with the rtask_id within
the operator. The second API, namely Wait(wtask_uid,
list<task_uid>), allows an rTask specified by wtask_uid
to wait for rTasks in list<task_uid>. The Wait interface
will implicitly Append a barrier-rTask (discussed in §3.2)
right before the rTask wtask_uid. As an optimization, when
waiting for multiple consecutive rTasks r1,r2, ...,rn sequen-
tially appended to the same vEU, the rTask only need to
include the last one, i.e., rn, in the waiting list.

Compile-time profiling. RAMMER profiler provides the
following three types of information: 1) individual rTask
execution time on a vEU; 2) resource usage of an rTask such
as the local memory or registers used and 3) the overall exe-
cution time of an rProgram. This profiling information can
guide a policy to generate an efficient scheduling plan.

Scheduling policy. Algorithm 1 illustrates how to use the
above scheduling interfaces and the profiler to implement a
scheduling policy to exploit both inter- and intra-operator par-
allelisms. This policy takes an rTask-aware DFG and sched-
ules operators in waves [37]. The operators in a wave are the
fringe nodes of a breadth-first-search on the DFG. The policy
will include a wave’s operators in the current rProgram if the
profiling results (denoted by time()) suggest it will reduce
the total execution time. Otherwise, the policy will create a
separate rProgram (line 2-10).

First of all, we assume that each rOperator has one or more
implementations called rKernels, each rKernel is a way to
break the operator into rTasks with different resource and run-
time trade-offs. Among the rKernels of a particular rOperator,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 885

DNN
model

DFG of
rOperator

rKernels

DFG
compiler

rProgram
Generated

device code

Accelerator

Auto kernel
generators

Hand-tuned
kernels

Rammer

rOperator
convertor

Figure 7: Overall workflow of RAMMER.

there is the fastest one with the smallest runtime, and there
is the most efficient one with the smallest product of runtime
and the total number of rTasks.

For each wave, the policy selects the implementations of
the operators through SelectRKernels() (line 13), with the
following heuristics: If combine all the rTasks in the wave
with the fastest operator implementations still cannot occupy
all the parallel execution units in the accelerator, the policy
will just select them. Otherwise, the policy will find the most
efficient rKernels and then perform a profiling. The policy
will choose these rKernels if the profiling results show better
execution time, otherwise it will stick with the fastest rKernels.
This heuristic considers the interplay between the inter- and
intra-operator scheduling by evaluating the rOperators (and
their rTasks) in a wave, instead of individually. After the
rKernel selection, the policy calls SelectvEU() to decide
which vEU an rTask should be scheduled to (line 16). Given
the current rProgram P, SelectvEU() chooses the vEU that
can execute the rTask at the earliest, based on the profiled
execution time of each rTask in P. Finally, the policy calls
Wait() to ensure rTask level dependency (derived from the
DFG) and Append() to assign the rTask to the selected vEU
(line 17-18). The policy in Algorithm 1 demonstrates how
RAMMER separates the scheduling mechanism from schedul-
ing policy. As shown in §5, this simple policy can already
outperform the state-of-the-art, sometimes significantly. We
envision the proposed scheduling mechanism could enable fu-
ture research on more advanced scheduling policies to further
explore the optimization space.

4 Implementation

We implement RAMMER with 52k lines of C++ code, in-
cluding 3k lines of code for the core compiler and schedul-
ing function. The input of RAMMER is a DNN model in
either TensorFlow [18] frozen graph, TorchScript [16] or
ONNX [14] format. RAMMER first converts the input model
into a DFG of rOperators. Since the input model is often not
optimized, like other compilers, we also implemented com-
mon graph optimizations such as constant folding, common
sub-expression elimination, pattern-based kernel fusion, etc.
For each rOperator from an optimized DFG, RAMMER loads
one or multiple versions of rKernel implementations from dif-

1 __device__ void matmul_rTask(float *A, float *B,
2 float *C, size_t rtask_id) {
3 size_t tile_x = rtask_id / (M/32);
4 size_t tile_y = rtask_id % (N/32);
5 size_t i = threadIdx.x/32 + tile_x*32;
6 size_t j = threadIdx.x%32 + tile_y*32;
7 C[i][j] = 0;
8 for (size_t k = 0; k < K; k++)
9 C[i][j] += A[i][k] * B[k][j];

10 }
11
12 class MatmulROperator {
13 __device__ void compute_rtask(size_t rtask_id){
14 matmul_rTask(input0 ,input1 ,output0 ,rtask_id);}
15 size_t get_total_rtask_num(){return M/32*N/32);}
16 };

Figure 8: A CUDA implementation of a naive matrix multi-
plication with the rOperator abstraction.

ferent sources, e.g., auto-kernel generators [23], hand-tuned
kernels, or converted from existing operators in other frame-
works. RAMMER compiler will then partition the DFG into
sub-graphs (e.g., based on the policy in Algorithm 1) and
compile each of them as an rProgram. As an output, each
rProgram is further generated as a device code (e.g., GPU
kernels) that runs on the accelerator. Figure 7 summarizes the
overall workflow of RAMMER.

In the rest of this section, we describe the details about
RAMMER’s implementation for CUDA GPU. We focus on
NVIDIA GPUs and the CUDA eco-system because they are
the most widely used accelerators for DNN. To demonstrate
that the vDevice abstraction enables RAMMER compiler to
support different accelerators with an uniform interface, we
will also briefly describe our experience with other DNN
accelerators, including AMD GPUs and Graphcore IPU, at
the end of this section.

4.1 RAMMER on NVIDIA CUDA GPUs

An NVIDIA GPU usually consists of tens to hundreds of
streaming multiprocessors (SM), each containing tens of cores.
Computation on SM follows the Single Instruction Multiple
Thread (SIMT) model. In this paper we assume the readers
are familiar with the basic concepts of CUDA [4], the pro-
gramming paradigm introduced by NVIDIA to program their
GPUs. A single CUDA program (often referred to as a CUDA
kernel) groups multiple threads into blocks, each thread-block
is assigned to run on an SM, where the scheduling is per-
formed by GPU hardware. RAMMER naturally maps each
vEU to an SM and implements an rTask as a thread-block.

4.1.1 rOperator in CUDA

Figure 8 shows a naive CUDA implementation of an
rOperator that multiplies a M×K matrix A by a K×N matrix
B. For simplicity, we assume M and N are evenly divisible

886 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

by 32. In the code, each rTask computes a 32×32 tile of the
output matrix C. Line 1-10 in Figure 8 shows the computa-
tion of one thread in one rTask. The thread uses rtask_id,
a RAMMER assigned id to identify the tile to be computed
by this rTask (line 3-4), and uses threadIdx, a CUDA built-
in thread index to identify the data element to be computed
(line 5-6) by this thread. The identified element is then com-
puted in line 7-9. Line 13 shows the interface exposed by this
rOperator, which will be called by a vEU’s parallel thread.
The total rTasks needed in this operator is determined by the
matrix dimension M and N, and can be obtained through the
get_total_rtask_num interface (line 16). The key differ-
ence between code in Figure 8 and a traditional CUDA code
is that an rTask uses rtask_id, a logical index controlled by
RAMMER, instead of blockIdx, a built-in thread-block index
controlled by the GPU’s hardware scheduler. This enables
RAMMER to map an rTask to a desired vEU by executing
compute_rtask() with a proper rtask_id. Note that the
code shown in Figure 8 is for illustrative purpose. The eval-
uation shown in §5 uses a more complicated tiled version
of matrix multiplication rOperator, which further improves
the performance through carefully exploiting GPU memory
hierarchy, e.g., shared memory and registers [36, 41].

4.1.2 vDevice and vEU on CUDA GPU

On a CUDA GPU, the intra-operator scheduling is usually
managed by the GPU’s built-in scheduler. To bypass the
built-in scheduler, RAMMER leverages a persistent thread-
block (PTB) [29] to implement a vEU in a vDevice. PTB is
a thread-block containing a group of continuously running
threads, where RAMMER is able to “pin” the PTB to the de-
sired SM. Given an rProgram, each thread in the PTB (and
hence the vEU) executes the compute_rtask() according
to the sequence specified by the rProgram. To execute the
compute_rtask() from multiple rTasks continuously in a
PTB, a function qualifier __device__ is required by CUDA
for comptue_rtask() and any sub functions executed therein
(e.g., line 1 and 13 in Figure 8).

Figure 9 illustrates the CUDA code for a vDevice with
two vEUs, i.e., a CUDA kernel function with two PTBs. This
vDevice executes an rProgram compiled from a DFG with
three rOperators: a Matmul, a Relu, and a Conv. Specified
by the execution plan, the vDevice executes two rTasks of
the Matmul operator on vEU 0, and in parallel it also runs
four rTasks of the Relu operator on vEU 1. Then a global
barrier is inserted to the two vEUs, each runs a barrier-rTask:
vEU 0 waits for the 4th rTask on vEU 1, and vEU 1 waits for
the 2nd rTask on vEU 0. Finally, the vDevice executes two
rTasks of the Conv operator on the two vEUs respectively. On
each vEU, RAMMER runs the rTasks sequentially in a code
branch, executed only if the current vEU Id matches the one
generated by the rProgram.

Before a lengthy DNN computation, RAMMER dispatches

1 // config: <<<(vEU_size,1,1), (vEU#,1,1)>>>
2 __global__ void vdevice_run() {
3 if (Get_vEU_Id() == 0) { // vEU 0
4 MatmulrTaskOp.compute_rtask (0);
5 MatmulrTaskOp.compute_rtask (1);
6 // wait the rTask on vEU 1 with order=3
7 BarrierTask({<1, 3>}).compute_rtask();
8 Conv2DrTaskOp.compute_rtask (0);
9 }

10 else if (Get_vEU_Id() == 1) { // vEU 1
11 for (auto i : 4)
12 RelurTaskOp.compute_task(i);
13 // wait the rTask on vEU 0 with order=1
14 BarrierTask({<0, 1>}).compute_rtask();
15 Conv2DrTaskOp.compute_rtask (1);
16 }
17 }

Figure 9: The CUDA code for a vDevice with two vEUs.

each vEU (implemented by a PTB) to a desired SM through
the GPU scheduler [48]. To improve hardware utilization, an
SM can run multiple vEUs (PTBs) concurrently. Since CUDA
uses a SIMT model, all vEU are homogeneous, the number
of vEUs an SM can support depends on the most demanding
rTask across all the vEUs, i.e., the rTask that requires the
most thread number, register number, shared memory size,
etc. In practice, we set the number of vEUs on each SM
according to the maximum active PTB number provided by
the CUDA compiler nvcc [5]. With the vDevice abstraction,
the optimizations in RAMMER become hardware agnostic.

4.1.3 Executing rTask on vEU in CUDA

Executing heterogeneous rTasks. In a CUDA kernel, the
number of threads in a thread block is fixed in the entire
execution lifecycle. This force RAMMER to require that all
the rTasks on a vEU to run on with the same number of
persistent threads. In practice, different rOperators may use
different number of threads to balance parallelism and per-
thread resource usage. To address this problem, RAMMER sets
the number of threads of a vEU to be the maximum number
of threads used by an rTask in the vEU. For an rTask with less
threads, RAMMER inserts early-exit logic in the extra threads
to skip the unnecessary (and invalid) execution. However,
early-exit may lead to dead-lock: a global barrier might never
return because early-exit logic may skip the barrier. To avoid
this issue, RAMMER can leverage the CUDA cooperative
group primitives [3], which explicitly controls the scope of
threads during a synchronization.

Implementing barrier-rTask. To implement an efficient
barrier-rTask, RAMMER introduces a step array, where each
element is an integer tracking the number of finished rTasks
in each vEU. When finished, an rTask will use its first thread
to increase the corresponding element in the step array by
1. When waiting for a list of rTasks on N vEUs, a barrier-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 887

rTask uses its first N threads to poll on the corresponding
elements in the step array until the steps are larger than the
orders of those rTasks. After that, the barrier-rTask calls
__syncthreads to ensure all threads in this vEU are ready
to run the next rTask.

4.1.4 Transforming Legacy CUDA Operators

Many operators for DNN are already available as CUDA ker-
nel code. To reduce development efforts, RAMMER introduces
a source-to-source converter to transform a legacy CUDA op-
erator into an rOperator. The key insight of the converter
lies on the facts that to exploit the intra-operator parallelism,
legacy CUDA operators are also implemented as thread-
blocks, although they use blockIdx and let CUDA GPU hard-
ware control the intra-operator scheduling directly. rOperator
can just compute the desired blockIdx from rtask_id with-
out changing computation logic in the legacy kernel.

One challenge in this transformation is that the thread-
blocks in existing operator could be laid out in 1, 2, or 3-
dimensional shape, while in a vEU threads are laid out in a
1-dimensional shape. This means our vEU needs to support
rTask with different threads shapes. For example, Figure 10
illustrates a vEU executing two rTasks with the thread shapes
of [2×2] and [2×3] respectively. Our solution is to stick to
a 1-D persistent thread shape for a vEU, and apply a thread
index remapping to compute the desired threadIdx in the
legacy kernel with the vEU’s 1-D threadIdx. Notice that, as
discussed before, the number of threads of a vEU is the maxi-
mum number of threads of all rTask in the vEU, so that such
a remapping is always possible. For example, in Figure 10 we
configure the vEU with [1×6] persistent threads. When exe-
cuting rTask 0 with a legacy [2×2] thread shape, RAMMER
remaps the [2×2] shape to the vEU’s [1×6] thread.

In summary, to convert a legacy DNN operator to an
rOperator, one needs to remap thread and block index, imple-
ment the early-exit logic, and use CUDA cooperative group
primitive to support local barrier on the active (i.e. not early-
exited) threads. RAMMER implements these changes by in-
serting a compiler-generated code segment at the entry point
of the legacy operator kernel code. With these modifications,
RAMMER can preserve the legacy operator implementation,
and reuse it as an rTask operator. In RAMMER, we have trans-
formed and implemented total 150 rKernels for 70 rOperators.

4.2 RAMMER on Other Accelerators

The design of RAMMER is not limited to CUDA and NVIDIA
GPUs. In fact, our rTask, rOperator and vEU abstractions are
applicable to any massively parallel computational devices
with homogeneous execution units, including most of the
devices that used for DNN computation. In this section, we
discuss how to port RAMMER to support other devices.

rTask0: thread_shape =[2 x 2]
remap threads as [1 x 4] block

rTask1: thread_shape=[2 x 3]
remap threads as [1 x 6] block

vEU: [1 x 6] persistent block

Active thread
Early-exit threadt

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5
0 1 2
3 4 5

0 1
2 3

Figure 10: Executing two heterogeneous rTasks on a vEU.

4.2.1 RAMMER on AMD GPUs

AMD GPUs are similar to NVIDIA GPUs, which also consist
of many parallel execution units called compute units (CU).
AMD GPU has a HIP programming model [8], which is simi-
lar to CUDA. AMD provides a hipify tool that can convert a
CUDA kernel to a HIP kernel. hipify can help convert most
CUDA rOperators to the HIP version. Some CUDA kernel
configurations, such as the number of threads per thread-block
and size of local memory, are not optimized for AMD GPUs
due to the minor architecture differences. We re-implemented
41 rKernels for AMD GPUs for better performance. hipify
can also convert the CUDA implementation of vDevice (i.e.,
PTBs) to the HIP version. The only exception is that AMD
GPUs do not support cooperative group primitives. To address
this issue, we introduce a new API in rOperator to provide
the number of (block-wise) synchronizations S (i.e. calls to
__syncthreads). For early-exit threads, instead of exit imme-
diately, RAMMER will insert code to call the __syncthreads
primitive S times.

4.2.2 RAMMER on Graphcore IPU

The Graphcore IPU (Intelligence Processing Unit) [10] is a
state-of-the-art DNN accelerator with an architecture quite
different from GPUs. IPU is a massively parallel MIMD pro-
cessor with a bulk-synchronous-parallel (BSP) communica-
tion model. Each IPU contains 1,216 parallel processing units
called tiles; a tile consists of a hyper-threaded computing core
plus 256 KB of local memory. DNN computation on an IPU
is explicitly programmed as a data-flow graph, where each
vertex implements the code executed on a tile and each edge
depicts the data transfers between vertices. The IPU compiler
is responsible for mapping each vertex to a tile.

RAMMER’s rTask abstraction can also map to IPU’s MIMD
model: a vEU can map to a tile and a vertex can be treated as
an rTask. Thus, an rOperator on IPU can be implemented as a
set of vertices. More importantly, IPU compiler allows to con-
trol the vertex-tile mapping at compile-time. This provides the
core functionality required in vDevice abstraction. Restricted
by the hardware BSP model, IPU does not provide a fine-
grained synchronization mechanism. We therefore implement
barrier-rTask with a global barrier, which may reduce schedul-
ing space for RAMMER. Even with this limitation, RAMMER

888 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Model Dataset Model Type Note

ResNeXt CIFAR-10 Computer Vision layers: 29, cardinality: 16, bottleneck width: 64d (16×64d, paper parameter)
NASNet CIFAR-10 Computer Vision repeated cells: 6, filters: 768 (6@768, paper parameter)
AlexNet ImageNet Computer Vision (paper parameter)
DeepSpeech2 LibriSpeech Speech input length: 300; CNN layer: 2; RNN: type: uni-LSTM, layer: 7, hidden size: 256
LSTM (-TC) synthetic Language Model input length: 100, hidden size: 256, layer: 10
Seq2Seq (-NMT) synthetic Language Model Encoder: input length: 100, type: uni-LSTM, hidden size: 128, layer: 8

Decoder: output length: 30, type: uni-LSTM, hidden size: 128, layer: 4

Table 1: Deep learning models and datasets.

still can schedule rTasks of different operators at the same
computing step to increase utilization. To evaluate RAMMER,
we implemented total 15 rOperators and 18 rKernels.

4.2.3 RAMMER on x86 CPUs

We also implemented RAMMER on multi-core x86 CPUs.
However, we see little performance benefit of adopting the
RAMMER abstractions on x86-based platforms. On x86, the
operator runtime is high due to the relatively low performance
of x86 cores for numerical computations, and the small num-
ber of cores can be fully occupied by almost any DNN opera-
tors. Moreover, scheduling overhead is not significant because
kernel launch is just a regular function call. Therefore, RAM-
MER cannot provide additional benefit compared with the
traditional two-layered scheduling approach.

5 Evaluation

In this section, we present the detailed evaluation results to
demonstrate the effectiveness of RAMMER with comparison
with other state-of-the-art frameworks.

5.1 Experimental Setup
Machine environment. We evaluated RAMMER on three
servers with different accelerators equipped. The CUDA GPU
evaluations use an Azure NC24s_v3 VM equipped with Intel
Xeon E5-2690v4 CPUs and 4 NVIDIA Tesla V100 (16GB)
GPUs, with Ubuntu 16.04, CUDA 10.0 and cuDNN 7.6.5. The
AMD ROCm GPU evaluations use a server equipped with In-
tel Xeon CPU E5-2640 v4 CPU and 2 AMD Radeon Instinct
MI50 (16GB) GPUs, installed with Ubuntu 18.04 and ROCm
3.1.1 [1]. The IPU evaluations use an Azure ND40s_v3 pre-
view VM equipped with Intel Xeon Platinum 8168 CPUs and
16 IPUs with Poplar-sdk 1.0.

We compare RAMMER with other DNN frameworks
and compilers, including TensorFlow (v1.15.2) representing
the state-of-the-art DNN framework, TVM (v0.7) [23] and
TensorFlow-XLA representing the state-of-the-art DNN com-
pilers, and TensorRT (v7.0) (with TensorFlow integration ver-
sion), a vendor-specific inference library for NVIDIA GPUs.

Benchmarks and datasets. Our evaluation is performed
using a set of representative DNN models that covers typi-
cal deep neural architectures such as CNN and RNN; and
different application domains including image, NLP and
speech. Among them, ResNeXt [49] is an improved version
of ResNet [30]; NASNet [54] is a state-of-the-art CNN model
obtained by the neural architecture search; AlexNet [35]
represents a classic CNN model with a simple architecture.
LSTM-TC [31] is an RNN model for text classification; Deep-
Speech2 [19] is a representative speech recognition model;
and Seq2Seq [46] is for neural machine translation. All the
implementations of these benchmarks, including the rKernels
used in each model, are available in our artifact evaluation
repository3.

We focus our evaluation on model inference. There is no
fundamental reason limiting RAMMER from model training,
except that supporting training requires us to develop more
operators. We evaluate these models on a set of datasets in-
cluding CIFAR-10 [2], ImageNet [26], LibriSpeech [11] and
synthetic datasets. Table 1 lists the models, hyper-parameters,
and the corresponding datasets used. All performance num-
bers in our experiments are averages over 1,000 runs; in all
cases we observed very little variations.

5.2 Evaluation on CUDA GPUs
This section answers the following questions: 1) How does
RAMMER perform comparing with the state-of-the-art DNN
frameworks or compilers? 2) How well does RAMMER utilize
the GPU’s parallel resource? 3) How much does RAMMER
reduce the runtime scheduling overhead? 4) How much per-
formance gain comes from RAMMER’s scheduling leveraging
both the intra and inter operator parallelism? 5) How effective
is the fine-grained synchronization in improving the overall
performance?

5.2.1 End-to-end Performance

We first demonstrate the end-to-end efficiency of RAMMER
by comparing with TensorFlow (TF), TensorFlow-XLA (TF-

3https://github.com/microsoft/nnfusion/tree/osdi20_
artifact/artifacts

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 889

https://github.com/microsoft/nnfusion/tree/osdi20_artifact/artifacts
https://github.com/microsoft/nnfusion/tree/osdi20_artifact/artifacts

 0
 20
 40
 60
 80

 100

ResNeXt

T
im

e
(m

s)

 0
 10
 20
 30
 40

NASNet
 0

 0.5
 1

 1.5
 2

 2.5

AlexNet
 0

 10
 20
 30
 40
 50

DeepSpeech2
 0

 40
 80

 120
 160

LSTM
 0

 20
 40
 60
 80

Seq2Seq

TF TF-XLA TF-TRT TVM RammerBase Rammer

Figure 11: End-to-end model inference time with batch size of 1 on NVIDIA V100 GPU.

XLA), TVM and TensorRT (TF-TRT). To show the benefit
of the abstractions introduced in RAMMER, we create a base-
line version of RAMMER (called RAMMERBASE), which only
implements the optimizations similar to those in existing com-
pilers and still uses a two-layered scheduling approach. Thus,
RAMMERBASE can be treated as just another regular DNN
compiler implemented in the same codebase of RAMMER.
Figure 11 shows the execution time of the benchmarks with
batch size of 1.

First, RAMMER significantly outperforms TF by 14.29×
on average, and up to 33.94× for the LSTM-TC model. The
performance improvement of RAMMER against TF is mainly
because TF suffers from heavy runtime scheduling overhead
at DFG level, especially when the individual operator’s ex-
ecution time is relatively short, as is the case in small batch
inference. TF-XLA, as a DNN compiler, can improve TF’s
performance through DFG level optimizations (e.g., opera-
tor fusion) and operator-level code specializations (e.g. cus-
tomized kernel generation). However, it still cannot fully avoid
scheduling overhead, which leads to an average of 11.25×
(up to 20.12×) performance gap compared to RAMMER. We
observed that TF-XLA incurs even higher overhead for some
CNN models such as ResNeXt and NASNet compared with
TF. TVM, as another state-of-the-art DNN compiler, mainly
leverages a kernel tuning technique to generate a special-
ized kernel for each operator. In our evaluation, TVM tunes
1,000 steps and chooses the fastest kernel for each operator.
With such specialized optimization, TVM can improve the
performance significantly compared with TF and TF-XLA.
Still, RAMMER can outperform TVM by 3.48× on average
and up to 6.46×. Even though TVM can make individual
operator run faster through tuning, it still lacks the capabil-
ity to leverage the fine-grained parallelism as RAMMER. An
exception is that, for AlexNet, RAMMER can only achieve
comparable performance with TVM. This is mainly because
AlexNet, being one of the earliest modern DNN models, can
be easily optimized due to its simple sequential model ar-
chitecture and relatively fewer, but larger operators. Finally,
TensorRT is a specialized DNN inference library with highly
optimized operators provided by NVIDIA. We use its offi-
cial TensorFlow-integration version (TF-TRT) to compile and
run our models, as its stand-alone version fails to directly
compile these benchmarks. However, for RNN models like
DeepSpeech2, LSTM-TC and Seq2Seq-NMT, TF-TRT failed

 0
 25
 50
 75

 100

BS1 BS4 BS16

T
im

e
(m

s)

ResNeXt

 0
 50

 100
 150
 200

BS1 BS4 BS16
LSTM

TF
TF-XLA

TF-TRT
TVM

RammerBase
Rammer

Figure 12: End-to-end model inference time with different
batch sizes (BS).

to produce results after compiling for over 50 hours. Thus, we
reimplemented these three models with the TensorRT native
APIs. Our evaluation shows that RAMMER can outperform
the vendor optimized TensorRT on all the benchmarks, with
an averaged 2.18× and up to 3.09× lower latency. Finally,
compared to RAMMERBASE, RAMMER can further improve
the end-to-end performance by 2.59× and up to 6.29×.

Performance with different batch sizes. We also evaluate
RAMMER’s performance with larger batch sizes. Figure 12
shows the performance comparison on two representative
CNN and RNN models, i.e., ResNeXt and LSTM-TC, with
batch sizes of 4 and 16. We limit our benchmarks in this test
due to the cost of developing optimized rOperator kernels for
RAMMER: we have to hunt for efficient open-sourced operator
kernel implementations or perform tuning by hand or through
automatic tuning tools, which is time consuming. As it shows,
using larger batch sizes can reduce scheduling overhead in ex-
isting frameworks due to the increased per-operator execution
time. Even so, RAMMER can still outperform all the systems
except for TensorRT on the ResNeXt model with batch size of
16. For this case, TensorRT uses some operators whose source
codes are not publicly available, and our implementations do
not yet match their performance. In fact, implementing op-
erators to match the performance of close-sourced kernels is
one of the major challenges for RAMMER. Compared to the
other open source frameworks and compilers, RAMMER has
a significant gain. For example, when using batch size of 16,
RAMMER can outperform TF by 2.25×, and TVM by 1.25×
on ResNeXt. For the LSTM-TC model, RAMMER can get
20.08× and 9.0× performance gains compared with TF and
TVM respectively.

890 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0
 100
 200
 300
 400
 500

T
im

e
(m

s)

ResNeXt
 0
 5

 10
 15
 20
 25
 30

NASNet

TF
TF-XLA

TF-TRT
TVM

RammerBase
Rammer

Figure 13: End-to-end model inference time with the batch
size of 1 on the ImageNet dataset (image size: 224×224).

 0
 20
 40
 60
 80

 100

ResNeXt NASNet AlexNet DeepSpeech2 LSTM Seq2SeqG
P

U
 U

ti
li

za
ti

on
 (

%
) TF

TF-TRT
RammerBase

Rammer

Figure 14: Comparison of GPU utilization.

Performance with larger input sizes. In our default set-
tings, ResNeXt and NASNet are evaluated on images of
32×32 size in the CIFAR-10 dataset. To show RAMMER’s
performance on larger images, we also evaluate these two
models on the ImageNet dataset with the same model hyper-
parameters in their original papers [49, 54]. Specifically,
ResNeXt on ImageNet uses 101 layers with cardinality of
64 and bottleneck width of 4d; and for NASNet, the num-
ber of repeated cells is 4 and the number of filters is 1056.
Figure 13 shows the end-to-end model inference time. From
the results, we observe that using larger input size has little
impacts on RAMMER’s performance gain. For example, us-
ing ImageNet, RAMMER can still outperform TF by 18.91×,
TVM by 4.96×, and even TF-TRT by 2.06× on ResNeXt.
For the NASNet model, RAMMER can also get 6.99×, 1.33×
and 2.34× performance gains compared with TF, TVM and
TF-TRT respectively. The significant performance improve-
ment is mainly because that the model structure for larger
dataset usually have more inter-operator parallelism that can
be better leveraged by RAMMER’s optimization. For example,
the cardinality for ResNeXt is increased from 16 to 64 when
replacing the dataset from CIFAR-10 to ImageNet.

Note that in the above evaluations, RAMMERBASE can
already get a comparable or even better performance than
compilers like TF-XLA and TVM. Thus, we will use RAM-
MERBASE as the baseline of the state-of-the-art compiler and
TF-TRT as the state-of-the-art DNN inference library to eval-
uate the benefits of RAMMER in the rest of the evaluations.
RAMMERBASE can also help remove the side effects caused
by different implementations in the performance comparison.

5.2.2 GPU Utilization

RAMMER’s scheduling enables rTasks from different opera-

 0
 50

 100
 150
 200
 350
 400

1-STM

2-STM

4-STM

1-STM

2-STM

4-STM

1-STM

2-STM

4-STM

1-STM

2-STM

4-STM

1-STM

2-STM

4-STM

1-STM

2-STM

4-STM

T
im

e
(m

s)

Kernel time
Overhead

23 23 23 6 6 6 1 1 1 21 21 21

59 59 58
25 25 25

Seq2SeqLSTMDeepSpeech2AlexNetNASNetResNeXt

Figure 15: TF performance with different stream(STM) num-
ber. (Note: The number atop a bar indicates kernel time.)

tors to execute alongside each other to achieve better GPU
utilization. We evaluate the utilization improvement by RAM-
MER through comparing it with both TF, TF-TRT and RAM-
MERBASE. Figure 14 shows the average utilization for the
6 DNN models (with batch size of 1) through their execu-
tion time. The average GPU utilization only accounts for
kernel execution, excluding other stages like operator emit-
ting. Specifically, we use the metric SM-efficiency provided
by NVIDIA profiler nvprof [6] to measure the utilization,
which calculates the percentage of time when at least one
warp is active on a multiprocessor. Compared to TF and TF-
TRT, RAMMER can improve GPU utilization by 4.32× and
2.45× on average respectively across different models. This
improvement comes from both the lower runtime scheduling
overhead and the capability to co-schedule operators in RAM-
MER. Through comparing RAMMER with highly optimized
RAMMERBASE, which uses the same set of kernels, our evalu-
ation shows that RAMMER’s scheduling by itself can improve
the utilization by 1.61× on average, and up to 2.39× for the
LSTM-TC model.

As mentioned in §2, modern GPUs support the multi-
streaming mechanism to increase utilization through con-
currently scheduling independent kernels. We evaluate the
efficiency of multi-streaming by increasing the stream num-
bers in TF. Figure 15 shows both the end-to-end execution
time and the kernel time when using stream number of 1, 2,
and 4 for each model. We observe that using more streams can
harm the end-to-end performance, a phenomenon observed
by others [45]. For example, using 4 streams increases the
end-to-end time by 2.72× on average compared with using
a single stream. Moreover, the kernel time in each model
only sees very small reduction after enabling multi-streaming,
which implies most kernels are still sequentially executed,
thus providing little improvement on the GPU utilization.
The major reason is because multi-streaming introduces even
higher operator scheduling overhead, as shown in Figure 15.

5.2.3 Scheduling Overhead

The techniques proposed by RAMMER can effectively reduce
scheduling overhead. To verify this, we evaluate the run-time

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 891

 0
 20
 40
 60
 80

 100
 120
 140
 160

T
F

T
R

T
R

B
R T

F
T

R
T

R
B

R T
F

T
R

T
R

B
R T

F
T

R
T

R
B

R T
F

T
R

T
R

B
R T

F
T

R
T

R
B

R

T
im

e
(m

s) Kernel time
Overhead

49
%

 6
%

 7
%

 3
% 64

%
29

%
21

%
14

%

38
%

48
%

 2
%

 2
%

56
%

32
%

20
%

10
%

59
%

26
% 24

%
 8

%

65
%

48
%

36
%

25
%

Seq2SeqLSTMDeepSpeech2AlexNetNASNetResNeXt

Figure 16: GPU scheduling overhead on different models.
(The number atop a bar indicates the overhead in percent-
age.) TF: TensorFlow, TRT: TF-TRT, RB: RAMMERBASE,
R: RAMMER

 0

 10

 20

 30

BS1 BS4

T
im

e
(m

s)

ResNeXt

 0
 20
 40
 60
 80

BS1 BS4
LSTM

RammerBase-fast
Rammer-fast

RammerBase-select
Rammer-select

Figure 17: Performance with different kernel sets and batch
sizes(BS).

scheduling overhead by comparing RAMMER with both TF,
TF-TRT and RAMMERBASE. Figure 16 shows the total ker-
nel time and the scheduling overhead (i.e., the time not spent
on actual computation) for each model. Specifically, com-
pared with TF, RAMMERBASE can reduce the scheduling
time from an average of 32.29 milliseconds to only 2.27 mil-
liseconds (overhead percentage from 55.41% to 18.43%) over
all models. Even compared with TF-TRT, RAMMERBASE
can reduce the average scheduling overhead from 31.38% to
18.43%. RAMMERBASE achieves this reduction by optimiz-
ing the scheduling execution code path and leveraging opera-
tor fusion to reduce kernel launches. The significant reduction
demonstrates the heavy overhead of operator scheduling in
existing DNN frameworks. Compared with RAMMERBASE,
RAMMER can further reduce the average overhead from 2.27
milliseconds to 0.37 milliseconds, a 6.14× reduction. This
significant reduction is due to static compile-time operator
scheduling, i.e. packing operators into rProgram so that sev-
eral operators can be executed by a single GPU kernel launch.

5.2.4 Interplay of Intra and Inter Operator Scheduling

RAMMER enables scheduling policies to optimize the inter-
play of intra and inter operator scheduling, instead of just
focusing on making individual operators fast. This is im-
plemented through selecting appropriate rKernel for each
rOperator, as introduced in §3.3. We evaluate the effect of
such scheduling by using two sets of kernels: the fastest ker-

Wave 1

Conv
rTask: 64
Time: 4.9 us Pool

rTask: 128
Time: 6.3 us

STEM-Conv
rTask: 64
Time: 109 us

STEM-Conv
rTask: 64
Time: 109 us

BN & Relu
rTask: 128
Time: 7.9 us BN & Relu

rTask: 128
Time: 7.9 us

BN & Relu
rTask: 128
Time: 7.9 us

Pool
rTask: 128
Time: 6.3 us

Wave 2 Wave 3

Figure 18: An irregular DFG generated by NASBench

nels only for each individual operator, and the kernels selected
by RAMMER’s scheduling policy. Figure 17 shows the per-
formance of RAMMER and RAMMERBASE with these two
kernel sets on two representative CNN and RNN models, i.e.,
ResNeXt and LSTM-TC. First, no matter which set of ker-
nels is used, RAMMER can always improve the performance
significantly. For example, if RAMMER uses the same fastest
kernels (i.e., the RAMMER-fast) as used in RAMMERBASE
(i.e., RAMMERBASE-fast), it can improve the performance
by 2.89× on average. If more rKernels are available for a
given rOperator and RAMMER can select kernels based on
its policy (i.e., the RAMMER-select), it can further improve
the end-to-end performance by 1.44× on average, and up
to 2.28× compared with RAMMER-fast, even though the se-
lected kernels may be not the fastest in isolation. In fact, if we
use these kernels in RAMMERBASE (i.e., the RAMMERBASE-
select), its performance will drop by 1.84× on average.

We further perform detailed analysis of the kernels used in
LSTM-TC model with batch size of 4. For example, for the
Matmul operator, the fastest kernel uses 1,024 rTasks to get
the optimal execution time of 4.28 microseconds; while the se-
lected kernel by RAMMER only consists of 16 rTasks and gets
a slower execution time of 7.46 microseconds when launched
alone. However, RAMMER chooses this kernel to trade a
slower individual kernel (by reducing intra-operator paral-
lelism) for a better overall performance (through increasing
the inter-operator parallelism), thanks to the holistic schedul-
ing capability of RAMMER.

5.2.5 Fine-grained Synchronization

As a synchronization mechanism, barrier-rTask provides
some extra optimization spaces for the DFGs with irregu-
lar structure, which is common in the models generated by
neural architecture search (NAS) [54]. To highlight such extra
benefit, we leverage NASBench [50], a state-of-the-art NAS
benchmark, to randomly generate 5,000 modules, where each
module is a small DFG that consists of up to 9 operators
and 7 edges. We first compare the end-to-end performance of
RAMMER and RAMMERBASE on all these modules, which
shows RAMMER can improve the performance by 1.28× on
average, and up to 3.40× than RAMMERBASE. Among all
these modules, our measurement shows that 28.3% of them
has obvious irregular structures, e.g., heterogeneous operators

892 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0
 40
 80

 120
 160
 200

ResNeXt

T
im

e
(m

s)

 0
 5

 10
 15
 20
 25

NASNet
 0
 2
 4
 6
 8

 10

AlexNet
 0

 20
 40
 60
 80

 100
 120

DeepSpeech2
 0

 100
 200
 300
 400
 500
 600

LSTM
 0

 50

 100

 150

Seq2Seq

TF TVM RammerBase RammerBaseK Rammer

Figure 19: End-to-end model inference time with batch size of 1 on AMD MI50 GPU.

in a wave decided by our policy (Algorithm 1). For these
modules, we compare the end-to-end performance of using
our barrier-rTask implementation and a global barrier. The
results show that using the barrier-rTask can provide extra
performance speedup of 1.11× on average and up to 1.89×.
Figure 18 illustrates one of such modules, where the execu-
tion time and rTask number in each operator are also listed.
For such a DFG, our barrier-rTask provides a possibility to
overlap the execution of operators from different waves (e.g.,
the two STEM-Conv operators from wave 1 and 2) through
removing the global barriers between waves and inserting
fine-grained rTask-level synchronizations.

5.3 Evaluation on Other Accelerators
5.3.1 End-to-end Performance on ROCm GPUs

We evaluate the efficiency of RAMMER on AMD ROCm
GPUs by comparing it with TF, TVM, and RAMMERBASE.
TF-XLA is not included because it cannot be successfully
enabled on AMD GPUs in our experiments, and TensorRT
is not included because it is proprietary and is exclusive for
NVIDIA. Figure 19 shows the end-to-end performance of
the 6 benchmarks with batch size of 1. Compared with TF,
RAMMER can outperform it by 13.95× on average, and up to
41.14× for the LSTM-TC model. Compared to TVM, RAM-
MER can improve the performance by 5.36× on average, and
up to 7.57×. Note that we fail to make the TVM auto tuning
feature works on ROCm GPUs, so TVM just uses its default
kernels in this experiment. Compared with RAMMERBASE,
we can see that the proposed scheduling of RAMMER’s can
bring average of 2.19× and up to 4.12× speedup. Finally,
RAMMERBASEK in the figures is exactly the same as RAM-
MERBASE, except that it uses kernels from RAMMER. Notice
that RAMMER might not always choose the fastest kernel
implementations for the rOperators. Though there are little
performance change for most models, for the ResNeXt model
there is a 3.02× performance drop. This demonstrates the im-
portance of the interplay of scheduling and kernel selection.

5.3.2 End-to-end Performance on Graphcore IPU

We also conduct a preliminary evaluation of RAMMER on a
Graphcore IPU. In this experiment, we choose only the three

 0
 0.5

 4
 4.5

 5
 5.5

DeepSpeech2 LSTM Seq2Seq

T
im

e
(m

s) RammerBase
Rammer

Figure 20: End-to-end model inference time with batch size
of 1 on Graphcore IPU.

 0
 100
 200
 300
 400
 500

T
im

e
(m

s)
TF
TF-XLA
RammerBase
Rammer

Figure 21: End-to-end model training time of LSTM-TC with
batch size of 256 on NVIDIA V100 GPU. Note that TVM and
TF-TRT do not support training, hence the data is missing.

RNN benchmarks, again, because it takes effort implement-
ing efficient rOperators to support other models. Currently,
RAMMER only supports a single IPU device. We leave the
multi-IPU support of RAMMER to future work. For the three
RNN models, due to the limited memory available on IPU
(256 KB on each tile), we configure the layers of these mod-
els to 4 in order to fit in a single IPU. Figure 20 shows the
end-to-end performance of RAMMER on these models with
batch size of 1. It shows that RAMMER’s preliminary imple-
mentation can bring up to 5.37× performance improvement
compared with RAMMERBASE, which demonstrates the ap-
plicability and effectiveness of the abstractions of RAMMER
on new accelerator architectures.

6 Discussion

Having shown the advantages, we discuss some RAMMER’s
limitations and future work in this section.

Performance gain on large batch sizes. RAMMER’s ben-
efits are more significant when the intra-operator parallelism

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 893

is insufficient to saturate hardware. This is the case when
the input batch size is small, often found in online DNN in-
ference. Moreover, our preliminary experiment shows that
this is also the case for some model training workloads with
large batch sizes (e.g., 256), such as the LSTM-TC model.
Figure 21 shows the training performance of LSTM-TC with
batch size of 256. As it shows, with holistic optimizations on
both intra- and inter-operator parallelism, RAMMER improves
the performance by 2.28× than our baseline implementation
RAMMERBASE and 2.36× than TF-XLA. We will leave a
more detailed analysis and further optimizations on model
training with large batch sizes as our future work.

Dynamic graph. Currently, RAMMER only supports static
graph. For DFGs with dynamic control flow [51], RAMMER
can compile each of the static sub-graphs, e.g., a branch of
conditionals or a body of loops, into individual rPrograms.
We leave this implementation to our future work.

Inter-job scheduling. RAMMER focuses on optimizing a
single deep learning job and is orthogonal to inter-job schedul-
ing, e.g., through scheduling multiple models in a batch or
precisely controlling each job’s hardware resource with vDe-
vice. Nevertheless, it is an interesting topic to explore the
possibility to co-schedule rTasks not only from different op-
erators, but from different jobs within an accelerator.

7 Related Work

DNN compiler optimization can be generally divided into two
classes based on its two-layered representations. DFG-level
optimizations, such as operator fusion, are exploited in many
DNN frameworks and compilers, e.g., TensorFlow [18], Py-
Torch [15], TVM [23], XLA [17], etc. TASO [34] proposes an
automatic graph substitutions approach to optimize the DFG.
On the operator-level, recent work has leveraged different ap-
proaches to tune and generate efficient hardware-specific op-
erator code, e.g., AutoTVM [24], Tensor comprehension [47],
FlexTensor [53], Tiramisu [21], Halide [43], etc. RAMMER
is compatible with all these optimizations through taking an
optimized DFG as input and generating efficient rKernels
with those kernel generators.

DNN inference and its optimization have attracted a
lot of recent attention. DeepCPU [52], BatchMaker [27],
GRNN [32], and NeoCPU [40] optimize the inference for
RNN or CNN specific models on either CPU or GPUs. Jain
et al. [33] proposes to leverage both temporal and spatial
multiplexing for multiple inference jobs to improve the GPU
utilization. RAMMER differentiates with these works in two
aspects: 1) RAMMER can apply to general DNN models and
accelerators; and 2) more than just compiler optimizations,
RAMMER provides a new abstraction and a larger optimiza-
tion space for DNN computation. Astra [45] exploits the

predictability of DNN to perform online optimization for
DNN training, while RAMMER leverages the same property
to reduce the individual rTask scheduling overhead. There
are also many inference systems proposed to optimize the
overall throughout under the guaranteed query latency, e.g.,
Nexus [44], PRETZEL [38], Clipper [25], TF-serving [42],
etc. RAMMER instead focuses on optimizing a single model
and is orthogonal to these works.

Some other work from the GPU community has proposed
software-based schedulers within a GPU to schedule general
workload. For example, Juggler [22] proposes a framework
to dynamically execute a job represented as a DAG of tasks.
Wu et al. [48] proposes a software approach to control the job
locality on SMs. However, driven by the property of DNN
workload, RAMMER proposes a new computation represen-
tation with rTask and rOperator; and adopts a compile-time
scheduling approach to avoid runtime overhead systemically.

8 Conclusion

DNN computation suffers from unnecessary overheads due to
the fundamental limitations of existing deep learning frame-
works, which adopt a two-layer scheduling design that man-
ages the inter-operator scheduling in the framework and del-
egates intra-operator scheduling to the hardware accelerator.
RAMMER addresses this issue with a holistic compiler so-
lution that (1) provides an rTask-operator abstraction that
exposes the fine-grained intra-operator parallelism. (2) vir-
tualizes the modern accelerator with parallel execution units
to expose the hardware’s fine-grained scheduling capabil-
ity. (3) leverages the predictability of DNN computation to
transform run-time scheduling into a problem of generating
compile-time rTask execution plans. Our evaluations show
that RAMMER can achieve significant improvements com-
pared to native deep learning frameworks, compilation frame-
works and even vendor-specific inference engine on GPUs.
This positions RAMMER as a new enhancement to the existing
ecosystem of DNN compiler infrastructure.

Acknowledgments

We thank anonymous reviewers and our shepherd, Prof.
Jinyang Li, for their extensive suggestions. We thank Jim
Jernigan and Kendall Martin from the Microsoft Grand Cen-
tral Resources team for the support of GPUs. Fan Yang thanks
the late Pearl, his beloved cat, for her faithful companion dur-
ing writing this paper. This work was partially supported
by the National Natural Science Foundation of China under
Grant No. 61972004.

894 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] AMD ROCm Platform. https://github.com/
RadeonOpenCompute/ROCm.

[2] CIFAR-10 dataset. https://www.cs.toronto.edu/
~kriz/cifar.html.

[3] Cooperative Groups. https://devblogs.nvidia.
com/cooperative-groups/.

[4] CUDA Driver API. http://docs.nvidia.com/cuda/
cuda-driver-api.

[5] CUDA NVCC. https://docs.nvidia.com/cuda/
cuda-compiler-driver-nvcc/.

[6] CUDA nvprof. https://docs.nvidia.com/cuda/
profiler-users-guide/.

[7] Depthwise separable 2D convolution. https:
//www.tensorflow.org/api_docs/python/tf/
keras/layers/SeparableConv2D.

[8] HIP Programming Guide. https://rocmdocs.amd.
com/en/latest/Programming_Guides/HIP-GUIDE.
html.

[9] Intel MKL-DNN. https://github.com/
oneapi-src/oneDNN.

[10] IPU PROGRAMMER’S GUIDE. https://www.
graphcore.ai/docs/ipu-programmers-guide.

[11] LibriSpeech ASR corpus . http://www.openslr.
org/12/.

[12] NVIDIA cuDNN. https://developer.nvidia.com/
cudnn.

[13] NVIDIA TensorRT. https://developer.nvidia.
com/tensorrt.

[14] ONNX. https://onnx.ai/.

[15] PyTorch. https://pytorch.org/.

[16] TorchScript. https://pytorch.org/docs/stable/
jit.html.

[17] XLA. https://www.tensorflow.org/xla.

[18] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: A System for

Large-Scale Machine Learning. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 16), pages 265–283, GA, 2016. USENIX Associ-
ation.

[19] Dario Amodei and Sundaram Ananthanarayanan et al.
Deep speech 2 : End-to-end speech recognition in en-
glish and mandarin. In Proceedings of The 33rd Inter-
national Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pages
173–182, New York, New York, USA, 20–22 Jun 2016.
PMLR.

[20] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces.
CreateSpace Independent Publishing Platform, North
Charleston, SC, USA, 2018.

[21] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane,
Emanuele Del Sozzo, Abdurrahman Akkas, Yunming
Zhang, Patricia Suriana, Shoaib Kamil, and Saman Ama-
rasinghe. Tiramisu: A polyhedral compiler for express-
ing fast and portable code. In Proceedings of the 2019
IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO 2019, page 193–205. IEEE
Press, 2019.

[22] Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter,
and Laxmi N. Bhuyan. Juggler: A dependence-aware
task-based execution framework for gpus. In Proceed-
ings of the 23rd ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’18,
page 54–67, New York, NY, USA, 2018. Association
for Computing Machinery.

[23] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An automated end-
to-end optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, Carlsbad,
CA, 2018. USENIX Association.

[24] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang,
Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. Learning to optimize tensor programs.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 3389–
3400. Curran Associates, Inc., 2018.

[25] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J.
Franklin, Joseph E. Gonzalez, and Ion Stoica. Clipper:
A low-latency online prediction serving system. In 14th
USENIX Symposium on Networked Systems Design and

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 895

https://github.com/RadeonOpenCompute/ROCm
https://github.com/RadeonOpenCompute/ROCm
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://devblogs.nvidia.com/cooperative-groups/
https://devblogs.nvidia.com/cooperative-groups/
http://docs.nvidia.com/cuda/cuda-driver-api
http://docs.nvidia.com/cuda/cuda-driver-api
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
https://docs.nvidia.com/cuda/profiler-users-guide/
https://docs.nvidia.com/cuda/profiler-users-guide/
https://www.tensorflow.org/api_docs/python/tf/keras/layers/SeparableConv2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/SeparableConv2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/SeparableConv2D
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://github.com/oneapi-src/oneDNN
https://github.com/oneapi-src/oneDNN
https://www.graphcore.ai/docs/ipu-programmers-guide
https://www.graphcore.ai/docs/ipu-programmers-guide
http://www.openslr.org/12/
http://www.openslr.org/12/
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://onnx.ai/
https://pytorch.org/
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/docs/stable/jit.html
https://www.tensorflow.org/xla

Implementation (NSDI 17), pages 613–627, Boston, MA,
2017. USENIX Association.

[26] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009.

[27] Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li. Low
latency rnn inference with cellular batching. In Proceed-
ings of the Thirteenth EuroSys Conference (EuroSys 18),
2018.

[28] Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and
Huazhong Yang. [dl] a survey of fpga-based neural
network inference accelerators. ACM Trans. Reconfig-
urable Technol. Syst., 12(1), March 2019.

[29] K. Gupta, J. A. Stuart, and J. D. Owens. A study of per-
sistent threads style gpu programming for gpgpu work-
loads. In 2012 Innovative Parallel Computing (InPar),
pages 1–14, 2012.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[31] Sepp Hochreiter and Jürgen Schmidhuber. Long
short-term memory. Neural Comput., 9(8):1735–1780,
November 1997.

[32] Connor Holmes, Daniel Mawhirter, Yuxiong He, Feng
Yan, and Bo Wu. Grnn: Low-latency and scalable rnn
inference on gpus. In Proceedings of the Fourteenth
EuroSys Conference 2019, page 41. ACM, 2019.

[33] Paras Jain, Xiangxi Mo, Ajay Jain, Harikaran Subbaraj,
Rehan Sohail Durrani, Alexey Tumanov, Joseph Gonza-
lez, and Ion Stoica. Dynamic space-time scheduling for
gpu inference. CoRR, abs/1901.00041, Dec 2018.

[34] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. Taso: Optimizing
deep learning computation with automatic generation
of graph substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 47–62, New York, NY, USA, 2019. Association
for Computing Machinery.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[36] Junjie Lai and Andre Seznec. Performance upper bound
analysis and optimization of sgemm on fermi and ke-
pler gpus. In Proceedings of the 2013 IEEE/ACM In-
ternational Symposium on Code Generation and Opti-
mization (CGO), CGO ’13, USA, 2013. IEEE Computer
Society.

[37] Steven M. LaValle. Planning Algorithms. Cambridge
University Press, USA, 2006.

[38] Yunseong Lee, Alberto Scolari, Byung-Gon Chun,
Marco Domenico Santambrogio, Markus Weimer, and
Matteo Interlandi. PRETZEL: Opening the black box
of machine learning prediction serving systems. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 611–626, Carlsbad,
CA, October 2018. USENIX Association.

[39] Joseph Leung, Laurie Kelly, and James H. Anderson.
Handbook of Scheduling: Algorithms, Models, and Per-
formance Analysis. CRC Press, Inc., USA, 2004.

[40] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma,
and Yida Wang. Optimizing cnn model inference on
cpus. In Proceedings of the 2019 USENIX Conference
on Usenix Annual Technical Conference, USENIX ATC
’19, page 1025–1040, USA, 2019. USENIX Association.

[41] Rajib Nath, Stanimire Tomov, and Jack Dongarra. An
improved magma gemm for fermi graphics processing
units. International Journal of High Performance Com-
puting Applications, 24(4):511–515, November 2010.

[42] Christopher Olston, Fangwei Li, Jeremiah Harmsen, Jor-
dan Soyke, Kiril Gorovoy, Li Lao, Noah Fiedel, Sukriti
Ramesh, and Vinu Rajashekhar. Tensorflow-serving:
Flexible, high-performance ml serving. In Workshop on
ML Systems at NIPS 2017, 2017.

[43] Jonathan Ragan-Kelley, Connelly Barnes, Andrew
Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. Halide: A language and compiler for optimiz-
ing parallelism, locality, and recomputation in image
processing pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’13, pages 519–530,
New York, NY, USA, 2013. ACM.

[44] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,
and Ravi Sundaram. Nexus: A gpu cluster engine for
accelerating dnn-based video analysis. In Proceedings
of the 27th ACM Symposium on Operating Systems Prin-
ciples, SOSP ’19, page 322–337, New York, NY, USA,
2019. Association for Computing Machinery.

896 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[45] Muthian Sivathanu, Tapan Chugh, Sanjay S. Singapu-
ram, and Lidong Zhou. Astra: Exploiting predictability
to optimize deep learning. In Proceedings of the Twenty-
Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS ’19, page 909–923, New York, NY, USA,
2019. Association for Computing Machinery.

[46] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence
to sequence learning with neural networks. In Proceed-
ings of the 27th International Conference on Neural
Information Processing Systems, NIPS’14, pages 3104–
3112, Cambridge, MA, USA, 2014. MIT Press.

[47] Nicolas Vasilache, Oleksandr Zinenko, Theodoros
Theodoridis, Priya Goyal, Zachary DeVito, William S.
Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. CoRR,
abs/1802.04730, 2018.

[48] Bo Wu, Guoyang Chen, Dong Li, Xipeng Shen, and
Jeffrey Vetter. Enabling and exploiting flexible task
assignment on gpu through sm-centric program trans-
formations. In Proceedings of the 29th ACM on Interna-
tional Conference on Supercomputing, ICS ’15, pages
119–130, New York, NY, USA, 2015. ACM.

[49] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen
Tu, and Kaiming He. Aggregated residual transfor-
mations for deep neural networks. arXiv preprint
arXiv:1611.05431, 2016.

[50] Chris Ying, Aaron Klein, Eric Christiansen, Esteban
Real, Kevin Murphy, and Frank Hutter. NAS-bench-
101: Towards reproducible neural architecture search.

In Kamalika Chaudhuri and Ruslan Salakhutdinov, edi-
tors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 7105–7114, Long
Beach, California, USA, 09–15 Jun 2019. PMLR.

[51] Yuan Yu, Martín Abadi, Paul Barham, Eugene Brevdo,
Mike Burrows, Andy Davis, Jeff Dean, Sanjay Ghe-
mawat, Tim Harley, Peter Hawkins, Michael Isard, Man-
junath Kudlur, Rajat Monga, Derek Murray, and Xiao-
qiang Zheng. Dynamic control flow in large-scale ma-
chine learning. In Proceedings of the Thirteenth EuroSys
Conference, EuroSys ’18, New York, NY, USA, 2018.
Association for Computing Machinery.

[52] Minjia Zhang, Samyam Rajbhandari, Wenhan Wang,
and Yuxiong He. Deepcpu: Serving rnn-based deep
learning models 10x faster. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 951–
965, Boston, MA, July 2018. USENIX Association.

[53] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and
Kaiwen Sheng. Flextensor: An automatic schedule ex-
ploration and optimization framework for tensor compu-
tation on heterogeneous system. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 859–873, New York, NY,
USA, 2020. Association for Computing Machinery.

[54] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V Le. Learning transferable architectures for
scalable image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 8697–8710, 2018.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 897

A Tensor Compiler for Unified Machine Learning Prediction Serving

Supun Nakandalac,∗, Karla Saurm, Gyeong-In Yus,∗, Konstantinos Karanasosm,
Carlo Curinom, Markus Weimerm, Matteo Interlandim

mMicrosoft, cUC San Diego, sSeoul National University
{<name>.<surname>}@microsoft.com,snakanda@eng.ucsd.edu, gyeongin@snu.ac.kr

Abstract
Machine Learning (ML) adoption in the enterprise requires

simpler and more efficient software infrastructure—the be-
spoke solutions typical in large web companies are simply
untenable. Model scoring, the process of obtaining predic-
tions from a trained model over new data, is a primary con-
tributor to infrastructure complexity and cost as models are
trained once but used many times. In this paper we propose
HUMMINGBIRD, a novel approach to model scoring, which
compiles featurization operators and traditional ML models
(e.g., decision trees) into a small set of tensor operations. This
approach inherently reduces infrastructure complexity and
directly leverages existing investments in Neural Network
compilers and runtimes to generate efficient computations
for both CPU and hardware accelerators. Our performance
results are intriguing: despite replacing imperative computa-
tions (e.g., tree traversals) with tensor computation abstrac-
tions, HUMMINGBIRD is competitive and often outperforms
hand-crafted kernels on micro-benchmarks on both CPU and
GPU, while enabling seamless end-to-end acceleration of ML
pipelines. We have released HUMMINGBIRD as open source.

1 Introduction
Enterprises increasingly look to Machine Learning (ML)
to help solve business challenges that escape imperative
programming and analytical querying [35]—examples in-
clude predictive maintenance, customer churn prediction, and
supply-chain optimizations [46]. To do so, they typically turn
to technologies now broadly referred to as “traditional ML”,
to contrast them with Deep Neural Networks (DNNs). A
recent analysis by Amazon Web Services found that 50 to
95% of all ML applications in an organization are based on
traditional ML [38]. An analysis of 6M notebooks in public
GitHub repositories [64] paints a similar picture: NumPy [69],
Matplotlib [11], Pandas [7], and scikit-learn [62] are the four
most used libraries—all four provide functions for traditional
ML. As a point of comparison with DNN frameworks, scikit-
learn is used about 5 times more than PyTorch [61] and
∗The work was done while the author was at Microsoft.

TensorFlow [13] combined, and growing faster than both.
Acknowledging this trend, traditional ML capabilities have
been recently added to DNN frameworks, such as the ONNX-
ML [4] flavor in ONNX [25] and TensorFlow’s TFX [39].

When it comes to owning and operating ML solutions, en-
terprises differ from early adopters in their focus on long-term
costs of ownership and amortized return on investments [68].
As such, enterprises are highly sensitive to: (1) complexity,
(2) performance, and (3) overall operational efficiency of their
software infrastructure [14]. In this work we focus on model
scoring (i.e., the process of getting a prediction from a trained
model by presenting it with new data), as it is a key driving fac-
tor in each of these regards. First, each model is trained once
but used multiple times for scoring in a variety of environ-
ments, thus scoring dominates infrastructure complexity for
deployment, maintainability, and monitoring. Second, model
scoring is often in the critical path of interactive and analytical
enterprise applications, hence its performance (in terms of la-
tency and throughput) is an important concern for enterprises.
Finally, model scoring is responsible for 45-65% of the total
cost of ownership of data science solutions [38].

Predictive Pipelines. The output of the iterative process of
designing and training traditional ML models is not just a
model but a predictive pipeline: a Directed Acyclic Graph
(DAG) of operators. Such pipelines are typically comprised
of up to tens of operators out of a set of hundreds [64] that
fall into two main categories: (1) featurizers, which could
be either stateless imperative code (e.g., string tokenization)
or data transformations fit to the data (e.g., normalization);
and (2) models, commonly decision tree ensembles or (gen-
eralized) linear models, fit to the data. Note that the whole
pipeline is required to perform a prediction.

A Missing Abstraction. Today’s featurizers and model im-
plementations are not expressed in a shared logical abstrac-
tion, but rather in an ad-hoc fashion using programming
languages such as R, Python, Java, C++, or C#. This hints to
the core problem with today’s approaches to model scoring:
the combinatorial explosion of supporting many operators

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 899

(and frameworks) across multiple target environments. Fig-
ure 1 (top) highlights this visually by showing how existing
solutions lead to an O(N×M) explosion to support N oper-
ators from various ML frameworks against M deployment
environments (e.g., how to run a scikit-learn model on an
embedded device?). Furthermore, [64] shows that the number
of libraries used in data science (a metric correlated to N)
increased by roughly 4× in the last 2 years. Our expectation
is that M is also destined to grow as ML is applied more
widely across a broad range of enterprise applications and
hardware (e.g., [1, 15, 30, 48, 49]). From the vantage point of
implementing runtimes for model scoring, this is a daunting
proposition. We argue that any brute-force approach directly
tackling all combinations would dilute engineering focus lead-
ing to costly and less optimized solutions. In fact, today, with
very few exceptions (e.g., NVIDIA RAPIDS [3] for GPU),
traditional ML operators are only implemented for CPUs.

This state of affairs is in contrast with the DNN space,
where neural networks are authored using tensor transforma-
tions (e.g., multiplications, convolutions), providing an alge-
braic abstraction over computations. Using such abstractions
rather than imperative code not only enables evolved opti-
mizations [33, 41] but also facilitates support for diverse en-
vironments (such as mobile devices [26], web browsers [32],
and hardware accelerators [15, 48, 49]), unlocking new levels
of performance and portability.

Our Solution. To bypass this N×M explosion in implement-
ing traditional ML operators, we built HUMMINGBIRD (HB
for short). HB leverages compilation and optimization tech-
niques to translate a broad set of traditional ML operators into
a small set of K core operators, thereby reducing the cost to
O(N)+O(K×M), as shown in Figure 1 (bottom). This is
also the key intuition behind the ONNX model format [25]
and its various runtimes [6]. However, with HB we take one
further bold step: we demonstrate that this set of core opera-
tors can be reduced to tensor computations and therefore be
executed over DNN frameworks. This allows us to piggyback
on existing investments in DNN compilers, runtimes, and
specialized-hardware, and reduce the challenge of “running K
operators across M environments” for traditional ML to just
O(N) operator translations. This leads to improved perfor-
mance and portability, and reduced infrastructure complexity.

Contributions. In this paper we answer three main questions:
1. Can traditional ML operators (both linear algebra-based

such as linear models, and algorithmic ones such as de-
cision trees) be translated to tensor computations?

2. Can the resulting computations in tensor space be com-
petitive with the imperative alternatives we get as input
(e.g., traversing a tree)?

3. Can HB help in reducing software complexity and im-
proving model portability?

Concretely, we: (1) port thousands of benchmark predic-
tive pipelines to two DNN backends (PyTorch and TVM);

St
at

e
of

 th
e

ar
t

H
um

m
in

gb
ird

O(N x M)

…

(N operators, M environments)

(N operators translated to K tensor operators)

…

O(N)

O(K x M)
existing infra

Figure 1: Prediction serving complexity: state-of-the-art (top) vs.
HUMMINGBIRD (bottom).

(2) show that we can seamlessly leverage hardware acceler-
ators and deliver speedups of up to 3× against hand-crafted
GPU kernels, and up to 1200× for predictive pipelines against
state-of-the-art frameworks; and (3) qualitatively confirm im-
provements in software complexity and portability by en-
abling scikit-learn pipelines to run across CPUs and GPUs.

HB is open source under the MIT license 1, and is part
of the PyTorch ecosystem [28]. We are integrating HB with
other systems, such as the ONNX converters [58].
Organization. The remainder of the paper is organized as
follows. Section 2 provides some background, and Section 3
presents an overview of HB. Section 4 describes the compi-
lation from traditional ML to tensor computations, whereas
Section 5 discusses various optimizations. Section 6 presents
our evaluation. Section 7 is related work, then we conclude.

2 Background and Challenges
We first provide background on traditional ML and DNNs.
We then explain the challenges of compiling traditional ML
operators and predictive pipelines into tensor computations.

2.1 Traditional ML and DNNs
Traditional Predictive Pipelines. The result of the data sci-
ence workflow over traditional ML are predictive pipelines,
i.e., DAG of operators such as trained models, preprocessors,
featurizers, and missing-value imputers. The process of pre-
senting a trained predictive pipeline with new data to obtain
a prediction is referred to in literature interchangeably as:
model scoring/inference/serving, pipeline evaluation, or pre-
diction serving. We favor model scoring in our writing.

1https://github.com/microsoft/hummingbird

900 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/microsoft/hummingbird

Packaging a trained pipeline into a single artifact is com-
mon practice [36]. These artifacts are then embedded inside
host applications or containerized and deployed in the cloud to
perform model scoring [43, 63]. ML.NET [36] (.NET-based),
scikit-learn [62] (Python-based), and H2O [9] (Java-based)
are popular toolkits to generate pipelines. However, they are
primarily optimized for training. Scoring predictive pipelines
is challenging, as their operators are implemented in impera-
tive code and do not follow a shared abstraction. Supporting
every operator in all target environments requires a huge ef-
fort, which is why these frameworks have limited portability.
DNNs. Deep Neural Networks (DNNs) are a family of ML
models that are based on artificial neurons [47]. They take raw
features as input and perform a series of transformation oper-
ations. Unlike traditional ML, transformations in DNNs are
drawn from a common abstraction based on tensor operators
(e.g., generic matrix multiplication, element-wise operations).
In recent years, DNNs have been extremely successful in
vision and natural language processing tasks [45, 54]. Com-
mon frameworks used to author and train DNNs are Tensor-
Flow [13], PyTorch [61], CNTK [10], and MXNet [12]. While
these frameworks can also be used to perform model scoring,
next we discuss systems specifically designed for that.
Runtimes for DNN Model Scoring. To cater to the demand
for DNN model inference, a new class of systems has emerged.
ONNX Runtime (ORT) [5] and TVM [41] are popular exam-
ples of such systems. These capitalize on the relative simplic-
ity of neural networks: they accept a DAG of tensor opera-
tions as input, which they execute by implementing a small
set of highly optimized operator kernels on multiple hard-
wares. Focusing on just the prediction serving scenario also
enables these systems to perform additional inference-specific
optimizations, which are not applicable for training. HB is
currently compatible with all such systems.

2.2 Challenges
HB combines the strength of traditional ML pipelines on
structured data [56] with the computational and operational
simplicity of DNN runtimes for model scoring. To do so, it
relies on a simple yet key observation: once a model is trained,
it can be represented as a prediction function transforming
input features into a prediction score (e.g., 0 or 1 for binary
classification), regardless of the training algorithm used. The
same observation naturally applies to featurizers fit to the data.
Therefore, HB only needs to compile the prediction functions
(not the training logic) for each operator in a pipeline into
tensor computations and stitch them appropriately. Towards
this goal, we identify two challenges.

Challenge 1: How can we map traditional predictive
pipelines into tensor computations? Pipelines are generally
composed of operators (with predictive functions) of two
classes: algebraic (e.g., scalers or linear models) and algo-
rithmic (e.g., one-hot encoder and tree-based models). While
translating algebraic operators into tensor computations is

straightforward, the key challenge for HB is the translation
of algorithmic operators. Algorithmic operators perform arbi-
trary data accesses and control flow decisions. For example,
in a decision tree ensemble potentially every tree is different
from each other, not only with respect to the structure, but also
the decision variables and the threshold values. Conversely,
tensor operators perform bulk operations over the entire set
of input elements.

Challenge 2: How can we achieve efficient execution for
tensor-compiled traditional ML operators? The ability to
compile predictive pipelines into DAGs of tensor operations
does not imply adequate performance of the resulting DAGs.
In fact, common wisdom would suggest the opposite: even
though tensor runtimes naturally support execution on hard-
ware accelerators, tree-based methods and commonly used
data transformations are well known to be difficult to acceler-
ate [42], even using custom-developed implementations.

3 System Overview
In this section we explain our approach to overcome the chal-
lenges outlined in Section 2.2, and present HB’s architecture
and implementation details. We conclude this section by ex-
plaining assumptions and limitations.

3.1 High-level Approach
In HB, we cast algorithmic operators into tensor computa-
tions. You will notice that this transformation introduces re-
dundancies, both in terms of computation (we perform more
computations than the original traditional ML operators) and
storage (we create data structures that store more than what
we actually need). Although these redundancies might sound
counter-intuitive at first, we are able to transform the arbi-
trary data accesses and control flow of the original operators
into tensor operations that lead to efficient computations by
leveraging state-of-the-art DNN runtimes.

For a given traditional ML operator, there exist different
strategies for compiling it to tensor computations, each in-
troducing a different degree of redundancy. We discuss such
strategies for representative operators in Section 4. The opti-
mal tensor implementation to be used varies and is informed
by model characteristics (e.g., tree-structure for tree-based
models, or sparsity for linear models) and runtime statistics
(e.g., batch size of the inputs). Heuristics at the operator
level, runtime-independent optimizations at the pipeline level,
and runtime-specific optimizations at the execution level en-
able HB to further improve predictive pipelines performance
end-to-end. The dichotomy between runtime-independent and
runtime-specific optimizations allow us to both (1) apply op-
timizations unique to traditional ML and not captured by the
DNN runtimes; and (2) exploit DNN runtime optimizations
once the traditional ML is lowered into tensor computations.
Finally, HB is able to run end-to-end pipelines on the hard-
ware platforms supported by the target DNN runtimes.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 901

HB

Input: Trained Traditional
ML Pipeline

F
e

at
ur

iz
e

r
1

M
L

M
od

el
Pipeline
Parser

Optimizer
Tensor
DAG

Compiler

DNN Runtime 1

DNN Runtime 2

…

F
e

at
ur

iz
e

r
2

…

…

Figure 2: High-level architecture of HB.

3.2 System Architecture and Implementation
The high-level architecture of HB is shown in Figure 2. HB
has three main components: (1) Pipeline Parser, (2) Opti-
mizer, and (3) Tensor DAG Compiler.
Pipeline Parser. In this phase, input pipelines are parsed one
operator at a time, and each operator is wrapped into a con-
tainer object. Each operator’s container maintains (1) the
inputs and outputs of the operator, and (2) the operator signa-
ture that codifies the operator type (e.g., “scikit-learn decision
tree”). HB parser also introduces a set of extractor functions
that are used to extract the parameters of each operator (e.g.,
weights of a linear regression, thresholds of a decision tree).
Operator signatures dictate which extractor function should be
used for each operator. At startup time, extractor functions are
registered into a hash table, mapping operator signatures to
the related extractor function. HB parser is extensible, allow-
ing users to easily add new extractor functions. HB currently
supports over 40 scikit-learn operators (listed in Table 1),
as well as parsers for XGBoost [40], LightGBM [51], and
ONNX-ML [4]. At the end of the parsing phase, the input
pipeline is “logically” represented in HB as a DAG of con-
tainers storing all the information required for the successive
phases. HB parser is based on skl2onnx [31].
Optimizer. In this phase, the DAG of containers generated
in the parsing phase is traversed in topological order in two
passes. During the first traversal pass, the Optimizer extracts
the parameters of each operator via the referenced extractor
function and stores them in the container. Furthermore, since
HB supports different operator implementations based on
the extracted parameters, the Optimizer annotates the con-
tainer with the compilation strategy to be used for that spe-
cific operator (5.1). During the second pass, HB tries to apply
runtime-independent optimizations (5.2) over the DAG.
Tensor DAG Compiler. In this last phase, the DAG of
containers is again traversed in topological order and a
conversion-to-tensors function is triggered based on each op-
erator signatures. Each conversion function receives as input
the extracted parameters and generates a PyTorch’s neural
network module composed of a small set of tensor operators
(listed in Table 2). The generated module is then exported into
the target runtime format. The current version of HB supports
PyTorch/TorchScript, ONNX, and TVM output formats. The
runtime-specific optimizations are triggered at this level.
Table 2: PyTorch tensor operators used by the Tensor DAG Compiler.

matmul, add, mul, div, lt, le, eq, gt, ge, &, |, �,
�, bitwise_xor, gather, index_select, cat, reshape,
cast, abs, pow, exp, arxmax, max, sum, relu, tanh,
sigmoid, logsumexp, isnan, where

Table 1: Scikit-learn operators currently supported in HB.

Supported ML Models

LogisticRegression, SVC, NuSVC, LinearSVC, SGDClassi-
fier, LogisticRegressionCV, DecisionTreeClassifier/Regression,
RandomForestClassifier/Regression, ExtraTreesClassifier/Re-
gressor, GradientBoostingClassifier/Regression, HistGradient-
BoostingClassifier/Regressor, IsoltationForest, MLPClassifier,
BernoulliNB, GaussianNB, MultinomialNB

Supported Featurizers

SelectKBest, VarianceThreshold, SelectPercentile, PCA, Ker-
nelPCA, TruncatedSVD, FastICA, SimpleImputer, Imputer,
MissingIndicator, RobustScaler, MaxAbsScaler, MinMaxScaler,
StandardScaler, Binarizer, KBinsDiscretizer, Normalizer, Poly-
nomialFeatures, OneHotEncoder, LabelEncoder, FeatureHasher

3.3 Assumptions and Limitations
In this paper, we make a few simplifying assumptions. First,
we assume that predictive pipelines are “pure”, i.e., they do
not contain arbitrary user-defined operators. There has been
recent work [65] on compiling imperative UDFs (user-defined
functions) into relational algebra, and we plan to make use
of such techniques in HB in the future. Second, we do not
support sparse data well. We found that current support for
sparse computations on DNN runtimes is primitive and not
well optimized. We expect advances in DNN frameworks to
improve on this aspect—TACO [52] is a notable such example.
Third, although we support string operators, we currently do
not support text feature extraction (e.g., TfidfVectorizer).
The problem in this case is twofold: (1) compiling regex-
based tokenizers into tensor computations is not trivial, and
(2) representing arbitrarily long text documents in tensors
is still an open challenge. Finally, HB is currently limited
by single GPU memory execution. Given that several DNN
runtimes nowadays support distributed processing [57, 66],
we plan to investigate distributed inference as future work.

4 Compilation
HB supports compiling several algorithmic operators into ten-
sor computations. Given their popularity [64], in Section 4.1
we explain our approach for tree-based models. Section 4.2
gives a summary of other techniques that we use for both
algorithmic and arithmetic operators.

4.1 Compiling Tree-based Models
HB has three different strategies for compiling tree-based
models. Strategies differ based on the degree of redundancy
introduced. Table 3 explains the notation used in this section.
We summarize the worst-case runtime and memory footprints
of each strategy in Table 4. HB currently supports only trees
built over numerical values: support for missing and categori-
cal values is under development. For the sake of presentation,
we assume all decision nodes perform < comparisons.

902 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

𝐹! < 0.5
T

𝐹! < 2.4𝐶"

𝐹# < 2.0 𝐹$ < 5.5

𝐶# 𝐶"

𝐶"𝐶#

F
𝐼!

𝐼" 𝐼#
𝐼$

𝐿!

𝐿# 𝐿$

𝐿" 𝐿%

0.1 4.6 1.9 0.8 3.5

0 0 0 0
0 1 0 0
1 0 0 1
0 0 0 0
0 0 1 0

0.5 2.0 5.5 2.4 0 0 1 1

1 1 -1 -1 -1
1 -1 0 0 0
0 0 1 1 -1
0 0 1 -1 0

2 1 2 1 0

1 0
0 1
0 1
1 0
1 0

0 10 0 1 0 0

!
×

#

$
< ⇒

'('*				'+				',	

0 0 1 1 × ==
.(.*			.+			.,			./

0
1

⇒
0(0*

2

× ⇒

Figure 3: Compiling an example decision tree using the GEMM strategy.

Table 3: Notation used in Section 4.1

Symbol Description

N, I,L,F,C Ordered lists with all nodes, internal nodes, leaf nodes,
features, and classes, respectively.

X ∈ Rn×|F | Input records (n is the number of records).

A ∈ R|F |×|I| Ai, j =

{
1, I j evaluates Fi

0, Otherwise

B ∈ R|I| Bi = ThresholdValue(Ii)

C ∈ R|I|×|L| Ci, j =

−1, L j ∈ RightSubTree(Ii)

1, L j ∈ LeftSubTree(Ii)
0, Otherwise

D ∈ R|L| Dk = ∑

k∈L
path−−→Root

1(k == LeftChild(Parent(k)))

E ∈ R|L|×|C| Ei, j =

{
1, Li

map to−−−−→C j

0, Otherwise

Table 4: Worst-case memory and runtime analysis of different tree
compilation strategies, assuming the number of input records and
number of trees are fixed. The notation is explained in Table 3.

Strategy Memory Runtime

GEMM O(|F ||N|+ |N|2 + |C||N|) O(|F ||N|+ |N|2 + |C||N|)
TT O(|N|) O(|N|)
PTT O(2|N|) O(|N|)

Strategy 1: GEMM. We cast the evaluation of a tree as a series
of three GEneric Matrix Multiplication (GEMM) operations
interleaved by two element-wise logical operations. Given
a tree, we create five tensors which collectively capture the
tree structure: A,B,C,D, and E. A captures the relationship
between input features and internal nodes. B is set to the
threshold value of each internal node. For any leaf node and
internal node pair, C captures whether the internal node is a
parent of that internal node, and if so, whether it is in the left or
right sub-tree. D captures the count of the internal nodes in the
path from a leaf node to the tree root, for which the internal
node is the left child of its parent. Finally, E captures the
mapping between leaf nodes and the class labels. Given these
tensors, Algorithm 1 presents how we perform tree scoring
for a batch of input records X . A graphical representation of
an execution of the GEMM strategy is depicted in Figure 3.

The first GEMM is used to match each input feature with

Algorithm 1 GEMM Strategy (Notation explained in Table 3)
Input :X ∈ Rn×|F |, Input records
Output :R ∈ {0,1}n×|C|, Predicted class labels

/* Evaluate all internal nodes */

T ← GEMM(X, A) // T ∈ Rn×|I|

T ← T < B // T ∈ Rn×|I|

/* Find the leaf node which gets selected */

T ← GEMM(T, C) // T ∈ Rn×|L|

T ← T == D // T ∈ Rn×|L|

/* Map selected leaf node to class label */

R← GEMM(T, E) // R ∈ Rn×|C|

the internal node(s) using it. The following < operations is
used to evaluate all the internal decision nodes and produces
a tensor of 0s and 1s based on the false/true outcome of the
conditions. The second GEMM operation generates an encoding
for the path composed by the true internal nodes, while the
successive == operation returns the leaf node selected by
the encoded path. Finally, the third GEMM operation maps the
selected leaf node to the class label.

This strategy can be easily applied to support tree ensem-
bles and regression tasks too. For tree ensembles, we create
the above 2-dimensional tensors for each tree and batch them
together. As the number of leaf nodes and internal nodes can
vary among trees, we pick the maximum number of leaf nodes
and internal nodes for any tree as the tensor dimensions and
pad the smaller tensor slices with zeros. During scoring, we
invoke the batched variants of GEMM and logical operations
and perform a final ReduceMean operation over the batched
dimension to generate the ensemble output. For regression
tasks, we initialize E with label values.

Strategy 2: TreeTraversal (TT). In the GEMM strategy, we
incorporated a high degree of computational redundancy by
evaluating all internal nodes and leaf nodes. Here, we try to
reduce the computational redundancy by mimicking the typi-
cal tree traversal—but implemented using tensor operations.
In this strategy, the tree structure is captured by five tensors:
NL,NR,NF ,NT , and NC. We formally define these tensors in
Table 5. The same column index (last dimension) across all
tensors corresponds to the same tree node. NL and NR capture
the indices of the left and right nodes for a given node. If the
node is a leaf node, we set these to the index of the given node.
Similarly, NF and NT capture the feature index and threshold

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 903

Table 5: Additional notation used in Strategy 2: TreeTraversal

Symbol Description

NL ∈ Z|N| NLi =

{
LeftChild(Ni),Ni ∈ I
i,Otherwise

NR ∈ Z|N| NRi =

{
RightChild(Ni),Ni ∈ I
i,Otherwise

NF ∈ Z|N| NFi =

{
k,(Ni ∈ I)∧ (Ni evaluates Fk)

1,Otherwise

NT ∈ R|N| NTi =

{
ThresholdValue(Ni),Ni ∈ I
0,Otherwise

NC ∈ Z|N|×|C| NCi,k=

{
1,(Ni ∈ L)∧ (Ni

map to−−−−→Ck)

0,Otherwise

Algorithm 2 TreeTraversal Strategy (Notation in Tables 5)
Input :X ∈ Rn×|F |, Input records
Output :R ∈ {0,1}n×|C|, Predicted class labels

/* Initialize all records to point to k, with k the index
of Root node. */

TI ←{k}n // TI ∈ Zn

for i← 1 to TREE_DEPTH do
/* Find the index of the feature evaluated by the

current node. Then find its value. */
TF ←Gather(NF ,TI) // TF ∈ Zn

TV ←Gather(X ,Tf) // TV ∈ Rn

/* Find the threshold, left child and right child */
TT ←Gather(NT ,TI) // TT ∈ Rn

TL←Gather(NL,TI) // TL ∈ Zn

TR←Gather(NR,TI) // TR ∈ Zn

/* Perform logical evaluation. If true pick from TL;
else from TR. */

TI ←Where(TV < TT ,TL,TR) // I ∈ Zn

end
/* Find label for each leaf node */
R←Gather(NC,TI) // R ∈ Zn

value for each node, respectively. For leaf nodes, we set NF to
1 and NT to 0. Finally, NC captures the class label of each leaf
node. For internal nodes this can be any value; we set it to 0.

Given these tensors, Algorithm 2 presents how we perform
scoring for a batch of input records X . We use Gather and
Where operations which can be used to perform index-based
slicing and conditional value selection. We first initialize an
index tensor TI corresponding to all records in X , which points
to the root node. Using TI , we Gather the corresponding
feature indices and use them to Gather the corresponding
feature values from X . Similarly, we also Gather left node
indices, right node indices, and node thresholds. Using these
gathered tensors, we then invoke a Where operation which
checks for the tree node decisions. Based on the evaluation,
for each record the Where operator either returns the left child
index or right child index. To perform full tree scoring, the
above steps have to be repeated until we reach a leaf node
for all records in X . We exploit the fact that (1) TREE_DEPTH
is a known property of the input model at compilation time,

and (2) all leaf nodes are at a depth ≤ TREE_DEPTH, to iterate
for that fixed number of iterations to ensure that all records
have found their corresponding leaf node. Tensors are created
in such a way that if one of the indices reaches a leaf node
before running for TREE_DEPTH iterations, the same class
label will keep getting selected. At compile time, we unroll
all iterations and remove the for loop to improve efficiency.
For ensembles, we create tensors for each tree and batch them
together. However, between trees the number of nodes and
dimensions may differ, so we use the maximum node count
for any tree as the dimension and pad the remaining elements.

Strategy 3: PerfectTreeTraversal (PTT). Similar to the pre-
vious one, this strategy also mimics the tree traversal. How-
ever, here we assume the tree is a perfect binary tree. In a
perfect binary tree, all internal nodes have exactly two chil-
dren and all leaf nodes are at the same depth level. Assume
we are given a non-perfect binary tree with a TREE_DEPTH of
D, and Lk is a leaf node which is at a depth of Dk < D. To
push Lk to a depth D, we replace Lk with a perfect sub-tree of
depth D−Dk and map all the leaf nodes of the sub-tree to Ck:
the label of the original leaf node. The decision nodes in the
introduced sub-tree are free to perform arbitrary comparisons
as the outcome is the same along any path. By pushing all
leaf nodes at depth < D to a depth of D, we transform the
original tree to a perfect tree with the same functionality.

Table 6: Additional notation used in Strategy 3

Symbol Description

I′ ∈ Z2D−1
,L′ ∈ Z2D

Internal and leaf nodes of the per-
fect tree ordered by level.

N′F ∈ Z|I′| N′Fi
= k ⇐⇒ I′i evaluates Fk

N′T ∈ R|I′| N′Ti
= ThresholdValue(I′i)

N′C ∈ Z|L′|×|C| N′Ci,k
=

{
1,Ni

map to−−−−→Ck

0,Otherwise

Working on perfect trees enables us to get rid of NL and
NR tensors as we can now calculate them analytically, which
also reduces memory lookup overheads during scoring. Thus
we create only three tensors to capture the tree structure:
N′F ,N

′
T , and N′C (Table 6). They capture the same information

as NF ,NT ,NC but have different dimensions and have a strict
condition on the node order. Both N′F and N′T have 2D−1 ele-
ments and the values correspond to internal nodes generated
by level order tree traversal. N′C has 2D elements with each
corresponding to an actual leaf node from left to right order.

Given these tensors, in Algorithm 3 we present how PTT
works. From a high-level point of view, it is very similar to
the TT strategy with only a few changes. First, the index
tensor TI is initialized to all ones as the root node is always
the first node. Second, we get rid of finding the left index and
right index of a node and using them in the Where operation.
Instead, the Where operation returns 0 for true case and 1 for

904 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 3 PTT Strategy (Notation in Tables 6)
Input :X ∈ Rn×|F |, Input records
Output :R ∈ {0,1}n×|C|, Predicted class labels

/* Initialize all records to point to the root node. */
TI ←{1}n // TI ∈ Zn

for i← 1 to TREE_DEPTH do
/* Find the index of the feature evaluated by the

current node. Then find its value. */
TF ←Gather(NF ,TI) // TF ∈ Zn

TV ←Gather(X ,Tf) // TV ∈ Rn

/* Find the threshold */
TT ←Gather(NT ,TI) // TT ∈ Rn

/* Perform logical evaluation. If true pick left child;
else right child. */

TI ← 2×TI + Where(TV < TT ,0,1) // I ∈ Zn

end
/* Find label for each leaf node */
R←Gather(N′C,TI) // R ∈ Zn

the false case. By adding this to 2×TI we get the index of
the child for the next iteration. For ensembles, we use the
maximum TREE_DEPTH of any tree as D for transforming
trees to perfect trees. We create tensors separate for each tree
and batch them together for N′C. But for N′F and N′T instead
of batching, we interleave them together in some order such
that values corresponding to level i for all trees appear before
values corresponding to level i+1 of any tree.

4.2 Summary of Other Techniques
Next, we discuss the other techniques used across ML opera-
tors to efficiently compile them into tensor computations.
Exploiting Automatic Broadcasting. Broadcasting [21] is
the process of making two tensors shape compatible for
element-wise operations. Two tensors are said to be shape
compatible if each dimension pair is the same, or one of them
is 1. At execution time, tensor operations implicitly repeat
the size 1 dimensions to match the size of the other tensor,
without allocating memory. In HB, we heavily use this fea-
ture to execute some computation over multiple inputs. For
example, consider performing an one-hot encoding operation
over column Xi ∈ Rn with a vocabulary V ∈ Zm. In order
to implement this using tensor computations, we Reshape
Xi to [n,1] and V to [1,m] and calculate R = Equal(X , V),
R ∈ {0,1}n×m. The Reshape operations are for free because
they only modify the metadata of the tensor. However, this
approach performs redundant comparisons as it checks the
feature values from all records against all vocabulary values.
Minimize Operator Invocations. Given two approaches
to implement an ML operator, we found that often pick-
ing the one which invokes fewer operators outperforms the
other—even if it performs extra computations. Consider a
featurizer that generates feature interactions. Given an input
X ∈ Rn×d , with d = |F |, it generates a transformed output

R ∈ Rn× d·(d+1)
2 with Ri = [X2

i,1, ...,X
2
i,d ,Xi,1Xi,2, ...Xi,d−1Xi,d].

One way to implement this operator is to compute each new
feature separately by first Gathering the corresponding in-

put feature columns, perform an element-wise Multiplication,
and conCatenate all new features. However, this approach
requires performing d2+d+1 operations and hence is highly
inefficient due to high operator scheduling overheads. Alter-
natively, one could implement the same operator as follows.
First, Reshape X into X ′ ∈ Rn×d×1 and X ′′ ∈ Rn×1×d . Then
perform a batched GEMM using these inputs, which will create
R′ ∈Rn×d×d . Finally, Reshape R′ to R′′ ∈Rn×d2

. Notice that
each row in R′′ has all the values of the corresponding row
in R, but in a different order. It also has some redundant val-
ues due to commutativity of multiplication (i.e., xix j = x jxi).
Hence, we perform a final Gather to extract the features in the
required order, and generate R. Compared to the previous one,
this approach increases both the computation and the mem-
ory footprint roughly by a factor of two. However, we can
implement feature interaction in just two tensor operations.
Avoid Generating Large Intermediate Results. Automatic
broadcasting in certain cases can become extremely ineffi-
cient due to the materialization of large intermediate tensors.
Consider the Euclidean distance matrix calculation, which is
popular in many ML operators (e.g., SVMs, KNN). Given two
tensors X ∈Rn×d and Y ∈Rm×d , the objective is to calculate a
tensor D∈Rn×m, where Di, j = ||Xi−Yj||22. Implementing this
using broadcasting requires first reshaping X to X ′ ∈Rn×1×d ,
Y to Y ′ ∈R1×m×d , calculate (X ′−Y ′)∈Rn×m×d , and perform
a final Sum over the last dimension. This approach causes a
size blowup by a factor of d in intermediate tensors. Alterna-
tively, a popular trick [37] is to use the quadratic expansion of
Di, j = ||Xi||22 + ||Yj||22−2 ·XiY T

j and calculate the individual
terms separately. This avoids generating intermediate tensors.
Fixed Length Restriction on String Features. Features
with strings of arbitrary lengths pose a challenge for HB.
Strings are commonly used in categorical features, and op-
erators like one-hot encoding and feature hashing natively
support strings. To support string features, HB imposes a
fixed length restriction, with the length being determined by
the max size of any string in the vocabulary. Vocabularies are
generated during training and can be accessed at compile time
by HB. Fixed length strings are then encoded into an int8.

5 Optimizations
In this section we discuss the key optimizations performed
by the HB’s Optimizer: heuristics for picking operator strate-
gies (Section 5.1) and runtime-independent optimizations
(Section 5.2). Recall that our approach also leverages runtime-
specific optimizations at the Tensor Compiler level. We refer
to [8, 41] for runtime-specific optimizations.

5.1 Heuristics-based Strategy Selection
For a given classical ML operator, there can be more than
one compilation strategy available. In the previous section
we explained three such strategies for tree-based models. In
practice, no strategy consistently dominates the others, but
each is preferable in different situations based on the input

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 905

and model structure. For instance, the GEMM strategy gets
significantly inefficient as the size of the decision trees gets
bigger because of the large number of redundant computa-
tions. This strategy performs O(2D) (D is the depth of the tree)
computations whereas the original algorithmic operator needs
to perform only O(D) comparisons. Nevertheless, with small
batch sizes or a large number of smaller trees, this strategy
can be performance-wise optimal on modern hardware, where
GEMM operations can run efficiently. With large batch sizes and
taller trees, TT techniques typically outperform the GEMM
strategy and PTT is slightly faster than vanilla TT due to the
reduced number of memory accesses. But if the trees are too
deep, we cannot implement PTT because the O(2D) memory
footprint of the associated data structures will be prohibitive.
In such cases, we resort to TT. The exact crossover point
where GEMM strategy outperforms other strategies is deter-
mined by the characteristics of the tree model (e.g., number
of trees, maximum depth of the trees), runtime statistics (e.g.,
batch size), and the underlying hardware (e.g., CPUs, GPUs).
For instance, from our experiments (see Figure 8) we found
that the GEMM strategy performs better for shallow trees
(D ≤ 3 on CPU, ≤ 10 on GPU) or for scoring with smaller
batch sizes. For tall trees, using PTT when D ≤ 10 give a
reasonable trade-off between memory footprint and runtime,
which leaves vanilla TreeTraversal the only option for very
tall trees (D > 10). These heuristics are currently hard-coded.

5.2 Runtime-independent Optimizations
We discuss two novel optimizations, which are unique to HB.
HB’s approach of separating the prediction pipeline from
training pipeline, and representing them in a logical DAG
before compilation into tensor computations facilitate the
optimization of end-to-end pipelines.
Feature Selection Push-Down. Feature selection is a popu-
lar operation that is often used as the final featurization step
as it reduces over-fitting and improves the accuracy of the
ML model [44]. However, during scoring, it can be pushed
down in the pipeline to avoid redundant computations such as
scaling and one-hot encoding for discarded features or even
reading the feature at all. This idea is similar to the concept of
projection push-down in relation query processing but through
user-defined table functions, which in our case are the ML op-
erators. For operators such as feature scaling, which performs
1-to-1 feature transformations, selection push-down can be
easily implemented. However, for operators such as one-hot
encoding and polynomial featurization, which perform 1-to-m
or m-to-1 feature transformations, the operator will have to
absorb the feature selection and stop generating those features.
For example, say one-hot encoding is applied on a categorical
feature column which has a vocabulary size of 10, but 4 of
those features are discarded by the feature selector. In such
cases, we can remove such features from the vocabulary. Note
that for some “blocking” operators [55], such as normalizers,
it is not possible to push-down the feature selection.

Feature Selection Injection. Even if the original pipeline
doesn’t have a feature selection operator, it is possible to
inject one and then push it down. Linear models with L1 regu-
larization (Lasso) is a typical example where feature selection
is implicitly performed. The same idea can be extended to
tree-based models to prune the features that are not used as
decision variables. In both of these examples, the ML model
also has to be updated to take into account the pruned features.
For linear models we prune the zero weights; for tree models,
we update the indices of the decision variables.

6 Experimental Evaluation
In our experimental evaluation we report two micro-
benchmark experiments showing how HB performs compared
to current state-of-the-art for inference over (1) tree ensem-
bles (Section 6.1.1); (2) other featurization operators and ML
models (Section 6.1.2). Then we evaluate the optimizations
by showing: (1) the need for heuristics for picking the best
tree-model implementation (Section 6.2.1); and (2) the ben-
efits introduced by the runtime-independent optimizations
(Section 6.2.2). Finally, we conduct an end-to-end evaluation
using pipelines (Section 6.3). We evaluate both CPUs and
hardware accelerators (GPUs).
Hardware and Software Setup. For all the experiments (ex-
cept when stated otherwise) we use an Azure NC6 v2 machine
equipped with 112 GB of RAM, an Intel Xeon CPU E5-2690
v4 @ 2.6GHz (6 virtual cores), and an NVIDIA P100 GPU.
The machine runs Ubuntu 18.04 with PyTorch 1.3.1, TVM 0.6,
scikit-learn 0.21.3, XGBoost 0.9, LightGBM 2.3.1, ONNX
runtime 1.0, RAPIDS 0.9, and CUDA 10. We run TVM with
opt_level 3 when not failing; 0 otherwise.
Experimental Setup. We run all the experiments 5 times and
report the truncated mean (by averaging the middle values)
of the processor time. In the following, we use ONNX-ML to
indicate running an ONNX-ML model (i.e., traditional ML
part of the standard) on the ONNX runtime. Additionally, we
use bold numbers to highlight the best performance for the
specific setup (CPU or GPU). Note that both scikit-learn and
ONNX-ML do not natively support hardware acceleration.

6.1 Micro-benchmarks
6.1.1 Tree Ensembles
Setup. This experiment is run over a set of popular datasets
used for benchmarking gradient boosting frameworks [22].
We first do a 80%/20% train/test split over each dataset. Suc-
cessively, we train a scikit-learn random forest, XGBoost [40],
and LightGBM [51] models using the default parameters of
the benchmark. Specifically, we set the number of trees to
500 and maximum depth to 8. For XGBoost and LightGBM
we use the scikit-learn API. Note that each algorithm gener-
ates trees with different structures, and this experiment helps
with understanding how HB behaves with various tree types
and dataset scales. For example, XGBoost generates balanced

906 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

trees, LightGBM mostly generates skinny tall trees, while
random forest is a mix between the two. Finally, we score the
trained models over the test dataset using different batch sizes.
We compare the results against HB with different runtime
backends and an ONNX-ML version of the model generated
using ONNXMLTools [18]. When evaluating over GPU, we
also compared against NVIDIA RAPIDS Forest Inference
Library (FIL) [29]. We don’t compare against GPU imple-
mentations for XGBoost or LightGBM because we consider
FIL as state-of-the-art [19]. For the CPU experiments, we
use all six cores in the machine, while for request/response
experiments we use one core. We set a timeout of 1 hour for
each experiment.
Datasets. We use 6 datasets from NVIDIA’s gbm-bench [22].
The datasets cover a wide spectrum of use-cases: from regres-
sion to multiclass classification, from 285K rows to 100M,
and from few 10s of columns to 2K.
List of Experiments. We run the following set of experi-
ments: (1) batch inference, both on CPU and GPU; (2) re-
quest/response where one single record is scored at a time; (3)
scaling experiments by varying batch sizes, both over CPU
and GPU; (4) evaluation on how HB behaves on different
GPU generations; (5) dollar cost per prediction; (6) memory
consumption; (7) validation of the produced output wrt scikit-
learn; and finally (8) time spent on compiling the models.
Batch Inference. Table 7 reports the inference time for ran-
dom forest, XGBoost and LightGBM models run over the 6
datasets. The batch size is set to 10K records. Looking at the
CPU numbers from the table, we can see that:

1. Among the baselines, scikit-learn models outperform
ONNX-ML implementations by 2 to 3×. This is because
ONNX-ML v1.0 is not optimized for batch inference.

2. Looking at the HB’s backends, there is not a large differ-
ence between PyTorch and TorchScript, and in general
these backends perform comparable to ONNX-ML.

3. The TVM backend provides the best performance on 15
experiments out of 18. In the worst case TVM is 20%
slower (than scikit-learn); in the best cases it is up to 2×
faster compared to the baseline solutions.

Let us look now at the GPU numbers of Table 7:
1. Baseline RAPIDS does not support random forest nor

multiclass classification tasks. For the remaining experi-
ments, GPU acceleration is able to provide speedups of
up to 300× compared to CPU baselines.2

2. Looking at HB backends, TorchScript is about 2 to 3×
slower compared to RAPIDS. TVM is instead the faster
solution on 14 experiments out of 18, with a 10% to 20%
improvement wrt RAPIDS.

2The original FIL blog post [19] claims GPU acceleration to be in the
order of 28× for XGBoost, versus close to 300× in our case (Airline). We
think that the difference is in the hardware: in fact, they use 5 E5-2698 CPUs
for a total of 100 physical cores, while we use a E5-2690 CPU with 6 (virtual)
physical cores. Additionally, they use a V100 GPU versus a P100 in our case.

1 100 10000 1000000
Batch Size

102

103

Ti
m

e
(s

)

onnx-ml
hb-torchscript
hb-tvm
lgbm

(a) CPU (Higgs, LightGBM), 6 cores

100 1000 10000 100000 1000000
Batch Size

101

102

Ti
m

e
(s

)

fil
hb-torchscript
hb-tvm

(b) GPU (Airline, LightGBM)

Figure 4: Performance wrt scaling the batch size.

The results are somehow surprising: HB targets the high-
level tensor APIs provided by PyTorch and TVM, and still it is
able to outperform custom C++ and CUDA implementations.
Request/response. In this scenario, one single record is
scored at a time. For this experiment we run inference over
the entire test datasets, but with batch size equal to 1. We used
the same datasets and setup of Section 6.1.1, except that (1)
we removed the Airline dataset since no system was able to
complete within the 1 hour timeout; and (2) we only use one
single core. The results are depicted in Table 8:

1. Unlike the batch scenario, ONNX-ML is much faster
compared to scikit-learn, in some cases even more than
100×. The reason is that ONNX-ML is currently opti-
mized for single record, single core inference, whereas
scikit-learn design is more towards batch inference.

2. PyTorch and TorchScript, again, behave very similarly.
For random forest they are faster than scikit-learn but up
to 5× slower compared to ONNX-ML. For LightGBM
and XGBoost they are sometimes on par with scikit-
learn, sometime slower.

3. TVM provides the best performance in 11 cases out of
15, with a best case of 3× compared to the baselines.

These results are again surprising, considering that tensor op-
erations should be more optimized for bulk workloads rather
than request/response scenarios.
Scaling the Batch Size. We study how the performance of
baselines and HB’s backends change with the batch size. Fig-
ures 4a and 4b depicts the performance variation over CPU
and GPU, respectively. We report only a few combinations
of dataset / algorithm, but all the other combinations behave
similarly. Starting with the CPU experiment, we can see that
ONNX-ML has the best runtime for batch size of 1, but then
its performance remains flat as we increase the batch size.
TorchScript and scikit-learn did not complete within the time-
out for batch equal to 1, but, past 100, they both scale linearly
as we increase the batch size. TVM is comparable to ONNX-
ML for batch of 1; for batches of 100 records it gets about

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 907

Table 7: Batch Experiments (10K records at-a-time) for both CPU (6 cores) and GPU. Reported numbers are in seconds.

Algorithm Dataset
Baselines (CPU) HB CPU Baselines (GPU) HB GPU

Sklearn ONNX-ML PyTorch TorchScript TVM RAPIDS FIL TorchScript TVM

Rand. Forest

Fraud 2.5 7.1 8.0 7.8 3.0 not supported 0.044 0.015
Epsilon 9.8 18.7 14.7 13.9 6.6 not supported 0.13 0.13

Year 1.9 6.6 7.8 7.7 1.4 not supported 0.045 0.026
Covtype 5.9 18.1 17.22 16.5 6.8 not supported 0.11 0.047
Higgs 102.4 257.6 314.4 314.5 118.0 not supported 1.84 0.55
Airline 1320.1 timeout timeout timeout 1216.7 not supported 18.83 5.23

LightGBM

Fraud 3.4 5.9 7.9 7.6 1.7 0.014 0.044 0.014
Epsilon 10.5 18.9 14.9 14.5 4.0 0.15 0.13 0.12

Year 5.0 7.4 7.7 7.6 1.6 0.023 0.045 0.025
Covtype 51.06 126.6 79.5 79.5 27.2 not supported 0.62 0.25
Higgs 198.2 271.2 304.0 292.2 69.3 0.59 1.72 0.52
Airline 1696.0 timeout timeout timeout 702.4 5.55 17.65 4.83

XGBoost

Fraud 1.9 5.5 7.7 7.6 1.6 0.013 0.44 0.015
Epsilon 7.6 18.9 14.8 14.8 4.2 0.15 0.13 0.12

Year 3.1 8.6 7.6 7.6 1.6 0.022 0.045 0.026
Covtype 42.3 121.7 79.2 79.0 26.4 not supported 0.62 0.25
Higgs 126.4 309.7 301.0 301.7 66.0 0.59 1.73 0.53
Airline 1316.0 timeout timeout timeout 663.3 5.43 17.16 4.83

Table 8: Request/response times in seconds (one record at-a-time).

Algorithm Dataset
Baselines HB

Sklearn ONNX-ML PT TS TVM

Rand. Forest

Fraud 1688.22 9.96 84.95 75.5 11.63
Epsilon 2945.42 32.58 153.32 134.17 20.4

Year 1152.56 18.99 84.82 74.21 9.13
Covtype 3388.50 35.49 179.4 157.8 34.1
Higgs timeout 335.23 timeout timeout 450.65

LightGBM

Fraud 354.27 12.05 96.5 84.56 10.19
Epsilon 40.7 29.28 167.43 148.87 17.3

Year 770.11 16.51 84.55 74.05 9.27
Covtype 135.39 209.16 854.07 822.93 42.86
Higgs timeout 374.64 timeout timeout 391.7

XGBoost

Fraud 79.99 7.78 96.84 84.61 10.21
Epsilon 121.21 27.51 169.03 148.76 17.4

Year 98.67 17.14 85.23 74.62 9.25
Covtype 135.3 197.09 883.64 818.39 43.65
Higgs timeout 585.89 timeout timeout 425.12

Table 9: Peak memory consumption (in MB) for Fraud.

Framework Random Forest LightGBM XGBoost

Sklearn 180 182 392
ONNX-ML 265 258 432
TorchScript 375 370 568

TVM 568 620 811

5× faster, while it scales like TorchScript for batches greater
than 100. This is likely due to the fact that TVM applies a
set of optimizations (e.g., operator fusion) that introduce a
constant-factor speedup compared to TorchScript.

Looking at the GPU numbers (Figure 4b), TorchScript
and TVM again follow a similar trend, with TVM being
around 3× faster than TorchScript. Both TVM and Torch-
Script plateau at about a batch size of 10K. RAPIDS FIL is

k80 p100 v100
Nvidia Model

0

5

10

15

20

Ti
m

e
(s

)

hb-torchscript
hb-tvm
fil

(a) Batch size 1M

k80 p100 v100
Nvidia Model

0

20

40

60

80

Ti
m

e
(s

)

hb-torchscript
hb-tvm
fil

(b) Batch size 1K

Figure 6: Performance across GPUs for Airline, LightGBM

slower than TorchScript for small batch sizes, but it scales
better than HB. This is because of its custom CUDA imple-
mentation that is able to better use hardware under higher
utilization. Interestingly, FIL as well plateaus at around 100K
records. The custom CUDA implementation introduces a 50%
gain over HB with TVM runtime over large batches.

Scaling Hardware. We tested how RAPIDS FIL and HB
(TorchScript and TVM) scale as we change the GPU model.
For this experiment we tried both with a large batch size
(1M records, Figure 6 (a)) to maximize hardware utilization,
and a smaller batch size (1K, Figure 6 (b)). We ran this on
all datasets across random forest, LightGBM, XGBoost with
similar results, and present the Airline dataset (the largest)
with LightGBM as a representative sample. We tested on
three NVIDIA devices: K80 (the oldest, 2014), P100 (2016),
and V100 (2017). From the figures, in general we can see that:

908 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 10: Conversion times (in seconds) over one core.

Algorithm Dataset ONNX-ML
HB

PyTorch TorchScript TVM

Rand.Forest

Fraud 1.28 0.55 0.58 102.37
Epsilon 7.53 2.63 2.67 108.64

Year 7.11 2.77 2.86 69.99
Covtype 9.87 2.16 2.2 106.8
Higgs 8.25 2.41 2.44 103.77
Airline 6.82 2.42 2.53 391.07

LightGBM

Fraud 1.34 0.98 1.06 3.42
Epsilon 11.71 7.55 7.60 9.95

Year 9.49 6.11 6.15 8.35
Covtype 32.46 22.57 23.12 26.36
Higgs 6.73 25.04 26.3 109
Airline 11.52 6.38 6.47 8.19

XGBoost

Fraud 0.55 0.65 0.7 86.59
Epsilon 6.86 25.89 25.94 113.4

Year 5.66 23.4 23.54 110.24
Covtype 9.87 2.16 2.20 106.8
Higgs 6.73 25.04 26.3 109

(1) RAPIDS FIL does not run on the K80 because it is an old
generation; (2) with a batch size of 1K we get slower total
inference time because we don’t utilize the full hardware; (3)
TorchScript and TVM runtimes for HB scale similarly on
different hardware, although TVM is consistently 4 to 7×
faster; (4) FIL scales similarly to HB, although it is 50%
faster on large batches, 3× slower for smaller batches; (5)
TorchScript is not optimal in memory management because
for batches of 1M it fails on the K80 with an OOM exception.
Finally, we also were able to run HB on the new Graphcore
IPU [15] over a single decision tree.

Cost. Figure 7 shows the cost comparison between the Azure
VM instance equipped with GPU, and a comparable one with-
out GPU (E8 v3). The plot shows the cost of executing 100k
samples with a batch size of 1K for random forest. The cost
is calculated based on the hourly rate of each VM divided
by the amortized cost of a single prediction. We executed
scikit-learn on the CPU and TorchScript and TVM on the
GPU for comparison. We found that the CPU cost was signif-
icantly higher (between 10×-120×) across all experiments. 3

An interesting result was that the oldest GPU was the most
cost effective, with the K80 and TVM having the lowest cost
for 13 out of the 18 experiments (including LightGBM and
XGBoost, not pictured). This result is explained by the fact
that the K80 is readily available at significantly lower cost.

Memory Consumption. We measured the peak memory con-
sumption over the Fraud dataset and for each algorithm. We
used the memory_usage function in the memory_profiler
library [2]. The numbers are reported in Table 9, and are the
result of the execution over 1 core with a batch size of 1K.
As we can see, scikit-learn is always the most memory effi-

3Note: airline times out for random forest for CPU with 1K batch.

CPU
SKL

k80
TS

k80
TVM

p100
TS

p100
TVM

v100
TS

v100
TVM

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Co
st

 (i
n

ce
nt

s)

Fraud
Epsilon
Year

Covtype
Higgs
Airline

Figure 7: Cost for random forest 100k samples, batch size of 1K.

cient. ONNX-ML consumes from 10% to 50% more memory,
while HB with TorchScript runtime consumes from 50% to
about 2× more memory than scikit-learn. Conversely, TVM
consumes from 2× to 3× more memory wrt scikit-learn. We
think that TVM is more memory hungry because it optimizes
compute at the cost of memory requirements. Note that the
batch size influences the total memory consumption.

Output Validation. Since we run tree ensemble models as
tensor operations, we could introduce rounding errors over
floating point operations. Therefore, we need to validate that
indeed the outputs produced match. To evaluate this, we used
the numpy testing.assert_allclose function, and we set
the relative and absolute errors to 10−5. We validate both
the final scores and the probabilities (when available) for all
combinations of datasets and algorithms. Out of the 18 exper-
iments listed in Table 7, 9 of them returned no mismatches
for HB, 12 in the ONNX-ML case. Among the mismatches,
the worst case for HB is random forest with Covtype where
we have 0.8% of records differing from the original scikit-
learn output. For the Epsilon dataset, HB with random forest
returns a mismatch on 0.1% of records. All the remaining
mismatches effect less than 0.1% of records. Note that the
differences are small. The biggest mismatch is of 0.086 (ab-
solute difference) for Higgs using LightGBM. For the same
experiment ONNX-ML has an absolute difference of 0.115.

Conversion Time. Table 10 shows the time it takes to con-
vert a trained model into a target framework. The numbers
are related to the generation of models running on a single
core. This cost occurs only once per model and are not part
of the inference cost. As we can see, converting a model to
ONNX-ML can take up to a few tens of seconds; HB with
PyTorch backend is constantly about 2× to 3× faster wrt
ONNX-ML in converting random forests models, while it
varies for LightGBM and XGBModels. TorchScript models
are generated starting from PyTorch models, and in general
this further compilation step does not introduce any major
overhead. Finally, conversion to TVM is much slower, and it
might take more than 3 minutes. This is due to code genera-
tion and optimizations introduced in TVM.

As a final note: parallel (i.e., more than 1 core) and GPU
execution introduced further conversion time overheads, espe-
cially on TVM. For instance, TVM can take up to 40 minutes
to convert a random forest model for execution on GPU.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 909

6.1.2 Operators
Setup. This micro-benchmark is a replication of the suite
comparing scikit-learn and ONNX-ML operators [17]. We
test all scikit-learn operators of the suite that are supported by
both ONNX-ML and HB (minus tree ensembles models). The
total number of tested operators is 13, and they are a mix of
ML models (Logistic Regression, Support Vector Machines,
etc.) and featurizers (e.g., Binarizer, Polynomial, etc.). For
this micro-benchmark we score 1 million records.

Datasets. We use the Iris datasets [23] with 20 features.

List of Experiments. We run the following experiments: (1)
batch inference over 1M records, both on CPU and GPU; (2)
request/response over 1 record; (3) memory consumption and
conversion time. All the output results are correct.

Table 11: Batch experiments for operators on both CPU (1 core) and
GPU. Numbers are in milliseconds. (TS is short for TorchScript)

Operator
Baselines (CPU) HB CPU HB GPU

Sklearn ONNX-ML TS TVM TS TVM

Log. Regres. 970 1540 260 47 13 15
SGDClass. 180 1540 270 49 11 15
LinearSVC 110 69 260 51 12 18

NuSVC 3240 4410 2800 3000 140 72
SVC 1690 2670 1520 1560 120 41

BernoulliNB 280 1670 290 65 12 14
MLPClassifier 930 1860 910 1430 17 31
Dec.TreeClass. 59 1610 560 35 13 16

Binarizer 98 75 39 59 38 38
MinMaxScaler 92 200 78 57 38 38

Normalizer 94 140 83 97 39 40
Poly.Features 4030 29160 6380 3130 340 error

StandardScaler 150 200 77 58 38 38

Batch Inference. The batch numbers are reported in Table 11.
On CPU, scikit-learn is faster than ONNX-ML, up to 6×
for polynomial featurizer, although in most of the cases the
two systems are within a factor of 2. HB with TorchScript
backend is competitive with scikit-learn, whereas with TVM
backend HB is faster on 8 out of 13 operators, with in gen-
eral a speedup of about 2× compared to scikit-learn. If now
we focus to the GPU numbers, we see that HB with Torch-
Script backend compares favorably against TVM on 11 op-
erators out of 13. This is in contrast with the tree ensemble
micro-benchmark where the TVM backend was faster than
the TorchScript one. We suspect that this is because TVM
optimizations are less effective on these “simpler” operators.
For the same reason, GPU acceleration does not provide the
speedup we instead saw for the tree ensemble models. In
general, we see around 2× performance improvement over
the CPU runtime: only polynomial featurizer runs faster, with
almost a 10× improvement. TVM returns a runtime error
when generating the polynomial featurizer model on GPU.

Request/response. Table 12 contains the times to score 1
record. The results are similar to the request/response scenario

for the tree ensemble micro-benchmark. Namely, ONNX-ML
outperform both scikit-learn and HB in 9 out of 13 cases.
Note, however, that all frameworks are within a factor of 2.
The only outlier is polynomial featurizer which is about 10×
faster on HB with TVM backend.

Table 12: Request/Response experiments for operators on CPU (sin-
gle core). Reported numbers are in milliseconds.

Operator
Baselines HB

Sklearn ONNX-ML TS TVM

LogisticRegression 0.087 0.076 0.1 0.1
SGDClassifier 0.098 0.1 0.12 0.1

LinearSVC 0.077 0.05 0.11 0.1
NuSVC 0.086 0.072 4.1 0.14

SVC 0.086 0.074 2.3 0.12
BernoulliNB 0.26 0.1 0.07 0.11

MLPClassifier 0.15 0.11 0.1 0.12
DecisionTreeClassifier 0.087 0.074 0.44 0.12

Binarizer 0.064 0.053 0.063 0.1
MinMaxScaler 0.066 0.060 0.058 0.1

Normalizer 0.11 0.063 0.072 0.1
PolynomialFeatures 1.2 1 0.5 0.1

StandardScaler 0.069 0.048 0.059 0.1

Memory Consumption and Conversion Time. We mea-
sured the peak memory consumed and conversion time for
each operator on each framework. We used batch inference
over 1K records. For memory consumption, the results are in
line with what we already saw in Section 6.1.1. Regarding the
conversion time, for ONNX-ML and HB with TorchScript,
the conversion time is in the order of few milliseconds. The
TVM backend is slightly slower but still in the order of few
tens of milliseconds (exception for NuSVC and SVC which
take up to 3.2 seconds). In comparison with the tree ensem-
bles numbers (Table 10), we confirm that these operators are
simpler, even from a compilation perspective.

6.2 Optimizations
6.2.1 Tree Models Implementation
Next we test the different tree-based models implementation
to make the case for the heuristics.
Datasets. For this experiment we employ a synthetic dataset
randomly generated with 5000 rows and 200 features.
Experiments Setup. We study the behavior of the tree im-
plementations as we change the training algorithm, the batch
size, and the tree depth. For each experiment we set the num-
ber of trees to 100. We use the TVM runtime backend. Each
experiment is run on 1 CPU core.
Results. Figure 8 shows the comparison between the different
tree implementations, and the two scikit-learn and ONNX-ML
baselines. In the top part of the figure we run all experiments
using a batch size of 1; on the bottom part we instead use
a batch size of 1K. In the column on the left-hand side, we
generate trees with a max depth of 3; 7 for the middle column,
and 12 for column on the right-hand side. In general, two
things are apparent: (1) HB is as fast as or better than the

910 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

lg
bm rf

xg
b

model

10 1

100

101

102

Ru
nt

im
e

(s
)

batch size=1/max depth=3

lg
bm rf

xg
b

model

10 1

100

101

102

batch size=1/max depth=7

lg
bm rf

xg
b

model

10 1

100

101

102

batch size=1/max depth=12
original onnxml GEMM TreeTraversal PerfectTreeTraversal

lg
bm rf

xg
b

model

10 3

10 2

10 1

Ru
nt

im
e

(s
)

batch size=1000/max depth=3

lg
bm rf

xg
b

model

10 2

10 1

100
batch size=1000/max depth=7

lg
bm rf

xg
b

model

10 2

10 1

100

batch size=1000/max depth=12
original onnxml GEMM TreeTraversal PerfectTreeTraversal

Figure 8: Comparison between the different tree strategies as we vary the batch size and depth.

10

20

30

40

Ru
nt

im
e

(s
)

percentile=0.2

10

20

30

40

percentile=0.4

10

20

30

40

percentile=0.6

10

20

30

40

percentile=0.8

10

20

30

40

percentile=1.0
HB w\ FS push down HB w\o FS push down Sklearn

Figure 9: Feature selection push down.

5

10

15

20

25

30

35

40

Ru
nt

im
e

(s
)

coefficient=0.001

5

10

15

20

25

30

35

40
coefficient=0.01

5

10

15

20

25

30

35

40
coefficient=0.1

5

10

15

20

25

30

35

40
coefficient=1

5

10

15

20

25

30

35

40
coefficient=10

HB w\ FS injection HB w\o FS injection Sklearn

Figure 10: Feature selection injection.

100

101

102

103

Sl
ow

 D
ow

n

2X10X 2X 10X 100X

Pipelines
100

101

102

103

Sp
ee

d
Up

(a) CPU

100

101

102

103

Sl
ow

 D
ow

n
2X10X 2X 100X

Pipelines
100

101

102

103

Sp
ee

d
Up

(b) GPU
Figure 12: Speedup/slowdown of pipelines
when using HB wrt baseline Sklearn.

baselines; and (2) no tree implementation is always better than
the others. The GEMM implementation outperforms the other
two for small batch sizes, whereas TT and PTT are better over
larger batch sizes. Between TT and PTT, the latter is usually
the best performant (although not by a large margin). PTT
however creates balanced trees, and fails for very deep trees.

6.2.2 Runtime-independent Optimizations.
Next we test the optimizations described in Section 5.2.
Dataset. We use the Nomao dataset [24] with 119 features.
Feature Selection Push Down. In this experiment we mea-
sure the benefits of the feature selection push down. In Fig-
ure 9 we compare HB with and without feature selection
push-down, and the baseline implementation of the pipelines
in scikit-learn. We use a pipeline which trains a logistic re-
gression model with L2 loss. The featurization part contains
one-hot encoding for categorical features, missing value impu-
tation for numerical values, followed by feature scaling, and a

final feature selection operator (scikit-learn’s SelectKBest).
We vary the percentile of features that are picked by the fea-
ture selection operator. In general, we can see that HB without
optimization is about 2× faster than scikit-learn in evaluating
the pipelines. For small percentiles, the feature selection push-
down optimization delivers a further 3×. As we increase the
percentile of features that are selected, the runtime of HB
both with and without optimizations increase, although with
the optimization HB is still 2× faster than without.

Feature Selection Injection. In this experiment we evaluate
whether we can improve the performance of pipelines with
sparse models by injecting (and then pushing down) feature
selection operators. The pipeline is the same as in the previous
case but without the feature selection operator. Instead we
train the logistic regression model with L1 regularization. In
Figure 10 we vary the L1 regularization coefficient and study
how much performance we can gain. Also in this case, with

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 911

very sparse models we can see up to 3× improvement wrt
HB without optimization. Performance gains dissipate as we
decrease the sparsity of the model.

6.3 End-to-end Pipelines
Setup. In this experiment we test HB over end-to-end
pipelines. We downloaded the 72 tasks composing the
OpenML-CC18 suite [27]. Among all the tasks, we discarded
all the “not pure scikit-learn” ML pipelines (e.g., containing
also arbitrary Python code). We successively discarded all
the pipelines returning a failure during training. 88% of the
remaining pipelines are exclusively composed by operators
supported by HB, for a total of 2328 ML pipelines. Among
these, 11 failed during inference due to runtime errors in HB;
we report the summary of executing 2317 pipelines. These
pipelines contain an average of 3.3 operators, which is in line
with what was observed elsewhere [64].
Datasets. For this experiment we have 72 datasets in to-
tal [27]. The datasets are a curated mix specifically designed
for ML benchmarking. We did the typical 80%/20% split be-
tween training and inference. The smaller dataset has just 100
records, the bigger 19264, while the median value is 462. The
minimum number of columns for a dataset is 4, the maximum
3072, with a median of 30.
Results. Figure 12 summarizes the speedup / slowdown intro-
duced by HB when scoring all 2317 pipelines. As we can see,
HB is able to accelerate about 60% of the pipelines on CPU
(11a). In general, the slowest pipeline gets about 60× slower
wrt scikit-learn, the fastest instead gets a 1200× speed up.
The slowdowns are due to a couple of factors: (a) the datasets
used for these experiments are quite small; (b) some pipelines
contain largely sparse operations (i.e., SVM on sparse inputs);
(c) several pipelines are small and do not require much com-
putation (e.g., a simple inputer followed by a small decision
tree). These three factors are highlighted also by the fact that
even if we move computation to the GPU (11b), still 27%
of the pipelines have some slowdown. Note however that (1)
both sparse and small pipelines can be detected at compile
time, and therefore we can return a warning or an error; (2)
DNN frameworks are continuously adding new sparse tensor
operations (e.g., [34]); and (3) an option could be to add a
specific runtime backend for sparse tensor operations (e.g.,
we have a prototype integration with TACO [52]). In general,
DNN frameworks are relatively young, and HB will exploit
any future improvement with no additional costs.

With GPU acceleration (Figure 11b), 73% of the pipelines
show some speedup. The slowest pipeline gets about 130×
slower wrt scikit-learn, the fastest instead gets a speedup of 3
orders of magnitude. Some of the pipelines get worse from
CPU to GPU execution. This is due to (1) sparsity; (2) small
compute; and (3) data movements between CPU and GPU
memory. Indeed we run all pipelines on GPU, even the ones
for which in practice would not make much sense (e.g., a deci-
sion tree with 3 nodes). We leave as future work an extension

to our heuristics for picking the right hardware backend.

7 Related Work
PyTorch [61], TensorFlow [13], MXNet [12], CNTK [10]
are DNN frameworks that provide easy-to-use (tensor-based)
APIs for authoring DNN models, and heterogeneous hard-
ware support for both training and inference. Beyond these
popular frameworks, inference runtimes such as ONNX [5],
nGraph [16], TVM [41], and TensorRT [20] provide optimiza-
tions and efficient execution targets, specifically for inference.
To prove the versatility of our approach, we have tested HB
with both PyTorch and TVM. HB uses a two-level, logical-
physical optimization approach. First, logical optimizations
are applied based on the operators composing the pipeline.
Afterwards, physical operator implementations are selected
based on model statistics, and physical rewrites, which are
externally implemented by the DNN runtime, are executed
(e.g., algebraic rewrites, operator fusion). Willump [53] uses
a similar two-level optimization strategy, although it targets
Weld [60] as its low level runtime and therefore it cannot
natively support inference on hardware accelerators. Con-
versely, HB casts ML pipelines into tensor computations and
takes advantage of DNN serving systems to ease the deploy-
ment on target environments. Other optimizers for predictive
pipelines, such as Pretzel [55], only target logical optimiza-
tions. We have integrated HB into Raven [50] as part of our
bigger vision for optimizing ML prediction pipelines.

Several works deal with executing trees (ensembles) [29,
59, 67] on hardware accelerators. These systems provide a
custom implementation of the PTT strategy specific to the
target hardware (e.g., NVIDIA GPUs for RAPIDS FIL [29],
FPGAs for [59]), and where computation is parallelized along
on the tree-dimension. Alternatively, HB provides three tree
inference strategies, including two novel strategies (GEMM
and TT), and picks the best alternative based on the efficiency
and redundancy trade-off.

8 Conclusions
In this paper, we explore the idea of using DNN frameworks
as generic compilers and optimizers for heterogeneous hard-
ware. Our use-case is “traditional” ML inference. We ported
40+ data featurizers and traditional ML models into tensor
operations and tested their performance over two DNN frame-
works (PyTorch and TVM) and over different hardware (CPUs
and GPUs). The results are compelling: even though we tar-
get high-level tensor operations, we are able to outperform
custom C++ and CUDA implementations. To our knowledge,
HUMMINGBIRD is the first system able to run traditional ML
inference on heterogeneous hardware.

9 Acknowledgements
We thank the anonymous reviewers and our shepherd, Chen
Wenguang, for their feedback and suggestions to improve the
paper. We would also like to thank Nellie Gustafsson, Gopal
Vashishtha, Emma Ning, and Faith Xu for their support.

912 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Cerebras Chip. https://www.wired.com/story/power-ai-
startup-built-really-big-chip/.

[2] Memory profiler for Python.

[3] Nvidia RAPIDS. https://developer.nvidia.com/rapids.

[4] ONNX ML. https://github.com/onnx/onnx/blob/
master/docs/Operators-ml.md.

[5] ONNX Runtime. https://github.com/microsoft/
onnxruntime.

[6] ONNX Supported Frameworks and Backends. https://
onnx.ai/supported-tools.html.

[7] Pandas. https://pandas.pydata.org/.

[8] TorchScript Documentation. https://pytorch.org/docs/
stable/jit.html.

[9] H2O Algorithms Roadmap. https://github.com/h2oai/
h2o-3/blob/master/h2o-docs/src/product/flow/
images/H2O-Algorithms-Road-Map.pdf, 2015.

[10] CNTK. https://docs.microsoft.com/en-us/cognitive-
toolkit/, 2018.

[11] Matplotlib. https://matplotlib.org/, 2018.

[12] MXNet. https://mxnet.apache.org/, 2018.

[13] TensorFlow. https://www.tensorflow.org, 2018.

[14] Esg technical validation: Dell emc ready solutions for ai: Deep
learning with intel.
https://www.esg-global.com/validation/esg-
technical-validation-dell-emc-ready-solutions-
for-ai-deep-learning-with-intel, 2019.

[15] Graphcore IPU. https://www.graphcore.ai/, 2019.

[16] nGraph. https://www.ngraph.ai/, 2019.

[17] ONNX-ML vs Sklearn Benchmark. https://github.com/
xadupre/scikit-learn_benchmarks, 2019.

[18] ONNXMLTools. https://github.com/onnx/
onnxmltools, 2019.

[19] RAPIDS Forest Inference Library. https://
medium.com/rapids-ai/rapids-forest-inference-
library-prediction-at-100-million-rows
-per-second-19558890bc35, 2019.

[20] Tensor-RT. https://developer.nvidia.com/tensorrt,
2019.

[21] Broadcasting Semantic. https://www.tensorflow.org/
xla/broadcasting, 2020.

[22] Gradient Boosting Algorithm Benchmark. https://
github.com/NVIDIA/gbm-bench, 2020.

[23] Iris dataset. https://scikit-learn.org/stable/
auto_examples/datasets/plot_iris_dataset.html,
2020.

[24] nomao dataset. https://www.openml.org/d/1486, 2020.

[25] ONNX. https://github.com/onnx/onnx/blob/master/
docs/Operators.md, 2020.

[26] ONNX Portable format. https://www.infoworld.com/
article/3223401/onnx-makes-machine-learning-
models-portable-shareable.html, 2020.

[27] OpenML-CC18 Benchmark. https://www.openml.org/s/
99, 2020.

[28] Pytorch Ecosystem. https://pytorch.org/ecosystem/,
2020.

[29] RAPIDS cuML. https://github.com/rapidsai/cuml,
2020.

[30] Sambanova: Massive Models for Everyone. https://
sambanova.ai/, 2020.

[31] skl2onnx Converter. https://github.com/onnx/sklearn-
onnx/, 2020.

[32] Tensorflow JS. https://www.tensorflow.org/js, 2020.

[33] Tensorflow XLA. https://www.tensorflow.org/xla, 2020.

[34] The Status of Sparse Operations in Pytorch. https://
github.com/pytorch/pytorch/issues/9674, 2020.

[35] Ashvin Agrawal, Rony Chatterjee, Carlo Curino, Avrilia
Floratou, Neha Gowdal, Matteo Interlandi, Alekh Jindal,
Kostantinos Karanasos, Subru Krishnan, Brian Kroth, Jy-
oti Leeka, Kwanghyun Park, Hiren Patel, Olga Poppe, Fotis
Psallidas, Raghu Ramakrishnan, Abhishek Roy, Karla Saur,
Rathijit Sen, Markus Weimer, Travis Wright, and Yiwen Zhu.
Cloudy with high chance of DBMS: A 10-year prediction for
Enterprise-Grade ML. arXiv e-prints, page arXiv:1909.00084,
Aug 2019.

[36] Zeeshan Ahmed, Saeed Amizadeh, Mikhail Bilenko, Rogan
Carr, Wei-Sheng Chin, Yael Dekel, Xavier Dupre, Vadim Ek-
sarevskiy, Senja Filipi, Tom Finley, et al. Machine learning
at Microsoft with ML.NET. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’19, page 2448–2458, New York, NY,
USA, 2019. Association for Computing Machinery.

[37] Samuel Albanie. Euclidean distance matrix trick. 2019.

[38] Amazon. The total cost of ownership (tco) of amazon sage-
maker. https://pages.awscloud.com/rs/112-TZM-766/
images/Amazon_SageMaker_TCO_uf.pdf, 2020.

[39] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel,
Chuan Yu Foo, Zakaria Haque, Salem Haykal, Mustafa Ispir,
Vihan Jain, Levent Koc, Chiu Yuen Koo, Lukasz Lew, Clemens
Mewald, Akshay Naresh Modi, Neoklis Polyzotis, Sukriti
Ramesh, Sudip Roy, Steven Euijong Whang, Martin Wicke,
Jarek Wilkiewicz, Xin Zhang, and Martin Zinkevich. Tfx: A
tensorflow-based production-scale machine learning platform.
In Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’17,
page 1387–1395, New York, NY, USA, 2017. Association for
Computing Machinery.

[40] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree
boosting system. In Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, KDD ’16, pages 785–794, New York, NY, USA, 2016.
ACM.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 913

https://www.wired.com/story/power-ai-startup-built-really-big-chip/
https://www.wired.com/story/power-ai-startup-built-really-big-chip/
https://developer.nvidia.com/rapids
https://github.com/onnx/onnx/blob/master/docs/Operators-ml.md
https://github.com/onnx/onnx/blob/master/docs/Operators-ml.md
https://github.com/microsoft/onnxruntime
https://github.com/microsoft/onnxruntime
https://onnx.ai/supported-tools.html
https://onnx.ai/supported-tools.html
https://pandas.pydata.org/
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/docs/stable/jit.html
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/product/flow/images/H2O-Algorithms-Road-Map.pdf
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/product/flow/images/H2O-Algorithms-Road-Map.pdf
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/product/flow/images/H2O-Algorithms-Road-Map.pdf
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://matplotlib.org/
https://mxnet.apache.org/
https://www.tensorflow.org
https://www.esg-global.com/validation/esg-technical-validation-dell-emc-ready-solutions-for-ai-deep-learning-with-intel
https://www.esg-global.com/validation/esg-technical-validation-dell-emc-ready-solutions-for-ai-deep-learning-with-intel
https://www.esg-global.com/validation/esg-technical-validation-dell-emc-ready-solutions-for-ai-deep-learning-with-intel
https://www.graphcore.ai/
https://www.ngraph.ai/
https://github.com/xadupre/scikit-learn_benchmarks
https://github.com/xadupre/scikit-learn_benchmarks
https://github.com/onnx/onnxmltools
https://github.com/onnx/onnxmltools
https://medium.com/rapids-ai/rapids-forest-inference-library-prediction-at-100-million-rows
https://medium.com/rapids-ai/rapids-forest-inference-library-prediction-at-100-million-rows
https://medium.com/rapids-ai/rapids-forest-inference-library-prediction-at-100-million-rows
-per-second-19558890bc35
https://developer.nvidia.com/tensorrt
https://www.tensorflow.org/xla/broadcasting
https://www.tensorflow.org/xla/broadcasting
https://github.com/NVIDIA/gbm-bench
https://github.com/NVIDIA/gbm-bench
https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html
https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html
https://www.openml.org/d/1486
https://github.com/onnx/onnx/blob/master/docs/Operators.md
https://github.com/onnx/onnx/blob/master/docs/Operators.md
https://www.infoworld.com/article/3223401/onnx-makes-machine-learning-models-portable-shareable.html
https://www.infoworld.com/article/3223401/onnx-makes-machine-learning-models-portable-shareable.html
https://www.infoworld.com/article/3223401/onnx-makes-machine-learning-models-portable-shareable.html
https://www.openml.org/s/99
https://www.openml.org/s/99
https://pytorch.org/ecosystem/
https://github.com/rapidsai/cuml
https://sambanova.ai/
https://sambanova.ai/
https://github.com/onnx/sklearn-onnx/
https://github.com/onnx/sklearn-onnx/
https://www.tensorflow.org/js
https://www.tensorflow.org/xla
https://github.com/pytorch/pytorch/issues/9674
https://github.com/pytorch/pytorch/issues/9674
https://pages.awscloud.com/rs/112-TZM-766/images/Amazon_SageMaker_TCO_uf.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/Amazon_SageMaker_TCO_uf.pdf

[41] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,
Eddie Yan, Meghan Cowan, Haichen Shen, Leyuan Wang,
Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishna-
murthy. Tvm: An automated end-to-end optimizing compiler
for deep learning. In Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implementation,
OSDI’18, pages 579–594, Berkeley, CA, USA, 2018. USENIX
Association.

[42] Daniel Crankshaw, Gur-Eyal Sela, Corey Zumar, Xiangxi Mo,
Joseph E. Gonzalez, Ion Stoica, and Alexey Tumanov. Infer-
line: ML inference pipeline composition framework. CoRR,
abs/1812.01776, 2018.

[43] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J.
Franklin, Joseph E. Gonzalez, and Ion Stoica. Clipper: A
low-latency online prediction serving system. In NSDI, 2017.

[44] Manoranjan Dash and Huan Liu. Feature selection for classifi-
cation. Intelligent data analysis, 1(3):131–156, 1997.

[45] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding. arXiv e-prints, page
arXiv:1810.04805, Oct 2018.

[46] FirmAI. Machine Learning and Data Science Applica-
tions in Industry. https://github.com/firmai/industry-
machine-learning.

[47] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
learning. MIT press, 2016.

[48] Intel. Machine learning fpga. https://www.intel.com/
content/www/us/en/products/docs/storage/
programmable/applications/machine-learning.html,
2020.

[49] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patter-
son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin,
Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Ra-
jendra Gottipati, William Gulland, Robert Hagmann, Richard C.
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Ju-
lian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan,
Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy,
James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana
Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan,
Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan
Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory
Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy
Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma,
Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. In-datacenter performance
analysis of a tensor processing unit. CoRR, abs/1704.04760,
2017.

[50] Konstantinos Karanasos, Matteo Interlandi, Fotis Psallidas,
Rathijit Sen, Kwanghyun Park, Ivan Popivanov, Doris Xin,
Supun Nakandala, Subru Krishnan, Markus Weimer, Yuan Yu,
Raghu Ramakrishnan, and Carlo Curino. Extending relational
query processing with ML inference. In CIDR 2020, 10th

Conference on Innovative Data Systems Research, Amsterdam,
The Netherlands, January 12-15, 2020, Online Proceedings.
www.cidrdb.org, 2020.

[51] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen,
Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly
efficient gradient boosting decision tree. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 3146–3154. Curran Associates, Inc.,
2017.

[52] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato,
and Saman Amarasinghe. The tensor algebra compiler. Proc.
ACM Program. Lang., 1(OOPSLA):77:1–77:29, October 2017.

[53] Peter Kraft, Daniel Kang, Deepak Narayanan, Shoumik Palkar,
Peter Bailis, and Matei Zaharia. Willump: A Statistically-
Aware End-to-end Optimizer for Machine Learning Inference.
arXiv e-prints, page arXiv:1906.01974, Jun 2019.

[54] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Ima-
genet classification with deep convolutional neural networks.
Commun. ACM, 60(6):84–90, May 2017.

[55] Yunseong Lee, Alberto Scolari, Byung-Gon Chun,
Marco Domenico Santambrogio, Markus Weimer, and
Matteo Interlandi. PRETZEL: Opening the black box of
machine learning prediction serving systems. In 13th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 18), pages 611–626, Carlsbad, CA, October 2018.
USENIX Association.

[56] Ping Li. Robust logitboost and adaptive base class (abc) logit-
boost. In n Proceedings of the Twenty-Sixth Conference Annual
Conference on Uncertainty in Artificial Intelligence (UAI’10).

[57] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter
Noordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan,
Pritam Damania, and Soumith Chintala. Pytorch distributed:
Experiences on accelerating data parallel training. Proc. VLDB
Endow., 2020.

[58] Faith Xu Matteo Interlandi, Karla Saur. Accelerate traditional
machine learning models on GPU with ONNX Runtime.
https://cloudblogs.microsoft.com/opensource/2020/
09/29/accelerate-machine-learning-models-gpu-
onnx-runtime-hummingbird/, 2020.

[59] M. Owaida, H. Zhang, C. Zhang, and G. Alonso. Scalable
inference of decision tree ensembles: Flexible design for cpu-
fpga platforms. In 2017 27th International Conference on
Field Programmable Logic and Applications (FPL), pages 1–8,
Sep. 2017.

[60] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha
Thaker, Rahul Palamuttam, Parimajan Negi, Anil Shanbhag,
Malte Schwarzkopf, Holger Pirk, Saman Amarasinghe, et al.
Evaluating end-to-end optimization for data analytics appli-
cations in weld. Proceedings of the VLDB Endowment,
11(9):1002–1015, 2018.

[61] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,
Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison,
Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

914 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/firmai/industry-machine-learning
https://github.com/firmai/industry-machine-learning
https://www.intel.com/content/www/us/en/products/docs/storage/programmable/applications/machine-learning.html
https://www.intel.com/content/www/us/en/products/docs/storage/programmable/applications/machine-learning.html
https://www.intel.com/content/www/us/en/products/docs/storage/programmable/applications/machine-learning.html
https://cloudblogs.microsoft.com/opensource/2020/09/29/accelerate-machine-learning-models-gpu-onnx-runtime-hummingbird/
https://cloudblogs.microsoft.com/opensource/2020/09/29/accelerate-machine-learning-models-gpu-onnx-runtime-hummingbird/
https://cloudblogs.microsoft.com/opensource/2020/09/29/accelerate-machine-learning-models-gpu-onnx-runtime-hummingbird/

[62] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel,
Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vander-
plas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Ma-
chine learning in python. J. Mach. Learn. Res., 12:2825–2830,
November 2011.

[63] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and
Martin Zinkevich. Data lifecycle challenges in production
machine learning: A survey. SIGMOD Record, 47(2):17–28,
2018.

[64] Fotis Psallidas, Yiwen Zhu, Bojan Karlas, Matteo Inter-
landi, Avrilia Floratou, Konstantinos Karanasos, Wentao Wu,
Ce Zhang, Subru Krishnan, Carlo Curino, and Markus Weimer.
Data science through the looking glass and what we found
there, 2019.

[65] Karthik Ramachandra, Kwanghyun Park, K. Venkatesh Emani,

Alan Halverson, César Galindo-Legaria, and Conor Cunning-
ham. Froid: Optimization of imperative programs in a rela-
tional database. Proc. VLDB Endow., 11(4):432–444, Decem-
ber 2017.

[66] Alexander Sergeev and Mike Del Balso. Horovod: fast and
easy distributed deep learning in tensorflow, 2018.

[67] Toby Sharp. Implementing decision trees and forests on a
gpu. In David Forsyth, Philip Torr, and Andrew Zisserman,
editors, Computer Vision – ECCV 2008, pages 595–608, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[68] Credit Suisse. The apps revolution manifesto—volume 1: The
technologies. https://aka.ms/enterprise-application-
lifespan, 2012.

[69] S. van der Walt, S. C. Colbert, and G. Varoquaux. The numpy
array: A structure for efficient numerical computation. Com-
puting in Science Engineering, 13(2):22–30, March 2011.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 915

https://aka.ms/enterprise-application-lifespan
https://aka.ms/enterprise-application-lifespan

A Artifact Appendix

A.1 Abstract
Hummingbird compiles trained traditional ML models into
tensor computation for faster inference. Hummingbird allows
users to score models both on CPU and hardware accelera-
tors.

A.2 Artifact check-list
• Program: PyTorch, ONNX Runtime, TVM.

• Data set: Fraud, Epsilon, Year, Covtype, Higgs, Airline, Iris,
Nomao, OpenMLCC-18.

• Run-time environment: Ubuntu 18.04.

• Hardware: Azure NC6 v2 machine.

• Experiments: tree-models (Random Forest, XGBoost, Light-
GBM), operators (LogisticRegression, SGDClassifier, Lin-
earSVC, NuSVC, SVC, BernoulliNB, MLPClassifier, Decision-
TreeClassifier, Binarizer, MinMaxScaler, Normalizer, Polyno-
mialFeatures, StandardScaler), end-to-end pipelines.

• Public link: https://github.com/microsoft/
hummingbird.

• Code licenses: MIT.

A.3 Description
A.3.1 How to access

Hummingbird is open source and can be accessed directly
from https://github.com/microsoft/hummingbird. Other-
wise, Hummingbird can also be downloaded from pip with pip
install hummingbird-ml.

A.3.2 Hardware dependencies

No specific hardware dependencies. The artifact has been evaluated
on different NVIDIA GPU generations (K80, P100, V100) but it
should work on any hardware supported by the target DNN runtime.

A.3.3 Software dependencies

Hummingbird requires Python >= 3.5, numpy>=1.15, onnxconverter-
common>=1.6.0, scikit-learn>=0.21.3, torch>=1.3.1. Additional de-
pendencies for reproducing the results are onnxruntime >= 1.0,
onnxmltools>=1.6.0, xgboost>=0.90 and lightgbm>=2.2, psutil,
memory-profiler.

A.3.4 Data sets

For the experiments on tree algorithms we used Fraud 4, Epsilon 5,
Year 6, Covtype 7, Higgs 8, and Airline 9. For the experiments on op-
erators we instead used Iris 10. Finally, for the pipeline experiments
we used OpenML-CC18 [27]. The experiment scripts automate the
download and preparation of all the datasets.

A.4 Installation
Hummingbird can be installed from pip with pip install
hummingbird-ml or by cloning the code available on GitHub
and by calling python setup.py install from the main direc-
tory. Hummingbird will automatically detect the available back-
ends at runtime. We refer to https://github.com/microsoft/
hummingbird/blob/master/TROUBLESHOOTING.md for problems
related to installations.

A.5 Experiment workflow
The scripts for the experiments are divided in three main folders:
trees, operators and pipelines. Each folder contains a README.md
file containing the specific instructions for that particular set of
experiments.
Trees: This directory contains the script to generate the result of
Section 6.1.1. We suggest to start with running python run.py
-dataset fraud,year,covtype,epsilon (skipping higgs/air-
line) because the complete script (which can be run with just python
run.py) over all backends and datasets takes more than one day to
complete. After the script is run for the first time, the datasets and
trained models are cached (in datasets and models folders, respec-
tively), so that following executions will be faster. Serveral other
arguments can be changed in the script (e.g., batch size, number of
trees, etc.).

The output of the above commands is a JSON file reporting the
training time and accuracy (if the model is not cached), and pre-
diction (process) time in seconds, as well the peak memory used.
The baseline is then compared against Hummingbird with PyTorch
(hb-pytorch), TorchScript (hb-torchscript) and TVM (hb-tvm) back-
ends. The entry is_same_output specifies whether the results of
the translated models match those of the baseline (up to a tolerance
of 10-̂6). If the result is false, the script can be re-run with the
-validate flag on to check the percentage of wrong results. The
-gpu flag can be used to run the experiments on GPU.
Operators: This directory contains the scripts to reproduce the
experiments of Section 6.1.2. The scripts are configured to run scikit-
learn and compare it against ONNX-ML, TorchScript and TVM (the
last 2 using Hummingbird), for the Iris dataset over 1 core, and with
batch of 1M. python run.py runs the benchmark for CPU, python
run.py -gpu runs the benchmark for GPU.
Pipelines: This directory contains the script to reproduce the exper-
iments of Section 6.3. There are two main scripts to run for this
experiment:

• openml_pipelines.py is used to download and train all the
scikit-learn pipelines of the openML-CC18 benchmark.

• run.py is used to run evaluate the performance of scikit-learn
and Hummingbird over the trained pipelines.

4https://www.kaggle.com/mlg-ulb/creditcardfraud
5https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

binary.html
6https://archive.ics.uci.edu/ml/datasets/

yearpredictionmsd
7https://archive.ics.uci.edu/ml/datasets/covertype
8https://archive.ics.uci.edu/ml/datasets/HIGGS
9http://kt.ijs.si/elena_ikonomovska/data.html

10https://archive.ics.uci.edu/ml/datasets/iris

916 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/microsoft/hummingbird
https://github.com/microsoft/hummingbird
https://github.com/microsoft/hummingbird
https://github.com/microsoft/hummingbird/blob/master/TROUBLESHOOTING.md
https://github.com/microsoft/hummingbird/blob/master/TROUBLESHOOTING.md
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd
https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd
https://archive.ics.uci.edu/ml/datasets/covertype
https://archive.ics.uci.edu/ml/datasets/HIGGS
http://kt.ijs.si/elena_ikonomovska/data.html
https://archive.ics.uci.edu/ml/datasets/iris

This experiment is composed of two steps. The first step in
this experiment is the generation of the prediction pipelines. This
can achieved by running python openml_pipelines.py | tee
openml-cc18.log This script takes several hours to run. While
executing, this script will log the number of successfully trained
pipelines, as well as additional statistics. Once completed, the
openml-cc18.log file contains the statistics. Per task statistics are
logged into the relative folder.

Once the first step is completed, in the second step we evaluate the
scoring time of the generated pipelines, and compare the speed-ups
introduced by Hummingbird against scikit-learn. This experiment
can be executed both on CPU and GPU, and in both cases it takes
about an hour. python run.py runs inference over all the gener-
ated pipelines, while python run.py -gpu can be used for GPU
execution.

A.6 Evaluation and expected result
In May we open sourced Hummingbird (blog post:
https://azuredata.microsoft.com/articles/ebd95ec0-
1eae-44a3-90f5-c11f5c916d15). Since then we have been
pushing our internal code into the open source repository, but the 2
versions do not match yet. Specifically:

• TVM integration is not complete. In our internal version we
re-implemented all the operators directly in TVM’s Relay but
this is not a good strategy in the long term. In the open source
version, we directly export Relay graphs from PyTorch models.
However the exporter does not cover PyTorch 100% yet. We
are however working with the TVM community for bringing
full support of TVM in Hummingbird (we suggest to check
the related issue #232 on Hummingbird’s GitHub if interested).
In practice, this means that: (1) not all operators are currently
exportable into TVM; and (2) the performance we reported in
the paper for TVM can be a bit different.

• The optimizer is not yet open sourced. This means that Figures
9 and 10 are not reproducible as of now. We hope to be able to
bring the optimizer open source in the coming months.

Besides the above two limitations, the scripts allow the reproduc-
tion of the following main results of the paper:

• trees allows the reproduction of the results of Tables 7, 9 and
10. Please check the above description for specifics.

• operators allows the reproduction of the results of Table
11 (however not all operators will run on the TVM backend).
Again, please check the related description for specifics.

• pipelines allows the reproduction of the results of Figure 12.
Also in this case we don’t cover yet 100% of the operators, but
we are close.

Keep in mind that running all the experiments for completely
reproducing the results will take several days.

A.7 Experiment customization
The above mentioned scripts can be customized by running them
with different input arguments. For instance, Table 8 in the paper can
be reproduced by setting the batch size to 1 (using the -batch_size
argument.) in the run.py script.

A.8 Notes
The numbers in the paper were run on the reported VM, however:

• As this is an Azure VM, the underlying machine can receive
upgrades necessitating the reinstallation of the NVidia drivers.

• The original experiments were run inside the context of an
Nvidia-docker container. This setup should not have a large
impact on results

Additionally, a few operators are not yet available in the open
source version of Hummingbird, therefore the final coverage reported
in the log file for the pipelines will be different than the one reported
in the paper. To check the expected coverage once all the operators
are open source, the script allows to add new operators. The same
consideration holds for the operators experiment.

As a final note: to allow third-party reproducibility, we are open
sourcing all the scripts used for the experiments.

A.9 AE Methodology
Submission, reviewing and badging methodology:

• https://www.usenix.org/conference/osdi20/call-
for-artifacts

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 917

https://azuredata.microsoft.com/articles/ebd95ec0-1eae-44a3-90f5-c11f5c916d15
https://azuredata.microsoft.com/articles/ebd95ec0-1eae-44a3-90f5-c11f5c916d15
https://www.usenix.org/conference/osdi20/call-for-artifacts
https://www.usenix.org/conference/osdi20/call-for-artifacts

Retiarii: A Deep Learning Exploratory-Training Framework

Quanlu Zhang, Zhenhua Han, Fan Yang, Yuge Zhang, Zhe Liu, Mao Yang, Lidong Zhou

Microsoft Research

Abstract
Traditional deep learning frameworks such as TensorFlow

and PyTorch support training on a single deep neural network

(DNN) model, which involves computing the weights itera-

tively for the DNN model. Designing a DNN model for a task

remains an experimental science and is typically a practice

of deep learning model exploration, dovetailed with training

and validation, aiming to find the best model among a set that

yields the best result. Retrofitting such exploratory-training

into the training process of a single DNN model, as supported

by current deep learning frameworks, is unintuitive, cumber-

some, and inefficient, because of the fundamental mismatch

between exploring a set of models and training a single one.

Retiarii is the first framework to support deep learning

exploratory-training. In particular, Retiarii (i) provides a new

programming interface to specify a DNN model space for

exploration, as well as an interface to describe the exploration

strategy that decides which order to instantiate and train mod-

els in, how to prioritize model training, and when to terminate

training of certain models; (ii) offers a Just-In-Time (JIT)

engine that instantiates models, manages the training of the in-

stantiated models, gathers the information for the exploration

strategy to consume, and executes the decisions accordingly;

(iii) identifies the correlations between the instantiated models

and develops a set of cross-model optimizations to improve

the overall exploratory-training process. Retiarii does so by

introducing a key abstraction, Mutator, that connects the spec-

ifications of DNN model spaces and exploration strategies,

while exposing the correlations between models for optimiza-

tion. As a result, Retiarii’s clean separation of DNN model

space specification, exploration strategy, and cross-model op-

timizations, connected through the single mutator abstraction,

leads to ease of programming, reuse of components, and vastly

improved (up to 8.58x) overall exploratory-training efficiency.

1 Introduction
Deep neural networks (DNNs) have been successfully ap-

plied to a variety of perception-based tasks such as vision

and speech. For each such task, a DNN model architecture,

depicted as a graph of operators as vertices, connected with

weighted edges, is designed. The model is then trained to

populate the weights, before it can be used to perform the

task. Deep learning frameworks, such as TensorFlow [11] and

PyTorch [48], have been designed to describe an individual

DNN model and train the model as a (training) job to run

on target hardware, such as GPUs. Training a deep learning

model is often resource intensive and costly.

Devising a model for a particular task often involves an

iterative exploration process, where a developer would often

start with a model architecture that captures the main intu-

itions and tweak it repeatedly until a model with satisfactory

results is identified in a continuous training and validation

process. Alternatively, a model architecture could also evolve

from simple models following a simple set of evolution rules.

There are clear gaps between the needs to support this

exploratory-training process and the existing deep learning

frameworks. First, this exploratory-training process works

on a series of deep learning models, rather than a single one,

as supported by the existing deep learning frameworks. A

developer either has to specify each model individually in a

manual, tedious, and repetitive process, or encodes this series

of models as one “jumbo” model [13, 27, 50, 65] using ad-

vanced features such as dynamic graph and control flow. Such

a “jumbo” model pollutes the original model architecture and

makes it significantly harder to understand as changes are

scattered across the model description with complex dynamic,

control-flow structures. It is also more difficult to optimize

due to the use of those dynamic, control-flow structures.

Second, deep learning frameworks manage individual train-

ing jobs and cannot capture or leverage the correlation among

the set of training jobs in the same exploratory-training pro-

cess. A developer is again forced to code certain exploration

strategies in a “jumbo” model, together with ad hoc runtime

mechanisms to manipulate the priorities of jobs or stop not-

so-promising jobs early. Such implementations of exploration

strategies are hardly reusable as they are deeply coupled with

and embedded in a particular exploratory-training process.

And there is no easy way to expose the correlations among

those models, which tend to share many common structures,

for cross-model optimizations. Training a set of models often

incurs significant cost; any efficiency gains through optimiza-

tions would often allow an exploratory-training process to

find a better model under the same budget.

We therefore propose Retiarii, the first deep learning frame-

work specifically designed to support exploratory-training. To

address the gaps we have previously identified in the existing

deep learning frameworks, we address three core problems

of exploratory-training: (i) specifying a DNN model space

to explore, (ii) defining and realizing exploration strategies

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 919

to decide when to instantiate a model in the space, which

ones to instantiate, how to prioritize the training of the in-

stantiated models, and when to terminate the jobs for training

those models, and (iii) exposing the correlations among the

instantiated models and optimizing training across models by

leveraging the correlation information.

Retiarii embraces a new Mutator abstraction as the basis for

specifying a DNN model space and for defining an exploration

strategy. Observing that the exploratory-training process tends

to introduce relatively minor modifications to existing models

or to compose simple models together following a set of

evolution rules, Retiarii allows developers to specify each

such modification or evolution as a mutator on a model graph.

A DNN model space for an exploratory-training process can

be defined as a set of base models (each specified as in the

original deep learning frameworks, with no “pollution”) and a

set of mutators. The DNN mode space is then the base models,

plus any subsequent models produced by applying mutators

to the current models, and so on. An exploration strategy can

then be partly defined to govern when to generate new models

by applying mutators, as well as which current models and

mutators to choose.

Retiarii further designs a Just-In-Time (JIT) engine for

the exploratory-training process, which essentially manages

the logical collection of all models and their corresponding

training jobs. The engine instantiates new models dynami-

cally, exposes the correlations of the instantiated models for

cross-model optimizations, schedules the optimized jobs for

execution, and manages the execution of the scheduled jobs,

governed by the specified exploration strategy.

Retiarii advocates a clean separation of concerns and strives

for simplicity and modularity. The mutator abstraction fo-

cuses on the changes to an existing model and exposes the

differences (and similarities) of models for cross-model op-

timizations. Each mutator is fine-grained, to capture a logi-

cal unit of modification, and intended to be composable and

reusable. The cross-model optimizations are also designed

and implemented as general capabilities, enabled by the muta-

tor abstraction, in Retiarii’s JIT engine. Exploration strategies

are decoupled from the specification of the model spaces

(through base models and mutators) to maximize reusability,

even though some exploration strategies might unavoidably

have dependencies on certain types of model spaces.

We have fully implemented and open sourced Retiarii 1.

So far, Retiarii implements 6 mutators to define 18 differ-

ent model spaces, 11 different exploration strategies, and 3

cross-model optimizations. These combinations have already

covered 27 NAS algorithms from the research community,

and benefit from vastly improved performance with cross-

model optimizations. Our evaluation shows that (1) Retiarii

reduces the exploration time of popular Neural Architecture

Search (NAS) algorithms by up to 2.57×, and (2) Retiarii im-

1Source code available at https://github.com/microsoft/nni/
tree/retiarii_artifact

Replace Try skip
connection

Rule-based
replace

Input

concate

1x1
conv

3x3
conv

5x5
conv

3x3
max_pool

Generalize
Input

concate

… …

Evolving
Step 0

Evolving
Step 1

Evolving
Step 2

Evolving
Step 3

Figure 1: Three typical types of model space explorations.

proves the scalability of NAS algorithms using weight sharing

with a speed-up of 8.58×.

2 Background and Motivation

The many ways of creating candidate model variations.
Developing a model typically involves creating interesting

candidate model variations following some design intuitions;

for example, by 1) tweaking a substructure (e.g., a layer or

a cell) of a base model, 2) coming up with generalized cell

structure, 3) or evolving network structure gradually, as shown

in Figure 1.

The top set of examples in Figure 1 shows different ways

of modifying a base model. One could replace an operator

at a layer with some candidate operators (e.g., normal conv,

depthwise conv), or changing a layer’s input (e.g., adding

some skip connections). The modification can also be applied

to a cell containing several interconnected layers, but treated

as a one logical layer. More generally, a matching rule can

be defined to apply modifications on the entire model (e.g.,
adding BatchNorm after convolution layers or replacing all

ShuffleNet cells [42] with Inverted Residual cells [54]).

The middle example in Figure 1 shows how one could

generalize a cell structure in order to find a better one. For

example, an Inception cell [57] can be generalized to explore a

space with different numbers of paths and a different operator

on each path. Similarly, an LSTM structure can be generalized

to an RNN cell [69]. A generalized structure usually contains

a large number of different structures.

The bottom example in Figure 1 shows how the final net-

work gradually evolves from a simple network following

some rules. The rules could be adding a layer/edge or chang-

ing a layer’s operator in each evolution step [23].

920 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Jumbo Model Single Model

Control-flow
on Tensors

Tensor

Operator

Figure 2: The jumbo model compared to a single model in

the model space. Colored circles are different operators.

The pain of specifying and exploring a model space. Ex-

ploring a model space, as exemplified in Figure 1, is not

directly supported by the existing deep learning frameworks,

such as TensorFlow and PyTorch. A model developer often

has to program and train each model manually, or to code

up all the variations of models in a model space as a sin-

gle jumbo model in TensorFlow/PyTorch through complex

control-flow, such as using specified values on the condition

of control-flows to route to each model [27, 50, 62, 70]. Fig-

ure 2 shows a simple example, a layer has four candidate

operators (e.g., normal conv, depthwise conv, avgpool, and

maxpool), there should be a control-flow to pick one during

model construction. If a layer’s input is the output of one

of the previous layers (e.g., skip connection), there should

be a dynamic control-flow to route to the right path during

model forward (i.e., forward pass of data flow graph). Some

popular model spaces [50, 62] change operators and inputs

on as many as tens of layers, leading to excessive complexity,

making the code hard to understand, and going beyond the

limited capabilities of current frameworks to handle control-

flow. The control-flow in jumbo models also make them hard

to apply compiler optimization techniques, such as operator

fusion [15, 38] and memory planning [16]. Figure 3 shows

the performance gaps in terms of throughout for ResNet50, as

a single model vs. as one encoded as part of a jumbo model.

Automatic model exploration. A DNN model space can

be explored automatically with an exploration strategy. The

action scope of exploration strategy spans from model gener-

ation to model execution.

When exploring a huge model space, it is usually impossi-

ble and unnecessary to train all the models in the space. An

exploration strategy is responsible for deciding which models

to instantiate and train, in what priority, and when to terminate.

A typical strategy on which models to instantiate could be

brute force (e.g., random search [56] and grid search [60]),

heuristic-based (e.g., evolution [23,30] and annealing algo-

rithms [36]), or more advanced model-based (e.g., Bayesian

Figure 3: The throughput of ResNet50 built as a single model

and a jumbo model. The space contains 4 choices of convo-

lution operator at each layer. Both computation graphs are

optimized by TensorFlow XLA [38].

models [33, 67] and reinforcement learning [59, 69, 70]).

An exploration strategy further manages the executions of

training instantiated model; for example, to stop the execu-

tion of a bad-performing model early based on a performance

predictor [20], or to dynamically adjust the computation re-

source provided to each model depending on the model’s

performance [64], or to run several mini-batches only and

share the weights of overlapped layers among the models to

reduce each model’s execution time significantly [27, 50].

The pain of implementing exploration strategies. An ex-

ploration strategy naturally manages a set of models. Im-

plementing such a strategy with the existing deep learning

frameworks is unintuitive and cumbersome, as those frame-

works are designed for training individual models and have

no support for an exploration strategy.

Because an exploration strategy intensively involves in-

stantiating models from a model space, the implementation

often tightly couples an exploration strategy with a specific

model space, further increasing the complexity of already

complicated jumbo models. For example, an RNN-based RL

algorithm (a popular exploration strategy) uses each of its

time steps to control the condition value of each control-flow

in the jumbo model [50]. Further incorporating the logic of

controlling model training makes the jumbo model unman-

ageable. As a result, though most exploration strategies are

logically applicable to different model spaces, the implemen-

tations embedded in the jumbo models are hardly reusable by

other model spaces.

Encoding an exploration strategy in a jumbo model also

makes it hard to expose cross-model optimization opportuni-

ties as an exploratory-training usually produces many models.

The models explored tend to have strong correlations (e.g.,
common computation logic) among them, as the variations

produced tend to touch only a certain part of the model, while

keeping the rest unchanged. The training of those models

also share the same dataset and data preprocessing logic. To

adapt a model to different tasks, the large backbone network

(e.g., BERT) is often fixed: the exploration tends to focus

on varying the structure of several added layers. Significant

opportunities, therefore, exist in leveraging common computa-

tion across model training to speed up an exploratory-training

process as a whole. When encoding an exploration strategy in

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 921

?

?

?

…

Inception cell

path 1

path n

path 2

? : Conv | DepthwiseConv | MaxPool
n : a number from 2 to 5

conv relu densemaxpool
mutate node “model/maxpool”

“model/conv”
“model/relu”

“model/maxpool”
“model/dense”

Figure 4: Base model and mutation: An example.

a jumbo model, it also becomes challenging to scale the train-

ing of this jumbo job to multiple GPUs and servers [27, 50];

in contrast, scaling to multiple GPUs is straightforward for a

set of individual jobs, each training a single model.

Insufficiency of existing AutoML systems. Previous Au-

toML systems (e.g., Google Vizier [24], Auto-WEKA [61],

Auto-Sklearn [22]) abstract the AutoML problem as hyper-

parameter tuning. Although a certain NAS problem can be

modeled as the tuning of specific hyper-parameters, it often

involves the definition of an ad-hoc set of hyper-parameters,

making it cumbersome to express different model spaces in

a general way. It is especially painful to hyper-parameterize

evolutionary NAS [13, 23, 51] where neural architectures can

randomly evolve. Moreover, the expressed architectures are

hardly understood by compilers, making optimizations almost

impossible. Some recently emerged AutoML systems (e.g.,
AutoKeras [32]) provide more support to NAS. They can au-

tomatically search neural architectures but with specifically

implemented model spaces and exploration strategies, where

system optimizations are hardly applicable.

Retiarii is designed to address the abovementioned pains.

It provides great expressiveness to support various model

spaces and strategies in a systematic and programmable way.

It clearly decouples model space from exploration strategy

and enables system optimizations to speed up exploration

process.

3 Mutator as the Core Abstraction

Exploratory-training is all about exploring a model space. Mu-

tator is the core abstraction that connects the specification and

exploration of a model space, while exposing the correlations

between models for further optimizations.

Base models. Retiarii follows the standard practice of char-

acterizing a DNN model as a data-flow graph (DFG), where

each node represents an operator (or a subgraph) with one or

multiple input and output tensors and an edge connects an

output tensor of a node to an input tensor of another node.

Retiarii introduces the notion of base models as the start-

ing points of an exploratory-training and preserves the way

a single DNN model is specified for base models. In fact,

1 create_node(name:str,op:Op,params:dict={})
2 delete_node(node:Node)
3 connect(src:NodeOutput ,dst:NodeInput)
4 del_connect(src:NodeOutput ,dst:NodeInput)
5 update_node(node:Node ,op:Op=None ,params:dict={},
6 inputs:list=None)
7 choose(candidates:list ,n_chosen:int=1,
8 type:str="choice",ctx:dict=None)

Figure 5: Mutation primitives and the choose primitive.

Retiarii can simply import base models defined in an existing

deep learning framework such as TensorFlow. Figure 4 illus-

trates an example base model with a chain of 4 operators (a

convolutional neural network).

Mutator. Exploratory-training is typically a process of ap-

plying modifications (e.g., as depicted in Figure 1) to existing

models, starting from base models. Rather than encoding mod-

ifications in a complex jumbo model, Retiarii cleanly sepa-

rates modifications from the original target models and encode

each as a Mutator, an abstraction designed to be expressive,

modular, reusable, and composable. The model space to be

explored by an exploratory-training process is then the base

models, plus all the resulting models from applying mutators

to the base models and to any subsequently generated models.

Graph matching and manipulation in Mutator. Each

mutator specifies matching criteria to identify subgraphs of

a target model’s DFG to operate on, followed by a series of

graph construction operations to modify the matched sub-

graphs to create a new model. The mutator abstraction can

also use the choose primitive to describe different options to

choose from in a mutator, so that the mutator can produce a

number of models without duplicating the mutator code to

create a new mutator for each option.

Retiarii’s current graph matching is based on node type or

node name, which is simple, but sufficient for all the use cases

we have implemented. But it can be extended easily to more

expressive graph matching if necessary.

Retiarii introduces general mutation primitives like

create_node for a mutator to manipulate the node and edge

in a model. The primitives are summarized in Figure 5. Note

that a node in Retiarii can also represent a subgraph. Thus the

primitives can also be applied to a subgraph (e.g., a layer or a

cell) of a model.

For each model instantiation, Retiarii records all the muta-

tion primitives called in a mutator. Hence Retiarii can easily

identify model correlations across instantiated models. For

example, between two instantiations of the same base model,

the nodes not modified by the mutator are considered iden-

tical. Retiarii can leverage such information to optimize the

multi-model training (details in §5).

Mutator: an example. Figure 4 depicts a model space in

which the third node (“model/maxpool”) of the base model

922 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 # define the graph mutation behavior
2 class InceptionMutator(BaseMutator):
3 def __init__(self , paths_range , candidate_ops):
4 self.paths_range = paths_range # [2, 3, 4, 5]
5 self.ops = candidate_ops # {conv , dconv , ...}
6 def mutate(self , targets):
7 if not three_node_chain(targets):
8 return err
9 n = choose(candidates=self.paths_range)

10 delete_node(targets[1])
11 for i in range(n): # create n paths
12 op = choose(candidates=self.ops)
13 nd = create_node(name=’way_’+str(i), op=op)
14 connect(src=targets[0].output , dst=nd.input)
15 connect(src=nd.output , dst=targets[2].input)
16

17 # mutation applied to the graph
18 apply_mutator(targets=["model/relu", "model/

maxpool", "model/dense"],
19 mutator=InceptionMutator(
20 [2, 3, 4, 5], [conv , dconv , pool]))

Figure 6: A mutator that constructs an Inception-like cell.

can be mutated with a multi-path cell. The cell could have

2 to 5 paths, each of which chooses an operator from Conv,

DepthwiseConv and Maxpool. Figure 6 shows the code of

the mutator, i.e., InceptionMutator, which implements the

model space illustrated in Figure 4.

All the mutation logic is encapsulated in the mutate func-

tion (lines 6-15). The entry point of the mutator is given

by targets in the mutate function (line 6 of Figure 6), to

match nodes/subgraphs in the given model. The targets of

InceptionMutator is a chain of 3 nodes. This shows that a

mutator can be applied to a subgraph with a specific pattern,

which improves the reusability of a mutator. In the example

code, the mutator first ensures that the matching is a chain of

3 nodes (lines 7-8). It will then call choose (line 9) to select

an integer n to create n paths subsequently. On creating each

path, the mutator will call choose (line 12) again to select

an operator for the node in the path. Note that the code for a

mutator can contain arbitrary complex control flow in a muta-

tor (e.g., the control loop in lines 11-15 of Figure 6), without

polluting the instantiated models, unlike in the case of jumbo

models with control flows. Finally, a call to apply_mutator
will create a mutator instance (line 18), which matches a chain

of relu, maxpool, and dense.

4 Retiarii Just-In-Time Engine

A key design decision for Retiarii to support exploratory-

training is to instantiate models to explore on the fly and

manage the training of instantiated models dynamically. This

is accomplished by Retiarii’s just-in-time (JIT) engine (Fig-

ure 7), which takes as input one or more base models, a set of

mutators, and a policy describing the exploration strategy.

The end-to-end exploratory-training process is driven by

JIT Engine

Apply
Mutators

Target Model

Base Model

MutatorMutatorMutator

Cross-Model
Optimization

Model Space

Raw DFGsRaw DFGsRaw DFGsRaw DFGs

Optimized DFGsOptimized DFGs

Model Training

Exploration
Engine

Instantiation
Control

Choice Suggestion

Feedbacks

Start/Stop

Training Control

Model Exploration
Strategy

Input to Exploratory-Training

Figure 7: The architecture of Retiarii.

the policy described as a Model Exploration Strategy. The JIT

engine maintains a set of target models, initialized with the set

of base models, and consults the model exploration strategy

to decide which target model(s) and mutator(s) to choose (i.e.,
Instantiation Control), as well as which choices to make for

each choose within those mutators (i.e., Choice Suggestion),

to instantiate new models. The decision can be guided by a

context-free strategy (e.g., making a random choice upon each

choose) or by a history-based strategy, generating choices

based on which models have been previously instantiated [60].

The choose interface in Mutator enables the customization

of the choices.

Once new models are instantiated (i.e., Apply Mutators)

as Raw DFGs, the JIT engine transparently performs Cross-
Model Optimization (§5). Because the JIT engine records

the mutation history, the Cross-Model Optimization module

can easily detect identical nodes across models to produce

optimized DFGs by applying common sub-expression elimi-

nation [44], cross-model operator batching [15, 41], and NAS

optimizations (§5). The optimized DFGs are then converted

to the standard model format for the existing deep learning

frameworks to perform single-model optimizations before

training. In Training Control, the JIT engine launches train-

ing on new models, monitors the training of instantiated and

optimized models, collects training feedbacks (e.g., model

accuracy), adjusts training priorities and resource allocation,

and terminates training of less promising models, all guided

by a model exploration strategy.

Retiarii’s Mutator abstraction and JIT engine offers an ele-

gant architecture to support exploratory-training, following

the principles of separating policy from mechanisms and

separation of concerns, and maximizing modularity, reusabil-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 923

ity, and opportunities for optimizations. In addition to the

common functionalities (e.g., Cross-Model Optimization) in

the overall infrastructure, mutators and policies encoding the

model exploration strategies might also be reused. This is in

sharp contrast to the current practice of encoding everything

in a jumbo code, which is hardly understandable or reusable

due to tight coupling.

5 Cross-Model Optimization

The DNN models instantiated by Retiarii in an exploratory-

training process tend to have significant similarities as their

DFGs share common subgraphs, thereby offering huge op-

portunities for Retiarii to optimize the training of multiple

models. With mutators that identify and record all modifica-

tions to a model’s DFG, Retiarii can easily find the common

subgraphs of multiple DFGs, circumventing the generally

NP-hard and APX-hard problem of identifying maximum

common subgraphs [34].

5.1 Cross-Model Optimization Opportunities
Three different cross-model optimization opportunities are

identified, depending on the inputs, weights, and trainability2

of operators in the common subgraphs.

Common Sub-expression Elimination (CSE). CSE is a

common compiler optimization to eliminate identical opera-

tions of a program by only computing them once. CSE can

be applied to the non-trainable operators in the common sub-

graphs with common inputs and outputs, but cannot be ap-

plied to trainable operators as their weights will change dur-

ing training, rendering their computation different after the

first iteration. In practice, we find CSE particularly useful

for merging prefix nodes of a DFG, because they are often

non-trainable operators for data loading and preprocessing, as

neural architecture search often uses the same dataset, batch

size, and preprocessing procedures. When running multiple

data-flow graphs concurrently on a single server, CSE can also

avoid contention on shared storage and CPUs to maximize

utilization of expensive GPUs.

Operator Batching. Common operators with different in-

puts and weights can potentially be batched together and com-

puted in a single operator kernel. This optimization is useful

for model exploration in multi-domain deep learning and

transfer learning [28,52,53]. In this scenario, a model is mod-

ified to a new task with only minor changes, thus those modi-

fied models usually share a common skeleton. Adapter-based

transfer learning is a one such example: networks have the

same architecture from a pre-trained network, with adapters

2Similar to most popular deep learning frameworks, Retiarii allows

model developers to specify whether the weights associated with an operator

are trainable, whose weights will be applied with gradients during back-

propagation.

Figure 8: Operator batching: An example.

inserted at different locations. Only the inserted layers are

fine-tuned [28, 52, 53]. Figure 8 illustrates an example that

two graphs share multiple layers with the same weights. After

merging the two graphs, the input of the common operators

are batched along the batch dimension, and the output of the

batched operators are split before adapters. Common opera-

tions with different weights (e.g., trainable weights) can also

be batched by leveraging special kernels (e.g., grouped con-

volution [37], batch_matmul) that can parallelly compute on

slices of an input tensor. This allows Retiarii to enable more

fine-grained sharing of GPUs by increasing SIMD utilization

with less GPU memory.

Super-Graph for Weight Sharing. Weight sharing is a

machine-learning optimization shown to deliver improved

empirical performance for certain model training: instead of

training a graph’s weights from scratch, shared weights are

inherited from other graphs to continue the training in this

graph [27, 50]. Retiarii naturally supports this training opti-

mization by allowing model developers to annotate operator

weights they want to share. Retiarii will automatically identify

the weight sharing-enabled operators in common subgraphs.

The DFGs with shared weights will be merged to build a

super-graph. By training the super-graph together in one DFG,

Retiarii can avoid overhead of checkpointing shared weights,

because with weight sharing each graph has short training

time (e.g., several mini-batches). To accelerate the training

of the merged super-graph, we further introduce a new type

of parallelism when constructing executable graphs (§5.2) by

increasing its scalability on distributed GPU clusters. Note

that super-graphs are generated and used for optimizations

only, and not exposed to developers.

5.2 Executable Graph Construction

To exploit these cross-model opportunities, Retiarii needs to

construct executable graphs from the raw DFGs. The construc-

tion involves decisions of model merging, device placement

of operators, and training parallelism, constrained by physical

environment (e.g., server configuration). Retiarii adopts a pol-

icy similar to Gandiva [64] that introspectively selects graphs

to merge. Moreover, Retiarii specifically optimizes device

placement of CSE-optimized graphs and training parallelism

924 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) CPU-based embedding (b) GPU-based embedding

Figure 9: Device placement for CPU/GPU-based pre-trained

embedding when constructing executable graphs.

of weight sharing.

Device Placement of CSE-Optimized Graphs For DFGs

sharing the same dataset and preprocessing, these common

operators can be merged by common sub-expression elimi-

nation. The most efficient execution plan of merged graphs

depends on the types of merged operators and configuration of

GPU servers. Figure 9 shows two different execution plans of

CSE-optimized graphs. Both examples use a pre-trained em-

bedding before the trainable layers. The difference is that the

embedding in 9(a) is CPU-based (e.g., word2vec [43]) while

the embedding in 9(b) is GPU-based (e.g., BERT [10, 19]).

When BERT-embedding is the bottleneck of model computa-

tion and consumes most of GPU memory, dedicating one GPU

for it can improve the pipeline and reduce memory consump-

tion. Thus, we may pack more graphs on the rest of GPUs

to improve the training throughput. Retiarii currently uses a

whitelist to identify operators that require dedicated GPUs.

We leave the automatic graph partitioning and optimization

to future work.

In Retiarii, all cross-graph optimizations are applied within

every batch of models. We first profiled the iteration time,

peak GPU memory, and GPU utilization of each model by

independently running for a few iterations. Then the models

are sorted based on the iteration time. Retiarii greedily packs

as many models as possible into one GPU. If the excutable

graph’s total training throughput is lower than that before

optimization, the optimization will be reverted.

Mixed Parallelism for Weight Sharing. Weight sharing

suffers from the scalability issue. After an exploration strat-

egy instantiates a set of models, these models need to be

trained sequentially (in an interleaved way) with different

data to guarantee that every model can use the latest version

of shared weights without losing training accuracy. A single

model can hardly scale to a large number of GPUs using data

parallelism, because a large batch size would harm model

accuracy [25, 35]. Figure 10 shows an example of how Re-

tiarii trains weight-shared models on two GPUs. Retiarii can

Figure 10: Retiarii uses mixed parallelism to improve scala-

bility of weight sharing-based training.

improve the scalability by splitting the super-graph onto mul-

tiple GPUs, when the super-graph of all models is too large

to fit into one GPU. Retiarii spreads the instantiated models

into multiple super-graphs (each on a GPU) to be trained to-

gether. This can be regarded as model parallel training of the

super-graph of all models. Moreover, in each iteration, models

in different GPUs will be fed with different batches of data

(like data parallelism), following the requirement of weight-

shared training. The shared weights will be synchronously

updated using parameter servers by averaging their gradients.

Note that, it is difficult to apply Retiarii’s mixed parallelism

to a jumbo model, since a compiler can hardly understand

and partition the sophisticated jumbo model without know-

ing each individual model’s architecture. Our evaluation in

§7.4 shows Retiarii’s mixed parallelism yields better scala-

bility that reduces the training time by up to 8.58× without

affecting validation accuracy, compared with the traditional

approach that trains the jumbo model using data parallelism.

6 Implementation

We have implemented Retiarii in about 19,723 lines of code,

in which about 5,436 lines of code for the core Retiarii JIT

engine, 5,203 lines of code for model, state, data management

with failure recovery, and 9,084 for managing training with

interfaces to various training services, such as Kubeflow [2].

We also wrote an additional 6,157 lines of code to implement

11 exploration strategies, 6 mutator classes, and 27 model

spaces [4].

Building internal representations of base models and mu-
tators. Our implementation supports base models defined in

PyTorch and TensorFlow, which we convert to their graph rep-

resentations. The conversion is done through TorchScript [9]

for PyTorch. TensorFlow naturally supports a similar graph

representation and offers the utility to output in a protobuf for-

mat. We do not yet support dynamic graphs. The mutators are

extracted through Python Abstract Syntax Trees (AST) [1].

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 925

1 class ExplorationStrategy:
2 # the APIs for instantiation control
3 def generate_graph(self , new_graph_id)
4 def on_ask_target_graph(self , graph_id)
5 def on_ask_choice(self ,graph_id ,type ,values ,ctx)
6 # the APIs for training control
7 def execute_graph(self , graph_id , load_ckpt)
8 def terminate_graph(self ,graph_id ,do_ckpt)
9 def on_ask_training_approach(self , graph_id)

10 # the APIs for getting provisioned information
11 def query_mutation_history(self , graph_id)
12 def on_receive_feedbacks(self ,graph_id ,feedback)

Figure 11: Some key APIs for an exploration strategy.

The base graph and mutators are then passed to the JIT engine.

Materializing the JIT engine. The JIT Engine drives the

whole exploratory-training process. It first starts an explo-

ration strategy which is an independent executable Python

script. The strategy uses the APIs listed in Figure 11 to inter-

act with the engine. Users are free to customize a new one

following the interface. For instantiating a model, the mu-

tators are applied one after another. On applying a mutator,

the JIT engine retrieves the subgraphs specified by targets,

and feeds them into the mutator. The instantiation is guided

by an exploration strategy through those callback functions

(i.e., “on_*”). The JIT Engine maintains all the instantiated

and trained models in a data store (i.e., SQLite in our imple-

mentation) and collects runtime information of those models,

such as model accuracy, execution time, which can by queried

by the exploration strategy. Each model can have its train-

ing approach, e.g., a training loop with a configured epoch

number and batch size. We follow the practice in PyTorch

Lightning [8] to provide a wrapper for programming and

configuring a training approach. An exploration strategy can

specify the training approach for each instantiated model.

Converting models for training. In our implementation,

the optimized graphs are trained on current deep learning

frameworks, such as TensorFlow and PyTorch. To make the

optimized graph executable on those frameworks, we imple-

ment a converter to translate an optimized graph into Ten-

sorFlow or PyTorch code. Taking PyTorch as an example,

the optimized graph is converted to a PyTorch module, i.e.,
graph nodes in __init__() and connections in forward().

In cases where an optimized graph could contain multiple

models, the losses are either added or concatenated to pro-

duce a single one. We enable device placement for a model

with each framework’s utility, such as the to() method in

PyTorch and with tf.device() in TensorFlow.

Distributing exploratory-training. Exploratory-training

usually requires lots of computation resources. In our imple-

mentation, Retiarii’s JIT engine runs on a single machine,

while the instantiated models can be distributed to wherever

computing resources are available (e.g., a cluster). For train-

ing of each model, Retiarii implements a wrapper to monitor

its execution and collects metrics (e.g., training performance)

to report back to the JIT engine.

Tolerating and handling failures. As exploratory-training

is usually time-consuming, in our implementation we deal

with failures of both the JIT engine and model execution.

All the exploration history is kept in the data store. When

the JIT engine fails, it will be restarted and recover the state

of exploration strategy by replaying the data in data store.

For model exploration, the most valuable data are the set of

models that have been explored and their observed results.

These data are usually enough to continue an interrupted

exploration from a previously known state. For an exploration

strategy that maintains its own, additional states that cannot

be recovered by our automatic mechanism, its own recovery

logic must be provided. Another type of failure comes from

the optimized graphs. If the execution of an optimized graph

fails (e.g., out of GPU memory, tensor shape mismatch), while

each model in this graph runs without error, Retiarii will revert

to running the individual models separately.

Limitations. Retiarii has limited support to dynamic graphs.

Retiarii’s mutators are applied to a base model. However,

sometimes it is difficult to extract a graph representation from

the a highly dynamic base model (e.g., Tree-LSTMs [58]).

Also, the current implementation of operator batching is lim-

ited. Some operator batching is possible but is not imple-

mented as it requires implementing new GPU kernels. More-

over, when a model is mutated, it requires additional program-

ming efforts to match the shape of adjacent layers’ input/out-

put tensors. It is currently out of the scope of Retiarii to handle

possible shape mismatch after mutation. We leave automatic

shape inference and matching to our future work.

7 Evaluation

We evaluate the performance of Retiarii for exploring neural

network architectures. Overall, the key findings include:

• The separation of model space and exploration strategy

makes it easy for Retiarii to try different combinations.

Retiarii currently supports 27 popular Neural Architecture

Search (NAS) solutions. Most of them can be implemented

by the three mutator classes provided by Retiarii.

• A number of micro-benchmarks show how Retiarii’s cross-

model optimizations greatly improve training efficiency.

• Retiarii improves the model exploration speed of three

NAS solutions by up to 2.58×, compared with traditional

approaches.

• Retiarii improves the scalability of weight sharing-based

NAS solutions and brings up to 8.58× speed-up using

the proposed mixed parallelism, compared with data paral-

lelism.

926 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Required Mutator Class
NAS Solution Model Space Exploration Strategy Input

Mutator
Operator
Mutator

Inserting
Mutator

Customized
Mutator

MnasNet [59] MobileNetV2-based space Reinforcement Learning � �

NASNet [70] NASNet cell Reinforcement Learning � �

ENAS-CNN [50] NASNet cell variant Reinforcement Learning � �

AmoebaNet [51] NASNet cell Evolutionary � �

Single-Path One Shot (SPOS) [27] ShuffleNetV2-based space Evolutionary �

Weight Agnostic Networks [23]

Evolving space w/

adding/altering nodes

adding connections
Evolutionary � �

Path-level NAS [13]
Evolving space w/

replication and split
Reinforcement Learning �

TextNAS [62] TextNAS space Reinforcement Learning � �
...

Table 1: NAS solutions currently supported by Retiarii, and required mutators to implement them in Retiarii. Please refer to [4]

for the full list that contains 27 NAS solutions in total.

7.1 Expressiveness and Reusability

Table 1 shows 8 out of 27 NAS solutions currently supported

by Retiarii (please refer to [4] for the full list). After decou-

pling model spaces from exploration strategies, developers

can easily reuse them without extra coding efforts. For ex-

ample, the exploration strategy "reinforcement learning" is

reused by MnasNet [59], NASNet [70] and ENAS-CNN [50].

Several machine learning researchers at Microsoft Research

are now using Retiarii to explore more NAS solutions by lever-

aging different combinations of model spaces and exploration

strategies.

To build these model spaces, Retiarii provides three de-

fault mutator classes. Input Mutator is to mutate inputs of

matched operators. Operator Mutator is to replace matched

operators with other operators. Inserting Mutator is to insert

new operators or sub-graphs after matched operators. We find

the three mutator classes are enough to implement most of

the listed NAS solutions. Moreover, Retiarii allows model

developers to build customized mutator classes using basic

graph mutation primitives to implement more complex model

spaces, e.g., Weight Agnostic Networks [23] and Path-level

NAS [13].

7.2 Micro-benchmarks

7.2.1 Shared Data Loading and Preprocessing

The following experiments demonstrate two micro-

benchmarks of common sub-expression elimination, where

multiple models share the same data loading and preprocess-

ing. These micro-benchmarks are evaluated on 4 V100 GPUs

with 20 CPU cores. We compare Retiarii with a baseline

that runs each model independently without CSE. For a fair

comparision, CUDA Multi-Process Service (MPS) [5] is

enabled for the baseline when Retiarii decides to packed

more than one model in a GPU.

Avoiding CPU Bottleneck. Figure 12 shows the aggregate

throughput and CPU usage with the increased number of

MnasNet0.5 (i.e., depth multiplier=0.5) models [59] running

concurrently on the 4 V100 GPUs and 20 CPU cores. The

models are trained on ImageNet with a batch size of 224 with

the same preprocessing as in [59]. The baseline approach runs

each model independently, thus each batch of data will be

loaded and preprocessed multiple times. Retiarii merges the

data loading and preprocessing across different models thus

they are executed only once. Both Retiarii and the baseline

can further pack multiple models into one GPU to run them

concurrently. The models are distributed in a round-robin way.

For example, when running 6 models, the first two GPUs are

packed with two models on each GPU, while each of rest two

GPUs runs only one model. The measured performance is

averaged over one training epoch.

Figure 12: The aggregate throughput and CPU usage with

varying number of concurrently running MnasNet0.5 models.

Overall, Retiarii increases the throughput by 3.41× when

running 8 models on 4 GPUs. The bottom figure in Figure 12

shows that training one MnasNet0.5 model has already con-

sumed about 75% of CPU cores. Thus, CPU will become

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 927

the bottleneck when running more than one model without

sharing. On the contrary, Retiarii eliminates the redundant

data loading and preprocessing. Increasing the number of con-

current models does not affect the CPU usage for data loader.

The marginal increase of CPU usage in Retiarii is due to other

computations, which can not be merged (e.g., overhead of the

training runtime).

Also note that, running 5 models does not bring higher

throughput than running 4 models. This is due to the overhead

of synchronization brought by unbalanced model assignment,

i.e., the first GPU is packed with two models while each of the

rest three GPUs runs only one model. In Retiarii, merging the

graphs will force them to be trained synchronously. Packing

two models in one GPU may increase their iteration time,

thus the rest three GPUs have to wait for the two slower

models in the first GPU in every iteration. This suggests to

merge the graphs with a similar iteration time to avoid severe

synchronization overheads.

Avoiding GPU Bottleneck. Non-trainable embedding [49]

can be regarded as a special type of data preprocessing. In this

micro-benchmark, we use BERT [19] to obtain pre-trained

contextual embeddings of input tokens from Stanford Senti-

ment Treebank (SST) dataset [55] for training TextNAS [62],

which is one of the state-of-the-art natural language process-

ing models. The batch size for each TextNAS model is 128.

Different from the micro-benchmark of avoiding CPU bot-

tleneck, the embedding computation is placed on GPU be-

cause the BERT embedding runs much faster on GPU than

CPU [3]. The baseline still runs multiple models indepen-

dently. The performance is measured by averaging over one

training epoch.

Figure 13: The aggregate throughput with varying number of

TextNAS models.

Figure 13 shows the result. Overall, Retiarii achieves 1.97×
throughput of the baseline when training 12 TextNAS models

on 4 V100 GPUs. Both the baseline and Retiarii meet out-of-

memory when running more than 12 TextNAS models. As

we have shown in Figure 9, Retiarii uses model parallelism to

dedicate one GPU to compute the BERT embedding, which

is pipelined with the training of TextNAS models on the other

three GPUs. Since the BERT embedding is the bottleneck in

each training iteration, this optimization allows the training

of more TextNAS models to be overlapped with the BERT

Figure 14: The aggregate throughput with varying number of

batched models.

embedding. In this experiment, we find Retiarii can pack

two TextNAS models on each GPU (i.e., 6 models in total)

without affecting the iteration time. And 12 models can be

packed in total with better aggregated throughput, but each

model’s iteration time is degraded. Although the baseline can

also pack up to 12 models on 4 GPUs, the compute-intensive

BERT embedding repeats three times per GPU that greatly

increases the iteration time. Only marginal improvement on

throughput is observed in the baseline when packing more

models using CUDA MPS.

7.2.2 Operator Batching

To evaluate operator batching across graphs, we insert adapter

layers to a pre-trained MobileNet [29]. Weights from the Mo-

bileNet are fixed during training. These models use the same

batch size, which is 8 images per mini-batch. Synthetic data

without preprocessing is used to avoid the gain from shared

data loading. The models are trained on one V100 GPU of

16GB GPU memory. Similar to previous micro-benchmarks,

the baseline uses CUDA MPS to execute multiple models

in one GPU. The performance is measured by averaging the

throughput over 1500 mini-batches.

Figure 14 shows the average throughput of concurrently

running models. Overall, Retiarii’s operator batching im-

proves the aggregate throughput by 3.08× when batching

192 models, compared with the baseline that can only train at

most 12 models together. Retiarii can batch more models than

the baseline because it only has one copy of (fixed) weights

from MobileNet. Only the memory for adapters is increased

when batching more models. Even when Retiarii batches 12

models, it still achieves 1.76× improvement on the aggregate

throughput. This improvement comes from the benefit of vec-

torization to execute the batched operators in a single kernel,

which increases GPU utilization.

7.2.3 Optimization for Weight Sharing

To evaluate Retiarii’s optimization for weight sharing, we

use Single Path One-Shot (SPOS) [27] to explore a model

space built by ShuffleNetV2 blocks, where a model is instan-

tiated for every batch of data. The models are trained with

928 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) NVIDIA Data Loading Library (DALI) (b) PyTorch DataLoader

Figure 16: The completion time of the search phase of three NAS approaches, each of which generates 1,000 models for training.

synthetic data on a V100 GPU of 16GB GPU memory. We

implemented two baselines that share weights of overlapped

operators among the instantiated models through weight sav-

ing and loading. In the first baseline, a checkpoint file is used

for weight sharing, i.e., a model loads its weights from the

file, then saves its updated weights to the file after training a

mini-batch. In the second baseline, the file is replaced with a

dict object located in GPU memory. Both model weights and

optimizer states (e.g., momentum) need to be checkpointed.

Figure 15: The throughput of weight sharing with and without

cross-model optimization.

The result is shown in Figure 15. By merging multiple

models as a super-graph, Retiarii’s cross-model optimization

improves the throughput by up to 6.52× when batch size

is 32, and 2.08× when batch size is 256 (compared with

checkpoint-to-file). Since SPOS only trains an instantiated

model with a batch of data, frequent checkpointing brings

significant overheads. Merging instantiated models into a

super-graph allows Retiarii to load the models only once (at

the beginning). Thus, Retiarii can use control flow to only

activate the desired model, which also saves the time of model

initialization. The performance of a jumbo model is similar

to that of Retiarii’s super-graph, the difference is that the

super-graph is automatically built by Retiarii’s JIT engine

while the same graph is manually programmed in the jumbo

model approach. This leads to a big performance gap on

parallel training which will be illustrated in §7.4, as Retiarii

fully understands each sampled graph and the weight sharing

pattern.

7.3 Speeding up Neural Architecture Search
To evaluate the performance of running NAS solutions on

Retiarii, we select three popular and representative NAS solu-

tions from Table 1: (1) MnasNet [59], (2) NASNet [70], and

(3) AmoebaNet [51]. They cover different combinations of

model spaces and exploration strategies: MnasNet and NAS-

Net use the same search strategy; NASNet and AmoebaNet

have the same model space. We compare Retiarii against

the one-off solutions built by traditional deep learning frame-

works. Since Retiarii separates the cross-model optimization

from model generation, all the three NAS solutions can lever-

age the three cross-model optimizations in §5 to accelerate

the search of architectures without extra effort.

To evaluate the traditional approaches, which are unaware

of cross-model relations, we test the following two baselines.

(1) Exclusive execution: a model is trained independently

and exclusively on one GPU. (2) Packing: multiple models

may share the same GPU using CUDA MPS without merging

their graphs; it uses Retiarii’s decisions to choose the models

to be packed onto the same GPU.

In the experiments, each NAS approach will generate 1,000

models in 20 batches (each batch contains 50 models). For a

fair comparision, Retiarii and the two baselines are given the

same set of models in the same order. We compare the time to

finish the training of all the 1,000 models for 1 epoch on Ima-

geNet’s training images [18]. We vary the batch size from 32

to 96 (batch size larger than 96 will lead to Out-of-Memory).

We also compare the performance using two implementa-

tions of the data loader, i.e., NVIDIA Data Loading Library

(DALI) [6] and PyTorch DataLoader [7], to understand the

impact of data loading. The experiments are conducted on 4

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 929

NVIDIA Tesla V100 GPUs (each has 16GB GPU memory).

Simlar to [64], we “fast-forward” the experiment by instruct-

ing model trainings to skip a number of iterations when the

iteration time becomes stable. We measure the average itera-

tion time over 100 mini-batches, which is used to project the

entire training time.

Figure 16 shows the results of the search time of differ-

ent settings. In most settings, Retiarii is substantially faster

than the two baselines due to the cross-model optimizations.

Overall, Retiarii achieves up to 2.57× speed-up on the search

time compared with the two baselines. The performance gain

mainly comes from packing multiple models in the same

GPU, and shared dataloading and preprocessing. Because the

packing baseline is agnostic to the cross-model relations, it

cannot apply cross-model optimizations thus only brings up

to 1.42× speed-up over the exclusive execution. Moreover,

due to the increased CPU burden on the larger batch size, the

packing baseline runs even slower by 31% than the exclu-

sive execution on PyTorch DataLoader when the batch size

is 96. Note that, an introspective policy, e.g., Gandiva [64],

can remedy the packing baseline’s slow-down by reverting

the packing when the training speed is slower. But the key

insight in this experiment is that only using packing without

cross-model merging will limit the space for improvement.

Retiarii achieves higher speed-up on MnasNet than NAS-

Net and AmoebaNet. Because the models from MnasNet are

designed for mobile devices that have a lower GPU mem-

ory usage and shorter iteration time, Retiarii can pack more

MnasNet models into one GPU and merge their graphs for

cross-model optimizations. As the generated models have

different memory consumption, the number of models that

can be fit in the same GPU varies accordingly. When the

batch size is 32, Retiarii can run 4-22 MnasNet models simu-

tanously; but only 4-8 NASNet/AmoebaNet models due to the

larger model size. We also observe Retiarii achieves higher

speed-up on PyTorch DataLoader, because DALI is more ef-

ficient on data preprocessing that reduces the probability of

bottleneck on CPU.

7.4 Scaling Weight-Shared Training

In addition to system optimizations, Retiarii also enables and

enhances the weight sharing optimization advocated by the

machine learning community. As shown in §7.2.3, Retiarii

builds a super-graph for weight sharing to avoid the overhead

of model building and checkpointing. This optimization can

be further improved by training the super-graph using mixed

parallelism to scale it to a GPU cluster.

In this experiment, we build a model space with Shuf-

fleNetV2 blocks described in the Single Path One-Shot

(SPOS) paper [27]. Each model in the model space is ran-

domly sampled and trained for one batch of data [17,27]. The

models are trained for 60 epochs in total on the ImageNet

dataset (with 1,281,167 images). As a result, a new model

is instantiated for every batch of data (e.g., 1281167/256×
60 = 300240 models are instantiated when the batch size

is 256). The experiment runs on two servers, each has 4

V100 GPUs. We use the common evaluation metric of weight

sharing-based approaches [12, 27] to evaluate the searched

space. We randomly sample 196 models and evaluate each

model using 256 images from ImageNet’s validation set. Then

we calculate the average validation accuracy of the 196 mod-

els. The higher the average validation accuracy is, the better

the space is explored. We compare Retiarii’s mixed paral-

lelism with three commonly used data parallelism approaches.

To understand the benefit of mixed parallelism, all the three

baselines of data parallelism and Retiarii’s mixed parallelism

enable the super-graph optimization (i.e., no saving and load-

ing of weights). Specifically, the former three are manually

programmed jumbo-models, while the latter is a super-graph

automatically built by Retiarii.

Figure 17: Training time and validation accuracy of weight

sharing. The left y-axis shows the training time (bar chart).

The right y-axis shows the validation accuracy (line chart).

Figure 17 shows the training time and validation accuracy

of the three data parallelism approaches and Retiarii’s mixed

parallelism. The data parallelism of the left two bars and Re-

tiarii’s mixed parallelism use the batch size of 256 with a

learning rate of 0.125 per model (or per 256 data samples).

As a common practice of data parallelism, scaling to 8 GPUs

requires to split each batch of data across the 8 GPUs (i.e.,
the batch size per GPU is 32). SyncBN [66] is an optimiza-

tion to calculate batch normalization across multiple GPUs,

which proves to improve the model quality, but slows down

the training due to intensive synchronization and data trans-

mission across GPUs. As shown in Figure 17, SyncBN-based

data parallelism requires more than 60 hours of training time.

Disabling SyncBN reduces the training time to ∼ 20 hours

but harms the model accuracy. In contrast, Retiarii’s mixed

parallelism greatly reduces training time (only 7.45 hours),

achieving up to 8.58× speed-up over SyncBN-based Data

Parallel training. This is because the mixed parallel training

avoids the synchronization overhead of SyncBN as each GPU

runs a different model requiring no cross-GPU synchroniza-

930 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

tion. Moreover, Retiarii’s mixed parallel training produces a

comparable validation accuracy to SyncBN-based Data Par-

allel training (61.49% v.s. 61.11%). Another practice of data

parallelism is to increase batch size and learning rate with the

increased number of GPUs. The result is shown as the second

bar on the right of Figure 17. Although the training time is re-

duces to 7.04 hours, the model’s validation accuracy degrades

significantly. This result is consistent with the common wis-

dom in deep learning community that larger batch size could

hurt model accuracy [25, 35]. In summary, Retiarii’s mixed

parallelism achieves better scalability for weight-shared train-

ing, without sacrificing model accuracy.

8 Related Work

Deep Learning Frameworks. Deep learning frameworks

(e.g., PyTorch [48], TensorFlow [11], and MXNet [14]) are

designed to describe and train an individual DNN model,

which covers only one step in the end-to-end exploration-

training process of devising a high-quality model.

Network Architecture Search Algorithms. To automate

the design of neural networks, Neural Architecture Search

(NAS) [39, 50, 59, 60, 69, 70] develops algorithms to discover

the state-of-the-art neural model architecture. Limited by the

existing deep learning frameworks, their implementations

often couple model space, exploration strategy, and model

training together, introducing barriers to innovations and op-

timizations. In contrast, Retiarii’s modular and decoupled

approach maximizes reusability and facilitates optimizations.

AutoML Systems. Automated Machine Learning (Au-

toML) automates the end-to-end process of real-world ma-

chine learning problems, e.g., AutoGluon [21], TPOT [47],

Auto-Sklearn [22], Auto-WEKA [61], AutoKeras [32]. The

implementations of these systems still couple the domain-

specific model space and exploration strategy, making it

hardly reusable to other problem domains.

The hyper-parameter tuning systems like Google

Vizier [24] and Katib [68] can be used for neural architecture

search. To use a hyper-parameter tuning system, the model

space and exploration strategy are being parameterized. Since

different model space and exploration strategy often use a

different set of parameters, this approach limits the reusability

of the implementation. Moreover, the hyper-parameter tuning

approach can limit the expressiveness of the system as

well. Some model space is hard to be parameterized, e.g.,
evolutionary NAS [13,23,51]. It is worth noting that Retiarii’s

Mutator abstraction can also be used for hyper-parameter

tuning. The hyper-parameter tuning can be treated as a

special case of neural model mutation.

DeepArchitect [46] also strives to decouple model spaces

and exploration strategies. Compared to DeepArchitect, Re-

tiarii differentiates itself with the Mutator abstraction. As

shown in §7, Retiarii can implement multiple model spaces

using a few mutators, demonstrating great reusability and

composability. More importantly, with the Mutator abstrac-

tion, Retiarii is able to exploit cross-model optimizations

easily, which is not addressed previously.

Graph Optimization for Deep Learning. Recently, there

are many proposals to optimize the computation of a single

neural network model by optimizing the data-flow graph, e.g.,
TVM [15], DLVM [63], TensorFlow-XLA [38], TASO [31],

TensorFlow-Fold [41]. In contrast, Retiarii exploits the cross-

model optimizations exposed by Mutator. HiveMind [45],

FLEET [26] and some other works [40] apply common sub-

expression elimination in the AutoML scenario to deduplicate

the common prefix nodes of multiple graphs. This can be

considered a special case in Retiarii’s larger optimization

space, which includes other techniques like operator batching

and weight sharing.

9 Conclusion
We propose Retiarii, the first deep learning framework that

supports the exploratory training on a neural network model

space, rather than on a single neural network model. The core

of Retiarii is the Mutator abstraction, which not only allows

the specification of different neural network model spaces,

interacts with various model exploration strategies, and ex-

poses the model correlations for further optimization, but also

serves as a clean interface to separate the three. The design

leads to ease of programming, reuse of model space, explo-

ration strategy, and cross-model optimization. Our evaluation

demonstrates the effectiveness of the design, showing more

than 8× improvement in the overall exploratory-training per-

formance over approaches that rely on existing deep learning

frameworks, which only support one model at a time. The

artifacts of Retiarii are available at https://github.com/
microsoft/nni/tree/retiarii_artifact.

Acknowledgments

We thank anonymous reviewers and our shepherd, Prof.

Byung-Gon Chun, for their extensive suggestions. We thank

Jim Jernigan and Kendall Martin from the Microsoft Grand

Central Resources team for providing GPUs for the evalua-

tion of Retiarii. We also thank our colleagues at Microsoft,

for their help in implementing and deploying Retiarii: Cheng-

min Chi (STCA), Shinai Yang (STCA), Deshui Yu (STCA),

Chuanjie Liu (STCA). Fan Yang thanks the late Pearl, his

beloved cat, for her faithful companion during writing this

paper.

References

[1] ast – Abstract Syntax Trees. https://docs.python.
org/3/library/ast.html, 2020. Online; accessed 30

April 2020.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 931

[2] Kubeflow, The Machine Learning Toolkit for Kuber-

netes. https://www.kubeflow.org/, 2020. Online;

accessed 30 April 2020.

[3] Microsoft open sources breakthrough optimizations for

transformer inference on GPU and CPU. https://bit.
ly/2xBD70N, 2020. Online; accessed 30 April 2020.

[4] Nas solutions supported by retiarii. https:
//github.com/microsoft/nni/blob/retiarii_
artifact/nas_allstar.md, 2020.

[5] NVIDIA CUDA Multi-Process Service. https:
//docs.nvidia.com/deploy/pdf/CUDA_Multi_
Process_Service_Overview.pdf, 2020. Online;

accessed 30 April 2020.

[6] NVIDIA DALI documentation. https:
//docs.nvidia.com/deeplearning/sdk/
dali-developer-guide/index.html, 2020. Online;

accessed 30 April 2020.

[7] PyTorch DataLoader. https://pytorch.org/docs/
stable/data.html, 2020. Online; accessed 30 April

2020.

[8] The lightweight PyTorch wrapper for ML researchers.

https://github.com/PyTorchLightning/
pytorch-lightning, 2020. Online; accessed

30 April 2020.

[9] TORCHSCRIPT. https://pytorch.org/docs/
stable/jit.html, 2020. Online; accessed 30 April

2020.

[10] Using BERT to extract fixed feature vectors (like

ELMo). https://github.com/google-research/
bert, 2020. Online; accessed 30 April 2020.

[11] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Geoffrey Irving, Michael Isard, et al.

Tensorflow: A system for large-scale machine learning.

In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16), pages 265–283,

2016.

[12] Gabriel Bender. Understanding and simplifying one-

shot architecture search. 2019.

[13] Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and

Yong Yu. Path-level network transformation for efficient

architecture search. arXiv preprint arXiv:1806.02639,

2018.

[14] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,

Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,

and Zheng Zhang. Mxnet: A flexible and efficient ma-

chine learning library for heterogeneous distributed sys-

tems. arXiv preprint arXiv:1512.01274, 2015.

[15] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin

Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,

Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An au-

tomated end-to-end optimizing compiler for deep learn-

ing. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), 2018.

[16] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos

Guestrin. Training deep nets with sublinear memory

cost. arXiv preprint arXiv:1604.06174, 2016.

[17] Xiangxiang Chu, Bo Zhang, Jixiang Li, Qingyuan Li,

and Ruijun Xu. Scarletnas: Bridging the gap between

scalability and fairness in neural architecture search.

arXiv preprint arXiv:1908.06022, 2019.

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical

image database. In IEEE CVPR 2009.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. Bert: Pre-training of deep bidirec-

tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[20] Tobias Domhan, Jost Tobias Springenberg, and Frank

Hutter. Speeding up automatic hyperparameter opti-

mization of deep neural networks by extrapolation of

learning curves. In Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

[21] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang

Zhang, Pedro Larroy, Mu Li, and Alexander Smola.

Autogluon-tabular: Robust and accurate automl for struc-

tured data. arXiv preprint arXiv:2003.06505, 2020.

[22] Matthias Feurer, Aaron Klein, Katharina Eggensperger,

Jost Tobias Springenberg, Manuel Blum, and Frank Hut-

ter. Auto-sklearn: efficient and robust automated ma-

chine learning. In Automated Machine Learning, pages

113–134. Springer, 2019.

[23] Adam Gaier and David Ha. Weight agnostic neural net-

works. In Advances in Neural Information Processing
Systems, pages 5365–5379, 2019.

[24] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,

Greg Kochanski, John Karro, and D Sculley. Google

vizier: A service for black-box optimization. In Proceed-
ings of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining, pages 1487–

1495, 2017.

[25] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-

loch, Yangqing Jia, and Kaiming He. Accurate, large

minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

932 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[26] Hui Guan, Laxmikant Kishor Mokadam, Xipeng Shen,

Seung-Hwan Lim, and Robert Patton. FLEET: Flexi-

ble efficient ensemble training for heterogeneous deep

neural networks. MLSys 2020, 2020.

[27] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-

shot neural architecture search with uniform sampling.

arXiv preprint arXiv:1904.00420, 2019.

[28] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,

Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-

mundo, Mona Attariyan, and Sylvain Gelly. Parameter-

efficient transfer learning for nlp. arXiv preprint
arXiv:1902.00751, 2019.

[29] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco

Andreetto, and Hartwig Adam. Mobilenets: Efficient

convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.

[30] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wo-

jciech M Czarnecki, Jeff Donahue, Ali Razavi, Oriol

Vinyals, Tim Green, Iain Dunning, Karen Simonyan,

et al. Population based training of neural networks.

arXiv preprint arXiv:1711.09846, 2017.

[31] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-

wski, Matei Zaharia, and Alex Aiken. TASO: optimizing

deep learning computation with automatic generation

of graph substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 47–

62, 2019.

[32] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras:

An efficient neural architecture search system. In Pro-
ceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pages

1946–1956, 2019.

[33] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schnei-

der, Barnabas Poczos, and Eric P Xing. Neural archi-

tecture search with bayesian optimisation and optimal

transport. In Advances in Neural Information Process-
ing Systems, pages 2016–2025, 2018.

[34] Viggo Kann. On the approximability of the maximum

common subgraph problem. In Annual Symposium on
Theoretical Aspects of Computer Science, pages 375–

388. Springer, 1992.

[35] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-

cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.

On large-batch training for deep learning: Gener-

alization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

[36] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vec-

chi. Optimization by simulated annealing. science,

220(4598):671–680, 1983.

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural

networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[38] Chris Leary and Todd Wang. XLA: Tensorflow, com-

piled. TensorFlow Dev Summit, 2017.

[39] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:

Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

[40] Rui Liu, Sanjan Krishnan, Aaron J Elmore, and

Michael J Franklin. Understanding and optimizing

packed neural network training for hyper-parameter tun-

ing. arXiv preprint arXiv:2002.02885, 2020.

[41] Moshe Looks, Marcello Herreshoff, DeLesley Hutchins,

and Peter Norvig. Deep learning with dynamic compu-

tation graphs. arXiv preprint arXiv:1702.02181, 2017.

[42] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian

Sun. Shufflenet v2: Practical guidelines for efficient cnn

architecture design. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 116–

131, 2018.

[43] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey

Dean. Efficient estimation of word representations in

vector space. arXiv preprint arXiv:1301.3781, 2013.

[44] Steven Muchnick et al. Advanced compiler design im-
plementation. Morgan kaufmann, 1997.

[45] Deepak Narayanan, Keshav Santhanam, Amar Phan-

ishayee, and Matei Zaharia. Accelerating deep learning

workloads through efficient multi-model execution. In

NIPS Workshop on Systems for Machine Learning (De-
cember 2018), 2018.

[46] Renato Negrinho, Matthew Gormley, Geoffrey J Gordon,

Darshan Patil, Nghia Le, and Daniel Ferreira. Towards

modular and programmable architecture search. In Ad-
vances in Neural Information Processing Systems, pages

13715–13725, 2019.

[47] Randal S Olson and Jason H Moore. Tpot: A tree-

based pipeline optimization tool for automating machine

learning. In Automated Machine Learning, pages 151–

160. Springer, 2019.

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam

Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,

Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 933

PyTorch: An imperative style, high-performance deep

learning library. In Advances in Neural Information
Processing Systems, pages 8024–8035, 2019.

[49] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt

Gardner, Christopher Clark, Kenton Lee, and Luke

Zettlemoyer. Deep contextualized word representations.

arXiv preprint arXiv:1802.05365, 2018.

[50] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le,

and Jeff Dean. Efficient neural architecture search via

parameter sharing. CoRR, abs/1802.03268, 2018.

[51] Esteban Real, Alok Aggarwal, Yanping Huang, and

Quoc V Le. Regularized evolution for image classi-

fier architecture search. In Proceedings of the aaai
conference on artificial intelligence, volume 33, pages

4780–4789, 2019.

[52] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea

Vedaldi. Efficient parametrization of multi-domain deep

neural networks. In IEEE CVPR 2018.

[53] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea

Vedaldi. Learning multiple visual domains with residual

adapters. In Advances in Neural Information Processing
Systems, pages 506–516, 2017.

[54] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey

Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: In-

verted residuals and linear bottlenecks. In IEEE CVPR
2018.

[55] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,

Christopher D Manning, Andrew Y Ng, and Christopher

Potts. Recursive deep models for semantic composi-

tionality over a sentiment treebank. In Proceedings of
the 2013 conference on empirical methods in natural
language processing, pages 1631–1642, 2013.

[56] Francisco J Solis and Roger J-B Wets. Minimization by

random search techniques. Mathematics of operations
research, 6(1):19–30, 1981.

[57] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception

architecture for computer vision. In IEEE CVPR 2016.

[58] Kai Sheng Tai, Richard Socher, and Christopher D Man-

ning. Improved semantic representations from tree-

structured long short-term memory networks. arXiv
preprint arXiv:1503.00075, 2015.

[59] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasude-

van, and Quoc V. Le. Mnasnet: Platform-aware neural

architecture search for mobile. CoRR, abs/1807.11626,

2018.

[60] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019.

[61] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin

Leyton-Brown. Auto-weka: Combined selection and hy-

perparameter optimization of classification algorithms.

In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining,

pages 847–855, 2013.

[62] Yujing Wang, Yaming Yang, Yiren Chen, Jing Bai,

Ce Zhang, Guinan Su, Xiaoyu Kou, Yunhai Tong, Mao

Yang, and Lidong Zhou. Textnas: A neural architec-

ture search space tailored for text representation. arXiv
preprint arXiv:1912.10729, 2019.

[63] Richard Wei, Lane Schwartz, and Vikram Adve. DLVM:

A modern compiler infrastructure for deep learning sys-

tems. arXiv preprint arXiv:1711.03016, 2017.

[64] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-

jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,

Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,

et al. Gandiva: Introspective cluster scheduling for deep

learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages

595–610, 2018.

[65] Chris Ying, Aaron Klein, Esteban Real, Eric Chris-

tiansen, Kevin Murphy, and Frank Hutter. Nas-bench-

101: Towards reproducible neural architecture search.

arXiv preprint arXiv:1902.09635, 2019.

[66] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue

Zhang, Xiaogang Wang, Ambrish Tyagi, and Amit

Agrawal. Context encoding for semantic segmentation.

In IEEE CVPR 2018.

[67] Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei

Pan. Bayesnas: A bayesian approach for neural archi-

tecture search. arXiv preprint arXiv:1905.04919, 2019.

[68] Jinan Zhou, Andrey Velichkevich, Kirill Prosvirov,

Anubhav Garg, Yuji Oshima, and Debo Dutta. Katib:

A distributed general automl platform on kubernetes.

In 2019 USENIX Conference on Operational Machine
Learning (OpML 19), pages 55–57, 2019.

[69] Barret Zoph and Quoc V Le. Neural architecture

search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

[70] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and

Quoc V. Le. Learning transferable architectures for

scalable image recognition. CoRR, abs/1707.07012,

2017.

934 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A Artifact Appendix

A.1 Abstract
This artifact is designed to reproduce the main results of this

work, which have two goals:

• Functionality: Retiarii can express NAS spaces using mu-

tators, explore spaces using Exploration Engine, and accel-

erate the exploration using cross-model optimization.

• Performance: Retiarii’s cross-model optimization

achieves the performance number claimed in §7.

A.2 Artifact check-list
• Algorithm: yes

• Data set: ImageNet [18], SST [55]

• Run-time environment: Ubuntu 16.04, CUDA 10.0, cuDNN

7.6.5. Root access is required.

• Hardware: GPUs with NVIDIA MPS.

• Metrics: training throughput; job completion time; model vali-

dation accuracy.

• Output: Web UI; stdout from console.

• Required disk space: 200 GB

• Expected experiment run time: 20 hours

• Public link: https://github.com/microsoft/nni/tree/
retiarii_artifact

• Code licenses: MIT License

A.3 Description
A.3.1 How to access

Clone the “retiarii_artifact” branch of Microsoft NNI’s GitHub repos-

itory.

1 git clone -b retiarii_artifact https://github.com/
Microsoft/nni.git

A.3.2 Hardware dependencies

This artifact requires at least one server with four NVIDIA V100

GPUs.

A.3.3 Software dependencies

• CUDA 10.1;

• cuDNN 7.6.5;

• Python 3.7;

• NVIDIA DALI;

• NVIDIA Apex;

• PyTorch 1.5.1;

• TensorFlow 2.3;

• Other Python packages in “requirements.txt”.

A.3.4 Data sets

• ImageNet: should be placed at “retiarii_perf/data/imagenet”.

• SST: The three text files (dev.txt, test.txt, train.txt) SST should

be placed at “retiarii_perf/data/sst/trees”.

A.4 Installation
For running Retiarii’s artifact, please install NNI v1.8 first. This

artifact contains two parts. In the folder of “retiarii_nas”, we demon-

strate the functionality of Retiarii to express different NAS solutions.

In the folder of “retiarii_perf”, we evaluate Retiarii’s performance

using cross-model optimization.

For some experiments, it requires NVIDIA MPS to be enabled.

To start NVIDIA MPS:

1 sudo ./mps_scripts/init_mps_for_all_gpus.sh
2 ./mps_scripts/set_mps_env_for_all_gpus.sh

To stop NVIDIA MPS:

1 sudo ./mps_scripts/stop_mps_for_all_gpus.sh

A.5 Evaluation: NAS Solution All-stars
In the folder of “retiarii_nas”, we have implemented 17 NAS so-

lutions using Retiarii. We support both PyTorch and TensorFlow.

Weight Agnostic Networks (wann), Path-level NAS (path_level),

and Hierarchical Representation (hierarchical) are implemented with

TensorFlow. Other NAS solutions are implemented with PyTorch.

We also provide a script to test them, which can be started using the

following command.

1 python3 retiarii.py e2e_launch.py [nas_mode]

(Use “python3 retiarii.py -L” to get the list of supported models)

After the command is executed, a Web UI URL will be given,

which contains the trial execution status.

Note that, to speed up the test, we run each generated model by

only one mini-batch (thus, returned values are all 0), you are free to

remove the ‘break’s in e2e_launch.py (ModelTrain, ModelTrainCifar,

ModelTrainTextNAS) to run each generated model completely.

This artifact has supported three classic exploration strate-

gies: random, reinforcement learning, and evolution, and also

has supported two differentiable training strategies: DARTS

training strategy and ProxylessNAS training strategy. Other

exploration strategies have been supported in NNI (https:
//github.com/microsoft/nni/blob/retiarii_artifact/
backend_nni/docs/en_US/Tuner/BuiltinTuner.md), have not

been integrated into this artifact. They will be formally supported in

Retiarii official release.

Paper Claim: Retiarii is able to support 27 NAS solutions.

Clarification: We have included 17 of the 27 NAS solutions in the

artifact evaluation. The remaining ones only have minor differences

with the included implementations (e.g., EfficientNet v.s. MnasNet,

SCARLET-NAS v.s. FairNAS v.s. SPOS). We believe the included

ones are sufficient to demonstrate the programmability of Retiarii.

Full support of the 27 NAS solutions will be included in an official

release version of Microsoft NNI.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 935

A.6 Evaluation: Retiarii Performance
A.6.1 Micro-benchmark: Deduplication to avoid CPU

bottleneck

Execution command:

1 python artifact_start.py micro_dedup_cpu --n=8

This python script will start 8 jobs (each GPU runs two jobs), then

profile the total throughput. This command takes 1.5 minutes. The

result will be printed after the profiling as follows. The error should

be within 10%.

1 Throughput: 4746.849792184445 samples/s

Paper Claim: In Figure 12, when running 8 models, Retiarii can

achieve about 5000 samples/s.

A.6.2 Micro-benchmark: Deduplication to avoid GPU
bottleneck

Execution command:

1 python artifact_start.py micro_dedup_gpu --n=12

This python script will start 12 jobs. GPU-0 runs one job, each of the

other three GPUs run 4 jobs). Then it profiles the total throughput.

This command takes 1.5 minutes. The result will be printed after the

profiling as follows. The error should be within 10%.

1 Throughput: 5028.187640607402 samples/s

Paper Claim: In Figure 13, when running 12 models, Retiarii can

achieve about 5100 samples/s.

A.6.3 Micro-benchmark: Operator batching

Execution command:

1 python artifact_start.py micro_batching --n=192

This python script will use Retiarii to pack 192 models into one job

to be run on a single GPU-0. Then it profiles the total throughput.

This command takes 10 minutes. It is normal if it has no output for

a long time, because it takes 3 minutes for the cross-model optimiza-

tion policy to calculate a plan. The result will be printed after the

profiling as follows. The error should be within 10%.

1 Throughput: 6124.981150684514 samples/s

Paper Claim: In Figure 14, when batching 192 models, Retiarii can

achieve about 5800 samples/s.

A.6.4 End-to-end Evaluation: MnasNet using DALI

Execution command:

1 python artifact_start.py e2e_dali_mnasnet

This experiment will train 1000 MnasNet models in 20 batches

(each batch has 50 models). Each model will be trained for 1 epoch

on ImageNet, which will be very time-consuming and costly if we

train all 1000 models. Since we only want to know the training

time but not the validation accuracy. We use a workaround to “fast-

forward” the training. We profile each job for 150 mini-batches to

measure the iteration time. Then we use the measured job speed to

emulate the experiment with a simple job scheduler (implemented in

“fast_scheduler.py”). The experiment takes about 1 hour to run. The

result will be printed as follows. The error should be within 10%.

1 124.35633072276445 hours for mnasnet w/ BS=32

Paper Claim: In Figure 15(a), when Batch Size=32, Retiarii can

finish NAS exploration of MnasNet in about 130 hours.

A.6.5 End-to-end Evaluation: SPOS training using
mixed parallelism

Execution command:

1 python artifact_start.py e2e_spos_mix_parallel
--n=4

This python script will start 4 jobs, each on one GPU, to train

SPOS in mixed parallelism, a new type of training parallelism we

proposed for weight sharing-based training. The super-graph is gen-

erated in the function “_gen_spos_super_graph(n_job)” in “arti-

fact_start.py”. In the paper, we used 8 V100 GPUs in two servers,

which takes about 7.45 hours to train SPOS for 60 epochs achieving

61.2% average validation accuracy. The result will be printed as

follows.

1 [03/31 02:40:46] INFO (main) Epoch [60/60]
Validation Step [196/196] acc1 0.650000
(0.611117) acc5 0.887500 (0.833490) loss
2.359303 (2.586974)

Note that, the training of SPOS is unstable. The average valida-

tion accuracy could vary from 60% to 62%. For your reference, we

also provide the training log we obtained on eight V100 GPUs in

“data/spos_8_v100.log”.

Paper Claim: In Figure Figure 17, Retiarii’s mixed parallelism can

train SPOS for 60 epochs with a batch size of 256 to achieve 61.11%.

A.7 Experiment customization

New experiments can be customized and added in “re-

tiarii_nas/e2e_launch.py” and “retiarii_perf/artifact_start.py”.

A.8 Notes

NVIDIA CUDA MPS may fail if a job is not stopped properly,

which requires NVIDIA CUDA MPS to be restarted. Experiments in

“retiarii_nas” will kill a running job for saving time, but may trigger

the failure of NVIDIA CUDA MPS. We suggest to disable NVIDIA

CUDA MPS when running experiments in “retiarii_nas”.

936 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

KungFu: Making Training in Distributed Machine Learning Adaptive

Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos Fertakis, Andrei-Octavian Brabete, Peter Pietzuch
Imperial College London

Abstract
When using distributed machine learning (ML) systems to

train models on a cluster of worker machines, users must con-
figure a large number of parameters: hyper-parameters (e.g.
the batch size and the learning rate) affect model conver-
gence; system parameters (e.g. the number of workers and
their communication topology) impact training performance.
In current systems, adapting such parameters during train-
ing is ill-supported. Users must set system parameters at
deployment time, and provide fixed adaptation schedules for
hyper-parameters in the training program.

We describe KungFu, a distributed ML library for Tensor-
Flow that is designed to enable adaptive training. KungFu
allows users to express high-level Adaptation Policies (APs)
that describe how to change hyper- and system parameters
during training. APs take real-time monitored metrics (e.g.
signal-to-noise ratios and noise scale) as input and trigger con-
trol actions (e.g. cluster rescaling or synchronisation strategy
updates). For execution, APs are translated into monitoring
and control operators, which are embedded in the dataflow
graph. APs exploit an efficient asynchronous collective com-
munication layer, which ensures concurrency and consistency
of monitoring and adaptation operations.

1 Introduction
The popularity of machine learning (ML) in many application
domains [3,15,37,75] has led to a wide adoption of distributed
ML systems. Systems such as TensorFlow [1], PyTorch [60],
MXNet [10] and MindSpore [53] exploit data and model
parallelism [1,54,66,73] to train large ML models on clusters
of worker machines. Training is typically done using the
stochastic gradient descent (SGD) algorithm [43, 68], which
iteratively computes gradients to refine the model after each
mini-batch of training data. ML systems compile training
programs into dataflow graphs [1, 10, 30, 60], which can be
executed efficiently on GPUs and other accelerators.

When training ML models, users face the challenge of
how to set a large number of configuration parameters, which
split into two classes: hyper-parameters configure the train-

ing algorithm, such as SGD, and include the batch size [68],
learning rate [68], momentum [63] and floating point preci-
sion [24]. Since hyper-parameters relate to the training pro-
cess itself, their value affects the convergence rate and the
final accuracy of the trained model. In addition, system pa-
rameters [42, 73, 81] control the operation of the distributed
ML system, such as the number of workers, the partitioning
of the training data, and the communication topology between
workers. They impact the training performance, i.e. the time
taken for the model to reach a given target accuracy.

Today users spend a substantial fraction of time tuning
configuration parameters. Different ML models have differ-
ent structures, and thus require different hyper-parameter set-
tings [52]: the hyper-parameters for a vision model such as
ResNet [26] differ from those for a language model such as
BERT [15]. For each model, hyper-parameters such as batch
size, learning rate and weight decay must be adjusted sepa-
rately to reach a high model accuracy [52]. Approaches for
automatic hyper-parameter tuning [2,18,35,45,52] search for
the best settings offline at a high resource cost. Furthermore,
system parameters such as the number of workers affect the
resources consumed by training and their efficiency. Espe-
cially in a cloud setting, users must control resource usage to
bound costs, while achieving good training performance [52].

Recently, we have seen a growing number of propos-
als [5, 12, 16, 48, 71] that argue for parameters to be adapted
dynamically during training. For example, many models only
reach high accuracy if the learning rate is decreased as the
model converges [26, 76]; the batch size can be set dynami-
cally based on real-time gradient metrics [14, 52, 83]; and the
communication strategy between workers can be adapted to
the current training loss [72]. Similarly, system parameters
can be updated to react to changes in exploitable levels of par-
allelism and resource availability. For example, the number of
workers can be changed according to the observed resource
utilisation, thus improving the utilisation of expensive accel-
erators such as GPUs and TPUs [46]; and the best communi-
cation topology among workers can be decided based on the
available network bandwidth [56].

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 937

We observe that existing distributed ML systems and asso-
ciated libraries (e.g. TensorFlow’s Distribution Strategies [1],
Horovod [73] and BytePS [8]) make it difficult to support the
dynamic adaptation of configuration parameters for a number
of reasons: (i) systems do not provide built-in mechanisms for
adaptation. Users must rely on external frameworks, e.g. Au-
toScaling [58] adapts the number of machines by deploying
extra scaling agents on each worker. Such external mecha-
nisms are specialised to support only one type of adaptation.
Since they are not integrated with the training system, they
cannot take advantage of existing functionality and optimisa-
tions. In addition, (ii) the monitoring of training metrics intro-
duces high overheads. For example, an 8-GPU server training
a ResNet model produces 4 GB of gradients per second [55].
Any monitoring system (e.g. MLFlow [84]) that computes
statistical metrics (e.g. variance [78]) over this amount of data
consumes substantial compute resources and network band-
width, which impacts the performance of the training process
itself. Finally, (iii) the management of worker state with adap-
tation is challenging. In existing systems, users typically must
checkpoint and restore all state when changing configuration
parameters, which can take hundreds of seconds [58].

We describe KungFu,1 a distributed ML training library
that is designed to adapt configuration parameters at runtime.
The key idea behind KungFu is to support Adaptation Poli-
cies (APs) written by users, which change hyper- and system
parameters during training based on real-time monitored met-
rics. KungFu achieves this by making three contributions:

(1) Expressing Adaptation Policies. APs describe how con-
figuration parameters should evolve based on monitored met-
rics. They are based on a high-level programming abstraction
following the convention of existing ML frameworks, making
integration with training environments seamless.

APs are written using monitoring, communication and
adaptation functions: (i) monitoring functions compute met-
rics for gradients, model variables and worker performance;
(ii) communication functions combine locally monitored met-
rics and transfer training state while adapting parameters; and
(iii) adaptation functions update configuration parameters,
including hyper- and system parameters.

(2) Making training monitoring efficient. KungFu supports
the efficient monitoring of the training process, as needed by
APs. Monitoring function calls are translated to monitoring
operators, which are embedded in the execution dataflow
graph. This allows monitoring operators to observe local
gradients and reuse existing computation for monitoring.

Locally monitored gradients are combined to compute
globally-aggregated metrics. This is achieved by an asyn-
chronous collective communication layer, which avoids block-
ing the dataflow during monitoring. This layer uses a decen-
tralised architecture: each worker maintains a local view of the
state for collective communication and incrementally updates

1https://github.com/lsds/KungFu

the state by exchanging messages in a peer-to-peer fashion.
To maximise the performance of gradient monitoring, each
KungFu worker has its own scheduler for collective commu-
nication. The schedulers cooperate in a decentralised fashion
to exploit high-speed multi-GPU networks, e.g. as offered by
NVLink through the NCCL interface.

(3) Distributed mechanism for adapting parameters. APs
can adapt configuration parameters on distributed worker
machines. KungFu represents configuration parameters as
computational configuration operators embedded within the
dataflow graph. In each training step, these operators can alter
their output by reading configuration parameters provided
by KungFu’s asynchronous collective communication layer.
Reading the parameters from this layer is efficient because
it reuses existing data channels between the communication
layer and the dataflow.

APs can dynamically change the parameters in the commu-
nication layer, and the result is automatically reflected in the
dataflow. KungFu’s communication layer uses a distributed
parameter adaptation algorithm to protect the consistency of
changes to configuration parameters while exploiting existing
collective communication functions. These functions have
been optimised for cross-machine communication, and thus
allow adaptation to be performed with low latency.

We implement KungFu’s communication layer and adaptation
mechanisms in Go (~7k LOCs) and C++ (~3k LOCs), inde-
pendently of the ML framework. KungFu provides Python
bindings (~2k LOCs) for the Adaptation Policy interface,
which can be used with existing ML frameworks, including
TensorFlow [1], PyTorch [60] and Keras [11].

We evaluate experimentally the benefit and overhead of
KungFu’s Adaptation Policies. We show that KungFu users
can implement a policy that dynamically adapts the batch size
based on gradient noise scale, therefore significantly reducing
the training time of a ResNet model. We also explore a policy
that automatically searches for a cost-effective number of
GPUs based on monitored worker performance when training
a BERT model, reducing the cost by 20% compared to a
static deployment. On a large-scale cloud testbed, we show
that KungFu achieves negligible monitoring and adaptation
overheads. It achieves up to 98% higher training throughput
than Horovod, a state-of-the-art distributed ML system.

2 Adaptation in ML Systems
We first give background on distributed ML systems and
their configuration parameters. We then describe current ap-
proaches for adapting parameters during training, highlighting
why existing systems offer limited support for this.

2.1 Parameters in distributed ML systems

For many ML models, increasing the amount of training data
and the size of the model improves accuracy [13, 26]. When
training, ML systems therefore exploit the parallelism of mod-
ern hardware accelerators such as GPUs. Computation is typ-

938 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/lsds/KungFu

ically expressed as a dataflow graph [1], which consists of
individual operators that can be scaled out.

A supervised ML system trains a model using labelled
samples, split into training and test data. A model gradually
“learns” to predict the labels by adjusting its model weights
based on the error. It takes several passes (or epochs) over
the training data to minimise the prediction error. The test
data is used to measure the model accuracy on previously
unseen data. A key metric is test accuracy, which quantifies
the model’s ability to make predictions “in the wild”.

The model weights are refined iteratively until the model
achieves a desired test accuracy. Let w be a vector of the
weights, and `x(w) be a loss function that, given w, measures
the difference between the predicted label of a sample (x,y)
and the ground truth y. During training, an ML system tries to
find a w∗ that minimises the average loss e.g. using mini-batch
stochastic gradient descent (SGD) [6, 7, 68]. More formally,

wn+1 = wn−
γn

b ∑
x∈Bn

∇`x(wn) (1)

where γn is the learning rate in the n-th iteration of the al-
gorithm, Bn is a batch of b training samples, and ∇` is the
gradient of the loss function, averaged over the batch samples.

To scale out the training computation across multiple CPUs
or accelerators, ML systems can exploit data parallelism. In
parallel synchronous SGD (S-SGD), K parallel workers share
model replicas and compute gradients for distinct partitions of
training data locally. Local gradients are averaged to correct
the shared model:

wn+1 = wn−
γn

Kb ∑
j<K

∑
x∈Bn, j

∇`x(wn) (2)

The averaging of local gradients is usually implemented using
all-reduce operations provided by collective communication
libraries such as Horovod [73] and BytePS [8].

In a distributed ML system, the above training process is
affected by many configuration parameters. These parameters
can be placed into two groups: (i) accuracy-oriented hyper-
parameters such as the learning rate γn, the batch size |Bn|,
momentum [63] and weight decay [38]; and (ii) performance-
oriented system parameters such as the set of workers, their
communication topology for performing synchronisation [56,
72, 73] and their roles during synchronisation, e.g. acting as
primary and back-up workers to mitigate stragglers [9].

Hyper-parameters are properties that govern the training
process and thus determine its final accuracy. They include
variables that determine the model structure and how the net-
work is trained (e.g. the learning rate). Choosing appropriate
hyper-parameters plays a key role in training. For example, if
the batch size is too high, the model may quickly settle at a
local minimum and thus exhibit poor generalisation ability;
conversely, if it is too low, the model may suffer from the
noise of small batches and thus fail to converge.

System parameters affect the training throughput and thus
the time to reach a given target accuracy. They include the
configuration of workers (e.g. the number of parallel workers)
and how they synchronise (e.g. the communication topology).
Choosing appropriate system parameters is important for per-
formance. For example, if the number of workers is too large,
the system may suffer from low GPU utilisation due to com-
munication bottlenecks; if the number of workers is too low,
the training time for large models becomes prohibitively long.

2.2 Setting parameters in ML systems

Today users spend a substantial fraction of time setting config-
uration parameters [40]. They often search a large parameter
space and decide on configuration parameters following a
trial-and-error approach [26, 76]. Specifically, they empiri-
cally decide on a set of candidate values, and launch parallel
training jobs to evaluate them [40]. They then measure the
accuracy of the trained model and the system throughput, and
eliminate under-performing settings using early-stop [40] and
searching heuristics [29, 33, 41]. After that, they empirically
choose an effective setting that reaches the target accuracy
given a deadline or a resource budget.

When choosing candidate values for hyper-parameters,
users must consider the characteristics of the datasets and
models. For example, if the dataset is large (e.g. Ima-
geNet [69]), the candidate batch size can be set larger (e.g.
2048) to improve the robustness of estimated gradients. If
the dataset is small (e.g. CIFAR-10 [36]), the candidate batch
size must be small (e.g. 64) so that it results in sufficiently
many gradients to correct the model. Many large ML mod-
els (e.g. ResNet [26] and BERT [15]) have a complex loss
space. When training such models, users often need to use a
schedule of hyper-parameters (e.g. changing the learning rate
at epochs 30, 60 and 90 for ResNet) to improve the quality of
a found minima.

When choosing candidate system parameters, users con-
sider the specification of hardware and the conditions of the
network. For example, using a ring-based all-reduce topol-
ogy among workers exploits the full host network bandwidth
but it increases the depth of the topology, which adds to la-
tency [80]. Setting the topology to be a star reduces latency
but it requires larger bandwidth at the root node. In addition,
good system parameters achieve a balance between compute
and network utilisation. For example, in a cloud environment
in which bandwidth is limited, training with NVIDIA V100
GPUs should only use few workers to prevent underutilising
the expensive GPUs due to network bottlenecks; however, if
NVIDIA K80 GPUs are used, a user would typically choose
more workers to improve system throughput.

2.3 Dynamic adaptation of parameters

Recently, there has been a growing number of proposals to set
configuration parameters dynamically based on metrics of the
training process [5, 12, 16, 48, 71]. The idea is to incorporate

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 939

Class Practitioners Monitored metrics Adaptation action

Accuracy

OpenAI [32, 52], Google [77] Gradient noise scale Scale batch size when the noise scale increases
Kuaishou [47] Gradient signal-to-noise ratio Create online metrics for model generalisation ability
Apple [31] Gradient variance Adapt learning rate based on the gradient variance
DeepMind [4], NVIDIA [59] Gradient second-order metrics Adapt learning rate based on the second-order metrics

Performance
Microsoft [80], Uber [73] Worker communication rate Adapt worker communication topology based on rates
Google [58], Huawei [82] Worker utilisation Adapt the number of workers based on utilisation
Google [9], MIT [46] Worker processing speed Adapt the roles of workers based on straggler detection

Tab. 1: Recent proposals for the dynamic adaptation of parameters

knowledge about the training process and its progress through
gradient properties and performance metrics on-the-fly.

Gradient properties include gradient signals, noise or de-
rived signal-to-noise ratios, and they reflect the status of the
trained model and the characteristics of the local loss space.
They can be used to improve the setting of hyper-parameters,
such as batch size and learning rates. Worker performance
metrics, such as worker communication rate and processing
rate, reflect the hardware and network conditions. They can
be used to decide on the number of workers and their com-
munication topology. Using monitored metrics to choose con-
figuration parameters can significantly reduce the need for
trial-and-error approaches when searching for suitable hyper-
parameters. Instead of spending resources on a search process
offline, fewer resources are used for the continuous calibration
of configuration parameters during the learning process.

As summarised in Tab. 1, multiple proposals focus on
adapting hyper-parameters to improve model accuracy. They
often adapt critical hyper-parameters such as batch size and
learning rate based on gradient properties. Researchers from
OpenAI and Google Brain propose to monitor gradient noise
scale to predict the optimal batch size when training deep
learning models [32, 52, 77]; researchers at Kuaishou use the
gradient signal-to-noise ratio to evaluate the generalisation
ability of a model [47]; Apple automatically scales the learn-
ing rate based on gradient variance [31]; and DeepMind and
NVIDIA use approximated metrics for second-order gradi-
ents to predict the best learning rate [4, 59]. Using such prop-
erties to set hyper-parameters has become important when
training increasingly complex ML models. Users know little
of the pre-conditions of these models, and hyper-parameters
must be therefore set based on monitored properties [6].

Other proposals adapt system parameters to achieve higher
training performance, e.g. reacting to changes in the ex-
ploitable parallelism and resource availability. As shown in
Tab. 1, Microsoft and Uber propose to measure workers’ com-
munication rates, which are useful for optimising the topology
of all-reduce operations [73,79,80]; Google and Huawei mon-
itor worker utilisation to update the number of workers for
increased resource utilisation [58, 82]; and Google detects
straggling workers by analysing the distribution of worker
processing rates and adapts the roles of workers, e.g. using
backup workers to replace stragglers [9]. Using worker perfor-

mance metrics to tune system parameters is an increasingly
common practice. Many distributed ML systems are being de-
ployed in cloud [25] and heterogeneous environments [23]. In
such environments, the hardware specifications and network
conditions are hard to predict, and thus system parameters
must be adapted in the actual environment at runtime.

2.4 Open challenges

Although promising, proposals to adapt parameters are hard
to realise in current systems, such as TensorFlow [1] and
PyTorch [60]. Practitioners report three main challenges:

(1) No built-in mechanisms for adaptation. Existing dis-
tributed training libraries such as Horovod [73] provide insuf-
ficient mechanisms for adaptation. Users must rely on exter-
nal systems that provide custom monitoring and adaptation
components, which must be integrated into training systems:
AutoScaling [58] adapts the number of workers at runtime by
deploying extra scaling agents on each worker using a custom
TensorFlow version, which can be managed by the scaling
agents; Horovod Elastic [46] requires users to modify their
existing training programs so that they can be executed by a
custom elastic training runner.

In general, such external systems are specialised to support
only a single type of adaptation, usually elasticity. They are
not general adaptive training platforms with support for flexi-
ble monitoring and different types of adaptation (e.g. related
to the communication topology). The lack of unified adapta-
tion abstractions prevents adaptive training from leveraging
existing ML system mechanisms and optimisations.

(2) High monitoring overhead. The dynamic adaptation pro-
posals from Tab. 1 require fine-grained monitored metrics as
input, but monitoring is expensive: an 8-GPU server training
a ResNet model produces 4 GB of gradients per second [55],
and this is even larger for recent language models such as
BERT [15]. Shipping such an amount of gradient data from
workers to a monitoring system such as TensorBoard [1],
MLFlow [84], and Prometheus [64] consumes substantial
network bandwidth. In addition, there is the overhead of com-
puting complex statistical metrics (e.g. variance [78] or signal-
to-noise ratios [47]) from gradients. All of this may impact
the performance of the training process itself.

(3) Expensive state management under change. Workers
maintain complex state, including model variables, hyper-

940 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

parameters and system parameters. This state must be man-
aged carefully under adaptation: changing the number of
workers must be reflected correctly in all dependent hyper-
parameters, such as the learning rate and the data partitioning;
otherwise the training result is affected adversely. In existing
systems, users typically must checkpoint and restore all state
when changing system parameters. This prevents users from
extensively applying adaptation during training, as restoring
the state can take hundreds of seconds [58].

3 Adaptation Policies
In this section, we introduce Adaptation Policies (APs), as
supported by KungFu, which adapt configuration parameters
based on monitored metrics. We provide an overview of the
features of APs and describe the programming abstraction
given to users to develop custom APs.

3.1 Overview

Our goals for APs are as follows: (i) we want to provide an
expressive policy programming abstraction. The abstraction
should follow conventions of existing ML frameworks. Users
can thus develop their own policies with low effort. Moreover,
(ii) we want to make policies easy to integrate with existing
ML frameworks. This will allow users to choose policies
based on their training scenarios and combine multiple polices
for more advanced adaptation.

APs provide functions to help users implement custom
monitoring and adaptation logic. Policies use monitoring func-
tions to compute real-time metrics for worker performance
and gradients. Locally monitored metrics can be combined us-
ing communication functions, which cover collective (broad-
cast and all-reduce) and point-to-point (serve and request)
operations. Based on the monitored metrics, policies invoke
adaptation functions to update the hyper-parameters and sys-
tem parameters of the systems.

ML frameworks such as TensorFlow [1], Keras [11] and
MXNet [10] provide a high-level training abstraction. Users
call a generalised training method, which automatically trains
a model until certain conditions (e.g. epoch counts) have
been met. We want APs to be ported easily between ML
frameworks, and we base APs on a framework-independent
adaptation API (see Tab. 2).

To integrate this API with a framework, we observe that
frameworks often support user-defined callbacks (e.g. Hooks
in TensorFlow), which are repeatedly called during training.
Today these callbacks have limited use—they usually imple-
ment checks for finishing conditions and logging functionality.
KungFu’s adaptation API can be implemented with callbacks,
thus facilitating the integration with existing ML frameworks.

3.2 Sample AP for batch size adaptation

Next we describe a sample AP for dynamically increasing
the batch size of S-SGD training based on online gradient
noise scale (GNS) [52, 77]. The increase in batch size is
implemented by adding extra workers. This allows the policy

1 ... # Import ML framework libraries
2 import kungfu as kf
3
4 class GNSPolicy(kf.BasePolicy):
5 # Create policy state
6 def __init__(self, gns_opt):
7 self.opt = gns_opt
8 self.prev_gns = None
9 self.sync = True

10
11 # Synchronise model variables under adaptation
12 def before_epoch(self):
13 if self.sync:
14 for v in self.opt.variables():
15 v = kf.broadcast(v, 0) # Synchronise state
16 self.sync = False
17
18 # Adapt the number of workers if the GNS is growing
19 def after_epoch(self):
20 avg_gns = kf.allreduce(self.opt.gns()) / kf.size()
21 if self.prev_gns is None:
22 self.prev_gns = avg_gns
23 elif avg_gns > self.prev_gns:
24 new_size = int(kf.size() * avg_gns / self.prev_gns)
25 if new_size != kf.size():
26 kf.resize(new_size) # Scale the system
27 self.sync = True
28 self.prev_gns = avg_gns
29
30 model, data = ... # Import a model and a dataset
31 opt = SGDOptimizer(...)
32 opt = kf.OptimizerWithGNS(opt) # Embed monitoring
33 estimator = Estimator(model, opt, ...) # Create a trainer
34 policy = GNSPolicy(opt) # Instantiate the policy
35 estimator.train(data, hooks=[kf.PolicyHook([policy], ...)])

Listing 1: Sample Adaptation Policy for GNS

to increase training throughput, thus reducing completion
time.

As shown Listing 1, the GNSPolicy is defined by extend-
ing a BasePolicy class (line 4). The policy includes the
__init__ function (line 6), which defines variables that main-
tain the policy state, such as the previously observed GNS
metrics and a flag indicating if workers must synchronise
their state (lines 7–9). The policy further has user-defined
functions that trigger the adaptation logic at different times in
a training process. The before_epoch function (line 12) is
called at the start of each training epoch. Newly joined work-
ers do not have state that is consistent with existing workers.
It is thus necessary to broadcast (line 15) the model state.
The after_epoch function (line 19) computes the averaged
GNS metric at the end of each epoch using an all-reduce
operation (line 20). Based on its value, the number of work-
ers is increased by the resize function (line 26). To enable
GNS monitoring, a user wraps the original SGDOptimizer
with kf.OptimizerWithGNS (lines 31–33), which embeds
the GNS monitoring operators into the training dataflow.
The GNSPolicy is then passed to PolicyHook (line 35) to
schedule its execution during training.

3.3 Adaptation Policy interface

To define APs, users implement custom policy functions.
These functions can make API calls for communication, mon-
itoring and adaptation, which are called at different times
during the training process. There are three groups of pol-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 941

Class Functions Description

Communication

broadcast(tensor, rank)→ Tensor Broadcast a tensor from a worker to all other workers
allgather(tensor)→ [Tensor] Gather tensors from all workers and distribute the combined tensor to them
allreduce(tensor)→ Tensor Aggregate tensors from all workers and distributes result back to them
keep(tensor, tag) Keep a tagged tensor which can be requested by other workers
request(rank, name, tag)→ Tensor Request a tagged tensor from a specified worker

Monitoring
comm_rates()→ Tensor Measure tensor communication rates with other workers
gns(grads, avg_grads)→ float Compute the gradient noise scale
. . . Custom gradient monitoring operators

Adaptation

rank()→ int Get the worker rank
size()→ int Get the number of workers
set_tree(tree)→ bool Set the tree of collective communication. Return True if succeed
resize(size, workers=None)→ bool Resize the cluster based on a worker list. Return True if succeed
detached()→ bool Check if the worker is detached due to resizing

Tab. 2: KungFu APIs for Adaptation Policies

icy functions: (i) the before/after_train functions are
called at the start and end of a training job, respectively;
(ii) the before/after_epoch functions are called at the start
and end of each training epoch, respectively; and (iii) the
before/after_step functions are called at the start and end
of each training step (i.e. iteration), respectively.

In these policy functions, users can call APIs for training
communication, monitoring and adaptation:

Communication. Tab. 2 lists the communication functions in
APs. ML frameworks typically use tensors as their basic data
types for gradients and model variables. To work with such
data, the communication functions take tensors as inputs. APs
need to collect monitored metrics from all workers, which can
be achieved by calling collective communication functions:
(i) the broadcast function distributes a tensor from a worker
to all other workers; (ii) the allgather function gathers ten-
sors from all workers and sends the combined tensor to all
workers; and (iii) the allreduce function aggregates tensors
from all workers and returns the results back to them.

In addition, APs must manage and communicate the state
of trained models among workers. For example, APs for
communication-efficient asynchronous training [44] or ro-
bust model averaging [85] must explicitly manage the lifecy-
cle of model states and communicate states to synchronise
diverged workers. To support state management and commu-
nication, the KungFu API provides a keep function that tags
a model that is being trained (i.e. the state) and caches it in
memory. APs can then read tagged models on other workers
asynchronously using a request method.

Monitoring. Tab. 2 lists the monitoring functions, which APs
use to monitor worker performance and gradients. APs use
a comm_rate function to measure the tensor communication
rates between a local worker and its peers. These rates are use-
ful for deciding the optimal communication topology among
workers. To monitor gradients, APs can use gns to compute
the gradient noise scale. For other statistical metrics, such
as variance, policies can use the above collective communi-

cation operators. For example, the computation of gradient
variance requires both the sum of gradients and the sum of
the square of gradients element-wise [78]; both summations
can be computed using the allreduce function.

Adaptation. Based on monitored metrics, APs call adapta-
tion functions to update configuration parameters. To update
hyper-parameters, APs use the allreduce function to com-
pute new values and assign them to hyper-parameters, rep-
resented as params. To update system parameters, APs call:
(i) set_tree to set the collective communication topology
among workers; and (ii) resize to update the number of
workers. Some workers may need to leave the training after
adaptation. APs can use the detached function to check if
a local worker is still part of the training. If not, the AP can
direct workers to exit gracefully.

3.4 Practical considerations

To support APs in real-world distributed ML systems, we
must address several practical considerations:

Imperative and symbolic execution. To balance ease-of-use
and performance, TensorFlow and PyTorch support impera-
tive (TensorFlow Eager) and symbolic (TensorFlow Auto-
Graph and PyTorch TorchScript) execution, and APs must
therefore also support both.

In TensorFlow Eager and PyTorch programs, users often
want to customise the training process. Therefore they ex-
plicitly implement the training loop and call custom training
functions (e.g. to compute gradients) imperatively in each
iteration (i.e. step). This offers great flexibility but prevents
callbacks from being used. In this case, KungFu allows the
communication, monitoring and adaptation APIs from Tab. 2
to be called directly from inside the training loop.

To support symbolic execution, each function in Tab. 2
has a symbolic version. For example, the resize function
has an equivalent symbolic version: resize_op. This allows
KungFu APIs to be embedded into symbolic training pro-
grams (e.g. tf.function).

942 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Listing 1 shows the hybrid usage of the KungFu im-
perative and symbolic APIs. The OptimizerWithGNS opti-
miser (line 32) appends gns_op operators to each gradient
computation operator at compilation time of the dataflow
graph, ensuring that the monitoring operator can execute im-
mediately as long as its upstream gradient is available. The
policy functions (lines 12–19) are called imperatively. This hy-
brid usage has an important advantage: the compute-intensive
monitoring operators are embedded into the training dataflow
graph, while the inexpensive user-defined adaptation logic can
be triggered in different policy functions without re-compiling
the dataflow graph.

Policy composition. Users can compose multiple APs to
create advanced adaptive training applications (i.e. the
PolicyHook (line 35 in Listing 1) can take multiple APs as
input). For example, they can use two APs, one implementing
elastic training (denoted as AP1) and the other an adaptive
learning rate (denoted as AP2). These APs are chained as
a list, which is passed to the training program. A current
limitation is that users must decide manually on the correct in-
vocation order: assuming AP1 modifies the worker count and
AP2 uses the count to scale the learning rate, the execution
order must be AP1 followed by AP2. We leave a mechanism
for automatically determining the AP order to future work.

API restrictions. KungFu only imposes minimal API restric-
tions on AP developers, and APs can call any of the communi-
cation/monitoring/adaptation APIs in their callback functions.
The calls have global atomic semantics, and there are no con-
straints on the call order. The only exception is that if a worker
has left the cluster (checked by detached), it cannot further
invoke collective communication APIs.

Error handling. AP developers must handle errors such as
worker failures in a traditional fashion. If a KungFu API trig-
gers an internal error, the exception is exposed as a dataflow
error, as defined in existing ML frameworks, and checkpoints
can be used for recovery.

4 Supporting Monitoring in KungFu
We describe KungFu, a distributed training library that can
efficiently execute the proposed APs. APs must continuously
monitor gradients to determine online adaption decisions,
which must be done with low overhead. We begin with an
overview of KungFu’s design and then describe its support
for efficient gradient monitoring in detail.

4.1 Design overview

To support monitoring, KungFu’s design has the following
goals: (i) KungFu should minimise extra computation when
monitoring gradients, and worker resources should focus on
training the model; (ii) KungFu should not block the train-
ing when monitoring gradients using collective communi-
cation operations due to the length of such operations; and
(iii) KungFu should efficiently monitor gradients, given the

Worker 2

TensorFlow a

b

Policies

Worker 1

TensorFlow

Dataflow

Worker 0

TensorFlow

NCCL scheduler

Asynchronous collective
communication layer

NCCL scheduler

Asynchronous collective
communication layer

NCCL scheduler

Asynchronous collective
communication layer

c

d

Dataflow Dataflow

Fig. 1: KungFu architecture

large volume of gradients in today’s models.
Fig. 1 gives an overview of the KungFu architecture. Users

can declare an AP (see a) as part of a ML training program
written in TensorFlow. TensorFlow then creates a dataflow
program to train the model. To monitor gradients in this
dataflow, KungFu transforms the monitoring calls from the
AP into monitoring operators (see b), which are embedded in
the dataflow. This allows monitoring operators to (i) directly
monitor gradients produced by the dataflow and (ii) reuse in-
termediate computation results in the dataflow for monitoring.
For example, it becomes possible to exploit the existing aver-
aged gradients computed when synchronising model replicas.

The monitoring process must compute globally-aggregated
metrics from local gradients on workers. In KungFu, this
exploits regular collective communication primitives (e.g. all-
reduce and all-gather). To overlap monitoring and synchroni-
sation as much as possible, KungFu has a new asynchronous
collective communication layer (see c). Using this layer, the
dataflow executed by workers can launch asynchronous col-
lective communication operations without blocking.

The asynchronous collective communication layer also
avoids having an expensive central coordinator, as used for in-
voking synchronous collective communication operations in
existing systems, such as Horovod [73]. Instead, the KungFu
communication layer follows a decentralised architecture:
each worker maintains a local view of the complete cluster
state used for collective communication and incrementally
updates the state by exchanging messages with workers in
a peer-to-peer fashion. This decentralised design avoids the
need for APs to coordinate the order of collective communi-
cation across the system. It also prevents a central coordinator
from becoming a potential bottleneck.

To improve the performance of collective communication,
each KungFu worker has an NCCL scheduler (see d). This
allows the worker to exploit high-speed multi-GPU networks,
such as NVLink [57] and GPU RDMA, through the NCCL
interface [56]. The scheduler tracks the availability of gra-
dients on each GPU on the machine, and invokes a local
NCCL library to execute a collective communication opera-
tion for fetching gradients. To combine the results on multiple
workers across different machines, workers use KungFu’s
asynchronous collective communication layer, thus following
a hybrid architecture for collective communication.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 943

g1

g2

g3

g1

g2

g3

Dataflow

Collective communication

Worker 0

datag1

control data

control data

control data

Collective

Worker 1 Worker 2 Worker 3

Named collective message

Named collective states

a Dataflow

b c

d

Collective

Dataflow

Collective

Dataflow

Ring topology

Fig. 2: Dataflow collective communication

4.2 Embedding monitoring within dataflows

To reduce the compute cost of calculating monitored metrics,
KungFu exploits the fact that modern ML frameworks (e.g.
TensorFlow, MXNet and PyTorch) have built-in dataflow en-
gines. These engines offer efficient operators for tensor com-
putation. They also handle the device placement of operators,
leveraging parallel computation on accelerators such as GPUs
and TPUs. Our observation is that a dataflow engine can also
execute monitoring operators by embedding them within the
dataflow graph for efficient execution.

To realise this design, KungFu implements the gradient
monitoring functions (e.g. gns in Tab. 2) and the collective
communication functions (e.g. allreduce, broadcast and
allgather) as dataflow operators. Since gradients are repre-
sented as tensors in the dataflow graph, KungFu’s dataflow
operators must accept tensors as input. The embedding occurs
at compilation time of the dataflow. The monitoring opera-
tors are thus part of the dataflow, and they can be scheduled
immediately by the dataflow engine when their inputs, i.e.
gradients, become available.

To embed its functions as operators, KungFu provides dis-
tributed optimisers (e.g. OptimizerWithGNS in line 32 in
Listing 1) to wrap the original gradient descent optimisers.
The KungFu optimisers automatically embed monitoring op-
erators into the training dataflows. These operators intercept
gradient tensors produced in each training iteration and for-
ward them to gradient computation operators. The results are
maintained in the dataflow and can be read subsequently by
the policy functions in APs (line 20).

4.3 Collective communication for dataflows

Dataflows that implement APs use collective communication
when computing global gradient metrics. While some gra-
dient metrics (e.g. GNS) can be fused with synchronisation
operations, others (e.g. gradient variance) cannot and require
extra rounds of collective communication. Asynchronous col-
lective communication thus allows these to be overlapped

with gradient synchronisation, reducing the overhead of gradi-
ent monitoring. In addition, since dataflows are often executed
asynchronously, the coordination with synchronous collec-
tive communication, as in Horovod, increases latency, which
asynchronous communication avoids.

Allowing dataflows to launch collective communication
asynchronously, however, can result in inconsistent computa-
tion. For example, the dataflows executed on different workers
can produce gradients in different orders. If a worker receives
the collective communication messages belonging to different
gradients, they may compute inconsistent results.

Fig. 2 illustrates this problem. The example considers
4 workers that perform collective communication. They exe-
cute the same dataflow graph (shown as a), which contains
3 operators for computing gradients, g1, g2 and g3. On dif-
ferent workers, the operators g2 and g3 can complete in a
different order. To avoid mixing the collective communica-
tion data for g2 and g3, Horovod [73] employs a centralised
coordinator. The coordinator tracks which gradients are ready
on workers and launches collective communication operators
for these in the correct order. This, however, not only reduces
concurrency in the collective communication layer but it also
makes the central coordinator a scalability bottleneck.

KungFu adopts a decentralised architecture that efficiently
and safely implements asynchronous collective communica-
tion. It comprises several components:

Named collective messages. The collective communication
layer in KungFu uses named collective messages (see b in
Fig. 2) to communicate data. The delivery of these messages
follows the collective communication topology (e.g. the ring
topology shown in c). Each named collective message carries
(i) the data and (ii) a key, which is used to identify which
gradient the data belongs to. The key is derived from the
unique key assigned by the ML framework to each dataflow
operator. If such as key is unavailable, users can explicitly set
it through KungFu’s collective communication API.

Named collective states. When receiving a named collective
message, a KungFu worker uses it to update its local named
collective state (see d). The worker extracts the key from the
message and identifies the state entry with the intermediate
collective communication. Each entry contains a data and a
control part: the data part is the buffer with the intermediate
collective communication result, e.g. max, min or sum, which
has been accumulated so far; the control part records how
many named collective messages have been processed and
which worker is the next hop to deliver the local intermediate
collective communication results. If the worker finds itself
as the last hop in the collective communication topology, it
returns the result to the dataflow.

KungFu minimises the memory footprint of the collec-
tive messages and states. Since KungFu targets synchronous
data parallel training, all asynchronous all-reduce operations
must have completed in one training iteration before start-

944 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ing the next. This limits the number of concurrent collective
messages and states in memory. To further reduce memory
consumption, KungFu frees the states and messages when an
asynchronous all-reduce operation has completed. If possi-
ble, KungFu reuses buffers from the ML framework (Tensor-
Flow/PyTorch), and it uses a pool to recycle buffers.

4.4 Accelerating collective communication with NCCL

High-end deep learning servers have fast communication
links between GPUs (e.g. NVLink, which is 10× faster than
PCIe [57]) and fast network connectivity between servers (e.g.
GPU RDMA using InfiniBand). To speed up gradient com-
munication and monitoring, KungFu workers exploit these
fast links for collective communication.

In practice, users often employ NVLink and GPU RDMA
through the NCCL collective communication library [56].
NCCL provides a synchronous collective communication API,
following an MPI model [21]. At any time, an NCCL client
can only launch a single collective communication operation;
otherwise multiple NCCL operations interfere on the NVLink.
Existing NCCL-enabled systems (e.g. Horovod-NCCL [73])
therefore adopt a centralised master architecture to coordinate
distributed workers when using NCCL operations with gradi-
ents. This design, however, is not compatible with KungFu
because its collective communication layer has a decentralised
architecture.

Instead, KungFu workers use decentralised NCCL sched-
ulers. Each scheduler tracks which gradients are ready on
which GPU. The schedulers guarantee that gradients are pro-
cessed by each NCCL instance in the same order. In the first
training step, all NCCL schedulers monitor the order of gra-
dients produced by local dataflow computations. They gather
all orders and determine which order is most frequent. The
most-common order (named gradient order) is broadcast to
all schedulers. The schedulers must strictly follow the gra-
dient order when calling NCCL. This ensures that NCCL
schedulers launch collective communication for gradients
consistently, without a need for central coordination.

KungFu currently offloads all collective communication
requests, including those for gradient synchronisation and
monitoring, to its NCCL schedulers if NVLink and InfiniBand
are available locally. A future extension is to decide which
requests to offload based on latency requirements: gradient
monitoring could use asynchronous collective communication
to overlap with training as much as possible; and throughput-
intensive gradient synchronisation could use the NCCL-based
collective communication.

5 Adapting Parameters of Workers
In this section, we describe how KungFu uses APs to adapt
the parameters of its distributed workers.

5.1 Adapting dataflow parameters

Changing configuration parameters of a distributed ML sys-
tem introduces challenges. Most systems require static param-

all_reduce

gradients

#workers

tree

Communication layer
Configuration parameters

Dataflow

all_reduce

gradients

#workers

tree

Communication layer

Dataflow

b

Worker 0 Worker 1

a

c Detecting inconsistency and running barrier

Fig. 3: Parameters as configuration operators

eters, which can be treated as constants when compiling the
dataflow graph. After compilation, the dataflow graph is fi-
nalised and offloaded to GPUs for execution. Further changes
to parameters are thus no longer reflected in the dataflow.

Therefore, elastic ML systems, such as Horovod Elas-
tic [73] or Auto-Scaling [58], require users to use a dynamic
execution mode of the ML framework, e.g. the “eager” mode
in TensorFlow. The dynamic mode allows parameters to be
updated in each training step, but it prevents the dataflow from
being compiled, which results in large performance overheads.
In addition, elastic ML systems only support changes to cer-
tain parameters, such as the number of workers. Users must
still develop ad-hoc approaches when changing other parame-
ters, such as the communication topology.

KungFu’s design supports the online adaptation of dataflow
parameters, while allowing the dataflow graph to be compiled.
The core idea is that, instead of providing configuration pa-
rameters as static parameters when compiling the dataflow,
KungFu adds parameters as computational configuration oper-
ators as part of the dataflow graph. In each training step, these
configuration operators can dynamically alter their output by
reading configuration parameters provided by KungFu’s com-
munication layer. This is efficient because it reuses existing
data channels between the communication layer and the GPU.
APs can dynamically change the parameters in the commu-
nication layer, and the result is reflected within the dataflow
graph during execution.

Fig. 3 illustrates this idea. We assume that the dataflow
graph is used to average local gradients, and it computes the
sum of local gradients using an all-reduce operator. The AP
changes (i) the number of workers and (ii) their collective
communication topology. These two parameters are therefore
provided as dataflow configuration operators (see a) and are
used as the input to the all-reduce operator. During execution,
the operators read the corresponding configuration parame-
ters (see b) from the communication layer, and forward them
to the all-reduce operator.

5.2 Protecting consistency under adaptation

APs must be able to change the configuration parameters
in KungFu’s distributed communication layer. At runtime,
KungFu, however, must ensure that these parameters remain

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 945

Algorithm 1 Distributed adaptation algorithm for parameters
1: procedure DISTRIBUTEDADAPTATION(p,v)
2: b← bytes(v) . Convert v into byte array
3: l← length(b) . Get length of b
4: l0← allreduce(bytes(l),min) . byte-wise min
5: l1← allreduce(bytes(l),max) . byte-wise max
6: if l0 6= l1 then . byte-wise comparison
7: return false
8: end if
9: b0← allreduce(b,min)

10: b1← allreduce(b,max)
11: if b0 6= b1 then
12: return false
13: end if
14: p.update(v) . Call the update function of p
15: _← allreduce([′0′],min) . Run global barrier
16: return true
17: end procedure

consistent when read by the distributed dataflows on workers.
Making global parameter changes consistent with APs in-

troduces two requirements: (i) APs are replicated by workers
and executed in parallel. They hold local monitoring state
and can receive adaptation commands asynchronously. APs
can thus obtain inconsistent values for a given parameter,
especially in a large cluster in which many GPU workers
asynchronously read new parameter values with high fre-
quency. KungFu must have a mechanism to reject such incon-
sistent reads. In addition, (ii) when a consistent value is given,
KungFu workers assign this value to their local parameters in
parallel. The workers must then share a global barrier when
completing the assignment, which prevents the execution of
different dataflows with inconsistent values.

Distributed adaptation algorithm. We describe a dis-
tributed parameter adaptation algorithm that fulfils these re-
quirements. To execute with low latency, thus reducing the
time during which dataflow execution is blocked under adapta-
tion, it exploits the collective communication layer: since con-
figuration parameters are already hosted by that layer, KungFu
re-uses the highly optimised collective communication func-
tions to (i) detect inconsistent updates and (ii) implement a
global barrier (shown as c in Fig. 3).

Alg. 1 is executed by each KungFu worker when adapt-
ing a configuration parameter p with a new value v. It first
transforms v into a byte array so that it can be consumed
by an all-reduce function, together with a reduce function
such as min or max. After that, the algorithm launches two
all-reduce functions to check if the length of b is identical on
all workers (lines 4–7). If so, it calls another two all-reduce
functions to check if the content of b is consistent (lines 9–13).
If this check also passes, v can be safely used for updating
p (line 14). All workers must wait on a global barrier until
the updates have completed. The barrier is implemented by
calling an all-reduce function with a one-byte array (line 15).

Some parameters require custom adaptation logic other
than a simple value assignment. For example, changing the
number of workers requires workers to exit or join during

adaptation. To support this, Alg. 1 can invoke a custom func-
tion when updating a parameter (line 14). In the case of the
worker set, the function chooses one worker to signal other
workers to exit or launch.

Managing data under adaptation. APs can modify the
worker count and the batch size. These parameters affect how
the training dataset is read and thus the training result. To en-
sure consistent results under adaptation, all KungFu workers
have access to the full dataset.

KungFu supports two approaches to read data batches, de-
pending on if users require data epochs to control the training
process: (i) if data epochs are not needed, users can use ran-
dom sampling to read data batches, and the adaptation logic
can be triggered at any training step; (ii) with data epochs,
KungFu provides a dynamic data partitioning operator that
replaces the static partitioning operator (e.g. tf.data.shard)
in the data input pipeline (e.g. DataSet). The dynamic parti-
tioning operator is replicated on all KungFu workers and the
operators are synchronised to enact a new parallelism level
after a scaling operation. To preserve data epochs, users must
invoke the adaptation logic on epoch boundaries only.

Handling failures during adaptation. To tolerate fail-
ures, KungFu relies on a highly-available configuration
provider (e.g. ConfigMap in Kubernetes) to maintain its clus-
ter configuration. The configuration must be updated when
a scaling action is committed. In the case of worker failures,
the cluster scheduler uses the configuration to restart workers.

6 Evaluation
We experimentally explore the following aspects of the
KungFu design and implementation: (i) What are the benefits
of enabling adaptation in distributed ML training? (ii) What
is the monitoring and adaptation overhead in the training
process? (iii) How does KungFu perform in large clusters
compared to existing distributed ML systems?

6.1 Experimental set-up

We use both dedicated machines and cloud VMs in our ex-
periments: the dedicated machines are (i) an NVIDIA DGX-1
machine with 8 NVIDIA V100 GPUs interconnected using
NVLink, and 72 CPU cores; and (ii) a 20-CPU-core server
with 4 NVIDIA Titan X GPUs interconnected using the PCIe
bus. The cloud test-bed has 32 VMs, each with 8 vCPUs,
64 GB of memory and 1 NVIDIA K80 GPU.

We use various training workloads as part of the official
models provided by TensorFlow [1]: the MobileNetV2 [70]
and ResNet-50 [26] models for the ImageNet image classi-
fication task [37]; and the BERT [15] model for a natural
language processing task, SQuAD [67]. The MobileNetV2
model is 23 MB, ResNet-50 is 98 MB, and BERT is 1 GB in
size. These model sizes cover a large spectrum that users
observe in practice. We use TensorFlow v1.13.2 to train
the models. When possible, we compare the performance
to Horovod v0.16.1.

946 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 1000 2000 3000 4000 5000 6000
Time (seconds)

0
10
20
30
40
50
60
70
80
90

100

V
al

id
at

io
n

A
cc

ur
ac

y
(%

)

LBS Accuracy
SBS Accuracy
KungFu Accuracy
KungFu Batch Size

0
512
1024
1536
2048
2560
3072
3584
4096

B
at

ch
 S

iz
e

Fig. 4: Adaptive batch size
(ResNet-56)

20 40 60 80 100
Step

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

ec
)

B
ac

k.
 T

ra
ffi

c

Baseline
KungFu

Fig. 5: Adaptive communication
strategy (ResNet-50)

0 500 1000 1500 2000 2500 3000 3500
Step

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (e

xa
m

pl
es

/s
ec

)

KungFu Throughput
Baseline Throughput
KungFu #GPUs
Baseline #GPUs

0

2

4

6

8

10

#G
P

U
s

Fig. 6: Adaptive resource provisioning
(BERT)

6.2 Adaptation policies

We evaluate three representative APs with KungFu that
change various aspects of distributed training:

(1) Adaptive batch size. We implement an AP that adapts the
batch size based on GNS when training the ResNet-56 model
with the CIFAR-10 dataset. To the best of our knowledge, this
AP is the first implementation that evaluates GNS-based batch
size tuning in an online training scenario. Past work [52] only
empirically evaluates it using offline training traces.

The AP computes GNS using an exponential moving av-
erage (α=0.1) and adapts the batch size every 10 epochs as
follows: if GNS has increased by a factor of r, it also scales
the batch size by r, up to 4096. We compare this AP with
two static baselines, which adopt fixed batch sizes of 128 and
4096, respectively. These baselines represent typical choices
for small batch size (SBS) and large batch size (LBS). In this
experiment, the model is trained for 300 epochs with a learn-
ing rate of 0.1, based on TensorFlow’s official model. The
training is done on the 4 GPU Titan X testbed, with batches
shared evenly across GPUs.

Fig. 4 shows the validation accuracy of the model over time.
LBS reaches a low validation accuracy (60%) but finishes
quickly. SBS reaches a higher validation accuracy (88%) but
the constant noise in gradients due to the small batches makes
it hard to converge, and the accuracy oscillates between 80%
and 90%. A typical issue of SBS is the underutilisation of
GPUs: SBS takes around 6000 s to complete training, 2.4×
longer than LBS. In practice, fixing the choice of batch size is
challenging for users—they have to trade off between model
accuracy and hardware utilisation.

The above AP addresses this challenge. As shown by the
right y-axis in Fig. 4, the policy dynamically increases the
batch size from 128 to 4096 based on GNS. This type of
adaptation improves model accuracy: it reaches 88% after
around 1000 s, 5× faster than SBS, and eventually converges
to 90% after 1300 s. Dynamically increasing the batch size
reduces the noise in gradients, which enables the model to
converge. Furthermore, it allows the model to better utilise
the hardware: the model spends only 400 s more than LBS
but achieves 30% higher accuracy.

(2) Adaptive communication strategy. Network infrastruc-
ture in cloud environments and multi-tenant clusters may
suffer from contention when using all-reduce operations to
synchronise gradients, and straggling workers may then slow

down the entire system [49]. To address this, we provide an
AP that monitors training throughput. If the throughput drops
due to network contention, the policy adjusts the topology
used by all-reduce, limiting the use of contended network
links. In this experiment, we train the ResNet-50 model for
100 steps on 32 VMs. After 25 steps, we introduce back-
ground traffic to create network contention. This mimics a
cloud environment in which there is dynamic interference in
an over-subscribed network.

We compare this AP with a static baseline that uses a fixed
all-reduce topology. We also attempted to implement a dy-
namic baseline using OpenMPI and NCCL, but these libraries
do not allow runtime control of the all-reduce topology.

Fig. 5 presents the average worker training throughput over
training steps. The baseline shows that the workers reach
6.5 images/s at the beginning but this number drops to 5.5 af-
ter the network becomes contended. The AP monitors the
throughput and detects network contention at step 35. It
adapts the communication topology, and the topology recov-
ers throughput: it increases to 7 images/s, even though the
background traffic is still on-going.

(3) Adaptive resource provisioning. Users want to decide
on a cost-effective number of GPUs when training models.
Using many GPUs leads to high training throughput but it
also increases cost. Large ML models are synchronising large
volumes of gradients. Above a certain amount of resources,
communication becomes a bottleneck. In such a case, using
more GPUs only gives a marginal performance improvement,
despite the higher cost.

We explore an AP that finds the most cost-effective number
of GPUs. This policy adds one worker every K steps. It then
evaluates the average total accumulated throughput and, if the
new throughput is not 1+α(1/size) times higher, it removes
the worker and stops scaling. We choose α=0.33 and K=400.
We compare to a static baseline that always uses the most
GPUs. We train the BERT model with a per-GPU batch size
of 8 on the 8 GPU V100 testbed.

Fig. 6 shows the results. When all 8 GPUs (right-hand
y-axis) are used from the beginning, the total throughput is
above 90 examples/second (left-hand y-axis). For KungFu,
we see that the throughput rises with the number of GPUs
until only a slight increase from 6 to 7 GPUs (step 2400).
Due to the small increase with 7 workers, KungFu removes
worker 7 at step 2800, stops scaling and resumes training

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 947

8 16 24 32
Difference of workers

0

20

40
La

te
nc

y
(m

ill
is

ec
on

d)

(a) Set tree latency

8 16 24 32
Difference of workers

10
0

10
2

La
te

nc
y

(s
)

KungFu
Baseline

(b) Scale in latency

8 16 24 32
Difference of workers

0

10

20

30

40

La
te

nc
y

(s
)

KungFu
Baseline
TF start-up

(c) Scale out latency

Fig. 7: Adaptation overhead

1 2 4 8
Monitoring interval

0
100
200
300
400
500

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

ec
)

Ideal
Gradient Variance
Gradient Noise Scale

Fig. 8: Monitoring overhead

1 8 16 24 32
#VMs (1 GPUs per VM)

0

50

100

150

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

ec
)

KungFu
Horovod

(a) MobileNetV2

1 8 16 24 32
#VMs (1 GPUs per VM)

0

25

50

75

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

ec
)

KungFu
Horovod

(b) ResNet-50

Fig. 9: Worker throughput with different cluster sizes

with 6 workers. We use the price of a V100 GPU on Azure
to estimate the cost efficiency of KungFu and the baseline.
The baseline has a cost efficiency of 10,902 examples/USD,
and KungFu has 13,097 examples/USD. This indicates that
KungFu improves the cost efficiency of the job by 20%.

6.3 Adaptation overhead

Next we evaluate the overhead of adaptation and monitoring.
Adaptation. We evaluate the adaptation latency when chang-
ing the communication topology and worker set. We conduct
the experiments on the 32 VMs testbed and train ResNet-50.
During training, we repetitively change the parameters.

Fig. 7a shows the latency when changing worker commu-
nication topology. With 8 VMs, the adaptation completes in
15 ms. With 32 VMs, the delay only increases to 37 ms. This
shows the benefits of using the all-reduce function to imple-
ment the required consistency checking and global barrier
during adaptation.

Fig. 7b shows the latency when scaling down. We decrease
the number of workers from 32 to 1 by calling the resize
function. The function takes 0.2 s to complete. Scaling the sys-
tem using the checkpoint/recovery mechanism of TensorFlow
takes around 20 s to complete, 100× slower than KungFu.
This high latency is mainly due to the stop-and-resume time
of TensorFlow, and it is consistent with the observations made
by others [58, 82]. This result shows the need for supporting
efficient adaptation to enable scaling in practice.

Fig. 7c shows the latency when scaling out. Increasing the
number of workers from 1 to 32 takes 20 s, the same as the
baseline. Since KungFu must preserve the consistency of
the training state on workers, it must wait for new workers
to be started by TensorFlow. Breaking down this delay, we
can see that KungFu spends 0.5 s to complete the scale-out
operation, and waits the remaining 19.5 s for the TensorFlow

set-up. The long start-up time of TensorFlow can be masked
by implementing worker pre-loading [58].

Monitoring. We also consider the overhead when monitor-
ing two metrics, gradient noise scale (GNS) and gradient
variance (GV). The computation of GNS can reuse the av-
eraged gradients produced by the S-SGD computation and
thus can be computed locally without extra collective com-
munication; GV, however, compares the square of the sum of
gradients and the sum of gradient squares [78]. To compute
it, KungFu must launch an additional all-reduce operation for
each gradient. We monitor these two metrics when training
ResNet-50 for ImageNet on the 8 GPUs V100 testbed. We
vary the monitoring interval from 1–8 steps to change load.

Fig. 8 shows the average per-worker training throughput
with gradient monitoring. We compare it to the per-worker
throughput without monitoring (i.e. the ideal case). The mon-
itoring of GNS has a negligible impact on training, dropping
the training throughput from 6.3% to 1.0% based on the mon-
itoring interval. This shows that embedding the monitoring
operators as part of the dataflow graph results in low overhead.

The calculation of GV has a tangible throughput impact.
The overhead, however, can be amortised by increasing the
monitoring interval. The throughput drops by 2.8% when the
interval is 8 steps, while still providing acceptable monitoring
for APs. APs keep monitored metrics in data sketches and use
the accumulated result, usually every several epochs. Iterating
through an ImageNet dataset takes more than 40,000 steps,
which means that 5000 GV values in an epoch still make
estimation reliable.

6.4 Performance

Finally, we evaluate two aspects of KungFu that contribute to
overall performance: (i) the asynchronous collective commu-
nication layer and (ii) the NCCL scheduler.

948 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Asynchronous Collective Communication Layer. We ex-
plore how the performance of KungFu’s communication
layer compares to Horovod [73], which is a popular high-
performance collective communication library used for dis-
tributed ML training. We compare the performance with 8,
16, 24 and 32 VMs. By varying the cluster size, we place
different loads on collective communication.

Fig. 9a shows the per-VM training throughput for Mo-
bileNetV2/ImageNet under KungFu and Horovod. With
8 VMs, Horovod and KungFu achieve the same throughput.
With 32 VMs, however, KungFu outperforms Horovod by
28% due to the benefits of its decentralised design for the com-
munication layer, which avoids the bottleneck of Horovod’s
master. We also note that Horovod shows a high variance
in the training throughput for 32 VMs (up to 24% between
min/max). This is caused by network jitter in the cloud en-
vironment affecting Horovod’s coordinator. Since KungFu
workers asynchronously exchange messages for collective
communication, they compensate for the network latency and
thus achieve stable training throughput even with 32 VMs.

Fig. 9b shows the per-VM training throughput for
ResNet50-ImageNet, which is 4× larger than MobileNetV2.
With this model, there is more network traffic, and KungFu
achieves 98% higher throughput than Horovod with 32 VMs.
This improvement is larger than in the case of MobileNetV2
because Horovod must execute collective communication in
order, following the MPI convention. KungFu, however, sup-
ports concurrent collective communication operations through
its named collective message and state mechanisms. This in-
creases concurrency in the communication layer, making it
achieve a higher throughput than Horovod, especially with
large models such as ResNet.

NCCL Schedulers. We also explore the benefit of the NCCL
schedulers in comparison to CPU-based collective communi-
cation (i.e. CPU all-reduce) and centralised NCCL scheduling,
as used by Horovod-NCCL. The experiment is executed on
the DGX-1 machine with all 8 NVIDIA V100 GPUs.

Fig. 10 shows the throughput with CPU-based collective
communication and NCCL as used by KungFu and Horovod,
respectively. For communication between GPUs on the same
machine, NCCL offers a significant performance benefit
for both KungFu and Horovod. Comparing KungFu and
Horovod with NCCL, we see that, for ResNet (~200 gradi-
ents; 97 MB size), KungFu and Horovod experience almost
identical performance; for BERT-base (~600 gradients; 1 GB
size), KungFu achieves 17% higher throughput than Horovod.

This difference can be attributed to the centralised nature
of Horovod’s NCCL scheduling. The central scheduler con-
tacts each worker to track which gradients have become avail-
able. When gradients are available on all workers, the sched-
uler calls an all-reduce operation to average gradients. The
scheduling overhead grows with the number of gradients, and
it becomes a bottleneck with many gradients (e.g. 600 gradi-
ents in BERT). A large number of gradients is increasingly

KungFu
CPU

KungFu
NCCL

Horovod
NCCL

0

100

200

300

Th
ro
ug
hp
ut

(s
am
pl
es
/s
ec
)

(a) ResNet-50

KungFu
CPU

KungFu
NCCL

Horovod
NCCL

0

10

20

30

Th
ro
ug
hp
ut

(s
am
pl
es
/s
ec
)

(b) BERT

Fig. 10: Training throughput

common because large models out-perform smaller ones.

7 Related Work

Distributed ML systems. A dataflow abstraction is used
in many ML systems, including TensorFlow, PyTorch [60],
MXNet [10], Caffe [30] and MindSpore [53]. These systems
share similar dataflow designs in which computational oper-
ators are used for tensor computation. Compiled dataflows
are offloaded to GPUs for the training computation. KungFu
reuses the dataflow abstraction to embed operators for the
purpose of adaptation.

KungFu uses collective communication functions to im-
plement monitoring and adaptation operations. Such func-
tions are available in most distributed ML systems, including
those built on top of MPI [1, 56, 73] as well as parameter-
server-based systems [8, 42]. Compared to existing collective
communication approaches, KungFu explores a decentralised
architecture that is tailored to supporting dataflows used in
ML frameworks. It allows multiple collective communication
operations to execute concurrently, making it different from
current MPI-compatible systems.

Hyper-parameter optimisation and tuning. To find the
best settings for hyper-parameters, practitioners and re-
searchers have proposed tuning systems [2, 17, 18, 35, 40, 45]
with associated search algorithms [28, 29, 33, 41]. These sys-
tems launch parallel training jobs to evaluate different candi-
date settings of target hyper-parameters. They often aim to
minimise resource consumption for finding the best setting. In
contrast, KungFu explores how to optimise hyper-parameters
continuously in a single training job. It thus proposes mecha-
nisms for efficient monitoring and online adaptation of hyper-
parameters during training. It can be used by existing tuning
systems to speed up the time of individual training jobs.

Elastic training systems have been proposed to improve the
resource utilisation of ML clusters. EDL [82] studies stop-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 949

free scaling for TensorFlow workers, and Litz [65] proposes
an elastic training framework for ML clusters that consist of
parameter servers and training workers. Horovod Elastic [73]
and PyTorch Elastic [60] are two open-source elastic training
libraries. Compared to these dedicated elastic training sys-
tems, KungFu provides a unified framework that can execute
different adaptive training jobs efficiently.

Adaptation policies have been explored in streaming sys-
tems [20,22,27,61,62]. Dhalion [19] provides policy support
for Apache Storm, and its policies measure data analytics
metrics, such as latency and throughput; in contrast, APs in
KungFu enable the monitoring of gradients in ML systems.
Chi [51] is a control plane for stream processing systems, and
it supports online monitoring and adaptation. Compared to
Chi, KungFu provides a solution to build adaptive distributed
ML systems with high-performance gradient monitoring us-
ing dataflows and asynchronous collective communication.

Recently, practitioners have proposed adaptation poli-
cies [39, 58] tailored to ML systems. These policies use cost
models to infer the performance of a training system and make
scaling decisions in response. They could be implemented as
APs on top of KungFu to exploit its optimised adaptation and
communication infrastructure.

Monitoring training. The ML communities have recognised
the importance of monitoring training [71]. CrossBow [34]
monitors accelerator utilisation to infer the optimal level of
data parallelism when training models. Moreover, gradients
metrics are useful to optimise hyper-parameters [50]. There
have been efforts on setting the batch size according to signal-
to-noise ratios [12] and loss [5], or the learning rate based
on other gradient metrics, e.g. square norm of expectation of
gradients [16, 71, 74]. Due to the lack of support in current
distributed ML systems, such efforts typically only evaluate
efficacy using offline collected gradients. KungFu is inspired
by these efforts and addresses the missing systems support to
implement such proposals.

8 Conclusions
When training modern complex ML models, users want to
adapt a wide range of hyper- and system parameters. Existing
distributed ML systems were designed at a time when static
training regimes were the norm. They thus lack mechanisms
for monitoring training metrics and adapting configuration
parameters at runtime.

We have presented KungFu, a distributed training library
that allows users to specify and execute Adaptation Policies.
KungFu executes policies efficiently by embedding moni-
toring and configuration operators as part of the compiled
dataflow graph. All communication leverages efficient asyn-
chronous collective communication functions, without inter-
fering with the training process or compromising consistency.

Acknowledgements. We thank our shepherd, Derek Murray,
for his thoughtful and detailed comments on the paper.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek Gordon Murray, Benoit Steiner, Paul A.
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A System
for Large-Scale Machine Learning. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 265–283, Savannah, GA, USA,
2-4 November 2016.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru
Ohta, and Masanori Koyama. Optuna: A Next-
generation Hyperparameter Optimization Framework.
In 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD), pages
2623–2631, Anchorage, AK, USA, 4-8 August 2019.

[3] Dario Amodei, Sundaram Ananthanarayanan, Rishita
Anubhai, Jingliang Bai, Eric Battenberg, Carl Case,
Jared Casper, Bryan Catanzaro, Qiang Cheng, and Guo-
liang Chen. Deep Speech 2: End-to-End Speech Recog-
nition in English and Mandarin. In 33rd International
Conference on Machine Learning (ICML), volume 48
of Proceedings of Machine Learning Research, pages
173–182, New York, New York, USA, 20-22 June 2016.

[4] Jimmy Ba, Roger B. Grosse, and James Martens. Dis-
tributed Second-Order Optimization using Kronecker-
Factored Approximations. In 5th International Con-
ference on Learning Representations (ICLR), Toulon,
France, 24-26 April 2017.

[5] Lukas Balles, Javier Romero, and Philipp Hennig. Cou-
pling Adaptive Batch Sizes with Learning Rates. In Con-
ference on Uncertainty in Artificial Intelligence (UAI),
pages 410–419, 11-15 August 2017.

[6] L. Bottou, F. Curtis, and J. Nocedal. Optimization Meth-
ods for Large-Scale Machine Learning. SIAM Review,
60(2):223–311, 2018.

[7] Léon Bottou. On-line Learning and Stochastic Approxi-
mations. In On-line Learning in Neural Networks, pages
9–42. New York, NY, USA, 1998.

[8] ByteDance. BytePS - A High Performance and Generic
Framework for Distributed DNN Training. https://
github.com/bytedance/byteps, 2020.

[9] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal
Józefowicz. Revisiting Distributed Synchronous SGD.
CoRR, abs/1604.00981, 2016.

950 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/bytedance/byteps
https://github.com/bytedance/byteps

[10] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. MXNet: A Flexible and Efficient Ma-
chine Learning Library for Heterogeneous Distributed
Systems. CoRR, abs/1512.01274, 2015.

[11] François Chollet. Keras. https://keras.io, 2015.

[12] Soham De, Abhay Yadav, David Jacobs, and Tom Gold-
stein. Automated Inference with Adaptive Batches. In
20th International Conference on Artificial Intelligence
and Statistics (AISTATS), volume 54 of Proceedings
of Machine Learning Research, pages 1504–1513, Fort
Lauderdale, FL, USA, 20–22 Apr 2017.

[13] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Marc’aurelio Ranzato, An-
drew Senior, Paul Tucker, and Ke Yang. Large Scale
Distributed Deep Networks. In Advances in Neural
Information Processing Systems 25, pages 1223–1231.
2012.

[14] Aditya Devarakonda, Maxim Naumov, and Michael Gar-
land. AdaBatch: Adaptive Batch Sizes for Training
Deep Neural Networks. CoRR, abs/1712.02029, 2017.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding. In
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT), pages 4171–4186,
Minneapolis, MN, USA, 2-7 June 2019.

[16] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive
Subgradient Methods for Online Learning and Stochas-
tic Optimization. In 23rd Conference on Learning The-
ory (COLT), pages 257–269, Haifa, Israel, 27-29 June
2010.

[17] Raul Castro Fernandez, William Culhane, Pijika
Watcharapichat, Matthias Weidlich, Victoria Lopez
Morales, and Peter R. Pietzuch. Meta-Dataflows: Ef-
ficient Exploratory Dataflow Jobs. In International
Conference on Management of Data (SIGMOD), pages
1157–1172, Houston, TX, USA, 10-15 June 2018.

[18] Matthias Feurer, Aaron Klein, Katharina Eggensperger,
Jost Springenberg, Manuel Blum, and Frank Hutter. Ef-
ficient and Robust Automated Machine Learning. In
Advances in Neural Information Processing Systems 28,
pages 2962–2970. 2015.

[19] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram
Rao, and Karthik Ramasamy. Dhalion: Self-Regulating
Stream Processing in Heron. Proc. VLDB Endow.,
10(12):1825–1836, August 2017.

[20] Tom Z J Fu, Jianbing Ding, Richard T B Ma, Mari-
anne Winslett, Yin Yang, and Zhenjie Zhang. DRS:
Dynamic Resource Scheduling for Real-Time Analytics
over Fast Streams. In 35th International Conference
on Distributed Computing Systems (ICDCS), volume
2015-July, pages 411–420, Columbus, Ohio, USA, 29
June - 2 July 2015.

[21] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara
Angskun, Jack J. Dongarra, Jeffrey M. Squyres, Vishal
Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard
L. Graham, and Timothy S. Woodall. Open MPI: Goals,
concept, and design of a next generation MPI implemen-
tation. In Lecture Notes in Computer Science, volume
3241, pages 97–104, USA, 2004.

[22] Bugra Gedik, Scott Schneider, Martin Hirzel, and Kun-
Lung Wu. Elastic Scaling for Data Stream Processing.
IEEE Transactions on Parallel and Distributed Systems,
25(6):1447–1463, 2014.

[23] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter No-
ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, Large
Minibatch SGD: Training ImageNet in 1 Hour. CoRR,
abs/1706.02677, 2017.

[24] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan,
and Pritish Narayanan. Deep Learning with Limited Nu-
merical Precision. In 32nd International Conference on
Machine Learning (ICML), volume 37 of JMLR Work-
shop and Conference Proceedings, pages 1737–1746,
Lille, France, 6-11 July 2015.

[25] Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei,
Gregory R Ganger, Phillip B Gibbons, Garth A Gibson,
and Eric P Xing. Addressing the Straggler Problem for
Iterative Convergent Parallel ML. In 7th ACM Sympo-
sium on Cloud Computing (SoCC), pages 98–111, 5-7
October 2016.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, Las Vegas, NV,
USA, 27-30 June 2016.

[27] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko
Borisov, Liang Dong, Fatma Bilgen Cetin, and Shivnath
Babu. Starfish: A Self-tuning System for Big Data Ana-
lytics. In 5th Biennial Conference on Innovative Data
Systems Research (CIDR), pages 261–272, Asilomar,
CA, USA, 9-12 January 2011.

[28] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wo-
jciech M. Czarnecki, Jeff Donahue, Ali Razavi, Oriol

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 951

https://keras.io

Vinyals, Tim Green, Iain Dunning, Karen Simonyan,
Chrisantha Fernando, and Koray Kavukcuoglu. Pop-
ulation Based Training of Neural Networks. CoRR,
abs/1711.09846, 2017.

[29] Kevin Jamieson and Ameet Talwalkar. Non-stochastic
Best Arm Identification and Hyperparameter Optimiza-
tion. In 19th International Conference on Artificial
Intelligence and Statistics (AISTATS), volume 51 of Pro-
ceedings of Machine Learning Research, pages 240–248,
Cadiz, Spain, 9-11 May 2016.

[30] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross B. Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolutional
Architecture for Fast Feature Embedding. In ACM Inter-
national Conference on Multimedia (MM), pages 675–
678, Orlando, FL, USA, 03-07 November 2014.

[31] Tyler B. Johnson, Pulkit Agrawal, Haijie Gu, and Carlos
Guestrin. AdaScale SGD: A User-Friendly Algorithm
for Distributed Training. CoRR, abs/2007.05105, 2020.

[32] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec
Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws
for Neural Language Models. CoRR, abs/2001.08361,
2020.

[33] Zohar Karnin, Tomer Koren, and Oren Somekh. Al-
most Optimal Exploration in Multi-Armed Bandits. In
30th International Conference on Machine Learning
(ICML), volume 28 of Proceedings of Machine Learn-
ing Research, pages 1238–1246, Atlanta, Georgia, USA,
17-19 June 2013.

[34] Alexandros Koliousis, Pijika Watcharapichat, Matthias
Weidlich, Luo Mai, Paolo Costa, and Peter Pietzuch.
Crossbow: Scaling Deep Learning With Small Batch
Sizes on Multi-Gpu Servers. Proceedings of the VLDB
Endowment, 12(11):1399–1412, 2019.

[35] Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank
Hutter, and Kevin Leyton-Brown. Auto-WEKA 2.0:
Automatic Model Selection and Hyperparameter Op-
timization In WEKA. Journal of Machine Learning
Research, 18(25):1–5, 2017.

[36] Alex Krizhevsky. Learning Multiple Layers of Fea-
tures from Tiny Images. Technical report, University of
Toronto, 2009.

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. ImageNet Classification with Deep Convolutional
Neural Networks. In Advances Neural Information Pro-
cessing Systems 24, pages 1097–1105, USA, 2012.

[38] Anders Krogh and John A. Hertz. A Simple Weight
Decay Can Improve Generalization. In Advances in
Neural Information Processing Systems 4, pages 950–
957. 1992.

[39] Woo-Yeon Lee, Yunseong Lee, Joo Seong Jeong,
Gyeong-In Yu, Joo Yeon Kim, Ho Jin Park, Beomyeol
Jeon, Wonwook Song, Gunhee Kim, and Markus
Weimer. Automating System Configuration of Dis-
tributed Machine Learning. In 39th International Con-
ference on Distributed Computing Systems (ICDCS),
pages 2057–2067, Dallas, Texas, USA, 7-9 July 2019.
IEEE.

[40] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekate-
rina Gonina, Jonathan Ben-tzur, Moritz Hardt, Benjamin
Recht, and Ameet Talwalkar. A System for Massively
Parallel Hyperparameter Tuning. In Machine Learning
and Systems (MLSys), pages 230–246. 2-4 March 2020.

[41] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. Hyperband: A Novel
Bandit-Based Approach to Hyperparameter Optimiza-
tion. J. Mach. Learn. Res., 18(1):6765–6816, January
2017.

[42] Mu Li, David G Andersen, Jun Woo Park, Alexander J
Smola, Amr Ahmed, Vanja Josifovski, James Long, Eu-
gene J Shekita, and Bor-Yiing Su. Scaling Distributed
Machine Learning With the Parameter Server. In 11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 583–598, Broomfield,
CO, USA, 6-8 October 2014.

[43] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J.
Smola. Efficient Mini-batch Training for Stochastic
Optimization. In 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(DMKD), pages 661–670, New York, NY, USA, 2014.

[44] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asyn-
chronous Decentralized Parallel Stochastic Gradient De-
scent. In 35th International Conference on Machine
Learning (ICML), volume 80, pages 3043–3052, Stock-
holm, Sweden, 10-15 July 2018.

[45] Richard Liaw, Eric Liang, Robert Nishihara, Philipp
Moritz, Joseph E. Gonzalez, and Ion Stoica. Tune: A
Research Platform for Distributed Model Selection and
Training. CoRR, abs/1807.05118, 2018.

[46] Haibin Lin, Hang Zhang, Yifei Ma, Tong He, Zhi Zhang,
Sheng Zha, and Mu Li. Dynamic Mini-batch SGD for
Elastic Distributed Training: Learning in the Limbo of
Resources. CoRR, abs/1904.12043, 2019.

952 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[47] Jinlong Liu, Guoqing Jiang, Yunzhi Bai, Ting Chen, and
Huayan Wang. Understanding Why Neural Networks
Generalize Well Through GSNR of Parameters. CoRR,
abs/2001.07384, 2020.

[48] Maren Mahsereci and Philipp Hennig. Probabilistic
Line Searches for Stochastic Optimization. In Advances
in Neural Information Processing Systems 28, pages
181–189. 2015.

[49] Luo Mai, Chuntao Hong, and Paolo Costa. Optimizing
Network Performance in Distributed Machine Learn-
ing. In 7th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud), Santa Clara, CA, USA, 6-7 July
2015.

[50] Luo Mai, Alexandros Koliousis, Guo Li, Andrei-
Octavian Brabete, and Peter R. Pietzuch. Taming Hyper-
parameters in Deep Learning Systems. ACM SIGOPS
Oper. Syst. Rev., 53(1):52–58, 2019.

[51] Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh,
Shivaram Venkataraman, Paolo Costa, Terry Kim, Sara-
vanan Muthukrishnan, and Vamsi Kuppa. Chi: A Scal-
able and Programmable Control Plane for Distributed
Stream Processing Systems. Proceedings of the VLDB
Endowment, 11(10):1303–1316, 2018.

[52] Sam McCandlish, Jared Kaplan, Dario Amodei, and
OpenAI Dota Team. An Empirical Model of Large-
Batch Training. CoRR, abs/1812.06162, 2018.

[53] MindSpore. Mindspore Deep Learning Train-
ing/Inference Framework. https://github.com/
mindspore-ai/mindspore, 2020.

[54] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. PipeDream:
Generalized Pipeline Parallelism For DNN Training. In
27th ACM Symposium on Operating Systems Principles
(SOSP), pages 1–15, Huntsville, ON, Canada, 27-30 Oc-
tober 2019.

[55] NVIDIA. Data Center Deep Learning Product
Performance. https://developer.nvidia.com/
deep-learning-performance-training-inference,
2020.

[56] NVIDIA. Optimized Primitives for Collective Multi-
GPU Communication. https://github.com/NVIDIA/
nccl, 2020.

[57] NVIDIA. The Building Blocks of Advanced Multi-GPU
Communication. https://www.nvidia.com/en-us/
data-center/nvlink/, 2020.

[58] Andrew Or, Haoyu Zhang, and Michael J. Freedman.
Resource Elasticity in Distributed Deep Learning. In
Machine Learning and Systems (MLSys), Austin, TX,
USA, 2-4 March 2020.

[59] Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira
Naruse, Rio Yokota, and Satoshi Matsuoka. Large-
Scale Distributed Second-Order Optimization Using
Kronecker-Factored Approximate Curvature for Deep
Convolutional Neural Networks. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 12359–12367, Long Beach, CA, USA, 16-20 June
2019.

[60] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, and Luca Antiga. Py-
Torch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. 2019.

[61] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin,
Jiexi Lin, Lin Ma, Prashanth Menon, Todd C. Mowry,
Matthew Perron, Ian Quah, Siddharth Santurkar, An-
thony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang,
Yingjun Wu, Ran Xian, and Tieying Zhang. Self-Driving
Database Management Systems. In 8th Biennial Con-
ference on Innovative Data Systems Research (CIDR),
Chaminade, CA, USA, 8-11 January 2017.

[62] Thao N. Pham, Panos K. Chrysanthis, and Alexandros
Labrinidis. Avoiding Class Warfare: Managing Con-
tinuous Queries With Differentiated Classes of Service.
VLDB J., 25(2):197–221, 2016.

[63] Boris Polyak. Some Methods of Speeding up the Conver-
gence of Iteration Methods. Ussr Computational Math-
ematics and Mathematical Physics, 4:1–17, 12 1964.

[64] Prometheus. The Prometheus Monitoring System
and Time Series Database. https://github.com/
prometheus/prometheus, 2019.

[65] Aurick Qiao, Abutalib Aghayev, Weiren Yu, Haoyang
Chen, Qirong Ho, Garth A. Gibson, and Eric P. Xing.
Litz: Elastic Framework for High-Performance Dis-
tributed Machine Learning. In USENIX Annual Tech-
nical Conference (ATC), pages 631–644, Boston, MA,
11-13 July 2018.

[66] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. ZeRO: Memory Optimization To-
wards Training A Trillion Parameter Models. CoRR,
abs/1910.02054, 2019.

[67] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know
What You Don’t Know: Unanswerable Questions for

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 953

https://github.com/mindspore-ai/mindspore
https://github.com/mindspore-ai/mindspore
https://developer.nvidia.com/deep-learning-performance-training-inference
https://developer.nvidia.com/deep-learning-performance-training-inference
https://github.com/NVIDIA/nccl
https://github.com/NVIDIA/nccl
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://github.com/prometheus/prometheus
https://github.com/prometheus/prometheus

SQuAD. In 56th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 784–789,
Melbourne, Australia, 15-20 July 2018.

[68] Herbert Robbins and Sutton Monro. A Stochastic Ap-
proximation Method. Ann. Math. Statist., 22(3):400–
407, 09 1951.

[69] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

[70] Mark Sandler, Andrew G. Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. MobileNetV2:
Inverted Residuals and Linear Bottlenecks. In IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 4510–4520, Salt Lake City, UT,
USA, 18-22 June 2018.

[71] Tom Schaul, Sixin Zhang, and Yann LeCun. No More
Pesky Learning Rates. In 30th International Conference
on Machine Learning (ICML), volume 28 of Proceed-
ings of Machine Learning Research, pages 343–351,
Atlanta, Georgia, USA, 17-19 June 2013.

[72] Vetter Scott, Elpelt Tobias, Franke Rico, and Mi-
randa Yanil Z. Networking Design for HPC and AI
on IBM Power Systems (Red Paper), IBM PowerAI Dis-
tributed Deep Learning. http://www.redbooks.ibm.
com/redpapers/pdfs/redp5478.pdf, April 2018.

[73] Alexander Sergeev and Mike Del Balso. Horovod: Fast
and Easy Distributed Deep Learning in TensorFlow.
CoRR, abs/1802.05799, 2018.

[74] Ravid Shwartz-Ziv and Naftali Tishby. Opening the
Black Box of Deep Neural Networks via Information.
CoRR, abs/1703.00810, 2017.

[75] David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, and Marc Lanctot. Mastering the Game of Go
With Deep Neural Networks and Tree Search. Nature,
529:484–503, 2016.

[76] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V.
Le. Don’t Decay the Learning Rate, Increase the Batch
Size. CoRR, abs/1711.00489, 2017.

[77] Samuel L. Smith and Quoc V. Le. A Bayesian Perspec-
tive on Generalization and Stochastic Gradient Descent.
In 6th International Conference on Learning Represen-
tations (ICLR), Vancouver, BC, Canada, 30 April - 3
May 2018.

[78] Y. Tsuzuku, Hi. Imachi, and T. Akiba. Variance-based
Gradient Compression for Efficient Distributed Deep
Learning. In 6th International Conference on Learn-
ing Representations (ICLR), Vancouver, BC, Canada, 30
April - 3 May 2018.

[79] Marcel Wagenländer, Luo Mai, Guo Li, and Peter R.
Pietzuch. Spotnik: Designing Distributed Machine
Learning for Transient Cloud Resources. In 12th
USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud), 13-14 July 2020.

[80] Guanhua Wang, Shivaram Venkataraman, Amar Phan-
ishayee, Jorgen Thelin, Nikhil R. Devanur, and Ion Sto-
ica. Blink: Fast and Generic Collectives for Distributed
ML. CoRR, abs/1910.04940, 2019.

[81] Pijika Watcharapichat, Victoria Lopez Morales,
Raul Castro Fernandez, and Peter Pietzuch. Ako:
Decentralised Deep Learning with Partial Gradient
Exchange. In 7th ACM Symposium on Cloud Computing
(SoCC), SoCC ’16, pages 84–97, New York, NY, USA,
5-7 October 2016.

[82] Yidi Wu, Kaihao Ma, Xiao Yan, Zhi Liu, and James
Cheng. Elastic Deep Learning in Multi-Tenant GPU
Cluster. CoRR, abs/1909.11985, 2019.

[83] Yang You, Jonathan Hseu, Chris Ying, James Demmel,
Kurt Keutzer, and Cho-Jui Hsieh. Large-Batch Training
for LSTM and Beyond. In International Conference for
High Performance Computing, Networking, Storage and
Analysis (SC), pages 9:1–9:16, Denver, Colorado, USA,
17-19 November 2019.

[84] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali
Ghodsi, Sue Ann Hong, Andy Konwinski, Siddharth
Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
Fen Xie, and Corey Zumar. Accelerating the Machine
Learning Lifecycle with MLflow. IEEE Data Engineer-
ing Bulletin, 41(4):39–45, 2018.

[85] Michael R. Zhang, James Lucas, Jimmy Ba, and Geof-
frey E. Hinton. Lookahead Optimizer: k Steps Forward,
1 Step Back. In Advances in Neural Information Pro-
cessing Systems 32, pages 9593–9604, Vancouver, BC,
Canada, 8-14 December 2019.

954 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.redbooks.ibm.com/redpapers/pdfs/redp5478.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp5478.pdf

FVM: FPGA-assisted Virtual Device Emulation
for Fast, Scalable, and Flexible Storage Virtualization

Dongup Kwon1,2, Junehyuk Boo1, Dongryeong Kim1, Jangwoo Kim1,2,∗

1Department of Electrical and Computer Engineering, Seoul National University
2Memory Solutions Lab, Samsung Semiconductor Inc.

Abstract
Emerging big-data workloads with massive I/O processing

require fast, scalable, and flexible storage virtualization sup-
port. Hardware-assisted virtualization can achieve reasonable
performance for fast storage devices, but it comes at the ex-
pense of limited functionalities in a virtualized environment
(e.g., migration, replication, caching). To restore the VM fea-
tures with minimal performance degradation, recent advances
propose to implement a new software-based virtualization
layer by dedicating computing cores to virtual device emu-
lation. However, due to the dedication of expensive general-
purpose cores and the nature of host-driven storage device
management, the proposed schemes raise the critical perfor-
mance and scalability issues with the increasing number and
performance of storage devices per server.

In this paper, we propose FVM, a new hardware-assisted
storage virtualization mechanism to achieve high performance
and scalability while maintaining the flexibility to support
various VM features. The key idea is to implement (1) a
storage virtualization layer on an FPGA card (FVM-engine)
decoupled from the host resources and (2) a device-control
method to have the card directly manage the physical storage
devices. In this way, a server equipped with FVM-engine can
save the invaluable host-side resources (i.e., CPU, memory
bandwidth) from virtual and physical device management
and utilize the decoupled FPGA resources for virtual device
emulation. Our FVM-engine prototype outperforms existing
storage virtualization schemes while maintaining the same
flexibility and programmability as software implementations.

1 Introduction

Storage virtualization is one of the most important compo-
nents to determine the cost-effectiveness of modern datacen-
ters, which improves the utilization of the storage devices
and makes resource management much easier. For example,

∗Corresponding author.

0
20
40
60
80

100
120

1 12 24 36
N

um
be

r o
f

re
qu

ir
ed

C

PU
 co

re
s

Number of SSDs

Native I/O Virtualized I/O

Figure 1: CPU usage of native block I/O in Linux and virtual-
ized block I/O with SPDK vhost-nvme [21]

storage virtualization can map multiple virtual storage de-
vices onto a smaller set of physical storage devices and make
them shared by many virtual machines (VMs) [66]. At the
same time, it facilitates VM management by providing a va-
riety of functionalities in a virtualized context (e.g., live mi-
gration [41, 58], replication [52, 61], consolidation [62, 65],
aggregation, metering, server-side caching [35, 37]).

The importance of storage virtualization is growing for
modern datacenters running I/O-intensive big-data workloads
on their fast but expensive solid-state drives (SSDs). In par-
ticular, it is critical to reduce virtualization overhead and pro-
vide near-native storage performance to the VM workloads. A
conventional way to overcome the virtualization overhead is
to utilize hardware-assisted virtualization mechanisms (e.g.,
passthrough [30], SR-IOV [19]). However, the existing hard-
ware virtualization mechanisms have become much less ap-
pealing to modern datacenters due to their extremely limited
VM management support.

To provide highly flexible VM management at minimal
virtualization overhead, a new software-based storage virtual-
ization mechanism is now considered as a highly promising
solution. A storage performance development kit (SPDK)
vhost-target implementation not only enables flexible VM
management but also significantly improves performance by
exclusively dedicating computing cores (i.e., sidecores) to its
user-level virtualization layer [21, 69].

However, such sidecore approaches require a significant

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 955

amount of computing resources to execute their polling-based
virtual device emulation [53, 59]. Furthermore, the required
computing bandwidth quickly increases as a single server is
equipped with an increasing number of storage devices, and
each device gets faster. As shown in Figure 1, our projection
result shows that virtualized I/O with SPDK vhost-nvme [21]
necessitates 42% – 65% more CPU cores to saturate multiple
Intel Optane SSDs [7] than native block I/O in Linux.

Due to the severe computing resource requirement, the
software-based storage virtualization cannot provide high
performance or high scalability. First, without enough com-
puting cores dedicated to the storage virtualization layer, the
storage system comes to suffer from low performance. Sec-
ond, without the capability of adding virtualization-dedicated
cores as needed, the system comes to suffer from low scalabil-
ity. Therefore, to achieve high performance, scalability, and
flexibility all together, the ideal storage virtualization should
decouple itself from host CPU cores, scale with a target stor-
age system, and exploit the most cost-effective computing
solution for the programmable VM management.

In this paper, we design and implement FVM, a new
hardware-assisted storage virtualization mechanism, to
achieve high performance and scalability while maintaining
the flexibility to support a variety of VM management fea-
tures. The key idea of FVM is to implement (1) a storage
virtualization layer on an FPGA card (FVM-engine) which
is decoupled from the host resources, and (2) a hardware-
based device-control mechanism to make the card directly
manage the physical storage devices. FVM also leverages (3)
high-level synthesis (HLS) techniques to provide easy pro-
grammability for VM management. Our solution can also be
implemented on ASICs for higher performance, but in that
case, the ASIC implementations lose future flexibility for new
VM management features.

FVM achieves the design goals as follows. First, FVM
achieves high performance by utilizing a hardware-assisted
virtualization mechanism and leveraging massive parallelism
in the modern storage virtualization stack. FVM-engine can
cost-effectively exploit the virtualization’s parallelism by im-
plementing many wimpy FVM cores and distributing vir-
tual/physical I/O queues and queuing routines to them for
fine-grained parallel executions.

Second, FVM achieves high scalability by executing virtual
device emulation on FVM-engine, which is decoupled from
host CPU cores and device resources. In addition, its direct
device-control mechanism further improves the scalability
by enabling FVM-engine to directly manage the physical
devices. Therefore, without relying on expensive host CPU
cores, FVM can achieve highly scalable virtualization per-
formance by implementing FVM-engine on a more powerful
FPGA card or adding more FPGA cards on a system board.

Third, FVM achieves highly flexible storage virtualization
by implementing existing VM management features on a re-
configurable FPGA card. For user programmability, we lever-

Sidecore PassTh SR-IOV FVM
CPU On-dev SoC (1VM)

[59, 69] [53] [30] [19]

Performance† " " " "+
Host efficiency " " " "

Scalability " " "

Device sharing " " " "

Flexibility‡ " " "

Programmability " " "

†: I/O throughput, latency, ‡: Providing seamless storage-related services.

Table 1: Comparison of the existing and proposed storage
virtualization mechanisms

age an HLS-based design flow and separate the virtualization
layer from the I/O logic to interact with the host machine and
the physical storage devices.

Table 1 summarizes FVM’s key advantages over existing
software- and hardware-based storage virtualization mecha-
nisms, in terms of performance, host efficiency, scalability,
device sharing, flexibility, and programmability. FVM solves
the performance and scalability issues of the recent sidecore
approaches, while achieving device sharing and flexibility
that the existing hardware-assisted techniques cannot provide.
A detailed explanation can be found in Section 3.

For evaluation, we implemented our FVM-engine prototype
on a Xilinx FPGA board [23] and Intel Optane SSDs [7]. We
implemented Linux device drivers for the software support
and augmented an SPDK vhost-target implementation [21]
to apply FVM to an existing KVM-based virtualization sys-
tem [11].

Our experimental results show that the FVM prototype ob-
tains 1.36× higher I/O throughput than the software-based vir-
tualization method when allocating the same amount of host
CPU cores. FVM also scales well with the increasing number
of VMs and virtual/physical storage devices by achieving 9.5
GB/s aggregate I/O throughput with four SSDs. Also, our
HLS-based design flow requires only 10s – 100s of code lines
to implement example VM management functionalities.

In summary, we make the following contributions:

• Novel storage virtualization mechanism: We propose
a novel FPGA-assisted virtual device emulation mecha-
nism for fast, scalable, and flexible storage virtualization.

• High performance: FVM achieves high performance by
utilizing hardware-assisted virtualization and paralleliz-
ing virtual/physical device operations on FVM-engine.

• High scalability with host efficiency: FVM can easily
increase its computing power to match the target virtual-
ization scalability without depending on host resources.

• Flexibility & programmability: Our HLS-based FVM
design flow supports easy VM management and feature
programmability.

956 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

VM

Host

HW

Virtio
front-end driver

DMA
buffer

Hypervisor

Linux block I/O

Kernel-level device driver

I/O emulation

Virtio
back-end driver

DMA
buffer

NVMe SSD

I/O interposition

vm-exit

CPUCPUCPUCPU
CPUCPUCPUCPU
CPUCPUCPUCPU
CPUCPUCPUCPU

(a) Paravirtualization

VM

Host

HW

NVMe
device driver

SPDK vhost

User-level device driver

I/O emulation
Vhost-nvme

DMA
buffer

NVMe SQ/CQ
NVMe DB

NVMe SSD

Shared
mem

IOMMU

I/O interposition

Hyper-
visorCPUCPUCPUCPU

CPUCPUCPUCPU
CPUCPUCPUCPU

CPUCPUCPUCPU

vm-exit

CPUCPUCPUCPU

(b) Host sidecore

VM

HW

NVMe
device driver

SmartNIC

I/O interposition

I/O emulation

Runtime software

DMA
buffer

NVMe SQ/CQ
NVMe DB

NVMe SSD

IOMMU

NVMe interface

CPUCPUCPUSoC

CPUCPUCPUSoC

CPUCPUCPUSoC

(c) On-device sidecore

VM

HW

NVMe
device driver

DMA
bufferNVMe SQ/CQ

NVMe SSD

IOMMU

I/O interposition

SR-IOV

Namespace

PF/VF
NVMe DB

(d) Direct assignment

Figure 2: System architectures for conventional storage virtualization mechanisms

2 Background

In this section, we introduce modern non-volatile memory
(NVM) technologies and the latest advances in storage virtu-
alization mechanisms.

2.1 NVM and NVMe Protocol
Modern NVM technologies such as 3D XPoint [8] and Z-
NAND [18] have significantly improved the storage perfor-
mance [39, 50, 67, 71]. At the same time, virtualization for
such fast storage devices becomes one of the most critical
components in cloud environments [53, 55, 59, 69]. For exam-
ple, Amazon Web Services (AWS) accelerates I/O virtualiza-
tion through dedicated hardware components [1, 55]. Other
major cloud providers, including Microsoft Azure [12] and
Google Cloud Platform (GCP) [6], are allowing advanced
NVM devices to be used as primary storage for VMs.

NVM Express (NVMe) [14] is a standard storage archi-
tecture used to enable fast NVM storage through PCIe and
optimized I/O paths. First, it brings multiple deep I/O queues
to take full advantage of NVM technologies. The current
specification supports up to 65,535 I/O queues, each with 1
– 65,535 outstanding commands. As a result, it can enable
highly parallel processing on multiple cores by assigning
independent I/O queues and queuing routines to each core
or thread. Second, its protocol provides fast I/O submission
and completion paths by reducing the number of memory-
mapped I/O (MMIO) operations. For example, it does not
require MMIO register reads in the common I/O paths, while
including a maximum of one MMIO register write for the
command submission path.

An NVMe I/O queue consists of a submission queue
(SQ)/completion queue (CQ) pair. For I/O submission, host
software places NVMe commands in the SQ and writes
the SQ tail pointer to the target SQ doorbell register ex-
posed through PCIe base address registers (BARs). The target
NVMe storage device then fetches the newly added com-
mands and processes them. Once the NVMe commands are

completed, the NVMe device writes completion messages
to the associated CQ and then generates an interrupt. Lastly,
the host software handles the completion messages and up-
dates the target CQ doorbell register to clear the interrupt and
release the CQ entries.

2.2 Storage Virtualization

2.2.1 Paravirtualization

In a paravirtualization scheme, a guest operating system (OS)
is installed with a VM abstraction to make it efficient to emu-
late virtual devices. For example, Virtio [60] is an abstraction
for virtual devices in a hypervisor. This abstraction allows
the hypervisor to export a common set of virtual devices and
makes them available to guests through an efficient device
interface. Figure 2a shows the system architecture for virtio-
based device emulation. The guest implements front-end vir-
tio drivers, with particular virtual device emulation behind a
set of back-end drivers in the hypervisor [60]. This paravir-
tualization mechanism can reduce the number of VM exits
by reducing the number of MMIO operations for the virtual
device of the guest, which addresses the huge performance
overhead incurred by CPU mode switches and cache pollu-
tion [51]. However, the guest OS should be aware that it is
being virtualized, which requires modifications to collaborate
with the hypervisor efficiently.

Virtio SCSI (virtio-scsi) [47] or block (virtio-blk) [45] can
be used to emulate an NVMe device with this paravirtualiza-
tion mechanism. They handle VM requests directed at the
virtual NVMe device as follows: (1) A guest OS makes a
request to a virtual device through virtual I/O queues (e.g.,
vring [60]) in virtio front-end drivers. (2) The guest then calls
a VM exit and traps into a host machine. (3) The hypervisor
emulates the virtual device through virtio back-end drivers,
interacting with kernel-level device drivers. (4) Once the I/O
request is completed, the virtio back-end drivers read com-
pletion messages from the physical devices, confirm their
completion status, and inject an interrupt to the guest OS

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 957

through the hypervisor.

2.2.2 Host Sidecore Approach

CPU-dedicated (or sidecore) approaches can further accel-
erate storage virtualization by avoiding expensive traps to
the hypervisor and reducing cache pollution [33, 48]. The
recently proposed SPDK vhost-scsi and vhost-blk implemen-
tations [21] can accelerate virtualization of NVMe storage. As
shown in Figure 2b, a hypervisor pre-allocates shared mem-
ory regions for guests and allows them to exchange storage
commands with SPDK vhost-target directly for virtual device
emulation. The SPDK vhost-target implementations emulate
VM requests as follows: (1) A user-space thread running on a
dedicated sidecore continues to poll virtual I/O queues (e.g.,
NVMe SQ/CQ pairs) via a shared memory region. (2) It reads
newly received VM SCSI or block requests and converts them
to NVMe commands (i.e., protocol conversion). (3) It con-
ducts the I/O operations through an SPDK user-level NVMe
device driver. (4) Once the requests are completed, another
dedicated thread in SPDK vhost-target deals with completion
messages and injects an interrupt to the guest through the
hypervisor.

The recent sidecore approaches can offer near-native per-
formance of modern NVMe devices to VMs. A dedicated
sidecore polls guest I/O operations through shared mem-
ory regions, so there is no need to call VM exits to submit
NVMe commands. Moreover, SPDK’s user-level NVMe de-
vice driver enables sidecores to conduct I/O operations with-
out user-kernel mode switches. SPDK vhost-target also re-
duces the number of data copies by allocating guest DMA
buffers in a pinned shared memory region. For this, the
software-based virtualization layer translates guest physical
addresses (gPAs) to pinned host physical addresses (hPAs).
Due to the address translation, the NVMe device can transfer
data directly to the guest’s memory space without being aware
that it receives requests from VMs.
Vhost-nvme. The SPDK vhost-nvme implementation [69] fur-
ther optimizes the sidecore approaches by directly exposing
NVMe devices to guest OSes. This transparent view of the
NVMe devices can eliminate the performance loss caused by
the protocol conversion between SCSI/block and NVMe. It
also allows the guest OSes to exploit advanced NVMe features
(e.g., shadow doorbell buffer [42]) to get higher performance.
A recent study [69] demonstrated that the vhost-nvme imple-
mentation gets 1.11× – 1.26× higher random-read throughput
than the other SPDK vhost-target implementations.

2.2.3 On-device Sidecore Approach

To save the host resources required for storage virtualiza-
tion, a recent study [53] offloaded the virtualization layer to
system-on-chip (SoC) cores in other peripheral devices (e.g.,
SmartNIC [2, 13]). Figure 2c shows its system architecture.

The on-device sidecore approach exposes virtual NVMe in-
terfaces to guest OSes by providing a uniform address space
across host CPUs and SoC cores. The SoC allows the run-
time software running on the on-device cores to reach virtual
NVMe queue pairs mapped in the host memory through DMA.
In addition, host software allocates NVMe queue pairs in the
SoC’s memory space and provides their locations to the phys-
ical NVMe device to make it interact with the SoC directly.
Since it utilizes on-device sidecores to emulate virtual storage
devices, it can save the host CPU resources and offer more
compute power to VMs or other VM management features.

Moreover, on-device sidecore mechanisms provide flexible
and programmable implementations leveraging ARM-based
SoC cores. In particular, it facilitates implementing essential
functionalities in storage virtualization, which are not fully
offloaded or not easily composable via other hardware-based
virtualization mechanisms (e.g., SR-IOV). For example, a
recent study [53] implemented storage versioning, prioritiza-
tion, isolation, replication, and aggregation functionalities in
runtime software installed on the SoC.

2.2.4 Direct Device Assignment

To overcome the virtualization overhead, VMs can make use
of support for DMA and interrupt remapping (e.g., Intel VT-
d [27], AMD-Vi [26]), which allows guest software to access
a target storage device directly. For the remapping support,
major processor manufacturers introduced I/O memory man-
agement units (IOMMUs). A DMA remapping engine in an
IOMMU allows DMAs from a guest to be accomplished with
gPAs. The IOMMU translates them into hPAs according to
page tables that are configured by host software. Likewise, an
interrupt remapping engine translates interrupt vectors issued
by devices based on an interrupt translation table.

The direct device assignment (or passthrough) eliminates
the virtualization overhead in software layers since the hy-
pervisor is no longer in a guest’s I/O paths. However, this
approach requires the physical devices to be exclusively as-
signed to a single VM and does not support device sharing
across multiple VMs. Therefore, the passthrough mechanism
has limitations in improving the utilization of storage devices
and reducing operating costs in modern datacenters.
SR-IOV. To address the challenges of the direct passthrough
scheme, the PCIe specification currently supports SR-IOV
[19], a standardized hardware virtualization protocol. An SR-
IOV capable PCIe device supports a physical function (PF)
and multiple virtual functions (VFs). The PF provides re-
source management for the device and is managed by the
host software, and each VF can be assigned to a single VM
exclusively for direct access. SR-IOV is now supported by
high-performance I/O devices such as network and storage
devices as well as accelerators. Recently, Xilinx released an
SR-IOV capable PCIe IP block [28], supporting up to 252
VFs.

958 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0.00
0.20
0.40
0.60
0.80
1.00

Rand-read Rand-write Rand-rwTh
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

Workloads

Native virtio vhost-scsi vhost-blk vhost-nvme

Figure 3: Random I/O throughput with a single SSD

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Rand-read Rand-write Rand-rwC
PU

 u
sa

ge
 (n

or
m

al
iz

ed
)

Workloads

Native virtio vhost-scsi vhost-blk vhost-nvme

Figure 4: CPU usage of random I/O with a single SSD

Since an SR-IOV capable device implements how to mul-
tiplex itself at the hardware level, it does not rely on host
software to multiplex the virtual device instances, as shown
in Figure 2d. In addition, with SR-IOV and an IOMMU in
a host machine, VFs can carry out DMA transactions with
gPAs, while avoiding the software-side address translation.
Similarly, interrupt remapping for each VF addresses the per-
formance overhead generated by triggering interrupts to notify
guests regarding the completion of their I/O requests.

3 Motivation

In this section, we discuss the challenges of the existing vir-
tualization mechanisms for modern datacenters. We identify
the critical performance and scalability issues of the existing
host and on-device sidecore approaches and the limited VM
management support of the hardware-assisted virtualization
technologies.

3.1 CPU-inefficient Storage Virtualization

Modern software-based storage virtualization mechanisms
dedicate CPU sidecores to emulate virtual NVMe devices.
For example, recent NVMe virtualization studies [59,69] allo-
cate multiple CPU cores to poll virtual I/O queues via shared
memory regions, instead of making a trap into a host machine.
Figure 3 shows the random I/O throughput of the various
software-based virtualization implementations on a single
CPU sidecore and a single Intel Optane SSD [7], normalized
to the native performance. Virtio denotes virtio-based par-
avirtualization through KVM, and vhost-scsi, -blk, and -nvme
mean three different virtual device interfaces through SPDK

0% 20% 40% 60% 80% 100%

Rand-
read

CPU usage

QEMU/KVM vhost bdev nvme interrupt others

Figure 5: CPU usage breakdown of random-read I/O with
SPDK vhost-nvme

vhost-target. We ran FIO [5] random I/O benchmarks with
four threads and 32 queue depth and measured the random I/O
throughput on VMs. On the other hand, Figure 4 shows the
relative CPU usage normalized to that of the native I/O opera-
tions on an Intel Xeon server [22] with the same experiment
environments. Our experimental results show that virtio fails
to offer the full native performance due to frequent VM exits,
and all the SPDK vhost implementations can achieve close
to the maximum native performance (i.e., 550K IOPS). How-
ever, at the same time, to get such near-native performance,
they demand 1.42× – 1.61× more CPU resources than native
random I/O operations.

There are two primary sources of such high CPU resource
usage. First, they utilize multiple active polling cores to re-
duce the number of VM exits [59, 69]. Because NVMe is a
highly parallel storage architecture, the conventional trap-and-
emulate approach will generate an unacceptable number of
VM exits for a VM to take full advantage of multiple I/O
queues [59]. For this reason, the sidecore approaches allo-
cate CPU resources exclusively and poll guest I/O operations
through a shared memory region to handle such frequent
NVMe requests quickly. Second, the SPDK vhost-target im-
plementations trigger guest interrupts through eventfd, which
requires system calls and VM exits [69]. Figure 5 shows the
CPU usage breakdown of the host machine running SPDK
vhost-nvme. Our experimental result demonstrates that around
22% of active CPU cycles are used to poll and emulate virtual
devices (vhost) and 39% to trigger guest interrupts (inter-
rupt). The other portions are consumed by the necessary VM
management (QEMU [15]/KVM [11]) and the SPDK storage
stack (bdev and nvme).

This resource-inefficiency issue poses a significant chal-
lenge to scalable storage virtualization and efficient VM man-
agement in modern cloud and datacenter environments. To
support many NVMe devices and guarantee quality-of-service
(QoS) at the same time, the current host sidecore approaches
will continue to demand a considerable portion of host CPUs
for storage virtualization [44]. Eventually, the number of VMs
that can be supported within a single server will decrease, and
the total datacenter costs will increase. Otherwise, the VMs
will have serious performance problems due to the lack of
computing resources. Also, with the limited capability of
adding virtualization-dedicated CPU cores per server, the sys-
tem will come to suffer from the low scalability.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 959

0

2

4

6

8

1 2 3 4

Th
ro

ug
hp

ut
 (G

B/
s)

Number of SSDs

CPU SoC (250MHz) SoC (3GHz) SoC (3GHz, 8 cores)

Figure 6: Performance comparison of different virtualization-
dedicated core implementations

3.2 Weak Computing Power of SoC Cores

Modern on-device sidecore approaches offload the virtual de-
vice emulation to SoC cores embedded in peripheral devices
instead of CPU cores to reduce the burden of host CPU [53].
However, their I/O performance can be severely bounded by
the SoC cores’ weak computing power. To measure the per-
formance bottleneck due to the small cores, we implemented
Microblaze softcores (250 MHz) [24] on an FPGA [23] and
ran storage virtualization runtime software. We linearly scaled
this performance result to evaluate more aggressive SoC de-
signs that use higher clock speed and more cores (3 GHz,
8 cores). Figure 6 shows the random I/O performance of
CPU (vhost-nvme) and SoC (runtime software) sidecore ap-
proaches with many NVMe devices. Our experimental results
show that, even with the number of SoC cores increased, their
weak computing capabilities become the significant perfor-
mance bottleneck.

In particular, SoC sidecore designs significantly suffer from
inefficient DMA mechanisms incurred by SW abstraction lay-
ers. For example, SmartNICs [2, 13], which utilize SoC cores
in NICs, expose RDMA APIs instead of native DMA primi-
tives, and it nearly doubles the DMA read/write latency [56].
Our Microblaze softcore implementation emulated the over-
head by adding 5 µs per DMA transaction, and as a result, it
achieved only 68% of the maximum performance of a single
device. In addition, SoC sidecore designs cannot support a
large number of virtual/physical devices and advanced storage
management features due to their limited computing capabil-
ities. As shown in Figure 6, an eight-core SoC cannot fully
utilize two or more NVMe devices. These scalability issues
will become more severe as storage devices get faster.

3.3 Absence of Interposition Layer

To save the host and on-device sidecores, hardware-assisted
virtualization techniques can bypass the host software en-
tirely. We experimentally confirmed that the two popular HW-
assisted virtualization technologies in modern NVMe SSDs
(i.e., passthrough and SR-IOV) provide the near-native per-
formance in VMs. For this purpose, we installed a Samsung
PM1733 SSD [17] which offers both passthrough and SR-IOV

capabilities, and measured its FIO random I/O performance in
VMs. We created a single VF through SR-IOV and assigned
a 128-GB namespace, eight virtual queues, and eight virtual
interrupt resources. When the device is connected through
PCIe Gen3, we obtained around 800k IOPS for random reads
and 250k IOPS for random writes in both passthrough and
SR-IOV environments.

However, they suffer from the limited VM management
and storage features in cloud environments. For example,
SR-IOV does not support critical features to enable easy stor-
age management such as live migration [41, 58] and seam-
less switching between different I/O channels. Also, it does
not allow hypervisors to add critical features that are not
natively provided by physical devices: replication [52, 61],
snapshot [40, 70], record-replay, deduplication [68, 72], com-
pression, encryption [63], metering, accounting, billing, and
throttling [36, 46, 54] of guest I/O activities.

In addition, such hardware techniques enabling only the
specific in-storage features significantly limit their portabil-
ity and fungibility in modern datacenters. Furthermore, their
fixed and vendor-specific storage functionalities do not pro-
vide enough flexibility to support advanced VM management.
It is still challenging to provide flexibility and high perfor-
mance at the same time with the current hardware-assisted
virtualization schemes.

4 FVM Design and Implementation

This section introduces the design goals for fast, scalable, and
flexible storage virtualization, and proposes our FVM solution
to satisfy the goals. We describe our solution by presenting (1)
a front-end implementation that emulates virtual devices and
(2) a back-end implementation that directly manages physical
devices.

4.1 Design Goals

We set the following design goals to resolve the challenges in
modern storage virtualization: (1) A next-generation virtual-
ization mechanism should ensure the near-native performance
of NVMe storage devices. (2) It should minimize the amount
of host resources used for virtualization so that a host machine
can provide more computing power to VMs. (3) At the same
time, it should nicely scale with the number of storage devices.
(4) A physical storage device should be shared by multiple
VMs. (5) It should not rely on hard-wired units to enable
flexible and essential management functionalities, as summa-
rized in Table 2. For example, software-based virtualization
can implement flexible VM management features, while SR-
IOV makes it hard for system administrators to guarantee
accurate feature behaviors as in-SSD resource allocation and
scheduling are done in a vendor-specific way.

960 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Category Features SW SR-IOV FVM

Storage
configuration

Consolidation " " "

Aggregation " "

Caching " "

Resource
management

Isolation " 4 "

Throttling " 4 "

Fault
tolerance

Replication " 4 "

Snapshot " 4 "

Data
manipulation

Compression " " "

Deduplication " 4 "

Encryption " " "

Administration
Migration " "

Metering " 4 "

Billing " 4 "

4: Limited to single-device use cases.

Table 2: Example VM management features in storage virtu-
alization layers

4.2 FPGA-assisted Storage Virtualization

To meet the design goals, we propose FVM, a new hardware-
assisted storage virtualization mechanism. The key idea of
FVM is to implement FVM-engine, an FPGA-based virtualiza-
tion acceleration card. We implement a storage virtualization
layer and a device-control mechanism on FVM-engine.

In contrast to on-device SoC cores, an FPGA can be con-
figured only with essential elements for storage virtualization
and can take advantage of highly parallel NVMe protocols.
Our FPGA-based solution can implement many cost-effective
cores, and distribute virtual and physical NVMe queues and
management routines to the cores. In this way, our solution
achieves fine-grained parallel executions and scalable per-
formance. In addition, our solution uses an FPGA’s on-chip
memory for SQ/CQ pairs and doorbell registers, which can
be fast and directly accessed by VMs and NVMe devices
through PCIe.

Another advantage of our FPGA-based solution is its pro-
grammability to implement new VM management features.
Our FPGA-based solution has the potential of the hardware-
based virtualization to solve the performance and efficiency
challenges, while allowing to implement various VM manage-
ment functionalities with its reconfigurability. In this work, we
propose an FPGA-based virtualization layer, but it is also pos-
sible to implement the mechanism on ASICs. In such a case,
an ASIC implementation can achieve higher performance by
leveraging its optimized circuits for virtualization functions,
but its flexibility for new storage management features will
be limited.

Figure 7 shows the FVM architecture and its components.
First, FVM bypasses host software stacks entirely and mini-
mizes the use of host resources. Through the SR-IOV imple-
mentation on FVM-engine, VMs can enter a virtualization
layer without any arbitration support from the host software.
Moreover, its hardware-level NVMe interface makes the card
directly manage the physical NVMe devices through PCIe.

VM

HW

FVM engine

I/O interposition

I/O emulation

SR-IOV

NVMe doorbell registers

NVMe
device driver

DMA
buffer

NVMe
SQ/CQ

Host

NVMe interface

IPIPIPCore

FVM engine
driver

Shared
mem

Hugepage
gPAàhPA

mapping table

Hypervisor

PCIe P2P

PFVFVFVFVFVF …

IPIPIPCore
IPIPIPCore

IPIPIPCore gPAàhPA

…

…SSD SSD SSD SSD SSD

SQ SQ SQCQ CQ CQ

IOMMU

HLS

Figure 7: FVM architecture

Second, FVM is able to scale with many NVM devices by
employing a parallel architecture for the device emulation.
Instead of relying on on-device SoC cores, FVM-engine incor-
porates many specialized hardware units to poll and emulate
guest I/O operations. Third, its HLS-based design flow en-
ables flexible and programmable implementations for FVM-
engine and other storage management services.

4.3 Front-end: VM-to-FVM-Engine
Direct FVM-engine assignment. FVM assigns virtual in-
stances of FVM-engine to each VM through its SR-IOV in-
terface. The current FVM-engine implementation integrates a
PCIe IP block [28] to enable its own SR-IOV interface and
supports up to four physical functions (PFs) and 252 virtual
functions (VFs). The PFs are managed by host software for
resource management, and each VF is assigned to a single
VM exclusively for direct access to FVM-engine. Since all
VFs have an identical PCIe configuration (e.g., PCIe BAR),
VMs can install the same guest FVM-engine driver. FVM-
engine also successfully isolates MMIO from different VMs
by applying non-overlapping address translation to its inter-
nal address space (e.g., PCIe-to-AXI address translation [28]).
At the same time, with the IOMMU support, FVM-engine can
perform DMA transactions to guest memory space and in-
ject an interrupt without a host software arbitration. To en-
able such exitless DMA transactions and interrupts, we install
Linux virtual function I/O (VFIO) drivers in the host machine.

There are three major benefits of providing SR-IOV in
FVM-engine. First, this design enables CPU-efficient virtual
device emulation. All VMs can directly enter this hardware

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 961

NVMe device driver

FVM engine driver

Ba
ck

-e
nd

Fr
on

t-
en

d

FVM engine

DMA
buffer

NVMe
SQ/CQ

VM

HW

NVMe doorbell registers

NVMe interface

NVMe
SQ/CQ

SQ
handling

⋯

⋯

①

②

CQ
polling

⋯

⋯

FVM core

Interrupt
generation

VM management features

CQ
handling

Address
translation

SQ
polling

SSD

SSD

SSD

⋯

⑤

⑥

④

⑦

Virtual-NVMe resources Physical-NVMe resources

③

I/O interposition

SR-IOV

IOMMU

Figure 8: Hardware-level device emulation mechanism

interposition layer and handle interrupts without host soft-
ware intervention. Second, it allows multiple VMs to share
FVM-engine through 252 VFs. Using this interposition layer,
FVM-engine can map virtual devices onto a much smaller set
of physical NVMe devices. Third, it does not rely on fixed
or vendor-specific storage capabilities. By simply deploying
FVM-engine, any host machine can benefit from this virtual-
ization mechanism.
Doorbell register remapping. FVM-engine reserves a mem-
ory space for NVMe doorbell registers and exposes it
through PCIe BARs. When guest NVMe device drivers
call nvme_write_sq_db() to submit I/O requests, the guest
FVM-engine driver intercepts them and obtains their (vir-
tual) device id, SQ id, and SQ tail information. The guest
FVM-engine driver then calculates the address of the target
doorbell register and writes the received SQ tail pointer to
FVM-engine (Figure 8–¬). In this way, the guest OS can
indicate new NVMe commands to be executed. Similarly, to
notice that the command completions are normally handled,
FVM-engine driver intercepts nvme_process_cq() function
and acquires (virtual) device id, CQ id, and CQ head informa-
tion. It then writes the received CQ head pointer to the target
address in the FVM-engine doorbell regions.
Virtual I/O queue emulation. To process a guest I/O request
at the hardware layer, FVM-engine polls doorbell registers
using multiple FVM cores (Figure 8–). Algorithm 1 demon-

Algorithm 1: Polling function in the front-end for I/O sub-
mission

1 fvm_nvme_submit (devicesvirtual);
2 while true do

/* Iterate over the assigned virtual
devices and their SQs */

3 foreach vdev ∈ devicesvirtual do
4 foreach sq ∈ available_sqs(vdev) do

/* Poll the doorbell registers mapped
in FVM-engine */

5 tail = get_tail(sq)
/* Find newly added NVMe commands

from the guest OS */
6 head = get_head(sq)
7 while tail 6= head do
8 cmd = get_cmd(sq,head)
9 cmd = manipulate_cmd(cmd)

10 submit_cmd(cmd)
11 head = (head +1)%SQ_SIZE
12 end
13 set_head(sq,head)
14 end
15 end
16 end

strates its polling routine to emulate virtual NVMe devices.
First, the FVM core gets the newly updated SQ tail (line
5) and compares it with the SQ head that stores the previous
tail value (line 6). The difference between these two val-
ues indicates the number of commands that are submitted by
the guest OS. Since FVM-engine reserves its doorbell mem-
ory regions using on-chip memory (e.g., BRAM [29]), it can
quickly poll those regions. This design can easily scale up the
number of VMs as modern FPGAs currently support tens of
MBs on-chip memory [23].

To enable FVM-engine to access a submission queue in the
guest memory space, we utilize an internal DMA engine [28]
and an IOMMU. When VMs install guest NVMe drivers,
they deliver SQ/CQ gPAs to FVM-engine. FVM cores then
use these addresses to directly read the submitted commands
through the DMA engine (Figure 8–®). Since FVM guaran-
tees exitless DMA transactions with an IOMMU and VFIO
drivers, each virtual instance of FVM-engine can safely ac-
cess target SQ/CQ pairs allocated in the guest memory space
without software intervention.

Similarly, to deliver NVMe completion entries to a VM,
FVM-engine directly writes the completion messages to the
guest CQ memory region (Figure 8–²). In addition, it trig-
gers an interrupt to the guest directly through the interrupt
remapping engine. The FVM-engine driver then forwards the
interrupt with an associated IRQ vector to the NVMe driver
and allows it to handle the received completions.
PRP and LBA translation. FVM-engine processes the re-
ceived NVMe commands from VMs before submitting them

962 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

to physical NVMe devices. Specifically, FVM-engine ma-
nipulates physical region page (PRP) entries (pointing guest
DMA buffers) from gPAs to hPAs. To enable such gPA-to-hPA
translation at the hardware level, FVM leverages hugepages
to allocate pinned memory [4, 20]. Since the current operat-
ing system does not change their physical locations, FVM-
engine can statically translate PRP entries by incorporating
the gPA-to-hPA mapping table. The translation does not incur
any performance overhead in this design as FVM-engine man-
ages the mapping table using its on-chip memory. Also, due to
the hugepages (2MB), the required table size is small enough
to keep them in the on-chip memory (i.e., 4KB table to cover
1GB guest memory space).

In addition, FVM-engine needs to manipulate a start logi-
cal block address (SLBA) to allocate separate block regions
of physical devices to VMs. Since the current implementation
of FVM assumes a static partition, the SLBA in guest NVMe
command can be simply modified by applying a different
offset value, which is managed by host software.
Virtual admin queue emulation. FVM manages a virtual
NVMe admin SQ/CQ pair through QEMU and SPDK vhost-
target implementations. Since QEMU and KVM can track
VM exits caused by MMIO on administration doorbell regis-
ters, they are still able to interact with SPDK vhost-target via a
UNIX domain socket. QEMU delivers critical administration
commands (e.g., I/O queue creation, deletion, shutdown) to
the SPDK vhost-target implementation following the conven-
tional vhost-target protocol.

4.4 Back-end: FVM-Engine-to-SSD

Physical SQ/CQ remapping. To allow FVM-engine to
interact with physical NVMe devices directly, host soft-
ware remaps their NVMe I/O queues onto FVM-engine’s
PCIe BAR regions. At the installation time, the host FVM-
engine driver provides the memory-mapped region’s address
to the physical NVMe devices. The NVM devices are un-
aware of FVM-engine, but a PCIe switch delivers DMA trans-
actions to FVM-engine seamlessly. Also, our experimental
result demonstrates that FVM-engine can fully utilize a single
Intel Optane SSD with eight SQ/CQ pairs (4KB each queue).
Thus, FVM-engine can nicely scale with a large number of
physical devices and VMs without any on-chip memory space
issue for these remapped queues.
Direct NVMe device-control mechanism. FVM-engine in-
corporates standard NVMe interfaces to implement a di-
rect device-control mechanism. (1) FVM-engine moves the
NVMe commands to the submission queue in the FVM-
engine on-chip memory. (2) FVM-engine then rings doorbell
registers located in the NVMe device to notify the number
of newly submitted commands. (3) The NVMe controller
fetches the NVMe commands through PCIe P2P communica-
tions (Figure 8–¯). (4) After the NVMe device processes the
commands (Figure 8–°), it writes the command completions

to the FVM-engine address space (Figure 8–±). (5) FVM-
engine processes them and (6) rings doorbell registers located
in the NVMe device.
Polling CQs. To immediately handle completions from phys-
ical devices, an NVMe interface polls its CQ memory space.
Algorithm 2 shows its polling function. First, the NVMe in-
terface handles a CQ entry pointed by its head pointer (line
7) and compares its phase bit with the current round (line 9).
This enables the NVMe interface to determine whether a new
entry was posted as a part of the previous or current round
of completion notifications. After that, it processes the com-
pletion entries (line 10) and forwards them to the front-end
(line 11). The FVM core then writes completion messages to
the guest CQ memory space. Since FVM-engine manages all
SQ/CQ pairs using the on-chip memory, its polling routine
does not incur any performance overhead.

Algorithm 2: Polling function in the back-end for I/O com-
pletion

1 fvm_nvme_complete (devicesphysical);
2 while true do

/* Iterate over the assigned physical
devices and their CQs */

3 foreach pdev ∈ devicesphysical do
4 foreach cq ∈ available_cqs(pdev) do
5 head = get_head(cq)
6 cq_phase = get_cq_phase(cq)

/* Poll the completion entries mapped
in FVM-engine */

7 cpl = get_cpl(cq,head)
8 cpl_phase = get_cpl_phase(cpl)

/* Find newly added NVMe completions
from the physical device */

9 while cpl_phase == cq_phase do
10 cpl = manipulate_cpl(cpl)
11 f orward_cpl(cpl)
12 head = (head +1)%CQ_SIZE
13 if head == 0 then
14 cq_phase = invert_phase(cq_phase)
15 end
16 cpl = get_cpl(cq,head)
17 cpl_phase = get_cpl_phase(cpl)
18 end
19 set_head(cq,head)
20 set_cq_phase(cq,cq_phase)
21 end
22 end
23 end

4.5 FVM Core Design

FVM maximizes the opportunities of its hardware-level virtu-
alization mechanism by instantiating multiple FVM cores to
poll and emulate guest I/O. This design choice can offer more

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 963

0.0
0.5
1.0
1.5
2.0
2.5

1 2 4

Th
ro

ug
hp

ut
 (G

B/
s)

Number of threads

SoC core (250MHz) SoC core (400 MHz) FVM core (400MHz)

Figure 9: Performance comparison of different virtualization
processing core implementations

Crossbar

FVM
core

BRAM

PCIe
block

DMA
engine

Micro-
controller

… Device
emulation
Address
translation
NVMe
interface

VM
management

SQ/CQDRAM
controller

FVM
core

FVM
core

Figure 10: Multiple FVM cores with crossbar interconnect

scalable performance than an on-device SoC core as it re-
places the general-purpose sidecores with the customized
hardware units. By doing so, FVM can address the perfor-
mance bottleneck in the processing cores. Figure 9 shows the
performance difference between single-core SoC and single-
FVM core implementations. To measure the performance
bottleneck on the SoC cores, we implemented runtime soft-
ware on Microblaze softcores [24] and ran FIO random read
benchmarks with the increasing number of threads. We pro-
jected this performance result for the higher clock speed (400
MHz) to fairly compare it with our FVM core implementation
running at the same clock frequency. Our experimental re-
sult demonstrates that the current FVM core implementation
achieves 8× higher throughput than the softcore implementa-
tions.

Figure 10 shows an example system architecture using mul-
tiple FVM cores for storage virtualization. First, to reduce the
burden on users in building and integrating system functions
required for interacting between VMs and NVMe devices,
we separate the virtualization logic (storage service) from the
common I/O (BRAM, crossbar) and the board-specific logic
(DRAM, PCIe). Second, by interconnecting them with cross-
bars, FVM-engine can be extended to support a multi-core

FVM
core

FVM
core

FVM
core

FVM
core

VM 0 VM 1 VM 2 VM 3

SSD 0 SSD 1 SSD 2 SSD 3

SS
D

 0
V

M
 0

V
M

 1

SS
D

 0

SS
D

 0

SS
D

 0

SS
D

0
SS

D
 0

SS
D

 0
SS

D
 0

(a) Multi-VM support

FVM
core

FVM
core

FVM
core

FVM
core

VM 0 VM 1 VM 2 VM 3

SSD 0 SSD 1 SSD 2 SSD 3

SS
D

 0
V

M
 0

V
M

 1

SS
D

 1

SS
D

 2

SS
D

 3

SS
D

 0
SS

D
 1

SS
D

 2
SS

D
 3

(b) Multi-SSD support

Figure 11: Multi-VM and multi-SSD support with FVM cores

Designs LUTs Registers BRAMs Clock speed

1 core 4682 7528 5.5 400 MHz(0.36%) (0.29%) (0.29%)

1 VM - 6 cores 106809 130064 362.5 400 MHz(5 SSDs) (8.19%) (4.99%) (17.98%)

4 VMs - 6 cores 103539 131394 359.5 400 MHz(4 SSDs) (7.94%) (5.04%) (17.83%)

4 VMs - 2 cores 80259 93997 321.5 400 MHz(1 SSD) (6.16%) (3.61%) (15.95%)

Table 3: FPGA resource utilization for different FVM config-
urations

design. Our crossbar interconnection can have 16 input/out-
put ports and can be connected with other switches for higher
scalability. As each crossbar switch takes tens of nanosec-
onds, the overall switching latency is negligible compared to
modern SSD’s microsecond-scale access latency.

In addition, FVM-engine can be configured to support var-
ious FVM core mapping strategies. For example, Figure 11
shows two different mapping strategies. Figure 11a demon-
strates that a single FVM core is shared by multiple VMs,
while it is dedicated to a single NVMe device. This design can
easily cover an increasing number of VMs. On the other hand,
Figure 11b shows that an FVM core is dedicated to a single
VM, while it covers multiple physical NVMe devices. With
this mapping strategy, we can allocate more virtualization
resources to more performance-critical VMs.

As Table 3 shows, FVM can cost-effectively scale with
multiple FVM cores without sacrificing its clock speed. We
implemented three different FVM configurations depending
on the number of VMs and SSDs that can be supported. The
1-VM and 6-FVM-core implementation supports five NVMe
SSDs and utilizes 8.19% LUTs, 4.99% registers, and 17.98%
BRAMs in the FPGA chip. Also, its light resource usage (<
0.5% for a single FVM core) provides opportunities to uti-
lize the remaining resources to implement more FVM cores,
and/or deploy much cheaper FPGA boards to minimize the
FPGA costs. In addition, FPGAs and FVM cores can be more
easily added/upgraded on servers, which provides higher scal-
ability using expandable slots than CPU cores requiring extra
sockets.

4.6 HLS
FVM enables flexible and easily programmable implemen-
tations through its high-level synthesis (HLS)-based design
flow. Modern HLS supports high-level languages and has
become a standard hardware design flow for FPGAs. Our
HLS-based FVM implementation allows users to extend their
designs easily.

In this work, we implemented five different storage func-
tions on FVM-engine First, we implemented device sharing,
which allows multiple VMs to share a single NVMe device.
Second, we designed a token-based throttling mechanism to
effectively manage guest I/O operations. Third, we imple-
mented replication to achieve fault tolerance. Fourth, we

964 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2x Intel
Xeon Gold 5118

1x Xilinx
Alveo U280

5x Intel Optane 900p
480GB SSDs

Figure 12: FVM hardware prototype

implemented server-side caching to accelerate storage ac-
cesses from VMs. Fifth, we designed direct copying in which
a guest OS moves data between two different storage devices
using FVM-engine. For this purpose, the VM utilizes FVM-
engine’s internal memory space as an intermediate buffer,
while bypassing the entire software stacks.

5 Evaluation

In this section, we evaluate our FVM implementation and
compare its random I/O and RocksDB performance with
other storage virtualization schemes. We also present five
example VM management features implemented through our
HLS-based design flow.

5.1 Experimental Setup

To evaluate FVM, we ran FIO [5] random I/O benchmarks and
RocksDB [16] workloads on VMs. We evaluated our FVM im-
plementation against its native execution and existing virtual-
ization mechanisms including SPDK vhost-nvme v20.01 [21]
(configured with the option -with-internal-vhost-lib)
and passthrough. Since the passthrough technique avoids
most of the virtualization software stack and directly assigns
the device to the VM, it can provide the near-native execution
performance. As FVM’s use cases, we also implemented five
different storage services (device sharing, throttling, repli-
cation, caching, and direct copy) based on our HLS-based
design flow, and validated them with respect to the software
reference implementations.

Figure 12 shows our hardware FVM prototype. We built
this prototype on a host machine (Super Micro SuperServer
4029GP-TRT2) with two 12-core Intel Xeon Gold 5118 CPUs
running at 2.3GHz, 256GB DDR4 DRAM, and five 480GB
Intel Optane 900P NVMe SSDs. The Optane SSD (based
on the 3D XPoint NVM technology) can support up to 550k
IOPS in random-read and 500k IOPS in random-write with
10 µs latency [7]. We implemented FVM-engine on a Xilinx
Alveo U280 Data Center Accelerator Card using Vivado and
Vivado HLS v2019.2 EDA tools. We configured the PCIe

0.00
0.20
0.40
0.60
0.80
1.00

Rand-read Rand-write Rand-rwTh
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

Workloads

Native vhost-nvme Passthrough FVM

Figure 13: Random I/O throughput with two NVMe SSDs

IP block to meet the PCIe Gen3 x4 specification and con-
nected it with other NVMe SSDs through PCIe Gen3 x16
lanes. For accurate performance measurements, we disabled
hyperthreading and dynamic voltage and frequency scaling
(DVFS).

On the software side, we installed 64-bit Ubuntu 18.04
with the Linux kernel version 5.3.0 and QEMU emulator
version 3.0.0 on the host machine. We installed the same
OS and Linux kernel versions on VMs, and implemented
an FVM-engine Linux device driver. We modified an SPDK
vhost-target implementation and applied FVM to an existing
QEMU/KVM virtualization system.

5.2 Performance

5.2.1 Random I/O Benchmark

To evaluate the random I/O performance, we ran FIO with two
SSDs and measured (1) the maximum achievable throughput,
(2) latency, and (3) CPU utilization. For passthrough and
FVM, we allocated four CPU cores and 1GB system memory
per VM. To show the performance impact due to the lack of
host resources in vhost-nvme, we allocated one CPU core for
the vhost-nvme virtualization layer and three cores for the
VM.

Figure 13 shows the relative throughput of 4KB random
read, write and read/write (50% of read and write each) for
native, SPDK vhost-nvme, passthrough, and FVM. For all
three random I/O benchmarks, passthrough and FVM can
achieve about 79% (2.65GB/s on average) of native perfor-
mance (3.36GB/s on average). However, SPDK vhost-nvme
achieves about 58% (1.95GB/s on average) due to the CPU
resource competition between VMs and the vhost-nvme vir-
tualization layer.

In this experiment, we observed that other virtualization
overheads still prevent even the passthrough and FVM from
achieving the full native performance. First, passthrough and
FVM include VM exits caused by MSR_WRITE and HLT
instructions to manage timer interrupts and to yield CPU re-
sources to a host machine. Second, they involve IOMMU’s
address translation to transfer data to and from NVMe storage
directly (passthrough) or to manage guest OSes’ SQ/CQ pairs
from FVM-engine (FVM). There have been efforts to mini-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 965

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Rand-read Rand-write Rand-rwLa
te

nc
y

(n
or

m
al

iz
ed

)

Workloads

Native vhost-nvme Passthrough FVM

Figure 14: Random I/O latency with two NVMe SSDs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

1 2 1 2 3 4

CPU cores = 4 # CPU cores = 8

Th
ro

ug
hp

ut
 (n

or
m

al
iz

ed
)

of CPU cores and vhost sidecores

A B C D E F

Figure 15: RocksDB throughput with FVM (normalized to
SPDK vhost-nvme)

mize the overheads [34, 57]. In this work, we do not address
the overhead as they are orthogonal to our work.

In addition, we can see that FVM performs better than
passthrough in some cases. Our current FVM-engine imple-
mentation aggregates completions from those two SSDs and
delivers the smaller number of interrupts to the VM, which
provides more CPU resources to random I/O operations.

Figure 14 shows the average latency normalized to that of
the native execution for the FIO experiments. For all three
workloads, FVM outperforms vhost-nvme and passthrough
thanks to the fast FVM core design and the direct device-
control mechanism through PCIe P2P communications.

5.2.2 RocksDB

To evaluate a server workload on FVM, we ran RocksDB [16]
on the EXT4 file system and YCSB [38] to generate work-
loads. We configured YCSB to generate the workloads as
follows: (A) 50% of read and write each, (B) 95% of read
and 5% of write, (C) read-only, (D) read-latest (most reads ac-
cess the last write), (E) short-ranges (most reads access recent
writes), and (F) read-modify-writes. We scaled up RocksDB’s
recordcount and operationcount parameters to highlight
its I/O activities.

For SPDK vhost-nvme, we considered various CPU alloca-
tion scenarios and increased the portion of dedicated sidecores
up to 50% to emulate future high-performance NVMe devices.
For this purpose, we assigned 1 – 4 CPU cores (out of 4 or 8)
for SPDK vhost-target and the remaining CPU cores for the
VM. For FVM, we assigned four or eight CPU cores for the
VM.

0
2
4
6
8
10
12
14

1 2 3 4 5

Th
ro

ug
hp

ut
 (G

B/
s)

Number of SSDs

vhost-nvme Passthrough FVM

Figure 16: I/O throughput with multiple SSDs

0
2
4
6
8
10

1 2 3 4Th
ro

ug
hp

ut
 (G

B/
s)

Number of VMs

Native vhost-nvme Passthrough FVM

Figure 17: Multi-VM throughput with multiple SSDs

Figure 15 shows the operation throughput of FVM, nor-
malized to that of SPDK vhost-nvme. Since FVM saves host
CPU resources to provide more computing power to VMs, it
obtains 1.20× (average) higher and 1.33× (maximum) higher
throughput than vhost-nvme with four CPU cores. On the
other hand, with eight total CPU cores, FVM achieves 1.15×
(average) higher and 1.71× (maximum) higher throughput
than vhost-nvme. With these trends, FVM will become more
promising as the storage devices get faster in future.

5.3 Scalability

For the scalability test, we installed one VM with 18 CPU
cores to fully utilize five NVMe SSDs and measured the
aggregate throughput. For vhost-nvme, we assigned four cores
to SPDK vhost-target and 14 cores to the VM. Figure 16
shows the total throughput that a single VM can achieve with
the given number of SSDs. As the number of SSDs increases,
both passthrough and FVM scale nicely, while vhost-nvme
does not scale well due to its excessive CPU usage to emulate
the guest I/O operations in the hypervisor.

When the VM utilizes more than four SSDs, FVM’s to-
tal throughput is 7% lower compared to that of passthrough.
Because the current PCIe IP core [25] supports only eight
interrupt vectors per VF, the FVM-engine device driver in-
stalled in the guest OS should make the interrupt vectors
shared by many SQ/CQ pairs and look up multiple CQs to
identify completion messages.

Next, we assigned four CPU cores and one SSD to each
VM and ran four VMs concurrently. For vhost-nvme, we as-
signed one CPU core to SPDK vhost-target and three cores to
the VM. Figure 17 shows the total achievable throughput of
each virtualization implementation as the number of VMs in-
creases. The results show that FVM scales well as the number
of VM increases. With four VMs, FVM achieves up to 9.5

966 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0.0
0.5
1.0
1.5
2.0
2.5

1 2 3 4

Th
ro

ug
hp

ut
 (G

B/
s)

Number of VMs (sharing a single SSD)

VM1
VM2
VM3
VM4

Figure 18: Device sharing with balanced allocation

0
100
200
300
400
500

17 19 20 21 23 24 25 27 28 29 31 32 33 35 36 37 39 40 41 43Th
ro

ug
hp

ut
 (M

B/
s)

Time (second)

Figure 19: SSD throughput trace with token-based throttling

GB/s by processing on FVM-engine. However, vhost-nvme
fails to achieve the full native throughput, due to its software
overhead.

5.4 Programming Example Functions

To evaluate FVM’s flexibility, we implemented five exam-
ple storage functions in FVM’s hardware-level virtualization
layer: (1) device sharing, (2) throttling, (3) replication, (4)
caching, and (5) direct copy. To implement these functions,
we added and modified only 10s-100s of C++ code lines (i.e.,
device sharing: 40 LOC, throttling: 70 LOC, replication: 15
LOC, caching: 220 LOC, direct copy: 570 LOC).
Device sharing. To implement the device sharing function-
ality, we mapped multiple virtual I/O queue pairs from dif-
ferent VMs to a single physical NVMe queue pair (similar
to SPDK vhost-nvme implementations). To correctly arbi-
trate completion messages from the physical device, we made
an additional data structure to keep track of the virtual de-
vice identifications of the submitted NVMe commands which
requires 64 bytes for each physical I/O queue. We also de-
ployed a round-robin method between virtual I/O queues as
the vhost-nvme implementation does. Figure 18 shows the
FIO throughput results of FVM when running multiple VMs
on a single NVMe SSD. FVM achieves the perfectly balanced
throughput allocation among VMs without any performance
loss.
Throttling. We implemented a token-based throttling algo-
rithm on FVM, which can limit the bandwidth with period-
ically refilled tokens and a bucket which can save a certain
amount of tokens. The FVM-engine driver configures the
period of refill_token signal, the amount of tokens to be
refilled in a period, and the size of the bucket. An FVM core
periodically polls the refill_token signal and filters ev-
ery command by checking the size of the request and the
amount of remaining tokens. If the command is issued, a
proper amount of tokens are removed from the bucket. Fig-

0

100

200

300

400

500

50 90 99 99.9

La
te

nc
y

(μ
s)

Latency percentile

Base Replication

(a) Replication - write

0

100

200

300

400

500

50 90 99 99.9

La
te

nc
y

(μ
s)

Latency percentile

Base Cache hit

(b) Cache - read

Figure 20: Tail latency of replication and caching

ure 19 shows the aggregate bandwidth within a time interval
of the FIO benchmark while throttling the I/O operations on
FVM-engine. We configured the FIO benchmark to achieve
the maximum bandwidth of an SSD (2GB/s), and we throttled
the I/O from 100MB/s to 400MB/s. The figure shows that the
bandwidth is stable and limited as configured.
Replication. By seamlessly replicating I/O operations from
VMs, a server with FVM-engine can achieve fault toler-
ance. To enable this feature, we assigned multiple physi-
cal NVMe SSDs to a single virtual storage device. When an
FVM core receives a write command from a VM, it repli-
cates the commands and broadcasts them to the physical de-
vices. The FVM core then waits for completion messages
from all physical storage devices assigned to the virtual de-
vice before sending corresponding completions to the target
VM. Figure 20a shows its tail latency results of 4KB ran-
dom writes through FVM. As an FVM core should replicate
NVMe commands and wait completions from all the NVMe
SSDs, the replication feature adds the extra latency compared
to the baseline FVM implementation.
Caching. To enable caching, we implemented a hash ta-

ble that has 256k entries in the FPGA’s 4MB on-chip mem-
ory space. Each table entry contains a start logical block
address (SLBA) and a corresponding cached block address
(CBA). If an FVM core finds a valid entry in the hash ta-
ble, it replaces the received SLBAs with CBAs and sub-
mits them to the NVMe devices. We measured the tail la-
tency of 4KB random reads with FVM and its caching
mechanism, while emulating a perfect cache hit ratio. Fig-
ure 20b shows that the caching mechanism increases the
tail latency due to the increased number of contentions on
FVM-engine’s interconnection resources for the hash table
accesses.
Direct copy. FVM can enable a direct device-to-device (D2D)
data copy feature, while bypassing the host CPU and memory.
Using the feature, a server with FVM-engine can perform
intra-VM or inter-VM data transfers efficiently. We imple-
mented a direct-copy feature on FVM leveraging its hardware-
based device-control mechanism. When FVM-engine receives
a request, it splits the bulk data transfer into multiple smaller-
sized requests. It then generates NVMe commands for each

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 967

0

0.2

0.4

0.6

0.8

1

vh
ost

-nv
me

FVM

C
PU

 u
sa

ge
 (n

or
m

al
iz

ed
)

0

500

1000

1500

2000

2500

vh
ost

-nv
me

FVM

PC
Ie

 R
C

 b
na

dw
id

th
 (M

B/
s)

8.17
0

400

800

1200

1600

vh
ost

-nv
me

FVM
M

em
or

y
ba

nd
w

id
th

 (M
B/

s)

Figure 21: Resource usage of direct copying

split request and submits them using FVM-engine’s NVMe
interface. To bypass the host memory, the NVMe commands
utilize the FPGA’s on-chip memory as an intermediate data
buffer. Figure 21 shows the CPU usage, host memory band-
width, and PCIe root complex (RC) bandwidth usage while
performing a 32GB inter-SSD bulk data transfer. This figure
shows that the data transfer controlled by FVM provides high
bandwidth without consuming the host resources.

6 Discussion

Cost analysis. FVM can be used for the cost saving, as it
minimizes the number of the required CPUs and servers for
the target storage virtualization. For example, for a server with
24 NVMe devices, FVM can reduce the CPU core usage by up
to 30% (i.e., saving 20 cores in a 64-core machine). Based on
the current prices on major online stores (e.g., Amazon) and
vendor websites, FVM can save $2000–$6400 ($100–$320
per core [9,10]) for 64-core machines. If we consider the trend
of increasing the number and performance of storage devices
per server, the cost saving will be even more significant. In
addition, as our wimpy FVM core uses very small FPGA
resources (< 0.5%), we can implement FVM on the cost-
effective FPGA boards (e.g., $3000 for Alveo U50 [3], $1500–
$3500 for evaluation boards).
FVM-engine scalability. The scalability bottleneck can oc-
cur if an FPGA is short of resources and/or communication
takes too long. On our FPGA, we can implement around 140
wimpy FVM cores (0.5% per FVM core) including multi-
level crossbar networks (2.5% per crossbar module) and hun-
dreds of SQ/CQ pairs (5KB per pair). Our crossbar switch
can have 16 input/output ports and can be connected with
other switches. As each crossbar switch takes 24 ns (6 cycles,
250MHz), the overall switching latency is negligible com-
pared to modern SSD’s tens of microsecond access latency.
Supporting other storage protocols. One of the biggest ben-
efits of using programmable FPGAs is to provide various stor-
age protocols as needed. The FPGA-based virtualization layer
can easily implement a new interface to activate advanced
features in modern storage devices. For example, it can easily
support standardized key-value store (KV) acceleration ex-
tensions [43] by reprogramming the FPGA according to their

interface specifications.

7 Related Work

NVMe virtualization. NVMe virtualization requires a spe-
cial mechanism to make full use of its parallel and high-
performance storage protocol. SPDK [20] is a user-space
library for high-performance and scalable storage applica-
tions. It integrates all the necessary drivers into the user space
to avoid system calls and enable zero-copy access from the
applications. In addition, it adopts polling to monitor I/O com-
pletions instead of relying on interrupts. Specifically, SPDK
vhost-nvme [69] extends the SPDK library to provide virtual
NVMe controllers to QEMU-based VMs. Similarly, MDev-
NVMe [59] provides a mediated passthrough mechanism in
kernel space with an active polling mode.
Direct device-control mechanism. A direct device-control
mechanism at the hardware level provides fast and resource-
efficient I/O paths. For example, device-centric server (DCS)
and its direct device-control method [32, 49] implement a
device orchestration scheme on an FPGA to enable fast
device-to-device direct data communications. In this way,
DCS can enable hardware-offloaded direct data transfers be-
tween NVMe SSDs and network adapters through PCIe P2P.
As another example, GPUDirect Async [31] enables a direct
data transfer between GPUs and NICs to free CPUs from the
control path, while moving data between GPUs and NICs.
Lynx [64] offloads the server data and control planes to a
SmartNIC, and enables direct networking from accelerators
via a lightweight hardware-friendly I/O mechanism. It enables
to develop hardware-accelerated network servers which do
not require much CPU involvement.

8 Conclusion

In this work, we present FVM, a new hardware-assisted stor-
age virtualization mechanism. The key idea is to implement
(1) a storage virtualization layer on an FPGA card (FVM-
engine) decoupled from the host resources and (2) a device-
control method to have the card directly manage the physical
storage devices. In this way, a server equipped with FVM-
engine achieves high performance, scalability, and flexibility
by saving the invaluable host-side resources and by adding the
decoupled VM management-efficient FPGA cards as needed.

Acknowledgments

This work was supported by Samsung Research Funding &
Incubation Center of Samsung Electronics under Project Num-
ber SRFC-IT1901-12. We also appreciate the support from
Automation and Systems Research Institute (ASRI) and Inter-
university Semiconductor Research Center (ISRC) at Seoul
National University.

968 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] AWS Nitro System. https://aws.amazon.com/ec2/
nitro/.

[2] Broadcom Stingray SmartNIC Adapters.
https://www.broadcom.com/products/
ethernet-connectivity/smartnic.

[3] DigiKey A-U50DD-P00G-ES3-G.
https://www.digikey.com/en/products/detail/
xilinx-inc/A-U50DD-P00G-ES3-G/10642492.

[4] DPDK. https://www.dpdk.org/.

[5] Flexible I/O Tester. https://github.com/axboe/
fio.

[6] Google Cloud Computing Services. https://cloud.
google.com/.

[7] Intel Optane SSD 900P Series.
https://www.intel.com/content/www/
us/en/products/memory-storage/
solid-state-drives/consumer-ssds/
optane-ssd-9-series/optane-ssd-900p-series.
html.

[8] Intel Optane Technology.
https://www.intel.com/content/www/
us/en/architecture-and-technology/
intel-optane-technology.html.

[9] Intel R© Xeon R© Gold 5118 Processor.
https://ark.intel.com/content/www/us/
en/ark/products/120473/intel-xeon-gold\
-5118-processor-16-5m-cache-2-30-ghz.html.

[10] Intel R© Xeon R© Processor E5-4669 v4.
https://ark.intel.com/content/www/us/en/
ark/products/93805/intel-xeon-processor\
-e5-4669-v4-55m-cache-2-20-ghz.html.

[11] Linux KVM. https://www.linux-kvm.org/.

[12] Microsoft Azure Cloud Computing Services. https:
//azure.microsoft.com/en-us/.

[13] NVIDIA Mellanox BlueField-2 DPU. https://www.
mellanox.com/products/bluefield2-overview.

[14] NVM Express. https://nvmexpress.org/.

[15] QEMU. https://www.qemu.org/.

[16] RocksDB - A Persistent Key-Value Store for Fast Stor-
age Environments. https://rocksdb.org/.

[17] Samsung PM1733 NVMe SSD.
https://www.samsung.com/semiconductor/ssd/
enterprise-ssd/MZWLJ3T8HBLS-00007/.

[18] Samsung Z-SSD.
https://www.samsung.com/semiconductor/ssd/
z-ssd/.

[19] Single-Root Input/Output Virtualization. http://www.
pcisig.com/specifications/.

[20] SPDK. https://spdk.io/.

[21] SPDK I/O Virtualization with Vhost-user. https://
spdk.io/doc/vhost_processing.html.

[22] Super Micro Computer, SuperServer, 4029GP-TRT2.
https://www.supermicro.com/en/products/
system/4U/4029/SYS-4029GP-TRT2.cfm.

[23] Xilinx Alveo U280 Data Center Accelerator Card.
https://www.xilinx.com/products/
boards-and-kits/alveo/u280.html.

[24] Xilinx MicroBlaze Soft Processor Core.
https://www.xilinx.com/products/
design-tools/microblaze.html.

[25] Xilinx QDMA Subsystem for PCI Express.
https://www.xilinx.com/products/
intellectual-property/pcie-qdma.html.

[26] AMD I/O Virtualization Technology (IOMMU) Specifi-
cation, Rev 1.26. 2009.

[27] Intel R© Virtualization Technology for Directed I/O, Rev
1.3. 2011.

[28] Xilinx QDMA Subsystem for PCI Express v3.0. 2019.

[29] Xilinx UltraScale Architecture Memory Resources
v1.11. 2020.

[30] Darren Abramson, Jeff Jackson, Sridhar Muthrasanal-
lur, Gil Neiger, Greg Regnier, Rajesh Sankaran, Ioannis
Schoinas, Rich Uhlig, Balaji Vembu, and John Wiegert.
Intel Virtualization Technology for Directed I/O. Intel
technology journal, 10(3), 2006.

[31] Elena Agostini, Davide Rossetti, and Sreeram Potluri.
Offloading communication control logic in gpu acceler-
ated applications. In 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CC-
GRID), pages 248–257. IEEE, 2017.

[32] Jaehyung Ahn, Dongup Kwon, Youngsok Kim, Moham-
madamin Ajdari, Jaewon Lee, and Jangwoo Kim. Dcs:
a fast and scalable device-centric server architecture. In
2015 48th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 559–571. IEEE,
2015.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 969

https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.digikey.com/en/products/detail/xilinx-inc/A-U50DD-P00G-ES3-G/10642492
https://www.digikey.com/en/products/detail/xilinx-inc/A-U50DD-P00G-ES3-G/10642492
https://www.dpdk.org/
https://github.com/axboe/fio
https://github.com/axboe/fio
https://cloud.google.com/
https://cloud.google.com/
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-900p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-900p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-900p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-900p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-900p-series.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://ark.intel.com/content/www/us/en/ark/products/120473/intel-xeon-gold\-5118-processor-16-5m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120473/intel-xeon-gold\-5118-processor-16-5m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120473/intel-xeon-gold\-5118-processor-16-5m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/93805/intel-xeon-processor\-e5-4669-v4-55m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/93805/intel-xeon-processor\-e5-4669-v4-55m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/93805/intel-xeon-processor\-e5-4669-v4-55m-cache-2-20-ghz.html
https://www.linux-kvm.org/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://www.mellanox.com/products/bluefield2-overview
https://www.mellanox.com/products/bluefield2-overview
https://nvmexpress.org/
https://www.qemu.org/
https://rocksdb.org/
https://www.samsung.com/semiconductor/ssd/enterprise-ssd/MZWLJ3T8HBLS-00007/
https://www.samsung.com/semiconductor/ssd/enterprise-ssd/MZWLJ3T8HBLS-00007/
https://www.samsung.com/semiconductor/ssd/z-ssd/
https://www.samsung.com/semiconductor/ssd/z-ssd/
http://www.pcisig.com/ specifications/
http://www.pcisig.com/ specifications/
https://spdk.io/
https://spdk.io/doc/vhost_processing.html
https://spdk.io/doc/vhost_processing.html
https://www.supermicro.com/en/products/system/4U/4029/SYS-4029GP-TRT2.cfm
https://www.supermicro.com/en/products/system/4U/4029/SYS-4029GP-TRT2.cfm
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/design-tools/microblaze.html
https://www.xilinx.com/products/design-tools/microblaze.html
https://www.xilinx.com/products/intellectual-property/pcie-qdma.html
https://www.xilinx.com/products/intellectual-property/pcie-qdma.html

[33] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and As-
saf Schuster. viommu: efficient iommu emulation. In
USENIX Annual Technical Conference (ATC), pages 73–
86, 2011.

[34] Andrea Arcangeli. Micro-optimizing kvm vm-exits. In
KVM Forum, 2019.

[35] Dulcardo Arteaga, Jorge Cabrera, Jing Xu, Swaminathan
Sundararaman, and Ming Zhao. Cloudcache: On-
demand flash cache management for cloud computing.
In 14th USENIX Conference on File and Storage Tech-
nologies (FAST 16), pages 355–369, 2016.

[36] Peter A Balinski, Sasikanth Eda, Ashwin M Joshi,
John T Olson, and Sandeep R Patil. Dynamic i/o throt-
tling in a storlet environment, March 10 2020. US Patent
10,585,596.

[37] Deepavali Bhagwat, Mahesh Patil, Michal Ostrowski,
Murali Vilayannur, Woon Jung, and Chethan Kumar.
A practical implementation of clustered fault tolerant
write acceleration in a virtualized environment. In 13th
USENIX Conference on File and Storage Technologies
(FAST 15), pages 287–300, 2015.

[38] Erwin Tam Raghu Ramakrishnan Brian F. Cooper,
Adam Silberstein and Russell Sears. Benchmarking
cloud serving systems with ycsb. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC),
pages 143–154. IEEE, 2010.

[39] Zhen Cao, Vasily Tarasov, Hari Prasath Raman, Dean
Hildebrand, and Erez Zadok. On the performance varia-
tion in modern storage stacks. In 15th USENIX Confer-
ence on File and Storage Technologies (FAST 17), pages
329–344, 2017.

[40] Hoi Chan and Trieu Chieu. An approach to high
availability for cloud servers with snapshot mechanism.
In Proceedings of the Industrial Track of the 13th
ACM/IFIP/USENIX International Middleware Confer-
ence, pages 1–6, 2012.

[41] Christopher Clark, Keir Fraser, Steven Hand, Ja-
cob Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt,
and Andrew Warfield. Live Migration of Virtual Ma-
chines. In Proceedings of the 2nd conference on Sympo-
sium on Networked Systems Design & Implementation-
Volume 2, pages 273–286, 2005.

[42] NVM Express. NVM Express revision 1.3 specification.
page 220, 2017.

[43] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo,
Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moon-
sang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon
Jeong, and Duckhyun Chang. Biscuit: A framework

for near-data processing of big data workloads. In 2016
ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), page 153–165, 2016.

[44] Jim Harris. Accelerating NVMe-oF* for VMs with
the Storage Performance Development Kit. In Flash
Memory Summit, 2017.

[45] Asias He. Virtio-blk Performance Improvement. In
KVM Forum, 2012.

[46] Jian Huang, Anirudh Badam, Laura Caulfield, Suman
Nath, Sudipta Sengupta, Bikash Sharma, and Moinud-
din K Qureshi. Flashblox: Achieving both performance
isolation and uniform lifetime for virtualized ssds. In
15th USENIX Conference on File and Storage Technolo-
gies (FAST 17), pages 375–390, 2017.

[47] Masaki Kimura. Better Utilization of Storage Features
from KVM Guest via virtio-scsi. In LinuxCon and
CloudOpen North America, 2013.

[48] Yossi Kuperman, Eyal Moscovici, Joel Nider, Razya
Ladelsky, Abel Gordon, and Dan Tsafrir. Paravirtual
remote i/o. ACM SIGARCH Computer Architecture
News, 44(2):49–65, 2016.

[49] Dongup Kwon, Jaehyung Ahn, Dongju Chae, Moham-
madamin Ajdari, Jaewon Lee, Suheon Bae, Youngsok
Kim, and Jangwoo Kim. Dcs-ctrl: a fast and flexible
device-control mechanism for device-centric server ar-
chitecture. In 2018 ACM/IEEE 45th Annual Interna-
tional Symposium on Computer Architecture (ISCA),
pages 491–504. IEEE, 2018.

[50] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A cross media file system. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 460–
477, 2017.

[51] Alex Landau, Muli Ben-Yehuda, and Abel Gordon.
Splitx: Split guest/hypervisor execution on multi-core.
In WIOV, 2011.

[52] Emmanuel S Levijarvi and Ognian S Mitzev. Private
cloud replication and recovery, January 6 2015. US
Patent 8,930,747.

[53] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaib-
hav Gogte, Sriram Govindan, Dan RK Ports, Irene
Zhang, Ricardo Bianchini, Haryadi S Gunawi, and
Anirudh Badam. Leapio: Efficient and portable vir-
tual nvme storage on arm socs. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 591–605, 2020.

970 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[54] Ning Li, Hong Jiang, Dan Feng, and Zhan Shi. Pslo:
Enforcing the xth percentile latency and throughput slos
for consolidated vm storage. In Proceedings of the
Eleventh European Conference on Computer Systems,
pages 1–14, 2016.

[55] Anthony Liguori. The Nitro Project – Next Generation
AWS Infrastructure. In Hot Chips: A Symposium on
High Performance Chips, 2018.

[56] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading dis-
tributed applications onto smartnics using ipipe. In
Proceedings of the ACM Special Interest Group on Data
Communication, pages 318–333. 2019.

[57] David Matlack. Kvm message passing performance. In
KVM Forum, 2015.

[58] Michael Nelson, Beng-Hong Lim, and Greg Hutchins.
Fast Transparent Migration for Virtual Machines. In
USENIX Annual technical conference, general track,
pages 391–394, 2005.

[59] Bo Peng, Haozhong Zhang, Jianguo Yao, Yaozu Dong,
Yu Xu, and Haibing Guan. Mdev-nvme: a nvme storage
virtualization solution with mediated pass-through. In
2018 USENIX Annual Technical Conference (ATC 18),
pages 665–676, 2018.

[60] Rusty Russell. virtio: towards a de-facto standard for
virtual i/o devices. ACM SIGOPS Operating Systems
Review, 42(5):95–103, 2008.

[61] Yossi Saad, Assaf Natanzon, and Yedidya Dotan. Se-
curing data replication, backup and mobility in cloud
storage, October 6 2015. US Patent 9,152,578.

[62] Aameek Singh, Madhukar Korupolu, and Dushmanta
Mohapatra. Server-storage virtualization: integration
and load balancing in data centers. In SC’08: Proceed-
ings of the 2008 ACM/IEEE conference on Supercom-
puting, pages 1–12. IEEE, 2008.

[63] Uma Somani, Kanika Lakhani, and Manish Mundra. Im-
plementing digital signature with rsa encryption algo-
rithm to enhance the data security of cloud in cloud
computing. In 2010 First International Conference On
Parallel, Distributed and Grid Computing (PDGC 2010),
pages 211–216. IEEE, 2010.

[64] Maroun Tork, Lina Maudlej, and Mark Silberstein. Lynx:
A smartnic-driven accelerator-centric architecture for

network servers. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
117–131, 2020.

[65] Akshat Verma, Ricardo Koller, Luis Useche, and Raju
Rangaswami. Srcmap: Energy proportional storage us-
ing dynamic consolidation. In FAST, volume 10, pages
267–280, 2010.

[66] Carl Waldspurger and Mendel Rosenblum. I/O Virtu-
alization. Communications of the ACM, 55(1):66–73,
2012.

[67] Jian Xu and Steven Swanson. Nova: A log-structured
file system for hybrid volatile/non-volatile main memo-
ries. In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 323–338, 2016.

[68] Jiwei Xu, Wenbo Zhang, Shiyang Ye, Jun Wei, and Tao
Huang. A lightweight virtual machine image dedupli-
cation backup approach in cloud environment. In 2014
IEEE 38th Annual Computer Software and Applications
Conference, pages 503–508. IEEE, 2014.

[69] Ziye Yang, Changpeng Liu, Yanbo Zhou, Xiaodong Liu,
and Gang Cao. Spdk vhost-nvme: Accelerating i/os in
virtual machines on nvme ssds via user space vhost
target. In 2018 IEEE 8th International Symposium
on Cloud and Service Computing (SC2), pages 67–76.
IEEE, 2018.

[70] Lei Yu, Chuliang Weng, Minglu Li, and Yuan Luo.
Snpdisk: an efficient para-virtualization snapshot mech-
anism for virtual disks in private clouds. IEEE Network,
25(4):20–26, 2011.

[71] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon
Koh, Changlim Lee, Mohammad Alian, Myoungjun
Chun, Mahmut Taylan Kandemir, Nam Sung Kim, Ji-
hong Kim, and Myoungsoo Jung. Flashshare: punching
through server storage stack from kernel to firmware for
ultra-low latency ssds. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), pages 477–492, 2018.

[72] Xiang Zhang, Zhigang Huo, Jie Ma, and Dan Meng.
Exploiting data deduplication to accelerate live virtual
machine migration. In 2010 IEEE international confer-

ence on cluster computing, pages 88–96. IEEE, 2010.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 971

hXDP: Efficient Software Packet Processing on FPGA NICs

Marco Spaziani Brunella1,3, Giacomo Belocchi1,3, Marco Bonola1,2, Salvatore Pontarelli1, Giuseppe
Siracusano4, Giuseppe Bianchi3, Aniello Cammarano2,3, Alessandro Palumbo2,3, Luca Petrucci2,3 and

Roberto Bifulco4

1Axbryd, 2CNIT, 3University of Rome Tor Vergata, 4NEC Laboratories Europe

Abstract
FPGA accelerators on the NIC enable the offloading of expen-
sive packet processing tasks from the CPU. However, FPGAs
have limited resources that may need to be shared among
diverse applications, and programming them is difficult.

We present a solution to run Linux’s eXpress Data Path
programs written in eBPF on FPGAs, using only a fraction
of the available hardware resources while matching the per-
formance of high-end CPUs. The iterative execution model
of eBPF is not a good fit for FPGA accelerators. Nonethe-
less, we show that many of the instructions of an eBPF pro-
gram can be compressed, parallelized or completely removed,
when targeting a purpose-built FPGA executor, thereby sig-
nificantly improving performance. We leverage that to design
hXDP, which includes (i) an optimizing-compiler that par-
allelizes and translates eBPF bytecode to an extended eBPF
Instruction-set Architecture defined by us; a (ii) soft-CPU to
execute such instructions on FPGA; and (iii) an FPGA-based
infrastructure to provide XDP’s maps and helper functions as
defined within the Linux kernel.

We implement hXDP on an FPGA NIC and evaluate it
running real-world unmodified eBPF programs. Our imple-
mentation is clocked at 156.25MHz, uses about 15% of the
FPGA resources, and can run dynamically loaded programs.
Despite these modest requirements, it achieves the packet
processing throughput of a high-end CPU core and provides
a 10x lower packet forwarding latency.

1 Introduction

FPGA-based NICs have recently emerged as a valid option to
offload CPUs from packet processing tasks, due to their good
performance and re-programmability. Compared to other NIC-
based accelerators, such as network processing ASICs [8] or
many-core System-on-Chip SmartNICs [40], FPGA NICs pro-
vide the additional benefit of supporting diverse accelerators
for a wider set of applications [42], thanks to their embedded
hardware re-programmability. Notably, Microsoft has been

advocating for the introduction of FPGA NICs, because of
their ability to use the FPGAs also for tasks such as machine
learning [13, 14]. FPGA NICs play another important role in
5G telecommunication networks, where they are used for the
acceleration of radio access network functions [11,28,39,58].
In these deployments, the FPGAs could host multiple func-
tions to provide higher levels of infrastructure consolidation,
since physical space availability may be limited. For instance,
this is the case in smart cities [55], 5G local deployments, e.g.,
in factories [44,47], and for edge computing in general [6,30].
Nonetheless, programming FPGAs is difficult, often requiring
the establishment of a dedicated team composed of hardware
specialists [18], which interacts with software and operating
system developers to integrate the offloading solution with the
system. Furthermore, previous work that simplifies network
functions programming on FPGAs assumes that a large share
of the FPGA is dedicated to packet processing [1, 45, 56], re-
ducing the ability to share the FPGA with other accelerators.

In this paper, our goal is to provide a more general and easy-
to-use solution to program packet processing on FPGA NICs,
using little FPGA resources, while seamlessly integrating
with existing operating systems. We build towards this goal by
presenting hXDP, a set of technologies that enables the efficient
execution of the Linux’s eXpress Data Path (XDP) [27]
on FPGA. XDP leverages the eBPF technology to provide
secure programmable packet processing within the Linux
kernel, and it is widely used by the Linux’s community in
productive environments. hXDP provides full XDP support,
allowing users to dynamically load and run their unmodified
XDP programs on the FPGA.

The eBPF technology is originally designed for sequential
execution on a high-performance RISC-like register machine,
which makes it challenging to run XDP programs effectively
on FPGA. That is, eBPF is designed for server CPUs with
high clock frequency and the ability to execute many of the
sequential eBPF instructions per second. Instead, FPGAs fa-
vor a widely parallel execution model with clock frequencies
that are 5-10x lower than those of high-end CPUs. As such,
a straightforward implementation of the eBPF iterative exe-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 973

cution model on FPGA is likely to provide low packet for-
warding performance. Furthermore, the hXDP design should
implement arbitrary XDP programs while using little hard-
ware resources, in order to keep FPGA’s resources free for
other accelerators.

We address the challenge performing a detailed analysis
of the eBPF Instruction Set Architecture (ISA) and of the
existing XDP programs, to reveal and take advantage of op-
portunities for optimization. First, we identify eBPF instruc-
tions that can be safely removed, when not running in the
Linux kernel context. For instance, we remove data bound-
ary checks and variable zero-ing instructions by providing
targeted hardware support. Second, we define extensions to
the eBPF ISA to introduce 3-operand instructions, new 6B
load/store instructions and a new parametrized program exit
instruction. Finally, we leverage eBPF instruction-level paral-
lelism, performing a static analysis of the programs at compile
time, which allows us to execute several eBPF instructions in
parallel. We design hXDP to implement these optimizations,
and to take full advantage of the on-NIC execution environ-
ment, e.g., avoiding unnecessary PCIe transfers. Our design
includes: (i) a compiler to translate XDP programs’ bytecode
to the extended hXDP ISA; (ii) a self-contained FPGA IP
Core module that implements the extended ISA alongside
several other low-level optimizations; (iii) and the toolchain
required to dynamically load and interact with XDP programs
running on the FPGA NIC.

To evaluate hXDP we provide an open source implemen-
tation for the NetFPGA [60]. We test our implementation
using the XDP example programs provided by the Linux
source code, and using two real-world applications: a simple
stateful firewall; and Facebook’s Katran load balancer. hXDP
can match the packet forwarding throughput of a multi-GHz
server CPU core, while providing a much lower forwarding la-
tency. This is achieved despite the low clock frequency of our
prototype (156MHz) and using less than 15% of the FPGA
resources. In summary, we contribute:

• the design of hXDP including: the hardware design; the
companion compiler; and the software toolchain;
• the implementation of a hXDP IP core for the NetFPGA
• a comprehensive evaluation of hXDP when running real-

world use cases, comparing it with an x86 Linux server.
• a microbenchmark-based comparison of the hXDP im-

plementation with a Netronome NFP4000 SmartNIC,
which provides partial eBPF offloading support.

2 Concept and overview

In this section we discuss hXDP goals, scope and require-
ments, we provide background information about XDP, and
finally we present an overview of the hXDP design.

Figure 1: The hXDP concept. hXDP provides an easy-to-use
network accelerator that shares the FPGA NIC resources with
other application-specific accelerators.

2.1 Goals and Requirements

Goals Our main goal is to provide the ability to run XDP
programs efficiently on FPGA NICs, while using little FPGA’s
hardware resources (See Figure 1).

A little use of the FPGA resources is especially impor-
tant, since it enables extra consolidation by packing different
application-specific accelerators on the same FPGA.

The choice of supporting XDP is instead motivated by a
twofold benefit brought by the technology: it readily enables
NIC offloading for already deployed XDP programs; it pro-
vides an on-NIC programming model that is already familiar
to a large community of Linux programmers. Enabling such
a wider access to the technology is important since many of
the mentioned edge deployments are not necessarily handled
by hyperscale companies. Thus, the companies developing
and deploying applications may not have resources to invest
in highly specialized and diverse professional teams of de-
velopers, while still needing some level of customization to
achieve challenging service quality and performance levels.
In this sense, hXDP provides a familiar programming model
that does not require developers to learn new programming
paradigms, such as those introduced by devices that support
P4 [7] or FlowBlaze [45].

Non-Goals Unlike previous work targeting FPGA NICs [1,
45, 56], hXDP does not assume the FPGA to be dedicated to
network processing tasks. Because of that, hXDP adopts an
iterative processing model, which is in stark contrast with the
pipelined processing model supported by previous work. The
iterative model requires a fixed amount of resources, no matter
the complexity of the program being implemented. Instead,
in the pipeline model the resource requirement is dependent
on the implemented program complexity, since programs are
effectively "unrolled" in the FPGA. In fact, hXDP provides
dynamic runtime loading of XDP programs, whereas solu-
tions like P4->NetFPGA [56] or FlowBlaze need to often
load a new FPGA bitstream when changing application. As
such, hXDP is not designed to be faster at processing packets
than those designs. Instead, hXDP aims at freeing precious
CPU resources, which can then be dedicated to workloads
that cannot run elsewhere, while providing similar or better
performance than the CPU.

Likewise, hXDP cannot be directly compared to Smart-
NICs dedicated to network processing. Such NICs’ resources

974 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

are largely, often exclusively, devoted to network packet pro-
cessing. Instead, hXDP leverages only a fraction of an FPGA
resources to add packet processing with good performance,
alongside other application-specific accelerators, which share
the same chip’s resources.

Finally, hXDP is not providing a transparent offloading
solution.1 While the programming model and the support for
XDP are unchanged compared to the Linux implementation,
programmers should be aware of which device runs their XDP
programs. This is akin to programming for NUMA systems,
in which accessing given memory areas may incur additional
overheads.

Requirements Given the above discussion, we can derive
three high-level requirements for hXDP:

1. it should execute unmodified compiled XDP programs,
and support the XDP frameworks’ toolchain, e.g., dy-
namic program loading and userspace access to maps;

2. it should provide packet processing performance at least
comparable to that of a high-end CPU core;

3. it should require a small amount of the FPGA’s hardware
resources.

Before presenting a more detailed description of the hXDP
concept, we now give a brief background about XDP.

2.2 XDP Primer

XDP allows programmers to inject programs at the NIC driver
level, so that such programs are executed before a network
packet is passed to the Linux’s network stack. This provides
an opportunity to perform custom packet processing at a very
early stage of the packet handling, limiting overheads and thus
providing high-performance. At the same time, XDP allows
programmers to leverage the Linux’s kernel, e.g., selecting
a subset of packets that should be processed by its network
stack, which helps with compatibility and ease of develop-
ment. XDP is part of the Linux kernel since release 4.18, and
it is widely used in production environments [4, 17, 54]. In
most of these use cases, e.g., load balancing [17] and packet
filtering [4], a majority of the received network packets is pro-
cessed entirely within XDP. The production deployments of
XDP have also pushed developers to optimize and minimize
the XDP overheads, which now appear to be mainly related
to the Linux driver model, as thoroughly discussed in [27].

XDP programs are based on the Linux’s eBPF technology.
eBPF provides an in-kernel virtual machine for the sandboxed
execution of small programs within the kernel context. An
overview of the eBPF architecture and workflow is provided
in Figure 2. In its current version, the eBPF virtual machine
has 11 64b registers: r0 holds the return value from in-kernel
functions and programs, r1− r5 are used to store arguments
that are passed to in-kernel functions, r6− r9 are registers

1Here, previous complementary work may be applied to help the auto-
matic offloading of network processing tasks [43].

Figure 2: An overview of the XDP workflow and architecture,
including the contribution of this paper.

that are preserved during function calls and r10 stores the
frame pointer to access the stack. The eBPF virtual machine
has a well-defined ISA composed of more than 100 fixed
length instructions (64b). The instructions give access to dif-
ferent functional units, such as ALU32, ALU64, branch and
memory. Programmers usually write an eBPF program using
the C language with some restrictions, which simplify the
static verification of the program. Examples of restrictions
include forbidden unbounded cycles, limited stack size, lack
of dynamic memory allocation, etc.

To overcome some of these limitations, eBPF programs can
use helper functions that implement some common oper-
ations, such as checksum computations, and provide access
to protected operations, e.g., reading certain kernel memory
areas. eBPF programs can also access kernel memory areas
called maps, i.e., kernel memory locations that essentially re-
semble tables. Maps are declared and configured at compile
time to implement different data structures, specifying the
type, size and an ID. For instance, eBPF programs can use
maps to implement arrays and hash tables. An eBPF program
can interact with map’s locations by means of pointer defer-
ence, for un-structured data access, or by invoking specific
helper functions for structured data access, e.g., a lookup on a
map configured as a hash table. Maps are especially important
since they are the only mean to keep state across program ex-
ecutions, and to share information with other eBPF programs
and with programs running in user space. In fact, a map can
be accessed using its ID by any other running eBPF program
and by the control application running in user space. User
space programs can load eBPF programs and read/write maps
either using the libbf library or frontends such as the BCC
toolstack.

XDP programs are compiled using LLVM or GCC, and the
generated ELF object file is loaded trough the bpf syscall,
specifying the XDP hook. Before the actual loading of a pro-
gram, the kernel verifier checks if it is safe, then the program
is attached to the hook, at the network driver level. Whenever
the network driver receives a packet, it triggers the execution
of the registered programs, which starts from a clean context.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 975

2.3 Challenges

To grasp an intuitive understanding of the design challenge
involved in supporting XDP on FPGA, we now consider the
example of an XDP program that implements a simple state-
ful firewall for checking the establishment of bi-directional
TCP or UDP flows, and to drop flows initiated from an exter-
nal location. We will use this function as a running example
throughout the paper, since despite its simplicity, it is a realis-
tic and widely deployed function.

The simple firewall first performs a parsing of the Ethernet,
IP and Transport protocol headers to extract the flow’s 5-tuple
(IP addresses, port numbers, protocol). Then, depending on
the input port of the packet (i.e., external or internal) it either
looks up an entry in a hashmap, or creates it. The hashmap
key is created using an absolute ordering of the 5 tuple values,
so that the two directions of the flow will map to the same
hash. Finally, the function forwards the packet if the input
port is internal or if the hashmap lookup retrieved an entry,
otherwise the packet is dropped. A C program describing this
simple firewall function is compiled to 71 eBPF instructions.

We can build a rough idea of the potential best-case speed
of this function running on an FPGA-based eBPF executor,
assuming that each eBPF instruction requires 1 clock cycle
to be executed, that clock cycles are not spent for any other
operation, and that the FPGA has a 156MHz clock rate, which
is common in FPGA NICs [60]. In such a case, a naive FPGA
implementation that implements the sequential eBPF executor
would provide a maximum throughput of 2.8 Million pack-
ets per second (Mpps).2 Notice that this is a very optimistic
upper-bound performance, which does not take into account
other, often unavoidable, potential sources of overhead, such
as memory access, queue management, etc. For comparison,
when running on a single core of a high-end server CPU
clocked at 3.7GHz, and including also operating system over-
head and the PCIe transfer costs, the XDP simple firewall
program achieves a throughput of 7.4 Million packets per
second (Mpps). 3 Since it is often undesired or not possible to
increase the FPGA clock rate, e.g., due to power constraints,
in the lack of other solutions the FPGA-based executor would
be 2-3x slower than the CPU core.

Furthermore, existing solutions to speed-up sequential code
execution, e.g., superscalar architectures, are too expensive
in terms of hardware resources to be adopted in this case. In
fact, in a superscalar architecture the speed-up is achieved
leveraging instruction-level parallelism at runtime. However,
the complexity of the hardware required to do so grows ex-
ponentially with the number of instructions being checked
for parallel execution. This rules out re-using general purpose

2I.e., the FPGA can run 156M instructions per second, which divided by
the 55 instructions of the program’s expected execution path gives a 2.8M
program executions per second. Here, notice that the execution path com-
prises less instructions that the overall program, since not all the program’s
instructions are executed at runtime due to if-statements.

3Intel Xeon E5-1630v3, Linux kernel v.5.6.4.

soft-core designs, such as those based on RISC-V [22, 25].

2.4 hXDP Overview
hXDP addresses the outlined challenge by taking a software-
hardware co-design approach. In particular, hXDP provides
both a compiler and the corresponding hardware module. The
compiler takes advantage of eBPF ISA optimization opportu-
nities, leveraging hXDP’s hardware module features that are
introduced to simplify the exploitation of such opportunities.
Effectively, we design a new ISA that extends the eBPF ISA,
specifically targeting the execution of XDP programs.

The compiler optimizations perform transformations at
the eBPF instruction level: remove unnecessary instructions;
replace instructions with newly defined more concise instruc-
tions; and parallelize instructions execution. All the optimiza-
tions are performed at compile-time, moving most of the com-
plexity to the software compiler, thereby reducing the target
hardware complexity. We describe the optimizations and the
compiler in Section 3. Accordingly, the hXDP hardware mod-
ule implements an infrastructure to run up to 4 instructions in
parallel, implementing a Very Long Instruction Word (VLIW)
soft-processor. The VLIW soft-processor does not provide
any runtime program optimization, e.g., branch prediction,
instruction re-ordering, etc. We rely entirely on the compiler
to optimize XDP programs for high-performance execution,
thereby freeing the hardware module of complex mechanisms
that would use more hardware resources. We describe the
hXDP hardware design in Section 4.

Ultimately, the hXDP hardware component is deployed as
a self-contained IP core module to the FPGA. The module
can be interfaced with other processing modules if needed,
or just placed as a bump-in-the-wire between the NIC’s port
and its PCIe driver towards the host system. The hXDP soft-
ware toolchain, which includes the compiler, provides all the
machinery to use hXDP within a Linux operating system.

From a programmer perspective, a compiled eBPF program
could be therefore interchangeably executed in-kernel or on
the FPGA, as shown in Figure 2.4

3 hXDP Compiler

In this section we describe the hXDP instruction-level opti-
mizations, and the compiler design to implement them.

3.1 Instructions reduction
The eBPF technology is designed to enable execution within
the Linux kernel, for which it requires programs to include
a number of extra instructions, which are then checked by
the kernel’s verifier. When targeting a dedicated eBPF execu-
tor implemented on FPGA, most such instructions could be

4The choice of where to run an XDP program should be explicitly taken
by the user, or by an automated control and orchestration system, if available.

976 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

if (data+sizeof(*eth))>data_end) r4 = r2

goto EOP; r4 += 14

if r4 > r3 goto +60 <LBB0_17>

struct flow_ctx_table_leaf r4 = 0

new_flow = {0}; *(u32 *)(r10-4) = r4

struct flow_ctx_table_key *(u64 *)(r10-16) = r4

flow_key = {0}; *(u64 *)(r10-24) = r4

Figure 3: Examples of instructions removed by hXDP

l4 = data + nh_off; r4 = r2 r4 = r2 + 42

r4 += 42

return XDP_DROP; r0 = 1 exit_drop

exit

Figure 4: Examples of hXDP ISA extensions

safely removed, or they can be replaced by cheaper embedded
hardware checks. Two relevant examples are instructions for
memory boundary checks and memory zero-ing.
Boundary checks are required by the eBPF verifier to ensure
that programs only read valid memory locations, whenever a
pointer operation is involved. For instance, this is relevant for
accessing the socket buffer containing the packet data, during
parsing. Here, a required check is to verify that the packet is
large enough to host the expected packet header. As shown in
Figure 3, a single check like this may cost 3 instructions, and
it is likely that such checks are repeated multiple times. In the
simple firewall case, for instance, there are three such checks
for the Ethernet, IP and L4 headers. In hXDP we can safely
remove these instructions, implementing the check directly in
hardware.
Zero-ing is the process of setting a newly created variable to
zero, and it is a common operation performed by program-
mers both for safety and for ensuring correct execution of
their programs. A dedicated FPGA executor can provide hard
guarantees that all relevant memory areas are zero-ed at pro-
gram start, therefore making the explicit zero-ing of variables
during initialization redundant. In the simple firewall function
zero-ing requires 4 instructions, as shown in Figure 3.

3.2 ISA extension

To effectively reduce the number of instructions we define an
ISA that enables a more concise description of the program.
Here, there are two factors at play to our advantage. First, we
can extend the ISA without accounting for constraints related
to the need to support efficient Just-In-Time compilation. Sec-
ond, our eBPF programs are part of XDP applications, and as
such we can expect packet processing as the main program
task. Leveraging these two facts we define a new ISA that
changes in three main ways the original eBPF ISA.
Operands number. The first significant change has to deal
with the inclusion of three-operand operations, in place of
eBPF’s two-operand ones. Here, we believe that the eBPF’s
ISA selection of two-operand operations was mainly dictated

by the assumption that an x86 ISA would be the final compi-
lation target. Instead, using three-operand instructions allows
us to implement an operation that would normally need two
instructions with just a single instruction, as shown in Fig-
ure 4.
Load/store size. The eBPF ISA includes byte-aligned mem-
ory load/store operations, with sizes of 1B, 2B, 4B and 8B.
While these instructions are effective for most cases, we no-
ticed that during packet processing the use of 6B load/store
can reduce the number of instructions in common cases. In
fact, 6B is the size of an Ethernet MAC address, which is a
commonly accessed field both to check the packet destina-
tion or to set a new one. Extending the eBPF ISA with 6B
load/store instructions often halves the required instructions.
Parametrized exit. The end of an eBPF program is marked
by the exit instruction. In XDP, programs set the r0 to a value
corresponding to the desired forwarding action (e.g., DROP,
TX, etc), then, when a program exits the framework checks
the r0 register to finally perform the forwarding action (see
listing 4). While this extension of the ISA only saves one
(runtime) instruction per program, as we will see in Section 4,
it will also enable more significant hardware optimizations.

3.3 Instruction Parallelism
Finally, we explore the opportunity to perform parallel pro-
cessing of an eBPF program’s instructions. Here, it is impor-
tant to notice that high-end superscalar CPUs are usually
capable to execute multiple instructions in parallel, using a
number of complex mechanisms such as speculative execution
or out-of-order execution. However, on FPGAs the introduc-
tion of such mechanisms could incur significant hardware
resources overheads. Therefore, we perform only a static anal-
ysis of the instruction-level parallelism of eBPF programs.

To determine if two or more instructions can be parallelized,
the three Bernstein conditions have to be checked [3]. Simpli-
fying the discussion to the case of two instructions P1,P2:

I1∩O2 = /0;O1∩ I2 = /0;O2∩O1 = /0; (1)

Where I1, I2 are the instructions’ input sets (e.g. source
operands and memory locations) and O1,O2 are their out-
put sets. The first two conditions imply that if any of the two
instructions depends on the results of the computation of the
other, those two instructions cannot be executed in parallel.
The last condition implies that if both instructions are storing
the results on the same location, again they cannot be paral-
lelized. Verifying the Bernstein conditions and parallelizing
instructions requires the design of a suitable compiler, which
we describe next.

3.4 Compiler design
We design a custom compiler to implement the optimizations
outlined in this section and to transform XDP programs into

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 977

a schedule of parallel instructions that can run with hXDP.
The schedule can be visualized as a virtually infinite set of
rows, each with multiple available spots, which need to be
filled with instructions. The number of spots corresponds to
the number of execution lanes of the target executor. The final
objective of the compiler is to fit the given XDP program’s
instructions in the smallest number of rows. To do so, the
compiler performs five steps.
Control Flow Graph construction First, the compiler per-
forms a forward scan of the eBPF bytecode to identify the
program’s basic blocks, i.e., sequences of instructions that
are always executed together. The compiler identifies the first
and last instructions of a block, and the control flow between
blocks, by looking at branching instructions and jump desti-
nations. With this information it can finally build the Control
Flow Graph (CFG), which represents the basic blocks as
nodes and the control flow as directed edges connecting them.
Peephole optimizations Second, for each basic block the
compiler performs the removal of unnecessary instructions
(cf. Section 3.1), and the substitution of groups of eBPF in-
structions with an equivalent instruction of our extended ISA
(cf. Section 3.2).
Data Flow dependencies Third, the compiler discovers Data
Flow dependencies. This is done by implementing an iterative
algorithm to analyze the CFG. The algorithm analyzes each
block, building a data structure containing the block’s input,
output, defined, and used symbols. Here, a symbol is any
distinct data value defined (and used) by the program. Once
each block has its associated set of symbols, the compiler
can use the CFG to compute data flow dependencies between
instructions. This information is captured in per-instruction
data dependency graphs (DDG).
Instruction scheduling Fourth, the compiler uses the CFG
and the learned DDGs to define an instruction schedule that
meets the first two Bernstein conditions. Here, the compiler
takes as input the maximum number of parallel instructions
the target hardware can execute, and potential hardware con-
straints it needs to account for. For example, as we will see in
Section 4, the hXDP executor has 4 parallel execution lanes,
but helper function calls cannot be parallelized.

To build the instructions schedule, the compiler considers
one basic block at a time, in their original order in the CFG.
For each block, the compiler assigns the instructions to the
current schedule’s row, starting from the first instruction in
the block and then searching for any other enabled instruction.
An instruction is enabled for a given row when its data depen-
dencies are met, and when the potential hardware constraints
are respected. E.g., an instruction that calls a helper function
is not enabled for a row that contains another such instruction.
If the compiler cannot find any enabled instruction for the
current row, it creates a new row. The algorithm continues
until all the block’s instructions are assigned to a row.

At this point, the compiler uses the CFG to identify po-
tential candidate blocks whose instructions may be added to

Figure 5: The logic architecture of the hXDP hardware design.

the schedule being built for the current block. That is, such
block’s instructions may be used to fill gaps in the current
schedule’s rows. The compiler considers as candidate blocks
the current block’s control equivalent blocks. I.e, those blocks
that are surely going to be executed if the current block is
executed. Instructions from such blocks are checked and, if
enabled, they are added to the currently existing schedule’s
rows. This allows the compiler to move in the current block’s
schedule also a series of branching instructions that are im-
mediately following the current block, enabling a parallel
branching optimization in hardware (cf. Section 4.2).

When the current block’s and its candidate blocks’ enabled
instructions are all assigned, the algorithm moves to the next
block with instructions not yet scheduled, re-applying the
above steps. The algorithm terminates once all the instructions
have been assigned to the schedule.
Physical register assignment Finally, in the last step the
compiler assigns physical registers to the program’s symbols.
First, the compilers assigns registers that have a precise se-
mantic, such as r0 for the exit code, r1-r5 for helper function
argument passing, and r10 for the frame pointer. After these
fixed assignment, the compiler checks if for every row also
the third Bernstein condition is met, otherwise it renames the
registers of one of the conflicting instructions, and propagates
the renaming on the following dependant instructions.

4 Hardware Module

We design hXDP as an independent IP core, which can be
added to a larger FPGA design as needed. Our IP core com-
prises the elements to execute all the XDP functional blocks
on the NIC, including helper functions and maps. This
enables the execution of a program entirely on the FPGA NIC
and therefore it avoids as much as possible PCIe transfers.

4.1 Architecture and components
The hXDP hardware design includes five components (see
Figure 5): the Programmable Input Queue (PIQ); the Ac-

978 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

tive Packet Selector (APS); the Sephirot processing core;
the Helper Functions Module (HF); and the Memory Maps
Module (MM). All the modules work in the same clock fre-
quency domain. Incoming data is received by the PIQ. The
APS reads a new packet from the PIQ into its internal packet
buffer. In doing so, the APS provides a byte-aligned access
to the packet data through a data bus, which Sephirot uses
to selectively read/write the packet content. When the APS
makes a packet available to the Sephirot core, the execution
of a loaded eBPF program starts. Instructions are entirely
executed within Sephirot, using 4 parallel execution lanes,
unless they call a helper function or read/write to maps. In
such cases, the corresponding modules are accessed using
the helper bus and the data bus, respectively. We detail each
components next.

4.1.1 Programmable Input queue

When a packet is received, it enters the Programmable Input
Queue (PIQ), which works as an interface with the NIC input
bus. Thus, a packet is usually received divided into frames, re-
ceived at each clock cycle. The PIQ holds the packet’s frames
maintaining a head frame pointer. The frames of a given
packet can be therefore read from the queue independently
from the reception order.

4.1.2 Active Packet Selector

The APS implements a finite-state machine to handle the
transfer of a selected packet’s frames from the PIQ to an APS’
internal buffer.5 The internal buffer is large enough to hold a
full-sized packet.

While the packet is stored divided in frames, the APS pro-
vides a byte-aligned read/write access to the data, as required
by the eBPF ISA. I.e., the APS implements an eBPF pro-
gram’s packet buffer, and builds the hardware-equivalent of
the xdp_md struct that is passed as argument to XDP pro-
grams. Sephirot accesses such data structure using the main
hXDP’s data bus. Since Sephirot has four parallel execu-
tion lanes, the APS provides four parallel read/write memory
accesses through the data bus.

Storing the packet data in frames simplifies the buffer im-
plementation. Nonetheless, this also makes the writing of
specific bytes in the packet more complex. In particular, since
only a frame-size number of bytes can be written to the buffer,
the writing of single bytes would need to first read the entire
frame, apply the single-byte modification, and then re-write to
the buffer the entire modified frame. This is a complex opera-
tion, which would impact the maximum achievable clock rate
if implemented in this way, or it would alternatively require
multiple clock cycles to be completed. We instead use a differ-
ence buffer to handle writes, trading off some memory space

5The policy for selecting a given packet from the PIQ is by default FIFO,
although this can be changed to implement more complex mechanisms.

for hardware complexity. That is, modifications to the packet
data are stored in a difference buffer that is byte addressed. As
we will see next, the difference buffer allows us to separate
the reading of certain packet data, which can be pre-fetched
by Sephirot during the decoding of an instruction, from the
actual writing of new data in the packet, which can be per-
formed during packet emission. In fact, the APS contains
also a scratch memory to handle modifications to the packet
that are applied before the current packet head. This is usu-
ally required by applications that use the bpf_adjust_head
helper.

The scratch memory, the difference buffer, and the packet
buffer are combined when Sephirot performs a read of the
packet data, and at the end of the program execution, during
packet emission. Packet emission is the process of moving
the modified packet data to the output queue. The entire pro-
cess is handled by a dedicated finite-state machine, which
is started by Sephirot when an exit instruction is executed.
The emission of a packet happens in parallel with the reading
of the next packet.

4.1.3 Sephirot

Sephirot is a VLIW processor with 4 parallel lanes that exe-
cute eBPF instructions. Sephirot is designed as a pipeline
of four stages: instruction fetch (IF); instruction decode (ID);
instruction execute (IE); and commit. A program is stored in a
dedicated instruction memory, from which Sephirot fetches
the instructions in order. The processor has another dedicated
memory area to implement the program’s stack, which is
512B in size, and 11 64b registers stored in the register file.
These memory and register locations match one-to-one the
eBPF virtual machine specification. Sephirot begins execu-
tion when the APS has a new packet ready for processing,
and it gives the processor start signal.

On processor start (IF stage) a VLIW instruction is read and
the 4 extended eBPF instructions that compose it are statically
assigned to their respective execution lanes. In this stage, the
operands of the instructions are pre-fetched from the register
file. The remaining 3 pipeline stages are performed in parallel
by the four execution lanes. During ID, memory locations are
pre-fetched, if any of the eBPF instructions is a load, while at
the IE stage the relevant sub-unit are activated, using the rele-
vant pre-fetched values. The sub-units are the Arithmetic and
Logic Unit (ALU), the Memory Access Unit and the Control
Unit. The ALU implements all the operations described by
the eBPF ISA, with the notable difference that it is capable of
performing operations on three operands. The memory access
unit abstracts the access to the different memory areas, i.e.,
the stack, the packet data stored in the APS, and the maps
memory. The control unit provides the logic to modify the
program counter, e.g., to perform a jump, and to invoke helper
functions. Finally, during the commit stage the results of the
IE phase are stored back to the register file, or to one of the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 979

memory areas. Sephirot terminates execution when it finds
an exit instruction, in which case it signals to the APS the
packet forwarding decision.

4.1.4 Helper Functions

hXDP implements the XDP helper functions in a dedicated
sub-module. We decided to provide a dedicated hardware im-
plementation for the helper functions since their definition is
rather static, and it changes seldom when new versions of the
XDP technology are released. This also allows us to leverage
at full the FPGA hardware parallelism to implement some
more expensive functions, such as checksum computations.
In terms of interface, the helper function sub-module offers
the same interface provided by eBPF, i.e., helper functions
arguments are read from registers r1-r5, and the return value
is provided in r0. All values are exchanged using the dedi-
cated helper data bus. Here, it is worth noticing that there is a
single helper functions sub-module, and as such only one in-
struction per cycle can invoke a helper function.6 Among the
helper functions there are the map lookup functions, which
are used to implement hashmap and other data structures on
top of the maps memory. Because of that, the helper functions
sub-module has a direct access to the maps module.

4.1.5 Maps

The maps subsystem main function is to decode memory
addresses, i.e., map id and row, to access the corresponding
map’s memory location. Here, one complication is that eBPF
maps can be freely specified by a program, which defines the
map’s type and size for as many maps as needed. To replicate
this feature in the hardware, the maps subsystem implements
a configurator which is instructed at program’s load time. In
fact, all the maps share the same FPGA memory area, which
is then shaped by the configurator according to the maps
section of the eBPF program, which (virtually) creates the
appropriate number of maps with their row sizes, width and
hash functions, e.g., for implementing hashmaps.

Since in eBPF single maps entries can be accessed directly
using their address, the maps subsystem is connected via
the data bus to Sephirot, in addition to the direct connec-
tion to the helper function sub-module, which is instead used
for structured map access. To enable parallel access to the
Sephirot’s execution lanes, like in the case of the APS, the
maps modules provides up to 4 read/write parallel accesses.

4.2 Pipeline Optimizations

Early processor start The packet content is transferred one
frame per clock cycle from the PIQ to the APS. Starting pro-

6Adding more sub-modules would not be sufficient to improve parallelism
in this case, since we would need to also define additional registers to hold
arguments/return values and include register renaming schemes. Adding
sub-modules proved to be not helpful for most use cases.

switch (ip->protocol) {

case IPPROTO_TCP: goto l4; if r1 == 17 goto +1 <LBB0_5>

case IPPROTO_UDP: goto l4; if r1 != 6 goto +48 <LBB0_17>

default: goto EOP;}

Figure 6: Example of a switch statement

gram execution without waiting the full transfer of the packet
may trigger the reading of parts of it that are not yet trans-
ferred. However, handling such an exception requires only
little additional logic to pause the Sephirot pipeline, when
the exception happens. In practice, XDP programs usually
start reading the beginning of a packet, in fact in our tests we
never experienced a case in which we had to pause Sephirot.
This provides significant benefits with packets of larger sizes,
effectively masking the Sephirot execution time.
Program state self-reset As we have seen in Section 3, eBPF
programs may perform zero-ing of the variables they are
going to use. We provide automatic reset of the stack and of
the registers at program initialization. This is an inexpensive
feature in hardware, which improves security [15] and allows
us to remove any such zero-ing instruction from the program.
Data hazards reduction One of the issues of pipelined ex-
ecution is that two instructions executed back-to-back may
cause a race condition. If the first instruction produces a re-
sult needed by the second one, the value read by the second
instruction will be stale, because of the operand/memory pre-
tecthing performed by Sephirot. Stalling the pipeline would
avoid such race conditions at the cost of performance. Instead,
we perform result forwarding on a per-lane basis. This allows
the scheduling back-to-back of instructions on a single lane,
even if the result of the first instruction is needed by the sec-
ond one.7 The compiler is in charge of checking such cases
and ensure that the instructions that have such dependancies
are always scheduled on the same lane.
Parallel branching The presence of branch instructions may
cause performance problems with architectures that lack
branch prediction, speculative and out of order execution. In
the case of Sephirot, this forces a serialization of the branch
instructions. However, in XDP programs there are often series
of branches in close sequence, especially during header pars-
ing (see Figure 6). We enabled the parallel execution of such
branches, establishing a priority ordering of the Sephirot’s
lanes. That is, all the branch instructions are executed in paral-
lel by the VLIW’s lanes. If more than one branch is taken, the
highest priority one is selected to update the program counter.
The compiler takes that into account when scheduling instruc-
tions, ordering the branch instructions accordingly.8

Early processor exit The processor stops when an exit in-
struction is executed. The exit instruction is recognized during
the IF phase, which allows us to stop the processor pipeline
early, and save the 3 remaining clock cycles. This optimization

7We empirically tested that a more complex intra-lane result forwarding
does not provide measurable benefits.

8This applies equally to a sequence of if...else or goto statements.

980 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

COMPONENT LOGIC REGISTERS BRAM
PIQ 215, 0.05% 58, <0.01% 6.5, 0.44%
APS 9K, 2.09% 10K, 1.24% 4, 0.27%

SEPHIROT 27K, 6.35% 4K, 0,51% -
INSTR MEM - - 7.7, 0.51%

STACK 1K, 0.24% 136, 0.02% 16, 1,09%
HF SUBSYSTEM 339, 0.08% 150, 0.02% -

MAPS SUBSYSTEM 5.8K, 1.35% 2.5K, 0.3% 16, 1.09%
TOTAL 42K, 9.91% 18K, 2.09% 50, 3.40%

W/ REFERENCE NIC 80K, 18.53% 63K, 7.3% 214, 14,63%

Table 1: NetFPGA resources usage breakdown, each row
reports actual number and percentage of the FPGA total re-
sources (#, % tot). hXDP requires about 15% of the FPGA
resources in terms of Slice Logic and Registers.

improves also the performance gain obtained by extending
the ISA with parametrized exit instructions, as described in
Section 3. In fact, XDP programs usually perform a move of a
value to r0, to define the forwarding action, before calling an
exit. Setting a value to a register always needs to traverse the
entire Sephirot pipeline. Instead, with a parametrized exit
we remove the need to assign a value to r0, since the value is
embedded in a newly defined exit instruction.

4.3 Implementation

We prototyped hXDP using the NetFPGA [60], a board em-
bedding 4 10Gb ports and a Xilinx Virtex7 FPGA. The hXDP
implementation uses a frame size of 32B and is clocked at
156.25MHz. Both settings come from the standard configura-
tion of the NetFPGA reference NIC design.

The hXDP FPGA IP core takes 9.91% of the FPGA logic
resources, 2.09% of the register resources and 3.4% of the
FPGA’s available BRAM. The considered BRAM memory
does not account for the variable amount of memory required
to implement maps. A per-component breakdown of the re-
quired resources is presented in Table 1, where for reference
we show also the resources needed to implement a map with
64 rows of 64B each. As expected, the APS and Sephirot
are the components that need more logic resources, since
they are the most complex ones. Interestingly, even somewhat
complex helper functions, e.g., a helper function to imple-
ment a hashmap lookup (HF Map Access), have just a minor
contribution in terms of required logic, which confirms that
including them in the hardware design comes at little cost
while providing good performance benefits, as we will see
in Section 5. When including the NetFPGA’s reference NIC
design, i.e., to build a fully functional FPGA-based NIC, the
overall occupation of resources grows to 18.53%, 7.3% and
14.63% for logic, registers and BRAM, respectively. This is a
relatively low occupation level, which enables the use of the
largest share of the FPGA for other accelerators.

Program Description
xdp1 parse pkt headers up to IP, and XDP_DROP
xdp2 parse pkt headers up to IP, and XDP_TX
xdp_adjust_tail receive pkt, modify pkt into ICMP pkt and XDP_TX
router_ipv4 parse pkt headers up to IP,

look up in routing table and forward (redirect)
rxq_info (drop) increment counter and XDP_DROP
rxq_info (tx) increment counter and XDP_TX
tx_ip_tunnel parse pkt up to L4, encapsulate and XDP_TX
redirect_map output pkt from a specified interface (redirect)

Table 2: Tested Linux XDP example programs.

5 Evaluation

We use a selection of the Linux’s XDP example applica-
tions and two real world applications to perform the hXDP
evaluation. The Linux examples are described in Table 2.
The real-world applications are the simple firewall we used
as running example, and the Facebook’s Katran server load
balancer [17]. Katran is a high performance software load
balancer that translates virtual addresses to actual server ad-
dresses using a weighted scheduling policy, and providing
per-flow consistency. Furthermore, Katran collects several
flow metrics, and performs IPinIP packet encapsulation.

Using these applications, we perform an evaluation of the
impact of the compiler optimizations on the programs’ num-
ber of instructions, and the achieved level of parallelism. Then,
we evaluate the performance of our NetFPGA implementa-
tion. In addition, we run a large set of micro-benchmarks
to highlight features and limitations of hXDP. We use the
microbenchmarks also to compare the hXDP prototype per-
formance with a Netronome NFP4000 SmartNIC. Although
the two devices target different deployment scenarios, this
can provide further insights on the effect of the hXDP de-
sign choices. Unfortunately, the NFP4000 offers only limited
eBPF support, which does not allow us to run a complete eval-
uation. We further include a comparison of hXDP to other
FPGA NIC programming solutions, before concluding the
section with a brief dicussion of the evaluation results.

5.1 Compiler
Instruction-level optimizations We evaluate the instruction-
level optimizations described in Section 3, by activating se-
lectively each of them in the hXDP compiler. Figure 7 shows
the reduction of eBPF instructions for a program, relative
to its original number of instructions. We can observe that
the contribution of each optimization largely depends on the
program. For instance, the xdp_adjust_tail performs sev-
eral operations that need to read/write 6B of data, which in
turn makes the 6B load/store instructions of our extended
ISA particularly effective, providing a 18% reduction in the
number of instructions. Likewise, the simple_firewall per-
forms several bound checks, which account for 19% of the
program’s instructions. The parametrized exit reduces the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 981

Figure 7: Reduction of instructions due to compiler optimiza-
tions, relative to the original number of instructions.

Figure 8: Number of VLIW instructions when varying the
available number of execution lanes.

number of instructions by up to 5-10%. However, it should
be noted that this reduction has limited impact on the num-
ber of instructions executed at runtime, since only one exit
instruction is actually executed.

Instructions parallelization We configure the compiler to
consider from 2 to 8 parallel execution lanes, and count the
number of generated VLIW instructions. A VLIW instruc-
tion corresponds to a schedule’s row (cf. Section 3.4), and it
can therefore contain from 2 to 8 eBPF instructions in this
test. Figure 8 shows that the number of VLIW instructions is
reduced significantly as we add parallel execution lanes up
to 3, in all the cases. Adding a fourth execution lane reduces
the VLIW instructions by an additional 5%, and additional
lanes provide only marginal benefits. Another important ob-
servation is that the compiler’s physical register assignment

Figure 9: Number of VLIW instructions, and impact of opti-
mizations on its reduction.

step becomes more complex when growing the number of
lanes, since there may not be enough registers to hold all the
symbols being processed by a larger number of instructions.9

Given the relatively low gain when growing to more than four
parallel lanes, we decided use four parallel lanes in hXDP.
Combined optimizations Figure 9 shows the final number
of VLIW instructions produced by the compiler. We show the
reduction provided by each optimization as a stacked column,
and report also the number of x86 instructions, which result
as output of the Linux’s eBPF JIT compiler. In Figure, we
report the gain for instruction parallelization, and the addi-
tional gain from code movement, which is the gain obtained
by anticipating instructions from control equivalent blocks (cf.
Section 3.4). As we can see, when combined, the optimiza-
tions do not provide a simple sum of their gains, since each
optimization affects also the instructions touched by the other
optimizations. Overall, the compiler is capable of providing a
number of VLIW instructions that is often 2-3x smaller than
the original program’s number of instructions. Notice that, by
contrast, the output of the JIT compiler for x86 usually grows
the number of instructions.10

5.2 Hardware performance
We compare hXDP with XDP running on a server machine,
and with the XDP offloading implementation provided by a
SoC-based Netronome NFP 4000 SmartNIC. The NFP4000
has 60 programmable network processing cores (called micro-
engines), clocked at 800MHz. The server machine is equipped
with an Intel Xeon E5-1630 v3 @3.70GHz, an Intel XL710
40GbE NIC, and running Linux v.5.6.4 with the i40e Intel

9This would ultimately require adding more registers, or the introduction
of instructions to handle register spilling.

10This is also due to the overhead of running on a shared executor, e.g.,
calling helper functions requires several instructions.

982 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

NIC drivers. During the tests we use different CPU frequen-
cies, i.e., 1.2GHz, 2.1GHz and 3.7GHz, to cover a larger spec-
trum of deployment scenarios. In fact, many deployments
favor CPUs with lower frequencies and a higher number of
cores [24]. We use a DPDK packet generator to perform
throughput and latency measurements. The packet genera-
tor is capable of generating a 40Gbps throughput with any
packet size and it is connected back-to-back with the system-
under-test, i.e., the hXDP prototype running on the NetFPGA,
the Netronome SmartNIC or the Linux server running XDP.
Delay measurements are performed using hardware packet
timestamping at the traffic generator’s NIC, and measure the
round-trip time. Unless differently stated, all the tests are per-
formed using packets with size 64B belonging to a single
network flow. This is a challenging workload for the systems
under test. Since we are interested in measuring the hXDP
hardware implementation performance, we do not perform
tests that require moving packets to the host system. In such
cases the packet processing performance would be largely af-
fected by the PCIe and Linux drivers implementations, which
are out-of-scope for this paper. We use a similar approach
when running tests with the Netronome SmartNIC. As already
mentioned, in this case we are only able to run a subset of the
evaluation, i.e., some microbenchmarks, due to the the limited
eBPF support implemented by the Netronome SmartNICs.

5.2.1 Applications performance

Simple firewall In Section 2 we mentioned that an optimistic
upper-bound for the hardware performance would have been
2.8Mpps. When using hXDP with all the compiler and hard-
ware optimizations described in this paper, the same appli-
cation achieves a throughput of 6.53Mpps, as shown in Fig-
ure 10. This is only 12% slower than the same application
running on a powerful x86 CPU core clocked at 3.7GHz, and
55% faster than the same CPU core clocked at 2.1GHz. In
terms of latency, hXDP provides about 10x lower packet pro-
cessing latency, for all packet sizes (see Figure 11). This is
the case since hXDP avoids crossing the PCIe bus and has
no software-related overheads. We omit latency results for
the remaining applications, since they are not significantly
different.11 While we are unable to run the simple firewall
application using the Netronome’s eBPF implementation, Fig-
ure 11 shows also the forwarding latency of the Netronome
NFP4000 (nfp label) when programmed with an XDP pro-
gram that only performs packet forwarding. Even in this case,
we can see that hXDP provides a lower forwarding latency,
especially for packets of smaller sizes.

Katran When measuring Katran we find that hXDP is in-

11The impact of different programs is especially significant with small
packet sizes. However, even in such cases we cannot observe significant
differences. In fact each VLIW instruction takes about 7 nanoseconds to be
executed, thus, differences of tens of instructions among programs change
the processing latency by far less than a microsecond.

stead 38% slower than the x86 core at 3.7GHz, and only 8%
faster than the same core clocked at 2.1GHz. The reason for
this relatively worse hXDP performance is the overall pro-
gram length. Katran’s program has many instructions, as such
executors with a very high clock frequency are advantaged,
since they can run more instructions per second. However,
notice the clock frequencies of the CPUs deployed at Face-
book’s datacenters [24] have frequencies close to 2.1GHz,
favoring many-core deployments in place of high-frequency
ones. hXDP clocked at 156MHz is still capable of outper-
forming a CPU core clocked at that frequency.

Linux examples We finally measure the performance of the
Linux’s XDP examples listed in Table 2. These applications
allow us to better understand the hXDP performance with pro-
grams of different types (see Figure 12). We can identify three
categories of programs. First, programs that forward packets
to the NIC interfaces are faster when running on hXDP. These
programs do not pass packets to the host system, and thus
they can live entirely in the NIC. For such programs, hXDP
usually performs at least as good as a single x86 core clocked
at 2.1GHz. In fact, processing XDP on the host system in-
curs the additional PCIe transfer overhead to send the packet
back to the NIC. Second, programs that always drop packets
are usually faster on x86, unless the processor has a low fre-
quency, such as 1.2GHz. Here, it should be noted that such
programs are rather uncommon, e.g., programs used to gather
network traffic statistics receiving packets from a network tap.
Finally, programs that are long, e.g., tx_ip_tunnel has 283
instructions, are faster on x86. Like we noticed in the case
of Katran, with longer programs the hXDP’s implementation
low clock frequency can become problematic.

5.2.2 Microbenchmarks

Baseline We measure the baseline packet processing perfor-
mance using three simple programs: XDP_DROP drops the
packet as soon as it is received; XDP_TX parses the Ethernet
header and swaps MAC addresses before sending the packet
out to the port from which it was received; redirect is like
XDP_TX, but sends the packet out to a different port, which
requires calling a specific XDP helper function. The perfor-
mance results clearly show the advantage of running on the
NIC and avoiding PCIe transfers when processing small pro-
grams (see Figure 13). hXDP can drop 52Mpps vs the 38Mpps
of the x86 CPU core@3.7GHz, and 32Mpps of the Netronome
NFP4000. Here, the very high performance of hXDP is due
to the parametrized exit/early exit optimizations mentioned in
Section 4. Disabling the optimization brings down the hXDP
performance to 22Mpps. In the case of XDP_TX, instead,
hXDP forwards 22.5Mpps while x86 can forward 12Mpps.
The NFP4000 is the fastest device in this test, forwarding
over 28Mpps. In the case of redirect, hXDP provides 15Mpps,
while x86 can only forward 11Mpps when running at 3.7GHz.
Here, the redirect has lower performance because eBPF im-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 983

Figure 10: Throughput for real-world
applications. hXDP is faster than a high-
end CPU core clocked at over 2GHz.

Figure 11: Packet forwarding latency for
different packet sizes.

Figure 12: Throughput of Linux’s XDP
programs. hXDP is faster for programs
that perform TX or redirection.

Figure 13: Baseline throughput mea-
surements for basic XDP programs.

Figure 14: Impact on forwarding
throughput of map accesses.

Figure 15: Forwarding tput when calling
a helper function.

plements it with a helper. Results for the NFP4000 are not
available since the it does not support the redirect action.

Maps access Accessing eBPF maps affects the performance
of XDP programs that need to read and keep state. In this test
we measure the performance variation when accessing a map
with a variable key size ranging between 1-16B. Accessing
the map is performed calling a helper function that performs a
hash of the key and then retrieves the value from memory. In
the x86 tests we ensure that the accessed entry is in the CPU
cache. Figure 14 shows that the hXDP prototype has constant
access performance, independently from the key size. This
is the result of the wider memory data buses, which can in
fact accomodate a memory access in a single clock cycle for
keys of up to 32B in size. The NFP4000, like hXDP, shows
no performance drop when increasing the key size. Instead, in
the x86 case the performance drops when the key size grows
from 8B to 16B, we believe this is due to the need to perform
multiple loads.

Helper functions In this micro-benchmark we measure
throughput performance when calling from 1 to 40 times
a helper function that performs an incremental checksum cal-
culation. Since helper functions are implemented as dedicated
hardware functions in hXDP, we expect our prototype to ex-
hibit better performance than x86, which is confirmed by our
results (see Figure 15). I.e., hXDP may provide significant
benefits when offloading programs that need complex compu-
tations captured in helper functions. Also, the hXDP’s helper
function machinery may be used to eventually replace sets

Program # instr. x86 IPC hXDP IPC
xdp1 61 2.20 1.70
xdp2 78 2.19 1.81
xdp_adjust_tail 117 2.37 2.72
router_ipv4 119 2.38 2.38
rxq_info 81 2.81 1.76
tx_ip_tunnel 283 2.24 2.83
simple_firewall 72 2.16 2.66
Katran 268 2.32 2.62

Table 3: Programs’ number of instructions, x86 runtime
instruction-per-cycle (IPC) and hXDP static IPC mean rates.

of common instructions with more efficient dedicated hard-
ware implementations, providing an easier pathway for future
extensions of the hardware implementation.
Instructions per cycle We compare the parallelization level
obtained at compile time by hXDP, with the runtime paral-
lelization performed by the x86 CPU core. Table 3 shows that
the static hXDP parallelization achieves often a paralleliza-
tion level as good as the one achieved by the complex x86
runtime machinery.12

5.2.3 Comparison to other FPGA solutions

hXDP provides a more flexible programming model than

12The x86 IPC should be understood as a coarse-grained estimation of the
XDP instruction-level parallelism since, despite being isolated, the CPU runs
also the operating system services related to the eBPF virtual machine, and
its IPC is also affected by memory access latencies, which more significantly
impact the IPC for high clock frequencies.

984 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

previous work for FPGA NIC programming. However, in
some cases, simpler network functions implemented with
hXDP could be also implemented using other programming
approaches for FPGA NICs, while keeping functional equiva-
lence. One such example is the simple firewall presented in
this paper, which is supported also by FlowBlaze [45].

Throughput Leaving aside the cost of re-implementing the
function using the FlowBlaze abstraction, we can generally ex-
pect hXDP to be slower than FlowBlaze at processing packets.
In fact, in the simple firewall case, FlowBlaze can forward
about 60Mpps, vs the 6.5Mpps of hXDP. The FlowBlaze
design is clocked at 156MHz, like hXDP, and its better per-
formance is due to the high-level of specialization. FlowBlaze
is optimized to process only packet headers, using statically-
defined functions. This requires loading a new bitstream on
the FPGA when the function changes, but it enables the sys-
tem to achieve the reported high performance.13 Conversely,
hXDP has to pay a significant cost to provide full XDP com-
patibility, including dynamic network function programma-
bility and processing of both packet headers and payloads.

Hardware resources A second important difference is the
amount of hardware resources required by the two approaches.
hXDP needs about 18% of the NetFPGA logic resources,
independently from the particular network function being
implemented. Conversely, FlowBlaze implements a packet
processing pipeline, with each pipeline’s stage requiring about
16% of the NetFPGA’s logic resources. For example, the sim-
ple firewall function implementation requires two FlowBlaze
pipeline’s stages. More complex functions, such as a load
balancer, may require 4 or 5 stages, depending on the imple-
mented load balancing logic [19].

In summary, the FlowBlaze’s pipeline leverages hardware
parallelism to achieve high performance. However, it has the
disadvantage of often requiring more hardware resources than
a sequential executor, like the one implemented by hXDP.
Because of that, hXDP is especially helpful in scenarios where
a small amount of FPGA resources is available, e.g., when
sharing the FPGA among different accelerators.

5.3 Discussion
Suitable applications hXDP can run XDP programs with no
modifications, however, the results presented in this section
show that hXDP is especially suitable for programs that can
process packets entirely on the NIC, and which are no more
than a few 10s of VLIW instructions long. This is a common
observation made also for other offloading solutions [26].

FPGA Sharing At the same time, hXDP succeeds in using
little FPGA resources, leaving space for other accelerators.
For instance, we could co-locate on the same FPGA several

13FlowBlaze allows the programmer to perform some runtime reconfigu-
ration of the functions, however this a limited feature. For instance, packet
parsers are statically defined.

instances of the VLDA accelerator design for neural networks
presented in [12]. Here, one important note is about the use of
memory resources (BRAM). Some XDP programs may need
larger map memories. It should be clear that the memory area
dedicated to maps reduces the memory resources available
to other accelerators on the FPGA. As such, the memory
requirements of XDP programs, which are anyway known at
compile time, is another important factor to consider when
taking program offloading decisions.

6 Future work

While the hXDP performance results are already good to run
real-world applications, e.g., Katran, we identified a number
of optimization options, as well as avenues for future research.
Compiler First, our compiler can be improved. For instance,
we were able to hand-optimize the simple firewall instruc-
tions and run it at 7.1Mpps on hXDP. This is almost a 10%
improvement over the result presented in Section 5. The ap-
plied optimizations had to do with a better organization of the
memory accesses, and we believe they could be automated by
a smarter compiler.
Hardware parser Second, XDP programs often have large
sections dedicated to packet parsing. Identifying them and
providing a dedicated programmable parser in hardware [23]
may significantly reduce the number of instructions executed
by hXDP. However, it is still unclear what would be the best
strategy to implement the parser on FPGA and integrate it with
hXDP, and the related performance and hardware resources
usage trade offs.
Multi-core and memory Third, while in this paper we fo-
cused on a single processing core, hXDP can be extended to
support two or more Sephirot cores. This would effectively
trade off more FPGA resources for higher forwarding perfor-
mance. For instance, we were able to test an implementation
with two cores, and two lanes each, with little effort. This
was the case since the two cores shared a common memory
area and therefore there were no significant data consistency
issues to handle. Extending to more cores (lanes) would in-
stead require the design of a more complex memory access
system. Related to this, another interesting extension to our
current design would be the support for larger DRAM or
HBM memories, to store large memory maps.
ASIC Finally, hXDP targets FPGA platforms, since we as-
sume that FPGAs are already available in current deployments.
Nonetheless, hXDP has several fixed design’s components,
such as the Sephirot core, which suggests that hXDP may be
implemented as ASIC. An ASIC could provide a potentially
higher clock frequency, and an overall more efficient use of
the available silicon resources. Here, in addition to measuring
the performance that such a design may achieve, there are
additional interesting open questions. For instance evaluating
the potential advantages/disadvantages provided by the ability

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 985

to change helper functions implemented in the FPGA, when
compared to a fixed set of helper functions provided in ASIC.

7 Related Work

NIC Programming AccelNet [18] is a match-action offload-
ing engine used in large cloud datacenters to offload virtual
switching and firewalling functions, implemented on top of
the Catapult FPGA NIC [10]. FlexNIC [32] is a design based
on the RMT [8] architecture, which provides a flexible net-
work DMA interface used by operating systems and appli-
cations to offload stateless packet parsing and classification.
P4->NetFPGA [1] and P4FPGA [56] provide high-level syn-
thesis from the P4 [7] domain-specific language to an FPGA
NIC platform. FlowBlaze [45] implements a finite-state ma-
chine abstraction using match-action tables on an FPGA NIC,
to implement simple but high-performance network functions.
Emu [50] uses high level synthesis to implement functions
described in C# on the NetFPGA. Compared to these works,
instead of match-action or higher-level abstractions, hXDP
leverages abstractions defined by the Linux’s kernel, and im-
plements network functions described using the eBPF ISA.

The Netronome SmartNICs implement a limited form
of eBPF/XDP offloading [33]. Unlike hXDP that imple-
ments a solution specifically targeted to XDP programs, the
Netronome solution is added on top of their network proces-
sor as an afterthought, and therefore it is not specialized for
the execution of XDP programs.

Application frameworks AccelTCP [38], Tonic [2] and Xtra
[5] present abstractions, hardware architectures and proto-
types to offload the transport protocol tasks to the NIC. We
have not investigated the feasibility of using hXDP for a sim-
ilar task, which is part of our future work. NICA [16] and
ClickNP [36] are software/hardware frameworks that intro-
duce specific software abstractions that connect FPGA blocks
with an user program running on a general purpose CPU. In
both cases, applications can only be designed composing the
provided hardware blocks. hXDP provides instead an ISA that
can be flexibly programmed, e.g., using higher level languages
such as C.

Applications Examples of applications implemented on NICs
include: DNS resolver [57]; the paxos protocol [51]; net-
work slicing [59]; Key-value stores [34, 35, 49, 52]; Machine
Learning [14, 21, 41]; and generic cloud services as proposed
in [10,46,48]. [37] uses SmartNICs to provide a microservice-
based platform to run different services. In this case, SoC-
based NICs are used, e.g., based on Arm processing cores.
Lynx [53] provides a system to implement network-facing ser-
vices that need access to accelerators, such as GPUs, without
involving the host system’s CPU. Floem [43] is a framework
to simplify the design of applications that leverage offloading
to SoC-based SmartNICs. hXDP provides an XDP program-
ming model that can be used to implement and extend these

applications.

NIC Hardware Previous work presenting VLIW core de-
signs for FPGAs did not focus on network processing [29,31].
[9] is the closest to hXDP. It employs a non-specialized MIPS-
based ISA and a VLIW architecture for packet processing.
hXDP has an ISA design specifically targeted to network
processing using the XDP abstractions. [20] presents an open-
source 100-Gbps FPGA NIC design. hXDP can be integrated
in such design to implement an open source FPGA NIC with
XDP offloading support.

8 Conclusion

This paper presented the design and implementation of hXDP,
a system to run Linux’s XDP programs on FPGA NICs. hXDP
can run unmodified XDP programs on FPGA matching the
performance of a high-end x86 CPU core clocked at more
than 2GHz. Designing and implementing hXDP required a
significant research and engineering effort, which involved the
design of a processor and its compiler, and while we believe
that the performance results for a design running at 156MHz
are already remarkable, we also identified several areas for
future improvements. In fact, we consider hXDP a starting
point and a tool to design future interfaces between operating
systems/applications and network interface cards/accelerators.
To foster work in this direction, we make our implementations
available to the research community.14

Acknowledgments

We would like to thank the anonymous reviewers and our
shepherd Costin Raiciu for their extensive and valuable feed-
back and comments, which have substantially improved the
content and presentation of this paper.

The research leading to these results has received fund-
ing from the ECSEL Joint Undertaking in collaboration
with the European Union’s H2020 Framework Programme
(H2020/2014-2020) and National Authorities, under grant
agreement n. 876967 (Project "BRAINE").

References

[1] P4-NetFPGA. https://github.com/NetFPGA/
P4-NetFPGA-public/wiki.

[2] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford,
D. Walker, and D. Wentzlaff. Enabling programmable
transport protocols in high-speed nics. In 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), pages 93–109, Santa Clara, CA,
Feb. 2020. USENIX Association.

14https://github.com/axbryd

986 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/NetFPGA/P4-NetFPGA-public/wiki
https://github.com/NetFPGA/P4-NetFPGA-public/wiki
https://github.com/axbryd

[3] A. J. Bernstein. Analysis of programs for parallel pro-
cessing. IEEE Transactions on Electronic Computers,
EC-15(5):757–763, 1966.

[4] G. Bertin. Xdp in practice: integrating xdp into our ddos
mitigation pipeline. In Technical Conference on Linux
Networking, Netdev, volume 2, 2017.

[5] G. Bianchi, M. Welzl, A. Tulumello, F. Gringoli, G. Be-
locchi, M. Faltelli, and S. Pontarelli. XTRA: Towards
portable transport layer functions. IEEE Transactions
on Network and Service Management, 16(4):1507–1521,
2019.

[6] S. Biookaghazadeh, M. Zhao, and F. Ren. Are fpgas
suitable for edge computing? In USENIX Workshop on
Hot Topics in Edge Computing (HotEdge 18), Boston,
MA, July 2018. USENIX Association.

[7] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming protocol-
independent packet processors. SIGCOMM Comput.
Commun. Rev., 44(3):87–95, July 2014.

[8] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McK-
eown, M. Izzard, F. Mujica, and M. Horowitz. Forward-
ing metamorphosis: Fast programmable match-action
processing in hardware for sdn. In Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM, SIG-
COMM ’13, page 99–110, New York, NY, USA, 2013.
Association for Computing Machinery.

[9] M. S. Brunella, S. Pontarelli, M. Bonola, and G. Bianchi.
V-PMP: A VLIW packet manipulator processor. In 2018
European Conference on Networks and Communica-
tions (EuCNC), pages 1–9. IEEE, 2018.

[10] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat,
J. Fowers, M. Haselman, S. Heil, M. Humphrey, P. Kaur,
J. Kim, D. Lo, T. Massengill, K. Ovtcharov, M. Pa-
pamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger.
A cloud-scale acceleration architecture. In 2016 49th An-
nual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 1–13, 2016.

[11] V. Chamola, S. Patra, N. Kumar, and M. Guizani. Fpga
for 5g: Re-configurable hardware for next generation
communication. IEEE Wireless Communications, pages
1–8, 2020.

[12] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen,
M. Cowan, L. Wang, Y. Hu, L. Ceze, C. Guestrin, and
A. Krishnamurthy. TVM: An automated end-to-end
optimizing compiler for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 578–594, Carlsbad, CA,
Oct. 2018. USENIX Association.

[13] D. Chiou. The microsoft catapult project. In 2017 IEEE
International Symposium on Workload Characterization
(IISWC), pages 124–124. IEEE, 2017.

[14] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael,
A. Caulfield, T. Massengill, M. Liu, D. Lo, S. Alkalay,
M. Haselman, M. Abeydeera, L. Adams, H. Angepat,
C. Boehn, D. Chiou, O. Firestein, A. Forin, K. S.
Gatlin, M. Ghandi, S. Heil, K. Holohan, A. El Husseini,
T. Juhasz, K. Kagi, R. K. Kovvuri, S. Lanka, F. van
Megen, D. Mukhortov, P. Patel, B. Perez, A. Rapsang,
S. Reinhardt, B. Rouhani, A. Sapek, R. Seera, S. Shekar,
B. Sridharan, G. Weisz, L. Woods, P. Yi Xiao, D. Zhang,
R. Zhao, and D. Burger. Serving dnns in real time at
datacenter scale with project brainwave. IEEE Micro,
38(2):8–20, 2018.

[15] M. V. Dumitru, D. Dumitrescu, and C. Raiciu. Can
we exploit buggy p4 programs? In Proceedings of the
Symposium on SDN Research, SOSR ’20, page 62–68,
New York, NY, USA, 2020. Association for Computing
Machinery.

[16] H. Eran, L. Zeno, M. Tork, G. Malka, and M. Silberstein.
NICA: An infrastructure for inline acceleration of net-
work applications. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 345–362, Renton,
WA, July 2019. USENIX Association.

[17] Facebook. Facebook. 2018. Katran source code repos-
itory. https://github.com/facebookincubator/
katran.

[18] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,
A. Caulfield, E. Chung, H. K. Chandrappa, S. Chatur-
mohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre,
M. Shaw, G. Silva, M. Sivakumar, N. Srivastava,
A. Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid,
D. A. Maltz, and A. Greenberg. Azure accelerated net-
working: Smartnics in the public cloud. In 15th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 18), pages 51–66, Renton, WA, Apr.
2018. USENIX Association.

[19] FlowBlaze. Repository with FlowBlaze source code and
additional material. http://axbryd.com/FlowBlaze.
html.

[20] A. Forencich, A. C. Snoeren, G. Porter, and G. Papen.
Corundum: An open-source 100-Gbps NIC. In 28th
IEEE International Symposium on Field-Programmable
Custom Computing Machines, 2020.

[21] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massen-
gill, M. Liu, D. Lo, S. Alkalay, M. Haselman, L. Adams,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 987

https://github.com/ facebookincubator/katran
https://github.com/ facebookincubator/katran
http://axbryd.com/FlowBlaze.html
http://axbryd.com/FlowBlaze.html

M. Ghandi, S. Heil, P. Patel, A. Sapek, G. Weisz,
L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield,
E. S. Chung, and D. Burger. A configurable cloud-scale
dnn processor for real-time ai. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architec-
ture (ISCA), pages 1–14, 2018.

[22] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi,
A. Pullini, D. Rossi, E. Flamand, F. K. Gürkaynak, and
L. Benini. Near-threshold risc-v core with dsp exten-
sions for scalable iot endpoint devices. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems,
25(10):2700–2713, 2017.

[23] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown.
Design principles for packet parsers. In Proceedings of
the Ninth ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ANCS ’13,
page 13–24. IEEE Press, 2013.

[24] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril,
D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro,
J. Law, K. Lee, J. Lu, P. Noordhuis, M. Smelyanskiy,
L. Xiong, and X. Wang. Applied machine learning
at Facebook: a datacenter infrastructure perspective.
In High Performance Computer Architecture (HPCA).
IEEE, 2018.

[25] C. Heinz, Y. Lavan, J. Hofmann, and A. Koch. A catalog
and in-hardware evaluation of open-source drop-in com-
patible risc-v softcore processors. In 2019 International
Conference on ReConFigurable Computing and FPGAs
(ReConFig), pages 1–8. IEEE, 2019.

[26] O. Hohlfeld, J. Krude, J. H. Reelfs, J. Rüth, and
K. Wehrle. Demystifying the performance of XDP BPF.
In 2019 IEEE Conference on Network Softwarization
(NetSoft), pages 208–212. IEEE, 2019.

[27] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann,
J. Fastabend, T. Herbert, D. Ahern, and D. Miller. The
express data path: Fast programmable packet process-
ing in the operating system kernel. In Proceedings of
the 14th International Conference on Emerging Net-
working EXperiments and Technologies, CoNEXT ’18,
page 54–66, New York, NY, USA, 2018. Association
for Computing Machinery.

[28] Intel. 5g wireless. https://www.intel.com/
content/www/us/en/communications/products/
programmable/applications/baseband.html,
2020.

[29] C. Iseli and E. Sanchez. Spyder: A reconfigurable vliw
processor using FPGAs. In [1993] Proceedings IEEE
Workshop on FPGAs for Custom Computing Machines,
pages 17–24. IEEE, 1993.

[30] S. Jiang, D. He, C. Yang, C. Xu, G. Luo, Y. Chen, Y. Liu,
and J. Jiang. Accelerating mobile applications at the
network edge with software-programmable fpgas. In
IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, pages 55–62. IEEE, 2018.

[31] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster.
An fpga-based vliw processor with custom hardware
execution. In Proceedings of the 2005 ACM/SIGDA
13th International Symposium on Field-Programmable
Gate Arrays, FPGA ’05, page 107–117, New York, NY,
USA, 2005. Association for Computing Machinery.

[32] A. Kaufmann, S. Peter, T. Anderson, and A. Krishna-
murthy. Flexnic: Rethinking network DMA. In 15th
Workshop on Hot Topics in Operating Systems (Ho-
tOS XV), Kartause Ittingen, Switzerland, May 2015.
USENIX Association.

[33] J. Kicinski and N. Viljoen. eBPF hardware offload to
SmartNICs: cls bpf and XDP. Proceedings of netdev, 1,
2016.

[34] M. Lavasani, H. Angepat, and D. Chiou. An FPGA-
based in-line accelerator for memcached. IEEE Com-
puter Architecture Letters, 13(2):57–60, 2013.

[35] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam,
E. Chen, and L. Zhang. Kv-direct: High-performance
in-memory key-value store with programmable nic. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, page 137–152, New York,
NY, USA, 2017. Association for Computing Machinery.

[36] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu,
Y. Xiong, P. Cheng, and E. Chen. Clicknp: Highly flexi-
ble and high performance network processing with re-
configurable hardware. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, page 1–14,
New York, NY, USA, 2016. Association for Computing
Machinery.

[37] M. Liu, S. Peter, A. Krishnamurthy, and P. M.
Phothilimthana. E3: Energy-efficient microservices on
smartnic-accelerated servers. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 363–
378, Renton, WA, July 2019. USENIX Association.

[38] Y. Moon, S. Lee, M. A. Jamshed, and K. Park. Acceltcp:
Accelerating network applications with stateful TCP of-
floading. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
77–92, Santa Clara, CA, Feb. 2020. USENIX Associa-
tion.

[39] NEC. Building an Open vRAN Ecosystem
White Paper. https://www.nec.com/en/global/
solutions/5g/index.html, 2020.

988 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.intel.com/content/www/us/en/communications/products/programmable/applications/baseband.html
https://www.intel.com/content/www/us/en/communications/products/programmable/applications/baseband.html
https://www.intel.com/content/www/us/en/communications/products/programmable/applications/baseband.html
https://www.nec.com/en/global/solutions/5g/index.html
https://www.nec.com/en/global/solutions/5g/index.html

[40] Netronome. AgilioTM CX 2x40GbE intelligent server
adapter. https://www.netronome.com/media/
redactor_files/PB_Agilio_CX_2x40GbE.pdf.

[41] K. Ovtcharov, O. Ruwase, J. Kim, J. Fowers, K. Strauss,
and E. S. Chung. Toward accelerating deep learning
at scale using specialized hardware in the datacenter.
In 2015 IEEE Hot Chips 27 Symposium (HCS), pages
1–38, 2015.

[42] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers,
K. Strauss, and E. S. Chung. Toward accelerating deep
learning at scale using specialized hardware in the data-
center. In 2015 IEEE Hot Chips 27 Symposium (HCS),
pages 1–38, 2015.

[43] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter,
R. Bodik, and T. Anderson. Floem: A programming
system for nic-accelerated network applications. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 663–679, Carlsbad,
CA, Oct. 2018. USENIX Association.

[44] S. Pinneterre, S. Chiotakis, M. Paolino, and D. Raho.
vfpgamanager: A virtualization framework for orches-
trated fpga accelerator sharing in 5g cloud environments.
In 2018 IEEE International Symposium on Broadband
Multimedia Systems and Broadcasting (BMSB), pages
1–5. IEEE, 2018.

[45] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone,
M. Spaziani, V. Bruschi, D. Sanvito, G. Siracusano,
A. Capone, M. Honda, F. Huici, and G. Siracusano.
Flowblaze: Stateful packet processing in hardware. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 531–548, Boston,
MA, Feb. 2019. USENIX Association.

[46] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fow-
ers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger.
A reconfigurable fabric for accelerating large-scale data-
center services. In Proceeding of the 41st Annual Inter-
national Symposium on Computer Architecuture, ISCA
’14, page 13–24. IEEE Press, 2014.

[47] R. Ricart-Sanchez, P. Malagon, P. Salva-Garcia, E. C.
Perez, Q. Wang, and J. M. A. Calero. Towards an fpga-
accelerated programmable data path for edge-to-core
communications in 5g networks. Journal of Network
and Computer Applications, 124:80–93, 2018.

[48] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and
P. Kalnis. In-network computation is a dumb idea whose

time has come. In Proceedings of the 16th ACM Work-
shop on Hot Topics in Networks, HotNets-XVI, page
150–156, New York, NY, USA, 2017. Association for
Computing Machinery.

[49] G. Siracusano and R. Bifulco. Is it a smartnic or a key-
value store? both! In Proceedings of the SIGCOMM
Posters and Demos, SIGCOMM Posters and Demos ’17,
page 138–140, New York, NY, USA, 2017. Association
for Computing Machinery.

[50] N. Sultana, S. Galea, D. Greaves, M. Wojcik, J. Shipton,
R. Clegg, L. Mai, P. Bressana, R. Soulé, R. Mortier,
P. Costa, P. Pietzuch, J. Crowcroft, A. W. Moore, and
N. Zilberman. Emu: Rapid prototyping of networking
services. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 459–471, Santa Clara, CA,
July 2017. USENIX Association.

[51] Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and
N. Zilberman. The case for in-network computing on
demand. In Proceedings of the Fourteenth EuroSys Con-
ference 2019, EuroSys ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[52] Y. Tokusashi, H. Matsutani, and N. Zilberman. Lake: the
power of in-network computing. In 2018 International
Conference on ReConFigurable Computing and FPGAs
(ReConFig), pages 1–8. IEEE, 2018.

[53] M. Tork, L. Maudlej, and M. Silberstein. Lynx: A
smartnic-driven accelerator-centric architecture for net-
work servers. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
’20, page 117–131, New York, NY, USA, 2020. Associ-
ation for Computing Machinery.

[54] W. Tu, J. Stringer, Y. Sun, and Y.-H. Wei. Bringing
the power of ebpf to open vswitch. In Linux Plumbers
Conference, 2018.

[55] F. J. Villanueva, M. J. Santofimia, D. Villa, J. Barba,
and J. C. Lopez. Civitas: The smart city middleware,
from sensors to big data. In 2013 Seventh International
Conference on Innovative Mobile and Internet Services
in Ubiquitous Computing, pages 445–450. IEEE, 2013.

[56] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivas-
tav, N. Foster, and H. Weatherspoon. P4fpga: A rapid
prototyping framework for p4. In Proceedings of the
Symposium on SDN Research, SOSR ’17, page 122–135,
New York, NY, USA, 2017. Association for Computing
Machinery.

[57] J. Woodruff, M. Ramanujam, and N. Zilberman. P4DNS:
In-network DNS. In 2019 ACM/IEEE Symposium on

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 989

https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf
https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf

Architectures for Networking and Communications Sys-
tems (ANCS), pages 1–6. IEEE, 2019.

[58] Xilinx. 5G Wireless Solutions Powered by Xil-
inx. https://www.xilinx.com/applications/
megatrends/5g.html, 2020.

[59] Y. Yan, A. F. Beldachi, R. Nejabati, and D. Simeonidou.
P4-enabled smart nic: Enabling sliceable and service-
driven optical data centres. Journal of Lightwave Tech-
nology, 38(9):2688–2694, 2020.

[60] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W.
Moore. NetFPGA SUME: Toward 100 Gbps as Re-
search Commodity. IEEE Micro ’14, 34(5):32–41, 2014.

Appendix: Artifacts

Source code, examples and instructions to replicate the re-
sults presented in this paper are provided at https://github.
com/axbryd/hXDP-Artifacts.

990 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.xilinx.com/applications/megatrends/5g.html
https://www.xilinx.com/applications/megatrends/5g.html
https://github.com/axbryd/hXDP-Artifacts
https://github.com/axbryd/hXDP-Artifacts

Do OS abstractions make sense on FPGAs?

Dario Korolija, Timothy Roscoe, Gustavo Alonso
Systems Group, Dept. of Computer Science, ETH Zurich
{dario.korolija, troscoe, alonso}@inf.ethz.ch

Abstract
Hybrid computing systems, consisting of a CPU server cou-

pled with a Field-Programmable Gate Array (FPGA) for appli-
cation acceleration, are today a common facility in datacenters
and clouds. FPGAs can deliver tremendous improvements in
performance and energy efficiency for a range or workloads,
but development and deployment of FPGA-based applications
remains cumbersome, leading to recent work which replicates
subsets of the traditional OS execution environment (virtual
memory, processes, etc.) on the FPGA.

In this paper we ask a different question: to what extent do
traditional OS abstractions make sense in the context of an
FPGA as part of a hybrid system, particularly when taken as
a complete package, as they would be in an OS? To answer
this, we built and evaluated Coyote, an open source, portable,
configurable “shell” for FPGAs which provides a full suite of
OS abstractions, working with the host OS. Coyote supports
secure spatial and temporal multiplexing of the FPGA be-
tween tenants, virtual memory, communication, and memory
management inside a uniform execution environment. The
overhead of Coyote is small and the performance benefit is
significant, but more importantly it allows us to reflect on
whether importing OS abstractions wholesale to FPGAs is
the best way forward.

1 Introduction

Field-Programmable Gate Arrays (FPGAs) are now standard
in datacenters and cloud providers [1, 3, 12], providing more
flexibility at lower power than ASICs or GPUs for many ap-
plications (e.g. [5, 19, 25, 29, 30, 41, 53]) despite (due to their
heritage in embedded systems and prototyping) remaining
difficult to program, deploy, and securely manage. As a result,
along with much research into making FPGAs easier to pro-
gram [7,8,36,45,51,54,58], considerable recent work applied
ideas from operating systems design and implementation to
resource allocation, sharing, isolation, and management of an
FPGA-centric computer.

So far, this work has been piecemeal, focusing on a par-
ticular aspect of functionality, e.g. Feniks [63] targets FPGA
access to peripherals, Optimus [32] provides access to a host’s
virtual memory via address translation, etc. These yield sub-
stantial incremental improvements over the state of the art.

At the same time, what makes good OS design so chal-
lenging is the close interaction in the kernel between all the
functionality. Virtual memory without support for multiple
applications (multi-tenancy) or strong isolation between them
is of limited use. Virtualizing hardware devices without pro-
viding virtual addressing and creating a common execution
enviroment that abstracts the hardware leaves most of the
problem unsolved. An FPGA scheduler that cannot exploit
the ability to dynamically reconfigure parts of the chip has a
limited shelf-life, and so on.

Therefore, we step back to ask the question: to what extent
can (or should) traditional OS concepts (processes, virtual
memory, etc.) be usefully translated to an FPGA? What hap-
pens when they are? To answer this question, we need to adopt
a comprehensive, holistic approach and think about complete
functionality, rather than sticking to particular aspects of an
OS or supporting only limited FPGA features.

To this end, we have built Coyote, combining a coherent set
of OS abstractions in a single unified runtime for FPGA-based
applications. Like a microkernel, Coyote provides the core set
of essential functions on which other services can be based: a
uniform execution environment and portability layer, virtual
memory, physical memory management, communication, spa-
tial and temporal scheduling, networking, and an analog of
software processes or tasks for user logic. It achieves this with
minimal overhead (less than 15% of a commodity FPGA).
Our contributions in this paper are therefore:

1. For a range of OS abstractions, a critical assessment of
how each might map to an FPGA, in the context of its
interaction with the others,

2. An implementation of the complete ensemble in Coyote,
a configurable FPGA “OS” for hybrid compute servers.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 991

3. A quantitative evaluation of Coyote using both mi-
crobenchmarks and 5 real applications.

4. A qualitative discussion of the implications of the work
for future FPGA and OS designs.

We start with the basic hardware that any FPGA OS must
handle. This determines the high-level structure of Coyote.

2 Foundations

Coyote targets hybrid systems, combining a conventional
CPU with an FPGA either over a peripheral bus like PCIe,
CXL [16], CCIX [13] or OpenCAPI [49], or instead a native
coherency protocol as with Intel HARP [39] or ETH Enzian [2,
21]. Coyote runs today on PCs with Xilinx VCU118 [56],
Alveo U250 [59] and Alveo U280 [60] cards. The port to
Enzian is under way. We avoid any design decisions that
might prevent the use of modern FPGA features like dynamic
partial reconfiguration of multiple regions, or useful “hard”
on-chip functions.

This naturally splits any design into a “hardware” compo-
nent running on the FPGA and a software component running
on the host CPU as part of the OS and support libraries.

Furthermore, dynamic reconfiguration of the FPGA in-
duces a further split of the hardware component into a “static
region”, configured at boot, and a “dynamic region”, contain-
ing subregions (vFPGAs), each of which may be changed
on the fly. This split exists (often in simplified form) in all
FPGA datacenter deployments. Within and between regions,
hardware components interact via standard interconnects like
AXI [31].

2.1 The static region
The FPGA static region must contain the functionality re-
quired to reconfigure the dynamic region and communicate
with the CPU’s OS. However, its contents should not be fixed
for all time. Space (chip area, logic blocks, wires, etc.) re-
mains a scarce resource on FPGAs, and unlike OS resources
such as CPU time and virtual memory, it is hard to make it
“elastic” through virtualization. Moreover, different models
of FPGAs show very different tradeoffs. In the medium term,
it is important to make some static region components (for
example, the TCP/IP stack) optional so they can be omitted if
the space is better used for user logic.

In Coyote, the static region always contains logic to par-
tially reconfigure the dynamic region, communicate with the
host machine (an xDMA copy engine [57]), and to divide the
dynamic region into a set of virtual FPGAs (“vFPGAs”), each
of which has an interface mapped into the physical address
space of the host CPU (described below).

The static region can also contain optional logic shared
between all applications running in vFPGAs, the most basic

being memory controllers (for RAM directly connected to the
FPGA) and networking (at present, TCP and RDMA).

2.2 The dynamic region

The dynamic region is the basic mechanism for time-division
multiplexing of the FPGA resources. Modern FPGAs allow
selective portions of this region to be reconfigured indepen-
dently at any time. Most deployed systems (e.g. F1 [3] and
Intel’s HARP [39]) dedicate this region to a single application,
and reprogram it only rarely (e.g. when an associated virtual
machine on the host is booted up).

Coyote, like other recent systems [14, 17, 62, 63], provides
flexible spatial and temporal multiplexing. The dynamic re-
gion is partitioned into independent vFPGAs. Their number
is wired into the static region, which allows multiple applica-
tions to run concurrently and be switched in and out.

A novel feature of Coyote is that each vFPGA is further di-
vided into user logic and a wrapper. The former is a bitstream
entirely synthesized by a Coyote user and validated by the
system. This allows great flexibility in programming models:
Coyote applications can be written in HLS, Verilog, VHDL,
OpenCL, or some combination of these or other languages.

The wrapper is part of Coyote, and both sandboxes user
logic and provides a standard interface to the rest of the system
(in FPGA terms, partition pins are inserted by the reconfig-
uration tool locking all the boundary interface signals in the
fabric). This incurs a cost in chip area usage, but the benefit
is that Coyote pushes the “portability layer” for FPGA appli-
cations up to the language level: an application written for
Coyote can, given sufficient resources, be synthesized to run
on any Coyote FPGA. In contrast, with native FPGA develop-
ment at present code is rarely portable between device models
(or even, in some cases, revisions of the same model).

It is tempting to draw an analogy between the structure
of Coyote and a microkernel model of an OS, consisting of
the kernel (the static region), services (optional static compo-
nents), system libraries (dynamic wrappers), and applications
code (user logic). However, this would be an error. For exam-
ple, the dynamic wrappers form part of a trusted computing
base (TCB), whereas system libraries in a microkernel do not.

2.3 The software component

In a hybrid system, the host OS must clearly be aware of
the FPGA environment, and also provide suitable and safe
abstractions to user application code running on the CPU for
interacting with user logic on the FPGA.

Beyond this, however, there is a fundamental tradeoff be-
tween how much management of FPGA resources is per-
formed on the FPGA itself (by a combination of static region
logic and dynamic functionality) and how much is imple-
mented by system software on the CPU. Offloading FPGA

992 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

XDMA
PCIe
Core

Local FPGA
DRAM

Channel 0

Local FPGA
DRAM

Channel 0

TCP/IP

C
ro

ssb
ar

C
ro

ssb
ar

PR
controller ICAP

Static
config

PR
decoupling

En
gin

e

TLB User logic

En
gin

e

IO
M

M
U

User logic

En
gin

e

IO
M

M
U

User logic

En
gin

e

IO
M

M
U

User logic

En
gin

e

IO
M

M
U

User logic

Ctrl and data lines

Host data

Card
data

Network
data

En
gin

e

TLB User logic

En
gin

e

TLB User logic

C
ro

ssb
ar

Memory stack

Network stack

Rd/Wr DMA
commands

Inter-
region
queues

Virtual FPGA
regionsHost->Mem.

MMU

RDMA

Figure 1: Coyote structure

management functionality to the CPU and OS frees up valu-
able space on the FPGA, and allows much more policy flexibil-
ity than could be reasonably implemented in logic. Hovewer
a functionality that is on a critical path can lead to degraded
performance and/or loss of predictability in response time
(often a key attribute of hardware solutions). In some ways
this mirrors the traditional OS tradeoff between kernel-mode
and user-space implementation, but the contrast is more stark.

Coyote maximises the FPGA area available to user logic,
moving much functionality not on the fast path into the host
CPU’s OS. The software part of Coyote consists of a kernel
driver (currently for Linux), a runtime manager process, and
user application code.

At startup, the driver reads the configuration of the static
region from the FPGA and sets up data structures for the
set of vFPGAs to be supported. Thereafter, it is responsible
for “control plane” communication with the FPGA (such as
reconfiguring a vFPGA) and creating memory mappings for
application code to interact directly with a vFPGA. The driver
also handles dynamic memory allocation for the FPGA, and
services TLB misses on the FPGA (see below).

Figure 1 shows the components of Coyote. The host CPU
is connected to the PCIe core at top left.

3 OS abstractions on an FPGA

In this section, for each considered OS abstraction we first
review its role in a conventional OS for a homogeneous mul-
ticore machine. We then discuss what is fundamentally dif-

ferent in an FPGA environment, and the impact this has on
design decisions when creating an analog of the abstraction
on the FPGA. Following this, we discuss our own implemen-
tation, and discuss our experience with building and using the
approach. A quantitative evaluation of the whole of Coyote is
given in Section 4.

3.1 Processes, tasks, and threads
The basic abstractions most OSes provide for multiplexing
and virtualizing processor resources are based on processes,
threads, and/or tasks. Definitions vary from OS to OS, but a
thread is generally an open-ended execution of a sequence of
instructions on a single virtual processor, a task is a unit of
computational work to be dispatched to a CPU core, and a
process is some combination of threads sharing an address
space, to which CPU resources are allocated.

The hardware mechanisms underlying these abstractions
are basically the ability of the processor to context switch,
and be preempted by an interrupt or trap.

Such abstractions can be readily adapted to architectures
like GPUs, which retain the notion of a hardware thread, albeit
with a very different degree of parallelism. GPU drivers for
modern OSes attempt to extend the process abstraction of
the host CPU to the GPU, although in a somewhat limited
form [9], and this is the foundation for programming models
like CUDA and OpenCL. The task abstraction has also been
successfully deployed on GPUs [44].

What’s different on an FPGA? Resource multiplexing
on FPGAs is fundamentally different, since there is no hard-
ware corresponding to a “processor”, “core”, or “hardware
thread” on which to base an abstraction aimed at multiplexing
processing resources. Instead, the basic mechanisms available
on the FPGA for multiplexing compute resources between
principals are partial reconfiguration of areas of the FPGA
logic at runtime, and spatial partitioning of application logic
across different areas of the chip.

While it is true that a popular programming technique for
FPGAs involves implementing a custom application-specific
processor (typically some VLIW-based architecture), this is
not intended to be multiplexed or scheduled. The analogue
of these custom cores in the software world is more that of
a library or bytecode interpreter that lives entirely within the
process abstraction.

The trivial approach here is to dedicate the entire FPGA
to a single application, and indeed in embedded systems this
is the norm. A more flexible approach allows more than one
application to use the FPGA at a time. The static region of the
FPGA contains enough logic to swap one application out for
another, but otherwise the chip is dedicated to an application
for long periods. This is the model adopted by Amazon F1
and, indeed, almost all other commerically deployed systems.

An alternative proposed in research systems (e.g. [32, 62,
63] and others) is to partition the FPGA resources statically

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 993

between applications. Spatial partitioning also raises further
questions. For example, when multiple applications share the
FPGA, should they be allowed to communicate, as processes
do with IPC, and if so, how?

Coyote approach: Coyote combines both approaches, pro-
viding a cooperative multitasking abstraction of a set of virtual
FPGAs, each of which is timeshared between applications. A
Coyote platform is configured at boot time with a fixed num-
ber (e.g. 2-8) of vFPGAs, which are a spatial partition of the
dynamic region of the chip. Each of these regions are, for the
purposes of executing user logic, equivalent (much like cores
in a symmetric multiprocessor), and are time-shared between
applications. Ideally, a single application bitstream could be
loaded into any available “slot” to be executed. Although
some research in this direction exists [20], this is difficult
with current levels of heterogeneity in FPGAs, which means
that (at present) each application has to be (automatically) syn-
thesized in advance for each vFPGA slot, akin to compiling
“fat binaries” for multiple architectures. We discuss specific
spatial and temporal scheduling questions below, along with
the execution environment provided to user logic.

Discussion: A scheme with this generality requires care to
implement. When timesharing vFPGAs, it is important that
the context switch overhead does not outweigh the perfor-
mance benefits of using a circuit in the first place. Dynamic
partial reconfiguration of an FPGA is a relatively slow pro-
cess and may remain so for the foreseeable future. In 4.3 we
measure this cost.

Moreover, the logic required to implement multiple vFP-
GAs, and allow them to communicate and share services in
the static region of the chip, must come with an acceptably-
small cost in chip resources. We evaluate this in Section 4.2.
So far our experience has been good: we can comfortably
run multiple useful applications on a single FPGA today, and
hardware trends are in our favour as the parts become larger.

3.2 Execution environment

The process abstraction also serves the purpose of providing
a standard execution environment for a program. A program
compiled to run in a process can, in principle, execute in
any process on any machine implementing the same process
environment. For example, in Unix, a process’s execution
environment consists of a virtual address space, one or more
threads, a set of file descriptors, the system call interface, etc.

What’s different on an FPGA? To date, there are almost
no attempts to define a process-like execution environment
for an FPGA. Most FPGA application development targets a
specific model of FPGA. Porting the same logic to a different
chip is often a non-trivial programming problem.

The heterogeneous nature of hybrid platforms complicates
this question further. In addition to the environment in which
user logic executes, a process abstraction must also address
how software processes and FPGA-based logic “processes”

User logic

AXI4
Full

High speed
data bus

AXI4
Lite

Control
bus

AXI4
Stream

AXI4
Stream

AXI4
Stream

AXI4
Stream

AXI4
Stream

clk rst

QueuesQueues

Host
data

Network
data

Local FPGA
memory data

DMA
descriptors

Figure 2: User logic interface

interact across the hardware/software interface.
In GPUs, programming models like OpenCL and CUDA

are the solution. Portability is raised to the compiler, and the
execution environment is defined by the language in which
the GPU code is written. This works well for GPUs because
they function as pure accelerators. The same model has been
implemented for FPGAs [51, 58].

However, hybrid FPGA-based systems are not pure com-
putational devices - for example, they perform I/O through
network and storage interfaces; indeed, this ability to interface
externally is a major selling point. Rolling this functionality
entirely into a compiler has not worked in conventional ma-
chines, and is unlikely to do so here. Instead, runtime inter-
faces are needed. Perhaps the closest GPU analogy here is
ptasks [44], which present the GPU as a task-based runtime
as opposed to a language-level OpenCL interpreter.

Coyote approach: Coyote defines a single user logic in-
terface (ULI) for every application, which is the hardware
analog of an ABI, and is illustrated in Figure 2. It uses the
streaming AXI4 protocol for transferring bulk data between
the host, memory stack, other services like the network stack,
and the user logic. The same interface is used for inter-region
communication, with a control plane over an AXI4-light bus.

This interface is provided by the dynamic wrapper in each
vFPGA, and effectively sandboxes the user logic while pro-
viding communication with system services and memory –
effectively combining functions of an address space and sys-
tem call ABI in a software process.

Access to the ULI interface is exposed to user logic at a
fairly low level, allowing read and write descriptors to be
generated directly from the user logic in the FPGA fabric,
and host software access (including by high-bandwidth SIMD
instructions) to be routed directly to the user logic.

User software on the CPU interacts with the FPGA by
creating a job object, essentially a closure consisting of user
logic and other parameters and data. This is passed to the
runtime manager for installation on the FPGA.

Once functional, the user logic exposes a register interface
in physical memory to the CPU, and the runtime manager
maps this into the calling process’ address space. Thereafter,
the interraction between application software and user logic

994 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

completely bypasses the kernel and runtime manager.
Discussion: The ULI in Coyote incurs minimal overhead,

but delivers considerable benefits, some of which might be
surprising to those familiar with software development. It en-
ables an approach analogous to microkernels, with common
services provided to multiple vFPGAs over the AXI inter-
connect. For example, we ported publicly-available TCP and
RoCE stacks [46, 48] to Coyote, and they became immedi-
ately usable to our existing applications without the extensive
hardware-specific modifications usually required in FPGA
development.

As with conventional OSes, the Coyote execution envi-
ronment also provides a way to deal with the evolution of
hardware. The FPGA design space is changing rapidly. To
take one example: in most FPGAs deployed in data centers
today, the memory controllers and network stack (aside from
PHY and MAC) are still instantiated as reconfigurable logic.
However, both are becoming an almost universal requirement
for cloud FPGA applications, which makes a strong case for
building “hard” IP into future FPGAs to provide this func-
tionality with less penalty in chip area - indeed, the latest
design of Microsoft’s Catapult platform offloads the network
stack to an ASIC (albeit off-chip). Intel’s Embedded Multi-
Die Interconnect Bridge (EMIB) is intended to extend FPGAs
with new hardware, for example machine learning accelera-
tors [37]. Recent Xilinx Versal cards also provide numerous
off-chip hardware functions.

These trends make it even more difficult to achieve porta-
bility without a uniform execution environment like Coyote’s
to abstract these features behind a clean interface.

3.3 Scheduling
Scheduling on conventional machines is a complex topic with
a history older than computers themselves. In this paper we
focus on factors affecting scheduling mechanisms rather than
specific policies.

What’s different on an FPGA? CPU scheduling can
be preemptive or non-preemtive. Preemptive scheduling on
CPUs requires a mechanism to interrupt a running process,
save its state, and context switch to another, without any co-
operation from the process or user program itself.

On an FPGA, such interrupt machanisms are not supported
by any of the mainstream toolchains. Some progress in this
direction has been made in academia [27], but with signifi-
cant performance penalties and implementation difficulties.
Furthermore, the “state” of executing user logic potentially in-
cludes any stateful logic block (block RAM, flip-flops, DSPs)
in the region of the FPGA used by the application, making
the state capture all the more complex. For this reason, mech-
anisms for preempting arbitrary FPGA applications so that
they can be reliably resumed later are not clear.

Instead, existing approaches to timeshare an FPGA avoid
preemption [50] and rely on two techniques. The first is a

Arbiter

vFPGA vFPGA vFPGA vFPGA

Priority
queues

Job
request
queues

Round-
robin

prior. = 1, oper_id = 1
prior. = 1, oper_id = 1
prior. = 1, oper_id = 2
prior. = 1, oper_id = 2
prior. = 2, oper_id = 2

min
load

Figure 3: Coyote scheduling

“task-based” approach where work units are submitted to the
FPGA and run to completion much like Ptasks [44]. Secondly,
as a last resort a badly-behaved piece of user logic can simply
be deconfigured by the OS, in a manner analogous to killing a
misbehaving process. The scheduling problem then becomes
one of dispatching tasks to the FPGA.

The key quantitative difference with FPGA scheduling
is that context switch time is much higher: reconfiguring a
dynamic region can take many milliseconds. Moreover, only
one region of the FPGA can be reconfigured at a time. If not
addressed, these limitations can lead to unacceptably high
scheduling overhead.

Coyote approach: Coyote adopts the task-based tech-
nique, with tasks being described by job objects. Tasks are not
scheduled by the FPGA itself, instead the runtime manager
on the host CPU schedules them spatially (across vFPGAs)
and temporally (by reconfiguring a vFPGA if required, and
serializing such reconfigurations).

The current version of Coyote adopts a modified priority-
based queue scheme for tasks (Figure 3). Application soft-
ware submits a task to a per-application queue in the runtime
monitor. These are serviced in a round-robin fashion, and
dispatched to a priority queue for one of the fixed number of
vFPGA instances. Each of these queues is sorted first by pri-
ority and, then, by the bitstream image that the task requires.

This heuristic provides a degree of fairness between ap-
plications (though it could certainly be improved with better
protection against starvation in a few pathological cases),
but more importantly groups together tasks that can run in
a sequence without intervening reconfigurations of their vF-
PGA. This approximates some of the benefits of Optimus [32],
which employs a more static assignment of logic to vFPGAs
but shares this between applications. Note that it also makes
the scheduler non-work-conserving.

Discussion: For the 5 applications we evaluate in Section 4,
the reduction in the number of required reconfigurations sub-
stantially improves efficiency, to the extent that, with current
hardware, it probably dominates other aspects of the schedul-
ing algorithm. However, we feel there is still important work

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 995

to be done in improving fairness, starvation-freedom, and
predictability of the scheduler.

Coyote deliberately avoids any question of preempting ap-
plications running in vFPGAs, except in extremis to “kill”
badly behaving user logic. This decision is worth discussing
in more detail, since other approaches [26,32] provide explicit
preemption interfaces. Applications can use these interfaces
to implement user logic to save and restore their state in re-
sponse to a preemption request from the scheduler.

The first reason for this decision is from an OS designer’s
perspective: the classical OS design principles adopted in Coy-
ote strongly argue against this approach to preemption. Tradi-
tionally, user applications are not trusted to behave nicely by
the OS, and so implementations take great care to ensure that
preeemption never requires cooperation from the application
– even in cases where it is explicitly visible to user threads, as
in Psyche [33]. So-called “cooperative multi-tasking systems”
(for example, early versions of the Apple Macintosh OS) do
require application cooperation for context switching, but are
generally not preemptive and, as history shows, are invariably
supplanted by preemptive scheduling that does not require
participation by the application.

The second reason is that the nature of “services” (e.g.
networking) on an FPGA is different from that on a CPU. FP-
GAs emphasize spatial multiplexing and extreme concurrency.
This means that services like the network stack (Section 3.6)
and physical memory management (Section 3.5) do not need
to be scheduled in Coyote: they are separate circuits and so
inherently run all the time. A user-supplied preemption im-
plementation may appear sufficient where these OS facilities
are absent, but their presence means that user-implemented
preemption has to also save and restore state (such as network
flows) in each of these services. This capture of system-wide
state cannot yet be done efficiently in current FPGAs.

3.4 Virtual memory

In a conventional OS, virtual memory provides a potentially
unlimited number of “virtual address spaces” to software pro-
cesses. By default, a virtual address space provides a sandbox
of private memory, but segments of memory can be selectively
shared between address spaces by the OS.

Virtual address spaces solve several crucial problems in
computer systems: code and data does not need to be relocated
at runtime, since it can be compiled and linked to run at a
fixed address. Demand paging to a disk or SSD allows the
amount of memory seemingly available to all applications to
exceed the total real memory in the system.

Fragmentation of physical memory is avoided at anything
coarser than page granularity. Physical locations for data can
be chosen carefully to provide cache-coloring transparently
to user code. Accesses to memory regions can be tracked
via a “protect-and-trap” technique, with applications ranging
from garbage collection [4], copy-on-write, and transaction

management [35] to dynamic binary translation [10].
Hardware support for the abstraction of virtual memory

is traditionally provided by the MMU, by way of three key
functions: address translation from a virtual to a physical
address space, protection of memory pages, and a mechanism
to trap to the OS on certain memory accesses (i.e. a page or
protection fault).

What’s different on an FPGA? Some uses of virtual
memory do not make sense on an FPGA, such as trapping on
particular instructions or memory addresses. However, others
(demand paging, relocation, etc.) are highly relevant.

Existing approaches to programming FPGAs generally ig-
nore virtual memory, or handle address translation solely in
the host OS kernel [11,14,17,26,27,39,62,63]. Pinned physi-
cal buffers are allocated and shared between FPGA user logic
and software, which (when the data is not simply copied en
masse between host memory and the FPGA) entails either
the use of offsets to implement pointer-rich data structures,
or cumbersome “pointer swizzling” when passing ownership
of regions between devices. In both cases, one cannot simply
pass a pointer from software to user logic without some me-
diation, typically by the OS kernel, or a runtime specific to a
programming model like OpenCL [55].

One approach to accessing host virtual memory from the
FPGA is via the host platform’s IOMMU. However, IOM-
MUs are not well-suited to a dynamic set of FPGA appli-
cations, even the subset that only use PCIe as an intercon-
nect. Optimus [32] has a good explanation of the limitations
of IOMMUs, and employs an ingenious “page table slicing”
technique to work around them. Other recent work also im-
plements some form of translation on the FPGA from user
logic to host-physical addresses [6, 15, 42, 52], .

These approaches, however, are limited to one special case:
user logic accessing data on the host CPU memory in a soft-
ware virtual address space. Modern FPGA platforms, however,
have additional extensive memory closely coupled to the chip
(for example, Enzian’s FPGA has 512 GiB of DDR4), and also
devices (such as network or storage controllers). To interact
correctly with other OS abstractions (such as device virtual-
ization, isolation, or even simply access to FPGA resources
from the CPU), a virtual memory abstraction for multi-tenant
FPGAs must thus be extended to these resources as well. It
must enable safe and securely access to memory both on the
FPGA itself, and on memory and devices directly attached to
the FPGA, from user logic and software.

An approach satisfying these requirements is present in
modern GPUs [38] where a unified memory abstraction of
GPU and host memory is implemented. This abstraction pro-
vides primarily increased programmability which removes the
need for explicit memory management and data movement
from the software side.

FPGAs also differ fundamentally from GPUs or other ac-
celerators in that they are reconfigurable. In a CPU or, indeed,
a conventional IOMMU or SMMU, parameters such as TLB

996 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

size, associativity, coverage, etc. are fixed when the chip is
laid out. They represent a careful, “one-size-fits-all” compro-
mise intended to run most workloads reasonably well.

In contrast, with an FPGA TLB parameters can be changed
on the fly to handle specific workloads more efficiently. More-
over, many accelerator workloads which deal with large data
volumes benefit greatly from larger page sizes – this motivates
Optimus [32] to use 2MiB pages exclusively, for example.
These factors, combined with the lower clock speed at which
FPGAs run (typically about 10% of CPU clock speed), make
a software loaded TLB more attractive as a design option.

Coyote approach: Rather than relying on a single shared
FPGA MMU, and/or relying on an IOMMU, Coyote includes
TLBs in the wrapper of each vFPGA. This not only allows
TLB dimensions to be decided based on the application, but
also provides sandboxing of user logic regardless of whether it
is accessing off-chip DRAM attached to the FPGA’s memory
controllers, or host CPU DRAM using the xDMA engines
in the static region. It also makes floorplanning and routing
easier on the chip by reducing fanout.

Moreover, the TLBs are positioned in each dynamic re-
gion so as to mediate all accesses to FPGA-attached devices
and RAM, and the entire host CPU’s physical address space,
something not possible with a conventional IOMMU.

The operation of TLBs in Coyote is best described in two
parts: first, the underlying mechanism, and second, the differ-
ent memory usage models it supports.

Mechanism: Coyote actually provides two TLBs per vF-
PGA, one for 4KiB pages and one for 2MiB large pages. The
TLBs are fairly straightforward caches (see Figure 4); asso-
ciativity and number of sets are determined at build time for
the application. A TLB miss causes an interrupt to the host
CPU, whereupon the driver identifies the faulting vFPGA and
either loads the TLB with a valid mapping or signals a page
fault, which would be handled in software on the host.

All accesses to both FPGA and host DRAM from user logic
use the same unified TLB interface. User logic can therefore
access any host memory, if the TLB allows. Accesses to host
and FPGA memory use different paths to proceed in parallel.

Meanwhile, on the host side, the CPU’s physical address
space contains a region for each vFPGA, each of which is
further subdivided into three parts:

1. The TLB contents and other privileged configuration
values. This subregion may only be mapped by the privi-
leged Coyote device driver.

2. Dynamic wrapper registers accessible to user software,
e.g. for setting up DMA copies.

3. Direct access to user logic. CPU-initiated accesses are
presented to user logic as AXI4 transactions (see Fig-
ure 2) to be interpreted as the user logic sees fit.

Usage models: The most common way of using this fa-
cility is to provide GPU-style “Unified Memory”, which is

=

V Flags Tag P. addr. P. addr.Tag

=

EncoderEncoder

Tag Key large Key small Offset

Small
Pages
(4KB)

Large
Pages
(2MB)

P. addr.

n-way
set-associative

Hit

Index

Virtual address

Physical address and flags

To rd/wr
engines

Figure 4: Coyote per-application TLBs

essentially a form of local distributed shared virtual memory:
pages are copied (faulted in) on demand between FPGA and
host memory via DMA with coherence managed by a combi-
nation of driver software and dedicated “page fault” units in
the secure wrappers. Coyote can thus handle multiple appli-
cation contexts maintaining different shared virtual address
spaces. It is the job of the software component of Coyote to
ensure that address mappings are consistent between the vF-
PGA TLBs and the virtual address space of the corresponding
software processes. Though there is no fundamental need for
them to be so, it allows direct sharing of pointer-rich data
structures between application software and user logic.

Alternatively, TLB entries can indicate that, when a cor-
responding virtual address is requested, the physical access
is directly routed to either host or FPGA memory without
any copying of pages. For efficient random access (such as
pointer-chasing) this may be much more faster to program
and execute than “unified memory”.

Finally, it is also possible to route CPU accesses to ad-
dresses on the FPGA back through the vFPGA wrapper’s
TLBs and into FPGA (or, indeed, host) memory. While quite
slow on PCIe-based systems, it might be an attractive option
on a fully-coherent non-PCIe system like Enzian.

Discussion: As we show in Section 4, the TLBs impose
very little space overhead in a vFPGA, and deliver in return
considerable simplicity in programming applications.

The partitioning of TLB functionality across vFPGAs
brings a degree of performance isolation to vFPGA appli-
cations: one vFPGA cannot pollute the TLB contents of an-
other region and thereby impact performance, an important
consideration for a multi-tenant environment.

Note also that the area occupied by TLBs can be traded
off against performance in an application-specific manner.
This would not be possible with conventional IOMMUs sit-
uated on the PCIe bus, and would be hard to achieve with a

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 997

single IOMMU shared between applications. Partly as a con-
sequence, we have yet to see serious performance overheads
due to the software-loaded TLBs.

3.5 Memory management
In addition to virtual memory, a traditional OS provides facili-
ties for managing physical memory. As hardware has become
more complex, this has become more important for perfor-
mance. E.g. an application might request regions of contigu-
ous RAM to optimize sequential access and/or TLB coverage
via superpages, or memory on specific NUMA nodes, explic-
itly (e.g. via libnuma on Linux) or implicitly (e.g. using
Linux’ “first-touch” allocation policy).

These abstractions more concern performance than correct-
ness. However, in the case of peripherals and heterogeneous
accelerators it may be a requirement for software to work. A
CUDA application may need to allocate GDDR memory on
a GPU which is accessible (over PCIe) to CPU code. Alter-
natively, a device might only be able to DMA to and from a
subset of the CPU-attached physical RAM.

In a software OS, however, there is a single mechanism
available to allocate memory with the right characteristics:
choosing an appropriate range of physical addresses. The
physical address functions as a proxy for all kinds of features
of the hardware interconnect, memory controllers, DMA ca-
pabilities, and (in the case of cache coloring) the processor’s
cache architecture and placement policies.

What’s different on an FPGA? Since FPGAs are much
closer to the hardware, the situation is very different. Code
running on FPGAs can access memory controllers directly.
Data paths are not limited in size to cache lines, machine
words, or MMU pages. SDAccel [58] exposes memory con-
trollers explicitly to the programmer, providing flexibility but
sacrificing simplicity and portability across FPGA devices.

The memory potentially visible to FPGA user logic is much
more diverse than in software (and there are no caches). Block
RAM (BRAM) is fast but scarce, DRAM is slower but there
is typically much more of it, many systems have extensive off-
chip DRAM available, and newer FPGAs incorporate High-
Bandwidth Memory (HBM) as well.

Moreover, as with servicing TLB misses, it may be useful to
offload the dynamic allocation of FPGA memory to software,
although hardware allocators have been developed [61].

Coyote approach: Allocation of physical memory both
within and between vFPGAs in Coyote is handled by software,
in the kernel driver, which also takes care of creating virtual
memory mappings both for the user logic and application
CPU code. A variety of physical memory types can be used
(off-chip DRAM, host DRAM, HBM, etc.).

Accessing memory is similarly different. Whereas software
deals with register loads and stores or cacheline fills and write-
backs, any memory access in FPGA user logic is inherently,
and explicitly, a copy operation from one location to another.

Read
FSM

Write
FSM

A
xi
_c
n
fg
_c
tr
l

Config
slave

TLBs

Crossbar

TLB
Mutex

Host
Control

(AXI4 Lite)

Host IRQ
(page fault)

Host DMA
Read

request

Local FPGA
DMA Read

request

Host DMA
Write

request

Local FPGA
DMA Write

request

Large and small
page table

control

Axi_L_tlb_ctrl
Axi_S_tlb_ctrl

Host
descriptor

User logic
descriptor

User logic control

Axi_user_ctrl

Figure 5: Read/Write engine

On current PCIe-based systems, user logic can access the
entire host CPU’s physical address space (albeit subject to
memory protection) by transparently using xDMA copy en-
gines. The complexity of routing memory accesses originating
from both user logic and host software, and destined for host
memory or FPGA resources, is handled by a read/write en-
gine in each vFPGA wrapper (Figure 5), which provides this
flexibility in access. Requests are submitted to the read/write
engine using base/length descriptors; accesses from host soft-
ware to FPGA memory are translated into these descriptors
by the interface logic whereas the user logic issues them di-
rectly. This results in low overhead operations in the ULI
entirely on virtual addresses. On fully coherent systems like
Enzian, the read/write engines would be replaced with the in-
terface Coyote provides to the CPU’s native cache-coherence
protocol.

In contrast to approaches like SDAccel (but more in line
with a software environment), Coyote hides the presence of
individual on-board DRAM controllers from user logic. On-
board DRAM is the most commonly used way to hold bulk
data in most FPGA acceleration algorithms, since it is higher
capacity than BRAM. Coyote aims simply to maximize the
bandwidth of bulk sequential access to this resource for user
logic running in a vFPGA.

Coyote stripes DRAM access across all available con-
trollers via careful allocation of pages. Coupled DRAM is al-
located in 2MiB superpages. Each page is then striped across
channels – e.g. if the FPGA has two physical DRAM channels,
the first 1MiB of each page will access one DRAM channel,
and the second half will use the second channel. This permits
bandwidth optimization when performing rapid accesses with
multiple channels present, and (as we show in Section 4.5)
results in considerable performance gains over the naive ap-
proach. Accesses from different vFPGAs are still interleaved
at each memory controller, as shown in Figure 6.

998 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Crossbar

DMA
Read

Channel

DMA
Write

Channel

Agg.
FSM

Page: 1 Chan: 1
Page: 2 Chan: 1
Page: 3 Chan: 1

Page: 1 Chan: 2
Page: 2 Chan: 2
Page: 3 Chan: 2

DMA
Read

Channel

DMA
Write

Channel

Agg.
FSM

Pg: 2 Ch: 1
Pg: 1 Ch: 2
Pg: 1 Ch: 1

Pg: 2 Ch: 2

XDMA
Host

access

DDR channel 1
controller

DDR channel 2
controller

Ch: 1 Ch: 2

Aggregated

Dynamic
region 1 Dynamic region 2

Pg: 3 Ch: 2
Pg: 3 Ch: 1

Ch: 1 Ch: 2

Aggregated

Descriptors
(from

engine)

Descriptors
(from

engine)

User logic 1 User logic 2

AXI4
stream

AXI4
stream

AXI4
stream

AXI4
stream

AXI4 AXI4 AXI4

AXI4AXI4 AXI4

Dynamic
region 2

allocated
pages

Dynamic
region 1

allocated
pages

Figure 6: Multi-channel striping

Discussion: User logic is rarely as “memory-allocation
intensive” as software, and so the kernel memory allocation
code is rarely on the critical path.

By abstracting away on-chip DRAM controllers, Coyote
makes a tradeoff in favour of portability and ease of program-
ming, which we argue (based on our experiments) is appropri-
ate. Moreover, Coyote applications can directly run on future
FPGA designs which entirely offload memory controllers to
dedicated hardware (as we discussed in Section 3.2).

In this context, striping provides more than just faster se-
quential access: it is vital for abstracting and sharing memory
controllers since it allows the DRAM controllers to enforce
fair sharing of bandwidth between vFPGAs.

3.6 IPC, I/O, and other services

A traditional OS provides a number of abstractions beyond
those we have covered here. The most fundamental, at the
heart even of microkernel architectures, is inter-process com-
munication (IPC). We have already described how Coyote pro-
vides communication between vFPGAs and CPU-based soft-
ware processes, but it also allows optional hardware queues
between vFPGAs by analogy with IPC channels, pipes, etc.,
in a manner reminiscent of Centaur [42]. This allows users
e.g. to chain dataflow operators running in different vFPGAs
together while preserving the isolation between them.

While inter-vFPGA queues (and shared locations in FPGA
virtual memory) can be used for inter-application commu-

nication, we find they are rarely used as such. As with con-
tainers, in our experience inter-vFPGA communication, when
it happens at all, is coarse-grained and benefits from being
independent of whether the vFPGAs share the same FPGA.

Instead, the main use for such queues is communication
with services provided by Coyote.

For example, Coyote provides an optional, but fully inte-
grated, high-performance multi-tenant network stack based
on our open-source TCP/IP and RDMA engine for FP-
GAs [46,47]. Like the memory stack described in Section 3.5,
the network stack abstracts away the details of the physical
network interfaces present and exposes a portable, standard
interface, and can be shared between all vFPGAs present.

Further services can be similarly implemented and config-
ured into the static region at startup, for example a storage
stack (perhaps driving directly attached Flash memory). The
microkernel analogy applies here: Coyote provides a basic
framework where such services can be added in the future
based on use-case requirements.

Unlike in a software-based OS, Coyote “services” like the
network stacks do not need to be scheduled, since they are
always present on the FPGA – the FPGA is being spatially
rather than temporally shared between services and user logic.

4 Evaluation

We focus on the question of whether the qualitative benefits
of using Coyote’s OS-style abstractions (scheduling, virtual
memory, etc.) incur an acceptable quantitative cost in perfor-
mance or efficiency. We look at overhead and space costs, as
well as fairness in sharing resources, and the benefits of some
of the optimizations in Section 3.

The hardware used for the results we report on here is a
Xilinx VCU118 board [56] with an Ultrascale+ VU9P FPGA,
attached to a host PC via PCIe x16. This interface provides
a maximum theoretical bidirectional bandwidth of 16GiB/s.
The board has 2 external DDR4 banks connected to the FPGA.
Each DDR channel has a soft core DRAM controller instan-
tiated in the FPGA fabric providing a total theoretical band-
width of 18GiB/s. The host PC is a quad-core Intel i5-4590 at
3.3 GHz with 8GiB of RAM running at 1600MHz.

Unless stated otherwise, the system frequency used on the
FPGA is 250 MHz. While each Coyote vFPGA has a separate
PLL-generated clock, all the experiments reported here used
the same frequency for the vFPGAs.

4.1 Macro-benchmark: decision trees
We first compare the performance of a complete, mature ap-
plication running on Coyote with that obtained on Amazon
F1 instances with the Xilinx SDAccel programming frame-
work [58] and the Intel HARP environment [39]. It is hard to
draw detailed conclusions from such a coarse-grained compar-
ison, but we aim to show that (1) Coyote is a viable platform

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 999

Harp-v2 Amazon-F1 Coyote-vcu118
0

20

40

60

80

100

0

33
24

41

66

48

81

Million tuples / second

1-engine 2-engines

Figure 7: Performance of decision trees.

for real applications, and (2) the portability and programming
features of Coyote come with negligible performance cost.
The application is an open-source implementation [40, 41]
of Gradient Boosting Decision Trees [34], focussing here
exclusively on inference over decision tree ensembles.

Decision trees are a popular form of supervised machine
learning for widely used tasks like classification and regres-
sion. They are constructed by recursively splitting the data
into multiple groups. Using a cost function splits are evalu-
ated and a greedy algorithm decides which split is the best
candidate. Recursive splitting terminates at a pre-determined
tree depth to prevent overfitting.

To do inference on the FPGA, the tree model is first loaded
into FPGA on-chip memory. Data is then fetched from the
host, inference performed, and the results copied back to host
memory. All three phases are overlapped, allowing computa-
tion latency to be hidden behind memory operations.

We compare inference throughput (scored tuples per sec-
ond) over Coyote with the same application on F1, and with
a port running on Intel’s hybrid CPU-FPGA HARP v2 plat-
form. The latter is a rather different platform and the FPGA
is clocked at 200MHz instead of 250MHz. Since F1 targets
OpenCL applications, the SDAccel port employs a strict GPU-
based compute model which incurs high data transfer over-
head. In all cases, we measure throughput with both one and
two instances of the application running on the FPGA with
the data size of 4k tuples. On all platforms, the inference en-
gine is compute-bound and requires only 4 GiB/s of memory
bandwidth, allowing two instances to operate at full capacity.

The results are shown in Figure 7. Coyote provides com-
parable or better performance to that of the two commercial
baselines. In the case of F1, this is despite Coyote providing
portability and supporting multiple vFPGAs (SDAccel only
allows a single dynamic region on the FPGA). True com-
parison with HARP is more tentative, given the lower clock
frequency and very different hardware.

Nevertheless, we can conclude that, at the very least, there
is no performance penalty in using Coyote in this case, and
benefiting from the qualitative value it brings.

vFPGAs Stacks LUTs BRAM Regs
1 7 4% 4% 2%
2 7 5% 5% 3%
4 7 6% 7% 4%
1 X 9% 10% 6%
2 X 11% 12% 7%
4 X 14% 14% 9%

Table 1: Resource overhead

6 12 33 66
0

20

40

60

80

0
6.0411.93

36.94

73.27

size of the region (% of the FPGA)

Time (ms)

Figure 8: Time to load the operator and provide the view.

4.2 Space overhead

Raw performance is not the only consideration when com-
paring FPGA implementations, however. The space overhead
(more precisely, the various resources on the chip used for the
framework) can be just as important.

In this regard, Coyote (or any such set of abstractions)
is strictly worse than a custom, native implementation of
an application that takes over the whole FPGA, just as a
bare-metal program is likely to use fewer resources than one
running on top of Linux or Windows.

The space overhead of the framework for varying numbers
of virtual FPGA regions and configurations with and without
memory and network stacks are shown in Table 1. We give
figures for the principal logic resources on the FPGA: lookup
tables (LUTs), block RAM (BRAM), and registers (Regs).

On the VU9P, Coyote incurs a base overhead of 2-4%,
increasing by < 1% for each additional vFPGA. Adding net-
work and memory stacks roughly doubles this, incurring at
most 14% for a full-featured Coyote install with 4 vFPGAs.

Larger future FPGAs and migration of often-used function-
ality into hard IP are likely to reduce this overhead still further.
We therefore consider this to be a modest penalty in return
for the benefits Coyote offers.

4.3 Micro-benchmark: context switching

We next measure the performance penalty in context switch-
ing a vFPGA from one application to another.

1000 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

10 50 100
0

5

10

15

20

0
1.48

7.43

14.87

1.15

4.84
8.1

0.15 0.18 0.21

Number of jobs

Time (s)

No-Sched. Rand. Sched.

Figure 9: Scheduling performance.

Partial reconfiguration is still relatively slow on FPGAs,
despite recent improvements. Figure 8 shows partial recon-
figuration latency of the Xilinx VU9P as a function of the
chip area to be reconfigured; Coyote with 4 vFPGAs would
correspond to roughly 20%, or 20ms, per vFPGA.

We note that achieving even this performance is non-trivial.
Coyote’s implementation uses a fast data stream to the ICAP
(the FPGA unit handling partial reconfiguration) which can
saturate its bandwidth of about 800MiB/s. In contrast, SDAc-
cel achieves a mere 19MiB/s over a slow AXI4-Lite link.

As mentioned in Section 3.3, this overhead can be reduced
substantially by sharing the same vFPGA logic between suc-
cessive tasks targeting the same partial bitstream (compute
operator). We illustrate this with a simple example by schedul-
ing queues of tasks from the four applications used in Sec-
tion 4.4, all with small transfers of 4KiB each and all with the
same priority. We configure Coyote here with 3 vFPGAs.

We dispatch jobs in three ways: no-sched is round-robin
in both queues and vFPGAs. This causes a reconfiguration
for each job and is the worst-case scenario. rand picks the
next job from a random queue each time, and so has a 1-in-3
chance of needed a reconfiguration, and sched uses Coyote’s
heuristic of grouping jobs which share the same user logic.

Figure 9 shows total turnaround time for 10, 50, and 100
jobs of each type. Unsurprisingly, minimizing the number
of partial reconfigurations has a dominating effect on total
system throughput. Clearly there is room here for much more
sophisticated job scheduling, beyond the scope of this paper.

4.4 Resource sharing

We now evaluate how the OS-like features of Coyote can
provide fair sharing of resources across multiple vFPGAs
simultaneously. In cloud deployments, stable and predictable
distribution of resources is a key requirement.

We run four different applications on Coyote: AES en-
cryption, sha256 hash computation, HyperLogLog multiset
cardinality estimation [18, 28] and k-means calculation [22].
In each experiment we run an application with one or more

simultaneous vFPGA instances at a time. All tests except the
k-means are using the host memory and direct streaming. Due
to the iterative nature, the k-means utilizes accesses to the
local FPGA memory.

We measure per-application round-trip throughput vs. trans-
fer size, including the transfer of the plain data to the FPGA
user logic, pipeline computation, and simultaneous transfer of
the computed results back to the memory. We use hardware
counters in the FPGA fabric and so incur no overhead.

When multiple applications are running concurrently, we
also calculate mean absolute deviation (MAD) of the in-
stances from the average performance results, to give a quan-
titative measure of (un)fairness in resource allocation.

Results are shown in Figure 10. sha256 (Figure 10.a) is
compute bound, and performance scales perfectly as long as
all the vFPGAs fit in the FPGA.

More interesting is AES (Figure 10.b) which is memory-
bound. Here multiple AES vFPGAs are competing for PCIe
bandwidth, which is saturated in all cases due to the AES
implementation being heavily pipelined. We observe that,
firstly, throughput of an AES instance is inversely proportional
to the number of peers in the system, showing that the scarce
resource of PCIe bandwidth is being shared between them,
and also the MAD is very low compared with total bandwidth,
suggesting that sharing is fair.

The HyperLogLog implementation uses 16 parallel
pipelines that are able to compute on a single cache-line at a
time. The module is thus able to sustain processing at line rate
for larger transfers (as are mostly present during cardinality
estimation). For smaller transfers processing latency is the
domineering factor. The results are shown in the Figure 10.c.

The final results (Figure 10.d) show the throughput of the
k-means clustering operator during the single computation
iteration. This is an iterative algorithm, where data is first
offloaded from the host to the local FPGA memory. The data is
then streamed to the user logic in each iteration and dispatched
to 16 parallel pipelines on the FPGA to compute centroids,
the results of which are then transferred back.

In summary, these results validate our goals of sharing
scarce bandwidth on the FPGA between multiple tenants.

4.5 Striping
We evaluate the impact of Coyote hiding individual DRAM
channels behind a single abstraction that stripes each 2MiB
page across all channels on the FPGA for portability.

The benchmark is a simple DRAM to DRAM copy, im-
plemented entirely on the FPGA and measuring throughput
for transfers ranging from 4KiB to 1MiB. We measure band-
width for three scenarios. First, 1-channel copies memory
using on a single channel, and is the baseline for performance.
Second, 2-channel reads from one channel and writes to an-
other. This is the best case and requires knowledge of all the
channels in the FPGA. It could be achieved in, for example,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1001

1k 4k 16k 64k 256k 1M 4M
150

170

190

210

230

250

Transfer size (bytes)

Throughput (MiB/s)

MAD(2app): 0.73MiB/s

MAD(4app): 1.12MiB/s

1app
2app
4app

(a) sha256 round throughput for different number of concurrent
applications in dynamic regions.

1k 4k 16k 64k 256k 1M 4M
0
2
4
6
8

10
12

0

Transfer size (bytes)

Throughput (GiB/s)

MAD(2app): 2.3MiB/s

MAD(4app): 4.9MiB/s

1app 2app 4app

(b) AES round throughput for different number of concurrent appli-
cations in dynamic regions.

64k 256k 1M 4M 16M 64M
0
2
4
6
8

10
12
14

0

Transfer size (bytes)

Throughput (GiB/s)

MAD(2app): 2.18MiB/s

1app 2app

(c) HyperLogLog throughput.

4k 16k 64k 256k 1M
0

4

8

12

16

0

Transfer size (bytes)

Throughput (GiB/s)

MAD(2app): 3.89MiB/s

1app 2app

(d) k-means single iteration throughput.

Figure 10: Performance benchmarks for example applications running in Coyote showing fair sharing of the bandwidth.

4k 16k 64k 256k 1M
2
4
6
8

10
12
14
16
18

Transfer size (bytes)

Throughput (GiB/s)

1-chan 2-chan striping

Figure 11: Striping performance.

SDAccel by explicit placement of data on the channels and
careful FPGA-specific code. Finally, striping shows Coy-
ote’s performance when oblivious to channels and placement,
and each data page is striped across channels.

Figure 11 shows the results. For small transfers, setup costs
dominate, but a single channel becomes saturated at 16KiB
and two channels at about 128KiB. Coyote incurs an overhead
of about 10%, which is competitive with many cases of hand-
optimized vs. compiler generated software code, and leads

us to conclude that abstracting the DRAM controllers is a
worthwhile trade-off for performance isolation and portability.

4.6 Demand paging

GPU-style “unified memory” implements a form of dis-
tributed shared virtual memory between the host and FPGA,
largely abstracting memory management and explicit data
movement from the users. When a vFPGAs tries to access
virtual locations on the local FPGA memory which are not
present in the physical memory, a page fault is generated and
the driver initiates a copy from host to FPGA memory, then
adjusts page tables on both sides, before signalling the vFPGA
that it can proceed.

Without this model, explicit copying of data would be re-
quired, as illustrated by this pseudocode:
void* host_d = malloc(size);
void* fpga_d = getFpgaMem(size);
offloadMemCpy(host_d, fpga_d, size);
executeOperator(fpga_d, size);
free(host_d);
freeFpgaMem(fpga_d);

The demand paging provided by “unified memory” allows
a simpler (for the programmer) model, resulting in code like
this:

1002 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

10 100 500
0

20

40

60

80

100

0
1.58

13.82

68.15

3.09
15.18

69.61

Number of processing iterations

Execution time (ms)

Overhead: 95%
Overhead: 9%

Overhead: 2%

Non-unified Unified

Figure 12: Unified memory overhead.

void* host_d = malloc(size);
executeOperator(host_d, size);
free(host_d);

In a fully cache-coherent system like Enzian [21] this code
would not require copies at all, but in PCIe-based systems
they are needed in both directions: after the computation has
completed, the pages holding the computation results must
also be copied back to the host physical memory.

The cost, therefore, of the unified memory abstraction stems
from page faults on both sides, remapping pages by modifying
page tables, and copying the data between host and FPGA. In
practice, this cost is amortized over the number of iterations
(for example) that the computation performs for each transfer.

Figure 12 shows this overhead in the context of the whole
computation. The workload represents kmeans iterating over
1MiB of data which has to be moved from the host to local
FPGA memory. We vary the number of iterations and measure
the impact of the page fault overhead and initial copy.

For a single iteration the overhead is high (95%), reflecting
the fact that an iteration executes extremely quickly on the
FPGA and is comparable in time to the copy, and suggesting
that this model of memory usage is not ideal for streaming
applications. However, as the iteration count reaches 500, the
overhead has reduced to 2% and is likely to be an acceptable
price to pay for programming convenience.

5 Related work

The FPGA community has generated a tremendous amount
of work in recent years on programming and managing FP-
GAs. We have compared Coyote with many examples already
in Section 3, and two recent surveys [24, 50] give an excel-
lent overview. In this section, therefore, we focus on a few
important recent systems.

The initial version of Microsoft’s Catapult [12,43] environ-
ment offers a reusable, static portion of programmable logic
accessible through a high level API. Configurability for the
(single) application is possible for modules like the network
(recently offloaded to a sophisticated ASIC) and memory. The

accelerator/smartNIC usage model means there is no support
for virtualization nor partial reconfiguration.

Intel’s hybrid CPU-FPGA HARP design [39] turns the
FPGA into one more processor. Intel implements its own
QuickPath interconnect [23] supporting full cache-coherent
memory access, but only to external memory on the CPU side.
Usage model and management is similar to Catapult. Partial
reconfiguration is possible but there is no option to include
local on-board memory or network modules on the FPGA.

Xilinx SDAccel [58], used by Amazon [3] and Alibaba [1]
in their cloud deployments, also divides the FPGA into a static
“shell” and dynamic user regions. One application can run at a
time, but the user logic can be exchanged at run time with the
help of partial reconfiguration. To date, there is no support for
I/O devices or network.

All these deployed systems support only a single applica-
tion at a time, and also do not try to provide a shared virtual
address space between host software and user logic. Systems
in the research literature are rather more ambitious in adopting
one or more ideas from traditional operating systems:

AmorphOS [26] aims to increase FPGA utilization by plac-
ing multiple applications on the FPGA. It provides protec-
tion on FPGA-attached memory, but no access to host mem-
ory. Protection is based on segments set up by the host OS.
AmorphOS can operate in “low-latency mode”, where ap-
plications occupy different parts of the dynamic region, and
“high-throughput” mode, where everything is synthesized into
a single bitstream. Time-division multiplexing in low-latency
mode is achieved by requiring applications to implement cor-
rect checkpoint and resume.

AmorphOS can be seen as pushing many traditional OS
problems into the synthesis pipeline, and compiling many
different bitstreams for configurations which, in Coyote, are
handled at runtime by the same image. Since it provides no
integration with the host memory system, and applications are
directly compiled to the FPGA, AmorphOS provides no vir-
tual memory facilities beyond segmented addressing of FPGA
memory. Scheduling is simplified by not partially reconfig-
uring the FPGA, which also obviates the need to provide a
uniform network interface.

AmorphOS optimizes how many applications can fit on one
FPGA, at the cost of compilation and deployment overheads,
by delegating OS functionality to synthesis tools. In contrast,
Coyote’s OS-centric approach standardizes the execution en-
vironment, allowing applications to be flexibly deployed, and
evaluates the cost of this generality.

Optimus [32] provides FPGA user logic with access to host
memory via a per-application virtual address space. It parti-
tions the dynamic region into application containers which
appear not to be partially reconfigurable, but which can run
the same user logic on behalf of multiple applications. As
in AmorphOS, user logic implements checkpoint and restore
to allow time-division multiplexing of resources. Optimus
allows the host address space to be shared, but does not give

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1003

a host process access to the address space of a vFPGA.
Optimus has many similarities with Coyote, but focuses

on a subset of OS functionality. By avoiding dynamically
reconfiguring vFPGAs, scheduling is simplified relative to
Coyote. Optimus provides address translation, but only for
vFPGA-to-host access, whereas Coyote provides a true uni-
fied virtual address space shared between host process and
user logic. This in turn allows Coyote to virtualize services
like the network stack, something Optimus does not do. Op-
timus therefore does not provide a standard execution envi-
ronment for bitstreams, since the functionality it does provide
would not benefit from such an environment.

ViTAL [62] focusses on clusters of FPGAs and, unlike
Coyote, addresses distributing applications across a cluster.
While it provides a network device, and flexible multiplexing,
it does not target hybrid CPU/FPGA systems, and provides
neither unified memory, nor (e.g.) a shared network stack
between vFPGAs.

ViTAL virtualizes access to the FPGA memory (like Amor-
phOS) and the network device (as a simple point-to-point
communication link). As with Coyote, it uses a fixed partition
of the dynamic region in reusable vFPGA which are allocated
to applications when they are deployed. A key feature of Vi-
TAL is being able to partition applications and compile them
into multiple vFPGAs; these can then be deployed on the
same FPGA or several connected by point-to-point links.

By not supporting host memory access nor virtualizing a
high-level service like TCP or RDMA, ViTAL is relieved of
the need for a virtual memory system. Moreover, by using the
compiler to turning a set of physical FPGAs into one large
logical FPGA by application partitioning, it obviates the need
for a standard execution environment.

To greater or lesser degrees, all these systems focus on
optimizing one or another metric and implement a subset of
the critical functionality of a classical OS.

In contrast, Coyote investigates the consequences of a com-
plete, general-purpose approach: putting a general OS feature
set together (multi-user TCP/IP stack, unified memory trans-
lation/protection across CPU and FPGA, inter-application
communication, standardized execution environment, etc.).
Uniquely, this combination is what allows Coyote to provide
shared high-level OS services like networking.

It also demonstrates that a full set of combined OS features
fundamentally changes how a system like Coyote is designed,
and this is where it differs most from prior work while still
reusing a number of ideas from such systems. We return to
this point in our conclusion.

6 Conclusion

Coyote approaches the FPGA shell as an operating system
design problem. While putting individual OS features on an
FPGA has value, taking a holistic view allows us to identify
how things fit together. The design of virtual memory on an

FPGA changes radically when one takes into account e.g.
FPGA-local devices, or the need to abstract local DRAM con-
trollers. Conversely, abstracting such controllers only works
when one has the right MMU design in place.

For example, allowing both software and hardware appli-
cations to initiate virtual memory accesses to both host and
FPGA memory resources enables a uniform execution envi-
ronment and portability across different memory systems, but
may rule out the application-implemented checkpoint-and-
restore approaches ViTAL and Optimus use for cooperative
"preemption", since there is now per-application state (TLBs,
etc.) not accessible to user logic.

As FPGAs become larger, the demand for the traditional
OS functions of secure multiplexing, sharing, and abstraction
will grow. At the same time, so will the opportunity to pro-
vide more OS-like functions on the FPGA. It is important that
these functions work together. Our evaluation shows that the
price of this complete OS functionality is more than accept-
able in throughput, space efficiency, scheduling overhead, and
memory bandwidth.

A further hardware trend, moreover, is the migration of
commonly-used functions out of synthesized logic and into
hard IP cores on the FPGA. In this rapidly-changing land-
scape, the right set of abstractions can prevent hard-to-develop
OS-style logic from becoming rapidly obsolete.

Experience with software also suggests that OS abstrac-
tions are “sticky”: once decided, they alter very slowly over
time even when the underlying hardware changes radically, to
the detriment of performance and security. This suggests that
it is vitally important to get things “right” as early as possible.

Coyote is a small step in this direction, and shows that
a coherent and reasonably complete set of OS abstractions,
suitably modified, can map well onto an FPGA, deliver both
immediate and longer-term benefits, and impose only a mod-
est overhead on today’s hardware.

Coyote can be downloaded at https://github.com/
fpgasystems/Coyote.

Acknowledgements

This work has been made possible through a generous equip-
ment donation from Xilinx and through access to the Xilinx
Adaptive Compute Cluster (XACC) Program. The research
of Dario Korolija is funded in part by a grant from HPE. We
would like to thank Mohsen Ewaida, Zhenhao He and Amit
Kulkarni for some of the use cases and designs, David Sidler
for feedback and help with the network stack, the anonymous
reviewers for their helpful comments and questions, and our
shepherd Baris Kasikci for feedback and guidance.

References

[1] Alibaba Cloud Services. Compute optimized instance

1004 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/fpgasystems/Coyote
https://github.com/fpgasystems/Coyote

families with FPGAs. https://www.alibabacloud.
com/help/doc-detail/108504.htm, May 2020.

[2] Gustavo Alonso, Timothy Roscoe, David Cock, Mohsen
Owaida, Kaan Kara, Dario Korolija, David Sidler, and
Zeke Wang. Tackling Hardware/Software co-design
from a database perspective. In Proceedings of the 6th
biennial Conference on Innovative Data Systems Re-
search (CIDR), Amsterdam, Netherlands, January 2020.

[3] Amazon Web Services. Amazon EC2 F1 Instances:
Enable faster FPGA accelerator development and de-
ployment in the cloud. https://aws.amazon.com/
ec2/instance-types/f1/, May 2020.

[4] Andrew W. Appel and Kai Li. Virtual Memory Primi-
tives for User Programs. In Proceedings of the Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS IV, page 96–107, New York, NY, USA, 1991. As-
sociation for Computing Machinery.

[5] S. Asano, T. Maruyama, and Y. Yamaguchi. Perfor-
mance comparison of FPGA, GPU and CPU in image
processing. In 2009 International Conference on Field
Programmable Logic and Applications, pages 126–131,
Aug 2009.

[6] Mikhail Asiatici, Nithin George, Kizheppatt Vipin,
Suhaib A Fahmy, and Paolo Ienne. Virtualized execu-
tion runtime for FPGA accelerators in the cloud. IEEE
Access, 5:1900–1910, 2017.

[7] David Bacon, Rodric Rabbah, and Sunil Shukla. FPGA
Programming for the Masses. ACM Queue, 11:40:40–
40:52, 2013.

[8] Donald G. Bailey. The Advantages and Limitations of
High Level Synthesis for FPGA Based Image Process-
ing. In Proceedings of the 9th International Conference
on Distributed Smart Cameras, pages 134–139. ACM,
2015.

[9] Andrew Baumann, Jonathan Appavoo, Orran Krieger,
and Timothy Roscoe. A fork() in the road. In Proceed-
ings of the 17th Workshop on Hot Topics in Operating
Systems (HotOS-XVII), Bertinoro, Italy, May 2019.

[10] Edouard Bugnion, Scott Devine, Mendel Rosenblum,
Jeremy Sugerman, and Edward Y. Wang. Bringing Vir-
tualization to the X86 Architecture with the Original
VMware Workstation. ACM Trans. Comput. Syst., 30(4),
November 2012.

[11] Stuart Byma, J Gregory Steffan, Hadi Bannazadeh, Al-
berto Leon Garcia, and Paul Chow. FPGAs in the Cloud:

Booting Virtualized Hardware Accelerators with Open-
Stack. In 2014 IEEE 22nd Annual International Sympo-
sium on Field-Programmable Custom Computing Ma-
chines, pages 109–116. IEEE, 2014.

[12] Adrian Caulfield, Eric Chung, Andrew Putnam, Hari
Angepat, Jeremy Fowers, Michael Haselman, Stephen
Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim,
Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael
Papamichael, Lisa Woods, Sitaram Lanka, Derek Chiou,
and Doug Burger. A Cloud-Scale Acceleration Archi-
tecture. In Proceedings of the 49th Annual IEEE/ACM
International Symposium on Microarchitecture, October
2016.

[13] CCIX Consortium and others. Cache Coherent In-
terconnect for Accelerators (CCIX). http://www.
ccixconsortium.com, January 2019.

[14] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus
Franke, Xiaotao Chang, and Kun Wang. Enabling FP-
GAs in the cloud. In Proceedings of the 11th ACM Con-
ference on Computing Frontiers, page 3. ACM, 2014.

[15] Eric S. Chung, James C. Hoe, and Ken Mai. CoRAM:
An In-fabric Memory Architecture for FPGA-based
Computing. In Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, FPGA ’11, pages 97–106. ACM, 2011.

[16] CXL Consortium. Compute Express Link. https:
//www.computeexpresslink.org/, May 2020.

[17] Suhaib Fahmi, Kizheppatt Vipin, and Shanker Shreejith.
Virtualized FPGA Accelerators for Efficient Cloud Com-
puting. In 2015 IEEE 7th International Conference on
Cloud Computing Technology and Science (CloudCom),
pages 430–435. IEEE, 2015.

[18] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and
Frédéric Meunier. HyperLogLog: the analysis of a near-
optimal cardinality estimation algorithm. In Philippe
Jacquet, editor, AofA: Analysis of Algorithms, volume
DMTCS Proceedings vol. AH, 2007 Conference on
Analysis of Algorithms (AofA 07) of DMTCS Proceed-
ings, pages 137–156, Juan les Pins, France, June 2007.
Discrete Mathematics and Theoretical Computer Sci-
ence.

[19] D. Fortún, C. G. de la Cueva, J. Grajal, M. López-Vallejo,
and C. L. Barrio. Performance-oriented Implementation
of Hilbert Filters on FPGAs. In 2018 Conference on
Design of Circuits and Integrated Systems (DCIS), pages
1–6, Nov 2018.

[20] B. Gottschall, T. Preußer, and A. Kumar. Reloc –
An Open-Source Vivado Workflow for Generating Re-
locatable End-User Configuration Tiles. In 2018

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1005

https://www.alibabacloud.com/help/doc-detail/108504.htm
https://www.alibabacloud.com/help/doc-detail/108504.htm
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
http://www.ccixconsortium.com
http://www.ccixconsortium.com
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/

IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM),
pages 211–211, April 2018.

[21] ETH Zurich Systems Group. Enzian, a research com-
puter. http://enzian.systems, May 2020.

[22] Zhenhao He. Bit-Serial kmeans. https://github.
com/fpgasystems/bit_serial_kmeans, October
2020.

[23] Intel Corporation. An Introduction
to the Intel QuickPath Interconnect.
https://www.intel.com/content/www/
us/en/io/quickpath-technology/
quick-path-interconnect-introduction-paper.
html, January 2009.

[24] C. Kachris and D. Soudris. A survey on reconfigurable
accelerators for cloud computing. In 2016 26th Inter-
national Conference on Field Programmable Logic and
Applications (FPL), pages 1–10, 2016.

[25] K. Kara, D. Alistarh, G. Alonso, O. Mutlu, and
C. Zhang. FPGA-Accelerated Dense Linear Machine
Learning: A Precision-Convergence Trade-Off. In 2017
IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM),
pages 160–167, April 2017.

[26] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash,
Michael Wei, Eric Schkufza, and Christopher J. Ross-
bach. Sharing, Protection, and Compatibility for Re-
configurable Fabric with AmorphOS. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 107–127, 2018.

[27] Oliver Knodel, Paul R Genssler, and Rainer G Spallek.
Migration of long-running Tasks between Reconfig-
urable Resources using Virtualization. ACM SIGARCH
Computer Architecture News, 44(4):56–61, 2017.

[28] Amit Kulkarni, Monica Chiosa, Thomas Preußer, Kaan
Kara, David Sidler, and Gustavo Alonso. FPGA-based
HyperLogLog Accelerator. https://github.com/
fpgasystems/fpga-hyperloglog, October 2020.

[29] I. Kuon and J. Rose. Measuring the Gap Between FP-
GAs and ASICs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 26(2):203–
215, Feb 2007.

[30] X. Li, L. Ding, L. Wang, and F. Cao. FPGA accelerates
deep residual learning for image recognition. In 2017
IEEE 2nd Information Technology, Networking, Elec-
tronic and Automation Control Conference (ITNEC),
pages 837–840, Dec 2017.

[31] ARM Ltd. AMBA 4 AXI4-Stream Protocol. https:
//developer.arm.com/docs/ihi0051/latest,
2010.

[32] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng,
Yanqiang Liu, Abel Mulugeta Eneyew, Zhengwei Qi,
and Baris Kasikci. A Hypervisor for Shared-Memory
FPGA Platforms. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’20, page 827–844, New York, NY, USA, 2020.
Association for Computing Machinery.

[33] Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc,
and Evangelos P. Markatos. First-class user-level
threads. SIGOPS Oper. Syst. Rev., 25(5):110–121,
September 1991.

[34] Alexey Natekin and Alois Knoll. Gradient Boosting Ma-
chines, A Tutorial. Frontiers in neurorobotics, page 21,
2013.

[35] Thomas Neumann, Tobias Mühlbauer, and Alfons Kem-
per. Fast Serializable Multi-Version Concurrency Con-
trol for Main-Memory Database Systems. In Proceed-
ings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’15, page
677–689, New York, NY, USA, 2015. Association for
Computing Machinery.

[36] R. Nikhil. Bluespec System Verilog: efficient, correct
RTL from high level specifications. In Proceedings. Sec-
ond ACM and IEEE International Conference on For-
mal Methods and Models for Co-Design, 2004. MEM-
OCODE ’04., pages 69–70, June 2004.

[37] Eriko Nurvitadhi, Jeffrey J. Cook, Asit K. Mishra, Deb-
bie Marr, Kevin Nealis, Philip Colangelo, Andrew C.
Ling, Davor Capalija, Utku Aydonat, Aravind Dasu, and
Sergey Y. Shumarayev. In-Package Domain-Specific
ASICs for Intel® Stratix® 10 FPGAs: A Case Study of
Accelerating Deep Learning Using TensorTile ASIC. In
28th International Conference on Field Programmable
Logic and Applications, FPL 2018, Dublin, Ireland, Au-
gust 27-31, 2018, pages 106–110, 2018.

[38] NVIDIA Corporation. Unified Memory in CUDA
6, version: 2.0, document revision: 29 edition,
Nov 2013. https://devblogs.nvidia.com/
unified-memory-in-cuda-6/.

[39] Neal Oliver, Rahul R Sharma, Stephen Chang, Bhushan
Chitlur, Elkin Garcia, Joseph Grecco, Aaron Grier, Nel-
son Ijih, Yaping Liu, Pratik Marolia, et al. A recon-
figurable computing system based on a cache-coherent
fabric. In Reconfigurable Computing and FPGAs (Re-
ConFig), 2011 International Conference on, pages 80–
85. IEEE, 2011.

1006 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://enzian.systems
https://github.com/fpgasystems/bit_serial_kmeans
https://github.com/fpgasystems/bit_serial_kmeans
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
https://github.com/fpgasystems/fpga-hyperloglog
https://github.com/fpgasystems/fpga-hyperloglog
https://developer.arm.com/docs/ihi0051/latest
https://developer.arm.com/docs/ihi0051/latest
https://devblogs.nvidia.com/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/unified-memory-in-cuda-6/

[40] Muhsen Owaida and Gustavo Alonso. Distributed Infer-
ence over Decision Tree Ensembles. https://github.
com/fpgasystems/Distributed-DecisionTrees,
October 2020.

[41] Muhsen Owaida, Amit Kulkarni, and Gustavo Alonso.
Distributed Inference over Decision Tree Ensembles
on Clusters of FPGAs. ACM Trans. Reconfigurable
Technol. Syst., 12(4), September 2019.

[42] Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo
Alonso. Centaur: A framework for hybrid CPU-FPGA
databases. In 2017 IEEE 25th Annual International
Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 211–218. IEEE, 2017.

[43] Andrew Putnam, Adrian M Caulfield, Eric S Chung,
Derek Chiou, Kypros Constantinides, John Demme,
Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, et al. A reconfigurable fabric for accel-
erating large-scale datacenter services. ACM SIGARCH
Computer Architecture News, 42(3):13–24, 2014.

[44] Christopher J. Rossbach, Jon Currey, Mark Silberstein,
Baishakhi Ray, and Emmett Witchel. PTask: Operat-
ing System Abstractions to Manage GPUs as Compute
Devices. In Proceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles, SOSP ’11,
page 233–248, New York, NY, USA, 2011. Association
for Computing Machinery.

[45] Oren Segal, Philip Colangelo, Nasibeh Nasiri, Zhuo
Qian, and Martin Margala. Sparkcl: A unified pro-
gramming framework for accelerators on heterogeneous
clusters. https://arxiv.org/abs/1505.01120v1,
2015.

[46] D. Sidler, Z. István, and G. Alonso. Low-latency tcp/ip
stack for data center applications. In 2016 26th Inter-
national Conference on Field Programmable Logic and
Applications (FPL), pages 1–4, 2016.

[47] David Sidler, Monica Chiosa, Zhenhao He, Mario
Ruiz, Kimon Karras, and Lisa Liu. Scalable Net-
work Stack supporting TCP/IP, RoCEv2, UDP/IP at
10-100Gbit/s. https://github.com/fpgasystems/
fpga-network-stack.git, October 2020.

[48] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulka-
rni, and Gustavo Alonso. Strom: smart remote memory.
In EuroSys’20, pages 29:1–29:16, 2020.

[49] J. Stuecheli, B. Blaner, C.R. Johns, and M.S. Siegel.
CAPI: A coherent accelerator processor interface. IBM
J. Research and Development, 59(1), 2015.

[50] Anuj Vaishnav, Khoa Dang Pham, and Dirk Koch. A
survey on FPGA virtualization. In 2018 28th Interna-
tional Conference on Field Programmable Logic and
Applications (FPL), pages 131–1317. IEEE, 2018.

[51] Malte Vesper, Dirk Kocha, and Khoa Phama. PCIeHLS:
an OpenCL HLS framework. In FSP 2017; Fourth
International Workshop on FPGAs for Software Pro-
grammers, pages 10–15. IEEE, 2017.

[52] Pirmin Vogel, Andrea Marongiu, and Luca Benini. Ex-
ploring Shared Virtual Memory for FPGA Accelerators
with a Configurable IOMMU. In IEEE Transactions
on Computers (Volume: 68 , Issue: 4 , April 1 2019),
pages 510–525. IEEE, 2018.

[53] Teng Wang, Chao Wang, Xuehai Zhou, and Huaping
Chen. A Survey of FPGA Based Deep Learning
Accelerators: Challenges and Opportunities. CoRR,
abs/1901.04988, 2019.

[54] Skyler Windh, Xiaoyin Ma, Robert Halstead, Prerna
Budhkar, Zabdiel Luna, Omar Hussaini, and Walid Na-
jjar. High-Level Language Tools for Reconfigurable
Computing. In Proceedings of the IEEE (Volume: 103 ,
Issue: 3 , March 2015), pages 390 – 408. IEEE, 2015.

[55] F. Winterstein and G. Constantinides. Pass a pointer:
Exploring shared virtual memory abstractions in opencl
tools for fpgas. In 2017 International Conference on
Field Programmable Technology (ICFPT), pages 104–
111, 2017.

[56] Xilinx. VCU118 Evaluation Board User
Guide. https://www.xilinx.com/support/
documentation/boards_and_kits/vcu118/
ug1224-vcu118-eval-bd.pdf, October 2018.

[57] Xilinx. DMA/Bridge Subsystem for PCI Express
v4.1 Product Guide. https://www.xilinx.com/
support/documentation/ip_documentation/
xdma/v4_1/pg195-pcie-dma.pdf, November 2019.

[58] Xilinx. SDAccel Environment User Guide, v2019.1
edition, May 2019. https://www.xilinx.
com/support/documentation/sw_manuals/
xilinx2019_1/ug1023-sdaccel-user-guide.
pdf.

[59] Xilinx. Alveo U200 and U250 Data Center Accelerator
Cards Data Sheet, v.1.3.1 edition, May 2020. https://
www.xilinx.com/products/boards-and-kits/
alveo/u250.html#documentation.

[60] Xilinx. Alveo U280 Data Center Accelerator Card
Data Sheet, v.1.3 edition, May 2020. https://
www.xilinx.com/products/boards-and-kits/
alveo/u280.html#documentation.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1007

https://github.com/fpgasystems/Distributed-DecisionTrees
https://github.com/fpgasystems/Distributed-DecisionTrees
https://arxiv.org/abs/1505.01120v1
https://github.com/fpgasystems/fpga-network-stack.git
https://github.com/fpgasystems/fpga-network-stack.git
https://www.xilinx.com/support/documentation/boards_and_kits/vcu118/ug1224-vcu118-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vcu118/ug1224-vcu118-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vcu118/ug1224-vcu118-eval-bd.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xdma/v4_1/pg195-pcie-dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xdma/v4_1/pg195-pcie-dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xdma/v4_1/pg195-pcie-dma.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html#documentation
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html#documentation
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html#documentation
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html#documentation
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html#documentation
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html#documentation

[61] Zeping Xue and D. B. Thomas. SysAlloc: A hardware
manager for dynamic memory allocation in heteroge-
neous systems. In 2015 25th International Conference
on Field Programmable Logic and Applications (FPL),
pages 1–7, September 2015.

[62] Yue Zha and Jing Li. Virtualizing FPGAs in the Cloud.
In Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’20, page
845–858, New York, NY, USA, 2020. Association for
Computing Machinery.

[63] Jiansong Zhang, Yongqiang Xiong, Ningyi Xu, Ran Shu,
Bojie Li, Peng Cheng, Guo Chen, and Thomas Mosci-
broda. The Feniks FPGA Operating System for Cloud
Computing. In Proceedings of the 8th Asia-Pacific Work-
shop on Systems, page 22. ACM, 2017.

1008 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A Artifact Appendix

A.1 Abstract

Coyote brings operating system abstractions to reconfigurable
heterogeneous architectures. It provides a range of abstrac-
tions which ease the interaction between the host, the FPGA,
the memory and the network. The following sections will
describe the process of obtaining the framework resources
and building them. The application deployment procedure is
shown as well.

A.2 Artifact check-list

• Compilation: HLS, CMake, C++, Boost.

• Run-time environment: Vivado, Linux.

• Hardware: Xilinx.

• Metrics: Throughput, latency, resources, reconfiguration.

• Experiments: HyperLogLog, kmeans, AES, sha256, decision
trees, microbenchmarks.

• Required disk space: 4MiB.

• Expected experiment run time: 2 hours.

• Public link: https://github.com/fpgasystems/
Coyote.

A.3 Description

A.3.1 How to access

The open-source version of the Coyote framework can be
found on Github at the following address:
https://github.com/fpgasystems/Coyote.

A.3.2 Hardware dependencies

The framework targets a variety of Xilinx data center and de-
velopment boards. At this point full support for the following
boards is provided: Alveo U250, Alveo U280, VCU118. The
boards have to be attached to the host system over the PCIe.
If available, the framework takes advantage of the AVX2 (Ad-
vanced Vector Extenstions) instruction set. Legacy support is
also provided.

The hardware build process relies on the Vivado toolchain
and its high-level synthesis extension. Versions 2019.2 and
2020.1 have been officially tested. The toolchain is used for
the compilation of the full and partial bitstreams. It also han-
dles the deployment of the full bitstreams. The automation of
the hardware build process is done with CMake. Minimum
required version is 3.0.

A.3.3 Software dependencies

The software build process is split between the low level
Linux kernel driver and the high level user application layers.

The driver code was tested on the machine with the Linux
kernel version 5.4. This code is built with Makefile.

The user application layer is fully written in C++11. The
Boost libraries (https://www.boost.org/) are used for
the parsing of the command line arguments. As with hardware,
CMake with a minimum version of 3.0 is required for the
software build automation.

A.4 Installation
Pull the newest version of the repository:
$ g i t c l o n e h t t p s : / / g i t h u b . com / f p g a s y s t e m s / Coyote
$ cd Coyote

The network stack submodule and the correct branch can
then be initialized:
$ g i t submodule u p d a t e −− i n i t −− r e c u r s i v e

At this point all the necessary resources are available lo-
cally. Further build is split into separate hardware and soft-
ware processes.

A.4.1 Hardware build

This section explains the process of creating the custom hard-
ware design, the integration of the arbitrary user logic and
finally the formation of the valid FPGA bitstreams.

First create the build directory inside the hw directory:
$ cd hw
$ mkdir b u i l d
$ cd b u i l d

Enter a valid chosen system configuration:
$ cmake . . −DFDEV_NAME=u250 <params . . . >

Large level of configuration flexibility for the framework
is available. This allows the framework to adapt to a variety
of processing scenarios. The following parameters can be
chosen (bolded parameters are passed by default):

• FDEV_NAME: This is the name of the target device.
Supported parameters are <u280, u250, vcu118>.

• N_REGIONS: This is the number of concurrent vFP-
GAs (independent regions). The maximum of 16 regions
per FPGA is supported at the moment <1:16>.

• EN_STRM: Enables the direct host-FPGA streaming
over PCIe lanes <0, 1>.

• EN_DRAM: Enables the local FPGA memory stack
<0, 1>. It can work in conjunction with the streaming.

• N_DRAM_CHAN: The number of the chosen DRAM
channels. The maximum available number depends on
the target board. <1:4>.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1009

https://github.com/fpgasystems/Coyote
https://github.com/fpgasystems/Coyote
https://github.com/fpgasystems/Coyote
https://www.boost.org/

• EN_PR: Enables the partial reconfiguration flow <0,
1>. This partitions the FPGA fabric into multiple dy-
namic regions. The number depends on the amount of
vFPGAs present. A separate partial bitstream will be gen-
erated for each dynamic region. Manual floorplanning
of dynamic regions is advised.

• EN_TCP: Enables the 100G TCP/IP stack <0, 1>.
This integrates a TCP/IP network stack and exposes its
communication interface to every vFPGA.

• EN_RDMA: Enables the 100G RDMA stack <0, 1>.
This integrates a full RDMA network stack with reliable
communication protocol (RC) built on top of RoCE v2.
Interface is exposed to every vFPGA.

The build directory with the chosen configuration is initi-
ated once the previous command completes. Now referenced
high-level synthesis cores can be built:
$ make i n s t a l l i p

The hardware project can then be created:
$ make s h e l l

Once this command completes, the project with one static
and initial vFPGA regions is created (config 0). If partial
reconfiguration flow is enabled, additional sets of partial bit-
streams (new logic for each vFPGA) can be created:
$ make dynamic

This command can be executed multiple times to create mul-
tiple sets of partial bitstreams (config 1, 2, 3, ...).

At this point the user logic can be inserted into vFPGAs.
Wrappers can be found under build project directory in the
hdl/config_X. Once the user design is ready to be compiled,
run the following command:
$ make compi l e

When the compilation finishes, the initial bitstream with
the static region can be loaded to the FPGA via JTAG. This
can be done in Vivado’s programming utility. At any point
during the compilation, the status can be checked by opening
the project in Vivado (start_gui command).

All compiled bitstreams, including partial ones, can be
found in the build directory under bitstreams.

A.4.2 Driver

The driver can be compiled on the host machine:
$ cd d r i v e r
$ make

Once the bitstream is loaded on to the target FPGA, the
rescan of the PCIe can be executed with the utility script:
$. / u t i l / h o t _ r e s e t . sh

If during this card detection fails, warm reboot of the host
machine has to be completed. The driver can then be inserted
into the kernel:
$ insmod f p g a _ d r v . ko

The software applications can now be executed.

A.4.3 Software build

This section explains the process of building the user appli-
cations that utilize the provided high-level API. Additionally,
the scheduling example provides the runtime manager which
abstracts the application deployment.

First create the build directory inside the directory of the
chosen software project:

$ cd sw / < p r o j e c t >

$ mkdir b u i l d
$ cd b u i l d

Initiate the build configuration and compile the executable:

$ cmake . .
$ make main

System permissions need to be assigned to the executable.

A.4.4 Simulation

The user logic hardware can be simulated in Vivado:

$ cd hw / sim / s c r i p t s / sim
$ v iv ad o −mode t c l − s o u r c e t b . t c l

At this point any user logic can be inserted and arbitrary
stimulus applied. The signal behaviour can then be observed.

A.5 Evaluation and expected result

The user logic for hardware applications (HyperLogLog,
kmeans, AES, decision trees, sha256) and all microbench-
marks can be found under hw/hdl/operators. Examples of
specific network operators are supplied as well. Default con-
figurations of every operator coincide with ones used to obtain
the results in the paper.

The code in sw/base is used for the tests where no explicit
operator control is needed (AES, HyperLogLog, sha256). The
code in sw/scheduling is used for the measurements of the re-
configuration time. Separate code for the operators requiring
more control is provided (kmeans and decision trees).

A.6 Experiment customization

A wide variety of test cases and customization is available
through different system configurations. The users can cre-
ate different versions of the system through combinations of
vFPGAs, network and memory stacks.

A.7 AE Methodology

Submission, reviewing and badging methodology:

• https://www.usenix.org/conference/osdi20/
call-for-artifacts

1010 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.usenix.org/conference/osdi20/call-for-artifacts
https://www.usenix.org/conference/osdi20/call-for-artifacts

Assise: Performance and Availability via Client-local NVM in a Distributed File System

Thomas E. Anderson1 Marco Canini2 Jongyul Kim3† Dejan Kostić4 Youngjin Kwon3

Simon Peter5 Waleed Reda4,6? Henry N. Schuh1† Emmett Witchel5

1University of Washington 2KAUST 3KAIST 4KTH Royal Institute of Technology
5The University of Texas at Austin 6Université catholique de Louvain

Abstract
The adoption of low latency persistent memory modules
(PMMs) upends the long-established model of remote storage
for distributed file systems. Instead, by colocating computa-
tion with PMM storage, we can provide applications with
much higher IO performance, sub-second application failover,
and strong consistency. To demonstrate this, we built the As-
sise distributed file system, based on a persistent, replicated
coherence protocol that manages client-local PMM as a lin-
earizable and crash-recoverable cache between applications
and slower (and possibly remote) storage. Assise maximizes
locality for all file IO by carrying out IO on process-local,
socket-local, and client-local PMM whenever possible. Assise
minimizes coherence overhead by maintaining consistency at
IO operation granularity, rather than at fixed block sizes.

We compare Assise to Ceph/BlueStore, NFS, and Octopus
on a cluster with Intel Optane DC PMMs and SSDs for com-
mon cloud applications and benchmarks, such as LevelDB,
Postfix, and FileBench. We find that Assise improves write
latency up to 22⇥, throughput up to 56⇥, fail-over time up to
103⇥, and scales up to 6⇥ better than its counterparts, while
providing stronger consistency semantics.

1 Introduction
Byte-addressable non-volatile memory (NVM), such as Intel’s
Optane DC persistent memory module (PMM) [14], is now
commercially available as main memory. NVM provides high-
capacity persistent memory with near-DRAM performance at
lower cost. The promise of NVM as a low-cost main memory
add-on is driving the adoption of node-local NVM at scale [43,
86, 87]. Remote direct memory access (RDMA) allows NVM
access across the network without CPU overhead, raising
interest in NVM for high-performance distributed storage.

A common paradigm in distributed file systems, like Ama-
zon EFS [2], NFS [39], Ceph [82], Colossus/GFS [37], and
NVM re-designs, like Octopus [58] and Orion [85], is to sep-
arate storage servers from clients. In this server-client design,
files are stored by servers on machines physically separated
from clients running applications. Client main memory is
treated as a volatile block cache managed by the client’s OS

?Lead student author.
†Co-student authors.

kernel. This design simplifies resource pooling by physically
separating application from storage concerns with simple,
server-managed data consistency mechanisms.

This simplicity comes at a cost, which becomes apparent
as we move from SSD/HDD to NVM storage. In steady state,
application performance is limited by the overhead to ac-
cess kernel-level client caches. Upon a cache miss, multiple
network round trips are needed to consult remote metadata
servers and to fetch the actual data. On failure, client-server
file systems must rebuild caches of failed clients from scratch,
involving long fail-over times to re-establish application-level
service and necessitating high network utilization during re-
covery. Third, managing client caches at fixed page-block
granularity amplifies the small IO operations typical of many
distributed applications and increases cache coherence over-
head when IO is larger than the block size. These costs prevent
NVM from reaching its performance potential and have led
some within the storage community to advocate for a com-
plete redesign of the file system API [54, 72, 73, 88].

We present Assise, a distributed file system designed to
maximize the use of client-local NVM without requiring a
new API for high performance. Assise unleashes the per-
formance of NVM via pervasive and persistent caching in
process-local, socket-local, and node-local NVM. Assise ac-
celerates POSIX file IO by orders of magnitude by leveraging
client-local NVM without kernel involvement, block amplifi-
cation, or unnecessary coherence overheads. Assise provides
near-instantaneous application fail-over onto a hot replica that
mirrors an application’s local file system cache in the replica’s
local NVM. Assise reduces node recovery time by orders of
magnitude by locally recovering NVM caches with strong
consistency semantics. Finally, Assise leverages cluster-wide
NVM via warm replicas that provide lower latency reads than
slower storage media, such as SSDs. In cascaded hot replica
failure scenarios, warm replicas can become hot replicas to
preserve near-instantaneous fail-over.

To enable these properties, we design and build to our
knowledge the first crash consistent distributed file system
cache coherence layer for replicated NVM (CC-NVM). CC-
NVM serves cached file system state in Assise with strong
consistency guarantees and locality. CC-NVM provides pre-
fix crash consistency [80] by enforcing write order to local

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1011

NVM via logging and to cross-socket and remote NVM by
leveraging the write order of DMA and RDMA, respectively.
CC-NVM provides linearizability for all IO operations via
leases [38] that can be delegated among nodes, sockets, and
processes for local management of file system state. CC-NVM
consistently chain-replicates [77] all file system updates to a
configurable set of hot and warm replicas for availability.

Using CC-NVM, Assise achieves the following goals:
• Simple programming model. Assise supports unmodified

applications using the familiar POSIX API with strong
linearizability and crash consistency [80].

• Scalability. Unlike NVM-aware distributed file systems
that are limited to rack-scale [71, 85], Assise provides
strong consistency but remains scalable using dynamic
delegation of leases to nodes, sockets, and processes; local
sharing uses CC-NVM for consistency without network,
cross-socket, or kernel communication.

• Low IO tail latency. To efficiently support applications
with low tail latency requirements, Assise allows kernel-
bypass access to authorized local and remote NVM areas.
To reduce write latency with replicated persistence, Assise
provides an optimistic mode using asynchronous chain
replication with prefix crash consistency.

• High availability. Assise provides near-instantaneous fail-
over to a configurable number of replicas and minimizes
the time to restore the replication factor after failure.

• Efficient bandwidth use. The high bandwidth provided by
NVM means that communication can be a throughput bot-
tleneck (cf. Table 1). Assise minimizes communication by
eliminating redundant writes [52] and reducing coherence
protocol overhead via logging.

We make the following contributions:
• We present the design (§3) and implementation (§4) of

Assise, a distributed file system that fully utilizes NVM by
persistent caching in client-local NVM as a primary design
principle. Assise uses client-local NVM to recover the file
system cache for fast fail-over and locally synchronizes
reads and writes to file system state.

• We present CC-NVM (§3.3), the first persistent and avail-
able distributed cache coherence layer. CC-NVM provides
locality for data and metadata access, replicates for avail-
ability, and provides linearizability and prefix crash consis-
tency for all file system IO.

• We quantify the performance benefits of using local NVM
versus remote NVM for distributed file systems (§5). We
compare Assise’s steady-state and fail-over behavior to
RDMA-accelerated versions of Ceph with BlueStore [21]
and NFS, as well as Octopus [58], a distributed file sys-
tem designed for RDMA and NVM, using common cloud
applications and benchmarks, such as LevelDB, Postfix,
MinuteSort, and FileBench.

Our evaluation shows that Assise provides up to 22⇥ lower
write latency and up to 56⇥ higher throughput than NFS and
Ceph/BlueStore. Assise outperforms Octopus by up to an

Memory R/W Latency Seq. R/W GB/s $/GB
DDR4 DRAM 82 ns 107 / 80 9.77 [19]
NVM (local) 175 / 94 ns 32 / 11.2 3.83 [20]
NVM-NUMA 230 ns 4.8 / 7.4 -
NVM-kernel 0.6 / 1 µs - -
NVM-RDMA 3 / 8 µs 3.8 -
SSD (local) 10 µs 2.4 / 2.0 0.32 [15]

Table 1: Memory & storage price/performance (October 2020).

order of magnitude. Assise scales better than Ceph, providing
6⇥ throughput for Postfix with 48 processes over 3 nodes.
Assise is more available than Ceph, returning a recovering
LevelDB store to full performance up to 103⇥ faster. Demon-
strating that strong consistency with the familiar POSIX API
and high performance are not mutually exclusive, Assise fin-
ishes a local external sort 3% faster than a hand-tuned im-
plementation using processor loads and stores to memory
mapped NVM. Finally, Assise finishes the MinuteSort dis-
tributed sorting benchmark up to 2.2⇥ faster than a parallel
NFS installation.

Assise supports networked access to remote storage where
it makes sense. Assise can automatically migrate cold data
that does not fit in NVM to slower, network-attached stor-
age devices, such as SSDs and HDDs. To do so, Assise’s
implementation builds on Strata [52] as its node-local store.

2 Background
Distributed applications have diverse workloads, with IO gran-
ularities large and small [56], different sharding patterns,
and consistency requirements. All demand high availabil-
ity and scalability. Supporting these properties simultane-
ously has been the focus of decades of distributed storage
research [23, 39, 41, 58, 81, 82, 85]. Before NVM, trade-offs
had to be made. For example, by favoring large transfers
ahead of small IO, or steady-state performance ahead of crash
consistency and fast recovery, leading to the common idiom
of remote-storage file system design. We argue that with the
arrival of fast NVM, these trade-offs need to be re-evaluated.

The opportunity posed by NVM is two-fold:
Cost/performance. Table 1 shows measured access latency,
bandwidth, and cost for modern server memory and storage
technologies, including Optane DC PMM (measurement de-
tails in §5). We can see that local NVM access latency and
bandwidth are close to DRAM, up to two orders of magnitude
better than SSD. At the same time, NVM’s per-GB cost is
only 39% that of DRAM. NVM’s unique characteristics allow
it to be used as the top layer in the storage hierarchy, as well
as the bottom layer in a server’s memory hierarchy.
Fast recovery. Persistent local storage with near-DRAM
performance can provide a recoverable cache for hot file
system data that can persist across reboots. The vast majority
of system failures are due to software crashes that simply
require rebooting [25, 36, 40]. Caching hot file system data in
NVM allows for quick recovery from these common failures.

For these reasons, data center operators are deploying NVM

1012 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

at scale [43, 86, 87]. However, to fully realize its potential,
we have to efficiently use local NVM. NVM accessed via
RDMA (NVM-RDMA), via loads and stores to another CPU
socket (NVM-NUMA), or via the kernel on the same socket
(NVM-kernel) can be an order of magnitude slower in terms
of latency and bandwidth.

2.1 Related Work

We survey the existing work in distributed storage and high-
light why it cannot fully utilize the storage system perfor-
mance offered by local NVM.
Block and object stores, such as Amazon’s EBS [1], S3 [3],
and Ursa [56], provide a new API to a multi-layer storage
hierarchy that can provide cheap, fault-tolerant access to vast
amounts of data. However, block stores have a minimum IO
granularity (16KB for EBS) and IO smaller than the block size
suffers performance degradation from write amplification [56,
69]. For this reason, Dropbox uses Amazon S3 for data blocks,
but keeps small metadata in DRAM for fast access, backed by
an SSD [62]. Apache Crail [4] and Blizzard [63] provide file
system APIs on top of block stores, but both focus on parallel
throughput of large data streams, rather than small IO.

To realize the performance benefits of NVM for all IO,
we need to abandon fixed block sizes and instead persist and
track IO at its original operation granularity. Hence, Assise
leverages logging to persist writes at their original granularity
in NVM. A similar model is realized in the RAMcloud [66]
key-value store. RAMcloud maintains data in DRAM for per-
formance, using SSDs for asynchronous persistence. However,
the capacity limits of DRAM mean that many RAMcloud op-
erations still involve the network, and because DRAM state
cannot be recovered after a crash, it is vulnerable to cascad-
ing node failures. Even after single node failures, state must
be restored from remote nodes and RAMcloud requires a
full-bisection bandwidth network for fast recovery. Assise
leverages local NVM for recovery and does not require full-
bisection bandwidth or asynchronous backup storage.
Client-server file systems, like Ceph [82], use distributed
hashing over nodes to provide scalable file service for cloud
applications. However, network and system call latency harms
file IO latency, as shown in Table 1. Typical network access
bandwidth to NVM is similarly surpassed by the higher band-
width of local NVM.

To combat network overheads, several file systems have
been built [58, 85] or retrofitted [13, 39, 44] to use RDMA.
Octopus [58] and Orion [85] are redesigns that use RDMA
for high performance access to NVM. Still, neither leverages
kernel-bypass for low-latency IO (Octopus uses FUSE, Orion
runs in the kernel) and both pool storage remotely. Like Ceph,
Octopus uses distributed hashing to place files on nodes (Oc-
topus does not replicate). Orion can store data locally via
“internal clients,” but uses a metadata server. Clover [76] is
a key-value store that takes the opposite approach, locating
metadata with applications, but storing data remotely. All

Concept Explanation
LibFS Per-process, user-level file system library
SharedFS Per-socket system daemon; manages local leases
CC-NVM Crash-consistent cache coherence with linearizability
Hot replica Cache-hot replica for fast failover
Warm replica Provides NVM for low-latency, remote, warm reads
Cluster manager Fault-tolerant service for membership & leases

Table 2: Concepts used in Assise.

systems perform remote operations in the common case to
update data and/or metadata, increasing IO latency.

Network latency and limited bandwidth increase operation
latency, reduce throughput, and limit scalability. For example,
due to update contention at a central metadata server, Orion
scales only to a small number of clients. Orion omits an
evaluation of server fail-over and recovery (Assise’s is in
§5.4). Tachyon [55] aims to circumvent replication overhead
by leveraging the concept of lineage, where lost output is
recovered by re-executing application code that created the
output. However, to do so, Tachyon requires applications to
use a complex data lineage tracking API.

To maximize NVM utility, we need to design for a scenario
where kernel and networking overheads are high compared to
storage access. Hence, Assise eliminates kernel overhead for
local IO operations and remote IO incurs a single operation
to the nearest replica in the common case, without requiring
dedicated metadata servers or a distributed hash to balance
load. For scalability, we need to enforce data and metadata
consistency locally, which CC-NVM tackles with the help of
leases. Unlike Tachyon, Assise supports the classic POSIX
file API and is fully compatible with existing applications.
Leases [38, 57] have long been integral to performance in
distributed file systems, by allowing local operations to leased
portions of the file system name space, with linearizability.
Read-only leases are a common design pattern [12,27,39,42],
but some research systems have explored using both read
and write leases in a similar manner to Assise. A prominent
example is Berkeley xFS [23], which maintained a local block-
level update log at each node, written as a software RAID 5/6
partitioned across other nodes. Assise differs from xFS by
using an operational log, replicating rather than striping the
log, and by doing update coalescing.

2.2 Remote Storage versus Local NVM

Figure 1 contrasts the IO architecture of traditional client-
server file systems and Assise. Each subfigure shows two
dual-socket nodes executing a number of application pro-
cesses sharing a distributed file system. Both designs use a
replicated cluster manager for membership management and
failure detection, but they diverge in all other respects.

Traditional distributed file systems first partition available
cluster nodes into clients and servers. Clients cache file sys-
tem state in a volatile kernel buffer cache that is shared by
processors across sockets (NVM-NUMA) and accessed via
expensive system calls (NVM-kernel). Persistent file system
state is stored in NVM on remote servers. For persistence and

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1013

Client 0

(Volatile) Kernel buffer cache

NUMA 0 NUMA 1
proc proc … proc proc …

… Client N

(Volatile) Kernel buffer cache

NUMA 0 NUMA 1
proc proc … proc proc …

Data servers Metadata serversCluster manager

(a) Traditional distributed FSes with server-side storage (NFS, Ceph, . . .).

Client 0
NUMA 0 NUMA 1

… …

… Client N
NUMA 0 NUMA 1

… …

Cluster manager

SharedFS

proc
LibFS

proc
LibFS

SharedFS

proc
LibFS

proc
LibFS

SharedFS

proc
LibFS

proc
LibFS

SharedFS

proc
LibFS

proc
LibFS

(b) Client-local NVM (Assise).

Figure 1: Distributed file system IO architectures. Arrow = RPC/system call. Cylinder = persistence. Black = hot replica.

consistency, clients thus have to coordinate updates with repli-
cated storage and metadata servers via the network (NVM-
RDMA) with higher latency than local NVM. The cluster
manager is not involved in IO. Data is typically distributed
at random over replicated storage servers for simplicity and
load balance [82]. The overhead of updating a large set of
storage nodes atomically means that (crash) consistency is
often provided only for metadata, which is centralized.

3 Assise Design
Assise avoids remote storage servers and instead uses CC-
NVM to coordinate linearizable state among processes. Pro-
cesses access cached file system state in local NVM directly
via a library file system (LibFS), which may be replicated for
fail-over (two LibFS hot replicas shown in black in Figure 1).
CC-NVM coordinates LibFSes hierarchically via per-socket
daemons (SharedFS) and the cluster manager. Table 2 ex-
plains several Assise-related concepts.
Crash consistency modes. Assise supports two crash con-
sistency modes: optimistic or pessimistic [30]. Mount op-
tions specify the chosen crash consistency mode. When pes-
simistic, fsync forces immediate, synchronous replication
and all writes prior to an fsync persist across failures. When
optimistic, Assise commits all operations in order, but it is
free to delay replication until the application forces it with
a dsync call [30]. Optimistic mode provides lower latency
persistence with higher throughput, but risks data loss after
crashes that cannot recover locally (§3.4). In either mode, As-
sise guarantees a prefix crash-consistent file system [80]—all
recoverable writes are in order and no parts of a prefix of the
write history are missing.

We now describe cluster coordination and membership
management in Assise (§3.1). We then detail the IO paths
(§3.2) and show how CC-NVM interacts with them to provide
linearizability and prefix crash consistency (§3.3). Finally, we
describe recovery (§3.4) and warm replicas (§3.5). We close
with a discussion of connected design questions (§3.6).

3.1 Cluster Coordination and Failure Detection
Like other distributed file systems, Assise leverages a repli-
cated cluster manager for storing the cluster configuration
and detecting node failures. Assise uses the ZooKeeper [10]
distributed coordination service as its cluster manager.
Cluster coordination. Each SharedFS in Assise registers
with the cluster manager. In our prototype, the system admin-

istrator decides which SharedFS replicates which parts of the
cached file system namespace and the caching policy (hot
or warm replica) for arbitrary subtrees; the cluster manager
records this mapping. When a subtree is first accessed, LibF-
Ses contact their local SharedFS, which consults the cluster
configuration and sets up an RDMA replication chain from
LibFS through the subtree’s hot replicas. For each chain, hot
replicas preallocate a configurable amount of NVM for repli-
cation (sensitivity evaluated in §5.2). It is future work to
implement a distributed replica discovery service (e.g., using
CC-NVM). LibFSes on any node are already able to cache
any (meta-)data with linearizability.
Failure detection. The cluster manager sends heartbeat mes-
sages to each active SharedFS once every second. If no re-
sponse is received after a timeout, the node is marked failed
and all connected SharedFS are notified. When the node
comes back online, it contacts the cluster manager and initi-
ates recovery (§3.4).

3.2 IO Paths
Application IO interacts first with Assise caches. To keep tail
latency low, Assise does not use a shared kernel buffer cache.
Instead, LibFS caches file system state first in process-local
memory. The LibFS cache uses both NVM and DRAM. NVM
stores updates, while DRAM caches reads. LibFS implements
the POSIX API at user-level. We now discuss cache operation
upon IO, including replication, eviction, and access permis-
sions. Figure 2 shows these mechanisms for two hot replicas
and one warm replica, using SSDs for cold storage. Cache
coherence is discussed in §3.3.

3.2.1 Write Path
Writes in Assise involve three mechanisms that operate on
different time scales:
1. To allow for persistence with low latency, LibFS directly

writes into a process-local cache in NVM (W). To effi-
ciently support writes of any granularity, the write cache
is an update log, rather than a block cache.

2. To outlive node failures, the update log is chain-replicated,
with kernel-bypass, by LibFS (S1 , S2).

3. When update logs fill beyond a threshold, evictions are
initiated (E2), moving their contents to SharedFS. We
describe replication and eviction next.

Replication and crash consistency. When pessimistic,
fsync forces immediate, synchronous replication. The caller

1014 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Hot Replica

NVM

DRAM

SSD

Warm Replica

NVM

SSD

NVM

LibFS SharedFS

Log

A
pp

lic
at

io
n

R4

R2

R1

R3

E2

E3

E1

W
Hot

Warm

Hot

Cold

Hot Replica

NVM

SSD

Hot

Warm

Cold S1

S2

Log
Log

Read Cache

Warm

Cold
E2

E2

E3

E3

Figure 2: Assise IO paths. Dashed line = RDMA operation, solid
line = local operation. Shaded areas are per process.

is blocked until all writes up to the fsync have been repli-
cated. Thus, all writes prior to an fsync outlive node failures.

When optimistic, Assise is free to delay replication. This
provides Assise with an opportunity to coalesce [52] tempo-
rary durable writes (i.e., overwritten or deleted files), a work-
load pattern seen in application-level commit protocols [67].
Eliminating these writes allows Assise to conserve network
bandwidth. In optimistic mode, Assise initiates replication on
dsync or upon log eviction.

In both cases, the local update log contents are written to
preallocated NVM on the first replica along the replication
chain via RDMA (S1). The replica continues chain replica-
tion to the next replica (S2), and so on. The final replica in
the chain sends an acknowledgment back along the chain to
indicate that the chain completed successfully.
Cache eviction. When a LibFS update log fills, it replicates
any unreplicated writes and initiates eviction. Eviction is done
in least-recently-used (LRU) fashion through the SharedFS
shared caches to cold storage (E2 , E3). Hot replicas keep
hot data in NVM, while moving warm and cold data to cold
storage. Warm replicas (§3.5) keep hot and cold data in cold
storage, while warm data resides in NVM to accelerate warm
reads (§3.5). Cold storage may be remote (e.g., via NVMe-
over-Fabrics [17]). Each replica along the chain evicts in
parallel and acknowledges when eviction is finished. This
ensures that all replicas cache identical state for fast failover.

For log eviction (E2), issuing direct stores to NVM shared
caches on another socket has overhead due to cross-socket
hardware cache coherence, limiting throughput [83]. Since
CC-NVM provides cache coherence, Assise can bypass hard-
ware cache coherence by using DMA [53] when evicting to
NVM-NUMA. This yields up to 30% improvement in cross-
socket file system write throughput (§5.5).

3.2.2 Read Path

LRU cache eviction guarantees that the latest version of all
data is always available in the fastest cache. Thus, upon a read,
LibFS (1) checks the process-private write and read caches
(via a log hashtable and read cache, shown in Figure 2) for
the requested data (R1). If not found, LibFS (2) checks the
node-local hot SharedFS cache (R2) (via an extent tree used
to index the SharedFS cache [52]). If the data was found in
either of these areas, it is read locally. If not found, LibFS (3)

checks the warm replica’s SharedFS cache (R3), if it exists,
and, in parallel, checks cold storage (R4).
Read cache management. Recently read data is cached
in process-local DRAM, except if it was read from local
NVM, where DRAM caching does not provide benefit. LibFS
prefetches up to 256KB from cold storage and up to 4KB from
remote NVM. For remote NVM reads, LibFS first fetches the
requested data and then prefetches the remainder. This mini-
mizes small read latency while improving the performance of
workloads with spatial locality. Data from remote NVM and
cold storage is evicted from the read cache to the process-local
update log (E1).

3.2.3 Permissions and Kernel Bypass

Assise assumes a single administrative domain with UNIX file
and directory ownership and permissions. SharedFS enforces
that LibFS may access only authorized data, by checking
permissions and metadata integrity upon cache eviction and
enforcing permissions on reads. To minimize latency of node-
local SharedFS cache reads, Assise allows read-only mapping
of authorized parts of the SharedFS cache into the LibFS
address space. LibFS caches and mappings are invalidated
when files or directories are closed and whenever the update
log is evicted.

The metadata integrity of the file system is ensured by
SharedFS. LibFS operations do not prevent one thread from
corrupting another’s data in the process-local update log, but
SharedFS verifies that all metadata operations are valid before
they become visible to other processes. This implies that
processes can corrupt their own data in their private update
log, even after it was written (memory protection keys can
mitigate inter-thread data corruption [34]). However, only
process-local writes go to the process-local update logs. Multi-
process access to any filesystem object (including a subtree)
is linearizable and access-controlled via leases. Processes
cannot corrupt shared file system (meta-)data.

3.3 Crash Consistent Cache Coherence with CC-NVM

CC-NVM provides distributed cache coherence with lineariz-
ability when sharing file system state among processes; it
provides prefix semantics upon a crash.
Prefix crash consistency. To provide prefix crash consis-
tency, CC-NVM tracks write order via the update log in
process-local NVM. Each POSIX call that updates state is
recorded, in order, in the update log. When chain-replicating,
CC-NVM leverages the write ordering guarantees of (R)DMA
to write the log in order to replicas. In optimistic mode, CC-
NVM wraps coalesced file system operations in a Strata trans-
action [52]. This ensures that file system updates are persisted
and replicated atomically and that a prefix of the write history
can be recovered (§3.4).
Sharing with linearizability. CC-NVM serializes concur-
rent access to shared state by multiple processes and recovers
the same serialization after a crash via leases [38]. Leases

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1015

provide a simple, fault-tolerant mechanism to delegate access.
Leases function similarly to reader-writer locks, but can be
revoked (to allow another process access) and expire after a
timeout (after which they may be reacquired). In CC-NVM,
leases are used to grant shared read or exclusive write access
to a set of files and directories—multiple read leases to the
same set may be concurrently valid, but write leases are exclu-
sive. Reader/writer semantics efficiently support shared files
and directories that are read-mostly and widely used, but also
write-intensive files and directories that are not frequently
shared. CC-NVM also supports a subtree lease that includes
all files and directories at or below a particular directory. A
subtree lease holder controls access to files and directories
within that subtree. For example, a LibFS with an exclusive
subtree lease on /tmp/bwl-ssh/ can recursively create and
modify files and directories within this subtree.

Leases must be acquired by LibFS from SharedFS via a
system call before LibFS can cache the data covered by the
lease. Assise does this upon first IO; leases are kept until
they are revoked by SharedFS. This occurs when another
LibFS wishes access to a leased file or when a LibFS instance
crashes or the lease times out. Lease revocation latency is
bounded by a grace period, within which the current lease
holder can finish its ongoing IO before releasing contended
leases. If LibFS fails to surrender the lease after the grace
period, the lease is revoked by SharedFS and any subsequent
IO on the leased file is rejected as invalid. SharedFS enforces
that the lease holder’s read and write caches are cleaned and
evicted of the covered data before the lease is transferred. The
time taken to do so is bounded by the holder’s update log size.
SharedFS logs and replicates each lease transfer in NVM for
crash consistency. A LibFS may overlap IO with SharedFS
lease replication until fsync/dsync.
Hierarchical coherence. To localize coherence enforcement,
leases are delegated hierarchically. The cluster manager is
at the root of the delegation tree, with SharedFSes as chil-
dren, and LibFSes as leaves (cf. Figure 1b). LibFSes request
leases first from their local SharedFS. If the local SharedFS
is not the lease holder, it consults the cluster manager. If
there is no current lease holder, the cluster manager assigns
the lease to the requesting SharedFS, which delegates it to
the requesting LibFS and becomes its lease manager. If a
lease manager already exists, SharedFS forwards the request
to the manager and caches the lease manager’s information
(leased namespace and expiration time of lease). The cluster
manager expires lease management from SharedFSes every 5
seconds. This allows CC-NVM to migrate lease management
to the local SharedFS, while preventing leases from changing
managers too quickly, facilitating scalability.

Hierarchical coherence minimizes network communication
and thus lease delegation overhead. LibFSes on the same
node or socket require only local SharedFS delegation in the
common case. This structure maps well to the data sharding
patterns of many distributed applications (§5.5).

3.4 Fail-over and Recovery

Assise caches file system state with persistence in local NVM,
which it can use for fast recovery. Assise optimizes recovery
performance for the most common crash types.
LibFS recovery. An application process crashing is the most
common failure scenario. In this case, the local SharedFS sim-
ply evicts the dead LibFS update log, recovering all completed
writes (even in optimistic mode) and then expires its leases.
Log-based eviction is idempotent [52], ensuring consistency
in the face of a system crash during eviction. The crashed
process can be restarted on the local node and immediately re-
use all file system state. The LibFS DRAM read-only cache
has to be rebuilt, with minimal performance impact (§5.4).
SharedFS recovery. Another common failure mode is a
reboot due to an OS crash. In this case, we can use NVM to
dramatically accelerate OS reboot by storing a checkpoint of
a freshly booted OS. After boot, Assise can initiate recovery
for all previously running LibFS instances, by examining the
SharedFS log stored in NVM.
Cache replica fail-over. To avoid waiting for node recovery
after a power failure or hardware problem, we immediately
fail-over to a hot replica. The replica’s SharedFS takes over
lease management from the failed node, using the replicated
SharedFS log to re-grant leases to any application replicas.
The new instances will see all IO that preceded the most
recently completed fsync/dsync.

Writes to the file system can invalidate cached data of the
failed node during its downtime. To track writes, the cluster
manager maintains an epoch number, which it increments
on node failure and recovery. All SharedFS instances are
notified of epoch updates. All SharedFS instances share a
per-epoch bitmap in a sparse file indicating what inodes have
been written during each epoch. The bitmaps are deleted at
the end of an epoch when all nodes have recovered.
Node recovery. When a node crashes, the cluster manager
makes sure that all of the node’s leases expire before the node
can rejoin. When rejoining, Assise initiates SharedFS recov-
ery. A recovering SharedFS contacts an online SharedFS to
collect relevant epoch bitmaps. SharedFS then invalidates ev-
ery block from every file that has been written since its crash.
This simple protocol could be optimized, for instance, by
tracking what blocks were written, or checksumming regions
of the file to allow a recovering SharedFS to preserve more of
its local data. But the table of files written during an epoch is
small and quickly updated during file system operation, and
our simple policy has been sufficient.

3.5 Warm Replicas

To fully exploit the memory hierarchy presented in Table 1,
remote NVM can be used as a third-level cache, below local
DRAM and local NVM. To do so, we introduce warm repli-
cas. Like hot replicas, warm replicas receive all file system
updates via chain-replication, but leverage a different update

1016 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

log eviction policy. Warm replicas track the LRU chain for
a specified portion of “warm data” beyond the LibFS and
SharedFS caches. Warm replicas do not impact the latency of
replicated writes, but they reduce read latency for warm data
by serving these reads from NVM, rather than cold storage.

LibFSes can read from warm replicas via RDMA with
lower latency and higher bandwidth than cold storage (NVM-
RDMA versus SSD in Table 1). Applications do not run on
warm replicas in the common case. In the rare case of a failure
cascade crashing all hot replicas, processes can fail-over to
warm replicas, albeit with reduced short-term performance.
After fail-over, warm replicas become hot replicas and hot
data must be migrated back into local NVM.

3.6 Discussion

Assise may be deployed at scale. The use of local NVM
together with hierarchical lease delegation aligns well with
datacenter server, rack, and pod architecture [22]. We discuss
factors of Assise’s design that impact such a deployment.
In particular, the memory overhead of per-process and per-
replica update logs, the use of NVM and RDMA at scale, and
security.
Update log scalability. Assise uses per-process and per-
replica update logs for efficient chain-replication with kernel-
bypass. These update logs are preallocated on process cre-
ation in our prototype. While update logs can support high
performance at moderate size (§5.2), a deployment at scale
might be concerned with the memory consumption of update
logs. In this case, the per-process and per-replica update log
size can be adapted dynamically to momentarily available
NVM capacity and per-process IO demand. SharedFS can
resize logs upon eviction. The most significant overhead for
log resizing is memory registration for RDMA. It requires
pinning the memory and mapping it in the RDMA NICs. This
operation can be overlapped with the log eviction itself. To
help reduce the need for frequent resizing, logs can be re-
sized multiplicatively, similar to resizing approaches in prior
work [84].
RDMA scalability. Assise uses RDMA reliable connec-
tions (RCs) for each process and replica. RCs require the
NIC to create and maintain connection state. For larger clus-
ters, maintaining a large number of connections can stress
the NIC’s limited memory and degrade performance. Sev-
eral proposals have been made to reduce NIC cache thrash-
ing [29, 68] and Mellanox introduced dynamically-connected
(DC) transports [70], which allows connection-sharing and
enables a high degree of scalability. Assise can leverage these
approaches to scale the use of RDMA.
NVM wear-out. Assise uses local NVM extensively. This
use can lead to the wear-out of NVM. To prevent frequent
NVM replacement at scale, it is important to minimize writes
to the NVM media. Assise’s update logs minimize write
amplification, but update log eviction in causes a 2⇥ write
amplification in the worst case. This write amplification can

be partially eliminated via coalescing as seen in workloads,
like Varmail (§5.3). To further reduce write amplification,
update log pages may be remapped to the SharedFS shared
cache, without introducing any additional writes [48]. We
leave this as future work.
Security. In a large-scale public cloud scenario, data from
each tenant is usually encrypted for security. For this pur-
pose, both NVM and RDMA support encryption of data at
rest and in-flight. Intel’s Optane DC PMMs support transpar-
ent hardware encryption of data stored in NVM and modern
RDMA NICs [61] support transparent encryption of RDMA
operations.

4 Implementation
Assise uses libpmem [11] for persisting data on NVM and
libibverbs for RDMA operations in userspace. Assise inter-
cepts POSIX file system calls and invokes the corresponding
LibFS implementation of these functions in userspace [8].
The Assise implementation consists of 28,982 lines of C code
(LoC), with LibFS and SharedFS using 16,515 and 6,563 LoC,
respectively. The remaining 5,904 LoC contain utility code,
such as hash tables and linked lists. SharedFS communicates
with LibFSes via shared memory [24]. Assise uses Strata
code (LoC not counted) for cold storage in SSD and HDD.

Assise uses Intel Optane DC PMM in App-Direct mode.
App-Direct exposes NVM as a range of physical memory. It
is the most efficient way to access NVM, but it requires OS
support. OS-transparent modes have weaker persistence or
performance properties [45]. For example, memory mode inte-
grates NVM as volatile memory, using DRAM as a hardware-
managed level 4 cache. Sector mode exposes NVM as a disk,
with attendant IO amplification and disk driver overheads.

4.1 Strata as a Building Block

Assise builds upon Strata’s local file system functionality and
augments it with the CC-NVM cache coherence layer and
RDMA to create a replicated and highly efficient distributed
file system with prefix crash conistency. Assise inherits sev-
eral components from Strata, including its use of extent trees
to index storage managed by SharedFS (in turn based on
Ext4 [60]), the LibFS update log, and log coalescing. We en-
hance Strata’s extent trees to manage directories and Strata’s
leases to support delegation.

4.2 Efficient Network IO with RDMA

Assise makes efficient use of RDMA. For lossless, in-order
data transfer among nodes, Assise uses RDMA reliable con-
nections (RCs). RCs have low header overhead, improving
throughput for small IO [49, 59]. RCs also provide access to
one-sided verbs that bypass CPUs on the receiver side, reduc-
ing message transfer times [35, 64] and memory copies [74].
Log replication. Logs are naturally suited for one-sided
RDMA operations. Replication typically requires only one
RDMA write, reducing header and DMA overheads [59]. As-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1017

sise uses RDMA write-with-immediate for log replication.
This operation performs a write and also notifies the remote
replica to forward the data to the next replica in the chain.
The only exceptions are when the remote log wraps around
or when the local log is fragmented (due to coalescing), such
that it exceeds the NIC’s limit for scatter-gather DMA.
Persistent RDMA writes. The RDMA specification does
not define the persistence properties of remote NVM writes
via RDMA. In practice, the remote CPU is required to flush
any RDMA writes from its cache to NVM. Assise flushes
all writes via the CLWB and SFENCE instructions on each
replica, before acknowledging successful replication. In the
future, it is likely that enhancements to PCIe will allow
RDMA NICs to bypass the processor cache and write directly
to NVM to provide persistence without CPU support [50].
Remote NVM reads. Assise reads remote data via RPC.
To keep the request sizes small, Assise identifies files using
their inode numbers instead of their path. As an optimization,
DRAM read cache locations are pre-registered with the NIC.
This allows the remote node to reply to a read RPC by RDMA
writing the data directly to the requester’s cache, obviating
the need for an additional data copy.

5 Evaluation
We evaluate Assise’s common-case as well as its recovery per-
formance, and break down the performance benefits attained
by each system component. We compare Assise to three
state-of-the-art distributed file systems that support NVM
and RDMA. Our experiments rely on several microbench-
marks and Filebench [75] profiles, in addition to several real
applications, such as LevelDB, Postfix, and MinuteSort. Our
evaluation answers the following questions:
• IO latency and throughput breakdown (§5.2). What is

the hardware IO performance of a storage hierarchy with
local NVM (Table 1)? How close to this performance do
the file systems operate under various IO patterns? What
are the sources of overhead?

• Cloud application performance (§5.3). What is the per-
formance of cloud applications with various consistency,
latency, throughput, and scalability requirements? What
is the overhead of Assise’s POSIX API implementation
versus hand-tuned, direct use of local NVM? By how much
can a warm replica improve read latency? By how much
can optimistic crash consistency improve write throughput
for real applications?

• Availability (§5.4). How quickly can applications recover
from various failure scenarios?

• Scalability (§5.5). How well does Assise perform when
multiple processes share the file system? By how much
can Assise’s hierarchical coherence improve multi-process,
multi-socket, and multi-node scalability?

Testbed. Our experimental testbed consists of 5⇥ dual-socket
Intel Cascade Lake-SP servers running at 2.2GHz, with a total
of 48 cores (96 hyperthreads), 384GB DDR4-2666 DRAM,

Feature Assise Ceph NFS Octopus Orion
Cache recovery X
Local consistency X
Kernel-bypass X
Linearizability X X
Data crash consistency X X
Byte-oriented X X X
Replication X X X
RDMA X X X X X

Table 3: Features of the evaluated distributed file systems.

6TB Intel Optane DC PMM, 375GB Intel Optane DC P4800X
series NVMe-SSD, and a 40GbE ConnectX-3 Mellanox In-
finiBand NIC, connected via an InfiniBand switch. Exploiting
all 6 memory channels per processor, there are 6 DIMMs of
DRAM and NVM per socket. NVM is used in App-Direct
mode (§4). All nodes run Fedora 27 with Linux kernel version
4.18.19.
Hardware performance. We first measure the achievable IO
latency and throughput for each memory layer in our testbed
server. We do this by using sequential IO and as many cores of
a single socket as necessary. We measure DRAM and NVM
(App-Direct) latency and throughput using Intel’s memory
latency checker [5]. NVM-RDMA performance is measured
using RDMA read and write-with-immediate (to flush remote
processor caches) operations to remote NVM. SSD perfor-
mance is measured using /dev/nvme device files. The IO
sizes that yielded maximum performance are 64B for DRAM,
256B for NVM, and 4KB for SSD. Table 1 shows these re-
sults. The measured IO performance for DRAM, NVM, and
SSD matches the hardware specifications of the correspond-
ing devices and is confirmed by others [45]. NVM-RDMA
throughput matches the line rate of the NIC. NVM-RDMA
write latency has to invoke the remote CPU (to flush caches)
and is thus larger than read latency. We now investigate how
close to these limits each file system can operate.
State-of-the-art. Table 3 shows performance-relevant fea-
tures of the state-of-the-art and Assise. We can see that no
open-source distributed file system provides all of Assise’s
features. Hence, a direct performance comparison is difficult.
We perform comparisons against the Linux kernel-provided
NFS version 4 [39] and Ceph version 14.2.1 [82] with Blue-
Store [21], both retrofitted for RDMA, as well as Octopus [58].
We cannot directly compare with Orion [85] as it is not pub-
licly available, but we emulate its behavior where possible.
Only Ceph provides availability via replicated object storage
daemons (OSDs), delegating metadata management to a (po-
tentially sharded) metadata server (MDS). Octopus and NFS
do not support replication for availability and thus gain an
unfair performance advantage over Assise. However, Assise
beats them even while replicating for availability, showing
that both features can be had when leveraging local NVM.

Other file systems do not support persistent caches and their
consistency semantics are often weaker than Assise’s. Assise
provides data crash consistency, while both Ceph/BlueStore

1018 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

and Octopus provide only metadata crash consistency [31].
For NFS, crash consistency is determined by the underlying
file system. We use EXT4-DAX [9], which also provides
only metadata crash consistency. When sharing data, NFS
provides close-to-open consistency [39], while Octopus and
Ceph provide “stronger consistency than NFS” [28], and As-
sise provides linearizability, which is stronger than Octopus’
and Ceph’s guarantees. In all performance comparisons, As-
sise provides stronger consistency than the alternatives. Ceph
is the closest comparison point.
File system compliance tests. We tested Assise using xf-
stests [18] and CrashMonkey [65]. Assise passed all 75
generic xfstests that are recommended for NFS [16]. NFSv4.2
and Ceph v14.2.1 pass only 71 and 69 of these tests, respec-
tively. In part, this is due to their weaker consistency model.
Assise also successfully passes CrashMonkey tests, runs all
existing Filebench profiles, passes all unit tests for the Lev-
elDB key-value store, and passes MinuteSort validation.

5.1 Experimental Configuration

Machines. Each experiment specifies the number (� 2) of
testbed machines used. By default, machines are used as hot
replicas in Assise, as a pool of storage nodes in Octopus,
and as OSD and MDS replicas in Ceph. NFS uses only one
machine as server, the rest as clients. We place applications
on hot replicas for Assise, on OSD replicas for Ceph, on
storage nodes for Octopus, and on clients for NFS. Assise’s
and Ceph’s cluster managers run on 2 additional testbed ma-
chines (NFS and Octopus do not have cluster managers). The
colocated deployment of applications and OSDs for Ceph is
due to the small size of our cluster. It gives Ceph a potential
performance advantage over an all-remote OSD deployment.
Network. We use RDMA for the NFS client-server connec-
tion. Ceph provides its client-side file system via the Ceph
kernel driver and uses IP over InfiniBand, which was the
fastest configuration (we also tried FUSE and Accelio [13]).
Assise and Octopus use RDMA with kernel-bypass.
Storage and caches. For maximum efficiency, all file sys-
tems use NVM in App-Direct mode to provide persistence
(cylinders in Figure 1) and DRAM when persistence is not
needed (e.g., kernel buffer cache). We investigate Ceph and
NFS performance using NVM in memory mode for volatile
caches and find it to degrade throughput by up to 25% versus
DRAM. For efficient access to NVM, Ceph OSDs use Blue-
Store and NFS servers use EXT4-DAX. Octopus uses FUSE
to provide its file system interface to applications in direct IO
mode to NVM, bypassing the kernel buffer cache [6].

To evaluate a breadth of cache behaviors with limited appli-
cation data set sizes, we limit the fastest cache size for all file
systems to 3GB. For Ceph and NFS, we limit the kernel buffer
cache to 3GB. For Assise, we partition the LibFS cache into
a 1GB NVM update log and a 2GB DRAM read cache (the
SharedFS second-level cache may use all NVM available),
and we run Assise in pessimistic mode.

128 4K 64K 1M
0.1

1

10

100

1000

10000

IO Size (bytes)

La
te

nc
y

(u
s)

Assise Assise−3r NFS Ceph Octopus

(a) Sequential write. write latency is solid line, fsync is bar height.

HIT MISS RMT HIT MISS RMT HIT MISS RMT HIT MISS RMT
128 4K 64K 1M

0.1

1

10

100

1000

10000

IO Size (bytes)

La
te

nc
y

(u
s)

Assise NFS Ceph Octopus

(b) Read latencies for cache hits, misses, and remote (RMT) misses.

Figure 3: Avg. and 99%ile (error bar) IO latencies. Log scale.

5.2 Microbenchmarks

Average and tail write latency. We compare unladen syn-
chronous write latencies with 2 machines (except Assise-3r
which uses 3 machines). Synchronous writes involve write
calls (fixed-width font identifies POSIX calls) that operate
locally (except for Octopus where write may be remote),
and fsync calls that involve remote nodes for replication (As-
sise, Ceph) and/or persistence (Ceph, NFS). Each experiment
appends 1GB of data into a single file, and we report per-
operation latency. In this case, the file size is smaller than each
file system’s cache size, so no evictions occur—with giga-
bytes of cache capacity, this is common for latency-sensitive
write bursts.

Figure 3a shows the average and 99th percentile sequential
write latencies over various common IO sizes (random write
latencies are similar for all file systems). We break writes
down into write (solid line) and fsync call latencies (bar).
Octopus’ fsync is a no-op. Assise’s local write latencies
match that of Strata [52]. Assise’s average write latency for
128B two-node replicated writes is only 8% higher than the
aggregate latencies of the required local and NVM-RDMA
writes (cf. Table 1). Three replicas (Assise-3r) increase As-
sise’s overhead to 2.2⇥ due to chain-replication with sequen-
tial RPCs. The 99th percentile replicated write latency is up
to 2.1⇥ higher than the average for 2 replicas. This is due
to Optane PMM write tail-latencies [45]. The tail difference
diminishes to 19% for 3 replicas due to the higher average.

Ceph and NFS use the kernel buffer cache and interact at
4KB block granularity with servers. For small writes, the in-
curred network IO amplification during fsync is the main
reason for up to an order of magnitude higher aggregate write
latency than Assise. In this case, their write latency is up

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1019

to 3.2⇥ higher than Assise due to kernel crossings and copy
overheads. For large writes (� 64KB), network IO amplifica-
tion diminishes but the memory copy required to maintain the
kernel buffer cache becomes a major overhead. The latency of
large writes is higher than Assise’s replicated write latency
(and up to 2.7⇥ higher than Assise’s non-replicated write
latency), while aggregate write latency is up to 7.2⇥ higher
than Assise. Ceph has higher fsync latency than NFS due to
replication.

Octopus eliminates the kernel buffer cache and block ori-
entation, which improves its performance drastically versus
NFS and Ceph. However, Octopus still treats all NVM as re-
mote and uses FUSE for file IO. Octopus exhibits up to 2.1⇥
higher latency than Assise for small (< 64KB) writes. This
overhead stems from FUSE (around 10µs [78]) and writing to
remote NVM via the network. Large writes (� 64KB) amor-
tize Octopus’ write overheads. Assise has up to 1.7⇥ higher
write latency due to replication. Octopus does not replicate.
Average and tail read latency. We compare unladen read
latencies across different cache configurations. To do this, we
read a 1GB file using various IO sizes, once with a warm
cache (to report cache hits) and once with a cold cache (to
report misses). The results are shown in Figure 3b. Assise has
a second-layer cache in SharedFS before going remote, and
we report three cases for Assise. Reads in Octopus are always
remote.

We first compare cache-hit latencies (HIT), where Assise
is up to 40% faster than NFS and 50% faster than Ceph.
Assise serves data from the LibFS read cache, while NFS
and Ceph use the kernel buffer cache. If Assise misses in the
LibFS cache, data may be served from the local SharedFS
(MISS). Assise-MISS incurs up to 3.2⇥ higher latency than
Assise-HIT due to reading the extent tree index, especially
for larger IO sizes that read a greater number of extents. If
Assise misses in both caches, it has to read from a remote
replica (RMT). Assise-RMT incurs the latency of an RPC
using RDMA. When NFS and Ceph miss in the cache, their
clients have to fetch from remote servers, which incurs up
to orders of magnitude higher average and tail latencies than
Assise-RMT and Assise-MISS. Ceph performs worse than
NFS due to a more complex OSD read path.

The elimination of a cache hurts Octopus’ read perfor-
mance, because it has to fetch metadata and data (serially)
from remote NVM (RMT). Octopus’ read latency is up to
two orders of magnitude higher than the other file systems
hitting in the cache, and up to an order of magnitude lower
than NFS and Ceph missing in the cache. Octopus does not
handle small (4KB) reads well due to FUSE overheads,
with up to 3.54⇥ Assise-RMT read latency. This overhead is
amortized for larger reads (� 64KB), where Octopus incurs
up to 1.46⇥ the read latency of Assise-RMT. By configuring
FUSE to use the kernel buffer cache for Octopus, we reduce
Octopus’ read hit latency to 1.8⇥ that of Assise-HIT, with the
remaining overhead due to FUSE. However, using the kernel

buffer cache inflates write latencies for Octopus by up to an
order of magnitude due to additional buffer cache memory
copies.
Peak throughput. Figure 4 shows average throughput of
sequential and random IO to a 120GB dataset (on the local
socket) with 4KB IO size from 24 threads (all cores of one
socket). To evaluate a standard replication factor of 3, we use
3 machines for Assise and Ceph. The dataset is sharded over
24 files, and 5GB of data is written per thread. For random
writes, a random offset is generated for every IO. write calls
are not followed by fsync and the total amount of accessed
data is larger than the cache size, causing cache eviction on
write. The cache is initially cold so reads miss in the cache.
For Assise, we show cache miss performance from a local and
remote SharedFS. Octopus crashes during this experiment
and is not shown.

For sequential writes, Assise and NFS achieve 74% and
66% of the NVM-RDMA bandwidth (cf. Table 1), respec-
tively, due to protocol overhead for NFS and log header over-
head for Assise. Chain-replication in Assise affects through-
put only marginally. Ceph replicates in parallel to 2 remote
replicas, consuming 3⇥ the network bandwidth. This re-
duces its throughput to 31% of Assise and 35% of NFS. As-
sise achieves similar performance for sequential and random
writes, as Assise’s writes are log-structured. NFS and Ceph
perform poorly for random writes due to cache block mis-
prefetching incurring additional reads from remote servers,
causing Assise to achieve 4.8⇥ Ceph’s throughput. NFS
throughput is at only 67% that of Ceph, which is due to kernel
locking overhead.

To quantify the benefit of bypassing hardware cache co-
herence for cross-socket writes with DMA, we repeat the
benchmark, placing all files on the remote socket. We can see
that Assise-DMA attains 44% higher cross-socket through-
put than non-temporal processor writes (Assise). Sequential
and random writes provide comparable performance. NVM-
NUMA writes occur during eviction from the LibFS update
log (local socket) to the NVM shared cache (remote socket).
When writing to the local socket, Assise-DMA attains identi-
cal throughput to Assise, regardless of pattern.

For local sequential and random reads from the local
SharedFS cache, Assise achieves 90% and 68%, respectively,
of local, sequential NVM bandwidth. The 10% difference for
sequential reads to local NVM bandwidth is due to metadata
lookups, while random reads additionally suffer PMM buffer
misses [45]. Assise remote reads (Assise-RMT) attain full
NVM-RDMA bandwidth (3.8GB/s), regardless of access pat-
tern. NFS and Ceph are limited by NVM-RDMA bandwidth
for all reads and again have worse random read performance
due to prefetching.
Log size sensitivity. To evaluate the impact of log size on
write throughput, we conduct a sensitivity analysis. We run
a single-process microbenchmark that writes a 1GB file se-
quentially at 4KB IO granularity. This experiment models a

1020 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 1

 2

 3
 3.8

Sequential Random Cross-socket

Th
ro

ug
hp

ut
 (

G
B/

s)

Assise Assise-DMA NFS Ceph

(a) Write. 3.8GB/s is NVM-RDMA bandwidth.

 32

 0.1

 1

 10

Sequential Random

Th
ro

ug
hp

ut
 (

G
B/

s)

Assise Assise-RMT NFS Ceph

(b) Read. 32GB/s is NVM read bandwidth.

Figure 4: Average throughput with 24 threads at 4KB IO size.

 0
 0.2
 0.4
 0.6
 0.8

 1

16M 32M 64M 128M 256M 512M 1G 2G

N
or

m
. T

hr
ou

gh
pu

t

Log Size (B)

Figure 5: Worst-case throughput versus up-
date log size, normalized to 2GB.

 0.1
 1

 10
 100

 1000
 10000

Seq. Read
Rand. Read

Skewed Read
Seq. Write

Rand. Write
Sync Write

La
te

nc
y

(u
s)

Assise NFS Ceph Octopus

Figure 6: Average LevelDB benchmark latencies. Log scale.

worst case scenario. In the absence of sharing, processes can
quickly fill up their allocated log space. Figure 5 shows the
normalized write throughput at different log sizes. Through-
put increases with log size, but the performance impact is
small. Throughput increases by only 22% when using a 2GB
log size versus a 16MB log size, a 128⇥ increase in log size.
For workloads that share data, we expect this gap to be smaller,
as logs are evicted upon lease handoff. With 6TB of NVM
per machine, Assise can scale to thousands of processes even
with 2GB update logs. At 16MB, 100,000s of processes can
be supported.

5.3 Application Benchmarks

We evaluate the performance of a number of common cloud
applications, such as the LevelDB key-value store [33], the
Fileserver and Varmail profiles of the Filebench [75] bench-
marking suite, emulating file and mail servers, and the Min-
uteSort benchmark. We use 3 machines for LevelDB and
Filebench and 5 machines for MinuteSort.
LevelDB. We run a number of single-threaded LevelDB
latency benchmarks using LevelDB’s db_bench, including
sequential and random IO, skewed random reads with 1%
of highly accessed keys, and sequential synchronous writes
(fsync after each write). All benchmarks use a key size of
16B and a value size of 1KB with a working set of 1M KV
pairs. Figure 6 presents the average measured operation la-
tency, as reported by the benchmark.

Assise, Ceph, and NFS perform similarly for reads, where
caching allows them to operate close to hardware speeds. For
non-synchronous writes, NFS is up to 26% faster than Assise,
as these go to its client kernel buffer cache in large batches
(LevelDB has its own write buffer), while Assise is 69% faster
than NFS for synchronous writes that cannot be buffered.
Random IO and synchronous writes incur increasing LevelDB
indexing overhead for all systems. Ceph performs worse than
NFS for writes because it replicates (as does Assise) and

Figure 7: LevelDB random read latencies with warm replica.

Assise performs 22⇥ better. Octopus bypasses the cache and
thus performs worst for reads and better only than Ceph for
writes, as it does not replicate.
Warm replica read latency. Warm replicas reduce read la-
tency for warm data by allowing these reads to be served
from remote NVM, rather than cold storage. For this bench-
mark, we configure Assise to limit the aggregate (LibFS and
SharedFS) cache to 2GB and use the local SSD for cold stor-
age. We then run the LevelDB random read experiment with
a 3GB dataset. We repeat the experiment with two setups:
(1) with 3 hot replicas and (2) with 2 hot and 1 warm replica.
Figure 7 shows a CDF of read latencies. The benchmark ac-
cesses data uniformly at random, causing 33% of the reads to
be warm. Consequently, at the 50th percentile, read latencies
are similar for both configurations (served from cache). At
the 66th percentile, reads in the first setup are served from
SSD and have 2.2⇥ higher latency than warm replica reads
in the second setup. At the 90th percentile, the latency gap
extends to 6⇥.
Filebench. Varmail and Fileserver operate on a working set
of 10,000 files of 16KB and 128KB average size, respectively.
Files grow via 16KB appends in both benchmarks (mail de-
livery in Varmail). Varmail reads entire files (mailbox reads)
and Fileserver copies files. Varmail and Fileserver have write
to read ratios of 1:1 and 2:1, respectively. Varmail leverages
a write-ahead log with strict persistence semantics (fsync
after log and mailbox writes), while Filebench consistency
is relaxed (no fsync). Figure 8 shows average measured
throughput of both benchmarks. Assise outperforms Octo-
pus (the best alternative) by 6.7⇥ for Fileserver and 5.1⇥ for
Varmail. Ceph performs worse than NFS for Varmail due to
stricter persistence requiring it to replicate frequently and due
to MDS contention, as Varmail is metadata intensive.
Optimistic crash consistency. We repeat this benchmark for
Assise in optimistic mode (Assise-Opt) and change Varmail to
use synchronous writes for the mailbox, but non-synchronous
writes for the log. Prefix semantics allow Assise to buffer and

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1021

System Processes Partition [s] Sort [s] Total [s] GB/s
Assise 160 20.3 43.0 63.3 5.1

320 52.1 43.0 95.1 6.7
NFS 160 60.9 79.3 140.2 2.3

320 104.1 84.2 188.3 3.4
DAX 320 – 44.1 – –

Table 4: Average Tencent Sort duration breakdown.

coalesce the temporary log write without losing consistency.
Assise-Opt achieves 2.1⇥ higher throughput than Assise. File-
server has few redundant writes and Assise-Opt is only 7%
faster.

MinuteSort. We implement and evaluate Tencent Sort [46],
the current winner of the MinuteSort external sorting com-
petition [7]. Tencent Sort sorts a partitioned input dataset,
stored on a number of cluster nodes, to a partitioned output
dataset on the same nodes. It conducts a distributed sort con-
sisting of 1) a range partition and 2) a mergesort (cf. MapRe-
duce [32]). Step 1 presorts unsorted input files into ranges,
stored in partitioned temporary files on destination machines.
Step 2 reads these files, sorts their contents, and writes the
output partitions. Each step uses one process per partition; the
parallelism equals the number of partitions. A distributed file
system stores the input, output, and temporary files, implicitly
taking care of all network operations.

We benchmark the MinuteSort Indy category, which re-
quires sorting a synthetic dataset of 100B records with 10B
keys, distributed uniformly at random. Creating a 2GB input
partition per process, we run 160 or 320 processes in paral-
lel, uniformly distributed over 4 machines. MinuteSort does
not require replication, so we turn it off. It calls fsync only
once for each output partition, after the partition is written.
We compare a version running a single Assise file system
with one leveraging per-machine NFS mounts. For Assise,
we configure the temporary and output directories to be colo-
cated with the mergesort processes. We do the same for NFS,
by exporting corresponding directories from each mergesort
node. We conduct three runs of each configuration and report
the average. We use the official competition tools [7] to gen-
erate and verify the input and output datasets. We use equal
dataset sizes to compare Assise and NFS, rather than equal
time. Table 4 shows that Assise sorts up to 2.2⇥ faster than
NFS. Running twice the number of processes only marginally
improves performance, as Assise is bottlenecked by network
bandwidth.

To show that Assise’s POSIX implementation does not
reduce performance, we modify the sort step to map all files
into memory using EXT4-DAX and use processor loads and
non-temporal stores to sort directly in NVM, rather than using
file IO. We can see that the sort phase is 3% slower with DAX.
libc buffers IO in DRAM to write 4KB at a time to NVM,
performing better than direct, interleaved appends of 100B
records.

 1

 10

 100

 1000

Fileserver VarmailTh
ro

ug
hp

ut
 (K

op
s/

s)

Assise
Assise-Opt

NFS
Ceph

Octopus

Figure 8: Avg. Varmail and Fileserver throughput. Log scale.

5.4 Availability

Ceph and Assise are fault tolerant. We evaluate how quickly
these file systems return an application back to full perfor-
mance after the fail-over and recovery situations of §3.4. To
do so, we run LevelDB on the same dataset (§5.3) with a 1:1
read-write ratio and measure operation latency before, during,
and after fail-over and recovery. We report average results
over 5 benchmark runs.
Process fail-over. For this benchmark, we simply kill Lev-
elDB. In this case, the failure is immediately detected by the
local OS and LevelDB is restarted. Ceph can reuse the shared
kernel buffer cache in DRAM, resulting in LevelDB restoring
its database after 1.63s and returning to full performance after
an additional 2.15s, for an aggregate 3.78s fail-over duration.
With Assise, the DB is restored in 0.71s, including recovery
of the log of the failed process and reacquisition of all leases.
Full-performance operations occur after an additional 0.16s,
for an aggregate 0.87s fail-over time. Assise recovers this case
4.34⇥ faster than Ceph, showing that process-local caches do
not impede fast recovery.
OS fail-over. NVM’s performance allows for instant local re-
covery of an OS failure, rather than requiring a backup replica.
To demonstrate, we run the primary in a virtual machine (VM).
We kill the primary VM, then immediately start a new VM
from a snapshot stored in NVM. The snapshot starts in 1.66s.
We restart SharedFS within the new VM, which recovers the
file system within 0.23s. Finally, as in the process fail-over
experiment, LevelDB is restarted and resumes database op-
erations after another 0.68s. The aggregate fail-over time is
2.57s, 40⇥ faster than Ceph’s fail-over to a backup replica
(evaluated next).
Fail-over to hot backup. All following experiments use 2
machines (primary and backup). The LevelDB client pro-
cesses poll the file system’s cluster manager for membership
state, using a standard primary-backup ZooKeeper design pat-
tern for node fail-over [47]. LevelDB initially runs on the
primary, where we inject failures. Failures are detected by
LevelDB clients using a 1s heartbeat timeout via the cluster
manager. Once a node failure is detected, LevelDB immedi-
ately restarts on the backup.

A time series of measured LevelDB operation latencies
during one experiment run is shown in Figure 9. Pre-failure,
we see bursts of low latency in between stretches of higher
latency. This is LevelDB’s steady-state. Bursts show LevelDB

1022 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 9: LevelDB operation latency time series during fail-over
and recovery. Log scale.

writes to its own DRAM log. These are periodically merged
with files when the DRAM log is full, causing writes that are
higher latency (and sometimes blocking with Ceph), as the
writes wait on the log to become available.

We inject a primary failure by killing the primary’s file
system daemon (SharedFS for Assise and OSD for Ceph)
and LevelDB. During primary failure, no operations are ex-
ecuted. It takes 1s to detect the failure and restart LevelDB
on the backup (light shaded box). Due to unclean shutdown,
LevelDB first checks its dataset for integrity before execut-
ing further operations (dark shaded box). For failover, Assise
need only evict the per-process log (up to 1GB) on the backup
hot replica, making fail-over near-instantaneous. LevelDB
returns to full performance in both latency and throughput
230ms after failure detection. Ceph takes 3.7s after failure
detection to return to full performance. However, LevelDB
stalls soon thereafter upon compaction (further dark shaded
box), which involves access to further files, resulting in an
additional 15.6s delay, before reaching steady-state. Ceph’s
long aggregate fail-over time of 23.7s is due to Ceph losing
its DRAM cache, which it rebuilds during LevelDB restart.
Assise reaches full performance after failure detection 103⇥
faster than Ceph. LevelDB performs better on the backup, as
neither file system has to replicate.
Primary recovery. After 30s, we restart the file system dae-
mons on the primary, emulating the time for a machine reboot
from NVM. During this time, many file system operations
occur on the backup that need to be replayed on the primary.
As soon as the primary is back online, we cleanly close the
database on the backup and restart on the primary. Both As-
sise and Ceph allow applications to operate during primary
recovery, but performance is affected. Assise detects outdated
files via epochs and reads their contents from the remote hot
replica upon access. Once read, the local copy is updated,
causing future reads to be local. LevelDB returns to full per-
formance 938ms after restarting it on the recovering primary.

Number of processes

Th
ro

ug
hp

ut
 (o

ps
/s

)

1 3 6 12 24 48 96 192 10
0

1K
10

K
10

0K
1M

5M

Assise Assise−numa Assise−server Orion (emu) Ceph

Figure 10: Scalability of atomic 4KB file operations. Log scale.

Ceph also rebuilds the local OSD, but eagerly. Ceph takes
13.2s before LevelDB serves its first operation due to con-
tention with OSD recovery and suffers another delay of 24.9s
on first compaction, reaching full performance 43.4s after
recovery start. Assise recovers to full performance 46⇥ faster
than Ceph.
Fail-over to cold backup. We measure cascaded LevelDB
fail-over time to an Assise replica with a cold cache. LevelDB
serves its first request on the cold backup 303ms after failure
detection, but with higher latency due to SSD reads. LevelDB
returns to full performance after another 2.5s. At this point,
the entire dataset has migrated back to cache.

5.5 Scalability

We evaluate Assise’s scalability via 1) sharded file opera-
tions under increasing load and increasingly localized lease
management, and 2) parallel email delivery in Postfix [79].

5.5.1 Sharded File Operations

Processes in parallel create, write, and rename 4KB files with
random data in private directories. This benchmark uses 3
machines (6 sockets) and can scale throughput linearly with
the number of processes. To eliminate network bottlenecks
to scalability, we turn replication off.1 Figure 10 presents
average throughput over 5 runs of an increasing number of
processes, each operating on 480K files, balanced over pro-
cessor sockets. Ceph uses 3 sharded MDSes (1 per machine).
However, MDS sharding has negligible impact on Ceph’s
performance.

Ceph’s remote MDSes have high overhead for atomic oper-
ations, as each client has to communicate with remote MDSes.
This design prevents scalability beyond 8Kops/s. We emulate
Orion by restricting CC-NVM to use a single SharedFS lease
manager. In this case, data is stored on local NVM, but atomic
operations still use a remote lease manager. Orion has RDMA
mechanisms that simplify communicating with its MDS, but
these mechanisms cannot be used for operations that affect
multiple inodes (e.g., renames). Orion and Assise both use
RDMA RPCs. While Orion operates in the kernel, our emula-
tion uses user-level RDMA, which is light-weight, and Orion
(emu) outperforms Ceph by 8⇥.

1Due to the small size of our cluster, primary nodes would replicate to
each other and scalability would be limited by per-node link bandwidth. A
larger cluster would replicate to independent machines for each primary.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1023

Number of processes

Th
ro

ug
hp

ut
 (k

 m
ai

ls
/s

)

1 3 6 12 24 48 0.
0

0.
5

1.
0

1.
5

2.
0

Assise−rr Assise−sharded Assise−private Ceph

Figure 11: Postfix mail delivery throughput scalability.

To break down the benefit of local lease management in As-
sise, we progressively shard it, first by server (Assise-server),
then by socket (Assise-numa), and finally by process (Assise).
Assise-server outperforms Orion (emu) by 2.77⇥ and Assise-
numa improves throughput by another 1.93⇥. Assise scales
linearly with the number of processes until it hits NVM write
bandwidth, improving throughput by another 12.86⇥. Assise
outperforms Orion by 69⇥ and Ceph by 554⇥ at scale.

5.5.2 Postfix

We use the unmodified Postfix mail server to measure the per-
formance of parallel mail delivery. A load balancer machine
forwards incoming email from as many client machines as
necessary to maximize throughput to Postfix queue daemons
running on 3 testbed machines, configured as replicas. On
each Postfix machine, a pool of delivery processes pull email
from the machine-local incoming mail queue and deliver it
to user Maildir directories on a cluster-shared distributed file
system. To ensure atomic mail delivery, a Postfix delivery
process writes each incoming email to a new file in a process-
private directory and then renames this file to the recipient’s
Maildir.

We send 80K emails from the Enron dataset [51], with each
email reaching an average of 4.5 recipients. This results in a
total of 360K email deliveries. Each email has an average size
of 200KB (including attachments) and the dataset occupies
70GB. We repeat each experiment 3 times and report average
mail delivery throughput and standard deviation (error bars)
in Figure 11 over an increasing number of delivery processes,
balanced over machines. We compare various Assise configu-
rations and Ceph with 2 MDSes (1 and 3 MDSes performed
similarly).
Round-robin. In the first configuration (Assise-rr) the load
balancer uses a round-robin policy to send emails to mail
queues. Due to a lack of locality, mails delivered to the same
Maildir often require synchronization across machines, caus-
ing CC-NVM to frequently delegate leases remotely, which
increases delivery latencies. Despite this, Assise-rr is able to
outperform Ceph by up to 5.6⇥ at scale. Ceph cannot improve
throughput much further—even with 300 delivery processes,
its throughput improves by 8% versus 48 processes.
Sharded. We shard Maildirs by Enron suborganization over
machines [26]. The load balancer is configured to prefer the
recipient’s shard. For mail messages with multiple recipients,

it picks the shard with the most receivers. In case of mail
queue overload, the load balancer sends mail to a random
unloaded shard. Sharding users in this manner provides up to
20% better performance (Assise-sharded) due to the fact that
repeated deliveries to users of the same clique are likely to
occur on the same server, allowing CC-NVM to synchronize
delivery locally. At 15 processes, we are network-bound due
to replication. Sharding did not improve Ceph’s performance.

Private directories. We shard Maildirs by delivery process,
using process IDs for Maildir subdirectories, thereby elim-
inating the need for synchronization (Assise-private). This
change is not backward compatible with existing mail read-
ers, but it is the logical limit for sharding-based optimization.
Assise-private scales linearly until it is bottlenecked by net-
work bandwidth, but performance is similar to Assise-sharded.
This shows that local synchronization in Assise has minimal
overhead. Ceph performance continues to be gated by the
MDS.

Summary. Our results show that, with careful sharding of
the workload, Assise’s hierarchical coherence allows LibFS
processes to synchronize deliveries locally, providing almost
the same performance and scalability as private directories.

6 Conclusion

Assise is a distributed file system that provides low tail la-
tency, high throughput, scalability, and high availability with
a strong consistency model. To take advantage of low-latency
NVM, Assise demonstrates that filesystem metadata and data
should be colocated with applications. Colocation not only
enables high performance, but also fast recovery. Assise pro-
poses a novel, crash-consistent cache coherence protocol that
can leverage the performance of NVM, while providing lin-
earizability. Assise uses hot replicas in NVM to minimize
application recovery time and ensure data availability, while
leveraging a crash-consistent file system cache-coherence
layer (CC-NVM) to provide scalability. In comparing with
several state-of-the-art file systems, our results show that As-
sise improves write latency up to 22⇥, throughput up to 56⇥,
fail-over time up to 103⇥, and scalability up to 6⇥ versus
Ceph, while providing stronger consistency semantics.
Assise is available at https://github.com/ut-osa/assise.

Acknowledgments. Waleed Reda was supported by a fel-
lowship from the Erasmus Mundus Joint Doctorate in Dis-
tributed Computing (EMJD-DC), funded by the European
Commission (EACEA) (FPA 2012-0030). This work is sup-
ported in part by ERC grant 770889, NSF grant CNS-1900457,
and the Texas Systems Research Consortium. This work is
also supported by the National Research Foundation of Ko-
rea (NRF) grant funded by the Korea government (MSIT)
(2020R1C1C1014940). We thank Intel for access to the eval-
uation testbed. We thank the anonymous reviewers and our
shepherd, Kim Keeton, for their comments and feedback.

1024 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Amazon Elastic Block Store (EBS). https://aws.amazon.com/ebs/.

[2] Amazon Elastic File System (EFS). https://aws.amazon.com/efs/.

[3] Amazon S3. https://aws.amazon.com/s3/.

[4] Apache Crail. http://crail.apache.org/.

[5] Intel Memory Latency Checker. https://software.intel.com/en-
us/articles/intelr-memory-latency-checker.

[6] Octopus - github repository. https://github.com/thustorage/
octopus.

[7] Sort benchmark home page. http://sortbenchmark.org/.

[8] syscall_intercept. https://github.com/pmem/
syscall_intercept.

[9] Supporting filesystems in persistent memory. https://lwn.net/
Articles/610174/, Sept. 2014.

[10] Apache ZooKeeper. https://zookeeper.apache.org, Aug. 2017.

[11] Persistent memory programming, Aug. 2017. http://pmem.io/.

[12] The Sprite Operating System. https://www2.eecs.berkeley.edu/
Research/Projects/CS/sprite/sprite.html, Aug. 2017.

[13] Accelio, Aug. 2018. https://github.com/accelio/accelio.

[14] Intel Optane DC persistent memory, Mar. 2019. http://
www.intel.com/optanedcpersistentmemory.

[15] Intel SSD DC P4610 1.6TB, Apr. 2019. Google Shopping search.
Lowest non-discount price.

[16] NFS - Xfstests, 2019. http://wiki.linux-nfs.org/wiki/
index.php?title=Xfstests&oldid=5652.

[17] NVM Express over Fabrics 1.1, 2019. https://nvmexpress.org/
wp-content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-
Ratified.pdf.

[18] Xfstests, 2019. https://git.kernel.org/pub/scm/fs/xfs/
xfstests-dev.git/.

[19] DDR4-3200 DRAM ECC Registered 128GB, Oct. 2020. Google
Shopping search. Lowest non-discount price.

[20] Intel Optane DC Persistent Memory Module 128GB, Oct. 2020. Google
Shopping search. Lowest non-discount price.

[21] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R. Ganger, and
G. Amvrosiadis. File systems unfit as distributed storage backends:
Lessons from 10 years of Ceph evolution. In 27th ACM Symposium on
Operating Systems Principles, SOSP ’19, 2019.

[22] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In ACM SIGCOMM 2008 Conference on
Data Communication, SIGCOMM ’08, page 63–74, 2008.

[23] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S.
Roselli, and R. Y. Wang. Serverless network file systems. In Fifteenth
ACM Symposium on Operating Systems Principles, SOSP ’95, pages
109–126, 1995.

[24] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The multikernel: A new
os architecture for scalable multicore systems. In ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP ’09, pages 29–44,
2009.

[25] R. Birke, I. Giurgiu, L. Y. Chen, D. Wiesmann, and T. Engbersen.
Failure analysis of virtual and physical machines: Patterns, causes
and characteristics. In 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN ’14, pages
1–12, 2014.

[26] A. D. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder.
Grapevine: An exercise in distributed computing. In Eighth ACM
Symposium on Operating Systems Principles, SOSP ’81, pages 178–
179, 1981.

[27] M. Burrows. Efficient data sharing. PhD thesis, University of Cam-
bridge, UK, 1988.

[28] Ceph Documentation. Differences from POSIX. http://
docs.ceph.com/docs/master/cephfs/posix/.

[29] Y. Chen, Y. Lu, and J. Shu. Scalable RDMA RPC on reliable connection
with efficient resource sharing. In 14th EuroSys Conference 2019, pages
1–14, 2019.

[30] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Optimistic crash consistency. In 24th ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 228–243, 2013.

[31] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Consistency without ordering. In 10th USENIX Conference
on File and Storage Technologies, FAST’12, 2012.

[32] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. In 6th Symposium on Operating Systems Design and
Implementation, OSDI’04, 2004.

[33] J. Dean and S. Ghemawat. LevelDB: A Fast Persistent Key-Value
Store. https://opensource.googleblog.com/2011/07/leveldb-
fast-persistent-key-value-store.html, 2011.

[34] M. Dong, H. Bu, J. Yi, B. Dong, and H. Chen. Performance and
protection in the ZoFS user-space NVM file system. In 27th ACM
Symposium on Operating Systems Principles, pages 478–493, 2019.

[35] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro. FaRM: Fast
remote memory. In 11th USENIX Conference on Networked Systems
Design and Implementation, pages 401–414, 2014.

[36] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in globally distributed storage
systems. In 9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 61–74, 2010.

[37] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System.
In 19th ACM Symposium on Operating Systems Principles, SOSP ’03,
pages 29–43, 2003.

[38] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mechanism
for distributed file cache consistency. In 12th ACM Symposium on
Operating Systems Principles, SOSP ’89, pages 202–210, 1989.

[39] T. Haynes and D. Noveck. Network file system (NFS) version 4
protocol, Mar. 2015. https://tools.ietf.org/html/rfc7530.

[40] J. L. Hennessy and D. A. Patterson. Computer Architecture, Sixth
Edition: A Quantitative Approach. 6th edition, 2017.

[41] D. Hitz, J. Lau, and M. Malcolm. File system design for an NFS
file server appliance. In USENIX Winter 1994 Technical Conference,
WTEC’94, 1994.

[42] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. N.
Sidebotham, and M. West. Scale and performance in a distributed file
system. SIGOPS Oper. Syst. Rev., 21(5):1–2, Nov. 1987.

[43] InsideHPC. Intel Optane DC persistent memory comes to Oracle
Exadata X8M, Sept. 2019. https://insidehpc.com/2019/09/
intel-optane-dc-persistent-memory-comes-to-oracle-
exadata-x8m/.

[44] N. S. Islam, M. Wasi-ur Rahman, X. Lu, and D. K. Panda. High
performance design for HDFS with byte-addressability of NVM and
RDMA. In 2016 International Conference on Supercomputing, ICS
’16, pages 8:1–8:14, 2016.

[45] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.
Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson. Basic
performance measurements of the Intel Optane DC Persistent Memory
Module, Apr. 2019. https://arxiv.org/abs/1903.05714v2.

[46] J. Jiang, L. Zheng, J. Pu, X. Cheng, C. Zhao, M. R. Nutter, and J. D.
Schaub. Tencent sort. Technical report, Tencent Corporation, 2016.
http://sortbenchmark.org/TencentSort2016.pdf.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1025

[47] F. Junqueira and B. Reed. ZooKeeper: Distributed Process Coordina-
tion. O’Reilly Media, Inc., 1st edition, 2013.

[48] R. Kadekodi, S. K. Lee, S. Kashyap, T. Kim, A. Kolli, and V. Chi-
dambaram. SplitFS: Reducing software overhead in file systems for
persistent memory. In 27th ACM Symposium on Operating Systems
Principles, SOSP ’19, page 494–508, 2019.

[49] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA efficiently
for key-value services. ACM SIGCOMM Computer Communication
Review, 44(4):295–306, 2015.

[50] D. Kim, A. Memaripour, A. Badam, Y. Zhu, H. H. Liu, J. Padhye,
S. Raindel, S. Swanson, V. Sekar, and S. Seshan. Hyperloop: Group-
based NIC-offloading to accelerate replicated transactions in multi-
tenant storage systems. In 2018 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’18, pages 297–312, 2018.

[51] B. Klimt and Y. Yang. The Enron corpus: A new dataset for email
classification research. In European Conference on Machine Learning,
pages 217–226. Springer, 2004.

[52] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson.
Strata: A cross media file system. In 26th Symposium on Operating
Systems Principles, SOSP ’17, pages 460–477, 2017.

[53] T. Le, J. Stern, and S. Briscoe. Fast memcpy with SPDK and Intel I/OAT
DMA engine, Apr. 2017. https://software.intel.com/en-us/
articles/fast-memcpy-using-spdk-and-ioat-dma-engine.

[54] S. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram. RECIPE:
Reusing concurrent in-memory indexes for persistent memory. In 27th
ACM Symposium on Operating Systems Principles, 2019.

[55] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Tachyon:
Reliable, memory speed storage for cluster computing frameworks. In
ACM Symposium on Cloud Computing, SOCC ’14, pages 6:1–6:15,
2014.

[56] H. Li, Y. Zhang, D. Li, Z. Zhang, S. Liu, P. Huang, Z. Qin, K. Chen, and
Y. Xiong. Ursa: Hybrid block storage for cloud-scale virtual disks. In
Fourteenth EuroSys Conference 2019, EuroSys ’19, pages 15:1–15:17,
2019.

[57] K. Li and P. Hudak. Memory coherence in shared virtual memory
systems. ACM Trans. Comput. Syst., 7(4):321–359, Nov. 1989.

[58] Y. Lu, J. Shu, Y. Chen, and T. Li. Octopus: An RDMA-enabled dis-
tributed persistent memory file system. In 2017 USENIX Annual Tech-
nical Conference, USENIX ATC ’17, pages 773–785, 2017.

[59] P. MacArthur and R. D. Russell. A performance study to guide RDMA
programming decisions. In IEEE 14th International Conference on
High Performance Computing and Communication and IEEE 9th In-
ternational Conference on Embedded Software and Systems (HPCC-
ICESS), pages 778–785, 2012.

[60] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier.
The new ext4 filesystem: current status and future plans. In Linux
Symposium, volume 2, June 2007.

[61] Mellanox. Mellanox Introduces Revolutionary DPU
based SmartNICs for Making Secure Cloud Possible, 2019.
https://blog.mellanox.com/2019/08/mellanox-introduces-
revolutionary-smartnics-for-making-secure-cloud-
possible/.

[62] C. Metz. The epic story of Dropbox’s exodus from the Amazon
cloud empire, Mar. 2016. https://www.wired.com/2016/03/epic-
story-dropboxs-exodus-amazon-cloud-empire/.

[63] J. Mickens, E. B. Nightingale, J. Elson, K. Nareddy, D. Gehring, B. Fan,
A. Kadav, V. Chidambaram, and O. Khan. Blizzard: Fast, cloud-scale
block storage for cloud-oblivious applications. In 11th USENIX Con-
ference on Networked Systems Design and Implementation, NSDI ’14,
pages 257–273, 2014.

[64] C. Mitchell, Y. Geng, and J. Li. Using one-sided RDMA reads to build
a fast, CPU-efficient key-value store. In USENIX Annual Technical
Conference, pages 103–114, 2013.

[65] J. Mohan, A. Martinez, S. Ponnapalli, P. Raju, and V. Chidambaram.
Crashmonkey and ACE: Systematically testing file-system crash con-
sistency. ACM Trans. Storage, 15(2), Apr. 2019.

[66] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,
D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman,
and S. Yang. The RAMCloud storage system. ACM Trans. Comput.
Syst., 33(3):7:1–7:55, Aug. 2015.

[67] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. All file systems are not
created equal: On the complexity of crafting crash-consistent applica-
tions. In 11th USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, pages 433–448, 2014.

[68] H. Qiu, X. Wang, T. Jin, Z. Qian, B. Ye, B. Tang, W. Li, and S. Lu.
Toward effective and fair RDMA resource sharing. In 2nd Asia-Pacific
Workshop on Networking, pages 8–14, 2018.

[69] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham. PebblesDB:
Building Key-Value Stores using Fragmented Log-Structured Merge
Trees. In 26th ACM Symposium on Operating Systems Principles,
SOSP ’17, 2017.

[70] A. Rosenbaum and A. Margolin. Dynamically-Connected Transport,
2018. Talk. 14th Annual Open Fabrics Alliance Workshop.

[71] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS: A disseminated,
distributed OS for hardware resource disaggregation. In 13th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
’18, pages 69–87, 2018.

[72] SNIA. NVM Programming Model (NPM) Version 1.2, June 2017.

[73] M. Stonebraker. Operating system support for database management.
Commun. ACM, 24(7):412–418, July 1981.

[74] Y. Taleb, R. Stutsman, G. Antoniu, and T. Cortes. Tailwind: Fast and
atomic RDMA-based replication. In 2018 USENIX Annual Technical
Conference, USENIX ATC ’18, pages 851–863, 2018.

[75] V. Tarasov, E. Zadok, and S. Shepler. Filebench: A flexible framework
for file system benchmarking. USENIX ;login:, 41(1), 2016.

[76] S.-Y. Tsai, Y. Shan, and Y. Zhang. Disaggregating persistent memory
and controlling them remotely: An exploration of passive disaggregated
key-value stores. In 2020 USENIX Annual Technical Conference,
USENIX ATC ’20, pages 33–48, 2020.

[77] R. van Renesse and F. B. Schneider. Chain replication for supporting
high throughput and availability. In 6th Symposium on Operating
Systems Design and Implementation, OSDI’04, 2004.

[78] B. K. R. Vangoor, V. Tarasov, and E. Zadok. To FUSE or not to FUSE:
Performance of user-space file systems. In 15th USENIX Conference
on File and Storage Technologies, FAST’17, pages 59–72, 2017.

[79] W. Venema. Postfix project. http://www.postfix.org/.

[80] Y. Wang, M. Kapritsos, Z. Ren, P. Mahajan, J. Kirubanandam, L. Alvisi,
and M. Dahlin. Robustness in the Salus scalable block store. In 10th
USENIX Conference on Networked Systems Design and Implementa-
tion, NSDI ’13, pages 357–370, 2013.

[81] S. Watanabe. Solaris 10 ZFS Essentials. Prentice Hall Press, USA, 1st
edition, 2010.

[82] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn.
Ceph: A scalable, high-performance distributed file system. In 7th
Symposium on Operating Systems Design and Implementation, OSDI
’06, pages 307–320, 2006.

[83] J. Xu, J. Kim, A. Memaripour, and S. Swanson. Finding and fixing
performance pathologies in persistent memory software stacks. In 24th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’19, pages 427–439, 2019.

[84] J. Xu and S. Swanson. NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories. In 14th USENIX Conference on
File and Storage Technologies, FAST ’16, pages 323–338, 2016.

1026 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[85] J. Yang, J. Izraelevitz, and S. Swanson. Orion: A distributed file system
for non-volatile main memory and RDMA-capable networks. In 17th
USENIX Conference on File and Storage Technologies, FAST ’19,
pages 221–234, 2019.

[86] ZDNet. Google cloud taps new Intel memory module for SAP
HANA workloads, July 2018. https://www.zdnet.com/article/
google-cloud-taps-new-intel-memory-module-for-sap-
hana-workloads/.

[87] ZDNet. Baidu swaps DRAM for Optane to power in-memory
database, Aug. 2019. https://www.zdnet.com/article/baidu-
swaps-dram-for-optane-to-power-in-memory-database/.

[88] P. Zuo, Y. Hua, and J. Wu. Write-optimized and high-performance
hashing index scheme for persistent memory. In 13th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI ’18,

pages 461–476, 2018.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1027

Persistent State Machines for Recoverable In-memory Storage Systems
with NVRam

Wen Zhang
UC Berkeley

Scott Shenker
UC Berkeley/ICSI

Irene Zhang
Microsoft Research/University of Washington

Abstract
Distributed in-memory storage systems are crucial for meet-
ing the low latency requirements of modern datacenter ser-
vices. However, they lose all state on failure, so recovery is ex-
pensive and data loss is always a risk. Persistent memory (PM)
offers the possibility of building fast, persistent in-memory
storage; however, existing PM systems are built from scratch
or require heavy modification of existing systems. To rectify
these problems, this paper presents Persimmon, a PM-based
system that converts existing distributed in-memory storage
systems into persistent, crash-consistent versions with low
overhead and minimal code changes.

1 Introduction
In the past decade, distributed in-memory storage systems
have become ubiquitous. Facebook and Twitter have petabytes
of in-memory storage [2, 75], and in-memory replicated sys-
tems such as NOPaxos [58] and TAPIR [113] can process
transactions within microseconds while providing consistency
and fault-tolerance. As datacenter networks become faster and
kernel bypass removes OS bottlenecks, only in-memory stor-
age systems will be able to keep up with network speeds.

Unfortunately, in-memory storage systems have a crucial
drawback: their lack of durability means that failed nodes
must recover from a replica or another source (e.g., a persis-
tent back-end database), which can be extremely slow. For
example, a Facebook memcached cluster can take hours to
regain full capacity if repopulated from another “warm” clus-
ter, or days if repopulated from backend storage [75]. Even
worse, state can be permanently lost if all replicas crash such
as in a full datacenter failure. To reduce the impact of failures,
many popular in-memory systems (e.g., Redis [85], RAM-
Cloud [76]) support persistence, but it requires additional,
complex code and/or incurs high performance overhead.

Persistent memory (PM) offers a promising solution for
in-memory services. It is durable, offers performance close to
DRAM, and is increasingly available in large sizes. However,
PM systems require crash consistency [7, 57, 71, 79] (i.e., no
system invariants are violated on a crash), which is compli-

cated and expensive to enforce. Maintaining crash consistency
requires that operations are failure-atomic [45]; for example,
on crashes, an operation’s deallocations and pointer updates
must either atomically succeed or fail to avoid violating the
invariant that pointers do not point to deallocated memory.

To ensure failure atomicity, PM systems must carefully
flush volatile CPU state at specific times and possibly use
write-ahead logging or other techniques to correctly recover
from failures. These added flushes and writes impose signifi-
cant overhead. As a result, most existing PM storage systems
are carefully written from scratch for correctness and per-
formance; even then, none can achieve the performance of
today’s in-memory systems. Recent work, like RECIPE [57]
and MOD [39], aim to reduce application complexity by con-
verting existing data structures to persistence on PM; however,
because they exploit certain data structure properties (e.g.,
non-blocking synchronization), they are not suited to all in-
memory storage systems.

This paper aims to let existing in-memory storage systems
more easily reap the benefits of persistent memory. We make
the key observation that distributed systems are typically de-
signed as RPC-processing state machines. State machines
are an ideal abstraction for PM because: (1) they encapsulate
application state for recovery; (2) their operations offer clear
failure-atomic regions; and (3) their state can be recreated at
any time by re-executing operations.

Based on this insight, we present Persimmon, a PM-based
system that converts existing in-memory distributed storage
systems into durable, crash-consistent versions with low over-
head and minimal code changes. Persimmon offers a new
abstraction for building PM applications: persistent state ma-
chines (PSM). PSMs offer a simple guarantee: once an op-
eration on the PSM returns, its side-effects on the PSM will
never be lost. PSM operations are also failure-atomic: if the
operation did not return before a crash, either the entire oper-
ation will be applied after the crash or none of it. PSMs can
run arbitrary application code; however, like other state ma-
chines (e.g., replicated state machines), PSM operations must
not have external dependencies (e.g., they cannot open file

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1029

descriptors), must be deterministic, and are executed sequen-
tially. As a result, Persimmon does not support multi-threaded
applications that apply operations concurrently.

To minimize the performance overhead of accessing PM
on the request processing path, Persimmon keeps two state
machine copies, one in DRAM and one in PM. When the ap-
plication invokes a PSM operation, Persimmon first executes
the operation on the DRAM copy. If the operation is read-only,
Persimmon returns. If the operation is read-write, Persimmon
persistently logs the operation before returning. This design
limits the critical path to DRAM for read-only operations and
one sequential write to PM for read-write operations; how-
ever, it requires both a DRAM and a PM state machine copy,
which can be large for in-memory storage systems.

On failure, Persimmon can recover the PSM by replay-
ing the persistent log. However, to minimize recovery time,
Persimmon asynchronously keeps the persistent state ma-
chine snapshot in PM up-to-date. The state machine abstrac-
tion lets Persimmon update the PM snapshot with a crash-
consistent shadow execution of each PSM operation, which
is then removed from the log. This design is crucial for large
in-memory storage systems that might have terabytes of data.
To recover, Persimmon simply copies the PM snapshot to
DRAM, processes the remaining persistent log, and restarts
the application. Our design uses a background process, which
runs on another CPU, to perform the shadow execution, trad-
ing off the use of a CPU for faster recovery times.

From this description, it is clear that Persimmon minimizes
the overhead of persistence on the request processing path.
However, to achieve reasonable recovery times, the crash-
consistent shadow execution of the log must also be efficient,
so the log does not grow too large. Most of the difficult tech-
nical challenges lie in optimizing this shadow execution, and
we are not aware of similar work that addresses this particular
issue. Note that despite these technical challenges, using a per-
sistent log is preferable to checkpointing for large in-memory
storage systems that might have terabytes of data.

We use Persimmon to persist two in-memory distributed
systems: Redis and TAPIR [113]. We implement both systems
on Linux and with kernel-bypass networking. We evaluate
Persimmon on three servers with 3 TB of Intel® Optane™ DC
Persistent Memory and found:
• On a 90% read-heavy YCSB workload, Persimmon incurs

no discernible overhead to the latency and throughput of
standard Redis; and near-zero latency overhead and 5%
throughput overhead over kernel-bypass Redis.

• On the Retwis benchmark, Persimmon incurs no dis-
cernible latency overhead and 5%–8% throughput overhead
for both standard and kernel-bypass TAPIR.

Furthermore, on gigabyte datasets, both Redis and TAPIR can
recover within 15 s after a crash. Porting each application to
Persimmon required less than 150 lines of code changes.

Although this paper mainly focuses on porting existing in-
memory applications to PM, Persimmon also simplifies the

development of future PM application. Even with high-level
libraries, like Intel’s PMDK [80], it remains difficult to write
PM code that is both fast and correct. In contrast, our PSM ab-
straction lets programmers write state machine code targeting
regular memory, then Persimmon automatically provides per-
sistence while correctly maintaining crash consistency with
low overhead. Persimmon thus offers a solution for develop-
ing new, high-performance persistent applications as easily
as developing in-memory applications.

2 Persimmon Overview
This section gives an overview of Persimmon, including its
design goals and API, and defines the requirements and guar-
antees of the persistent state machine model. Persimmon is de-
signed for the x86-64 processor with Intel® Optane™ DC Per-
sistent Memory [46, 108]. We assume an underlying POSIX-
based OS due to Persimmon’s use of fork; however, the design
could be modified for other environments.

2.1 Design Goals

We identify three goals for Persimmon’s design.
Minimal Application Changes. Existing in-memory stor-
age systems are highly optimized for low latency in everything
from data structures to memory allocators. To maintain these
optimizations and reduce programmer effort, Persimmon’s
first goal is to minimize changes to existing application code.
Strong Guarantees. Reasoning about application state af-
ter a crash is difficult for PM applications [61,62]. To simplify
applications and ensure crash consistency, Persimmon’s sec-
ond goal is to provide strong and clear persistence guarantees.
Good Performance. In-memory storage systems must re-
spond to requests within microseconds, so they cannot afford
the high cost of existing persistence mechanisms (e.g., log-
ging to disk). To provide persistence with PM, Persimmon’s
last goal is to impose less than a microsecond of latency over-
head on in-memory systems with no persistence while also
providing fast recovery times on the order of seconds.

2.2 Persimmon Persistent State Machine Model

Persimmon targets distributed systems deployed within a sin-
gle datacenter that largely keep their state in memory and
offer high-performance RPC processing. We assume the ap-
plication state needed for recovery can be encapsulated in a
persistent state machine (PSM) with the following properties:
• Does not have external dependencies. The state machine

must contain no references to state outside the application
process’s address space; e.g., it cannot have file descriptors
or open sockets.

• Executes deterministically. Each operation executes iden-
tically every time with no dependence on external inputs
(e.g., the current time, random numbers) other than the
operation arguments.

• Has no external side-effects. State machine operations must
perform only computation and memory allocation and de-

1030 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Persimmon Interface
• psm_init()→ bool - Initialization function; returns true

if the application is in recovery.
• psm_invoke_rw(op) - Invoke read-write op with persis-

tence on the state machine.
• psm_invoke_ro(op) - Invoke read-only op without persis-

tence on the state machine.

Figure 1: Persistent state machine API implemented by Persimmon.

allocation (e.g., mmap and munmap). They must not invoke
code with side-effects outside the application process (e.g.,
syscalls other than memory allocation).

These properties are common to state machine abstractions,
and are required for correct shadow execution with Persim-
mon. Similar to replicated state machines (RSMs), persis-
tent state machines require that operations execute sequen-
tially for determinism. Due to the popularity of RSMs in the
datacenter, we believe this requirement to be reasonable for
many applications. For applications that require concurrency,
it may be possible to apply existing techniques developed for
RSMs [52, 72]; however, we defer the exploration of these
techniques to future work.

2.3 Persimmon Persistent State Machine API

Persimmon provides a minimal application programming in-
terface through its user-level library. The Persimmon library
presents three functions to applications (Figure 1) that: (1)
initialize the persistent state machine, (2) invoke a read-write
PSM operation and (3) invoke a read-only operation. We of-
fer the third function as an optimization for RPCs that only
inspect state but do not update it, since many in-memory ap-
plications have a read-heavy workload. Programmers use the
invocation functions to call existing application functions
(e.g., execution of Redis commands on Redis data structures).
Persimmon directly executes these functions on the PSM, so
they must follow the properties laid out above.

An application starts by invoking the psm_init function,
which returns a flag indicating whether the application has
just recovered from a crash. If recovered, the persistent state
machine will be returned to its state after the last completed
operation. If not in recovery, the application should initialize
the state machine by invoking an initialization operation (e.g.,
creating an empty Redis hash table) with psm_invoke_rw. The
application can then begin RPC processing. On each RPC, we
expect the application to invoke psm_invoke_rw if the RPC
updates application state that is later needed for recovery.
For correct recovery, the application must invoke the PSM
operation before responding to the RPC. For RPCs that only
access application state and do not make updates that must
later be recovered (e.g., Redis GET operations), the application
can use psm_invoke_ro for lower overhead.

Application

Application Process

Persimmon Runtime

DRAM
State

Machine

invoke

execute
Persimmon Runtime

PM
State

Machine

shadow execute

RPC

Shadow Process

Shared
Memory

Persistent
Operation

Log

insert

Figure 2: Persimmon runtime.

2.4 Persimmon Persistent State Machine Guarantees

Persimmon ensures three guarantees for invoked PSM oper-
ations. The first applies to all invoked operations, while the
remaining two only apply to psm_invoke_rw operations.
• Linearizability. Persimmon guarantees that all state ma-

chine operations are run in a serial order and that serial
order reflects the order in which operations are submitted
to Persimmon [40].

• Durability. Persimmon guarantees that persistent, read-
write state machine operations are never lost once they re-
turn, regardless of machine failures. Operations will never
roll back and their state modifications are never lost.

• Failure Atomicity. Persimmon guarantees that state ma-
chine operations are failure-atomic. If the operation has not
returned before failure, then on recovery, the state machine
will reflect a state entirely before the operation has run or
entirely after.

While these guarantees are simple, they are sufficient to build
a crash consistent application in the face of failures. Because
each state machine operation is failure-atomic, applications
can easily maintain crash consistency by grouping updates
to related data structures into a single operation and ensuring
that no invariants are violated at the end of each operation.

3 Persimmon Runtime
Persimmon runs in two processes to support executing unmod-
ified state machine code in DRAM and, for shadow execution,
instrumented state machine code on PM. The application pro-
cess runs the application and the DRAM state machine copy,
while the shadow process runs the crash-consistent, shadow
execution of the PM state machine copy. Persimmon’s runtime
shares the application process’ address space with the rest
of the application and completely owns the shadow process.
Figure 2 summarizes Persimmon’s runtime organization.

3.1 Data Structures

To ensure fast recovery and failure atomicity for the persistent
state machine, Persimmon maintains two in-memory state
machine snapshots and the data structures listed in Table 1.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1031

Table 1: Data structures maintained by Persimmon.

Name Persistent? Data structure Purpose Elements Operations

Operation log Yes Fixed-size queue Records invoked operations Serialized operations push, pop
DRAM snapshot No — To execute state machine

operations on critical path
— —

PM snapshot Yes — Persists effects of operations — —
Region table Yes Resizable array Records memory used

by PM snapshot
〈addr,size, path〉 insert, remove

Undo log Yes Resizable stack Provides crash consistency
for PM snapshot

Data entry: 〈addr,size,data〉
Commit entry:〈new_tail〉

append, clear

We detail the snapshots and data structures below:
• Operation log. Persimmon records each invoked read-write

operation in the operation log. The application and shadow
processes use the operation log as a shared single producer,
single consumer queue.

• DRAM state machine snapshot. Persimmon uses this snap-
shot to execute state machine operations on the critical path.
It is always up-to-date and is used to serve all read-only
operations without persistence.

• PM state machine snapshot. Persimmon asynchronously
updates this snapshot using shadow execution. The snap-
shot is up-to-date up to the end of the log.

• Region table. Persimmon records memory allocated by
the PM state machine snapshot. The PM snapshot is man-
aged at the granularity of PM regions, each of which is a
contiguous chunk of PM backed by a file.

• Undo log. Persimmon uses write-ahead logging for crash-
consistent shadow execution. Persimmon instruments state
machine code and record every overwritten memory value
in the undo log to ensure that a partially executed state
machine operation can be rolled back on recovery.

As Persimmon processes state machine operations, it appends
them to the operation log while the shadow process digests
the log by re-executing each operation on the PM snapshot.
Operations in the log represent how far the PM snapshot lags
behind the DRAM snapshot. On recovery, operations in the
log must be re-executed on the PM snapshot before the appli-
cation can restart. We keep the log size below a fixed upper
bound to ensure that the PM snapshot does not lag the DRAM
snapshot by too much and require too much re-execution
on recovery. Persimmon implements the operation log as a
circular buffer with head and tail pointers, and assumes no
operation’s arguments are larger than the log size.

3.2 Initialization and Normal Execution

When the application calls psm_init, Persimmon initializes
its runtime in the following way:

1. Allocate the operation log.
2. Start the shadow process.
3. Initialize the DRAM and PM state machine snapshots.
4. Initialize the region table with PM region metadata (§ 3.4).
5. Allocate the undo log as a persistent array of entries (§ 4.2).

As the application runs, it invokes state machine operations

through Persimmon, which are recorded to the log and eventu-
ally applied to the PSM. For each operation invoked through
psm_invoke_rw, Persimmon performs the following:

1. Executes the operation on the DRAM snapshot.
2. Persists the operation as an entry in the operation log;
3. If the operation log is full, blocks until the shadow process

digests more operations, freeing up space in the log.
4. Asynchronously, the shadow process re-executes each oper-

ation in the log on the PM snapshot using crash-consistent
shadow execution (§ 4).

For operations invoked with psm_invoke_ro, Persimmon
skips Steps 2–4. Persimmon blocks the application if the
operation log is full. This design limits recovery time but
requires that the shadow execution not lag behind too much
as the application runs state machine operations. As a result,
if the application invokes too many read-write state machine
operations at a time, Persimmon will slow application per-
formance significantly. We explore this phenomenon in our
evaluation (§ 7.2.1).

3.3 Persimmon Shadow Process

Persimmon uses a separate process to perform shadow execu-
tion (the “shadow process”), where it switches to a dynami-
cally instrumented version of the application for running the
persistent state machine. Persimmon uses this instrumented
version to manage persistent memory and ensure failure atom-
icity, which we discuss in §§ 3.4 and 4.3, respectively.

During initialization, Persimmon creates the shadow pro-
cess by using fork to create a copy of the application process.
Immediately after forking, the shadow process checkpoints it-
self using an existing Linux process checkpointing tool. This
checkpoint conveniently stores essential process state that
is orthogonal to Persimmon’s main functionality (e.g., the
process ID), and serves as a “base image” on which Persim-
mon manages PM regions. This initialization must happen
before the application sets up external dependencies (e.g.,
opens sockets) to avoid causing process checkpointing to fail.

After taking the checkpoint, Persimmon replaces the
shadow process’s address space with persistent memory by
creating a PM region for each existing application memory
region. Specifically, Persimmon iterates through the existing
memory regions using Linux’s /proc/self/maps interface.
For each region, Persimmon writes its content to a new PM

1032 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

file, mmaps the file into the address space over the existing
region, and inserts an entry into the PM region table. We
skip over read-only regions, which we assume will never be-
come writable; the stack region, which we assume contains
no persistent state (§ 4.3); and the operation log.

Finally, the shadow process begins shadow-executing state
machine operations from the operation log. Although it exe-
cutes the same state machine code as the application process
does, the code is executed on the shadow process’ persis-
tent address space, and so any modifications to memory are
reflected in the PM state machine snapshot. However, Per-
simmon cannot directly execute unmodified application code
on PM because it is not failure atomic and allocates DRAM,
not PM. Instead, the shadow process turns on dynamic instru-
mentation to capture memory allocation and writes in order
to allocate PM and write to it in a failure-atomic manner.

3.4 Persistent Memory Management

To be able to recover the shadow process after a crash, Per-
simmon must manage its persistent memory and keep track
of its metadata persistently. Persimmon manages the shadow
process’s persistent memory at the granularity of PM regions,
each of which is contiguous range of persistent virtual mem-
ory. A PM region’s content is stored in a file in a direct-
access (DAX) file system [59] on persistent memory; the
file is mmap’ed into the shadow process’ address space, al-
lowing access to PM. Persimmon uses a persistent region
table to manage metadata for PM regions; each element in the
table has the form 〈addr,size, path〉, denoting a PM region
[addr,addr+ size) backed by a file located at path.

Persimmon keeps the region table in an immutable file in
PM. Whenever the region table changes, Persimmon writes
the entire updated table to a new file and removes the old.
Any PM region files that are “orphaned” after a region table
update are garbage-collected after the new region table is
written. This mechanism provides failure atomicity for region
table updates; although expensive, it is easy to implement and
invoked only rarely. Because the table is small, Persimmon
keeps a cached copy of it in DRAM.

Every time the shadow state machine allocates or frees
memory, Persimmon must translate the operation to allocate
or free PM regions instead. Persimmon uses dynamic instru-
mentation to intercept mmap and munmap system calls, which
are typically made by the application’s memory allocator.1

Persimmon’s PM management thus operates underneath the
memory allocator and does not constrain the application to
use one specific allocator.

Persimmon currently supports mmap calls that allocate
anonymous memory with no address requirement / hint or
backing file. For a mmap call of this type, Persimmon creates
a PM region of the allocated length and transparently maps
the PM region to the intended address. We currently don’t

1A third memory management system call is brk, which is not supported
by our current implementation but can be similarly supported.

distinguish among page protection bits and assume that all
allocated pages have all permissions. Persimmon supports
munmap calls that free a single PM region or a part thereof,
updating the region table before letting the calls through.

4 Crash-Consistent Shadow Execution
Persimmon’s shadow execution uses dynamic instrumenta-
tion and undo logging to provide failure atomicity for state
machine operations executing arbitrary application code. We
chose dynamic binary instrumentation over static compiler
instrumentation because application code often calls func-
tions from dynamically linked external libraries (e.g., string
functions in libc), which are only available in binary form
at runtime. However, dynamic instrumentation comes with
higher overhead than static, and a future direction is to im-
prove instrumentation performance by combining static and
dynamic instrumentation [96].

4.1 Overview

During shadow execution, Persimmon uses an undo log in PM
to record the value at a persistent location before it is over-
written, similar to many prior systems [9, 16, 33, 81, 88, 99].
To support arbitrary application code in the PSM, Persimmon
uses memory-level physical logging so that it can roll back
an incomplete state machine operation at recovery time by
copying back the previous memory values. The undo log is a
sequence of entries, which come in two types:
• A data entry records the old value at a persistent location.
• A commit entry signifies that a state machine operation has

finished; it contains a sole field new_tail recording what
the operation log’s tail pointer should advance to after the
current operation is consumed.

The undo log supports append and clear operations. Each
operation blocks until it persists.

In the shadow process, Persimmon instruments every write
to a persistent location to append a data entry to the undo
log before letting the write through. When a state machine
operation completes, we commit the operation and remove it
from the operation log following these steps:

1. Flush all previous writes and wait for them to persist.
2. Compute the updated tail pointer for the operation log and

append a commit entry to the undo log.
3. Remove the operation from the log by advancing the tail

pointer as computed.
4. Clear the undo log.
The recovery procedure either finishes committing the opera-
tion in progress according to the commit entry if one exists,
or rolls it back (§ 5).

Undo logging dominates the shadow state machine’s per-
formance because (1) it could add additional work to every
memory write, and (2) an undo log append must wait for per-
sistence to PM, which is slow. Therefore, our design aims to
reduce the number of undo log appends and the amount of
extra code executed per application memory write.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1033

type Unused addr new_tail data
(1 B) (15 B) (8 B) (8 B) (32 B)

One cache line (64 B)

Figure 3: The layout of an undo log element (§ 4.2).

To achieve these goals, Persimmon logs at the granular-
ity of aligned 32 B data blocks. Writes that straddle blocks
will generate multiple undo log entries, and writes smaller
than 32 B will result in at least 32 B of data being logged. This
strategy is motivated by the observation that if a location has
been undo logged, then any subsequent writes to that location
need not be logged. By logging in larger blocks, Persimmon
takes advantage of spatial locality in memory writes to coa-
lesce logging for adjacent locations. Insisting that all blocks
be equal-sized and aligned ensures that blocks never overlap
and simplifies the detection of duplicate blocks (§ 4.3).

4.2 Undo Log Layout and Operations

The undo log consists of a persistent array A of fixed-size
64 B elements (which is the cache line size), and the undo log
size n, which is stored in DRAM only. Our implementation
fixes the array’s total size to 220 elements (32 MB), which
is large enough for our applications. The array A is cache
line-aligned, and so are its elements.

An array element either is valid, representing an undo log
entry (§ 4.1), or is invalid. We maintain the invariant that
A[0..n−1] contains valid elements and A[n..] contains invalid
elements, so that n can be inferred from A upon recovery.

Figure 3 shows the layout of an array element. Each ele-
ment is interpreted based on its type field:
• If type= 0, the element is invalid.
• If type= 1, the element is valid and represents a data entry

that records the original value of [addr,addr+32B). The
addr field must be a 32 B-aligned address.

• If type= 2, the element is valid and represents a commit
entry with new_tail (§ 4.1).
When appending an entry, we make sure that the type field,

which also indicates validity, persists no earlier than the other
fields. This does not require using an extra persist barrier—
since writes to the same cache line reach PM in program
order [19, 84], we simply need to write the type field last.

To clear the log, we set type to zero for elements A[0..n−
1] from left to right. If a crash occurs during the clearing, the
recovered process will see that A[0] is invalid and will then
clear the entire array again.

With this undo log organization, an append requires only
one persist barrier (at the end), and consecutive appends write
to PM sequentially and avoid repeatedly flushing a single
cache line (which is known to incur high latency on Optane
persistent memory [12, 92]). Although clearing the log at
commit time requires writing to all n entries, it is rare due to
the batch commit optimization (§ 4.3) and can be optimized
by, e.g., maintaining a persistent commit sequence number.

4.3 Dynamic Binary Instrumentation

Persimmon dynamically instruments memory writes for undo
logging. The bulk of the logging logic is implemented in
the function log_write(addr, sz), which rounds up the
range [addr,addr+sz) to aligned 32 B blocks and appends
an undo log entry for each block. Persimmon, in the shadow
process, inserts a call to log_write before each application
instruction that can write to memory. It translates repeat string
operations into regular loops to instrument each iteration sepa-
rately. For conditionally executed instructions, the instrumen-
tation is executed only when the instruction is.

To minimize overhead from dynamic instrumentation and
undo logging, Persimmon applies a number of optimizations:
Skipping the stack. Persimmon assumes that the applica-
tion holds no persistent data on the stack. It does not save
stack pages to PM, and as a result it does not need to instru-
ment stack operations. Persimmon assumes that any memory
operand that is an offset from the stack pointer %rsp points
to the stack, and can thus efficiently skip instrumentation for
a large number of instructions (notably, all pushes and pops).
This assumption about %rsp usage can be validated at run-
time by tracking all updates to the register [96], although we
have not implemented this validation. The log_write func-
tion also skips writes to locations above %rsp minus 128 B
(accounting for the red zone [63]), thereby filtering out any
stack operations that do not use an offset from %rsp.
De-duplicating undo log entries. To avoid logging dupli-
cate data, the log_write function maintains a hash set in
DRAM for the addr field of existing undo log entries, and
avoids appending entries whose addr already exists. This
hash set must support lookup, insert, and clear operations, and
fast lookup is key to making this optimization worthwhile.

Our hash set, closely modeled after the CPython dictio-
nary [23], is implemented as a flat array of addr’s and re-
solves collisions with open addressing. The array size is fixed
to 2m (where m = 14 in our implementation); we use the sim-
ple hash function h(addr) = addr/32 (since addr is aligned
to 32 B); and probing uses a linear recurrence with perturba-
tion [23]. A zero element denotes an empty slot, and the hash
set is cleared by zeroing out the entire array. Shadow execu-
tion commits once the hash set’s load factor reaches 50% (see
the batch commit optimization below); in case the hash set
becomes full, the de-duplication optimization is disabled.

With this hash set implementation, lookups that do not
encounter collision are extremely fast. This allows us to insert
a fast path de-duplication check, which we detail next.
Fast-path de-duplication check. Although de-duplication
in log_write avoids redundant logging, the function call
before every write is still costly as it requires saving and
restoring application registers. We therefore insert a “fast path”
check before the function call to filter out easy-to-identify
duplicates. For a memory write to address dest of size sz, the
call to log_write is skipped if both conditions hold:

1034 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Listing 1: Instrumentation inserted before a memory write of sz bytes.
%dest and %tmp are placeholders for any two distinct general-
purpose 64-bit registers. The .hash_array label refers to the base
address for the hash set array.

1 (Reserve registers %dest and %tmp)
2 (Compute destination of the write, store in %dest)
3 (Reserve arithmetic flags)
4
5 # First check: the write is contained in
6 # a single block (not generated if sz = 1).
7 leaq (sz−1)(%dest), %tmp
8 xorq %dest , %tmp
9 cmpq $31, %tmp
10 ja .slow_path
11
12 # Second check: look in the hash set.
13 movq %dest , %tmp
14 shrq $2, %tmp
15 andl $131064 , %tmp
16 movq .hash_array(%tmp), %tmp
17 xorq %dest , %tmp
18 cmpq $32, %tmp
19 jb .skip
20
21 .slow_path
22 (Save application registers)
23 (Call log_write)
24 (Restore application registers)
25
26 .skip
27 (Restore arithmetic flags)
28 (Restore registers %dest and %tmp)

• The write is contained in a single aligned 32 B block, i.e.,
bdest/32c= b(dest + sz−1)/32c.

• The block’s address is found in the hash set on first try
(without any probing), i.e., H[i] = addr where H is the
hash set array, i = bdest/32c mod 2m according to the hash
function, and addr = bdest/32c×32 is the block address.2

Any memory write filtered out by the check is guaranteed to
be a duplicate, and the check proves effective in our evaluation
(§§ 7.2.1 and 7.2.3). Furthermore, as the computation required
by the checks only require bit manipulations, the two checks
can be implemented in 11 instructions using only two extra
registers (one of which stores dest and is anyway required).
Listing 1 shows the code inserted before a memory write.
Batch commit. Persimmon shadow-executes multiple state
machine operations before committing, thus avoiding dupli-
cate logging across multiple operations. After executing each
operation, Persimmon checks to see if the de-duplication hash
set is more than 50% full and if so, commits. We defer more
intelligent batch sizing to future work.
Skipping newly allocated regions. Writes to a PM region
that is newly allocated (i.e., after the most recent commit)
do not need to be logged since, in case of a crash, the state
machine will be reverted to before the region was allocated.
The log_write function therefore maintains, in DRAM, a
list of address ranges for newly allocated regions and searches

2Note that if no element exists in the hash set with hash value h(addr), we
have H[i] = 0 and the check fails as expected (assuming that the application
never writes to the block starting at address zero).

through the list to skip logging such writes. This optimiza-
tion is critical for supporting calloc implementations that
manually zero out pages allocated with mmap.

5 Recovery
To minimize recovery times, recovery in Persimmon is rela-
tively simple. After a crash, the first step is to restore the PM
state machine snapshot to a consistent state:
• If the undo log contains a commit record, we set the opera-

tion log tail to new_tail. If an updated region table exists
in PM, we switch to it and garbage collect the old region
table. This completes the commit.

• If the undo log contains no commit record, we delete and
garbage collect the updated region table (if one exists) and
copy the old values from the undo log back to their respec-
tive locations. This rolls back the operation in progress at
the time of the crash.

As a last step, we clear the undo log in both cases.
Starting from the consistent PM snapshot, Persimmon di-

gests any remaining operations in the operation log so that
all previously invoked operations are reflected in the snap-
shot. Replaying the log ensures that Persimmon maintains
its guarantee that any invoked operation that returns will not
be lost. This up-to-date snapshot is then copied into DRAM
for the application process, and the application is restarted.
Assuming that the PSM has captured all persistent application
state, the application should be back in its pre-crashed state.

6 Implementation
We have implemented Persimmon in C++; it targets x86-64
Linux applications written in C or C++. We use CRIU [24]
(v3.12) for process checkpointing during background process
initialization (§ 3.3). For dynamic instrumentation (§ 4.3), we
use DynamoRIO [8], a runtime code manipulation system.
Persimmon’s DynamoRIO client is linked into the applica-
tion along with the DynamoRIO runtime. This setup allows
Persimmon to start the application uninstrumented and only
begin instrumentation in the background process once it is
forked off. To avoid interfering with the application, our in-
strumentation code takes care not to call into shared libraries
(e.g., libc), and instead uses DynamoRIO’s memory allocator
and our custom system call wrappers.3

7 Evaluation
Using our implementation, we demonstrate that Persimmon:
• Requires only a small amount of code modification for

distributed in-memory storage systems.
• Achieves low overhead on workloads compared with no

persistence for both Linux and kernel-bypass applications.
• Recovery quickly even for large memory sizes.

3Because our DynamoRIO client is linked into the application, it is not
loaded by DynamoRIO’s private loader, which would have created a separate
copy of each library used by the client.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1035

Table 2: Rough lines of code changed to port Redis and TAPIR.

Lines added / changed

Redis TAPIR

Initialize Persimmon 7 10
Factor out state machine init. 36 34

Serialize state machine operation 26 12
Deserialize & execute operation 45 25
Check for read-only operations 1 1
Refactor for better performance — 57

Total 115 139

We ported Redis, a popular key-value store, and TAPIR [113],
a distributed transactional data store, to use Persimmon. We
first describe the code changes required to port these applica-
tions (§ 7.1), followed by performance comparisons (§§ 7.2.1
and 7.2.2). Finally, we use microbenchmarks to evaluate the
effectiveness of Persimmon’s optimizations (§ 7.2.3).

7.1 Programming Experience

Although the Persimmon API is simple (Figure 1), porting
real applications can require a few extra steps as real-world
code bases are not always well-organized into a state machine
abstraction, even if the application is processing RPCs. The
programmer typically needs to:

1. Add a call to psm_init(), passing configuration argu-
ments like the PM file system location.

2. Factor out the state machine initialization code into a sin-
gle function, separating it from other initialization (e.g.,
network I/O), so that it can be skipped on recovery.

3. Write a function that serializes a state machine operation
for operation logging. One can reuse the application’s ex-
isting RPC serialization, but, for better performance, we
found it valuable to use a custom format that is cheaper to
parse in the shadow process.

4. Write a function that deserializes and executes an opera-
tion, to be invoked under instrumentation in Persimmon’s
shadow process. This function typically only needs to call
the application’s RPC handler using the deserialized opera-
tion, but may need to suppress any I/O by the handler (e.g.,
sending a reply over the network).

5. Insert checks to distinguish read-write operations from
read-only ones; such checks likely already exist for ap-
plications that support state machine replication. Invoke
Persimmon for read-write operations.

We performed all of these steps for Redis because it was
not well-organized into a state machine, especially because
it is written in C, which is not an object-oriented language.
TAPIR, on the other hand, was is already designed as a state
machine to work with its replication mechanism. Table 2
summarizes the code changes required to port Redis and
TAPIR. We discuss each application in detail next.

7.1.1 Porting Redis

To port Redis, we treat each Redis command as a state ma-
chine operation and invoke it through Persimmon. To summa-
rize, the changes made were:

1. Persimmon initialization took 6 lines of code (LoC).
2. To factor out the state machine initialization code, we sepa-

rated out three blocks of code (7+7+22 lines) responsible
for network and domain socket initialization, etc.

3. Redis operation serialization for the state machine took
26 lines of code. The serialization consists of the address
of the Redis command’s handler function4 as well as the
command’s arguments.

4. Redis operation deserialization, parsing, and dispatch took
24 lines of code. Since executing Redis commands requires
a “client”, we reuse the fake client code from Redis AOF
(21 lines), which also suppresses replies.

5. To determine whether an operation is read-only, we reused
existing code from Redis’ state machine replication.

In all, Persimmon allowed us to achieve persistence for Redis
with roughly 100 lines of code changes. In contrast, Redis’
own persistence implementation (AOF and RDB) consists of
roughly 3000 lines of code, including complex logic such as
request processing while log compaction is in progress. As an-
other point of comparison, Pmem-Redis [82], a version of Re-
dis that uses persistent memory, contains roughly 30000 new
lines of C code over Redis 4.0.0, although we note that Pmem-
Redis contains features that are orthogonal to Persimmon
(e.g., defragmentation). Xu et al. report that manually porting
Redis to persistent memory using PMDK [80] “is not straight-
forward and requires large engineering effort” [104, § 3.3].
They list five difficulties, which include supporting the many
different Redis objects with different encodings, carefully or-
dering writes to maintain crash consistency, etc. None of the
difficulties arose when we ported Redis using Persimmon.

Despite minimal changes, our port is the most feature-
complete PM Redis port that we know of. For example,
Persimmon-Redis supports complex Redis data structures
like sets and hashes while the persistent Redis from WHIS-
PER [73,98] only supports simple key-value pairs, and Pmem-
Redis lacks support for optimized encodings like intset and
zipmap. We also support hash table resizing, which is not
supported by P-Redis due to its complexity [104]. Persimmon-
Redis supports these features “out of the box”, without requir-
ing additional code for each feature. In addition, Persimmon
lets Redis retain jemalloc [47] as its memory allocator, which
was carefully chosen by the Redis developers [86].

7.1.2 Porting TAPIR

The TAPIR transactional data store is built on top of the in-
consistent replication (IR) protocol. We treat each IR RPC
as a state machine operation. In the application, these RPCs

4As the shadow process is forked from the application process (§ 3.3), the
application’s code segment is mapped at the same location in both processes.

1036 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

are serialized using Protocol Buffers [83], and a naive Persim-
mon port uses the same serialization for operation logging.
Although easy to implement, this strategy causes significant
performance degradation as Persimmon has to execute Proto-
col Buffer parsing under shadow execution, which is slow.

To improve performance, we refactored TAPIR’s IR RPC
handlers to take individual RPC fields as arguments, so that
they can be called from the shadow process without first con-
structing protobuf objects. This refactoring involved roughly
50 LoC changes, which were mostly mechanical, and enabled
operation logging using a simple custom format (like for
Redis). In addition to this refectoring, we did the following:

1. Persimmon initialization took 11 lines of code.
2. To factor out state machine initialization, we moved two

code blocks (10+4 lines) and modified ~20 LoC to allow
creating a RPC handler without a network connection.

3. Operation serialization took 12 lines of code.
4. Operation deserialization and invocation took 17 lines of

code, plus an extra 8 lines to suppress replies.
5. We reused application code to detect read-only operations.
The overall code change amounts to roughly 140 lines in total.

To recover from replica failures, TAPIR uses a complex in-
memory recovery protocol, inspired by VR, which has been
proven to be incorrect [69]—under certain failure conditions,
TAPIR can lose operations when recovering, causing it to miss
updates. Persimmon-TAPIR fixes this problem transparently
and lets replicas correctly recover their state on failures.

One of the benefits of TAPIR is that replicas can recover
and immediately begin processing transactions. However,
without the most up-to-date state, these recovered replicas
will degrade performance by serving stale reads and unneces-
sarily aborting writes. TAPIR particularly suffers from this
performance degradation because it needs 3

2 f +1 to use the
single-round trip fast path. For a 3-machine replica group,
this number includes all of the participants. As a result, while
the recovering replica is able to participate in transactions im-
mediately, without the most up-to-date state, it is only hurting
performance. However, Persimmon-TAPIR can significantly
reduce this performance degradation by limiting the amount
of state that the replica needs to recover.

7.2 Performance Evaluation

We evaluate Persimmon on three 52-core, dual-socket Intel
Xeon Platinum 8272 2.6 GHz servers, each with 3 TB of
Intel® Optane™ DC Persistent Memory in app direct mode
and 768 GB of DRAM. We mount an ext4 file system in
DAX mode [59] on the PM. Persimmon’s application and
background processes run on two physical cores on a single
NUMA socket and use only DRAM, PM, and the NIC on
that socket. To supply the client workload, we use a server
with a 20-core dual-socket Xeon Silver 4114 2.2 GHz CPU,
connected with with Mellanox CX-5 100 Gbps NICs and an
Arista 7060CX 100 Gbps top-of-rack switch.

Table 3: Summary of Redis performance on YCSB (Zipfian con-
stant = 0.75, 10% update, median of five runs). The persistence
options are volatile (“Vol”), persistent through Persimmon (“PSM”),
and persistent through append-only file (“AOF”), with our perfor-
mance in bold. Shown are median latency at low load and peak
throughput. Persimmon incurs, for Linux, negligible latency and
throughput overhead and, for kernel bypass, negligible latency over-
head and ~5% throughput overhead. Figure 4a shows the full latency
vs throughput graph.

Latency (µs) Throughput (Kops)

Redis Setup Vol PSM AOF Vol PSM AOF

Linux 17.8 17.5 18.6 227 227 107
Bypass 10.4 11.2 12.0 452 429 130

7.2.1 Redis Performance

We use Persimmon to add persistence to two versions of
Redis—regular Redis (v4.0.9), which processes requests over
TCP using the POSIX API, and a high-performance, kernel-
bypass version of Redis that uses the Demikernel’s DPDK
library OS [26, 112]. We compare both Persimmon-Redis
versions to Redis’s existing persistence mechanisms.

While Redis is an in-memory storage system, persisting
Redis is popular enough for it to integrate two mechanisms
for saving its state [85]: RDB, a snapshotting mechanism,
and AOF, an append-only operation log. Using RDB requires
pausing operation processing for a short period while Redis
spawns a background process to checkpoint its database.

AOF logs every write operation received by the server to
a file, similar to Persimmon’s operation logging. However,
Redis typically recommends only fsync’ing those logged
operations periodically to avoid performance overhead [85],
so operations can be lost on a crash. AOF must also avoid
the operation log growing unboundedly, so it periodically
creates an RDB snapshot, letting it truncate the log. This
process further degrades performance, so the Redis developers
recommend only snapshotting once or twice an hour [85].

In some sense, these mechanisms are orthogonal to Persim-
mon. They have features that Persimmon does not provide
(e.g., compact and platform-independent serialization), but do
not provide cheap, general-purpose persistence to in-memory
storage systems. Their implementation is specific to Redis, re-
quires significant implementation effort, and, as shown below,
can cause large performance degradation.
Experiment setup. We evaluate Redis performance using
the YCSB benchmark [21]. We implemented a custom multi-
threaded YCSB client, using Shenango [78], which supports
both TCP and Demikernel’s UDP-based protocol. Following
the official YCSB implementation [111], our client is closed-
loop and does not use Redis pipelining, each YCSB record is
represented with a Redis hash, and fields are accessed using
Redis’ HSET/HGET commands. We load 13 million records; as
is YCSB default, each record has 10 fields (i.e., 130 million
items in total), and each field has a 100 B value. Our client is-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1037

Persistence mechanism: none PSM AOF Redis setup: Linux Kernel bypass

0

20

40

0 100 200 300 400

Throughput (Kops)

M
e

d
ia

n
 L

a
te

n
c
y
 (
μ

s
)

(a) Latency vs throughput for a 10%-update workload. Persimmon
incurs negligible overhead over the Linux baseline, and a roughly 5%
overhead to the peak throughput over the kernel-bypass baseline.

0.0

0.1

0.2

0.3

0.4

0 25 50 75 100

YCSB Update Percentage (%)

P
e

a
k
 T

h
ro

u
g

h
p

u
t

(M
o

p
s
)

(b) Peak throughput vs update percentage. Persimmon throughput
stays within 9% of the kernel bypass baseline for up to 40%-update,
and within 4% of the Linux baseline for up to 75%-update.

Figure 4: Redis performance on the YCSB benchmark (median of five runs, Zipfian constant = 0.75).

sues reads and updates according to a fixed ratio, and chooses
which records to access according to a Zipfian distribution.

On the server side, the regular Redis server uses jemalloc
(as is recommended for Linux) and our kernel-bypass Redis
uses the Hoard memory allocator [3] (following the Demiker-
nel implementation [26]). Where Redis AOF is enabled, we
place the AOF log file on the PM file system, disable AOF
rewriting, and configure it to always fsync before sending
replies, providing the same level of durability as Persimmon.

End-to-end performance. We start with the end-to-end
performance for a typical YCSB workload with 10% updates
and a Zipfian constant of 0.75. We measure the latency and
throughput for unmodified Redis, Persimmon Redis, and Re-
dis AOF. Table 3 reports performance both on Linux and with
kernel-bypass enabled through the Demikernel and shows:

• On Linux, Persimmon provides persistence while incurring
negligible latency or throughput overhead.

• With kernel bypass, Persimmon incurs negligible latency
overhead at low load, and a 5% degradation to peak through-
put. Kernel bypass makes Redis significantly more efficient,
so Persimmon has slightly more impact on performance.

• On Linux, AOF incurs < 1µs latency cost but a 2× through-
put penalty, a much higher overhead than Persimmon.

• With kernel bypass, AOF again incurs a small latency over-
head but a 3.5× throughput loss.

Some of the overhead of AOF is likely due to inefficiencies in
accessing PM through ext4 and could be reduced using a spe-
cialized PM file system like NOVA [104,105] or SplitFS [48].
Overall, Persimmon offers persistence at a much lower cost
than Redis’s own custom persistence mechanism both on
Linux and for future kernel-bypass deployments.

Figure 4a shows the full latency vs throughput plot for this
workload with varied numbers of closed-loop clients. (Lower
and to the right is better. The knee where latency goes up
shows the peak throughput.)

Table 4: Redis recovery time and storage size for the three persistence
mechanisms (median of three runs). Persimmon recovers 4.6×–6×
faster than AOF and RDB. The discrepancy between the Linux and
kernel bypass implementations is likely due to memory allocators
differences (jemalloc vs Hoard).

Recovery Time (s) Storage Size (GB)

Redis Setup PSM AOF RDB PSM AOF RDB

Linux 14.6 87.4 87.8 23 16 2.8
Bypass 20.4 93.3 93.5 33 16 2.8

Peak throughput vs update ratio. Since Persimmon only
logs and shadow-executes write operations, its overhead de-
pends on the workload’s update-to-read ratio. Figure 4b shows
peak Redis throughput as we vary the workload’s update per-
centage. Persimmon’s throughput remains within 4% of the
baseline for up to 75%-update on Linux (represented by the
red and green “×” lines in the middle of the graph), and within
9% of the baseline for up to 40%-update for kernel bypass
(represented by the red and green “◦” lines at the top). After
these points, the shadow state machine becomes saturated and
the throughput drops precipitously. Both versions can easily
handle read-heavy workloads, which are common in practice.
Recovery speed and storage size. Table 4 shows Redis’
recovery speed and storage usage under different persistence
mechanisms if we kill Redis after loading our YCSB dataset.5

Because Persimmon persists application data in its in-memory
format, the bulk of its recovery is physically copying PM re-
gions back into DRAM, while AOF and RDB require reload-
ing the database. Consequently, Persimmon recovery is faster
by 4.6× (on Linux) to 6.0× (for kernel bypass) and, we be-
lieve, can be further optimized by copying PM regions in
parallel using multiple cores. However, Persimmon’s space

5The Persimmon recovery measurements do not include operation replay
because it would take negligible time—since the operation log is only 32 MB,
replaying even a full log would only take roughly one second for YCSB.

1038 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0.0

0.1

0.2

0.3

0.4

0 25 50 75 100

YCSB Update Percentage (%)

P
e

a
k
 T

h
ro

u
g

h
p

u
t

(M
o

p
s
)

All optimizations
W/o skip stack
W/o fast-path dedup
W/o batch commit
W/o de-duplication

Figure 5: Disabling each optimization degrades Redis throughput
on YCSB (Zipf = 0.75, kernel bypass, median of five runs). Note
that disabling de-duplication also disables the fast-path check.

usage tracks the application’s RAM usage while AOF and
RDB can use more compact serialization formats. The dis-
crepancy between Linux and kernel-bypass Redis is most
likely because they use different memory allocators (jemal-
loc vs Hoard), which lead to differing amounts of memory
consumption and exhibit different allocation performance.
Effectiveness of optimizations. To evaluate Persimmon’s
optimizations (§ 4.3), we measure Redis performance un-
der Persimmon after disabling each optimization separately
(note that disabling undo log de-duplication also disables
the fast-path de-duplication check).6 Figure 5 shows that no
optimization can be removed without degrading performance.

7.2.2 TAPIR Performance

As with Redis, we use Persimmon to add persistence to two
versions of TAPIR—regular TAPIR, which processes requests
over UDP using the POSIX API, and kernel-bypass TAPIR,
which uses the Demikernel’s DPDK library OS. We compare
each version to the original, non-persistent application.

We evaluate TAPIR performance using the Retwis bench-
mark [113], a Twitter-like transactional workload, with 10 mil-
lion keys (where keys and values are 64 B) and a Zipf coeffi-
cient of 0.75. On the server side, we configure one shard with
three replicas running on separate machines equipped with
PM. For clients, we use a multi-process closed-loop load gen-
erator that processes RPCs over UDP using the POSIX API;
it supports both the regular TAPIR and Demikernel protocols.

Table 5 reports the mean latency and peak throughput for
Retwis transactions. Persimmon incurs negligible latency
overhead for both the Linux and the kernel-bypass setups. For
peak transaction throughput, Persimmon incurs a 5.4% degra-
dation on Linux and a 7.3% degradation for kernel bypass.
Note that the TAPIR transaction latency is much higher than
the Redis latency from § 7.2.1 because each transaction in-

6We excluded the optimization that skips newly allocated regions because
no new regions are allocated during these experiments (since our workload
only overwrites existing keys). However, this optimization helps tremen-
dously when loading the initial YCSB database.

Table 5: Summary of TAPIR performance on Retwis (Zipf = 0.75,
three replicas). The persistence options are volatile and Persimmon
(“PSM”), with our performance in bold. Shown are the mean trans-
action latency at low load (measured using five clients) and peak
throughput (with at most 20 clients). Persimmon incurs negligible
latency overhead and a 5%–8% throughput overhead. Figure 6 shows
the full latency vs throughput graph.

Latency (µs) Throughput (txn/s)

TAPIR Server Volatile PSM Volatile PSM

Linux 342 338 37 K 35 K
Bypass 310 309 41 K 38 K

0

200

400

600

0 10000 20000 30000 40000

Throughput (transactions/sec)

M
e

a
n

 L
a

te
n

c
y
 (
μ

s
)

Server Networking

Linux
Kernel bypass

Persistence

Persimmon
None

Figure 6: Latency vs throughput for TAPIR on the Retwis benchmark
(10 million keys, Zipf = 0.75, median of five runs). Throughput starts
decreasing as more clients are added due to congestion collapse.

volves multiple RPCs sent to three replicas; and kernel bypass
provides less benefit for TAPIR than for Redis because TAPIR
performs more work per RPC and its code base is less heavily
optimized. Figure 6 shows the full throughput vs latency plot
for this workload (lower and to the right is better). After a
crash, Persimmon can recover a replica within 7 s; we were
not able to compare to a recovery baseline as TAPIR has not
implemented recovery from another replica.

7.2.3 Optimization Microbenchmarks

We use microbenchmarks to demonstrate the effectiveness
of Persimmon’s optimizations for crash-consistent shadow
execution (§ 4.3). Each microbenchmark repeatedly invokes
operations using psm_invoke_rw. Each operation performs
1024 memory accesses, where each access reads a 32 B block
of memory into a %ymm register, performs an AVX-2 vector
addition on it, and writes it back to the same memory location.
We picked the access size of 32 B to match the undo logging
granularity (§ 4.2). For clarity, we turn off batch commit
unless otherwise specified. In each benchmark, we disable
certain optimization(s) and use a memory access location
pattern that demonstrates the effect of the optimization(s).

In Figure 7a, we disable undo log de-duplication and
its fast-path check and vary the access frequency of each
block—ranging from each operation accessing 1024 different

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1039

0

50

100

150

0 25 50 75 100

Block access frequency (%)

T
h

ro
u

g
h

p
u

t
(K

o
p

s
)

De-dup + fast check

De-duplicate

No de-duplication

(a) Undo log de-duplication is most effective
when few locations are accessed repeatedly.

10

20

30

0 25 50 75 100

Percentage of stack writes (%)

T
h

ro
u

g
h

p
u

t
(K

o
p

s
)

Skip stack

No skip stack

(b) Skipping stack operations is most effective
with a large percentage of stack accesses.

0

10

20

30

0 25 50 75 100

Overlap between consecutive ops (%)

T
h

ro
u

g
h

p
u

t
(K

o
p

s
)

Batch commit (8 ops)

Batch commit (4 ops)

No batching

(c) Batch commit is most effective when oper-
ations access a lot of overlapping memory.

Figure 7: Effectiveness of Persimmon’s optimizations (median of five runs).

blocks sequentially to accessing a single block 1024 times.
When memory accesses are concentrated on few locations,
de-duplication can deliver up to 13× throughput increase, and
the fast-path check, an additional 5×. These optimizations
incur no discernible overhead when there is no duplication.

In Figure 7b, we disable the optimization that skips stack
accesses and direct a percentage of memory accesses to an
array allocated on the stack. As expected, this optimization
is most effective when state machine operations frequently
access the stack, which we assume to be not persistent.

In Figure 7c, we enable the batch commit optimization with
fixed batch sizes of 4 or 8 operations, and vary the percentage
of overlap between blocks accessed by consecutive operations.
Batch commit is most effective when it can group together
many operations that access common memory locations.

8 Related Work
PM frameworks. Because PM’s low level interface (load,
store, flush) can be hard to use, prior works have proposed PM
frameworks that provide higher-level APIs [9,16,18,22,31–33,
41,42,45,60,65,67,81,88,95,99,102,114]. Such a framework
typically requires the programmer to (1) explicitly declare
persistent data (e.g., by using a special malloc), (2) delineate
failure-atomic regions using begin/end annotations, and (3) an-
notate operations that modify persistent data. The framework
can then provide durability and failure atomicity by executing
extra logic for each persistent operation, e.g., to log the op-
eration and flush any modified persistent locations. Some of
these frameworks reduce the programming burden by, e.g., in-
ferring failure-atomic regions from existing synchronization
points [9, 33, 41, 45, 60, 102], and by automatically interpos-
ing on persistent operations using language features [22, 95],
static compiler instrumentation [9, 32, 33, 42, 102], or runtime
methods [41, 88, 102].

Using these frameworks comes with two difficulties. First,
despite their high-level APIs, porting an application using
these frameworks can still be labor-intensive [66, 104] and
bug-prone [61, 62]; we elaborate on the porting experience
later in this section. Second, PM accesses and failure atom-

icity mechanisms on the critical path can impose significant
performance overhead, especially for frameworks that im-
plement automatic interposition. For example, microbench-
marks by Hsu et al. [41, § 5.6] show a 5×–25× slowdown
for NVthreads and a 70×–200× slowdown for Mnemosyne
and Atlas on memory accesses. While such overhead might
be acceptable for I/O-bound applications, it can significantly
slow down high-performance data stores with fast I/O.

Persimmon alleviates both difficulties. On the program-
ming effort side, Persimmon does not require manually an-
notating of every persistent allocation; it simply persists all
state encapsulated by the state machine. We are not aware of
any other framework of its kind that provides this feature.7

Furthermore, by taking a full-process approach to persisting
the shadow process machine, Persimmon rules out referential
integrity bugs [16] (e.g., arising from PM-to-DRAM pointers)
and relocation issues (where a persistent region is mapped to
a different address after recovery).

For performance, Persimmon keeps the critical path execu-
tion as close to the original application as possible. As far as
we know, Persimmon is the only system that can transparently
retain the application’s memory allocator (rather than swap in
a special PM allocator), thus preserving its memory layout.8

It also pushes all PM accesses (besides operation logging) and
instrumentation into the background; this requires an extra
CPU core, but minimizes overhead on the critical path.

Finally, Persimmon is the first system to use dynamic bi-
nary instrumentation to provide failure atomicity on PM. This
allows application code to call into libraries that are dynami-
cally linked or whose source is not available (§ 4).

Porting data structures to PM. Despite the high-level
APIs provided by the PM frameworks, porting existing

7Except AutoPersist [88], a Java PM framework that only requires mark-
ing a “durable root” object from which all persistent state can be reached.
However, it exploits properties of Java / the JVM and cannot be easily ex-
tended to support C/C++ applications.

8Romulus [22] can be used with any memory allocator but requires man-
ual modification to the allocator code.

1040 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

data structures to PM remains challenging.9 For example,
Marathe et al. called their experience porting memcached
“surprisingly non-trivial” [66], and Xu et al. reported five
difficulties in porting Redis’ hash table using PMDK, e.g.,
supporting Redis’ many object encodings and having to order
persistent writes carefully [104, §3.3]. With the high manual
effort, bugs are likely to appear in PM code even when using
high-level PM frameworks [61, 62]. In contrast, Persimmon
requires minimal code changes to port an application (§ 7.1);
in particular, we encountered none of the five difficulties iden-
tified by Xu et al. as we ported Redis using Persimmon.

Other works have noted that certain classes of data struc-
tures are easier to convert to PM and proposed techniques
accordingly. For example, RECIPE [57] observes that concur-
rent indexes that implement helping and non-blocking reads
are “inherently crash-consistent”; MOD [39] notes that purely
functional data structures can be easily made failure-atomic
through copy-on-write; and Friedman et al. [30] automati-
cally transform a special class of lock-free data structures to
be persistent by exploiting the traversal phase in these data
structures’ operations. Persimmon makes no such assump-
tions on the application’s data structures.

Like Persimmon, Pronto [68] relies on state machine-like
assumptions on the data structure—that it is encapsulated and
has deterministic operations. This enables Pronto to imple-
ment persistence using semantic logging and periodic snap-
shotting. In contrast, Persimmon allows porting an entire
application, rather than a single data structure, and maintains
low latency even for large data sizes as it avoids the periodic
stalls from the synchronous phase of snapshotting.
PM data structures / stores. Many prior works have re-
designed in-memory data structures to be durable in PM.
These include both tree-based [1, 10, 11, 14, 17, 44, 53, 56, 93,
97, 109] and hash-based structures [13, 25, 74, 87, 116–118].
There have also been hybrid designs that combine PM with
DRAM [12,43,77,100,103,110] and/or with SSD [49,51,110].
To achieve high performance, these data structures often use
data layouts and operations specifically optimized for PM.

In contrast, Persimmon is not one data structure/store;
rather, it allows porting an in-memory storage system to be
persistent on PM. Although a Persimmon-transformed sys-
tem might not achieve resource utilization on par with hand-
crafted PM data stores, Persimmon is more general and can
deliver good performance on real-life workloads.

Persimmon’s design is similar to that of Bullet [43], a per-
sistent key-value store that serves requests from a “front-end
cache” in DRAM, records operations in persistent logs, and
uses background threads to apply logged operations to a per-
sistent hash table. While Bullet only supports a limited set
of operations, Persimmon generalizes the design to support
general application-level operations. A future direction is to

9Here we focus on the porting experience and thus do not include works
that replace an application’s data structure with a persistent one (e.g., swap-
ping out the hash table of Redis with a persistent B-tree [93]).

incorporate Bullet’s cross-referencing logs into Persimmon to
better support multi-core applications.
PM-aware file systems. A natural way of using PM is to
view it as a fast storage device and incorporate it into the stor-
age stack. Many file systems have been designed to effectively
exploit the high performance of PM [15, 20, 27–29, 48, 50, 55,
64, 94, 101, 105–107, 115]. These PM-aware file systems can
transparently speed up durable applications that perform I/O
using the file system interface, but do not directly apply to
in-memory applications that do not use the file system.
Logging for crash consistency. Logging has been used to
implement crash consistency in many contexts outside of PM,
e.g., in database management systems [4,5,34–37,54,70] and
journaling file systems [6, 38, 89–91]. Persimmon’s logging
mechanisms are conceptually similar, with a key difference
being that we perform undo logging on application-supplied
state machine operations (in x86-64) as opposed to SQL trans-
actions or file system operations.

9 Conclusion
Persistent memory (PM) offers a promising solution to provid-
ing crash recovery to in-memory storage systems. However,
manually porting applications to PM remains challenging.
Persimmon leverages PM to provide persistence to existing in-
memory storage systems while maintaining high performance
and requiring minimal code changes. We use Persimmon to
add persistence to Redis and TAPIR with ease while incurring
minimal performance overhead on common workloads.

Acknowledgments
We thank our shepherd Vijay Chidambaram and the anony-
mous reviewers for their helpful comments on the paper. We’d
also like to thank Aurojit Panda, David Culler, Vivian Fang,
Amy Ousterhout, and other members of the UC Berkeley Net-
Sys Lab, the RISELab, and the Microsoft Systems Research
Group for their feedback. This work was funded in part by
NSF Grants 1817115, 1817116, and 1704941, and by grants
from Intel, VMware, Ericsson, Futurewei, and Cisco.

References
[1] ARULRAJ, J., LEVANDOSKI, J., MINHAS, U. F., AND

LARSON, P.-A. BzTree: A high-performance latch-
free range index for non-volatile memory. Proc. VLDB
Endow. 11, 5 (Jan. 2018), 553–565.

[2] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG,
S., AND PALECZNY, M. Workload analysis of a large-
scale key-value store. In ACM SIGMETRICS Perfor-
mance Evaluation Review (2012), ACM, pp. 53–64.

[3] BERGER, E. D., MCKINLEY, K. S., BLUMOFE, R. D.,
AND WILSON, P. R. Hoard: A scalable memory alloca-
tor for multithreaded applications. In Proc. of ASPLOS
(2000).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1041

[4] BERNSTEIN, P. A., GOODMAN, N., AND HADZILA-
COS, V. Recovery algorithms for database systems. In
Proceedings of the IFIP 9th World Computer Congress
(1983).

[5] BERNSTEIN, P. A., HADZILACOS, V., AND GOOD-
MAN, N. Concurrency control and recovery in
database systems, vol. 370. Addison-wesley Reading,
1987.

[6] BEST, S. JFS log: How the journaled file system per-
forms logging. In Annual Linux Showcase & Confer-
ence (2000).

[7] BORNHOLT, J., KAUFMANN, A., LI, J., KRISHNA-
MURTHY, A., TORLAK, E., AND WANG, X. Specify-
ing and checking file system crash-consistency models.
In Proc. of ASPLOS (2016), pp. 83–98.

[8] BRUENING, D., ZHAO, Q., AND AMARASINGHE, S.
Transparent dynamic instrumentation. In Proc. of VEE
(2012).

[9] CHAKRABARTI, D. R., BOEHM, H.-J., AND BHAN-
DARI, K. Atlas: Leveraging locks for non-volatile
memory consistency. In Proc. of OOPSLA (2014).

[10] CHEN, S., GIBBONS, P. B., AND NATH, S. Rethinking
database algorithms for phase change memory. In Proc.
of CIDR (2011).

[11] CHEN, S., AND JIN, Q. Persistent B+-trees in non-
volatile main memory. Proc. VLDB Endow. 8, 7 (Feb.
2015), 786–797.

[12] CHEN, Y., LU, Y., YANG, F., WANG, Q., WANG, Y.,
AND SHU, J. FlatStore: An efficient log-structured
key-value storage engine for persistent memory. In
Proc. of ASPLOS (2020).

[13] CHEN, Z., HUANG, Y., DING, B., AND ZUO, P. Lock-
free concurrent level hashing for persistent memory. In
Proc. of USENIX ATC (2020).

[14] CHI, P., LEE, W.-C., AND XIE, Y. Making B+-tree
efficient in PCM-based main memory. In Proc. of
ISLPED (2014).

[15] CHOI, J., HONG, J., KWON, Y., AND HAN, H. Libn-
vmmio: Reconstructing software IO path with failure-
atomic memory-mapped interface. In Proc. of USENIX
ATC (2020).

[16] COBURN, J., CAULFIELD, A. M., AKEL, A., GRUPP,
L. M., GUPTA, R. K., JHALA, R., AND SWANSON,
S. NV-heaps: Making persistent objects fast and safe
with next-generation, non-volatile memories. In Proc.
of ASPLOS (2011).

[17] COHEN, N., AKSUN, D. T., AVNI, H., AND LARUS,
J. R. Fine-grain checkpointing with in-cache-line log-
ging. In Proc. of ASPLOS (2019).

[18] COHEN, N., AKSUN, D. T., AND LARUS, J. R.
Object-oriented recovery for non-volatile memory.
Proc. ACM Program. Lang. 2, OOPSLA (Oct. 2018).

[19] COHEN, N., FRIEDMAN, M., AND LARUS, J. R. Ef-
ficient logging in non-volatile memory by exploiting
coherency protocols. Proc. ACM Program. Lang. 1,
OOPSLA (Oct. 2017).

[20] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK,
E., LEE, B., BURGER, D., AND COETZEE, D. Better
I/O through byte-addressable, persistent memory. In
Proc. of SOSP (2009).

[21] COOPER, B. F., SILBERSTEIN, A., TAM, E., RA-
MAKRISHNAN, R., AND SEARS, R. Benchmarking
cloud serving systems with YCSB. In Proc. of SOCC
(2010).

[22] CORREIA, A., FELBER, P., AND RAMALHETE, P. Ro-
mulus: Efficient algorithms for persistent transactional
memory. In Proc. of SPAA (2018).

[23] cpython: 52f68c95e025 objects/dictobject.c.
https://hg.python.org/cpython/file/52f68c95e025/Objects/
dictobject.c#l33.

[24] CRIU. https://criu.org.

[25] DEBNATH, B., HAGHDOOST, A., KADAV, A.,
KHATIB, M. G., AND UNGUREANU, C. Revisiting
hash table design for phase change memory. In Proc.
of INFLOW (2015).

[26] demikernel/demikernel: Demikernel OS. https://github.
com/demikernel/demikernel.

[27] DONG, M., BU, H., YI, J., DONG, B., AND CHEN,
H. Performance and protection in the ZoFS user-space
NVM file system. In Proc. of SOSP (2019).

[28] DONG, M., AND CHEN, H. Soft updates made simple
and fast on non-volatile memory. In Proc. of USENIX
ATC (2017).

[29] DULLOOR, S. R., KUMAR, S., KESHAVAMURTHY,
A., LANTZ, P., REDDY, D., SANKARAN, R., AND
JACKSON, J. System software for persistent memory.
In Proc. of EuroSys (2014).

[30] FRIEDMAN, M., BEN-DAVID, N., WEI, Y., BLEL-
LOCH, G. E., AND PETRANK, E. NVTraverse: In
NVRAM data structures, the destination is more im-
portant than the journey. In Proc. of PLDI (2020).

1042 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://hg.python.org/cpython/file/52f68c95e025/Objects/dictobject.c#l33
https://hg.python.org/cpython/file/52f68c95e025/Objects/dictobject.c#l33
https://criu.org
https://github.com/demikernel/demikernel
https://github.com/demikernel/demikernel

[31] GENÇ, K., BOND, M. D., AND XU, G. H. Crafty:
Efficient, HTM-compatible persistent transactions. In
Proc. of PLDI (2020).

[32] GEORGE, J. S., VERMA, M., VENKATASUBRAMA-
NIAN, R., AND SUBRAHMANYAM, P. go-pmem: Na-
tive support for programming persistent memory in Go.
In Proc. of USENIX ATC (2020).

[33] GOGTE, V., DIESTELHORST, S., WANG, W.,
NARAYANASAMY, S., CHEN, P. M., AND WENISCH,
T. F. Persistency for synchronization-free regions. In
Proc. of PLDI (2018).

[34] GRAY, J., MCJONES, P., BLASGEN, M., LINDSAY, B.,
LORIE, R., PRICE, T., PUTZOLU, F., AND TRAIGER,
I. The recovery manager of the System R database
manager. ACM Computing Surveys (CSUR) (1981).

[35] GRAY, J., AND REUTER, A. Transaction processing:
concepts and techniques. Elsevier, 1992.

[36] GRAY, J. N. Notes on data base operating systems. In
Operating Systems. Springer, 1978.

[37] HAERDER, T., AND REUTER, A. Principles of
transaction-oriented database recovery. ACM Comput.
Surv. 15, 4 (1983).

[38] HAGMANN, R. Reimplementing the Cedar file system
using logging and group commit. In Proc. of SOSP
(1987).

[39] HARIA, S., HILL, M. D., AND SWIFT, M. M. MOD:
Minimally ordered durable datastructures for persistent
memory. In Proc. of ASPLOS (2020).

[40] HERLIHY, M. P., AND WING, J. M. Linearizability:
A correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst. 12, 3 (1990), 463–492.

[41] HSU, T. C.-H., BRÜGNER, H., ROY, I., KEETON, K.,
AND EUGSTER, P. NVthreads: Practical persistence
for multi-threaded applications. In Proc. of EuroSys
(2017).

[42] HU, Q., REN, J., BADAM, A., SHU, J., AND MOSCI-
BRODA, T. Log-structured non-volatile main memory.
In Proc. of USENIX ATC (2017).

[43] HUANG, Y., PAVLOVIC, M., MARATHE, V. J.,
SELTZER, M., HARRIS, T., AND BYAN, S. Closing
the performance gap between volatile and persistent
key-value stores using cross-referencing logs. In Proc.
of USENIX ATC (2018).

[44] HWANG, D., KIM, W.-H., WON, Y., AND NAM, B.
Endurable transient inconsistency in byte-addressable
persistent B+-tree. In Proc. of FAST (2018).

[45] IZRAELEVITZ, J., KELLY, T., AND KOLLI, A. Failure-
atomic persistent memory updates via JUSTDO log-
ging. In Proc. of ASPLOS (2016).

[46] IZRAELEVITZ, J., YANG, J., ZHANG, L., KIM, J.,
LIU, X., MEMARIPOUR, A., SOH, Y. J., WANG, Z.,
XU, Y., DULLOOR, S. R., ZHAO, J., AND SWAN-
SON, S. Basic performance measurements of the In-
tel Optane DC Persistent Memory Module. CoRR
abs/1903.05714 (2019). http://arxiv.org/abs/1903.05714.

[47] jemalloc. http://jemalloc.net/.

[48] KADEKODI, R., LEE, S. K., KASHYAP, S., KIM, T.,
KOLLI, A., AND CHIDAMBARAM, V. SplitFS: Re-
ducing software overhead in file systems for persistent
memory. In Proc. of SOSP (2019).

[49] KAIYRAKHMET, O., LEE, S., NAM, B., NOH, S. H.,
AND CHOI, Y.-R. SLM-DB: Single-level key-value
store with persistent memory. In Proc. of FAST (2019).

[50] KANNAN, S., ARPACI-DUSSEAU, A. C., ARPACI-
DUSSEAU, R. H., WANG, Y., XU, J., AND PALANI,
G. Designing a true direct-access file system with
DevFS. In Proc. of FAST (2018).

[51] KANNAN, S., BHAT, N., GAVRILOVSKA, A., ARPACI-
DUSSEAU, A., AND ARPACI-DUSSEAU, R. Redesign-
ing LSMs for nonvolatile memory with NoveLSM. In
Proc. of USENIX ATC (2018).

[52] KAPRITSOS, M., WANG, Y., QUEMA, V., CLEMENT,
A., ALVISI, L., AND DAHLIN, M. All about Eve:
Execute-verify replication for multi-core servers. In
Proc. of OSDI (2012).

[53] KIM, W.-H., SEO, J., KIM, J., AND NAM, B. ClfB-
Tree: Cacheline friendly persistent B-tree for NVRAM.
ACM Trans. Storage 14, 1 (Feb. 2018).

[54] KUMAR, V., AND HSU, M. Recovery mechanisms in
database systems. Prentice Hall PTR, 1997.

[55] KWON, Y., FINGLER, H., HUNT, T., PETER, S.,
WITCHEL, E., AND ANDERSON, T. Strata: A cross
media file system. In Proc. of SOSP (2017).

[56] LEE, S. K., LIM, K. H., SONG, H., NAM, B., AND
NOH, S. H. WORT: Write optimal radix tree for per-
sistent memory storage systems. In Proc. of FAST
(2017).

[57] LEE, S. K., MOHAN, J., KASHYAP, S., KIM, T., AND
CHIDAMBARAM, V. Recipe: Converting concurrent
DRAM indexes to persistent-memory indexes. In Proc.
of SOSP (2019).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1043

http://arxiv.org/abs/1903.05714
http://jemalloc.net/

[58] LI, J., MICHAEL, E., SHARMA, N. K., SZEKERES,
A., AND PORTS, D. R. Just say NO to Paxos overhead:
Replacing consensus with network ordering. In Proc.
of OSDI (2016).

[59] LINUX KERNEL ORGANIZATION. Direct access
for files. https://www.kernel.org/doc/Documentation/
filesystems/dax.txt.

[60] LIU, Q., IZRAELEVITZ, J., LEE, S. K., SCOTT, M. L.,
NOH, S. H., AND JUNG, C. iDO: Compiler-directed
failure atomicity for nonvolatile memory. In Proc. of
MICRO (2018).

[61] LIU, S., SEEMAKHUPT, K., WEI, Y., WENISCH, T.,
KOLLI, A., AND KHAN, S. Cross-failure bug detection
in persistent memory programs. In Proc. of ASPLOS
(2020).

[62] LIU, S., WEI, Y., ZHAO, J., KOLLI, A., AND KHAN,
S. PMTest: A fast and flexible testing framework for
persistent memory programs. In Proc. of ASPLOS
(2019).

[63] LU, H. J., MATZ, M., GIRKAR, M., HUBIČKA, J.,
JAEGER, A., AND MITCHELL, M. System V appli-
cation binary interface AMD64 architecture proces-
sor supplement (with LP64 and ILP32 programming
models) version 1.0, 2018. https://github.com/hjl-tools/
x86-psABI/wiki/x86-64-psABI-1.0.pdf.

[64] LU, Y., SHU, J., CHEN, Y., AND LI, T. Octopus:
An RDMA-enabled distributed persistent memory file
system. In Proc. of USENIX ATC (2017).

[65] MARATHE, V. J., MISHRA, A., TRIVEDI, A., HUANG,
Y., ZAGHLOUL, F., KASHYAP, S., SELTZER, M.,
HARRIS, T., BYAN, S., BRIDGE, B., AND DICE, D.
Persistent memory transactions. CoRR abs/1804.00701
(2018). http://arxiv.org/abs/1804.00701.

[66] MARATHE, V. J., SELTZER, M., BYAN, S., AND HAR-
RIS, T. Persistent memcached: Bringing legacy code
to byte-addressable persistent memory. In Proc. of
HotStorage (2017).

[67] MEMARIPOUR, A., BADAM, A., PHANISHAYEE, A.,
ZHOU, Y., ALAGAPPAN, R., STRAUSS, K., AND
SWANSON, S. Atomic in-place updates for non-
volatile main memories with Kamino-Tx. In Proc.
of EuroSys (2017).

[68] MEMARIPOUR, A., IZRAELEVITZ, J., AND SWAN-
SON, S. Pronto: Easy and fast persistence for volatile
data structures. In Proc. of ASPLOS (2020).

[69] MICHAEL, E., PORTS, D. R., SHARMA, N. K., AND
SZEKERES, A. Recovering shared objects without
stable storage. In Proc. of DISC (2017).

[70] MOHAN, C., HADERLE, D., LINDSAY, B., PIRA-
HESH, H., AND SCHWARZ, P. ARIES: a transaction
recovery method supporting fine-granularity locking
and partial rollbacks using write-ahead logging. ACM
Transactions on Database Systems (TODS) (1992).

[71] MOHAN, J., MARTINEZ, A., PONNAPALLI, S., RAJU,
P., AND CHIDAMBARAM, V. Finding crash-
consistency bugs with bounded black-box crash testing.
In Proc. of OSDI (2018).

[72] MORARU, I., ANDERSEN, D. G., AND KAMINSKY,
M. There is more consensus in egalitarian parliaments.
In Proc. of SOSP (2013).

[73] NALLI, S., HARIA, S., HILL, M. D., SWIFT, M. M.,
VOLOS, H., AND KEETON, K. An analysis of persis-
tent memory use with WHISPER. In Proc. of ASPLOS
(2017).

[74] NAM, M., CHA, H., CHOI, Y.-R., NOH, S. H., AND
NAM, B. Write-optimized dynamic hashing for persis-
tent memory. In Proc. of FAST (2019).

[75] NISHTALA, R., FUGAL, H., GRIMM, S.,
KWIATKOWSKI, M., LEE, H., LI, H. C., MCELROY,
R., PALECZNY, M., PEEK, D., SAAB, P., ET AL.
Scaling memcache at Facebook. In Proc. of NSDI
(2013).

[76] ONGARO, D., RUMBLE, S. M., STUTSMAN, R.,
OUSTERHOUT, J., AND ROSENBLUM, M. Fast crash
recovery in RAMCloud. In Proc. of SOSP (2011).

[77] OUKID, I., LASPERAS, J., NICA, A., WILLHALM, T.,
AND LEHNER, W. FPTree: A hybrid SCM-DRAM per-
sistent and concurrent B-tree for storage class memory.
In Proc. of SIGMOD (2016).

[78] OUSTERHOUT, A., FRIED, J., BEHRENS, J., BELAY,
A., AND BALAKRISHNAN, H. Shenango: Achieving
high CPU efficiency for latency-sensitive datacenter
workloads. In Proc. of NSDI (2019).

[79] PILLAI, T. S., CHIDAMBARAM, V., ALAGAPPAN, R.,
AL-KISWANY, S., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. All file systems are not
created equal: On the complexity of crafting crash-
consistent applications. In Proc. of OSDI (2014).

[80] Persistent memory development kit. https://pmem.io/
pmdk/.

[81] Persistent memory development kit—the libpmemobj
library. https://pmem.io/pmdk/libpmemobj/.

[82] pmem/pmem-redis: A version of redis that uses persis-
tent memory. https://github.com/pmem/pmem-redis.

1044 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf
https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf
http://arxiv.org/abs/1804.00701
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://pmem.io/pmdk/libpmemobj/
https://github.com/pmem/pmem-redis

[83] Protocol Buffers | Google Developers. https://developers.
google.com/protocol-buffers/.

[84] RAAD, A., WICKERSON, J., NEIGER, G., AND
VAFEIADIS, V. Persistency semantics of the Intel-
X86 architecture. Proc. ACM Program. Lang. 4, POPL
(Dec. 2019).

[85] Redis persistence. https://redis.io/topics/persistence.

[86] redis/README.md at 4.0 • redis/redis. https://github.
com/redis/redis/blob/4.0/README.md.

[87] SCHWALB, D., DRESELER, M., UFLACKER, M., AND
PLATTNER, H. NVC-Hashmap: A persistent and con-
current hashmap for non-volatile memories. In Proc.
of IMDM (2015).

[88] SHULL, T., HUANG, J., AND TORRELLAS, J. AutoP-
ersist: An easy-to-use Java NVM framework based on
reachability. In Proc. of PLDI (2019).

[89] SWEENEY, A., DOUCETTE, D., HU, W., ANDERSON,
C., NISHIMOTO, M., AND PECK, G. Scalability in
the XFS file system. In Proc. of ATEC (1996).

[90] TWEEDIE, S. EXT3, journaling filesystem, 2000.
http://olstrans.sourceforge.net/release/OLS2000-ext3/
OLS2000-ext3.html.

[91] TWEEDIE, S. C., ET AL. Journaling the Linux ext2fs
filesystem. In The Fourth Annual Linux Expo (1998).

[92] VAN RENEN, A., VOGEL, L., LEIS, V., NEUMANN,
T., AND KEMPER, A. Persistent memory I/O primi-
tives. In Proc. of DaMoN (2019).

[93] VENKATARAMAN, S., TOLIA, N., RANGANATHAN,
P., AND CAMPBELL, R. H. Consistent and durable
data structures for non-volatile byte-addressable mem-
ory. In Proc. of FAST (2011).

[94] VOLOS, H., NALLI, S., PANNEERSELVAM, S.,
VARADARAJAN, V., SAXENA, P., AND SWIFT, M. M.
Aerie: Flexible file-system interfaces to storage-class
memory. In Proc. of EuroSys (2014).

[95] VOLOS, H., TACK, A. J., AND SWIFT, M. M.
Mnemosyne: Lightweight persistent memory. In Proc.
of ASPLOS (2011).

[96] WANG, C., YING, V., AND WU, Y. Supporting legacy
binary code in a software transaction compiler with
dynamic binary translation and optimization. In Proc.
of CC (2008).

[97] WANG, T., LEVANDOSKI, J., AND LARSON, P. Easy
lock-free indexing in non-volatile memory. In Proc. of
ICDE (2018).

[98] swapnilh/whisper: WHISPER is a comprehensive
benchmark suite for emerging persistent memory tech-
nologies. https://github.com/swapnilh/whisper.

[99] WU, M., ZHAO, Z., LI, H., LI, H., CHEN, H., ZANG,
B., AND GUAN, H. Espresso: Brewing Java for more
non-volatility with non-volatile memory. In Proc. of
ASPLOS (2018).

[100] WU, X., NI, F., ZHANG, L., WANG, Y., REN, Y.,
HACK, M., SHAO, Z., AND JIANG, S. NVMcached:
An NVM-based key-value cache. In Proc. of APSys
(2016).

[101] WU, X., QIU, S., AND NARASIMHA REDDY, A. L.
SCMFS: A file system for storage class memory and
its extensions. ACM Trans. Storage 9, 3 (Aug. 2013).

[102] WU, Z., LU, K., NISBET, A., ZHANG, W., AND LU-
JÁN, M. PMThreads: Persistent memory threads har-
nessing versioned shadow copies. In Proc. of PLDI
(2020).

[103] XIA, F., JIANG, D., XIONG, J., AND SUN, N. HiKV:
A hybrid index key-value store for DRAM-NVM mem-
ory systems. In Proc. of USENIX ATC (2017).

[104] XU, J., KIM, J., MEMARIPOUR, A., AND SWANSON,
S. Finding and fixing performance pathologies in per-
sistent memory software stacks. In Proc. of ASPLOS
(2019).

[105] XU, J., AND SWANSON, S. NOVA: A log-structured
file system for hybrid volatile/non-volatile main mem-
ories. In Proc. of FAST (2016).

[106] XU, J., ZHANG, L., MEMARIPOUR, A., GANGAD-
HARAIAH, A., BORASE, A., DA SILVA, T. B., SWAN-
SON, S., AND RUDOFF, A. NOVA-Fortis: A fault-
tolerant non-volatile main memory file system. In
Proc. of SOSP (2017).

[107] YANG, J., IZRAELEVITZ, J., AND SWANSON, S.
Orion: A distributed file system for non-volatile main
memories and RDMA-capable networks. In Proc. of
FAST (2019).

[108] YANG, J., KIM, J., HOSEINZADEH, M., IZRAELE-
VITZ, J., AND SWANSON, S. An empirical guide to
the behavior and use of scalable persistent memory. In
Proc. of FAST (2020).

[109] YANG, J., WEI, Q., CHEN, C., WANG, C., YONG,
K. L., AND HE, B. NV-Tree: Reducing consistency
cost for NVM-based single level systems. In Proc. of
FAST (2015).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1045

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://redis.io/topics/persistence
https://github.com/redis/redis/blob/4.0/README.md
https://github.com/redis/redis/blob/4.0/README.md
http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html
http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html
https://github.com/swapnilh/whisper

[110] YAO, T., ZHANG, Y., WAN, J., CUI, Q., TANG, L.,
JIANG, H., XIE, C., AND HE, X. MatrixKV: Reducing
write stalls and write amplification in LSM-tree based
KV stores with matrix container in NVM. In Proc. of
USENIX ATC (2020).

[111] brianfrankcooper/ycsb: Yahoo! cloud serving bench-
mark. https://github.com/brianfrankcooper/YCSB.

[112] ZHANG, I., LIU, J., AUSTIN, A., ROBERTS, M. L.,
AND BADAM, A. I’m not dead yet! The role of the
operating system in a kernel-bypass era. In Proc. of
HotOS (2019).

[113] ZHANG, I., SHARMA, N. K., SZEKERES, A., KRISH-
NAMURHTY, A., AND PORTS, D. R. K. Building
consistent transactions with inconsistent replication.
In Proc. of SOSP (2015).

[114] ZHANG, L., AND SWANSON, S. Pangolin: A fault-
tolerant persistent memory programming library. In
Proc. of USENIX ATC (2019).

[115] ZHENG, S., HOSEINZADEH, M., AND SWANSON, S.
Ziggurat: A tiered file system for non-volatile main
memories and disks. In Proc. of FAST (2019).

[116] ZUO, P., AND HUA, Y. A write-friendly and cache-
optimized hashing scheme for non-volatile memory
systems. IEEE Transactions on Parallel and Dis-
tributed Systems 29, 5 (2018).

[117] ZUO, P., HUA, Y., AND WU, J. Write-optimized and
high-performance hashing index scheme for persistent
memory. In Proc. of OSDI (2018).

[118] ZURIEL, Y., FRIEDMAN, M., SHEFFI, G., COHEN,
N., AND PETRANK, E. Efficient lock-free durable sets.
Proc. ACM Program. Lang. 3, OOPSLA (Oct. 2019).

1046 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/brianfrankcooper/YCSB

AGAMOTTO: How Persistent is your Persistent Memory Application?

Ian Neal
University of Michigan

Ben Reeves
University of Michigan

Ben Stoler
University of Michigan

Andrew Quinn
University of Michigan

Youngjin Kwon
KAIST

Simon Peter
University of Texas at Austin

Baris Kasikci
University of Michigan

Abstract
Persistent Memory (PM) can be used by applications to

directly and quickly persist any data structure, without the
overhead of a file system. However, writing PM applications
that are simultaneously correct and efficient is challenging. As
a result, PM applications contain correctness and performance
bugs. Prior work on testing PM systems has low bug coverage
as it relies primarily on extensive test cases and developer
annotations.

In this paper we aim to build a system for more thoroughly
testing PM applications. We inform our design using a de-
tailed study of 63 bugs from popular PM projects. We identify
two application-independent patterns of PM misuse which
account for the majority of bugs in our study and can be de-
tected automatically. The remaining application-specific bugs
can be detected using compact custom oracles provided by
developers.

We then present AGAMOTTO, a generic and extensible
system for discovering misuse of persistent memory in PM
applications. Unlike existing tools that rely on extensive test
cases or annotations, AGAMOTTO symbolically executes PM
systems to discover bugs. AGAMOTTO introduces a new sym-
bolic memory model that is able to represent whether or not
PM state has been made persistent. AGAMOTTO uses a state
space exploration algorithm, which drives symbolic execution
towards program locations that are susceptible to persistency
bugs. AGAMOTTO has so far identified 84 new bugs in 5 dif-
ferent PM applications and frameworks while incurring no
false positives.

1 Introduction

Persistent Memory (PM) is a promising new technology that
offers an appealing performance-cost tradeoff for application
developers. PM technologies, such as Intel Optane DC [36],
can offer persistent memory accesses with latencies that are
only 2–3× higher than the latencies of DRAM [70]. More-
over, such PM technologies are cheaper than DRAM per GB

of capacity [3]. As byte-addressable memory, PM can also be
accessed via processor load and store instructions. Applica-
tion developers have already started building systems that use
PM directly, without relying on heavyweight system calls to
ensure durability, including ports of popular systems such as
memcached [24] and Redis [21].

While using PM directly via persistent data structures can
offer performance, it is challenging to write PM-based appli-
cations that are simultaneously correct and efficient [12, 18,
33, 52, 54, 60, 71, 76]. Persistent memory writes in the CPU
cache must be explicitly flushed to PM using specific instruc-
tions or APIs. In certain cases, PM flush operations need to
be ordered using memory fences to enforce crash consistency.
Incorrect usage of these mechanisms can result in persistency
bugs which break crash-consistency guarantees or degrade
application performance. Persistency bugs are challenging
to diagnose because their symptoms are easily masked. For
example, crash-consistency bugs may be masked because PM
writes are implicitly flushed when dirty (or updated) cache
lines are evicted from the CPU—furthermore, flushes which
are required for proper crash consistency under one execu-
tion path may be redundant and unnecessary under a different
program execution path, leading to performance degradations.

Several systems have been built to aid with testing PM
applications; however, these existing approaches are either
specific to a target application or require significant manual
developer effort. Intel designed Yat [44] and pmemcheck [65]
specifically to test the crash consistency and durability of
PMFS (Persistent Memory File System) [27] and PMDK
(Persistent Memory Development Kit) [20], respectively. To
find bugs, Yat exhaustively tests all possible update orderings,
and pmemcheck tracks annotated updates. Both of these tools
are specific to a single system (PMFS and PMDK, respec-
tively) and are hard to generalize. Other tools like Persistency
Inspector [62], PMTest [50], and XFDetector [49] are applica-
ble to general PM systems, but require developer annotations
and extensive test suites to thoroughly test PM applications.

In order to determine the extent to which persistency bug
finding can be automated (i.e., not require program annota-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1047

tions) to test general systems, we perform a study of 63 bugs in
PM applications and frameworks. We identify two application-
independent patterns of PM misuse (missing flush/fence and
extra flush/fence) which cover the majority (89%, or 56 out
of 63) of bugs in our study and can be detected automati-
cally. The remaining bugs are application-specific; for ex-
ample, many of the remaining bugs involve misusing trans-
actions when updating data-structures. Existing PM testing
approaches do not identify application-independent patterns
of misuse, and therefore require annotations to detect any PM
bug. In addition to classifying bugs based on their pattern
of PM misuse, we also classify bugs based on whether they
affect performance or correctness.

Based on the insights gained through our study, we present
AGAMOTTO, a framework for detecting bugs in PM appli-
cations that does not rely on extensive test cases. Instead,
AGAMOTTO uses symbolic execution [8] to thoroughly ex-
plore the state space of a program. In addition to expanding
path coverage, symbolic execution also allows AGAMOTTO
to detect persistency bugs in an application without access to
underlying physical PM resources. AGAMOTTO introduces a
memory model to track updates made to PM by the explored
program paths, and supports bug oracles which use the PM
state to identify bugs in the program. AGAMOTTO automati-
cally detects persistency bugs using two universal persistency
bug oracles based on the common patterns of PM misuse
identified by our study. The first is an unflushed/unfenced ora-
cle that identifies modifications to PM cache lines that are not
flushed or fenced (both a correctness and performance issue)
and the second an extra-flushed/fenced oracle that identifies
duplicate flushes of the same cache line or unnecessary fences
(a performance issue [18, 52, 60, 71, 76]).

To identify application-specific persistency bugs, AG-
AMOTTO allows developers to provide custom persistency bug
oracles. To demonstrate the versatility of custom oracles, we
implemented two such oracles in AGAMOTTO to detect bugs
related to misuse of the PMDK transactional API [20, 49, 50].

Analyzing large PM applications using traditional symbolic
execution [8] leads to scalability issues since the state space
of possible executions grows exponentially with the size of
the analyzed program. AGAMOTTO uses a novel search algo-
rithm that prunes the execution states it analyzes, allowing
AGAMOTTO to discover more bugs. Prior to symbolic exe-
cution, AGAMOTTO uses a whole-program static analysis to
determine instructions that modify PM (stores, flushes, etc.)
and assigns a unit priority to them. AGAMOTTO then assigns
an aggregate priority to each instruction by back-propagating
the unit priorities from each PM-modifying instruction—this
makes the aggregate priority a measure of the number of PM-
modifying instructions reachable from a particular instruction.
AGAMOTTO uses priorities to steer symbolic execution into
program states that frequently modify PM.

We used AGAMOTTO to find 84 new persistency bugs
in real-world systems including PMDK (a mature PM li-

brary) [20], memcached-pm [24], Redis-pmem [21], NVM-
Direct [7], and RECIPE [45]. In particular, we found 13 new
correctness and 70 new performance bugs using the universal
persistency bug oracles, and 1 new correctness bug using a
custom persistency bug oracle. We report all bugs to their
authors, and so far 40 of them have been confirmed and none
denied.

In this paper we make the following contributions:
• We perform a detailed study of persistency bugs in

PMDK as well as bugs found by prior work, and present
a new taxonomy of persistency bugs.
• We build AGAMOTTO1, a persistency bug detection tool

that can test real-world PM programs using a novel state
exploration algorithm. AGAMOTTO automatically de-
tects bugs using two universal persistency bug oracles,
without relying on user annotations or an extensive test
suite. AGAMOTTO is extensible with custom bug oracles
that can detect application-specific bugs.
• We use AGAMOTTO to find 84 new bugs in 5 applica-

tions and persistent memory libraries, compared to the 6
persistency bugs found in persistent applications by the
state of the art (PMTest [50], which finds 3 bugs, and
XFDetector [49], which finds 3 bugs). AGAMOTTO does
not incur any false positives in our evaluation.

In the rest of this paper, we first provide background on
PM programming and describe the challenges of PM bug
finding (§2). We then present the results of our PM bug study
and provide common patterns of PM misuse that identify PM
bugs (§3). Then, we discuss the persistency bug detection
algorithms and search techniques underlying AGAMOTTO
(§4). Next, we describe the high-level design of AGAMOTTO
and evaluate the system with respect to both the number of
bugs found and the impact of these bugs (§6). Finally, we
describe related PM bug detection work (§7).

2 Background and Challenges

We now provide a background on persistent memory (PM)
programming and difficulties associated with writing correct
and efficient PM programs.

2.1 Persistent Memory Programming

1 int *x = pm_alloc(), *y = pm_alloc();
2 *x = 1;
3 clwb(x)
4 sfence()
5 *y = 1;
6 clwb(y)
7 sfence()

Listing 1: A PM programming example.

PM implementations support a programming interface that di-
verges from that of conventional storage devices. Rather than

1Released at https://github.com/efeslab/agamotto

1048 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/efeslab/agamotto

using comparatively slow system calls to access persistent
memory, applications can accelerate PM accesses by directly
mapping pages of PM into their address space and performing
byte-addressable load/store operations. Like volatile memory
accesses, PM IO may be cached and buffered in volatile mem-
ory (i.e., the CPU cache) in order to increase performance.

The added performance comes at the cost of increased
complexity for the application developer. Volatile memory
can retain updates to PM for an indefinite period of time (e.g.,
until a cache line gets evicted). Ensuring that stores to PM are
durable requires two steps. First, a developer must issue a flush
for the cache-line that contains the updated data. Then, the
developer orders flushes using existing fence operations (e.g.,
SFENCE). Note that an unordered flush may not be written to
persistent memory before a crash, so fences are required for
durability. Consider Listing 1, which allocates two integers in
persistent memory and issues ordered writes to the integers.
In order to guarantee that the write to x (line 2) is ordered
before the write to y (line 5), a flush and fence must occur
between the updates (lines 3 and 4). To ensure that the write
to y (line 5) is durable, a flush and fence must occur after the
write (lines 6 and 7).

The x86 instruction set architecture (ISA) provides two
flush instructions: CLFLUSHOPT and CLWB. CLWB differs from
CLFLUSHOPT in that CLWB hints the CPU to keep the cache
line in the cache whereas CLFLUSHOPT does not. x86 pro-
vides two fence instructions: MFENCE, which orders all loads,
stores, and flushes; and SFENCE, which orders all stores and
all flushes. Additionally, x86 provides CLFLUSH, which acts
as both a flush and fence for a specific cache line (i.e., only
orders the flush that the CLFLUSH itself issues, other CLWB
and CLFLUSHOPT instructions must be ordered by a separate
fence). Finally, x86 allows non-temporal stores, which bypass
the cache and thus do not require a flush but do require a fence
for durability. Note that the classification of PM instructions
into flush and fence operations is not x86-specific. For exam-
ple, ARM provides flush (e.g., DC CVAP) and fence (e.g., DSB)
operations [5, 67] with similar semantics to x86 flushes and
fences.

2.2 Challenges of Detecting PM Bugs

PM interfaces for durability and performance are easy to
misuse [49, 50] and the resulting persistency bugs can be
challenging to detect. Persistency bugs exhibit many char-
acteristics that make them difficult to detect. First, finding a
persistency bug requires identifying whether PM cache-lines
are dirty, but the x86 ISA does not provide a mechanism to
determine the state of a cache-line. Thus, detecting a persis-
tency bug requires modeling PM state and instrumenting the
program for tracking state updates, which is challenging to
accomplish using traditional debugging tools. Second, in the
case of correctness bugs, the root cause and symptoms of
a persistency bug are often loosely tied together: while the

Project Missing
Flush/Fence

Extra
Flush/Fence Other Total

PMDK 49 6 2 57
PMTest 1 1 1 3
XFDetector - - 3 3
Total 50 6 7 63

Table 1: The results of our bug survey.

symptoms of a correctness persistency bug is only revealed
after a crash, the PM misuse (i.e., the root cause) may be
hundreds of thousands of instructions before the crash even
occurred. Finally, persistency bugs are easily masked by other
system behavior. For example, flushes which are redundant
in one execution path of the program may be necessary under
a slightly different execution path, while correctness persis-
tency bugs may be masked by the CPU when evicting a dirty
cache-line from its cache.

Unfortunately, developers cannot solely rely on PM frame-
works (e.g., PMDK [20]) to prevent these bugs. As we show
in §3, many applications use PM libraries incorrectly and
even these established libraries themselves may misuse PM.

3 PM Bug Study and Classification

In this section, we present a study of persistency bugs. We
construct a corpus of 63 persistency bugs from a mature PM
library, PMDK [20], and persistency bugs from PM projects
(PMFS [27] and Redis-pmem [21]) that were found by state-
of-the-art PM bug detection tools (PMTest [50] and XFDe-
tector [49]). We chose PMDK, because it is a mature project
with a thorough issue tracker [23] representing a large collec-
tion of existing bugs. We use this corpus to identify common
patterns of PM bugs.

Table 1 shows a summary of our results2. Overall, we find
that two application-independent PM patterns explain the vast
majority (56/63 bugs) of the reported persistency bugs. We
find that PM bugs can result in either correctness problems,
which may lead to data corruption, or performance problems.
In particular, the missing flush/fence pattern, in which an up-
date to persistent memory is missing subsequent flush and/or
fence operations, accounts for 50/63 bugs and can lead to ei-
ther correctness or performance issues. The extra flush/fence
pattern, in which a cache-line is redundantly flushed or a fence
instruction is issued that is not needed for PM durability, ac-
counts for 6/63 bugs and leads to performance degradation.
The remaining 7 are caused by application-specific violations,
most of which involve a misuse of the PMDK transaction
API. Note, our study may be biased towards bugs that are de-
tectable by existing PM bug detection tools, because PMDK

2We provide a link to our bug study results in the AGAMOTTO
GitHub repository: https://github.com/efeslab/agamotto/blob/
artifact-eval-osdi20/artifact/README.md

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1049

https://github.com/efeslab/agamotto/blob/artifact-eval-osdi20/artifact/README.md
https://github.com/efeslab/agamotto/blob/artifact-eval-osdi20/artifact/README.md

developers extensively use pmcheck [65] to detect bugs. In
the rest of this section, we present examples of these bugs
together with more detailed descriptions.

3.1 Missing Flush/Fence Pattern

1 //oid is a pointer to PM
2 if (if_free != 0)
3 *oid = NULL;
4 // BUG: missing flush and fence

Listing 2: A missing flush/fence correctness bug adapted from
PMDK Issue #1103, Pull Request (PR) #3907.

The most common bug pattern in the bugs in our study
is the missing flush/fence pattern, in part because PMDK
developers extensively use pmemcheck [65] which identifies
this pattern of PM misuse. In this bug pattern, an update to
PM is not made durable because it is missing a subsequent
flush and/or fence operation. An example of the pattern is
shown in Listing 2. Here, a pointer to persistent memory, oid,
is not flushed when if_free != 0. If the program crashed
and restarted, the pointer might point to its old value, which
could lead to rogue writes or malformed data reads. This bug
is fixed by adding proper flush and fence operations after the
modification.

In contrast, the missing flush/fence pattern is detectable
without any application-specific information. In our study,
instances of the missing flush/fence pattern are correctness
issues, where the program is unable to recover from a crash
similar to the one in Listing 2. In our evaluation (see §6), we
also found instances of the missing flush/fence pattern which
are performance bugs. In these instances, an application uses
persistent memory to store volatile data, which hinders per-
formance due to the higher latency of PM accesses relative to
DRAM accesses. Existing studies suggest that placing volatile
data in PM can decrease application performance by as much
as 5% [26]. There are PM data structures that intentionally
include this pattern [53] as a programming simplification.
However, in the applications included in our study and eval-
uation, all instances of the missing flush/fence pattern are
persistency bugs.

3.2 Extra Flush/Fence Pattern
The other common pattern of persistent memory misuse which
we identify in our study is the extra flush/fence pattern. In
this pattern, a cache-line is redundantly flushed, or a fence
instruction which is not needed for PM durability is executed.
An example of this is shown in Listing 3. In this example, an
array located in persistent memory is resized in-place using
the call to resize_array, new elements are initialized to 0,
and new elements are flushed to persistent memory. How-
ever, when the size of the array is reduced (i.e., new_size

1 //array is an array of integers in PM
2 //with length = size
3

4 //resizes array in-place
5 resize_array(array, new_size);
6

7 // if size >= new_size, no copying occurs
8 for (size_t i = size; i < new_size; i++)
9 array[i] = 0;

10

11 // BUG: when new_size < size, underflow!
12 for (size_t i = 0; i < new_size - size; ++i)
13 clwb(array[i + size])
14 sfence();

Listing 3: An extra flush/fence performance bug adapted from
PMDK issue #1117, PR #3860 .

< size), an underflow in line 12 causes unnecessary flushes
and leads to a performance degradation [18, 60, 71, 76] (e.g.,
an additional flush and fence can add an average of 250ns
of latency [51, 73], where the base latency of uncached PM
accesses can be as low as 96ns [37]).

Similar to the missing flush/fence pattern, the extra
flush/fence pattern is detectable without any application-
specific information. The extra flush/fence pattern results in
performance degradation. As flush and fence instructions are
used in non-PM contexts (e.g., fences provide semantics for
memory consistency), there may be instances of this pattern
that are not persitency bugs. However, in the applications in
our study and evaluation, all instances of the extra flush/fence
pattern are persistency bugs.

3.3 Other Bugs

1 // store pool’s header
2 /* BUG: header made valid before
3 pool data made valid */
4 header = ...
5 clwb(header);
6 sfence();
7 pool = ...
8 clwb(pool);
9 sfence();

Listing 4: An example correctness bug adapted from PMDK
Issue #14.

The remaining 7 bugs in the study are application-specific;
i.e., in these cases, data is correctly flushed to PM and there
are no redundant flush operations, but the application misuses
PM, leading to performance or correctness issues. For exam-
ple, Listing 4 depicts a bug adapted from the memory pool
allocator in PMDK which results in a correctness issue. In
order to recover from a crash, the values in header and pool
must be consistent; however a crash at Line 7 will result in an
updated value of header without an updated value of pool.

1050 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Execute
Instruction

§ 4.1 PM
Model

Symbolic Execution Engine

Symbolic
State

Update State

§ 4.2 PM Bug
Oracles

Select Next
State

§ 4.3 PM
Search

Figure 1: Components of AGAMOTTO. Green-shaded boxes
are AGAMOTTO-specific.

3.4 Summary and Insights

We summarize several key results we obtained and the insights
we gathered from this bug study which inform AGAMOTTO’s
design decisions.
• The missing flush/fence and extra flush patterns are

prevalent (56/63 of the bugs we found) and application-
independent. Hence, an automated approach (i.e., requir-
ing little to no developer effort or source modification)
could and should be used to detect them across a variety
of platforms.
• In our study, all instances of the missing flush/fence and

extra flush/fence patterns are persistency bugs; we hy-
pothesize that this trend will hold for general PM appli-
cations. In §6, we find that all instances of these patterns
are persistency bugs across a variety of PM libraries and
applications.
• The remaining bugs, while less prevalent in our survey,

are still potential sources of inconsistency and/or per-
formance loss. An ideal tool should allow developers to
specify application-specific patterns without requiring
extensive test cases and significant developer annota-
tions.

4 Design

In this section, we describe the design of AGAMOTTO. AG-
AMOTTO aims to achieve four high-level design principles:
Automation. Bug-finding can take a substantial amount of de-
veloper effort [56,68]; AGAMOTTO aims to automate as much
as possible to reduce this burden. For example, AGAMOTTO is
non-intrusive (i.e., requires no source-code modifications) and
leverages basic test cases (e.g., existing unit tests or example
code) to explore execution paths in an application.
Generality. AGAMOTTO can test any PM application.
High Accuracy. AGAMOTTO aims to report no false positives
(i.e., reporting a bug where there is none) while also reducing
false negatives (i.e., failure to find a bug).
Extensibility. AGAMOTTO can be easily extended to find
application-specific bugs.

The major components of AGAMOTTO are shown in Fig. 1
(green-shaded boxes represent the key components unique to

AGAMOTTO). AGAMOTTO relies on an existing symbolic exe-
cution engine (KLEE [8] in our prototype) to explore the state
space of a PM program. During this exploration, AGAMOTTO
uses a custom PM model to express and track updates to per-
sistent memory regions (i.e., writes, flushes and fences). Since
AGAMOTTO tracks PM symbolically, it does not need access
to PM resources in order to detect persistency bugs in a PM
application. As AGAMOTTO explores the state space of the
program, it checks for PM bugs using universal bug oracles,
as well as any custom bug oracles that users may provide.
Universal oracles check for the missing flush/fence pattern
and the extra flush/fence patterns of PM misuse identified in
our study. Custom oracles can check for application-specific
bugs, which may be correctness bugs (e.g., ordering bugs)
and/or performance bugs (e.g., redundant transaction opera-
tions) akin to prior work [49, 50].

At the heart of AGAMOTTO lies its PM-aware state space
exploration algorithm, which is effective in steering symbolic
execution towards program locations that exercise PM. In
symbolic execution, inputs are symbolic (unconstrained) val-
ues in a program’s initial state. When the program reaches
a branch depending on symbolic input, the current state is
forked and the constraints on input are updated depending on
the branch condition. As states increase by forking, symbolic
execution needs to employ a state-space exploration strategy.
Existing state space exploration strategies, such as maximiz-
ing code coverage, are not optimized for finding PM bugs,
and thus waste resources exploring uninteresting paths.

Instead, before symbolically executing the program, AG-
AMOTTO uses a custom static analysis to determine instruc-
tions that can modify persistent memory. AGAMOTTO then
uses a back-propagation algorithm to assign a weight to each
instruction equal to the number of PM-modifying instructions
that are reachable from that instruction. AGAMOTTO priori-
tizes exploring the program state whose currently-executed
instruction has the highest such weight. We find that the num-
ber of PM-modifying paths is much smaller than the total
number of execution paths in practice, allowing AGAMOTTO
to thoroughly explore the set of executions that lead to persis-
tency bugs (see §6).

When AGAMOTTO’s oracles detect a bug during state space
exploration, AGAMOTTO relies on its underlying symbolic
execution engine to invoke a constraint solver and determine
the inputs that led to the bug, thereby creating a test case that
a developer can use for debugging.

In the rest of this section we provide details regarding the
key components of AGAMOTTO.

4.1 PM Model and PM State Tracking

AGAMOTTO facilitates persistency bug detection by tracking
the state of persistent memory objects in the program. For
each PM allocation, AGAMOTTO tracks constraints on the
persistency state of the allocated cache lines. The persistency

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1051

state of a cache-line indicates whether the cache line is dirty
(i.e., modified), pending (i.e., updates to the cache-line are
flushed but not ordered) or clean (i.e., updates to the cache-
line are both flushed and ordered). As AGAMOTTO symboli-
cally executes, it updates constraints on the persistency state
of PM cache-lines to reflect the behavior of the program. AG-
AMOTTO uses these constraints to identify execution paths
which contain persistency bugs, (i.e., when redundant flushes
are issued, or updates are not properly ordered).

Identifying PM allocations In order to be application-
agnostic and automated, AGAMOTTO tracks persistent mem-
ory allocations from the system level, rather than track-
ing high-level calls to persistent memory allocators (e.g.,
pmem_alloc) [50]. Tracking PM allocations at a system level
trades off performance in favor of automation, since this
approach over-approximates PM allocations. AGAMOTTO
marks all opened files that match a user-specified persistent
memory device regular expression (e.g., pmem/*) as PM files
and treats memory-mappings of PM files as persistent mem-
ory objects.

Tracking Persistent Memory State. When AGAMOTTO
symbolically executes an instruction that operates on a PM
object, it generates constraints on the persistency state of the
cache-lines that comprise the memory objects. A store instruc-
tion (e.g., x86 MOV) adds a constraint that the destination of
the store is in the dirty state. Flush instructions (e.g., CLWB and
CLFLUSHOPT) generate a constraint that denotes that the desti-
nation is in the pending state. Non-temporal stores (e.g., x86
MOVNT are similar to regular stores, except their destination
is immediately put into the pending state (i.e., non-temporal
stores are treated as a store+flush), as non-temporal stores
bypass the CPU cache but are weakly ordered (like flush
instructions) and still require some form of memory fence.
Global fences (e.g., SFENCE, MFENCE) add constraints to in-
dicate that all PM cache lines are clean, whereas cache-line
fences (e.g., CLFLUSH) add a constraint denoting that their
destination is clean.

4.2 Persistency Bug Oracles

AGAMOTTO uses the persistent memory state in order to
support two types of persistency bug oracles. First, AG-
AMOTTO provides two built-in Universal Peristency Bug Or-
acles, which check for bugs based on the patterns we identify
in §3. Second, AGAMOTTO allows developers to specify cus-
tom, application-specific persistency bug oracles, which we
have used to provide two oracles for the PMDK Transaction
interface [20].

1 // Unflushed Bug Oracle
2 def check_unflushed(state):
3 for pm_obj in state:
4 forall cachelines in pm_obj:
5 if not cacheline.is_clean:
6 raise error(correctness)
7
8 // Extra flush/fence Bug Oracle
9 def check_extra_flush(state, cacheline):

10 if cacheline in state is clean:
11 raise error(performance)
12 def check_extra_fence(state):
13 if state has no pending updates:
14 raise error(performance)
15

16 // Call Oracles on instructions:
17 def executeInstruction(state, inst):
18 if (state.terminated or state.unmapped):
19 check_unflushed(state)
20 if inst is flush:
21 check_extra_flush(state,
22 inst.cacheline)
23 // do flush
24 if inst is fence:
25 check_extra_fence(state)
26 state.commit_pending()

Listing 5: Pseudo-code for Universal Persistency Bug Oracles
and how they are used as AGAMOTTO explores the state space.

4.2.1 Universal Persistency Bug Oracles

AGAMOTTO provides two universal persistency bug oracles,
one that detects an instance of the missing flush/fence bug
pattern (indicating a correctness or performance bug), and
one that detects an instance of the extraneous flush/fence bug
pattern (indicating a performance bug). We sketch the algo-
rithms in Listing 5. AGAMOTTO reports a missing flush/fence
bug for each cache-line in a persistent memory object that is
not clean (i.e., the constraints on the persistent state indicate
that the cache-line may be dirty or pending) at the time when
the persistent memory is no longer addressable (due to either
munmap or program exit). AGAMOTTO identifies an extrane-
ous flush/fence operation bug on any flush (e.g., CLFLUSH) to
a cache-line which must already be pending or clean based on
the constraints on the persistent state. AGAMOTTO also identi-
fies an extraneous flush/fence bug on any fence (e.g., SFENCE
or MFENCE) which has no pending flushes to mark clean. For
both of these oracles, AGAMOTTO reports program location
information (e.g., stack frame and source code location) for
the most recent update to each cache line which violates the
conditions checked by the oracle. In our evaluation (see §6),
we show that these oracles do not incur any false positives
across a variety of PM frameworks and applications.

4.2.2 Custom Bug Oracles

In addition to the generic bug oracles, AGAMOTTO facilitates
the use of custom bug oracles. Custom bug oracles are defined
separately from the application, which allows them to be
versatile tools for detecting application-specific bugs. For
example, a developer might use a custom oracle to validate the
correct usage of PM frameworks (e.g., identifying duplicate
log entries in the PMDK libpmemlog) or assert that certain

1052 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 class PmemObjTxAddChecker
2 : public CustomChecker {
3 bool in_tx;
4 // [address, address+size)
5 typedef pair<ref<Expr>, ref<Expr>> TxRange;
6 list<TxRange> added_ranges;
7

8 void checkTxBegin(Function *f,
9 ExecutionState &state) {

10 if (!in_tx && f->getName() == "
pmemobj_tx_begin")

11 in_tx = true;
12 }
13

14 void checkTxAdd(Function *f,
15 ExecutionState &state) {
16 if (f->getName() !=
17 "pmemobj_tx_add_common") return;
18 // 1. Get the address from the stack.
19 ref<Expr> address = f.getArgument(0);
20 ref<Expr> size = f.getArgument(1)
21 // 2. Get end bound
22 auto r_end = address + size;
23 auto new_range = TxRange(address, r_end);
24 // 3. Check for overlaps.
25 // If overlap, there’s a bug!
26 if (overlaps(state, new_range))
27 reportError(state, RedundantTxAdd);
28 // 4. Add the new range.
29 added_ranges.push_back(new_range);
30 }
31

32 void checkTxEnd(Function *f,
33 ExecutionState &state) {
34 if (f->getName() == "pmemobj_tx_end")
35 in_tx = false;
36 }
37

38 public:
39 PmemObjTxAddChecker(...) {...}
40 // This is the entry point
41 virtual void operator()(
42 ExecutionState &state) override {
43 checkTxBegin(getFunction(state), state);
44 checkTxAdd(getFunction(state), state);
45 checkTxEnd(getFunction(state), state);
46

47 if (!in_tx) added_ranges.clear();
48 }
49 };

Listing 6: An psuedo-code example of a custom oracle,
designed to check for redundant PMDK transaction “adds”
(i.e., redundant log updates).

structures are operated on in the correct way (e.g., checking
that PM referenced as struct foo is only ever modified in
a PMDK transaction). Custom bug oracles define a function
that takes as input an explored program state (i.e., the current
state of symbolic memory and variables in the program) and
an instruction; after each instruction is executed within this
state, AGAMOTTO calls all configured custom bug oracles.
We provide two case studies on designing and implementing
custom oracles, which we use to find 4 application-specific
bugs that were reported by prior work and 1 new application-
specific bug. Both of the custom oracles which we present are
precise, i.e., they do not introduce false positives. We describe
them at a high-level below, then discuss their implementation
in §5.

Redundant Undo Log Oracle. This oracle checks to en-
sure that data does not get logged in PMDK’s undo log mech-
anism multiple times. We show a pseudo-code example of an
oracle in Listing 6. PMDK’s transactional API implements an
undo log which is used to back up data before it is modified—
if a transaction is interrupted by a program error or a crash,
the data can be recovered from the log. A misuse of this API,
however, can lead to redundant entries being created in the
undo log, which degrades performance. To track these errors,
this oracle keeps track of transaction boundaries (TX_BEGIN,
TX_END) and the memory ranges backed up in the undo log. If
overlapping memory ranges are added during a single transac-
tion, the oracle signals a performance bug. We use this oracle
to reproduce the application-specific performance bug found
by PMTest in PMDK’s example B-tree data structure.

Atomic Operation Oracle. This oracle ensures that a
developer-specified structure is crash-recoverable through
correct use of a PMDK transaction. In particular, the oracle
verifies that the structure is only updated within a PMDK
transaction and is properly added to the PMDK undo log.
We used this oracle to find 3 existing bugs; 2 in the PMDK
Atomic Hashmap and 1 in Redis-pmem.

4.3 PM-Aware Search Algorithm
AGAMOTTO uses symbolic execution to explore the state
space of the program. In order to analyze large persistent
memory applications, AGAMOTTO prioritizes exploring pro-
gram states that are most likely to modify persistent memory
using a PM-aware search algorithm. We now first explain the
static analysis that AGAMOTTO uses to compute exploration
priorities. We then explain the operation of AGAMOTTO’s
state space exploration and why AGAMOTTO’s approach is
more effective at finding persistency bugs than traditional
coverage-guided exploration heuristics.

4.3.1 Whole-Program Static Priority Computation

The goal of AGAMOTTO’s static analysis is to determine the
number of reachable PM-modifying instructions from each
instruction in the program. That way, AGAMOTTO can guide
symbolic execution towards program locations that are ex-
pected to access PM heavily, and uncover more bugs. This
technique can be effective as the number of overall instruc-
tions expected to modify PM is much smaller than the number
of instructions which modify volatile memory [59].

To achieve this, AGAMOTTO first identifies all PM-
modifying instructions in the program by leveraging a
sound, whole-program (i.e., interprocedural) pointer analy-
sis [4, 14, 31, 32]. The analysis maps each pointer in the pro-
gram to a set of memory locations; soundness guarantees
that any two pointers which may alias will have a non-empty
intersection of these sets of memory locations.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1053

1 char *pbuf = mmap(<PM file>);
2 ... // (# of PM-modifying insts)
3 do_read = ... // (2)
4 if (do_read) // (0)
5 a = pbuf[x] // (0)
6 foo() // (0)
7 else // (2)
8 a = ... // (2)
9 pbuf[x] = a // (2)

10 clwb(pbuf[x]) // (1)
11 // BUG: Missing sfence!
12 exit(0) // (0)

Listing 7: An example of AGAMOTTO’s static analysis. All
PM-modifying instructions are highlighted. Each instruction
is annotated with a comment which denotes the result of the
priority calculation.

AGAMOTTO then determines whether a given memory lo-
cation may have been allocated as persistent memory. To do
this, AGAMOTTO conservatively assumes that all mmap calls
which accept a non-negative or variable file descriptor may
return a pointer to persistent memory. While this approach
over-approximates the persistent memory allocated by the
program, as we show in §6, it accelerates persistency bug
finding compared to default exploration strategies. Note that
this conservative approach only affects the PM-aware search
strategy, it does not introduce false positives in AGAMOTTO’s
PM state tracking.

Then, AGAMOTTO classifies each instruction in the pro-
gram as a persistent memory-modifying instruction if the in-
struction is a global fence (e.g., SFENCE), or, a store (e.g., x86
MOV), flush (e.g., CLWB), or cache-line fence (e.g., CLFLUSH)
that may point to a persistent memory location.

AGAMOTTO only computes points-to information for point-
ers which may alias PM. For shared libraries, AGAMOTTO
first statically links the binary, then computes the alias infor-
mation. If the shared library is used to modify PM (i.e., has
some shared memory modification function which is used to
modify PM), then that part of the shared library code will be
analyzed.

Finally, AGAMOTTO uses a back-propagation algorithm to
calculate the number of reachable PM modifying instructions
for each program location. AGAMOTTO iterates through the
interprocedural control flow graph from the exit points in the
program (e.g., calls to exit or return from main) to the first
instruction in the program. For each instruction, AGAMOTTO
assigns the priority of the instruction to be the sum of the
weight of the current instruction (1 if the current instruction is
a PM-modifying instruction, 0 otherwise) and the maximum
number of reachable PM-modifying instructions from the
current instruction.

We show a small example of this priority computation in
Listing 7, where each instruction is annotated with the result
of the priority calculation. Each PM-modifying instruction
(pbuf[x]=a and clwb(pbuf[x])) adds 1 to the priority and
the priorities are backpropagated to the entry point (Line 3).

if
Bug

else

foo()
KLEE-Default
AGAMOTTO

Init
1 2 1

3

4

Figure 2: State space exploration with two strategies: (1)
KLEE-Default (based on code coverage), (2) AGAMOTTO’s
priority-driven exploration. This example corresponds with
the bug described in Listing 7.

4.3.2 State Exploration Strategy

AGAMOTTO relies on an existing symbolic execution engine
(KLEE [8]) to explore the possible states of the program.
Symbolic execution starts with an initial program state which
contains a current statement (similar to a program counter), a
symbolic memory (where memory values are unknown), and
symbolic inputs (e.g., an unknown integer value). As the
program statements are symbolically executed, the symbolic
execution engine simulates the effects of the program state-
ments on symbolic inputs and memory, and updates explored
program state accordingly. Moreover, the symbolic execution
engine forks the explored state into two every time a branch
that depends on symbolic values is encountered.

After executing a program statement in an explored state,
the symbolic execution engine selects a new state to advance
next. When selecting a state to explore, AGAMOTTO chooses
the state whose current statement has the highest statically-
computed aggregate priority (i.e., number of reachable PM
modifying statements from the current instruction).

Fig. 2 shows an example of state space exploration for the
the example code snippet in Listing 7, where Init represents
the initial state of the program and the buggy state where
the program omitted an sfence instruction is in the else
path. For brevity, foo is depicted as a single statement that is
explored at once.

The KLEE-Default strategy, which is a breadth-first explo-
ration strategy augmented by randomized, coverage-guided
prioritization, may explore states that are not useful to de-
tecting the bug. When applied to the code in Listing 7, the
KLEE-Default exploration strategy will explore the state in
the if branch for a single statement (a=pbuf[x]) and switch
to the state in the else branch for another statement (a=...).
This cycle will repeat once more in the if branch (foo())
and in the else branch (pbuf[x]=a, clwb(pbuf[x])); ex-
ploration will reach the bug in a total of 4 state transitions.

AGAMOTTO, on the other hand, directly explores the else
branch because its static analysis assigns the else branch
a high aggregate priority. Consequently, AGAMOTTO can

1054 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

discover the bug with a single state transition.
Although the number of explored states in our example

is small, in practice, the number of states in a program is
exponential in the number of branches that depend on sym-
bolic input. Consequently, AGAMOTTO’s exploration strategy
allows it to discover many more bugs compared to KLEE’s
default strategy, as we demonstrate in §6.

5 Implementation

AGAMOTTO comprises a persistent memory model (~400
LOC of C++), a static analysis component (~2600 LOC of
C++), and a state space exploration component (~100 LOC of
C++) built atop Klee [8]). AGAMOTTO also provides 2 custom
bug oracles for validating the use of the PMDK transaction
API (~180 LOC of C++ for both oracles and ~200 LOC of
C++ for shared custom oracle API functions).

Running real-world complex PM applications also required
expanding KLEE by ~4000 LOC of C++. These additional
changes were primarily to the environment model, which sym-
bolically simulates syscalls and operating system facilities,
such as a file system. AGAMOTTO targets the Intel x86 ISA
since it is the most broadly-used platform for PM program-
ming. Hence, AGAMOTTO adds support to KLEE for inter-
preting PM-specific x86 instructions (e.g., CLWB). Supporting
a different ISA or persistency model [34, 42, 63] simply re-
quires identifying the flush and fence operations in the ISA.
In addition, AGAMOTTO adds to KLEE support for common
inline assembly functions such as atomic instructions, as well
as porting an extensive environment model for multithreading
(i.e., POSIX threads) from Cloud9 [16], which was built on
an older version of KLEE. AGAMOTTO adds support for sym-
bolic files to model and track the state of mapped persistent
memory and anonymous symbolic mmap. Finally, AGAMOTTO
adds symbolic socket traffic to the environment model, which
allows an application to receive symbolic input over a socket.
Symbolic socket traffic allows AGAMOTTO to model client
applications that send commands to a server process.

Developing an automated bug finding tool for persistent
memory presents key challenges. To identify persistent mem-
ory allocations in a PM framework agnostic way without
relying on developer annotations, AGAMOTTO tracks alloca-
tions at the system level (e.g., calls to map a persistent mem-
ory file). This represents a significant divergence from KLEE,
which tracks allocations at the libc interface (e.g., malloc and
free), and introduces performance challenges. Applications
often allocate MBs or GBs of persistent memory, but KLEE
is optimized for tracking memory objects that are KBs in size;
treating each persistent memory mapping as a single memory
object leads to poor performance when KLEE solves con-
straints. Instead, AGAMOTTO carefully partitions persistent
memory into separate, yet logically adjacent, objects (empiri-
cally, we find 16KB chunks to balance the tradeoff between
solver time and management overhead). AGAMOTTO also

tracks the set of live persistent memory objects to reduce time
resolving symbolic addresses for global fence operations.

AGAMOTTO supports custom persistency bug checkers
with a simple yet powerful interface. Specifically, a developer
implements a method that takes as input the state being ex-
plored symbolically and asserts pre- and post- conditions on
the state of persistent memory based on an understanding of
how their application should behave. AGAMOTTO provides
a library of basic utilities (e.g., error reporting, calls to the
symbolic solver) that comprise ~200 LOC and allows bug ora-
cles to use type information provided by LLVM. AGAMOTTO
provides 2 custom oracles to detect application-specific per-
sistency bugs in PMDK and Redis (§4.2.2). We implement the
Redundant Undo Log Oracle in 96 LOC and less than a day
of developer effort. The Atomic Operation Oracle extends the
Redundant Undo Log Oracle—it comprises an additional 86
LOC on top of the inherited functionality and also took less
than a day to implement.

6 Evaluation

In this section, we evaluate the effectiveness and usefulness
of AGAMOTTO. We start by giving an overview of the new
bugs AGAMOTTO has found (84)3 and the insights we gather
from them (§6.1). We also discuss the positive responses
that we have received after reporting bugs to PM application
developers (§6.2). We then evaluate the performance of AG-
AMOTTO and how our novel search tactic compares to the
default symbolic execution search strategy in KLEE (§6.3).

Evaluation Targets. We evaluate AGAMOTTO by testing
representative state-of-the-art PM-application and libraries
consistent with the libraries and applications tested by prior
work [49, 50]. We evaluate AGAMOTTO on two PM libraries.
First, we test the PMDK [20] library from Intel, the most
active and well-maintained open-source PM project, which
has been maintained for over 6 years. Consistent with ex-
isting tools [50], we use example data structures provided
with PMDK (e.g., B-tree, RB-tree and hashmap implemen-
tations) and an application provided by Intel [22] as drivers
for our testing. In addition to PMDK, we test NVM-Direct, a
PM library from Oracle that is under active development. To
drive our testing of NVM-Direct, we use their example test
application they provide for demonstrating the API.

We additionally evaluate AGAMOTTO by testing three real-
world PM applications. We test Redis-pmem, a port of Re-
dis, a popular in-memory database and memory caching ser-
vice, to PMDK that is maintained by Intel. We likewise se-
lect memcached-pm, a port of memcached, a popular high-
performance memory caching server, to PMDK that is main-

3We provide a link to our evaluations results in the AGAMOTTO
GitHub repository: https://github.com/efeslab/agamotto/blob/
artifact-eval-osdi20/artifact/README.md

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1055

https://github.com/efeslab/agamotto/blob/artifact-eval-osdi20/artifact/README.md
https://github.com/efeslab/agamotto/blob/artifact-eval-osdi20/artifact/README.md

System Source (GitHub) Version
PMDK pmem/pmdk v1.8
RECIPE utsaslab/RECIPE/tree/pmdk 53923cf
memcached-pm lenovo/memcached-pmem 8f121f6
NVM Direct oracle/nvm-direct 51f347c
Redis-pmem pmem/pmem-redis cc54b55

pmem/redis v3.2

Table 2: Software configuration; we tested two versions of
Redis-pmem

tained by Lenovo. Finally we test RECIPE’s P-CLHT index,
a state-of-the-art persistent index representing a research pro-
totype. Note, we only test the P-CLHT index from RECIPE
because the other four indices all use a volatile allocator which
prevents crash-consistency. Since KLEE symbolically emu-
lates system calls without running real kernel code, we are
unable to test PMFS [27], an evaluation target that has been
considered by prior work [50].

We test each application by providing a symbolic environ-
ment model (e.g., providing symbolic arguments and files
with symbolic contents) rather than instrumenting the source
code to create symbolic variables. We test RECIPE’s P-CLHT
index using their example application, which manipulates the
basic structure of the index through standard insertion, dele-
tion, and lookup operations. We use symbolic socket traffic
(See §5) to test the Redis-pmem and memcached-pm server
daemons using partially symbolic packets (i.e., packets with
some concrete values, like the Redis command string, with
symbolic values for the keys and values).

When testing applications that use PMDK (PMDK, Redis-
pmem, and RECIPE), we enable both universal bug oracles
and our two custom bug oracles designed for PMDK (see
§4.2.2). When testing NVM-Direct, we only use the universal
bug oracles.

When using AGAMOTTO to test an application, AG-
AMOTTO also tracks all persistent memory use from the li-
braries used by the application. In the case that AGAMOTTO
finds a bug in PMDK while testing an application which uses
PMDK (e.g., memcached-pm, Redis-pmem, or RECIPE), we
report the bug as a bug in PMDK.

Evaluation Setup. We ran our experiments across two
servers, one with a Intel(R) Xeon(R) Silver 4114 CPU @
2.20GHz and one with a Intel(R) Xeon(R) Gold 6230 CPU
@ 2.10GHz. Each individual experiment (a single run of AG-
AMOTTO) was limited to a max of 10 GB of DRAM and
1 hour of runtime. We show our software configuration in
Table 2. Note that none of our experiments use persistent
memory hardware since AGAMOTTO symbolically models
all interactions with persistent memory.

MC MP EP AS Total
System N K N K N K N K N K
memcached-pm 1 - 19 - 1 - - - 21 -
NVM-Direct 7 - 7 - 9 - - - 23 -
PMDK 1 1 14 - 6 - 1 3 22 4
RECIPE 1 - 7 - 6 - - - 14 -
Redis-pmem 3 - 1 - - - - 1 4 1
Total 13 1 48 - 22 - 1 4 84 5

Table 3: The Bugs found using AGAMOTTO. For each bug
class (MC: Missing flush/fence Correctness, MP: Missing
flush/fence Performance, EP: Extra flush/fence Performance,
and AS: Application-Specific), we report the number of new
bugs AGAMOTTO found, N, and the number of bugs detected
that were previously known, K.

6.1 Overview
We show a summary of our bug-finding results in Table 34.
Overall, AGAMOTTO found 84 new bugs across our 5 main
test targets: 62 missing flush/fence bugs (13 correctness bugs
and 48 performance bugs), 22 extra flush/fence performance
bugs and 1 new application-specific correctness bug. We also
detect all 5 persistency bugs found by prior work in user-space
applications and confirm that we find no false positives with
our universal or custom oracles. Here, we describe the bugs
that we find in greater detail.

Missing flush/fence bugs. Using our built-in unflushed bug
oracle, we found 62 new bugs; we manually identified that
13 are correctness bugs and 48 are performance bugs. Of the
13 correctness bugs, 10 are caused by missing flushes and 3
are caused by missing fences—all of the missing fence bugs
are found in Redis-pmem. AGAMOTTO found the missing
flush/fence bug in PMDK that was reported by PMTest. Of
the correctness bugs, AGAMOTTO finds 1 in memcached-pm,
1 in PMDK, 1 in RECIPE’s P-CLHT index, 7 in NVM-Direct,
and 3 in Redis-pmem. Of the performance bugs, AGAMOTTO
finds 19 in memcached-pm, 14 in PMDK, 7 in RECIPE’s
P-CLHT index, 7 in NVM-Direct, and 1 in Redis-pmem.

Extra flush/fence bugs. We found 22 new bugs using the
extra flush/fence bug oracle. Of these bugs, AGAMOTTO
found 9 in NVM-Direct, 6 in PMDK library functions and 6
in RECIPE’s P-CLHT index.

Application-specific bugs. AGAMOTTO identified 1 new
application-specific correctness bug in the PMDK atomic
hashmap example using the extra flush/fence universal bug or-
acle. Using the atomic operation oracle, AGAMOTTO found all

4We provide the full detailed table in an online table avail-
able here: https://github.com/efeslab/agamotto/tree/
artifact-eval-osdi20/artifact#resources.

1056 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact#resources
https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact#resources

3 application-specific correctness bugs which were reported
by XFDetector5 Using the redundant undo log oracle, AG-
AMOTTO detected the application-specific performance bug
in the PMDK example B-tree structure that was discovered by
PMTest. AGAMOTTO is unable to find the application-specific
performance bug that PMTest found in PMFS because AG-
AMOTTO is unable to execute kernel code.

6.2 AGAMOTTO Reporting
We presented our initial results to Intel’s PMDK team, Ora-
cle’s NVM-Direct team, and to the authors of RECIPE and
received overall positive feedback. At the time of writing, we
have not yet heard back from Lenovo developers regarding
bugs in memcached-pm. PMDK developers confirmed our
findings about performance issues. Oracle’s developers con-
firmed they were aware of some of the issues we reported and
noted that “Resources for software development are always
in short supply, so the open source version of NVM_Direct
has suffered. I wish it was not so, but it is. Your email may
be the push that gets us to do something about it. Thank
you.” RECIPE’s authors confirmed and started patching all
the bugs we reported to them and asked us to open-source
AGAMOTTO for continued testing. Despite existing tools for
testing PM (one of which was even built for RECIPE [45]),
one of RECIPE’s authors stated that “These are some really
good finds, since it was difficult to debug our own code with-
out having a proper tool.”

We conclude that AGAMOTTO has been successful in find-
ing bugs that developers care about.

6.3 Performance Analysis
Benefit of AGAMOTTO’s State Exploration Strategy.
We evaluate AGAMOTTO’s state exploration strategy com-
pared to the default search strategy in KLEE. We compare
these two strategies for all of our 5 test targets: memcached-
pm (Fig. 3a), NVM-Direct (Fig. 3b), RECIPE’s P-CLHT in-
dex (Fig. 3d), on PMDK’s libpmemobj examples (Fig. 3c),
and on Redis-pmem (Fig. 3e). We run each exploration strat-
egy for one hour, since one hour is short enough to integrate
into a development cycle but long enough to cover a substan-
tial number of execution paths. In all cases, AGAMOTTO’s
search strategy finds all reported bugs in less than 40 minutes.
For Redis-pmem, the bugs we detect were exposed quickly,
allowing both strategies to find all 4 in under 3 minutes. For
all of our tests, AGAMOTTO is able to find at least one bug
in under 5 minutes, which suggests that AGAMOTTO might
even be usable during interactive debugging sessions.

We conclude that AGAMOTTO’s static-analysis guided
search strategy is more effective in finding bugs than the
default state exploration strategy in KLEE.

5XFDetector reports 4 new bugs, but one of these bugs is unrelated to
persistent memory but detectable with their fault injection framework.

System Source Size
(KLOC)

Dependencies
(KLOC)

Static Analysis
Run time (min)

memcached-pm 18 36 2.20
NVM-Direct 1 14 0.02
PMDK 2 35 0.60
RECIPE 13 35 0.55
Redis-pmem 54 149 19.6

Table 4: The offline overhead of AGAMOTTO’s static analysis.
Thousand lines of code (KLOC) is provided for program
sources (the driver applications for NVM-Direct and PMDK)
and for shared libraries.

Static Analysis Run time. We show the run time of AG-
AMOTTO’s static analysis in Table 4. For most applications
we test, the overhead of static analysis is low (less than 4
minutes) relative to the length of time spent finding bugs.
Redis-pmem has a larger static analysis run time, particularly
due to the number of external libraries it links with—however,
the results of the static analysis can be cached across many
runs for external libraries.

6.4 Case Study: PM Performance Bugs

Prior works on PM argues for the importance of the perfor-
mance bugs that are identified by AGAMOTTO. For example,
Pelley et al. show that extra flush and fence operations are
detrimental to application performance [63], and a study of
memcached-pm found that storing volatile data in PM reduces
application performance by roughly 5% [26].

To further validate the importance of the performance bugs
identified by AGAMOTTO, we perform a performance case
study on the P-CLHT data structure from RECIPE. We man-
ually fix the performance bugs and then measure the perfor-
mance of the data structure on concurrent insert operations,
i.e., load operations (each thread inserts new keys into the
hash table). We chose insert operations, since they stress the
update path on which these bugs were found. We report the
performance in Fig. 4. The overall throughput increases dra-
matically, ranging between 24% to 47%. The main contributor
to this throughput increase is moving commonly used locks
from PM to DRAM.

7 Related Work

Persistent Memory Frameworks. Crash consistency
mechanisms for persistent memory have been considered
for years [6, 11, 15, 18, 64]. The difficulty of designing
crash-consistent programs for persistent memory has in-
spired many persistent memory specific crash-consistent
frameworks which ease the burden on PM application de-
velopers. These frameworks either provide a library inter-
face that can be used in standard programming languages
(PMDK [20], NV-Heaps [17], LSNVMM [35]), provide lan-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1057

(a) memcached-pm

0 10 20 30 40 50 60
Time (minutes)

0

10

21

N
um

be
r

of
 U

ni
qu

e
B

ug
s

Aɢᴀᴍᴏᴛᴛᴏ
KLEE Default

(b) NVM Direct

0 10 20 30 40 50 60
Time (minutes)

0

11

23

N
um

be
r

of
 U

ni
qu

e
B

ug
s

Aɢᴀᴍᴏᴛᴛᴏ
KLEE Default

(c) PMDK

0 10 20 30 40 50 60
Time (minutes)

0

11

22

N
um

be
r

of
 U

ni
qu

e
B

ug
s

Aɢᴀᴍᴏᴛᴛᴏ
KLEE Default

(d) RECIPE

0 10 20 30 40 50 60
Time (minutes)

0

7

14

N
um

be
r

of
 U

ni
qu

e
B

ug
s

Aɢᴀᴍᴏᴛᴛᴏ
KLEE Default

(e) Redis-pmem

0 10 20 30 40 50 60
Time (minutes)

0

2

4

N
um

be
r

of
 U

ni
qu

e
B

ug
s

Aɢᴀᴍᴏᴛᴛᴏ
KLEE Default

Figure 3: Comparison of the KLEE default search strategy to AGAMOTTO.

guage extensions to augment C/C++ with persistent data types
(e.g., Mnemosyne [73], NVL-C [25]), or both (e.g., NVM-
Direct [7]). Some systems also use transactional hardware
mechanisms to provide more efficient updates to persistent
memory (NV-HTM [10], Crafty [30]). However, while these
mechanisms may make programming easier, they may still
contain persistency bugs. Furthermore, this plethora of PM
libraries and extensions motivate the need for generalizable,
automated debugging tools.

PM-optimized file systems offer some degree of crash con-
sistency as well [19,27,43,72,74,75], as many PM-optimized
file systems offer full-data consistency, rather than just main-
taining metadata consistency [9]. However, these mechanisms
require the application to use the POSIX interface, as data
journaling cannot be efficiently performed for direct-access
files. Additionally, applications can suffer from significant
performance degredations by acccessing PM through the file
system rather than through direct memory mappings [37].

Tools for Detecting Persistency Bugs. The state-of-the-
art tools for detecting persistency bugs are PMTest [50] and
XFDetector [49]. PMTest is a tracing system which trans-
forms updates to persistent memory into a trace of opera-
tions, which is asynchronously validated against programmer-
defined rules for persistent memory updates. PMTest is flexi-
ble and fast, but requires developer effort to generate persis-
tent memory rules and incurs a high rate of false negatives,
as it must be driven by concrete test cases. The authors of
PMTest [50] manually instrument applications to find two sim-
ilar patterns to AGAMOTTO application-independent patterns:
the extra flush/fence bug pattern and a delayed flush/fence
pattern, in which a delay in the durability of an PM update pre-
vents crash consistency. Delayed flush/fences are inherently
application-specific (and thus require developer effort), and
there were no delayed flush/fence bugs in our study. XFDe-
tector is a fault injection framework designed to detect cross-
failure bugs, which manifest when recovery code accesses

1058 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Agamotto PMTest XFDetector pmemcheck Persistency Inspector
Core
Mechanism

Symbolic
Execution Trace Validation Fault Injection

Binary
Instrumentation

Binary
Instrumentation

Accuracy High Low Medium Low Low
Automation High Low Medium Low Low
Generality Medium High Medium Very Low Low
Extensibility High High Low Low Low

Table 5: A qualitative comparison between AGAMOTTO and related work, as measured by our design goals (§4).

1 2 3 4
Number of threads

0

500

1000

Th
ro

ug
hp

ut
 (k

op
s/

se
c)

Original
Patched

Figure 4: The write throughput (in kilo-operations per second)
of the P-CLHT data structure before and after patching per-
formance bugs. “Original” denotes the unmodified P-CLHT
structure and “Patched” denotes P-CLHT after we patch the
performance bugs.

data which was not guaranteed to be safely persisted before
a failure. While XFDetector is effective at detecting seman-
tic bugs with low developer effort, XFDetector still relies on
developer-provided concrete test cases. RECIPE [45] uses a
PIN-based tool for testing their converted PM indices, which
also incurs a high false positive rate due to requiring extensive
test cases. pmemcheck [65] and Persistence Inspector [62],
which are binary instrumentation tools built by Intel, require
a large amount of developer effort to use as they are heav-
ily annotation based. We summarize the high-level feature
differences between AGAMOTTO and other persistency bug
detection frameworks in Table 5.

Tools for Testing Crash Consistency. Crash consistency
testing has been the study of many works on both legacy file
systems and PM-optimized file systems [13,28,29,41,44,55,
58]. Many of these tools either test for semantic bugs specific
to file systems or are only targeted for block-based storage
devices. Yat [44] specifically targets crash consistency testing
for Intel’s persistent memory file system (PMFS [27]). How-
ever, Yat tests crash consistency by computing all possible
instruction orderings to find crash consistency bugs—a task
which can take over 5 years to fully test [44].

Bug Taxonomies. Many papers taxonomize software bugs
in other contexts. In the storage context, JUXTA [57]
draws a distinction between shallow (roughly equivalent to
application-independent) and semantic (application-specific)

bugs while CrashMonkey [55] studies the effects and num-
ber of operations required to induce crash consistency bugs
in file systems. More generally, Li et al. [47] and Liu et
al. [48] classify software bugs into universal bug classes (e.g.,
memory-related, concurrency and incorrect failure handling)
and semantic (application-specific) bugs. The key distinction
between our study and these prior studies is our focus on
persistent memory systems.

The Thread Between Concurrency and Consistency.
Several works have identified a similarity in data races [1, 39,
61] in concurrent programs and semantic crash consistency
bugs [45,49]. Traditional data races result in inconsistent data
being read across threads of execution, which many systems
have been designed to detect and fix [2,38,40,46,66,69]. Prin-
ciples from data race detection have been adapted to build
PM crash consistency mechanisms (i.e., in RECIPE [45]) and
PM semantic crash consistency detection tools (i.e., XFDe-
tector [49]). When applied to AGAMOTTO, these principles
inform the design of custom bug oracles.

8 Conclusion

Persistent Memory (PM) can be used by applications to di-
rectly and quickly persist data without the overhead of a file
system. However, writing PM applications that are simulta-
neously efficient and correct is challenging. In this paper,
we presented a system for more thoroughly testing PM ap-
plications. We informed our design using a detailed study
of 63 bugs from popular PM projects. We then identify two
application-independent (i.e., universal) patterns of PM mis-
use which are widespread in PM applications and can be
detected automatically.

We then presented AGAMOTTO, a generic and extensible
system that leverages symbolic execution for discovering mis-
use of persistent memory in PM applications. We introduced a
new symbolic memory model that is able to represent whether
or not PM state has been made persistent, as well as a state
space exploration algorithm which can drive AGAMOTTO
towards program locations that are susceptible to persistency
bugs. We used AGAMOTTO to identify 84 new bugs in 5 dif-
ferent applications and frameworks, all without incurring any
false positives and not requiring any source code modifica-
tions or extensive test suites.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1059

9 Acknowledgements

We thank the anonymous reviewers and our shepherd, Michael
Swift, for their valuable feedback. We also thank Bill Bridge
and the Oracle team behind NVM-Direct; Andy Rudoff and
the whole PMDK team at Intel; as well as Sekwon Lee, Vi-
jay Chidambaram, and the authors of RECIPE. This work
is supported by Applications Driving Architectures (ADA)
Research Center (a JUMP Center co-sponsored by SRC and
DARPA), the National Science Foundation under grants CNS-
1900457 and DGE-1256260, the Texas Systems Research
Consortium, the Institute for Information and Communica-
tions Technology Planning and Evaluation (IITP) under a
grant funded by the Korea government (MSIT) (No. 2019-
0-00118), and a Microsoft Ph.D. Fellowship. Any opinions,
findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the funding agencies.

A Artifact Appendix

A.1 Abstract

We provide the public repository for AGAMOTTO, which is
a fork of KLEE available on GitHub. AGAMOTTO’s artifact
includes instructions for building and running AGAMOTTO,
as well as a pre-installed VM and scripts used to reproduce
the core results from our paper.

A.2 Artifact check-list

• Public repository link: https://github.com/
efeslab/agamotto/tree/artifact-eval-osdi20/
artifact

• Data: Links to our bug study findings and to a
table describing new bugs found with AGAMOTTO:
https://github.com/efeslab/agamotto/tree/
artifact-eval-osdi20/artifact#resources

• Code licenses: AGAMOTTO inherits KLEE’s open
source license, which can be read in the repository here:
https://github.com/efeslab/agamotto/blob/
artifact-eval-osdi20/LICENSE.TXT.

A.3 Description

All information is available at our public GitHub repos-
itory. We have written a README specifically for
the Artifact Evaluation process, which can be found
here: https://github.com/efeslab/agamotto/tree/
artifact-eval-osdi20/artifact

A.3.1 How to access

We provide information on how to access our repository
and all relevant resources here: https://github.com/
efeslab/agamotto/tree/artifact-eval-osdi20/
artifact#agamotto-osdi-20-artifact

A.4 Installation
The instructions for compiling AGAMOTTO and installing
the prerequisites can be found here: https://github.
com/efeslab/agamotto/tree/artifact-eval-osdi20/
artifact#artifacts-functional-criteria

A.5 Evaluation and expected result
We provide instructions for reproducing the main
results from our paper along with the expected
results here: https://github.com/efeslab/
agamotto/tree/artifact-eval-osdi20/artifact#
results-reproduced.

A.6 Notes
We are endeavoring to maintain AGAMOTTO as an open-
source tool for debugging PM applications and hope to en-
courage its use for a wide variety of applications. Any issues
that are found with the available artifact or any needed clarifi-
cations can be submitted as GitHub issues on our repository
(https://github.com/efeslab/agamotto/issues).

References

[1] Sarita V Adve and Mark D Hill. A unified formalization
of four shared-memory models. IEEE Transactions on
Parallel and distributed systems, 4(6):613–624, 1993.

[2] Sarita V Adve, Mark D Hill, Barton P Miller, and
Robert HB Netzer. Detecting data races on weak mem-
ory systems. ACM SIGARCH Computer Architecture
News, 19(3):234–243, 1991.

[3] Paul Alcorn. Intel Optane DIMM Pric-
ing. https://www.tomshardware.com/news/
intel-optane-dimm-pricing-performance,
39007.html, 2019.

[4] Lars Ole Andersen. Program analysis and specializa-
tion for the C programming language. PhD thesis, Uni-
versity of Cophenhagen, 1994.

[5] Arm Limited. Arm R© Architecture Reference Man-
ual Armv8, for Armv8-A architecture profile, 2019.
https://developer.arm.com/docs/ddi0487/latest/arm-
architecture-reference-manual-armv8-for-armv8-a-
architecture-profile.

1060 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact
https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact
https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact
https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact#resources
https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact#resources
https://github.com/efeslab/agamotto/blob/artifact-eval-osdi20/LICENSE.TXT
https://github.com/efeslab/agamotto/blob/artifact-eval-osdi20/LICENSE.TXT
https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact
https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact
https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact#agamotto-osdi-20-artifact
https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact#agamotto-osdi-20-artifact
https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact#agamotto-osdi-20-artifact
https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact#artifacts-functional-criteria
https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact#artifacts-functional-criteria
https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact#artifacts-functional-criteria
https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact#results-reproduced
https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact#results-reproduced
https://github.com/efeslab/agamotto/tree/artifact-eval-osdi20/artifact#results-reproduced
https://github.com/efeslab/agamotto/issues
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html

[6] Joy Arulraj and Andrew Pavlo. How to build a non-
volatile memory database management system. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data, pages 1753–1758, 2017.

[7] Bill Bridge. Nvm-direct library. https://github.
com/oracle/nvm-direct, 2015.

[8] Cristian Cadar, Daniel Dunbar, and Dawson Engler.
Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Pro-
ceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI’08, page
209–224, USA, 2008. USENIX Association.

[9] Mingming Cao, Suparna Bhattacharya, and Ted Ts’o.
Ext4: The next generation of ext2/3 filesystem. In LSF,
2007.

[10] Daniel Castro, Paolo Romano, and Joao Barreto. Hard-
ware transactional memory meets memory persistency.
Journal of Parallel and Distributed Computing, 130:63–
79, 2019.

[11] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud
Bhandari. Atlas: Leveraging locks for non-volatile mem-
ory consistency. ACM SIGPLAN Notices, 49(10):433–
452, 2014.

[12] Himanshu Chauhan, Irina Calciu, Vijay Chidambaram,
Eric Schkufza, Onur Mutlu, and Pratap Subrahmanyam.
NVMOVE: Helping programmers move to byte-based
persistence. In 4th Workshop on Interactions of
NVM/Flash with Operating Systems and Workloads (IN-
FLOW 16), Savannah, GA, November 2016. USENIX
Association.

[13] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
pala, M Frans Kaashoek, and Nickolai Zeldovich. Using
crash hoare logic for certifying the fscq file system. In
Proceedings of the 25th Symposium on Operating Sys-
tems Principles, pages 18–37, 2015.

[14] Jia Chen. Andersen’s pointer analysis. https://
github.com/grievejia/andersen.

[15] Vijay Chidambaram, Thanumalayan Sankaranarayana
Pillai, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. Optimistic crash consistency. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 228–243, 2013.

[16] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chi-
pounov, and George Candea. Cloud9: A software test-
ing service. ACM SIGOPS Operating Systems Review,
43(4):5–10, 2010.

[17] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M
Grupp, Rajesh K Gupta, Ranjit Jhala, and Steven Swan-
son. NV-Heaps: making persistent objects fast and
safe with next-generation, non-volatile memories. ACM
SIGARCH Computer Architecture News, 39(1):105–118,
2011.

[18] Jeremy Condit, Edmund B Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-
rick Coetzee. Better i/o through byte-addressable, per-
sistent memory. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pages
133–146. ACM, 2009.

[19] Jonathan Corbet. Supporting filesystems in persistent
memory, September 2014.

[20] Intel Corporation. Persistent Memory Programming.
https://pmem.io/pmdk/, 2018.

[21] Intel Corporation. Redis. https://github.com/
pmem/redis/tree/3.2-nvml, 2018.

[22] Intel Corporation. PMDK Examples for libp-
memobj. https://github.com/pmem/pmdk/tree/
master/src/examples/libpmemobj, 2020.

[23] Intel Corporation. PMDK Issues. https://github.
com/pmem/pmdk/issues, 2020.

[24] Lenovo Corporation. Memcached. https://github.
com/lenovo/memcached-pmem, 2018.

[25] Joel E Denny, Seyong Lee, and Jeffrey S Vetter. Nvl-c:
Static analysis techniques for efficient, correct program-
ming of non-volatile main memory systems. In Pro-
ceedings of the 25th ACM International Symposium on
High-Performance Parallel and Distributed Computing,
pages 125–136, 2016.

[26] Dormondo. The Volatile Benefit of Persistent Memory:
Part Two, May 2019.

[27] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System Software for Persistent Mem-
ory. In Proceedings of the Ninth European Conference
on Computer Systems, EuroSys ’14, pages 15:1–15:15,
New York, NY, USA, 2014. ACM.

[28] Daniel Fryer, Mike Qin, Jack Sun, Kah Wai Lee, An-
gela Demke Brown, and Ashvin Goel. Checking the
integrity of transactional mechanisms. ACM Transac-
tions on Storage (TOS), 10(4):1–23, 2014.

[29] Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao
Cheng, Shaun Benjamin, Ashvin Goel, and An-
gela Demke Brown. Recon: Verifying file system consis-
tency at runtime. ACM Transactions on Storage (TOS),
8(4):1–29, 2012.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1061

https://github.com/oracle/nvm-direct
https://github.com/oracle/nvm-direct
https://github.com/grievejia/andersen
https://github.com/grievejia/andersen
https://pmem.io/pmdk/
https://github.com/pmem/redis/tree/3.2-nvml
https://github.com/pmem/redis/tree/3.2-nvml
https://github.com/pmem/pmdk/tree/master/src/examples/libpmemobj
https://github.com/pmem/pmdk/tree/master/src/examples/libpmemobj
https://github.com/pmem/pmdk/issues
https://github.com/pmem/pmdk/issues
https://github.com/lenovo/memcached-pmem
https://github.com/lenovo/memcached-pmem

[30] Kaan Genç, Michael D. Bond, and Guoqing Harry Xu.
Crafty: Efficient, htm-compatible persistent transactions,
2020.

[31] Ben Hardekopf and Calvin Lin. The ant and the
grasshopper: fast and accurate pointer analysis for mil-
lions of lines of code. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 290–299, 2007.

[32] Ben Hardekopf and Calvin Lin. Exploiting pointer and
location equivalence to optimize pointer analysis. In
International Static Analysis Symposium, pages 265–
280. Springer, 2007.

[33] Swapnil Haria, Mark D Hill, and Michael M Swift. Mod:
Minimally ordered durable datastructures for persistent
memory. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 775–
788, 2020.

[34] Swapnil Haria, Sanketh Nalli, Michael M Swift, Mark D
Hill, Haris Volos, and Kimberly Keeton. Hands-off
persistence system (hops). In Nonvolatile Memories
Workshop, 2017.

[35] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu, and
Thomas Moscibroda. Log-structured non-volatile main
memory. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 703–717, 2017.

[36] Intel. Intel R© Optane
TM

DC Persistent Memory. http:
//www.intel.com/optanedcpersistentmemory,
2019.

[37] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and
Steven Swanson. Basic Performance Measurements of
the Intel Optane DC Persistent Memory Module, 2019.

[38] Guoliang Jin, Wei Zhang, and Dongdong Deng. Au-
tomated concurrency-bug fixing. In Presented as part
of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), pages 221–236,
2012.

[39] Baris Kasikci, Cristian Zamfir, and George Candea. Data
races vs. data race bugs: telling the difference with por-
tend. ACM SIGPLAN Notices, 47(4):185–198, 2012.

[40] Baris Kasikci, Cristian Zamfir, and George Candea.
Racemob: crowdsourced data race detection. In Pro-
ceedings of the twenty-fourth ACM symposium on oper-
ating systems principles, pages 406–422, 2013.

[41] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon
Yoon, Wen Xu, and Taesoo Kim. Finding semantic bugs
in file systems with an extensible fuzzing framework. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, page 147–161, New York,
NY, USA, 2019. Association for Computing Machinery.

[42] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali
Saidi, Steven Pelley, Sihang Liu, Peter M. Chen, and
Thomas F. Wenisch. Delegated persist ordering. In The
49th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-49. IEEE Press, 2016.

[43] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A Cross Media File System. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
pages 460–477, New York, NY, USA, 2017. ACM.

[44] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Ra-
jesh Sankaran, and Jeff Jackson. Yat: A validation frame-
work for persistent memory software. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages
433–438, Philadelphia, PA, June 2014. USENIX Asso-
ciation.

[45] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap,
Taesoo Kim, and Vijay Chidambaram. RECIPE:
Converting Concurrent DRAM Indexes to Persistent-
Memory Indexes. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles (SOSP ’19),
Ontario, Canada, October 2019.

[46] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman
Nath, and Rohan Padhye. Efficient scalable thread-
safety-violation detection: Finding thousands of con-
currency bugs during testing. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
SOSP ’19, page 162–180, New York, NY, USA, 2019.
Association for Computing Machinery.

[47] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu,
Yuanyuan Zhou, and Chengxiang Zhai. Have things
changed now? an empirical study of bug characteris-
tics in modern open source software. In Proceedings
of the 1st Workshop on Architectural and System Sup-
port for Improving Software Dependability, ASID ’06,
page 25–33, New York, NY, USA, 2006. Association
for Computing Machinery.

[48] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman
Nath. What bugs cause production cloud incidents? In
Proceedings of the Workshop on Hot Topics in Operating
Systems, pages 155–162, 2019.

[49] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas
Wenisch, Aasheesh Kolli, and Samira Khan. Cross-
failure bug detection in persistent memory programs.

1062 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.intel.com/optanedcpersistentmemory
http://www.intel.com/optanedcpersistentmemory

In Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 1187–1202, 2020.

[50] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli,
and Samira Khan. Pmtest: A fast and flexible testing
framework for persistent memory programs. In Proceed-
ings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 411–425, 2019.

[51] Youyou Lu, Jiwu Shu, Long Sun, and Onur Mutlu.
Loose-ordering consistency for persistent memory. In
2014 IEEE 32nd International Conference on Computer
Design (ICCD), pages 216–223. IEEE, 2014.

[52] Pratyush Mahapatra, Mark D. Hill, and Michael M.
Swift. Don’t persist all : Efficient persistent data struc-
tures, 2019.

[53] Pratyush Mahapatra, Mark D. Hill, and Michael M.
Swift. Don’t persist all : Efficient persistent data struc-
tures, 2019.

[54] Virendra J Marathe, Margo Seltzer, Steve Byan, and Tim
Harris. Persistent memcached: Bringing legacy code to
byte-addressable persistent memory. In 9th {USENIX}
Workshop on Hot Topics in Storage and File Systems
(HotStorage 17), 2017.

[55] Ashlie Martinez and Vijay Chidambaram. Crashmon-
key: A framework to systematically test file-system
crash consistency. In Proceedings of the 9th USENIX
Conference on Hot Topics in Storage and File Systems,
pages 6–6. USENIX Association, 2017.

[56] Steve McConnell. Code Complete. Microsoft Press,
2004.

[57] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee,
Chengyu Song, and Taesoo Kim. Cross-checking se-
mantic correctness: The case of finding file system bugs.
In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 361–377, 2015.

[58] Jayashree Mohan, Ashlie Martinez, Soujanya Ponna-
palli, Pandian Raju, and Vijay Chidambaram. Finding
crash-consistency bugs with bounded black-box crash
testing. In 13th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 18), pages 33–
50, 2018.

[59] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M.
Swift, Haris Volos, and Kimberly Keeton. An analysis
of persistent memory use with whisper. In Proceedings
of the Twenty-Second International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’17, page 135–148, New

York, NY, USA, 2017. Association for Computing Ma-
chinery.

[60] Dushyanth Narayanan and Orion Hodson. Whole-
system persistence. In Proceedings of the seventeenth
international conference on Architectural Support for
Programming Languages and Operating Systems, pages
401–410, 2012.

[61] Robert HB Netzer and Barton P Miller. What are race
conditions? Some issues and formalizations. ACM
Letters on Programming Languages and Systems (LO-
PLAS), 1(1):74–88, 1992.

[62] Kevin Oleary. How to Detect Persistent Memory Pro-
gramming Errors Using Intel R© Inspector - Persistence
Inspector, 2018. https://software.intel.com/en-
us/articles/detect-persistent-memory-programming-
errors-with-intel-inspector-persistence-inspector.

[63] Steven Pelley, Peter M Chen, and Thomas F Wenisch.
Memory persistency. In 2014 ACM/IEEE 41st Inter-
national Symposium on Computer Architecture (ISCA),
pages 265–276. IEEE, 2014.

[64] Steven Pelley, Thomas F Wenisch, Brian T Gold, and
Bill Bridge. Storage management in the nvram era.
Proceedings of the VLDB Endowment, 7(2):121–132,
2013.

[65] PMDK. An introduction to pmemcheck. https://
pmem.io/2015/07/17/pmemcheck-basic.html.

[66] Eli Pozniansky and Assaf Schuster. Efficient on-the-fly
data race detection in multithreaded c++ programs. In
Proceedings of the ninth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages
179–190, 2003.

[67] Azalea Raad, John Wickerson, and Viktor Vafeiadis.
Weak persistency semantics from the ground up: for-
malising the persistency semantics of armv8 and trans-
actional models. Proceedings of the ACM on Program-
ming Languages, 3(OOPSLA):1–27, 2019.

[68] Capegmini S.A. Capgemini world quality re-
port 2015-2016. https://www.uk.capgemini.com/
thought-leadership/world-quality-report-2016-17,
2015.

[69] Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: A dynamic
data race detector for multithreaded programs. ACM
Transactions on Computer Systems (TOCS), 15(4):391–
411, 1997.

[70] Steven Swanson. Early measurements of intel’s 3dx-
point persistent memory dimms, Apr 2019.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1063

https://pmem.io/2015/07/17/pmemcheck-basic.html
https://pmem.io/2015/07/17/pmemcheck-basic.html
https://www.uk.capgemini.com/thought-leadership/world-quality-report-2016-17
https://www.uk.capgemini.com/thought-leadership/world-quality-report-2016-17

[71] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ran-
ganathan, and Roy H. Campbell. Consistent and Durable
Data Structures for Non-Volatile Byte-Addressable
Memory. In Proceedings of the 9th USENIX Conference
on File and Storage Technologies, pages 5–5. USENIX
Association, February 2011.

[72] Haris Volos, Sanketh Nalli, Sankarlingam Panneersel-
vam, Venkatanathan Varadarajan, Prashant Saxena, and
Michael M. Swift. Aerie: Flexible file-system interfaces
to storage-class memory. In Proceedings of the Ninth Eu-
ropean Conference on Computer Systems, EuroSys ’14,
pages 14:1–14:14, New York, NY, USA, 2014. ACM.

[73] Haris Volos, Andres Jaan Tack, and Michael M Swift.
Mnemosyne: Lightweight persistent memory. ACM
SIGARCH Computer Architecture News, 39(1):91–104,
2011.

[74] Jian Xu and Steven Swanson. NOVA: A Log-structured
File System for Hybrid Volatile/Non-volatile Main

Memories. In Proceedings of the 14th Usenix Con-
ference on File and Storage Technologies, FAST’16,
pages 323–338, Berkeley, CA, USA, 2016. USENIX
Association.

[75] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. Nova-fortis: A fault-
tolerant non-volatile main memory file system. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, pages 478–496, 2017.

[76] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. NV-Tree: Re-
ducing Consistency Cost for NVM-based Single Level
Systems. In 13th USENIX Conference on File and Stor-
age Technologies (FAST 15), pages 167–181, 2015.

1064 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Orchard: Differentially Private Analytics at Scale

Edo Roth, Hengchu Zhang, Andreas Haeberlen, Benjamin C. Pierce

University of Pennsylvania

Abstract

This paper presents Orchard, a system that can answer queries
about sensitive data that is held by millions of user devices,
with strong differential privacy guarantees. Orchard combines
high accuracy with good scalability, and it uses only a sin-
gle untrusted party to facilitate the query. Moreover, whereas
previous solutions that shared these properties were custom-
built for specific queries, Orchard is general and can accept a
wide range of queries. Orchard accomplishes this by rewrit-
ing queries into a distributed protocol that can be executed
efficiently at scale, using cryptographic primitives.

Our prototype of Orchard can execute 14 out of 17 queries
chosen from the literature; to our knowledge, no other system
can handle more than one of them in this setting. And the
costs are moderate: each user device typically needs only a
few megabytes of traffic and a few minutes of computation
time. Orchard also includes a novel defense against malicious
users who attempt to distort the results of a query.

1 Introduction

When operating a large distributed system, it is often useful
to collect some data from the users’ devices—e.g., to train
models that will help to improve the system. Since this data
is often sensitive, differential privacy [28] is an attractive
choice, and several deployed systems are using it today to
protect the privacy of their users. For instance, Google is using
differential privacy to monitor the Chrome web browser [31],
and Apple is using it in iOS and macOS, e.g., to train its
models for predictive typing and to identify apps with high
energy or memory usage [7, 8]. Other deployments exist, e.g.,
at Microsoft [27] and at Snap [68].

Today, this data is typically collected using local differ-
ential privacy [31]: each user device individually adds some
random noise to its own data and then uploads it to a central
entity, which aggregates the uploads and delivers the final
result. This can be done efficiently at scale, but the final result
contains an enormous amount of noise: as Google notes [14],
even in a deployment with a billion users, it is easy to miss
signals from a million users. Utility can be improved by re-
ducing the amount of noise, but this weakens the privacy
guarantee considerably, to the point where it becomes almost
meaningless [80].

One way to avoid this problem is to collect the data using
global differential privacy instead. In this approach, each de-
vice provides its raw, un-noised data to the central aggregator,
which then adds random noise only once. This clearly pro-
duces results that are more precise, but it also requires a lot
of trust in the aggregator, who now receives the individual
users’ raw data and must be trusted not to look at it. Crypto-
graphic techniques like multiparty computation [84] and fully
homomorphic encryption [38] could theoretically avoid this
problem, but, at least with current technology, scaling either
approach to millions of participants seems implausible.

The recently proposed Honeycrisp system [76] can provide
global differential privacy at scale, with a single, untrusted
aggregator. Instead of fully homomorphic encryption, Hon-
eycrisp uses additively homomorphic encryption, which is
much more efficient. However, the price to pay is that Honey-
crisp can answer only one specific query, namely count-mean
sketches [8] with additional use of the sparse-vector operator.
This query does have important applications (for instance, it
is used in Apple’s iOS), but it is by no means the only query
one might wish to ask: the literature is full of other inter-
esting queries that can be performed with global differential
privacy (e.g., [15,31,40,41,55,64,70,83]). Right now, we are
not aware of any systems that can answer even one of these
queries at scale, using only a single, untrusted aggregator.

In this paper, we show how to substantially expand the va-
riety of queries that can be answered efficiently in this highly
distributed setting. Our key insight is that many differentially
private queries have a lot more in common than at first meets
the eye: while most of them transform, group, or otherwise
process the input data in some complicated way, the heart of
the algorithm is (almost) always a sequence of sums, each
computed over some values that are derived from the users’
input data. This happens to be exactly the kind of computa-
tion that Honeycrisp’s collect-and-test (CaT) primitive can
perform efficiently, using additively homomorphic encryption.
Thus, CaT turns out to be far more general than it may seem:
it can perform the distributed parts of many queries, leaving
only a few smaller computations that can safely be done by
the aggregator, or locally on each user device.

The key challenge is that, for many queries, the connec-
tion to sums over per-user data is far from obvious. Many
differentially private queries were designed for a centralized
setting where the aggregator has an unencrypted data set and

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1065

can perform arbitrary computations on it. Such queries often
need to be transformed substantially, and existing operators
need to be broken down into their constituents, in order to
expose the internal sums. Moreover, a naïve transformation
can result in a very large number of sums—often far more
than are strictly necessary. Thus, optimizations are needed to
maintain efficiency.

We present a system called Orchard that can automatically
perform these steps for a large variety of queries. Orchard
accepts centralized queries written in an existing query lan-
guage, transforms them into distributed queries that can be
answered at scale, and then executes these queries using a gen-
eralization of the CaT mechanism from Honeycrisp. Among
17 queries we collected from the literature, Orchard was able
to execute 14; the others are not a good fit for our highly
distributed setting and would require a different approach.

Our experimental evaluation of Orchard shows that most
queries can be answered efficiently: with 1.3 billion users
(roughly the size of Apple’s macOS/iOS deployment [6]),
most user devices would need only a few megabytes of traffic
and a few minutes of computation time, while the aggregator
would need about 900 cores to get the answer within one
hour. For queries that make use of the sparse-vector operator,
this is competitive with Honeycrisp; for the other queries
we consider, we are not aware of any other approach that is
practical in this setting. In summary, our contributions are:

• the observation that many differentially private queries
can be transformed into a sequence of noised sums (Sec-
tion 2);
• a simple language for writing queries (Section 3);
• a transformation of queries in this language to protocols

that can answer them in a distributed setting, using only
a single, untrusted aggregator (Section 4);
• the design of Orchard, a platform that can efficiently

execute the transformed queries (Section 5);
• a prototype implementation of Orchard (Section 6); and
• an experimental evaluation (Section 7).

We discuss related work in Section 8 and conclude the paper
in Section 9.

2 Overview

Scenario: We consider a scenario—illustrated in Figure 1—
with a very large number of users (millions), who each hold
some sensitive data, and a central entity, the aggregator, that
wishes to answer queries about this data. We assume that
each user has a device (say, a cell phone or a laptop) that can
perform some limited computations, while the aggregator has
access to substantial bandwidth and computation power (say,
a data center).
Threat model: We make the OB+MC assumption from [76]—
that is, we assume that the aggregator is honest-but-curious

Users (millions) Internet Aggregator

How many
stars of each

color?

Figure 1: Scenario.

(HbC) when the system is first deployed and usually remains
HbC thereafter, but may occasionally be Byzantine (OB) for
limited time periods; for instance, the aggregator could be a
large company that is under public scrutiny and would not vi-
olate privacy systematically, but may have a rogue employee
who might tamper with the system and not be discovered
immediately. For the users, we assume that most of them are
correct (MC) but that a small percentage—say, 2–3%—can be
Byzantine at any given time. This is different from the typical
assumption in the BFT literature, where one often assumes
that up to a third, or even half, of the nodes can be Byzan-
tine. However, BFT systems are typically a lot smaller than
the systems we consider: with 4–7 replicas, compromising a
third of the systems means just one or two nodes, whereas, in
Apple’s deployment with 1.3 billion users, a 3% bound would
mean 39 million malicious users, which is much larger than,
e.g., a typical botnet.
Assumptions: Our key assumptions are (1) that the approx-
imate number of users is known and (2) that the adversary
cannot create and collude with a nontrivial number of Sybils.
For instance, the devices could have hardware support for
secure identities, such as Apple’s T2 chip or Intel’s SGX.
Goals: We have four key goals for Orchard:

• Privacy: The amount of information that either the ag-
gregator or other users can learn about the private data
of an honest user should be bounded, according to the
formulation of differential privacy.
• Correctness: If all users are honest, the answers to

queries should be drawn from a distribution that is cen-
tered on the correct answer and has a known shape;
• Robustness: Malicious users should not be able to sig-

nificantly distort the answers; and
• Efficiency: Most users should not need to contribute

more than a few MB of bandwidth and a few seconds of
computation time per query.

2.1 Differential privacy
Differential privacy [28] is a property of randomized queries
that take a database as input and return an aggregate output.
Informally, a query is differentially private if changing any
single row in the input database results in “almost no change”
in the output. If each row represents the data of a single indi-
vidual, this means that any single individual has a statistically

1066 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Query Support
Decision-tree learning (ID3) [34] Yes
k-means [15] Yes
Perceptron [15] Yes
Principal Component Analysis (PCA) [15] Yes
Logistic regression [2] Yes
Naïve Bayes [86] Yes
Neural Network training (Grad. Descent) [2] Yes
Histograms [83] Yes
k-Medians [40] Yes
Cumulative Density Functions [55] Yes
Range queries [45] Yes
Bloom filters (RAPPOR) [31] Yes
Count Mean Sketch [8] Yes
Sparse vector (Honeycrisp) [76] Yes
Iterative Database Construction [41] No
Teacher Ensembles (PATE) [64] No
Vertex programs (DStress) [63] No

Table 1: Selection of differentially private queries from the
literature, and support by Orchard.

negligible effect on the output. This guarantee is quantified in
the form of a parameter, ε, which controls how much the out-
put can vary based on changes to a single row. Formally, we
say that q is ε-differentially private if, for any two databases
d1 and d2 that differ in a single row, and any set of outputs R,

Pr[q(d1) ∈ R]≤ eε ·Pr[q(d2) ∈ R]

In other words, a change in a single row results in at most a
multiplicative change of eε in the probability of any output,
or set of outputs.

A standard method for achieving differential privacy for nu-
meric queries is the Laplace mechanism [28], which involves
two steps: first calculating the sensitivity, s, of the query—
which is how much the un-noised output can change based
on a change to a single row—and second, adding noise drawn
from a Laplace distribution with scale parameter s/ε; this
results in ε-differential privacy. For queries with discrete val-
ues, the standard method is the exponential mechanism [56],
which defines a “quality score” q(d,x) that measures how well
a value x represents a database d, and then selects value x with

probability proportional to e
εq(d,x)

2s , where s is the sensitivity
of q. This again results in ε-differential privacy.

Differential privacy is compositional, that is, if we evaluate
two queries q1 and q2 that are ε1- and ε2-differentially private,
respectively, then publishing the results from both queries is
at most (ε1 + ε2)-differentially private. This property is often
used to keep track of the amount of private information that
has already been released: we can define a privacy budget
εmax that corresponds to the maximum loss of privacy that the
subjects are willing to accept, and then deduct the “cost” of
each subsequent query from this budget until it is exhausted.
For a detailed discussion of εmax, see, e.g., [46].

By now, there is a rich literature on differential privacy
proposing many different forms of queries for many different
use cases. We have done a careful survey to collect examples
that would make sense in our highly distributed setting; Ta-
ble 1 contains the queries we found, which will also be used
in our evaluation (Section 7.1).

2.2 Alternative approaches

Local differential privacy (LDP): As discussed earlier, an-
other way to avoid trusting the aggregator is to use LDP [31]—
that is, for each user to add noise to his or her data individually,
before uploading it to the aggregator, instead of noising just
the final result. However, there are two important challenges.
The first is that the noise in the final result now grows with the
number of users: for instance, a sum of values from N users
now contains N draws from a Laplace distribution L(s

e), in-
stead of just one! The effective error grows a bit more slowly,
with Θ(

√
N) [29, §12.1], but still, with N = 109 and ε = 0.1,

the median error will be approximately 300,000 with LDP
and only 10 with GDP—a difference of several orders of
magnitude, which can be severely limiting in practice [14].
The second challenge is that the noise is added by the users
and not by the aggregator; thus, even a very small number of
malicious users can, by using large, correlated values as their
“noise” terms, severely distort the final result [22]. We will
revisit this problem in Sections 5.3 and 7.3.

Multiparty computation (MPC): In principle, the data
could also be aggregated using MPC [84], a cryptographic
technique that enables a group of participants to jointly evalu-
ate a function f such that each participant only learns the final
output of f , but not the inputs of each participant. It may seem
that all we need to do is set f := q ◦ L(s

e), where q is the query
and L is a draw from an appropriate Laplace distribution. The
problem, however, is efficiency: generic MPC scales poorly
with the number of participants. While there are very efficient
solutions for two parties (e.g., [49]) and reasonably efficient
ones for a few dozen parties (e.g., [82]), we are not aware of
a technique that would be practical with millions or billions
of participants.

Fully homomorphic encryption (FHE): With FHE [38],
users could encrypt their data with a public key and upload
them to the aggregator, who could run the query on the cipher-
texts, add noise, and then decrypt only the final result using a
private key. As with MPC, this approach works for arbitrary
queries, and it has the advantage that most of the work is done
by the aggregator. However, if the aggregator has the private
key, it can also decrypt the users’ individual uploads—and
even if this problem were solved somehow, computation on
FHE ciphertexts is still many orders of magnitude slower than
computation on plaintexts, so, with a billion participants, this
approach does not seem realistic.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1067

Preprocess
Postprocess
and release

Add noise

SumUs
er
s

Aggregator

Committee

Preprocess

Preprocess

Preprocess

Figure 2: CaT workflow.

2.3 Honeycrisp
Honeycrisp [76] can efficiently answer one specific query
(namely count-mean sketches) in our setting. As in the hypo-
thetical FHE approach, users encrypt their private data and
upload only the ciphertexts to the aggregator; however, there
are two critical differences. The first is that Honeycrisp uses
additively homomorphic encryption, which is orders of mag-
nitude faster than FHE and can be done efficiently at scale.
The second is that, to prevent the aggregator from decrypting
individual ciphertexts, Honeycrisp delegates key generation
and decryption to a small committee of 20–40 randomly se-
lected user devices, which uses MPC to perform these (small)
tasks. As before, this enables the aggregator to do all of the
“heavy lifting” (collecting and aggregating ciphertexts) with-
out ever seeing unencrypted data from individual users; thus,
the aggregator does not need to be trusted.

The main drawback of Honeycrisp is that it only supports
a single query. Internally, it uses a primitive called Collect-
and-Test (CaT), which works roughly as follows (see also
Figure 2): each user device computes a vector of numbers,
encrypts it with a public key that was generated by the com-
mittee, and uploads it to the aggregator, which sums up the
ciphertexts using the additive homomorphism. The aggregator
then proves to the users that it has computed the sum correctly
(which the aggregator, in its Byzantine phases, may not nec-
essarily do); if so, the committee noises and decrypts the final
result. This is the primitive that we leverage for Orchard.

Notice that CaT aggregates vectors, not just individual num-
bers. For additively homomorphic encryption, Honeycrisp
uses Ring-LWE, which has large ciphertexts that can be sub-
divided into many smaller fields; these can then be aggregated
in parallel. The choices from [76] yield 4,096 counters with
about 50 bits each; thus, a single invocation of CaT can effi-
ciently sum up vectors with thousands of elements. We will
leverage this fact for our query optimizations (Section 4.5).

2.4 Approach and roadmap
Our key insight is that CaT is far more general than it might
appear: indeed, the sums it can compute are at the heart of
a wide range of differentially private queries. (This is not a
coincidence: in fact, a common way to certify differential
privacy—e.g., in [10,25,36,42,72,85]—is to use a linear type

system to track how much a change in a single user’s data
can affect a given sum or count.) Thus, by rewriting queries
to take advantage of CaT, we can considerably expand the
range of queries that can be answered at scale. At a high level,
Orchard works as follows:

1. The analyst submits her query as a centralized program
that computes the desired answer based on a (hypothet-
ical) giant database that contains data from all users.
Orchard verifies that the query is differentially private
(Section 3).

2. Orchard transforms this program into a distributed com-
putation that relies on CaT, using several optimizations—
such as vectorization—to ensure efficiency (Section 4).

3. Orchard executes the distributed program, using proto-
cols from Honeycrisp with some additional steps, and
returns the answer to the analyst (Section 5).

3 Query language

There are several existing programming languages (e.g., [10,
26, 36, 42, 57, 59, 85, 86]) that can certify differential privacy.
Rather than proposing yet another, we adopt an existing lan-
guage, Fuzz [42]. Fuzz is a functional language, which sim-
plifies our transformations, and its privacy analysis is driven
by lightweight type annotations, which is convenient for the
analyst. However, the choice is not critical; other languages
could be used as well.

3.1 Running example: k-means
To conserve space, we introduce the Fuzz language through
an example: the widely used k-means clustering algorithm,
shown in Figure 3, which will also be our running example
for the rest of this paper. For a more complete description of
Fuzz, please see [77, §A].

The k-means algorithm divides a given set of points (the
input data) into k clusters and returns a centroid for each
cluster. It proceeds in several iterations; for clarity, the figure
shows only the iteration step, with k hard-coded to 3. The
step function is given the current estimates of the centroid
positions, c1, c2, and c3, and the set of points pts; it first
assigns each point to the closest centroid, based on the l2 dis-
tance (assign), and then partitions the set of points into three
subsets, one for each centroid. Finally, it produces three new
centroid positions c1’–c3’ for the next iteration by averag-
ing the coordinates of the points in each subset. This is done
by first summing up the coordinates in each partition, and
by counting the points; then the lap primitive adds Laplace
noise to the sums and counts, and then performs the division.

3.2 Language features
In most ways, Fuzz is a conventional functional language;
just two special features are relevant here. One is that it has

1068 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

a linear type system, described in [72], that certifies an up-
per bound on the sensitivity of all operations on private data;
when a noising primitive such as lap (for the Laplace dis-
tribution) or em (for the exponential mechanism) is invoked,
the parameter s (Section 2.1) is known, and the noise can be
drawn from the correct distribution. The other feature is a
probability monad that ensures that no private data can “es-
cape” from the program without having passed through lap
or em first. Together, these features ensure that, as long as the
top-level program has a type of a certain form, it is guaranteed
to be differentially private.

Fuzz encapsulates private data in variables of a special
type, bag, which represents a set with one element for each
individual who contributed data. There are several primitives
that operate on bags: bmap applies a given function to each
element of a bag, bfilter removes elements for which a
given predicate returns false, and bpartition splits a bag
into several sub-bags, based on the value a given function
returns for each element. All of these primitives take bags as
arguments and produce new bags, so the private data remains
confined in bags. The final bag primitive is bsum, which adds
up the elements of a bag.

3.3 Alternative languages
Using a language other than Fuzz should not be difficult be-
cause the key to Orchard, the basic structure of summing
followed by a release mechanism, is present in many other
languages for differential privacy. Notice that, in Fuzz, sum-
ming via bsum is the only way to turn bags into data values
that can potentially be released. A similar structure is present,
e.g., in PINQ [57], which has three aggregation primitives,
of which one (NoisySum) is equivalent to bsum followed by
lap; the other two (NoisyAvg and NoisyMed) are equiva-
lent to bsum followed by em. Another imperative example,
Fuzzi [86], supports the addition of new aggregation primi-
tives through an extension mechanism, but the information we
need could be specified as part of the extension. The critical
features Orchard needs are 1) a sensitivity analysis and 2) a
way to recognize the aggregation primitives in the code.

Another possible approach would be to embed Fuzz as a
library into a more traditional data analytics language, such as
Python3. This embedded-language approach has already seen
success in Deep Learning frameworks, such as TensorFlow [1]
and PyTorch [66].

4 Query transformation

Next, we describe how Orchard transforms centralized Fuzz
queries so that they can be executed in a distributed setting.

4.1 Program zones
We begin by observing that, if a Fuzz program is differentially
private, it necessarily has a very specific structure and can be

assign c1 c2 c3 pt =
let d1 = sqdist c1 pt

d2 = sqdist c2 pt
d3 = sqdist c3 pt

in if d1<d2 and d1<d3 then 0 else
if d2<d1 and d2<d3 then 1 else 2

noise totalXY size = do
let (x, y) = totalXY
in do x’ ← lap 1.0 x

y’ ← lap 1.0 y
size’ ← lap 1.0 size

return (x’/size’, y’/size’)

totalCoords pts =
let ptxs = bmap fst pts

ptys = bmap snd pts
in (bsum 1.0 ptxs, bsum 1.0 ptys)

countPoints pts =
bsum 1.0 (bmap (\pt → 1) pts)

step c1 c2 c3 pts =
let [p1, p2, p3] =

bpartition 3 (assign c1 c2 c3) pts
p1TotalXY = totalCoords p1
p1Size = countPoints p1
p2TotalXY = totalCoords p2
p2Size = countPoints p2
p3TotalXY = totalCoords p3
p3Size = countPoints p3

in do
c1’ ← noise p1TotalXY p1Size
c2’ ← noise p2TotalXY p2Size
c3’ ← noise p3TotalXY p3Size

return (c1’, c2’, c3’)

Figure 3: One step of the k-means algorithm, written in Fuzz.
The colors represent the “zones” of computation.

broken into three different “zones” (which we color-code in
our example in Figure 3):

• Red zone computations run directly on the data of an
individual user—here, the assign function, which finds
the closest centroid for each user’s data point.
• Orange zone computations are performed on user data

that has been aggregated but not yet noised—here, the
lap operators, which add Laplace noise to the sums.
• Green zone computations involve only noised data and

constants—here, the final divisions in noise and the
parts of iter that set up the rest of the computation.

The Fuzz type system enforces clear boundaries between
these zones: data can only pass from red to orange by ag-
gregation (via bsum), and aggregate data can only pass from
orange to green by noising (via lap or em). Moreover, red-
zone code always operates on an individual element of a
bag—that is, on data from a a single user. And lastly, none
of the operations producing bags offer any way to combine
multiple elements of one bag when computing an element of
another bag; in other words, every element of every bag that
can ever exist is derived (by filtering, partitioning, or map-
ping) from some single element of some bag that was initially
provided as input to the top-level program.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1069

This stratification allows us to map Fuzz programs to
Honeycrisp-like computations by mapping the zones to the
different parties in Figure 2. Red-zone code is executed di-
rectly by user devices; computations in this zone only need
the data of one user at a time, so each user device can run
it without sending any secrets anywhere. The summation at
the red-to-orange boundary can be done as in Honeycrisp, by
users encrypting their red-zone outputs and sending them to
the aggregator, who adds them up using homomorphic ad-
dition and then passes the encrypted sum to the committee.
Orange-zone code can be executed by the committee, using
MPC, and the members of the committee will be able to de-
crypt the encrypted sums only after appropriate noise is added.
Data that passes from orange to green zones must first pass
through a release mechanism (lap or em) and be thus noised
appropriately, so green-zone code can be safely executed “in
the clear” by the aggregator itself.

The Orchard compiler uses a special operator to coordinate
the mapping, summing, and releasing steps among red, orange
and green zones. We call this operator bmcs (broadcast, map,
clip and sum), and introduce it in the following subsection.

4.2 The bmcs operator
The operator bmcs (b,m,c,r) takes four parameters and be-
haves as follows:

• first, it broadcasts some public state b from the aggrega-
tor to the user devices;
• on each user device i, it maps the local private data di

to a private vector vi := m(b,di) using the provided map
function m (which can use the public state in its compu-
tation);
• on each user device, it clips the elements of vi such that
|vi,k| ≤ ck; and finally
• it sums all these private vectors from all client devices

through homomorphic addition to compute v := ∑i vi
and returns r(v) using the provided release function r.

The bmcs operator captures the workflow of a single “round”
of the distributed protocol; m is the red-zone computation for
that round; r is the orange-zone computation. The clipping
vector c is needed to guarantee privacy (see Section 5.3).

By rewriting a given Fuzz program to use only bmcs rather
than the individual bag operations bmap, bfilter, bsum, and
bpartition, we make its “phase-structure” explicit so that
we can directly evaluate it on a Honeycrisp-like distributed
platform. We next describe how Orchard does this.

4.3 Extracting dependencies
When the analyst submits a Fuzz program to Orchard, Orchard
begins by reducing complex bag operations (bpartition
and bfilter) into combinations of the two fundamental bag
operations—bmap and bsum. A bpartition that splits a bag

into k partitions is reduced into a bmap that first maps each
value in the bag to a partition index, followed by k bfilter

operations that filters out each of the individual partitions.
A bfilter operation is reduced into a bmap operation that
maps each value v in the bag to an optional value v′—when
the filter predicate evaluates to true on v, the optional value
v′ := Somev, otherwise v′ := None.

Orchard then normalizes the program to ensure that all
variable names are unique, and that each variable is either the
result of a bag operation or the result of a release mechanism
(lap or em). To achieve this, Orchard freshens all variable
names, and performs aggressive inlining to eliminate all other
variables. Conversely, if a bag operation was originally part
of an expression and did not have a name, it is given one. In
the resulting normal form, programs make explicit relations
between the input database, the intermediate bags and released
values, and the output of the program.

Next, Orchard infers dependencies between variables by
building a graph with a vertex for each unique program vari-
able. Two vertices (u,v) are connected with a directed and
labeled edge f if v is the result of running the bag operation
f over u. Since the normalized program only contains two
simple bag operations, the label f is either the map function
supplied to some bmap, or the clip bound supplied to some
bsum. Since Fuzz forbids unbounded loops over private data,
this graph is acyclic. Furthermore, since both bmap and bsum

take one bag variable as input and produce another bag vari-
able as output, there is at most one edge between any two
vertices in this graph. This implies the graph is in fact a di-
rected tree, and at the root of this tree is the input bag.

This tree is a complete snapshot of the red zone compu-
tations encoded in the normalized Fuzz program. Since the
dependency tree tells us how to compute any bag value given
the bag variable name, we only need to keep bag variable
names at their use sites. So we remove all bag operations
from the normalized Fuzz program, and use the dependency
tree as a reference for emitting code when a bag variable is
used. We call the remaining normalized program the “core”.

The core contains a mixture of orange zone and green zone
computations. Since Orchard eliminates all other program
variables in an earlier pass, the variables in the core must
either be the result of a bag computation, or the result of a
release mechanism. In particular, we call the variables that
are results of bag computations “exit vertices” in the tree.
(These vertices are scalar numbers, and thus cannot contain
any outgoing edges, because no bag operations take scalar
numbers as inputs.) By analyzing the core and inspecting the
path from the input database to exit vertices, we can emit code
in the bmcs form.

4.4 Transformation to bmcs form

The next step traverses the core in a forward pass, while
maintaining a intermediate set S of variables. The set S is the

1070 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

set of variables that are results of release mechanisms at the
current program position during the forward pass.

When the traversal encounters a release mechanism (lap
or em), it first compares the set of variables used in this release
mechanism against S. If the set of used variables is a subset
of S, then this release mechanism only adds further noise to
already released data, and there is no need to invoke bmcs.

On the other hand, if a variable v is used in the release
mechanism but is is not a member of S, then v must be the
result of some bag operation. In this case, we must invoke
bmcs to compute v and release.

Let p be the path from the input database to the variable v.
Orchard now computes a map function mp and a clip value cp
as follows. It initializes mp := id and cp :=∞, then it traverses
p starting from the input database. When it encounters a bmap
f, it updates mp := mp ◦ f ; and when it encounters a bsum c,
it updates cp := c.

In general, a release mechanism may refer to multiple vari-
ables v1, . . . ,vi that are results of bag operations. For each
vi, Orchard walks its corresponding path pi to compute mpi

and cpi . It then fuses these map functions and clip bounds
into a new map function mdb = (mp1 db, . . . ,mpi db) and a
new clip bound c = cp1++ . . .++cpi , where ++ represents
vector concatenation.

Finally, if f (v1, . . . ,vi) is the release mechanism that uses
program variables v1, . . . ,vi, we build the release function
r sum= f (prj1 sum, . . . ,prji sum). Here, sum is the aggregated
vector, and each prji projects the corresponding value for vi
out of the aggregated vector sum.

4.5 Optimizations

The transformation process that has been described so far
will calculate the correct result, but in general it will produce
many redundant bmcs operations because it walks the core
in a forward pass and emits one bmcs call for each release
mechanism that uses private data. We can do better by ob-
serving that release mechanism calls often do not depend on
each other (such as the three calls to noise in the k-means
example) and can in fact be fused into one bmcs call.

Orchard exposes these optimization opportunities to the
code transformation process through a simple source code
rewriting step. After Orchard has inlined and normalized the
input Fuzz program, but before code transformation into bmcs,
Orchard performs local dependency analysis on release mech-
anism calls, using a marker combinator par to combine release
mechanisms that have no dependency relations.

For example, the three lap calls in the noise function for
the kmeans example will be rewritten into:

((x’, y’), size ’) ←
par (par (lap 1.0 x) (lap 1.0 y))

(lap 1.0 size)

Since Orchard inlines the noise function, in fact all nine lap

calls in the step function for the k-means example will be

combined through the marker par combinator (there are three
lap calls in each noise call, and there are three noise calls).

The purpose of the par combinator is to allow code trans-
formation to fuse release mechanisms together just by look-
ing at the syntax of the program under analysis. In the last
phase of code transformation, when Orchard encounters a
par combinator, it first recursively emits the map and release
functions for the two arguments to par. Let us call these
map functions m1 and m2, and the release functions r1 and
r2. Next, Orchard fuses them together by creating a new map
function m db = (m1 db,m2 db), and a new release function
r sum = (r1 sum,r2 sum). The clip bounds are concatenated
to produce a fused clip bound. The code transformation recur-
sively fuses the release mechanisms combined with nested par

combinators, until finally only a single bmcs call is emitted
for all of the combined release mechanisms.

4.6 Limitations

Our implementation currently insists that all loops in the red
and orange zones terminate after a finite number of rounds,
and it disallows unbounded recursion in these zones. Finite
loop bounds are common in the differential privacy litera-
ture because they simplify the reasoning about the privacy
cost; queries with unbounded loops, such as the PrivTree al-
gorithm [87], tend to require more sophisticated reasoning,
and thus cannot be verified by most automatic checkers. If
necessary, the limit in the red zone could be replaced with
timeouts and default values [42]. Notice that we do allow
unbounded loops in the green zone, so we can still use dy-
namic predicates to check for convergence, e.g., in k-means
clustering.

Orchard’s front end relies on an existing programming
language and type system, and it inherits their limitations.
In particular, if a query is differentially private but the Fuzz
type system cannot prove it, Orchard will reject it, and if a
query’s real sensitivity is s1 but Fuzz only derives a sensitivity
value s2 > s1, Orchard will use s2. These limitations could
be removed by using a different source language – e.g., one
with a more advanced type system, such as DFuzz [36], or
one that allows the analyst to help with the privacy proofs,
such as apRHL [4].

Orchard’s optimization for fusing independent release
mechanisms only recognizes fusion opportunities for release
mechanisms that are syntactically next to each other. Due to
this simplistic nature, Orchard may miss opportunities for
fusion of release mechanisms that are only revealed through
a more global dependency analysis. However, in our experi-
ments, we find that this limitation does not prevent us from
emitting code with the optimal number of bmcs calls. We plan
on improving the fusion analysis in future work.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1071

5 Query execution

Next, we describe the platform Orchard uses to execute dis-
tributed queries once they have been transformed using the
method from the previous section.

5.1 Overall workflow

Orchard implements bmcs using the CaT primitive from Hon-
eycrisp [76], with three important additions: Orchard supports
more than one round, it adds the broadcast step (which was
not needed for Honeycrisp’s one hard-coded query), and it
supports more general computations on the user devices and
within the committee’s MPC (which Orchard needs for the
red and orange zones). Protocols for sortition and verifiable
aggregation (discussed below) are used verbatim, so the cor-
rectness proofs from [76] still apply. The platform consists of
two components: a server, which runs in the aggregator’s data
center, and a client, which runs on each user’s device (e.g.,
phone or laptop). These components operate as follows.

Setup: When an analyst wants to ask a query, she formulates
it in the language from Section 3 and submits it to the server.
The server typechecks the query, to verify that it is differen-
tially private; if not, it aborts. The server then transforms the
query as described in Section 4, but keeps only the code for
the green zone. The server then triggers a sortition protocol
that causes a very small, random committee of user devices
to be elected. (As in Honeycrisp, a typical committee size is
about 30–40, out of perhaps 109 devices.) The server sends
the query to the committee, whose members perform the same
transformation as the server but keep only the code for the
orange zone of each bmcs operation, as well as the associated
privacy costs εi. The committee runs an MPC to generate
a keypair for an additively homomorphic cryptosystem, and
each committee member keeps a share of the private key.
The server then executes the prefix (if any) of the green-zone
computation that does not involve private data.

Broadcast: When the server encounters the ith bmcs opera-
tion, it sends the sequence number i to the committee. The
committee deducts εi from the privacy budget εmax and, if this
succeeds, signs an execution certificate that contains the query,
the public key, and the sequence number i of the bmcs, and
returns the certificate to the server. This certificate is needed
to convince the clients that the server has “paid” the privacy
cost εi for the specific step they are about to execute; the se-
quence number prevents query reexecution without charging
the privacy budget again.

Map and clip: The server now distributes the certificate,
along with any broadcast state in the bmcs, to the clients.
Each client (1) verifies that the committee was elected prop-
erly, that the execution certificate is signed by the committee,
and that the certificate is not a duplicate; (2) transforms the
query to obtain the red-zone computation for the ith bmcs
operation; (3) executes the red-zone code on its local data; (4)

encrypts the result with the public key from the certificate;
and (5) uploads the result to the server, along with a zero-
knowledge proof that (a) the local input was in the correct
range; (b) the red zone was executed correctly; and, if i > 1,
that (c) the client has not changed its local input since the first
bmcs in the current query.

Sum: The server aggregates all the uploads using homomor-
phic addition and then publishes a Honeycrisp-style summa-
tion tree, so the clients can verify that it has included each
user’s data exactly once; if not, they can report the aggregator.
Next, the committee performs another MPC to execute the
orange-zone code (which noises and decrypts the computed
aggregate) and then sends the plain-text result to the server,
which uses it as the result of the bmcs operation and contin-
ues executing the green-zone code. If the server encounters
further bmcs operations, it repeats the broadcast, map, clip,
and sum steps for each of them.

5.2 Security: Aggregator
One key difference from Honeycrisp is that Orchard’s red-
and orange-zone computations are not hard-coded and must
be compiled from the query instead. A naïve approach could
have been to have only the server perform the transformation
and to have it provide the red- and orange-zone code to the
committee and to the clients, respectively. However, in this
case it would have been easy for the server to, say, replace
the orange zone with the identity function (to disable noising)
and/or to replace the red zone with “if the user is Alice, return
data ×109, else 0” (without proper clipping).

Orchard avoids this issue by (1) having the committee and
the clients compile the red and orange zones directly from the
original query and by (2) including the query in the execution
certificate, so that all correct participants can be sure they are
part of the same query. Since a correct client or committee
member would perform the compilation as specified, it would
(correctly) reject any proposed query that was not differen-
tially private, and it would include all the necessary elements,
such as clipping and noising. A dishonest server still has con-
trol over the green zone and can run any arbitrary code there.
However, it can only hurt itself by doing this: the users’ pri-
vacy is guaranteed by the red and orange zones, and any data
that reaches the green zone is already properly declassified.

Of course, the aggregator can misbehave in several other
ways, but the compilation attack is the only one that is specific
to Orchard; the others were already possible in Honeycrisp,
and the defenses from Honeycrisp continue to apply. For
completeness, we briefly review some key defenses below;
for a complete description, please see [76, §3].

Privacy budget: A malicious aggregator could try to run
more queries than the privacy budget allows. To prevent this,
the budget balance is maintained by the committee. In each
round, the committee checks whether the remaining privacy
budget is sufficient to execute the query; if so, it signs a query

1072 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

authorization certificate that includes, among other things, the
remaining budget and the current round number. This certifi-
cate is sent to all user devices, which check it before uploading
their responses. If the committee changes, the new members
rely on the budget from the previous round’s certificate.

Targeting individuals: A malicious aggregator could try to
learn the private data of specific users by performing the
aggregation incorrectly – perhaps by leaving out data from
certain users, or by multiplying the encrypted data from other
users with a large constant (which is possible in an additively
homomorphic cryptosystem), or even by pretending that a
single user’s data is the result of the entire aggregation. To
prevent this, Orchard requires the aggregator to construct a
summation tree to prove that it has computed the aggregation
correctly. Each user device checks a small portion of this tree.

Reporting channel: We assume that there is an external chan-
nel that devices can use to report the aggregator, if they should
discover that the aggregator has misbehaved. Like Honeycrisp,
Orchard produces evidence that the devices can use to sub-
stantiate such a report; for instance, this evidence could be
posted in an online forum (Twitter, Wikipedia, ...) or it could
be given to the press. In a large-scale deployment, the aggre-
gator would typically be a large entity with a reputation to
lose, so this mechanism should provide an incentive for the
aggregator to follow the protocol correctly.

Collusion: If the aggregator is also the manufacturer of the
user devices (which would be the case, e.g., in a deployment
by Apple or Google), a malicious aggregator could try to
roll out a backdoored OS version or manufacture a large
number of additional devices, with which it could then collude.
Here, our assumption that the aggregator is Byzantine only
occasionally (the OB in our OB+MC assumption) is critical,
because it limits the potential impact of such misbehavior.

Committee tampering: For a committee of size C, Orchard
requires that 2C

5 committee members are honest. With 2–3%
Byzantine users, as we have assumed in Section 2, the chances
of randomly sampling a committee with too many Byzantine
users are miniscule; with C = 40, the chances of ever encoun-
tering it during a period of ten years, with one round every
day, would be about 0.001%. However, a malicious aggrega-
tor could try to increase this probability by preventing honest
users from participating in the sortition. To defend against
this, the aggregator must maintain a Merkle tree of all the
users, so that the results of the election are verifiable by all
devices.

5.3 Security: Malicious clients

Another key difference from Honeycrisp is that there can be
more than one bmcs invocation and that clients can poten-
tially learn some information about the result of previous
invocations from the broadcast step. This is not a privacy
issue because the type system ensures that any broadcast state

has been properly noised, but a group of malicious clients
could potentially use this information in a targeted attack.

As a concrete example, suppose a large online retailer uses
the k-means algorithm from Figure 3 to calculate the positions
for k new shipping centers, based on the locations of their
current customers; suppose, further, that a small group of users
wishes to ensure that one of the centers is built in their home
town. Notice that each bmcs broadcasts the set of centroids
from the previous round. In the last round, the attackers can
use this information to calculate exactly (modulo noise) what
their locations would need to be to move the nearest centroid
to their town and then change their inputs accordingly.

To prevent adaptive attacks like this, Orchard can optionally
use verifiable computation (VC) [65] on the client side. When
this is enabled, clients must upload a cryptographic commit-
ment to their local data along with their first bmcs response,
and they must include, with each response, a zero-knowledge
proof that (a) they have executed the red-zone code correctly
and (b) their initial commitment opens to the input they used
in the current round. With this defense, the attackers can only
choose their initial inputs. As we will show in Section 7.3,
this makes a successful attack much harder.

5.4 Handling churn

A third difference is that Orchard computations with mul-
tiple bmcs rounds can take much longer than Honeycrisp’s
single-round computation. This raises two concerns: (1) the
workload of the committee is somewhat higher, and (2) de-
vices are more likely to go offline during the computation.

To address the first concern, Orchard can optionally choose
a fresh committee after a few bmcs rounds. This requires a few
more devices to serve on committees, and it adds a bit more
work for the overall system because each new committee has
to generate a fresh keypair, but it is safe, and it limits the work
that any given committee member has to perform. To address
churn in the committee, Orchard uses Shamir secret sharing to
ensure that the committee can reconstruct the private key even
if it has lost a few of the shares because the corresponding
committee members have gone offline.

This leaves the concern that some user devices will leave
(and others join) between rounds. This does not affect cor-
rectness, since the red zone retains no state between rounds,
but it does mean that the bmcs sums could be computed over
data from slightly different sets of users. Almost by definition,
differential privacy cannot release anything that is specific
to particular users, so the overall impact of individual user
arrivals or departures should be small [29, §2.3.2]. The effect
of higher levels of churn depends on the algorithm and on
the kinds of users that are joining or leaving. For instance,
consider the effect that a major power outage in a large geo-
graphic region – say, the 2003 blackout in the Northeastern
U.S. [33] – would have on a query that was already in progress.
If the query was choosing facility locations within the United

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1073

States, the results would be severely distorted, since it would
suddenly appear as if there were no users in the Northeast at
all. If, however, the query was measuring the age distribution
of the users, the impact would be small, since the age distri-
bution in the Northeast would be roughly comparable to the
age distribution elsewhere.

6 Implementation

For our experiments, we built a prototype of Orchard. We
used Haskell to implement the Fuzz frontend and the transfor-
mations, and Python for the backend. Our prototype generates
and runs the actual red-zone and orange-zone code; for the
aggregation (which would be done with millions of users in
a real deployment), we benchmark the individual steps and
then extrapolate the cost. Overall, our prototype consists of
about 10,000 lines of code, and is publicly available [62].

Encryption: For additively homomorphic encryption, we use
the Ring-LWE scheme [54]. This works over a polynomial
ring Rp := Zp[x]/(xn + 1), where p is a prime and n is a
power of 2. The secret key is a random polynomial s(x) ∈
Rp, and the public key is a pair generated by sampling a
random a ∈ Rp and setting the public key to be (a,b) ∈ R2

p,
where b := a · s+ e ∈ Rp, for some “error” e ∈ Rp chosen
from an appropriate error distribution. The plaintext space
is Zl

q, where q, l ∈ Z, l ≤ n, q� p and |p mod q| � q. To
encrypt a vector z ∈ Zl

q, the encryptor generates a random
r ∈ Rp, and computes the ciphertext (u,v) := (a · r+e1,b · r+
bp/qe · z) ∈ R2

p. Decryption is then simply z = round(v−u ·
s,bp/qe)/bp/qe, where round(x,y) rounds each coefficient
of x to the nearest multiple of y. (We assume the errors e, e1,
e2 are sufficiently small relative to p/q.)

This encryption scheme allows us to represent our key gen-
eration and decryption protocols with a small constant number
of additions and one multiplication in the polynomial ring.
Moreover, it allows us to pack many ’slots’ of ciphertexts into
one large ciphertext, with almost no additional cost. Given
our security parameter choices, this scheme yields up to 4,096
counters, each with a capacity of roughly 50 bits.

MPC: We use the SCALE-MAMBA framework [50] to im-
plement the MPC operations for key generation and for the
orange zones (Section 5.1). For key generation and decryption
we used code we obtained from the authors of [76]. SCALE-
MAMBA supports an arbitrary number of parties and is secure
in the fully-malicious model. Operations are performed in
a finite field modulo a configurable prime p, which allows
for the support of both integers and floating points. This is a
natural fit for our Ring-LWE encryption scheme, which also
requires an integer modulus, and thus no additional modular
arithmetic needs to be implemented within the MPC. In Ring-
LWE, the additive homomorphism of plaintexts is modulo
some integer q, where |p mod q| � q; ideally, p = 1 mod q.

Secret sharing: SCALE-MAMBA also supports Shamir se-
cret sharing [78]. We use this to shard the private key among
the k committee members in such a way that any subset of
t + 1 members can reconstruct the entire key. At the same
time, t dishonest nodes cannot learn anything about the key,
and t + 1 honest nodes can detect any errors introduced by
dishonest nodes. This enables Orchard to tolerate the loss
of a few committee members. We modified the open-source
SCALE-MAMBA source code to reconstruct the secret key
automatically, if needed, using the remaining shares.
Verifiable computation: We use the zk-SNARK proto-
col [11] to enable clients to prove, in zero knowledge, that
they have done the red-zone computation correctly, with con-
sistent inputs (Section 5.3). For benchmarking, we used the
implementation from the Pequin toolchain [67].
Security parameters: We use the LWE-estimator tool [53]
of Albrecht et al. [5] to obtain concrete parameters that pro-
vide sufficient security based on the best known attacks on
LWE. We chose dimensionality n = 4096, a 128-bit prime
p, and a Gaussian error distribution with σ =

√
2

2 (which we
approximate as the centered binomial distribution with N = 2
trials) in each dimension, which gives over 128 bits of secu-
rity. For the verifiable aggregation, we use the same choices
as Honeycrisp, namely SHA-256 hashes and RSA-2048 sig-
natures.

7 Evaluation
Our experimental evaluation is designed to answer four high-
level questions: (1) How many private queries can Orchard
support? (2) How well do Orchard’s optimizations work?
(3) How effective are Orchard’s defenses against malicious
clients? And (4) what are the costs of Orchard?

7.1 Coverage
To get a sense of how many (private) queries Orchard can
support, we did a careful survey of the differential privacy
literature to find queries that are plausible candidates for our
highly distributed setting. We collected as many different
kinds of queries we could find; we excluded only a) queries
that were substantially similar to ones we already had (e.g.,
different variants of computing CDFs), and b) queries where
we simply could not imagine the data being distributed across
lots of individual devices.

Table 1 (in the Overview section) shows the queries we
found, as well as the papers we found them in. We then imple-
mented each query in Fuzz, taking care to write the queries as
they were presented in the papers, and not in a way that would
be convenient for Orchard (e.g., with computations already
grouped the way bmcs would require them).

We found that, out of the 17 queries we found, 14 (82%)
were accepted by Orchard. The three queries that did not
work were PATE [64], IDC [41], and DStress [63]. These

1074 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Query Naïve Optimized
ID3 2md m+1
k-means 3m m+1
Perceptron 2md m+1
PCA d2 +d 1
Logistic regression d +1 2
Naïve Bayes 2d 2
Neural Network 2m(d +1) m+1
Histograms b 1
k-Medians 3m m
CDF b 1
Range queries b 1
Bloom filters d 1
Count Mean Sketch d 1
Sparse vector 1 1

Table 2: bmcs rounds needed for each query, with and without
optimizations. d is the input vector length, m the number of
iterations, and b the number of buckets (see Section 7.4).

queries are not a good fit for our model. DStress operates on
graphs, whereas we assume a set of per-user records. IDC is
a “template algorithm” with an oracle function U , and good
choices for U require functions beyond simple bag operations.
PATE requires training private (un-noised) “teacher” models
and then training a “student” model with noisy labels provided
by the teachers. In our model, only the aggregator could play
the role of PATE’s teachers, but we do not trust it to see
sensitive data in the clear, so we cannot express this algorithm.

Overall, our data suggests that Orchard is able to execute
a wide variety of differentially private queries—even though
these queries were designed for the centralized model.

7.2 Optimizations

A naïve translation of a centralized query typically results in
a lot more bmcs invocations than necessary. To estimate how
much our optimizations can help with this, we compiled each
query twice, once with the full transformation and once with
optimizations disabled; we then counted the bmcs operations
in the resulting programs.

Table 2 shows our results. In most cases, our optimizations
substantially reduced the number of bmcs rounds that were
needed. (The exact reduction depends on the parameters.)
Since the rounds are done sequentially (the bmcs calls in the
green-zone code are “blocking”), and since bmcs accounts
for almost all of a typical query’s runtime, this means a much
lower processing time.

We manually inspected the optimized code, looking for op-
portunities to further reduce the number of rounds, but could
not find any. In principle, Orchard’s optimizations could miss
opportunities for fusing release mechanisms (Section 4.6),
but this did not occur for any of the queries we tried.

 0

 50

 100

 150

 200

 250

1 10 100 1k 10k

E
rr
o
r
(m
ile
s
)

Number of Attackers

Orchard
GDP + IC
LDP + OC

LDP
GDP

20 miles

Figure 4: Impact of malicious users.

7.3 Robustness to malicious users

To examine how much Orchard’s defenses help against ma-
licious users, we implemented the attack scenario from Sec-
tion 5.3. Recall that this involves an online retailer using
k-means to find locations for k = 3 new shipping centers and
a group of attackers trying to cause one of the centers to be
built in their home town. We randomly sampled latitudes and
longitudes for N = 104 honest users from a rectangle that in-
cludes the lower 48 U.S. states, and we used Seattle, Houston,
and New York as reasonable guesses to initialize the centroid
positions. We then simulated the behavior of Orchard, as well
as four hypothetical alternatives: (1) local differential privacy
(LDP); (2) global differential privacy (GDP) with a trusted
aggregator; (3) GDP with input clipping (IC), which rejects
coordinates outside the valid range and was implemented
in [76]; and (4) LDP with output clipping (OC), which re-
quires users to clip their noised values to 10× the valid range.
The attackers try to move the East Coast centroid (which is
near Richmond, VA without the attack) to Pittsburgh, PA, us-
ing the strategy from Section 5.3; we assume that the attackers
do not have knowledge of any data from previous Orchard
queries (because, if this information was still relevant, the
aggregator would likely have no need to issue a new query).
We vary the number of attackers A, and we assume that the
attackers are able to estimate N but do not know the locations
of the other users. We say that the attack succeeds if the final
East Coast centroid is within 20 miles of Pittsburgh.

Figure 4 shows the distance from Pittsburgh of the result-
ing East Coast centroid for each scenario and with various
values for the parameters; the figure shows medians across
500 independent runs. Without a defense, GDP and LDP suc-
cumb to even a single attacker, who can observe the centroid’s
location in the penultimate round and then calculate an input
(far outside the valid range) that will move the centroid to
Pittsburgh in the final round. The residual error is due to nois-
ing; it decreases as A increases. Notice that GDP’s error is
even lower than LDP’s; this is because GDP adds less noise.

With OC, the attackers can no longer report arbitrary values
and must instead choose the largest value in the right direction
that will be accepted, but the attack still succeeds with about
A = 31 (0.3% of the users). IC further restricts the range;
success now requires A = 500 attackers. With Orchard, the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1075

 0.2

 1

 5

 25

Hcrisp CMS SV Perc* ID3* kmean PCA NN* kmedianbloom NB* LogReg* Hist CDF Range

T
ra
ffi
c
 (
M
B
)

Algorithm
(a)

Sum Verif.
Ciphertexts

Range Proofs

 1

 5

 25

Hcrisp CMS SV Perc* ID3* kmean PCA NN* kmedianbloom NB* LogReg* Hist CDF Range

C
o
m
p
u
ta
tio
n

 (
m
in
)

Algorithm
(b)

Encryption
Proof gen.

Other

Figure 5: Bandwidth (a) and computation (b) required of each participant in a run of each algorithm.

attackers cannot adapt, and since they do not know up front
what values to report—reporting, say, Portland, ME, would
risk “overshooting” and moving the centroid away from Pitts-
burgh again—their best strategy is to simply report Pittsburgh
as their location. With this strategy, the attack takes about
A = 20,000—far more than the number of honest users.

7.4 Experimental setup
Next, we used our prototype to measure Orchard’s costs to
users, committee members, and the aggregator. We bench-
marked the client-side software on a laptop with a 2.3 GHz
dual-core processor and 8 GB of RAM running macOS
Catalina. To simulate committee members operating in a
global setting, we used t2.large EC2 instances with 8 GB
of RAM, located in all available geographic regions (includ-
ing the U.S., Europe, Asia, and Brazil), to get realistic laten-
cies. For our aggregator experiments we used eight Power-
Edge R430 servers with 64 GB of RAM, two Xeon E5-2620
CPUs, and 10 Gbps Ethernet; the operating system was Fe-
dora Core 26 with a Linux 4.3.15 kernel. This equipment
seems reasonably close to what a real-world aggregator might
have available in its data center.

Many of our algorithms have parameters that affect the
cost. For k-means and k-medians, we chose m = 5 and k = 3,
because [9] notes that, given proper cluster initialization, the
solution after five rounds is consistently as good or better than
that found by any other method. For Perceptron, we chose
m = 10, because the algorithm is guaranteed to converge
after at most O(1/α2) iterations, where α is the margin in a
linearly separable dataset [75]. With vectors of size 10, we
assume 1-separability to get this guarantee. For ID3, we set
vector dimension d = 100 because we can support estimating
entropy for counters of up to vectors of size 1 million (e.g.,
all possible 6-digit zip codes) with far fewer counters on the
aggregator’s side. For the neural network, we chose m = 20
epochs, for which [44] shows accuracy competitive with SGD.

Since Orchard is a generalization of Honeycrisp, we report
Honeycrisp’s numbers for comparison. We got these numbers
by executing Honeycrisp’s fixed query, which compiles to a
single bmcs, with Orchard’s additions disabled.

7.5 Cost for normal participants
The key costs to a normal Orchard participant are: (1) the
red-zone computation itself; (2) encrypting the value to be
uploaded; (3) generating the zero-knowledge proofs; and (4)
verifying the aggregator’s summation. (The transformations

themselves are cheap; this step never took more than 410 ms
for any of our 14 queries.) To quantify these costs, we bench-
marked the Orchard client while it was executing each of our
14 queries; to get realistic numbers for sum verification, we
emulated a system with N = 1.3 ·109 users for the client to
interact with. We measured the number of bytes sent, as well
as the computation time spent on Orchard operations.

Figure 5 shows our results. Both the bandwidth and the
computation time vary significantly between queries, but they
are largely proportional to the number of bmcs rounds, whose
cryptographic operations dominate the cost. The red-zone
computations themselves are typically trivial (many simply
return a value), so their cost is very small in comparison;
we simply include it with the other protocol overheads in
Figure 5(b). Overall, the bandwidth costs are modest, ranging
from 1 MB to about 25 MB per query. The computation
typically takes at most a few minutes.

The neural-network query is a an outlier; it takes about
25 minutes of computation time, which raises some concerns,
e.g., about battery life on mobile devices. This high cost is
mostly due to the high number of rounds we used (m = 20), to
show what would happen when training on a “hard” problem.
For “easy” lower-dimensional problems, even a single pass
can be statistically optimal [69].

To measure the cost of the defense from Section 5.3, we
selectively disabled the part of the zero-knowledge proof that
concerns input consistency; this typically reduced the proving
time by about 3%. This is because the client already has to
prove that the encrypted value is in the correct range; the
marginal cost of this extra proof obligation is very small.

7.6 Cost for the committee

For each query, Orchard selects a small committee of C user
devices that are expected to participate in the key-generation
MPC, as well as in the per-bmcs MPC that performs decryp-
tion and orange-zone computations. To quantify the cost to
committee members, we set up committees with EC2 in-
stances as described in Section 7.4, triggered each of our
14 queries, and measured the bandwidth and computation
that the two MPCs consume. We report the cost of a single
iteration of each MPC.

Figure 6 shows our results; where queries use two bmcs
rounds per iteration, we report the cost of the more expen-
sive one (indicated with an asterisk). The cost of the key-
generation MPC depends only on the key length, and is thus
identical for all queries; the cost of the orange-zone MPC

1076 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 0.5

 1

 1.5

 2

 2.5

Hcrisp CMS SV Perc* ID3* kmean PCA NN* kmedianbloom NB* LogReg* Hist CDF Range

T
ra
ffi
c
 (
G
B
)

Algorithm
(a)

Orange
Keygen

 0
 30
 60
 90

 120
 150
 180
 210

Hcrisp CMS SV Perc* ID3* kmean PCA NN* kmedianbloom NB* LogReg* Hist CDF Range

C
o
m
p
u
ta
tio
n

 T
im
e

 (
s
)

Algorithm
(b)

Orange
Keygen

Figure 6: Bandwidth (a) and computation (b) required of each committee member during one round of orange-zone computation.

 10

 100

 1000

 10000

 100000

Hcrisp CMS SV Perc* ID3* kmean PCA NN* kmedianbloom NB* LogReg* Hist CDF Range

T
ra
ffi
c
 (
T
B
)

Algorithm
(a)

Sent
Received

 0.1

 1

 10

 100

 1000

Hcrisp CMS SV Perc* ID3* kmean PCA NN* kmedian bloom NB* LogReg* Hist CDF Range

C
o
m
p
u
ta
tio
n

 (
c
o
re
s
)

Algorithm
(b)

Figure 7: Bandwidth (a) and computation (b) required of the aggregator.

varies with the query, but not by much. Overall, decryption
dominates the costs, and, since every bmcs call fits into one
large packed ciphertext, we see the same behavior for all
queries. In absolute terms, these costs are significant; a typi-
cal query with one round of bmcs consumes about 3 GB of
traffic and five minutes of computation time; the total is higher
if additional rounds are required.

Notice that the chances of actually being selected for the
committee are tiny: for N = 1.3 ·109 users, a typical commit-
tee size is about C = 40, so each user is only about 9× more
likely to be chosen than to win the jackpot in Powerball. Nev-
ertheless, it may be useful to excuse resource-limited devices,
such as mobile phones, from committee service and to rely
mostly on devices like desktops and laptops, when possible.

7.7 Cost for the aggregator
Next, we quantify the costs of the aggregator, who must col-
lect the input from each device, verify the zero-knowledge
proofs, sum up the inputs, generate the summation proof, and
distribute this proof to each device. We do not currently have
a large enough deployment of Orchard to run this experiment
end-to-end, so we estimate the costs based on benchmarks of
the individual steps. We set the number of rounds as discussed
in Section 7.4, and we report results for N = 1.3 ·109.

Figure 7 shows the number of bytes the aggregator would
need to send for each query, as well as the number of Xeon
E5-2620 cores it would need to ensure that the computations
do not last for more than one hour. As before, the costs de-
pend mostly on the number of rounds; the cost of the green-
zone computation is insignificant. The most expensive query
(Neural Network) would require 892 cores, or 74 machines
with two E5-2620 CPUs each. It would also involve sending
13,180 TB, which is a lot but actually corresponds to about
10 MB per user. For comparison: the average transfer size
of a web page is about 2 MB [47]; typically, much of this
is offloaded to CDNs, and the same would be possible for
Orchard’s summation proofs.

Scalability: We also ask how well Orchard scales with the
number of participating users N. This is mostly a concern for

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

1.3*107 1.3*108 1.3*109 1.3*1010

T
ra
ffi
c
 (
T
B

 s
e
n
t)

Number of Participants
(a)

1 round
3 rounds
20 rounds

 0.1

 1

 10

 100

 1000

 10000

1.3*107 1.3*108 1.3*109 1.3*1010

C
o
m
p
u
ta
tio
n

 (
c
o
re
s
)

Number of Participants
(b)

1 round
3 rounds
20 rounds

Figure 8: Bandwidth (a) and computation (b) required of the
aggregator, for different system sizes.

the aggregator: the size of the MPCs (and, thus, the cost for
committee members) does not depend on N at all, and the cost
for individual users grows only very slowly, with O(logN),
because of the summation trees. We estimate the costs of the
aggregator as above, but this time we vary N.

Figure 8 shows our results (all scales are logarithmic).
Although the scaling is technically O(N logN) because the
height of the summation trees grows with N and each user
must be sent some paths in the tree for verification, the non-
linear component is small in both figures, which means that
Orchard scales very well with N. This is expected, since Or-
chard is based on Honeycrisp, which scales similarly, and
nothing in Orchard destroys this scalability.

8 Related work

To our knowledge, Orchard is the first general system that can
process a wide variety of queries with (1) a single untrusted
aggregator, (2) global differential privacy, and (3) scalability
to millions of users.

Different trust assumptions: Several other systems re-
quire at least some trust in additional parties. Prochlo [14]
anonymizes the user data using a shuffler, who must not col-
lude with the aggregator; this reduces the privacy cost of LDP
algorithms considerably [30]. Similarly, the crypto service
provider in [37, 60] must not collude with the evaluator, and
the proxy in PDDP [21] and the aggregator in Leontiadis et
al. [51] must not collude with the analyst. UnLynx [35] and
Prio [23] use the anytrust model, that is, a group of servers

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1077

of which at least one must be honest; SecureML [58] uses
a pair of non-colluding servers; and other solutions, such
as [20, 24, 48, 74], use a trusted third party for at least some
steps. These additional trust assumptions yield substantial
benefits, but recruiting parties that will help the aggregator
but are sufficiently trustworthy to users may not be easy.

Some solutions, such as [52] use trusted hardware like In-
tel’s SGX. We avoid this approach in Orchard because current
TEE implementations are not yet sufficiently trustworthy, as
shown, e.g., by the many successful attacks on SGX [61].

Local differential privacy: Google’s RAPPOR [31,32] uses
LDP to aggregate data; similar systems have been deployed,
e.g., by Apple [8], Microsoft [27], and Snap [68]. As discussed
in Section 2.2, LDP requires significantly more noise than
GDP, which can be limiting in practice [14], and it is vulnera-
ble to attacks from small groups of colluding users [19, 22].

Smaller scale: A variety of solutions are available for sys-
tems with at most a few thousand users. For instance, Shi et
al. [79] use a distributed key generation scheme to remove
trust in the aggregator, and [3] use pairwise blinding instead
of encryption, but these approaches do not work well un-
der churn. Some systems have scaled MPC to impressive
sizes – for instance, SEPIA [18] handles hundreds of users,
and Reyzin et al. [73] perform secure aggregation for thou-
sands, by adding homomorphic threshold encryption – but
supporting millions of users with MPC seems unrealistic.
Bonawitz et al. [17] use secret sharing, but, with n users, sev-
eral costs grow with O(n2); Bindschaedler et al. [13] and
Goryczka and Xiong [39] require O(n2) communication; Ras-
togi and Nath [71] use (t,n)-threshold encryption; and Halevi
et al. [43] have O(n) latency, since users must interact with
the aggregator sequentially.

Federated learning: FL [12,16] is another approach to work-
ing with highly distributed data. Most existing systems do not
guarantee differential privacy, and the ones that do typically
rely on LDP, such as [2]. Zhu at al. [88] recently proposed
an interactive protocol with better privacy, specifically for
discovering heavy hitters, but it does trust the aggregator with
one simple task (thresholding). Truex et al. [81] relies on
threshold Paillier, but it is limited to small deployments.

9 Conclusion

Prior to Orchard, it may have seemed that running differen-
tially private queries at scale required either making compro-
mises (on privacy, accuracy, or trust) or custom-building a
cryptographic protocol. Orchard shows that, because of struc-
tural similarities among many queries, general solutions do
exist, even when there is only a single, untrusted aggrega-
tor. There are still types of queries that Orchard does not
support—one interesting example are queries on graphs—but
we speculate that, by finding and exploiting similar structural
patterns, solutions could be built for some of them as well.

Acknowledgments

We thank our shepherd Bryan Parno and the anonymous
reviewers for their thoughtful comments and suggestions.
This work was supported in part by NSF grants CNS-
1955670, CNS-1733794, CNS-1703936, CNS-1563873, and
CNS-1513694, as well as by a Google Faculty Research
Award.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Leven-
berg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. Whitepaper; soft-
ware available from tensorflow.org.

[2] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,
I. Mironov, K. Talwar, and L. Zhang. Deep learning
with differential privacy. In Proc. CCS, 2016.

[3] G. Ács and C. Castelluccia. I have a dream! (DiffeRen-
tially privatE smArt Metering). In Proc. International
Conference on Information Hiding (IH), 2011.

[4] A. Albarghouthi and J. Hsu. Synthesizing coupling
proofs of differential privacy. Proc. POPL, 2017.

[5] M. R. Albrecht, R. Player, and S. Scott. On the concrete
hardness of learning with errors. Journal of Mathemati-
cal Cryptography, 9:169–203, 2015.

[6] Apple. Apple reports first quarter re-
sults. Press release, February 2018;
https://www.apple.com/newsroom/2018/02/
apple-reports-first-quarter-results/.

[7] Apple. Differential privacy. https://images.apple.
com/privacy/docs/Differential_Privacy_
Overview.pdf.

[8] Apple Differential Privacy Team. Learning with privacy
at scale. Apple Machine Learning Journal, 1(8), Dec.
2017.

[9] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and
S. Vassilvitskii. Scalable k-means++. In Proc. VLDB
Endowment, 2012.

[10] G. Barthe, M. Gaboardi, E. J. Gallego Arias, J. Hsu,
A. Roth, and P.-Y. Strub. Higher-order approximate

1078 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.apple.com/newsroom/2018/02/apple-reports-first-quarter-results/
https://www.apple.com/newsroom/2018/02/apple-reports-first-quarter-results/
https://images.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://images.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://images.apple.com/privacy/docs/Differential_Privacy_Overview.pdf

relational refinement types for mechanism design and
differential privacy. In Proc. POPL, 2015.

[11] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Suc-
cinct non-interactive zero knowledge for a von Neumann
architecture. In Proc. USENIX Security, 2014.

[12] A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor,
and R. Rogers. Protection against reconstruction
and its applications in private federated learning.
arXiv:1812.00984 [cs, stat], Dec. 2018.

[13] V. Bindschaedler, S. Rane, A. E. Brito, V. Rao, and
E. Uzun. Achieving differential privacy in secure mul-
tiparty data aggregation protocols on star networks. In
Proc. CODASPY, Mar. 2017.

[14] A. Bittau, U. Erlingsson, P. Maniatis, I. Mironov,
A. Raghunathan, D. Lie, M. Rudominer, U. Kode,
J. Tinnes, and B. Seefeld. Prochlo: Strong privacy for
analytics in the crowd. In Proc. SOSP, 2017.

[15] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Prac-
tical privacy: the SuLQ framework. In Proc. PODS,
2005.

[16] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. In-
german, V. Ivanov, C. M. Kiddon, J. Konecny, S. Maz-
zocchi, B. McMahan, T. V. Overveldt, D. Petrou, D. Ra-
mage, and J. Roselander. Towards federated learning at
scale: System design. In Proc. SysML, 2019.

[17] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B.
McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth.
Practical Secure Aggregation for Federated Learning
on User-Held Data. arXiv:1611.04482 [cs, stat], Nov.
2016.

[18] M. Burkhart, M. Strasser, D. Many, and X. A. Dim-
itropoulos. Sepia: Privacy-preserving aggregation of
multi-domain network events and statistics. In Proc.
USENIX Security, 2010.

[19] X. Cao, J. Jia, and N. Z. Gong. Data poisoning at-
tacks to local differential privacy protocols, 2019. arXiv:
1911.02046 [cs.CR].

[20] T.-H. H. Chan, E. Shi, and D. X. Song. Privacy-
preserving stream aggregation with fault tolerance. In
Proc. FC, 2012.

[21] R. Chen, A. Reznichenko, P. Francis, and J. Gehrke.
Towards statistical queries over distributed private user
data. In Proc. NSDI, 2012.

[22] A. Cheu, A. Smith, and J. Ullman. Manipulation attacks
in local differential privacy, 2019. arXiv: 1909.09630
[cs.DS].

[23] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust,
and scalable computation of aggregate statistics. In Proc.
NSDI, Mar. 2017.

[24] G. Danezis, C. Fournet, M. Kohlweiss, and S. Zanella-
Béguelin. Smart meter aggregation via secret-sharing.
In Proc. SEGS, 2013.

[25] A. A. de Amorim, M. Gaboardi, E. J. Gallego Arias, and
J. Hsu. Really natural linear indexed type checking. In
Proc. IFL, 2014.

[26] A. A. de Amorim, M. Gaboardi, J. Hsu, and S. Kat-
sumata. Probabilistic relational reasoning via metrics.
In Proc. LICS, 2019.

[27] B. Ding, J. Kulkarni, and S. Yekhanin. Collecting
telemetry data privately. In Proc. NIPS, 2017.

[28] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Cali-
brating noise to sensitivity in private data analysis. In
Proc. TCC, 2006.

[29] C. Dwork and A. Roth. The Algorithmic Foundations of
Differential Privacy. NOW Publishers, 2014.

[30] U. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan,
K. Talwar, and A. Thakurta. Amplification by shuffling:
From local to central differential privacy via anonymity.
In Proc. SODA, 2019.

[31] U. Erlingsson, V. Pihur, and A. Korolova. RAPPOR:
Randomized aggregatable privacy-preserving ordinal
response. In Proc. CCS, 2014.

[32] G. Fanti, V. Pihur, and U. Erlingsson. Building a RAP-
POR with the Unknown: Privacy-Preserving Learning of
Associations and Data Dictionaries. arXiv:1503.01214
[cs], Mar. 2015.

[33] P. Fox-Penner. A year later, lessons from the
blackout. The New York Times, Aug. 2004.
https://www.nytimes.com/2004/08/15/opinion/
a-year-later-lessons-from-the-blackout.
html.

[34] A. Friedman and A. Schuster. Data mining with differ-
ential privacy. In Proc. SIGKDD, 2010.

[35] D. Froelicher, P. Egger, J. S. Sousa, J. L. Rais-
aro, Zhicong Huang, C. Mouchet, B. Ford, and J.-P.
Hubaux. UnLynx: A Decentralized System for Privacy-
Conscious Data Sharing. In Proc. PETS, Oct. 2017.

[36] M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and
B. C. Pierce. Linear dependent types for differential
privacy. In Proc. POPL, Jan. 2013.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1079

https://www.nytimes.com/2004/08/15/opinion/a-year-later-lessons-from-the-blackout.html
https://www.nytimes.com/2004/08/15/opinion/a-year-later-lessons-from-the-blackout.html
https://www.nytimes.com/2004/08/15/opinion/a-year-later-lessons-from-the-blackout.html

[37] A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Do-
erner, S. Zahur, and D. Evans. Privacy-preserving dis-
tributed linear regression on high-dimensional data. In
Proc. PETS, 2017.

[38] C. Gentry. Fully homomorphic encryption using ideal
lattices. In Proc. STOC, 2009.

[39] S. Goryczka and L. Xiong. A comprehensive com-
parison of multiparty secure additions with differential
privacy. IEEE Transactions on Dependable and Secure
Computing, 14(5):463–477, 2017.

[40] A. Gupta, K. Ligett, F. McSherry, A. Roth, and K. Talwar.
Differentially private combinatorial optimization. In
Proc. SODA, 2010.

[41] A. Gupta, A. Roth, and J. Ullman. Iterative constructions
and private data release. In Proc. TCC, 2012.

[42] A. Haeberlen, B. C. Pierce, and A. Narayan. Differential
privacy under fire. In Proc. USENIX Security, Aug.
2011.

[43] S. Halevi, Y. Lindell, and B. Pinkas. Secure compu-
tation on the web: Computing without simultaneous
interaction. In Proc. CRYPTO, 2011.

[44] M. Hardt, B. Recht, and Y. Singer. Train faster, gener-
alize better: Stability of stochastic gradient descent. In
Proc. ICML, 2016.

[45] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting
the accuracy of differentially private histograms through
consistency. PVLDB, 3:1021–1032, 2010.

[46] J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna,
A. Narayan, B. C. Pierce, and A. Roth. Differential
privacy: An economic method for choosing epsilon. In
Proc. CSF, July 2014.

[47] HTTP Archive. Report: Page weight. https://
httparchive.org/reports/page-weight, 2020.

[48] M. Joye and B. Libert. A Scalable Scheme for Privacy-
Preserving Aggregation of Time-Series Data. In Proc.
FC, 2013.

[49] B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate
secure computation with malicious adversaries. In Proc.
USENIX Security, 2012.

[50] KU Leuven COSIC. SCALE-MAMBA. https://
github.com/KULeuven-COSIC/SCALE-MAMBA.

[51] I. Leontiadis, K. Elkhiyaoui, M. Önen, and R. Molva.
PUDA - Privacy and unforgeability for data aggregation.
In Proc. CANS, 2015.

[52] D. Lie and P. Maniatis. Glimmers: Resolving the priva-
cy/trust quagmire. Proc. HotOS, 2017.

[53] LWE estimator tool. https://bitbucket.org/malb/
lwe-estimator/, commit 3019847.

[54] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal
lattices and learning with errors over rings. In Proc.
EUROCRYPT, 2010.

[55] F. McSherry and R. Mahajan. Differentially-private
network trace analysis. In Proc. SIGCOMM, 2010.

[56] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In Proc. FOCS, 2007.

[57] F. D. McSherry. Privacy integrated queries: An exten-
sible platform for privacy-preserving data analysis. In
Proc. SIGMOD, 2009.

[58] P. Mohassel and Y. Zhang. SecureML: A system for
scalable privacy-preserving machine learning. 2017
IEEE Symposium on Security and Privacy (SP), pages
19–38, 2017.

[59] J. P. Near, D. Darais, C. Abuah, T. Stevens, P. Gad-
damadugu, L. Wang, N. Somani, M. Zhang, N. Sharma,
A. Shan, and D. Song. Duet: An expressive higher-order
language and linear type system for statically enforcing
differential privacy. In Proc. OOPSLA, 2019.

[60] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye,
D. Boneh, and N. Taft. Privacy-preserving ridge regres-
sion on hundreds of millions of records. Proc. IEEE
Symposium on Security and Privacy, 2013.

[61] A. Nilsson, P. Nikbakht Bideh, and J. Brorsson. A
survey of published attacks on Intel SGX. Available
from https://portal.research.lu.se/portal/
files/78016451/sgx_attacks.pdf, 2020.

[62] Orchard codebase. https://github.com/edoroth/
orchard.

[63] A. Papadimitriou, A. Narayan, and A. Haeberlen.
DStress: Efficient differentially private computations
on distributed data. In Proc. EuroSys, Apr. 2017.

[64] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow,
and K. Talwar. Semi-supervised knowledge transfer for
deep learning from private training data. In Proc. ICLR,
2017.

[65] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinoc-
chio: Nearly practical verifiable computation. In IEEE
Symposium on Security and Privacy, 2013.

1080 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://httparchive.org/reports/page-weight
https://httparchive.org/reports/page-weight
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://bitbucket.org/malb/lwe-estimator/
https://bitbucket.org/malb/lwe-estimator/
https://portal.research.lu.se/portal/files/78016451/sgx_attacks.pdf
https://portal.research.lu.se/portal/files/78016451/sgx_attacks.pdf
https://github.com/edoroth/orchard
https://github.com/edoroth/orchard

[66] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala. PyTorch: An imperative style, high-
performance deep learning library. In Proc. NIPS. 2019.

[67] Pequin: An end-to-end toolchain for verifiable com-
putation, SNARKs, and probabilistic proofs. https:
//github.com/pepper-project/pequi.

[68] V. Pihur, A. Korolova, F. Liu, S. Sankuratripati, M. Yung,
D. Huang, and R. Zeng. Differentially-private "draw
and discard" machine learning. ArXiv, abs/1807.04369,
2018.

[69] L. Pillaud-Vivien, A. Rudi, and F. Bach. Statistical opti-
mality of stochastic gradient descent on hard learning
problems through multiple passes. In Proc. NeurIPS,
2018.

[70] W. Qardaji, W. Yang, and N. Li. Understanding hier-
archical methods for differentially private histograms.
Proc. VLDB Endow., 6(14):1954–1965, Sept. 2013.

[71] V. Rastogi and S. Nath. Differentially private aggrega-
tion of distributed time-series with transformation and
encryption. In Proc. SIGMOD, 2010.

[72] J. Reed and B. C. Pierce. Distance makes the types grow
stronger: A calculus for differential privacy. In Proc.
ICFP, 2010.

[73] L. Reyzin, A. Smith, and S. Yakoubov. Turning HATE
Into LOVE: Homomorphic Ad Hoc Threshold Encryp-
tion for Scalable MPC. https://eprint.iacr.org/
2018/997, 2018.

[74] E. Rieffel, J. Biehl, W. van Melle, and A. J. Lee.
Secured histories: computing group statistics on en-
crypted data while preserving individual privacy, 2010.
arXiv:1012.2152 [cs.CR].

[75] S. Rogers and M. A. Girolami. A first course in machine
learning. In Chapman and Hall / CRC machine learning
and pattern recognition series, 2011.

[76] E. Roth, D. Noble, B. Hemenway Falk, and A. Hae-
berlen. Honeycrisp: Large-scale differentially private

aggregation without a trusted core. In Proc. SOSP, Oct.
2019.

[77] E. Roth, H. Zhang, A. Haeberlen, and B. C. Pierce. Or-
chard: Differentially private analytics at scale. Technical
Report MS-CIS-20-06, Department of Computer and In-
formation Science, University of Pennsylvania, 2020.

[78] A. Shamir. How to share a secret. CACM, 22(11):612–
613, 1979.

[79] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. X.
Song. Privacy-preserving aggregation of time-series
data. In Proc. NDSS, 2011.

[80] J. Tang, A. Korolova, X. Bai, X. Wang, and X. Wang.
Privacy loss in Apple’s implementation of differential
privacy on MacOS 10.12, 2017. arXiv:1709.02753
[cs.CR].

[81] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Lud-
wig, R. Zhang, and Y. Zhou. A hybrid approach to
privacy-preserving federated learning. In Proc. 12th
ACM Workshop on Artificial Intelligence and Security.

[82] X. Wang, S. Ranellucci, and J. Katz. Global-scale secure
multiparty computation. In Proc. CCS, 2017.

[83] J. Xu, Z. Zhang, X. Xiao, Y. Yang, and G. Yu. Differ-
entially private histogram publication. In Proc. ICDE,
2012.

[84] A. Yao. Protocols for secure computations. In Proc.
FOCS, 1982.

[85] D. Zhang and D. Kifer. LightDP: Towards automating
differential privacy proofs. In Proc. POPL, 2017.

[86] H. Zhang, E. Roth, A. Haeberlen, B. C. Pierce, and
A. Roth. Fuzzi: A three-level logic for differential pri-
vacy. In Proc. ICFP, Aug. 2019.

[87] J. Zhang, X. Xiao, and X. Xie. Privtree: A differentially
private algorithm for hierarchical decompositions. In
Proc. SIGMOD, 2016.

[88] W. Zhu, P. Kairouz, B. McMahan, H. Sun, and W. Li.
Federated heavy hitters discovery with differential pri-
vacy, 2019. arXiv:1902.08534.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1081

https://github.com/pepper-project/pequi
https://github.com/pepper-project/pequi
https://eprint.iacr.org/2018/997
https://eprint.iacr.org/2018/997

Achieving 100Gbps Intrusion Prevention on a Single Server
Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe, Vyas Sekar, Justine Sherry

Carnegie Mellon University

Abstract
Intrusion Detection and Prevention Systems (IDS/IPS) are

among the most demanding stateful network functions. To-
day’s network operators are faced with securing 100Gbps
networks with 100K+ concurrent connections by deploying
IDS/IPSes to search for 10K+ rules concurrently. In this pa-
per we set an ambitious goal: Can we do all of the above in
a single server? Through the Pigasus IDS/IPS, we show that
this goal is achievable, perhaps for the first time, by building
on recent advances in FPGA-capable SmartNICs. Pigasus’
design takes an FPGA-first approach, where the majority of
processing, and all state and control flow are managed on
the FPGA. However, doing so requires careful design of algo-
rithms and data structures to ensure fast common-case perfor-
mance while densely utilizing system memory resources. Our
experiments with a variety of traces show that Pigasus can
support 100Gbps using an average of 5 cores and 1 FPGA,
using 38× less power than a CPU-only approach.

1 Introduction
Intrusion Detection and Prevention Systems (IDS/IPS) are

a critical part of any operational security deployment [39, 40].
Such systems scan packet headers and payloads to check if
they match a given set of signatures containing a series of
strings and regular expressions. Signature rulesets are ob-
tained through offline techniques (e.g., crafted by experts or
obtained from proprietary vendor algorithms) [6].

A recurring theme in IDS/IPS literature is the gap between
the workloads they need to handle and the capabilities of exist-
ing hardware/software implementations. Today, we are faced
with the need to build IDS/IPSes that can support line rates on
the order of 100Gbps [14] with hundreds of thousands [11] of
concurrent flows and capable of matching packets against tens
of thousands of rules [6]. This paper answers this challenge
with the Pigasus FPGA-based IDS/IPS which meets the above
goal within the footprint of a single server.

An important technology push that enables our effort is the
emergence of server SmartNICs [29, 31]. Here, FPGA capa-
bilities have become embedded in commodity server NICs.
Of the various classes of high-performance accelerators (e.g.,
GPUs), SmartNIC FPGAs are an especially promising alter-
native in terms of cost-performance-power tradeoffs, if they
can be harnessed appropriately. Indeed, recent efforts have
demonstrated the promise of FPGAs for low power, low costs
and high performance for some simpler network functions
such as software switching in Microsoft’s AccelNet [21].

While many before us have integrated FPGAs with ID-

S/IPS processing [10, 16, 18, 19, 22, 34, 41–43, 46, 48, 49],
for the most part these have focused on offloading only a
specific functionality (e.g., regular expression matching) to
the FPGA. Unfortunately, traditional offloading cannot close
the order-of-magnitude performance gap to offer 100Gbps
IDS/IPS processing within the footprint of a single server.
Even if regular expression search were infinitely fast, Snort
3.0 would still on average operate at 400 Mbps/core, requiring
250 cores to keep up with line rates! For orders of magnitude
improvements, an accelerator has to improve performance for
a majority of processing tasks, not just a small subset.

Hence in designing Pigasus, we argue for an FPGA-first ar-
chitecture in IDS/IPS processing. Here, the majority of packet
processing for IDS/IPS is performed via a highly-parallel
datapath on-board the 100Gbps SmartNIC FPGA. Pigasus
FPGA performs TCP reassembly directly on the FPGA so that
it can immediately apply exact string matching algorithms
over payload data to determine which “suspicious” packets
need to enter a “full match” mode requiring additional string
matches and regular expression matching. Inverted from the
classic FPGA offload paradigm, Pigasus FPGA leaves to the
CPU only the final match stage to check a small number
of signatures on excerpts of the bytestream (on average, 1.1
signatures/packet and 5% of packets are sent to the CPU).
By processing most benign traffic on the FPGA, the Pigasus
FPGA-first architecture can reach 100Gbps and 3µs latency
in the common case.

A natural consequence of Pigasus’ FPGA-first approach
is that we are now faced with supporting stateful packet pro-
cessing on FPGA. The challenge includes not only multi-
string pattern matching for payload matching but also TCP
bytestream reassembly to be both performed at 100Gbps line
rate. (Out-of-order TCP packets must be reassembled so de-
tection is made even when a rule’s pattern match across TCP
packet boundaries.) Existing NF-specific programming frame-
works for FPGAs [30, 36] do not provide the necessary ab-
stractions for searching bytestreams, nor do they scale to the
necessary scale and efficiency to meet our goals. A practical
system needs to be able to track at least 100K flows and check
at least 10K patterns at 100Gbps line rates, all the while stay-
ing within the available processing and memory resources
of modern SmartNIC FPGAs. To meet these objectives, our
design makes two key contributions:

Hierarchical Pattern Matching: Traditional streaming string
search algorithms use NFA-based (state machine) algorithms.
While these algorithms are very fast with small rulesets, we
measured that supporting the Snort Registered Ruleset [6]

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1083

would require 23MB of Block RAM (BRAM), more than
the entire capacity of our FPGA (16 MB). We instead take
inspiration from Hyperscan [47], designed for x86 processors,
which uses hash table lookups instead of a traditional state
machine approach for exact-match string search. The (soft-
ware) pattern matcher in Snort 3.0, which uses Hyperscan,
offers a better starting point for our hardware design: it can
support all 10K rules using 785KB of memory at a rate of
3.2Gbps on our FPGA. Scaling this to 100Gbps, however,
requires replicating the state 32 times over (once again over-
flowing memory); Pigasus uses a set of hierarchical filters to
reduce the overall amount of memory required per pipeline
replica, enabling search over 32 indices in parallel while con-
suming only about 2MB of BRAM. Because Pigasus’ pattern
matcher is so memory-efficient, Pigasus additionally checks
for extra strings in the pattern matcher that Snort would push
to the ‘full match’ stage (implemented in Pigasus on the
CPU). At the additional cost of 1.3MB of memory, scanning
for extra strings results in 2× fewer packets (and 4× fewer
rules/packet) reaching the full matcher than Snort.

Fast Common-Case Reassembly: Conventional approaches to
TCP reassembly use fixed-length, statically allocated buffers.
This prevents highly out-of-order flows from hindering perfor-
mance (since insertion is constant time) and from consuming
too much memory (since buffer sizes are fixed). However,
fixed buffers are very memory inefficient; the strategy pro-
posed in [49] would require 6.4GB of memory to support
100K flows. A linked list would be more memory dense,
but more vulnerable to out-of-order flows stalling pipeline
parallelism or exhausting buffer space. Pigasus adopts the
memory-dense linked list approach, but only on an out-of-
order slow path which runs in parallel to the primary fast path;
if the memory buffer approaches capacity, large flows are pref-
erentially reset to prevent overload. On the fast path, packets
access a simple table storing the next byte expected and incre-
ment it accordingly, thus, in-order flows are performance-wise
isolated from out-of-order flows. This allows Pigasus to be
memory-efficient (requiring on average 5KB per out-of-order
flow) while isolating well-behaved traffic from performance
degradation when the IDS is inundated with misbehaving,
out-of-order packet data.

Together, the above design choices allow us to do the
majority of processing on a highly-parallelized FPGA fast-
path while fitting memory within the available resources.
As a result, for the empirical traces, Pigasus can process
100Gbps using an average of 5 cores and 1 FPGA, requir-
ing an average of 85 Watts. In contrast, Snort 3.0 [5] – which
uses Hyperscan [47] for string matching – would require
364 cores and 3,278 Watts. Pigasus is publicly available at
https://github.com/cmu-snap/pigasus.

2 Background & Motivation
We now introduce software IDS/IPS systems (§2.1) and

FPGAs (§2.2). We then analyze IDS/IPS performance and
bound the throughput gains achievable via offloading using
measurements of Snort 3.0 (§2.3).

2.1 IDS/IPS Functionality
The key goal of a signature-based1 IDS/IPS system is to

identify when a network flow triggers any of up to tens of
thousands of signatures, also known as rules.

A given signature may specify one or several patterns and
the entire signature is typically triggered when all patterns are
found. Patterns come in the following three categories:
• Header match: a filter over the flow 5-tuple (e.g., ‘all traffic

on port 80’, ‘traffic from 145.24.78.0/24’);
• String match: an exact match string to detect within the

TCP bytestream or within a single UDP packet;
• Regular expression: a regular expression to detect within

the TCP bytestream or within a single UDP packet.
Signatures are detected at the granularity of a ‘Protocol

Data Unit’ (PDU) – that is, a signature is only triggered if all
matches are found within the same PDU (not over the course
of the entire flow). By default, a PDU consists of one packet,
but it is possible to define other protocol-specific PDUs span-
ning multiple packets (e.g., one HTTP GET request).

When an IDS/IPS operates in detection mode, a triggered
signature results in an alert or an event recorded to a log.
When an IDS/IPS operates in prevention mode, a triggered
signature may raise alerts, record events, or block traffic from
the offending flow or source. IPSes hence must operate inline
over traffic and are latency sensitive – a packet may not be
released to the network until after the IPS has completed scan-
ning it. IDSes, on the other hand, may operate asynchronously
and are often deployed over a secondary traffic ‘tap’ which
provides copies of the active traffic.

Software IDS/IPS Performance: One of the most widely-
known IDS/IPSes is Snort [38] and our work aims to be com-
patible with Snort rulesets. In our experiments, we primar-
ily work with the Snort Registered Ruleset, which contains
roughly 10,000 signatures [6]. This ruleset, combined with
conversations with system administrators, sets our goal of
supporting 10K rules. In addition, we target 100Gbps as the
state-of-the-art line rate [14] and we aim to support 100K
flows. To the best of our knowledge there exists no measure-
ment study detailing how many flows to expect at 100Gbps so
we derive our 100K flow goal by extrapolating a two-orders-
of-magnitude growth factor from a 2010 study [11].

In 2019, Intel published Hyperscan [47], an x86-optimized
library for performing both exact-match and regular-
expression string matching. Hyperscan is the key new element

1There exist other models of IDS/IPS which are ‘script based’ – execut-
ing arbitrary user code over scanned traffic – such as Zeek [7, 35]. These
IDS/IPSes are out of scope for this work.

1084 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/cmu-snap/pigasus

M-1 M-2 M-3 M-4 M-5 N-1 N-2

Traces

0.00

0.25

0.50

0.75

1.00

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

0.15
0.20

0.25
0.30

0.25

0.80 0.80
Snort 3.0

Figure 1: Single-core, zero loss through-
put for Snort 3.0 over empirical traces.

M-1 M-2 M-3 M-4 M-5 N-1 N-2

Traces

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
o

f
C

P
U

T
im

e

Parsing

Reassembly

MSPM

Full Matching

Other

Figure 2: Fraction of CPU time spent
performing each task in Snort 3.0.

M-1 M-2 M-3 M-4 M-5 N-1 N-2

Traces

0.0

0.5

1.0

1.5

2.0

P
ro

je
ct

ed
S

p
ee

d
u

p

Offload TCP

Offload Full Matching

Offload MSPM

Figure 3: Projected speedup in software
given various single-task offloads.

in Snort 3.0, which is 8× faster than its predecessor. Nonethe-
less, we find that Snort 3.0 cannot meet our goal of supporting
100Gbps, 100K flows, and 10K rules on a single server.

We ran Snort 3.0 on a 3.6GHz server and measured the
single-core throughput over 7 publicly available network
traces (described more thoroughly in §6.1). We plot the results
in Figure 1. Generously assuming that Snort 3.0 is capable
of perfect multicore scalability, this would require 125-667
cores to support 100Gbps of throughput, or 4-21 servers.

2.2 FPGA Basics
Why look to FPGAs to improve IDS/IPSes? While there
are many platforms (‘accelerators’) that offer highly parallel
processing, we choose FPGAs because they are (a) energy-
efficient (using 4-5× fewer Watts than GPUs [12]) and (b)
because they are conveniently deployed on SmartNICs where
they are poised to operate on traffic without PCIe latency or
bandwidth overheads.

FPGA Compute: FPGAs allow programmers to specify
custom circuits using code. However, implemented naively,
FPGA-based designs can be much slower than their CPU
counterparts because FPGA clock rates operate 5-20× slower
than traditional processor clock rates. To achieve performance
speedups relative to CPUs, circuits must be designed with
a high degree of parallelism. FPGAs achieve parallelism ei-
ther through pipeline parallelism, in which different modules
operate simultaneously over different data, or through data
parallelism in which copies of the same module are cloned to
operate simultaneously over different data.

FPGA Memory: Today’s FPGAs offer programmers a col-
lection of memory options. Block RAM (BRAM) is the ‘king’
of FPGA memory because read requests receive a response
within one cycle. Furthermore, BRAM is very friendly to
parallelism. Divided into 20Kb blocks with two ports each,
it is possible to read from all BRAM blocks in parallel (and
each BRAM block twice) per cycle. When a developer wishes
to issue more than two parallel reads to a BRAM block per
cycle, they may choose to replicate the block to allow more
simultaneous read-only accesses to stored data. Our FPGA
offers 16MB of BRAM.

Our FPGA also offers 8GB of on-board DRAM (which

takes about 20 cycles between read request and response) and
10MB of eSRAM (which takes fixed 12 cycles between read
request and response). Because of the multi-cycle latency
for these two classes of memory, they are not suitable for
storing data that must be read/written every cycle. Further-
more, both are more bandwidth-limited than BRAM and offer
fewer lookups in parallel. However, as we will discuss in §4.2,
pushing what data is feasible into these classes of memory is
necessary to free up as much BRAM as possible to support
fast-path memory-intensive processing.

2.3 FPGAs and IDS/IPS Performance
We are not the first to integrate FPGAs into IDS/IPS pro-

cessing. However, prior work follows an ‘offload’ approach
to utilizing the FPGA, where the CPU is ‘primary’ and per-
forms the majority of processing, and the FPGA accelerates
a single task [10, 16, 18, 19, 22, 34, 41–43, 46, 48, 49]. Most
research in this space targets offloading regular expression
matching alone [22, 41, 48], although some target TCP re-
assembly [42, 49] or header matching [27] instead. Unfortu-
nately, a basic analysis based on Amdahl’s law reveals why
this approach fundamentally cannot bring IDS/IPS perfor-
mance onto a single server at 100Gbps.

In Figure 2 we illustrate the fraction of CPU time spent
on each task in Snort 3.0: MSPM (which, in Snort 3.0, im-
plements header and partial string matching), Full Matching
(which, in Snort, implements regular expressions and addi-
tional string matching), TCP Reassembly, and other tasks. As
we can see, no single task dominates CPU time – at most, the
MSPM consumes 46% of CPU time for one trace.

Using Amdahl’s Law, we can see that even if MSPM were
offloaded to an imaginary, infinitely-fast accelerator, through-
put would increase by only 85% to 600Mbps/core, still re-
quiring 166 cores to reach 100Gbps. In Figure 3, we show
the idealized ‘speedup factor’ from offloading any individ-
ual module (assuming an infinite accelerator) for each of our
traces; no module even reaches as much of a speedup as 2×.

The key lesson is simple: a much more drastic approach is
needed to achieve line-rate throughput on a single server.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1085

CR-multi-core

9

Vendor IP core

CPU

Pkt metadata

Pkt/rules/blocks

Ctrl signals

Eth
IP

core

Pa
ck

et
 B

uf
fe

r

Parser Flow
Table

OOO
Linked List

Data
Mover

Shift-
OR

Hash
Tables

Rule
Reduction

Block
Gen.

FPGA
Ring

Buffer
DMA

PCIe
IP

core

CPU
Ring
Buf 1

Mux
no-check pkt

no-payload pkt

no-match pkt

Port
Group

Reassembler Multi-String Pattern Matcher

Check
Packet
Buffer

Full
Matcher 1

DMA Engine

Non
Fast

Pattern
Filter

…

CPU
Ring

Buf N

Full
Matcher N

Figure 4: Pigasus architecture.

3 System Overview
We now present an overview of Pigasus. Recall that our tar-

get is to achieve 100Gbps, for 100K concurrent flows, and 10K
rules within the footprint of a single server. We first describe
our rationale behind Pigasus’ FPGA-first approach (§3.1) be-
fore presenting Pigasus’ packet processing datapath module
by module (§3.2) and discussing how Pigasus makes best use
of memory resources (§3.3). Finally, we lay out the threat
model that we consider (§3.4).

3.1 An FPGA-First Design
Following our analysis in §2.3, we argue for an FPGA-first

design for IDS/IPS processing. By FPGA-first, we mean that
the FPGA is the primary compute platform – performing the
majority of work – and that the CPU is secondary, operating
only as needed. Following our analysis in §2.3, any approach
to speed up IDS/IPSes by orders of magnitude must take on
parallelizing as much of the system as possible.

We can even consider an extreme design, running the entire
system on the FPGA, disposing the need for CPUs. However,
we avoid this approach and choose instead to leave regular
expressions and the ‘full match’ stage on traditional proces-
sors. The reason is simple – compared to the other packet
processing modules, implementing the Full Match stage en-
tirely on the FPGA provides lower performance benefits at
a higher cost in terms of memory. As we will see in §5, the
Full Match stage only interacts with ≈5% of packets in the
Pigasus design. Hence, it is not a performance bottleneck
for the majority of packets. Furthermore, regular expression
parsing is a very mature research and yet state-of-the-art hard-
ware algorithms do not reach our performance and memory
demands for Pigasus. We estimate that GRAPEFRUIT [37], a
state-of-the-art regular expression engine for FPGAs, would
require 8MB of BRAM to statically map all the regular ex-
pressions from our ruleset on the FPGA, and yet would still
only keep up with a few Gbps of traffic. Hence, we would
likely need multiple replicas of the GRAPEFRUIT design – at
least 24MB of BRAM – to keep up with the average of 5Gbps
of traffic that reach the full matcher. Therefore, offloading
regular expressions would exhaust our memory budget for
little gain, in that the majority of packets will never execute
the full matcher anyway.

3.2 Pigasus Datapath
Figure 4 depicts the major components of Pigasus’ archi-

tecture. Notice that the Parser, Reassembler, and Multi-String
Pattern Matcher (MSPM) are implemented in the FPGA while
the Full Matcher is offloaded to the CPU.

Initial packet processing: Each packet first goes through a
100Gbps Ethernet Core that translates electric signals into
raw Ethernet frames. These frames are temporarily stored in
the Packet Buffer; each frame’s header is separately sent to
the Parser – which extracts TCP/IP header fields as metadata
(e.g., sequence numbers, ports) for use by the Reassembler and
MSPM – and then forwards the header to the Reassembler.

Reassembler: The Reassembler sorts TCP packets in order
so that they can be searched contiguously (i.e., to identify
matches that span across multiple packets). The Reassembler
is able to record the last few bytes of the packet’s predeces-
sor in that flow in order to enable cross-packet search in the
MSPM. UDP packets are forwarded through the Reassembler
without processing. The key challenge in designing the Re-
assembler is doing so at line rate with state for 100K flows;
we discuss the design of the Reassembler in §4.

Data Mover: While the Parser and Reassembler operate
on headers and metadata alone, the MSPM operates on full
packet payloads. The Data Mover receives the (sorted) packet
metadata from Reassembler and issues requests to fetch raw
packets from the Packet Buffer so that they can be forwarded
to the MSPM.

Multi-String Pattern Matcher: The MSPM is responsible
for (a) checking every packet against the header match for all
10,000 rules, and (b) every index of every packet against all of
the string-match filters for all 10,000 rules. Pigasus’ MSPM
does more work than Snort 3.0’s equivalent module: Snort
3.0 searches for only one exact match string (called the fast
pattern) in the MSPM, and pushes detection of the remainder
of the strings to the ‘full match’ module. By searching for
all of the exact match strings in the MSPM, Pigasus reduces
the number of packets sent to the Full Match stage by more
than 2× relative to Snort 3.0, and also reduces the number of
suspected rules for the full matcher to check per packet by
4×. We describe the Pigasus MSPM design in §5.

1086 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

DMA Engine: For each packet, the MSPM outputs the set
of rule IDs that the packet partially matched. If the MSPM
outputs the empty set, the packet is released to the network;
otherwise it is forwarded to the DMA Engine which transfers
the packet to the CPU for Full Matching. To save CPU cycles,
the DMA Engine keeps a copy of the packets sent to the Full
Matcher; this allows the Full Matcher to reply with a (packet
ID, decision) tuple as a response rather than copying the entire
packet back over PCIe after processing. The DMA Engine
distributes tasks across cores in a round-robin fashion.

Full Matcher: On the software side, the Full Matcher polls
a ring buffer which is populated by the DMA Engine. Each
packet carries metadata including the rule IDs that the MSPM
determined to be a partial match. For each rule ID, the Full
Matcher retrieves the complete rule (including regular expres-
sions) and checks for a full match. It then writes its decision
(forward or drop) to a transmission ring buffer which is polled
by the DMA Engine on the FPGA side. If the decision is to
forward, the DMA Engine forwards the packet to the network;
otherwise the packet is simply erased from the DMA Engine’s
Check Packet Buffer.

3.3 Memory Resource Management
The core obstacle to realizing an FPGA-first design is fit-

ting all of the above functionality (except the full matcher)
within the limited memory on the FPGA. As discussed in
§2.2, BRAM is the ‘best’ of the available memory: it is the
only class of memory that can perform read operations in one
cycle, and it is also the most parallel. However, it is limited to
only 16MB even on our high-end Intel Stratix 10 MX FPGA.

Therefore, we reserve BRAM only for modules which read
or write to memory the most frequently, with multiple ac-
cesses per packet; namely the Reassembler and the Multi-
String Pattern Matcher. Specifically, the Reassembler per-
forms multiple accesses per packet as it needs to check for
out-of-orderness, manage the out-of-order packet buffer, and
check and release packet headers when an out-of-order ‘hole’
is filled. The MSPM too entails multiple memory accesses
per packet, as every index of every packet must be checked
against 10K exact-match string rules, and every packet header
must be checked against the header matches for 10K rules.

To save BRAM, we allocate the other stateful modules
such as the Packet Buffer and DMA Engine to less powerful
eSRAM and DRAM respectively.2 eSRAM and DRAM turn
out to be sufficient for these tasks because the Packet Buffer
and DMA Engine have much less stringent demands in terms
of bandwidth and latency. In the case of the packet buffer,
packet data is written and read only once and hence bandwidth
demand is low but still exceeds DRAM’s peak throughput; the

2FPGA manufacturers have been experimenting with varied classes of
memory on-board the FPGA over the past few years. From the manufacturers’
perspective, Pigasus can be seen as a success story for how varied memory
enables more diverse applications which tailor their memory usage to per-task
and data structure demands.

data mover prefetches each packets 12 cycles before pushing
it to the MSPM, keeping throughput high with a negligible
latency overhead. The DMA Engine uses DRAM – which
has the highest and variable latency and the lowest bandwidth
– for the Check Packet Buffer. Since on average only 5% of
packets require Full Matching functionality, this places little
stress on DRAM bandwidth; the latency overhead of DRAM,
while high when compared to BRAM, is still 10× faster than
the PCIe latency suffered by packets sent to the CPU for full
match.

Even though this leaves us with almost3 the full capac-
ity of BRAM for the Reassembler and Multi-String Pattern
Matcher, realizing these modules is challenging. For instance,
using traditional NFA-based search algorithms for the MSPM,
given our public ruleset, would require 23MB – more than
our 16MB BRAM capacity. Similarly, statically allocating
10KB of out-of-order buffer (i.e., 10 packets) per flow for even
10K flows easily exceeds 100MB. Thus, in §4 and §5, we
describe our design optimizations to ensure that the Reassem-
bler and MSPM both ‘fit’ on-board without compromising
performance.

3.4 Threat Model
Pigasus sits between an attacker and its intended target; an

attacker may attempt to target Pigasus itself in order to indi-
rectly damage the services Pigasus protects. We assume the
attacker does not have physical access to the server running
Pigasus, that the operating system and configuration tools for
Pigasus are secure, and that the attacker cannot modify Piga-
sus’ configuration. The attacker may inject arbitrary traffic
into the input stream which Pigasus processes. In this context,
we consider two classes of attacks. First, an attacker may at-
tempt to bypass Pigasus – that is, send traffic which matches
an IDS/IPS rule, but somehow ‘trick’ Pigasus into allowing it
through – e.g., by reording packets, sending duplicate packets,
etc. Snort 3.0 employs numerous approaches to address these
types of attacks (e.g., timeouts and memory limits) which are
straightforward for Pigasus to replicate. Second, an attacker
may attempt to slow down Pigasus – sending out-of-order or
very small packets to reduce Pigasus’ effective throughput
and hopefully stall or drop innocent traffic. These classes of
attacks can always be overcome by ‘scaling on demand’ –
i.e., running more instances – but we set an additional goal of
Pigasus being at least as robust as Snort 3.0.

4 Reassembly
Reassembly refers to the process of reconstructing a TCP

bytestream in the presence of packet fragmentation, loss, and
out-of-order delivery. Reassembly is necessary in Pigasus
because the MSPM and Full Matcher must detect patterns
(strings or regular expressions) that may span across more
than one packet (e.g., searching for the word ‘attack’ should

3We do use BRAM in some other places for internal buffers/queues.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1087

not fail just because ‘att’ appears at the end of packet n and
‘ack’ appears at the beginning of packet n+ 1). Note that
our goal is not a full TCP endpoint and hence we are not re-
sponsible, e.g., for producing ACKs; the IDS/IPS is a passive
observer of traffic between two existing endpoints, merely
re-ordering the packets it observes for analysis. The key ob-
jective of our Reassembler is to perform this re-ordering for
100K’s of flows, while operating at 100Gbps, within the mem-
ory limitations of our FPGA.

4.1 Design Space for TCP Reassembly
Hardware design often favors data structures that are fixed-

length, constant-time and generally deterministic, and most
TCP reassembly designs follow suit. For instance, [49] allo-
cates a fixed 64KB packet buffer in DRAM and uses 7 pairs
of pointers to track OOO state for each flow; similarly, [42]
maps a fixed-sized ‘segment array’ in DRAM to track per-flow
state. By using static buffers, these designs are guaranteed
constant-time insertion of out-of-order packets into memory;
furthermore, the memory consumed by any individual flow is
fixed so freeing space is also deterministic. In addition, each
flow is bounded in its resource consumption and so a highly
out-of-order flow cannot take over the available address space,
starving other flows.

The problem with these designs is that, by allocating a fixed
buffer, they both waste memory and limit out-of-order flows.
For example, allocating 64KB for each and every flow [42]
would require 6.4GB to support 100K flows – orders of mag-
nitude bigger than our BRAM capacity. Even worse, the vast
majority of flows don’t need the space most of the time be-
cause most packets arrive in order. On the other hand, flows
which do suffer a burst of out-of-order packets (perhaps due
to network loss) that exceeds the 64KB capacity cannot be
served, even if there is memory available.

For software developers, the obvious response to these chal-
lenges is to use a more memory-dense data-structure such
as a linked-list, where each arriving segment is allocated on-
demand and inserted into the list in order. Because memory is
allocated on demand, no memory is wasted, and those flows
which need more capacity are able to consume more as avail-
able. In our empirical traces, 0.3% of packets arrive out of
order, with ‘holes’ in the TCP bytestream typically filled in
after 3 packet arrivals from the same flow. In a linked-list
based design, this means that on average an out-of-order flow
consumes 5K bytes at most.

From a hardware perspective, however, a linked list is an
unorthodox choice: pipeline parallelism depends on each
stage of the pipeline taking a fixed amount of time. Since
linked lists have variable insertion times, depending upon how
far into the list a segment must be inserted, linked lists can
lead to pipeline stalls which result in non-work-conserving
behavior upstream from the slow pipeline stage, and hence
overall poor throughput. We find that by carefully designing
the reassembly pipeline as a combination of a fast path (only

Packet
Header

Flow	Table
Lookup

OOO
Flow?

Update	OOO
Linked	List

Release	In-
Order	Packets

Yes

No

Update	Seq.
No.	in	Flow

Table

Release	this
Packet

Fast	path

OOO	Engine

}

}

New
Flow?

Insertion
Queue

Yes}

Insertion
Engine

No

Figure 5: Reassembly Pipeline.

handling in-order flows) and a slow path (that handles the
remaining out-of-order flows), one can achieve the best of
both worlds.

4.2 Pigasus TCP Reassembler
Pigasus takes the linked list approach, targeting a more

memory efficient design. However, to avoid pipeline stalls
due to variable-time packet insertions, Pigasus uses three ex-
ecution engines to manage reassembly state, each of which
handles a different class of incoming packet headers. The
Fast Path processes in-order packets for established flows; the
Insertion Engine handles SYN packets for new flows; and the
OOO Engine handles out-of-order packets for existing flows.
Because Pigasus is implemented in hardware, these engines
can all run simultaneously (on different packet headers) with-
out stalling each other, but must be careful not to conflict in
accessing shared state in the Reassembly Flow Table. The
flowchart in Figure 5 describes the sequence of steps that
occur when a packet header arrives at the Reassembler.

The Flow Table, in representation, is a hash table mapping
the classic flow 5-tuple identifier to a table containing (a) the
next expected sequence number for an in-order packet, and
(b) the head node for a linked list containing the headers of
out-of-order packets waiting for a ‘hole’ in the TCP sequence
number space to be filled. We discuss how the Flow Table is
implemented in §4.3.

Fast Path: Upon arrival from the parser, each packet header
is picked up by the Fast Path which looks up the flow’s entry
in the Flow Table. If no entry exists for that flow, the Fast Path
pushes the packet header on to a queue for the Insertion En-
gine and moves on to the next packet. If there exists an entry
for that flow, but (a) the packet header does not match the next
expected sequence number in the Flow Table, or (b) the head
node in the flow table is not null, the Fast Path pushes the
packet header on to a queue for the OOO Engine. Finally, if
the packet header does match the next expected sequence num-
ber in the flow, the Fast Path updates the expected sequence
number in the Flow Table to the sequence number for the
subsequent packet in the flow and pushes the current packet
out towards the MSPM. Every task on the Fast Path runs in
constant time, and so throughput is guaranteed through this
engine to be 25 Million packets-per-second, which amounts
to at least 100Gbps so long the average packet size is greater
than 500B (Internet traces typically have an average packet

1088 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Insertion
Engine

P Fast	Path

Packet

Insertion	Queue

...

Cuckoo	Hash	Table	(BRAM)

...
Arbiter

OOO
Engine

①

③

②

OOO	Queue

Figure 6: Flow Table and OOO Engine.

size of more than 800B [15]).

OOO Engine: The OOO Engine does not run in constant
time, instead dequeueing packets provided for it from the
Fast Path as it finishes operating over the previous packet.4

For each dequeued packet, the OOO engine allocates a new
node representing the packet’s starting and ending sequence
numbers, traverses the linked list for that flow, and inserts the
newly-allocated node at the appropriate location. If the packet
fills the first sequence number ‘hole’ in the linked list, then
the OOO Engine removes the now-in-order packet headers
from the list, releases them to the MSPM, and also updates
the Flow Table entry with the new linked list head and next
expected sequence number. If the OOO Engine detects that
BRAM capacity for OOO flows exceeds 90% of its maximum
capacity, it drops the flow with the longest linked list.

Insertion Engine: The Insertion Engine inserts new flow
entries into the Flow Table; like the OOO Engine this path
too can take variable time. We discuss the insertion engine in
more detail in the next subsection.

Overall, allocating memory on-demand avoids memory
wastage, and enables Pigasus to better serve OOO flows that
do have a higher memory requirement. Additionally, bifurcat-
ing the reassembly pipeline into fast and slow paths prevents
out-of-order flows – which require non-deterministic amounts
of time to be served in our design – from impacting the perfor-
mance of in-order flows, which represent the common case.

4.3 Implementing the Flow Table
While the Fast Path, Insertion Engine, and OOO Engine all

operate simultaneously, they must synchronize over shared
flow state (for instance, to keep the next expected sequence
number for each flow consistent). We briefly discuss the im-
plementation of our Flow Table that provides fast and safe
concurrent access to these three engines.

The flow table design borrows a key data-structure from
FlowBlaze [36]: an FPGA-based hash table that employs
deamortized cuckoo hashing [8, 28]. We illustrate this data
structure in Figure 6. The design provides high memory

4Experimentally, we actually observe that this slow path is mostly idle
when running over our traces, as most packets arrive in order or mostly in-
order. We artificially stress this path to overload in our evaluation, but doing
so requires an extreme rate of packet loss.

density (up to 97% occupancy using 4 or more sub-tables
[8, 28, 36]), and worst-case constant-time reads, writes, and
deletions for existing entries. It also guarantees that, for an
Insertion Queue whose size is logarithmic in the number of
flow table entries (in practice, a small value), the queue will
not overflow [8]. We implement the hash table using dual-port
BRAM, and the Insertion Queue using a parallel shift-register
(capable of storing 8 elements).

The key to maintaining the hash table’s deamortization
property is the Insertion Engine, which is responsible for
inserting: (a) new flows, and (b) flows that were previously
evicted from the hash table during a ‘cuckoo’ step. Effectively,
the Insertion Engine dequeues an element from the front of
the Insertion Queue, and attempts to insert it into the hash
table. If at least one of the 4 corresponding hash table entries
is unoccupied, it simply updates the flow table and proceeds
to the next queued element; otherwise, it evicts one of the 4
flow table entries at random, pushes the evicted entry onto the
queue, and inserts the deqeued element in its place.

To guarantee conflict-free flow table access, we have the
following prioritization of operations to the table. First, note
that the Fast Path and OOO Engine never conflict over the
same entry – the flow is either in order or not. The Insertion
Engine can conflict with both the Fast Path and OOO Engine,
as it may try to ‘cuckoo’ entries. Hence, we enforce the fol-
lowing priorities: (1) Fast Path > Insertion Engine (to ensure
deterministic performance on the Fast Path), and (2) Insertion
Engine > OOO Engine (to ensure that the queue drains and
since, empirically, the OOO path is underutilized). Since our
BRAM is dual-ported, we allow the Fast Path direct access
to the Flow Table, while accesses originating from the OOO
Engine or Insertion Engine are managed by an arbiter that
enforces the aforementioned priority scheme.

4.4 Worst-Case Performance
Since Pigasus serves on the front-lines of network de-

fenses, it is a prime target for Denial-of-Service (DoS) attacks.
Most of Pigasus’ underlying components are, by design, fully
pipelined, enabling packet data to ‘stream through’ without
ever stalling the system. However, this is not the case for the
OOO path in the TCP reassembler. While all in-order packets
are guaranteed full throughput, an attacker could potentially
slow down the OOO path by injecting out-of-order flows into
the system.

The key question is how this out of order traffic will im-
pact ‘normal’ or ‘innocent’ TCP connections. We observe in
our traces that 0.3% of packet arrivals from innocent connec-
tions arrive out of order, hence 99.7% of innocent traffic will
‘stream through’ the fast path, unimpacted by slowdowns on
the OOO path. But, worst-case slowdowns on the OOO path
can stall innocent traffic behind lengthy linked-list traversals
due to a malicious sender.

Using mathematical models (elided for space), we quantify
the performance of our system in terms of the goodput, or the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1089

packet rate (in Gbps) corresponding to ‘innocent’ traffic that
the system can sustain in steady state. Then, the attacker’s
objective is to inject adversarial traffic on the ingress link so
as to minimize the achieved goodput.

Starting with a 100Gbps ingress link, we characterize the
adversarial scenario using two parameters: the fraction of
input traffic that is adversarial, a, and the fraction of non-
adversarial input traffic that is in-order, t. Table 1 depicts the
expected goodput for different values of a and t (using an
average packet size of 500B for innocent traffic) according
to the model. Ideally, all innocent traffic would traverse the
system unhindered, but we see that slowdowns on the OOO
path can make Pigasus fall short of this goal – especially at
high rates of attack traffic injection – but that the OOO path
is not entirely stalled and out of order packets do, eventually,
make it through the system.

In-order Traffic% (ttt)
99.7% 99.0% 90% Ideal

Attack
Traffic
Rate (a)

10Mbps 99.7 99.1 91.5 99.99
100Mbps 99.6 98.9 90.1 99.9
1Gbps 98.7 98.0 89.1 99
10Gbps 89.7 89.1 81.0 90

Table 1: Total Goodput (in Gbps) for various combinations of
the attack traffic rate and fraction of in-order traffic. In-order
traffic is isolated from slowdown, even when an adversary
introduces substantial out-of-order flows.

5 Multi-String Pattern Matching
Checking tens of thousands of string patterns against a

100 Gbps bytestream makes the multi-string pattern matcher
(MSPM) module by far the most operation-intensive and per-
formance critical component in Pigasus.

Role of MSPM in IDS/IPS: As explained in Section 2, a
Snort signature/rule comprises three classes of patterns: a
header match, a set of exact match strings, and a set of regular
expressions. A packet triggers the rule iff all patterns are
identified.

To avoid checking every single pattern for every index and
every packet, rulesets are designed for a two-step matching
process. In Snort, the MSPM is responsible for checking
header matches and one, highly-selective exact match string,
called the fast pattern. Only packets which both match the
header match and the fast pattern are forwarded to the full
matcher which checks regular expressions and any secondary
exact match strings (referred to as non-fast pattern strings).
Pigasus’ MSPM checks for fast patterns, headers, and non-fast
patterns, reducing the load on the CPU-side full matcher.

MSPM Design Landscape: To the best of our knowledge,
there are other no hardware or software projects reporting
multi-string matching of tens thousands of strings at 100
Gbps. Classically implemented with parallel NFAs, the best

String Matcher 400

[10100010]Shift-OR
Matchingpayload[i, i+8]

packet header

Port Group
Module

Hash Tables

length
1

length
3

length
7

bucket bitmap

potential
rule ids

String Matcher 1
String Matcher 2

...

Figure 7: MSPM in Snort 3.0. Every String Matcher selected
by the Port Group Module is evaluated sequentially.

hardware-based string matcher that we know of [16] would
require 23MB of BRAM to represent the exact match search
strings alone (ignoring the additional header matches).

To attain a more efficient design, we instead look to soft-
ware and Intel’s Hyperscan algorithm for string matching,
which is AVX parallelizable and provided an 8× speedup
compared to state-machine based string matchers in soft-
ware [47]. Although naïvely re-implementing Hyperscan on
the FPGA is in fact more memory intensive than the NFA ap-
proach (requiring 25MB to sustain 100Gbps), we find that by
re-architecting Hyperscan’s hash table-based design, we can
reduce this memory footprint to only 2MB, leaving memory
to spare and expand on the Hyperscan approach to search for
all strings (rather than a fast-pattern only) for a total memory
budget of 3.3MB. The key idea is to arrange hash table filters
hierarchically, with low memory filters placed early in the
pipeline with a high replication factor; this filters out a major-
ity of traffic early. Subsequent stages of the MSPM may be
more memory-intensive, per-module, but each stage handles
less and less traffic and hence requires less replication.

In what follows, we first describe Hyperscan’s two-stage
MSPM, which checks for header matches and fast patterns.
We then describe Pigasus’ three-stage MSPM, which checks
for fast patterns, header matches, and non-fast pattern strings
using highly parallel, hierarchical filters to improve memory
density.

5.1 MSPM in Software
Snort 3.0 + Hyperscan: In Snort 3.0, the MSPM is imple-
mented using Intel’s Hyperscan, illustrated in Figure 7.

Packets are first checked for their header match. Across all
10K rules, there are only ≈400 unique header match values.
Rules which share the same header match fields are said
to belong to the same port group. The port group module
outputs a set of port group IDs which the packet matches; this
output set is never empty because some rules wildcard their
header match and hence match all packets. An average packet
matches 2 port groups.

Packets are then checked for their fast pattern string match.
For each port group, there exists a string matcher which
checks fast patterns for all rules within that port group. Snort
must check every string matcher for each port group the packet
matches.

Within the string matcher, Snort must iterate over every in-
dex of the payload checking whether it matches any of the fast
patterns in the port group. Rather than using a state machine

1090 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

to do this, Hyperscan uses a collection of hash tables. For
each possible fast pattern length5 a hash table is instantiated
containing the fast patterns of that length. Hyperscan then
performs an exact-match lookup for all substrings at each
index, looking up whether or not the substring is in the hash
table – potentially (8× l) lookups for a packet of length l.

To reduce the number of expensive sequential lookups, each
string matcher contains a SIMD-optimized shift-or filter [9]
prior to the hash table; this filter outputs either a ‘0’ or ‘1’
for every byte index of the packet, indicating whether or not
that index matches any fast pattern in the hash tables; indices
which result in a ‘0’ output from the shift-or stage need not
be checked.

The string matcher – combining shift-or and hash tables –
then outputs a set of rules which the packet matched both in
terms of header and fast pattern; together, the packet and the
potential rule matches are passed to the full matcher. However,
for 89% of packets, this stage outputs the empty set and the
packet bypasses the full match stage entirely.

5.2 MSPM in Pigasus
A straightforward port of the Snort 3.0 MSPM engines and

data structures onto the FPGA consumes 785KB of memory
and forwards at a rate of 3.2Gbps. Taking advantage of the
high degree of parallelism offered by the FPGA, one could, in
theory, scale to 100Gbps via data parallelism, i.e., replicating
this 32 times. Unfortunately, doing so would require 25MB of
BRAM. We now describe how Pigasus re-architects the Hy-
perscan algorithm to achieve this high degree of parallelism
within available resources. Since this results in leftover mem-
ory, we can then extend Pigasus’ MSPM to scan for non-fast
pattern strings as well.

As shown in Figure 8, Pigasus flips the order of Hyper-
scan’s MSPM, starting with string matching before moving
on to header matching and port grouping.

Fast Pattern String Matching (FPSM): To perform string
matching, Pigasus (like Hyperscan) also has a filtering stage
in which packets traverse two parallel filters: a shift-or (bor-
rowed from Hyperscan) and a set of per-fast-pattern-length
hash tables. We check the shift-or and (32×8) hash tables in
parallel. Hash tables only store 1-bit values indicating whether
a given (index, length) tuple results in a match – but it does
not store the 16-bit rule ID. The output from the filters is
ANDed together, reducing false positives from either filter
alone by 5×.

The shift-or and 1-bit hash table6 consume only 65KB and
25KB respectively, thus they are relatively cheap to replicate
32× over in order to scale to 100Gbps. In theory, these fil-
ters can generate (32×8) matches per cycle (i.e., 8 matches
per filter); however, in the common case, most packets and

5Up to 8 bytes – longer fast patterns are truncated.
6Subtly, this is not a true Bloom filter [13] because we only perform one

hash per input; implementing multiple hashes increases resource utilization
and complexity, we find, with little gain.

most indices do not match any rules, and therefore require
no further processing.7 This gives us the opportunity to make
subsequent pipeline stages narrower. We design a ‘Rule Re-
duction’ module that selects non-zero rule matches from the
filter’s 256-bit wide vector output and narrows it down to 8
values.

Applying this filter first allows us to use fewer replicas
of subsequent data structures (which are larger and more
expensive), since most bytestream indices have already been
filtered out by the string matcher. This enables high (effective)
parallelism with a lower memory overhead.

Header Matching: In this stage, we use the packet header
data to determine whether the matches produced by the previ-
ous (FPSM) stage are consistent with the corresponding rule’s
Port Group. At this point, we only need to create 8 replicas
of the 17KB Rule Table and 68KB Port Grouping modules to
check 8 rules simultaneously.

Using the (index, length) tuple that resulted in a match in
the FPSM stage, we look up the corresponding rule ID in
the Rule Table. Next, using this rule ID, we look up the Port
Group that this rule maps to; this could be a single port, a list
or range of ports, or a wildcard (indicating a match on any
port). If this packet’s port number is a subset of this rule’s
Port Group, the rule is considered a match; otherwise, the rule
is ignored.

Our initial design of the MSPM stopped here (at the Traffic
Manager 1 stage in Figure 8), aiming merely to reproduce
Snort’s functionality, which only scans for fast patterns and
headers. Packets which matched the fast pattern and header
on at least one rule were sent to the CPU for processing.
While packets which did not produce any matches at either
the FPSM or Header Matching stage were simply streamed
to the output interface.

This resulted in a design that sent 11% of packets to the
CPU for processing, with an average of 4.4 rules searched per
packet – and required only 2MB of memory! Given that this
amounted to a fraction of our resource budget for the MSPM,
we asked ourselves: can we do more?

Non-Fast Pattern String Matching (NFPSM): Pigasus fur-
ther filters down the packets and rules destined for the CPU to
only 5% of packets, with just 1.1 rules/packet (on average), by
additionally searching for all string matches within a rule on
the board. Note that, on average, only 11% of packets reach
the Non-Fast Pattern Matcher, and, by this point, we know
which rules (on average 4.4 of them) the packet might match
on. Naïvely, one might iteratively search for each string in the
≈ 4.4 rules, but because each packet has a variable number of
rules and each rule has a variable number of strings (between
1 and 32), this approach would likely lead to low throughput
and/or pipeline stalls.

Instead, Pigasus once again uses a set of hash tables (like
in the FPSM) to search for all strings simultaneously. It then

7Note that our filters never produce false negatives.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1091

...

Fast Pattern
String Matcher 1

Shift-OR
Matching

Hash Tables

length 1

length 2

length 8

...

bucket
bitmap

payload[i, i+8]

Fast Pattern
String Matcher 32

Shift-OR
Matching

Hash Tables

length 1

length 2

length 8
...

payload[i+31, i+31+8]

...

bucket
bitmap

256-to-8
Rule

Reduction

...

...

Rule
 Table 1

Rule
Table 8

Port
Group 1

Port
Group 8

...

Data Mover

no-check pkt

check
pkt

Non-fast-pattern
String Matcher 1

Non-fast-pattern
String Matcher 16

...

Packet
Fingerprint
Calculation

Rule
Fingerprint

Table

Set ?

check
pkt

check
rules

8-to-2
Rule Reduction

check pkt/rules when Non-Fast-Pattern Matcher is busy
raw pkt

Ethernet

Fast Pattern String Matching Header Matching Non-Fast-Pattern String Matching

rule
IDs

Traffic
Manager

2

no-check pkt

Ethernet

Traffic
Manager

1

D
M

A
 E

ng
in

e

Figure 8: Pigasus’ MSPM, which requires a total of 3.3MB of BRAM.

creates a compact, bloom-filter-like representation (‘finger-
print’) of the matched strings. To compute the fingerprint,
we first represent the set of (index, length) tuples generated
by the 8 NFPSM hash tables as a 16-bit vector by setting
bit[index (mod 16)] to ‘1’ for each length bucket. Next, for
each bucket, all of the 16-bit vectors generated for a given
packet are ORed together to create a 16-bit ‘sub-fingerprint’
for that bucket. Finally, these sub-fingerprints are concate-
nated into a 128-bit fingerprint representing the entire packet.
The fingerprinting process is illustrated below:

1011000000001011

0000000100000100

1110000101001110

11 10 00 01 01 00 1011rule	1

rule	3

pkt

string	matcher

1011000000001011

pre-computed	rule
fingerprint	table

0000000100000100

concatenate

sub-fingerprint	of
each	bucket

pkt-fingerprint

set	?

set	?

False,
No	match

True,
Potential	match

rules

...

Figure 9: Rule matching fingerprints in the NFPSM.

The NFPSM can now look up a corresponding fingerprint
– generated in the same way – for each of the ≈ 4.4 rules,
and now can do a parallel set comparison between the two
fingerprints. If, for every bit in the rule’s fingerprint, the cor-
responding bit in the packet’s fingerprint is also set, there
is high probability that all of the exact match strings for the
rule were matched. But, if any of the corresponding bits are
not set, we can be certain that at least one of the non-fast
pattern strings were not matched, thus eliminating the rule as
a potential match. The 5% of packets which match at least
one rule fingerprint are forwarded to the CPU; the remainder
are released as non-matching and therefore innocent packets.

It is worth noting that, as the last stage of our hierarchical fil-
tering, the non-fast pattern matcher has the lowest throughput
capacity. This saves on resources, but can make the NFPSM
vulnerable to overload. Where the fast pattern matcher is
designed to process up to 100Gbps of incoming data, the non-

fast pattern matcher tops out at a peak throughput of 50Gbps.
50Gbps is more than enough to handle the average rate of
11Gbps, but a spike of rule-matching malicious traffic can
at times overload the non-fast pattern matcher. In this case,
when the first traffic manager (between the header matcher
and the non-fast pattern matcher) detects backpressure from
the NFSM, it steers some packets directly to the CPU for
checking. Temporarily increasing the load on software, where
it is easier to ‘scale out’ and provision additional resources.

End-to-End: By hierarchically filtering out packets, the
MSPM reduces the amount of traffic traversing each subse-
quent stage of the MSPM. This means that the earliest stages
require high levels of replication, but the latter stages can,
on average expect lower throughput and hence require less
replication. Consequently, latter stages require lower mem-
ory consumption. End-to-end, the MSPM requires 3.3MB of
memory, fitting well within our BRAM bounds while doing
more filtering than what a naïve port of the Hyperscan algo-
rithm would be capable of. Nonetheless, the reduced capacity
of the MSPM in the latter phases of the MSPM does make
these components vulnerable to overload; in these cases Pi-
gasus temporarily shunts additional traffic to CPUs, where is
easier to provision on demand and as needed.

6 Evaluation
In this section, we evaluate Pigasus and show that:

• Pigasus is at least an order of magnitude more efficient than
state-of-art Snort running in software: using 23− 200×
fewer cores, and 18−62× less power;

• Pigasus’ performance gains are resilient to a variety of
factors such as small packets, out-of-order arrivals, and the
rule-match profile of the traffic;

• The Pigasus architecture actually has resource headroom,
suggesting a roadmap for handling even more complicated
workloads.
We start by describing the evaluation setup we use for the

rest of the section before the detailed results.

1092 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Module ALM BRAM (MB) DSP eSRAM (MB)
Packet Buffer 507 (0.1%) 0 (0%) 0 (0%) 5.91 (50.0%)

String Matcher 119,562 (17.0%) 3.30 (19.7%) 1,600 (40.4%) 0 (0%)
Flow Reassembler 20,728 (2.9%) 2.61 (15.6%) 0 (0%) 0 (0%)

DMA Engine 2,000 (0.3%) 0.32 (1.9%) 0 (0%) 0 (0%)
Instrumentation 1,189 (0.2%) 0 (0%) 0 (0%) 0 (0%)

Vendor IPs 42,028 (6.0%) 1.22 (7.3%) 0 (0%) 0 (0%)
Miscellaneous 21,946 (3.1%) 0.60 (3.6%) 0 (0%) 0 (0%)

Full Design 207,960 (29.6%) 8.05 (48.1%) 1,600 (40.4%) 5.91 (50.0%)

Table 2: Resource breakdown. Percentages are relative to the
total amount of resources in a Stratix 10 MX FPGA.

6.1 Setup
Implementation and Resource Breakdown: We imple-
ment Pigasus using an Intel Stratix 10 MX FPGA Devel-
opment card [2] as the SmartNIC in a 16-core (Intel i9-9960X
@ 3.1 GHz) host machine. The Stratix 10 MX FPGA has
16MB of on-chip BRAM, 10MB of eSRAM, and 8GB of off-
chip DRAM. Table 2 shows the FPGA resources used by each
component of Pigasus when configuring it to support 100K
flows and 10K rules. To implement Pigasus’ CPU/software
components, we adapt Snort 3 to allow it to receive recon-
structed PDUs and rule IDs, coming from the FPGA directly
into its Full Matcher. We run Snort 3 software experiments in
an Intel i7-4790 CPU @ 3.60 GHz.

Traffic Generator: We installed both DPDK Pktgen [1] and
Moongen [20] on a separate 4-core (Intel i7-4790 @ 3.6 GHz)
machine with a 100Gbps Mellanox ConnectX-5 EN network
adapter. DPDK Pktgen achieves higher throughput when re-
playing PCAP traces – up to 90Gbps – and hence we use
the DPDK Packet Generator when running experiments with
recorded traces. Moongen is better at generating synthetic traf-
fic at runtime and can do so at up to the full 100Gbps offered
by the underlying network. We specify in each experiment
which traffic generator was used.

Traces and Ruleset: We test Snort and Pigasus both using
the publicly available Snort Registered Ruleset (snapshot-
29141) [6] and different traces from Stratosphere [44]: CTU-
Mixed-Capture-1–5, CTU-Normal-12, and CTU-Normal-7.
We refer to them as mix-1–5, norm-1, and norm-2, respec-
tively. For the mixed traces, we use the *before.infection
pcaps. We use Stratosphere traces because their packet cap-
tures contain the original payloads, which is essential when
evaluating IDSes.

Measuring Throughput and Latency: We measure
throughput in two ways: 1. The Zero Loss throughput is mea-
sured by gradually increasing the packet generator’s trans-
mission rate until the system (Snort or Pigasus) first starts
dropping packets; 2. The Average throughput is computed
as the ratio of the cumulative size of packets in the trace
(in bits) to the total time required to process the trace. We
measure latency (at low load) using DPDK Pktgen’s built-in
latency measurement routine. Unfortunately, DPDK embeds
timestamps in the packet body, which never triggers the CPU-

0

500
556

667

7

500500

4

400400

6

334334

14

371400

2
77

125

1
72

125

1

Zero Loss

Mix-1 Mix-2 Mix-3 Mix-4 Mix-5 Norm-1 Norm-2

Traces

0

100

141142

3

99 106

1

125122

5

129
111

7

142140

1

78
96

1

72
93

1

Average

Snort IDS Snort IPS Pigasus IPS

N
u

m
b

er
o

f
C

P
U

C
or

es

Figure 10: Number of cores required to process each trace at
100Gbps using Pigasus (FPGA + CPUs) and Snort (traditional
CPUs alone). Pigasus numbers are based on implementation;
Snort numbers are extrapolated from its single-core through-
put and assume perfect linear scaling.

side Full Matching functionality. Instead, we measure the
end-to-end latency for Pigasus on an empirical trace using
FPGA-side counters, and then adding the baseline FPGA
loopback latency to it.

6.2 End-to-end performance and costs
In this section, we compare the performance, power, and

cost of Pigasus vs. legacy Snort.

Provisioning for 100Gbps throughput: Figure 10 reports
the number of server cores required to achieve 100Gbps for
the evaluated Stratosphere traces for different settings. The
top half is under the assumption of loss-free processing with-
out buffering, while the bottom reports the steady-state core
requirements based on the assumption that we could buffer
packets during the peak periods and defer the full matching
to allow the cores to catch up after the peak has passed.

The Pigasus results are based on experiments where the
system is tested at increasing number of cores at maximum
throughput, until we observe no packet loss. For the Snort
experiments we run Snort in both IDS and IPS mode (with
DPDK) on a single core and increase the throughput until it
begins to drop packets. Note that while we report the actual
number of cores required to run Pigasus, for Snort we extrap-
olate the single-core experiment to determine the number of
cores that we would need to keep up with 100Gbps. This con-
siders that Snort’s throughput scales linearly with the number
of cores and, therefore, represents an ideal lower bound to
the actual number of cores needed to run Snort. Overall, we
see that Snort in IDS mode requires 23−185× more cores
than Pigasus (65× on average), and in IPS mode requires
23−200× more cores (72× on average).

Latency: Of course, in a practical IPS we care not only about
throughput/provisioning but also per-packet latency. We plot
the distribution of per-packet latency in Figure 11. We find

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1093

0 5 10 15 20 25 30

Latency (µsec)

0.0

0.5

1.0

C
D

F

FPGA Loopback

Pigasus (Fast Path)

Pigasus (End-to-End)

Snort (Fast Path)

Figure 11: CDF of latency of Pigasus vs. Snort.

that Pigasus yields almost an order of magnitude improvement
in the median latency, and up to 3× improvement in the tail
latency. As a point of comparison, we also show the baseline
performance of a simple FPGA loopback measurement (i.e.,
without any processing) and the Pigasus fast-path for packets
that do not need further CPU processing. We find that the
Pigasus fast path is very efficient and almost comparable to
the baseline. We also find that Pigagus end-to-end latency only
deviates substantially from the fast path for the tail. While
we hypothesized some improvements in latency, we were
puzzled by the magnitude of the improvement. Investigating
why Snort was much slower revealed that on average, while
Pigasus reduced the latency for the Reassembly (by 6µs),
Parser (by 4µs), and the MSPM (by 3µs) as expected relative
to software, the additional reduction came from avoiding
Packet I/O overhead in software (around 5µs).

Power footprint: Figure 12 depicts the estimated power con-
sumption required to achieve 100Gbps throughput for three
configurations: Snort in IDS mode, Snort in IPS mode, and
Pigasus in IPS mode. On the CPU side, we use Intel’s Run-
ning Average Power Limit (RAPL) interface [23] to measure
per-core power consumption in steady-state. To verify its
accuracy we also measured the power utilization using an
electricity usage monitor [4] and found consistent results. On
the FPGA side, we use the Board Test System [2] (part of
Intel’s FPGA Development Kit) to measure power dissipation
in the FPGA core and I/O shell. We observe that, across all
traces, Snort (in either mode) has a 13−59× higher power
consumption than Pigasus (34× on average). We further note
that the reported wattages for Pigasus represent a conservative
estimate; while the total power consumption on the FPGA
side is 40W, the core fabric accounts for just 13W, and the
remainder is used for I/O (including Ethernet). Conversely,
we only charge Snort for power consumed during compute
tasks, ignoring other overages (such as Network I/O).

Cost: To estimate the Total Cost of Ownership (TCO), we
consider both the capital investment and the power cost for
each configuration. To estimate the capital investment, we
use the per-core pricing data for the AMD EPYC 7452 CPU
($68.75 per core). For Pigasus, we also incorporate the mar-
ket price of an Stratix 10 MX FPGA [2] ($10K). Assuming

0K

2K

5K 5.0K

6.0K

103

4.5K4.5K

76

3.6K3.6K

94

3.0K3.0K

166

3.3K3.6K

58
692

1.1K

49
643

1.1K

49

Zero Loss

Mix-1 Mix-2 Mix-3 Mix-4 Mix-5 Norm-1 Norm-2

Traces

0K

0K

1K

1.3K1.3K

71

890952

50

1.1K1.1K

82

1.2K
991

100

1.3K1.3K

50

696
863

50

647
831

50

Average

Snort IDS Snort IPS Pigasus IPS

E
st

im
a

te
d

P
ow

er
C

o
n

su
m

p
ti

o
n

(W
)

Figure 12: Estimated wattage to achieve 100Gbps.

that the number of cores needed in practice is between the
Zero Loss and Average in Figure 10, we estimate that the
capital cost of the CPU-only solution is between $7,922 and
$25,045, while the capital cost of Pigasus is between $10,189
and $10,344. To estimate the power costs we assume a life-
time of 3 years and electricity cost at $0.1334/kWh (average
electricity rate in the US [3]). The power cost of the CPU-only
solution at 9W/core is between $3,636 and $11,494, while the
cost for Pigasus is between $227 and $298. Then, combining
the capital investment and the power cost, the TCO of the
CPU-only solution is between $11,558 and $36,539, while
the TCO of Pigasus is between $10,416 and $10,642, saving
between $1,142 and $25,897. We note that these estimates
consider retail prices and do not account for other operational
costs, such as cooling and rack space, which we expect to
favor Pigasus. Moreover, for 100K flows and 10K rules we
only use about half of a Stratix 10 MX; one may consider
adapting the design to a smaller FPGA, further reducing the
cost of Pigasus.

Recall that our original goal was to achieve 100Gbps sup-
porting hundreds of thousands of flows matching tens of thou-
sands of rules on a single server with a reasonable cost/re-
source footprint. The above results suggest that Pigasus in-
deed achieves this goal (with ample headroom).

6.3 Microbenchmarks and sensitivity analysis
In this section, we present Pigasus’ performance sensitiv-

ity to traffic characteristics. We probe deeper into Pigasus’
performance under differing levels of malicious traffic. We
further characterize the performance impact of packet size,
and out-of-order degree of flows.

Dependence on CPU Offload: We construct semi-synthetic
traffic traces by mixing malicious flows extracted from mix-1
trace with innocent trace norm-2 in different proportions.8

Figure 13 (a) depicts the dependence of zero-loss through-
put on the fraction of malicious flows (in terms of relative
packet count). We report results for Pigasus (using both 1 and

8Note that not every packet in a malicious flow triggers a match.

1094 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0% 20% 40% 60% 80% 100%

Percentage of Packets from Malicious Flows

0

20

40

60

80

100

Z
er

o
-L

o
ss

X
p

u
t

(G
b

p
s)

Packet Generator Max.

Pigasus (16 cores)

Pigasus (1 core)

Snort IPS

(a) Zero-loss throughput.

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Percentage of Packets from Malicious Flows

100

101

102

C
P

U
C

or
es

Snort IPS

Pigasus IPS

(b) Number of cores required to achieve 100Gbps.

Figure 13: Impact of the fraction of malicious traffic on
system throughput.

16 cores) and Snort IPS (with 1 core). We observe that, as
long as the fraction of malicious traffic is smaller than 15%,
Pigasus is able to process packets at line-rate using a single
CPU core. With 16 cores Pigasus can process packets at line
rate for up to 50% of malicious traffic. After the 50% mark,
performance begins to degrade gradually. We repeated the
same experiments disabling the software component of Pi-
gasus and observed that the througput matches the 16-core
experiment, suggesting that the hardware is the bottleneck.
More specifically, the MSPM’s rule reduction logic is stressed
by the large number of potential rule matches.

Figure 13 (b) depicts the number of cores required to
achieve 100Gbps as a function of the fraction of packets
from malicious flows for up to 50%. Results for Snort are
extrapolated from the single-core throughput. Despite the
performance degradation observed in (a), Pigasus scales con-
siderably better than Snort, requiring two orders of magnitude
fewer cores. We also note that, while the hardware only be-
comes the bottleneck at an extreme fraction of malicious
traffic, the design can be made even more robust using two
hardware pipelines (discussed further in §6.4).

Dependence on Packet Size: We first consider the impact
of packet size on Pigasus’ performance stemming from the
linked-list based TCP reassembler design. We configure the
Moongen packet-generator to generate fixed-sized synthetic
packets, and measure end-to-end, zero-loss throughput as we
vary the packet size. Figure 14 illustrates this dependence.
We observe that, for packets exceeding 500B (comparable to
average packet sizes on the Internet [15]), Pigasus is capable
of processing at line rate. (More generally, Pigasus by design

0 200 400 600 800 1000 1200 1400 1600

Packet Size (Bytes)

0

20

40

60

80

100

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Packet Generator Max.

Pigasus IPS

Figure 14: Zero-loss throughput achieved by Pigasus for a
range of packet sizes.

0 10 20 30 40 50 60 70 80 90 100

Recovery Distance (Packets)

0

20

40

60

80

100

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

[typical]

Packet Generator Max.

Pigasus (0.3% lp) [typical]

Pigasus (3% lp)

Pigasus (30% lp)

Figure 15: Zero-loss throughput achieved by Pigasus for a
range of Loss Probabilities (l p) and Recovery Distances (rd).

can sustain 100Gbps as long as the average packet size is
greater than 500B over a window of 87µs estimated base on
buffer size.)

Dependence on Out of Order Degree: We characterize
the OOO degree using randomly generated synthetic packet
traces controlled by two independent variables: the packet
loss probability (l p) [32] and the recovery distance (rd).9

Figure 15 depicts the impact of these parameters on Pigasus’
end-to-end, zero-loss throughput. We sweep the loss proba-
bility from 0.3% to 30%, and the recovery distance from 3 to
100. At typical values (l p = 0.3%, rd = 3), Pigasus achieves
a single-core throughput of 100Gbps, which degrades gradu-
ally with increasing packet loss and recovery distance. It is
worthwhile to note that, at typical packet loss rates, the Re-
assembler can handle around 50 OOO packet arrivals without
any degradation in end-to-end throughput.

6.4 Future outlook
Supporting 100Gbps with 100K flows and 10K rules re-

quires only about half of the resources in our FPGA. We now
explore what we can do with the additional capacity.

One option is to duplicate the existing processing pipeline
(which runs at 100Gbps/25Mpps) each to serve a different
subset of flows, increasing the throughput to 200Gbps, at the
cost of creating additional copies of all the MSPM engines.
Another option is to increase the number of supported flows

9Recovery distance is defined as the number of same-flow packets that
arrive before a hole created by a lost packet is filled. In Pigasus, this value
determines the amount of work (in cycles) that the OOO Engine must perform
for each packet that arrives out of order.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1095

0 10 20 30 40 50 60 70

#Rules (K)

0

100

200

300

400

500

600

#
C

o
n

cu
rr

en
t

F
lo

w
s

(K
)

1x100Gbps Pipeline 2x100Gbps Pipelines

Figure 16: Tradeoff between the number of supported rules
and concurrent flows when using one or two 100Gbps hard-
ware pipelines.

or rules. Figure 16 depicts the three-way tradeoff between
the scalability of the number of rules, concurrent flows, and
replicated hardware pipelines. The design with two pipelines
benefit from better throughput but have fewer room for storing
rules or flows. There is plenty of scaling headroom in the
Pigasus FPGA frontend design for more rules and flows.

7 Related Work
We now review some of the most related work, some of

which served as inspiration for Pigasus.

Pattern matching: The design of the hash table filter in our
Multi-String Pattern Matcher is similar to the filters used by
DFC [17] and Hyperscan [47]. An important difference, how-
ever, is that instead of using a second hash table to associate
potential string patterns with their identifiers, we directly use
the matched index as a pattern identifier. This helps to reduce
the amount of resources required by the hardware implemen-
tation. We also employ fewer, but much larger filters, since
cache-friendliness is not a concern for FPGA design.

Using FPGAs to accelerate IDS/IPS: Many previous work
have also made a case for using FPGAs to implement net-
work functionality [21,30,33,36,45]. ClickNP [30] and Flow-
Blaze [36] present abstractions for making it easier to imple-
ment network functionality in FPGAs. However, they do not
provide the necessary abstractions for searching bytestream
nor they would be able to scale to meet our goals for through-
put and number of rules. Some propose using FPGAs to ac-
celerate IDS/IPS [10, 16, 18, 19, 34, 43, 46, 49]. However, all
of these works do not implement a complete IDS/IPS and fail
to meet our target for throughput or number of rules. Even
though, Snort Offloader [43] proposes using an FPGA to
implement an entire IDS/IPS, it only supports very simple
operations, not including components that are essential for
correct IPS operation, e.g., TCP reassembly.

Other accelerators: Other works have looked at using hard-
ware accelerators to improve some IDS/IPS components. Kar-
gus [25] uses GPUs to accelerate exact-pattern and regular-
expression matching. However, their use of GPUs contributes

to increasing both power and latency. PPS [26] uses PISA
switches to implement DFAs and accelerate arbitrary regular
expressions. But are limited to only UDP and can only support
a small number of string patterns. More important, however,
we note that by only accelerating the latest IDS/IPS stages,
these solutions are fundamentally limited in the throughput
improvements they can achieve.

8 Conclusions
In many ways, IDS/IPS are one of the most stressful net-

work workloads for both traditional software and hardware.
As such, the gap between the workload demands and what
was achievable on a single server always seemed elusive. The
design of Pigasus is a singular proof point that a seemingly
unattainable goal (100Gbps line rates for 100K+ flows match-
ing 10K+ of complex rules) on a single server is well within
our grasp. Looking forward, we believe that we can further
unleash the potential benefits of FPGAs for this unique work-
load by further eliminating CPU bottlenecks and potentially
moving additional functionality onto the FPGA. Given the
future hardware roadmaps of FPGAs and SmartNICs, we be-
lieve that our insights and successes can more broadly inform
in-network acceleration beyond IDS/IPS as well.

Acknowledgements
We thank the OSDI reviewers, Eriko Nurvitadhi, Aravind

Dasu, and our shepherd Thomas Anderson and his students
for comments and feedback on this work. This work was
supported in part by the CONIX Research Center, one of
six centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA; in part by the NS-
F/VMware Partnership on Software Defined Infrastructure
as a Foundation for Clean-Slate Computing Security (SDI-
CSCS); and finally in part by the project AIDA - Adaptive,
Intelligent and Distributed Assurance Platform (reference
POCI-01-0247-FEDER-045907), co-financed by the ERDF
- European Regional Development Fund through the Opera-
tional Program for Competitiveness and Internationalisation -
COMPETE 2020.

References
[1] DPDK-pktgen. https://github.com/Pktgen/Pktgen-DPDK.

[2] Intel Stratix 10 MX. https://www.intel.com/content/
www/us/en/programmable/products/boards_and_kits/dev-
kits/altera/kit-s10-mx.html.

[3] Microsoft Azure: Total cost of ownership (TCO) calculator. https:
//azure.microsoft.com/en-us/pricing/tco/calculator/. Ac-
cessed: 2020-10-01.

[4] PN1500 Watt meter. https://poniie.com/products/17.

[5] Snort 3. https://www.snort.org/snort3.

[6] Snort ruleset. https://www.snort.org/downloads/#rule-
downloads.

[7] Zeek – network security monitor. https://www.zeek.org.

[8] Y. Arbitman, M. Naor, and G. Segev. De-amortized cuckoo hashing:
Provable worst-case performance and experimental results. In Interna-

1096 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/Pktgen/Pktgen-DPDK
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-s10-mx.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-s10-mx.html
https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-s10-mx.html
https://azure.microsoft.com/en-us/pricing/tco/calculator/
https://azure.microsoft.com/en-us/pricing/tco/calculator/
https://poniie.com/products/17
https://www.snort.org/snort3
https://www.snort.org/downloads/#rule-downloads
https://www.snort.org/downloads/#rule-downloads
https://www.zeek.org

tional Colloquium on Automata, Languages, and Programming, pages
107–118. Springer, 2009.

[9] R. Baeza-Yates and G. H. Gonnet. A New Approach to Text Searching.
Commun. ACM, 35(10):74–82, Oct. 1992.

[10] Z. K. Baker and V. K. Prasanna. High-throughput linked-pattern match-
ing for intrusion detection systems. In Proceedings of the 2005 ACM
Symposium on Architecture for Networking and Communications Sys-
tems, ANCS ’05, pages 193–202, New York, NY, USA, 2005. Associa-
tion for Computing Machinery.

[11] T. Benson, A. Akella, and D. A. Maltz. Network Traffic Characteristics
of Data Centers in the Wild. In Proceedings of the 10th ACM SIG-
COMM Conference on Internet Measurement, IMC ’10, page 267–280,
New York, NY, USA, 2010. Association for Computing Machinery.

[12] BERTEN. GPU vs FPGA performance comparison. Tech-
nical Report BWP001, BERTEN Digital Signal Processing.
http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_
vs_FPGA_Performance_Comparison_v1.0.pdf.

[13] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, July 1970.

[14] M. Branscombe. The year of 100GbE in data center net-
works. https://www.datacenterknowledge.com/networks/
year-100gbe-data-center-networks, Aug. 2018.

[15] CAIDA. Packet length distributions. https://www.caida.org/
research/traffic-analysis/AIX/plen_hist/.

[16] M. Ceška, V. Havlena, L. Holík, J. Korenek, O. Lengál, D. Matoušek,
J. Matoušek, J. Semric, and T. Vojnar. Deep packet inspection in FPGAs
via approximate nondeterministic automata. In IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing
Machines, FCCM ’19, pages 109–117, 2019.

[17] B. Choi, J. Chae, M. Jamshed, K. Park, and D. Han. DFC: Accelerating
string pattern matching for network applications. In 13th USENIX Sym-
posium on Networked Systems Design and Implementation, NSDI ’16,
pages 551–565, Santa Clara, CA, Mar. 2016. USENIX Association.

[18] C. R. Clark and D. E. Schimmel. Scalable pattern matching for
high speed networks. In 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, FCCM ’04, pages 249–
257, 2004.

[19] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J. W. Lockwood.
Deep packet inspection using parallel Bloom filters. IEEE Micro,
24(1):52–61, Jan. 2004.

[20] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle.
Moongen: A scriptable high-speed packet generator. In Proceedings of
the 2015 Internet Measurement Conference, IMC ’15, pages 275–287,
New York, NY, USA, Oct. 2015. Association for Computing Machinery.

[21] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H. K. Chan-
drappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw,
G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal,
D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg. Azure Accelerated
Networking: SmartNICs in the Public Cloud. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation, NSDI ’18,
pages 51–66, Renton, WA, Apr. 2018. USENIX Association.

[22] V. Gogte, A. Kolli, M. J. Cafarella, L. D’Antoni, and T. F. Wenisch.
HARE: Hardware accelerator for regular expressions. In The 49th
Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-49. IEEE Press, Oct. 2016.

[23] M. Hähnel, B. Döbel, M. Völp, and H. Härtig. Measuring energy
consumption for short code paths using RAPL. ACM SIGMETRICS
Performance Evaluation Review, 40(3):13–17, Jan. 2012.

[24] Intel. FPGA design software – Intel Quartus Prime.
https://www.intel.com/content/www/us/en/software/
programmable/quartus-prime/overview.html. Accessed:
2020-10-14.

[25] M. A. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, and
K. Park. Kargus: A highly-scalable software-based intrusion detection
system. In Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pages 317–328, New York, NY,
USA, 2012. Association for Computing Machinery.

[26] T. Jepsen, D. Alvarez, N. Foster, C. Kim, J. Lee, M. Moshref, and
R. Soulé. Fast string searching on PISA. In Proceedings of the 2019
ACM Symposium on SDN Research, SOSR ’19, pages 21–28, New
York, NY, USA, 2019. Association for Computing Machinery.

[27] G. P. Katsikas, T. Barbette, D. Kostić, R. Steinert, and G. Q. M. Jr.
Metron: NFV Service Chains at the True Speed of the Underlying
Hardware. In 15th USENIX Symposium on Networked Systems Design
and Implementation, NSDI ’18, pages 171–186, Renton, WA, Apr. 2018.
USENIX Association.

[28] A. Kirsch, M. Mitzenmacher, and U. Wieder. More robust hashing:
Cuckoo hashing with a stash. SIAM Journal on Computing, 39(4):1543–
1561, 2010.

[29] Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella, M. M. Swift, and
T. V. Lakshman. UNO: Uniflying host and smart nic offload for flexible
packet processing. In Proceedings of the 2017 Symposium on Cloud
Computing, pages 506–519, New York, NY, USA, 2017. Association
for Computing Machinery.

[30] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen. ClickNP: Highly flexible and high performance network
processing with reconfigurable hardware. In Proceedings of the 2016
ACM SIGCOMM Conference, SIGCOMM ’16, pages 1–14, New York,
NY, USA, 2016. Association for Computing Machinery.

[31] M. Liu, S. Peter, A. Krishnamurthy, and P. M. Phothilimthana. E3:
Energy-efficient microservices on SmartNIC-accelerated servers. In
2019 USENIX Annual Technical Conference, USENIX ATC ’19, pages
363–378, Renton, WA, July 2019. USENIX Association.

[32] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic behavior
of the TCP congestion avoidance algorithm. SIGCOMM Comput.
Commun. Rev., 27(3):67–82, July 1997.

[33] J. Naous, G. Gibb, S. Bolouki, and N. McKeown. NetFPGA: Reusable
router architecture for experimental research. In Proceedings of the
ACM Workshop on Programmable Routers for Extensible Services
of Tomorrow, PRESTO ’08, pages 1–7, New York, NY, USA, 2008.
Association for Computing Machinery.

[34] P. Orosz, T. Tóthfalusi, and P. Varga. FPGA-assisted DPI systems:
100 Gbit/s and beyond. IEEE Communications Surveys & Tutorials,
21(2):2015–2040, 2019.

[35] V. Paxson. Bro: a system for detecting network intruders in real-time.
Computer networks, 31(23-24):2435–2463, 1999.

[36] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani, V. Br-
uschi, D. Sanvito, G. Siracusano, A. Capone, M. Honda, F. Huici, and
G. Siracusano. Flowblaze: Stateful packet processing in hardware. In
16th USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI ’19, pages 531–548, Boston, MA, Feb. 2019. USENIX
Association.

[37] R. Rahimi, E. Sadredini, M. Stan, and K. Skadron. Grapefruit: An open-
source, full-stack, and customizable automata processing on FPGAs. In
IEEE 28th Annual International Symposium on Field-Programmable
Custom Computing Machines, FCCM ’20, pages 138–147. IEEE, 2020.

[38] M. Roesch. Snort – lightweight intrusion detection for networks. In
Proceedings of the 13th USENIX Conference on System Administration,
LISA ’99, pages 229–238, USA, 1999. USENIX Association.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1097

http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf
http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf
https://www.datacenterknowledge.com/networks/year-100gbe-data-center-networks
https://www.datacenterknowledge.com/networks/year-100gbe-data-center-networks
https://www.caida.org/research/traffic-analysis/AIX/plen_hist/
https://www.caida.org/research/traffic-analysis/AIX/plen_hist/
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html

[39] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design
and implementation of a consolidated middlebox architecture. In 9th
USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI ’12, pages 323–336, San Jose, CA, Apr. 2012. USENIX
Association.

[40] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: Network pro-
cessing as a cloud service. In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communication, SIGCOMM ’12, page 13–24, New
York, NY, USA, Aug. 2012. Association for Computing Machinery.

[41] R. Sidhu and V. Prasanna. Fast regular expression matching using fpgas.
In The 9th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 227–238, Los Alamitos, CA, USA, Apr.
2001. IEEE Computer Society.

[42] D. Sidler, G. Alonso, M. Blott, K. Karras, K. Vissers, and R. Carley.
Scalable 10gbps TCP/IP stack architecture for reconfigurable hardware.
In Proceedings of the 2015 IEEE 23rd Annual International Symposium
on Field-Programmable Custom Computing Machines, FCCM ’15,
pages 36–43, USA, 2015. IEEE Computer Society.

[43] H. Song, T. Sproull, M. Attig, and J. Lockwood. Snort offloader: a
reconfigurable hardware NIDS filter. In International Conference on
Field Programmable Logic and Applications, FPL ’05, pages 493–498,
2005.

[44] Stratosphere. Stratosphere laboratory datasets, 2015. Retrieved March
13, 2020, from https://www.stratosphereips.org/datasets-
overview.

[45] N. Sultana, S. Galea, D. Greaves, M. Wojcik, J. Shipton, R. Clegg,
L. Mai, P. Bressana, R. Soulé, R. Mortier, P. Costa, P. Pietzuch,
J. Crowcroft, A. W. Moore, and N. Zilberman. Emu: Rapid proto-
typing of networking services. In 2017 USENIX Annual Technical
Conference, ATC ’17, pages 459–471, Santa Clara, CA, July 2017.
USENIX Association.

[46] L. Tan and T. Sherwood. A high throughput string matching architec-
ture for intrusion detection and prevention. In Proceedings of the 32nd
Annual International Symposium on Computer Architecture, ISCA ’05,
page 112–122, USA, 2005. IEEE Computer Society.

[47] X. Wang, Y. Hong, H. Chang, K. Park, G. Langdale, J. Hu, and H. Zhu.
Hyperscan: A fast multi-pattern regex matcher for modern CPUs. In
16th USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI ’19, pages 631–648, Boston, MA, Feb. 2019. USENIX
Association.

[48] T. Xie, V. Dang, J. Wadden, K. Skadron, and M. Stan. REAPR: Re-
configurable engine for automata processing. In 27th International
Conference on Field Programmable Logic and Applications, FPL ’17,
pages 1–8. IEEE, Sept. 2017.

[49] R. Yuan, Y. Weibing, C. Mingyu, Z. Xiaofang, and F. Jianping. Robust
TCP reassembly with a hardware-based solution for backbone traffic.
In Proceedings of the 2010 IEEE Fifth International Conference on
Networking, Architecture, and Storage, NAS ’10, pages 439–447, USA,
2010. IEEE Computer Society.

A Artifact Appendix
A.1 Abstract

Pigasus has a hardware component, that runs on an FPGA,
and a software component which is adapted from Snort 3.
The current version requires a host with a multi-core CPU
and an Intel Stratix 10 MX FPGA (with 100 Gb Ethernet) [2].
Pigasus’ artifacts are open source and publicly available.

We provide detailed instructions to reproduce Figure 10.
This figure supports our main claim that Pigasus requires two-
order of magnitude fewer cores than state-of-the-art Snort 3.
In addition to the steps in this appendix and on the repository
README, we also provide video archives that reproduce
Figure 10 for both the Snort 3 Baseline10 and the Pigasus11

experiments.

A.2 Artifact check-list
• Algorithm: Pigasus Multi-String Pattern Matcher.

• Program: Snort 3 [5] for baseline experiments; DPDK pkt-
gen [1] and Moongen [20] to generate packets.

• Compilation: Intel Quartus Prime [24].

• Data set: Stratosphere Laboratory Datasets [44].

• Run-time environment: System running Linux with
Snort 3 [5] software dependencies installed. Quartus 19.3 with
Stratix 10 device support is required to load the bitstream to
the FPGA.

• Hardware: Two servers, one with an Intel Stratix 10 MX
FPGA [2] and another with a DPDK-compatible 100 Gb NIC.
Power-measurement experiments require either a CPU with a
power measurement interface (e.g., RAPL [23]) or an external
electricity usage monitor.

• Execution: Disable power optimizations in the BIOS, isolate
cores from the Linux scheduler, and pin processes to cores.

• Experiments: Experiments are run manually with Pigasus on
one machine and a packet generator on another.

• Public link: https://github.com/cmu-snap/pigasus

• Code licenses: ‘BSD 3-Clause Clear License’ for the hard-
ware component and ‘GNU General Public License v2.0’ for
the software component. Check the repository for details.

A.3 Description
How to access

To access the artifact, clone the repository from GitHub:

$ git clone https://github.com/cmu-snap/pigasus.git

This repository also includes a README with the most
up-to-date instructions on how to install and extend Pigasus.

10https://figshare.com/articles/media/snort_baseline_mp4/
12922160

11https://figshare.com/articles/media/pigasus/12922178

1098 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.stratosphereips.org/datasets-overview
https://www.stratosphereips.org/datasets-overview
https://github.com/cmu-snap/pigasus
https://figshare.com/articles/media/snort_baseline_mp4/12922160
https://figshare.com/articles/media/snort_baseline_mp4/12922160
https://figshare.com/articles/media/pigasus/12922178

Hardware dependencies
Pigasus requires a host with an Intel Stratix 10 MX

FPGA [2]. This host should have PCIe Gen3 or greater and
a slot with 16 lanes for the FPGA. Experiments require an
extra host equipped with a DPDK-compatible 100 Gb NIC to
be used as a packet generator. For the experiments, the two
hosts are connected back to back. The power-measurement
experiments require either a CPU with a power measurement
interface (e.g., RAPL [23]) or the use of an external electricity
usage monitor.

Software dependencies
Pigasus’ software component is adapted from Snort 3 [5]

and inherits the same software dependencies. §A.4 provides
instructions on how to install those. The provided implementa-
tion works on Linux only and was tested on Ubuntu 16.04 and
18.04. Experiments require the installation of vanilla Snort 3,
for comparison, as well as DPDK pktgen and Moongen in the
packet generator host. To be able to load the bitstream on the
FPGA, an installation of Quartus 19.3 as well as the Stratix
10 device support are required.12

Data sets
To obtain the Stratosphere traces go to https://www.

stratosphereips.org/datasets-overview.

A.4 Installation
These instructions assume that you already have the bit-

stream to be loaded on the FPGA. For instructions on how to
synthesize the design, refer to the repository README.

Software Configuration
In a system running a fresh install of Ubuntu 18.04, with

the Pigasus repository cloned to the home directory, start by
setting the required environment variables and useful aliases
by adding the following to your .bashrc or equivalent:
export pigasus_rep_dir=$HOME/pigasus
export pigasus_inst=$HOME/pigasus_install
export LD_LIBRARY_PATH=/usr/local/lib:${LD_LIBRARY_PATH}
export LUA_PATH="$pigasus_inst/include/snort/lua/?.lua;;"

alias pigasus="taskset --cpu-list 0 $pigasus_inst/bin/snort"
alias sudo=’sudo ’

Make sure you apply these changes:
$ source ~/.bashrc

Then install the dependencies using the provided script:
$ cd $pigasus_rep_dir
$./install_deps.sh

Once the dependencies are installed, build Pigasus as follows:
$ cd $pigasus_rep_dir/software
$./configure_cmake.sh --prefix=$pigasus_inst

--enable-pigasus --enable-tsc-clock
--builddir=build_pigasus

12Both can be obtained at: https://fpgasoftware.intel.com/19.3/.

$ cd build_pigasus
$ make -j $(nproc) install

Hardware Configuration
To load the bitstream make sure the Quartus tools are in

your path by setting the following environment variables in
your .bashrc or equivalent:
quartus_dir should point to the Quartus installation dir.
export quartus_dir=
export INTELFPGAOCLSDKROOT="$quartus_dir/19.3/hld"
export QUARTUS_ROOTDIR="$quartus_dir/19.3/quartus"
export QSYS_ROOTDIR="$quartus_dir/19.3/qsys/bin"
export IP_ROOTDIR="$quartus_dir/19.3/ip/"
export PATH=$quartus_dir/19.3/quartus/bin:$PATH
export PATH=$quartus_dir/19.3/modelsim_ase/linuxaloem:$PATH
export PATH=$quartus_dir/19.3/quartus/sopc_builder/bin:$PATH

Make sure you apply these changes:
$ source ~/.bashrc

A.5 Evaluation and expected result
In what follows, we describe how to run the experiments

to reproduce Pigasus results from Figure 10. Before every
experiment we reload the bitstream on the FPGA and reboot
the server. This ensures that we always start from the same
FPGA state:
$ cd $pigasus_rep_dir/pigasus/hardware/hw_test/
$./load_bitstream.sh
$ sudo reboot

Once the machine is back, to run the software component,
first insert the kernel module:
$ cd $pigasus_rep_dir/software/src/pigasus/pcie/kernel/linux
$ sudo ./install

Then, run Pigasus, using the following command:
$ cd $pigasus_rep_dir/software/lua
$ sudo pigasus -c snort.lua --patterns ~/rule_list

The snort.lua uses the same syntax as in Snort 3, you
should modify it to include the Snort Registered Rule Set [6].
In our experiments, we modified the rules to remove some fea-
tures currently not supported by Pigasus, including services,
file_data and nocase. We also use the same modified rules
in the baseline experiment.

When Pigasus finishes the startup process it will stop print-
ing logs to the screen. Once this happens, you can invoke the
FPGA JTAG console to configure the FPGA internal state. To
do so, open another terminal and enter:
$ cd $pigasus_rep_dir/hardware/hw_test/
$./run_console
% source path.tcl

If the last command produces an error, exit the JTAG console
with Ctrl+C and rerun the last two commands. Once the last
command runs successfully type the following commands to
configure the buffer size, set the number of cores, and check
the FPGA internal state:

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1099

https://www.stratosphereips.org/datasets-overview
https://www.stratosphereips.org/datasets-overview
https://fpgasoftware.intel.com/19.3/

% set_buf_size 262143
% set_core_num 1
% get_results

This last command should return all zeros as no packets have
been sent yet.

Now that Pigasus is running and properly configured, we
can start the packet generator on another machine. Here we
assume that DPDK pktgen is properly configured on the other
machine and has been started.

You can specify the rate to send packets, where 100 means
100% line rate. To ensure that DPDK pktgen will only send the
trace once, specify the number of packets to match the trace
size. The example pcap we are using is the norm-2.pcap,
which has 456,709 packets. After setting these parameters,
you can start sending packets.

Pktgen:/> set 0 count 456709
Pktgen:/> set 0 rate 100
Pktgen:/> str

Once the packet generator finishes sending packets, go back
to the JTAG console on the other host and type the following:

% get_results

This should return 456,709 received packets and 456,709
processing packets. This means that Pigasus processed all the
packets sent at max rate, without loss.

Now stop Pigasus by going back to the first terminal and
typing Ctrl+C. It will print rx_pkt, which should match the
dma_pkt reported by the FPGA in second terminal. This
means that all packets sent from the FPGA to the CPU for
full evaluation were processed.

A.6 Experiment customization
Experiments may be customized to use different rule

sets and different packet traces. Pigasus design can also be
changed to support a different number of concurrent flows or
rules.

A.7 Artifact Evaluation Methodology
Submission, reviewing and badging methodology:
https://www.usenix.org/conference/osdi20/call-
for-artifacts

1100 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.usenix.org/conference/osdi20/call-for-artifacts
https://www.usenix.org/conference/osdi20/call-for-artifacts

DORY: An Encrypted Search System with Distributed Trust

Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and Ion Stoica

University of California, Berkeley

Abstract. Efficient, leakage-free search on encrypted data
has remained an unsolved problem for the last two decades;
efficient schemes are vulnerable to leakage-abuse attacks,
and schemes that eliminate leakage are impractical to deploy.
To overcome this tradeoff, we reexamine the system model.
We surveyed five companies providing end-to-end encrypted
filesharing to better understand what they require from an
encrypted search system. Based on our findings, we design
and build DORY, an encrypted search system that addresses
real-world requirements and protects search access patterns;
namely,when a user searches for a keyword over the fileswithin
a folder, the server learns only that a search happens in that
folder, but does not learn which documents match the search,
the number of documents that match, or other information
about the keyword. DORY splits trust betweenmultiple servers
to protect against a malicious attacker who controls all but one
of the servers. We develop new cryptographic and systems
techniques to meet the efficiency and trust model requirements
outlined by the companies we surveyed. We implement DORY
and show that it performs orders of magnitude better than a
baseline built on ORAM. Parallelized across 8 servers, each
with 16 CPUs, DORY takes 116ms to search roughly 50K
documents and 862ms to search over 1M documents.

1 Introduction
Users have grown increasingly reliant on filesharing systems
such as Box,Dropbox, and iCloud. However, attacks on storage
servers [88, 95, 98, 109] have exfiltrated large amounts of
sensitive data belonging to many users, jeopardizing user
privacy as well as the reputation and business of the victim
organizations. End-to-end encrypted storage systems [73,
107,115,121,124] provide a strong defense against this type
of attack: the client stores all cryptographic keys and the
server receives only encrypted data, and so an attacker that
compromises the server can only exfiltrate encrypted data.

At the same time, end-to-end encrypted filesharing services
struggle to provide the same functionality as plaintext storage
providers like Dropbox because the server cannot decrypt the
data to process it. Server-side search is a critical tool that users
expect for convenience and companies require for compliance.

Despite a large body of work on searchable encryption [23,
25, 35, 37–40, 50, 52, 67, 68, 94, 97, 111, 114, 116], practical
and leakage-free search on encrypted data has remained an
unsolved problem for two decades. Existing work can largely
be divided in two categories: (1) practical but leaking search

access patterns, or (2) not leaking search access patterns but
expensive.
In the first category, an attacker can learn sensitive data

by observing search access patterns. We now explain what
search access patterns are intuitively by contrasting them to
the leakage already existing in deployed end-to-end encrypted
filesystems [73,107,115,121,124]. In these filesystems, when
a user accesses a file, the server learns that this specific user
accessed that specific file, but it does not see the content due to
end-to-end encryption. The concernwith leaking search access
patterns on top of this filesystem leakage is that search access
patterns can leak information at the word level, allowing an
attacker to potentially reconstruct search queries and document
plaintext [22, 65, 72, 84, 102, 106, 129].
Consider a simple example of how an attacker can exploit

search access patterns [129]. The server stores an inverted
search index for Alice’s emails mapping an encrypted keyword
to an encrypted list of files. The attacker sends a one-word
email to Alice containing “flu”. If Alice’s client updates entry
924 of index on the server, the attacker learns that index[924]
is for “flu”. By repeating this process for every word in the
dictionary, the attacker can discover the word corresponding
to every index entry. Later when Alice receives a confidential
email, the attacker can derive all the words in that email based
on which index entries are updated. More sophisticated attacks
can reconstruct both entire documents and search queries from
even more advanced search schemes [22,65, 72, 84, 102, 106,
129]. In this paper, we informally define search access pattern
leakage as the set of documents matching a search keyword,
the size of that set, and any information about the search query.
In contrast, if a scheme does not leak search access patterns,
then during a search on a folder, the search server learns only
that a search is now happening in that folder.
The second category of existing work typically relies on

Oblivious RAM (ORAM) [54,99, 119], a cryptographic tool
that allows a client to read and write data from a server without
revealing access patterns. Many academic works point to an
inverted index inside ORAM as a straightforward way to
eliminate leakage [61, 96, 116]. Unfortunately, even though
the asymptotic complexity of ORAM is polylogarithmic in the
index size, the cost of even the most practical ORAM schemes
remains prohibitively expensive for our setting. For example,
inserting a file requires an expensive ORAM operation for
every keyword in that file (and there can be hundreds).

Given that practical, leakage-free search remains a difficult

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1101

problem,we revisit the systemmodel: What do real end-to-end
encrypted filesharing systems actually require from a search
system? Would the problem become more tractable in their
system model?
Choosing a system model. We surveyed five companies
that provide end-to-end encrypted filesharing, email, and/or
chat services: Keybase [73], PreVeil [107], SpiderOak [115],
Sync [121], and Tresorit [124]. To the best of our knowledge,
this is the first study of requirements for encrypted search in
real filesharing systems. We discuss our findings in §2 and
summarize the ones most relevant to DORY here:
Efficiency requirements. These companies care about two
primary metrics: latency and monetary cost. They are not
concerned about the asymptotic complexity of the search
algorithm andwould accept an algorithmwith runtime linear in
the number of documents as long as their concrete performance
and cost requirements are met (see Table 2).
Trust model requirements. Some of these companies were
already splitting trust to back up secret keys or distribute
public keys, and we wanted to know if we could leverage
a similar distributed trust assumption to make the problem
of encrypted search more tractable. While these companies
were willing to split trust across multiple domains, some had
two requirements aimed at strengthening the distributed trust
assumptions. First, if at least one trust domain is honest, then
an attacker that controls all the remaining trust domains and
observes user queries should not learn search access patterns.
In particular, we need to protect against a malicious attacker
rather than an honest-but-curious one and should not assume
that the attacker follows the protocol. The second requirement,
stated intuitively, is that only search access patterns should be
protected by distributed trust, and an attacker that compromises
all trust domains should not immediately learn the contents
of the search index.

While prior work explores some forms of distributing trust
for encrypted search [15,19,45,62,64,108], we are not aware
of any work that meets both the efficiency and distributed
trust requirements outlined above without leaking any search
access patterns, as explained in §8.
Our system: DORY. We design and implement DORY (De-
centralized Oblivious Retrieval sYstem), an encrypted-search
system that splits trust to meet the real-world efficiency and
trust requirements summarized above (and detailed in §2).
DORY ensures that an attacker who cannot compromise every
trust domain does not learn search access patterns.
We implemented and evaluated DORY to show that it per-

forms better (for some metrics, orders of magnitude better)
than an ORAM baseline (§7). DORY also meets the compa-
nies’ efficiency requirements; parallelized across 8 servers,
searching over 1M documents takes 862ms, and, using work-
load estimates from the companies, we estimate that DORY
costs roughly $0.0509 per user per month.

DORY combines cryptographic and systems techniques to
overcome the security and efficiency challenges of previous so-

lutions. Several of the companies we surveyed have expressed
interest in deploying DORY, and one of them already has
plans to integrate DORY into their system in the near future.
1.1 Summary of techniques
Choosing an oblivious primitive. Given the inefficiencies
of ORAM, a key challenge was choosing a cryptographic
primitive for hiding search access patterns. We identified a
relatively recent cryptographic tool, distributed point functions
(DPFs) [51] (a specific type of function secret sharing [20,21]),
as particularly promising for our setting. DPFs allow us to
leverage ` servers (for practical constructions, ` = 2) to retrieve
part of the search index without any group of < ` servers
learning which part of the index we’re retrieving (the problem
of private information retrieval, or PIR [27,28]). A DPF-based
solution requires a linear scan over the index, but the overhead
per index entry is small because it relies on AES evaluations,
which are implemented efficiently in hardware.
Designing the search index. An important challenge is how
to structure the search index to support efficient search and
update operations. To minimize the overhead of updating the
search indexwhen a file is uploaded, the client should only need
to upload a small, constant-sized amount of data per file, and
ideally avoid performing an expensive cryptographic operation
for every keyword in that file. To minimize search overhead,
we need to limit the number of DPF queries. To achieve both
of these goals, we keep a table where each row corresponds to
a bitmap of words for a document. An update simply requires
the client to insert a row by uploading a new bitmap, and,
a search only requires a single DPF request to retrieve the
column corresponding to a keyword (§4.1). However, this
bitmap can become quite large to accommodate every word in
the dictionary. To reduce the size of this bitmap (and thus the
time for the linear scan), we use a Bloom filter, which provides
compression while preserving column alignment. Bandwidth
from the servers to the client is linear in the number of files
searched over, but we require less than 1 byte per file (§7)
and, more importantly, this fixed bandwidth enables DORY
to hide the number of search results, which can be exploited
in volume-based attacks [22, 72, 102].
Encrypting the search index. To prevent an attacker that
compromises all the servers from immediately reconstructing
the plaintext search index, we need to encrypt each bit in
the Bloom filter before inserting it into the search index.
Unfortunately, the expansion of encryption would increase the
size of the search index (and thus the time for the linear scan)
by the security parameter λ (typically λ = 128). To ensure that
the encrypted index is the same size as the plaintext index, we
instead mask the bits using a random one-time pad that we
ensure is unique for each version of the file (§4.1).
Defending against amalicious attacker.DPFs do not protect
against malicious attackers. To protect against a malicious
attacker that compromises all but one of the trust domains,
we leverage MACs to allow the client to check the integrity

1102 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of search results in a way that makes blackbox use of DPFs.
Applied naively, adding MACs would increase the search
bandwidth and storage at the server by a factor of λ. To
address this problem, we employ aggregate MACs [71] to turn
λ from a multiplicative factor to an additive one (§4.3).

Providing fault tolerance. Splitting trust across different trust
domains naturally requires additional servers. With secret-
sharing, one tool for distributing trust, servers store different
data that they may not share. Then, to provide fault tolerance,
each of these servers would need to be replicated. We observe
that in DORY, servers can use each other for fault-tolerance
even though they are in different trust domains due to two
properties (§5): (1) each server has an identical copy of the
state, and (2) the client can perform integrity checks.

Reducing the cost of replication. To execute a search query
correctly, all the servers must operate on the same version of
the state. This is challenging because clients can issue update
and search requests concurrently. One possibility is to use
standard Byzantine fault-tolerant (BFT) consensus techniques
to solve this problem, but this would require 3 f + 1 trust
domains to handle f failures. Instead, we observe (1) the ways
in which our system setting is less demanding than that of
BFT, and (2) that our cryptographic protocol enables clients
to check integrity even if all servers are compromised; using
these, DORY only needs f +1 trust domains (§5).

2 Finding DORY: identifying a system model
To understand real-world use cases, we surveyed five compa-
nies providing end-to-end encrypted file storage, email, and/or
chat solutions: Keybase [73], PreVeil [107], SpiderOak [115],
Sync [121], and Tresorit [124]. For each company, we asked a
set of questions (see full version [36]) over the course of discus-
sion(s) and email exchanges. This study was conducted as we
were in the process of designing our system. We summarize
our findings in Tables 1 and 2 and in the following sections.
We report statistics in aggregate to preserve the confidentiality
of individual companies, as they requested. These statistics
and requirements motivate DORY’s system model.

About the companies. Before we report the results of our
survey, we give a brief background about each company.
Keybase [73], founded in 2014 in the US and recently acquired
by the video-conferencing company Zoom [128], keeps a
publicly auditable key directory and offers open-source, end-
to-end encrypted chat and storage systems. PreVeil [107],
founded in 2015 in the US, focuses on both encrypted chat
and storage solutions and open-sources some of its tools.
SpiderOak [115], founded in 2007 in the US, offers encrypted
storage, backup, and messaging solutions leveraging a private
blockchain and open-sources many of its tools. Sync [121],
founded in 2011 in Canada, and Tresorit [124], founded in
2011 in Switzerland, both provide encrypted storage. With
the exception of Keybase, these companies generally target
enterprise customers and support compliance with regulations

Ke
yb
as
e

Pr
eV
eil

Sp
id
er
Oa

k
Sy
nc

Tr
es
or
it

Need server search? 3 3 3 3 3
Have server search? 7 7 7 7 7
File sharing? 3 3 3 3 3
Email? 7 3 7 7 7
Chat? 3 7 3 7 7
Mobile client? 3 3 3 7 3

Table 1: The
search use-cases
for each of the
five companies
we surveyed.

Table 2: Survey statistics. In
accordance with the compa-
nies’ confidentiality wishes,
we report most fields in
aggregate although we re-
port individual responses
for max permissible search
latency (only 4 of the com-
panies responded).

System cost & scale
Avg. #docs/user 100 - 45K
Max #docs/user 100K - 1.3M
Price/month/user $0-20

Search requirements
Max added $/month/user $0.70-5.54
Max search latencies (s) [0.5, 1, 1, 4]
Est. update/search ratio 50/50

such as GDPR or CMMC. Some of these companies report
over 750K users in over 180 countries.
The need for server-side search. Every company expressed
a need for server-side search on encrypted data either for
their desktop client in cases where users do not have all the
files downloaded, or for the mobile or web clients. However,
none currently support server-side search; they all told us
that they tried at some point to develop a solution (most had
researched the academic literature), but their efforts were
eventually thwarted by concerns about performance or search
access patterns. Several of the companies we surveyed had
built or used a client index as a temporary solution, but they
did not see this as a long-term solution because of its inability
to index many files locally (e.g. enterprise data) or its resource
consumption (especially on mobile). In §7.5, we discuss how
synchronization between clients makes this solution infeasible
in cases where documents are constantly updated.
They all stated interest in deploying a server-side solu-

tion that met their functionality, security, and performance
requirements, if such a solution were to exist.
2.1 System requirements
Search must be responsive. The companies reported maxi-
mum search latencies between 500ms and 4s (Table 2). The
company that reported a maximum search latency of 500ms re-
ported tens of thousands to hundreds of thousands documents
per user, while some of the companies that reported larger
maximum search latencies had users with approximately a
million documents.
Monetary cost for search must be small. These companies
prioritize keeping the cost of search below $0.70 per user per
month in order to make it feasible to deploy search to all users
without increasing prices (Table 2). While some companies
were willing to consider charging more for the ability to search,
other companies believed that users would be unwilling to pay

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1103

extra because they are used to free search on other platforms.
Multiple usersmust be able to update and search the same
documents. Each company allows multiple users to access
the same file. Therefore, a search solution should be designed
with multiple clients in mind and minimize the amount of
state clients need to synchronize between operations.
Revoking a user’s access must be cheap. All these com-
panies implement revocation lazily [9, 48, 53, 56, 66, 110],
meaning that when a user’s access to a folder is revoked,
the remaining users generate a new key and, rather than re-
encrypting every document in the folder under the new key,
simply use the new key for subsequent updates. In this way,
the revoked user can still access documents that haven’t been
updated since the time of revocation. These companies want
to adopt a similar approach for search. When a user is re-
voked, rather than re-computing the entire search index (as
in ORAM-based solutions), subsequent updates should not
allow the revoked user to search over the updated documents.
Relaxations. In addition to learning requirements, we also
learned several system relaxations these companies accepted.
The companies did not require search results to be fresh (they
could be stale for up to a few minutes), and they were also
willing to accept a small numberof false positives (several other
search schemes have also leveraged this allowance [15, 52]).
2.2 Distributed trust requirements
Themajority of prior encrypted searchwork considers a single-
server model where the attacker can take control of the entire
system. As some of these companies were already leveraging
distributed trust (e.g. Keybase to distribute public keys via
social media servers, PreVeil to backup secret keys secret-
shared among multiple clients), we wanted to know if they
were willing to accept a distributed trust model for encrypted
search as well, as this could be an opportunity for providing a
more efficient search. We found that all the companies were
open to a distributed trust model, although several companies
had more specific requirements for how to distribute trust:
Hide search access patterns even with only one honest
trust domain. These companies wanted the guarantee that if
at least one trust domain is honest, then an attacker cannot
learn search access patterns. They did not want to assume
that other trust domains behaved correctly, so they wanted a
malicious threat model rather than an honest-but-curious one.
Distributed trust only for search access patterns. These
companies wanted to limit the damage caused by an attacker
who compromises all the ` trust domains by ensuring that
putting the ` search indices together does not readily provide
the attacker with the plaintext search index. For example, if
a company is subpoenaed and every trust domain must hand
over its search index and search access patterns from then on,
the company can choose to suspend search services to protect
users’ privacy by reducing search access pattern leakage,
similar to the case where Lavabit chose to suspend operation
rather than reveal Snowden’s emails [4]. In such a case,

reconstructing the index from the ` servers’ index shares should
result in end-to-end encrypted data. This requirement rules
out solutions based on secret-sharing a plaintext search index
across multiple servers because an attacker compromising all
trust domains can recover the plaintext index.
2.3 Opportunities
From the survey results reported above, we summarize what
we considered opportunities to make the problem of encrypted
search easier:
• Performing a linear scan to search is feasible if the response
time and the cost on expected workloads are acceptable.

• Distributing trust across multiple trust domains is acceptable
if certain security requirements are met.

These opportunities serve as the basis for our system design.
2.4 Building a distributed trust system
We now discuss how to build a system where an attacker
who compromises part of the infrastructure cannot easily gain
access to the entire infrastructure. Such a model has already
been deployed in several real systems, including cryptocurren-
cies relying on consensus such as Ripple [90] or Stellar [86],
Certificate Transparency [81], and academic work [31].
Split across clouds. By treating different clouds as distinct
trust domains, a malicious cloud provider (or an attacker that
can exploit a vulnerability in one cloud infrastructure), cannot
gain access to both trust domains.
Split across institutions. By using trust domains in competing
organizations or nonprofits generally trusted by the public (e.g.,
the Electronic Frontier Foundation), users can have a stronger
assurance that the organizations are unlikely to collude.
Split across jurisdictions. By separating trust domains by
jurisdiction (i.e. different countries), a single legal authority
cannot gain access to the entire system.
If the trust domains are deployed in the cloud, we can

take advantage of the fact that cloud providers are monetarily
incentivized to provide availability. Fail stops can still occur
naturally, but cloud providers make it easy to detect failures
and launch new servers. Clients can report statistics on the
lack of availability of a trust domain, and the organization
deploying the system can take its business elsewhere.
2.5 Future directions
As we conducted our survey, some companies mentioned addi-
tional features that, while not necessary for initial deployment,
are desirable. Although we do not support these in DORY, we
note them here as potential directions for future work.
Concentrate resources in a single trust domain. The trust
domain already used for the filesystem should do most of the
work for search as well. Each additional trust domain should
do little work, so that adding a new trust domain should be
cheap. DORY concentrates resources to some extent, (§5), but,
as discussed in §4, still requires a server in each trust domain
to perform a linear scan.
Richer search functionality. Several companies mentioned
that they would appreciate richer search functionality beyond

1104 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

simple keyword search (e.g. ranked search based on term fre-
quency.) DORY only returns the set of documents containing
a keyword, leaving ranked search for future work.

3 System design overview
In DORY, we focus only on the search system for end-to-end
encrypted filesharing systems and not on the design of these
filesharing systems. These systems [73, 107, 115, 121, 124]
already exist and are in use. We design DORY to build on top
of and interface with these systems as described in §3.2. For
this purpose, we abstract out the underlying filesystem.

3.1 The underlying filesystem
End-to-end encrypted filesystems (including the five com-
panies we surveyed in §2) tend to follow a common design
pattern, which we now describe. To hide the contents (in-
cluding the name) of documents, these filesystems assign a
document ID to each document and associate the ID with an
encryption of the document contents. Documents accessible
by the same users are grouped into folders, each of which has
a corresponding ID. Users who have access to the same folder
share a (logical) secret key used to encrypt the documents
in that folder. In this way, while the server learns the IDs of
documents being accessed, the number of documents in each
folder, and which users have access to which folders, it does
not see the contents of the documents.
When a user is added to a folder, the other users share the

existing folder key with the new user, and when a user’s access
to a folder is revoked, the remaining clients choose a new
folder key. To prevent the remaining clients from having to
re-encrypt every document in the folder after a user is revoked,
these systems employ lazy revocation (as described in §2.1).
Users may choose to keep some documents synchronized

with the server (i.e., store the most recent version of the
document locally) and others not synchronized (i.e., do not
store locally and retrieve them from the server only as needed).
In either case, the user has already downloaded the most recent
version of the document before she sends an update. In the case
where two clients try to update the same file simultaneously,
these systems often create two versions of a file.

DORY integrates with the filesystem (FS) using the follow-
ing FS API (depicted in Figure 3):
• getCurrKey(folderID) → k: Get the current key associated
with the group of files in folderID.

• getDocKey(docID)→ k: Get the key used in the most recent
update for docID.

• getDocIDs(folderID) → docIDs: Get all the document IDs
used for the documents in folderID.

• getVersion(folderID,docID) → version: Get the current ver-
sion number associated with a file.

3.2 The DORY API
When a user searches orupdates a file, the filesystem client calls
the DORY client via DORY’s API so that DORY performs

FS client

DORY client

DORY API

FS API

Request

Response

Server
FS Server

DORY Server

Figure 3: System software architecture. The figure shows the structure
of the software rather than the physical system itself, where the server
is instantiated across multiple machines.

the search or incorporates new updates into the search index.
We now describe DORY’s client API, depicted in Figure 3.

When the user updates a document in the underlying filesys-
tem, the user’s client also sends an update to the DORY
client to maintain the search index, allowing DORY servers
to respond to subsequent search queries correctly.

The underlying filesystem already handles key management
by giving permitted users access to the folder key(s). DORY
leverages this key management mechanism so the permissions
of the filesystem naturally extend to DORY: when a user is
added to or removed from a folder in the underlying filesystem,
she also gains or loses the ability to search in DORY.
We also utilize the fact that to update a document in the

underlying filesystem, the user has already downloaded that
document (if it is not being added for the first time). We
employ the conflict-resolution mechanisms in the underlying
filesystem to resolve conflicts in search index updates.

DORY exposes the following API to filesystem clients:
• Update(folderID,docID,prevWords,currWords): Given the
folder ID, the document ID of a document in that folder,
the previous set of keywords in that document prevWords,
and the current set of keywords in that document currWords,
update the state at the DORY servers.

• Search(folderID,keyword) → docIDs: Given the folder ID
to search over and a keyword, find all the documents contain-
ing that keyword. DORY has a small (configurable) false
positive rate, but DORY has no false negatives.

Updates require the client to upload a small, constant-sized
amount of data per file, and searches require the server to
perform a linear scan over the search index for a given folder
(the cost of search for a user only depends on the number of
files that user has access to).

3.3 System architecture
Folders in DORY are divided into partitions, each of which
is managed by a different group of servers. A deployed sys-
tem may contain many such partitions, and execution across
partitions occurs in parallel. The following entities comprise
DORY’s system architecture for a single partition (Figure 4):
• Filesystem server: The underlying filesystem provides the
functionality described in §3.1.

• Replicas: The ` DORY replicas maintain identical copies of
the search index and execute search queries. Each replica is
deployed in a separate trust domain. In our implementation,
we use ` = 2.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1105

MasterReplicaReplica

Client Client

Figure 4: DORY’s physi-
cal system architecture for
a single partition (filesys-
tem server not pictured).
Replicas should be de-
ployed in different trust do-
mains, and each holds a
copy of the search index.

• Master: The DORY master ensures that the ` replicas have
the same view of the state and that the clients know the
version of this state and which servers to contact. The master
can be deployed in any existing trust domain.

• Clients: Multiple clients send requests to the filesystem
server and the DORY master and replicas. Each client only
needs to store three 128-bit keys (and can optionally cache
version numbers received from the master).

To search, the client must interact with ` replicas for each par-
tition. The master can be co-located with the filesystem server
to ensure that updates to the search system and underlying
filesystem occur atomically, although this is not necessary.

3.4 Threat model and security properties
We now describe DORY’s security properties at a high level,
and include DORY’s formalism (detailing the guarantees) and
proof in the full version [36]. In short, we achieve the security
goals in §2.2. We discuss security at the level of trust domains,
each of which may deploy one or more servers.
Below, we assume that the underlying filesystem is mali-

ciously secure. In particular, we assume that DORY’s client
can always retrieve the correct version number from the under-
lying filesystem. Providing such a guarantee (e.g., by detecting
rollback and fork attacks in filesystems) is a well-studied line
of work [11,63, 70, 75, 82]. If the underlying filesystem only
defends against an honest-but-curious attacker, though, DORY
also only protects against such an attacker.
Securitywith one honest trust domain.Amalicious attacker
that compromises `−1 of the ` trust domains does not learn any
search access patterns. More precisely, such an attacker learns
nothing except what is leaked by the underlying filesystem,
as well as the timing of individual search requests and the
folders they take place over. This security property implies
both forward privacy, the privacy of newly added files in
the presence of previous queries, and backward privacy, the
privacy of deleted files after deletion, as defined by Stefanov
et al. [116]. Notably, we do not leak the number of search
results; if leaked, this information could open the door to
volume-based attacks [102] (parameters that determine result
sizes are public).
Security with no honest trust domains. DORY’s goal is to
hide search access patterns when at least one trust domain is
honest. When all trust domains are compromised, we have

the modest goal of defaulting to the security of prior schemes
leaking search access patterns, instead of readily losing all
security by immediately exposing the search index. In this
case, the only additional leakage (on top of what the attacker
learns if at least one trust domain is honest) is a deterministic
identifier for the keyword queried. In the security definition for
our cryptographic protocol, we model the attacker as seeing
queries only after the point of compromise; in reality, systems
retain leakage (e.g. cache state) that increases the amount of
information the attacker can access [57].
We formally model the end-to-end security guarantees of

DORY for the case where at least one trust domain is honest
and the case where no trust domains are honest by defining
an ideal functionality F that specifies the behavior of an ideal
system, capturing the properties discussed above. F further
captures the fact that the client can verify the integrity of the
result. In the full version [36], we present a formal definition
using F and prove the following theorem, which captures
DORY’s security:
Theorem 1: Using the definitions in the full version [36],
DORY securely evaluates (with abort) the ideal functionalityF
when instantiated with a secure PRF, a secure aggregate MAC,
a secure distributed point function, and a secure filesystem
that implements the ideal filesystem functionality.

DORY does not provide availability if any one trust domain
refuses to provide service (see §2.4 for how cloud providers
are monetarily incentivized to provide availability).
Relationship with underlying filesystem. DORY interfaces
with deployed end-to-end encrypted filesystems (§3.1). These,
as mentioned, allow the server to learn the ID of the file
being accessed (but not its contents). While search itself is
protected in DORY, some side effects of the search results
are not: If, after seeing the search results, a user decides to
open (and retrieve from the filesystem) a file in the results, an
attacker could infer that the file matched the search. DORY
does not address these side effects, but simply aims to not add
any leakage to the overall system during search. These side
effects (and leakage due to the filesystem) can be prevented
by running DORY on top of an oblivious filesystem.
Extension to oblivious filesystems. Some file storage pro-
posals [10, 26, 58, 91, 92] hide which files are being accessed.
These are usually based on oblivious algorithms [119], which
have significant overhead and have not yet been deployed.
Nevertheless, in §4.5, we discuss how DORY can be used to
provide search for an example of such a filesystem design,
demonstrating that DORY’s techniques do not require the
server to know the file ID being updated.

4 Search design
We start by describing a basic encrypted search scheme that
leaks search access patterns and is only secure against an
honest-but-curious attacker in §4.1. We will show how to
modify our basic scheme to eliminate search access patterns

1106 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

x1,1 x1,2 x1,3 . . . x1,m

...
...

...
...

xi,1 xi,2 xi,3 . . . xi,m
...

...
...

...
xn,1 xn,2 xn,3 . . . xn,m

Update

doc i

Search Figure 5: Search
index layout for
n documents with
Bloom filters of
length m. Updates
write rows and
searches retrieve
columns.

in §4.2, move from an honest-but-curious to malicious threat
model in §4.3, and support dynamic membership in §4.4. We
show the pseudocode for the complete search protocol in the
full version [36]. For simplicity,we only discuss search servers,
which we assume are deployed in different trust domains, and
ignore the master and filesystem servers in this section.

4.1 A strawman search index
In our initial version, clients have access to a single server. For
every document, the server stores an encrypted Bloom filter
corresponding to the set of keywords in the document. To
update the search index for a particular document, the client
computes the Bloom filter for the contents of the document
and encrypts it using a one time pad unique to that update.
We generate the mask for a document using a pseudorandom
function (PRF) keyed with a per-folder key and the current
document version number as input. The key management
functionality built into the underlying filesystem ensures that
every client has a copy of this PRF key.
If there are n documents in the search index and Bloom

filters are m bits, then we can think of the server as storing
an n×m table where each element is a single bit (Figure 5).
Each row in the table is a Bloom filter for a document, and the
ith row corresponds to the document with ID i. For an update,
the client sends a new row that the server inserts into its table.
This allows the client to easily modify existing documents and
add new ones: the server either replaces an existing row with
the new row or appends the new row to the table.
To search for a keyword, the client must find all the docu-

ments where the Bloom filter indexes corresponding to that
keyword are set to “1”. The client can check this by retrieving
from the server the columns corresponding to the Bloom filter
indexes for that keyword. The client can decrypt bit bi in a
column by computing the mask for row i, extracting the mask
bit corresponding to that column ri , and then evaluating bi ⊕ ri .
If the ith entry in each of the decrypted columns is set to “1”,
then the client marks document i as containing the keyword.
In order to prevent the attacker from learning the queried
keyword from the requested indexes, we compute the Bloom
filter indexes using a PRF keyed with a per-folder key and
the keyword as input. This key is managed by the underlying
filesystem in the same way that the other PRF key is.

We note that in order for the contents of the client’s update
to remain hidden from the server, the client must be able to
retrieve the correct version number from the underlying filesys-

tem. Without this guarantee, the client could use the same
mask twice, leaking information about the update contents.
For this reason, we only provide security against a malicious
attacker if the underlying filesystem also provides the correct
version numbers (discussed in §3.4). This strawman proposal
is similar to the one described in [76].

4.2 Eliminating search access patterns
To eliminate search access patterns, we need to hide from
the server which columns the client is retrieving during a
search. To do this, we use a private information retrieval (PIR)
protocol [27, 28], which allows a client to retrieve an entry in
a database from a server (1) without the server learning which
entry is being retrieved, and (2) using total communication
sublinear in the database size.

Tool: Distributed Point Functions (DPFs). One efficient
way to implement PIR is using a distributed point function
(DPF) [51] (later generalized as function secret sharing [20,
21]), which we identify as particularly well-suited for our
setting. DPFs allow a client to split a point function f into
function shares such that any strict subset of the shares reveal
nothing about f , but when the evaluations at a given point x
are combined, the result is f (x).

A DPF is defined by the following algorithms:
• DPF.Gen(a,b) → (K1, . . .,K`): Generates keys K1, . . .,K`

that allow the ` servers to jointly evaluate the point function
that evaluates to b at input a.

• DPF.Eval(Ki, x) → y: Evaluates the function share corre-
sponding to key Ki at server i on input x to produce output
y.
To evaluate the point function f where f (a) = b on some

input x, the client generates keys for all ` servers by running
DPF.Gen(a,b) and sending Ki and x to server i for all `
servers. Server i then runs DPF.Eval(Ki, x) and returns the
result yi to the client. The client can then compute y1⊕ y2 · · · ⊕

y` to reconstruct f (x) = y. We make black-box use of the
construction from Boyle et al. where ` = 2 [21].

Leveraging DPFs to search. To hide search access patterns,
we switch from having the client interact with a single server
to having the client interact with ` servers in different trust
domains that hold identical copies of the search index. To
retrieve column j, the client generates shares of the point
function that evaluate to all 1’s at column j and all 0’s for
all other columns. The client then sends a function share to
each server. Each server evaluates its function share for each
column, ANDing the DPF evaluation with the contents of the
column, and sends the XOR of the results back to the client.
The client then assembles the responses to recover column j.

Using DPFs to retrieve columns requires a linear scan
over the search index for a folder. While this is expensive
asymptotically, we only aim to show efficiency for realistic
workloads, motivating our decision to compress the search
index using Bloom filters.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1107

4.3 Protecting against malicious attackers
So far, we have assumed that all servers are honest-but-curious.
We now show how to defend against a malicious attacker
(namely, an attacker that can deviate from the protocol) that
can compromise up to `−1 of the ` servers. To achieve this,
we need to ensure that for a search, the server evaluates the
DPF on columns corresponding to the most recent updates
sent by the client (not corrupted or old updates).
Strawman: MAC for every bit.We start by showing a straw-
man that employs MACs, but increases the bandwidth and
search latency by roughly a factor of the MAC tag size (typ-
ically 256). For each update, the client additionally sends a
MAC tag for every bit in the encrypted Bloom filter. The
client cannot send a single tag for the row because to search,
the client must retrieve individual columns rather than entire
rows. We can think of the server as now storing a second table
of MAC tags where each entry of this table is the tag for the
corresponding entry in the original table (as in Figure 5).

We need to ensure that (1) a tag is only valid for a particular
document update (to prevent replay attacks) and that (2) it
cannot correspond to a different Bloom filter index. To do
this, we compute the MAC over not only the single Bloom
filter bit, but also the document ID, Bloom filter index, and
document version number. As with the PRF key, we use the
key management functionality in the underlying filesystem to
ensure that every client has a copy of the MAC key.
The client now runs the DPF over the columns in both

the original table and the MAC tag table. After assembling
the responses from all ` servers, the client can check that the
tag for every bit is correct. However, this increases both the
bandwidth and the time to perform the linear scan over the
index (i.e., the search latency) by a factor of the tag size. We
identify aggregate MACs as a tool to transform this factor
from a multiplicative to an additive one.
Tool: Aggregate MACs.We leverage aggregate MACs [71]
to allow the servers to combine individual MAC tags into a
single aggregate MAC tag. Aggregate MACs, analogous to
aggregate signatures [17], allow multiple MAC tags computed
with possibly different keys on multiple, possibly different
messages to be aggregated into a shorter tag that can still be
verified using all the keys. Notably, aggregating MAC tags
does not require access to the keys.

The Katz-Lindell aggregate MAC construction [71] works
as follows. To generate a MAC tag for some message m using
a key k, we simply use a pseudorandom function MAC and
compute t ← MAC(k,m). To aggregate MAC tags t1, . . ., tn,
the aggregator computes T ← ⊕n

i=1ti . To verify an aggregate
MAC tag T using messages m1, . . .,mn and keys k1, . . ., kn,
the verifier checks T ?

= ⊕n
i=1MAC(ki,mi).

Aggregating MAC tags to improve performance. To im-
prove performance by a factor of the tag size, we allow the
servers to combine individual tags into a single aggregate tag.
To search, the server evaluates the DPF on the contents of the

column and a single aggregate tag for the entire column.
Aggregating MAC tags also allows us to reduces storage

space at the servers. Rather than storing an entire separate
MAC table, the servers instead keep an array of aggregate
tags, one for each column. On each update, the client XORs
the old tag with the new tag (which is why Update takes both
prevWords and currWords). By then XORing this value with
the aggregate tag, the server can remove the old tag and add the
new tag. To ensure that this aggregate MAC tag is maintained
correctly, the server must check that the client has the latest
version of the document; otherwise it rejects the update.

4.4 Supporting dynamic membership
Users might be added to or removed from a folder, requiring
the new group to generate a new key. This new key might be in
use at the same time that some parts of the search index were
generated using an old key in order to support lazy revocation.
We let the underlying filesystem handle key management, but
we need to ensure that our search protocol supports multiple
keys that may be active at the same time.

Decrypting search results is straightforward; to decrypt the
results for an individual document, the client uses the same
key from the last update to that document. Aggregating MAC
tags is also simple because we can aggregate tags computed
with different keys. We can remove old tags and add new tags
with different keys using XOR in the same way as before.

4.5 Generalizing to oblivious filesystems
We briefly discuss how DORY is compatible with a filesystem
that hides which document is being accessed within a folder,
showing that DORY does not inherently require knowledge of
which document is being accessed.

We can build a filesystem that hides document access
patterns using PathORAM [119], which acts as an oblivious
key-value store for each folder. To support multiple users, we
keep an encrypted copy of the ORAM client state at the server
(discussed in §7.1). Each ORAM block contains the encrypted
contents of a document.
One straightforward way to search over this filesystem

would be store an inverted index in ORAM. This would hide
which document is being updated, but updates would require
an ORAM access for every word in the document.
Instead, we apply DORY to this filesystem. Rather than

storing encrypted Bloom filters in a table as in §4.1, we store
them in a second PathORAM to hide which document is being
updated. We use the same techniques for supporting multiple
users as in the underlying filesystem.
To perform an update, the client generates an encrypted

Bloom filter as before and needs to insert it into the ORAM
index. This creates a new challenge, because ORAM accesses
require the client to re-encrypt other ORAM blocks, and
standard symmetric key encryption breaks DORY’s column
alignment. To address this,we keep track of a new value shared
among users for each document: the ORAM access number,
which is incremented after each ORAM access. Instead of

1108 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

generating PRF masks using the document’s version number,
we now generate them using the document’s ORAM access
number, allowing clients to safely re-encrypt Bloom filters.

To execute a search, the client still generates a DPF query for
the Bloom filter indexes in question and the server still needs
to perform a linear scan over the search index (we must scan
over every bit in every Bloom filter). Another challenge arises,
because while the order of the scan was obvious when the
search index was a table, the order is less obvious for the tree
structure of PathORAM. We solve this problem by traversing
the tree in a fixed order to generate a table layout. The client
can interpret the results by reconstructing the traversal order
using the position map stored as part of the ORAM client.

5 Replication across trust domains
DORY requires that the servers processing search requests
operate on the same version of the index in order for the client
to receive a valid response; otherwise, the cryptographic shares
from the DPF cannot be combined correctly. Because our
system processes a mix of update and search requests, the
servers need to agree on the index state. The client also needs
to know the document version numbers corresponding to the
index that the servers used to execute the search; otherwise,
the client will be unable to decrypt and verify the result.
Because we are in an adversarial environment, a natural

solution is to use a Byzantine fault-tolerant (BFT) consensus
algorithm [1, 16, 24, 33, 77, 79] to agree on the ordering of
update and search requests. Standard BFT provides the proper-
ties we need, but requires 3 f +1 servers, each in its own trust
domain, to handle f failures. A large number of trust domains
is expensive to maintain and difficult to deploy, increasing the
overall system cost. We make several observations about our
setting that allow us to use only f +1 trust domains.
Observations we leverage. We make three observations that
allow us to tailor the problem of consensus to DORY:
DORY deterministically detects server misbehavior. Our cryp-
tographic protocol already defends against malicious servers;
if a server executes the client’s query incorrectly or over an
incorrect version of the index, the client will detect this (trig-
gering a manual investigation). This is a significant departure
from the Byzantine fault model where failure information
is imperfect. By handling server misbehavior at the cryp-
tographic protocol layer, we can use a fail-stop rather than
Byzantine failure model at the consensus layer. This and the
next observations allow us to use just f +1 trust domains to
tolerate f failures.
Trust domains provide availability. To support search, DORY
needs all f + 1 replicas to be available. We need to ensure
that servers across multiple trust domains remain online to
allow clients to search. Here we leverage the observation that
for trust domains deployed in the cloud, the cloud provider is
monetarily incentivized to provide availability (§2.4). This
means that if a server in a trust domain fails, either it will
eventually come back online or another server will take its

Master

Replica

Replica

Ê Ë

Ë

Master

Replica

Replica

Ì

Í

Í

Figure 6: System architecture and protocol flow for updates (left)
and searches (right). Ê Client sends update to master. Ë Master
propagates updates to replicas. Ì Client requests version number(s)
from master. Í Client splits search request across replicas.

place; even if failures occur, f +1 servers will be available
again at some point in the future.
DPFs give us replication for free. The challenge now is to
reinitialize the state of these failed servers. The use of DPFs
in our cryptographic protocol requires all replicas to have
identical copies of the search index. Normally it is unsafe
to transfer state between trust domains, as the recipient has
no way to verify correctness. However, because the client
can check the integrity of the state used to execute a search
query, we can safely copy state across trust domains. Because
we have f +1 servers, at least one server will always remain
online to preserve the state of the index.
5.1 Algorithm
A DORY cluster contains the following entities (Figure 6):
Master: The master receives updates and manages replica
state. The master stores the most recent updates and version
numbers (both the overall system version number and indi-
vidual document version numbers), but not the entire search
index. The master can be deployed in any trust domain, as
clients can detect misbehavior when verifying search results.
Replicas: The replicas receive updates from the master and
perform searches from the user. The replicas store the most
recent versions of the index as well as the version numbers
(both the overall system version number and individual doc-
ument version numbers). We must deploy ` replicas in `
different trust domains to ensure that the client can split its
search request across different trust domains. However, the
total number of replicas n may be greater than ` in order to
improve fault-tolerance.
We additionally use a watchdog service (commonly available
in the cloud) that periodically checks that all servers are still
online and triggers recovery when it detects a crash.
Properties. Our replication algorithm should provide the
following properties:
• Correctness: If all of the replicas and the master fail, a
client with the correct set of document version numbers can
detect this.

• Fault-tolerance: If at most n−1 of the n replicas fail, then
the search index is preserved. If the master fails, then the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1109

most recent set of updates can be recovered with help from
the client.

We do not guarantee availability if individual trust domains
do not provide availability.
Algorithm. We now explain how we handle updates and
searches and recover from failure (see Figure 6).
Updating a document. To update a document, the client sends
the update along with the new document version number to
the master. The master needs to send the update to the replicas
and increment the version number. Because the master might
fail while sending the update to the replicas, the master runs
two-phase commit [80] with the replicas to ensure that all the
replicas receive the update and associated version number. We
do not need to worry about replica failures during two-phase
commit (and so do not need multiple replicas in each trust
domain); if a replica fails, the watchdog service will detect
this and coordinate recovery as described below.
Searching for a keyword. To search for a keyword, the client
first needs to learn the current version numbers from themaster
(both the overall system version number and the corresponding
individual document version numbers). If the client has a
relatively recent set of document version numbers, the master
can simply send updates for a few of the document version
numbers, making the overall bandwidth much smaller than
the number of documents. The client then generates a search
query for ` of the replicas. The replicas execute the search on
the version of the index corresponding to the system version
number sent by the client.
Coordinating recovery. We rely on the watchdog service to
detect failures. If at least ` of the replicas across ` different
trust domains remain online, clients can continue searching.
Otherwise, we can start new replicas and transfer the state
from a remaining replica to the new replica, even if the replicas
are in different trust domains. This will cause a slight delay
for clients waiting to search, but is safe due to the underlying
cryptographic protocol (as discussed above). We do not need to
worry if the master fails, because the master does not respond
to the client until it has propagated the update to the replicas.
If a replica fails during two-phase commit, the master can roll
back the two-phase commit and then start another replica in
the same trust domain and copy the state across trust domains.

5.2 Batching
Rather than running two-phase commit between themaster and
replicas for every update, we can apply batching to amortize
the cost. Instead of immediately sending an update to the
replicas, the master aggregates a batch of updates and, when
this batch reaches a certain size or a certain amount of time
has elapsed, it runs two-phase commit with the replicas to
transfer the current batch of data.

However, now that the master is responding to clients before
sending the updates to the replicas, we need to ensure that the
master does not lose state when it fails. In particular, the master
needs to be able to recover the updates that were waiting to be

committed to the replicas. The master does this by comparing
the individual document version numbers at the replicas with
those at the filesystem server. For each document where the
version numbers differ, the master can request an update from
the next client to come online with access to that document.

6 Implementation
We implemented DORY in ∼5,000 lines of C (for the dis-
tributed point function and other low-level cryptographic op-
erations) and Go (for the networking and consensus). We used
the OpenSSL library, and our DPF implementation closely
follows the one in Express [43]. We instantiate the PRF using
AES. We also implemented the DORY client on an Android
Google Pixel 4. In addition to the C code, which we ported
to the mobile platform, we wrote ∼1,200 lines of Java. We
used the tiny AES library [123] to minimize memory usage
in our mobile implementation. Our implementation supports
a single folder and does not include the watchdog service and
coordinated recovery described as part of §5 or the general-
ization to oblivious filesystems described in §4.5. The source
code is available at https://github.com/ucbrise/dory (see
Appendix A for details).
6.1 Parallelism
The linear scan over the search index can be easily parallelized
across both cores and servers because it carries no state from
document to document.
Thread-level parallelism. Since we evaluate the DPF on each
column of the search index, we parallelize the scan operation
by simply assigning each thread a number of columns and
then combining the results computed by each thread.
Server-level parallelism. We can partition the search index
by having different pairs of replicas maintain different parts
of the search index. The client then sends a search query to all
pairs of replicas and simply computes the union of the results.
Replica partitioning improves latency since each replica now
only needs to search over a part of the index instead of the full
index. Each pair of replicas can store part of the search index
for many folders, making it possible to keep search latency
low, but the overall throughput high.
6.2 Fast PRF evaluation
In order to decrypt the search result received from the server,
the client must compute a mask for each individual document.
To reduce the number of PRF evaluations to decrypt, we group
Bloom filter indexes for the same keyword in the same 128-bit
block. This grouping allows the client to decrypt the search
results for one document using a single PRF evaluation. This
does not significantly impact the false positive rate of the
Bloom filter because we can now model a m-bit Bloom filter
storing w words as m/128 independent Bloom filters each
storing 128w/m words.

7 Evaluation
We evaluated DORY to determine (1) how it performs in
comparison to existing techniques and (2) whether it meets

1110 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/ucbrise/dory

Table 7: On the left, Bloom
filter sizes (in bytes) neces-
sary for > 1 expected false
positive assuming an aver-
age of 73.18 keywords per
document where each key-
word hashes to 7 Bloom filter
indexes (Table 7a). On the
right, breakdown of search
latency without parallelism
and end-to-end search la-
tency with parallelism where
p is the degree of server par-
allelism (Table 7b).

Docs BF size

≤ 210 140 B
≤ 211 160 B
≤ 212 180 B
≤ 213 200 B
≤ 214 225 B
≤ 215 250 B
≤ 216 280 B
≤ 217 315 B
≤ 218 350 B
≤ 219 390 B
≤ 220 435 B

(a)

Docs Time breakdown, p=1 (ms) End-to-end latency (ms)
Consensus Client Network Server p=1 p=2 p=4

210 0.73 0.54 58.67 2.68 62.62 61.81 61.51
211 0.73 0.87 58.41 4.11 64.12 62.39 61.89
212 0.73 1.52 57.99 7.09 67.33 64.46 62.92
213 0.73 2.80 58.74 12.03 74.30 68.08 64.78
214 0.75 5.30 77.88 26.24 110.17 75.76 68.59
215 0.76 10.18 80.59 50.97 142.50 112.71 76.76
216 0.81 19.83 100.67 108.78 230.09 147.39 115.50
217 0.86 38.99 119.38 240.45 399.48 243.43 153.56
218 1.19 76.92 142.28 527.67 748.06 428.40 256.15
219 1.78 154.37 151.98 1172.46 1480.59 800.98 454.52
220 2.81 306.34 148.96 2602.83 3060.94 1636.80 862.42

(b)

the requirements outlined by the companies we surveyed. We
consider the following metrics: latency (§7.2), throughput
(§7.3), storage (§7.4), bandwidth (§7.5), and cost (§7.6). We
compare DORY’s performance to two different variations
of DORY as well as plaintext search and a baseline built on
ORAM (§7.1) that provides similar guarantees to those of
DORY. We show that DORY meets the requirements outlined
by the companies we surveyed and outperforms (in some cases,
by orders of magnitude) our ORAM baseline (§7.1).

Experimental setup. We evaluate DORY on AWS using
r5n.4xlarge instances with 128GB of memory and 16 CPUs
for the replicas and the master. We use a c5.large client with
4GBofmemory and2CPUs tomodel a user’s desktopmachine.
We use an Android Pixel 4 to measure the time to search on
a mobile client. We place the two trust domains in different
regions (east-1 and east-2) to ensure that machines are in
different clusters to model different organizations, although in
practice these clusters would likely be geographically close to
maximize performance. All communication occurs over TLS.
We run experiments for a single folder; a real system would
maintain many such folders in parallel.

System parameters from Enron email dataset.We use the
Enron email dataset, which is commonly used to evaluate
searchable encryption schemes [22, 65, 84, 94, 96, 97, 129]
to set Bloom filter sizes for DORY. We leverage the same
standard keyword extraction techniques used in Oblix [94]:
we stemmed the words and removed stopwords and words that
were > 20 or < 4 characters long or contained non-alphabetic
characters. In the over 500K emails, each email has an average
of 73.18 keywords with a standard deviation of 114.89.

Regarding the configuration of the Bloom filters, each
keyword hashes to 7 locations in the Bloom filter, as we found
that it provided a reasonable tradeoff between the time to
perform the linear scan at the server and bandwidth. We choose
the Bloom filter size based on the number of documents in a
folder so that, for every search in that folder, the search results
have less than one false positive document in expectation. The
sizes of the Bloom filters are specified in Table 7a.

7.1 Baselines
We evaluate DORY in comparison to four baselines:
• ORAM baseline: Eliminates search access patterns using
ORAM (expected to incur a significant overhead). With this
baseline, we show how DORY compares to a solution that
provides comparable security guarantees.

• Plaintext search: Searches over a plaintext inverted index
and does not provide any security guarantees (expected to
have much lower overhead than DORY).

• Semihonest DORY: Modifies the DORY protocol to only
provide security against semihonest adversaries (expected
to have lower overhead than DORY).

• LeakyDORY: Modifies the DORYprotocol to allow search
access pattern leakage by using only one trust domain and
querying the replica directly for the indexes corresponding
to a keyword rather than using a DPF (expected to have
lower overhead than DORY).

Semihonest DORY illustrates the overhead of theMAC checks
necessary to defend against malicious adversaries, and leaky
DORY illustrates the overhead of the DPF queries. In all of
the baselines except the ORAM baseline, we use the same
consensus system as in DORY, although for the baselines
where there is only one trust domain (leaky DORY and
plaintext search), the master only needs to send update batches
to a single trust domain (we model this by placing all servers in
the same AWS region). Only the ORAM baseline has security
guarantees comparable to those of DORY.
ORAM baseline. Many academic works [61, 65, 96, 116]
point to an inverted index in ORAM [54,99] as away to achieve
searchable encryption without search access pattern leakage,
making it a natural baseline for searching within a folder.
Traditional ORAM is designed for a single client and requires
the client to maintain ORAM client state hidden from the
server [119]. A separate line ofwork explores extending single-
user constructions to multi-user settings [10, 26, 58, 91–93].
Mayberry et al.’s system [93] is particularly fit for our setting
as it protects mutually trusting clients (clients with access to a
given folder) from a malicious server. For a semi-honest server
or for a malicious server for which we have a mechanism to

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1111

verify the data returned (discussed in §3.4), their protocol
uses a single-user ORAM and requires clients to store the
encrypted ORAM client at the server. To perform an operation,
the client acquires a lock at the server, downloads and decrypts
the ORAM client state, performs the operation, encrypts and
sends back the state, releasing the lock.
Client failures.We observed that the above proposal did not
consider client failures. If a client fails after issuing operations
at the server but before uploading the updated client ORAM
state, the next client’s access may leak search access patterns
(e.g. if it searched for the same word as the previous client).
To handle client failures, we require each client to record a
client “prepare” operation at the server, and if it fails before
completing, the next client can finish the operation.
Eliminating frequency leakage. Popular keywords require
multiple ORAM blocks to store all the document identifiers
containing that keyword. We need to ensure that the number of
blocks accessed doesn’t leak the frequency of a keyword due
to known attacks [102], as DORY does not leak this frequency.
For each search, we fetch the maximum number of blocks
a keyword maps to. Similarly for each keyword we update
in a document, we fetch the maximum number of blocks a
keyword maps to and write back a single block.
Implementation.We implemented our baseline on top of an
existing open-source PathORAM implementation in Go [101].
Evaluation on Enron email dataset. While DORY’s per-
formance relies only on the system parameters and not the
contents of the documents themselves, the performance of
both our ORAM and plaintext search baselines depends on
document contents. We evaluate these baselines using subsets
of the Enron email dataset with the same keyword extraction
techniques described above. To evaluate different numbers
of documents, we take different-sized subsets of the Enron
email dataset. We treat updates as adding an entire email to
the index. Because the Enron email dataset only has ∼ 528K
emails, we do not measure the ORAM and plaintext search
baseline beyond that number of documents.
7.2 Latency
Update latency. Figure 8 shows that the update latency of
DORY is orders of magnitude faster than that of the ORAM
baseline. This holds for both the desktop and mobile clients
(Figure 9). The baseline requires a number of ORAM accesses
(each of which necessitates a round trip) linear in the number
of document keywords. In contrast, DORY simply uploads a
single encrypted Bloom filter. Update latency determines (1)
how long it takes for updates to be reflected in search results
and (2) how long the client must remain online. Neither is a
concern in DORY where updates are processed in less than
1ms, but the ORAM baseline requires clients to remain online
for hours. Note that semihonest DORY has a faster update
time than DORY because the client does not have to generate
a MAC for every bit in the Bloom filter.
Search latency. Table 7b shows the breakdown in search

DORY (p = 1)
DORY (p = 2)
DORY (p = 4)

Semihonest DORY (p = 1)
Leaky DORY (p = 1)
ORAM baseline
Plaintext search

210 215 220

Documents

10−1

101

103

Se
ar
ch

la
te
nc
y
(s
)

0 0.5M 1M
Documents

0

1

2

3

Se
ar
ch

la
te
nc
y
(s
)

210 215 220

Documents

10−2

100

102

104

U
pd

at
e
la
te
nc
y
(s
)

Figure 8: Search latency and up-
date latency. The two figures on
the left use a logarithmic scale on
both axes, and the figure on the
top right uses a linear scale on
both axes (p denotes server par-
allelism). The update latency of
leakyDORYexactlymatches that
of DORY, and the search latency
of semihonest DORY is slightly
less than that of DORY.

Desktop client Mobile client

210 215 220

Documents

0.001
0.01
0.1
1.0

10.0
Se

ar
ch

la
te
nc
y
(s
)

210 215 220

Documents

0.001
0.01
0.1
1.0

U
pd

at
e
la
te
nc
y
(s
)

Figure 9: Latency for mobile client and desktop client. Both plots
use a logarithmic scale on both axes.

latency. As the number of documents increases, the majority
of time is spent performing the linear scan at the server. This
is apparent in Figure 8, where leaky DORY’s search latency
is significantly lower than that of DORY and stays relatively
constant as the number of documents increases due to the fact
that leaky DORY does not need to perform a linear scan.

Despite overheads incurred due to the linear scan, DORY is
orders ofmagnitude faster than the ORAMbaseline. TheMAC
overhead to protect against malicious adversaries is barely
noticeable, as semihonest DORY and DORY have almost
identical search latencies. Mobile clients incur additional
overhead in comparison to desktop clients (the mobile client
spends 5 seconds on client-side processing for 1M documents).
This overhead is below 1 second for 217 documents (Figure 9).

By increasing the degree of parallelism p and partitioning
the search index across replica groups, we can reduce the
server time by roughly a factor of p, as this time is linear in
the number of documents (Figure 8). Parallelism allows us to
reach the target latency set by the companies (Table 2).
7.3 Throughput
DORY achieves significantly higher throughput than the
ORAM baseline (Figure 10). Parallelism improves DORY’s

1112 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

DORY Semihonest DORY
Leaky DORY

ORAM baseline
Plaintext search

210 215 220

Documents

102

100

10−2

10−4O
pe
ra
tio

ns
/s
ec

10% U, 90% S

210 215 220

Documents

102

100

10−2

10−4

50% U, 50% S

210 215 220

Documents

102

100

10−2

10−4

90% U, 10% S

Figure 10: Throughput under a variety of workloads (U indicates
updates,S indicates searches). The performance of semihonestDORY
closely matches that of DORY. All plots use a logarithmic scale on
both axes.

DORY (p = 1) DORY (p = 2) DORY (p = 4)

0.5M 1M
Documents

1x

2x

3x

Re
la
tiv

e
th
ro
ug

hp
ut 10% U, 90% S

0.5M 1M
Documents

1x

2x

3x

50% U, 50% S

0.5M 1M
Documents

1x

2x

3x

90% U, 10% S

Figure 11: Effect of parallelism (p denotes the degree of parallelism)
on throughput fordifferentworkloads (U indicates updates,S indicates
searches).

throughput by roughly a factor of p for larger numbers of
documents (Figure 11). Relative to other workloads, DORY
performs best under update-heavy workloads (updates require
an insertion while searches require a linear scan), and the
ORAM baseline performs best under search-heavy workloads
(searches require fewer ORAM accesses than updates).

7.4 Storage
Server state. Figure 12 shows how DORY uses substantially
less storage space at the server than the ORAM baseline and
storage space comparable to that of a plaintext inverted index.
DORY’s index continues to grow at a constant rate for large
numbers of documents while the index for plaintext search
grows more slowly, making the plaintext search index smaller
than the DORY search index for larger numbers of documents.
Client state. DORY only requires that the client store three
128-bit keys. To generate an update or decrypt a search result,
the client also needs to know the version number for each
document. To minimize bandwidth, the client can optionally
cache the latest version numbers so that it only needs to retrieve
the version numbers that changed. For 45K documents (the
highest average number of documents per user among the
companies we surveyed), storing these version numbers would
require 175.8KB. For 1M documents, storing these would
require 3.84MB. Our ORAM baseline only requires the client
to store a single 128-bit AES key to encrypt and decrypt the
ORAM client, and plaintext search requires no client storage.

DORY Semihonest DORY
Leaky DORY

ORAM baseline
Plaintext search

210 215 220

Documents

100

102

104

106

U
pd

at
e
BW

(K
B
)

210 215 220

Documents

100

102

104

106

Se
ar
ch

BW
(K

B
)

210 215 220

Documents

100

101

102

103

In
de
x
si
ze

(M
B
) Figure 12: Storage space and

bandwidth for DORY in compar-
ison to other baselines. The up-
date bandwidth of leaky DORY
exactly matches that of DORY,
and the search bandwidth of semi-
honest DORY is slightly less than
that of DORY.

7.5 Bandwidth
Search and update bandwidth is also much smaller in DORY
than in the ORAM baseline (Figure 12). The ORAM baseline
incurs a significant overhead by sending the encrypted client
state, but ORAM accesses are responsible for the majority of
the communication. In contrast, the searchbandwidth inDORY
is linear in the number of documents, and the update bandwidth
depends on the size of the Bloom filter. MACs are responsible
for a significant part of the update bandwidth in DORY, which
is why semihonest DORY has much lower update bandwidth.
The difference in search bandwidth between leaky DORY and
DORY is due to the size of the DPF keys; however, unlike
plaintext search, the search bandwidth for both is still linear in
the number of documents. We do not include the bandwidth
to retrieve version numbers for individual document numbers
in DORY, as these version numbers can for the most part be
cached at the client as described above.

Comparison to client index. To evaluate the practicality of a
client-side index instead of DORY, we built an inverted index
over the Enron email dataset using a B+ tree. We found that
the index is 159.9MB and while it is feasible to store this
amount of data, even on a mobile device, synchronization
requires significant bandwidth. One way to keep this data
structure updated would be to require each client to download
the contents of every update. However, this solution requires
the same amount of bandwidth as syncing all the files locally,
which we were trying to avoid in the first place. Instead, we
could keep an encrypted copy of the client index at the server.
Which part of the index is updated leaks information about
the document contents, and so whenever a client performs an
update, it must encrypt the entire index and send it to the server.
Before a client updates or searches, it must download the most
recent copy of the search index. This results in roughly a 365×
increase in search bandwidth and a 3,334× increase in update
bandwidth in comparison to DORY.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1113

7.6 Cost
The companies we surveyed estimated a workload with 50%
updates and 50% searches, and the highest average number of
documents per user reported was 45K. The throughput of two
replicas and a master operating on a folder of 45K documents
under this workload is 19.5 operations/second. One of the
companies reported that active users make roughly 50 updates
per day, and so based on 100 operations per day and the cost
to run a single r5n.4xlarge instance ($1.192/hour), each user
costs roughly $0.0509 per month, well under the maximum
permissible cost per user per month of $0.70-$5.54 reported
by the companies. Depending on the way in which trust is
distributed (see §2.4), trust domains may incur additional
setup and maintenance costs not captured by our calculation.

8 Related Work
Symmetric Searchable Encryption (SSE). A long line of
work has examined the problem of Symmetric Searchable
Encryption (SSE) [23, 25, 35, 37–40, 50, 52, 67, 68, 97, 111,
114,116], summarized in the following surveys [18, 59, 103].
Many of these schemes assume a single user and do not sup-
port efficient revocation, but more importantly, they permit
some search access pattern leakage, opening the door to at-
tacks [22,65,72,84,102,106,129]. SEAL [39] explicitly allows
developers to tradeoff between leakage and performance.
Multi-server SSE and ORAM. Some SSE schemes use
multiple servers to improve efficiency but still permit leakage,
with some providing richer functionality than simple keyword
search [15, 45, 64, 78, 100, 108]. Bösch et al. [19] and Hoang
et al. [62] use multiple servers to hide search access patterns
and improve efficiency. Hoang et al. [62] use a similar table
layout where updates and searches correspond to different
dimensions in the table. However, both schemes do not support
multiple users, assume honest-but-curious servers, and require
expensive updates to hide the document being updated. Our
scheme also has similarities to distributedORAMschemes that
leveragemultiple servers to hide access patterns with improved
efficiency [3, 42, 55, 89, 117]. Implementing search with one
of these schemes would still require clients to perform an
ORAM access for every document keyword during an update.
Multi-user SSE and ORAM. Many existing multi-user
searchable encryption schemes that support fast revocation
use a different key for each user and leverage proxy encryp-
tion [8,13] or pairings [13,74,104,122]. This class of schemes
use deterministic query encryption algorithms that leak search
access patterns. The most efficient ORAM constructions as-
sume a single user, with multi-user ORAMs incurring a much
larger overhead by leveraging expensive tools such as multi-
party computation (MPC) [10, 26, 58, 91, 92].
SSE and ORAM with trusted hardware. One way to im-
prove performance and, in the case of search,potentially reduce
leakage is by leveraging trusted hardware. ZeroTrace [113],
Obliviate [5],ObliDB [44],GhostRider [83],TinyORAM [46],

and Shroud [87] combine oblivious techniques with trusted
hardware. HardIDX [49], Oblix [94], POSUP [60], and Amjad
et al. [6] use trusted hardware specifically for the problem of
searching on encrypted data. Unlike DORY, such solutions
only require a single server, but they necessitate both addi-
tional trust assumptions (due to known side-channel attacks)
and additional deployment costs.
Prior use of DPFs in systems. Splinter [125] uses function
secret sharing (both DPFs and range queries) to allow users
to efficiently make private queries on a public, immutable
database. DURASIFT [45] uses DPFs with MPC across
multiple servers to support boolean expressions of keyword
searches for multiple users without leaking search access
patterns. However, its techniques incur significant overhead
in comparison to ours, and the authors consider thousands
rather than millions of documents. Floram [42] uses DPFs to
implement a distributed-trust ORAM that has linear costs but
fast concrete performance. Metadata-hiding communication
also benefits from DPFs (e.g. Riposte [32] and Express [43]).
BFT consensus and fault-tolerance. BFT consensus [1, 16,
24,33,77] is a classical problem. Priorworkhas explored reduc-
ing the number of participants in BFT consensus by separating
agreement from execution [127], only activating some nodes
when failures are detected [41,69,126], relaxing synchrony as-
sumptions [2,85,105], adopting a hybrid faultmodel [105], and
using an attested, append-only log [29]. A separate line of the-
oretical work considers Byzantine fault-tolerance specifically
for the case of private information retrieval [12,14,47,120]
using information-theoretic tools.
Oblivious systems. ObliviStore [118], Obladi [34],
Opaque [130], Cipherbase [7], and Taostore [112] are prac-
tical systems for obliviously storing and querying data (not
necessarily for the problem of searchable encryption).

9 Conclusion
DORY is an encrypted search system that distributes trust
to meet real-world efficiency and security requirements. By
reexamining the system model, we are able to build a system
that is performant without leaking search access patterns.
Acknowledgments.We would like to thank Zoë Bohn, Henry
Corrigan-Gibbs, Ioannis Demertzis, Saba Eskandarian,Vivian
Fang, David Mazières, Rishabh Poddar, and Wenting Zheng
for providing feedback on early drafts. We also thank the
leadership of Keybase, PreVeil, SpiderOak, Sync, and Tresorit
for generously taking the time to meet with us and discuss their
use cases. We thank the OSDI anonymous reviewers for their
detailed feedback, and our shepherd Andreas Haeberlen for his
working reviewing our camera-ready. This workwas supported
in part by the NSF CISE Expeditions Award CCF-1730628,
and gifts from the Sloan Foundation, Bakar Program, Alibaba,
Amazon Web Services, Ant Financial, Capital One, Ericsson,
Facebook, Futurewei, Google, Intel, Microsoft, Nvidia, Sco-
tiabank, Splunk, and VMware. This work was also supported
by a NSF GRFP fellowship.

1114 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson,M. K. Reiter,

and J. J. Wylie. Fault-scalable byzantine fault-tolerant services.
SOSP, 39(5):59–74, 2005.

[2] I. Abraham, S. Devadas, D. Dolev, K. Nayak, and L. Ren.
Efficient synchronous byzantine consensus. arXiv preprint
arXiv:1704.02397, 2017.

[3] I. Abraham, C. W. Fletcher, K. Nayak, B. Pinkas, and L. Ren.
Asymptotically tight bounds for composing ORAM with PIR.
In PKC, pages 91–120. Springer, 2017.

[4] S. Ackerman. Lavabit email service abruptly
shut down citing government interference, 2013.
https://www.theguardian.com/technology/2013/aug/
08/lavabit-email-shut-down-edward-snowden.

[5] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee. OBLIVIATE:
A Data Oblivious Filesystem for Intel SGX. In NDSS, 2018.

[6] G. Amjad, S. Kamara, and T. Moataz. Forward and backward
private searchable encryption with SGX. In Proceedings of
the 12th European Workshop on Systems Security, pages 1–6,
2019.

[7] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann,
R. Ramamurthy, and R. Venkatesan. Orthogonal security with
cipherbase. In CIDR, 2013.

[8] M. R. Asghar, G. Russello, B. Crispo, and M. Ion. Supporting
complex queries and access policies for multi-user encrypted
databases. InWorkshop on Cloud computing security work-
shop, pages 77–88. ACM, 2013.

[9] M. Backes, C. Cachin, and A. Oprea. Secure key-updating
for lazy revocation. In ESORICS, pages 327–346. Springer,
2006.

[10] M. Backes,A. Herzberg,A. Kate, and I. Pryvalov. Anonymous
ram. In ESORICS, pages 344–362. Springer, 2016.

[11] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and
K. Vaswani. {SPEICHER}: Securing lsm-based key-value
stores using shielded execution. In FAST, pages 173–190,
2019.

[12] K. Banawan and S. Ulukus. The capacity of private informa-
tion retrieval from byzantine and colluding databases. IEEE
Transactions on Information Theory, 65(2):1206–1219, 2018.

[13] F. Bao, R. H. Deng, X. Ding, and Y. Yang. Private query on
encrypted data in multi-user settings. In Information Security
Practice and Experience, pages 71–85. Springer, 2008.

[14] A. Beimel and Y. Stahl. Robust information-theoretic private
information retrieval. In International Conference on Security
in Communication Networks, pages 326–341. Springer, 2002.

[15] S. M. Bellovin and W. R. Cheswick. Privacy-enhanced
searches using encrypted bloom filters. IACR Cryptology
ePrint Archive, 2007.

[16] A. Bessani, J. Sousa, and E. E. Alchieri. State machine
replication for the masses with BFT-SMaRt. In 2014 44th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 355–362. IEEE, 2014.

[17] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In
EUROCRYPT, pages 416–432. Springer, 2003.

[18] C. Bösch, P. Hartel, W. Jonker, and A. Peter. A survey of
provably secure searchable encryption. ACM Computing
Surveys (CSUR), 47(2):1–51, 2014.

[19] C. Bösch, A. Peter, B. Leenders, H. W. Lim, Q. Tang, H.Wang,
P. Hartel, and W. Jonker. Distributed searchable symmetric
encryption. In PST, pages 330–337. IEEE, 2014.

[20] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In
EUROCRYPT, pages 337–367. Springer, 2015.

[21] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing:
Improvements and extensions. In CCS, pages 1292–1303.
ACM, 2016.

[22] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse
attacks against searchable encryption. In CCS, pages 668–679.
ACM, 2015.

[23] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C.
Rosu, and M. Steiner. Dynamic searchable encryption in
very-large databases: data structures and implementation. In
NDSS, volume 14, pages 23–26. Citeseer, 2014.

[24] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance.
In OSDI, volume 99, pages 173–186, 1999.

[25] Y.-C. Chang and M. Mitzenmacher. Privacy preserving
keyword searches on remote encrypted data. In ASIACRYPT,
pages 442–455. Springer, 2005.

[26] W. Chen and R. A. Popa. Metal: A metadata-hiding file
sharing system. In NDSS, 2020.

[27] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private
information retrieval. In FOCS, pages 41–50. IEEE, 1995.

[28] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private
information retrieval. Journal of the ACM, 45(6):965–982,
1998.

[29] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. At-
tested append-only memory: Making adversaries stick to their
word. ACM SIGOPS Operating Systems Review, 41(6):189–
204, 2007.

[30] W. Cohen. Enron email dataset, 2015. http://www.cs.cmu.
edu/~enron/.

[31] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and
scalable computation of aggregate statistics. In NSDI, pages
259–282, 2017.

[32] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte: An
anonymous messaging system handling millions of users. In
Security & Privacy, pages 321–338. IEEE, 2015.

[33] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira.
HQ replication: A hybrid quorum protocol for byzantine fault
tolerance. In OSDI, pages 177–190, 2006.

[34] N. Crooks, M. Burke, E. Cecchetti, S. Harel, R. Agarwal, and
L. Alvisi. Obladi: Oblivious serializable transactions in the
cloud. In OSDI, pages 727–743, 2018.

[35] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Search-
able symmetric encryption: improved definitions and efficient
constructions. Journal of Computer Security, 19(5):895–934,
2011.

[36] E. Dauterman, E. Feng, E. Luo, R. A. Popa, and I. Stoica.
DORY: An encrypted search system with distributed trust.
IACR Cryptology ePrint Archive, 2020:1280, 2020.

[37] I. Demertzis, J. G. Chamani, D. Papadopoulos, and C. Papa-
manthou. Dynamic searchable encryption with small client
storage. In NDSS, 2020.

[38] I. Demertzis, D. Papadopoulos, and C. Papamanthou. Search-
able encryption with optimal locality: Achieving sublogarith-
mic read efficiency. In CRYPTO, 2018.

[39] I. Demertzis, D. Papadopoulos, C. Papamanthou, and S. Shin-
tre. SEAL: Attack mitigation for encrypted databases via
adjustable leakage. In USENIX Security, 2020.

[40] I. Demertzis and C. Papamanthou. Fast searchable encryption
with tunable locality. In SIGMOD, 2017.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1115

https://www.theguardian.com/technology/2013/aug/08/lavabit-email-shut-down-edward-snowden
https://www.theguardian.com/technology/2013/aug/08/lavabit-email-shut-down-edward-snowden
http://www.cs.cmu.edu/~enron/
http://www.cs.cmu.edu/~enron/

[41] T. Distler, C. Cachin, and R. Kapitza. Resource-efficient
byzantine fault tolerance. IEEE transactions on computers,
65(9):2807–2819, 2015.

[42] J. Doerner andA. Shelat. Scaling oram for secure computation.
In CCS, pages 523–535. ACM, 2017.

[43] S. Eskandarian, H. Corrigan-Gibbs,M. Zaharia, and D. Boneh.
Express: Lowering the cost of metadata-hiding commu-
nication with cryptographic privacy. arXiv preprint
arXiv:1911.09215, 2019.

[44] S. Eskandarian and M. Zaharia. ObliDB: oblivious query
processing for secure databases. VLDB, 13(2):169–183, 2019.

[45] B. H. Falk, S. Lu, and R. Ostrovsky. Durasift: A robust,
decentralized, encrypted database supporting private searches
with complex policy controls. In WPES, pages 26–36, 2019.

[46] C. W. Fletcher, L. Ren, A. Kwon, M. Van Dijk, E. Stefanov,
D. Serpanos, and S. Devadas. A low-latency, low-area hard-
ware oblivious RAM controller. In FCCM, pages 215–222.
IEEE, 2015.

[47] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk.
Private information retrieval from codeddatabaseswith collud-
ing servers. SIAM Journal on Applied Algebra and Geometry,
1(1):647–664, 2017.

[48] K. E. Fu. Group sharing and random access in cryptographic
storage file systems. PhD thesis, Massachusetts Institute of
Technology, 1999.

[49] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum,
and A.-R. Sadeghi. HardIDX: Practical and secure index with
SGX. In IFIP Annual Conference on Data and Applications
Security and Privacy, pages 386–408. Springer, 2017.

[50] S. Garg, P. Mohassel, and C. Papamanthou. Tworam: efficient
oblivious ram in two rounds with applications to searchable
encryption. In CRYPTO, pages 563–592. Springer, 2016.

[51] N. Gilboa and Y. Ishai. Distributed point functions and their
applications. In EUROCRYPT, pages 640–658. Springer,
2014.

[52] E.-J. Goh et al. Secure indexes. IACR Cryptology ePrint
Archive, 2003:216, 2003.

[53] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh. Sirius:
Securing remote untrusted storage. In NDSS, volume 3, pages
131–145, 2003.

[54] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious RAMs. Journal of the ACM (JACM),
43(3):431–473, 1996.

[55] S. D. Gordon, J. Katz, and X. Wang. Simple and efficient
two-server ORAM. In ASIACRYPT, pages 141–157. Springer,
2018.

[56] D. Grolimund, L. Meisser, S. Schmid, and R. Wattenhofer.
Cryptree: A folder tree structure for cryptographic file systems.
In SRDS, pages 189–198. IEEE, 2006.

[57] P. Grubbs, T. Ristenpart, and V. Shmatikov. Why your en-
crypted database is not secure. In HotOS, pages 162–168,
2017.

[58] A. Hamlin, R. Ostrovsky, M. Weiss, and D. Wichs. Private
anonymous data access. In EUROCRYPT, pages 244–273.
Springer, 2019.

[59] A. Hamlin, N. Schear, E. Shen, M. Varia, S. Yakoubov, and
A. Yerukhimovich. Cryptography for big data security. Taylor
& Francis LLC, CRC Press, 2016.

[60] T. Hoang, M. O. Ozmen, Y. Jang, and A. A. Yavuz. Hardware-
supported ORAM in effect: Practical oblivious search and
update on very large dataset. PETS, (1):172–191, 2019.

[61] T. Hoang,A.A. Yavuz,F. B. Durak, and J. Guajardo. Oblivious
dynamic searchable encryption on distributed cloud systems.
In IFIP Annual Conference on Data and Applications Security
and Privacy, pages 113–130. Springer, 2018.

[62] T. Hoang, A. A. Yavuz, and J. Guajardo. Practical and se-
cure dynamic searchable encryption via oblivious access on
distributed data structure. In CCS, pages 302–313. ACM,
2016.

[63] Y. Hu, S. Kumar, and R. A. Popa. Ghostor: Toward a secure
data-sharing system from decentralized trust. In NSDI, pages
851–877, 2020.

[64] Y. Ishai, E. Kushilevitz, S. Lu, and R. Ostrovsky. Private
large-scale databases with distributed searchable symmetric
encryption. In Cryptographers’ Track at the RSA Conference,
pages 90–107. Springer, 2016.

[65] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern
disclosure on searchable encryption: Ramification, attack and
mitigation. In NDSS, volume 20, page 12. Citeseer, 2012.

[66] M. Kallahalla, E. Riedel, R. Swaminathan,Q.Wang, andK. Fu.
Plutus: Scalable secure file sharing on untrusted storage. In
FAST, volume 3, pages 29–42, 2003.

[67] S. Kamara and C. Papamanthou. Parallel and dynamic search-
able symmetric encryption. In Financial Cryptography and
Data Security, pages 258–274. Springer, 2013.

[68] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic search-
able symmetric encryption. In CCS, pages 965–976. ACM,
2012.

[69] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V.
Mohammadi, W. Schröder-Preikschat, and K. Stengel. Cheap-
BFT: resource-efficient byzantine fault tolerance. In EuroSys,
pages 295–308, 2012.

[70] N. Karapanos, A. Filios, R. A. Popa, and S. Capkun. Verena:
End-to-end integrity protection for web applications. In
security & Privacy, pages 895–913. IEEE, 2016.

[71] J. Katz and A. Y. Lindell. Aggregate message authentication
codes. InCryptographers’ Track at the RSA Conference, pages
155–169, 2008.

[72] G. Kellaris, G. Kollios, K. Nissim, and A. O’neill. Generic
attacks on secure outsourced databases. In CCS, pages 1329–
1340, 2016.

[73] Keybase. https://keybase.io/, Accessed 26 May 2020.
[74] A. Kiayias, O. Oksuz, A. Russell, Q. Tang, and B. Wang.

Efficient encrypted keyword search for multi-user data sharing.
In ESORICS, pages 173–195. Springer, 2016.

[75] B. H. Kim and D. Lie. Caelus: Verifying the consistency of
cloud services with battery-powered devices. In Security &
Privacy, pages 880–896. IEEE, 2015.

[76] S. Korokithakis. Writing a full-text search engine using bloom
filters, December 2013. https://www.stavros.io/posts/
bloom-filter-search-engine/.

[77] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: speculative byzantine fault tolerance. SOSP,
41(6):45–58, 2007.

[78] M.Kuzu,M. S. Islam,andM.Kantarcioglu. Efficient similarity
search over encrypted data. In 2012 IEEE 28th International
Conference on Data Engineering, pages 1156–1167. IEEE,
2012.

[79] L. Lamport, R. Shostak, andM. Pease. The byzantine generals
problem. ACM Transactions on Programming Languages and
Systems, 4(3):382–401, 1982.

1116 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://keybase.io/
https://www.stavros.io/posts/bloom-filter-search-engine/
https://www.stavros.io/posts/bloom-filter-search-engine/

[80] B. Lampson and D. B. Lomet. A new presumed commit
optimization for two phase commit. In VLDB, volume 93,
pages 630–640, 1993.

[81] A. Langley, E. Kasper, and B. Laurie. Certificate transparency.
Internet Engineering Task Force, 2013. https://tools.ietf.
org/html/rfc6962.

[82] J. Li, M. N. Krohn, D. Mazieres, and D. E. Shasha. Secure
untrusted data repository (SUNDR). In OSDI, volume 4,
pages 9–9, 2004.

[83] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi.
GhostRider: A hardware-software system for memory trace
oblivious computation. ASPLOS, 50(4):87–101, 2015.

[84] C. Liu, L. Zhu, M. Wang, and Y.-A. Tan. Search pattern leak-
age in searchable encryption: Attacks and new construction.
Information Sciences, 265:176–188, 2014.

[85] S. Liu, P. Viotti, C. Cachin,V. Quéma, andM. Vukolić. {XFT}:
Practical fault tolerance beyond crashes. In OSDI, pages 485–
500, 2016.

[86] M. Lokhava, G. Losa, D. Mazières, G. Hoare, N. Barry,
E. Gafni, J. Jove, R. Malinowsky, and J. McCaleb. Fast
and secure global payments with stellar. In SOSP, pages
80–96, 2019.

[87] J. R. Lorch,B. Parno,J.Mickens,M.Raykova,and J. Schiffman.
Shroud: Ensuring private access to large-scale data in the data
center. In FAST, pages 199–213, 2013.

[88] T. Lovell. Swedish healthcare advice line stored 2.7 million
patient phone calls on unprotected web server, February
20 2019. https://www.healthcareitnews.com/news/
swedish-healthcare-advice-line-stored-27-million-
patient-phone-calls-unprotected-web-server.

[89] S. Lu and R. Ostrovsky. Distributed oblivious RAM for secure
two-party computation. In TCC, pages 377–396. Springer,
2013.

[90] E. MacBrough. Cobalt: BFT governance in open networks.
arXiv preprint arXiv:1802.07240, 2018.

[91] M.Maffei, G. Malavolta,M. Reinert, and D. Schröder. Privacy
and access control for outsourced personal records. In Security
& Privacy, pages 341–358. IEEE, 2015.

[92] M. Maffei, G. Malavolta, M. Reinert, and D. Schröder. Mali-
ciously secure multi-client oram. In ACNS, pages 645–664.
Springer, 2017.

[93] T.Mayberry,E.-O. Blass,andG.Noubir. Multi-UserOblivious
RAM Secure Against Malicious Servers. IACR Cryptology
ePrint Archive, 2015:121, 2015.

[94] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa.
Oblix: An efficient oblivious search index. In Security &
Privacy, pages 279–296. IEEE, 2018.

[95] E. Nakashima. Russian government hackers penetrated DNC,
stole opposition research on Trump, June 14 2016. https:
//www.washingtonpost.com/world/national-security/
russian-government-hackers-penetrated-dnc-stole-
opposition-research-on-trump/2016/06/14/cf006cb4-
316e-11e6-8ff7-7b6c1998b7a0_story.html.

[96] M. Naveed. The Fallacy of Composition of Oblivious RAM
and Searchable Encryption. IACR Cryptology ePrint Archive,
2015:668, 2015.

[97] M. Naveed, M. Prabhakaran, and C. A. Gunter. Dynamic
searchable encryption via blind storage. In Security & Privacy,
pages 639–654. IEEE, 2014.

[98] C. Osborne. Fortune 500 company leaked 264gb
of client, payment data, June 7 2019. https:
//www.zdnet.com/article/veteran-fortune-500-
company-leaked-264gb-in-client-payment-data/.

[99] R. Ostrovsky. Efficient computation on oblivious RAMs. In
STOC, pages 514–523. ACM, 1990.

[100] V. Pappas, M. Raykova, B. Vo, S. M. Bellovin, and T. Malkin.
Private search in the real world. In ACSAC, pages 83–92,
2011.

[101] https://github.com/aricrocuta/oram2pc, Accessed 14
April 2020.

[102] R. Poddar, S. Wang, J. Lu, and R. A. Popa. Practical volume-
based attacks on encrypted databases. 2020.

[103] G. S. Poh, J.-J. Chin, W.-C. Yau, K.-K. R. Choo, and M. S.
Mohamad. Searchable symmetric encryption: designs and
challenges. ACM Computing Surveys (CSUR), 50(3):1–37,
2017.

[104] R. A. Popa andN. Zeldovich. Multi-key searchable encryption.
IACR Cryptology ePrint Archive, 2013:508, 2013.

[105] D. Porto, J. Leitão, C. Li, A. Clement, A. Kate, F. Junqueira,
and R. Rodrigues. Visigoth fault tolerance. In EuroSys, pages
1–14, 2015.

[106] D. Pouliot and C. V. Wright. The shadow nemesis: Infer-
ence attacks on efficiently deployable, efficiently searchable
encryption. In CCS, pages 1341–1352, 2016.

[107] Preveil. https://www.preveil.com/, Accessed 26 May
2020.

[108] M. Raykova, B. Vo, S. M. Bellovin, and T. Malkin. Secure
anonymous database search. InWorkshop on Cloud computing
security, pages 115–126, 2009.

[109] C. Reichert. Payroll data for 29,000 facebook
employees stolen, December 13 2019. https:
//www.cnet.com/news/payroll-data-of-29000-
facebook-employees-reportedly-stolen/.

[110] E. Riedel, M. Kallahalla, and R. Swaminathan. A framework
for evaluating storage system security. In FAST, volume 2,
pages 15–30, 2002.

[111] P. Rizomiliotis and S. Gritzalis. ORAM based forward pri-
vacy preserving dynamic searchable symmetric encryption
schemes. In Proceedings of the 2015 ACM Workshop on
Cloud Computing Security Workshop, pages 65–76. ACM,
2015.

[112] C. Sahin, V. Zakhary, A. El Abbadi, H. Lin, and S. Tessaro.
Taostore: Overcoming asynchronicity in oblivious data storage.
In Security & Privacy, pages 198–217. IEEE, 2016.

[113] S. Sasy,S. Gorbunov,andC.W. Fletcher. ZeroTrace: Oblivious
Memory Primitives from Intel SGX. IACR ePrint, 2017:549,
2017.

[114] D. X. Song, D. Wagner, and A. Perrig. Practical techniques
for searches on encrypted data. In Security & Privacy, pages
44–55. IEEE, 2000.

[115] Spideroak. https://spideroak.com/, Accessed 26 May
2020.

[116] E. Stefanov, C. Papamanthou, and E. Shi. Practical dynamic
searchable encryptionwith small leakage. InNDSS,volume 71,
pages 72–75, 2014.

[117] E. Stefanov and E. Shi. Multi-cloud oblivious storage. In
CCS, pages 247–258. ACM, 2013.

[118] E. Stefanov and E. Shi. Oblivistore: High performance obliv-
ious cloud storage. In Security & Privacy, pages 253–267.
IEEE, 2013.

[119] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu,
and S. Devadas. Path ORAM: an extremely simple oblivious
RAM protocol. In CCS, pages 299–310. ACM, 2013.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1117

https://tools.ietf.org/html/rfc6962
https://tools.ietf.org/html/rfc6962
https://www.healthcareitnews.com/news/swedish-healthcare-advice-line-stored-27-million-patient-phone-calls-unprotected-web-server
https://www.healthcareitnews.com/news/swedish-healthcare-advice-line-stored-27-million-patient-phone-calls-unprotected-web-server
https://www.healthcareitnews.com/news/swedish-healthcare-advice-line-stored-27-million-patient-phone-calls-unprotected-web-server
https://www.washingtonpost.com/world/national-security/russian-government-hackers-penetrated-dnc-stole-opposition-research-on-trump/2016/06/14/cf006cb4-316e-11e6-8ff7-7b6c1998b7a0_story.html
https://www.washingtonpost.com/world/national-security/russian-government-hackers-penetrated-dnc-stole-opposition-research-on-trump/2016/06/14/cf006cb4-316e-11e6-8ff7-7b6c1998b7a0_story.html
https://www.washingtonpost.com/world/national-security/russian-government-hackers-penetrated-dnc-stole-opposition-research-on-trump/2016/06/14/cf006cb4-316e-11e6-8ff7-7b6c1998b7a0_story.html
https://www.washingtonpost.com/world/national-security/russian-government-hackers-penetrated-dnc-stole-opposition-research-on-trump/2016/06/14/cf006cb4-316e-11e6-8ff7-7b6c1998b7a0_story.html
https://www.washingtonpost.com/world/national-security/russian-government-hackers-penetrated-dnc-stole-opposition-research-on-trump/2016/06/14/cf006cb4-316e-11e6-8ff7-7b6c1998b7a0_story.html
https://www.zdnet.com/article/veteran-fortune-500-company-leaked-264gb-in-client-payment-data/
https://www.zdnet.com/article/veteran-fortune-500-company-leaked-264gb-in-client-payment-data/
https://www.zdnet.com/article/veteran-fortune-500-company-leaked-264gb-in-client-payment-data/
https://github.com/aricrocuta/oram2pc
https://www.preveil.com/
https://www.cnet.com/news/payroll-data-of-29000-facebook-employees-reportedly-stolen/
https://www.cnet.com/news/payroll-data-of-29000-facebook-employees-reportedly-stolen/
https://www.cnet.com/news/payroll-data-of-29000-facebook-employees-reportedly-stolen/
https://spideroak.com/

[120] H. Sun and S. A. Jafar. The capacity of robust private infor-
mation retrieval with colluding databases. IEEE Transactions
on Information Theory, 64(4):2361–2370, 2017.

[121] Sync. https://www.sync.com/, Accessed 26 May 2020.
[122] Q. Tang. Nothing is for free: security in searching shared and

encrypted data. Transactions on Information Forensics and
Security, 9(11):1943–1952, 2014.

[123] Tiny AES in C. https://github.com/kokke/tiny-AES-c,
Accessed 24 May 2020.

[124] Tresorit. https://tresorit.com/, Accessed 26 May 2020.
[125] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and

M. Zaharia. Splinter: Practical private queries on public data.
In NSDI, pages 299–313, 2017.

[126] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cec-
chet. ZZ and the art of practicalBFT execution. InProceedings
of the sixth conference on Computer systems, pages 123–138,
2011.

[127] J.Yin,J.-P.Martin,A.Venkataramani,L.Alvisi,andM.Dahlin.
Separating agreement from execution for byzantine fault tol-
erant services. In SOSP, pages 253–267, 2003.

[128] E. Yuan. Zoom acquires keybase and announces goal of
developing the most broadly used enterprise end-to-end
encryption offering, May 7 2020. https://blog.zoom.us/
wordpress/2020/05/07/zoom-acquires-keybase-and-
announces-goal-of-developing-the-most-broadly-
used-enterprise-end-to-end-encryption-offering/.

[129] Y. Zhang, J. Katz, and C. Papamanthou. All your queries are
belong to us: The power of file-injection attacks on searchable
encryption. In USENIX Security, pages 707–720, 2016.

[130] W. Zheng,A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez,
and I. Stoica. Opaque: An oblivious and encrypted distributed
analytics platform. In NSDI, pages 283–298, 2017.

A Artifact Appendix
A.1 Abstract
Our DORY prototype is an encrypted search system that splits
trust between multiple servers in order to efficiently hide
search access patterns from a malicious attacker that controls
all but one of the servers. We support parallelism across
multiple servers in order to reduce search latency and increase
throughput. DORY is written in a combination of C (for the
distributed point function and other low-level cryptographic
primitives) and Go (for the networking and consensus) for
approximately 5,000 lines of code. Our experiment scripts use
AWS EC2 instances. Our artifact is available here:

https://github.com/ucbrise/dory

A.2 Artifact check-list
• Data set: Enron email dataset used to choose system
parameters and set sample documents.

• Metrics: Latency, throughput
• Experiments: Search latency breakdown, search latency
with parallelism, search throughput with parallelism

• Required disk space: 18MB
• Expected experiment run time: Approximately 4 hours
• Public link: https://github.com/ucbrise/dory

• Code licenses: Apache v2

A.3 Description
A.3.1 How to access
Our Amazon AWS AMI is public (the AMI IDs for different
regions are set in our scripts). See Appendix A.4 for instruc-
tions on running scripts for configuring security groups and
the key pair as well as starting a cluster.
A.3.2 Software dependencies
We use the hashicorpmsgpack library (https://github.com/
hashicorp/go-msgpack) for parsing messages and libstem-
mer (http://snowball.tartarus.org/download.html) for
stemming keywords. We build on the DPF implementation
in Express [43] (https://github.com/SabaEskandarian/
Express). We also use the OpenSSL library for low-level
cryptographic primitives.
A.3.3 Data sets
The Bloom filter size in our experiments is based on statistics
from the Enron email dataset [30] (see Table 7a). The sample
documents to interactively search over in sample_docs/ are
also from the Enron email dataset.

A.4 Installation
The instructions for setting up the Amazon AWS
security groups and key pair are available here:
https://github.com/ucbrise/dory#setting-up-aws-

security-groups-and-keypairs. The instructions for
starting a cluster of EC2 instances using our public AMIs are
available here: https://github.com/ucbrise/dory#setup.
We use r5n.4xlarge instances in different regions that
are geographically close (east-1 and east-2). We also
provide instructions for building from source here: https:
//github.com/ucbrise/dory#building-from-source.

A.5 Experiment workflow
To start running experiments, the reviewer should first create a
cluster (Appendix A.4). Each figure (or group of figures) repro-
duced has a corresponding script to run the experiment. Each
figure reproduced has another script to plot the data collected.
Details are available here: https://github.com/ucbrise/
dory#running-experiments. After running experiments, the
reviewer should teardown the cluster following instructions
here: https://github.com/ucbrise/dory#setup.

Because the ORAM baseline experiments in our paper take
approximately a week to run, we only reproduce two data
points (1,024 and 2,048 documents), making the experiment
take a little over an hour.

A.6 Evaluation and expected result
The above instructions reproduce Table 7b, Figure 8, Sec-
tion 7.2, Figure 10, and Figure 11. There may be some vari-
ation from the figures in the paper based on how long the
experiments are allowed to run.

Our scripts plot the figures using the ORAM baseline data
we collected ourselves, as the experiments we provide for
reviewers only reproduce two data points. Reviewers can

1118 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.sync.com/
https://github.com/kokke/tiny-AES-c
https://tresorit.com/
https://blog.zoom.us/wordpress/2020/05/07/zoom-acquires-keybase-and-announces-goal-of-developing-the-most-broadly-used-enterprise-end-to-end-encryption-offering/
https://blog.zoom.us/wordpress/2020/05/07/zoom-acquires-keybase-and-announces-goal-of-developing-the-most-broadly-used-enterprise-end-to-end-encryption-offering/
https://blog.zoom.us/wordpress/2020/05/07/zoom-acquires-keybase-and-announces-goal-of-developing-the-most-broadly-used-enterprise-end-to-end-encryption-offering/
https://blog.zoom.us/wordpress/2020/05/07/zoom-acquires-keybase-and-announces-goal-of-developing-the-most-broadly-used-enterprise-end-to-end-encryption-offering/
https://github.com/ucbrise/dory
https://github.com/ucbrise/dory
https://github.com/hashicorp/go-msgpack
https://github.com/hashicorp/go-msgpack
http://snowball.tartarus.org/download.html
https://github.com/SabaEskandarian/Express
https://github.com/SabaEskandarian/Express
https://github.com/ucbrise/dory#setting-up-aws-security-groups-and-keypairs
https://github.com/ucbrise/dory#setting-up-aws-security-groups-and-keypairs
https://github.com/ucbrise/dory#setup
https://github.com/ucbrise/dory#building-from-source
https://github.com/ucbrise/dory#building-from-source
https://github.com/ucbrise/dory#running-experiments
https://github.com/ucbrise/dory#running-experiments
https://github.com/ucbrise/dory#setup

compare the two data points we reproduce to the data we
collected to verify that the data matches up.
More detailed instructions on running experiments and

interpreting results are available here: https://github.com/
ucbrise/dory#running-experiments.
A.7 Experiment customization
Reviewers can configure experiments to run for more trials,
run for different numbers of documents, or use different Bloom
filter sizes.
A.8 Notes
We implement the DORY search protocol as described in the
body of the paper, and our implementation does not include a

complementary end-to-end encrypted filesystem that could
use or interface with DORY. We support keyword search with
a small, configurable number of false positives (we do not
support regular expressions or other advanced search features).

A.9 AE Methodology

Submission, reviewing and badging methodology:

https://www.usenix.org/conference/osdi20/call-for-

artifacts

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1119

https://github.com/ucbrise/dory#running-experiments
https://github.com/ucbrise/dory#running-experiments
https://www.usenix.org/conference/osdi20/call-for-artifacts
https://www.usenix.org/conference/osdi20/call-for-artifacts

SafetyPin: Encrypted Backups with Human-Memorable Secrets

Emma Dauterman
UC Berkeley

Henry Corrigan-Gibbs
EPFL and MIT CSAIL

David Mazières
Stanford

Abstract.Wepresent the design and implementation of Safety-
Pin, a system for encrypted mobile-device backups. Like ex-
isting cloud-based mobile-backup systems, including those
of Apple and Google, SafetyPin requires users to remember
only a short PIN and defends against brute-force PIN-guessing
attacks using hardware security protections. Unlike today’s
systems, SafetyPin splits trust over a cluster of hardware secu-
rity modules (HSMs) in order to provide security guarantees
that scale with the number of HSMs. In this way, SafetyPin
protects backed-up user data even against an attacker that
can adaptively compromise many of the system’s constituent
HSMs. SafetyPin provides this protection without sacrific-
ing scalability or fault tolerance. Decentralizing trust while
respecting the resource limits of today’s HSMs requires a syn-
thesis of systems-design principles and cryptographic tools.
We evaluate SafetyPin on a cluster of 100 low-cost HSMs and
show that a SafetyPin-protected recovery takes 1.01 seconds.
To process 1B recoveries a year, we estimate that a SafetyPin
deployment would need 3,100 low-cost HSMs.

1 Introduction
Modern mobile phones and tablets back up sensitive data

to the cloud. To protect users’ privacy, this data must be en-
crypted under keys that are not available to the cloud provider.
Unfortunately, with 3.8 billion smartphone users, it is imprac-
tical to expect them all to store, say, a 128-bit AES backup
key. Not everyone has a computer, or trustworthy friends who
can keep shares of a backup key, or even a safe place to store a
backup key on paper. As a result,mobile OSes have fallen back
to protecting backups with the least common denominator:
device screen-lock PINs. Using PINs is good for security
because a user’s screen-lock PIN never leaves her device (so
the cloud provider never learns it). Using PINs is good for
usability because users generally remember them.

Unfortunately, PINs have such low entropy (e.g, six decimal
digits) that no feasible amount of key stretching can protect
against brute-force PIN-guessing attacks. Instead, modern
backup systems—such as those from Apple [47], Google [82],
and Signal [55]—rely on hardware-security modules (HSMs)
in their data centers to thwart brute-force attacks. Specifically,
devices encrypt their backup keys under the public keys of
HSMs, but each device includes a hash of its screen-lock PIN
as part of the plaintext. HSMs return decrypted plaintext only
to clients that can supply this PIN hash. Furthermore, HSMs
limit the number of decryption attempts for any given user

Figure 1: Our cluster of 100 low-cost hardware security modules
(SoloKeys [72]) on which we evaluate SafetyPin.

account. For fault tolerance, a device typically encrypts its
backup key to the public keys of five HSMs, allowing any one
of the five to recover the backup key.

This status quo still falls short of acceptable privacy for two
reasons. First, HSMs are not perfect, yet each HSM in these
systems is a single point of security failure for millions of
users’ backup keys. Second, these systems make it difficult for
clients to detect security breaches. For instance, if a malicious
insider working in a data center physically steals an HSM, then
to anyone outside the company it looks like an unremarkable
single hardware failure. Alternatively, if an insider successfully
guesses someone’s PIN, the victim may have no idea her
backup was ever compromised.
This paper presents SafetyPin, a PIN-based encrypted-

backup system with stronger security properties. The key
idea behind SafetyPin is that recovering any user’s backed-up
data either requires (a) guessing the user’s PIN or (b) compro-
mising a very large number of HSMs—e.g., 6% of all HSMs
operated by a provider. (The 6% figure here is a tunable system
parameter.) Such large-scale attacks would typically need to
span multiple data centers, be harder for insiders to pull off
undetected against physical devices, cost more, and also likely
cause service disruptions visible to end users.
One way to achieve SafetyPin’s security goal would be

to threshold-encrypt the client’s hashed PIN and backup
key in such a way that decrypting the client’s backup key
would require the participation of 6% of all HSMs in the
system. Unfortunately, this approach lacks scalability. If each
client recovering a backup must interact with 6% of the
system’sHSMs, addingmoreHSMs improves securitywithout
improving throughput. As the number of HSMs in the system
increases, we would like the system’s overall throughput to
increase in tandem with its security (i.e., the attacker’s cost).

To achieve scalability, SafetyPin takes a different approach:

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1121

devices threshold-encrypt their backup keys to a small cluster
of n HSMs such that decryption requires the participation of
most HSMs in the cluster. The cluster size n is independent of
the total number of HSMs in the system, and depends on both
the fraction of compromised HSMs the system can tolerate
and the fraction of HSMs that can fail-stop. (For example,
to tolerate the compromise of 6% of HSMs where half of
a cluster is allowed to fail-stop, we can set the cluster size
n = 40.) This design achieves our scalability goal, since each
device need only communicate with a small fixed number of
HSMs during recovery. This design also achieves our security
goal because the cluster of n HSMs that can decrypt a client’s
backup depends on the client’s secret PIN, via a primitive we
introduce called location-hiding encryption. Hence, even if
an attacker compromises 6% of the HSMs in the system as a
whole, the chances that the attacker compromises a “useful”
set of HSMs—i.e., at least half of the HSMs in the device’s
chosen cluster—is very small. More precisely, we show that
if the total number of HSMs in the system is large enough
(a few hundred or more), the probability that an attacker can
decrypt a backup via HSM compromise is not much higher
than the probability of simply guessing the client’s PIN.

Inmodern backup systems, eachHSMonly needs tomonitor
the number of PIN attempts for a small subset of users, but
because of our location-hiding encryption primitive, every
HSM needs to be able to verify the number of PIN attempts for
every user. To maintain this information scalably, the HSMs
use a new type of distributed log. Third parties can monitor
this log to alert users whenever a backup-recovery attempt
is underway. Since a compromised service provider may see
which HSMs a mobile device interacts with during recovery
(and could compromise those HSMs to recover the users’
backed-up data), HSMs revoke their ability to decrypt backups
after completing the recovery process. Implementing this
revocation requires adapting “puncturable encryption” [38]
to storage-limited HSMs. While our prototype is focused
on PIN-protected backups, these primitives have potentially
broader applicability to problems such as private storage in
peer-to-peer systems and cryptocurrency “brain wallets.”

We implementedSafetyPin on low-costSoloKeyHSMs [72].
We evaluate the system using a cluster of 100 SoloKeys (Fig-
ure 1) and an Android phone (representing the client device).
Generating a recovery ciphertext on the client, excluding the
time to encrypt the disk image, takes 0.37 seconds. To process
1B recoveries a year, or 123K recoveries per hour, we estimate
that we would need 3,100 SoloKeys. In a SafetyPin deploy-
ment of 3,100 HSMs, tolerating the compromise of 6% of the
HSMs (i.e., 194 HSMs), the client must interact with a cluster
of 40 HSMs during recovery. Running our backup-recovery
protocol across a cluster of this size takes 1.01 seconds.
Limitations.A limitation of SafetyPin is that the set of HSMs
a device uses for recovery can leak information about the
user’s PIN. In particular, an attacker who controls the data
center can learn a salted hash of the user’s PIN during recovery.

This is unfortunate in the common case that people re-use
the same PIN after recovery [23, 42, 32, 70]. We discuss one
mitigation in Section 8. Also, while it is possible to detect
when PINs can safely be re-used, we have not yet implemented
this functionality.

In addition, SafetyPin is more expensive than today’s PIN-
based backup systems. SafetyPin requires the data center
operator to operate a much larger fleet of HSMs (roughly 50−
100× larger) than the standard HSM-based backup systems
require. SafetyPin clients must also download roughly 2MB of
keying material per day in a SafetyPin deployment supporting
one billion recoveries per year, due to the periodic rotation of
large HSM keys. Even so,we expect that the cost of storing and
transferring disk images (GBs/user) will dwarf these costs.

2 The setting
Entities.Our encrypted-backup system involves three entities,
whose roles we describe here.
Client. Initially, the client holds (1) a usernamewith the service
provider, (2) a human-memorable passphrase or PIN, (3) a
disk image to be backed up, and (4) the public keys of the
service provider’s HSMs. Later on, the client should be able to
recover her backed-up data using only her username, her PIN,
and access to the other components of the backup system.
In SafetyPin, as in today’s PIN-based backup systems,

security depends on the client having access to the HSMs’
true public keys: If a malicious service provider can swap out
the HSMs’ true public keys for its own public keys without
detection, the service provider can immediately break security.
Using a distributed log (Section 6) can ensure that all clients see
a common set of HSM public keys, to prevent targeted attacks.
Hardware-attestation techniques, as used in the FIDO [67]
and SGX [44] specs, can provide another defense.
We also assume the provider has traditional account au-

thentication (e.g., Gmail passwords) to prevent random third
parties from consuming PIN guesses, but we omit this from
the discussion for simplicity.
Service provider. The service provider offers the encrypted-
backup service to a pool of clients and it maintains the data
centers in which the backup system runs. For example, the
service provider could be a mobile-phone vendor, such as
Apple or Google. The service provider’s data centers contain
the network infrastructure that connects the HSMs. They also
contain large amounts of (potentially untrustworthy) storage
and computing resources. Our security properties will hold
against a service provider that becomes compromised at any
point after the system is set up.
Hardware security modules (HSMs). The service provider’s
data centers contain thousands of hardware security modules.
An HSM is a tamper-resistant computing device meant for
storing cryptographic secrets. HSMs have fully programmable
processors but are typically resource-poor (see Table 2). It
is possible to lock an HSM’s firmware before deployment,

1122 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Device Price gx /sec. Storage FIPS

SoloKey [72] $20 8 256 KB?
YubiHSM 2 [84] $650 14 126 KB

SafeNet A700 [68] $18,468 2,000 2,048 KB X

Intel i7-8569U (CPU) $431 22,338 n/a

Table 2: Hardware security modules offer physical security protec-
tions but are computationally weak compared to a standard CPU.
The gx /sec is NIST P256 elliptic-curve point-multiplications per second.
“FIPS?” refers to whether the device meets the FIPS 140-2 standard for HSMs.
(? The 256 KB storage on the SoloKey is shared between code and data.)

which makes remote compromise and key-extraction attacks
more difficult. Each HSM has a public key and stores the
corresponding secret key in its secure memory.
The attack scenario. The service provider (Apple, Google,
etc.) spends vast amounts of money acquiring a large user base
for products that store user data in the cloud. The provider
risks reputational damage and journalistic scrutiny if it cannot
ensure the durability and confidentiality of user data.
A service provider can deploy SafetyPin as a way to build

trust among its user base and to protect its own infrastructure
against future compromise. By enlisting third-party organiza-
tions to monitor the SafetyPin deployment’s public distributed
log, the provider can build further public trust in the system.

At some point after the provider deploys SafetyPin, a pow-
erful attacker wishes to steal user data. The attacker may have
malicious insiders working for the provider. It may physically
compromise data centers to steal HSMs. It may intercept ship-
ments to tamper with some of the HSMs on their way to the
data center. The attacker could also be a state actor employing
legal pressure to gain access to data centers. Nonetheless, the
attacker is sensitive to both the cost of attacks and the risk of
public exposure.

Both the attack cost and risk of exposure increase with the
number of HSMs the attacker must compromise. For instance,
while a malicious insider working at a data center may be able
to abscond with a single HSM—passing the missing device
off as a hardware failure—removing 100 HSMs is a much
riskier proposition. A state actor who can order the provider
to hand over HSMs may be dissuaded if doing so will attract
press coverage either by making non-targeted clients’ data
unrecoverable or creating a damning public audit trail.

The attackermay compromise clients as well as the provider.
For instance, the attacker may have a good guess at a target
user’s PIN,perhaps because ofCCTV footage showing the user
unlocking a mobile device. While SafetyPin cannot prevent
the attacker from gaining access to the data with the correct
PIN, the risk will be higher to the attacker if stolen PINs
cannot be used without exposing the attack in SafetyPin’s
public distributed log.
Notation. The set Z>0 refers to the set of natural numbers
{1,2,3, . . . }. For a positive integer n, we let [n] = {1, . . .,n}

and we use ⊥ to denote a failure symbol. For strings a and b,
we write their concatenation as a‖b. Throughout, we use λ to
denote the security parameter, and we typically take λ = 128
(i.e., for 128-bit security).

3 System goals
SafetyPin implements an encrypted-backup functionality,

which consists of two routines:
• the backup algorithm, which the client uses to produce
its encrypted backup, and

• the recovery protocol, in which the client uses HSMs to
recover the backup plaintext from ciphertext.

We define these protocols with respect to a number of HSMs
N ∈ Z>0 and a finite PIN space P ⊆ {0,1}∗. For convenience,
we define the master public key mpk for a data center to be
all N HSMs’ public keys: mpk = (pk1, . . .,pkN). The syntax
of an encrypted-backup system is then as follows:
Backup(mpk,user,pin,msg) → ct. Given the master public

key mpk, a client username user, the client’s PIN pin ∈ P ,
and a message msg ∈ {0,1}∗ to be backed up, output a
recovery ciphertext ct. This routine runs on the client and
requires no interaction with HSMs. The client uploads the
resulting ciphertext ct to the service provider.

RecoverS,H1,...,HN (mpk,user,pin,ct)→msg or⊥. The client
initiates the recovery routine, which takes as input the
master public key mpk, a client username user, a PIN
pin ∈ P , and a recovery ciphertext ct.
During the execution of Recover, the client interacts
with the service provider S and a subset of the HSMs
H1, . . .,HN . Each HSM Hi holds the master public key
mpk, and its secret decryption key ski . During recovery,
the data center provides the client’s username user to each
HSM.
The recovery routine outputs a backed-up message msg ∈
{0,1}∗ or a failure symbol ⊥.

We now describe the security properties that such a system
should satisfy.Wework in an asynchronous networkmodel; we
use standard cryptographic primitives to set up authenticated
and encrypted channels between the client, service provider,
and HSMs.
Property 1: Security. If the client obtains the HSMs’ true
public keys, then even an attacker that:

• controls the service provider (in particular, is an active
network attacker inside the data centers and has control
of the service provider’s servers and storage),

• compromises an fsecret (e.g., fsecret = 1
16) fraction of

HSMs in the data center before the client begins the
recovery process, and

• compromises all of the HSMs in the data center after the
recovery protocol completes,

still should learn nothing about any honest client’s encrypted
message (in a semantic-security sense [35]) beyond what it

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1123

can learn by guessing that client’s PIN.
Discussion: The adversary can inspect all clients’ recovery
ciphertexts and then choose to compromise a large set of
HSMs that depends on these ciphertexts. Such attacks are
relevant when, for example, a state actor with the power to
compromise many HSMs targets the backed-up data of a
specific set of users.
Two important caveats are: (1) SafetyPin does not protect

against an attacker compromising HSMs while recovery is in
progress (see Figure 4) and (2) as implemented, SafetyPin does
not protect the PIN: an adversary that observes which HSMs
the client contacts during recovery may learn a salted hash of
the PIN after recovery completes. Section 6.3 discusses how
to detect and mitigate this leakage by protecting the salt.
Property 2: Scalability. The recovery protocol should re-
quire the client to interact with a constant number of HSMs,
independent of the number of HSMs in the data center. (This
constant may depend on the security parameter and on the
fraction of HSMs whose compromise the system can toler-
ate.) Hence, providers can deploy additional HSMs to scale
capacity. Concretely, when we configure the system to tolerate
the compromise of fsecret = 1

16 of the data center’s HSMs, our
protocol requires the client to communicate with 40 HSMs
during recovery.
Property 3: Fault tolerance. Every client should be able to
recover her encrypted message even if a constant fraction flive
(e.g. flive = 1

64) of the HSMs in the data center fail-stop.
Setting parameters. For the remainder of this paper, we set
the fraction of compromisedHSMs that the system can tolerate
to fsecret = 1

16 and the fraction of HSMs that can fail while still
allowing the client to recover her backup to flive = 1

64 . This
choice is reasonable because large companies have more than
16 data centers, while smaller companies can collaborate on a
shared deployment with 16 physical security perimeters. By
adjusting the other parameters, it is possible to achieve any
0 < fsecret < 1 or 0 < flive < 1. (In Section 9.2, we discuss how
the choice of these values affects other system parameters.)

4 Architecture overview
We now describe our encrypted-backup protocol (Figure 3)

and explain how it satisfies the design goals of Section 3. We
will discuss possible extensions and deployment considera-
tions in Section 8.

4.1 The back-up process
The client begins the back-up process holding
• the public keys of all HSMs in the data center,
• its secret PIN, and
• a disk image to be backed up (the “message”).

To back up its disk image, the client samples a subset of n
HSMs out of the N total HSMs in the data center where
n� N . The client chooses this subset by hashing (a) public

information: the service name, its username, and a public salt
the client chooses at random, and (b) its secret PIN. The client
then encrypts its message with a random AES encryption key,
and then splits this AES key into n threshold shares using
Shamir secret sharing [69], such that any threshold t of the
shares suffice to recover the AES key. The client prepends each
share with the client’s username to ensure that the ciphertexts
are bound to the client’s username. The client then encrypts
one share to the public key of each HSM in its chosen subset.

The client’s recovery ciphertext then consists of: its public
salt, the AES-encrypted message, the n encrypted shares of the
AES key, and a configuration-epoch number that the service
provider can use to identify the set of HSMs that were in
service at the time the client created its backup. The client
computes the ciphertext locally and uploads it to the backup
service provider, with no HSM interactions required.
To explain why this construction is scalable: since only a

constant number of HSMs n� N participate in the decryption
process, the system scales well as the number of HSMs in the
data center increases.
To explain why this construction should be secure: if the

attacker cannot guess the client’s PIN, the attacker does not
know which set of n HSMs (out of the N total) it needs to
compromise to recover the client’s AES key. So, the best
attacks are either to: guess the client’s PIN or compromise a
large fraction of the data center.
This argument requires that each individual key-share ci-

phertext leak no information about which HSM can decrypt
it—a cryptographic property known as “key privacy” [8].
However, even key-private encryption schemes do not always
remain secure against an adversary that adaptively compro-
mises secret keys, which leads to our first technical challenge:

Challenge 1. How can we ensure that the client’s recovery
ciphertext “leaks nothing” about which HSMs are required
to decrypt the client’s message, even against an attacker who
can adaptively compromise HSMs?

In Section 5, we explain how to solve this problem using
location-hiding encryption, a new cryptographic primitive.

4.2 The recovery process
The client begins the recovery process holding:
• the public keys of all HSMs in the data center,
• its secret PIN, and
• its recovery ciphertext (which the client can fetch from
the service provider).

First, the client asks the service provider to record its recov-
ery attempt in the append-only log, implemented collectively
by the service provider and HSMs. The log holds a mapping
of identifiers to values. The service provider can insert new
identifier-value pairs into the log but the service provider can-
not modify or delete the values of defined identifiers, ensuring
that there is at most one immutable value for each identifier.

1124 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

msgÈ

�

mpk
pin

¥

sk1

¥

sk2

¥

sk3

¥

sk4

¥

sk5

¥

sk6

¥
sk7

¥

sk8

¥

sk9

Service provider
HSMs

External
storage

ct

Ê

È

�

mpk
pin

¥

sk1

¥

sk2

¥

sk3

¥

sk4

¥

sk5

¥

sk6

¥

sk7

¥

sk8

¥

sk9

Service provider
HSMs

External
storage

ct

“〈 Start recovery,
user=joe, . . . 〉”

Ì

Ë

È

�

mpk
pin

¥

sk1

¥

sk2

¥

sk3

¥

sk4

¥

sk5

¥

sk6

¥

sk7

¥

sk8

¥

sk9

¥

sk1

¥

sk2

¥

sk3

¥

sk4

¥

sk5

¥

sk6

¥

sk7

¥

sk8

¥

sk9

Service provider
HSMs

External
storage

Í

msgÈ

�

mpk
pin

¥

sk1

¥

sk2

¥

sk3

¥

sk4

¥

sk5

¥

sk6

¥

sk7

¥

sk8

¥

sk9

Service provider
HSMs

External
storage

ct, π

Shares of decrypted ct

πÎ

Ï

Ð

Figure 3: An overview of the recovery-protocol flow. Each HSM i holds a secret key ski . The client holds a vectormpk of all HSMs’ public keys.
Ê During backup, the client uses its PIN and the master public key to encrypt its datamsg into a recovery ciphertext ct. The client then uploads
this recovery ciphertext ct to the service provider. Ë During recovery, the client downloads its recovery ciphertext. Ì The client asks the data
center to log its recovery attempt. Í The service provider collects a batch of client log-insertion requests, updates the log, and aggregates the
new log into a Merkle tree. The service provider and HSMs run a log-update protocol. At the end of this protocol, each HSM holds the root of
the Merkle tree computed over the latest log. Î The service provider sends the client a Merkle proof π that the client’s recovery attempt is
included in the latest log (i.e., in the latest Merkle root). Ï The client sends the recovery ciphertext ct and log-inclusion proof π to the subset of
HSMs needed to decrypt the recovery ciphertext. Ð The HSMs check the proof and return shares of the decrypted ciphertext to the client. The
client uses these to recover the backed-up data msg.

The recovery attempt is logged as follows. The client begins
by using public information (service name, username, and salt
in the recovery ciphertext) along with its secret PIN to recover
the subset of n HSMs it picked during backup. The client
then hashes these values together with some randomness to
produce a cryptographic commitment h to the identities of
these HSMs and to its recovery ciphertext. The client then
asks the service provider to insert the identifier-value pair
(user, h) into the log, where user is the client’s username. (In
this discussion, we use the client’s username as the key for
simplicity. In practice, to preserve privacy, we might use an
opaque device-install UUID.)

The service provider collects a batch of these log-insertion
requests, produces a Merkle-tree [59] digest over the updated
log, and runs a log-update protocol with the HSMs. At the end
of this protocol, the HSMs hold the updated log digest. The
service provider then returns to the client a Merkle proof π
proving that the pair (user, h) appears in the latest log digest.
Since the service provider and HSMs run the log-update

protocol periodically (e.g., every 10 minutes), the client will
have to wait a few minutes on average to decrypt its backup.
The client already has to download its large encrypted disk
image, which will likely take minutes, so these steps can
proceed in parallel.
The client then contacts its chosen set of n HSMs over an

encrypted channel, such as TLS. The client sends to each
HSM: its username, the opening of its commitment h (i.e., the
values and randomness used to construct the commitment h),
and the Merkle inclusion proof π. Each HSM

• recomputes the commitment h and checks the inclusion
proof π (to confirm that the recovery attempt is logged),
and

• decrypts its share of the client’s AES key, confirms that
the username in the decrypted plaintext matches the
one provided by the client (which prevents user A from
attempting to decrypt user B’s ciphertext, in collusion

with a malicious service provider).
If both of these checks pass, the HSM returns the AES-key
share to the client.
Given any t of these decryption-key shares, the client can

recover the AES key used to encrypt its backup. The client
can then use this AES key to decrypt its backed-up message.
Since at most one log entry can exist per username, the

use of the log ensures that each user can make at most one
recovery attempt. In this way, the system defeats brute-force
PIN-guessing attacks. With a slight modification, it is possible
to allow each user to make a fixed number (e.g., 5) guesses, or
a fixed number of guesses per time period (e.g., 5 per month).

A counter-intuitive property of this scheme is that the client
never explicitly provides its PIN to the HSMs. The fact that the
client knows which subset of the HSMs to contact implicitly
proves the client’s knowledge of the PIN because the set of n
HSMs is much smaller than the total number of HSMs N .

This overview leaves some technical details unexplained.
In particular:

Challenge 2. How do the HSMs implement the append-only
log without sacrificing scalability or security?

Astraightforwardway to implement the logwould be to have
eachHSM store the entire state of the log. But then every HSM
would have to participate in every recovery attempt, which
would not meet our scalability goals. Another implementation
would be to have the data-center operators maintain the log,
but then malicious data centers could violate the append-only
property, and thus mount brute-force PIN-guessing attacks,
without HSMs noticing.

In Section 6, we explain how the HSMs can collectively
maintain such an append-only log in a scalable and secure
manner. At a high level, the (potentially adversarial) data
center maintains the state of the log, which we represent as a
list of identifier-value pairs. Every time the data centerwants to
insert an identifier-value pair into the log, the data center must

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1125

time
Not vulnerable Vulnerable Not vulnerable

Cl
ien
t c
rea
tes

ba
cku

p c
iph
ert
ext

ct
.

Cl
ien
t a
sks

ser
vic
e p
rov
ide
r

to
log

rec
ove
ry
att
em
pt.

Se
rvi
ce
pro
vid
er
ret
urn
s

log
-in
clu
sio
n p
roo
f.

Cl
ien
t a
sks

its
cho

sen

HS
Ms

to
de
cry
pt
ct
.

HS
Ms

rev
ok
e t
he
ir

ab
ilit
y t
o d
ecr
yp
t c
t.

Cl
ien
t re
cov
ers

ba
cku

p.

Figure 4: Since HSMs in SafetyPin revoke their ability to decrypt a
client’s recovery ciphertext, SafetyPin protects against HSM com-
promise attacks that take place before recovery begins and after it
completes. An attacker who can compromise HSMs while recovery
is in progress can break security.

prove to a random subset of the HSMs that the identifier to be
inserted is undefined in the current log. Provided that at least
one honest HSM audits each log-insertion, we can guarantee
that the values associated with log identifiers are immutable
(i.e., that we maintain the log’s append-only property). In this
way, (a) each HSM needs to participate in only a vanishing
fraction of the recovery attempts and (b) even an attacker
who can compromise many of the HSMs cannot break the
append-only nature of the log.

One remaining issue is that an attacker who observes the
data center network may see which HSMs a client interacts
with during recovery and decide to compromise that exact set
of HSMs after recovery completes.

Challenge 3. For scalability, the client should only communi-
cate with a small number of HSMs during recovery. But then
how can we protect against an attacker who compromises
these HSMs after recovery completes?

Our idea is as follows: after a client runs the recovery
protocol, each participating HSM revokes its ability to decrypt
that client’s recovery ciphertext. So, even if an after-the-fact
attacker compromises the HSMs that participated in recovery,
the attacker learns no useful information. The only window
of vulnerability is at the moment after the client contacts its
HSMs and before the HSMs complete revocation (Figure 4).
Making this work on resource-limited HSMs requires new
technical tools, which we describe in Section 7.

5 Protecting the mapping of users to HSMs
with location-hiding encryption

In this section, we define and construct location-hiding
encryption, which the client uses to encrypt its backup data.

The location-hiding encryption routine takes as input (1) a
set of N public keys, (2) a short PIN, and (3) a message, and
outputs a ciphertext. In our application, the N public keys are
the public keys of the N HSMs in the data center.
The cryptosystem has three main properties, which we

formalize in the full version [24]:
1. Security. To successfully decrypt the ciphertext, an attacker
must either (a) guess the PIN or (b) controlmore than a constant

fraction fsecret of the N total secret keys. This security property
must hold even if the attacker can adaptively compromise
an fsecret fraction of the N secret keys. In our application,
this implies that unless an adversary can guess the PIN or
compromise a constant fsecret fraction of the HSMs in the data
center, it learns nothing about the client’s backed-up data.
2. Scalability. Given the PIN used to encrypt the message, it
is possible to decrypt the message using a small subset of the
N secret keys corresponding to the N public keys used during
encryption. In our application, a client who knows the correct
PIN can recover its backup by interacting with only a small
cluster of n HSMs (for some parameter n� N) out of the N
total HSMs, So as N grows, each HSM needs to participate in
a vanishing fraction of the total recovery attempts.
3. Fault tolerance. Given the PIN, it is possible to decrypt
a ciphertext even if a random fraction flive of all secret keys
are unavailable. In our application, this implies clients can
recover their backups even if an flive fraction of all HSMs fail.

We call this primitive “location-hiding encryption” because
there is a small set of n HSMs that the attacker could compro-
mise to decrypt the ciphertext, but the cryptosystem hides the
location of these HSMs within the larger pool of N HSMs.

Our construction
Our construction of location-hiding encryption is just a

careful composition of existing primitives. However, it takes
some analysis to prove that the composition provides the
desired security properties. We describe our construction here
in prose and we include the security definitions and proofs in
the full version [24]. The construction makes use of a public-
key encryption scheme (hashed ElGamal encryption [27, 15])
and an authenticated encryption scheme (e.g., AES-GCM).
Setup. In our construction, each HSM i, for i ∈ [N], holds a
keypair (pki, ski) for the public-key encryption scheme. Let
t ∈ Z>0 be a threshold such that if each HSM fails with
probability flive, then in a random sample of n HSMs, there
are at least t non-failed HSMs with extremely high probability.
Our instantiation takes t = n/2 for flive = 1

64 .
Encryption. The encryption routine takes as input a list of
N public keys (pk1, . . .,pkN), a PIN, and a message msg. To
encrypt the message using our location-hiding encryption
scheme:
1. Sample a random AES key k and a random salt.
2. Split k into t-out-of-n-Shamir secret shares

k1, . . ., kn [69].
3. Hash the PIN and salt and use the result as a seed to

generate a list of n random indices i1, . . ., in ∈ [N].
4. Encrypt each key-share k j with public key pki j .
5. Finally, return (a) the salt, (b) the n public-key ciphertexts,

and (c) the AES encryption of msg under key k.

Decryption. To decrypt given the ciphertext and PIN:

1126 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1. Hash the salt and PIN to reconstruct the set of indices
i1, . . ., in ∈ [N] used during encryption.

2. Use secret keys ski1, . . ., skin to decrypt the n shares of the
AES key k. (In fact, only t of the shares are necessary.)

3. Using the recovery routine for Shamir secret sharing,
recompute the AES key k from its shares.

4. Decrypt and return msg using the AES key k.
Notice that the decryption routine only uses the PIN to

sample the set of secret keys used for decryption. In our
application, this implies that the client never needs to explicitly
provide its PIN (or even a hash of its PIN) to the HSMs;
contacting the right subset of HSMs is enough to ensure that
the client provided the correct PIN.

The intuition behind the security analysis is straightforward:
with hashed ElGamal encryption, the ciphertext reveals no
information aboutwhich n public keys (out of the N totalwhere
n� N) were used during encryption. Thus, the ciphertext
reveals no information about which secret keys the attacker
must compromise unless the attacker can guess the PIN.
Without these secret keys, the attacker cannot learn anything
about k, and therefore cannot decrypt the message.
In the full version [24], we formalize our location-hiding

encryption scheme and prove that it is secure in the random
oracle model when instantiated with the hashed ElGamal
encryption (with certain constraints on n and N).
There are two reasons why the security analysis is non-

trivial: First, we must ensure that the ciphertext leaks nothing
about the n keys to which it was encrypted (i.e., that it is
key-private [8]). Second, we must ensure that the encryption
scheme remains secure even if an attacker can adaptively
compromise secret keys. This is known as security under
selective-opening attack [9, 29, 43]. Showing that both prop-
erties hold at once is the source of the technical complexity.

6 The distributed log
In SafetyPin, the HSMs collectively maintain a distributed

log, which any external party can read and replay. The service
provider maintains the log state and the HSMs monitor log
insertions to ensure that the service provider does not violate
the log’s append-only property.

We use this log for two primary purposes:
1. Limiting PIN guesses. To prevent an attacker from brute-

force guessing a client’s PIN, we use the log (as described
in Section 4) to enforce a global limit on the number of
recovery attempts that the HSMs allow per username.

2. Monitoring recovery attempts. The service provider
logs each recovery attempt, so any SafetyPin client can
inspect the log to learn whether someone (e.g., a foreign
attacker or snooping acquaintance) has tried to recover
their backed-up data. A client could then take mitigating
action—such as contacting their service provider, a law-
enforcement agency, or the press.

A third use for the log—which comes directly from related

work [30] and which we have not yet implemented—is to
manage HSM group membership. Whenever the service
provider wants to add or remove an HSM from the data center,
the service provider operator could record this information
in the log before the other HSMs will accept the change. All
SafetyPin clients can thus verify that they are communicating
with the same set of HSMs. In addition, clients can also detect
suspicious changes in the set of HSMs in the data center. (For
example, if the service provider replaces all HSMs in the data
center over the course of a day.)

The log is simply a list of identifier-value pairs maintained
by the service provider. Clients can insert identifier-value pairs
in order to record recovery attempts, and HSMs maintain a
digest of the log state. Our distributed log must satisfy the
following key property:

If any honest HSM ever accepts that an identifier-
value pair (id,val) is included in the log, the HSM
should never accept that (id,val′) is included in the
log, for any value val′ , val.

6.1 Underlying data structure
Terminology. The log L is a list of key-value pairs. Since we
use the word “key” in this paper to refer to cryptographic keys,
we call log keys “identifiers.” We say that a log L ′ “extends”
a log L if (a) L is a prefix of L ′ and (b) every identifier in L ′

appears at most once.
Our distributed log uses an authenticated data structure [75,

64, 77] that implements the following five routines:
Digest(L) → d. Return a constant-size digest d representing

the current state of the log.
ProveIncludes(L, id,val) → {πInc,⊥}. Output a proof πInc that

attests to the fact that the identifier-value pair (id,val) is in
the log represented by digest d = Digest(L).

DoesInclude(d, id,val, πInc) → {0,1}. Return “1” iff πInc
proves that the log that digest d represents contains (id,val).

ProveExtends(L, L ′) → {πExt,⊥}. Output a proof πExt that
d ′ = Digest(L ′) represents a log that extends the log that
digest d = Digest(L) represents.

DoesExtend(d,d ′, πExt) → {0,1}. Return “1” iff πExt proves
that the log that digest d ′ represents extends the log that
digest d represents.
The inclusion and extension proofs must be complete (hon-

est verifiers accept valid proofs) and sound (honest verifiers
reject invalid proofs), as we define in the full version [24].
Implementing the data structure. Nissim and Naor [64]
show that it is possible to implement these log primitives using
only Merkle trees [59]. We summarize their construction in
the full version [24]. At a very high level: the digest of the
log is just the root of a Merkle tree computed over all of the
entries of the log, represented as a binary search tree indexed
by id. A log-inclusion proof πInc is a Merkle proof of inclusion
relative to this root. A log-extension proof πExt is a proof that:
(1) every identifier inserted to the new log did not exist in the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1127

Service provider HSMi

(d,d′,R)Holds stale log L, new log L′.
Build Merkle tree over log-chunk digests
and extension proofs.

Holds stale digest d =Digest(L).

“Audit (1,3)” Choose λ random chunks
in the range {1, . . .,N} to audit.

(d,d1, π1), (d2,d3, π3),
〈Merkle proofs that these
values are included in R〉 If DoesExtend(d,d1, π1) and

DoesExtend(d2,d3, π3),
then sign (d,d′,R) using secret key.

Signature σi

Aggregate σCollect sigs from all online HSMs.
Aggregate signatures into σ.

If σ is a valid signature of (d,d′,R) under
aggregate public key,
then accept d′ as new digest.

L L′

d
π1
d1 π2

d2 π3
d3
· · · πN

d′

R

Figure 5: The protocol that the service provider and HSMs use to update the HSM’s log digest.

old log and (2) the new digest represents the old log tree with
the new values inserted. It is possible to prove both assertions
using a number of Merkle proofs proportional to the number
of log insertions.

6.2 Building a distributed log
We now explain how to use the primitives of Section 6.1 to

build our distributed append-only log.
Initializing the log. The service provider maintains the entire
state of the log L. Each HSM stores a log digest d which, in
steady state, is the digest of the log L that the service provider
holds. Initially, the log L is empty and each HSM holds the
digest of the empty log.
Inserting into the log. A client can insert an entry (id,val)
into the log by simply sending the pair to the service provider.
The service provider adds this entry to its log state L.
Proving log membership to HSMs. Before the HSMs allow
a client to begin the recovery process, the HSMs require proof
that the client’s recovery attempt is logged. Assume for the
moment that the service provider holds a log L and all HSMs
hold the up-to-date digest d =Digest(L). (Wewill explain how
the HSMs get the latest log digest in a moment.) Then, a client
can prove inclusion of any pair (id,val) in the log by asking the
service provider for an inclusion proof. The service provider
computes πInc = ProveIncludes(L, id,val) and returns the in-
clusion proof to the client. The client then sends (id,val, πInc)
to the HSM,which can checkDoesInclude(d, id,val, πInc) to be
convinced that (id,val) is in the log represented by its digest d.
This inclusion check is fast—logarithmic in the log length.
Updating the log digest at the HSMs. After a sequence of
log-insertions, the service provider holds a log state L ′. The
HSMs will be holding a digest d = Digest(L) of a stale log L.
If the service provider is honest, the new log L ′ extends the
old log L.

To update the log digest at the HSMs, the service provider
will first send the new digest d ′ = Digest(L ′) to every HSM.
Next, the data center must convince each HSM that this new
digest d ′ represents a log that extends the log L that the old
digest d represents.
One non-scalable way to achieve this would be for

the service provider to send an extension proof πExt =
ProveExtends(L, L ′) to every HSM. The problem is that the
time required to check this extension proof grows linearly with
the number of new log entries. So if every HSMs checked the
entire extension proof, the throughput of the system would
not increase as the number of HSMs increases.
Instead, we use a randomized-checking approach, as in

Figure 5. If there have been I insertions to the log since the
last update, the service provider divides the updates into N
chunks, each containing I/N insertions. The service provider
then applies these chunks of updates to the old log L one at a
time, producing a digest di and extension proof πi for each of
the N intermediate logs (i ∈ {1, . . .,N}). The service provider
then sends the root R of a Merkle-tree commitment to these
digests to each HSM.
Each HSM then asks the service provider for a random

λ-size subset of the intermediate digests and extension proofs,
where λ is a security parameter. The service provider returns
the requested digests and extension proofs and proves that these
values are included in the Merkle root R. Each HSM checks its
requested intermediate extension proofs using DoesExtend(·)
and checks the Merkle proof relative to the root R. The
HSMs auditing the first and last chunks also ensure that the
intermediate digests match the old digest d and the new digest
d ′, respectively.
If these extension and Merkle proofs are valid, each

HSM signs the tuple (d,d ′,R) using an aggregate signature
scheme [14], and returns the signature to the service provider.
Once all online HSMs have signed, the service provider aggre-

1128 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

gates these signatures and broadcasts the aggregated signature
to all HSMs. If any HSM fails during this process, the service
provider notifies the HSMs and they restart this log-update
process. (In the full version [24], we describe how the log
can make progress even if HSMs fail during the log-update
protocol.)
The HSMs check the aggregate signature on (d,d ′,R) rel-

ative to the HSMs’ aggregate public key. If the signature is
valid, the HSMs accept the new digest d ′.
Security. If there are at most fsecret compromised HSMs, then
even if fsecret honest HSMs are slow, (1− 2 fsecret)N honest
HSMs will participate in any successful protocol execution.
If each of these HSM audits C chunks, then the probability
that no honest HSM audits a particular log chunk is

Pr[fail] =
(
1− 1

N

) (1−2 fsecret)N ·C ≤ exp
(
(2 fsecret−1) ·C

)
.

(Here, we use the fact that (1− x) ≤ exp(−x).) If each HSM
audits C = λ ≈ 128 chunks, this failure probability is� 2−128.
In other words, some honest HSMwill catch a cheating service
provider with overwhelming probability. In addition, since all
honest HSMs will expect a signature from all honest HSMs,
this will cause the updating operation to fail and the system to
halt. For this analysis, we assume that the adversary cannot
adaptively compromise HSMs while the recovery protocol is
running without taking them offline.
Scalability. Each HSM must check the extension proofs on λ
chunks, where each chunk contains a 1/N fraction of the total
updates in each epoch. Thus each HSM checks a vanishing
fraction (λN) of log insertions. EachHSMchecks one aggregate
signature, which requires time independent of the number of
HSMs [14]. Thus, the total work that each HSM performs per
epoch decreases as the number of HSMs N increases.

Because we use the log primarily to limit the number of PIN
attempts, garbage collection is straightforward. The service
provider simply creates a new empty log, effectively resetting
the number of PIN attempts for every user (old copies of the
log can still be inspected to monitor recovery attempts). To
ensure that the service provider does not run garbage collection
and clear the state too frequently, each HSM will run garbage
collection for a fixed number of times (e.g. the expected
number of garbage collections over two years) before refusing
to respond to further requests. This bounds the number of
times the service provider can garbage collect the log.

6.3 Transparency and external auditability
Our log design allows anyone to audit the log to ensure that

the service provider correctly maintains the log’s append-only
property. Additional auditors only add to the security of the
system by adding another layer of protection, as they can detect
log corruptions in the event that more than fsecret HSMs are
compromised. In particular, for any two log digests d and
d ′, an auditor can ask the data center for the entire logs L
and L ′ corresponding to both of these digests. The auditor

confirms that d is the root of the log tree for L and that d ′ is
the root of the log tree for L ′. Finally, the auditor checks that
L ′ extends L.
As an extra precaution, users could specify external parties

(e.g., Let’s Encrypt) as designated auditors during backup.
During recovery, the HSMs would only complete the recovery
if these auditors sign the latest log digest. In this way,mounting
a brute-force PIN-guessing attempt against a user would
require compromising the user’s external auditors as well.
The transparency log can also help with PIN re-use. As

discussed in Section 8, instead of storing the salt directly with
the service provider, the salt itself can be encrypted using a
second round of location-hiding encryption and a null PIN.
After recovery, the salt will be destroyed as discussed in the
next section. Once the salt has been destroyed, the device
restoring a backup can use the log to determine if anyone else
has ever fetched the salt. If not, then it is safe for the user to
re-use the old PIN.
As described in Section 4, the log contains usernames,

which could be sensitive. To prevent leaking usernames, we
would replace usernames with random device identifiers that
are rerandomized when the device is factory reset. However,
even with this modification, the log still leaks information
about when and how often users restore backups, which the
service provider may not wish to make public. While we
hope that organizations would make their logs public, we
acknowledge that some may only share their logs with several
hand-picked organizations for auditing or may not share their
logs at all. In these cases, our security guarantees still hold,
although some of the transparency benefits are lost.

7 Forward security by puncturable encryption
We would like our encrypted-backup system to provide

forward secrecy [18]. During the recovery process, the client
reveals the identity of the n � N HSMs that can decrypt
its backup. Without forward secrecy, an attacker can break
into these n HSMs to recover the client’s backed-up data.
Forward secrecy ensures that after recovery, an attacker, even
one who compromises all HSMs in the data center, learns no
information about the client’s backup.
One seemingly straightforward way to provide forward

secrecy would be to use a new keypair for each backup.
However, because the client cannot interact with the HSMs
it is encrypting to during backup (as this would reveal their
identities), using a unique keypair for every backup would
require every HSM in the data center to generate a new keypair
for every backup, running counter to our scalability goals.

7.1 Background: Puncturable encryption
We instead achieve forward secrecy using puncturable

public-key encryption [38, 39, 25, 21, 19, 26]. A puncturable
encryption scheme is a normal public-key encryption scheme
(KeyGen,Encrypt,Decrypt), with one extra routine:
Puncture(sk,ct) → skct. Given a decryption key sk and a

ciphertext ct, output a new secret key skct that can decrypt

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1129

all ciphertexts that sk could decrypt except for ct.

Puncturable encryption for forward secrecy. To achieve
forward security in SafetyPin, after an HSM decrypts its share
of a client’s recovery ciphertext ct, the HSM punctures its
secret decryption key. The punctured key allows the HSM
to decrypt all ciphertexts except for ct. Thus, if an attacker
compromises all HSMs in the data center after a client has
recovered its backup, the attacker will be unable to decrypt
any backup images that clients have already recovered. Fur-
thermore, if an attacker compromises at most fsecret ·N HSMs
total, where fsecret is a parameter of the system that we define
in Section 3, then the attacker will not be able to recover any
backed-up data whatsoever.
Existing tool: Bloom-filter encryption.Our implementation
uses a puncturable encryption scheme called Bloom-filter
encryption [25]. There are only two details of Bloom-filter
encryption that are important for this discussion.
1. The secret key is large. If a key supports P ∈Z>0 punctures

and we want decryption to fail with probability at most
2−λ, then the secret key for Bloom-filter encryption is an
array of roughly λP elements of a cryptographic groupG.
After P punctures, the secret key may no longer decrypt
messages and it is necessary to rotate encryption keys.

2. Puncturing is simple. Puncturing the secret key just re-
quires deleting λ elements in the data array that comprises
the secret key.

Concretely, when we set the Bloom-filter-encryption pa-
rameters to suitable values for experimental evaluation, each
Bloom-filter encryption secret key has size over 64 MB. Even
high-end HSMs have only 1–2 MB of storage (Table 2), so
storing such large keys on an HSM would be impossible.

7.2 Outsourced storage with secure deletion
We show how to efficiently outsource the storage of this

large secret key in a way that preserves forward secrecy of
the punctured key. In particular, the HSM can outsource the
storage of its secret-key array to the untrustworthy service
provider, while still retaining the ability to delete portions
of the key. Our technique applies to outsourcing the storage
of any data array—not just secret keys—so we describe our
secure-deletion approach in general terms.
Desired functionality. At a high level, the HSM has access
to (a) a small amount of internal storage and (b) a large
external block store, run by the service provider. The HSM
wants to store an array of D data blocks at the provider
(data1, . . .,dataD). The HSM should be able to subsequently
read or delete these blocks.
The following security properties should hold, even if the

attacker, controlling the service provider, may choose the
data-array and sequence of operations the HSM performs:

• Integrity. If the service provider tampers with the stored
data in a way that could cause a read to return an incorrect
result, the read operation outputs ⊥. Otherwise, the read

sk

sk0 | sk1
sk

sk00 | sk01
sk0

sk10 | sk11
sk1

d
at
a 1

sk00

d
at
a 2

sk01

d
at
a 3

sk10

d
at
a 4

sk11

sk′

sk0 | sk
′
1
sk′

sk00 | sk01
sk0

| sk11
sk′1

d
at
a 1

sk00

d
at
a 2

sk01

d
at
a 3

sk10

d
at
a 4

sk11

HSM
Servers

Initial state. After deleting data3.

Figure 6: Our outsourced-storage scheme uses a tree of keys. An
arrow a→ b denotes that value b is stored encrypted under key a. A
service provider that stores all values it sees and later compromises
the HSM state (sk′) still does not learn the deleted data3 value.

operation for a block i returns the value of the last data
that the client wrote to block i.

• Secure deletion. If the service provider compromises the
HSM after the HSM has run the delete operation for the
ith data block, the attacker learns nothing about the data
stored in block i. (This property implies a confidentiality
property: the service provider learns nothing about the
outsourced data.)

For efficiency, the HSM storage requirements must be small
(constant size) and the read and delete routines should run
quickly (in time logarithmic in the size D of the data array).
Unlike in ORAM [33, 34], our goal is not to hide the HSM’s
data-access pattern from the service provider. We aim only to
hide the contents of the array.

7.3 Our secure outsourced storage scheme
We explain our construction here in prose. See the full

version [24] for a more formal description.
Running the setup phase. During the setup phase, our
outsourced-storage scheme builds a binary tree with D leaves.
Every node of the tree contains a fresh symmetric encryption
key. During setup, for each node in the tree with key ski , we
encrypt the keys of the child nodes ski0 and ski1 with ski and
store this ciphertext AE.Encrypt(ski, ski0‖ski1) in outsourced
storage. At the leaves of the tree, we encrypt the ith data block
with the key ski at the ith leaf and we store the ciphertext
AE.Encrypt(ski,datai) in outsourced storage.

For example, in Figure 6, we use sk0 to encrypt sk00 and
sk01 and we store the result in outsourced storage. We use
key sk01 to decrypt data item 2. Thus, knowing the root key
sk is enough to decrypt the entire tree and access every data
element in the array.
Reading a data block. To retrieve the data block at index i,
the HSM reads in the ciphertexts along the path from the tree
root to leaf i. The HSM then decrypts the chain of ciphertexts

1130 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

from the root down to recover the data block at index i. For
example, in Figure 6, to retrieve data block 3, the HSM can
use sk to decrypt sk1, and sk1 to decrypt sk10, which it can
use to decrypt data item 1.
Deleting a data block. To delete the data block at index i, the
HSM recovers (as in retrieval) the keys along the path from
the root to leaf i. At the node containing the key to decrypt
data block i, the HSM deletes the key. It then chooses a fresh
key and re-encrypts the other key at that node using the fresh
key. To maintain the ability of the parent key to decrypt the
child ciphertext, the HSM updates the parent of that node to
contain the fresh key for its child and re-encrypts the parent’s
keys under a new key. It continues this up the path to the root,
where the HSM chooses a new key sk′ to encrypt the root.
The HSM replaces sk with sk′, deleting the old sk, and then
sends the new ciphertexts along the path from the root to leaf
i back to the service provider. For example, in Figure 6, to
delete data item 3, the HSM decrypts the keys (sk0‖sk1) and
(sk10‖sk11). The HSM then deletes sk10, chooses a new key
sk′1 to encrypt sk11, and then chooses a new key sk′ to encrypt
sk0 and sk′1. The HSM then replaces sk with sk′.
Efficiency. The setup time is linear in the size of the data array
D. The runtimes of retrieval and deletion are both logarithmic
in D, and require only symmetric-key operations. The HSM
stores only the constant-sized root encryption key sk.
Security intuition. An HSM can always recover the keys nec-
essary to decrypt a data item, provided the HSM did not
previously delete any of the keys necessary for decryption.
Integrity follows immediately from the security of the under-
lying authenticated encryption scheme. Finally, we ensure
secure deletion by deleting the key necessary to decrypt a
certain data item and updating the root key. Without the old
root key, it is impossible to access the key necessary to decrypt
the deleted data item.
Putting it together. To summarize: the HSMs use a punc-
turable encryption scheme to prevent the compromise of HSM
secrets at time T from allowing an adversary to learn about
backed-up data that was recovered any time before T . We im-
plement puncturable encryption using Bloom-filter encryption
and outsource the storage of the large secret decryption key
using our new technique for outsourcing with secure deletion.

8 Extensions and deployment considerations
The full SafetyPin implementation has to dealwith a number

of additional issues, which we discuss now.
Failure during recovery. As discussed in Section 7, after
participating in recovery, HSMs revoke their ability to decrypt
the recovered ciphertext. One consequence is that a client
cannot recover the same backup ciphertext twice. This raises
the question of what happens if a replacement device fails
during or shortly after recovery, or if a communication failure
during recovery prevents the new device from receiving the
replies from the HSMs.

To solve this problem,when a client initiates recovery, it first
generates a fresh per-recovery keypair (sk,pk) for a public-key
encryption scheme. The client backs up this secret key sk
using SafetyPin before initiating its recovery. Next, the client
sends the public key pk to each HSM and then begins the
backup-recovery process. Each HSM encrypts its replies to
the client under pk, and each HSM sends a copy of each reply
to the data center. If a client device fails during recovery, a
second, replacement client device can retrieve the backed-up
secret key sk and use these to decrypt the replies stored at the
data center. This scheme nests arbitrarily, thereby handling
any number of consecutive device failures during recovery.

Incremental backups. In practice, mobile devices often gen-
erate incremental backups rather than encrypting the entire
disk image for each backup. SafetyPin supports incremental
backups in the following way. The user uses SafetyPin to store
a single AES key, which the user also keeps on her phone. The
user can then encrypt incremental backups under this AES key
and upload the resulting ciphertext to the data center. When
the user recovers, she recovers her AES key and can use this
key to decrypt the incremental updates.

Multiple recovery ciphertexts. Clients back up their phones
regularly (e.g., every three days), and will thus generate a
series of recovery ciphertexts. We want to ensure that after
a client recovers her backup from time t, the HSMs involved
in recovery puncture their secret decryption keys so that they
cannot decrypt that client’s backups from earlier times t ′ < t,
even if an attacker compromises all HSMs in the data center.
To achieve this, in the puncturable-encryption step (Section 7),
we have the client use the same salt for each recovery ciphertext
it generates. In this way, the client will encrypt its series of
backups to the same set of HSMs. When these HSM puncture
their secret keys during the recovery process, they will destroy
their ability to decrypt any previous recovery ciphertexts from
the given client. After recovery, the client chooses a new salt
to generate subsequent backups on its new device.

Preventing post-recovery PIN leakage. As we have dis-
cussed, an attacker that watches the client recover can learn a
salted hash of the user’s PIN, which can be used to mount an
offline brute-force attack to learn the user’s PIN.
One approach to protect against this attack would be to

have each user store their salt in secret-shared form at a
random set Ssalt of HSMs, where Ssalt is included in the
client’s recovery ciphertext. Then, provided that the attacker
does not compromise this set of HSMs, the attacker would
learn no useful information on the user’s PIN, even after
recovery. An attacker could always compromise every HSM in
Ssalt, but an attacker that can compromise only a fsecret fraction
of HSMs in the data center would not be able to mount this
attack against too many clients’ salts. We hope to model and
prove this multi-user PIN-protection property in future work.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1131

Operation Ops/sec

Pairing 0.43
ECDSA ver 5.85
ElGamal dec 6.67
gx ∈ GP256 7.69

Operation Ops/sec

HMAC-SHA256 2,173.91
AES-128 3,703.70

I/O

RTT, HID (32b) 71.43
RTT, CDC (32b) 2,277.90
Flash read (32b) ≈166,000

Table 7: Microbenchmarks on SoloKey. Pairing is on BLS12-381
curve using the JEDI library [49]. Other public-key operations use
NIST P256 curve.

9 Implementation and evaluation
We implemented SafetyPin on an experimental data cluster

of 100 hardware security devices (Figure 1).
HSM. For the HSMs, we used SoloKeys [72], a low-cost open-
source USB FIDO2 security key. SoloKeys use a STM32L432
microcontroller with an ARM Cortex-M4 32-bit RISC core
clocked at 80MHz and 265KB of memory. The device is not
side-channel resistant, but has a true random number generator
and can lock its firmware. We add roughly 2,500 lines of C
code to the open-source SoloKey firmware [71].
By default, SoloKeys communicate with the USB host

via USB HID, an interrupt-based USB class used typically
for keyboards and mice that has a maximum throughput of
64KBps. To improve performance, we rewrote parts of the
firmware to use USB CDC, a high-throughput USB class
commonly used for networking devices. This gave a roughly
32× increase in I/O throughput (Table 7).
For the puncturable-encryption scheme (Section 7.1), we

use a variant of Bloom-filter encryption [25] that avoids the
need for pairings [13] but increases the size of the HSMs’
public keys. For the aggregate signature scheme needed for the
log, we use BLS-style multisignatures [12] over the JEDI [49]
implementation of the BLS12-381 curve.
Our implementation does not encrypt communication be-

tween the client and HSMs. Based on the time to run AES-128
and ElGamal encryption on the SoloKeys, we estimate that
transport-layer encryption would add two ElGamal decryp-
tions and 2KB of AES operations per recovery, increasing
recovery time by approximately 0.3 seconds, or 30%. This over-
head is comparatively high because processing a recovery only
requires a handful of symmetric and public key operations.
Service Provider.Our service provider host is a Linuxmachine
with an Intel Xeon E5-2650 CPU clocked at 2.60GHz. Our
service-provider implementation is roughly 3,800 lines of
C/C++ code (excluding tests) and uses OpenSSL.
Client. Our client device is a Google Pixel 4. Our implemen-
tation is roughly 2,300 lines of C/C++ code (excluding tests)
and uses OpenSSL.

9.1 Microbenchmarks
Log. Figure 8 demonstrates how increasing the number of
HSMs reduces the log-digest update time. We assume that the

0 2.5K 5K 7.5K 10K
Data center size (N)

20

30

40

50

Ti
m
e
to

au
di
tl
og

(s
)

Figure 8: Log-audit time af-
ter inserting 10K recovery at-
tempts for a log with roughly
100M recovery attempts. We
only measure the auditing
time for 100 HSMs as we
only had 100 SoloKeys; we
distribute the work as if there
were N HSMs.

100K10K1K10010

Recoveries before key rotation
Secret key size

0.00

0.25

0.50

0.75

1.00

D
ec
ry
pt

+
Pu

nc
tu
re

tim
e
(s
)

30MB3MB300KB30KB3KB

I/O
Symmetric key ops
Public key ops

Figure 9: Time to run puncturable en-
cryption on a single HSM as the max-
imum number of allowed punctures
(and also secret key size) grows. The
cost of our outsourced storage scheme
dominates, though the access time is
logarithmic in the size of the key.

log is periodically garbage collected (i.e., approximately once
a month), so that it holds at most a hundred million recovery
attempts at once. If the HSMs run the log-update process
every 10 minutes, each HSM spends approximately 11% of
its active cycles auditing the log. The choice of how often to
update the log is a tradeoff between how long users must wait
to recover their backups and the total number of write cycles
to non-volatile storage permitted by the hardware.
Puncturable encryption. Figure 9 shows the cost of per-
forming a decrypt-and-puncture operation as the number of
supported punctures increases. The AES operations associated
with our scheme for outsourced storage with secure deletion
(Section 7.2) dominate the cost.

Another way to implement outsourced storage with secure
deletion would be to have the HSM store the outsourced array
encrypted under a single AES key k. To delete an item, the
HSM would read in the entire array, delete the item, and write
out the entire array encrypted under a fresh key k ′. With this
approach, a deletion takes 48 minutes for a 64 MB array (the
size of our outsourced secret keys). Our scheme thus improves
system throughput by roughly 4,423×.

Each HSM punctures its secret key (Section 7.1) once after
each decryption it performs. Since our puncturable-encryption
scheme only supports a fixed number of punctures, each HSM
must periodically rotate its encryption keys. We configure our
puncturable-encryption scheme to allow eachHSM to perform
roughly 218 decryptions before it must rotate its keys (rotation
is triggered when half of the elements of the secret key have
been deleted). Key rotation is expensive: we estimate (based
on the number of public-key operations required) that key
rotation on our HSMs will take roughly 75 hours. Each HSM
spends approximately 139.4 hours processing recoveries and
maintaining the log between key rotations. Therefore, each
HSM spends roughly 56% of its cycles rotating its keys, and

1132 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Public-key encryption
Location-hiding encryption

Puncturable encryption
Log

0.0 0.5
Save time (s)

SafetyPin

Baseline

0.34 0.37

0.003

0.0 0.5 1.0
Recovery time (s)

0.18 0.15 0.68 1.01

0.17 0.17

Figure 10: Breakdown of time to save (on Android Pixel 4 phone)
and recover (using our SoloKey cluster). We do not consider the time
to encrypt or decrypt disk images.

each HSM can process 1,503.9 recoveries per hour on average.

9.2 End-to-end costs
Parameters. We estimate that on average, each user will run
recovery once a year. (There are 3.8B smartphone users [73]
and 1.5B smartphones sold annually [74], so we expect
1.5/3.8 = 0.39 � 1 recovery/user/year.) We calculate that
a SafetyPin deployment of N = 3,100 HSMs could support
one billion users. So, we treat our small cluster of 100 HSMs
as a representative slice of a larger data center of N = 3,100
HSMs. Within this larger data center, each client shares its
recovery keys among a cluster of n = 40 HSMs. This choice of
n is based on the size of the data center N and PINs with six
decimal digits, and is dictated by bounds we prove in the full
version [24]. We set the puncturable encryption keys to allow
220 punctures, as we found this provides a reasonable tradeoff
between the time to decrypt and puncture and the time between
key rotations. With these parameters, we maintain secrecy if
at most an fsecret = 1

16 fraction of the HSMs are compromised
(or fsecret ·N ≈ 194 total). We allow data recovery if at most
an flive = 1

64 fraction fail due to benign hardware failures (or
flive ·N ≈ 48 total).
Baseline.We compare against an encrypted-backup system
modeled on the ones that Google and Apple use [82, 47]. To
backup, the client selects a fixed cluster of five HSMs and
encrypts her recovery key and a hash of her PIN under the
cluster’s public key. At recovery, the client sends the recovery
ciphertext and a hash of her PIN to the cluster, and any HSM
in the cluster can decrypt the ciphertext, check that the PIN
hashes match, and return the recovery key. To defeat brute-
force PIN-guessing attacks, each HSM independently limits
the number of recovery attempts allowed on a given ciphertext.
Client overhead. Figure 10 gives the overhead of generating
a backup in SafetyPin, compared to the baseline. The backup
process takes 0.37 seconds. SafetyPin recovery ciphertexts
are 16.5KB, versus 130B for our baseline, though we expect
encrypted disk image to dominate the ciphertext size.

SafetyPin increases the bandwidth cost at the client. In the
baseline scheme, the client downloads five public keys—one
from each of its five chosen HSMs. In SafetyPin, the client
must fetch a copy of all HSMs’ public keys. (This way, the

service provider does not learn the subset of HSMs to which
the client is encrypting its backup.) So, when a client first joins
the system, the client must download all these keys (11.5MB).
Whenever an HSM rotates its puncturable-encryption keys,
clients must download the HSM’s new public key. In a deploy-
ment of N = 3,100 HSMs supporting one billion recoveries
annually,we estimate that each SafetyPin clientmust download
1.97MB of keying material daily. Increasing the puncturable
encryption failure probability would decrease client band-
width, although this would require decreasing the fraction of
HSMs allowed to fail, flive. If a client goes offline for several
days, it must download the rotated public keys for each day it
spent offline (roughly 2MB/day), up to a maximum of 11.5MB
(the size of all HSMs’ keys). However, the client only needs
to store the public keys for the n HSMs comprising its chosen
recovery cluster which amounts to 9.02KB.
Recovery time. At a cluster size of n = 40 HSMs, Figure 11
shows that the end-to-end recovery time takes 1.01 seconds.
Puncturable-encryption operations dominate recovery time
(Figure 10), since these require expensive elliptic-curve op-
erations for ElGamal decryption and many I/O and AES
operations in order to perform secure deletion (Section 7.2).
Tail latency. In a deployment of SafetyPin, it will be important
to consider not only the average throughput of the SafetyPin
cluster, but also the request latency. Since recovery requests
will arrive concurrently and in a bursty fashion, we will need
to overprovision the system slightly to ensure that request tail
latency does not grow too high, even under large transient
loads. In Figure 13, we model how many HSMs are required
to achieve various 99th-percentile latencies, while handling
different average throughputs. We compute these values by
modeling incoming requests using a Poisson process and
each HSM using a M/M/1 queue with service times derived
from our experimental results. As the figure demonstrates,
by increasing the total number of HSMs, we can reduce the
tail latency even when accounting for request contention. We
anticipate that recovery time will in practice be dominated by
the time to download the encrypted disk image, and so as long
as the tail latency is less than or close to this time, any delay
is unlikely to be noticed by the user.
Financial cost. Figure 12 shows how throughput scales as the
outlay on HSMs increases and Table 14 presents dollar-cost
estimates for SafetyPin deployments with different types of
HSMs. For a configuration that tolerates the compromise of
50 high-quality HSMs, we estimate that adding SafetyPin to
an unencrypted backup system would increase the system’s
dollar cost by 2.5%.

10 Related work
Today’s encrypted-backup systems rely either on the se-

curity of hardware security modules [37, 47], secure micro-
controllers [3], or secure enclaves [55, 57]. Vulnerabilities in
these hardware components leave encrypted-backup systems

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1133

40 50 60 70 80 90 100

Cluster size (n)
Security loss bound (bits)

0.00

0.25

0.50

0.75

1.00

1.25

Re
co
ve
ry

tim
e
(s
)

6.81 6.49 6.23 6.01 5.81 5.64 5.49

Puncturable encryption
Location-hiding encryption
Log

Figure 11: Recovery time grows
slowly as cluster size n increases.
The bits of security lost refers
to the difference between the ad-
vantage of an attacker against a
SafetyPin deployment with the
given value of n and an attacker
trying to guess the user’s PIN.

0 1M 2M 3M 4M 5M
HSM retail cost ($)

0

20

40

60

80

B
ill
io
n
re
co
ve
rie

sp
er

ye
ar

SoloKey
YubiHSM2
SafeNet A700

Figure 12: Estimated number
of SafetyPin-protected recoveries
per year supported by clusters of
different HSM models and costs.
We use gx /sec to compute the ex-
pected throughput ofmore power-
ful HSMs based on our measure-
ments using SoloKeys (Table 2).

0 0.5B 1B 1.5B
Requests per year

0

1K

2K

3K

4K

5K

D
at
a
ce
nt
er

si
ze

(N
) Latency constraint

30 sec
1 min
5 min
Infinite

Figure 13: Data center sizes nec-
essary to process different re-
quest rates with various 99th-
percentile latency requirements.

open to attack. And there is ample evidence of vulnerabil-
ities in both HSMs [66, 60, 63, 41, 46, 17, 31, 2] and en-
claves [79, 16, 36, 53, 28, 80, 81, 61, 20, 40, 52, 11],and reason
for concern about hardware backdoors as well [76, 83, 7, 48].
Many companies including Anchorage [5], Unbound

Tech [78], Curv [22], and Ledger Vault [51], offer systems
for secret-sharing cryptocurrency secret keys across multi-
ple hardware devices. Unlike SafetyPin, these solutions use a
small fixed set ofHSMs, so they cannot simultaneously provide
scalability and protection against adaptive HSM compromise.
In recent theoretical work, Benhamouda et al. show how

to scalably store secrets on proof-of-stake blockchains when
an adversary can adaptively corrupt some fraction of the
stake [10]. They face many of the same cryptographic chal-
lenges that we tackle in Section 5; their theoretical treatment
complements our implementation-focused approach. While
they use proactive secret sharing to periodically re-share the
secret and hide the secret from an adversary controlling some
fraction of the stake, our approach allows a party with some
low-entropy secret to recover the high-entropy secret.

Transparency logs inspire our log design [6, 50, 58, 1, 54].
While these logs allow a powerful auditor to verify correctness,

HSM Qty. fsecret Nevil Cost

SoloKey [72] 3,037 1/16 189 $60.7K
YubiHSM2 [84] 1,732 1/16 108 $1.1M
SafeNet A700 [68] 40 1/20 2 $738.7K
– 10 evil HSMs 320 1/32 10 $3.0M
– 50 evil HSMs 800 1/16 50 $14.8M

Estimated cost of storing 4GB × 109 users per year: $600M

Table 14: The estimated hardware cost of a SafetyPin deployment
supporting one billion users, if each user recovers once per year. The
Nevil number is how many corrupt HSMs the deployment tolerates.
We estimate the storage cost using AWS S3 infrequent access [4] ($0.0125
per GB/month). We estimate YubiHSM2 and SafeNet HSM throughput using
their data sheets (Table 2). When computing the number of HSMs necessary
to service a billion users, we account for key-rotation time. A cluster of 40
SafeNet HSMs can meet the throughput demands of one billion users, so we
also consider larger deployments tolerating more compromised HSMs.

they do not easily allow distributing the work of auditing
across many less powerful participants. The proofs we provide
to the HSMs about the state of the log draw on work on
authenticated data structures [75, 56, 65] and cryptocurrency
light clients [62]. Kaptchuk et al. show how public ledgers
can be used to build stateful systems from stateless secure
hardware [45], and they show how their techniques can be
applied to Apple’s encrypted-backup system. This work is
complementary to ours, as they show how to securely manage
state in cases where HSMs do not have secure internal non-
volatile storage (an assumption we make in SafetyPin).

11 Conclusion
SafetyPin is an encrypted backup system that (a) requires

its users to only remember a short PIN, (b) defeats brute-
force PIN-guessing attacks using hardware protections, and
(c) provides strong protection against hardware compromise.
SafetyPin demonstrates that it is possible to reap the benefits of
hardware security protections without turning these hardware
devices into single points of security failure.
Acknowledgments. We would like to thank Raluca Ada Popa and
Bryan Ford for their support throughout this project. Albert Kwon,
Anish Athalye, Christian Mouchet, David Lazar, Dima Kogan, and
Lefteris Kokoris-Kogias, offered thoughtful criticism on drafts of this
work. We thank our shepherd Sebastian Angel for his work reviewing
our camera-ready. We thank Dan Boneh for useful suggestions
on how to simplify the security analysis of our location-hiding
encryption scheme,we thankVinodVaikuntanathan for the suggestion
to avoid pairings in our puncturable-encryption scheme, and we
thank Keith Winstein for early brainstorming on passwords and
PINs. Conor Patrick and Nicolas Stalder gave helpful suggestions for
modifying the SoloKey firmware to support USB CDC, and Vivian
Fang provided advice on assembling the system. Finally, we thank the
anonymous reviewers of USENIX Security 2020 and OSDI 2020 for
their thorough and detailed feedback. This research is also supported
in part by the RISELab, a Facebook Research Award, and a NSF
GRFP fellowship.

1134 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Trillian. https://github.com/google/trillian.
[2] CVE-2015-5464. Available fromMITRE, CVE-ID CVE-2015-

5464., February 2015. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2015-5464.

[3] Titan in depth: Security in plaintext. Google, August
2017. https://cloud.google.com/blog/products/gcp/
titan-in-depth-security-in-plaintext.

[4] Amazon S3 pricing. https://aws.amazon.com/s3/pricing/,
Accessed 12 February 2020.

[5] Anchorage. https://anchorage.com/, Accessed 25 May
2020.

[6] Michael P Andersen, Sam Kumar, Moustafa AbdelBaky, Gabe
Fierro, John Kolb, Hyung-Sin Kim, David E Culler, and
Raluca Ada Popa. WAVE: A decentralized authorization
framework with transitive delegation. In USENIX Security,
2019.

[7] Georg T. Becker, Francesco Regazzoni, Christof Paar, and
Wayne P. Burleson. Stealthy dopant-level hardware trojans. In
CHES. Springer, 2013.

[8] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David
Pointcheval. Key-privacy in public-key encryption. In Interna-
tional Conference on the Theory and Application of Cryptology
and Information Security, 2001.

[9] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility
and impossibility results for encryption and commitment secure
under selective opening. InEUROCRYPT,pages 1–35. Springer,
2009.

[10] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai
Halevi, Hugo Krawczyk, Chengyu Lin, Tal Rabin, and Leonid
Reyzin. Can a blockchain keep a secret? IACR Cryptology
ePrint Archive, 2020.

[11] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto,
and Ahmad-Reza Sadeghi. The guard’s dilemma: Efficient
code-reuse attacks against Intel SGX. In USENIX Security,
pages 1213–1227, 2018.

[12] Dan Boneh, Manu Drijvers, and Gregory Neven. BLS multi-
signatures with public-key aggregation. https://crypto.
stanford.edu/~dabo/pubs/papers/BLSmultisig.html, Ac-
cessed 23 May 2020, 03 2018.

[13] Dan Boneh and Matt Franklin. Identity-based encryption from
the Weil pairing. In CRYPTO, pages 213–229, 2001.

[14] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham.
Aggregate and verifiably encrypted signatures from bilinear
maps. In EUROCRYPT, pages 416–432. Springer, 2003.

[15] Dan Boneh and Victor Shoup. A graduate course in applied
cryptography. 2020.

[16] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari
Kostiainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Soft-
ware grand exposure: SGX cache attacks are practical. In
USENIX WOOT, 2017.

[17] John Butterworth, Corey Kallenberg, Xeno Kovah, and Amy
Herzog. Bios chronomancy: Fixing the core root of trust for
measurement. In CCS, pages 25–36. ACM, 2013.

[18] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-
secure public-key encryption scheme. In EUROCRYPT, pages
255–271, 2003.

[19] Ran Canetti, Srinivasan Raghuraman, Silas Richelson, and
Vinod Vaikuntanathan. Chosen-ciphertext secure fully ho-
momorphic encryption. In IACR International Workshop on
Public Key Cryptography, pages 213–240. Springer, 2017.

[20] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang,
Zhiqiang Lin, and Ten H Lai. SGXPECTRE: Stealing intel
secrets from SGX enclaves via speculative execution. In
EuroS&P, pages 142–157. IEEE, 2019.

[21] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikun-
tanathan, and Daniel Wichs. Watermarking cryptographic
capabilities. SIAM, 47(6):2157–2202, 2018.

[22] Curv. https://www.curv.co/, Accessed 25 May 2020.
[23] AnupamDas, JosephBonneau,MatthewCaesar,Nikita Borisov,

and XiaoFeng Wang. The tangled web of password reuse. In
NDSS, 2014.

[24] EmmaDauterman,Henry Corrigan-Gibbs, and DavidMazières.
SafetyPin: Encrypted backups with human-memorable secrets.
arXiv preprint arXiv:2010.06712, 2019.

[25] David Derler, Tibor Jager, Daniel Slamanig, and Christoph
Striecks. Bloom filter encryption and applications to efficient
forward-secret 0-RTT key exchange. In EUROCRYPT, pages
425–455. Springer, 2018.

[26] David Derler, Stephan Krenn, Thomas Lorünser, Sebastian
Ramacher, Daniel Slamanig, and Christoph Striecks. Revisiting
proxy re-encryption: forward secrecy, improved security, and
applications. In IACR International Workshop on Public Key
Cryptography, pages 219–250. Springer, 2018.

[27] Taher ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE Transactions on
Information Theory, 31(4):469–472, 1985.

[28] Dmitry Evtyushkin, Ryan Riley,Nael CSEAbu-Ghazaleh, ECE,
and Dmitry Ponomarev. Branchscope: A new side-channel
attack on directional branch predictor. ACM SIGPLAN Notices,
53(2):693–707, 2018.

[29] Serge Fehr, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee.
Encryption schemes secure against chosen-ciphertext selective
opening attacks. In EUROCRYPT, pages 381–402. Springer,
2010.

[30] Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas, Sean Rhea,
Frans Kaashoek, and Robert Morris. Persistent personal names
for globally connected mobile devices. In Symposium on
Operating Systems Design and Implementation, pages 233–
248, 2006.

[31] Jean-Baptiste Bédrune Gabriel Campana. Every-
body be Cool, This is a Robbery! Blackhat, 2019.
https://www.blackhat.com/us-19/briefings/schedule/
#everybody-be-cool-this-is-a-robbery-16233.

[32] Shirley Gaw and Edward W Felten. Password management
strategies for online accounts. In SOUPS, pages 44–55. ACM,
2006.

[33] Oded Goldreich. Towards a theory of software protection and
simulation by oblivious RAMs. In STOC, pages 182–194,
1987.

[34] Oded Goldreich and Rafail Ostrovsky. Software protection
and simulation on oblivious RAMs. Journal of the ACM,
43(3):431–473, 1996.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1135

https://github.com/google/trillian
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5464
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5464
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext
https://aws.amazon.com/s3/pricing/
https://anchorage.com/
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html
https://www.curv.co/
https://www.blackhat.com/us-19/briefings/schedule/#everybody-be-cool-this-is-a-robbery-16233
https://www.blackhat.com/us-19/briefings/schedule/#everybody-be-cool-this-is-a-robbery-16233

[35] Shafi Goldwasser and Silvio Micali. Probabilistic encryption.
Journal of Computer and System Sciences, 28(2):270–299,
1984.

[36] Johannes Götzfried,Moritz Eckert, Sebastian Schinzel, and Tilo
Müller. Cache attacks on Intel SGX. In European Workshop
on Systems Security, pages 1–6, 2017.

[37] MatthewGreen. Is Apple’s CloudKeyVault a crypto backdoor?,
2016. https://blog.cryptographyengineering.com/2016/
08/13/is-apples-cloud-key-vault-crypto/.

[38] Matthew DGreen and IanMiers. Forward secure asynchronous
messaging from puncturable encryption. In Security and
Privacy. IEEE, 2015.

[39] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer.
0-RTT key exchange with full forward secrecy. In International
Conference on the Theory and Applications of Cryptographic
Techniques, 2017.

[40] Jago Gyselinck, Jo Van Bulck, Frank Piessens, and Raoul
Strackx. Off-limits: Abusing legacy x86 memory segmentation
to spy on enclaved execution. In ESSoS, pages 44–60. Springer,
2018.

[41] Seunghun Han, Wook Shin, Jun-Hyeok Park, and HyoungChun
Kim. A bad dream: Subverting trusted platform module while
you are sleeping. In USENIX Security, pages 1229–1246, 2018.

[42] SM Haque, Matthew Wright, and Shannon Scielzo. A study
of user password strategy for multiple accounts. In Data and
application security and privacy, pages 173–176. ACM, 2013.

[43] Dennis Hofheinz and Andy Rupp. Standard versus selective
opening security: separation and equivalence results. In Theory
of Cryptography Conference, pages 591–615, 2014.

[44] Intel. Strengthen enclave trust with attestation.
https://software.intel.com/content/www/us/
en/develop/topics/software-guard-extensions/
attestation-services.html, Accessed 5 February 2020.

[45] Gabriel Kaptchuk, Matthew Green, and Ian Miers. Giving state
to the stateless: Augmenting trustworthy computation with
ledgers. In NDSS, 2019.

[46] Bernhard Kauer. Oslo: Improving the security of trusted
computing. In USENIX Security, volume 24, page 173, 2007.

[47] Ivan Krstic. Behind the scenes with iOS security,
2016. https://www.blackhat.com/docs/us-16/materials/
us-16-Krstic.pdf.

[48] R. Kumar, P. Jovanovic, W. Burleson, and I. Polian. Parametric
trojans for fault-injection attacks on cryptographic hardware.
In 2014 Workshop on Fault Diagnosis and Tolerance in Cryp-
tography (FDTC), Sept. 2014.

[49] Sam Kumar, Yuncong Hu, Michael P Andersen, Raluca Ada
Popa, and David E Culler. JEDI: Many-to-many end-to-end
encryption and key delegation for IoT. In USENIX Security,
pages 1519–1536, 2019.

[50] Adam Langley, Emilia Kasper, and Ben Laurie. Certificate
transparency. Internet Engineering Task Force, 2013. https:
//tools.ietf.org/html/rfc6962.

[51] Ledger vault. https://www.ledger.com/vault, Accessed 25
May 2020.

[52] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak,
Yeseul Choi, Changho Choi, Taesoo Kim, Marcus Peinado,
and Brent Byunghoon Kang. Hacking in darkness: Return-
oriented programming against secure enclaves. In USENIX
Security, pages 523–539, 2017.

[53] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hye-
soon Kim, and Marcus Peinado. Inferring fine-grained control
flow inside SGX enclaves with branch shadowing. In USENIX
Security, pages 557–574, 2017.

[54] S. Li, C. Man, and J. Watson. Delegated Distributed Map-
pings. Internet-Draft draft-watson-dinrg-delmap-02, Internet
Engineering Task Force, April 2019. https://tools.ietf.
org/html/draft-watson-dinrg-delmap-02.

[55] Joshua Lund. Technology preview for secure value re-
covery, 2019. https://signal.org/blog/secure-value-
recovery/.

[56] Charles Martel, Glen Nuckolls, Premkumar Devanbu, Michael
Gertz,April Kwong, and Stuart G Stubblebine. A generalmodel
for authenticated data structures. Algorithmica, 39(1):21–41,
2004.

[57] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V
Rozas, Hisham Shafi, Vedvyas Shanbhogue, and Uday R Sava-
gaonkar. Innovative instructions and softwaremodel for isolated
execution. HASP, 10(1), 2013.

[58] Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Ed-
ward W Felten, and Michael J Freedman. CONIKS: Bringing
key transparency to end users. In USENIX Security, 2015.

[59] Ralph Merkle. A certified digital signature. In CRYPTO, pages
218–238. Springer, 1989.

[60] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia
Heninger. TPM-FAIL: TPM meets timing and lattice attacks.
In USENIX Security, 2020.

[61] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. Plundervolt: Software-
based fault injection attacks against Intel SGX. In Security and
Privacy. IEEE, 2020.

[62] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. http://bitcoin.org/bitcoin.pdf, 2008.

[63] Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, and
Vashek Matyas. The return of Coppersmith’s attack: Practical
factorization of widely used RSA moduli. In CCS, pages
1631–1648. ACM, 2017.

[64] Kobbi Nissim and Moni Naor. Certificate revocation and
certificate update. In USENIX Security Symposium, 1998.

[65] Charalampos Papamanthou and Roberto Tamassia. Time and
space efficient algorithms for two-party authenticated data
structures. In International conference on information and
communications security, pages 1–15. Springer, 2007.

[66] Ryan Paul. Infineon DRM/encryption chip succumbs to
physical attack. Ars Technica, 2010. https://arstechnica.
com/information-technology/2010/02/infineon-
drmencryption-chip-succumbs-to-physical-attack/.

[67] Adam Powers. FIDO TechNotes: The truth about attes-
tation. https://fidoalliance.org/fido-technotes-the-
truth-about-attestation/, Accessed 25 May 2020.

1136 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://blog.cryptographyengineering.com/2016/08/13/is-apples-cloud-key-vault-crypto/
https://blog.cryptographyengineering.com/2016/08/13/is-apples-cloud-key-vault-crypto/
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/attestation-services.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/attestation-services.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/attestation-services.html
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://tools.ietf.org/html/rfc6962
https://tools.ietf.org/html/rfc6962
https://www.ledger.com/vault
https://tools.ietf.org/html/draft-watson-dinrg-delmap-02
https://tools.ietf.org/html/draft-watson-dinrg-delmap-02
https://signal.org/blog/secure-value-recovery/
https://signal.org/blog/secure-value-recovery/
http://bitcoin.org/bitcoin.pdf
https://arstechnica.com/information-technology/2010/02/infineon-drmencryption-chip-succumbs-to-physical-attack/
https://arstechnica.com/information-technology/2010/02/infineon-drmencryption-chip-succumbs-to-physical-attack/
https://arstechnica.com/information-technology/2010/02/infineon-drmencryption-chip-succumbs-to-physical-attack/
https://fidoalliance.org/fido-technotes-the-truth-about-attestation/
https://fidoalliance.org/fido-technotes-the-truth-about-attestation/

[68] SafeNet Luna network hardware security mod-
ules A700 - cryptographic accelerator. https:
//www.insight.com/en_US/shop/product/908-
000366-001-000/GEMALTO/908-000366-001-000/
SafeNetLunaNetworkHardwareSecurityModulesA700-
Cryptographicaccelerator-GigE-1U-rack-mountable/,
Accessed 5 February 2020.

[69] Adi Shamir. How to share a secret. Communications of the
ACM, 22(11):612–613, 1979.

[70] Richard Shay, Saranga Komanduri, Patrick Gage Kelley, Pe-
dro Giovanni Leon, Michelle L Mazurek, Lujo Bauer, Nicolas
Christin, and Lorrie Faith Cranor. Encountering stronger pass-
word requirements: user attitudes and behaviors. In SOUPS,
page 2. ACM, 2010.

[71] Solokeys. Solo. https://github.com/solokeys/solo, Ac-
cessed 5 February 2020.

[72] Solokeys. https://solokeys.com/, Accessed 5 February
2020.

[73] Statista. Number of smartphone users worldwide from 2016
to 2021. https://www.statista.com/statistics/330695/
number-of-smartphone-users-worldwide/.

[74] Statista. Number of smartphones sold to end users world-
wide from 2007 to 2020. https://www.statista.com/
statistics/263437/global-smartphone-sales-to-end-
users-since-2007/, Accessed 23 May 2020.

[75] Roberto Tamassia. Authenticated data structures. In European
symposium on algorithms, pages 2–5. Springer, 2003.

[76] M. Tehranipoor and F. Koushanfar. A survey of hardware trojan
taxonomy and detection. IEEEDesign Test of Computers, 27(1),
Jan 2010.

[77] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos,
Charalampos Papamanthou, Nikos Triandopoulos, and Srinivas
Devadas. Transparency logs via append-only authenticated
dictionaries. In CCS, pages 1299–1316, 2019.

[78] Unbound tech. https://www.unboundtech.com/, Accessed
25 May 2020.

[79] JoVanBulck,MarinaMinkin,OfirWeisse,DanielGenkin,Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the
keys to the Intel SGX kingdom with transient out-of-order
execution. In USENIX Security, pages 991–1008, 2018.

[80] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A
practical attack framework for precise enclave execution control.
In Workshop on System Software for Trusted Execution, pages
1–6, 2017.

[81] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets without
page faults: Stealthy page table-based attacks on enclaved
execution. In USENIX Security, pages 1041–1056, 2017.

[82] Shabsi Walfish. Google Cloud Key Vault Service. Google,
2018. https://developer.android.com/about/versions/
pie/security/ckv-whitepaper.

[83] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester. A2:
Analog malicious hardware. In Security and Privacy. IEEE,
May 2016.

[84] YubiHSM2. https://www.yubico.com/product/yubihsm-2,
Accessed 5 February 2020.

A Artifact Appendix
A.1 Abstract

The SafetyPin implementation is split into two components:
• HSM:TheHSMs (hardware securitymodules) are used to
recover user secrets. Our implementation uses SoloKeys,
which are low-cost HSMs. We add roughly 2,500 lines of
C code to the open-source SoloKey firmware.

• Host: The host implements functionality for the user and
data center, including saving secrets, maintaining the log,
and coordinating HSMs. Our implementation is roughly
3,800 lines of C/C++ code.

We implement the protocol described in the paper above.
To improve performance, we rewrote parts of the SoloKey
firmware to use USB CDC, a high-throughput USB class
commonly used for networking devices. This results in roughly
a 32× increase in I/O throughput. Our artifact is available at:

https://github.com/edauterman/SafetyPin

A.2 Artifact check-list
• Hardware:

– 100 SoloKeys
– 10 Anker SuperSpeed USB 3.0 hubs
– 2 4-port USB PCIe controller cards
– Linux machine with Intel Xeon E5-260 CPU clocked
at 2.60GHz

• Compilation: The ARM compiler for the SoloKeys, and
gcc for the host.

• Metrics: Latency
• Experiments: Log-audit time, puncturable encryption
overhead, breakdown of recovery time, cluster size vs.
recovery time

• Required disk space: 14MB
• Expected experiment run time: 50 minutes
• Public link: https://github.com/edauterman/

SafetyPin

• Code licenses: Apache v2

A.3 Description
A.3.1 How to access

We provide reviewers with credentials to remotely access
our system. Instructions for assembling a similar system are
available here:

https://github.com/edauterman/SafetyPin/blob/

master/SETUP.md.

A.3.2 Hardware dependencies

Our artifact uses SoloKeys as low-cost HSMs. We use 100
SoloKeys for our experiments, although other deployments

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1137

https://www.insight.com/en_US/shop/product/908-000366-001-000/GEMALTO/908-000366-001-000/SafeNetLunaNetworkHardwareSecurityModulesA700-Cryptographicaccelerator-GigE-1U-rack-mountable/
https://www.insight.com/en_US/shop/product/908-000366-001-000/GEMALTO/908-000366-001-000/SafeNetLunaNetworkHardwareSecurityModulesA700-Cryptographicaccelerator-GigE-1U-rack-mountable/
https://www.insight.com/en_US/shop/product/908-000366-001-000/GEMALTO/908-000366-001-000/SafeNetLunaNetworkHardwareSecurityModulesA700-Cryptographicaccelerator-GigE-1U-rack-mountable/
https://www.insight.com/en_US/shop/product/908-000366-001-000/GEMALTO/908-000366-001-000/SafeNetLunaNetworkHardwareSecurityModulesA700-Cryptographicaccelerator-GigE-1U-rack-mountable/
https://www.insight.com/en_US/shop/product/908-000366-001-000/GEMALTO/908-000366-001-000/SafeNetLunaNetworkHardwareSecurityModulesA700-Cryptographicaccelerator-GigE-1U-rack-mountable/
https://github.com/solokeys/solo
https://solokeys.com/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
https://www.unboundtech.com/
https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://www.yubico.com/product/yubihsm-2
https://github.com/edauterman/SafetyPin
https://github.com/edauterman/SafetyPin
https://github.com/edauterman/SafetyPin
https://github.com/edauterman/SafetyPin/blob/master/SETUP.md
https://github.com/edauterman/SafetyPin/blob/master/SETUP.md

could use a different number of HSMs. Because of limitations
in the Intel XCHI controller, which supports a maximum of
96 endpoints (each USB 3.0 device has 3 endpoints), we
installed PCIe cards to support additional endpoints. This
is not necessary for smaller-scale deployments, but larger
deployments should choose a host that supports installing
such PCIe cards or find another solution. We also recommend
USB hubs with an external power source such as the Anker
hubs.

A.3.3 Software dependencies

The firmware for the SoloKeys builds on the original SoloKey
firmware, which already includes several libraries for crypto-
graphic primitives on embedded devices:

https://github.com/solokeys/solo.

To support pairings for aggregate signatures, we use the jedi-
pairing library for embedded devices:

https://github.com/ucbrise/jedi-pairing/.

For USB HID support, we use the Signal11 library:

https://github.com/signal11/hidapi.

We implement our cryptographic primitives that do not require
pairings at the host using OpenSSL.

A.4 Installation
Instructions for building the host are available under

host/. Instructions for building the firmware and flashing
the SoloKeys are available under hsm/. The SoloKey docu-
mentation provides additional details and troubleshooting for
building and flashing the SoloKeys:

https://docs.solokeys.io/.

When experimenting with SafetyPin, you should not boot
SoloKeys in DFU mode, as this locks the firmware and will
prevent you from modifying the firmware later (e.g. to load
an updated version of the SafetyPin source).

A.5 Experiment workflow
Reviewers can remotely access our machine and run all

experiments by executing ./runAll.sh in bench/. More de-
tailed instructions for running individual experiments are
available here:

https://github.com/edauterman/SafetyPin#

instructions-for-artifact-evaluation.

A.6 Evaluation and expected result
Run all experiments by executing ./runAll.sh in bench/.

This will produce figures in bench/out that match Figure 8,
Figure 9,Figure 10, and Figure 11. Note thatwe only reproduce
the recovery time breakdown in Figure 10. Additionally, the
configurationwe set up for the reviewers only uses 90HSMs for
Figure 8 and Figure 11. We do this to keep different firmware
on the remaining 10 HSMs to measure the breakdown in
puncturable encryption time as the secret key size increases
(Figure 9). For the experiments we show in the body of the
paper, we re-flashed HSMs between experiments so that we
could use all 100 HSMs to generate Figure 8 and Figure 11.

A.7 Experiment customization
The experiment for Figure 8 can be modified to measure

different data center sizes without changing the firmware
on the HSMs. The experiment for Figure 9 can likewise be
modified to measure different secret key sizes, although this
requires changing HSM firmware. If we had more HSMs, we
could easily expand Figure 11 to show the effect of larger
cluster sizes. We do not measure cluster sizes less than 40
because our analysis shows that our security guarantees begin
to break down below this point.

A.8 Notes
To switch between USB CDC and USB HID, change the

HID flag on both the host and the HSMs (this requires loading
new firmware on the HSMs). More detailed instructions are
available here:

https://github.com/edauterman/SafetyPin/blob/

master/SETUP.md.

Note that rather than generating puncturable encryption
secret keys on the HSM (a process we estimate would take
roughly 75 hours), to run our experiments efficiently, we
generate the secret key on the host (for security, a real-world
deployment would need to generate this secret key on the
HSM).

A.9 AE Methodology
Submission, reviewing and badging methodology:

https://www.usenix.org/conference/osdi20/call-for-

artifacts

1138 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/solokeys/solo
https://github.com/ucbrise/jedi-pairing/
https://github.com/signal11/hidapi
https://docs.solokeys.io/
https://github.com/edauterman/SafetyPin#instructions-for-artifact-evaluation
https://github.com/edauterman/SafetyPin#instructions-for-artifact-evaluation
https://github.com/edauterman/SafetyPin/blob/master/SETUP.md
https://github.com/edauterman/SafetyPin/blob/master/SETUP.md
https://www.usenix.org/conference/osdi20/call-for-artifacts
https://www.usenix.org/conference/osdi20/call-for-artifacts

Efficiently Mitigating Transient Execution Attacks
using the Unmapped Speculation Contract

Jonathan Behrens, Anton Cao, Cel Skeggs, Adam Belay, M. Frans Kaashoek, and Nickolai Zeldovich
MIT CSAIL

Abstract
Today’s kernels pay a performance penalty for mitigations—
such as KPTI, retpoline, return stack stuffing, speculation
barriers—to protect against transient execution side-channel
attacks such as Meltdown [21] and Spectre [16].

To address this performance penalty, this paper articulates
the unmapped speculation contract, an observation that mem-
ory that isn’t mapped in a page table cannot be leaked through
transient execution. To demonstrate the value of this contract,
the paper presents WARD, a new kernel design that maintains
a separate kernel page table for every process. This page table
contains mappings for kernel memory that is safe to expose
to that process. Because a process doesn’t map data of other
processes, this design allows for many system calls to execute
without any mitigation overhead. When a process needs ac-
cess to sensitive data, WARD switches to a kernel page table
that provides access to all of memory and executes with all
mitigations.

An evaluation of the WARD design implemented in the
sv6 research kernel [8] shows that LEBench [24] can execute
many system calls without mitigations. For some hardware
generations, this results in performance improvement ranging
from a few percent (huge page fault) to several factors
(getpid), compared to a standard design with mitigations.

1 Introduction
Over the last two years, transient execution has emerged
as a powerful new side-channel attack technique. Vulner-
abilities have proliferated [5, 12], with examples now in-
cluding Meltdown [21], Spectre [16], L1 Terminal Fault [4],
RIDL [29], Fallout [6], ZombieLoad [25], CrossTalk [23],
and SGAxe [28]. In contrast with conventional timing-based
side-channel attacks [17], where the victim must access its
data in a specific pattern in order to leak it, transient execution
attacks are more serious because they often allow an attacker
to precisely control which memory locations are leaked, in-
cluding memory that might not be accessed on the committed
execution path. This is of particular concern to OS kernels,
which have access to all of physical memory, and therefore
could leak data from any process through transient execution
bugs. In a public cloud, where it is common for mutually dis-
trustful tenants to share a single machine [30, 35], the threat
of transient execution is especially concerning.

A key challenge in addressing transient execution attacks
lies in minimizing the performance overheads. CPU and OS

designers have implemented a range of mitigations to defeat
transient execution attacks, including state flushing, selectively
preventing speculative execution, and removing observation
channels [5]. These mitigations impose performance over-
heads (see §2): some of the mitigations must be applied at
each privilege mode transition (e.g., system call entry and exit),
and some must be applied to all running code (e.g., retpolines
for all indirect jumps). In some cases, they are so expensive
that OS vendors have decided to leave them disabled by de-
fault [2, 22]. Recent processor designs have also incorporated
mitigations into hardware, which also reduces performance
compared to earlier processor designs that do not perform such
hardware mitigations.

To address the above challenge, this paper proposes a new
hardware/software contract, called the unmapped speculation
contract, or USC for short. USC allows the OS kernel to
significantly reduce the overhead of mitigating a particular
subset of transient execution attacks—namely, those that leak
arbitrary memory contents. The USC says that physical mem-
ory that is unmapped (i.e., physical memory that has no virtual
address) cannot be accessed speculatively. The benefit of USC
is two-fold. From the OS designer perspective, it provides
bounds on what data can be leaked through transient execu-
tion, and, as we show in the rest of this paper, can significantly
reduce the cost of mitigations. From the hardware designer
perspective, USC allows the CPU to keep many of the cur-
rent speculative execution optimizations and their associated
performance benefits. Most processor architectures already
adhere to USC; AMD states that “AMD processors are de-
signed to not speculate into memory that is not valid in the
current virtual address memory range defined by the software
defined page tables” [1, pg. 2], and Intel issued hardware and
microcode fixes for bugs that violate USC [14, 15].

To demonstrate the benefits of the unmapped speculation
contract, this paper presents WARD, a novel kernel architec-
ture that uses selective kernel memory mapping to avoid the
costs of transient execution mitigations. WARD maintains sep-
arate kernel memory mappings for each process, and ensures
that the memory mapped in the kernel of a process does not
contain any data that must be kept secret from that process. As
a result, privilege mode switches (e.g., system call entry and
exit) no longer need to employ expensive mitigations, since
there are no secrets that could be leaked by transient execution.
When the WARD kernel must perform operations that require
access to unmapped parts of kernel memory, such as opening
a shared file or context-switching between processes, it explic-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1139

itly changes kernel memory mappings, and invokes the same
mitigation techniques used by the Linux kernel today.

A key challenge in the WARD design lies in re-architecting
the kernel and its data structures to allow for per-process
views of the kernel address space. For example, a typical
proc structure in the kernel contains sensitive fields, such as
the saved registers of that process, which should not be leaked
to other processes. At the same time, every process must
be able to invoke the scheduler, which in turn may need to
traverse the list of proc structures on the run queue. This paper
presents several techniques to partition the kernel: transparent
switching of kernel address spaces when accessing sensitive
pages through page faults; using temporary mappings to access
unmapped physical pages; splitting data structures into public
and private parts; etc.

To evaluate the WARD design, we applied it to the sv6 re-
search kernel [8] running on x86 processors. The sv6 kernel is
a monolithic OS kernel written in C/C++, providing a POSIX
interface similar to (but far less sophisticated than) Linux. The
simplicity of sv6 allowed us to quickly experiment with and
iterate on WARD’s design, since some aspects of WARD’s
design require global changes to the entire kernel. Since sv6
is a monolithic kernel, our prototype was able to tackle hard
problems brought up by kernel services such as a file system
and a POSIX virtual memory system.

We evaluate the performance of our WARD prototype using
LEBench [24], which represents the most important system
calls for a range of application workloads: Spark, Redis, Post-
greSQL, Chromium, and building the Linux kernel. LEBench
allows us to precisely measure the impact of mitigations on
system calls that matter for applications. The most recent Intel
CPUs (such as Cascade Lake) include hardware mitigations
that cannot be fully disabled; however, some of these miti-
gations are not needed in WARD. To avoid the performance
overhead of such unnecessary mitigations, we run experiments
on the previous generation of Intel CPUs (Skylake).

WARD can run the LEBench microbenchmarks with small
performance overheads compared to a kernel without miti-
gations. For 18 out of the 30 LEBench microbenchmarks,
WARD’s performance is within 5% of the benchmark’s perfor-
mance without any mitigations (but at the cost of some extra
memory overhead). In the worst case, the overhead is 4.3×
(context switching between processes, where mitigations are
unavoidable). In contrast, standard mitigations incur a median
overhead of 19%, and a worst case of nearly 7×. To confirm
that LEBench results translate into application performance
improvements, we measured the performance of git status,
which incurs 11.2% overhead in WARD, compared to 24.6%
with standard mitigations.

One of the limitations of USC is that it does not cover
all possible transient execution attacks. In particular, attacks
where the sensitive information is already present in the archi-
tectural or microarchitectural state of the CPU are not covered
by USC. For instance, the Spectre v3a attack can leak the sen-

sitive contents of a system register (MSR), instead of leaking
sensitive data from memory. USC does not cover sensitive
data that is stored outside of memory, and WARD applies other
mitigations (e.g., as in Linux) to address those attacks.

2 Motivation
Transient execution mitigations harm kernel performance in
two ways. First, they place overhead on code execution by
disabling speculation. For example, the Linux Kernel uses a
retpoline patch to mitigate Spectre V2, which replaces each
indirect branch with a sequence of instructions that prevent the
CPU from performing branch target speculation [13]. Second,
these mitigations increase the privilege mode switching cost
incurred during each system call: upon entry into the kernel,
they either flush microarchitectural state or reconfigure pro-
tection mechanisms. For example, KPTI [11, 20] switches
to a separate page table before executing kernel code to pre-
vent Meltdown attacks [21]. Workloads that are system call
intensive (e.g., web servers, version control systems, etc.) are
impacted by this type of overhead, while non-kernel intensive
workloads see little performance impact [11].

Collectively, these and other mitigations can result in large
slowdowns. To better understand this problem, we run
LEBench [24], a microbenchmark suite of system calls that
impact application performance the most. We evaluate the
Linux kernel (version 5.6.13), comparing two configurations:
one where all mitigations are disabled and one where all are
enabled. Figure 1 shows the relative slowdown between the
two configurations for 13 kernel operations of LEBench that
don’t involve networking (i.e., without send, recv, epoll).
There are two sets of bars, representing two generations of
Intel CPUs: the older Skylake, and the newer Cascade Lake.
On the older Skylake CPUs, system calls that perform the
least kernel work are impacted the most (e.g., getpid()), but
a wide range of operations are impacted significantly (25%-
100% slowdowns). These observations are similar to those
made by Ren et. al.; they find that KPTI and Spectre V2 miti-
gations are the root cause of slowdowns in the Linux Kernel
over the last two years [24].

The newer Cascade Lake CPUs exhibit lower relative over-
heads, partly because the processors include hardware mit-
igations for some of the transient execution vulnerabilities.
However, these lower overheads are also in part due to the
newer Cascade Lake CPUs being slower in the baseline case
when software-controllable mitigations are disabled. Figure 2
shows the performance of the microbenchmark on Cascade
Lake (Intel Xeon Silver 4210R) relative to the earlier Skylake
CPU (Intel Xeon E5-2640 v4). Our experiment uses CPUs
with identical clocks (2.4 GHz), and nearly identical other
hardware (Dell PowerEdge T430 vs. T440), which allows the
comparison to be meaningful. The results demonstrate that,
although the new CPU is faster at some microbenchmarks, it is
slower for many others: e.g., context-switching is about 20%
slower. Although it is impossible for us to separate slowdowns

1140 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ge
tp

id
co

nt
ex

ts
w

itc
h

fo
rk

fo
rk

-c
hi

ld
th

rc
re

at
e

th
rc

re
at

e-
ch

ild
bi

g
fo

rk
bi

g
fo

rk
-c

hi
ld

hu
ge

fo
rk

hu
ge

fo
rk

-c
hi

ld
sm

al
lw

ri
te

sm
al

lr
ea

d
sm

al
lm

m
ap

sm
al

lm
un

m
ap

sm
al

lp
ag

e
fa

ul
t

m
id

re
ad

m
id

w
ri

te
m

id
m

m
ap

m
id

m
un

m
ap

m
id

pa
ge

fa
ul

t
bi

g
re

ad
bi

g
w

ri
te

bi
g

m
m

ap
bi

g
m

un
m

ap
bi

g
pa

ge
fa

ul
t

hu
ge

re
ad

hu
ge

w
ri

te
hu

ge
m

m
ap

hu
ge

m
un

m
ap

hu
ge

pa
ge

fa
ul

t

0

1

2

3
R

el
at

iv
e

ru
nt

im
e

Skylake Server
Cascade Lake Server

Figure 1: Linux slowdown due to mitigations on LEBench, for two generations of Intel CPUs: Skylake and Cascade Lake.

ge
tp

id
co

nt
ex

ts
w

itc
h

fo
rk

fo
rk

-c
hi

ld
th

rc
re

at
e

th
rc

re
at

e-
ch

ild
bi

g
fo

rk
bi

g
fo

rk
-c

hi
ld

hu
ge

fo
rk

hu
ge

fo
rk

-c
hi

ld
sm

al
lw

ri
te

sm
al

lr
ea

d
sm

al
lm

m
ap

sm
al

lm
un

m
ap

sm
al

lp
ag

e
fa

ul
t

m
id

re
ad

m
id

w
ri

te
m

id
m

m
ap

m
id

m
un

m
ap

m
id

pa
ge

fa
ul

t
bi

g
re

ad
bi

g
w

ri
te

bi
g

m
m

ap
bi

g
m

un
m

ap
bi

g
pa

ge
fa

ul
t

hu
ge

re
ad

hu
ge

w
ri

te
hu

ge
m

m
ap

hu
ge

m
un

m
ap

hu
ge

pa
ge

fa
ul

t

0.0

0.5

1.0

R
el

at
iv

e
ru

nt
im

e

Cascade Lake / Skylake

Figure 2: Performance regression on the newer Cascade Lake CPU, compared to the older Skylake CPU, for LEBench on Linux, with all software-controllable
mitigations disabled.

due to mitigations from speedups due to architectural improve-
ments, the results suggest that the overheads of mitigations
implemented in hardware (e.g., for Meltdown, L1TF, or MDS)
could still be significant. 1

3 Goal and threat model
WARD’s goal is to reduce the performance cost of mitigations
for transient execution attacks. In principle, WARD’s tech-
niques can reduce not only the cost of software mitigations,
but also allow processor designers to avoid costly mitigations
in hardware. Practically, however, it is difficult for us to
disable hardware mitigations in the newest processors. There-
fore, this paper focuses on reducing the overhead of software
mitigations, and experimentally measures their effect on the

1One indication that this regression may be related to hardware mitigations
is that measured branch mispredictions are around 40% higher on LEBench.

previous generation of CPUs, where we can avoid mitigations
altogether. We hope that WARD’s design can allow processor
designers to regain some of the absolute performance lost due
to hardware mitigation costs.

Our threat model targets scenarios where the adversary and
the victim are both running code on the same computer. This
might arise either in a server setting, where both are running
on a cloud computing platform, or in a client device, where
the adversary code is a malicious application or web site.

Canella et al. [5] discuss transient execution attacks in de-
tail, but the salient points of the attack boil down to four steps.
First, the processor speculatively executes some code, which
accesses sensitive data that the victim wants to keep secret.
Second, during the speculative execution, the processor up-
dates microarchitectural state in a way that depends on the
sensitive data (e.g., bringing in cache lines into a shared L3

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1141

cache whose addresses depend on the sensitive data). Third,
the processor aborts the speculative execution, but does not
fully roll back all of its side effects (e.g., changes to the L3
cache), because doing so would be prohibitively expensive in
hardware. Fourth, the adversary observes these side effects
(e.g., using timing measurements), which allows the adversary
to infer the sensitive data.

What makes transient execution attacks challenging to miti-
gate in an OS kernel is a combination of two factors. The first
is that an adversary can trigger an OS kernel to speculatively
execute code that leads to leakage of sensitive data. Even
though the adversary cannot inject their own code to execute
in the kernel, the adversary can often have significant influ-
ence on what existing kernel code gets executed in speculative
execution, by specifying particular system call arguments or
setting up micro-architectural CPU state such as the branch
predictor. The second factor is that an OS kernel has access to
all of the state on the computer. This means that an adversary
running in one process can trick the kernel into leaking state
from any other process on the same computer.

Current OS kernel designs, such as Linux, have two ap-
proaches for mitigating transient execution attacks. The first
approach is to make sure that the CPU does not speculatively
execute any code that could end up accessing sensitive data.
This approach includes techniques such as retpolines and other
speculation barriers. The second approach is to make sure that
sensitive data is flushed from microarchitectural state, such as
flushing CPU caches and buffers when returning from a sys-
tem call or when context-switching between processes. Both
incur significant performance overheads.

Transient execution attacks can leak data across many pro-
tection domain boundaries, such as leaking secrets from the
kernel to an adversary’s process, or leaking secrets from one
process to a different process, or even leaking secrets within a
single process that implements its own internal protection do-
mains. Much like in the Linux kernel, the focus of WARD is on
preventing leakage between processes, as well as preventing
leakage from the kernel to a process. WARD’s approach to pre-
venting cross-process leakage is the same as Linux (flushing
state), but WARD has a novel approach for efficiently pre-
venting kernel-to-process leakage of memory contents, as we
describe in the next section.

Although WARD addresses all known transient execution
attacks, the focus of this paper is on attacks that allow the
adversary to leak the contents of arbitrary memory, which is
especially important in an OS kernel. WARD handles other
transient execution attacks, such as leaking the contents of
sensitive data already present in the CPU (e.g., x86 MSRs), in
the same way as Linux does.

Attacks that do not leverage transient execution to leak data
are also out of scope for this paper, since they are orthogonal to
the key challenge of transient execution leakage. In particular,
we do not consider attacks that leverage physical side channels
(such as Rowhammer or RAMbleed), cache side channels

(such as cache timing attacks), power side channels, etc.

4 Approach: Unmapped speculation contract
WARD’s design for mitigating transient execution attacks relies
on page tables. Specifically, if a page of physical memory is
not referenced by any entry in the current page table or TLB,
speculative execution cannot access any sensitive data stored
in that page, because the page doesn’t have a virtual address
to access it by.

A contribution of this paper lies in articulating a hard-
ware/software contract—which we call the unmapped specula-
tion contract—that captures the above intuition. The contract
aims to provide a strong foundation for keeping data confi-
dential, which is typically stated as non-interference. Non-
interference can be thought of by considering two system
states, s and s′, that differ only in sensitive data, which should
not be observable by an adversary. A system ensures non-
interference if an adversary cannot observe any differences in
how the system executes starting from either s or s′.

Single-core USC. To formally state the unmapped specula-
tion contract, we start with a single-core definition. We use
A(·) to refer to the state of the CPU, including all architectural
and micro-architectural state, but excluding the contents of
memory, and we use M(·) to refer to the contents of mapped
memory, i.e., the contents of every valid virtual address based
on the committed page table in that state. We define the con-
tract by considering a single clock cycle of the processor’s
execution, step(·), which includes any speculative execution
done by the processor on that cycle, and require that unmapped
pages cannot influence it:

∀s,s′,
if A(s) = A(s′) and M(s) = M(s′),
then with S := step(s) and S′ := step(s′),
it must be that A(S) = A(S′)

In plain English, the definition considers a pair of starting
states s and s′ that should look the same, as far as speculative
execution is concerned, because they have the same CPU state
and the same contents of mapped pages. They might, however,
differ in the contents of some unmapped physical pages, which
contain sensitive data that we would like to avoid leaking. The
definition then considers the state of the CPU at the next
clock cycle (S := step(s) and S′ := step(s′) respectively), and
requires that the CPU architectural and micro-architectural
state A(·), which the adversary might observe, continues to be
the same in those two states. As a result, the microarchitectural
state could not have been influenced by any sensitive data not
present in M(s).

If the OS kernel does not change the mapped memory in
that clock cycle, M(·) remains the same, and the contract will
continue to hold on the next cycle too. However, if the OS
kernel changes the mapped memory, the contract allows spec-
ulative execution from that point on to use the newly mapped
memory, and the kernel will need to use other mitigations

1142 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

to defend against transient execution leaks from the newly
mapped memory, if necessary.

The contract specifies how the micro-architectural state,
A(·), can evolve, but does not say anything about how M(·)
can change. This is because the focus of the contract is on
transient execution, which cannot affect the committed ar-
chitectural state of the system; the contents of memory is
described by the ISA, since it is architectural state. In other
words, changing the memory requires committing the execu-
tion of some instruction, at which point this is no longer a
transient execution.

Multi-core USC. In a multi-core setting, the CPU state can
be thought of as consisting of per-core state (e.g., registers,
execution pipeline, and root page table pointer), which we
denote with Ai(·) for core i, and the uncore state (e.g., the
hardware random number generator [23]), which we denote
with U(·), shared by all cores. Similarly, since each core has
its own page table, we index the mapped memory by the core
i whose page tables we are considering, Mi(·). Finally, we
consider the multi-core system executing a clock cycle on
one core at a time, stepi(·). We assume that stepi(·) does not
change A j(·) for any i ̸= j. With this notation, the multi-core
contract says:

∀s,s′, i,
if Ai(s) = Ai(s′);U(s) =U(s′); and Mi(s) = Mi(s′),
then with S := stepi(s) and S′ := stepi(s

′),
it must be that Ai(S) = Ai(S′) and U(S) =U(S′)

This means that speculative execution on core i is allowed to
depend on the state of core i, the uncore state, and the memory
mapped by core i. This multi-core formulation allows transient
execution to affect both the core state Ai(·) as well as the
uncore state U(·), at the micro-architectural level. However,
transient execution cannot affect either of these states in a way
that depends on unmapped memory.

Although hardware threads appear to provide separate exe-
cution contexts, with a separate page table for each hardware
thread, they have extensive sharing of core resources. To cap-
ture that, we consider Ai(·) to include the state of all hardware
threads on core i, stepi(·) to include the execution of any hard-
ware thread on core i, and Mi(·) to be the union of memory
mapped by all of the hardware threads on core i (i.e., the union
of the page tables of the threads). With this model, the contract
allows leakage of mapped memory across hardware threads.

Benefits of the USC. The contract helps reconcile security
and performance of speculative execution. On the one hand,
hardware can keep the high performance provided by out-of-
order execution, because the contract allows almost all forms
of speculative execution, as long as data during speculative ex-
ecution is accessed through non-speculative TLB entries. On
the other hand, software can precisely specify what data can
and cannot be used for speculative execution, by configuring
page tables. For example, if the mapped pages never con-
tain sensitive data, then no mitigations are needed to defend

against transient execution vulnerabilities. Finally, because
OS developers expect page faults and TLB misses to be quite
expensive (compared to memory references), USC doesn’t
change their performance expectations: developers already
have adapted their designs to avoid excessive page faults or
TLB invalidations.

Although the contract is aspirational, one appealing property
of the contract is that modern computer architectures already
effectively aim to provide such a guarantee. AMD explicitly
states in bold font that their “processors are designed to not
speculate into memory that is not valid in the current virtual
address memory range defined by the software defined page
tables” [1, pg. 2]. Intel has no explicit position about this
contract, but it appears that they treat violations of this contract
as bugs to be fixed in hardware or microcode, as evidenced by
their fixes for Meltdown and L1TF, described below.

USC and attacks. The contract captures a common pattern
that emerges in many transient execution attacks: an adversary
can only leak micro-architectural state that is already present
on the CPU, as well as the contents of mapped memory, but
not the contents of memory that is not present in a page table.
As one example, consider the MDS family of attacks [6, 25,
29]. These attacks allow an adversary to trick the kernel
into leaking the contents of mapped memory, through careful
orchestration of transient execution. Linux prevents this class
of attacks by clearing CPU buffers when crossing the user-
kernel boundary. This is needed because, when executing
in kernel mode, all system memory is mapped and therefore
could be leaked through transient execution. The contract,
however, captures the fact that only mapped memory is at risk
with this attack. This allows for a more efficient mitigation of
such attacks, as we demonstrate in WARD, by avoiding kernel
mappings of sensitive memory.

In contrast to the example of MDS attacks, which leak
sensitive data from memory, the USC does not help mitigate
attacks that leak sensitive data already present in the CPU
state. For instance, the Spectre variant that leaks the contents
of x86 MSRs (Spectre 3a) is not precluded by the contract,
since the sensitive data being leaked is not present in memory
at all. As a result, an OS kernel must apply other mitigations
to deal with such attacks.

More generally, the contract helps categorize existing at-
tacks based on which part of the system state they leak, as
shown in Figure 3. For attacks that leak core or uncore state,
the contract has little to say in terms of how those attacks can
be mitigated, as shown in the “Mitigated by USC” column. As
a result, WARD defends against these attacks much in the same
way as Linux. In contrast, for attacks that leak the contents
of memory, the contract gives a more efficient mitigation ap-
proach: simply avoid mapping memory that contains sensitive
data. This allows WARD to efficiently mitigate attacks such as
some variants of Spectre and MDS.

As shown in the “Consistent with USC” column, all of the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1143

Attack Leaked state Mitigated Consistent
by USC with USC

Spectre variants

Memory

Yes Yes
Meltdown Yes Yes (ucode)
MDS Yes Yes
PortSmash Yes Yes
L1TF Yes Yes (ucode)

Spectre variants
Core state

No Yes
LazyFPU No Yes
System reg. read No Yes

Spectre variants
Uncore state

No Yes
CrossTalk No Yes
SGAxe No Yes

Figure 3: Transient execution attacks categorized based on the state leaked
by the attack.

attacks in Figure 3 are consistent with the contract’s require-
ments on the underlying hardware. This is good in two ways.
First off, this means that none of the known attacks violate the
contract, and thus, the contract is a reasonable approach for
mitigating transient execution attacks. Second, this means that
USC can mitigate the class of attacks that it covers—namely,
attacks that leak memory contents.

There are two special cases: Meltdown and L1TF. When
originally discovered, these attacks bypassed the page table
protections and allowed an adversary to obtain the contents
of memory that was not mapped. In both of these cases, the
hardware manufacturer (Intel) considered them to be hard-
ware bugs, as evidenced by the fact that both of them were
fixed through hardware and microcode revisions [14, 15], as
confirmed by Canella et al. [5].2

5 Design
Under the assumption of the unmapped speculation contract,
this section describes how WARD can reduce the cost of miti-
gations for system calls. §5.1 provides an overview of WARD’s
design with subsequent sections providing more detail about
WARD’s switch between protection domains (§5.2), about the
mitigations used by WARD when mitigations are necessary
(§5.3), WARD’s kernel text (§5.4), WARD’s memory manage-
ment modifications (§5.5), WARD’s process management split
(§5.6), and WARD’s file system split (§5.7).

5.1 Overview
WARD’s design maintains two page tables per process. One
page table defines a process-specific view of kernel memory.
When a process is running with that page table, we say it is
running in its quasi-visible domain (or Q domain for short),
and with its Q page table. Following the unmapped speculation
contract, WARD assumes any kernel memory mapped by the

2Canella et al. state that some variants of the Meltdown attack, such as
Meltdown-BR, are still possible even with the most recent microcode. Those
variants, however, are bypassing software checks, rather than the hardware
page table, and therefore do not violate the unmapped speculation contract.

Public

Stack Stack Stack

Stack Stack Stack

Private

No
miti-
gat-
ions

With
miti-
gat-
ions

No
miti-
gat-
ions

With
miti-
gat-
ions

Text

User
space

Kernel
space

Q1 K1 Q2K2

Figure 4: Overview of WARD’s address space layout with two processes
(indicated by the colors green and purple). Each process has a Q and K
domain. Q domains have access to public data (the grey color) and per-
process kernel data; the white private region is unmapped kernel data. Each
domain also has its own stack and kernel text. In the Q domain, the kernel
text has no mitigations. The K domains map all memory, including sensitive
memory (indicated by red); all K domains have the same memory layout.
Data structures that are shared across processes, such as pipes or file pages,
can be mapped in multiple Q domains, as indicated by the yellow color.

Q page table can be leaked to the currently running process.
Instead of using mitigations to prevent leaks of kernel memory,
WARD arranges for the mappings in the Q page table to be
such that they contain no sensitive data of other processes.

When the process needs to access data that is not mapped
in the Q page table, it can switch to its other page table, which
maps all physical memory, including memory that contains
sensitive data. When a process is running with this page table,
we say the process is executing in its K domain with its K
page table. In its K domain, the process runs with the same
mitigations as Linux currently uses.

This design allows many system calls to execute in the Q
domain, with no mitigation overhead. As a simple example,
getpid does not access any sensitive data; it needs access to
only the kernel text and its own process structure. A more in-
teresting example is mapping anonymous memory: it requires
access to the process’s own page table and to the memory
allocator, but not other processes’ page tables or pages.

Figure 4 shows the address space layout in WARD in more
detail. Each process has a Q and K view of memory. When a
process is running in user space it runs in its Q domain (with
no secrets mapped in the Q page table). When a user process
makes a system call it enters the kernel but stays in its Q
domain. The Q domain maps public kernel memory, Q-visible

1144 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

kernel memory, the process’s Q domain stack, and the kernel
text without mitigations.

If a system call needs access to memory in the K domain,
WARD performs a switch from its Q domain to its K domain.
We refer to the switch from a Q domain to a K domain as a
world switch, because kernel code in a Q domain runs without
most mitigations and the kernel code in the K domain runs
with full mitigations. Furthermore, the process switches from
its Q domain stack to its K domain stack. The K domain, with
access to all kernel memory, can then execute the rest of the
system call with full mitigations.

Achieving good performance in WARD depends on avoiding
world switches. To reduce the number of world switches,
WARD maps kernel data structures that contain no sensitive
data into every Q domain. For example, all Q domains map
x86 configuration tables (IDT, GDT), some memory allocator
state, etc. On the other hand, kernel data structures that contain
application data, such as process memory or saved register
state, are not mapped into Q domains unless that process
should have access to that data.

5.2 World switch
One of the challenges in WARD’s design is that a system call
often does not know upfront whether it will need to execute
in the Q domain or in the K domain. For example, a read
system call might be able to execute purely in the Q domain,
or might need access to sensitive data from the K domain,
depending on the file descriptor that the process is reading
from, and depending on whether this Q domain already has
some sensitive data mapped or not. To support this, WARD’s
design allows a system call to start executing in the Q domain,
and switch to the K domain later as needed.

WARD allows the Q domain to trigger a world switch either
intentionally or transparently. If the code determines that
it must switch to the K domain, it can intentionally invoke
the function, kswitch(), to perform a world switch. When
kswitch() returns, the kernel thread is now executing in the
K domain, and has access to all memory. If the Q domain
needs access to specific sensitive data which might or might
not be already mapped, the Q domain can attempt to access
the virtual address of that data. If the data is already mapped
in the Q domain, the access will succeed, no world switch
happens, and the Q domain can continue executing. If the
data is not mapped, the Q domain triggers a page fault, which
transparently triggers a world switch. Once the page fault
returns, the kernel thread is now executing in the K domain,
as if it called kswitch(). Compared to making an intentional
call to kswitch(), the transparent approach incurs a slight
overhead for executing the page fault, but allows large sections
of the kernel to be kept completely unmodified, and allows
the Q domain to elide a world switch altogether if the data is
already mapped in the Q domain.

The above design requires that a kernel thread can start
executing in the Q domain and transparently switch to exe-

Transient execution vulnerability U/Q K Ctx

L1TF x x

V1 (Bound Check Bypass) x
V1.1 (Bounds Check Bypass Store) x
V3 (Meltdown) x
V4 (Speculative Store Bypass) x

V2 (Branch Target Injection) x x
Microarchitectural Data Sampling x x

(Fallout, RIDL, Zombie Load, etc.)

LazyFPU x
SpectreRSB x

PortSmash Not applicable
Load Value Injection Not applicable
Meltdown-PK (protection key bypass) Not applicable
Meltdown-BR (bounds check instr. bypass) Not applicable
V1.2 (Read-only Protection Bypass) Not applicable

Figure 5: The mitigations implemented in software by WARD.

cuting in the K domain. This means that any addresses that
the kernel thread is referencing, including pointers to data
structures, stack addresses, and function pointers, remain the
same. To achieve this, WARD ensures that the layout of the
Q domain and the K domain match. In particular, all data
structures in the Q domain must appear at the same address
in the K domain, and the kernel code (text) is located at the
same address (even though the code is slightly different, as
described in §5.4).

The stack requires particular care because a kernel thread
that is processing sensitive data in the K domain could inad-
vertently write that data to the stack. For example, a read()
system call from /dev/random needs to switch to the K do-
main to access the system-wide randomness pool. However,
the pseudo-random generator code might spill some of its state
to the stack, depending on the compiler’s choices. If the stack
is accessible from the Q domain, the sensitive data could in
turn be leaked during the next entry into the Q domain by any
thread within the same process. At the same time, if the K
domain stack was separate from the Q domain stack, pointers
to stack locations before a world switch would no longer work
after a world switch. To reconcile these constraints without
having to rely on any dedicated compiler support, WARD maps
a distinct kernel stack for each domain at the virtual address
range and copies the Q domain stack contents to the K domain
stack during a world switch.

5.3 Mitigations
Figure 5 shows the known transient execution attacks [5, 12],
organized by the mitigations needed to address those attacks
in WARD’s design. The columns (U/Q, K, and Ctx) indicate
where the mitigations are needed: respectively, while exe-
cuting in user-mode or Q domain; while executing in the K
domain; and when context-switching between processes.

The L1TF attack allows leaking the contents of the L1 cache

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1145

if there are partially-filled-in entries in the page table. We think
of this attack as a violation of the USC (see Figure 3), but a
simple microcode fix, as well as clearing unused page table
entries, makes the system agree with the USC, and avoids
the L1TF attack. Since L1TF allows leaking the contents of
any data, WARD applies the mitigations both in user-space, Q
domain, and K domain.

The next category of attacks requires no mitigations in either
user-space or Q domain. Specifically, Spectre variants that
bypass bounds checks require mitigation in the K domain,
since there is sensitive memory contents that could be leaked
as a result of a speculative check bypass. However, there is
no sensitive data that can be leaked in the Q domain, owing
to USC. Similarly, no mitigations are required on a context
switch, since these attacks can only leak data from the current
protection domain.

Meltdown also falls in this category, but for a different rea-
son. Meltdown allows an adversary to bypass the user-kernel
boundary check in the page table. WARD’s use of a separate
page table for the Q and K domains ensures that Meltdown
cannot leak any confidential data, since no confidential data is
available in the Q domain. Recent microcode from Intel fixes
the Meltdown attack in a way that avoids the need for software
mitigations.

The next category of attacks require mitigation both in the
K domain and on context switch. Spectre v2 and MDS attacks
can allow an adversary to obtain sensitive data either from the
OS kernel or from another process. However, no mitigations
for these attacks are needed in the Q domain due to USC: there
is no sensitive data to leak in the Q domain of the currently
running process.

For some attacks, such as LazyFPU and SpectreRSB, mit-
igations are only required on context switch, because the at-
tacks involve process-to-process leakage.

Finally, a number of attacks are not applicable to WARD’s
simpler design, in contrast to Linux. For example, WARD does
not support SGX, does not support running virtual machines,
and does not use certain hardware features (such as hardware
bounds-check instructions or protection keys).

5.4 Kernel text
Some of the mitigations involve changes to the executable
kernel code (text), such as the use of retpolines in place of
indirect jumps. These mitigations impose a performance cost,
but they are not needed when executing in the Q domain.

A naïve approach might be to compile the kernel code twice,
with different compiler flags for mitigations, and load the two
different kernel binaries in the Q and K domains respectively.
However, this would break WARD’s page fault triggered world
switches because after completing the switch, execution would
resume with the same instruction pointer and stack contents
from before the switch but neither would be meaningful in the
new text segment.

Instead we need the two version to have matching instruc-

tion addresses and stack layouts. WARD achieves this by
compiling the kernel only once, but then making two copies
of the code at runtime. One copy is mapped into all the K
domains, and the other into all the Q domains but at the same
virtual address as in the K domains. Switching between the
two is seamless.

At boot time, in a process inspired by Linux’s ALTERNA-
TIVE macro [9], WARD locates each call or jmp in the Q text
segment pointing to a retpoline thunk, and replaces them with
the instruction that retpoline emulates. One complication is
that indirect call instructions are only 2 or 3 bytes, compared to
the 5 that a direct call instruction takes. If we tried to pad with
a NOP instruction before or after, the pair would not execute
atomically, so instead we prepend indirect calls with several
repetitions of the CS-segment-override prefix, which is always
ignored in 64-bit mode.

5.5 Memory management
Memory allocation in WARD is complicated by the fact that the
contents of free pages may contain sensitive data. In particular,
if a page was freed by one process, its contents must be erased
before the page can be mapped in another Q domain. Zeroing
out pages on every allocation would be costly, in particular
when allocating kernel data structures, which do not otherwise
require the memory to be zero-filled.

To avoid the overhead of repeatedly zeroing kernel pages,
WARD implements a sharded allocator for kernel memory.
Each Q domain has its own pool of pages for allocation, and
the K domain keeps all of the kernel memory that is not part of
any Q domain. WARD transfers memory between these shards
in batches to amortize the world switch overhead. Keeping
a pool of kernel memory in a Q domain allows the kernel to
repeatedly allocate and free memory within a Q domain with
little overhead.

The other category of memory managed specially by WARD
is public memory. WARD maintains a single pool of public
pages, with separate functions, palloc() and pfree(), for
allocating and freeing in that pool. All public-pool pages are
mapped in every Q domain.

5.6 Process management
When the WARD kernel switches from executing one process
to another, it must perform a world switch, to ensure that
confidential data does not leak across processes (such as the
saved CPU registers that the kernel might save on the stack).
However, if a multi-threaded application is running, there is
no security reason to perform a world switch when switch-
ing between multiple threads in the same process—all of the
threads have the same privileges and have access to the same
process address space.

To avoid mitigation overhead when switching between
threads in the same process, WARD splits the process de-
scriptor, struct proc, into two parts. The first part stores
sensitive process state, such as the saved CPU registers, and is
not public. The second part stores metadata about the process,

1146 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

such as the PID, the run queue, the scheduler state, etc. This
part is public and is used by the scheduler when deciding what
thread to execute next. As a result, the scheduler can pick the
next thread without incurring a world switch. Furthermore,
if the next thread happens to be from the same process, the
context switch code can also avoid performing a world switch.
Existing scheduler policies that favor picking threads from the
same process mesh well with this approach.

5.7 File system
File system workloads involve access to several kernel data
structures, including the inode cache and the page cache (con-
taining file data). Inodes are challenging for WARD to deal
with because they are smaller than a page, so it is not feasible
to map them individually into a Q domain. However, achiev-
ing good performance for file system operations requires being
able to access an inode without a world switch. To reconcile
this conflict, we chose to make all inode structures public in
WARD, similar to our approach for splitting the proc struc-
ture above. If the inode had sensitive data (such as extended
attributes), that part of the inode structure would need to be
split off into a separate private structure, along the lines of
how we split off the part of the proc structure storing saved
CPU registers.

File data pages are not public, because their contents might
be sensitive. WARD implements an optimization that allows
it to access file contents without a world switch. In particu-
lar, after WARD checks the permissions on a file, it reads or
writes the contents of a file page by temporarily mapping the
corresponding physical page of memory into its Q domain’s
address space. This allows the Q domain to access that spe-
cific memory page without the risk of leaking other pages; as
a result, no mitigations or world switches are needed. When
the Q domain is finished with the file read or write, it unmaps
the page and issues a TLB shootdown, in case the file is later
truncated and the page gets reused for other data.

5.8 Pipes
Pipes are different from many of the other kernel data struc-
tures discussed so far in that their contents shouldn’t be visible
globally, but their state can be associated with multiple pro-
cesses at a time. WARD’s goal is to ensure that if a reader and
writer of a pipe run on different cores, then they don’t incur
world switches when they access the pipe. To achieve this,
we store a pipe’s data structures in shared memory regions
between Q domains. These shared regions are lazily mapped
into Q domains the first time a process accesses a pipe (doing
the mapping on fork would cause unnecessary overhead),
and unmapped when the last reference to the pipe within a Q
domain is closed.

When a pipe becomes full or empty, the caller blocks on a
condition variable. Subsequent reads or writes can observe
which processes are blocked and add them to the scheduler
run queue if appropriate. Neither of these operations requires
access to any secret data so no world switch is triggered until a

new process is scheduled. Thus, if the core remains idle until
the blocking thread is added back to the run queue, the cost of
a world switch is avoided.

5.9 Discussion
WARD’s design assumes that there are no secrets in the Q
domain that need to be hidden from the user-level process. For
many secrets, they can be protected by placing them in the K
domain, such as the seed of a system-wide randomness genera-
tor. However, address-space layout randomization (ASLR) for
the kernel address space is difficult to protect in this fashion,
because kernel addresses must be used in the Q domain, and
the addresses must match up between the Q domain and the
K domain in order for world switches to work. (Note that
the initial seed that is used to randomize layout could be pro-
tected in the K domain, but the resulting randomized layout
cannot be protected.) As a result, kernel ASLR in WARD is
susceptible to leakage of addresses through transient execution
side-channels.

Our WARD prototype does not include an optimized in-
kernel network stack, but a reasonable approach might be to
treat all network data as public, leaving it up to the application
to encrypt any sensitive information sent over the network.
This meshes well with the recent trends in widespread use of
TLS for network security, and allows for network operations
to achieve high performance in WARD because no mitigations
or world switches are required, and all network processing can
stay in the Q domain.

Hyperthreading is a source of many possible transient execu-
tion leaks, because a significant amount of microarchitectural
state is shared between the execution contexts. However, many
Linux systems continue to run with hyperthreading enabled,
despite these risks, because of the high performance over-
head they would incur if hyperthreading was entirely disabled.
WARD does the same.

6 Implementation
To demonstrate the feasibility of the WARD design, we imple-
mented a prototype of WARD starting from the sv6 research
kernel. The kernel is monolithic, implementing traditional OS
services such as virtual memory, processes and threads, file
systems, fine-grained concurrency using RCU-like techniques,
etc. The sv6 kernel, is written in C/C++, runs on x86 pro-
cessors (both AMD and Intel), and has decent uniprocessor
performance and great multicore performance and scalabil-
ity [8].

Kernel changes. WARD’s design affects most core kernel
subsystems, including the memory allocator, virtual memory,
context switching and the scheduler, and the file system. The
simplicity of sv6 allowed for rapid experimentation with kernel
designs to enable WARD, which would have been challenging
to do in a more complex kernel like Linux, since it is time-
consuming to make changes to core subsystems in the Linux
kernel, which would have made design iterations far slower.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1147

Transient execution variant Strategy Support

V1 (Bound Check Bypass) bounds clipping partial
V1.1 (Bounds Check Bypass Store) lfence partial
V1.2 (Read-only Protection Bypass) lfence n/a (no in-kernel software sandbox)
V2 (Branch Target Injection) retpoline yes

—"— speculation barrier yes
—"— return stack buffer filling yes
—"— disable spec before BIOS calls n/a (no calls to BIOS in WARD)

V3 (Meltdown) Kernel page table isolation (KPTI) yes
V3a (System Register Read) microcode yes
V4 (Speculative Store Bypass) disable spec. or ctx. switch yes
LazyFPU hardware-assisted save/restore yes
SpectreRSB return stack buffer filling yes
L1TF cache flush, no SMT n/a (no VM entry in WARD)

—"— no invalid PTEs yes
PortSmash no SMT no
Microarchitectural Data Sampling CPU buffer clearing yes
(Fallout, RIDL, Zombie Load, etc.) no SMT no
Load Value Injection lfence n/a (no SGX in WARD)
Meltdown-PK (protection key bypass) address space isolation n/a (no protection keys)
Meltdown-BR (bounds check instr. bypass) lfence n/a (no bounds check instructions)

Figure 6: Transient execution mitigations implemented in WARD.

To help partition the kernel data structures across Q do-
mains, we developed Warden, a tool for tracking down the
cause of world switches. Warden instruments page faults from
the Q domain that lead to a world switch, and records a stack
trace for each of them. Examining the profile of these world
switches allows the kernel developer to quickly understand
what kernel data structures need to be partitioned or sharded to
reduce the number of world switches, as well as the operations
that need to be supported on these data structures within a Q
domain. Although Warden identifies the data structures that
are causing world switches, it is up to the kernel developer to
identify an appropriate plan for partitioning the data structure
so that no sensitive data can leak through side channels.

To run applications on top of the WARD prototype kernel,
we changed the WARD system call interface, including system
call numbers, data structure layout, etc, to match that of Linux.
This allows unmodified Linux ELF executables to run on top
of WARD, and ensures that WARD implements (a subset of)
the same system calls that are available on Linux.

We modified sv6 to use PCIDs to reduce the cost of switch-
ing page tables (see §5.2). To improve TLB shootdown per-
formance, we modified sv6 to use Linux’s shootdown strategy.
This is important, for example, for removing temporary map-
pings in a read and write systems calls (see §5.7).

Mitigations. WARD implements side-channel mitigations for
known transient execution attacks [5, 12], as shown in Fig-
ure 6. WARD mostly copies the mitigation strategies and their
implementation from the Linux kernel [19]; the most inter-
esting exception is that WARD does not apply some of these
mitigations to the Q domain, as described in Figure 5.

For Spectre V1, WARD, adds an lfence instruction when

copying from user code, and when taking an interrupt, excep-
tion, and NMI entry. WARD uses bounds clipping in fewer
cases than Linux for two reasons: WARD has less code and
we haven’t performed a careful audit of the complete source
code. For Spectre V2, we compile WARD to use retpolines (by
specifying the “-mretpoline-external-thunk” flag to clang).
WARD also uses Linux’s FILL_RETURN_BUFFER macro to fill
the return stack buffer, and issues an indirect branch predictor
barrier IBPB instruction on a context switch. For Spectre V3,
WARD uses separate page tables (as described in §5.1) and
uses process-context identifiers (PCIDs) to avoid TLB flushes.

For Spectre V4, WARD issues an lfence on context switch.
(If WARD supported generating code at runtime, the JITs
would also have to be hardened.) For LazyFPU, WARD uses
the xsaveopt instruction to safe/restore floating point state.
For SpectreRSB, WARD fills the return stack buffer on con-
text switch. For L1TF, WARD avoids invalid PTEs. Like
Linux, WARD doesn’t address PortSmash; the default for the
Linux kernel is to allow SMT, and WARD does too. For mi-
croarchitectural data sampling attacks, WARD issues the verw
instruction for clearing CPU buffers.

Some attacks aren’t applicable to WARD, because WARD
doesn’t support virtualization, secure enclaves, and hardware
transactional memory; does not call into the BIOS; and does
not implement in-kernel software sandboxes such as BPF.

Like Linux, WARD also zeroes unused CPU registers on
kernel entry, to reduce the avenues of attack available to an
adversary. To determine whether mitigations are necessary,
WARD maintains a special variable called secrets_mapped
whose value is 0 in the Q domain and 1 in the K domain;
this allows the rest of the kernel code to determine if it needs
to perform mitigations just by using if (secrets_mapped)

1148 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

... (as long as interrupts are disabled, to avoid races). To
help evaluate the performance impact of side-channel mitiga-
tions, WARD’s implementation allows switching individual
mitigations on and off at runtime, rather than at compile time
or boot time.

To improve performance, a few system calls invoke the
world switch intentionally to avoid the extra overhead of a
transparent world switch. For example, open, and fork al-
ways invoke world switch intentionally. The read and write
system calls invoke a world switch intentionally when they
are reading or writing large amounts of data, since the cost
of a world switch is less than the cost of shooting down the
temporary mappings for that many file pages. A page fault
on a Copy-On-Write (COW) page also intentionally invokes a
world switch.

Lines of code. The WARD prototype consists of about 34,000
lines of C++ code (for kernel/ and include/), compared
to 24,000 lines of C++ code for the sv6 kernel that WARD
was derived from. git diff –stat reports roughly 17,000
lines of insertions and 5,000 lines of deletions between sv6
and WARD. It is difficult to further break down WARD’s lines
of code, since many aspects of WARD’s design required small
changes throughout the kernel’s source code. For example,
splitting up the kernel memory allocator required the use of
C++ placement new in many parts of the kernel. Similarly,
implementing the Linux binary compatibility layer required
making changes to the implementation of many system calls.

7 Evaluation
To demonstrate the benefits of WARD’s design, this section
answers the following questions:

• Do WARD’s techniques reduce the overhead of mitigations
for system calls? (§7.2)

• How do mitigations affect the cost of a world switch?
(§7.3)

• What are the memory overhead associated with WARD’s
design? (§7.4)

7.1 Experimental methodology
To answer these questions, we consider three different config-
urations of WARD:

• Baseline: WARD with no mitigations against side channels.

• Linux-style: WARD with standard mitigations against side
channels, mirroring the approach taken by the Linux kernel.
This configuration does not use separate Q domains; all
system calls directly enter the K domain.

• USC-based: WARD with fast mitigations that take advan-
tage of the split between the Q domain and the K domain,
leveraging the USC. The K domain implements the same
mitigations as in Linux-style.

WARD’s design is aimed at reducing the overhead of mit-
igations associated with system calls. To zoom in on the
system call overhead, we evaluate WARD’s performance using
LEBench [24], a collection of system call workloads repre-
sentative of a range of real applications. This allows us to
precisely report and explain the effect of WARD’s techniques
on individual system calls. We don’t report results for the
networking benchmarks in LEBench, because the WARD pro-
totype doesn’t have a suitable in-kernel network stack.

All benchmarks were run on a Dell PowerEdge T430 with
two E5-2640 v4 CPUs and 64 GB of RAM.

One potential concern with the use of recent microcode is
that it makes the baseline slower, which in turn makes the
cost of mitigations appear lower than they really are. This
is similar to the significant effect we observed with newer
CPUs, as described in §2. However, with newer microcode,
we find that the performance of the baseline is not significantly
affected: it achieves similar performance even when we use
old microcode. The reason for this is that the recent microcode
updates add mitigations that can be specifically enabled (e.g.,
through the SPEC_CTRLMSR), but almost nothing is enabled
by default. The Linux and Ward baseline experiments do not
enable these mitigations, and thus the performance effect is
minimal.

For the Linux measurements of LEBench, we use the 5.4.0
kernel on Ubuntu 20.04.

7.2 WARD’s USC-based fast mitigations
LEBench. Figure 7 shows the benefit of WARD’s fast miti-
gations on LEBench. The figure compares WARD with USC-
based and Linux-style mitigations, relative to the baseline with
no mitigations. As shown, WARD with fast USC-based miti-
gations is often able to match the unmitigated baseline. The
reason is that many of the microbenchmarks can execute with
no or very few world switches, as shown in Figure 8.

Many microbenchmarks (getpid through huge
pagefault in Figure 8) have nearly 0 transparent and
intentional world switches. They execute completely in the Q
domain. The reason that some have near 0 world switches,
but not exactly 0, is that during the measurement they were
interrupted by a timer interrupt, which requires a world switch
to the K domain to run the scheduler (the remainder of the
syscall is then executed in the K domain too).

Another cause for fractional numbers of transparent world
barriers is that some operations might have a slow path that
requires secrets but only gets triggered infrequently (i.e. be-
cause a memory allocator pool ran empty). A strength of the
WARD approach is that these sorts of cases don’t have to be
manually annotated and in fact it is harmless to completely
ignore them provided they are executed infrequently enough.

There are several microbenchmarks (e.g., the bigger read
and write ones) that perform one intentional world switch
per system call. These system calls immediately enter the K
domain and thus perform identical to WARD with full mitiga-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1149

ge
tp

id
co

nt
ex

ts
w

itc
h

fo
rk

fo
rk

-c
hi

ld
th

rc
re

at
e

th
rc

re
at

e-
ch

ild
bi

g
fo

rk
bi

g
fo

rk
-c

hi
ld

hu
ge

fo
rk

hu
ge

fo
rk

-c
hi

ld
sm

al
lw

ri
te

sm
al

lr
ea

d
sm

al
lm

m
ap

sm
al

lm
un

m
ap

sm
al

lp
ag

e
fa

ul
t

m
id

re
ad

m
id

w
ri

te
m

id
m

m
ap

m
id

m
un

m
ap

m
id

pa
ge

fa
ul

t
bi

g
re

ad
bi

g
w

ri
te

bi
g

m
m

ap
bi

g
m

un
m

ap
bi

g
pa

ge
fa

ul
t

hu
ge

re
ad

hu
ge

w
ri

te
hu

ge
m

m
ap

hu
ge

m
un

m
ap

hu
ge

pa
ge

fa
ul

t

0

1

2

3

4

5
R

el
at

iv
e

ru
nt

im
e

Linux-style Mitigations
USC-based Mitigations

Figure 7: Performance of WARD with fast USC-based mitigations and with Linux-style mitigations, normalized against the baseline performance of WARD
without any mitigations.

tions, and have the same overhead. These system calls also
perform much work in the kernel and the overhead of the 1
world switch is amortized by that work.

The thr create and thr create-child do multiple
syscalls per iteration, but average one world barrier per iter-
ation. Specifically, the thr create microbenchmark makes
three systems calls: one clone that requires a world switch
and a call to each of sigprocmask and set_robust_list
which don’t. The thr create-child microbenchmark in-
cludes an additional call to (sigprocmask) from the child
process, for which WARD can also avoid the world switch.

The fork and fork-child benchmarks each do a single
syscall with an intentional world barrier that takes the vast
majority of execution time, but also raise a handful of page
faults to populate page table entries (which need secrets if they
are copy-on-write related or if the kernel runs out of zeroed
memory pages and has to prepare more).

An interesting case is the context switch microbench-
mark. This microbenchmark measures context switching by
writing and reading a byte over a pipe between two processed
pinned to the same core. The write calls avoids a world
switch because the scheduler can wake other processes while
in the Q domain, but the read call causes a context switch
and (since the two processes are mutually distrusting) thus
requires a world switch.

When we modify the microbenchmark to pin the two pro-
cesses to different cores we observe that it runs without world
switches and that the overhead is about 25 times lower than
Linux-style mitigations.

Application: git. To confirm that the improved performance
of WARD’s fast mitigations seen in LEBench translates into

sys calls World switches
T I Sum

getpid 1 0 0 0
small write 1 0 0 0
small read 1 0 0 0
small mmap 1 0 0 0
small munmap 1 0 0 0
small page fault 1 0 0 0
mid mmap 1 0 0 0
mid munmap 1 0 0 0
mid page fault 1 0 0 0
big mmap 1 0 0 0
big page fault 1 0 0 0
huge mmap 1 0 0 0
huge page fault 1 0 0 0
context switch 2 0 1 1
thr create 3 0 1 1
thr create-child 4 0 1 1
mid read 1 0 1 1
mid write 1 0 1 1
big read 1 0 1 1
big write 1 0 1 1
big munmap 1 1 0 1
huge read 1 0 1 1
huge write 1 0 1 1
huge munmap 1 1.001 0 1.001
fork 2 0 2 2
big fork 2 0 2 2
huge fork 2 0 2 2
huge fork-child 17 0 7 7
big fork-child 17 0.006 7.02 7.026
fork-child 17 0.012 7.065 7.077

Figure 8: The microbenchmarks, sorted by the sum of the number of transpar-
ent (T) and intentional (I) world switches per iteration, along with the number
of system calls invoked (including page faults).

1150 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Configuration Transparent Intentional

None 2457 cycles 1082 cycles
SpectreV2 2453 cycles 1075 cycles
MDS 3337 cycles 1980 cycles
MDS+SpectreV2 3363 cycles 1992 cycles
MDS+SpectreV2+Q_retpoline 3406 cycles 2014 cycles

Figure 9: The costs of transparent and intentional world switches for different
configurations.

application-level performance improvements, we evaluated
the performance of git. For this benchmark, we ran git
status in a 100 MB repository that we cloned from GitHub;
all of the file system state was cached in memory. The average
runtime for Linux-style mitigations took 24.6% longer than the
unmitigated baseline, and USC-style mitigations took 11.2%
longer than the unmitigated baseline. Much of the speedup
is due to the fact that git status invokes frequent lstat
system calls, which can execute in the Q domain. The remain-
ing overhead is due to system calls like openat that require a
world barrier for accessing potentially sensitive file contents.

7.3 World switch
§7.2 shows that the mitigation overhead is dominated by the
cost of a world switch. This section breaks down this cost.

An intentional world switch via kswitch() takes around
644 cycles on a shallow stack, plus 50 cycles or so for every
KB of stack used (the cost of a memcpy). A transparent world
switch using a page fault adds 1372 cycles.

Figure 9 measures the cost of a null system call that in-
vokes an intentional or a transparent world switch, and re-
turns. It shows the cost for different configurations: no miti-
gations, MDS mitigations, SpectreV2 mitigations, and with
retpoline in Q domain. The configuration with Q_retpolines
runs with retpolines in both the Q and K domains. It shows the
benefit of WARD patching them out at runtime: the retpoline
that disables branch prediction for indirect jumps through the
system call table costs 22 cycles.

7.4 WARD memory overhead
Because the memory protection mechanisms that WARD uses
to expose non-secret data to Q domains operates on a 4KB or
2MB granularity, WARD’s approach incurs some additional
memory overhead. Figure 10 lists some of these cases. In
general we face a trade-off when filling small dynamic mem-
ory allocations for Q domain state: either we use an entire
page each time, or we tolerate higher memory fragmentation
because all chucks of memory on a page must be only used by
the same Q domain.

7.5 Security
To validate that WARD’s mitigations work, we implemented a
demonstration program that attempts to execute a Spectre
V2 attack against the WARD kernel. While running with
applicable mitigations disabled (i.e. each Q and K domain
retpoline replaced with a normal indirect jump) the attack

Component Overhead Explanation

Kernel text 2 MB Separate text segments for
Q and K domains

Public kernel data < 4 KB Padding to a page boundary
Process structure 4 KB / process Allocated on its own page
Thread structure ~6 KB / thread Split between a Q domain

page and a K domain page
Q domain stack 32 KB / thread Smaller stacks possible by

avoiding deep recursion
Page tables varies Q domain mappings require

additional PTEs
Inodes – Many public allocations
Scheduler state – packed into a single page

Figure 10: Memory overhead of different WARD components.

succeeds in exfiltrating secret kernel data. However, when
our Spectre V2 mitigations are re-enabled (by re-enabling
retpolines in the K domain) the attack is thwarted. It is of
course impossible to be certain that all variations on the attack
would be blocked, but this test provides some confidence
both that the unmitigated baseline is vulnerable to transient
execution attacks, and that WARD is able to prevent them.

8 Discussion
Future vulnerabilities. It is likely that there are further tran-
sient execution attacks either under embargo or yet to be dis-
covered. Based on trends in the existing attacks, we believe
that WARD should be well positioned to address them: so far,
mitigations developed for Linux have been suitable to directly
copy into WARD. Since many need to run only at K domain
entry/exit instead of every user-kernel boundary crossing, the
same defenses in WARD might be cheaper to apply than they
would be for Linux.

Linux. We are optimistic that Ward’s techniques could also
benefit monolithic production kernels for two reasons. First,
WARD and Linux are in the same ballpark in terms of system
call performance on LEBench. Out of the 30 microbench-
marks, WARD is faster than Linux on 18 of them, and slower
on 12. Second, as shown in Figure 1 (§2) Linux incurs a signif-
icant overhead for mitigations on LEBench and that overhead
is in line with the overhead that WARD’s Linux-style mitiga-
tions incur on LEBench (see Figure 7). Some systems calls
experience more overhead in WARD, because they implement
less functionality (e.g., getpid), but the corresponding calls
in Linux also incur significant overhead. Some systems calls
in WARD have less overhead than Linux, because they are not
as efficient; for example, big and huge mmap in WARD requires
an update of its radix-tree VM data structures [7], while Linux
just inserts the new region into a list. Linux may see a bigger
pay for those system calls with WARD’s design than WARD.

A question is how much effort is required to incorporate
WARD’s techniques into a production kernel such as Linux.
Our preliminary efforts have proven encouraging: we found
that we could leverage existing infrastructure for KPTI to

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1151

maintain Q domain and K domain page tables. We imple-
mented a switch_world function in Linux, which switches
to the K domain and copies the Q stack to the K stack. We
modified the Linux page-fault handler to call this function
when it encounters a page fault while running with the Q page
table. This allows the Linux kernel to run as normally with a
transparent world switch on each system call. We refactored
the struct task_struct into a Q-private and secret part,
allowing the gettid system call to run completely in the Q
domain. This gives us some indication that the basic approach
of WARD could be made to work in Linux, although an open
question is how to best re-design the data structures in the
Linux kernel to fit WARD’s design.

9 Related work
This paper is motivated by the papers that show how secret
kernel data can be leaked through micro-architectural state
(e.g., [4, 6, 16, 21, 25, 29]). In particular, two survey papers
were helpful by categorizing the known attacks [5, 12].

This paper relies heavily on the mitigation work in the
Linux community [19]. WARD adopts Linux’s techniques
and their optimized implementation in the K domain. WARD
uses, for example, Linux’s nospec macro for bounds clip-
ping, FILL_RETURN_BUFFER to fill the return buffer, and ret-
poline. WARD’s hotpatching of its kernel text to remove retpo-
lines in the Q domain was inspired by Linux’s ALTERNATIVE
macro [9].

In addition to the software/microcode approach currently
used by Linux and other production operating systems, there
are several proposed hardware-only defenses that delay the
use of speculative data until it is safe [3, 31, 34]. While these
defenses are more comprehensive, they have higher overheads
that impact performance whenever speculation occurs. By
contrast, the USC constrains speculation in a more targeted
way based on memory mappings. ConTExT also proposes
constraining speculation based on memory mappings, but in-
troduces a new PTE bit to explicitly mark pages that contain se-
cret data [26]. WARD instead keeps secrets in separate address
spaces, and allows speculation after employing its defenses to
switch to the K domain. Finally, SpecCFI proposes to enforce
control-flow integrity during speculative execution [18]. This
idea strengthens Spectre defenses, and is complementary to
WARD.

The Q page table is inspired by the shadow page table
in KAISER [11] and KPTI [20]. In Linux, when a process
executes in user space, the process runs with a shadow page
table, which maps only minimal parts of kernel memory: the
kernel memory to enter/exit the kernel on a system call. As
soon as the process enters the kernel, it switches to the kernel
page table that maps all of physical memory. WARD, however,
executes complete system calls while running under the Q
page table; this requires a significant redesign of the OS kernel,
which is a major focus of this paper.

The use of virtual-memory to partition the kernel address

space has a long history in operating systems research. One
example is Nooks [27], which runs device drivers in separate
protection domains with their own page table in kernel space to
provide fault isolation between drivers and the kernel. Another
example is the use of Mondrian Memory Protection [32] to
isolate Linux kernel modules in different protection domains
within the kernel address space [33]. The most recent example
is Mike Rapoport’s work on kernel address space isolation [10]
in Linux. These designs use similar techniques to introduce
isolation domains within the kernel, but focus on traditional
attacks (e.g., code execution through a buffer overflow) as
opposed to transient execution.

10 Conclusion
This paper articulates the unmapped speculation contract
(USC) for a division of labor between hardware and soft-
ware. This contract allows hardware to speculate on many
values (but not the values of page table entries) and provides
software with a mechanism to prevent leaking secrets through
micro-architectural state. The WARD design shows how USC
can be used to reduce the performance costs of mitigations
on system calls using per-process Q domains and global K
domains. WARD transparently switches from Q- to K-domain
through page faults, uses temporary mappings to access un-
mapped physical pages, and splits data structures into public
and private parts. An evaluation shows that WARD can run
the microbenchmarks of LEBench with small performance
overhead compared to a kernel without mitigations: for 18 out
of 30 LEBench microbenchmarks, WARD’s performance is
within 5% of the performance without mitigations . Although
WARD is research kernel, we are hopeful that its ideas can
carry over to production monolithic kernels.

Acknowledgments
We’d like to thank the anonymous reviewers and our shepherd,
Chris Hawblitzel, who provided comments that helped im-
prove this paper. We also want to thank our artifact evaluators
for their diligent examination of our artifact submission.

Artifact
Source code and directions for using WARD are available at
https://github.com/mit-pdos/ward.

References
[1] Advanced Micro Devices, Inc. Speculation behav-

ior in AMD micro-architectures. https://www.
amd.com/system/files/documents/security-
whitepaper.pdf, 2019.

[2] Apple, Inc. Additional mitigations for speculative execu-
tion vulnerabilities in Intel CPUs. https://support.
apple.com/en-us/HT210107, August 2019.

1152 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/mit-pdos/ward
https://www.amd.com/system/files/documents/security-whitepaper.pdf
https://www.amd.com/system/files/documents/security-whitepaper.pdf
https://www.amd.com/system/files/documents/security-whitepaper.pdf
https://support.apple.com/en-us/HT210107
https://support.apple.com/en-us/HT210107

[3] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang,
and Radu Teodorescu. SpecShield: Shielding specu-
lative data from microarchitectural covert channels. In
Proceedings of the 28th International Conference on Par-
allel Architectures and Compilation Techniques, pages
151–164, Seattle, WA, September 2019.

[4] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the Intel SGX king-
dom with transient out-of-order execution. In Proceed-
ings of the 27th USENIX Security Symposium, pages
991–1008, Baltimore, MD, August 2018.

[5] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz
Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens,
Dmitry Evtyushkin, and Daniel Gruss. A systematic
evaluation of transient execution attacks and defenses.
CoRR, abs/1811.05441, 2018.

[6] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel
Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi,
Frank Piessens, Michael Schwarz, Berk Sunar, Jo Van
Bulck, and Yuval Yarom. Fallout: Leaking data on
Meltdown-resistant CPUs. In Proceedings of the 26th
ACM Conference on Computer and Communications Se-
curity (CCS), pages 769–784, London, United Kingdom,
November 2019.

[7] Austin T. Clements, M. Frans Kaashoek, and Nickolai
Zeldovich. RadixVM: Scalable address spaces for mul-
tithreaded applications. In Proceedings of the 8th ACM
EuroSys Conference, pages 211–224, Prague, Czech Re-
public, April 2013.

[8] Austin T. Clements, M. Frans Kaashoek, Nickolai Zel-
dovich, Robert T. Morris, and Eddie Kohler. The scal-
able commutativity rule: Designing scalable software for
multicore processors. In Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP),
pages 1–17, Farmington, PA, November 2013.

[9] Jonathan Corbet. SMP alternatives. https://lwn.net/
Articles/164121/, 2005.

[10] Jonathan Corbet. Generalizing address-space isolation.
https://lwn.net/Articles/803823/, November
2019.

[11] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard
Fellner, Clémentine Maurice, and Stefan Mangard.
KASLR is dead: Long live KASLR. In Proceedings of
the 9th International Symposium on Engineering Secure
Software and Systems, pages 161–176, Bonn, Germany,
July 2017.

[12] Mark D. Hill, Jon Masters, Parthasarathy Ranganathan,
Paul Turner, and John L. Hennessy. On the Spectre
and Meltdown processor security vulnerabilities. IEEE
Micro, 39(2):9–19, 2019.

[13] Intel, Inc. Deep dive: Retpoline: A branch tar-
get injection mitigation. https://software.
intel.com/security-software-guidance/deep-
dives/deep-dive-retpoline-branch-target-
injection-mitigation.

[14] Intel, Inc. Software guidance: L1 terminal fault.
https://software.intel.com/security-
software-guidance/software-guidance/l1-
terminal-fault, 2018.

[15] Intel, Inc. Software guidance: Rogue data cache
load. https://software.intel.com/security-
software-guidance/software-guidance/rogue-
data-cache-load, 2018.

[16] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre attacks: Exploiting specula-
tive execution. In Proceedings of the 40th IEEE Sympo-
sium on Security and Privacy, pages 19–37, San Fran-
cisco, CA, May 2019.

[17] Paul C. Kocher. Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems. In
Proceedings of the 16th Annual International Cryptology
Conference (CRYPTO), pages 104–113, Santa Barbara,
CA, August 1996.

[18] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shi-
razi, Khaled N. Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. SpecCFI: Mitigating Spectre attacks us-
ing CFI informed speculation. In Proceedings of the 41st
IEEE Symposium on Security and Privacy, pages 39–53,
San Francisco, CA, May 2020.

[19] Linux Kernel Maintainers. Hardware vulnerabilities.
https://www.kernel.org/doc/Documentation/
admin-guide/hw-vuln/, 2020.

[20] Linux Kernel Maintainers. Page table isolation.
https://www.kernel.org/doc/Documentation/
x86/pti.txt, 2020.

[21] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In Proceedings of the 27th USENIX
Security Symposium, pages 973–990, Baltimore, MD,
August 2018.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1153

https://lwn.net/Articles/164121/
https://lwn.net/Articles/164121/
https://lwn.net/Articles/803823/
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-retpoline-branch-target-injection-mitigation
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-retpoline-branch-target-injection-mitigation
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-retpoline-branch-target-injection-mitigation
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-retpoline-branch-target-injection-mitigation
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/rogue-data-cache-load
https://software.intel.com/security-software-guidance/software-guidance/rogue-data-cache-load
https://software.intel.com/security-software-guidance/software-guidance/rogue-data-cache-load
https://www.kernel.org/doc/Documentation/admin-guide/hw-vuln/
https://www.kernel.org/doc/Documentation/admin-guide/hw-vuln/
https://www.kernel.org/doc/Documentation/x86/pti.txt
https://www.kernel.org/doc/Documentation/x86/pti.txt

[22] Microsoft Corporation. Windows guidance to pro-
tect against speculative execution side-channel vulnera-
bilities. https://support.microsoft.com/en-us/
help/4457951/, November 2019.

[23] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert
Bos, and Cristiano Giuffrida. CrossTalk: Speculative
data leaks across cores area real. In Proceedings of the
42nd IEEE Symposium on Security and Privacy, San
Francisco, CA, May 2021.

[24] Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen,
Camilo Vega, Michael Stumm, and Ding Yuan. An
analysis of performance evolution of Linux’s core oper-
ations. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP), pages 554–569,
Huntsville, Ontario, Canada, October 2019.

[25] Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. ZombieLoad: Cross-privilege-boundary
data sampling. In Proceedings of the 26th ACM Confer-
ence on Computer and Communications Security (CCS),
pages 753–768, London, United Kingdom, November
2019.

[26] Michael Schwarz, Robert Schilling, Florian Kargl,
Moritz Lipp, Claudio Canella, and Daniel Gruss.
Context: Leakage-free transient execution. CoRR,
abs/1905.09100, 2019.

[27] Michael M. Swift, Brian N. Bershad, and Henry M. Levy.
Improving the reliability of commodity operating sys-
tems. ACM Transactions on Computer Systems, 22(4),
November 2004.

[28] Stephan van Schaik, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. SGAxe: How SGX fails in practice.
https://sgaxe.com, 2020.

[29] Stephan van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
in-flight data load. In Proceedings of the 40th IEEE
Symposium on Security and Privacy, pages 88–105, San
Francisco, CA, May 2019.

[30] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In Pro-
ceedings of the 10th ACM EuroSys Conference, pages
18:1–18:17, Bordeaux, France, April 2015.

[31] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F.
Wenisch, and Baris Kasikci. NDA: Preventing spec-
ulative execution attacks at their source. In Proceedings

of the 52nd IEEE/ACM International Symposium on Mi-
croarchitecture, pages 572–586, Columbus, OH, October
2019.

[32] Emmett Witchel, Josh Cates, and Krste Asanović. Mon-
drian memory protection. In Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), pages 304–316, San Jose, CA, October 2002.

[33] Emmett Witchel, Junghwan Rhee, and Krste Asanović.
Mondrix: Memory isolation for Linux using Mondriaan
memory protection. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP),
pages 31–44, Brighton, United Kingdom, October 2005.

[34] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morri-
son, Josep Torrellas, and Christopher W. Fletcher. Spec-
ulative taint tracking (STT): A comprehensive protec-
tion for speculatively accessed data. In Proceedings
of the 52nd IEEE/ACM International Symposium on Mi-
croarchitecture, pages 954–968, Columbus, OH, October
2019.

[35] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal,
Vrigo Gokhale, and John Wilkes. CPI2: CPU perfor-
mance isolation for shared compute clusters. In Proceed-
ings of the 8th ACM EuroSys Conference, pages 379–391,
Prague, Czech Republic, April 2013.

1154 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://support.microsoft.com/en-us/help/4457951/
https://support.microsoft.com/en-us/help/4457951/
https://sgaxe.com

Predictive and Adaptive Failure Mitigation to Avert
Production Cloud VM Interruptions

Sebastien Levy†, Randolph Yao†, Youjiang Wu†, Yingnong Dang†, Peng Huang�

Zheng Mu†, Pu Zhao?, Tarun Ramani†, Naga Govindaraju†, Xukun Li†

Qingwei Lin?, Gil Lapid Shafriri†, Murali Chintalapati†

†Microsoft Azure �Johns Hopkins University ?Microsoft Research

Abstract
When a failure occurs in production systems, the highest
priority is to quickly mitigate it. Despite its importance, fail-
ure mitigation is done in a reactive and ad-hoc way: taking
some fixed actions only after a severe symptom is observed.
For cloud systems, such a strategy is inadequate. In this pa-
per, we propose a preventive and adaptive failure mitigation
service, NARYA, that is integrated in a production cloud, Mi-
crosoft Azure’s compute platform. Narya predicts imminent
host failures based on multi-layer system signals and then
decides smart mitigation actions. The goal is to avert VM
failures. Narya’s decision engine takes a novel online experi-
mentation approach to continually explore the best mitigation
action. Narya further enhances the adaptive decision capabil-
ity through reinforcement learning. Narya has been running
in production for 15 months. It on average reduces VM inter-
ruptions by 26% compared to the previous static strategy.

1 Introduction
Failures are common in large systems. High-availability sys-
tem designs require techniques that address a key question:
once a failure occurs, how to quickly detect and mitigate
it so the system can continue running? Mitigating a failure
here means attempting to make the failure symptom disappear
without necessarily diagnosing and fixing the underlying bugs
first. However, for a large cloud infrastructure like Microsoft
Azure that serves millions of customers running virtual ma-
chines and various software atop, only employing post-failure
detection and mitigation techniques is insufficient.

This is because if a system only takes mitigation actions
after a failure is detected, users may already be having bad
service experience as the system runs in a degraded mode (not
completely failing) [15, 17, 29]. Moreover, when a failure is
detected, the system will be under intense pressure to mitigate
the failure fast in order to minimize downtime; but in practice
failure mitigation takes time for large systems, and expediting
mitigation could even worsen the situation [12]. In addition,
our experience suggests that even short, mitigated failures can

be impactful to customers due to the interruptions themselves.
Therefore, cloud systems should also design techniques to

address the question of, whether a failure may be imminent,
and if so, what preventive actions should be taken to avert
this failure? Several recent works tackle the failure prediction
problem [14, 27, 38] in the context of disk failures. But they
focus on prediction alone, with the goal of alerting operators
or providing allocation hints [25]. The questions of how much
benefit does the prediction bring, and more importantly what
preventive mitigation actions should the system take in re-
sponse to predicted failures remain open. Answering these
questions requires a holistic solution—one that is closely in-
tegrated in the system’s control loop, which not only predicts
host failures in real time, but also automatically decides the
proper mitigation actions, measures the benefits, and continu-
ously adjusts its actions based on the measured benefits.

In this paper, we present NARYA to fill this aforementioned
gap. Narya is an end-to-end service with predictive and smart
failure mitigation fully integrated in the Azure compute plat-
form for its Virtual Machine (VM) host environment. The de-
sign goal of Narya is to prevent VM failures ahead of time and
enhance the self-managing capability of the Azure compute
platform for providing smooth VM experience to customers.

Narya’s design is informed by several observations we had.
First, while failure mitigation is a crucial step in cloud opera-
tion, the current practice is ad-hoc. To mitigate a (predicted)
failure, developers use static policies that prescribe actions
based on the symptoms and domain knowledge. While this
approach works for simple systems, it does not work well at
Azure scale. With multi-tenancy, heterogeneous infrastructure
components, and diverse customer workloads, it is difficult
to comprehensively categorize different failure scenarios in a
large cloud system beforehand and determine good mitigation
actions (or their parameters), especially without trying it.

Moreover, as the cloud system is constantly changing (soft-
ware/hardware updates, customer workload changes), some
mitigation action that worked well in the past may no longer
be optimal. As a result, developers keep reactively adjust-
ing the actions based on hind sights from service incidents.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1155

For example, initially restarting a host node upon receiving a
predictive failure signal may be effective as the system fail-
ures tend to be caused by some transient hardware issues;
but gradually permanent node failures become more common
so restarting is not the best mitigation action anymore—live
migrating the virtual machines from the node predicted to fail
to a healthy node may be a better action. Therefore, for cloud-
scale systems, we need smart and adaptive failure mitigation.

Our insight is that the effectiveness of taking some mitiga-
tion action in a complex and changing system is often prob-
abilistic as there are too many factors affecting it (network
condition, VM size, applications, hardware health, customer
activities, etc.), which may not be thoroughly accessed or as-
sessed. We usually do not know beforehand whether some
mitigation action is good or not, or whether there is a bet-
ter action, unless we try it. Consequently, explorations with
production workload is indispensable to determine the (near-
)optimal failure mitigation action. Nevertheless, we should
ensure that the actions taken maximize the expected effective-
ness (minimize the potential customer impact) over time.

Based on this insight, Narya takes a novel online exper-
imentation approach. In particular, Narya predicts whether
host nodes in the production fleet will likely fail and then
leverages A/B testing to continually experiment with different
mitigation actions, measure the benefits, and discover optimal
actions. The rationale behind the A/B testing strategy is that
it, in essence, introduces randomization that avoids biased piv-
ots of the diverse nodes, which helps surface the statistically
significant effective actions.

One important drawback of the A/B testing strategy is
its cost of exploring each action until statistical signifi-
cance is found and then always choosing the estimated
best action. This problem is essentially the classic explo-
ration–exploitation trade-off [32] in learning systems that
need to make decisions with incomplete information (about
the system stack, customer workloads, etc.), constant changes,
and uncertain pay-offs (whether the action will prevent future
failures). The dilemma is whether the learning agent should
repeat a mitigation action that has worked well so far, i.e.,
exploit, or it should try some novel choices in the hope of
getting better rewards, i.e., explore. We address this issue by
enhancing the Narya decision engine using a dynamic assign-
ment learnt through a multi-armed Bandit model [2, 33]. This
helps decrease overall cost by better leveraging the early cost
estimation of each action and by continuously exploring each
of them to adapt to system changes.

Narya has been running in production for 15 months in
Azure as part of the Gandalf [24] suite. Narya successful pre-
vents many VM interruptions for customers. In nine produc-
tion experiments that Narya runs for different failure types,
Narya on average reduces VM interruptions by 26% com-
pared to the previous static strategy. This reduction is close to
what the oracle optimal strategy could achieve (35%).

The major contributions of this work are:

• We propose a holistic failure avoidance solution that in-
cludes failure prediction, new failure mitigation actions,
and intelligent mitigation strategies.

• We design a novel approach of using A/B testing for online
experimentation with production workload to automatically
identify good failure mitigation actions.

• We explore a more advanced reinforcement learning ap-
proach to optimize choice of mitigation action.

• We evaluate the proposed solution in a large-scale, produc-
tion cloud service, Azure, to validate its effectiveness.

2 Background and Motivation

A traditional system’s operation cycle is as follows: a failure
is detected; developers diagnose the failure and find out the
root cause; a patch is written; the system is re-deployed. For
cloud systems, operating in this exact sequence is problematic
because the time it takes to identify the root cause and develop
a fix is usually long and exceeds the downtime budget. Instead,
once a failure is detected, some mitigation action like restart
will be applied first without necessarily knowing the bug.

2.1 Target System and Goal
We tackle the problem of preventive and smart failure mit-
igation for cloud systems. Our specific target system is the
VM host environment, a node, in the Azure compute plat-
form. The host environment is a complex stack consisting of
guest OSes, guest agents, hypervisor, host OS, host agents,
firmware, and hardware. The node is backed by locally at-
tached disks and remote virtual disks. Each node is connected
to various compute services, together referred to as controller,
that is responsible for provisioning resources and performing
management actions such as creating and destroying VMs.

Azure already employs layers of monitoring mechanisms
to actively detect if a host node has failed (e.g., via periodic
pings), and mitigate the failure with actions such as rebooting
the node. We aim to further develop techniques that predicts
whether a host environment might fail soon and automati-
cally decides an appropriate mitigation plan among multiple
choices. The end goal is to avoid future VM failure events.

2.2 Are Failures Predictable?
To predict failures, there are two basic requirements: (i) the
imminent failure is not abrupt; and (ii) there is telemetry
recorded to indicate the degradation. One type of predictable
hardware issue is certain hardware parts wear out. We could
predict using the age or the wear-out rate. Combined with
other system signals such as workload patterns, we can predict
if a host will fail soon. Resource leak, including memory/file
handle/network ports leak, is a common type of predictable
software failure. We could predict them using the resource
usage trend. If failures are correlated with certain hidden
factors such as timeout settings, bugs related to timers, and
release schedule, they may also occur on a predictable basis.

1156 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Timestamp Event

03-14 18:00:00 A node with 16 VMs was predicted to fail with 0.7 prob.
03-16 01:09:12 Node agent crashed, 17 VMs offline
03-16 01:15:26 Controller probes to node agent timed out, retry
03-16 01:31:00 Node state marked by controller as unhealthy
03-16 02:07:37 Controller tried to recover the node through restart
03-16 02:23:02 Failed to receive node reboot success signal
03-16 02:23:33 VMs in the node were recreated in another node
03-16 04:40:17 Node was sent out for repair
03-16 06:13:21 Offline diagnosis finished, disk fault was suspected

Table 1: Events timeline for a production node.

2.3 Why Reacting on Predicted Failure?
Since predicted failure is about something (complete failure)
that has not occurred yet, one option is to only treat it as an
early warning and not act on it. After all, it is developers’ com-
mon mindset that “If It Ain’t Broke, Don’t Fix It”. However,
for cloud services, this mindset puts customers and their VMs
at the risk of suffering interruptions. With techniques such
as live migration which can migrate a VM from one node to
another with minimal customer impact, cloud vendor is in a
better position to help customer avoid failures.

To give an example, Table 1 shows a production case of
the timeline for events in a node. In this case, the node was
predicted to fail with a relatively high probability, but no
preventive action was taken. So both the existing VMs and
new VMs still run in this node. Later, this node indeed failed
(OS crash), which caused 17 VMs including 1 new VM to
be offline. The controller tried to probe the VMs and timed
out. Then it tried to reboot the node but failed. Finally, the
controller decided to recreate the VMs in another node. Sub-
sequent offline diagnosis confirmed the disk on the node was
indeed problematic. Had we taken some mitigation action
when receiving the failure prediction signal, we could have
saved the long VM disruptions and customer impact.

2.4 Why Static Mitigation Is Insufficient?
Intuitively each predicted failure should be handled in the
same way using an optimal method. Indeed, initially we used
a static strategy where all predicted bad nodes would be miti-
gated using the same plan: 1) block allocation on the node;
2) try to live migrate VMs; 3) wait for 7 days for short-lived
VMs to be destroyed by customers; 4) force migration of re-
maining VMs; 5) mark the node offline and send it for repair.
Although this plan looks reasonable, it quickly faces limita-
tions. Blocking allocation results in capacity pressure while
for some predicted failures, avoiding allocation may be better.
Some failures may be too severe to do live migration (e.g.,
broken disks). Forced migration causes unnecessary customer
impact if nodes are still healthy after 7 days. Marking nodes
offline is also suboptimal when capacity is low.

Using static assignment prevents us from knowing what
would have happened if we had chosen a different action,
and therefore from knowing how much customer pain we
saved or if we were using the best action. In addition, static

1

2.a

Cross-layer
telemetry data

Prediction DecisionMonitoring

2.b

Static rules

ML model
3.b

A/B testing3.a

Bandits

Mitigation

No Op Allocation
Change

Live
Migration Soft

Reboot

Service
Heal

…

Key optimization metric:
VM Interruptions Rate Observe

Minimize

S.M.A.R.T. data
Sys Event Log (SEL)

Windows OS ETW
…

cpu_ierrs = window(
 node.IERR(),30*day)
if cpu_ierrs > 2:
 predict(FAIL)

action_no_op: 0.1
action_mark_unalloc: 0.6
action_live_migrate: 0.3

5

6

Update

4

7

Figure 1: High-level workflow of Narya.

mitigation get affected by system changes over time. With the
complexity of our cloud system, the effect of a rule, as well as
the telemetry that a rule relies on, is constantly changing. In
these cases, since static mitigation does not try other actions,
it could increase customer pain without us realizing it. For
example, a low CPU frequency can be a defense mechanism
from a CPU to indicate an imminent failure; detecting such
drop in CPU frequency and applying a mitigation action can
be beneficial. However, new improvements in the system
could voluntarily decrease CPU frequency to conserve energy.
In this case, the original rule could have a high number of
false positive in prediction results, and applying the same
action will very likely cause more harm than good.

Another limitation of static failure mitigation is that it cre-
ates tendency for developers to make ad-hoc modifications to
the mitigation assignment based on some isolated cases. No
mitigation action can be perfect and customers may complain
if they suffer from such mitigation. In such case, developers
tend to modify the rule to satisfy the customers. However,
without testing if that change does reduce the overall cus-
tomer pain, it is possible that the situation gets worse and the
policy might be switched back again when another customer
complains about this new policy.

3 Overview
We design Narya, an end-to-end service that is integrated in
the Azure compute platform, to predict host failures and au-
tomatically decide what mitigation actions to take for each
predicted failure. The design goal of Narya is to avert poten-
tial VM failures while minimizing the impact to customers.
Narya advances the current practice of failure mitigation in
two ways: (i) replacing existing static and ad-hoc mitigation
assignment to adaptive and systematic decision algorithms;
and (ii) transforming the traditionally reactive, post-failure
mitigation activity to proactive failure avoidance mechanisms.

3.1 Narya Workflow
Narya takes a novel online experimentation and learning ap-
proach to the failure mitigation problem. Figure 1 shows
overview of the high-level workflow in Narya.

Each node in Azure is deployed with monitoring agents that

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1157

collect various telemetry signals about the host environment
(Ê, §4.1). The prediction component in Narya continuously
consumes these signals and predicts whether some node will
fail soon (Ë). The prediction is made by both static domain
rules (2.a , §4.2) and running machine learning inference (2.b ,
§4.3). Each prediction result is streamed into the decision
component in Narya as a mitigation request. Narya supports
two decision schemes: A/B testing (3.a , §6.1), and Bandit
model (3.b , §6.2). The decision component computes a proba-
bility distribution of applicable mitigation action choices (Í,
§5) and then picks an action based on the distribution. The
mitigation controller applies the chosen mitigation action to
the suspected node (Î). This whole process is an automated
feedback loop that optimizes a key objective metric—VM
interruption rate (§3.2). Narya observes (Ï) the effect of the
mitigation actions and adapts (Ð) future prediction and miti-
gation decisions based on the observations from production.

Building Narya to work for a production cloud requires
both algorithm designs and systems support. We first describe
the core prediction and mitigation algorithms in Section 4 and
Section 6, respectively. Section 7 describes the Narya systems
design and implementation.

3.2 Key Optimization Metric
Narya’s objective is to reduce and minimize the overall cus-
tomer impact caused by node failures on the fleet. Defining a
good cost metric for customer impact is critical for the Narya’s
decision engine to optimize that metric. In Azure, we focus
on the Annual Interruption Rate (AIR) defined as:

AIR =
VM interruption count in T

Total VM lifetime in T
×365 days×100 VMs

T is any given measured interval duration in days. VM in-
terruption in this paper mainly refers to reboots or loss of
heartbeats. Internally, we also measure performance drop
with a sub-metric we call AIR-blips.

We optimize this metric instead of the traditional availabil-
ity metric for a few of reasons. First, long-duration incidents
are now rare in Azure. VM interruptions become more com-
mon that require addressing. Second, short VM interruptions
can significantly disrupt user experiences, e.g., for gaming-
type applications. Third, for VMs that run applications like
databases, even if the VM only experiences a short interrup-
tion, the applications take time to recover, which translates
into a longer user-perceived interruption. Fourth, based on
communications with customers, customers can be more an-
noyed if their VMs get frequently interrupted when compared
to a single longer-time interruption.

3.3 Challenges
We need to address several design challenges. First, failure
mitigation has to act with incomplete information since the
underlying root cause is not known. For Narya, this challenge
is even more pressing since the failure has not occurred yet.

Second, due to the massive scale of a cloud system, there
are many factors to consider in the decision logic. A decision

may work well for some nodes but not others. If not careful,
some corner cases can mislead or bias the decision logic.
Narya must be robust enough while still being flexible.

Third, our experience suggests that when incorporating fail-
ure prediction into a production cloud system, false positives
are unavoidable due to the complex system environment, large
number of noisy signals, unexpected customer workloads, etc.
If the system blindly trusts the failure prediction results and
reacts, it could cause unnecessary disruptions. When consum-
ing the prediction results, the mitigation mechanisms should
take this into account and operate in a way that minimizes the
impact due to unavoidable false positives.

Lastly, failure mitigation is a mission critical procedure. If
not designed well, a decision engine may do more harm than
good. Ensuring safety should be a top priority for Narya.

4 Predicting Node Failures
The first step in Narya is to predict a host failure before it
occurs. In this Section, we describe two prediction methods
Narya uses: (1) static threshold rules written by domain ex-
perts; (2) machine learning model-based prediction.

4.1 Input Signals
Narya consumes telemetry signals from the entire stack of the
host environment to make informed prediction. For hardware
and firmware, the monitoring agents collect low-level logs
from disk SMART attributes, memory (e.g., uncorrectable er-
rors), CPU (e.g., machine check error), motherboard (e.g., bus
error), etc. A higher-level source of signals comes from device
drivers, e.g., timeout events. Repetition of such events is often
an indicator of an imminent failure. Faults in individual com-
ponent do not necessarily cause customer impact. Some could
be transient that would go away after retries. Others may be
tolerated by redundancy. Narya further consumes critical OS
events and aggregate application performance counters.

Another important source of signals used by the predictor
are results from the control-plane operations. For example,
repetitive VM creation operation errors could indicate serious
host issues even if the host still appears to be running. Such
signals help reduce the observability gap [16].

4.2 Rule-based Prediction
Rule-based prediction leverages domain knowledge from
hardware, firmware and software experts. We analyze the
common failure patterns and the available telemetry signals
to predict failures that have significant customer impact. For
example, in some cases, CPU Internal Error (IERR) is a good
indicator that the node will fail again soon; a prediction rule
could be marking the node if IERR occurs twice within 30
days. Rules are typically written as Json files, Python scripts
or sometimes C++. Since rules are manually written, they
are simple and easy to understand. The prediction rules are
deployed directly in the host and can be executed fast.

1158 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

t1 t2

positive labelsnegative labels

…

t0

Prediction

Horizon

Figure 2: Prediction horizon and label timeline. t1: host failure time.
t2: component permanent failure time.

Rule-based prediction works best for definitive signals that
indicate some severe issue with high confidence. An exam-
ple is the AvailableSpare signal in NVMe device health log.
When it drops below a certain threshold, we know the device
is almost at the end of its life.

Since many failure signals are not definitive, rule-based
prediction cannot cover a wide range of imminent failures.
In addition, the prediction may come late and do not provide
enough lead time for the mitigation engine. The number of
prediction rules also keeps growing, which becomes a burden
to manage and tune. We have a total of 51 rules in use.

4.3 Learning-based Prediction
To address the limitation of rule-based prediction, Narya em-
ploys an additional learning-based predictor, which analyzes
more signals and patterns during a larger time window. It can
predict many complex host failures. It also can predict earlier,
thus leaving longer time for the mitigation engine to react.

Prior work predict disk failures [14, 27, 38] and node
faults [25] with supervised learning. Our learning-based pre-
diction aligns with prior solutions. A main difference is that
we focus on overall host health and failures that result in cus-
tomer impact, instead of failures of individual components.
Because of this, Narya analyzes more diverse signals across
layers such as control-plane operation signals.

Prediction Horizon and Label. Deciding the labels to use
for learning is crucial for Narya. In prior work that predicts
hardware failures for alerting, the positive labels are signals
close to when the hardware is completely broken. For Narya,
the host view of a failure is different from individual com-
ponents’ view. The host failures could be unresponsive host,
VM creation failure, host OS crash, etc. In our observation,
they happen much earlier than the permanent failure of a com-
ponent (e.g., disk unusable). As Figure 2 shows, if we assign
positive labels from time t2 (permanent component failure),
it can yield late prediction which comes after host failure at
time t1. The consequence is that the prediction does not give
enough time for Narya to take proper mitigation actions.

Additionally, certain faults might not be a problem to the
source component but could be problematic from host’s view.
For example, a series of memory correctable errors might
seem fine for an ECC DRAM because they are corrected. But
the host may already suffer slowness and impact VMs.

To get accurate and useful prediction result, we only use
host failures that result in customer impact and are later con-
firmed to be caused by some hardware component faults dur-
ing diagnosis. For a given host failure, if it occurs at time t, we

Device
signals

Driver
signals

…

OS
signals

Dimension

Adapter Layer

Spatial Info

Encoder

Temporal Info

Encoder

Fusion

Layer

… …… …

will fail

healthy

Figure 3: Deep learning model structure.

assign positive (failure) labels for signals from t−1 to t−n,
where n is the prediction horizon and using an hour unit. We
assign negative (normal) labels for signals from t− (n+1),
. . . We also sample negative labels from healthy nodes.

In production, our prediction horizon is set to 7 days. We
made the choice based on how discriminative the feature will
be given different horizons. Specifically, we looked at the
feature distribution of failed nodes and measured the same
distribution of healthy nodes. We then measure the similarity
between the two distribution groups. Beyond 7 days, we could
not observe a significant difference.
Machine Learning Model. With the signals, labels, and host
metadata, Narya trains a binary classifier. The predictor out-
puts the failure probability of a host (we use 0.5 as the cutoff).

To train the classifier, we use the gradient boosted tree
model [18] commonly used in supervised learning, which
combines decisions from a sequence of simple decision trees
with a model ensembling technique called gradient boost-
ing [10]. This simple model works fine for our scenario in
terms of its predictive power, but we have to carefully craft ag-
gregated features from the signals. We engineer 2k+ features
from 100+ time series data. Those engineered features are
combined with other categorical features to build the learning-
based model feature set.

We further explore reducing the feature engineering efforts
by directly learning the features with an attention-based deep
learning model [20, 35]. At a high level, we aim to learn
both spatial features and temporal features. Spatial features
compare one component to its neighbors. For example, one
host often has multiple disks configured under RAID 0, thus
they are expected to perform similarly. If one disk performs
worse than its neighbors, it could indicate imminent host
failures. Attention-based deep models are designed to capture
such patterns so that more weights (attention) are assigned
to anomalous neighbors. The temporal features characterize
changes in components over time.

Figure 3 shows the structure of this model. First, we use
a dimension adapter layer to unify the dimension of signals
from different sources. Next, we employ a spatial information
encoder based on self-attention. It calculates weights of a
component’s neighbors. The weighted sum of the neighbors’
feature vector represent its spatial information. Then, we use
the temporal information encoder, which consists of positional
encoding, self-attention, and location-based attention layers.
Finally, we employ a fusion layer to do binary classification.
We omit the attention implementation details as they are based
on an existing technique proposed by Lee et al. [20].

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1159

Action Description

Pr
im

iti
ve

Avoid Deprioritize new VM alloc. on this node
Unallocatable (UA) Block new VM allocations on this node
Live Migration (LM) Migrate VMs to other nodes on the fly
Service Healing (SH) Discon. VMs, move them to healthy nodes
Soft Reboot (SR) Reload host OS kernel, VM states preserved
Human Investigate (HI) Shut down node and send it to diagnostics

C
om

po
si

te UA-LM-HI Block alloc., attempt LM and HI after T
UA-SR Block alloc., attempt soft reboot
UA-LM-RH Block alloc., LM and unblock after T
Avoid-RH Avoid alloc. to this host if possible

Table 2: Primitive and composite mitigation actions for Narya. Com-
posite actions are sorted by decreasing priority.

Overall, this model achieve 5–10% improvement compared
to the decision tree model with hand-crafted features.

5 Mitigation Actions
When a host is predicted to fail, Narya chooses among several
possible actions. Table 2 lists the main primitive actions in
Azure. Mitigating a failure often requires multiple primitive
actions. An aggressive goal for Narya is to explore the actions
arbitrarily and figure out the optimal combination. But this
could potentially bring significant customer impact. Instead,
Narya mitigation engine focuses on exploring pre-defined
composite actions (Table 2). This set of composite actions is
constantly enriched with new combination and by modifying
parameters (e.g., unallocatable duration).

Live Migration moves a running VM from one host to an-
other with minimum disruptions. The migration process in-
volves transfer of the VM’s memory, processor and virtual
device state [7]. The LM engine iteratively copies the VM’s
memory pages while maintaining a dirty page set for the VM
on the source host. Based on the dirty page rate, network
bandwidth, the engine determines the maximum iterations
to stop the VM. After the VM is stopped, the LM engine
synchronizes the dirty state with the target and resumes the
VM on the target host. Note that not all VMs are eligible for
LM and LM could fail for various reasons.

VM Preserving Soft Reboot preserves the VM state across
a reboot of the host OS. At a high level, the host OS kernel is
reloaded into memory, the VM memory and device state are
persisted to the newly loaded kernel. The host reboots into the
loaded kernel while preserving the persisted state. Once the
reloaded kernel starts, the persisted state is restored and the
rest of the state in the prior kernel are discarded. The restored
VM experiences a brief pause similar to the live migration.

Service Healing is used to restore the service availability of
unhealthy or faulted VMs. Live Migration can move running
VMs transparently, but it could fail or cannot be applied due to
certain constraints such as network boundary. Service healing
works for more general scenarios. The VMs will be isolated by
powering down or disconnecting from network. The controller
generates new assignment of the VM to healthy nodes. During
the process, there is some interruption.

Mark Unallocatable blocks allocation of new VMs to a host
for some time T (default 7 days). Composite actions typically
start with marking a suspected host unallocatable. In UA-LM-
HI, after marking host unallocatable, the controller attempts
to live migrate the VMs on this host to other hosts. After all
VMs have been migrated or destroyed by customers or this
host fails, the host will be sent to diagnostics. If at the end
of the unallocatable period T some VMs are still running
(e.g., because they are not eligible for LM) we service heal
them before pushing the host to diagnostics. UA-LM-RH is
a variant of UA-LM-HI where we unblock allocation (reset
node health) at the end of T . In UA-SR, the controller blocks
the allocation and then try the kernel soft reboot action. If
the soft reboot succeeds, the controller unblocks allocation.
Otherwise, we use a fallback strategy, typically LM-HI.

Avoid informs the allocator to try to avoid adding new VMs
on this host. Blocking allocation has a strong impact on ca-
pacity since the host is not eligible for getting new VMs.
Thus, the number of hosts that can be marked unallocatable
at the same time is limited. Avoid action provides a weaker
constraint. The behavior on host failure is still to send it to
diagnostics. At the end of T , we reset the node availability.

NoOp is a special action for predicted failure, in which the
controller does not take any action. This is the baseline to
measure the benefits of prediction and taking actions.

6 Decision Logic for Adaptive Mitigation
With different prediction rules/models as well as different mit-
igation actions, relying on static assignment based on domain
knowledge to map each prediction to an action can soon get
intractable and ineffective. This motivates the design of Narya
decision engine for adaptive mitigation.

6.1 Online Experimentation with A/B testing
One straightforward way for choosing mitigation action is
to estimate offline the impact for each possible action for a
predicted failure. In our experience, given the complexity of
cloud systems, it is extremely hard to estimate the impact of
actions and know which one performs best without trying
them in production. Based on this insight, Narya takes an on-
line experimentation approach to evaluate different mitigation
actions by testing them at scale.

A/B testing, also called online experiments, is widely
used [19] in front-end designs to test the effect of UI fea-
tures. Narya adopts the A/B testing methodology and adapts
it for discovering good mitigation actions. In classic A/B test-
ing, one experiment is about one UI feature and each unit is
a user. For Narya, one experiment is about the mitigation of
one failure prediction (e.g., CPU IERR, slow memory access
latency), and each unit is a failure mitigation request about a
node marked by the corresponding prediction rule/model.

The workflow of the A/B testing in Narya is as follows: (1)
each predicted node is assigned to different action groups with

1160 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

node Id

0.5

0.25

1

0.75

experiment
name

actionA

actio
n

B

actionC

actio
n

Dhash()

probability
ring

Figure 4: Hash node ID and experiment name for sticky assignment.

equal probability (2) after taking each action, we measure the
customer impact within an observation window; (3) we use
hypothesis testing to test if an action yields significantly less
customer impact than others; (4) once statistical significance
is reached, we consider this least-impacting action optimal
and apply it for all nodes; (5) we keep monitoring the cus-
tomer impact per node for the used action; (6) if customer
impact significantly increases, we run a new A/B testing ex-
periment to validate that the action is still optimal.

Cost. The cost (=−1× reward) models the customer impact.
It should balance the trade-off between key metrics of our
system. The pros and cons of each action should be modeled
into the cost to correctly optimize for the mitigation action.
We use the number of VM interruptions in the node during
an observation window and the VM interruptions in nodes to
which we migrated VMs in live migration or service healing.

An additional constraint we need to consider is capacity. As
capacity does not directly impact customers and is not visible
at the node level, it cannot be easily added into the cost. We
currently incorporate the constraint by limiting the number of
nodes that can be marked unallocatable for the same rule in the
same cluster at the same time. With this, capacity indirectly
impacts the cost of marking nodes unallocatable.

Assignment Strategy. A crucial point for A/B testing is to
decide for each node marked by the failure predictor, in which
experiment group should it go to. In classic A/B testing, each
experiment unit is assigned randomly, based on the assump-
tion that the units are independent and identically distributed
(i.i.d). For Narya, we make several changes.

The same node can be marked by the same prediction
rule multiple times during an A/B experiment. In this case,
if Narya assigns it different mitigation actions, e.g., assigns
node X in action A group at time t1 and then to action B at
time t2, the i.i.d assumption can be violated. This is because
the underlying node condition at t1 and t2 could be highly cor-
related, especially for hardware issues. Then the observations
from the treatment and control group are correlated.

To address this issue, we introduce sticky assignment: for
each node, the group is determined through the hash of the
node Id and experiment name (Figure 4); then, if a node is
assigned to action A for an experiment, it will always take
action A for subsequent requests.

Classic A/B experiments are typically done sequentially.
In our case, sequential experimentation takes too long; so
Narya allows different experiments to take place concurrently.
While most experiments are independent, some experiments
could have prediction rules that are correlated. In this case, it

UA-SH-

HI group

NoOp

group

…

…
A1 A2

Unrelated reboots

A1 NoOp action time

A2 UA-SH-HI action time

DP E
P Prediction time
D Decision time

E End of observation

Figure 5: Using decision time as the start of observation window.

is important to test all possible action combinations to analyze
their compound effect later. For example, with experiment X
testing actions {a,b} and a correlated experiment Y testing
actions {c,d}, we need to have observations that take each of
the four scenarios: (a,c), (a,d),(b,c), (b,d).
Action Overriding. Since many fault handling policies, in-
cluding our A/B experiments, can take place concurrently, a
host can potentially be marked by several prediction rules. As
a result, the host might need to follow different composite
actions at the same time. A common reason for this is the
incomplete information factor (Section 3.3). To handle this
situation, Narya uses a specific override logic based on the
priority from the order in Table 2. When we try to assign a
node with a lower-priority action than its current one, we skip
it. In case of equal priority, Narya honors the older actions.
The rationale is that later prediction can often be a side effect
of the earlier one. Since we often do AB testing between
actions with different priorities, it is critical to also observe
cases where the action was skipped or later overridden.
Effect Observation and Attribution. Depending on the
complexity of the actions, some need longer time to get trig-
gered. In the time between the decision and the start of the
action, unrelated VM interruptions can happen. However, to
fairly compare action, we should still count the cost in this
time gap because, for instantaneous actions, it would be im-
possible to differentiate the costs caused by the action from
the unrelated ones. Like for overrides, we monitor decision
instead of action, hence we use the decision time instead of
the action time as the start of the observation window. Fig-
ure 5 shows an example where if we used the actual action
time we would ignore some unrelated reboots for one action
and not the other, while they happen in both groups.
Hypothesis Testing. After collecting the cost metrics for each
action, the decision engine performs hypothesis testing to
decide whether an action is optimal and the experiment can
be stopped. Since our cost function is complex and depends
on external variables, we simplify the hypothesis testing by
assuming that the number of VM reboots per node is i.i.d
and follows a normal distribution. Since different actions
can highly change the VM reboots per node, we will not
assume equal variance for the different actions. Under these
assumptions, we use Welch’s t-test [36] when testing for two
actions and Welch ANOVA test for 3 and more. In the latter,
we use post-hoc analysis to remove all statistically worse
actions until one action remains.

6.2 Bandit Modeling
One drawback of A/B testing is its static group assignment.
Before statistical significance, we do not leverage the esti-
mated difference between the groups to minimize our cost,

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1161

and once an experiment reaches statistical significance, we
will almost always use the discovered optimal action. This
is essentially the classic exploration-exploitation dilemma.
Naturally, we explore modeling the adaptive mitigation as a
Multi-Armed Bandits problem [32, 33], where we aim to min-
imize the customer impact over time by ensuring a balance
between exploring potential better actions and exploiting the
discovered best action. At training time, we observe tuples
(node, rule, chosen action, cost) to estimate the proba-
bility to choose each action, while at serving time, we match
a request tuple (node, rule), to the learnt action.

Actions. The output of the bandit model is the composite
action we want to attempt. The available actions are typi-
cally defined per experiment based on offline analyses of the
prediction signals characteristics: false positive ratio, time to
failure/impact and actions feasibility (Section 5).

Exploration Algorithm. To minimize customer impact over
time, we face the classical exploration-exploitation trade-off.
We need to explore different actions to see which one mini-
mizes the customer impact but at the same time we want to use
the action with minimum estimated cost as much as possible.
In other words, we need to balance between short-term and
long-term benefits. We experimented with multiple different
exploration models including Epsilon Greedy and UCB, and
decided to use Thompson Sampling model since it provides
more explainability and continuous probability changes. In
Thompson Sampling, we model the reward as a function of ac-
tions and a model parameter and choose the action according
to the probability that it maximizes expected rewards. This
Bayesian approach updates the prior using observations of
actions taken and chooses each action with probability equal
to the chance that it minimizes the expected cost:

P(a∗) =
∫

I
(
E(c|a∗,θ) = minaE(c|a∗,θ)

)
P(θ|obs)dθ

where P(a∗) is the probability to choose action a∗, θ is a
hidden parameter, c is the cost and obs are the past observation
as list of tuples (ai,ci). Our technical report [?] describes in
more detail the Thompson Sampling algorithm in Narya.

6.3 Extension to Bandits
Compared to traditional Bandits, our system faces several
challenges. In addition to the effect observation solution de-
scribed in Section 6.1, we made 4 main adaptations as follows.

Accommodate Temporal Changes. Since our system can
change in time, older observations will gradually become less
and less relevant. To account for this factor, we use an expo-
nentially decaying weight for observations to focus on recent
data. We will apply a multiplying weight to past observation
in the format of decay = σT−Tobs , where σ is the decaying
factor, T is the current time and Tobs the time of the observa-
tion. We set σ by default to 0.99 based on simulation-based
experiments and so that the weight would be close to 0 after
3 months which is our typical retention policy. In the case of

Thompson Sampling with Gamma Prior, the distribution to
sample from becomes:

P(θ|a,obs)∼ Γ

(
1+ ∑

i,ai=a
ciσ

T−Ti ,1+ ∑
i,ai=a

σ
T−Ti

)
Delayed Reward Collection. A key challenge in our settings
is the potential long time between the action taken and its
impact. This forces us to observe for at least 10 days and up to
30 days the impact of choosing each action. This observation
window highly depends on the duration of the action and
its effect: UA-LM-HI for 7 days would require around 10
days while Avoid-RH for 15 days would require a full 30
days to observe potential failures following the health reset.
The drawback of a long observation window is the delay
for the reward to be integrated into the model. Thus, wrong
estimation could be used for a while before the observed cost
can readjust the probabilities. One way to counteract this
effect is to observe the reward as it comes. But we can suffer
from the opposite effect of getting biased by reboots close
to the decision time. Our experience suggests that we need
to wait for the full initial observation window and then can
collect partial rewards incrementally.

Bandit stickiness. Since the probability to choose each action
over time changes, we cannot rely on a hash function like in
A/B testing to ensure a node is always assigned to the same
action. We define the bandit stickiness for time T as reusing
the previously chosen composite action if the node has an
available decision for the same rule within the T time window.

Deal with Unexpected Spikes. Another potential issue in
our system is the unexpected spike of VM interruption events
that could affect one action group more than the other. One
approach would be to perform an outlier removal step before
using such observation, but in that case it could also filter out
spikes inherent to a specific action, which should be integrated
into our learned model. We address the issue with the safe
guards mechanism described below.

6.4 Safe Guards
Safety is a top priority in Narya mitigation decision logic.
We take several measures to ensure safety. In addition to
action overriding (Section 6.1), we also apply safety con-
straints—domain-specific restrictions to prohibit certain ac-
tions in some failure scenarios. Narya decision engine also
requires a minimal number of observations before following
the recommendation from the Bandit. The Bandit model will
output a premature flag for insufficient observations, in which
case we would fall back to default action probabilities simi-
larly to A/B testing. This also helps dilute the potential effect
of spikes in a larger observation set.

Moreover, we support configuration of minimum and max-
imum constraints for each action probability. The maximum
constraint limits the possible reactions to high cost, while the
minimum constraint guarantees some exploration for actions
that could seem irrelevant at a specific time. In practice, any

1162 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Model Serving Platform

Mitigation Engine

Policy
Generator

Request
Handler

Health
Tracker

manager1manager2

Predictor

Action
Orchestrator

node
features

exploration
settings

Live MigrationBlock Alloc

Mitigation
Decision

Log

VM
Availability

Data

agent1
agent2

OS events
h/w events

system event logs
…

Learner

rule
prediction

ML
prediction

Action

Reward

Node …

mitigation
request

Pub/
Sub

node metadata

Figure 6: Narya system architecture, which consists of the predictor,
mitigation engine and learner. The ML models for the prediction
and mitigation are stored in a model serving platform [8].

experiment for which we expect a potential change in the
system should keep a minimum probability for each of the
allowed action so that it will continue observing the effect of
such action. Experimentally, We found that using 10% explo-
ration when nodes flagged per day is less than 100 and 5%
when it is higher yielded the best results.

7 Narya System Design and Implementation

In this Section, we describe the system support for Narya.
Figure 6 shows the system architecture. Narya is deployed in
each data center region of Azure compute. The Narya system
must be able to process the massive signals and requests from
the entire fleet with low latency and reliability.

7.1 Failure Predictor
Azure deploys various agents in each node to monitor the
health of the host environment. The Narya predictor ingests
health signals from these monitoring agents and runs rule-
based prediction and ML-based prediction (Section 4).

Rule-based prediction has low cost and high priority. Thus
its prediction logic is executed directly in the host. The ML-
based prediction inspects much more signals such as per-
formance counters and runs more complex prediction logic.
Thus, the ML predictor is implemented as a centralized ser-
vice. It collects raw signals from monitoring agents using
micro-batches (small groups) and incrementally processes
them. Open source technologies are used for ML modelling.
LightGBM is used for decision tree model and PyTorch for
deep learning model. The ML inference tasks run as an hourly
Spark job, which reads the most recent signals and the trained
ML model to compute failure probability for each host.

Pub/Sub Service. A mitigation request is created if a node
is predicted to fail with high probability. The predictor pub-
lishes the request along with metadata information about the
host (e.g., hardware generations, OS version) to a central pub-
/sub service, which we implement on top of Kafka [1]. We
choose Kafka because it allows scalable, low-latency, and
real-time streaming processing to deliver the mitigation re-
quests quickly. Also, our computation pattern involves many

"HW_Triage": {
 "Type": "Selection",
 "ChildSelector": [{
 "ShouldSelect": "C#|Request.FaultedHwHealthGrade == 100",
 "Child": "HW_Try_HI"
 }, {
 "ShouldSelect": "C#|Request.FaultedHwHealthGrade == 75",
 "Child": "HW_Try_Unallocatable"
 }]
}
"HW_Unallocatable_WithRecovery": {
 "Type": "Action",
 "Actions": {
 "MarkNodeUnallocatableAction_WithRecovery": {
 "Action": "MarkNodeUnallocatableAction",
 "Input": {...}
 }}
}

Figure 7: Example of mitigation policy tree nodes.

data producers for a small number of consumers, which is a
main scenario Kafka is designed for.

7.2 Mitigation Engine
The mitigation engine is a core component of Narya. Inter-
nally, it is composed of four major microservices. These mi-
croservices communicate with each other and other services
in Azure using REST APIs.

Create Mitigation Job. The Request Handler microservice
consumes mitigation requests from the Pub/Sub service. Upon
receiving a mitigation request, it creates a mitigation job with
a job Id. This job Id is used by other micro-services to track
the mitigation and query its progress.

Instantiate Mitigation Policy. For a new mitigation job, the
Policy Generator creates a mitigation policy, which maps the
information from the request to the action to take. It is repre-
sented as a decision tree. There are two types of tree nodes:
a Selection node, which chooses the tree node to visit next
based on some C# predicate; an Action node, which executes
a user-defined C# function. The decision tree structure allows
us to easily specify the decision logic. For example, we can
decide mitigation actions based on failure types (software or
hardware), fault codes (e.g., Req.FaultCode == 0x123), clus-
ter types (storage or compute), hardware generations (e.g.,
HostNode.Gen != "ABC"), etc. Figure 7 shows an example.

The policy is derived from a template (Json configuration
file). For A/B testing, the action distribution is specified in
the template. In the Action tree node matching a mitigation
request, the node’s C# function samples one mitigation ac-
tion from the distribution. For Bandit, the Action tree node
dynamically generates the distribution based on contextual
information. In particular, it calls a ML model serving plat-
form, Resource Central [8], with relevant features such as the
fault code, VM count, etc. The platform returns an exploration
setting—a probability distribution over mitigation actions.

The policy generator then applies safety constraints on the
retrieved exploration setting to obtain an adjusted action prob-
ability distribution. Additionally, the mitigation policy allows
imposing rate limit for a tree node to avoid excessive mitiga-
tion that could cause capacity issue or cascading failures.

Walk Policy Tree. The policy generator further traverses the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1163

policy tree in DFS order and creates an action plan. Dur-
ing this process, the generator performs many steps such as
checking predicates, checking rate limit condition etc. If a
node is entered, the generator first checks if we need to ap-
ply sticky mitigation action (Section 6.1) and if there were
decisions made within certain period of time for the same
experiment and tree node. In that case, the last mitigation
action is retrieved from a distributed storage service.

Otherwise, one action is sampled based on the probability
distribution from the config if in A/B testing mode and from
Resource Central if in bandit mode. If there is insufficient data
learned in bandit mode, a specific flag is returned to indicate
the Bandit model is pre-mature. The generator then falls back
to use the action probabilities from A/B testing mode. This
allows us to bootstrap bandit learning from A/B testing safely,
especially considering the delayed cost in the feedback loop.
We follow the same fallback strategy if there is any error in
calling the model serving platform.

Carry out Action Plan. The Action Orchestrator microser-
vice is responsible for carrying out the action plan from the
policy tree walk session. This step involves making API calls
to the corresponding compute managers since different ac-
tions may be implemented by different managers. The orches-
trator executes actions asynchronously to avoid blocking.

Log Actions. Logging in general is very important for data
analysis, Bandit training, and counterfactual evaluation of
different mitigation policies. The logging format for Bandit
learning is special since it requires not only recording the
chosen action but also the associated probability. In particular,
the mitigation engine will log the action timestamp, experi-
ment name, model type, model name, model version, action
distributions, chosen action, chosen action parameters, etc.

Track Node Health. The Health Tracker tracks node and
VM health information during the mitigation process. For
example, while rebooting a node, if we get a new signal (e.g.,
a WindowsEvent) that it is a hardware issue, then we can HI
the node early instead of waiting for reboot to fail/timeout.

7.3 Learner
Learner is a centralized component in Narya. It learns the
effect of mitigation action across different data center regions.
Compared to a regional learner design, a global learner has
the advantage of observing more data points and hence more
confidence in the cost estimation. Additionally, a mitigation
effect change in certain region due to software/firmware up-
dates could be quickly learned and applied to other regions
rolling out the same updates.

The learner runs two main jobs: cost collection and Bandit
model training. The cost collection job retrieves the mitigation
engine’s decisions from the logs. This information is then
correlated with the VM availability measurements and other
important information (LM status, VM workload, etc.) to
determine the cost of the mitigation action for training. The

a b c d e f g h i All

Experiment Id.

0

20

40

S
a
v
in

g
s
 (

%
)

a b c d e f g h i All

Experiment Id.

102

103

104

A
ff

e
c
te

d
 N

o
d
e
s

a 2 Ierr

b E500

c E11 Soft Reboot

d E7

e 1 Ierr

f 63023 Orange

g E52

h 63019 E11

i ML Prediction

Figure 8: AIR improvement of all A/B testing and Bandit experi-
ments in March 2020, breakdown per experiment.

01 02 03 04 05 06 07 08

Month (2020)

0

20

40

60

S
a
v
in

g
s
 (

%
)

raw corrected

Figure 9: AIR improvement per month.

Bandit model training runs on a Spark cluster. The output
model of the learner is a categorical distribution, which the
model server can easily draw samples from.

8 Evaluation

Narya has been running in production since June 2019 to
prevent VM interruptions in Azure compute platform. Our
evaluation answers several questions: (1) how effective is
Narya in averting VM interruptions? (2) how accurate and
timely is the failure prediction? (3) how does Bandit model
compare with A/B testing?

8.1 VM Interruption Savings
The main metric we use to evaluate the effectiveness of Narya
is the VM Annual Interruption Rate (AIR) (Section 3.2). We
measure the delta between the AIR using the old static as-
signment and the AIR under new mitigation decisions from
Narya. We specifically compute three metrics: the estimated
daily AIR savings, the oracle daily AIR savings (savings if
we already knew what was the best action), the regret (how
much additional AIR we could have saved). The estimated
daily AIR savings (Ŝ) is obtained by comparing the impact
of each tested action to the impact of the original action pro-
jected on the whole fleet. The oracle daily AIR savings (S∗) is
estimated by mapping the best performing action to the whole
population compared to the original action on the whole fleet.
Our technical report [?] shows the formulas to calculate Ŝ and
S∗. The regret is the expected difference between the reward
sum associated with an optimal strategy and the sum of the
collected rewards. We consider R = S∗− Ŝ to be our AIR re-
gret, meaning how much additional AIR we could have saved
if we knew the best action all along.

Due to the confidentiality nature of AIR, we report Ŝ,S∗,R
as relative percentages compared to the overall AIR con-
tributed by all of our target failure types (host failures caused
by various hardware problems). For the month of March
2020, Ŝ is a 26.2% improvement, i.e., Narya successfully

1164 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 2 3 4 5 6 7 8 9 10

Feature Bin

0.0

0.2

0.4

0.6

0.8

F
1

-S
c
o
re

individual aggregate

Figure 10: Contrib. of different features.

0 100 200 300

Time to failure (hours)

0.0%

5.0%

10.0%

P
e
rc

e
n
t

0%

25%

50%

75%

100%

C
D

F

Figure 11: ML prediction time to failure.

1.11%
8.18%

53.77%36.94%

ML model predicted the failure first
Only ML model predicted the failure
Only static rules predicted the failure
Static rules predicted the failure first

Figure 12: Prediction timeliness.

decreases AIR by about 26.2% compared to the static strat-
egy. We also provide the per-experiment improvements in
Figure 8. This shows, for each AB or bandit experiment what
percentage of VM interruptions were prevented compared to
using the original strategy. 63019E11 constitutes the largest
savings since the AB testing experiment was already using
the best action. For the same period, S∗ is 35.4%, meaning
the best AIR reduction percentage we could possibly achieve
(if we use the optimal action); R is 9.2%.

Although a 26% might not seem big, given Azure’s scale, it
represents a large number of VM reboots, each highly impact-
ing to customers. The ad-hoc mitigation strategy has already
been tuned for years, and the overall availability of Azure is
already high. Therefore, the comparison baseline is not low.
Also note that the oracle saving 35% is only with respect to the
online experiments we have run. With new prediction rules
for more failure types and new actions, Narya can potentially
yield further improvement.

8.2 Savings Trend Over Time
Figure 9 shows the AIR improvements over time. Overall, the
savings fluctuate between 20% to 40%. July saw a sudden
jump. This is because one major firmware fix occurred in
the June-July time period. One rule started marking much
more nodes, including nodes considered false positives (not
likely to fail soon). This largely increased Ŝ as the old policy
was very sensitive to false positives. However, our anomaly
detection caught this issue. We probably would have fixed
the policy if we were using it. We report in Figure 9 the
corrected savings assuming that fix. In addition, this firmware
deployment fixed a driver issue for which our mitigation was
reducing much AIR by predicting failures in advance. As a
result, our savings decreased in July and August.

8.3 Accuracy and Timeliness of Prediction
We first measure the precision and recall of the Narya failure
predictor. There are multiple rules or models to predict differ-
ent types of host failures. For a prediction rule/model r, we
define the prediction precision as F+D

N , where N is the total
number of hosts marked by r; F is number of hosts that fail
and are diagnosed to be indeed caused by the suspected fault;
D is number of hosts that Narya successfully mitigate and
the suspected fault is later confirmed. The recall is defined as
F+D

M , where M denotes the number of host failures that are
diagnosed to be caused by fault type that r represents.

The overall precision is 79.49%, while the overall recall is
50.7%. While the false positive rate (20.51%) is not small,

we note that failure prediction in a large-scale, complex, and
frequently changing cloud like Azure is an extremely chal-
lenging problem. Narya is designed with the expectation that
false prediction is unavoidable and employs several measures
such as low impact actions, safety constraints, longer obser-
vation window to minimize the impact of false prediction.

We further evaluate the contribution of different signals
(features) to the prediction accuracy. We calculate the feature
importance using the SHAP method [28], sort features by their
importance, and group them into 10 bins. We then evaluate
the precision and recall (F1-score) using individual bins or
aggregate bins (features from bin #1 to #N). Figure 10 shows
the result. We can see that some features are more important
than others. The first bin in particular contributes significantly.
Examples of features in the first bin include read error rate,
flush count, AvailableSpare, HostReadCommands, etc.

Besides precision and recall, for Narya, It is crucial to con-
sider the prediction lead time (or time to failure) defined as
the duration between the prediction time and the failure time.
A larger lead time gives Narya more time to take preventive
actions. Figure 11 shows the CDF of the ML prediction time
to failure with a median lead time of 2.44 days. Figure 12
compares the timeliness between the ML-based prediction
and rule-based prediction: ML-based prediction provides sig-
nificant advantage in timeliness.

We measure the quantitative benefit of early prediction to
live migration success. For nodes predicted to fail, the average
successful live migration per node is 5.57. With a smaller lead
time, the successful live migration per node gets down to 3.

8.4 Comparing AB Testing and Bandit
Next we compare Narya Bandit and A/B testing in finding
the optimal mitigation action. To do so, we compare the used
strategy to the other possibilities. For mitigation requests that
go through A/B testing, we use off-policy learning of Bandit
based on observed A/B data. Similarly we compare the Bandit
output to a static A/B policy. We then use counterfactual
estimation [32] with Inverse Propensity Score to estimate the
cost of running Bandit in place of A/B testing. Over the 2
months period of February and March 2020, using Bandit
instead of A/B testing for ongoing experiments could have
helped decrease the number of VM interruptions by 14.4%.
The breakdown per experiment can be found in Figure 13.
Note that A/B testing compared to bandit is safer and allows
for more than one cost metric.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1165

200U

250U
Bandit

A/B Testing

a b c d e f g

Experiment Id.

0U

10U

C
o
s
t

Figure 13: Cost metric (VM interruptions,
units anonymized) under Bandit vs. AB
testing.

0 100 200

Step (6 hours unit)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y

(a) Bandit

UA-LM-HI

UA-LM-RH

0 100 200

Step (6 hours unit)

(b) A/B Testing

UA-LM-HI

UA-LM-RH

Figure 14: Median probability of choosing each action
using Bandit and A/B testing over 1000 re-sampling sim-
ulations based on production data.

300 400 500 600 700
Number of VM Interruptions

0

100

200

Si
m

ul
at

io
ns

Bandits
A/B Test

Figure 15: Distribution of reboots us-
ing Bandits or A/B testing in 1000
simulations based on production data.

Min Median Max No Convergence Ongoing

12 days 29.5 days 140 days 2 experiments 3 experiments

Table 3: AB testing experiments convergence time.

8.5 Convergence to Optimal Action
Table 3 shows the convergence time of A/B testing for dif-
ferent experiments. The variance of the convergence time
is big, because we need to accumulate enough samples. For
different rules, the time it takes to collect the samples differs
a lot. Two experiments did not reach convergence at the end
of experiments. No convergence usually indicates that there
is no significant difference among the experimented actions.
For Bandit, we compare its behavior with A/B testing through
simulation with production data (details in report [?]). Bandit
can achieve a much faster convergence to the best action. Fig-
ure 14 shows the result. Bandit converged in around 50 steps,
while AB testing would converge in 125 steps. Faster con-
vergence also yields more AIR savings. As Figure 15 shows,
Bandits yields much fewer reboots than AB testing.

8.6 Case Studies
Blobcache error is a symptom that can caused by hardware
issues or some recoverable faults. The original mitigation
policy was UA-LM-HI. We wanted to test if we could avoid the
impact of service healing at the end of the unallocatable period
and try to reset node health (unblock allocation) instead. We
used an AB testing experiment to compare the VM reboots per
node when using UA-LM-HI and UA-LM-RH. The experiment
started on 03/10 and statistical significance was reached on
03/25 and observed on 04/02. We were able to save 25.2%
AIR compared to the old policy during this period. Once, we
adopted the new policy (config change to make it 100%) and
deployed it to production, it saved 50.3% of AIR associated
with this type of failure.

E11 is a Windows event indicating a disk controller error.
When this event occurs, it generally means that the hard disk is
experiencing some issues most likely indicating an imminent
failure. Using offline correlation analysis on non-empty nodes
with no prediction from other rules/models, we found that
85% failed in the following 7 days, with a majority in the first
few hours. Although the lead time was small, it should have
sufficed to migrate some VMs in each of these nodes.

We started our first AB testing experiment on 2019-07-
25 to try our UA-LM-HI policy over NoOp. To our surprise,

02-22
03-01

03-08
03-15

03-22
04-01

04-08

DateTime

0.00

0.25

0.50

0.75

1.00

P
ro

b
a
b
il
it

y

UA-LM-RH

NoOp

Figure 16: Action probability change using Bandit decisions.

we did not see the significant impact we imagined. Upon
analysis, it appeared that few of the VMs could live migrate,
mostly because the node failed too quickly or the disk state
was already too bad to succeed in live migrating the VMs.
However, after a few month of AB testing, the difference in
reboots revealed to be significant mostly through short lived
VMs getting stopped and repeated failure being avoided by
the unallocatable policy. The experiment was ended on 2019-
12-12 with approximate daily AIR savings of 28% for such
signature.

We started another AB testing experiment on 2020-01-11
to test the use of soft reboot to mitigate some of these issues,
following a few positive offline test. Contrary to our belief, we
observed no significant improvement, even a slightly larger
VM reboot per node in the UA-SR action. In total, 51 nodes
tried the SR primitive action, with none of them succeeding
because some pre-checks were not met. This shows the im-
portance of AB testing all potential new actions before using
them on the whole fleet.

I/O Timeout We started an AB experiment between UA-
LM-RH and NoOp actions on 2020-01-11 for an I/O timeout
prediction rule. At first, NoOp seemed to be the better option,
although not significantly. In late March, the UA-LM-RH ac-
tion started being consistently better and led to us to switch to
Bandit. As Figure 16 shows, we can see a clear switch from
choosing NoOp to choosing UA-LM-RH for that time. Even
though we are unsure as to what system changes trigger the
probability change, our Bandit model picks up the changes
and adapt. Using counterfactual estimation, the results show
the Bandits adaptation yields savings of 3.7%–13.9% com-
pared to both static policies.

8.7 Reward Collection Schemes
We compare three possible reward collection schemes: (a)
delayed reward collection; (b) immediate reward collection;
(c) incremental reward collection.

Delayed reward collection (§6.3) is our default scheme. In
(b), we associate VM interruption costs with an action on the

1166 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

03-03 03-10 03-17 03-24 03-31

DateTime

0.0

0.5

1.0

P
ro

b
a
b
il
it

y

Delayed Reward Collection

action1

action2

premature

03-03 03-10 03-17 03-24 03-31

DateTime

Immediate Reward Collection

action1

action2

premature

Figure 17: Probabilities in taking two actions using delayed versus
immediate reward collection. Action1 is optimal.

day where the action is completed, and we update the Bandit
model. In (c), we update and associate the cost daily.

Across different A/B testing experiments we run, the three
schemes have varied effectiveness. But overall delayed reward
collection outperforms immediate scheme. In particular, (b)
yields an average 7.12% AIR improvement, while (a) yields
an average 8.50% AIR improvement. This is because immedi-
ate reward collection can be easily affected by noises and does
not account for action impact that takes a while to manifest
itself. Figure 17 illustrates the comparison in one experiment.

We expected that the incremental scheme (c) would per-
form slightly better than (a), since it could use more infor-
mation and would not need to wait for the full observation.
Contrary to our expectation, in our experiments, the incremen-
tal scheme performs slightly worse than the delayed scheme,
with a 8.45% AIR improvement. One reason is that, if the
environment is relatively steady, adding partial observation
does not provide much new information. Additionally, the col-
lected cost from the partial schema might not be distributed
evenly across the observation window. In this case, the in-
cremental scheme would be misled by partial observations.
However, the incremental scheme does have the advantage
of a faster response to system changes, since it can make
decisions based on the latest cost data.

8.8 Safe Guards
The safe guards can influence the system in many ways. First,
it allows a constant exploration of all action to enable timely
adaptation to system changes. In the I/O time out case studies,
the bandit could not have readjusted to use UA-LM-RH, hence
losing 3.7% of cost. Second, it prevents early convergence
to a wrong policy. In the E11 case study, when simulating
the bandit without safe guards, we converged (probability >
0.95) to use a single action in 27% of cases, 19% of which
was UA-SR, the worst action. Third, safe guards decrease the
impact of unexpected spikes. In the IO timeout experiment,
on 2020-04-25, cascading failures resulted in 106 VM inter-
ruptions on a single node for the NoOp group. Although this
significantly impacted the probability to choose NoOp, we
still keep exploring that option.

8.9 Scale and Performance
Narya runs in each data center region of Azure. The mitigation
engine handles hundreds to thousands of requests daily. The
failure predictor processes tens of TBs of health signals per
day. Figure 18a shows the number of daily mitigation request

04-10 04-17 04-24 05-01 05-08

Date

101

103

105

S
e
s
s
io

n
 c

n
t

total A/B testing Bandit

(a) Session count

100 101 102 103 104

Session Duration (minutes)

0.6

0.7

0.8

0.9

1.0

C
D

F

(b) Session duration

Figure 18: Mitigation request handling sessions

sessions (including all fault handling), and the number of
requests that go through our A/B testing experiments and
requests handled by our Bandit model. Figure 18b shows the
CDF of the session duration of the mitigation actions.

9 Discussion and Limitations
Lessons. We share some operational issues and summarize
the lessons we learned from running Narya in production.

First, given the sheer complexity of Azure cloud infrastruc-
ture, it is inevitable that some Narya decision could go wrong.
We encountered two kinds of service misbehavior: (1) some
prediction rules are outdated and incorrectly mark many nodes
in a short period of time; (2) an increase of customer impact
that is not incorporated within the cost model. For (1), the
issue would impact AB testing and cause Bandit to take time
to adjust. Our rate limit mechanism described in Section 7.2
would help. We also designed a separate anomaly detection
algorithm to catch such misbehavior so we can pause and
refine the offending prediction rules. To overcome (2), we
added monitoring of the support tickets filed by customers.

Second, as Narya consumes telemetry signals from the
whole stack, Narya may be broken if the updates of host
OS, firmware, and hardware involve uncoordinated schema
changes. We recently had an issue in which the schema change
of a few critical OS signals was not captured by Narya. Our
monitoring component caught the issue and we had to patch
Narya. Besides schema changes, the data and label quality
may also fluctuate due to improvements or regressions of
tracing capability introduced by different component teams.

The aforementioned challenges can be addressed if the
cross-team collaboration and communication are perfect,
which unfortunately is not realistic in large organizations.
Through continuous learning from failures, we build multiple
channels based on social alignment principles to include rele-
vant component teams, so that the right team can be involved
in time to avoid broken contract, adjust prediction rules, etc.

While we try to ensure sufficient communication, we can-
not just rely on it. We build a comprehensive monitoring
pipeline that detects anomalies at all layers for Narya, from
input data to prediction results, mitigation actions, etc. We
proactively investigate alerts and follow up on issues caused
by external dependencies or fix Narya’s own defects. More-
over, we re-train our ML model on a regular basis to accom-
modate the evolution of telemetry data and label quality.

Third, Narya may output unexpected decisions, which re-
quire verifying its correctness and diagnosing the root cause.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1167

In general, diagnosing issues in Narya’ Bandit decisions is
easy. The exploration model is explainable and solely de-
pends on the total VM reboots observed and the total nodes
observed. Any unexpected change in probability can be traced
down to the observations that had large customer impact.

Limitations. We describe several limitations of Narya. While
Narya can be fully automated, it currently still involves some
human intervention to analyze the experiment results and up-
date the system. This is because our cost model for customer
impact is incomplete. We believe limited human intervention
is key to catch any gaps in customer complaints and improve.

We currently focus on predicting and mitigating hardware
or firmware-induced VM failures. We plan to extend Narya to
software-induced VM failures. While generic software failure
prediction is very challenging due to their frequent changes
and complex dependencies, there are potentials for addressing
issues like memory leak, repeated crashes, and timeout bugs.

The multi-armed Bandits model we use has the advantage
of simplicity and easy explainability of the mitigation deci-
sion. However, this model can segment the data. In particular,
Narya divides nodes into different experiments based on fault
code and node metadata (e.g., h/w generation). But mitigation
actions for nodes from different experiments may share the
same characteristics, which may not be learned because each
model is trained separately. We are exploring the contextual
Bandit model [23] to leverage context information like node
features to the model input.

10 Related Work
Our work is related to three subareas in system resilience:
failure detection, prediction and mitigation. Failure detection
has been extensively studied, while failure prediction and mit-
igation are not as well explored. Narya’s major contribution
is improving the latter two in the context of a large-scale, pro-
duction cloud VM infrastructure, and designing an end-to-end
preventive mitigation service to achieve failure avoidance.

Detecting crash failures reliably and quickly in asyn-
chronous distributed systems is a classic topic [3, 5, 6, 9, 13,
22, 34]. Recent work has discussed the prevalence of gray
failures [11,17,26] in cloud. Panorama [16] proposes to lever-
age observability to detect gray failures [17]. Narya focuses
on predicting failures ahead of time. Many of the failures we
target fall into gray failure category. But our aim is to identify
risky hosts before they cause customer impact.

Several recent work proposes using machine learning to
predict disk failures [14, 27, 38] and node faults [25]. Narya
predictor aligns with these solutions’ basic approach. But we
focus on predicting failures in the complex VM host envi-
ronment as a whole and only those with customer impact.
Additionally, we design the prediction pipeline to closely
integrate with the mitigation engine.

The Recovery-Oriented-Computing project [31] advocates
the importance of failure mitigation, particularly reboot [4].
Piegon [21] proposes to expose uncertainty of failures to

allow better failure reactions for applications. But applications
have to manually decide whether to wait or start recovery.
IASO [30] is a framework for detecting fail-slow issues and
supports mitigating slow issues with multiple options such as
process restart or VM shutdown. But it relies on customers to
manually configure the mitigation option.

NetPilot [37] aims to automate the failure mitigation in a
data center network by determining the suspected network
devices and mitigating failures based on estimated impact.
Narya differs with NetPilot in several ways. First, Narya tar-
gets automating the failure mitigation of a system with het-
erogeneous components and complex stack. In our setting,
estimating the impact of an action offline is challenging and
often mismatches with production observations. Narya takes
an online exploration and learning approach. Second, the mit-
igation actions available in NetPilot are few and simple like
device restart. Narya needs to consider diverse and complex
actions. Third, Narya aims to avoid failures whereas NetPi-
lot focuses on mitigating failures that have occurred. Lastly,
Narya is deployed in production at large scale.

A/B testing experimentation is a common practice to test
the effects of UI features using production data (user requests).
The idea is simple, but it often yields surprising power [19].
Thus, leading companies conduct thousands of A/B exper-
iments annually. Narya mitigation engine adopts the A/B
testing methodology in a novel way to the failure mitigation
scenario with several changes. Narya also adopts multi-armed
Bandits reinforcement learning [32]. Our contribution is ad-
dressing several unique challenges and the system support that
make the approach work in a large-scale, production cloud
infrastructure to avert real cloud VM interruptions.

11 Conclusion

We investigate an important topic in fault-tolerant system
designs—failure avoidance—in the context of cloud infras-
tructure. Drawing from our experience in operating a large
production cloud system, we propose a novel online experi-
mentation and learning approach to tackle this problem. We
present Narya, an end-to-end service consisting of failure pre-
diction and smart mitigation. Narya continually evaluates the
optimal action in production using A/B testing and Bandit
models. Narya has been running in Azure compute infrastruc-
ture for 15 months and yields a 26% improvement in reducing
VM interruptions compared to previous static strategy.

Acknowledgments
We would like to thank our shepherd, Haryadi Gunawi, and the
anonymous reviewers for their thoughtful and comprehensive
comments. We thank all the Azure engineers who partnered
with us on building the solution and providing feedback to us.
Peng Huang is supported by the National Science Foundation
CAREER award CNS-1942794.

1168 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Apache Kafka: A distributed streaming platform. https://kafka.

apache.org.

[2] S. Agrawal and N. Goyal. Thompson sampling for contextual bandits
with linear payoffs. In Proceedings of the 30th International Confer-
ence on International Conference on Machine Learning - Volume 28,
ICML’13, page III–1220–III–1228, Atlanta, GA, USA, 2013.

[3] M. K. Aguilera and M. Walfish. No time for asynchrony. In Pro-
ceedings of the 12th Conference on Hot Topics in Operating Systems,
HotOS ’09, pages 3–3, Monte Verità, Switzerland, 2009.

[4] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Mi-
croreboot — a technique for cheap recovery. In Proceedings of the 6th
Conference on Symposium on Opearting Systems Design & Implemen-
tation, OSDI ’04, pages 31–44, San Francisco, CA, 2004.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225–267, Mar. 1996.

[6] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of service of
failure detectors. IEEE Trans. Comput., 51(5):561–580, May 2002.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In Proceedings
of the 2nd conference on Symposium on Networked Systems Design
& Implementation-Volume 2, pages 273–286. USENIX Association,
2005.

[8] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini. Resource central: Understanding and predicting work-
loads for improved resource management in large cloud platforms. In
Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, page 153–167, Shanghai, China, 2017.

[9] C. Fetzer. Perfect failure detection in timed asynchronous systems.
IEEE Trans. Comput., 52(2):99–112, Feb. 2003.

[10] J. H. Friedman. Greedy function approximation: A gradient boosting
machine. Annals of Statistics, 29:1189–1232, 2000.

[11] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman,
X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey, G. Grider,
P. M. Fields, K. Harms, R. B. Ross, A. Jacobson, R. Ricci, K. Webb,
P. Alvaro, H. B. Runesha, M. Hao, and H. Li. Fail-slow at scale:
Evidence of hardware performance faults in large production systems.
In Proceedings of the 16th USENIX Conference on File and Storage
Technologies, FAST’18, pages 1–14, Oakland, CA, USA, 2018.

[12] Z. Guo, S. McDirmid, M. Yang, L. Zhuang, P. Zhang, Y. Luo, T. Bergan,
P. Bodik, M. Musuvathi, Z. Zhang, and L. Zhou. Failure recovery:
When the cure is worse than the disease. In Proceedings of the 14th
USENIX Conference on Hot Topics in Operating Systems, HotOS’13,
pages 8–8, Santa Ana Pueblo, New Mexcio, 2013.

[13] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Practical
accountability for distributed systems. In Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07,
pages 175–188, Stevenson, Washington, USA, 2007.

[14] G. Hamerly and C. Elkan. Bayesian approaches to failure prediction for
disk drives. In Proceedings of the Eighteenth International Conference
on Machine Learning, ICML ’01, page 202–209. Morgan Kaufmann
Publishers Inc., 2001.

[15] T. Hauer, P. Hoffmann, J. Lunney, D. Ardelean, and A. Diwan. Mean-
ingful availability. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), pages 545–557. USENIX As-
sociation, Feb. 2020.

[16] P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang. Capturing and
enhancing in situ system observability for failure detection. In 13th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’18, pages 1–16, Carlsbad, CA, October 2018.

[17] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and
R. Yao. Gray failure: The Achilles’ heel of cloud-scale systems. In
Proceedings of the 16th Workshop on Hot Topics in Operating Systems,
HotOS XVI. ACM, May 2017.

[18] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu. Lightgbm: A highly efficient gradient boosting decision
tree. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 30, pages 3146–3154. Curran Associates, Inc.,
2017.

[19] R. Kohavi and S. Thomke. The surprising power of online experiments.
Harvard Business Review, 95(5):74–82, 2017.

[20] J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. W. Teh. Set
transformer: A framework for attention-based permutation-invariant
neural networks. In International Conference on Machine Learning,
pages 3744–3753. PMLR, 2019.

[21] J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish. Improving
availability in distributed systems with failure informers. In Proceed-
ings of the 10th USENIX Conference on Networked Systems Design and
Implementation, NSDI ’13, pages 427–442, Lombard, IL, Apr. 2013.

[22] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and M. Walfish.
Detecting failures in distributed systems with the Falcon spy network.
In Proceedings of the 23rd ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 279–294, Cascais, Portugal, Oct. 2011.

[23] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit
approach to personalized news article recommendation. In Proceedings
of the 19th International Conference on World Wide Web, WWW ’10,
page 661–670, Raleigh, North Carolina, USA, 2010.

[24] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh, X. Yang,
Q. Lin, Y. Wu, S. Levy, and M. Chintalapati. Gandalf: An intelligent,
end-to-end analytics service for safe deployment in large-scale cloud
infrastructure. In Proceedings of the 17th USENIX Symposium on
Networked Systems Design and Implementation, NSDI ’20. USENIX,
Feburary 2020.

[25] Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, J.-G. Lou, C. Li,
Y. Wu, R. Yao, M. Chintalapati, and D. Zhang. Predicting node failure
in cloud service systems. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, ESEC/FSE 2018,
page 480–490, Lake Buena Vista, FL, USA, 2018.

[26] C. Lou, P. Huang, and S. Smith. Understanding, detecting and localiz-
ing partial failures in large system software. In Proceedings of the 17th
USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI ’20. USENIX, Feburary 2020.

[27] S. Lu, B. Luo, T. Patel, Y. Yao, D. Tiwari, and W. Shi. Making disk
failure predictions SMARTer! In 18th USENIX Conference on File and
Storage Technologies (FAST 20), pages 151–167. USENIX Association,
Feb. 2020.

[28] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model
predictions. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS ’17, page 4768–4777,
Long Beach, California, USA, 2017.

[29] J. C. Mogul and J. Wilkes. Nines are not enough: Meaningful metrics
for clouds. In Proceedings of the Workshop on Hot Topics in Operating
Systems, HotOS ’19, page 136–141, Bertinoro, Italy, 2019.

[30] B. Panda, D. Srinivasan, H. Ke, K. Gupta, V. Khot, and H. S. Gunawi.
IASO: A fail-slow detection and mitigation framework for distributed
storage services. In Proceedings of the 2019 USENIX Conference on
Usenix Annual Technical Conference, USENIX ATC ’19, page 47–61,
Renton, WA, USA, 2019.

[31] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler,
P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer,
N. Sastry, W. Tetzlaff, J. Traupman, and N. Treuhaft. Recovery oriented

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1169

https://kafka.apache.org
https://kafka.apache.org

computing (ROC): Motivation, definition, techniques, and case studies.
Technical Report UCB/CSD-02-1175, EECS Department, University
of California, Berkeley, Mar 2002.

[32] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
A Bradford Book, Cambridge, MA, USA, 2018.

[33] W. R. Thompson. On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika,
25(3-4):285–294, 12 1933.

[34] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure
detection service. In Proceedings of the IFIP International Conference
on Distributed Systems Platforms and Open Distributed Processing,
Middleware ’98, pages 55–70, The Lake District, United Kingdom,
1998.

[35] X. Wang, L. Yu, K. Ren, G. Tao, W. Zhang, Y. Yu, and J. Wang. Dy-
namic attention deep model for article recommendation by learning hu-
man editors’ demonstration. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’17, page 2051–2059, Halifax, NS, Canada, 2017.

[36] B. L. Welch. The generalization of ‘student’s’ problem when several
different population variances are involved. Biometrika, 34(1/2):28–35,
1947.

[37] X. Wu, D. Turner, C.-C. Chen, D. A. Maltz, X. Yang, L. Yuan, and
M. Zhang. NetPilot: Automating datacenter network failure mitigation.
SIGCOMM Comput. Commun. Rev., 42(4):419–430, Aug. 2012.

[38] Y. Xu, K. Sui, R. Yao, H. Zhang, Q. Lin, Y. Dang, P. Li, K. Jiang,
W. Zhang, J.-G. Lou, M. Chintalapati, and D. Zhang. Improving service
availability of cloud systems by predicting disk error. In Proceedings of
the 2018 USENIX Conference on Usenix Annual Technical Conference,
USENIX ATC ’18, page 481–493, Boston, MA, USA, 2018.

1170 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Sundial: Fault-tolerant Clock Synchronization for Datacenters

Yuliang Li*†, Gautam Kumar*, Hema Hariharan*, Hassan Wassel*, Peter Hochschild*, Dave Platt*,
Simon Sabato‡, Minlan Yu†, Nandita Dukkipati*, Prashant Chandra*, Amin Vahdat*

Google Inc.*, Harvard University†, Lilac Cloud‡

Abstract
Clock synchronization is critical for many datacenter applica-
tions such as distributed transactional databases, consistent
snapshots, and network telemetry. As applications have in-
creasing performance requirements and datacenter networks
get into ultra-low latency, we need submicrosecond-level
bound on time-uncertainty to reduce transaction delay and en-
able new network management applications (e.g., measuring
one-way delay for congestion control). The state-of-the-art
clock synchronization solutions focus on improving clock pre-
cision but may incur significant time-uncertainty bound due
to the presence of failures. This significantly affects applica-
tions because in large-scale datacenters, temperature-related,
link, device, and domain failures are common. We present
Sundial, a fault-tolerant clock synchronization system for dat-
acenters that achieves ∼100ns time-uncertainty bound under
various types of failures. Sundial provides fast failure detec-
tion based on frequent synchronization messages in hardware.
Sundial enables fast failure recovery using a novel graph-
based algorithm to precompute a backup plan that is generic
to failures. Through experiments in a >500-machine testbed
and large-scale simulations, we show that Sundial can achieve
∼100ns time-uncertainty bound under different types of fail-
ures, which is more than two orders of magnitude lower than
the state-of-the-art solutions. We also demonstrate the ben-
efit of Sundial on applications such as Spanner and Swift
congestion control.

1 Introduction
Clock synchronization is increasingly important for datacen-
ter applications such as distributed transactional databases [12,
32], consistent snapshots [11, 16], network telemetry, conges-
tion control, and distributed logging.

One key metric for clock synchronization is the time-
uncertainty bound for each node, denoted as ε in this paper,
which bounds the difference between local clock and other
clocks. This concept is used by TrueTime in Spanner [12].
Spanner leverages TrueTime to guarantee the correctness
properties around concurrency control and provide consis-

tency in distributed databases. Another example is consis-
tent snapshots, which are commonly used for debugging or
handling failures in distributed systems. To ensure consis-
tency among snapshots, each node needs to wait for its time-
uncertainty bound (ε) before recording the states.

Traditional clock synchronization techniques provide ε at
the millisecond level (e.g., <10ms in TrueTime [12]), which is
no longer effective for modern datacenter applications with in-
creasing performance requirements and ultra low latency dat-
acenter networks (e.g., with latency around 5µs [25]). Today’s
applications can benefit significantly from submicrosecond-
level ε. For example, FaRMv2 [32], an RDMA-based trans-
actional system, observes the median transaction delay can
drop by 25% if we improve ε from ∼20µs to 100ns. Cock-
roachDB [3] can significantly reduce the retry rate when ε

drops from 1ms to 100ns based on an experiment in [13].
Providing submicrosecond-level ε can also enable new

network management applications. For example, with
submicrosecond-level clock differences across devices, we
can measure one-way delay, locate packet losses, and identify
per-hop latency bursts [23, 24]. It also enables synchronized
network snapshots [37] which are useful for identifying RTT-
scale network imbalance and collect global forwarding state.
Accurate one-way delay provides a better congestion signal
to delay-based congestion control [17, 29] to differentiate
between forward and reverse path congestion.

There are several systems that achieve submicrosecond-
level clock precision. The state-of-the-art commercial so-
lution on precise clock synchronization is Precision Time
Protocol (PTP) [4]. PTP is widely available in switches and
NICs [6,8,9]. Each switch or NIC has a hardware clock driven
by an oscillator, generates timestamped synchronization mes-
sages in software, and sends them over a spanning tree to
synchronize with other nodes. Normally, oscillator drifts stay
within ±100µs per second and the devices synchronize every
15ms to 2 seconds [4, 8]. A recent proposal DTP [21] sends
messages in the physical layer every few microseconds and
can also achieve ∼100ns precision. Huygens [13] is a clock-
synchronization system built in software that achieves <100ns

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1171

precision by using Support Vector Machines to accurately es-
timate one-way propagation delays.

While these works provide high clock precision under nor-
mal cases, the time-uncertainty bound ε grows to 10-100s of
µs as datacenters are subject to a variety of failures. In large-
scale datacenters, there are common temperature-related fail-
ures which affect oscillator drifts. There are also frequent link,
device, and domain failures (i.e., a domain of links and de-
vices that fail together) that affect the synchronization across
nodes (see §3).

In this paper, we present Sundial, which provides
∼100ns time-uncertainty bound (ε) under failures including
temperature-related, link, device and domain failures and re-
ports ε to applications – two orders of magnitude better than
current designs. Even in cases of simultaneous failures across
domains, Sundial provides correct ε to applications. Sundial
achieves this with a hardware-software codesign that enables
fast failure detection and recovery:
Fast failure detection based on frequent synchronous
messaging on commodity hardware: Sundial exchanges
messages every ∼100µs in hardware without changing the
physical layer. The frequent message exchange enables fast
failure detection and recovery, and frequent reduction of ε.
To ensure fast failure detection for remote nodes in the span-
ning tree, Sundial introduces synchronous messaging which
ensures that each node sends a new message only when it
receives a message from the upstream.
Fast failure recovery with precomputed backup plan that
is generic to all types of failures: To enable fast failure re-
covery, Sundial controller precomputes a backup plan con-
sisting of one backup parent for each node and a backup root,
so that each device can recover locally. The backup plan is
generic to different types of failures (i.e., link, device failures,
root failures, and domain failures) and ensures that after fail-
ure recovery, the devices remain connected without loops. We
introduce a new search algorithm for the backup plan that ex-
tends a variant of edge-disjoint spanning tree algorithm [35]
but with additional constraints such as no-ancestor condition
(the edge in the current tree cannot be a forward edge in the
backup tree) and disjoint-failure-domain condition (no do-
main failure can take down both the parent and the backup
parent for any device). Our algorithm only takes 148ms on
average to run on an example Jupiter [33] topology with 88K
nodes.

We evaluate Sundial with experiments in a >500 machine
prototype implementation and via large-scale simulations.
Sundial achieves ∼100ns time-uncertainty bound both under
normal time and under different types of failures, which is
more than two orders of magnitude lower than the state-of-
the-art solutions such as PTP [4], Huygens [13], and DTP [21].
Sundial reduces the commit-wait latency of Spanner [12] run-
ning inside a datacenter by 3-4x, and improves the throughput
of Swift congestion control [17] by 1.6x under reverse-path
congestion.

2 Need for Tight Time-uncertainty Bound
A clock synchronization system for datacenters need not only
a current value of time but also time-uncertainty bound that is
used by applications for correctness as well as performance.
We describe several datacenter applications and how tight
time-uncertainty bound benefits them below.
Distributed Transactional Databases: Spanner [12],
FaRMv2 [32] and CockroachDB [3] are some examples of
distributed databases deployed at scale in production that di-
rectly use time-uncertainty bound to guarantee consistency –
transactions wait out time-uncertainty bound before commit-
ting a transaction. Spanner is the first to use ε in production
transactional systems. While it is globally distributed, its idea
of using ε is adopted in many intra-datacenter systems such as
FaRMv2 [32]. However, inside datacenters, with recent soft-
ware and hardware improvements such as RDMA, NVMe,
and in-memory storage, transaction latencies are going to-
wards microsecond level. For example, FaRMv2 is built atop
RDMA for datacenters and has ε of ∼20µs which already
accounts for 25% of median transaction latency! Tight ε im-
proves the performance of these systems both in terms of
latency and throughput.
Consistent snapshots: Consistent snapshots [11, 16] is an-
other important application for datacenters for debugging,
failure handling, and recovery for cloud VMs. The consis-
tency across servers can be guaranteed by waiting out ε to
ensure the scheduled snapshot time is passed. With recent
software and hardware improvements, ε becomes a perfor-
mance bottleneck at a similar level as in distributed databases,
limiting the frequency of taking snapshots.
Network telemetry: As network latency reduces to the or-
der of a few microseconds, millisecond-level ε is too coarse-
grained. Tight ε enables a wide range of fine-grained network
telemetry. For example, per-link latency or packet losses can
be measured by comparing the timestamps or counters at both
ends of a link read at the same time [23, 24, 40]. Synchro-
nized network snapshots at RTT scale can be enabled with
tight time-uncertainty bound, and can be used for various
telemetry needs such as measuring traffic imbalance across
different links/paths in the dataceter [37].To achieve these,
switch clocks also need to be synchronized.
One-way delay (OWD): Synchronized clocks enable the
measurement of one-way delays. Small ε provides a tighter
bound on the error in the measurement especially under fail-
ures. Measurement of OWD is useful for many applications in-
cluding telemetry and congestion control. For example, OWD
differentiates between forward and reverse-path congestion
improving performance of delay-based congestion control
algorithms such as Swift [17] (§6.3).
Distributed logging: A key challenge for debugging large-
scale distributed systems is to analyze logs collected from
different devices with clock differences. Tighter ε enables
more useful analysis and opens up more distributed debug-

1172 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Clock A

Clock B

T1
A

T1
B T2

B

T2
A

dAB

Send T2
A to B

Figure 1: Message exchanges to synchronize B to A.

ging opportunities. Our ∼100ns ε is about the same as L3
cache miss time, so it can help order all log messages in a
datacenter. We note that this class of applications has an addi-
tional requirement in that the synchronized clocks follow a
master clock that reflects the physical time of day (§4.5).

3 Failures in Clock Synchronization System
In this section, we discuss the different failure scenarios af-
fecting a clock synchronization system and their respective
impacts. We start with a brief background on clock synchro-
nization to aid the discussion.

3.1 Background on Clock Synchronization
The clock is driven by a crystal oscillator. Every device
has a clock, whose value is incremented on every tick of a
hardware oscillator. Different oscillators, even of the same
type, have slightly different frequencies. The frequency of
an oscillator may change over time, due to factors such as
temperature changes, voltage changes, or aging resulting in
clocks to drift away over time. As an example, oscillators
in production networks can have a frequency variation of
±100 ppm (parts per million) [7], meaning that the oscillator
can drift within the range of ±100µs per second compared
to running at the nominal frequency. More stable oscillators
(e.g., atomic clocks based on Cesium, Hydrogen or Rubidium
particles or oven-controlled oscillators) are too expensive to
deploy on every device in production.
Clocks exchange messages with each other for synchro-
nization. To ensure that clocks remain close to each other,
we need to periodically adjust the clocks to account for poten-
tial drift. Figure 1 shows an example where clock B synchro-
nizes to A. A sends a synchronization message (abbreviated
as sync-message in this paper) with a timestamp T A

1 based
on A’s clock, and B records the receiving time (timestamped
by B) of the sync-message T B

1 . Now, if B knows the message
delay dAB from A to B, B can compute the offset between A
and B as T A

1 +dAB−T B
1 . To know dAB, B sends another mes-

sage to A to measure RTT, and use half of RTT to estimate:
dAB = (T A

2 −T A
1 − (T B

2 −T B
1))/2. B uses offset to adjust its

clock. A periodically sends out these sync-messages at an in-
terval denoted by sync-interval. The accuracy of dAB depends
on multiple factors and we discuss them below.
A network of clocks synchronize using a synchronization
structure. A common way to do this is to construct a span-
ning tree over which sync-messages are sent, e.g., PTP which
is the most widely available system for datacenter clock syn-
chronization uses a spanning tree with one device serving as
the root (called master or grandmaster). The model for best
case synchronization is that each device’s parent is one of its

A B

A B

Synchronization
over multiple hops

Synchronization
between neighbors

Forward path Backward path

Device Physical link Queue

Figure 2: Benefit of synchronization between neighbors: symmetric
forward and backward paths, and no noises from queuing delay.

direct neighbors in the physical network and sync-messages
flow periodically from the root across the spanning tree.1 This
has two advantages. First, it allows switch clocks to also be
synchronized enabling additional telemetry applications (§2).
Second, it significantly improves the measurement of dAB as
shown in Figure 2. Noises in estimation of dAB by halving the
RTT can arise due to (1) asymmetric propagation delays of
the forward path and the reverse path, and (2) queuing delays.
For direct neighbors in the physical network, propagation de-
lay asymmetry is near zero, and there is no queuing delay2.
There are proposals that do not use a spanning tree as the syn-
chronization structure but either they don’t reflect the physical
time [21] (§4.5) or they cannot provide submicrosecond-level
precision [12, 27, 28] (§7).
Time-uncertainty bound. As clocks can drift apart over
time, time-uncertainty bound (ε) can be calculated as:

ε = εbase +(now−Tlast_sync)×max_drift_rate (1)
ε of a clock exhibits a sawtooth function. Tlast_sync is the last
time when the clock is synchronized to the root (not just its di-
rect parent), now−Tlast_sync increases with time and goes back
to zero after synchronization to the root, and max_drift_rate
is a constant representing the maximum possible drift rate be-
tween the local clock and the root’s clock. The εbase is a small
constant (a few nanoseconds) that accounts for other noises
(e.g., timestamping errors, bidirectional delay asymmetry of
physical links, etc.).

We will show that in the face of failures in production en-
vironments, max_drift_rate should be conservatively derived
(§3.2.1), and now−Tlast_sync can be large (§3.2.2).

3.2 Impact of Failures on ε

We classify failures affecting clock synchronization into three
categories and study their impact on ε – failures that induce
large frequency variations and need a conservative setting
of max_drift_rate, connectivity failures that affect Tlast_sync,
and incorrect behaviors due to broken clocks and message
corruption that need to be detected and addressed.
3.2.1 Failures that Induce Large Frequency Variations
An oscillator’s frequency can incur a large variation in the
event of sudden temperature or voltage fluctuation. Cooling
failures are common and can affect thousands of machines.

1Note that PTP doesn’t require this to be the case.
2While the devices may have local queues, the timestamp is marked at

dequeue/egress time and is not subject to local queuing delay.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1173

In an cooling incident that occurred in production recently, it
resulted in errors related to clock synchronization in a large
fraction of machines (and not just the ones affected by the
failure). The temperature variation resulted in oscillator fre-
quency variation to exceed max_drift_rate and the operator
had to shut down many machines.3 Thus, the max_drift_rate
needs to be set very conservatively (e.g., 200ppm in True-
Time [12]) to tolerate frequency variations under a wide range
of temperature (e.g., up to 85 °C) even though in normal cases,
temperature variations occur slowly [13]. This entails that
in order to keep ε small, we need to reduce now−Tlast_sync
through frequent messaging – ε of 100ns with max_drift_rate
of 200ppm needs sync-interval to be <500µs. Software cost
of reducing sync-interval to such low values is high – PTP
takes one core to process thousands of sync-messages and
associated computations per second [1], and Huygens con-
sumes 0.44% CPU for a sync-interval of 2s (which grows
proportionally as the interval is reduced). We need hardware
support for efficiency (§4.1).
3.2.2 Connectivity Failures
Failures that break the connectivity of the spanning tree also
affect ε. For example, if a device or a link in the spanning tree
fails, the whole subtree under this device or link loses connec-
tivity to the root4, until a new spanning tree is reconfigured
by the SDN controller. ε grows proportionally to the time it
takes for recovery – if it takes 100 ms, ε grows to more than
20µs. Even a distributed spanning tree protocol supported by
PTP (best master clock algorithm) is slow to converge.

What is worse, is that the inflation of ε is not only for a
device affected by the failure at a given time; instead, almost
all devices have to report high ε, all the time and not only
during the failure duration. This is because a device cannot
distinguish whether it is affected by a failure or not. Consider
a 3-node setup as depicted in Figure 3 with A as the root of
the spanning tree and B and C as A’s child and grandchild
respectively. When A fails, B detects the failure but C con-
tinues synchronizing to B without noticing the failure. This
means at any time, there is no way for C to tell if it is in-sync
or not, no matter if there is an actual failure or not and thus,
it has to always report large ε (i.e., > 20µs) even during nor-
mal periods.5 Another way to look at this is in the context of
Equation 1, C cannot set Tlast_sync to the time it receives the
last sync-message from its parent Tlast_msg; instead, for cor-
rectness, C has to always set Tlast_sync = Tlast_msg−Trecovery,
where Trecovery is the maximum time to recover from any fail-
ure that may break its connectivity to the root. All non-direct
descendants of the root are affected by this.

3Normally, after a cooling system failure, operators let machines continue
running for 10s of minutes before the recovery of cooling system or a grad-
ual shutdown of machines, because this is usually safe and a sudden total
shutdown should be avoided as much as possible.

4PTP is configured on a per-port basis (not per-device), so sync-message
cannot bypass the failed link or the link associated with the failed device.

5Without changing the PTP standard, B cannot explicitly communicate to
C about the failure.

B

C

Link A to B fails

B

C

A
A

Centralized failure
recovery

Synchronization msg

B detects
failure locally

time taken

Figure 3: Challenge of determining Tlast_sync. Node C cannot deter-
mine if it is synchronized to the root or not, so C has to always set
Tlast_sync conservatively early to account for possible down time.

Figure 4: Number of link down events per second in a 1000-machine
cluster during a near two-minute window of a failure incident.

There are many possible causes of connectivity failures:
besides the common link or switch down, there are incidents
that can take down massive (10s to 100s) devices or links,
such as failures related to patch panels, link bundles, power
domains, or human operations [38, 39]. Figure 4 shows the
time series of link down events in a 1000-machine cluster
during a failure incident. The suspected cause was a software
bug related to a patch panel but its impact on device/link
failures lasted across nearly two minutes – a total of 133 links
go down. Thus, in order to provide small ε, the system must
recover from connectivity failures quickly.

3.2.3 Broken Clocks and Message Corruption
Clocks may break and stop functioning well resulting in actual
drift rate to exceed max_drift_rate. While this is rare relative
to more severe hardware problems – statistics from production
show that broken CPUs are 6 times more likely than broken
clocks [12] – they need to be taken care of to provide correct
ε to applications. Similarly, sync-message corruption may
garble the associated timestamp and affect correctness of
reported ε. A fault-tolerant clock synchronization system must
detect and address such anomalies.

4 Sundial Design and Implementation
Motivated by the discussion above, we identify two key re-
quirements to build a fault-tolerant clock synchronization sys-
tem for datacenters that achieves performant time-uncertainty
bounds. First is a small sync-interval (§3.2.1) – this is well
served with a hardware implementation to avoid high CPU
overhead of receiving and transmitting synchronization mes-
sages in software. Second is fast failure recovery so that ε

continues to be small even when failures happen (§3.2.2).
The challenge here is that recovering solely via a centralized
controller is slow for our target ε requirements. Instead, as
we show later, we can recover from most failures locally by
adding redundancy to the synchronization graph, where in

1174 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Failure Failure detected locally Controller reconfig switches

<1ms 100s ms ~ seconds Time

Failure
Failure detected locally
& enable backup plan Controller reconfig switches

<1ms 100s ms ~ seconds Time

Existing solution

Our solution
Failure handled slowly

Failure handled quickly
Figure 5: Fast failure recovery using precomputed backup plan.

Device
Failure handler:
- Pickup the backup plan

Controller:
- Initially, calculate the spanning tree & backup plan
- Recalculate upon failure reports

Configure

Interrupt

Report failure

Software HardwareLegend:

Timer
- Detect failure
- Trigger TX

RX
- Adjust clock & ε
- Trigger TX

TX
- Send msg

Config

Configure

Figure 6: Sundial Framework. Solid arrows are the fast local recov-
ery. Dashed arrows are slower but non-critical paths of recovery.

addition to the primary spanning tree, each device maintains a
backup parent, such that it can transition to the backup parent
locally upon detecting a failure. As shown in Figure 5, this
takes the round trip time to the controller and the computation
time out of the critical path of failure handling.

Thus, Sundial uses a hardware-software codesign. Figure 6
depicts Sundial’s framework, which has three main compo-
nents. Sundial implement the most essential functions of ex-
changing synchronization messages and detecting failures in
hardware such that it can synchronize frequently and quickly
detect failures. Sundial relies on software components to take
action once a failure is detected, by invoking a failure handler
in software which reconfigures the hardware to transition to
the backup parent pre-programmed by a centralized controller
(also in software). We use the topology in Figure 7(a) as a
toy example to aid with the discussion in this section with
Figure 7(b) as an example spanning tree.

4.1 Sundial Hardware Design
Sundial’s hardware has three main components. It implements
frequent transmission of sync-messages in a synchronous
fashion, i.e., sync-messages are sent downstream only upon
their receipt. The hardware is also responsible for detecting
failures and triggering software handlers for quick recovery.
Finally, the hardware maintains the current value of ε. We
detail out these components below.
4.1.1 Frequent Synchronous Messaging
Sundial’s hardware supports frequent message sending to
prevent clocks from drifting apart significantly. On the root,
this is done via a hardware timer maintaining a counter that

0 1

4 5

8 9

2 3

6 7

10 11

0
4 6

8 9 1 10 11

5 7

2 3

0
4 6

8 9 1 10 11

5 7

2 3

0
4 6

8 9 1 10 11

5 7

2 3

(a) (b)

(c) (d)
Figure 7: Failure cases in a k=4 FatTree. (a) is the raw FatTree. To
show the spanning tree clearer, we draw an equivalent topology in
(b) and a spanning tree in it. An arrow is from a parent to its child,
and a dashed line indicates an edge not used in the spanning tree. (c)
shows one way of adjusting the spanning tree when the link between
4 and 8 fails; not only the directly impacted nodes (node 8), but also
other nodes (node 5) have to change parent. (d) shows one way of
adjustment when node 4 fails; the way node 5 changes its parent (to
node 3) is different from the case in (c) (change to node 9).

increments on every oscillator cycle, and triggers message
transmission when the time since last transmission exceeds
the configured sync-interval. We configure sync-interval on
the root device to be around 100µs. The sync-messages are
sent at the highest priority, but the network overhead remains
extremely small – a 100-byte packet every 100µs only con-
sumes less than 0.01% bandwidth and adds at most 10ns
queuing delay for other traffic.

For non-root devices, a challenge is that an upstream failure
can affect all devices in that subtree. Consider the case in Fig-
ure 7(c), if link 4-to-8 goes down, 8 needs to switch to 5 as its
parent, which needs 5 to change its parent as well. A potential
solution is explicit notification of failures to other devices, but
this has two issues – not only can this be unreliable (since the
notification messages may get dropped), it also adds complex-
ity to the hardware. Instead, we solve this via synchronous
messaging where message transmission is triggered only upon
receipt of a message from upstream. In this way, an upstream
failure implies that messages stop propagating downstream,
and devices can take corrective actions.
4.1.2 Fast Failure Detection
Sundial’s hardware uses a timeout to detect if it stops receiv-
ing messages indicating an upstream failure. The timeout is
set to span multiple sync-intervals, such that occasional mes-
sage drop or corruption doesn’t trigger it. It’s implemented
using a counter that is incremented on every oscillator cycle,
and cleared on receiving a sync-message – once it’s exceeded,
the hardware issues an interrupt to the software.

To detect broken clocks and message corruption, each de-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1175

vice verifies the incoming timestamp (adjusted for link delay).
If the adjusted value lies outside the local ε, the message is
marked invalid and doesn’t trigger an update and message
transmissions. A broken clock can cause continuous invalid
messages and thus, we don’t reset the timeout counter on their
receipt. Once a broken clock is detected, the failure handler
in device software is triggered to handle it (§4.2.2).
4.1.3 Time-uncertainty Bound Calculation
The hardware maintains ε according to Equation 1. In our
implementation, we configure max_drift_rate = 200ppm and
εbase = 5ns×depth where depth is the distance of the device
from the root in the tree.

Tlast_sync is updated when receiving a sync-message. In
PTP, Tlast_sync should be set to earlier than Tlast_msg. Thanks
to synchronous messaging, Sundial sets it to Tlast_msg since a
device stops receiving messages on an upstream failure. This
lowers now−Tlast_sync which in turn lowers ε.

4.2 Sundial Software Design
There are two main components to round out the fault-tolerant
design of Sundial – a centralized SDN controller that pre-
calculates backup plans and programs them on the devices
and a failure handler in device software that quickly moves to
the backup when a failure is detected by the hardware.
4.2.1 Centralized Controller
The centralized controller in Sundial is responsible for com-
puting the primary spanning tree along with the backup plan
based on the current topology and configures the devices ac-
cordingly. Comparing Figure 7(c) and 7(d), we see that not
all neighbors of a node (e.g., node 5 in the figure) can be the
backup parent under different failures. Sundial uses a search
algorithm (detailed below) to compute a fault-tolerant backup
plan that is generic to link, non-root node, root node, and do-
main failures (which can take down multiple links or devices).
We break down this requirement into 5 properties.
Properties of a fault-tolerant backup plan. We briefly
introduce the terminology used. The primary spanning
tree is one that is currently being used to propagate sync-
messages. The backup plan consists of a backup-parent for
each node/device and a backup root. Terms like parent, edges,
paths, and ancestors apply separately to the primary and the
backup graph (graph formed by the edges in the backup plan).
(1) No-loop condition: For any primary subtree, the backup
edges of nodes in the subtree do not form a loop. This is a
necessary and sufficient condition to be generic to any single
link failure. The necessity is obvious: if there is a loop, the
nodes in the loop do not synchronize to the root after a failure.
We prove the sufficiency by induction as follows. Suppose a
k-node subtree is affected by a link failure, and the k backup
edges do not form a loop (Figure 8); the nodes other than the
k nodes are unaffected and still form a tree (called the main
tree). At least one of the k nodes’ (say, C) parent is in the
main tree; otherwise, all k nodes’ parents are in the k nodes,
which must form a loop, contradicting the no-loop condition.

A link down cuts off a
sub-tree of k nodes.

Main tree

k nodes have k backup
parents. If they do not form
a loop, at least one node’s
backup parent is outside.

Figure 8: No-loop condition. It is sufficient to guarantee connectiv-
ity after any link failure.

We can now expand the main tree to include C since C is
connected to the main tree via its backup edge. We can then
iteratively add the remaining k−1 nodes to the main tree.
(2) No-ancestor condition: The backup parent of a node is
not its ancestor. This and property (1) together ensure that the
backup plan is generic to any non-root node failure. Other-
wise, if that ancestor fails, that node has no backup parent.
(3) Reachability condition: The backup root must be able
to reach all nodes through backup paths. This is necessary
and sufficient to be generic to the root failure. When the root
fails, all nodes change to their backup parents, and the backup
root will become the new root. To synchronize all nodes, they
must be reachable from the backup root.
(4) Disjoint-failure-domain condition: Domain failures
present a unique challenge, because they may take down mul-
tiple devices or links. If a domain failure breaks the connec-
tivity of a device s to the root, s will turn to its backup parent;
but if the domain failure also takes down its backup parent,
then s cannot recover its connectivity.

The following property solves this problem: for any node s,
there shouldn’t be a single domain failure that both breaks s’s
connectivity to the root and takes down the backup parent or
backup edge, unless that failure also takes down the node s.

Formally, if the set of failure domains that can break s’s
connectivity to the root6 is Dp, the set of failure domains that
can take down s’s backup parent or backup edge is Db, and
the set of failure domains that s belongs to is Ds, we should
have Dp∩Db ⊆ Ds.

The necessity is obvious. We present the intuition behind
the proof of the sufficiency. If a domain failure happens, s
has two possibilities: either s’s connectivity is unaffected, or
s connects to its backup parent b. If it is the latter, then the
questions is whether b is connected to the root, which also has
two possibilities. Doing this recursively, s keeps connecting
to more nodes along a backup path. The backup path will
not go indefinitely due to the no-loop condition, so it finally
reaches either an unaffected node or the root.
(5) Root failure detection: Upon root failure, the backup root
needs to collect sufficient information to elect itself. Figure 9
describes the approach – the backup root is chosen amongst
root’s children so it has one source of information by itself.

To get information from additional sources, we set up the
backup graph to have a backup path from the subtree of an-
other child of the primary root (i.e., the backup path from node

6Any device or link failure along the primary path from the root to s can
break s’s connectivity.

1176 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

2 3 4

Primary edge Primary path Sub-tree

1

Backup path

Backup root

Figure 9: Root failure detection. Under any non-root failure, the
backup root continues receiving messages, which can be used to
distinguish other failures.

2 to 1 in Figure 9). In this way, if the link between the primary
root and the backup root fails (link from 0 to 1), the backup
root knows the primary root is still alive because it contin-
ues receiving sync-messages that come through the backup
path. We can continue this backup path to cross more subtrees
of children of the primary root to get additional sources of
information (e.g., crossing node 3 and 4 in Figure 9).

In this way, as long as the root is alive, the backup root
continues receiving sync-messages. Only when the root fails,
the backup root stops receiving messages. So the backup root
can detect the primary root failure using a second timeout of
not receiving messages after it first turns to its backup parent,
and it elects itself as the new root after the second timeout.
Putting all 5 properties together. Only non-root nodes have
backup parents, so there are N-1 nodes and N-1 edges in the
backup graph (N is the total number of nodes), so there must
be exactly one loop7 in the backup graph, and each node in
the loop has a backup subtree (can be a single node) under it
(Figure 10). With property (3), the backup root must be in the
loop, so that the backup root can reach all nodes. The loop
should cross multiple primary subtrees of root’s children, so it
meets both property (1) and property (5) (it delivers multiple
sources of primary root’s information to the backup root).
Lastly, the backup graph should meet properties (2) and (4).

Figure 11(a) shows an example of primary tree and backup
graph for the topology in Figure 7. Note that the computed pri-
mary tree is different to support a backup graph. The backup
graph has a loop (between node 4 and 8) with the backup root
4 on it; the loop crosses the two primary subtrees of root’s
children (node 8 is under node 6’s primary subtree). To show
how property (4) handles domain failures, we add a failure
domain that includes both node 11 and 3 (primary and backup
parents of node 7 in Figure 11(a)). Now in the new backup
graph (Figure 11(b)), to meet property (4), node 7’s backup
parent becomes node 2, so that even if both node 3 and 11 go
down, node 7 (and other nodes) is still connected.

We want to highlight how the system recovers when the
root fails. All backup edges get enabled forming a loop, but
no sync-messages flow at this time. At the second timeout,
the backup root elects itself and ignores incoming messages,
effectively disabling the edge towards it (Figure 10). In this
way, sync-messages do not loop.

7A graph with equal numbers of nodes and edges has at least one loop. In
addition, if there is more than one loop, then the graph is not fully connected.

Backup root ignores this edge
after the second timeout

Backup root

Backup edge
Backup sub-tree

Figure 10: Backup Graph. There is exactly one loop with the backup
root in it. Each node in the loop is the root of a subtree.

0
4 6

8 9 1 10 11

5 7

2 3

Primary edge

Backup edge

0
4 6

8 9 1 10 11

5 7

2 3
(a) (b)

Backup rootBackup root

Same
domain

Figure 11: (a) A primary tree and a backup graph that meet all
properties in Figure 7. But if node 3 and 11 are in the same domain,
node 7 cannot have them as its primary and backup parents, so its
backup parent becomes node 2 in (b).

Algorithm for computing backup plan. Sundial uses a
search algorithm to calculate the backup plan which includes
a primary tree and the backup graph. Note that not every pri-
mary tree has a valid backup graph. Thus, the goal is to search
for a primary tree and its backup graph together. The search
heuristic is based on the score of a primary tree – the maxi-
mum number of edges in the backup graphs it supports. The
corresponding backup graphs are called the largest backup
graphs (of the primary tree).

Algorithm 1 describes the algorithm. pending is the set
of primary trees that are pending to be checked, initialized
with a simple BFS (Line 1). After initialization (Line 2), we
start the SEARCH function (Line 3) that will return a pair of
primary tree and backup graph. In SEARCH, each time, we
pick the primary tree p with the highest score (Line 6) – the
most promising one – and find the largest backup graphs for it
(Line 7). If some backup graph is complete, i.e., every device
(including the backup root) has a backup parent, the search
successfully returns (Line 8 - 9). Otherwise, we update the
best score so far (Line 10), and mutate p (Line 11) to get a
new set of primary trees in pending and iterate.

In MUTATE, for each backup graph b (Line 14), we try to
expand b to include edge <x, y> (Line 15). Since <x, y> is not
usable in backup graphs of p8 (i.e., USABLEINBACKUP(<x,
y>, p) is false), we IMPROVE p to make <x, y> usable (Line
16). We then add each improved version p′ to pending if not
already tested (Line 19). After all the mutations, p is removed
from pending (Line 22). We will discuss the optimizations in
Line 20 - 21 later.

FINDLARGESTBACKUP and IMPROVE are the key func-
tions. FINDLARGESTBACKUP conforms to the 5 properties.
Properties (2) and (4) decide what edges can be used in
backup graphs given a primary tree p, as expressed in function

8<x, y> is not usable for sure; otherwise b is not the largest because it can
readily include <x, y>.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1177

Algorithm 1 Searching for a primary tree and a backup graph.

1: pending = {BFS(prim_root)};
2: tested = /0; best_score = 0;
3: return SEARCH();
4: function SEARCH

5: while pending is not empty do
6: p = pending.get_best(); tested∪={p};
7: backup_set = FINDLARGESTBACKUP(p);
8: if ∃b ∈ backup_set|b is complete then
9: return p, b;

10: best_score=max{best_score,calc_score(p)};
11: MUTATE(p, backup_set);
12: return NotFound;
13: procedure MUTATE(p, backup_set)
14: for b in backup_set do
15: for each <x, y> | x ∈ b,y /∈ b do
16: new_prim_set=IMPROVE(p, <x, y>, b);
17: for p′ in new_prim_set do
18: if p′ /∈ tested then
19: pending∪={p′};
20: if calc_score(p′)>best_score then
21: return ;
22: pending-=p;

Algorithm 2 Check if <x, y> is usable in backup graphs of p.

1: function USABLEINBACKUP(<x, y>, p)
2: return (x is not y’s ancestor in p) && (y’s ancestor in p and

x meet disjoint-failure-domain condition);

USABLEINBACKUP (Algorithm 2). Properties (1), (3), and (5)
decide how the backup graph should look like. We can simply
use BFS starting from the backup root (property (3)) to find
the tree (property (1)) that is largest, and then enumerate the
backup parent for the backup root and see if it forms a loop
that meets property (5). IMPROVE’s goal is to change p to p′

so that <x, y> becomes usable (i.e., USABLEINBACKUP(<x,
y>, p′) is true). It finds the set of p′ that meets this goal.

As long as FINDLARGESTBACKUP and IMPROVE are ex-
haustive, the search is exhaustive – it will find a solution if one
exists. The search process is similar to an algorithm that finds
two edge-disjoint spanning trees [35], because our backup
graph is composed of a more restricted spanning tree that is
edge-disjoint with the primary tree, and an extra edge towards
the backup root. The problem seems to be NP-hard although
we don’t have a proof yet.

In practice, our implementation of SEARCH is extremely
fast – it only takes 148ms on average in a simulated Jupiter
topology with 88,064 nodes [33] leveraging the following
three strategies. (i) In Line 20 - 21 of Algorithm 1, we prune
enumerations as per Line 14 - 15 as long as we find a p′

that is heuristically better than any primary trees so far (in-
cluding p). This significantly speeds up the search, as we
can immediately make progress – after return (Line 21), the
search immediately starts a new iteration at Line 6 based on
p′, which is heuristically better than continuing mutating p.
Note this strategy does not miss any primary trees, as the

Algorithm 3 Finding the largest backup graph of p.

1: function FINDLARGESTBACKUP(p)
2: b=BFS_ForBackup(backup_root, p); . BFS uses

USABLEINBACKUP to avoid unusable edges.
3: Find <y, backup_root> where y ∈ b && USABLEIN-

BACKUP(<y, backup_root>, p) && the loop crosses multiple
subtrees of prim_root in p; Add <y, backup_root> to b;

4: return {b};

Algorithm 4 Changing p to make <x, y> usable and keep as many
b’s edges usable as possible.

1: function IMPROVE(p, <x, y>, b)
2: if x is y’s ancestor in p then
3: for each edge <u, v> on the path x y in p do
4: new_prim_set∪= RECONNECT(v, x, p, b);
5: if <x, y> fails disjoint-failure-domain condition then
6: new_prim_set∪= RECONNECT(y, x, p, b);
7: return new_prim_set;
8: function RECONNECT(v, x, p, b)
9: BFS from v along reverse edges, and stops at nodes outside

x-subtree in p, while keeping as many b’s edges usable as pos-
sible. It gives a set of paths S={w v|w is outside x-subtree in
p}

10: for path in S do
11: For each <i, j> ∈ path set j’s parent to i in p to get p′;
12: new_prim_set∪= {p′};
13: return new_prim_set;

original p remains in pending. (ii) FINDLARGESTBACKUP
only returns one of the largest backup graphs, rather than all
of them. This is sufficient as all largest backup graphs for a
primary tree connect the same set of nodes and we use this
strategy in Algorithm 3. (iii) IMPROVE just returns the set of
p′ that keeps the largest number of b’s edges usable. This tries
to keep as many useful fruits of past iterations as possible, so
it speeds up the search. Algorithm 4 is based on this strategy.

These three strategies significantly reduce the computation
time per iteration (Line 6 - 11). While the latter two strate-
gies make the search non-exhaustive, all practical datacenter
topologies have high redundancy such that in our experiments,
we quickly found a backup-plan even after injecting 50 succes-
sive failures. Also owing to the high redundancy in practical
topologies, the number of iterations is small since the initial p
already has a very high score, only a few hundreds below the
total number of nodes. Finally, another consequence of high
redundancy is that in practice, the search iterates with almost
monotonically increasing scores 9, sometimes with jumps of
tens or hundreds, reaching the final backup plan in tens of
iterations on average.

Mutation for meeting property (5) follows a similar process
as MUTATE. We omit the details due to limited space.
Calculating εbase,backup. When a node turns to its backup par-
ent, its depth may change, so we also precompute εbase,backup

9IMPROVE can easily find paths while keeping all b’s edges usable, be-
cause of the high redundancy.

1178 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A1

B
2

4
3

Primary edge
Backup edgeRoot

Figure 12: Node A’s depth is dependent on the failure. If node 1
fails, A’s depth is 3 (A, B, 2, root). But if node 2 fails, A’s depth is 4
(A, B, 4, 3, root).

A
1 4

2 3

Primary path
Backup edge

Root
Backup root

Figure 13: A has 6 possible paths to the root, of 3 types. (1) Backup
path: if the root is down, the backup path (A, 1, 2, 3) is in effect. (2)
Primary path: when A is unaffected by failures. (3) Mixed path:
when failures affect A and some other nodes on the loop, A connects
to the root first along the loop for one or more hops, and then along
the primary path (e.g., A, 1, 2, ..., root). There are 4 possible mixed
paths, starting the primary paths from respective node 1, 2, 3, and 4.

to which a device set εbase upon timeout. The exact depth is
failure-dependent as shown in Figure 12.

So we calculate the maximum possible depth for each node
after any failures. A naive approach is to enumerate all pos-
sible combinations of failures, which can be slow. Instead,
Sundial uses a simple dynamic-programming (DP) based
scheme. If a node s turns to its backup parent b, we calculate
s’s maximum possible depth s.depthbackup:

s.depthbackup = 1+max(b.depthprimary,b.depthbackup)

where the max function considers two possible cases: b is
unaffected by failures (b.depthprimary denotes b’s depth in the
primary tree, a deterministic value), or affected by failures.
depthbackup can be calculated top-down.

DP works for all nodes except the nodes on the loop in the
backup graph, whose DP calculations inter-depend. But we
can easily calculate their maximum possible depths. On an
L-node loop, for each node we enumerate all L+1 possible
ways it connects to the root (Figure 13). So the overall time
complexity is O((N−L)+L(L+1)) for a total of N nodes.
4.2.2 Failure Handler in the Device Software
A daemon running in firmware serves as the failure handler
and responds to interrupts generated by the hardware once it
detects a failure – the hardware is reconfigured to move to
the backup parent based on the backup plan and set εbase to
εbase,backup. For the backup root, if an interrupt is triggered,
the failure handler also continues to monitor incoming sync-
messages for the second timeout. At the second timeout, the
device sets itself as the primary root.
Handling broken clocks. If a clock is broken [12], it can
drift away faster than max_drift_rate. In Sundial, we detect
such clocks in two steps: (1) detect the existence of a broken
clock when receiving an invalid message, and (2) confirm
which one is broken. Figure 14 illustrates the process. As
such, a broken clock is isolated without affecting other clocks.

The failure handler is triggered by a hardware interrupt
upon receiving an invalid message to handle broken clocks.

(1) Invalid message:
turn to backup parent

(2) Invalid message again:
evict myself

(1) Invalid message:
turn to backup parent (2) Valid message

Own clock is broken

Parent’s clock is broken

Broken clock

Normal clock

Primary edge

Backup edge

Figure 14: Handling a broken clock in two steps. If a node’s own
clock is broken, the messages from both its primary and backup
parents are marked invalid by itself (the timestamp is outside local
ε), so it evicts itself. If a node’s parent’s clock is broken, after receiv-
ing an invalid message it turns to its backup parent, and continues
synchronization thereafter.

For the node with a broken clock, it evicts itself (no longer
participates in synchronization). For the node whose parent
has a broken clock, it turns to its backup parent.

4.3 Implementation
Controller. We implement a module in the network con-
troller. The module registers a function to be called by the
controller framework for failure notifications. When notified,
this module reads the current device/link/port states, and com-
putes a new backup plan. For each device, it compares the
existing configuration and the new configuration, and only re-
configures the devices whose configuration changes, through
RPC. It also configures the TX side of both primary and
backup edges to send sync-messages.
RPC Interface between the Controller and Device
Firmware. The controller and the device firmware com-
municates through RPCs. These RPCs have the following
parameters: backup parent, first timeout, and second timeout
which are used to configure the device hardware.
Firmware. The RPC handler configures the backup parent,
the first timeout, and the second timeout accordingly. The
backup parent and the second timeout are maintained in the
firmware, and the first timeout is maintained in the hardware
registers to enable failure detection in hardware. Only the
backup-root has a non-zero value for the second timeout.

The firmware also registers a handler function for the inter-
rupt triggered by the first-timeout. This function first reconfig-
ures the hardware to accept sync-messages from the backup
parent; then, if the second-timeout is non-zero, it waits for the
timeout to see if it receives any new sync-messages; if not, it
configures the hardware to become the root.

We cannot reveal hardware details due to confidentiality.

4.4 Practical Considerations
Concurrent connectivity failures may happen in practice,
and may not be recovered by the backup plan, which needs
to involve the controller. Sundial maintains the correctness of
ε in this case. The only impact is that ε grows larger before
being recovered by the controller: if it takes 100ms to recover,
ε grows up to 20µs during this time (still ∼100ns during
normal time). The impact is negligible, because compared to
single failures, concurrent failures are already rare, and only a
very small subset of them cannot be recovered by the backup

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1179

plan, as discussed below.
The most commonly seen concurrent failures are caused

by a domain failure, which is not an issue because of the
disjoint-failure-domain condition of the backup plan (§4.2.1).

If cross-domain failures happen, whether they impact Sun-
dial depends on their locations and time proximity. For the
nodes whose connectivity is affected, the backup plan is in-
effective only if these failures also take down their backup
parents/edges (special locations) within a short period of time
before the controller recomputes a new backup plan (time
proximity). The chance is very small, because cross-domain
failures are random in locations and time proximity.
Small window of error before evicting a broken clock.
The broken clock detection only happens when messages ar-
rive. There is a small time window between when the failure
actually happens and when the next message arrives, during
which errors could arise. This can be solved via hardware
redundancy – each node physically keeps two clocks, and
each clock query reads the two clocks and checks if they
match (their time-uncertainty ranges overlap). Once a clock
is broken, the next read immediately detects it. Additionally,
Sundial prevents this failure to affect other clocks, because
its children ignore the invalid messages.
False positives. If a device timeouts without a failure, it will
turn to the backup parent. Such false positives are harmless,
except extra controller processing. We do not observe false
positives in our experiments.

4.5 Sundial’s Position in the Design Space
4.5.1 Design Space of Clock Synchronization
At the submicrosecond level, Sundial is the first to support
time-uncertainty bound. We identify three key aspects of the
design that a clock synchronization system must answer.
1. Type of message: There are multiple options, synchro-
nization messages can either be sent directly with special-
ized physical layer (PHY) with zero-overhead messages, or
at higher layers (L2, L3, L4) with increasing bandwidth over-
head and increasing ease of deployment.
2. Noise due to message delay between a pair of clocks.
The message delay in the forward and reverse directions may
be unequal due to queuing or asymmetric paths. There are
three options to deal with such noise: (1) Only synchronize be-
tween neighboring devices, such that there is no noise (§3.1).
(2) Use multiple messages to filter out noise; (3) Tolerate the
noise. Option (1) is the best if all devices (switches and hosts)
can participate. Otherwise, option (2) and (3) face a tradeoff
between noise and overhead.
3. Network-wide synchronization structure: three options.
(1) Master clock distributed through a tree. A master clock
distributes its time to other clocks through a tree. The master
clock can synchronize to the physical time (e.g., via GPS), so
that all clocks reflect the physical time.
(2) Master clock distributed through a mesh. Similar to (1),
but instead of a tree, each clock receives sync-messages from

×1

×1

×1

×1 ×1×1

×2 ×2 ×2×2

×4 ×4 ×4×4

(a) Synchronous messaging: expo-
nential inflation of sync-messages.

Asynchronous Synchronous

ε↑
ε↑

ε↑
Time

Hop 0

Hop 1

Hop 2

Hop 3

Hop 4

(b) Asynchronous messaging has much
larger ε.

Figure 15: Mesh structure: higher ε due to asynchronous messaging.

multiple other clocks, forming a mesh.
(3) No master clock (no physical time). Clocks synchronize
independently with each other without regards to a master
clock. For example, in DTP [21] each clock follows the fastest
of its neighbors. In this option, all clocks converge to a func-
tion (e.g., max() in DTP) of all clocks, which has nothing
to do with the physical time. This option is worse than (1)
and (2) because access to physical time is important for many
datacenter applications.
Tradeoff between (1) and (2). While (2) is clearly more fault-
tolerant, it cannot get ε as low as (1). The reason is that
mesh-based solutions cannot use synchronous messaging. As
shown in Figure 15a, if a clock receives sync-messages from
k other clocks, synchronous messaging inflates the number
of messages by k per hop, causing exponential inflation. So
mesh-based solutions have to use asynchronous messaging,
which has much larger ε – as shown in Figure 15b, ε increases
per hop from the master to the participant clocks. On the other
hand, tree-based solutions can use synchronous messaging,
achieving much lower ε. §6.2 evaluates this effect.
4.5.2 Sundial’s Design Choices
Sundial’s key contribution is in the third design choice, which
exhibits fundamental tradeoff between small ε and fault-
tolerance. Sundial aims to achieve the best of both worlds, by
combining tree and mesh topologies: Sundial sends messages
through a mesh, such that it still has available edges upon
failures; but the effective synchronization only happens over
a primary tree, enabling it to use synchronous messaging.

The first two design choices have clear best options, and
they are mainly determined by hardware availability. In our
implementation, Sundial synchronizes neighboring devices at
the L2 level as the specialized PHY layer is not available. That
said, Sundial can benefit from such a layer if it’s available.
Comparison with other schemes is in §7.

5 Application Access to Synchronized Clocks
In Sundial, the primary mechanism to access synchronized
clocks is via hardware Rx/Tx timestamps. Additionally, for
applications that want to access host clock directly, Sundial
provides local host to NIC clock synchronization.
Access via hardware timestamps. NIC and switch hard-
ware timestamps marked on the packets [29] are the pri-
mary access mechanism, for which it provides ∼100ns time-
uncertainty bound. Applications such as distributed databases

1180 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

TimeT 2T 3T

o(T)

o(2T)

Cl
oc

k
va

lu
e

o(t): clock-offset
s(t): clock-skew

0

CPU clock
NIC/switch clock

o(0)

adjustment = P·s(t) + I·o(t)

s(t)=(o(t)-o(t-T))/T

Figure 16: PI controller based on clock-skew; offset and skew are
measured periodically and an adjustment is computed using suitable
P and I constants.

that have strict ε requirements rely directly on NIC-Rx-
timestamps marked on the last packet in a message to order
them to provide consistency properties. Networking stacks
such as Snap [26] provide op-stream interface to applications
(preventing out-of-order delivery) and export the NIC times-
tamps. Telemetry and congestion control applications also
rely directly on NIC timestamps to measure one-way delays.
Host clock synchronization. We also synchronize the local
host clock to the NIC clock for applications that want to
directly read the host clock (and don’t require strict guarantees
on ε). We use a Proportional-Integral controller based on
clock-skew between the host and NIC clocks as depicted in
Figure 16. We measure the offset, o(t) and skew, s(t), every
T time-units (we use T =10ms) and apply the rate adjustment
to the host clock to tick faster or slower. The constants P and
I need to be tuned in production. One challenge is that the
two clock-measurements are subject to local delays such as
PCIe jitter and we use linear regression to filter the noise out.

6 Evaluation
Through experiments in a >500-machine testbed-prototype
(§6.1) and through large-scale simulations (§6.2), we show
that Sundial’s time-uncertainty bound is ∼100ns under differ-
ent types of failures, and discuss application improvements
enabled by Sundial in §6.3.

6.1 Time-uncertainty Bound (ε) in Testbed
6.1.1 Methodology
Testbed. The testbed consists of 23 pods, 276 switches and
552 servers. A pod including 12 switches and 24 servers acts
as a failure domain. The oscillators used in the hardware have
a frequency specification of ±100ppm. The depth of the base
spanning tree in the topology is 5.
Schemes for comparison. We compare Sundial with re-
cent submicrosecond-level clock synchronization schemes:
PTP [4], Huygens [13], and DTP [21]. While they do not
consider time-uncertainty bound (ε) and how it is reported to
applications, we augment the designs to provide ε, according
to Equation 1 in §3.1 and describe them below.
Sundial: We set the sync-interval to 90µs.10 The timeout is
185µs (>2×sync-interval). The second timeout for the backup
root to elect itself is set to 180µs (185+180>4×sync-interval).
The backup plan has a maximum depthbackup of 6.
PTP+ε: PTP is the most common submicrosecond-level syn-

1090µs is just enough for ∼100ns ε, although lower ε is achievable.

chronization protocol with a default sync-interval of two sec-
onds. To add ε, we set εbase to 5ns×depth, and max_drift_rate
to 200ppm. Tlast_sync is updated as follows – for root's chil-
dren, we set Tlast_sync = Tlast_msg; but for other descendants,
we set Tlast_sync = Tlast_msg−Trecovery to account for possible
out-of-sync duration caused by remote connectivity failures
that are oblivious to them (§3.2.2). We set Trecovery to 2s, since
it takes 2s to recover from failure.11

PTP+DTP+ε: What if we could set lower sync-interval in
PTP+ε? We evaluate another scheme that leverages DTP –
DTP allows very small sync-interval (a few microseconds)
with low bandwidth overhead by modifying the physical layer
protocol. Since DTP requires hardware support, we emulate it
in our testbed by setting 5µs sync-interval (much smaller than
90µs).12 All devices that are not direct children of the root
set Trecovery=100ms, where 100ms is the typical connectivity
failure recovery time measured from datacenters.13

Huygens+ε: Huygens gathers network-wide sync-messages
during each 2-second sync-interval, and uses machine learn-
ing to decide the best adjustment for each device at the begin-
ning of the next sync-interval. While we do not have its imple-
mentation, we report the best possible ε it can achieve. Specif-
ically, we assume it is not affected by connectivity failures
because of its use of network-wide information, so Tlast_sync
is set to the beginning time of each sync-interval (without
minus Trecovery). We also assume it can filter out delay noises
entirely and optimistically set εbase to 0.
Failure injection. We evaluate the impact of failures on ε

in Sundial and above schemes by injecting link failures, non-
root device failures, root failures, and domain failures (where
multiple devices can go down).
Metrics and measurement approach. We measure ε on ev-
ery device by running a daemon in the firmware to read ε

every 10µs. After a failure, the controller sends an RPC to
configure the devices for recovery. The frequent monitoring
interferes with processing RPCs that are sent by the controller
in the event of failures. As a workaround, we set a stop time
which allows the controller RPC to execute after the monitor-
ing stops. In this way, the monitoring tells us which devices
are affected by failures and their ε. But it also inflates the con-
troller delay, which is unfair to other schemes as they heavily
rely on the controller for failure recovery. With knowledge
of the expected controller delay, we can easily restore the
expected ε based on the measured ε (Figure 17), because ε’s
behavior is deterministic during failures recovery: ε keeps
increasing, and goes back to normal when the failure is recov-

11In favor of low ε, Trecovery = 2 seconds is already a very optimistic setting
for PTP+ε, because recovery may take longer if the next sync-message is
also dropped by another failure that just happens at that time. Setting Trecovery
larger results in even higher ε. But we show that even with this optimistic
setting, PTP+ε still has much higher ε than Sundial.

12This is sufficient to show the improvement of ε, even though we don’t
have the physical layer protocol to keep the bandwidth overhead low.

13This is already friendly to PTP+DTP+ε because to guarantee correct ε,
Trecovery should be the maximum recovery time, which is several seconds.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1181

ε

Time

Expected controller delay

Inflated controller delay

Failure

Measured
Restored

RPC arrives Monitoring stops
& RPC executes

Figure 17: Restoration of ε under inflated controller delay.

Figure 18: CDF of ε measured across devices without failures.

ered. To get the expected controller delay, we use its lower
bound, the delay on the controller (without network delay),
which is more friendly to schemes other than Sundial.
6.1.2 ε Distribution without Failures
Figure 18 shows the distribution of ε over all devices under
different schemes. In Sundial, ε≤43ns, which matches the
calculated value – the deepest device in the tree has εbase of
25ns, and 90µs sync-interval leads to an additional 18ns.

In contrast, all other schemes have a much higher ε. In
PTP+ε and PTP+DTP+ε, devices that do not directly synchro-
nize to the root have to set Tlast_sync earlier than Tlast_msg by
2s and 100ms respectively, to account for possible failure-
induced out-of-sync periods, so their ε can go up to 800µs and
20µs respectively during a sync-interval. Devices directly syn-
chronizing to the root can set Tlast_sync to Tlast_msg and achieve
lower ε. So their ε increases from 5ns (1-hop εbase) to∼400µs
and 6ns respectively (2s and 5µs sync-intervals lead to 400µs
and 1ns additional ε respectively at the end of each sync-
interval). For these devices (∼6.3% of all), PTP+DTP+ε’s
low ε shows the benefit of extremely small sync-interval when
failure is not a concern. Note that if available, Sundial can
also benefit from DTP’s physical layer design to futher re-
duce sync-interval. In Huygens+ε, during each 2s interval,
ε increases from 0 to 400µs. Reducing sync-interval comes
with CPU cost (Huygens already consumes 0.44% CPU of
the whole cluster). However, even if the sync-interval was
halved, ε is still 3 orders of magnitude higher than Sundial’s.
6.1.3 ε Distribution during Failures
To understand the behavior under failures, we inject 50 ran-
dom failures over a course of 6 minutes including 24 single
link failures, 23 non-root single device failures, 2 domain
failures and 1 root failure.

Figure 19 shows the time series of ε of a device affected
by a link failure. In Sundial, ε is sawtooth between 15ns and
33ns during normal time, because this device has a depth of
3 in the tree.14 When the link failure happens, ε increases

14Figure 21 shows the behavior at smaller timescales.

Figure 19: Time series of ε of a device affected by a link failure.
The failure happens at 1s and the controller reacts to it near 1.1s.

Figure 20: Blast radius of failures under different schemes. Impacted
device time is the summation of per-device impacted time – duration
when a device stops receiving sync-messages – over all devices .

to a maximum of 84ns and goes down in just 270µs (af-
ter the 185µs timeout, the next message is at 270µs). Af-
ter that, ε is sawtooth between 30ns and 48ns, because its
εbase is set to εbase,backup by the local recovery, which is 30ns
(depthbackup=6). Once the controller reconfigures the span-
ning tree, ε goes back to between 15ns and 33ns because its
depth is 3. In PTP+ε, since the sync-message is dropped due
to this failure, ε continues to increase for the next 2 seconds.
Even if the sync-message was not dropped, ε for PTP+ε (w/o
failure) remains high. PTP+DTP+ε’s ε increases to 40µs and
recovers to 20µs when the controller recovers the connectiv-
ity. However, even if the controller delay was lower (50 ms),
it only reduces the peak ε to 30µs, but the normal ε is still
around 20µs. Huygens+ε is not affected by failures, but its ε

is normally very large (200µs at median and up to 400µs).

The behavior is similar under other failures – ε depends on
the recovery time. For PTP+ε and PTP+DTP+ε, the recovery
time depends on how long it takes for the controller to recover
from it. For Sundial, the recovery time is much smaller as it’s
local. Any non-root failure recovery time is around 270µs, as
is the case in Figure 19. The root failure takes slightly longer
to recover from (365µs after the two timeouts) and ε increases
to up to 103ns. The devices at different levels in the tree have
slightly different ε (discussed in §6.1.4).

We now study the spatial and temporal impact range (blast
radius) of failures. Figure 20 shows that Sundial’s blast radius
is very small. Even after 50 failures, the total impacted time
summarized over all devices is only 131ms. The most signifi-
cant jump happens when the root fails (40-th failure). PTP+ε

and PTP+DTP+ε’s blast radius is much higher owing to their
longer recovery time. Note that more devices are affected by

1182 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

failures under Sundial (401 in total) than under PTP+ε (3 in
total) and PTP+DTP+ε (55 in total) as Sundial’s backup-plan-
based recovery can affect remote devices as well (those under
the subtree of the failure). Even then the total impacted time
for Sundial remains significantly smaller.

PTP+ε exhibits a step function because only failures oc-
curing close to sync-interval boundaries affect it as the sync-
interval of 2s is longer than the time to recover in most cases.
The impact, however, is larger than in other schemes because
it takes 2s for the next sync-message. PTP+DTP+ε’s sync-
interval is only 5µs and thus, every failure affects it. While
Huygens+ε is not affected by connectivity failures, its ε re-
mains high as shown before.
6.1.4 Microbenchmarks
How Sundial’s different techniques improve ε. We zoom
into details of how each technique improves ε. Specifically,
starting with PTP+ε, we add (1) frequent sync-messages, (2)
synchronous messaging, and (3) backup plan to it one by
one, resulting in four schemes: PTP+ε, PTP+ε+freq_msg,
PTP+ε+freq_msg+sync_msging, and Sundial itself.

Figure 21 shows the time series of ε during a link failure.
Frequent sync-messages improve ε by an order of magnitude.
Synchronous messaging further reduces ε during normal time
as it helps each device detect connectivity failures: as long as
a device receives a sync-message, it is connected to the root,
so Tlast_sync can be safely set to Tlast_msg. Finally, adding the
backup plan significantly speeds up the failure recovery – ε

only increases for 270µs to a maximum of 84ns before the
backup plan is activated, two orders of magnitude lower.

To show how Sundial’s backup plan handles domain
failures, we also run Sundial without considering domain
failures (called Sundial w/o domain). We find that if a
domain failure simultaneously takes down both the pri-
mary and backup parents of a device, the device’s ε is like
PTP+ε+freq_msg+sync_msging in Figure 21. This is ex-
pected because a down backup parent is equivalent to no
backup parent. But if the failure domain is considered in the
backup plan, ε is similar to Sundial in Figure 21, because the
backup plan guarantees that no device loses both its primary
and backup parents due to this domain failure. We also try
another domain failure, which gradually takes down the pri-
mary and backup parents of a device, mimicing the domain
failure that gradually takes down multiple devices or links
(e.g., Figure 4). The result is similar.
Distribution of ε at different levels of the tree. We plot the
maximum ε across devices at different depths, under differ-
ent scenarios, shown in Figure 22. Root’s ε is always 0. ε

increases linearly with depth, which is expected as each level
increments εbase by 5ns.

6.2 Large-scale Simulations
We compare Sundial vs Marzullo’s algorithm [27], an agree-
ment algorithm for fault-tolerant clock-synchronization which
is used by NTP [28] and TrueTime [12]. Marzullo’s algorithm

Figure 21: A link failure happens at 50 ms. The controller reacts to
the failure at around 150 ms.

Figure 22: Distribution of ε at different levels in the tree.

also introduces time-uncertainty bound (ε) (called as error-
bound in the original version). Since it is not supported in
hardware due to its complexity, we use large scale simulations
to demonstrate the performance characteristics.

Marzullo’s algorithm synchronizes clocks through a mesh,
so it can tolerate connectivity failures but has higher ε (§4.5).
To reconcile the different time values and ε from multiple
clocks, each node does intersection of time-uncertainty ranges
of different clocks as the correct time should be within all
ranges. A set of master clocks (1 or more clocks synchronized
via GPS) serve as the source of synchronization, whose ε

is always close to zero. Broken clocks can also be detected
when the intersection result is empty. We simulate in a Jupiter
topology [33] with 88,064 devices, where each node sends
sync-messages to all its neighbors to maximize the tolerance
to failures. We set 2 masters to tolerate master failures. The
sync-interval is 90µs, same as Sundial. Figure 23 shows that
during the normal time, Sundial has smaller ε than Marzullo’s
algorithm. Under failures, Marzullo’s algorithm’s ε is affected
insignificantly. For Sundial, ε increases during failure recov-
ery; the largest ε is 178ns, which is under the root failure.

Figure 23: CDF of ε during normal time in Jupiter in simulation.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1183

DTP [21] Huygens [13] Marzullo [27] PTP boundary clock [4] Sundial
Message type Special PHY L3 Unspecified L2 L2

Dealing with delay noises Neighbor Multi. msg Unspecified Neighbor Neighbor
Synchronization structure No master Master, mesh Master, mesh Master, tree Master, mesh+tree

Support time-uncertainty bound No No Yes No Yes
Table 1: Design choices of state-of-the-art clock synchronization schemes. Italic options are the best.

6.3 Application Performance Improvement
Distributed transactional system. We evaluate the impact
of smaller time-uncertainty bound using a load-test provided
to us by Spanner team [12]. We run the load-test inside a dat-
acenter. The load-test does 4KB transactions and we measure
commit-wait gap – time to wait out time-uncertainty before
committing the transaction. Results are in Table 2 where we
show that our system improves performance by 3-4× not only
in the median but also at the 99-th percentile.

Baseline With Sundial
Median 211µs 49µs
99-%ile 784µs 238µs

Table 2: Sundial improves commit-wait latency by 3-4× for Spanner
running inside a datacenter.

Congestion Control. Delay-based congestion control such
as Swift [17] is widely used in datacenters relying on end-
to-end RTT measurements to control sending rate. A key
challenge with such schemes is how to differentiate between
forward and reverse-path congestion. As an example, con-
gestion in the reverse path can also inflate RTT causing a
sender to slow down even though there is no congestion in the
forward path.15 Synchronized clocks solve this problem as
they enable the measurement of one-way delay (OWD) which
can pinpoint the direction in which congestion is occurring.

We perform a microbenchmark with 3 servers – A, B and
C with Swift congestion control. First, we only send traffic
from A to B which achieves line-rate throughput. Next, we
introduce reverse-path congestion by adding traffic from B
and C to A. In Table 3, we observe A’s throughput goes down
to 50Gbps even though there was no congestion in the forward
path. Replacing RTT with OWD as measured using Sundial
resolves this completely and A continues to send at line rate.

RTT OWD
No reverse congestion 80.1 Gbps 80.5 Gbps
Reverse congestion 50.5 Gbps 80.9 Gbps

Table 3: Using one-way delay (OWD) improves throughput in the
presence of reverse-path congestion.

7 Related Work
Other clock synchronization systems. Table 1 compares
state-of-the-art solutions, in the design space outlined in §4.5.

15While prioritizing the ACK may solve the problem, it is impractical in
production because of two reasons. (1) Network priorities are typically tied
to business priorities; and we simply cannot send ACKs for lower business
priority traffic on a higher network priority. (2) Sending ACKs on a higher
network priority precludes ACK piggybacking on data packets, thereby in-
creasing the packets-per-second to process. This is especially detrimental for
CPU-efficient networking stacks such as PonyExpress in Snap [26].

DTP [21] introduces a specialized PHY layer to achieve
zero bandwidth overhead of sync-messages. If this modified
PHY can be standardized and productionized in the future,
Sundial can readily benefit from it to have even lower sync-
interval and ε. However, DTP does not reflect physical time
since it doesn’t have a master clock.

Huygens [13] does not synchronize switches, so it uses
multiple messages between each pair to filter out noises. As a
result, Huygens’ sync-interval is limited, so it cannot achieve
tight ε. Huygens’ main advantage is that it is implemented
completely in software and doesn’t require hardware support
(other than hardware timestamps) but it does not consider
ε; and if incorporated, Huygens’ ε is large primarily due to
the large sync-interval. While it assumes clocks drift slowly
during normal time, it cannot set a small max_drift_rate as the
maximum drift is subject to failures (§3.2.1); otherwise it risks
datacenter-wide application-level errors (e.g., inconsistent
transactions), which is unacceptable.

Marzullo’s algorithm [27] is the first to introduce ε but
its ε is high because it sends messages through a mesh. PTP
boundary clock [4] is based on a tree, and is not fault-tolerant.

Other solutions are too expensive (e.g., GPS [22]), too
complex [18, 20, 31] or do not provide physical time [30, 34,
36].
Fault tolerance in other systems. In distributed systems and
networking, fault tolerance is provided through redundancy
[5, 10, 14, 19, 33, 38]. However, Sundial’s backup plan cannot
be chosen arbitrarily and needs to satisfy a set of properties
(§4.2.1) to be generic to different types of failures.

Ethernet uses spanning tree protocols [2, 15] that can re-
compute a spanning tree in a distributed fashion after a failure,
but they usually take up to a few seconds to converge [15].

8 Conclusion
Sundial is the first submicrosecond-level clock synchroniza-
tion system that is resilient to failures. It uses hardware-
software codesign to quickly detect failures and recover from
them. Our evaluation shows that Sundial provides ∼100ns
time-uncertainty bound under different types of failures, and
improves performance in Spanner and in Swift.

9 Acknowledgements
We thank our shepherd Lorenzo Alvisi and OSDI reviewers
for their helpful feedback. We also thank Arjun Singh, Jakov
Seizovic, David Wetherall, David Dillow, Joe Zbiciak, and
Xian Wu for the constructive feedback, Peter Cuy, Alex Iriza,
and Bryant Chang for guidance on implementation, Shin Mao,
Nanfang Li, and Ioannis Giannakopoulos for help on experi-
mental evaluation.

1184 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Broadcom: Timing over Packet (ToP) Pro-

cessor for Precision Timing Applications.
https://www.broadcom.com/products/
embedded-and-networking-processors/
communications/bcm53903.

[2] IEEE 802.1D Work Group, IEEE Standard for Local and
Metropolitan Area Networks: Media Access Control
(MAC) Bridges, 2004.

[3] CockroachDB, 2008. https://github.com/
cockroachdb/.

[4] IEEE Standard 1588-2008, 2008. http:
//ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=4579757.

[5] Redundancy N+1, N+2 vs. 2N vs. 2N+1,
2014. https://www.datacenters.com/news/
redundancy-n-1-n-2-vs-2n-vs-2n-1.

[6] IEEE 1588 PTP and Analytics on the Cisco
Nexus 3548 Switch, 2017. https://www.
cisco.com/c/en/us/products/collateral/
switches/nexus-3000-series-switches/
white-paper-c11-731501.html.

[7] Clock Oscillators Surface Mount Type KC3225L-
P2/ KC3225L-P3 Series, 2018. https:
//global.kyocera.com/prdct/electro/pdf/
kc3225l_p2p3_e.pdf.

[8] Juniper Precision Time Protocol Overview, 2020.
https://www.juniper.net/documentation/en_
US/junos/topics/concept/ptp-overview.html.

[9] Mellanox Precision Time Protocol, 2020. https:
//docs.mellanox.com/display/ONYXv381174/
Precision+Time+Protocol.

[10] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network ar-
chitecture. ACM SIGCOMM computer communication
review, 2008.

[11] K Mani Chandy and Leslie Lamport. Distributed snap-
shots: Determining global states of distributed systems.
ACM Transactions on Computer Systems (TOCS), 1985.

[12] James C. Corbett, Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, JJ Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.

Spanner: Google’s globally-distributed database. In
10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), 2012.

[13] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Bal-
aji Prabhakar, Mendel Rosenblum, and Amin Vahdat.
Exploiting a natural network effect for scalable, fine-
grained clock synchronization. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI ’18, 2018.

[14] Albert Greenberg, James R Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A Maltz, Parveen Patel, and Sudipta Sengupta.
Vl2: a scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM, 2009.

[15] New BPDU Handling. Understanding rapid spanning
tree protocol (802.1 w). Catalyst, 2948(L3/4908G):L3.

[16] Richard Koo and Sam Toueg. Checkpointing and
rollback-recovery for distributed systems. IEEE Trans-
actions on software Engineering, 1987.

[17] Gautam Kumar, Nandita Dukkipati, Keon Jang, Has-
san MG Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, et al. Swift: Delay is simple and effective for
congestion control in the datacenter. In Proceedings of
the ACM SIGCOMM, 2020.

[18] Leslie Lamport. Synchronizing time servers. Digital,
Systems Research Center, 1987.

[19] Leslie Lamport et al. Paxos made simple. ACM Sigact
News, 32(4):18–25, 2001.

[20] Leslie Lamport and Peter M Melliar-Smith. Byzan-
tine clock synchronization. In Proceedings of the third
annual ACM symposium on Principles of distributed
computing, pages 68–74, 1984.

[21] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim
Weatherspoon. Globally synchronized time via dat-
acenter networks. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, 2016.

[22] Wlodzimierz Lewandowski, Jacques Azoubib, and
William J Klepczynski. Gps: Primary tool for time trans-
fer. Proceedings of the IEEE, 87(1):163–172, 1999.

[23] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
Flowradar: A better netflow for data centers. In 13th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), 2016.

[24] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
Lossradar: Fast detection of lost packets in data center

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1185

https://www.broadcom.com/products/embedded-and-networking-processors/communications/bcm53903
https://www.broadcom.com/products/embedded-and-networking-processors/communications/bcm53903
https://www.broadcom.com/products/embedded-and-networking-processors/communications/bcm53903
https://github.com/cockroachdb/
https://github.com/cockroachdb/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579757
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579757
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579757
https://www.datacenters.com/news/redundancy-n-1-n-2-vs-2n-vs-2n-1
https://www.datacenters.com/news/redundancy-n-1-n-2-vs-2n-vs-2n-1
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-3000-series-switches/white-paper-c11-731501.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-3000-series-switches/white-paper-c11-731501.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-3000-series-switches/white-paper-c11-731501.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-3000-series-switches/white-paper-c11-731501.html
https://global.kyocera.com/prdct/electro/pdf/kc3225l_p2p3_e.pdf
https://global.kyocera.com/prdct/electro/pdf/kc3225l_p2p3_e.pdf
https://global.kyocera.com/prdct/electro/pdf/kc3225l_p2p3_e.pdf
https://www.juniper.net/documentation/en_US/junos/topics/concept/ptp-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/ptp-overview.html
https://docs.mellanox.com/display/ONYXv381174/Precision+Time+Protocol
https://docs.mellanox.com/display/ONYXv381174/Precision+Time+Protocol
https://docs.mellanox.com/display/ONYXv381174/Precision+Time+Protocol

networks. In Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’16, 2016.

[25] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and et al.
Hpcc: High precision congestion control. In Proceed-
ings of the ACM Special Interest Group on Data Com-
munication, 2019.

[26] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, and et al. Snap: A microkernel approach to host
networking. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles, 2019.

[27] Keith Marzullo and Susan Owicki. Maintaining the time
in a distributed system. In Proceedings of the second
annual ACM symposium on Principles of distributed
computing, pages 295–305, 1983.

[28] D. L. Mills. Internet time synchronization: the network
time protocol. IEEE Transactions on Communications,
39(10):1482–1493, 1991.

[29] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin Vah-
dat, Yaogong Wang, David Wetherall, and David Zats.
Timely: Rtt-based congestion control for the datacenter.
SIGCOMM Comput. Commun. Rev., 2015.

[30] Luca Schenato and Federico Fiorentin. Average
timesynch: A consensus-based protocol for clock syn-
chronization in wireless sensor networks. Automatica,
47(9):1878–1886, 2011.

[31] Ulrich Schmid. Synchronized utc for distributed real-
time systems. Annual Review in Automatic Program-
ming, 18:101–107, 1994.

[32] Alex Shamis, Matthew Renzelmann, Stanko Novakovic,
Georgios Chatzopoulos, Aleksandar Dragojeviunde-
fined, Dushyanth Narayanan, and Miguel Castro. Fast
general distributed transactions with opacity. SIGMOD
’19, 2019.

[33] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, et al. Jupiter
rising: A decade of clos topologies and centralized con-
trol in google’s datacenter network. ACM SIGCOMM
computer communication review, 2015.

[34] Roberto Solis, Vivek S Borkar, and PR Kumar. A new
distributed time synchronization protocol for multihop
wireless networks. In Proceedings of the 45th IEEE
Conference on Decision and Control, pages 2734–2739.
IEEE, 2006.

[35] Robert Endre Tarjan. Edge-disjoint spanning trees
and depth-first search. Acta Informatica, 6(2):171–185,
1976.

[36] Geoffrey Werner-Allen, Geetika Tewari, Ankit Patel,
Matt Welsh, and Radhika Nagpal. Firefly-inspired sen-
sor network synchronicity with realistic radio effects. In
Proceedings of the 3rd International Conference on Em-
bedded Networked Sensor Systems, SenSys ’05, 2005.

[37] Nofel Yaseen, John Sonchack, and Vincent Liu. Syn-
chronized network snapshots. In Proceedings of the
2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’18, 2018.

[38] Mingyang Zhang, Radhika Niranjan Mysore, Sucha
Supittayapornpong, and Ramesh Govindan. Under-
standing lifecycle management complexity of datacenter
topologies. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), 2019.

[39] Shizhen Zhao, Rui Wang, Junlan Zhou, Joon Ong, Jef-
frey C. Mogul, and Amin Vahdat. Minimal rewiring:
Efficient live expansion for clos data center networks. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), 2019.

[40] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg,
Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan,
Ming Zhang, Ben Y. Zhao, and et al. Packet-level teleme-
try in large datacenter networks. In Proceedings of the
2015 ACM Conference on Special Interest Group on
Data Communication, 2015.

1186 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Fault-tolerant and Transactional Stateful Serverless Workflows
Haoran Zhang, Adney Cardoza†, Peter Baile Chen, Sebastian Angel, and Vincent Liu

University of Pennsylvania †Rutgers University-Camden

Abstract
This paper introduces Beldi, a library and runtime system
for writing and composing fault-tolerant and transactional
stateful serverless functions. Beldi runs on existing providers
and lets developers write complex stateful applications that
require fault tolerance and transactional semantics without the
need to deal with tasks such as load balancing or maintaining
virtual machines. Beldi’s contributions include extending the
log-based fault-tolerant approach in Olive (OSDI 2016) with
new data structures, transaction protocols, function invoca-
tions, and garbage collection. They also include adapting the
resulting framework to work over a federated environment
where each serverless function has sovereignty over its own
data. We implement three applications on Beldi, including a
movie review service, a travel reservation system, and a social
media site. Our evaluation on 1,000 AWS Lambdas shows
that Beldi’s approach is effective and affordable.

1 Introduction
Serverless computing is changing the way in which we
structure and deploy computations in Internet-scale systems.
Enabled by platforms like AWS Lambda [2], Azure Func-
tions [3], and Google Cloud Functions [18], programmers
can break their application into small functions that providers
then automatically distribute over their data centers. When a
user issues a request to a serverless-based system, this request
flows through the corresponding functions to achieve the de-
sired end-to-end semantics. For example, in an e-commerce
site, a user’s purchase might trigger a product order, a ship-
ping event, a credit card charge, and an inventory update, all
of which could be handled by separate serverless functions.

During development, structuring an application as a set of
serverless functions brings forth the benefits of microservice
architectures: it promotes modular design, quick iteration,
and code reuse. During deployment, it frees programmers
from the prosaic but difficult tasks associated with provision-
ing, scaling, and maintaining the underlying computational,
storage, and network resources of the system. In particular,
app developers need not worry about setting up virtual ma-
chines or containers, starting or winding down instances to
accommodate demand, or routing user requests to the right
set of functional units—all of this is automated once an app
developer describes the connectivity of the units.

A key challenge in increasing the general applicability of
serverless computing lies in correctly and efficiently compos-
ing different functions to obtain nontrivial end-to-end applica-
tions. This is fairly straightforward when functions are state-

less, but becomes involved when the functions maintain their
own state (e.g., modify a data structure that persists across
invocations). Composing such stateful serverless functions
(SSFs) requires reasoning about consistency and isolation
semantics in the presence of concurrent requests and deal-
ing with component failures. While these requirements are
common in distributed systems and are addressed by existing
proposals [8, 28, 33, 35, 46], SSFs have unique idiosyncrasies
that make existing approaches a poor fit.

The first peculiarity is that request routing is stateless. Ap-
proaches based on state machine replication are hard to im-
plement because a follow-up message might be routed by the
infrastructure to a different SSF instance from the one that
processed a prior message (e.g., an “accept” routed differently
than its “prepare”). A second characteristic is that SSFs can be
independent and have sovereignty over their own data. For ex-
ample, different organizations may develop and deploy SSFs,
and an application may stitch them together to achieve some
end-to-end functionality. As a result, there is no component
in the system that has full visibility (or access) to all the state.
Lastly, SSF workflows (directed graphs of SSFs) can be com-
plex and include cycles to express recursion and loops over
SSFs. If a developer wishes to define transactions over such
workflows (or its subgraphs), all transactions (including those
that will abort) must observe consistent state to avoid infinite
loops and undefined behavior. This is a common requirement
in transactional memory systems [20, 23, 32, 37, 38], but is
seldom needed in distributed transaction protocols

To bring fault-tolerance and transactions to this challeng-
ing environment, this paper introduces Beldi, a library and
runtime system for building workflows of SSFs. Beldi runs
on existing cloud providers without any modification to their
infrastructure and without the need for servers. The SSFs
used in Beldi can come from either the app developer, other
developers in the same organization, third-party open-source
developers, or the cloud providers. Regardless, Beldi helps
to stitch together these components in a way that insulates
the developer from the details of concurrency control, fault
tolerance, and SSF composition.

A well-known aspect of SSFs is that even though they
can persist state, this state is usually kept in low-latency
NoSQL databases (possibly different for each SSF) such as
DynamoDB, Bigtable, and Cosmos DB that are already fault
tolerant. Viewed in this light, SSFs are clients of scalable
fault-tolerant storage services rather than stateful services
themselves. Beldi’s goal is therefore to guarantee exactly-
once semantics to workflows in the presence of clients (SSFs)
that fail at any point in their execution and to offer synchro-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1187

nization primitives (in the form of locks and transactions) to
prevent concurrent clients from unsafely handling state.

To realize this vision, Beldi extends Olive [36] and adapts
its mechanisms to the SSF setting. Olive is a recent frame-
work that exposes an elegant abstraction based on logging and
request re-execution to clients of cloud storage systems; oper-
ations that use Olive’s abstraction enjoy exactly-once seman-
tics. Beldi’s extensions include support for operations beyond
storage accesses such as synchronous and asynchronous invo-
cations (so that SSFs can invoke each other), a new data struc-
ture for unifying storage of application state and logs, and pro-
tocols that operate efficiently on this data structure (§4). The
purpose of Beldi’s extensions is to smooth out the differences
between Olive’s original use case and ours. As one example,
Olive’s most critical optimization assumes that clients can
store a large number of log entries in a database’s atomicity
scope (the scope at which the database can atomically update
objects). However, this assumption does not hold for many
databases commonly used by SSFs. In DynamoDB, for ex-
ample, the atomicity scope is a single row that can store at
most 400 KB of data [14]—the row would be full in less than
a minute in our applications.

Beldi also adapts existing concurrency control and dis-
tributed commit protocols to support transactions over SSF
workflows. A salient aspect of our setting is that there is no en-
tity that can serve as a coordinator: a user issues its request to
the first SSF in the workflow, and SSFs interact only with the
SSFs in their outgoing edges in the workflow. Consequently,
we design a protocol where SSFs work together (while re-
specting the workflow’s underlying communication pattern)
to fulfill the duties of the coordinator and collectively decide
whether to commit or abort a transaction (§6).

To showcase the costs and the benefits of Beldi, we imple-
ment three applications as representative case studies: (1) a
travel reservation system, (2) a social media site, and (3) a
movie review service. These applications are based on Death-
StarBench [12, 16], which is an open-source benchmark for
microservices; we have ported and extended these applica-
tions to work without servers using SSFs. Our evaluation on
AWS reveals that, at saturation, Beldi’s guarantees come at an
increase in the median request completion time of 2.4–3.3×,
and 99th percentile completion time of 1.2–1.8× (§7.4). At
low load, the median completion time increase is under 2×.

In summary, Beldi helps developers build fault-tolerant and
transactional applications on top of SSFs at a modest cost. In
doing so, Beldi simplifies reasoning about compositions of
SSFs, runs on existing serverless platforms without modifica-
tions, and extends an elegant fault-tolerant abstraction.

2 Background and Goals
In this section, we describe the basics of serverless computing
(sometimes known as Function-as-a-Service), the challenge
of deploying complex serverless applications that incorporate
state, and a list of requirements that Beldi aims to satisfy.

2.1 Serverless functions

Serverless computing aims to eliminate the need to manage
machines, runtimes, and resources (i.e., everything except
the app logic). It provides an abstraction where developers
upload a simple function (or ‘lambda’) to the cloud provider
that is invoked on demand; an identifier is provided with
which clients and other services can invoke the function.

The cloud provider is then responsible for provisioning the
VMs or containers, deploying the user code, and scaling the
allocated resources up and down based on current demand—
all of this is transparent to users. In practice, this means that
on every function invocation the provider will spawn a new
worker (VM or container) with the necessary runtime and
dispatch the request to this worker (‘cold start’). The provider
may also use an existing worker, if one is free (‘warm start’).
Note that while workers can stay warm for a while, running
functions are limited by a timeout, after which they are killed.
This time limit is configurable (up to 15 min in 1 s increments
on AWS, up to 9 min in 1 ms increments on Google Cloud,
and unbounded time in 1 s increments on Azure) and helps in
budgeting and limiting the effect of bugs.

Serverless functions are often used individually, but they
can also be composed into workflows: directed graphs of func-
tions that may contain cycles to express recursion or loops
over one or more functions. Some ways to create workflows
include AWS’s step functions [41] and driver functions. A
step function specifies how to stitch together different func-
tions (represented by their identifiers) and their inputs and
outputs; the step function takes care of all scheduling and
data movement, and users get an identifier to invoke it. In
contrast, a driver function is a single function specified by the
developer that invokes other functions (similar to the main
function of a traditional program). Control flow can form a
graph because functions (including the driver function) can
be multi-threaded or perform asynchronous invocations.

Stateful serverless functions (SSFs). Serverless functions
were originally designed to be stateless. As such, state is not
guaranteed to persist between function invocations—even
when writing to a worker’s local disk, the function’s context
can be terminated as part of dynamic resource management,
or load balancing might direct follow-up requests to different
or new instances. Accordingly, a common workaround to per-
sist data is to store it in fault-tolerant low-latency NoSQL
databases. For example, AWS Lambdas can persist their
state in DynamoDB, Google cloud functions can use Cloud
Bigtable, and Azure functions can use Cosmos DB. Through
these intermediaries, stateful serverless functions (SSFs) can
save state and expose it to other instances.

Unfortunately, the above approach to state interacts poorly
with the way that serverless platforms handle failures. If
a function in a workflow crashes or its worker hangs, the
provider will either (1) do nothing, leaving the workflow in-
complete, or (2) restart the function on a different worker,

1188 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

potentially incrementing a counter twice, popping a queue
multiple times, or corrupting database state and violating ap-
plication semantics. Indeed, serverless providers currently
recommend that developers write SSFs that are idempotent
to ensure that re-execution is safe [17]. While helpful, these
recommendations place the burden entirely on developers.
In contrast, Beldi simplifies this process so developers need
only worry about their application logic and not the low-level
details of how serverless providers respond to failures.

2.2 Requirements and assumptions

We strive to design a framework that helps developers build
serverless applications that tolerate failures and handle con-
current operations correctly. Our concrete goals are:

Exactly-once semantics: Beldi should guarantee exactly-once
execution semantics in the presence of SSF or worker crash
failures. That is, even if an SSF crashes in the midst of its exe-
cution and is restarted by the provider an arbitrary number of
times, the resulting state must be equivalent to that produced
by an execution in which the SSF ran exactly once, from start
to finish, without crashing.

SSF data sovereignty: Beldi should support SSFs that are de-
veloped and managed independently. For example, multiple
instances of an SSF may all access the same database, but
they might not have access to the databases of other SSFs,
even those in the same workflow. Instead, state should only
be exposed by choice through an SSF’s outputs. This type of
encapsulation is important to support a paradigm in which dif-
ferent developers, organizations, and teams within the same
organization are responsible for designing and maintaining
their own SSFs. An application developer can then contract
with SSF developers (or teams) to integrate their SSFs into
the application’s workflow via the SSF’s identifier (§2). Fur-
thermore, data sovereignty is key to enabling developers to
offer proprietary functions-as-a-service to others, and is a best
practice in microservice architectures [11, §4]. For example,
Microsoft’s eShopOnContainers [29] serves as a blueprint for
applying these ideas to real-world applications.

SSF reusability: Beldi should allow multiple applications to
use the same SSFs in their workflows at the same time. This
may require each SSF to have different tables or databases
to maintain the state of each application separately, though
cross-application state should also be supported.

Workflow transactions: Beldi should support an optional trans-
actional API that allows an application to specify any sub-
graph of a workflow that should be processed transactionally
with ACID semantics. We target opacity [20] as the isola-
tion level. Opacity ensures that (1) the effects of concurrent
transactions are equivalent to some serial execution, and (2)
every transaction, including those that are aborted, always
observes a consistent view of the database. We discuss why
these requirements are important in SSFs in Section 6.2.

Library

Garbage Collector

Database API

Beldi Runtime

Function
Instance

Single SSF

Database

Container

Call LogRead Log

Client

Request

Data +
Write Log

Workflow

SSF

SSF

SSF

SSF

Intent Collector

Transaction API

Invocation API

Intent
Table

FIGURE 1—Beldi’s architecture. Developers write SSFs as they do
today, but use the Beldi API for transactions and externally visible
operations. At runtime, operations for each SSF are logged to a
database, which, when combined with a per-SSF intent and garbage
collector, guarantees exactly-once semantics.

Deployable today: Beldi should work on existing serverless
platforms without any modifications on their end. This allows
developers to use Beldi on any provider of their choosing (or
even a multi-provider setup), and lowers the barrier to switch
providers. Additionally, developers should not need to run
any servers in order to use Beldi. After all, a big appeal of
serverless is that it frees developers from such burdens.

Assumptions. To achieve these goals, Beldi makes some as-
sumptions about the storage provided to SSFs: that it supports
strong consistency, tolerates faults, supports atomic updates
on some atomicity scope (e.g., row, partition), and has a
scan operation with the ability to filter results and create pro-
jections. These assumptions hold for the NoSQL databases
commonly used by SSFs: Amazon’s DynamoDB, Azure’s
Cosmos DB, and Google’s Bigtable.

3 Design Overview
Beldi consists of a library that developers use to write their
SSFs and a serverless-based runtime system to support them.
Beldi’s approach to handling SSF failures is based on an idea
most recently explored by Olive [36] and inspired by decades
of work on log-based fault tolerance [19, 30]. Specifically,
Beldi executes SSF operations while atomically logging these
actions and periodically re-executes SSFs that have not yet
finished. The logs prevent duplicating work that has already
been done, guaranteeing at-most-once execution semantics,
while the re-execution ensures at-least-once semantics.

Figure 1 depicts Beldi’s high-level architecture. Beldi con-
sists of four components: (1) the Beldi library, which exposes
APIs for invocations, database reads/writes, and transactions;
(2) a set of database tables that store the SSF’s state, as well as
logs of reads, writes, and invocations; (3) an intent collector,
which is a serverless function that restarts any instances of
the corresponding SSF that have stalled or crashed; and (4) a
garbage collector, which is a serverless function that keeps
the logs from growing unboundedly.

To ensure data sovereignty (§2.2), the runtimes and logs

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1189

of different SSFs are independently managed and stored;
however, all instances of related SSFs may share the same
Beldi infrastructure. An app developer composes multiple
SSFs into a workflow by chaining them together using a driver
function, a step function, or a combination of the two. In the
following sections we expand on each of these components.

3.1 Initial inspiration: Olive

Olive [36] guarantees exactly-once execution semantics for
clients that may fail while interacting with a fault-tolerant
storage server. This is a similar objective as ours, though our
setting makes applying Olive’s ideas nontrivial. An intent in
Olive is an arbitrary code snippet that the client intends to
execute with exactly-once semantics. Each intent is assigned
a unique identifier (intent id), which Olive uses as the primary
key to save its progress. A client in Olive enjoys at-most-once
semantics by checking the intent’s progress and skipping com-
pleted operations during re-execution. Intents consist of local
and external operations. For example, incrementing a local
variable is a local operation, whereas reading a value from
storage is an external operation. Each external operation in
the intent is assigned a monotonically increasing step number,
starting at 0, that uniquely identifies it.

There are two key requirements for intents. First, intents
must be deterministic; developers can make non-deterministic
operations (e.g., a call to a random number generator) deter-
ministic by logging their results and replaying the same values
in the event of a re-execution. Second, intents must be guaran-
teed to always complete in the absence of failures (e.g., they
must be free from bugs such as deadlock or infinite loops).

After an intent has been successfully logged, the client in
Olive executes the intent’s code normally until it reaches an
external operation (e.g., reading or writing to the database).
Then, the client: (1) determines the operation’s step number;
(2) performs the operation (e.g., writes to the database); (3)
logs the intent id, step number, and the operation’s return
value (if any) into a separate database table called the opera-
tion log. When the client completes all operations, it marks
the intent as ‘done’ in the intent table.

To ensure at-most-once execution semantics, the client in
Olive must perform actions (2) and (3) above atomically. This
ensures that if Olive re-executes an intent, there will be a
record in the operation log showing that a particular step
has already been completed and should not be re-executed.
Instead, the entity re-executing the intent should resume ex-
ecution from the last completed step, using logged return
values from previous steps as needed. To make these two ac-
tions atomic, Olive introduces a technique called Distributed
Atomic Affinity Logging (DAAL), which collocates log entries
for an item in the same atomicity scope (the scope at which
the database supports atomic operations) with the item’s data.
For example, in a storage system where operations are atomic
at the row level, Olive would store the item’s value and its log
entries in different columns of the same row.

Beldi Library Function Description

read(k)→ v Read operation
write(k, v) Write operation
condWrite(k, v, c)→ T/F Write if c is true
syncInvoke(s, params)→ v Calls s and waits for answer
asyncInvoke(s, params) Calls s without waiting

lock() Acquire a lock
unlock() Release a lock
begin_tx() Begin a transaction
end_tx() End a transaction

FIGURE 2—Beldi’s API for SSFs, which includes all of Beldi’s
primitives and its transactional support (§6).

Intent collector. To guarantee at-least-once semantics, Olive
must ensure that some entity finishes the intent if the client
crashes. This is the job of the intent collector (IC), which
is a background process that periodically scans the intent
table and completes unfinished intents by running their code.
Before the IC executes an external operation, it consults the
operation log table with the operation’s step number to see
if the operation has already been done and to retrieve any
return value; regular clients also perform this check between
actions (1) and (2). If the operation has not been done, the
IC atomically executes the operation and logs the result to
the operation log table. Even if multiple IC instances execute
concurrently, or if the IC starts executing the intent of a client
that has not crashed, this is safe because of Olive’s assurance
of at-most-once semantics.

Beldi vs. Olive. Beldi is inspired by Olive’s high-level ap-
proach but makes key changes and introduces new data struc-
tures and tables, support for invocations so that SSFs can
call each other (Olive only supports storage operations), and
garbage collection mechanisms to keep overheads low.

An important difference between the two is the definition
of an ‘intent.’ In Olive, intents are code snippets—logged by
the client—and all intents are logged in the same intent table.
In Beldi, the client (which is the SSF) is the code snippet. As a
result, an intent in Beldi is not code but rather the parameters
that identify a particular running instance of the SSF: its
inputs, start time, whether it was launched asynchronously,
etc. Accordingly, Beldi uses the term ‘instance id’ instead of
‘intent id’ to capture this distinction.

Another critical difference is that, as shown in Figure 1,
each SSF in Beldi is backed by a different database and Beldi
runtime to ensure data sovereignty, though different SSFs
developed by the same engineering team may reuse these
components if desired. We will expand on these details in the
following sections, but we begin by introducing Beldi’s API.

3.2 Beldi’s API

Beldi exposes the API in Figure 2, which includes key-value
operations such as read, write, and condWrite (a write
that succeeds only if the provided condition evaluates to
true), and functions to invoke other SSFs (syncInvoke and

1190 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Log Key Value

intent instance id done, async, args, ret, ts
read instance id, step number value
write instance id, step number true / false
invoke instance id, step number instance id of callee, result

FIGURE 3—Beldi maintains four logs for each SSF. The intent table
keeps track of an instance’s completion status, arguments, return
value, type of invocation, and timestamp assigned by its garbage
collector (ts). The read log stores the value read. The write log stores
true for writes, or the condition evaluation for a conditional write.
The invoke log stores the instance id of the callee and its result.

asyncInvoke). These operations are meant as drop-in re-
placements for the existing interface used by SSFs. Further-
more, Beldi supports the ability to begin and end transac-
tions; operations between these calls enjoy ACID semantics.

Beldi’s API hides from developers all of the complexity
of logging, replaying, and concurrency control protocols that
take place under the hood to guarantee exactly-once semantics
and support transactions. For example, an SSF using Beldi’s
API automatically determines (from the input, environment,
and global variables) the SSF’s instance id, step number, and
whether it is part of a transaction. Beldi takes actions before
and after the main body of the SSF as well as around any
Beldi API operations.

3.3 Beldi’s runtime infrastructure

Developers write SSF code as they do today, but link Beldi’s
library and use its API. The rest of Beldi’s mechanisms hap-
pen behind the scenes.

Intent table. Beldi associates with every SSF invocation an
instance id, which uniquely identifies an intent to execute
a given SSF. For the first SSF in a workflow, the instance
id is the UUID assigned by the serverless platform to the
initial request. For example, in AWS this UUID is called the
‘request id,’ in GCP it is called the ‘event id,’ and in Azure it
is the ‘invocation id.’ For subsequent SSFs in the workflow,
each caller in the graph will generate a new UUID to be used
by the callee as its instance id. A new id is generated even
if the SSF has been invoked earlier in the workflow or if the
callee is another instance of the caller SSF (in the case of
recursive functions). Thus, every SSF instance will have a
distinct instance id, even if the instances are of the same SSF
and in the same workflow.

Beldi keeps an intent table that contains the instance id,
arguments, completion status, and other information listed
in Figure 3 for every SSF instance that users and other SSFs
intend to execute. It does this by modifying SSFs to ensure
that the first operation is to check the intent table to see if
their instance id is already present and, if not, to log a new
entry. Beldi performs a similar modification to set the intent
as ‘done’ at the end of the SSF execution.

Operation logs. In addition to the intent table, Beldi main-
tains three logs for each SSF: a read log, write log, and invoke

log. Their schema is also in Figure 3. For each operation, the
key into the log is the combination of the executing SSF’s
instance id and the step number, which (like in Olive) is a
counter that identifies each unique external operation. Each
read operation adds the value read from the database into
the read log. Writes, meanwhile, write to the write log with a
boolean flag that states whether the write operation took effect.
Regular writes always set this flag to true, while conditional
writes set it to the outcome of the condition at the time of the
write. The actual data being written is stored in a data table,
although in Section 4 we discuss a data structure that general-
izes Olive’s DAAL and collocates the write log in the same
table as the data to avoid cross-table transactions. The invoke
log is new to Beldi and ensures at-most-once semantics for
calls to other SSFs; we describe it in Section 4.5.

Intent and Garbage Collectors. For each SSF, Beldi intro-
duces a pair of serverless functions that are triggered period-
ically by a timer. The first function acts as the SSF’s intent
collector (IC). The IC scans the SSF’s intent table to discover
instances of the SSF that have not yet finished (lack the ‘done’
flag). The IC restarts each unfinished SSF by re-executing it
with the original instance id and arguments. Note that it is
safe for the IC to restart an SSF instance even if the original
instance is still running and has not crashed, owing to Beldi’s
use of logs to guarantee at-most-once semantics for each step
of the SSF. We implement two natural optimizations for the
IC. First, the IC restarts instances only after some amount
of time has passed since the last time they were launched to
avoid spawning too many duplicate instances in cases where
the IC runs very frequently. Second, the IC speeds up the
process of finding unfinished instances among all instance ids
in the intent table by maintaining a secondary index.

The second function acts as a Garbage Collector (GC)
for completed intents, taking care to ensure safety in the
presence of concurrent SSF instances, IC instances, and even
GC instances. This component is described in Section 5.

4 Executing and Logging Operations in Beldi
As we mention in Section 3.1, guaranteeing exactly-once se-
mantics requires atomically logging and executing operations.
This section discusses how Beldi achieves this.

4.1 Linked DAAL

The logging approach taken by Olive (§3.1) requires an atom-
icity scope with high storage capacity, as otherwise few log
entries can be added. In the context of Cosmos DB (the suc-
cessor of the database used by Olive), the atomicity scope is a
database partition, and the atomic operation is a transactional
batch update. Olive’s DAAL is a good fit for Cosmos DB
because partitions can hold up to 20 GB of data [10], which
is enough to collocate a data item and a large number of log
entries. However, other databases adopt designs with more
limited atomicity scopes. For example, the atomicity scope
of DynamoDB and Bigtable is one row, which can hold up to

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1191

Row Id Key Recent Writes Log Size Next RowValue Lock Owner

HEAD Key Recent Writes Log Size Next RowValue Lock Owner

FIGURE 4—Linked DAAL for a single item. Each row contains
the item’s key, previous values (except the last row which contains
the current value), lock information (used for transactions), a log of
recent writes, and information for traversal and garbage collection.

400 KB [14] and 256 MB [7], respectively; the recommended
limits are much lower. If we were to use Olive’s DAAL with
DynamoDB, an SSF could only perform hundreds of writes
to a given key before filling up the row. At such point, Olive
would be unable to make further progress until the logs are
pruned. This is hard to do in our setting: reaching a state of
quiescence where it is safe to garbage collect logs is challeng-
ing since existing platforms expose no mechanism to kill or
pause SSFs (§5).

To support all common databases, Beldi introduces a new
data structure called the linked DAAL that allows logs to exist
on multiple rows (or atomicity scopes), with new rows being
added as needed. There are three reasons why this simple data
structure is interesting for our purposes: (1) linked DAALs
continue to avoid the overheads of cross-table transactions
and work on databases that do not support such transactions;
(2) linked DAALs are a type of non-blocking linked list [21,
42, 47], allowing multiple SSFs to access them concurrently
with the operations supported by the atomicity scope (e.g.,
atomic partial updates); (3) even with frequent accesses, our
garbage collection protocol can ensure that the length of the
list for each item is kept consistently small (§5).

Structure. Figure 4 gives an example of a linked DAAL for
an item with two rows of logs. Every row stores the item’s
key, value, owner of the lock (used for transactions in Sec-
tion 6), the log of writes, and metadata needed to traverse the
linked DAAL and perform garbage collection. The first row
is the ‘head,’ which has a special RowId and is never garbage
collected. The primary key for rows is RowId + Key, the hash
key is Key, and the sort key is RowId. When a row is full and
the SSF issues a write operation, a new row is appended with
the updated value and a log entry describing the write; the
previous row’s value and logs are not modified once filled.
Thus, the tail always has the most recent value.

Traversal. Most operations in Beldi require traversal to the
tail of the list. The simplest way to accomplish this is to
start at the designated head row and iteratively issue read
requests for each NextRow until the field is empty. While
this procedure will eventually reach the tail, the number of
database operations grows with the length of the list. Garbage
collection can control this length, but Beldi applies an ad-
ditional optimization that leverages the scan and projection
operations available in the three NoSQL databases that we
surveyed. Specifically, Beldi issues a single scan operation to

def read (table , key) :
linkedDAAL = rawScan (table ,

cond : "Key is {key}" ,
project : ["RowId" , "NextRow"])

tail = getTail (linkedDAAL)
val = rawRead (table , tail)
logKey = [ID , STEP]
STEP = STEP + 1
ok = rawCondWrite (ReadLog , logKey ,

cond : "{logKey} does not exist"
update : "Value = {val}")

if ok :
return val

else :
return rawRead (ReadLog , logKey)

FIGURE 5—Pseudocode for Beldi’s read wrapper function. Func-
tions beginning with “raw” refer to native (unwrapped) access to the
database tables storing the data or the logs. Identifiers starting with
capital letters indicate a member of the log structures.

the database that returns every row containing a target Key.
On its own, the scan operation returns all contents of each row
(including the values, write logs, etc.). To reduce this over-
head, Beldi applies a projection that filters out all columns
except for RowId and NextRow. This combination of scan
and projection allows Beldi to download only 256 bits per
row of the linked DAAL. From these rows, Beldi constructs
a skeleton version of the linked DAAL locally, which it can
quickly traverse to find the RowId of the tail.

We note that the individual reads in a scan are not exe-
cuted atomically. For example, Beldi might see a row with no
NextRow, and also receive a row that was subsequently ap-
pended to it. This operation might even retrieve rows that are
orphaned from a failed append operation. Regardless, when
these databases are configured to be linearizable [6, 9, 13],
the set of rows traversed from the head to the first instance of
an empty NextRow form a consistent snapshot of the linked
DAAL—any write that completes strictly before the scan
begins will be reflected in the constructed local linked DAAL.

While the linked DAAL is structurally simple, operating
on it requires care. The following sections detail how Beldi’s
API functions read and modify the linked DAAL.

4.2 Read

We begin by discussing Beldi’s read operation. While
read has no externally visible effects on its own, the po-
tential use of its non-deterministic results in a subsequent
external operation means that Beldi must record the result of
every read in a dedicated ReadLog. Unlike write operations,
however, the read from the database and the log to the Read-
Log need not happen atomically—if the SSF crashes before
logging the outcome, it is fine to fetch a fresh value as the
previous result did not have any externally visible effect.

Figure 5 shows the pseudocode of the read API function,
which involves two steps: (1) read the most recent value of the
key from the tail of the linked DAAL, and (2) log the result

1192 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

def write (table , key , val) :
logKey = [ID , STEP]
linkedDAAL = rawScan (table ,

cond : "Key is {key}"
project : ["RowId" , "NextRow" ,

"RecentWrites[{logKey}]"])
if logKey not in linkedDAAL :

tail = getTail (linkedDAAL)
tryWrite (table , key , val , tail)

STEP = STEP + 1
def tryWrite (table , key , val , row) :

logKey = [ID , STEP]
ok = rawCondWrite (table , row [RowId] ,

cond : "({logKey} not in RecentWrites)
&& (LogSize < N)" ,

update : "Value = {val};
LogSize = LogSize + 1;
RecentWrites[{logKey}] = NULL")

if ok : # Case B
return

row = rawRead (table , row [RowId])
if logKey in row [RecentWrites] : # Case A

return
elif row [NextRow] does not exist : # Case D

row = appendRow (table , key , row)
else : # Case C

row = rawRead (table , row [NextRow])
tryWrite (table , key , val , row)

FIGURE 6—Pseudocode for Beldi’s write wrapper function.

to the ReadLog if it has not yet been completed. For the first
step, Beldi retrieves the tail as described in Section 4.1. For
the second step, Beldi uses an atomic conditional update to
efficiently log the operation without overwriting a previously
executed read. If it encounters a conflict during the update, it
returns the previous result from the ReadLog.

4.3 Write

A write is more complex as the update and logging must
be done atomically—within the same atomicity scope—and
Beldi needs to handle cases where other SSFs are access-
ing and appending to the linked DAAL concurrently. At
a high level, the write operation must find the tail of the
linked DAAL, check if the write has been previously exe-
cuted, log/update the tail if it has not, and extend the linked
DAAL if the current tail is full. Like read, Beldi can use
scan and projection to assemble a minimal local version of
the linked DAAL. Unlike read, Beldi cannot skip directly to
the tail; instead, Beldi must check that none of the scanned
rows contains a record of the current operation. Furthermore,
once Beldi has a candidate for the tail, Beldi needs to update
its value and add an entry to its log atomically. For a given
tail candidate there are exactly four possible scenarios:

A. The operation has already been executed and the [in-
stance ID, step number] tuple can be found in the current
row. Beldi can return immediately in this case.

B. The operation is not in the log and there is still space.
This indicates that Beldi is at the tail, the operation has

logKey ∈ logs logSize < N ∃ nextRow

A True * *
B False True False
C False False True
D False False False

(a) Cases (b) Transitions
FIGURE 7—Possible cases for the state of a candidate tail in the
linked DAAL during a write and its potential transitions.

never been executed previously, and there is room in the
current row to execute/log the write.

C. The operation is not in the log, but the log is full and
there is a pointer to the next row. Beldi should follow
the provided pointer toward the tail.

D. The operation is not in the log and the log is full, but
there is no next row. Beldi should append a new row and
advance to that new row.

We formulate a lock-free algorithm to handle all the cases
above by examining the transitions induced by concurrent
SSF accesses. For example, if Beldi is in case B, where the
operation is not in any log and there is still space to execute
it in the current row, a concurrent SSF can, without warning,
execute the current operation (→A) or fill the remaining space
in the log (→C/D). The reverse is not true: once there is
a NextRow pointer, the linked DAAL will never revert to
having extra space for logs. The cases and their transitions are
summarized in Figure 7, where N is the maximum number of
log entries that can fit in a row when accounting for the size of
the key, value, and other metadata. The exception is garbage
collection (not covered in Figure 7), whose operation and
correctness we describe in Section 5. An arrow in Figure 7b
indicates a possible effect of concurrent SSF instances.

To safely identify the state of a row, Beldi checks for each
case starting at the node(s) in the transition graph without
incoming edges. In this case there is only one such node (B),
so Beldi performs a conditional write with the condition given
in case B of Figure 7a (i.e., that the logKey is not in the logs,
that the logSize is less than N, and that there is no nextRow).
If the conditional check fails, the state of the row will not
revert back to case B later because B has no incoming edges.
Therefore, it is safe to remove B from the transition graph and
check the remaining cases. Beldi repeats the above process
with cases A and D (in any order) because they they have no
incoming edges in the remaining graph. Finally, if all prior
conditions fail, the row is in case C.

4.4 Conditional write

Beldi also provides support for conditional writes, which
only execute if a user-defined condition is true at the time
of the write. The initial scan and subsequent scenarios are
similar to the scenarios for unconditional writes. The only
exception is the case where the operation has not previously
executed and the current row still has remaining space in the
log (i.e., case B from Section 4.3). We split this case into two:
in B1, the condition is true, and in B2, the condition is false.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1193

def syncInvoke (callee , input) :
calleeId = UUID ()
logKey = [ID , STEP]
STEP = STEP + 1
ok = rawCondWrite (InvokeLog , logKey ,

cond : "{logKey} not in InvokeLog"
update : "Id = {calleeId};

Result = NULL")
if not ok :

record = rawRead (InvokeLog , logKey)
calleeId = record [Id]
result = record [Result]

if result does not exist :
return rawSyncInvoke (callee ,

[calleeId , input])
When the Callee is done it issues a callback
to the caller. Below is the callback handler.
def syncInvokeCallbackHandler (calleeId , result) :

rawWrite (InvokeLog , cond : "Id = {calleeId}" ,
update : "Result = {result}")

FIGURE 8—Pseudocode for synchronous invocation of other SSFs.
Asynchronous invocations are similar, but since they do not have
return values, the callback is invoked as soon as the callee logs the
intent in its intent table. We give the code for the callee’s actions in
Appendix A of our tech report [45].

Beldi handles these cases by first checking B1 and B2 with
conditional writes before covering the other states exactly as
in the unconditional-write case. We give a detailed description
in Appendix A of our extended technical report [45].

4.5 Invocation of SSFs and local functions

Finally, Beldi supports three types of function invocations:
synchronous calls (syncInvoke), which block and return
a value; asynchronous calls (asyncInvoke), which return
immediately; and calls to functions that do not use Beldi’s
API (e.g., legacy libraries or legacy SSFs). In the first two
cases, Beldi guarantees exactly-once semantics. In the last, it
only guarantees that the operation is performed at least once.

Figure 8 shows pseudocode for synchronous SSF invoca-
tions. As mentioned in Section 3.3, to help SSFs that are
being invoked (“callees”) differentiate between re-executions
and new executions, Beldi passes an instance id to the callee
(the “callee id”) along with the parameters of the call. In
the first invocation, the callee id is generated using UUID();
for re-executions, it retrieves the id from the invoke log. If
there is already an entry in the invoke log for this caller id
and step number, there are two cases: (1) a result is already
present, in which case the caller reuses that result; or (2) the
entry is present but there is no result, in which case the caller
re-invokes the callee with the existing callee id.

Callbacks. Note that syncInvoke (Figure 8) does not log
the result of the actual call or otherwise mark the call as
complete. To see why this is important, consider the example
trace in Figure 9, which shows the result of a failure of the
callee (SSF2) after it marks itself as done in the intent table

SSF1 (Original) SSF2 SSF1 (Callback)

invoke
run logic

callback
(with result)

log result
(in invoke log)

OK

log as done
(in intent table)

fail to return

waiting for response

FIGURE 9—SSF1 synchronously invokes SSF2, which then fails to
return after logging the operation as done. The callback ensures that
SSF1 has the result of SSF2 before SSF2 marks itself as done.

but before it returns the result to the caller (SSF1). Suppose
that there is no callback, i.e., that SSF2 logs itself as complete
immediately after completing execution. Beldi’s federated
setup means that each SSF has a garbage collector running at
its own pace. If SSF2 were to fail after logging itself as done,
it is, therefore, possible that SSF2’s GC will garbage collect
the intent before SSF1 gets any value. Later, when SSF1’s
IC re-executes the unfinished SSF1 instance, the caller will
see the lack of result in the invoke log, re-invoke SSF2 (with
the existing callee id), and SSF2 will mistakenly perform
the operation again. In some ways, this is similar to why
write operations in Beldi must be atomically logged and
executed (§3.1). Unfortunately, there are no mechanisms for
atomically logging into a database and executing other SSFs.

We address this issue by decomposing an invocation into
two steps: (1) the invocation itself, performed by the caller;
and (2) the recording of results, done via a second, auto-
matic invocation by the callee to some instance of the caller.
We emphasize ‘some’ and ‘original’ because request routing
in serverless is stateless: if SSF1 invokes SSF2, and SSF2
then invokes SSF1, the two SSF1 instances could be differ-
ent (§2.1). We call this automatic invocation a callback. When
the second instance of the caller receives the callback, it logs
the provided result in its invoke log and returns. At this point,
it is safe for the callee to mark its intent as done since it knows
the caller’s invoke log already contains the result. Note that
callbacks only require at-least-once semantics, so there is no
need for additional logging of the callback invocation.

Figure 9 illustrates the idea of Beldi’s callback mechanism.
The callback ensures that the result of SSF2 is properly re-
ceived by SSF1. As such, we note that SSF2’s response to
SSF1 is merely an optimization and not necessary for cor-
rectness. We also note that if SSF2 fails after a successful
callback but before logging the completion of the intent, it
may result in a case where SSF1 completes, gets garbage
collected, and then a re-execution of SSF2 invokes a spuri-
ous callback. SSF1 can detect and ignore this case when a
callback occurs for an invoke that does not exist.

Asynchronous invocations. This procedure is similar to that
of synchronous invocations, but with the two steps flipped

1194 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

on the callee. The caller first makes a rawSyncInvoke call
to the callee, but rather than execute the function, the callee
(observing an ‘async’ flag) simply registers the intent in its
intent table, issues a callback, and then immediately returns
to the caller. In the second step, Beldi performs the actual
asynchronous invocation of SSF2’s logic. We describe this
operation in detail in Appendix A of our tech report [45].

5 Garbage Collection
If left alone, the linked DAAL will grow indefinitely. While
Beldi’s use of scans means that the linked DAAL’s length is
generally not the performance bottleneck, unbounded growth
of the linked DAAL and logs (intent table, read log, invoke
log) can lead to significant overheads and storage costs. Beldi
ensures that logs are pruned and the linked DAAL remains
shallow with a garbage collector (GC) that deletes old rows
and log entries without blocking SSFs that are concurrently
accessing the list. The GC is an SSF triggered by a timer.

At a high level, the protocol has six parts. First, the GC
finds intents that have finished since the last time a GC in-
stance ran and assigns them the current time as a finish time-
stamp. Second, the GC looks up all intents whose finish time-
stamp is ‘old enough’ (we expand on this next), and marks
them as ‘recyclable.’ Third, the GC removes log entries (in
the read and invoke logs) that belong to recyclable intents.
Fourth, the GC disconnects, for every item, the non-tail rows
of their linked DAAL that have empty logs, marks these rows
as ‘dangling’, and assigns them the current time as a dangling
timestamp. Fifth, the GC removes all rows whose dangling
timestamp is ‘old enough.’ Finally, the GC removes the log en-
tries from the intent table. The algorithm is given in Figure 10,
with more details in Appendix A of our tech report [45]. Note
that GCs only need at-least-once semantics to avoid mem-
ory leaks in the presence of crashes; they do not use Beldi’s
exactly-once API. Instead, GCs defer the removal of entries
in the intent table until the end.

Assumption. The safety of garbage collection relies on a syn-
chrony assumption. In particular, it assumes that an individual
SSF instance terminates, one way or another, in at most T
time. This allows the GC to delete the logs of completed
intents after waiting T time for all running instances of the
completed intents to finish. Note that no new instances will
be started by an SSF’s IC after the intent is marked as ‘done.’

Our assumption is based on the observation that serverless
providers enforce user-defined execution timeouts on SSF
instances (§2.1), but otherwise provide no interface for de-
velopers to kill or stop running functions. We can derive a
conservative bound for T from these user-defined timeouts.
Note that even if providers refuse to kill SSFs after the time-
out, we can work around this issue (at high cost) by having
the GC change the database’s permissions or rename tables
so that ongoing SSF instances (including stragglers that stick
around after the intent is done) fail to corrupt the database;

def garbageCollection () :
time = now ()
recyclable = []
for id , intent in IntentTable :

if intent [Done] :
if FinishTime not in intent :

intent [FinishTime] = time
elif time - intent [FinishTime] > T :

recyclable . append (id)
for id in recyclable :

remove from ReadLog
where "LogKey[Id] == {id}"

remove from InvokeLog
where "LogKey[Id] == {id}"

for table , key in getAllDataKeys () :
rows = rawScan (table ,

cond : "Key == {key}")
for row in rows :

for log in row [RecentWrites] :
mark if log [Id] in recyclable

if fullyMarked (row [RecentWrites])
and row [NextRow] exists :

prev (row) [NextRow] = row [NextRow]
if DangleTime not in row :

row [DangleTime] = time
rows = rawScan (table , cond : "Key == {key}

&& {time} - DangleTime > T")
for row in rows :

if row not reachable from head (key)
delete row

for id in recyclable :
remove from IntentTable

where "LogKey[Id] == {id}"

FIGURE 10—Pseudocode for Beldi’s lock-free, thread-safe garbage
collection algorithm. T is the maximum lifetime of an SSF instance.

instances that start after the change are fine.

Safety of concurrent access. With the above assumption,
Beldi’s GC preserves exactly-once semantics without need-
ing to interrupt SSF instances. First, observe that an intent
is marked as recyclable only after Beldi is sure that no live
SSF instance requires the intent. Accordingly, the read log,
invoke log, and intent table entries for the intent will never
be accessed again. For the linked DAAL, the GC only dis-
connects a row when all of the contained logs are marked as
recyclable and it is not the tail. New traversals of the linked
DAAL for read or write operations will not observe the dis-
connected row (technically the rawScan operation will return
these disconnected rows, but they will be ignored during the
traversal of the local linked DAAL). Running SSF and GC
instances, however, may be in the process of traversing the
disconnected row—if Beldi deleted it immediately, the SSF
or GC might become stranded. To prevent this, Beldi keeps
the disconnected row for an additional T time to ensure that
instances with such references terminate successfully.

Safety of concurrent modifications. The linked DAAL also
supports garbage collection in the presence of concurrent ap-
pends from SSFs and deletions from other GC instances ow-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1195

ing to it being a type of non-blocking linked list. In fact, it is
simpler than traditional non-blocking linked lists [21, 42, 47]
because new rows are always appended to the tail, and GCs
never touch the tail. The only interesting case is the concur-
rent disconnection of neighboring rows such as X and Y in
A → X → Y → B. In this case, the disconnection of X suc-
ceeds, but the disconnection of Y will not be visible because
the updated NextRow pointer in X is no longer part of the
linked DAAL. The next GC run disconnects Y permanently.

6 Supporting Locks and Transactions
In addition to exactly-once semantics, Beldi also provides
support for locks and transactions with user-generated aborts.

6.1 Locks

Beldi’s approach to mutual exclusion borrows an abstraction
in Olive called “locks with intent”, where locks over data
items are owned by an intent rather than a specific client. This
means that, if an SSF instance calls lock(item) and then
crashes, the lock is not lost and held indefinitely; rather, the
IC will soon restart the instance. The re-executed instance,
upon arriving at the lock(item) call, will see that it already
acquired the lock and be able to continue with the remaining
operations as if the original SSF instance had never crashed.

In Beldi, the ownership of a lock on a given item is kept
alongside the data and logs in the “lock owner” column of the
item’s linked DAAL. Lock acquisition and release are logged
to the DAAL as writes to the item using Beldi’s condWrite
semantics, where the condition is that the lock is either owned
by the current SSF or has an empty lock-owner column in
the DAAL. The exactly-once semantics are needed for cases
where an SSF is re-run after successfully releasing a lock.

Note that Beldi only guarantees exactly-once semantics—it
does not absolve the developer from writing bug-free code.
Thus, problems like infinite loops within critical sections and
deadlock need to be handled with higher-level mechanisms
(like the one below) if the user wishes to guarantee liveness.

6.2 Transactions

Beldi uses an extension of the locking mechanism of the
preceding section to implement transactions within and across
SSF boundaries. Beldi transactions are based on a variant of
2PL with wait-die deadlock prevention and two-phase commit.
Note that the choice of wait-die (rather than something like
wound-wait) is deliberate as SSF instances generally cannot
kill other instances. To implement this, we need to track
the intent-creation time of each SSF. We do so by adding
to the lock-owner column an intent-creation timestamp and
checking upon lock-acquisition failure whether the existing
lock owner is older or younger than the current SSF instance;
if older, abort, otherwise, try again (see Figure 11).

There are three main parts to Beldi’s transaction-handling
protocol: (1) creating and forwarding a transaction context,
(2) executing Beldi calls inside a transaction, and (3) prop-

def lock (table , key) :
ok = condWrite (table , key ,

cond : "LockOwner = NULL
|| LockOwner.id = TXNID" ,

update : "LockOwner = [TXNID, START_TIME]")
if not ok :

row = read (table , key)
ownerId , ownerTime = row [LockOwner]
if ownerTime <= TXNID :

abort
else :

lock (table , key)

FIGURE 11—Pseudocode for the lock operation with wait-die dead-
lock prevention used during the ‘Execute’ mode of a transaction.

agating abort/commit signals throughout a workflow. Note
that Beldi does not currently support asyncInvoke in trans-
actions; however, it does support spawning threads that issue
syncInvoke operations and are then joined.

Transaction contexts. In Beldi, transactions are defined with
the begin_tx and end_tx API calls. Beldi assumes that
both the begin and the end statements are placed in the same
SSF, but SSFs can invoke other SSFs inside a transaction, so
transactions can span across multiple SSFs. When an SSF
calls begin_tx it creates a new top-level transaction context
which consists of a unique transaction id and a mode (‘Exe-
cute’, ‘Commit’, or ‘Abort’). Contexts start in ‘Execute’ mode.
The SSF instance will also, upon creating a new context, ex-
ecute the transaction’s operations in a new thread/goroutine
to catch any runtime exceptions. The matching end_tx waits
for the result and runs either a commit or abort protocol de-
pending on the outcome of the contained operations.

Transaction contexts are passed along with any SSF invo-
cations that occur inside the transaction. Thus, whenever a
Beldi-enabled SSF starts, it first determines whether it is a
part of an ongoing top-level transaction by checking whether
a context was provided as part of the input. This is necessary
even if the SSF never creates a transaction itself. If the SSF
does create a transaction, the begin_tx/end_tx statements
will be ignored and all operations will be inherited by the
top-level transaction context. Beldi does not currently support
nested transaction semantics [31] (e.g., a sub-transaction can
abort without causing the top-level transaction to abort).

Opacity. Beldi chooses opacity as the isolation level for trans-
actions. Opacity [20] captures strict serializability [5, 34] with
the additional requirement that even transactions that abort do
not observe inconsistent state. The rationale is that observing
inconsistent state can lead to undefined behavior and infinite
loops. For example, if an SSF instance reads inconsistent
state that results in division by zero, it may crash. Beldi’s
IC will restart the SSF instance and deterministically replay
the (inconsistent) values to ensure exactly-once semantics,
re-triggering the crash. Figure 12 gives another example of
how OCC [26], which provides serializability but not opacity,

1196 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

begin_tx ()
x = read ("x") ; y = read ("y")
while (x != y) :

/ / some logic
x++

write ("x" , x + 2) ; write ("y" , y+4)
end_tx ()

FIGURE 12—OCC leads to an infinite loop when two instances of
the above transaction, T1 and T2, execute concurrently. Suppose x =
0, y = 1 initially. T1 reads x = 0, y = 1, executes the logic, acquires
locks on x and y, validates the read set, and writes x = 3, y = 4. T2

reads x = 3, y = 1 (corresponding to a state after which T1 updated x
but before it updated y), and is stuck in an infinite loop. Even though
T2 is destined to abort, it will never reach the read set validation step.

leads to infinite loops. These issues are not present with iso-
lation levels that guarantee that all transactions read from a
consistent snapshot.

Operation semantics inside a transaction. If an SSF is in
a transactional context, Beldi modifies the semantics of its
API based on the mode to ensure ACID semantics. We have
already discussed two operation modifications that occur in
‘Execute’ mode—one to locks in Figure 11 and another to
begin_tx/end_tx, which are ignored. ‘Execute’ mode also
causes Beldi to call lock before every read, write, and
condWrite operation, using the transaction id as the lock
holder. In addition to acquiring locks, Beldi also changes
where reads and writes look up and record values. While lock
acquisition still goes to the original tables, Beldi redirects
written values to a shadow table that acts as a local copy of
state for the transaction. Like the original table, this shadow
table is also stored as a linked DAAL and is garbage collected
along with the normal DAAL (except the GC also deletes the
head and tail). Unlike the original, the shadow table is parti-
tioned by transaction id, with Key relegated to a secondary
index. All read operations check the shadow table first before
consulting the real table to ensure that transactions read their
own writes. If, before an operation, an SSF fails to acquire
a lock and must kill itself (due to wait-die), it returns to its
caller with an ‘abort’ outcome.

Propagation of commit or aborts. Eventually, a begin_-
tx/end_tx code block will reach the end_tx with an abort/-
commit decision. For commit, Beldi changes the mode of the
context to ‘Commit’, flushes the final values of the items in
the shadow table to the real linked DAAL, and releases any
held locks. Beldi then calls the SSF’s callees and passes them
the transaction context in Commit mode. Note that if an SSF
instance fails between flushing the shadow table and notify-
ing the callees of the commit decision, Beldi’s exactly-once
semantics ensure that once the SSF instance is re-executed,
it will pick up from where it left off. For abort, none of the
values have been written to the actual table, so Beldi just
releases all locks and invokes all callees in ‘Abort’ mode.

When an SSF is invoked with a transaction context that
includes a Commit mode, Beldi skips the SSF’s logic, and
instead performs only the aforementioned commit protocol:
flushes the final value of the items, releases any held locks,
and notifies its own callees by invoking them with the pro-
vided transaction context. An Abort mode similarly skips the
SSF’s logic, releases all locks, and notifies its callees. This
recursive invocation of callees with a Commit or Abort mode
mimics the role of a coordinator in two-phase commit.

Supporting step functions. The previous discussion as-
sumes a begin_tx and end_tx in the same SSF. To sup-
port transactions across SSFs defined in step functions, the
developers must introduce ‘begin’ and ‘end’ SSFs in their
workflow (we give an example in Appendix A of our tech
report [45]). These SSFs create the transaction context and
kickstart the commit or abort protocol. SSFs that fall between
the ‘begin’ and ‘end’ SSFs in the workflow execute trans-
actionally. If an SSF aborts it sends ‘abort’ on its outgoing
edges in the workflow; an SSF that receives an abort as in-
put skips its operations and propagates the abort message on
its outgoing edges. This continues until the abort message
reaches the ‘end’ SSF, which then sets the transaction context
mode to Abort and invokes the ‘begin’ SSF. If ‘end’ executes
without receiving any abort message, it sets the context mode
to Commit instead. This invocation initiates the second phase
of 2PC over the transactional subgraph of the workflow.

Non-transactional SSFs inside transactions. While an SSF
that does not use transactions can be invoked inside a transac-
tion by another SSF (which automatically forces the non-
transactional SSF to acquire locks before any accesses),
app developers must ensure that the non-transactional SSF
is only used inside transactional contexts. Otherwise, non-
transactional instances may access the database without ac-
quiring locks or obeying the wait-die protocol.

7 Evaluation
Beldi brings forth an array of programmability and fault-
tolerance benefits, but with these benefits come costs. In this
section we are interested in answering three questions:
1. What is the cost of maintaining and accessing the linked

DAAL, and how does it compare to applicable baselines?
2. What are the latency and throughput of representative

applications running on Beldi, and how does Beldi com-
pare to existing serverless platforms that provide neither
exactly-once semantics nor transactional support?

3. What effect does Beldi’s GC have on linked DAAL traver-
sal, and how does it change as we adjust the timeout (T)?

We answer the above questions in the context of the fol-
lowing implementation, applications, and experimental setup.

7.1 Implementation

We have implemented a prototype of Beldi for Go applications
that runs transparently on AWS Lambda and DynamoDB. In

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1197

total, Beldi’s implementation consists of 1,823 lines of Go
for the API library and the intent and garbage collectors.

Case studies. To evaluate Beldi’s ability to support interest-
ing applications at low cost, we implement three case stud-
ies: a social media site, a travel reservation system, and a
media streaming and review service. We adapt and extend
these applications from DeathStarBench [12, 16], which is a
recent open-source benchmark suite for microservices, and
port them to a serverless environment (using Go and AWS
Lambda). This port took around 200 person-hours. Combined,
our implementations total 4,730 lines of Go. We provide de-
tails of the corresponding workflows in Appendix B of our
tech report [45], and give a brief description below.

Movie review service (Cf. IMDB or Rotten Tomatoes): Users
can create accounts, read reviews, view the plot and cast of
movies, and write their own movie reviews and articles. Our
implementation of this app consists of a workflow of 13 SSFs.

Travel reservation (Cf. Expedia): Users can create an account,
search for hotels and flights, sort them by price/distance/rate,
find recommendations, and reserve hotel rooms and flights.
The workflow consists of 10 SSFs, and includes a cross-SSF
transaction to ensure that when a user reserves a hotel and a
flight, the reservation goes through only if both SSFs succeed.
Note that we extend this app to support flight reservations, as
the original implementation [12] only supports hotels.

Social media site (Cf. Twitter): Users can log in/out, see
their timeline, search for other users, and follow/unfollow
others. Users can also create posts that tag other users, attach
media, and link URLs. The workflow consists of 13 SSFs that
perform tasks like constructing the user’s timeline, shortening
URLs, handling user mentions, and composing posts.

7.2 Experimental setup

We run all of our experiments on AWS Lambda. We configure
lambdas to use 1 GB of memory and set DynamoDB to use
autoscaling in on-demand mode. All of the read and scan
operations for Beldi and the baseline use DynamoDB’s strong
read consistency. We turn off automatic Lambda restarts and
let Beldi’s intent collectors take care of restarting failed Lamb-
das. Our garbage and intent collectors are triggered by a timer
every 1 minute, which is the finest resolution supported by
AWS. Note that AWS currently has a limit of 1,000 concur-
rent Lambdas per account. As we will see in some of our
experiments, this limit is often the bottleneck in both the
baseline and Beldi. Finally, consistent with our deployability
requirement (§2.2), Beldi uses no servers.

The baseline for our experiments is running our ported
applications on AWS Lambda without Beldi’s library and run-
time. Consequently, these applications will not enjoy exactly-
once semantics or support transactions: when running on the
baseline, the travel reservation app outputs inconsistent re-
sults, and all apps can corrupt state in the presence of crashes.

 0

 10

 20

 30

 40

 50

 60

Read Write CondWrite Invoke

La
te

nc
y

(m
s)

Baseline
Beldi
Beldi (cross-table txn)

FIGURE 13—Median latency of Beldi’s operations. Error bar repre-
sents the 99th percentile, and “cross-table tx” is an implementation of
Beldi that uses cross-table transactions instead of the linked DAAL.

7.3 What are the costs of Beldi’s primitives?

We start our evaluation with a microbenchmark that mea-
sures the cost of each of Beldi’s primitive operations: read,
write, condWrite, and invoke. The keys are one byte and
the values are 16 bytes. We measure the median and 99th per-
centile completion time of the four operations over a period
of 10 minutes at very low load (1 req/s). As baselines, we
also measure the completion time (1) without Beldi’s exactly-
once guarantees and (2) using a design that logs writes to a
separate table using cross-table transactions. Since Beldi’s
database operations depend on the length of the linked DAAL,
we populate the chosen key’s linked DAAL with a conserva-
tive value of 20 rows, which corresponds to the length of the
linked DAAL after 30 minutes without garbage collection as
described in the experiment of Section 7.5.

Figure 13 shows the overhead of Beldi’s reads/writes com-
pared to those of the baseline stem from two sources: scan-
ning the linked DAAL (instead of reading a single row) and
logging. For invoke, the overheads come from our callback
mechanism and logging to the invoke log. Consequently, all
of Beldi’s operations are around 2–4× more expensive than
the baseline. In contrast, the approach using cross-table trans-
actions does not use a DAAL so reads avoid the scan (but
not the logging), and writes perform an atomic transaction
where the value is written to one table and the log entry is
added to another. The cost of this operation is 2–2.5× higher
than Beldi’s linked DAAL. Appendix C in our tech report [45]
describes the same experiment with a more optimistic setting
(5 rows in the linked DAAL); the results are similar.

Note that not all existing databases (e.g., Bigtable) support
cross-table transactions. Even for those that do, the perfor-
mance gain that cross-table transactions have on read opera-
tions over using a linked DAAL goes away whenever SSFs
use transactions because read locks use condWrite which is
a cheaper operation on the linked DAAL.

Other costs. Another consideration beyond performance is
the additional storage and network I/O required by Beldi to
maintain and access all logs and linked DAAL metadata. For
our setup above, the 20-row DAAL for the item takes up

1198 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 100 200 300 400 500 600 700

La
te

nc
y

(m
s)

Throughput (request/second)

Baseline 50p
Baseline 99p
Beldi 50p
Beldi 99p

FIGURE 14—Median response time and throughput for our movie
review service. Dashed lines represent 99th-percentile response time.

8 MB of storage. Counting all logs and metadata, each op-
eration requires storing between 20 to 36 bytes in addition
to the value. In terms of the network overhead introduced
by the scan and projection approach that we use to traverse
Beldi’s linked DAAL, for a 20-row DAAL, each scan fetches
2 KB more data than a baseline read to a single cell when
measured at the network layer. Compared to the baseline,
Beldi induces one extra scan and write for each read oper-
ation, at least one scan for an unconditional write (and po-
tentially more scans and writes depending on the scenario),
and one read and two writes for a function invocation. In
DynamoDB’s on-demand mode, each read costs an additional
$2.5 × 10−7, whereas writes cost an additional $1.25 × 10−6.
In provisioned-capacity mode, costs are lower but depend on
the specified capacity.

7.4 How does Beldi perform on our applications?

In this section, we discuss the results of our large-scale exper-
iments for the movie review and travel reservation services;
the social networking site has similar results, so we defer its
results to our tech report [45]. The workloads that we use are
adapted from DeathStarBench [12, 16] with a minor modifi-
cation to support our extended travel reservation service: the
transactions to reserve a hotel and flight randomly pick a hotel
and a flight out of 100 choices each following a normal distri-
bution. Requests contain random content within the expected
schema and are generated and measured using wrk2 [44].

We issue load at a constant rate for 5 minutes, starting at
100 req/s and increasing in increments of 100 req/s until the
system is saturated. For our applications, we achieve satura-
tion at around 800 req/s. The primary bottleneck in all cases is
compute: AWS enforces a limit of 1,000 concurrent Lambdas
per account (even if the Lambdas are for different functions),
and the HTTP Gateway (or some internal scheduler) rejects
requests in excess of this limit.

Figures 14 and 15 depict the results. In all cases (including
the social media app), we observe that, until around 400 req/s
(34M per day), Beldi’s median and 99th-percentile response
time are each around 2× higher than that of the baseline.
At the highest loads that we could test on AWS, Beldi still
achieves the same throughput as the baseline at a slightly
higher median response time (around 3.3× for the travel

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600 700

La
te

nc
y

(m
s)

Throughput (request/second)

Baseline 50p
Baseline 99p
Beldi 50p
Beldi 99p

FIGURE 15—Median response time and throughput for travel reser-
vation service. Dashed lines represent 99th-percentile response time.
Beldi performs transactions over multiple SSFs to reserve a hotel
room and a flight, while the baseline returns inconsistent results.

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60

La
te

nc
y

(m
s)

Time (minute)

without GC
with GC (1 min)
with GC (10 min)
with GC (30 min)
cross-table txn

FIGURE 16—Median response time for an SSF that uses one write
operation under different GC configurations. Without GC, the linked
DAAL grows over time. As a baseline, we configure Beldi with
cross-table transactions that do not use a linked DAAL.

reservation). At this high load, Beldi’s 99th-percentile latency
is only 20% higher for the movie review service, and 80%
higher for the transaction-enabled travel site. We also test
a configuration of the travel site that uses Beldi for fault-
tolerance but without transactions. The median latency at
saturation for that configuration is 16% lower and the 99th-
percentile latency is 20% lower than Beldi with transactions.

7.5 What is the effect of garbage collection?

Finally, we evaluate the importance of the choice of garbage
collector timeout (T) on performance. Note that this is differ-
ent from the 1-minute timer that triggers the GC SSF (§7.2).
T is instead proportional to the maximum lifetime of an SSF
and determines when a GC can remove a row from the Linked
DAAL. Thus, this value is important for safety, whereas the
trigger only determines when the GC runs.

Since T is important to ensure exactly-once semantics, we
could imagine performing a similar actuarial analysis to those
involved in setting the end-to-end timeouts of reliable failure
detectors [1, 27]. However, as Figure 16 shows, the median
response times for SSFs that access the linked DAAL are only
lightly impacted by the choice of T , even as we run the system
for 30 minutes at constant load under pessimistic conditions
(all SSF instances write to the same key). As a result, we

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1199

can be relatively conservative about T . To be clear, this is
a testament to the heroic efforts of DynamoDB engineers
that have optimized its scan, filter, and projection operations.
Nevertheless, we take some slight credit for ensuring that
Beldi’s linked DAAL is compatible with such operators.

It is worth noting, however, that while T has a minor impact
on performance, it does impact storage overhead and I/O,
since read and write operations still fetch a projection of the
linked DAAL which scales with the number of rows (§7.3).

8 Discussion
We now discuss a few aspects of Beldi, such as the implica-
tion of relying on strongly consistent databases, the potential
benefit of using SQL databases like Amazon Aurora, and the
security implications of SSF federation and reusability.

Strongly consistent databases. Beldi enables developers to
write stateful serverless applications without having to worry
about concurrency control, fault tolerance, or manually mak-
ing all of their functions idempotent. In doing so, Beldi lever-
ages one or more fault-tolerant databases configured to be
strongly consistent. If these databases were to become unavail-
able, for example due to network partitions, SSFs that write
to these unavailable databases would also become unavailable
until the partition was resolved.

ACID databases. A natural question is whether SSFs that
use ACID databases need all of Beldi. For such SSFs, the ben-
efit is not having to maintain a read or write log (or a linked
DAAL) since the database does its own logging. However,
ACID databases are not enough to guarantee exactly-once se-
mantics for function invocations since they provide atomicity
for read and write operations, but have no support for invoca-
tions. As a result, Beldi would still need to implement mech-
anisms such as callbacks (§4.5) to ensure that a failed SSF
is not mistakenly re-executed despite independent garbage
collectors. Furthermore, workflows that contain transactions
across SSFs would still need a collaborative coordination
protocol such as the one proposed in Section 6.2.

Independence of separate applications. We view SSFs as
owning all the data on which they operate, similar to mi-
croservice architectures [11]. SSFs can isolate the state of
different applications by storing each application’s state on
a different database. To ensure that a malicious request from
one application cannot observe the state of another, standard
authentication mechanisms such as capabilities and public
key encryption could be used.

9 Related Work
We already discuss Beldi’s differences with Olive [36]
throughout. To summarize, Beldi builds upon Olive’s elegant
approach to fault tolerance and mutual exclusion, and adapts
it to an entirely new domain. This adaptation is nontrivial and
requires us to introduce new data structures, algorithms, and
abstractions (e.g., transactions across SSFs). The result of our

innovations is a simple API that SSF developers can use to
build exciting applications without worrying about fault toler-
ance, concurrency control, or managing any infrastructure!

In the context of serverless, the observation that existing
designs are currently a poor fit for applications that require
state has been the subject of much prior work [15, 22, 24, 25,
43]. For example, Cloudburst [40] proposes a new architecture
for incorporating state into serverless functions, and gg [15]
proposes workarounds to state-management issues that arise
in desktop workloads that are outsourced to thousands of
serverless functions. However, the general approach to fault-
tolerance in these works is to re-execute the entire workflow
when there is a crash or timeout—violating exactly-once
semantics if any SSF in the workflow is not idempotent.

AFT [39] is the closest proposal to Beldi and introduces a
fault-tolerant shim layer for SSFs. However, AFT’s deploy-
ment setting, guarantees, and mechanisms are very different.
First, Beldi runs entirely on serverless functions, whereas
AFT requires servers to interpose and coordinate all database
accesses. As a result, Beldi can run on any existing serverless
platform (or even in a multi-provider setup) without requiring
any modification on their part and without the user needing
to administer their own VMs. Second, Beldi seamlessly en-
ables transactions within SSFs and across workflows with
opacity, whereas AFT targets the much weaker (but more
efficient) read atomic isolation level [4]. Due to the weaker
isolation, it would be more difficult to implement our travel
reservation system on AFT. Finally, Beldi allows SSFs to be
managed independently and to keep their data private from
each other, while AFT’s servers manage all SSF data, handle
failures and garbage collection, and serve as a central point
of coordination for transactions.

10 Conclusion
Beldi makes it possible for developers to build transactional
and fault-tolerant workflows of SSFs on existing serverless
platforms. To do so, Beldi introduces novel refinements to
an existing log-based approach to fault tolerance, including
a new data structure and algorithms that operate on this data
structure (§4.1), support for invocations of other SSFs with
a novel callback mechanism (§4.5), and a collaborative dis-
tributed transaction protocol (§6). With these refinements,
Beldi extracts the fault tolerance already available in today’s
NoSQL databases, and extends it to workflows of SSFs at low
cost with minimal effort from application developers.

Acknowledgments

We thank the OSDI reviewers for their feedback and our shep-
herd, Jay Lorch, for going above and beyond and providing
suggestions that dramatically improved the content and pre-
sentation of our work. We also thank Srinath Setty for many
invaluable discussions and his help with Olive. This work was
funded in part by VMWare, NSF grants CNS-1845749 and
CCF-1910565, and DARPA contract HR0011-17-C0047.

1200 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] M. K. Aguilera and M. Walfish. No time for asynchrony. In

Proceedings of the Workshop on Hot Topics in Operating
Systems (HotOS), 2009.

[2] AWS Lambda. https://aws.amazon.com/lambda/.
[3] Azure Functions. https://azure.microsoft.com/en-

us/services/functions/.
[4] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica.

Scalable atomic visibility with RAMP transactions. In
Proceedings of the ACM SIGMOD Conference, June 2014.

[5] P. A. Bernstein, D. W. Shipman, and W. S. Wong. Formal
aspects of serializability in database concurrency control.
IEEE Transactions on Software Engineering, SE-5(3), May
1979.

[6] Cloud Bigtable overview of replication. https://cloud.
google.com/bigtable/docs/replication-overview.

[7] Quotas and limits for Cloud BigTable.
https://cloud.google.com/bigtable/quotas.

[8] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang,
and D. Woodford. Spanner: Google’s globally-distributed
database. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Oct.
2012.

[9] Consistency levels in Azure Cosmos DB.
https://docs.microsoft.com/en-us/azure/cosmos-
db/consistency-levels.

[10] Azure Cosmos DB service quotas.
https://docs.microsoft.com/en-us/azure/cosmos-
db/concepts-limits.

[11] C. de la Torre, B. Wagner, and M. Rousos. .NET
Microservices: Architecture for Containerized .NET
Applications. Microsoft Developer Division, .NET and Visual
Studio product teams, v3.1 edition, Jan. 2020.
https://docs.microsoft.com/en-
us/dotnet/architecture/microservices/.

[12] DeathStarBench.
https://github.com/delimitrou/DeathStarBench/.

[13] Amazon DynamoDB read consistency. https:
//docs.aws.amazon.com/amazondynamodb/latest/
developerguide/HowItWorks.ReadConsistency.html.

[14] Limits in DynamoDB.
https://docs.aws.amazon.com/amazondynamodb/
latest/developerguide/Limits.html.

[15] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee,
C. Kozyrakis, M. Zaharia, and K. Winstein. From laptop to
lambda: Outsourcing everyday jobs to thousands of transient
functional containers. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2019.

[16] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki,
A. Bruno, J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi,
Y. He, B. Clancy, C. Colen, F. Wen, C. Leung, S. Wang,
L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla, and
C. Delimitrou. An open-source benchmark suite for
microservices and their hardware-software implications for
cloud & edge systems. In Proceedings of the International

Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Apr. 2019.

[17] Google Cloud Functions. Retrying background functions.
https://cloud.google.com/functions/docs/
bestpractices/retries.

[18] Google Cloud Functions.
https://cloud.google.com/functions.

[19] J. Gray. Notes on data base operating systems. In Operating
Systems, An Advanced Course, 1978.

[20] R. Guerraoui and M. Kapałka. On the correctness of
transactional memory. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP), Feb. 2008.

[21] T. Harris. A pragmatic implementation of non-blocking linked
lists. In Proceedings of the International Symposium on
Distributed Computing (DISC), Oct. 2001.

[22] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu. Serverless computing:
One step forward, two steps back. In Conference on
Innovative Data Systems Research (CIDR), Jan. 2019.

[23] N. Herman, J. P. Inala, Y. Huang, L. Tsai, E. Kohler,
B. Liskov, and L. Shrira. Type-aware transactions for faster
concurrent code. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys), Apr. 2016.

[24] A. Jangda, D. Pinckney, Y. Brun, and A. Guha. Formal
foundations of serverless computing. In Proceedings of the
ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA), Oct. 2019.

[25] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and
C. Kozyrakis. Pocket: Elastic ephemeral storage for serverless
analytics. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2018.

[26] H. T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. ACM Transactions on Database Systems
(TODS), 6(2), June 1981.

[27] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and
M. Walfish. Detecting failures in distributed systems with the
FALCON spy network. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 2011.

[28] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and A. El
Abbadi. Low-latency multi-datacenter databases using
replicated commit. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), Aug. 2013.

[29] .Net Microservices Sample Reference Application.
https://github.com/dotnet-
architecture/eShopOnContainers.

[30] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: A transaction recovery method
supporting fine-granularity locking and partial rollbacks using
write-ahead logging. ACM Transactions on Database Systems
(TODS), 17(1), 1992.

[31] E. B. Moss. Nested transactions: An approach to reliable
distributed computing. Technical report, Massachusetts
Institute of Technology, 1981.

[32] S. Mu, S. Angel, and D. Shasha. Deferred runtime pipelining
for contentious multicore software transactions. In
Proceedings of the ACM European Conference on Computer
Systems (EuroSys), 2019.

[33] S. Mu, L. Nelson, W. Lloyd, and J. Li. Consolidating

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1201

https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/bigtable/docs/replication-overview
https://cloud.google.com/bigtable/docs/replication-overview
https://cloud.google.com/bigtable/quotas
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://docs.microsoft.com/en-us/azure/cosmos-db/concepts-limits
https://docs.microsoft.com/en-us/azure/cosmos-db/concepts-limits
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/
https://github.com/delimitrou/DeathStarBench/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://cloud.google.com/functions/docs/bestpractices/retries
https://cloud.google.com/functions/docs/bestpractices/retries
https://cloud.google.com/functions
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers

concurrency control and consensus for commits under
conflicts. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Nov.
2016.

[34] C. H. Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM, 26(4), Oct. 1979.

[35] D. Peng and F. Dabek. Large-scale incremental processing
using distributed transactions and notifications. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Oct. 2010.

[36] S. Setty, C. Su, J. R. Lorch, L. Zhou, H. Chen, P. Patel, and
J. Ren. Realizing the fault-tolerance promise of cloud storage
using locks with intent. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), 2016.

[37] A. Shamis, M. Renzelmann, S. Novakovic, G. Chatzopoulos,
A. Dragojević, D. Narayanan, and M. Castro. Fast general
distributed transactions with opacity. In Proceedings of the
ACM SIGMOD Conference, 2019.

[38] M. F. Spear, V. J. Marathe, W. N. Scherer III, and M. L. Scott.
Conflict detection and validation strategies for software
transactional memory. In Proceedings of the International
Symposium on Distributed Computing (DISC), Sept. 2006.

[39] V. Sreekanti, C. Wu, S. Chhatrapati, J. E. Gonzalez, J. M.
Hellerstein, and J. M. Faleiro. A fault-tolerance shim for
serverless computing. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys), Apr. 2020.

[40] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. M.
Faleiro, J. E. Gonzalez, J. M. Hellerstein, and A. Tumanov.

Cloudburst: Stateful functions-as-a-service.
arXiv:2001/04592, Jan. 2020.
https://arxiv.org/abs/2001.04592.

[41] AWS Step Functions.
https://aws.amazon.com/step-functions/.

[42] J. D. Valois. Lock-free linked lists using compare-and-swap.
In Proceedings of the Symposium on Principles of Distributed
Computing (PODC), Aug. 1995.

[43] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift.
Peeking behind the curtains of serverless platforms. In
Proceedings of the USENIX Annual Technical Conference
(ATC), 2018.

[44] wrk2: A constant throughput, correct latency recording variant
of wrk. https://github.com/giltene/wrk2.

[45] H. Zhang, A. Cardoza, P. B. Chen, S. Angel, and V. Liu.
Fault-tolerant and transactional stateful serverless workflows
(extended version). arXiv:2010/06706, 2020.
https://arxiv.org/abs/2010.06706.

[46] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and
D. R. K. Ports. Building consistent transactions with
inconsistent replication. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), Oct.
2015.

[47] K. Zhang, Y. Zhao, Y. Yang, Y. Liu, and M. Spear. Practical
non-blocking unordered lists. In Proceedings of the
International Symposium on Distributed Computing (DISC),
Oct. 2013.

1202 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://arxiv.org/abs/2001.04592
https://aws.amazon.com/step-functions/
https://github.com/giltene/wrk2
https://arxiv.org/abs/2010.06706

A Artifact Appendix
A.1 Abstract

Our artifact runs on Amazon AWS Lambda without additional re-
quirements or dependencies. Deploying the code, performing the
measurements, generating the plots, and running the benchmarks de-
pend on some third-party frameworks including serverless, gnuplot
and wrk2.

A.2 Artifact check-list

• Program: Golang

• Run-time environment: AWS Lambda

• Metrics: Throughput and latency

• Experiments: Our serverless port of DeathStarBench

• Expected experiment run time: Around 20 hours

• Public link: https://github.com/eniac/Beldi

• Code licenses: MIT License

A.3 Description

A.3.1 How to access

https://github.com/eniac/Beldi

A.4 Installation

A.4.1 Set up docker container

1. login to a registry
$ docker login

2. pull the docker image
for github packages users:
$ docker run -it \

> docker.pkg.github.com/eniac/beldi/beldi:latest
/bin/bash

for docker hub users:
$ docker run -it tauta/beldi:latest /bin/bash

The purpose of this container is to setup the environment needed
to run our configuration, deployment, and graph plotting scripts. The
actual code of Beldi runs on AWS lambda.

A.4.2 Set AWS Credentials

Inside the container run
$ aws configure

It will ask you for an access key ID, a secret access key, region
and output format. The first two can be found/created at:

Set the region to us-east-1 and the output format to json.

A.5 Evaluation and expected result

A.5.1 Primitives (Figure 13)

To run the experiment
$./scripts/singleop/run.sh

The script has two modes

1. fast mode: less time, approximate result (around 5 min)

2. full mode: full experiment (around 30 min)

The script will ask you which mode to run when it starts.
Figure 13 includes three experiments, baseline (without beldi),

beldi and beldi-txn. Their function names are bsingleop, singleop
and tsingleop respectively. After deployment, the script will ask for
the HTTP endpoint for these three lambdas, which needs manual
setup at AWS.

Take bsingleop as an example:

1. Go to the lambda console, click the function

2. Click add trigger

3. Choose API Gateway

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1203

https://github.com/eniac/Beldi
https://github.com/eniac/Beldi

4. Configure as below

5. Click the trigger created

6. Copy the link and paste in terminal

After all three endpoints get set, the experiment will start running.
The result will be saved at beldi/result/singleop/singleop,
which can be loaded by gnuplot

$ gnuplot < scripts/singleop/singleop.pg
The figure will show up as beldi/result/singleop/res.png.

You can use docker cp to copy it to your host.

A.5.2 Garbage Collection (Figure 10)

To run the experiment,
$./scripts/gctest/run.sh

The script has two modes

1. fast mode: less time, prefix of Figure 10 (around 30 min)

2. full mode: full experiment (around 150 min)

The script will ask you which mode to run when it starts.
The script compiles the code and deploys the binary to AWS.

After that, it will ask for the HTTP endpoint for beldi-dev-gctest.
The result will be saved as beldi/result/gctest/gc.

To generate the figure,
$ gnuplot < scripts/gctest/gc.pg

The figure will show up as beldi/result/gctest/res.png.

A.5.3 Movie review service (Figure 14)

Baseline.
$./scripts/media/run-baseline.sh

Each data point takes around 20 min.
The script will first ask you for a request rate (the default is

100). After deployment, it will ask for the HTTP endpoint for
beldi-dev-bFrontend. When it finishes, it will print to the termi-
nal the median and p99 latency. This result will also be saved to
result/media/baseline.json. Alternatively, you can view the
metrics on AWS CloudWatch.

Beldi.
$./scripts/media/run.sh

A.5.4 Travel Reservation (Figure 15)

Baseline.
$./scripts/hotel/run-baseline.sh

Each data point takes around 20 min.
It will ask for the HTTP endpoint for beldi-dev-bgateway. When

it finishes, it will print to terminal the median and p99 latency. It
will also save the result to result/hotel/baseline.json.

Beldi.
$./scripts/hotel/run.sh

1204 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Unearthing inter-job dependencies for better cluster scheduling

Andrew Chung∗ Subru Krishnan† Konstantinos Karanasos† Carlo Curino† Gregory R. Ganger∗
∗Carnegie Mellon University †Microsoft

Abstract

Inter-job dependencies pervade shared data analytics infras-
tructures (so-called “data lakes”), as jobs read output files
written by previous jobs, yet are often invisible to current
cluster schedulers. Jobs are submitted one-by-one, without
indicating dependencies, and the scheduler considers them
independently based on priority, fairness, etc. This paper ana-
lyzes hidden inter-job dependencies in a 50k+ node analytics
cluster at Microsoft, based on job and data provenance logs,
finding that nearly 80% of all jobs depend on at least one
other job. Yet, even in a business-critical setting, we see jobs
that fail because they depend on not-yet-completed jobs, jobs
that depend on jobs of lower priority, and other difficulties
with hidden inter-job dependencies.

The Wing dependency profiler analyzes job and data prove-
nance logs to find hidden inter-job dependencies, charac-
terizes them, and provides improved guidance to a cluster
scheduler. Specifically, for the 68% of jobs (in the analyzed
data lake) that exhibit their dependencies in a recurring fash-
ion, Wing predicts the impact of a pending job on subsequent
jobs and user downloads, and uses that information to refine
valuation of that job by the scheduler. In simulations driven by
real job logs, we find that a traditional YARN scheduler that
uses Wing-provided valuations in place of user-specified pri-
orities extracts more value (in terms of successful dependent
jobs and user downloads) from a heavily-loaded cluster. By
relying completely on Wing for guidance, YARN can achieve
nearly 100% of value at constrained cluster capacities, almost
2× that achieved by using the user-provided job priorities.

1 Introduction
Data lakes have become core elements of modern data-driven
enterprises, providing required data storage and analysis in-
frastructure (see Fig. 1). Data lakes enhance data processing
via a combination of two critical properties: (i) a highly con-
solidated, multi-tenant infrastructure that enables multiple
teams of data scientists and engineers to share resources rather
than each having their own, and (ii) low data access barriers
that allow easy data sharing between users and various types
of data analytics applications. Combined, these properties
increase data re-use [4, 27] and reduce overall computational
resource-hours consumed [31, 33].

This same data and resource sharing creates a new chal-
lenge: hidden inter-job dependencies. We say that Job 2 de-
pends on Job 1 if Job 2 takes as input any output file generated

Shared data
Org 1

Org 2

Org 3

2

1

3

W1

Running jobs

Compute

R2 W2

R3 W3

Shared data lake

Scheduler

1

2

3

Figure 1: Data lake overview. Different jobs submitted by different
organizations share the same compute infrastructure and read (R)
and write (W) to the same storage system, thereby creating inter-job
dependencies as jobs consume the output of other jobs. e.g., Job 2
(from Org 2) reads a file written by Job 1, so Job 2 depends on Job 1.

and stored into the shared distributed file system by Job 1.1

For example, in Fig. 1, Job 3 (from Org 3) depends on Job 2,
which in turn depends on Job 1. We refer to these as hidden de-
pendencies, to contrast them with explicit computation DAGs
managed by schedulers within workflow managers [30,40,41],
because there is no indication of such dependencies indicated
in the job submissions—the dependencies are not expressed
to the cluster scheduler.

The advent of GDPR [56] forced large companies such as
Microsoft to invest in infrastructures to track data provenance
and data movement both within the data lake and to external
components. This created an unprecedented opportunity to
uncover and exploit these inter-job dependencies for schedul-
ing: We analyze data extracted from petabytes of job and data
provenance logs for 90 days of a 50k+ server cluster (part of
Microsoft’s Cosmos data lake [6, 12]) shared by over 1300
users from more than 150 internal organizations. In total, our
analysis covers over 4 million submitted jobs and 16 million
inter-job dependencies. We find that almost 80% of submit-
ted jobs depend on output generated by at least one other
job. Indicating the breadth of sharing, many dependencies
are cross-organization, with 20% of jobs depending on jobs
submitted by another organization.

Despite so much inter-job dependence, systems provide
little support for addressing associated challenges. For exam-
ple, in Cosmos, different users and organizations make their
own decisions regarding when to submit jobs and how to
set job priorities. Ideally, all co-dependent organizations and
users would set up clear Service Level Agreements among
themselves to ensure timely arrival of input data for business-
critical analyses. Yet, we see signs of insufficient coordination

1Our nomenclature and analyses focus on fundamental dataflow dependen-
cies among batch analytics jobs, not distributed stream processing or artifi-
cial inter-relationships caused by resource contention.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1205

to ensure that jobs’ outputs are produced in time for consump-
tion by dependent jobs. For example, 13% of submitted jobs
depend on output files from jobs that execute at a lower prior-
ity, which can result in priority inversion since job schedulers
are not dependency-aware. More broadly, 34% of recurring
jobs are submitted without checking if inputs they depend on
are available, failing immediately if they are not.

The Wing dependency profiler efficiently processes prior
job and provenance data to predict the impact of each new job
on future jobs and user downloads. Although it is inherently
difficult to know what future jobs will depend on the output
generated by a current job, Wing finds success by focusing
on recurrence. Previous workload studies have shown that >
60% of jobs in data analytics environments are recurrent and
suggest that dependencies of these jobs can similarly follow
certain patterns [34, 51]. Our analyses in Cosmos confirm
that inter-job dependencies are recurrent (79% of all inter-job
dependencies are recurrent), with jobs of the same template
exhibiting recurring input consumption patterns. As such,
Wing uses historically recurring dependencies to (i) analyze
and predict relationships between common, dependent recur-
ring jobs, and (ii) guide a cluster scheduler to value jobs in a
way that accounts for hidden dependencies.

To explore Wing’s efficacy, we pair Wing with stock YARN
scheduling (Wing-Agg), replacing user-provided priorities
with Wing-guided priorities. Specifically, we use number of
downloads attained associated with a job’s outputs as an ap-
proximation for job value,2 and assign priorities to jobs based
on value efficiency [8, 28, 44] (job-value divided by resource-
time-used). We use trace-driven simulation to evaluate Wing-
Agg, compared to using the user-provided priorities (as used
in Cosmos), when the goal is to maximize the overall value
attained. We find that Wing-guided scheduling achieves up
to 66% more value than the Cosmos default, under cluster ca-
pacity crunch. Further, when organizational cluster resource
boundaries are removed, a Wing-guided scheduler can achieve
nearly 100% of value at constrained cluster capacities, almost
2× the value achieved by scheduling based on user-provided
job priorities.

Contributions. This paper makes three primary contribu-
tions: (i) It presents the first detailed public study of hidden
inter-job dependencies in a large-scale data analytics clus-
ter, revealing important problems and opportunities; (ii) it
describes a novel system for extracting historical inter-job
dependencies from provenance data, at scale, and predicting
the impact of a newly-submitted job on future jobs and users;
(iii) it shows that use of such predictions can allow a modern
scheduler, with minimal changes, to better serve the overall
workload by prioritizing the highest-impact jobs.

2While job output download-counts are imperfect as ground-truth for job
value, a limited check (§4.3) against known important levels for six business-
critical jobs indicates that it at least sometimes behaves reasonably.

2 Hidden inter-job dependencies in Cosmos
This section describes and analyzes hidden inter-job depen-
dencies in a large production data lake (Cosmos), highlighting
observations that affect resource scheduling decisions and op-
portunities. It provides an overview of Cosmos and inter-job
dependencies, introduces terminology used through the rest
of the paper, and quantifies the prevalence and characteristics
of hidden inter-job dependencies.

2.1 Cosmos
Overview. Cosmos is one of the largest big data analytics
infrastructures in the world. Deployed internally within Mi-
crosoft, it is made up of multiple clusters, each with 50k+
nodes [12]. Within Cosmos, more than 80% of infrastructure
capacity is dedicated to SCOPE jobs [6, 12], which are batch
data analytics jobs similar in nature to Apache Spark [57]
and MapReduce [14]. Our work primarily focuses on SCOPE
jobs and inter-job dependencies between them.
CosmosFS and operations. SCOPE jobs submitted to a Cos-
mos cluster read input from and write output to a distributed
file system known as the CosmosFS. A user can also access
CosmosFS through a front-end service to upload or download
files directly. We call actions performed on files in CosmosFS,
either by SCOPE jobs or through the front-end, operations.
Continuous logging. Cosmos continuously tracks and logs
data provenance and job telemetry (e.g., compute-hours, sub-
mission/completion time, and job structure metadata) into
external services: ProvRepo stores data provenance and and
JobRepo stores job telemetry. Our analyses and Wing use
these logs to figure out inter-job dependencies.
Job template vs job. A job template [32, 34] is a program to
be executed (one or multiple times) in Cosmos, while a job is
an actual execution of a job template. Each submission of a
job template results in a job.
SCOPE job submission patterns. Common patterns used to
submit SCOPE jobs within Microsoft include:
(i) Manual submissions: Where a job is manually submitted.
(ii) Workflow managers: Workflow managers allow users to
automate SCOPE job submissions using workflows. Work-
flows consist of inter-dependent jobs that often map to a busi-
ness task, and can be triggered periodically or conditionally.
Within Microsoft, there are at least five major production
workflow managers, each with thousands of users.
(iii) Custom shell scripts: Scripts can be set up to perform
automated job submissions for users. This method is more
flexible, but requires specialized management.

2.2 Inter-job dependencies
How are inter-job dependencies formed? We say that a job
A depends on a job B if A consumes any of B’s output as in-
put. As a concrete example of a recurring cross-organization
inter-job dependency, periodic jobs deployed by the data com-
pliance team process CosmosFS access logs, which are gener-
ated hourly by the CosmosFS team, to detect data compliance

1206 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Characteristic Description Heuristic
Recurring Recurring jobs are jobs whose template is submit-

ted many times over time, often to analyze fresh
data. Recurring dependencies are dependencies oc-
curring between jobs of two recurringly-submitted
job templates.

Borrowing from Morpheus [34], jobs are identified as recurring if (a) jobs of a
template are submitted at least three times over a period of three months, with at
least one submission each month, (b) templatized job names are an exact match,
and (c) source-code signatures are an approximate match. Dependencies are
identified as recurring if both the upstream and the downstream jobs are recurring.

Ad-hoc Ad-hoc jobs/dependencies are those not recurring. Ad-hoc jobs/dependencies are those not identified as recurring.
Periodic jobs Periodic jobs are recurring jobs that are submitted

“on-the-clock” at a fixed cadence (e.g., submitted
every hour at the start of the hour).

Jobs of a template are identified as periodic if they are recurring and if job
submissions have near-constant inter-arrival time. To determine if inter-arrival
times are near-constant, we use the coefficient of variation (CV). Jobs with small
CV in their inter-arrival times are identified as periodic, while others are aperiodic.

Polling Jobs are polling if they scan and wait for their inputs
to become available before their submission. Input
dependencies of polling jobs are similarly polling.

Jobs are identified as polling if they (a) are not identified as periodic, indicating
that they are not submitted on a clock, (b) never fail due to missing files from
their recurring upstream jobs, and if (c) they are submitted within 15 minutes of
the completion of their latest-completing dependent job. Input dependencies of a
polling job are polling.

Hard
dependencies

Dependencies are hard if the downstream job re-
quires the output(s) of the upstream job to be able to
run successfully. If the input(s) of the downstream
job is not ready by the time of its submission, the
downstream job fails with a missing file exception.

Dependencies are identified as hard if they are (a) ad-hoc, (b) recurring and > 95%
of jobs of the same template consume the output of only one job of the same
upstream job template, or (c) if the downstream job consumes the output of the
same number of upstream jobs of the same job template all the time, indicating
that they expect the same number of inputs from the same number of jobs from
the upstream template.

Table 1: Summary of and heuristics to identify and characterize job and dependency types.

issues. There are many ways inter-job dependencies can form,
and while some inter-job dependencies form through care-
ful negotiation between users/organizations, most are formed
organically, such as via:

(i) Data discovery through data catalogs: A user finds
an interesting dataset while browsing through Microsoft’s
internal data catalog, and sets up a job to analyze the dataset.
(ii) Script inheritance: A user wanting to submit a SCOPE
job to analyze a popular dataset often starts with a script
written and shared by others, that contains logic to extract the
dataset. The new script, while containing custom logic, often
retains parts of the original script (e.g., priority settings).
(iii) Logically related intra-workflow jobs: Workflows,
which can consist of multiple inter-connected jobs, are of-
ten constructed to improve job modularity and manageability.
Each run of a workflow potentially creates many inter-job
dependencies, as jobs within a workflow are inter-dependent.
Note that, although a workflow manager may know about
these inter-job dependencies, there is no interface for a work-
flow manager to express them to Cosmos.

Characteristics of jobs and dependencies. Our analyses un-
covered a few major types of dependency and job character-
istics based on job submission patterns (Table 1). The three
most important job and inter-job dependency characteristics
for our purposes are recurring, ad-hoc, and hard.
Challenges. Among the many ways in which inter-job de-
pendencies can form and evolve, most promote loosely main-
tained (or non-existent) contracts between inter-dependent
jobs in favor of developer convenience. This leads to an envi-
ronment in which most users know little about upstream jobs
that produce their input datasets, and even less about down-
stream jobs that depend on the data their jobs produce. These
sub-optimal inter-job dependency configurations are often
only exposed as a result of capacity impairment, unexpected

job failures, or data/job audits. Indeed, inter-job dependencies
are hidden through the availability of the many disaggregated
solutions to manage and submit jobs and workflows, prompt-
ing us to develop Wing to uncover these dependencies.

2.3 Observations on inter-job dependencies
This section motivates our work on exploiting inter-job de-
pendencies by describing consequential empirical observa-
tions about our inter-job dependency data, observed over three
months in a single Cosmos cluster.
Observation 1 (Recurring jobs & dependencies): Most
jobs and dependencies are recurring. Recurring jobs make up
68% of all submitted jobs (the other 32% of jobs are ad-hoc),
while recurring dependencies make up 79% of all dependen-
cies (the other 21% of dependencies are ad-hoc). Recurring-
ness of jobs and dependencies suggest predictability, which
we show to be achievable in §3.
Observation 2 (Priority mis-configurations): In Cosmos,
jobs are assigned resources in declining priority order, where
the priority of a job is assigned by the job’s submitter. Here,
we find that potential priority mis-configurations are frequent
within Cosmos: jobs of 21% of job templates have the chance
to be systematically priority-inverted—i.e., recurring jobs
consuming their output have a higher priority. In addition, up
to 33% of ad-hoc jobs are assigned higher priority than the
average recurring job submitted within the same hierarchical
queue,3 where recurring jobs are often production jobs [34].
Observation 3 (Uncoordinated jobs): Many jobs are sub-
mitted without explicit coordination with respect to the com-
pletion of their upstream jobs—i.e., these jobs do not wait
for their input to become available nor are tolerant to missing
input, yet they are submitted blind with respect to the avail-

3Hierarchical queues designate resource shares of an organization in clusters
at Microsoft. Priorities are only comparable between jobs in the same queue.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1207

ability of their inputs. Such jobs make up 34% of recurring
jobs, and can be susceptible to failure due to missing input
from an upstream job not completing in time.
Observation 4 (Cross-org jobs & dependencies): Cross-
org jobs and dependencies are common at Microsoft. Up to
95% of organizations have cross-org dependencies. Of all
dependencies, 33% are cross-org, and 17% of template de-
pendencies are cross-org, where a template dependency is
a dependency between recurring jobs of two job templates.
Furthermore, 28% of jobs and 23% of recurring jobs are in-
volved in cross-org dependencies. Cross-org dependencies
can be harder to manage because they require coordination
between jobs across hierarchical queues and between job
owners across different organizations.
Observation 5 (Jobs are highly inter-connected): Model-
ing jobs and their dependencies as a directed acyclic graph
(DAG), where inter-job dependencies represent edges, we find
that more than 50% of jobs are inter-connected in a single
weakly connected component (CC), and CCs of sizes ≥ 10
cover more than 80% of all jobs. We also find that the larger
a CC, the more bottom-heavy it is—the failure of certain jobs
in such large CCs can cause significant amounts of cascading
failure downstream.
Observation 6 (Many jobs can be load-shifted in time):
Analyzing when the outputs of jobs are consumed by both
downstream jobs and users, we find significant opportunity to
delay, or load-shift jobs in time, which allows cluster operators
to mitigate capacity crunches or reduce power cost [2, 3, 36].
A job has the potential to be able to be load-shifted by up
to T hours if it is (1) recurring, (2) has a gap of > T hours
before its output(s) are consumed, and (3) has run times of <
T hours. (1) allows the job to be identifiable in the future, and
(2) and (3) ensure that the job has enough slack to be safely
delayed by up to T hours. We find that 31, 27, 22, and 14%
of all jobs can be potentially load-shifted by up to T = 1, 3, 6,
and 12 hours, respectively. 4

Discussion. We have seen failure due to lacking input and
priority inversions happen during manual inspection of job
logs and dependency graphs, but we can not provide counts.
We have also seen that: (1) users can and do fix their jobs,
sometimes at the cost of sub-optimal performance and results,
to work around issues, such as by by consuming stale data;
and (2) some of these problematic inter-job dependencies
can be masked with sufficiently available resources. A better
understanding of inter-job dependencies can help us uncover
problematic mis-configurations before they show up.

3 Inter-job dependency predictability
Inter-job dependencies show potential in guiding scheduling;
but it is unrealistic to expect job submitters to provide all
inter-job dependencies up-front due to the fragmented na-
ture of inter-dependency knowledge (§2.2). While inter-job
4While load-shifting is an interesting topic for future research, we do not
directly address methods for load-shifting in this paper.

dependency recurrence shows promise, for Wing to effec-
tively guide schedulers with inter-job dependencies, recurring
inter-job dependencies also need to be predictable—i.e., it
is important that past dependencies tell us something about
the future. In this section, we use a simple model to predict
future occurrences of recurring inter-job dependencies, and
show that inter-job dependencies can be predictable.

3.1 Prediction model
Given a specific point in time where a job ju of template Ju
(ju ∈ Ju, where the symbol “∈” is used as shorthand for “of
instance”) has arrived, for each recurring job template Jd that
depends on the output of template Ju in a recurring fashion,
our prediction model has two targets: (T1) whether or not a
recurring job ∈ Jd will arrive and depend on ju in the future
and (T2) when the first instance of such a job will arrive.
Model for (T1): Will a downstream recurring job arrive?
For (T1), our model uses a configurable prediction threshold
tr% ranging from 0 to 100 to predict whether or not a job
∈ Jd will arrive: If ≥ tr% of prior jobs ∈ Ju have their outputs
consumed by a job ∈ Jd , then the predictor predicts true;
otherwise it predicts false.
Model for (T2): When will a downstream job arrive? For
(T2), our model aggregates previously observed recurring de-
pendencies where the upstream job ∈ Ju and the downstream
job ∈ Jd , and computes the median elapsed time from the
submission of the upstream job to the submission of the first
dependent downstream job.

3.2 Predictability evaluation
Dependencies change slowly over time. Dependency pat-
terns of recurring jobs change slowly over time, and making
predictions based on inter-job dependencies over longer peri-
ods of time presents challenges. For example, in (T1), using a
month of inter-job dependency data to train our model to pre-
dict the arrival of dependent jobs occurring in the next month
only allows us to capture at most 77% of upcoming jobs. Reg-
ularly training our model on a week of data to predict for the
next week works comparatively well, because (1) it allows
us to capture up to 95% of upcoming jobs and (2) it allows
us to characterize the dependencies of 89% of job templates
(covering 97% of all jobs), since jobs of most templates are
submitted with an inter-arrival time of less than a week (with
daily submissions being the most common).
(T1) metrics and model performance. We evaluate the pre-
diction quality of our model on (T1) based on precision5 and
recall.6 Fig. 2 examines the tradeoff between precision and

5Precision is defined as the number of true positives (TPs) divided by the
sum of TPs and false positives. Precision can be thought of as the percentage
of positive predictions our model makes (i.e., a downstream job will arrive)
that are truly relevant (i.e., such a downstream job actually arrives).

6Recall is defined as TPs divided by the sum of TPs and false negatives.
Recall can be thought of as the percentage of relevant results that our model
is able to correctly predict.

1208 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0.4 0.5 0.6 0.7 0.8 0.9

Recall

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

on

0

10

20

30
40

50
60

70
809099

Predictor

Figure 2: (T1) precision-recall tradeoff. Predictor shows the
precision-recall tradeoff our dependency-based job arrival predic-
tor makes. Each point on the curve specifies a different setting for
the prediction threshold (tr). As tr → 100% (more selective), a larger
fraction of predictions are relevant (more precision), but less relevant
jobs are captured in total (less recall).

recall for our model using various settings for the prediction
threshold tr. As the model becomes more selective with re-
spect to which downstream jobs will arrive (tr → 100%), it
retains less relevant dependencies in total, but the dependent
recurring jobs it predicts to arrive mostly do show up. The
reverse is true as the model becomes less selective (tr → 0%).

We discuss the evaluation of our model based on a thresh-
old that balances precision and recall. A common way to
identify such a threhold is to select the threshold that max-
imizes precision ∗ recall. We find that tr = 20% yields the
greatest precision∗ recall, and therefore evaluate our model
by setting tr = 20%. The threshold used in an online predic-
tion service can similarly be tuned from week-to-week based
on observed precision and recall, though the specific target
to optimize depends on the penalties associated with making
mistakes in recall or precision.
(T2) metrics and model performance. To evaluate the per-
formance of our model on predicting when a downstream job
jd ∈ Jd will arrive at the arrival time of an upstream job ju,
jd must satisfy two conditions: our model must predict jd to
arrive based on jobs that have already arrived during a point
in time in the execution trace and it must actually arrive. Our
evaluation focuses on jobs that satisfy both above conditions.

To evaluate the performance of our model for (T2), we
use the Root Mean Squared Error (RMSE) and the Median
Absolute Error (MAE) metrics to measure prediction error
in absolute time units. RMSE measures error by comput-
ing the root of the average of squares of errors, while MAE
measures error by computing the median of absolute error =
∣ f orecast − actual∣, over all predictions. To measure rela-
tive error, we use the percentage error metric: it computes
(f orecast−actual)/actual for each prediction.

While we discuss the evaluation of our model on (T2) set-
ting tr = 20%, we find that confidence in job arrival prediction
only slightly affects time-to-dependency prediction quality.
This does not mean that the setting of tr is inconsequential,
as tr affects the predictions of whether or not a job will arrive.
Here, we evaluate the time-to-dependency predictions only
for jobs that are both predicted to arrive and actually arrive.

tail -50 0 50 100 150 tail

Time-to-dependency % error = (f − a)/a

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
jo

bs
w

/
%

-e
rr

or
<

X

tr = 10

tr = 20

tr = 50

tr = 90

Figure 3: (T2) Time-to-dependency (TTD) prediction. This figure
shows our predictor’s performance on predicting TTD from the sub-
mission time of the upstream job, at different settings of tr in a CDF.
f is the forecasted TTD, and a is the actual TTD. While being more
precise (tr → 100) does not yield better TTD predictions, it does
affect predictions on whether or not a job will arrive.

We observe the RMSE and MAE of our model to be
2.5 hours and 22 minutes, respectively: MAE is smaller, as
RMSE can be skewed by large mis-predictions at the tail.
While our absolute errors can be improved using more so-
phisticated techniques, we find that our model predictions are
reasonable for most jobs in our workload in terms of relative
error, as shown in Fig. 3 in the form of a cumulative distri-
bution function (CDF), for different settings of tr: the arrival
of 50% of arrived jobs ∈ Jd are predicted within ±20% of
its actual arrival. But, there is also a non-trivial number of
significant over-estimates: the arrival of 7% of arrived jobs
∈ Jd are over-estimated by 2× or more—i.e., the actual jobs
arrive more than 2× earlier than predicted. While this may
not explain all mis-estimations, we have found that aperiodic
recurring jobs (such as those that are manually triggered) and
jobs that depend on the outputs of multiple jobs are prone to
greater mis-estimates (our simple model presented here only
tries to predict the arrival of a future job based on one of its
directly upstream recurring jobs).

4 The Wing dependency profiler
This section describes Wing, an end-to-end dependency pro-
filer meant to be run intermittently (e.g., weekly) that un-
covers historical, hidden inter-job dependencies from data
provenance logs. It performs a series of analyses using these
inter-job dependencies in-tandem with historical job teleme-
try, yielding characterizations of jobs and inter-job depen-
dencies such as signs of misconfigured priorities between
recurringly-dependent jobs (§2.3), predictability of upcoming
jobs (§3), and estimates of recurring jobs’ aggregate value
considering their impact on downstream jobs that rely on their
outputs, directly or indirectly (§4.3). These characterizations
are ultimately used to inform better scheduling decisions,
where its benefits are explored in more detail in §7.

4.1 Architecture
First, we introduce related systems and data sources upon
which Wing depends, and provide an overview of Wing’s
architecture, shown in Fig. 4.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1209

Input data sources. Wing relies on the following data
sources, from which we derive job dependencies and insights
thereof: (i) JobRepo preserves job telemetry (e.g., compute-
hours, submission/completion time, and job structure meta-
data) for submitted jobs. Wing uses JobRepo to derive recur-
ring jobs and their historic statistics. (ii) ProvRepo tracks data
provenance across Microsoft to support auditing and compli-
ance applications [56]. Specifically, it stores data provenance
across systems deployed within Microsoft, including but not
limited to Cosmos. ProvRepo is used by Wing to uncover his-
toric inter-job dependencies, and from there, infer recurring
dependencies between recurring jobs.

Analysis pipeline. Wing’s data analysis pipeline, primarily
composed of a workflow of inter-dependent SCOPE jobs,
is managed by a workflow manager and is periodically exe-
cuted in Cosmos. The pipeline reads data from JobRepo and
ProvRepo and writes its output to be consumed by WingStore.

WingStore. The WingStore is a service that hosts the resulting
analyses of Wing’s analysis pipeline, periodically renewed
each time a new instance of the pipeline completes. Given a
historical job or the identifier of a recurring job, one can look
up relevant historical job and inter-job dependency data: Such
historical job data include, but are not limited to, distributions
of job runtime and compute-time used. Historical inter-job
data include distributions of job fan-in/fan-out, recurring inter-
job dependencies, and distributions of number of downstream
jobs. The WingStore is the interface between Wing’s analysis
and a Wing-guided resource manager.

4.2 The Wing pipeline: Single-hop analysis

Wing considers both single-hop and multi-hop dependencies
in its analyses. The former occur when jobs directly consume
the output(s) of another job. The latter are indirect dependen-
cies between jobs that are connected by means of intermediate
jobs. Here, we focus on the derivation of single-hop depen-
dencies, which multi-hop dependencies are built upon, from
historical provenance data stored in ProvRepo.

Single-hop dependency derivation. To derive single-hop
dependencies from provenance data in ProvRepo (stored
roughly in the form of <input, operation, output>, but
with much more detailed context), we perform a self-join
on the ProvRepo dataset with the condition of p1.input =
p2.output. A näive self-join across multiple months of data
is extremely compute intensive and can yield incorrect results,
as a single file can be written multiple times by different jobs.
To reduce join complexity and ensure correctness, we apply
the following additional rules on the join:

(1) R/W correctness: The read must occur after the write. i.e.,
p1.operation must occur after p2.operation.
(2) Last-writer wins: If multiple writes occur on a single file,
the read only depends on the latest write prior to the read.
(3) Time windowing: The time between the read and the write

Cosmos compute
Scheduler

Wing pipeline WingStore
Wing

ProvRepo JobRepo

Read

Workflow
manager Periodically

deploy
Analysis
result

Jobs + resources

Guides

Figure 4: Wing architecture. A workflow manager periodically sub-
mits Wing’s pipeline to Cosmos. Upon pipeline completion, results of
its analyses are loaded in to WingStore, which informs Wing-guided
schedulers (§6.2) with job and dependency characteristics.

operations are at most T days, where we set T = 30.7

Time windowing can reduce join complexity and allow our
analyses to account for inter-job dependencies more fairly—
if time windows are not applied over an observation period,
operations issued earlier necessarily have a higher chance to
be depended-upon. In other words, for each operation between
days 31–608 in our dataset, time windows give them equal
opportunity (in wall-clock time) to be depended-upon by
directly-dependent operations.
Heuristics to identify recurring jobs & dependencies. A
key to the analyses that we perform is the identification of
recurring jobs, for which we employ the time-tested heuristic
proposed in Morpheus [34] and applied in multiple production
environments [34, 51]. Through the identification of recur-
ring jobs and uncovered single-hop dependencies, the Wing
pipeline further derives recurring dependencies and uncovers
dependency characteristics of jobs using similar heuristics,
described in Table 1. While ideally, we would like the full se-
mantics of how inter-job dependencies are formed, due to the
availability of the many different ways to submit a job (§2.1),
our usage of heuristics is necessary. Sampling 25 jobs for
manual verification, we confirm that our heuristics categorize
jobs and dependencies correctly for 24 of the jobs.

4.3 Motivating multi-hop analysis: Job
valuation using aggregate downloads

Companies can benefit more from their infrastructure invest-
ment through effective scheduling that prioritizes the com-
pletion of the most valuable jobs. But, often times, inter-job
dependencies have not been considered when evaluating the
importance of jobs—e.g., a job with high value can poten-
tially depend on jobs with low value. In these cases, inter-job
dependency awareness is key to ensure that upstream jobs do
not disrupt high-value downstream jobs. Here, we look at why
inter-job dependency analyses beyond direct dependencies
(i.e., multi-hop analyses) can inform better, dependency-aware
7In retrospect, we should have set T = 31 to capture all monthly cycles, but
our results based on T = 30 remain valid because (1) 98% of dependencies
occur within a week, and (2) jobs of 89% of templates (97% of all jobs)
have mean inter-arrival times of less than a week.

8Operations between days 31–60 are analyzed because we observe fully over
time windows of 30 days both operations they depend on (days 1–30) and
those that depend on them (days 61-90).

1210 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

valuation of jobs to improve scheduling, and explore using
the number of downloads attained associated with the outputs
of a completed job as a proxy-metric for job value.
Priority assignments. To prioritize jobs today, schedulers
in most production data analytics environments, including in
Cosmos, use priority assignments to determine a job’s order in
its claim to resources. In this context, the notion of job value
is often translated into a priority assignment on the job—the
greater a job’s value, the higher its priority. However, prior-
ities in clusters are difficult to set correctly (Observation 2),
and even at Microsoft, whose multi-billion dollar clusters are
carefully provisioned and whose user-base is highly skilled,
incidents triggered by late completion of hand-picked, closely
monitored, and highly valued production jobs still occur due
to mis-configured priorities.
Multi-hop value impact. The completion of a job can often
be associated with some measurement of monetary value to a
company. For example, jobs computing Bing’s search indices
directly impact the revenue of Microsoft. We term the direct
value associated with the completion of a job its job-local
value. However, the delay or failure of a job may not only
affect its users and consumers of its output: through analyses
of Cosmos’s job DAG (Observations 3 and 5), we find that
the delay or failure of certain jobs impact a lot more jobs and
users than others. Hitches in the execution of these jobs are
likely to cause much more financial and operational damage
to users and organizations within the company due to the rip-
ple effects they can create downstream, yet their impact might
not always be obvious. While prior work [18, 34] suggest
that finishing jobs prior to the arrival of their first directly-
dependent job is important, quantifying the aggregate value
of a job necessitates inter-job dependency analyses extending
beyond a single hop (i.e., multi-hop analyses). Fig. 5 show-
cases a toy example that computes such an aggregate value
for the root job of a dependency tree.
Approximating value impact with agg. downloads. Al-
though determining the true dollar-value of jobs is difficult,
we find it promising to evaluate the importance of jobs based
on their historical aggregate user downloads, which measures
hypothetically if a job fails, how many download operations it
will affect (directly or indirectly) in total. In developing Wing,
we have also experimented with several alternative metrics
e.g., sum of cpu-hours and number of downstream jobs. Num-
ber of downloads was preferred by our resource management
team because file downloads (1) are the most direct way users
interact with a job’s output; (2) can be easily interpreted and
understood; and (3) because file downloads can be used to
quantify how soon the output(s) of a job are used upon its
completion. The properties of file downloads allow aggregate
downloads counts to provide a proxy-measure to how the
delayed or failed outputs of jobs can impact users in and out
of Microsoft. Aggregate download counts also implicitly cap-
ture the number of downstream jobs that can be impacted by
the failure of a job through their associated output downloads.

A B
D

E
C

Agg. Value(A)

Time from submission of A

Value

Figure 5: Value aggregation and value decay. In this toy example,
jobs A–E are submitted at strict, absolute times, where the x-axis
denotes time relative to the submission of job A. B and C have hard
dependencies on A, and D and E have hard dependencies on C.
The aggregate value of A is the sum of the aggregate values of B
and C and A’s own job-local value. With Wing, we can model how
the aggregate value of A decays as it fails to complete by the time
its downstream jobs arrive, losing the value of B at the time of B’s
submission, and collectively losing the values of C, D, and E at the
time of C’s submission (D and E depend indirectly on A through
C, so if C fails, D and E will also fail). In this example, A retains its
job-local value until the end.

While further work is required to confirm that aggregate down-
load counts represents job value and to explore how it should
be combined with other signals (e.g., user-provided priorities),
we use it in this paper as our approximation of value.
Sanity-checking aggregate downloads as job value. We
conducted a sanity check, using aggregate download counts
for job valuation to see how it matches up with pre-existing
notions of job importance. To that end, we obtained a list
of six recurring job templates hand-curated by the Cosmos
resource management team at Microsoft, each vetted to be
significantly important to Microsoft’s operation. We then look
at Wing’s ranks of those jobs.

Our results show that our valuation scheme mostly holds
up for the most important jobs: We find that jobs of five of
the six templates are consistently ranked by our scheme to
be among the top 4% of all jobs submitted, with jobs of one
template still ranking in the top 11%. We also measure rela-
tive rankings by user-specified priority and by our heuristic
among jobs submitted to the same organizational queue, since
priorities are only relevant when compared to other jobs shar-
ing the same queue. For four out of the six hand-curated job
templates, Our heuristic produces organizationally-relative
rankings within 5% of priority assignment rankings. For one
of the six job templates, our valuation scheme produces a
ranking lower than that produced by priority assignments by
up to 11%. For the last of the six job templates, however,
we produce a ranking higher than that produced by priority
assignments by 50%. This is surprising because we expected
priority assignments for these six job templates, which are all
verified to be highly important, to be extremely well-tuned,
with highly-ranked priorities assigned to jobs of all six tem-
plates. Yet, jobs of the last template are only ranked at the 49th

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1211

percentile of all submitted jobs within its queue by priority
assignment—this mis-configuration may lead to significant
issues once the queue becomes more heavily-loaded.
Future work: Further validating agg. downloads as value.
We acknowledge that accurate job valuation is a difficult prob-
lem that requires further study, and that different companies
can have different notions of job value. While further efforts
are ongoing at Microsoft to validate the efficacy of our job
valuation scheme (e.g., conducting surveys of Cosmos users),
Cosmos’s resource management team has noted that our val-
uation scheme is better than any of their existing heuristics
used for job valuation, and are considering adopting it to aid in
rolling out job upgrades and using it as a weighting function to
report certain cluster performance indicators (e.g., reliability).

4.4 The Wing pipeline: Multi-hop analyses
Wing provides a flexible iterative solution implemented on top
of SCOPE for performing downstream multi-hop analyses,
in which for a given job, we analyze properties of its directly
and indirectly-dependent jobs. Provided a set of single-hop
inter-job dependencies, our framework allows the computa-
tion of both the transitive closure and aggregate statistics of
all sub-DAGs rooted at each job in an inter-job dependency
DAG (defined in Observation 5). Such multi-hop analyses
are important to effectively guide scheduling decisions, as it
can compactly characterize each job’s downstream impact:
i.e., if a job fails or is delayed, how will its downstream jobs
and users be affected (§4.3)? Our framework generalizes the
algorithm proposed in Owl [9], which allows multi-hop de-
pendency analysis to be applied to other applications, e.g.,
fixing priority inversions9 for Cosmos jobs.
Algorithm input. Our algorithm input is a single-hop job
dependency DAG specified as a relational table, where the
first column (job) holds the dependent job and the second
column (depOn) holds the depended-upon job.
Algorithm output. Our algorithm outputs a relational table
describing multi-hop dependencies. The first column (job)
holds the downstream job, the second column (depOn) holds
the (potentially multi-hop) upstream job, and the third column
(agg) holds Wing-computed weights aggregated along all
paths between the pair of up/downstream jobs.
Aggregation Functions (AFs). Each downstream multi-hop
analysis specifies the following Aggregation Functions (AFs):
• Weight function (wt_fn): wt_fn takes in a job and its in- (or
out-) edges as input, and outputs a weight wt for each graph
edge. This operation is done once to convert the input DAG
into an edge-weighted DAG.
• Edge operation (e_op): For two vertices t and v connected
by an intermediate vertex u, e_op performs an aggregation of

9Wing can fix priority inversions by raising the upstream job’s priority before
its dependent high-priority job arrives. Traditional OS methods require both
jobs to have arrived at the scheduler, and dependency between the two jobs
is communicated through concurrency data structures (e.g., locks). There is
no lock-equivalent in Cosmos’s scheduler.

weights between a pair of (potentially auxiliary) in- (t,u) and
out-edges (u,v) of u, constructing a new auxiliary weighted
edge connecting t and v. Specifically, it computes the weight
for an auxiliary edge based on new edges explored in each it-
eration between two indirectly connected jobs. This operation
should be distributive over the p_op (defined following).
• Path operation (p_op): p_op aggregates weights on all ex-
plored paths between two jobs. While a unique path cannot
be explored multiple times, the algorithm can make multiple
traversals and aggregations between the same pair of up- and
downstream jobs if multiple paths between two jobs exist.
This operation should therefore be associative.
• Downstream operation (ds_op, optional): The downstream
operation is the last step performed, after our iterative algo-
rithm converges. For a job, it performs an aggregation on all
of its downstream jobs and aggregated path weights.
Algorithm outline. We first preprocess the job dependency
DAG with the AF wt_fn to generate the DAG edge weights
wt. Then, for each job in parallel, our algorithm traverses the
DAG and computes transitive closures along all paths, main-
taining an “aggregated version” of wt using e_op and p_op
along the way. Our algorithm completes in O(log(diameter))
iterations, where diameter is the longest path in the DAG. In
each iteration, the algorithm maintains a frontier and a base
table, both with the schema (job, depOn, wt). The frontier
table records the set of discovered furthest reachable upstream
jobs by job in depOn, while the base table records the set of
all discovered reachable upstream jobs by job in depOn. The
wt column of both tables records the aggregated weights along
discovered paths from job to depOn. Each iteration joins and
updates the frontier and base tables, extending the “reach” of
each job by a maximum of 2×. Our algorithm pseudocode is
shown in Algorithm 1.

4.5 Job value aggregation with Wing

4.5.1 Job value aggregation properties

Fair multi-hop time windowing. Aggregating value directly
on even a single-hop time-windowed job dependency graph
has a critical shortcoming: when considering multiple hops,
jobs at the start of the observed trace still hold an advan-
tage over jobs toward the end of the observation window in
terms of opportunities to have their multi-hop downstream
dependencies also land in the observation window. To better
illustrate this, suppose we are given a recurring job template
X with multiple jobs in our observation window. While ide-
ally all jobs of X should have similar amounts of downstream
dependencies, jobs of X that occur earlier in the trace are more
likely to have their downstream dependencies also observed
in the trace, while later jobs of X in the trace are more likely to
have their downstream dependencies cut off due to the limits
of using a static-length trace. In the limit of using an infinitely
long trace, no time windowing is necessary.

A multi-hop time window is therefore needed to further

1212 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

// Helper functions
1 Function preprocess(s_hop) is
2 gp_by_job = job G wts=wt_fn(depOn)(s_hop);
3 return π job, depOn=wts.depOn, wt=wts.weights(gp_by_job);
4 end
5 Function extend_reach(t1, t2) is
6 e_agg = πt1.job, t2.depOn, wt=e_op(t1.wt,t2.wt)(

7 t1 ⋈t1.depOn=t2.job t2);
8 return job, depOn G p_op(wt)(e_agg);
9 end
// Computation start
Input :s_hop // Single-hop dependencies

10 i = 0; // Iteration
11 ftri = preprocess(s_hop); // Frontier
12 base = COPY(ftri) ; // Base

// base at the end of iter i covers deps up to 2i hops
13 do
14 i++;
15 base_tmp = base − ftri-1;
16 ftri = extend_reach(ftri-1, ftri-1);
17 base_tmp = extend_reach(ftri-1, base_tmp) ∪ base;
18 base = job, depOn G wt=p_op(wt)base_tmp;
19 base = base ∪ ftri;
20 while COUNT(ftri) > 0;
21 return job, depOn G agg=p_op(wt)base; // Converged

Algorithm 1: Multi-hop downstream analysis framework.
preprocess first assigns weights to DAG edges with wt_fn. In
each iteration, it calls extend_reach to further explore the graph
from each job in parallel. In extend_reach, auxiliary edges with
edge weights specified by e_op are created to denote newly dis-
covered indirect dependencies (through the JOIN, or ⋈ operator).
The auxiliary edges are deduplicated with a GROUP BY (G) operator
at the end of each iteration, yielding edge weights of p_op(wt).

restrict the set of jobs eligible for value aggregation. Our
multi-hop time windowing method works as follows: we first
define a time window size ω smaller than the observation
period. For each valid job j in the trace, we consider its entire
set of directly and indirectly dependent jobs that are submitted
by up to ω after its completion time. Here, we define valid
jobs as jobs that complete at least ω prior to the end of the
observation period. We set ω to one week for multi-hop depen-
dency analysis, as the scale of the inter-job dependency graph
bottlenecks transitive closure computation as ω increases: in-
creasing ω exponentially increases the number of multi-hop
inter-job dependencies to consider, as dependencies fan-out
further into the future. ω is set to a week here to capture
the majority of recurring dependencies that occur on a sub-
weekly cadence (most recurring templates are submitted with
inter-job arrival times of a day or less), while allowing our
entire analyses pipeline to finish in approximately a day.
Value conservation. To conserve the total amount of value
in the system, we employ an equal contribution scheme pro-
posed in Owl [9], where each job contributes value to its
directly-dependent upstream jobs equally, and the aggregate
value of a job in this scheme is computed as the sum of value
contributed upstream by all of its downstream jobs plus the
value of the job itself. In this scheme, if a job j depends
directly on the output of N jobs, it contributes 1/N of its

value to each of its jobs directly upstream. Each of the N
upstream jobs in turn further propagates j’s (and their own)
value upstream in the same fashion; e.g., if each of the N jobs
directly depend on the output of M other jobs, j contributes
1/(N ∗M) of its value to each of the N ∗M jobs two hops
upstream. This yields the following equation, as proposed in
Owl [9], for computing the aggregate value of a job:

agg_val(j) = ∑
d∈D j

(∑
p∈P(j,d)

∏
e∈p

we∗ kd)+ k j,

where D j represents all downstream jobs of j, P(j,d) rep-
resents all paths from j to d, we represents the weight of a
directed edge e on the path p, and kd and k j represent the
job-local values of d and j, respectively.

4.5.2 Wing value Aggregation Functions

We implement Owl’s dependency-driven job valuation
scheme with Wing’s downstream multi-hop analysis frame-
work, specifying Aggregate Functions as follows: the weight
function wt_fn takes in a job j and its N upstream depen-
dencies as input, and returns 1/N as the weight of each in-
edge; the edge operation e_op multiplies the weights of its
two operands; the path operation p_op sums the weights
of its operands; and finally, for each job j, the downstream
operation ds_op sums the job-local downloads of each job
downstream of j multiplied by the aggregated path weights be-
tween the downstream job and j. j’s job-local downloads are
finally added to the downloads computed by ds_op, yielding
j’s aggregate downstream downloads.
Extensibility. While we elect to use downloads as a proxy for
job value, Wing’s framework is flexible enough to consider
other metrics: e.g., if one day the dollar value associated with
a job can be known, computing the aggregate downstream
dollar value of a job is as easy as replacing a field in ds_op.

4.5.3 Aggregate value exploration and convergence

Using downloads as a proxy-metric for value, Fig. 6 shows
the fraction of aggregate value explored in each iteration for
each job on average. Considering the aggregate value of jobs
with Wing allows us to uncover 83% of value that would oth-
erwise be hidden if only job-local values (iteration = 0) were
considered. In the context of value-based job scheduling (§5),
this means that nearly 6× of value can be hidden from the
scheduler if jobs are independently considered. The figure
also shows that 99% of average job aggregate value can be
explored within four iterations of our algorithm.

5 Wing-Agg: Inter-job value scheduling
Value scheduling. The objective in value scheduling is to
maximize the value achieved from executing jobs in a work-
load, where the completion of each job is directly associated
with an amount of job-local value attained. Job-local value
can decay over time, and this behavior is often modeled as a
value function (VF) in scheduling literature, which expresses
value attained as a function of job completion time. In value

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1213

0 2 4 6 8
Algorithm iterations

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

ag
g.

 v
al

ue

Figure 6: Aggregate value convergence. This figure shows the
fraction of average aggregate job value uncovered downstream in
each iteration of our value aggregation algorithm. 99% of aggregate
value is discovered within four iterations.

scheduling, it is therefore important to complete jobs in a
timely manner to achieve the most value.
Value and priority. We make a clear distinction between the
terms value and priority. In this paper, we use the term value
to describe a measure of “goodness” achieved associated with
the completion of a job. Priority, on the other hand, defines
the order in which pending jobs are assigned cluster resources:
the higher the priority, the earlier a job receives its requested
resources. Most commonly, including currently within Cos-
mos, the priority of a job is assigned by its submitter.
Wing-Agg. When inter-job dependencies are present, we find
that it is important to consider the potential value downstream
that can be lost if a job fails or is delayed. To consider the
effects of inter-job dependencies, we propose a scheduling
policy, Wing-Agg, that incorporates Wing’s notion of inter-job
dependencies into job priorities: the goal of Wing-Agg is to
achieve the most value for a given workload.

As suggested in the introduction, completing the most
value-impactful job may not lead to a scheduler attaining
the most value, as some value-impactful jobs can also require
large amounts cluster resource-time to complete. Indeed, prior
work [8, 28, 44] has shown that schedulers can often benefit
by considering together how much value a job provides and
how much resource-time a job uses.10

Wing-Agg therefore considers the aggregate value effi-
ciency of jobs, which measures how much aggregate value
per aggregate resource-time a job impacts downstream. Essen-
tially, Wing-Agg replaces user-assigned priorities with what
Wing believes is a job’s aggregate value efficiency. When
a job arrives, Wing-Agg performs a look-up in the Wing-
Store (§4.1). If the job is recurring, Wing-Agg computes the
job’s aggregate value efficiency by dividing the job’s me-
dian historic aggregate value by its median historic aggregate
compute-time, and assigns the quotient as the job’s priority.
If the job is ad-hoc, Wing-Agg estimates the job’s aggre-
gate value efficiency based on previous ad-hoc jobs that the
same user has submitted. Wing-Agg assigns aggregate value
efficiency rather than aggregate value as jobs’ priorities to
optimize for high value throughput.

10Although Wing-Agg and shortest-job-first both use job resource-time in
their decisions, Wing-Agg frequently runs longer, more value-providing
jobs ahead of shorter jobs.

6 Experimental setup
This section provides an overview of the Cosmos resource
management infrastructure, describes our evaluated schedul-
ing policies, and describes our experimental methodology.
Downloads attained as value. In our experiments, we use
the number of downloads associated with the outputs of each
job as a proxy for the value attained by a job. We model
download attainment using real-world output download traces:
if a job j completes at 1PM in the real-world (from the trace)
but only completes at 2PM in our experiment, j attains only
the output downloads associated with its outputs that occur
after 2PM, and loses the downloads that occur between 1 and
2PM. A limitation of our model of value is that it does not
reward completing a job early. Further research is required to
determine how much additional value the early-completion
of a job yields in data lakes.
Cosmos backend: YARN and hierarchical queues. Cos-
mos uses a YARN-based resource manager [12, 54] in the
backend and utilizes hierarchical queues (queues, for brevity)
to delineate resource boundaries between organizations—
users/workflow managers can only submit SCOPE jobs to
queues belonging to organizations of which they are a part.
Cosmos uses a scheduling policy similar to the default policy
that the CapacityScheduler in stock YARN uses, which or-
ders jobs in each queue based on their (often user-) assigned
priorities. A key difference is that jobs are scheduled with
gang semantics in Cosmos—a job is admitted only when the
scheduler can ensure that a user-provided minimum number
of parallel, job-requested resources can be granted to it.

6.1 Simulation setup
We evaluate the application of Wing’s analyses to scheduling
using simulation-based experiments due to the scale of Cos-
mos: the Cosmos traces we use contain ∼40k jobs per day,
and ∼160k inter-job dependencies. Experiments at this scale
cannot realistically be attempted on research clusters without
down-sampling jobs, at which point much inter-job depen-
dency fidelity within the original workload will have been lost.
We therefore use simulations to preserve the characteristics
of inter-job dependencies in our experiments.
Simulation platform: design and implementation. Our
simulation platform takes a discrete-event based approach.
To ensure that our experiments retain most properties of
YARN/Cosmos, our simulation platform makes minimal
changes to the YARN architecture—our implementation only
mocks out the real-time clock and the communication layers
of the YARN servers. We also use real queue sizes for each
hierarchical queue in our Cosmos cluster. The authors plan to
contribute this simulator back to the open source community.
Simulation accuracy. To make simulation feasible given the
scale of our job logs, the simulator does not model: (1) “in-
ternal” dependencies among stages of a job, but rather treat a
job as a rigid collection of tasks; (2) resource-sharing through
opportunistic execution [35] of job tasks, which allows jobs

1214 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 2 3 4 5 6 7
Day

0

20

40

60

80

100

Ut
iliz

at
io

n
(%

)

Job-requested (average): 32%
Total utilization (average): 50%

Figure 7: Cluster utilization. This figure shows the job-requested
and total resource utilizations of our real cluster.

to use more resources than requested when those resources
are otherwise idle; and (3) job sizes based on resources used
rather than job-requested resources, meaning that our simula-
tions only consider the deep blue area in Fig. 7.

To evaluate the fidelity of our simulator, we measure the
absolute differences in job completion times between jobs in
our simulations (using the baseline system policies) and the
same jobs run in the real cluster. We normalize the deltas by
the job’s real-world latency, and observe that even at the 99th

percentile, jobs are shifted by only 1.3% of their latencies. Our
experiments run at 100% cluster capacity also achieve average
resource utilization for job-requested resources within 1.5%
of what is observed in the real cluster.

6.2 Evaluated scheduling policies
In addition to Wing-Agg (§5), we evaluate value-attainment
on our workload traces on the following scheduling policies.
All implement Cosmos’s gang-scheduling semantics.
PRIO represents Cosmos’s current approach, and is the de-
fault scheduling policy used by stock YARN in its Capac-
ityScheduler. It orders jobs within each hierarchical queue
based on user-specified priorities.
Wing-MIL. Millennium [8] is a VF-aware scheduler that
orders jobs based on expected value attained per resource
time: For each queued job it computes how much value can be
gained at an estimated job completion time, divides the value
by total job resource-time, and orders jobs by the resulting
quotient. MIL is our implementation of Millennium on YARN,
following descriptions in its design as closely as possible.

Wing-MIL is MIL using Wing-informed value functions
(VFs): In addition to capturing how the job-local value of a
single job decays, a Wing-informed VF captures potential
value associated with the job lost over time by modeling a
job’s full decay of downloads. A job j attains all of j’s ag-
gregate downloads in the most optimistic case if it completes
before or at its real-world completion time; otherwise, it loses
value according to when users perform download operations
and when downstream jobs fail due to it not completing on
time (illustrated earlier in Fig. 5). For example, in a Wing-
guided VF, if j completes at 1PM in the real-world but only
completes at 2PM in our experiment, j loses all the direct
downloads that occur between 1 and 2PM, and all the indirect
downloads rooted in jobs that directly depend on j submitted
between 1 and 2PM.

100 101 102 103 104 105

Job ranking by value

10−10

10−8

10−6

10−4

10−2

F
ra

ct
io

n
of

va
lu

e

Job-local value

Fitted Zipfian (to job-local)

Aggregate value

Figure 8: Distribution of job value. This figure shows the distribu-
tions of job-local value and aggregate job value, along with a Zipfian
distribution fitted to job-local value. The distribution of job value devi-
ates from Zipfian at lower job rankings.

Plan-ahead based VF-aware policies. We attempted to eval-
uate more sophisticated plan-ahead based VF-aware policies,
e.g., FirstOpportunityRate [44]. But, we found that one im-
plementation of such a policy couldn’t accommodate work-
loads at Cosmos scale, and efforts to mitigate bottlenecks by
caching and limiting plan-ahead led to less value attainment
than simpler policies (e.g., MIL). We therefore do not include
our attempts with such a policy, as further work is warranted
before conclusions are drawn.

6.3 Workload and predictor descriptions
Dataset. We use data from the final four weeks of our analysis
dataset to evaluate our scheduling policies: Within the four
weeks of data, Wing uses data in the first and second weeks
to establish job and dependency profiles. Experiments are
conducted over the third week, and downloads (value) are
counted for each job up to one week (into the fourth week)
from the completion of the job. Each day of traces contains
∼40k jobs and ∼160k inter-job dependencies.
Considering inter-job dependencies. Different from prior
work, our experiments take characteristics of inter-job depen-
dencies into account to realize more realistic workloads. For
example, if a job holds a hard dependency on the output of an
upstream job but the output is not available in time, the job
fails due to missing input. Other dependency patterns, such
as polling behavior (when a job waits for its inputs to become
available), are also modeled faithfully. Jobs and dependencies
considered in our experiments are described in Table 1.
Job value distribution. Job value, as measured by the num-
ber of downloads associated with the timely completion of
a job in our experiments, are distributed roughly in a Zip-
fian fashion (s = 1) with deviation at the low end, as shown
in Fig. 8. This means that the most valuable jobs are down-
loaded significantly more times than less valuable jobs. When
scheduling for value on a workload that is inter-job depen-
dency aware, schedulers should work to unblock the most
valuable jobs before they arrive in order to attain their value.
Value efficiency predictor. Wing-Agg and Wing-MIL use
a predictor to estimate the aggregate value efficiency asso-
ciated with upcoming recurring jobs to optimize for value
throughput. While §3 shows that direct inter-job dependen-
cies can be predictable, it neither considers predictions on a

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1215

tail -50 0 50 100 150 tail

Estimate % error = (f − a)/a

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
jo

bs
w

/
%

-e
rr

or
<

X

Agg. value eff.

Job-local value eff.

Figure 9: Value efficiency prediction. This figure shows the CDF
of our predictor’s performance on predicting the value efficiency and
aggregate value efficiency of recurring jobs.

job’s subgraph of downstream dependencies, nor a job’s value
impact. Evaluating predictions on aggregate value efficiency
therefore allows us to better understand the performance of
Wing-guided schedulers. For recurring jobs in our experi-
ments, we use a median-based predictor to predict the value
efficiency associated with a job. That is, given a recurring job
j of template τ, we predict j’s value efficiency based on the
historical median value efficiency for jobs of template τ.

Fig. 9 shows the performance of our value efficiency pre-
dictor in a CDF. For predicting the aggregate value efficiency
of a job, 39% of our predictions fall within ±20% of the ac-
tual value efficiency of a job, while for predicting the value
efficiency of a single job, 44% of our predictions fall within
±20% of the actual value efficiency of a job. While we are
working on further studies to improve predictor accuracy with
more sophisticated methods, we find that the performance of
our simple predictor enables Wing-Agg to outperform other
evaluated scheduling policies in value attainment (§7).

7 Experimental results
We evaluate the efficacy of each scheduling policy for the
actual full Cosmos resource capacity (100%) and for smaller
capacities (at 80–20%). Value-attainment results are reported
as a percentage of value achievable—i.e., if all jobs in work-
loads complete before any of their values are lost.
Cluster capacities & consequential policy decisions.
Scheduling is most interesting when cluster capacity is con-
strained and schedulers need to make difficult decisions re-
garding which jobs to provide resources. Indeed, at 100%
capacity, the baseline and more advanced schedulers perform
similarly, completing > 99% of all jobs in the trace. We find
that the lower cluster capacities (i.e., ≤ 40%) best exemplify
the consequences of decisions a scheduler makes. We there-
fore focus the discussion of our results at these capacities to
maximize observable differences.
Takeaways. Our experiments yield the following key take-
aways. First, policies guided by Wing are better at achiev-
ing value when clusters are heavily-constrained. In partic-
ular, Wing-Agg outperforms all other compared policies at
all capacities and improves value attained by up to 21% as
capacity declines. Second, understanding the downstream
impact of a job is crucial in constrained clusters, and that

100 80 60 40 20
Capacity (%)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

ed
 u

til
ity

PRIO Wing-MIL Wing-Agg

Figure 10: Benefits of Wing guidance. This figure shows the value
attained for each scheduling policy, normalized to total value achiev-
able. Wing-guidance (exemplified in Wing-Agg and Wing-MIL) is
significantly beneficial at constrained capacities.

Wing-guided inter-job dependency predictions are accurate
enough to be practical: Wing-Agg can effectively complete
the prerequisites of the most consequential jobs. Finally, we
demonstrate significant opportunity in applying inter-job de-
pendency awareness in Wing to a cluster-wide queue and
establishing a cluster-wide value metric: Wing-Agg achieves
up to 93% of all value in our workload when using a single
cluster-wide queue, using only 20% of cluster capacity.

7.1 Benefits of Wing guidance
Fig. 10 shows that policies guided by Wing beat PRIO at
all capacities, with value attainment gaps widening as the
cluster is increasingly stressed. At 60% capacity, Wing-Agg
achieves 87% of value (vs PRIO’s 80%). At 40% capacity,
Wing-Agg achieves 77% of value (vs PRIO’s 62%). Even at
20% capacity, Wing-Agg is able to capture more than half of
all value (55%), while PRIO only captures 35% of value.

Considering aggregate value gives Wing-guided schedulers
a two-fold benefit over PRIO. First, it naturally “fixes” priority
mis-configurations, such as priority inversions, by propagating
job value upstream, such that downstream jobs with high
value are not blocked. Second, it guides schedulers toward
sub-DAGs of high value efficiency jobs effectively, allowing
schedulers to achieve more value with less resources.
Are ad-hoc jobs disadvantaged? Since Wing-Agg focuses
on recurring jobs, we examine our logs to see if ad-hoc jobs
are at a disadvantage when scheduled by Wing-Agg vs recur-
ring jobs, where the priority of ad-hoc jobs are determined by
the median aggregate value efficiency of previous jobs sub-
mitted by the same user. We find, from results at 20% cluster
capacity, that 25% of recurring jobs fail, compared to 42%
of ad-hoc jobs. However, recurring jobs also carry 9× more
value than ad-hoc jobs. To optimize for value, Wing-Agg nec-
essarily needs to complete larger fractions of recurring jobs.
Indeed, recurring jobs are more often production jobs [34].
Dynamic priorities (Wing-MIL). Intuitively, policies using
dynamic priorities (e.g., value functions, or VFs) such as
Wing-MIL should perform better than static policies such
as Wing-Agg, as VFs can express both importance and ur-
gency while priorities only allow the expression of one of the
two dimensions; but, we observe that Wing-Agg outperforms

1216 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Wing-MIL at all capacities, albeit only slightly.
Unlike Wing, which only depends on aggregate value-

efficiency predictions, Wing-MIL also depends on the time-
to-dependency predictions of directly-dependent jobs (§3)
to determine when aggregate job value decays. But, while a
part of this underperformance is indeed caused by imperfect
predictions of time-to-dependencies, we find that providing
Wing-MIL with perfect job value and time-to-dependency
information does not help much. Further analyzing our re-
sults, we find that this underperformance is mainly due to
Wing-MIL’s failure to consider the properties of inter-job de-
pendencies. For example, a downstream job that polls for the
arrival of its inputs will not fail if its upstream jobs complete
late. But, VFs constructed from historical data will still reflect
a drop in value at the time the polling downstream job is
expected to arrive, leading Wing-MIL to believe that it should
give up prematurely on scheduling the job. This shortcoming
can be addressed by considering dependency properties ex-
plicitly, but our attempted implementation of such a policy
does not significantly improve over Wing-Agg: both Wing-
Agg and our attempted implementation can complete the most
impactful, value-efficient jobs in a timely manner.
Practicality of Wing-Agg. The simplicity of Wing-Agg is de-
sirable from an engineering standpoint, as Wing-Agg is both
highly practical and highly scalable: Integrating Wing-Agg
into a production cluster requires minimal changes to the exist-
ing resource management framework, and all the information
needed for Wing-Agg to determine a job’s priority can be pre-
computed offline in Wing’s analysis pipeline (§4). Adoption
of Wing-Agg into production can therefore be straightforward,
upon confirming job valuation schemes.

7.2 Sensitivity and ablation studies
Aggregate vs. job-local value. This section discusses bene-
fits of understanding job value at an aggregate vs job-local
level by comparing Wing-Agg against Wing-Direct, where
Wing-Direct considers the job-local value efficiency of a job:
i.e., Wing-Direct only considers direct-downloads associated
with the outputs of and the compute-time of a single job only.

The patterned bars in Fig. 11 show the normalized value
attained by Wing-Agg and Wing-Direct. While Wing-Direct
outperforms PRIO, Wing-Agg maintains significant benefit
over Wing-Direct at the tightest capacities: Wing-Agg attains
13% more overall value than Wing-Direct at 20% capacity.
Our analysis finds that Wing-Direct’s knowledge of job re-
source consumption allows it to effectively complete jobs at
the head of queue, enabling it to complete a similar amount of
jobs as Wing-Agg. But, with knowledge of historical aggre-
gate value efficiency, we find that Wing-Agg completes jobs in
the more value-heavy sub-DAGs of the inter-job dependency
DAG, yielding significant improvements over Wing-Direct.
Wing predictions vs. Oracle knowledge. We examine how
much potential benefit better predictions can provide to each
Wing-aided policy. Oracle Wing-Agg represents Wing-Agg

100 80 60 40 20
Capacity (%)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

ed
 u

til
ity

Job-local Aggregate

Figure 11: Benefits of aggregate job value. Aggregate (corre-
sponding to aggregate download-aware) vs Job-local (corresponding
to direct download aware only) bars show the benefits of aggregate
value, compared to only scheduling based on job-local value. The
solid portion of the bars show the benefits of Oracle knowledge.

endowed with perfect knowledge of aggregate value effi-
ciency, and Oracle Wing-Direct represents Wing-Direct pro-
vided with perfect knowledge of job-local value efficiency.

While we find that having better predictions are benefi-
cial, the differences between the solid (representing policies
with Oracle knowledge) and the patterned bars (represent-
ing policies with Wing-provided predictions) in Fig. 10 and
Fig. 11 show that at most capacities, Wing-guided schedulers
achieve close to the value attained by their Oracle variants.
However, having more accurate information presents oppor-
tunity for significant gain in value attained for Wing-Agg
at 20% capacity: e.g., Oracle Wing-Agg improves value re-
alized over Wing-Agg by 8% of overall value. Conversely,
although Oracle Wing-Direct is granted exact knowledge of
how value-efficient each job is, its view of the overall inter-job
dependency graph leads to only incremental benefits.

Oracle benefits to aggregate value aware policies come
from a more accurate knowledge of a summarized view of
the inter-job dependency graph: compared to single job value-
aware policies with Oracle knowledge, a policy such as Oracle
Wing-Agg can efficiently complete the most consequential
jobs in the job dependency graph, increasing value attained
(by up to 18% of overall value vs Oracle Wing-Direct) and
reducing the number of jobs failed due to missing input (by
3% of all jobs vs Oracle Wing-Direct).
Sensitivity to mis-predictions. We examine the sensitivity
of Wing-Agg to aggregate value efficiency mis-predictions
on our workload by running experiments that introduce ar-
tificial shifts in aggregate value efficiency provided by Or-
acle Wing, using 20% cluster capacity. Each experimental
run is associated with a maximum artificial shift s, where
s ∈ {1.1,1.25,1.5,2,5,10}. For each job j within each run,
we scale the aggregate value efficiency eval of j provided by
Oracle Wing by multiplying eval by a randomly sampled mul-
tiplier m between 1/s and s. Our results show that Wing-Agg
is not sensitive to mis-predictions in value on our workload:
For s ≤ 5, value attained is only reduced by at most 4% vs Or-
acle Wing-Agg. For s = 10, value attained is only reduced by
11%. This insensitivity is because job values in our workload
are distributed in a Zipfian fashion (§6.3), where the most

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1217

60 40 20
Capacity (%)

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
ed

 u
til

ity

PRIO Wing-Direct Wing-Agg

Figure 12: Benefits of Wing-guidance with a cluster-wide queue.
This figure shows the value attained for policies from 60–20% cluster
capacities in a cluster with a merged cluster-wide queue. All policies
complete all jobs at 60% capacity. Wing-guidance (exemplified by
Wing-Agg) is increasingly beneficial at lower capacities. The solid
portion of the bars show the benefits of Oracle knowledge.

valuable jobs are much more valuable than other jobs.
Reducing transitive closure computation. At 20% capac-
ity, Wing-Direct (0 iterations of Wing’s multi-hop analysis)
attains 42% of all value, while Wing-Agg (9 iterations exe-
cuted) attains 55% of all value. In Fig. 6 in §4.5.3, we find
that 99% of aggregate value of most jobs can be explored in
four iterations of Wing’s multi-hop analysis. We therefore
believe that four iterations of exploration would be sufficient
to similarly attain 55% of all value, and that two iterations of
exploration would allow us to attain close to 50% of all value.

7.3 Cluster-wide queue and value metrics
Our earlier results correspond to a simplified view of Cos-
mos using strictly enforced queue boundaries. Hard queue
boundaries restrict placement more than in the real sys-
tem, where resource-sharing (§6.1) softens queue boundaries,
which might exaggerate Wing-Agg’s benefits. To confirm
that Wing-Agg’s improvements are not due to hard queue
boundaries, we evaluate a boundary-free alternative with ex-
periments run using a single global, cluster-wide queue.
Evaluation. Fig. 12 shows the value attainment of our eval-
uated scheduling policies using a single cluster-wide-queue.
We note that all jobs are able to complete for all scheduling
policies at 60% cluster capacity. Indeed, the dark blue area
in Fig. 7 show that these requests peak at around 60%. At
40% capacity, the cluster still has more capacity than needed
most of the time: Wing-Agg achieves 99% of value, and Wing-
Direct and PRIO achieve 97 and 93% of value, respectively.

Under extreme capacity crunch (e.g., 20% capacity), re-
moving restrictions of hard queue boundaries improves value
attained of all policies. But, a Wing-guided scheduler sees
significantly more benefit in terms of absolute value achieved.
With a cluster-wide queue at 20% capacity, Wing-Agg attains
93% of value, whereas Wing-Direct attains 84%, and PRIO
only attains 47%. Furthermore, Wing-Agg fails fewer jobs
compared to both Wing-Direct and PRIO (11% vs 13% and
25% of jobs, respectively).

We find that understanding inter-job dependencies is crit-
ical, as Wing-Direct with Oracle knowledge did not signifi-

cantly outperform Wing-Direct with predicted values, both in
terms of value attained and in terms of number of jobs failed;
yet, we find that Wing-Agg with Oracle knowledge, in this
setting, can achieve up to 98% of all value (comparable to
performances at 100% capacity), while failing only 7% of
all jobs (compared to 26% in a multi-queued setting at 20%
capacity). One of the reasons why Wing-Agg is able to attain
93% of all value using only 20% of cluster capacity is due to
its ability “unblock” the most valuable downstream jobs.

Recall that the simulated job sizes in our experiments are
based on job-requested resources, rather than job-used re-
sources, which may be higher because of opportunistic exe-
cution. As a result, cluster utilization is lower in our experi-
ments. But, we believe that the rankings of the different sched-
ulers are not affected, because the number of opportunistic
resources highly correlate with that of allocated job-requested
resources, both across the top 10% of most valuable jobs
(Spearman correlation of 0.85) and across all jobs (Spearman
correlation of 0.84). Indeed, the amount of opportunistic re-
sources available to a job is capped with a max proportional
to the number of allocated job-requested resources [49]. So,
the relative differences shown for 20% cluster capacity may
instead be for 30% cluster capacity in the heavier workload.
Toward establishing a cluster-wide value metric. Our re-
sults confirm that removing queue boundaries would be bene-
ficial. Partitioning resources into queues naturally introduces
resource fragmentation, but usage of queues is often viewed as
a “necessary evil,” as certain organizations are willing to pay
more to have guaranteed access to their share of compute.
Yet, näively removing queue boundaries without a quota-
system [55] in place may introduce resource competition,
where users across different organizations assign increas-
ingly high priorities to their jobs to acquire guaranteed re-
sources. A cluster-wide, automated arbitrator that understands
both system-internal (e.g., aware of downstream number of
affected jobs and user-downloads) and organizational/user-
defined notions of importance is therefore required. We see
this as an exciting direction for further research.
Current state of deployment. Instead of immediately de-
ploying Wing-Agg as described, the Microsoft Cosmos re-
source management team has asked us first to deploy an inter-
job dependency advisory tool using analyses from Wing, to
aid users on better configuring their jobs. The tool will allow
us to gather user feedback on our recommendations.

8 Related work
Workflow managers. Workflow management for batch ana-
lytics jobs is a widely studied area in the fields of databases
and data management [30, 40, 41]. Our work differs in two
primary ways: (1) workflow managers often assume the avail-
ability of a dependency graph up-front, while Wing infers
properties of inter-job dependencies from job history; and (2)
workflow managers optimize only a single pipeline of jobs
submitted by one user at a time, while Wing considers inter-

1218 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

dependent jobs across workflow and organization boundaries.
Cluster workload analysis. Although much work has been
done on cluster workload analysis from many different per-
spectives (e.g., resource/workload heterogeneity [1,11,26,37,
45], failure analysis [7, 17, 46], job predictability [43, 50, 52],
and intra-job task dependency [23, 24, 51]), most prior work
assumes (implicitly or explicitly) that each job is independent
of other jobs. This paper fills the knowledge gap with analyses
of inter-job dependencies and application of this knowledge
in cluster scheduling.
Cluster scheduling. Although a variety of work has been pub-
lished in the area of cluster scheduling, each trying to address
scheduling woes of different kinds of workloads (e.g., support
for general batch analytics [5, 10, 18, 21, 22, 29, 34, 43, 53, 54],
low latency scheduling [15,16,35,42], and strategies to handle
mixes of workloads [12, 19, 20, 48, 55]), most work in cluster
scheduling similarly assume the independence of jobs. Our
work shows that incorporating knowledge of inter-job depen-
dencies can improve cluster scheduling in an environment
with a lot of data and work product sharing, and we believe
that considering inter-job dependencies can help future sched-
ulers better tackle challenges, such as enabling better job task
placement and learning better scheduling policies [38, 47].
Task-DAG schedulers assign resources to inter-dependent
tasks within a job based on knowledge of the overall task-
DAG [18, 23, 24, 38]. Such techniques and our proposed poli-
cies can be complementary, as task-DAG schedulers drill into
job-level details while our schedulers (e.g., Wing-Agg) work
at a higher level and treat jobs as black boxes. In particu-
lar, schedulers that predict the arrival of future jobs [34, 38]
can benefit from the availability of inter-job dependency con-
text to refine their predictions. Some task-DAG scheduling
techniques could also be applied to the problem of inter-job
dependency scheduling; but, these task-DAG schedulers gen-
erally assume upfront availability of task-DAGs, while full
inter-job dependency graphs are rarely available ahead of
time. An interesting direction for future research is in com-
bining task-DAG scheduling techniques with some form of
Wing-provided “probabilistic inter-job dependency” DAGs.
Jockey and Morpheus. Jockey [18] uses the direct depen-
dencies of jobs to illustrate the importance of maintaining low
job latency variance, but uses a step-function with value=1
until the user-provided deadline as each job’s value function
(VF). Morpheus [34] improves upon Jockey’s notion of VFs
by deriving deadlines based on a job’s first consumer (as ob-
served from historical instances of that job), but still considers
all jobs as equal in value. In addition to our characterization
of inter-job dependencies in a large analytics cluster, our work
extends Morpheus and Jockey in two ways: (1) jobs no longer
all have the same value—instead, Wing derives each job’s
value (and therefrom priority) as the sum of a chosen value
metric (e.g., downloads) for all downstream dependencies,
and (2) value is no longer a step-function with a single dead-
line based on a job’s first direct consumer, but a rich decay

proportional to the aggregate value of dependency sub-DAGs
rooted in each direct consumer. While we do not directly
compare against Morpheus, in §7.1, we find, in the context
of Wing-MIL, that a premature drop in aggregate value can
lead to the scheduler giving up early when dependency prop-
erties are not considered, leading to lower value attainment.
Considering value as a step-function with a single deadline
can therefore potentially be detrimental when inter-job depen-
dencies are present in cluster workloads. While Wing-Agg
uses only the initial “height” of the aggregate value VF of
each job to set priorities, we believe that full aggregate value
VFs can still better guide other scheduling decisions, such as
determining which jobs to load-shift.
Systems using job recurrence and data provenance. There
has also been much prior work on systems that efficiently
collect provenance data [13,39] and systems that both exploit
job recurrence and data provenance on other problems [25,33],
such as garbage-collecting shared computation results. Our
work uses similar ideas, but focuses on facilitating better value
attainment in resource scheduling.
Owl and Guider. Our previous work Owl [9] and Guider [39]
introduced the usage of job dependencies to determine the
value of jobs. Wing operationalizes and expands upon prior
work by (1) analyzing and characterizing inter-job dependen-
cies in a large cluster, (2) evaluating predictability of recurring
inter-job dependencies, (3) integrating inter-job dependencies
into cluster schedulers, (4) applying said schedulers to a real
scheduling problem, and (5) providing a general aggregate
inter-job dependency analysis framework.

9 Conclusion
Complex inter-job dependencies pervade modern data lakes,
creating complex problems as cluster schedulers make de-
cisions without knowing of them. The Wing dependency
profiler uncovers these dependencies from provenance logs
and provides improved guidance to cluster schedulers. Eval-
uations with real job traces show that significantly more
value, in terms of successful user downloads, can be attained
by using Wing-guided priority assignments over those pro-
vided by users. Wing’s effectiveness opens a new range of
resource management possibilities guided by automatically-
determined knowledge of the impact of jobs.

Acknowledgements
We thank John Wilkes (our shepherd) and our OSDI 2020
reviewers for their valuable feedback and suggestions. We
also thank Raghu Ramakrishnan, Boris Asipov, Hiren Patel,
Yiwen Zhu, Isha Tarte, and Panagiotis Garefalakis for their
help throughout the development of this project. We thank the
members and companies of the PDL Consortium (Alibaba,
Amazon, Datrium, Facebook, Google, HPE, Hitachi, IBM,
Intel, Microsoft, NetApp, Oracle, Pure, Salesforce, Samsung,
Seagate, Two Sigma, and Western Digital) and VMware for
their interest, insights, feedback, and support.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1219

References
[1] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger,

Garth A. Gibson, Elisabeth Baseman, and Nathan De-
Bardeleben. On the diversity of cluster workloads and
its impact on research results. In Proceedings of the
2018 USENIX Annual Technical Conference, USENIX
ATC ’18. USENIX Association, 2018.

[2] Anton Beloglazov and Rajkumar Buyya. Adaptive
threshold-based approach for energy-efficient consol-
idation of virtual machines in cloud data centers. In Pro-
ceedings of the 8th International Workshop on Middle-
ware for Grids, Clouds and e-Science, MGC ’10. ACM,
2010.

[3] Anton Beloglazov and Rajkumar Buyya. Optimal on-
line deterministic algorithms and adaptive heuristics for
energy and performance efficient dynamic consolidation
of virtual machines in cloud data centers. Concurrency
and Computation : Practice and Experience, 24(13),
September 2012.

[4] Anant Bhardwaj, Souvik Bhattacherjee, Amit Chavan,
Amol Deshpande, Aaron J Elmore, Samuel Madden, and
Aditya G Parameswaran. Datahub: Collaborative data
science & dataset version management at scale. In Pro-
ceedings of the 7th Biennial Conference on Innovative
Data Systems Research, CIDR ’15, January 2015.

[5] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jin-
gren Zhou, Zhengping Qian, Ming Wu, and Lidong
Zhou. Apollo: Scalable and coordinated scheduling
for cloud-scale computing. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and
Implementation, OSDI ’14. USENIX Association, 2014.

[6] Ronnie Chaiken, Bob Jenkins, Per-Ake Larson, Bill
Ramsey, Darren Shakib, Simon Weaver, and Jingren
Zhou. SCOPE: Easy and efficient parallel processing of
massive data sets. Proceedings of the VLDB Endowment,
1(2), August 2008.

[7] Xin Chen, Charng-Da Lu, and Karthik Pattabiraman.
Failure Analysis of Jobs in Compute Clouds: A Google
Cluster Case Study. In Proceedings of the 25th Interna-
tional Symposium on Software Reliability Engineering,
ISSRE ’14. IEEE Computer Society, Nov 2014.

[8] Brent N. Chun and David E. Culler. User-Centric Perfor-
mance Analysis of Market-Based Cluster Batch Sched-
ulers. In Proceedings of the 2nd IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid,
CCGRID ’02. IEEE Computer Society, May 2002.

[9] Andrew Chung, Carlo Curino, Subru Krishnan, Kon-
stantinos Karanasos, Panagiotis Garefalakis, and Gre-
gory R. Ganger. Peering Through the Dark: An Owl’s

View of Inter-job Dependencies and Jobs’ Impact in
Shared Clusters. In Proceedings of the 2019 Interna-
tional Conference on Management of Data, SIGMOD
’19. ACM, 2019.

[10] Andrew Chung, Jun Woo Park, and Gregory R. Ganger.
Stratus: Cost-aware Container Scheduling in the Public
Cloud. In Proceedings of the 9th ACM Symposium on
Cloud Computing, SoCC ’18. ACM, 2018.

[11] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bianchini.
Resource Central: Understanding and Predicting Work-
loads for Improved Resource Management in Large
Cloud Platforms. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP ’17. ACM,
2017.

[12] Carlo Curino, Subru Krishnan, Konstantinos Karana-
sos, Sriram Rao, Giovanni M. Fumarola, Botong Huang,
Kishore Chaliparambil, Arun Suresh, Young Chen,
Solom Heddaya, Roni Burd, Sarvesh Sakalanaga, Chris
Douglas, Bill Ramsey, and Raghu Ramakrishnan. Hy-
dra: a federated resource manager for data-center scale
analytics. In Proceedings of the 16th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI ’19. USENIX Association, February 2019.

[13] Sergio Manuel Serra da Cruz, Patricia M. Barros,
Paulo Mascarello Bisch, Maria Luiza Machado Campos,
and Marta Mattoso. Provenance Services for Distributed
Workflows. In Proceedings of the 8th IEEE Interna-
tional Symposium on Cluster Computing and the Grid,
CCGRID ’08. IEEE Computer Society, 2008.

[14] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified data processing on large clusters. In Proceedings
of the 6th USENIX Conference on Operating Systems
Design and Implementation, OSDI ’04. USENIX Asso-
ciation, 2004.

[15] Pamela Delgado, Diego Didona, Florin Dinu, and Willy
Zwaenepoel. Kairos: Preemptive Data Center Schedul-
ing Without Runtime Estimates. In Proceedings of the
9th ACM Symposium on Cloud Computing, SoCC ’18.
ACM, 2018.

[16] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec,
and Willy Zwaenepoel. Hawk: Hybrid Datacenter
Scheduling. In Proceedings of the 2015 USENIX Confer-
ence on Usenix Annual Technical Conference, USENIX
ATC ’15. USENIX Association, 2015.

[17] Nosayba El-Sayed, Hongyu Zhu, and Bianca Schroeder.
Learning from Failure Across Multiple Clusters: A
Trace-Driven Approach to Understanding, Predicting,
and Mitigating Job Terminations. In Proceedings of

1220 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the IEEE 37th International Conference on Distributed
Computing Systems, ICDCS ’17. IEEE Computer Soci-
ety, June 2017.

[18] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula,
Eric Boutin, and Rodrigo Fonseca. Jockey: Guaranteed
Job Latency in Data Parallel Clusters. In Proceedings
of the 7th ACM European Conference on Computer
Systems, EuroSys ’12. ACM, 2012.

[19] Panagiotis Garefalakis, Konstantinos Karanasos, and Pe-
ter Pietzuch. Neptune: Scheduling Suspendable Tasks
for Unified Stream/Batch Applications. In Proceed-
ings of the 10th ACM Symposium on Cloud Computing,
SoCC ’19. ACM, 2019.

[20] Panagiotis Garefalakis, Konstantinos Karanasos, Pe-
ter Pietzuch, Arun Suresh, and Sriram Rao. Medea:
Scheduling of Long Running Applications in Shared
Production Clusters. In Proceedings of the 13th Euro-
pean Conference on Computer Systems, EuroSys ’18.
ACM, 2018.

[21] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
Resource Fairness: Fair Allocation of Multiple Resource
Types. In Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation, NSDI
’11. USENIX Association, 2011.

[22] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert
N. M. Watson, and Steven Hand. Firmament: Fast, Cen-
tralized Cluster Scheduling at Scale. In Proceedings
of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI ’16. USENIX Asso-
ciation, 2016.

[23] Robert Grandl, Mosharaf Chowdhury, Aditya Akella,
and Ganesh Ananthanarayanan. Altruistic Scheduling
in Multi-resource Clusters. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI ’16. USENIX Association, 2016.

[24] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya
Akella, and Janardhan Kulkarni. Graphene: Packing and
Dependency-aware Scheduling for Data-parallel Clus-
ters. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, OSDI
’16. USENIX Association, 2016.

[25] Pradeep Kumar Gunda, Lenin Ravindranath, Chan-
dramohan A. Thekkath, Yuan Yu, and Li Zhuang. Nec-
tar: automatic management of data and computation in
datacenters. In Proceedings of the 9th USENIX confer-
ence on Operating Systems Design and Implementation,
OSDI ’10, 2010.

[26] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui
Feng, Liang Mao, and Yungang Bao. Who Limits the
Resource Efficiency of My Datacenter: An Analysis of
Alibaba Datacenter Traces. In Proceedings of the 2019
International Symposium on Quality of Service, IWQoS
’19. ACM, 2019.

[27] Alon Halevy, Flip Korn, Natalya F. Noy, Christopher
Olston, Neoklis Polyzotis, Sudip Roy, and Steven Eui-
jong Whang. Goods: Organizing Google’s Datasets. In
Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16. ACM, 2016.

[28] David E. Irwin, Laura E. Grit, and Jeffrey S. Chase. Bal-
ancing risk and reward in a market-based task service. In
Proceedings of the 13th IEEE International Symposium
on High Performance Distributed Computing, HPDC
’04. IEEE Computer Society, June 2004.

[29] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
Fair Scheduling for Distributed Computing Clusters. In
Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, SOSP ’09. ACM, 2009.

[30] Eaman Jahani, Michael J. Cafarella, and Christopher
Ré. Automatic Optimization for MapReduce Programs.
Proceedings of the VLDB Endowment, 4(6):385–396,
March 2011.

[31] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and
Hiren Patel. Selecting Subexpressions to Materialize at
Datacenter Scale. Proceedings of the VLDB Endowment,
11(7):800–812, March 2018.

[32] Alekh Jindal, Hiren Patel, Abhishek Roy, Shi Qiao,
Zhicheng Yin, Rathijit Sen, and Subru Krishnan. Pere-
grine: Workload Optimization for Cloud Query Engines.
In Proceedings of the ACM Symposium on Cloud Com-
puting, SoCC ’19. ACM, 2019.

[33] Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jiem-
ing Di, Malay Bag, Marc Friedman, Yifung Lin, Kon-
stantinos Karanasos, and Sriram Rao. Computation
Reuse in Analytics Job Service at Microsoft. In Pro-
ceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD ’18. ACM, 2018.

[34] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,
Shravan Matthur Narayanamurthy, Alexey Tumanov,
Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru
Krishnan, Janardhan Kulkarni, and Sriram Rao. Mor-
pheus: Towards Automated SLOs for Enterprise Clus-
ters. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
’16. USENIX Association, November 2016.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1221

[35] Konstantinos Karanasos, Sriram Rao, Carlo Curino,
Chris Douglas, Kishore Chaliparambil, Giovanni Mat-
teo Fumarola, Solom Heddaya, Raghu Ramakrishnan,
and Sarvesh Sakalanaga. Mercury: Hybrid Centralized
and Distributed Scheduling in Large Shared Clusters.
In Proceedings of the 2015 USENIX Annual Technical
Conference, USENIX ATC ’15. USENIX Association,
2015.

[36] Bo Li, Jianxin Li, Jinpeng Huai, Tianyu Wo, Qin Li, and
Liang Zhong. EnaCloud: An Energy-Saving Applica-
tion Live Placement Approach for Cloud Computing
Environments. In Proceedings of the 2009 IEEE Inter-
national Conference on Cloud Computing, CLOUD ’09.
IEEE Computer Society, Sep. 2009.

[37] Qixiao Liu and Zhibin Yu. The Elasticity and Plasticity
in Semi-Containerized Co-locating Cloud Workload: A
View from Alibaba Trace. In Proceedings of the 9th
ACM Symposium on Cloud Computing, SoCC ’18. ACM,
2018.

[38] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja
Venkatakrishnan, Zili Meng, and Mohammad Alizadeh.
Learning Scheduling Algorithms for Data Processing
Clusters. In Proceedings of the 2019 ACM Special In-
terest Group on Data Communication, SIGCOMM ’19.
ACM, 2019.

[39] Ruslan Mavlyutov, Carlo Curino, Boris Asipov, and Phil
Cudre-Mauroux. Dependency-Driven Analytics: a Com-
pass for Uncharted Data Oceans. In Proceedings of the
8th Biennial Conference on Innovative Data Systems
Research, CIDR ’17, January 2017.

[40] Kristi Morton, Magdalena Balazinska, and Dan Gross-
man. ParaTimer: A Progress Indicator for MapReduce
DAGs. In Proceedings of the 2010 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD
’10. ACM, 2010.

[41] Kristi Morton, Abram Friesen, Magdalena Balazinska,
and Dan Grossman. Estimating the progress of MapRe-
duce pipelines. In Proceedings of the IEEE 26th Inter-
national Conference on Data Engineering, ICDE ’10.
IEEE Computer Society, March 2010.

[42] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and
Ion Stoica. Sparrow: Distributed, low latency schedul-
ing. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, SOSP ’13. ACM,
2013.

[43] Jun Woo Park, Alexey Tumanov, Angela Jiang,
Michael A. Kozuch, and Gregory R. Ganger. 3sigma:
Distribution-based cluster scheduling for runtime uncer-
tainty. In Proceedings of the 13th European Conference
on Computer Systems, EuroSys ’18. ACM, 2018.

[44] Florentina I. Popovici and John Wilkes. Profitable ser-
vices in an uncertain world. In Proceedings of the
2005 ACM/IEEE Conference on Supercomputing, SC
’05. IEEE Computer Society, 2005.

[45] Charles Reiss, Alexey Tumanov, Gregory R. Ganger,
Randy H. Katz, and Michael A. Kozuch. Heterogeneity
and Dynamicity of Clouds at Scale: Google Trace Anal-
ysis. In Proceedings of the Third ACM Symposium on
Cloud Computing, SoCC ’12. ACM, 2012.

[46] Andrea Rosà, Lydia Y. Chen, and Walter Binder. Pre-
dicting and mitigating jobs failures in big data clusters.
In Proceedings of the 15th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing, CC-
GRID ’15. IEEE Computer Society, 2015.

[47] Malte Schwarzkopf and Peter Bailis. Research for Prac-
tice: Cluster Scheduling for Datacenters. Communica-
tions of the ACM, 61(5):50–53, April 2018.

[48] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-
Malek, and John Wilkes. Omega: Flexible, Scalable
Schedulers for Large Compute Clusters. In Proceedings
of the 8th ACM European Conference on Computer
Systems, EuroSys ’13. ACM, 2013.

[49] Rathijit Sen, Alekh Jindal, Hiren Patel, and Shi Qiao.
Autotoken: Predicting peak parallelism for big data an-
alytics at microsoft. Proceedings of the VLDB Endow-
ment, 13(12):3326–3339, August 2020.

[50] Liqun Shao, Yiwen Zhu, Siqi Liu, Abhiram Eswaran,
Kristin Lieber, Janhavi Mahajan, Minsoo Thigpen, Sud-
hir Darbha, Subru Krishnan, Soundar Srinivasan, and
et al. Griffon: Reasoning about Job Anomalies with
Unlabeled Data in Cloud-Based Platforms. In Proceed-
ings of the 10th ACM Symposium on Cloud Computing,
SoCC ’19. ACM, 2019.

[51] Huangshi Tian, Yunchuan Zheng, and Wei Wang. Char-
acterizing and Synthesizing Task Dependencies of Data-
Parallel Jobs in Alibaba Cloud. In Proceedings of the
10th ACM Symposium on Cloud Computing, SoCC ’19.
ACM, 2019.

[52] Alexey Tumanov, Angela Jiang, Jun Woo Park,
Michael A Kozuch, and Gregory R Ganger. JamaisVu:
Robust scheduling with auto-estimated job runtimes.
Technical report, Technical Report CMU-PDL-16-104.
Carnegie Mellon University, 2016.

[53] Alexey Tumanov, Timothy Zhu, Jun Woo Park,
Michael A. Kozuch, Mor Harchol-Balter, and Gregory R.
Ganger. TetriSched: Global Rescheduling with Adaptive
Plan-ahead in Dynamic Heterogeneous Clusters. In Pro-
ceedings of the 11th European Conference on Computer
Systems, EuroSys ’16. ACM, 2016.

1222 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[54] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, San-
jay Radia, Benjamin Reed, and Eric Baldeschwieler.
Apache Hadoop YARN: Yet Another Resource Nego-
tiator. In Proceedings of the 4th Annual Symposium on
Cloud Computing, SoCC ’13. ACM, 2013.

[55] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale Cluster Management at Google with Borg. In
Proceedings of the 10th ACM European Conference on
Computer Systems, EuroSys ’15. ACM, 2015.

[56] Paul Voigt and Axel von dem Bussche. The EU General
Data Protection Regulation (GDPR): A Practical Guide.
Springer Publishing Company, Incorporated, 1st edition,
2017.

[57] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauly, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient Dis-
tributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing. In Proceedings of the
9th USENIX Symposium on Networked Systems Design
and Implementation, NSDI ’12, San Jose, CA, 2012.
USENIX Association.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1223

RackSched: A Microsecond-Scale Scheduler for Rack-Scale Computers

Hang Zhu

Johns Hopkins University

Kostis Kaffes

Stanford University

Zixu Chen

Johns Hopkins University

Zhenming Liu

College of William and Mary

Christos Kozyrakis

Stanford University

Ion Stoica

UC Berkeley

Xin Jin

Johns Hopkins University

Abstract

Low-latency online services have strict Service Level Ob-

jectives (SLOs) that require datacenter systems to support

high throughput at microsecond-scale tail latency. Dataplane

operating systems have been designed to scale up multi-core

servers with minimal overhead for such SLOs. However, as

application demands continue to increase, scaling up is not

enough, and serving larger demands requires these systems

to scale out to multiple servers in a rack.

We present RackSched, the first rack-level microsecond-

scale scheduler that provides the abstraction of a rack-scale

computer (i.e., a huge server with hundreds to thousands of

cores) to an external service with network-system co-design.

The core of RackSched is a two-layer scheduling frame-

work that integrates inter-server scheduling in the top-of-rack

(ToR) switch with intra-server scheduling in each server. We

use a combination of analytical results and simulations to

show that it provides near-optimal performance as centralized

scheduling policies, and is robust for both low-dispersion and

high-dispersion workloads. We design a custom switch data

plane for the inter-server scheduler, which realizes power-of-

k-choices, ensures request affinity, and tracks server loads

accurately and efficiently. We implement a RackSched pro-

totype on a cluster of commodity servers connected by a

Barefoot Tofino switch. End-to-end experiments on a twelve-

server testbed show that RackSched improves the throughput

by up to 1.44×, and scales out the throughput near linearly,

while maintaining the same tail latency as one server until the

system is saturated.

1 Introduction

Online services such as search, social networking and e-

commerce have strict end-to-end user-facing Service Level

Objectives (SLOs) [12, 22]. To meet such SLOs, datacen-

ter systems behind these services are expected to provide

high throughput with low tail latency in the range of tens

to hundreds of microseconds [12]. Example systems include

key-value stores [6, 7, 60], transactional databases [9, 64],

search ranking and sorting [13], microservices and function-

as-a-service frameworks [17], and graph stores [43, 67].

With the end of Moore’s law and Dennard’s scaling, ap-

plications can no longer rely on single-threaded code to ex-

ecute faster on newer processors with increased clock rates

and instruction-level parallelism [31]. This leads to the rise

of multi-core machines to scale up computation. Meeting

microsecond-scale tail latency is challenging given that the

request processing times with single-threaded code on bare

metal hardware are already in the same time scale. This means

that the operating system (OS) should impose minimal over-

head when it manages resources and scales up these applica-

tions on multi-core machines.

This calls for new software architectures to efficiently

utilize the resources of multi-core machines. One criti-

cal component of such architectures is scheduling. Data-

plane operating systems have been designed to support low-

latency applications with minimal overhead to meet strict

SLOs [14, 39, 54, 58, 59]. For example, Shinjuku [39] uses

efficient mechanisms to implement preemption and context

switching, in order to realize centralized scheduling policies

to avoid head-of-line blocking and address temporal load

imbalance between multiple cores.

However, as application demands continue to increase, scal-

ing up a single server is not enough. Serving larger demands

requires these systems to scale out to multiple servers in a

rack, which is termed as rack-scale computers, such as Berke-

ley Firebox [1], Intel Rack Scale Architecture [5], and HP

“The Machine” [2]. Though previous efforts have not fully

paned out yet, we believe it is inevitable, as evidenced by

the emerging TPU Pods that pack high-density specialized

hardware into a rack [8]. Even a traditional rack contains

tens of servers and hundreds to thousands of cores, posing a

challenge for scheduling microsecond-scale requests.

While dataplane operating systems address intra-server

scheduling between multiple cores, head-of-line blocking and

temporal load imbalance between multiple servers arise when

the systems scale out. Using a single core for centralized

scheduling and queue management is amenable for one server

with a few to tens of cores [39]. But the core would quickly

become the bottleneck if it were used to queue and schedule

requests for a rack with hundreds to thousands of cores.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1225

In this paper, we present RackSched, the first rack-level

microsecond-scale scheduler that provides the abstraction

of a rack-scale computer (i.e., a huge server with hundreds

to thousands of cores) to an external service with network-

system co-design. Serving microsecond-scale workloads is

particularly challenging because the scheduler needs to simul-

taneously provide high scheduling speed (i.e., high through-

put and low latency of the scheduler) and high scheduling

quality (i.e., low tail latency to complete requests). Given the

scheduling latency of modern OSes on a single server being a

few microseconds [19, 39], our goal is to design a rack-level

scheduler with comparable scheduling latency that can scale

out to hundreds to thousands of cores in a rack. While there

has been a long line of work on scheduling and load balanc-

ing, existing solutions are not designed for microsecond-scale

workloads: software-based solutions [24, 27, 55, 56] suffer

from low scheduling throughput and high scheduling latency

(at least millisecond-scale); hardware-based ones [25, 51] are

coarse-grained (based on five tuple) and server-agnostic, and

thus suffer from long tail latency.

The core contribution of RackSched is a novel network-

system co-design that simultaneously achieves high schedul-

ing speed and high scheduling quality (§2). We propose a

two-layer scheduling framework that integrates inter-server

scheduling in the top-of-rack (ToR) switch with intra-server

scheduling in each server to approximate centralized schedul-

ing policies. This two-layer design, and the line-rate, on-path

inter-server scheduling in the ToR switch, are critical for the

scheduler to achieve high speed.

To provide high quality scheduling decisions, our key in-

sight is that the two sources of long tail latency—load im-

balance and head-of-line blocking—can be decoupled and

handled by separate mechanisms. The ToR switch tracks

real-time server loads, and schedules requests at per-request

granularity to realize inter-server load balancing (LB). Each

server keeps its own queue, and uses intra-server scheduling

to preempt long requests that block pending short ones. It is

known that centralized first-come-first-serve (cFCFS) is near-

optimal for low-dispersion workloads, and processor sharing

(PS) is near-optimal for heavy-tailed workloads or light-tailed

workloads with high dispersion [39, 59, 69]. We use a com-

bination of analytical results and simulations to show that

our two-layer scheduling framework provides near-optimal

performance as centralized policies, and is robust to different

workloads (Figure 1).

Realizing the inter-server scheduler in the ToR switch re-

quires the switch to schedule requests based on server loads

on per-request granularity (§3). Today’s stateful network load

balancers map connections to servers based the hash of the

five tuple [24, 25, 51, 53, 56], which is static, and cannot dy-

namically adapt the server selection under microsecond-scale

load imbalance. There are three aspects of our approach to

address this challenge. (i) We leverage the switch on-chip

memory to store server loads, and use the multi-stage process-

cFCFS for
low-dispersion workloads

PS for
heavy-tailed or

high-dispersion workloads

ZygOS [59]
cFCFS

Shinjuku [39]
PS

multi-core
server

(scale-up)

RackSched
LB (across-server)

+
cFCFS (per-server)

rack
(scale-out)

RackSched
LB (across-server)

+
PS (per-server)

Figure 1: Key idea of RackSched.

ing pipeline to implement power-of-k-choices and to support

a variety of practical scheduling requirements, such as multi-

queue policies. (ii) We design a request state table for request

affinity, which guarantees the packets of the same request are

sent to the same server. To maintain the dynamic mapping

between requests and servers, the request state table supports

insert (after scheduling the first packet), read (for sending fol-

lowing packets), and remove (when the request is completed)

all in the data plane. (iii) We leverage in-network telemetry

(INT) to monitor server loads with minimal overhead. Servers

piggyback their load information in their normal traffic, and

the switch tracks the latest reported load for each server.

Recent switch-based solution R2P2 [42] relies on expen-

sive recirculation which does not scale for high request

rate, and its scheduling policy has long tail latency under

heavy-tailed or high-dispersion workloads due to head-of-

line blocking (§4.5). In addition, R2P2 needs an extra round

trip for multi-packet requests to ensure request affinity, while

RackSched can finish in one round trip. RackSched is also

more general in supporting many practical policies (§3.6).

In summary, we make the following contributions.

• We propose RackSched, the first rack-level microsecond-

scale scheduler that provides the abstraction of a rack-scale

computer to an external service.

• We design a two-layer scheduling framework that inte-

grates inter-server scheduling in the ToR switch and intra-

server scheduling in each server. We use a combination of

analytical results and simulations to show that it provides

near-optimal performance as centralized policies.

• We design a custom switch data plane for the inter-server

scheduler, which realizes power-of-k-choices for near-

optimal load balancing, ensures request affinity, and tracks

server loads accurately and efficiently.

• We implement a RackSched prototype on a cluster of

twelve commodity servers with a Barefoot Tofino switch.

End-to-end experiments show that RackSched improves

the throughput by up to 1.44×, and scales out the through-

put near linearly, while maintaining the same tail latency

as one server until the system is saturated.

The code of RackSched is open-source and available at

https://github.com/netx-repo/RackSched.

1226 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/netx-repo/RackSched

0.00 0.25 0.50 0.75 1.00
Load

0

200

400

600

800

99
%

 L
at

en
cy

 (μ
s) per-cFCFS

client-cFCFS
JSQ-cFCFS
global-cFCFS

(a) Low-dispersion workload.

0.00 0.25 0.50 0.75 1.00
Load

0

500

1000

1500

2000

99
%

 L
at

en
cy

 (μ
s) per-PS

client-PS
JSQ-PS
global-PS

(b) High-dispersion workload.

Figure 2: Simulation results.

2 Design Decisions

In this section, we navigate through the design space of build-

ing a microsecond-scale scheduler for rack-scale computers,

and highlight the design rationale of RackSched.

Scaling out to a rack. Supporting large application demands

requires datacenter systems to scale out to multiple servers

in a rack. While existing solutions like Shinjuku [39] solve

the problem of scheduling requests to multiple cores (i.e.,

intra-server scheduling), they do not address the problem

of scheduling requests to different servers (i.e., inter-server

scheduling). When requests are simply scheduled to the

servers randomly, the load imbalance and head-of-line block-

ing can happen at the server level, causing long tail latency

for the entire system.

To motivate our work, we use simulations on representa-

tive workloads to show the impact of ineffective scheduling

policies. We use the following two request service time distri-

butions: (i) Exp(50) is an exponential distribution with mean

= 50 µs, which is representative for low-dispersion workloads;

(ii) Trimodal(33.3%-5, 33.3%-50, 33.3%-500) is a trimodal

distribution with 33.3% of requests taking 5 µs, 33.3% tak-

ing 50 µs and 33.3% taking 500 µs, which is representative

for high-dispersion workloads. The simulations assume eight

servers and each server has eight workers (cores). The PS

time slice used in the simulations is 25 µs.

We first compare the baseline policies that randomly send

requests to servers and only use cFCFS or PS inside each

server (per-cFCFS and per-PS) with the ideal centralized

policies across all workers (global-cFCFS and global-PS).

Figure 2 shows that the centralized policies perform better

than the baseline policies. The tail latencies of per-cFCFS

and per-PS quickly go up when the system load exceeds 0.75

and 0.5 respectively, while global-cFCFS and global-PS keep

low tail latencies until the system is almost saturated.

Centralized scheduling cannot scale. The policy compari-

son in Figure 2 shows that there is a substantial gap between

the tail latencies of the centralized policies (global-cFCFS

and global-PS) and the baseline policies (per-cFCFS and per-

PS). However, directly implementing the centralized policies

is challenging because they would require a centralized sched-

uler for the entire rack. While a single core is capable of

running a centralized scheduler to handle the requests for a

multi-core server, it is unlikely to scale to a multi-server rack.

Inter-server scheduler

Request

Intra-server

scheduler

Intra-server

scheduler

Intra-server

scheduler

Queue

Workers

Figure 3: Two-layer scheduling framework.

Indeed, a single scheduler in Shinjuku [39] can scale to up to

11 cores, which falls well short of the demands of a rack with

hundreds to thousands of cores.

Hierarchical scheduling. One natural solution to scale up

the rack-scale scheduler is a two-layer hierarchical scheduler

consisting of an inter-server scheduler at the high level, and

per-server schedulers at the low level (Figure 3). This way,

the inter-server scheduler only needs to schedule requests

across tens of servers, instead of hundreds or thousands of

cores. Each server employs its own intra-server scheduler to

schedule requests across its cores.

Scaling the inter-server scheduler. While the inter-server

scheduler only needs to schedule requests across the servers

in the rack (instead of accross all cores), it still needs to

handle every request. Assuming a rack with 1000 cores and

10 µs requests, the inter-server scheduler must handle up

to 100 millions requests per second (MRPS) to saturate the

rack! Unfortunately, such a scheduler would need to process a

request every 10 ns, which exceeds the capability of a general-

purpose computer.

To address this challenge, in this paper we propose to

leverage emerging programmable switches, and have the ToR

switch implement the inter-server scheduler. This design has

the key benefit that the ToR switch is already on the path of

the requests sent to the rack, and thus can readily process all

these requests at line rate.

JSQ is near optimal and robust. A natural way to approxi-

mate a centralized scheduler with a two-layer scheduler is to

implement the same scheduler at both layers. For example, if

the global scheduler is cFCFS, in the corresponding hierarchi-

cal scheduler all the inter-server and intra-server schedulers

will be cFCFS as well.

Unfortunately, the cFCFS scheduler needs to maintain a

queue, and existing programmable switches have too lim-

ited memory to buffer requests, and are not well equipped to

maintain dynamic data structures, such as queues. The join-

the-shortest-queue (JSQ) scheduler can address the challenge

because it is a bufferless scheduler. Upon a request arrival, it

immediately forwards the request to the server with the short-

est queue. This way, JSQ achieves fine-grained load balancing

across the rack’s servers. Figure 2 confirms that JSQ-cFCFS

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1227

and JSQ-PS can deliver nearly the same performance as the

centralized policies (global-cFCFS and global-PS).

Theoretically, the two-layer scheduling framework imple-

ments the A/S/K/JSQ/P models in queueing theory, where A

is the inter-arrival distribution, S is the service time distribu-

tion, K is the number of servers, JSQ is the join-the-shortest-

queue policy implemented by the inter-server scheduler, and

P is the intra-server scheduling policy which is either cFCFS

or PS in this case. In particular, it is known that JSQ pro-

vides near-optimal load balancing, and importantly, is robust

against request service time distributions. An expanded dis-

cussion is in the technical report [74].

Approximating JSQ. While conceptually simple, JSQ can-

not be implemented in its definite form in practice, because

it requires the switch to know the exact queue length of each

server when scheduling a request. It takes a round trip time

for the switch to ask each server, during which the queue

lengths may have changed for microsecond-scale workloads.

Furthermore, imperfect JSQ based on delayed server status is

prone to herding, where several consecutive requests are sent

to the same server before the server load is updated, and this

can generate micro bursts and degrade system performance.

Note that herding here is not caused by multiple asynchronous

load balancers as there is only one load balancer (the inter-

server scheduler), but from stale server load information in

the load balancer. In addition, the switch can only do a limited

number of operations for each request, and finding the short-

est queue cannot be implemented for many tens of servers.

Thus, we use power-of-k-choices to approximate JSQ, which

samples k servers for each request and chooses the one with

the minimum load. This approximation provides comparable

performance as JSQ in theory [18] (see [74]), and handles

these practical limitations well.

Why not a distributed, client-based solution? An alterna-

tive solution is to implement distributed scheduling at each

client. The clients can use JSQ, power-of-k-choices or more

complicated solutions like C3 [63] to pick workers for their re-

quests. Such a client-based solution has two drawbacks. First,

it needs client modification and increases system complexity.

The clients need to probe server loads and make scheduling

decisions. More importantly, the clients need to be notified

for every system reconfiguration (e.g., adding or removing

servers), because they have to know which set of servers a

request can be sent to. Notifying a large number of clients of

the latest system configuration imposes both a consistency

challenge and high system overhead. Putting these functional-

ities in a scheduler, on the other hand, simplifies the clients

and avoids these system complexities.

Second, a distributed, client-based solution provides a

worse trade-off between performance and probing overhead

than a centralized scheduler for microsecond-scale work-

loads. This is because microsecond-scale workloads are IO-

intensive, and a probing request incurs comparable processing

cost as a normal request at the servers. Thus, probing needs to

be minimized to improve the throughput of processing the ac-

tual requests. No matter whether probing is done proactively

or piggybacked in reply packets, given n clients with the same

sending rate, a centralized scheduler can utilize n times as

much probing data as that of one client in a client-based solu-

tion, resulting in better scheduling quality. Figure 2 confirms

the benefit of the centralized scheduler over a client-based

solution with a piggyback-based probing mechanism (client-

cFCFS and client-PS). The simulation does not model the

client software delay and the network delay to get the server

loads, which favors the client-based solution. The client-based

solution performs worse in real experiments (§4.5). In a multi-

pipeline switch, though states are not shared across pipelines,

RackSched can approximate JSQ within each pipeline. It

works better than the client-based solution because the num-

ber of pipelines (e.g., 4) is far smaller than the number of

clients (e.g., 1000 or more).

Putting it all together. We propose a two-layer scheduling

framework that integrates inter-server scheduling in the ToR

switch and intra-server scheduling in each server. The ToR

switch uses power-of-k-choices to achieve inter-server load

balancing, and each server uses cFCFS or PS to minimize

head-of-line blocking. This solution approximates centralized

scheduling for the entire rack, and provides the abstraction

of a rack-scale computer: the capacity (throughput) of the

rack-scale computer is the sum of that of its servers, and the

tail latency is maintained as that of one server.

Challenges. Translating the two-layer scheduling framework

to a working system implementation presents several techni-

cal challenges:

• What is the system architecture to realize this two-layer

scheduling framework?

• How does the switch schedule requests based on the server

loads, and handle practical scheduling requirements?

• How does the system ensure request affinity (i.e., the pack-

ets of the same request are sent to the same server), when

the switch processes each packet independently?

• How do servers expose their states to the switch so that

the switch can track the real-time loads on the servers

efficiently and accurately?

3 RackSched Design

In this section, we present the design of RackSched to ad-

dress the challenges. We first give an overview of the system

architecture, and then describe each component in detail.

3.1 System Architecture

The core of RackSched is a two-layer scheduling frame-

work that combines inter-server scheduling and intra-server

scheduling. Figure 4(a) shows the RackSched architecture.

Inter-server scheduling. The ToR switch performs inter-

server scheduling at per-request granularity via three modules:

1228 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ClientClientClient

Rack-Scale Computer

L2/L3

Routing

Intra-Server
Scheduler

Worker Threads

Request

Scheduling

Server

Tracking

Request

Affinity

Inter-Server SchedulerToR Switch

Intra-Server
Scheduler

Worker Threads

Intra-Server
Scheduler

Worker Threads

(a) RackSched architecture.

ETH IP TCP/UDP TYPE LOAD Payload

Existing Protocols RackSched Header

REQF, REQR,

REP, etc.

reserved

port #L2/L3 Routing

REQ_ID

(b) RackSched packet format.

Figure 4: RackSched overview.

a request scheduling module that selects a server for a new

incoming request based on server loads (§3.3) and scheduling

requirements (§3.6), a request affinity module that forwards

the packets of the same request to the same selected server

(§3.4), and a server tracking module that tracks the real-time

load on each server (§3.5). All three modules are implemented

in the switch data plane that enables the inter-server scheduler

to run at line rate.

Intra-server scheduling. Each multi-core server in the rack

runs multiple worker threads to process requests. Each server

has a centralized scheduler to queue and schedule requests

to its own workers. The scheduler implements centralized

scheduling policies for intra-server scheduling. Each server

also piggybacks its load information in reply messages to

report its load to the ToR switch.

Deployment options. There are two deployment options for

RackSched. (i) The first one is to integrate RackSched with

the ToR switch of a rack-scale computer. This option adds

additional functionalities to the ToR switch, but does not

change any other part of the datacenter network. (ii) The

second option is to treat the switch-based scheduler as a

specialized server with a programmable switching ASIC. This

server can be connected to the same ToR switch as worker

servers. It owns the anycast IP address so all requests would

be first sent to it for scheduling. By properly updating the

addresses, it can also force the reply packets to pass through it

before returning to the clients, in order to clear request states

and update server loads. This option does not even modify

the ToR switch, but has the latency cost of an extra hop by

the detour to the switch-based scheduler.

Client ToR Switch

Insert Read

ReqTable LoadTable

Server

Intra-Server

Scheduler

(a) The first packet of a request.

Client ToR Switch

Read

ReqTable LoadTable

Server

Intra-Server

Scheduler

(b) The following packets of the request.

Client ToR Switch

Remove Update

ReqTable LoadTable

Server

Intra-Server

Scheduler

(c) The reply packets.

Figure 5: Request processing in RackSched.

3.2 Request Processing

Network protocol. RackSched is designed for intra-

datacenter scenarios. It uses an application-layer protocol

which is embedded inside the L4 payload. We reserve an

L4 port to distinguish RackSched packets from other pack-

ets. The network uses existing L2/L3 routing protocols to

forward packets. There are no modifications to the switches

in the network other than the ToR switch. The ToR switch

uses the reserved L4 port to invoke the custom modules

to process RackSched packets. Other switches do not need

to understand the RackSched protocol, nor do they need

to process RackSched packets. RackSched is orthogonal

to and compatible with other network functionalities, such

as flow/congestion control, which is typically implemented

by the transport layer or the RPC layer (e.g., eRPC [41]).

RackSched ensures request affinity under packet loss and

retransmission by maintaining connection state (§3.4).

RackSched only requires the applications to add the

RackSched header between the TCP/UDP header and the pay-

load (Figure 4(b)), so that it can make scheduling decisions

based on the RackSched header. Note that for TCP handshake

packets that do not have any payload, the RackSched header

should be appended after the TCP header to expose necessary

information to the switch. We emphasize that RackSched fo-

cuses on microsecond-scale workloads. It is not intended to

support long-lived TCP connections, which impose unneces-

sary system overhead to maintain connection states, especially

under switch failures (§3.4), and restrict the scheduler from

making per-request scheduling decisions to address temporal

load imbalance. RackSched does support request dependency

for tasks with multiple requests (§3.6).

The RackSched header contains three major fields, which

are TYPE, REQ ID, and LOAD. TYPE indicates the type of

the packet, e.g., REQF (the first packet of a request), REQR (a

remaining packet of a request), and REP (a reply packet).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1229

Algorithm 1 ProcessPacket(pkt)

– ReqTable: on-chip memory for request-server mapping

– LoadTable: on-chip memory for server loads

// first packet of a request

1: if pkt.type == REQF then

2: server ip← LoadTable.select server()
3: ReqTable.insert(pkt.req id,server ip)

// remaining packets of a request

4: else if pkt.type == REQR then

5: server ip← ReqTable.read(pkt.req id)
// reply packets

6: else if pkt.type == REP then

7: ReqTable.remove(pkt.req id)
8: LoadTable.update(pkt.srcip, pkt.load)

9: Update packet header and forward

REQ ID is a unique ID for each request. All packets of

the same request and the corresponding reply use the same

REQ ID. To ensure a REQ ID is globally unique, each client

appends its client ID in front of its locally generated unique

request ID, i.e., a tuple of <client ID, local request ID>.

LOAD indicates the load of the server. The server piggybacks

its current queue length in the LOAD field in reply packets.

LOAD is not used in request packets.

Processing request packets. Clients use an anycast IP ad-

dress as the destination IP to send requests to the rack-scale

computer, and are unaware of the number of servers behind

the ToR switch. Figure 5 illustrates how RackSched processes

packets, and Algorithm 1 shows the high-level pseudo code

of the switch. The switch keeps two essential sets of state in

the switch on-chip memory. One is ReqTable which stores

the mapping from the request IDs to the servers, and the

other is LoadTable which stores the queue lengths of the

servers. As shown in Figure 5(a), when the first packet of a

request arrives at the switch, the switch selects a server based

on LoadTable, and remembers this selection by inserting an

entry to ReqTable (line 1-3). Then in Figure 5(b), when re-

maining packets of the request arrive, the switch checks the

ReqTable to get the selected server (line 4-5), which ensures

request affinity. The switch uses the selected server IP to up-

date the destination IP in the packet header and sends the

packet to the corresponding server (line 9).

Processing reply packets. After a server receives a request,

it uses its local scheduler to schedule and processes the re-

quest. Then the server generates a reply, and sets the LOAD

field with its current queue length. As shown in Figure 5(c),

the switch deletes the mapping from ReqTable, because the

request has completed and the memory space can be freed

for other requests (line 7). The switch also updates the server

load in LoadTable based on the LOAD field (line 8). We do

not distinguish the first and following packets for a reply even

if the reply contains multiple packets (also equivalent to multi-

Match pkt.dstip == 10.0.0.1

Action pkt.dstip = array[h(pkt)]

0 1 2 3

1.0.0.1 1.0.0.2 1.0.0.3 1.0.0.4

Register Array

Figure 6: Traditional hash-based random dispatching.

Match pkt.dstip == 10.0.0.1

Action if reg.load < meta.load:

meta.load = reg.load

meta.ip = reg.ip

1.0.0.1

20

Register

IP

Load

stage 1 stage 2 stage n

server1

server2

server3

server4

min()

min()

min() m comparisons

each stage

n stages
tree-based parallel

computation of min()

(a) Linear computation of minimum server load.

(b) Tree-based computation of minimum server load.

Figure 7: Optimal server selection.

ple replies). Because ReqTable checks req id for deletion, if

a slot is reused by another request, the following reply packets

of the previous request would not be applied. The updates

of LoadTable only affect server selection of new requests.

Note that this is compatible with TCP even if the client initi-

ates the termination of the connection, as the mapping of this

request is removed from ReqTable when the server receives

the request and sends the first reply packet back to the client.

The switch control plane periodically checks the data plane to

remove stale mappings from ReqTable, which can be caused

by server failures or lost reply packets. In the end, the switch

updates the source IP to the anycast IP in the packet header,

and sends the packet back to the client (line 9).

3.3 Request Scheduling

The request scheduling module dynamically schedules re-

quests based on server loads. Unfortunately, this is not sup-

ported in today’s switches. Today’s switch-based load bal-

ancers such as SilkRoad [51] only support ECMP-like ran-

dom dispatching based on the five tuple. Figure 6 shows how

hash-based random selection is implemented in the data plane.

The register array stores a set of server IPs for the anycast IP

10.0.0.1. The rule in the match-action table matches packets

with their destination IP being the anycast IP 10.0.0.1, and

the action rewrites the destination IP to an IP in the register

array, which is selected by computing a hash on the packet

header (usually the five tuple). Because the selection is static,

and is purely based on the hash, it can cause load imbalance

and long tail latency as discussed in §2. We now describe how

to realize dynamic request scheduling based on server loads.

Handling practical scheduling requirements is in §3.6.

Optimal server selection. We leverage the register arrays to

store the server loads together with the server IPs and use

the multi-stage packet processing pipeline to compute the

minimum. A naive way is to use multiple stages to scan the

1230 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Match pkt.dstip == 10.0.0.1

Action meta.load_i =

array[rand_i].load

meta.ip_i =

array[rand_i].ip

0 1 2 3

1.0.0.1 1.0.0.2 1.0.0.3 1.0.0.4

20 10 30 5

Register Array

zoom-in

tree-based parallel

computation of min()

power of k choices to

sample k servers

rand1

rand2

rand3

rand4

min()

min()

min()

Figure 8: Approximate server selection.

server loads linearly, as shown in Figure 7(a). The number

of servers this solution can support is limited to the number

of stages. As a switch typically has 10–20 stages and many

stages need to be used by other switch functionalities, this

solution is not scalable. It can be optimized by computing

the minimum in a tree structure as shown in Figure 7(b). The

comparisons between two servers in each layer of the tree

have no dependencies, and thus can be done in parallel in

the same stage. In the ideal case, given n servers, this tree-

based solution requires log(n) stages, while the naive solution

requires n stages. Let each stage support up to m comparisons.

The comparisons in the first few layers need to be distributed

to multiple stages, if they are larger than m.

Approximate server selection. As discussed in §2, always

choosing the server with the shortest queue is prone to herd-

ing, and due to the limited stages and the need to support other

functionalities, the tree-based approach cannot scale to many

tens of servers. We design an approximate server selection

mechanism based on power-of-k-choices [18], i.e., the switch

samples k servers and chooses the one with the shortest queue

from them. As shown in Figure 8, the sampling can be done

via multiple stages if k is bigger than the number of register

read operations supported by one stage. After the k servers

are sampled, the tree-based mechanism can be applied to get

the one with the shortest queue.

3.4 Request Affinity

Request affinity ensures all packets of the same request are

sent to the same server. This is challenging because the switch

processes each packet independently. In traditional network

load balancers [24, 25, 51, 53, 56], the server selection is

solely based on the hash of the packet header, and the switch

does not need to keep any state for request affinity. But in

RackSched, the selection is dynamic. If the switch performs

a server selection for every packet, the packets of the same

request might be sent to different servers.

Realizing request affinity requires the switch to keep states.

Abstractly, the switch should maintain a request state table

to store the mapping from request IDs to server IPs (i.e.,

ReqTable in Algorithm 1). One option is to use a match-

Req.
ID

Server
IP

1 1.0.0.1

3 1.0.0.2

h1(pkt.req_id)

Stage 1 Stage 2 Stage 3

Req.
ID

Server
IP

2 1.0.0.4

5 1.0.0.3

Req.
ID

Server
IP

4 1.0.0.4

7 1.0.0.3

6 1.0.0.2

h2(pkt.req_id) h3(pkt.req_id)

Figure 9: Multi-stage hash table for request affinity.

action table, where the request IDs are stored in the match,

and the servers IPs are stored in the action to update the

destination IP of the packets (e.g., used by SilkRoad [51]).

This option, however, does not work for microsecond-scale

requests at million RPS throughput, because updating the

match-action table (e.g., adding or removing a request) re-

quires the control plane, which can only do about 10K updates

per second [36, 48, 52]. To address this challenge, our design

leverages register arrays to realize a multi-stage hash table

that implements all necessary operations (i.e., insert, read

and remove) for ReqTable in the data plane, as shown in Fig-

ure 9. Unlike match-action tables, register arrays can only

be accessed via an index. We use the hash of the request ID

to find the slot for a request, and the slot stores the request

state, i.e., the request ID and server IP. To handle hash col-

lisions and the limited array size in each stage, we leverage

multiple stages to build a multi-stage hash table. Algorithm 2

shows the pseudo code to implement the three operations on

ReqTable in Algorithm 1. The switch iterates over the stages

to find an empty slot to insert a new request (line 1-5), and to

find a matched slot to read the server IP (line 6-9) or remove a

completed request (line 10-14). RackSched does not decrease

the capability of the system to defend against DoS attacks.

The switch has sufficient memory for ReqTable to support

high throughput (§4.1), and a DoS attack that overwhelms

ReqTable could have overwhelmed the servers first.

Handling switch failure. There is a relevant notion to request

affinity called Per-Connection Consistency (PCC) for stateful

layer-4 load balancers, which requires a TCP connection to

be kept across load balancer failures and system reconfigu-

rations [24, 25, 51, 53, 56]. We emphasize that RackSched

focuses on microsecond-scale requests with strict deadlines

(e.g., a couple of the request execution time). Rebooting a

failed switch or replacing it with a backup switch takes a

few minutes, by the time of which the requests have already

missed their deadlines. Therefore, different from PCC, main-

taining request affinity across switch failures is a non-goal

for RackSched. Because of the fate sharing between the ToR

switch and the rack, it is safe to disregard the ReqTable upon

a switch failure, and the new switch starts with an empty

ReqTable. Note that RackSched does not increase the chance

of switch failures as a normal ToR switch without RackSched

can still fail and make the rack disconnected.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1231

Algorithm 2 Request affinity

– ReqTable[n][m]: register arrays to store request state, which spans n

stages and has m slots in each stage

1: function INSERT(req id,server ip)

2: for stage i in all stages do

3: if ReqTable[i][h(req id)] == None then

4: ReqTable[i][h(req id)]← (req id,server ip)
5: return

6: function READ(req id)

7: for stage i in all stages do

8: if ReqTable[i][h(req id)].req id == req id then

9: return ReqTable[i][h(req id)].server ip

10: function REMOVE(req id)

11: for stage i in all stages do

12: if ReqTable[i][h(req id)].req id == req id then

13: ReqTable[i][h(req id)]← None

14: return

Handling system reconfiguration. Unlike switch failures,

there is no fate sharing between each server and the rack,

and RackSched does maintain request affinity across system

reconfigurations such as adding or removing servers for an

application. Because RackSched uses ReqTable to store the

mapping, ongoing requests simply check ReqTable to go

to the correct servers. Only the request scheduling module

(§ 3.3) needs to be updated to have the right set of servers to

choose from for new requests. We pre-allocate a large number

of registers for LoadTable at compilation time, and use an-

other register to indicate the number of active servers, which

is dynamically updated for system reconfigurations. For an

unplanned server removal (e.g., a server failure), RackSched

uses the switch control plane to update the ReqTable and

delete the stale entries related to the removed server.

3.5 Server Tracking

The server tracking module updates the server loads (i.e.,

LoadTable in Algorithm 1) for the switch to make schedul-

ing decisions. The challenge is to accurately track the server

loads at real-time with low overhead. A straightforward so-

lution is to let the switch control plane periodically poll the

queue lengths at each server and update the data plane. How-

ever, due to the millisecond-scale delay and the limited rate

of control plane updates [37, 52], this solution does not apply

to the microsecond-scale workloads targeted by RackSched.

To do this in the data plane, a possible solution is to let the

switch proactively track the server loads, i.e., incrementing

and decrementing the counters for queue lengths when pro-

cessing request and reply packets. This solution suffers from

estimation errors due to packet loss and retransmissions, and

fixes like decreasing the counters based on the server pro-

cessing rate [47] cannot handle temporal load imbalance in

high-dispersion microsecond-scale workloads.

RackSched leverages in-network telemetry to accurately

track server loads with minimal overhead. In-network teleme-

try is widely used in network monitoring and diagnosis where

switches put relevant measurement data into packet headers

in the data plane. RackSched applies this mechanism to track

server loads. Then the servers piggyback their loads in the

reply packets to update the counters in the switch, which

does not introduce new packets and thus minimizes system

overhead. A potential problem is the feedback loop delay as

stale information can cause herding, which can degrade the

scheduling performance and make the system unstable (i.e.,

swing between overloading different servers). In RackSched,

the switch and the servers are directly connected in the same

rack, and the server-side data plane implementation bypasses

traditional TCP/IP stack to report its queue length to the

switch quickly, making the feedback loop delay minimal. And

together with power-of-k-choices scheduling, RackSched can

effectively avoid herding. An alternative solution that only

keeps the server with the minimum load in the switch and

updates it based on in-network telemetry cannot leverage

power-of-k-choices to avoid herding. We show the impact of

different ways to track and represent server loads in §4.6.

3.6 Handling Scheduling Requirements

Multi-queue support. By default, RackSched uses a single-

queue policy, i.e., the system does not differentiate a priori

between request types and aims to meet a single SLO for

tail latency (e.g., a photo caching workload with only get re-

quests). RackSched also supports multiple queues if the work-

load has multiple request types that have distinct service time

distributions (e.g., a key-value store workload with both get

and range requests). Applications indicate the request type in

the TYPE field of the packet header. Each server maintains a

separate queue for each type for intra-server scheduling. The

switch maintains the counters for each type in LoadTable,

and schedules requests based on the queue lengths of the

request type. We remark that there is no fundamental limit

on the number of queues on each server, since the queues are

implemented in software and the switch only needs to keep a

counter for each queue on each server.

Locality and placement constraints. RackSched handles

two types of common locality and placement constraints,

which are data locality and request dependency. (i) Data lo-

cality requires a request to be processed on a subset of servers

that hold the input data. To support data locality, applications

set different LOCALITY values to represent different locality

requirements (i.e., different sets of servers that can process

this request), and the switch maintains different mappings,

which map a server ID to a server for different LOCALITY

values. (ii) Request dependency requires multiple requests

to be scheduled to the same server, e.g., a task consists of

multiple requests and the input of one request is the output of

one or more other tasks. Request dependency is supported us-

ing request affinity: relevant requests carry the same REQ ID

in their headers, so that they will be sent to the same server.

Additional information is included in the RackSched header

for the number of subsequent requests to expect. The server

can send replies to each request separately and independently.

1232 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

RackSched only requires the server to set TYPE to be reply

in replies after it has received all requests in the set in order

to safely delete the state in the switch. Note that applications

can still use different request IDs for different requests and

receive replies as soon as some requests are completed, by

adding application-specific metadata in the payload.

Resource allocation policies. The scheduler is responsible

for allocating resources when the demand exceeds the capac-

ity of the rack-scale computer. RackSched supports two types

of common resource allocation policies, which are strict pri-

ority and weighted fair sharing. (i) To support strict priority,

each server maintains a separate queue for each priority. Sim-

ilar to the multi-queue support, the switch tracks the queue

lengths, and balances the server loads for each priority. Each

server uses intra-server scheduling to preempt low-priority re-

quests when high-priority requests arrive, which can be done

in 5 µs in our implementation based on Shinjuku [39]. (ii)
Supporting weighted fair sharing is similar. Each server main-

tains a separate queue for each client, and performs weighted

fair queueing [23] for intra-server scheduling on the granu-

larity of slice in PS. The switch tracks the queue lengths and

balances the server loads for each client.

4 Evaluation

In this section, we evaluate RackSched with a variety of syn-

thetic and real application workloads. We provide additional

experiment results, including locality constraints, priority poli-

cies and multiple applications, in the technical report [74].

4.1 Methodology

Testbed. The experiments are conducted on a testbed of

twelve server machines connected by a 6.5Tbps Barefoot

Tofino switch. Each server has an 8-core CPU (Intel Xeon

E5-2620 @ 2.1GHz), 64GB memory, and one 40G NIC (Intel

XL710). Eight servers are used as workers to process requests,

and they run Shinjuku [39] with our extension. Four servers

are used as clients to generate requests. The bottleneck of the

system is at the workers.

Implementation. We have implemented a RackSched pro-

totype and integrated it with Shinjuku [39]. (i) The switch

data plane is written in P4 [16] and compiled to Barefoot

Tofino ASIC [11] with P4 Studio [10]. The request state table

contains a hash table with 64K slots. The default implementa-

tion uses power-of-2-choices. (ii) The worker server is based

on Shinjuku [39]. We have extended Shinjuku to support the

RackSched packet header, maintain a counter and update the

counter upon request arrival and reply departure to track the

queue length and append the queue length in reply packets.

Both RackSched and Shinjuku preempt requests that exceed

250 µs in our experiments. (iii) The client is open-loop and

implemented in C using Intel DPDK 16.11.1 [4]. It can gener-

ate requests at high request rate based on synthetic workloads

and the RocksDB application, and measure the throughput

and latency of RackSched.

Resource consumption. Our prototype uses 13.12% SRAM,

9.96% Match Input Crossbar, 12.5% Hash Unit and 25%

Stateful ALUs of the Tofino ASIC resources. We provide an

analysis and a back-of-the-envelop calculation to show that

RackSched consumes little switch memory. RackSched has

two sets of state on the switch, i.e., LoadTable and ReqTable.

(i) LoadTable maintains a counter for each queue of each

server. Let the counter be 4 bytes, the number of queues in

each server be 3 and the number of servers be 32. It only con-

sumes 384 bytes. (ii) ReqTable maintains the selected server

IPs for the ongoing requests, not all requests the system have

received and processed. Each slot can be reused by many

times each second because the requests are microsecond-

scale. Given an average request processing latency of 50 µs,

a slot can support 20 KRPS throughput, and a table with 64K

slots can support 1.28 BRPS throughput. Let the request ID

and server IP both be 4 bytes. A table with 64K slots (our im-

plementation) consumes 256 KB, which is only a few percent

of the on-chip memory (tens of MB). Overflowed requests can

fall back to hash-based random dispatching which preserves

request affinity.

Workloads. We use a combination of synthetic and applica-

tion workloads. They include the following workloads. By

default, the workloads use one-packet requests.

• Exp(50) is an exponential distribution with mean = 50 µs,

which represents common query and storage workloads,

such as get requests in photo caching.

• Bimodal(90%-50, 10%-500) is a bimodal distribution with

90% of requests taking 50 µs and 10% taking 500 µs,

which represents workloads with a mix of simple requests

and complex requests, such as get and range requests in

key-value stores.

• Bimodal(50%-50, 50%-500) is a bimodal distribution with

50% of requests taking 50 µs and 50% taking 500 µs,

which represents workloads with half simple requests and

half complex requests.

• Trimodal(33.3%-50, 33.3%-500, 33.3%-5000) is a trimodal

distribution with a third of requests taking 50 µs, 500 µs

and 5000 µs, respectively, which represents workloads

with more diverse request types, such as point, range and

complex join requests in databases.

We also use RocksDB 5.13 [60], an open-source production-

quality key-value store, as a real application workload to

evaluate RackSched. RocksDB is configured to store data in

DRAM to avoid blocking behavior and achieve low latency.

4.2 Synthetic Workloads

We evaluate the system on synthetic workloads that cover

large application space. We compare RackSched with that

directly runs Shinjuku in the cluster, i.e., the requests are

randomly sent to the servers.

Figure 10(a) and Figure 10(b) compare RackSched and

Shinjuku under Exp(50) and Bimodal(90%-50, 10%-500)

workloads, respectively. In these two figures, both RackSched

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1233

0 200 400 600 800 1000
Load (KRPS)

0

200

400

600

800

1000

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

(a) Exp(50).

0 250 500 750
Load (KRPS)

0

500

1000

1500

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

(b) Bimodal(90%-50, 10%-500).

0 50 100 150 200
Load (KRPS)

0

1000

2000

3000

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

(c) Bimodal(50%-50, 50%-500).

0 30 60 90
Load (KRPS)

0

5000

10000

15000

20000

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

(d) Trimodal(33.3%-50, 33.3%-500,

33.3%-5000).

Figure 10: Experimental results for synthetic workloads with homogeneous servers.

0 250 500 750 1000
Load (KRPS)

0

200

400

600

800

1000

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

(a) Exp(50).

0 200 400 600
Load (KRPS)

0

500

1000

1500

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

(b) Bimodal(90%-50, 10%-500).

0 50 100 150 200
Load (KRPS)

0

1000

2000

3000

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

(c) Bimodal(50%-50, 50%-500).

0 25 50 75
Load (KRPS)

0

5000

10000

15000

20000

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

(d) Trimodal(33.3%-50, 33.3%-500,

33.3%-5000).

Figure 11: Experimental results for synthetic workloads with heterogeneous servers.

and Shinjuku use a single-queue policy. Under Exp(50), the

99% latencies of RackSched and Shinjuku are similar at low

load. But the 99% latency of Shinjuku quickly goes up after

800 KRPS, while that of RackSched can support the system

load up to 950 KRPS. Under Bimodal(90%-50, 10%-500), the

99% latency of Shinjuku quickly increases after 500 KRPS,

while that of RackSched stays stable until 650 KRPS. In both

workloads, RackSched supports larger request load with lower

tail latency, because its inter-server scheduling addresses tem-

poral load imbalance between servers, while Shinjuku experi-

ences short bursts and long queues in individual servers under

high request load.

Figure 10(c) and Figure 10(d) show the results for

Bimodal(50%-50, 50%-500) and Trimodal(33.3%-50, 33.3%-

500, 33.3%-5000) workloads, respectively. In these two

figures, both RackSched and Shinjuku have a separate

queue for each request type. Again, RackSched significantly

outperforms Shinjuku. The improvement of RackSched is

larger in Trimodal(33.3%-50, 33.3%-500, 33.3%-5000) than

Bimodal(50%-50, 50%-500), because Trimodal(33.3%-50,

33.3%-500, 33.3%-5000) has more diverse service times and

can benefit more from effective inter-server scheduling.

Figure 11 shows the results with heterogeneous servers. In

this case, four servers have four workers and the other four

servers have seven workers (one core used by the scheduler).

This evaluates the cases when some servers are slower or some

cores of these servers are grabbed for other purposes [15, 54].

We compare RackSched with Shinjuku under the same four

distributions in Figure 10. RackSched is load-aware and tends

to send requests to the servers with shorter queue lengths,

while Shinjuku distributes the requests to the servers uni-

formly, disregarding the heterogeneity. RackSched can im-

prove the performance further with heterogeneous servers.

0 100 200 300 400 500 600 700
Load (KRPS)

0

500

1000

1500

99
%

 L
at

en
cy

 (μ
s)

RackSched(1)
Shinjuku(1)

RackSched(2)
Shinjuku(2)

RackSched(4)
Shinjuku(4)

RackSched(8)
Shinjuku(8)

Figure 12: Scalability results.

4.3 Scalability

The key benefit of RackSched is that it enables the system to

scale out by adding servers, while achieving low tail latency

at high throughput. Figure 12 shows the 99% latency under

different request load with one, two, four and eight servers,

respectively. This figure uses Bimodal(90%-50, 10%-500)

workload, and the results for other workloads are similar.

With one server, the two systems, i.e., RackSched (1) and

Shinjuku(1), have the same performance, as there is no need

for inter-server scheduling. With two servers, load imbalance

can happen, but the variability is small. With four servers,

micro bursts can cause bigger temporal load imbalance, and

the improvement of inter-server scheduling is also bigger.

When there are eight servers, there is more variability between

the loads on the servers, and inter-server scheduling has more

opportunities to improve performance. Shinjuku(8) can only

maintain low tail latency until 500 KRPS, while RackSched

(8) can maintain low tail latency until 650 KRPS. We expect

the improvement of RackSched over Shinjuku would be larger

with more servers, because there would be more variabilities

with more servers.

1234 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 200 400 600
Load (KRPS)

0

500

1000

1500

2000

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

(a) 90%-GET, 10%-SCAN.

0 50 100 150
Load (KRPS)

0

1000

2000

3000

4000

5000

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

(b) 50%-GET, 50%-SCAN.

0 50 100 150
Load (KRPS)

0

200

400

600

800

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

(c) GET in 50%-GET, 50%-SCAN.

0 50 100 150
Load (KRPS)

0

1000

2000

3000

4000

5000

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

(d) SCAN in 50%-GET, 50%-SCAN.

Figure 13: Experimental results for RocksDB.

Overall, RackSched scales out the total throughput of the

system near linearly with the number of servers in the rack.

And the throughput improvement is achieved without increas-

ing the tail latency. Even with more servers, RackSched is

still able to maintain the same tail latency as one server until

the system is saturated.

4.4 Application: RocksDB

We use RocksDB [60] to demonstrate the benefits of

RackSched on real applications. RocksDB is an open-source

production-quality storage system that is widely deployed to

support many online services such as Facebook. In the experi-

ments, RocksDB is configured with an in-memory file system

(/tmpfs/) for microsecond-scale request processing. We use

two request types. One is GET which gets 60 objects with

a median request service time of 50 µs. The other is SCAN

which scans 5000 objects with a median service processing

time of 740 µs. Only 326 lines of code are needed to port

RocksDB to RackSched and Shinjuku. Figure 13(a) shows

the results for the workload that contains 90% GET requests

and 10% SCAN requests. In this experiment, the system

uses a single-queue policy. At low request load, RackSched

and Shinjuku have comparable 99% latency. But Shinjuku

can only maintain low tail latency until 300 KRPS, while

RackSched is able to keep low tail latency until 500 KRPS.

Figure 13(b) shows the results for the workload that con-

tains 50% GET requests and 50% SCAN requests. In this

experiment, the system uses a multi-queue policy. RackSched

is able to maintain low tail latency at a higher request load

than Shinjuku. We further break down the results for each

request type for this workload. Figure 13(c) and Figure 13(d)

show the 99% latency for GET and SCAN under different

total request load, respectively. Because RackSched uses the

switch to balance the load of each request type between the

0 250 500 750
Load (KRPS)

0

500

1000

1500

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

Client(100)
R2P2

(a) Bimodal(90%-50,10%-500).

0 50 100 150 200
Load (KRPS)

0

1000

2000

3000

99
%

 L
at

en
cy

 (μ
s)

RackSched
Shinjuku

Client(100)
R2P2

(b) Bimodal(50%-50,50%-500).

Figure 14: Comparison with other solutions.

servers, the improvement of RackSched over all requests does

not come at the cost of sacrificing any individual request type.

For both request types, RackSched is able to deliver compa-

rable tail latency at low load, achieve significantly lower tail

latency at high load, and support higher total request load.

4.5 Comparison with Other Solutions

R2P2 [42] is a recent solution that proposes a join-bounded-

shortest-queue (JBSQ) policy for request scheduling, and

the solution can be implemented on programmable switches.

R2P2 does not have preemptive intra-server scheduling and

has head-of-line blocking. Thus, it suffers from long tail la-

tency, especially under high-dispersion workloads. Client-

based solutions are lack of global view and use power-of-k-

choices scheduling based on stale server load information,

and thus they suffer from inaccurate scheduling decisions.

We emulate 100 clients that generate requests with the same

rate in the machines. Each client performs the same policy as

RackSched and tracks server queue lengths via piggybacking

by its own. The performance of Client(10) (which emulates

10 clients) and Client(1000) (which emulates 1000 clients)

are nearly the same as that of Client(100). Figure 14 shows

the performance of RackSched, Shinjuku, the client-based

solution and R2P2 under Bimodal(90%-50, 10%-500) and

Bimodal(50%-50, 50%-500) workloads. In both workloads,

RackSched outperforms others by maintaining low latency at

higher request rate, and Client(100) has nearly the same per-

formance as Shinjuku. More importantly, R2P2 is not robust

to service time distributions. It is close to RackSched under

Bimodal(50%-50, 50%-500), and the gap between R2P2 and

RackSched is significantly larger under Bimodal(90%-50,

10%-500).

4.6 Analysis of RackSched

We analyze RackSched and show the impact of different

design choices, including different scheduling policies of the

switch-based inter-server scheduler and different mechanisms

to track the server loads.

Impact of switch scheduling policies. Figure 15 eval-

uates the impact of different scheduling policies under

Bimodal(90%-50, 10%-500) and Bimodal(50%-50, 50%-500)

workloads. We compare four scheduling policies: RR (which

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1235

0 250 500 750
Load (KRPS)

0

500

1000

1500

99
%

 L
at

en
cy

 (μ
s)

RR
Shortest

Sampling-2
Sampling-4

(a) Bimodal(90%-50,10%-500).

0 50 100 150 200
Load (KRPS)

0

1000

2000

3000

99
%

 L
at

en
cy

 (μ
s)

RR
Shortest

Sampling-2
Sampling-4

(b) Bimodal(50%-50,50%-500).

Figure 15: Impact of switch scheduling policies.

0 250 500 750
Load (KRPS)

0

500

1000

1500

99
%

 L
at

en
cy

 (μ
s)

INT1
INT2

INT3
Proactive

(a) Bimodal(90%-50,10%-500).

0 50 100 150 200
Load (KRPS)

0

1000

2000

3000

99
%

 L
at

en
cy

 (μ
s)

INT1
INT2

INT3
Proactive

(b) Bimodal(50%-50,50%-500).

Figure 16: Impact of server load tracking mechanisms.

schedules requests to server with round-robin), Shortest

(which chooses the server with the smallest queue length),

Sampling-2 (which samples two servers and chooses the one

with the smaller queue length), and Sampling-4 (which sam-

ples four servers and chooses the one with the smallest queue

length). RR sends an even number of requests to each server,

without considering the variability of request service times.

Thus, it suffers from long tail latency at high request load.

Theoretically, Shortest can provide effective load balancing,

but it incurs high tail latency in practice, even at low re-

quest load. As discussed in §2, the reason is that there is

a delay to update the queue lengths in the switch from the

servers. When a server becomes the one with the smallest

queue length, multiple consecutive requests would all choose

this server, causing a micro herding behavior. And the queue

length of this server has to wait to be updated until the new

queue length is piggybacked in the first reply packet to update

in the switch. As discussed in §2, this herding behavior can be

handled by adding randomization to the scheduling process.

The results in the figure confirm the effectiveness of sampling.

For the scale of the evaluated scenario, sampling two and

four servers have similar performance, because sampling two

servers already provides enough choices to avoid hotspots

and enough randomization to avoid herding.

Impact of server load tracking mechanisms. Figure 16

evaluates the impact of different mechanisms to track

server loads, under both Bimodal(90%-50, 10%-500) and

Bimodal(50%-50, 50%-500) workloads. We compare three

tracking mechanisms discussed in §3.5: INT 1 (which tracks

0 5 10 15 20 25
Time (s)

0

450

900

Th
ro

ug
hp

ut
 (K

R
P

S
)

stop switch
reactivate switch

(a) RackSched handles a switch failure.

0 10 20 30 40 50
Time (s)

0
100
200
300
400

99
%

 la
te

nc
y

(μ
s)

increase sending rate

add server
decrease sending rate

remove server

(b) RackSched handles server reconfigurations.

Figure 17: Handling failures and reconfigurations.

the number of outstanding requests for each server and com-

putes the minimum), INT 2 (which only tracks the minimum

number of outstanding requests and updates on reply pack-

ets), INT 3 (which tracks the total service time of outstanding

requests for each server) and Proactive (which increments

and decrements the counters by the switch). Proactive cannot

precisely maintain the queue length for each server as packet

loss and retransmissions can introduce errors on the coun-

ters, and as a result, it does not work well as others. INT 2

performs worse than INT 1 because it only keeps one server

with the minimum load, resulting in herding. INT 3 is com-

parable to INT 1. However, it presumes that the service times

are known as a priori, which is normally not the case in prac-

tice. INT 1 works the best because it accurately tracks server

loads, enables randomization to avoid herding for effective

load balancing, and does not require any priori knowledge.

4.7 Request Affinity

Handling switch failures. To simulate a switch failure, we

first stop the switch manually, then reactivate the switch after

several seconds. Figure 17(a) shows the total throughput dur-

ing this period under Exp(50) workload. At 10 s, the switch is

stopped and the total throughput drops to 0. We reactivate the

switch after 5 seconds and the total throughput recovers to

the initial level. The microsecond-scale requests have already

timed out after 5 seconds. So it is safe to start with an empty

ReqTable after the reactivation, as discussed in §3.4.

Handling system reconfigurations. RackSched maintains

request affinity during system reconfigurations. Figure 17(b)

shows the 99% latency under system reconfigurations. We use

two-packet requests under Exp(50) workload, and start with

500 KRPS load and seven machines as the servers. At time 8

s, we increase the request sending rate, and the 99% latency

goes up to around 380 µs. At time 14 s, we add another server

to serve the requests, and the 99% latency drops to 310 µs. At

1236 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

time 28 s, we set the request sending rate back to 500 KRPS.

And the 99% latency drops to 280 µs further. At time 39 s,

we remove a server from the rack. Since seven servers are

enough for such workload, the 99% latency remains the same.

As discussed in § 3.4, the request affinity is maintained by the

ReqTable in the above process.

5 Discussion

Target workloads. RackSched supports both stateless and

replicated stateful services. Examples include microservices,

function-as-a-service, stream processing, replicated caches

and storage, and replicated machine learning models for high-

throughput inference. It is unlikely for a stateful service to be

replicated to all servers in a rack. We expect a more practi-

cal scenario is that a rack would run multiple such services,

where each service is provided by a subset of (overlapping)

servers, i.e., locality constraints. The evaluation shows that

RackSched can provide significant improvements for a ser-

vice hosted on just 8 servers (§4). And we provide additional

results to show the benefits for multiple services with locality

constraints in the technical report [74]. These results demon-

strate that RackSched provides significant benefits even when

the service is replicated on just a couple of servers.

Going beyond a rack. We focus on a single rack in this paper.

A modern rack can already pack hundreds of cores, and a

future rack is expected to pack thousands of cores [1, 2, 5],

which is sufficient for many services. For planetary-scale

services, a single microservice may span multiple racks. In

this scenario, there is no central place like the ToR switch in

a rack that can see and process all traffic. Yet, the abstraction

of a rack-scale computer provided by RackSched provides

a useful building block for distributed inter-rack scheduling.

This would be an interesting direction for future work.

6 Related Work

Dataplane designs for low latency. Conventional network-

ing stacks and operating systems usually sacrifice low latency

for generality. To address the need for low latency, various

dataplane designs have been proposed, including optimized

networking stacks [4, 21, 34] and dataplane operating sys-

tems [14, 20, 32, 39, 54, 58, 59]. RackSched leverages such

dataplane designs and enhances them with an inter-server

scheduler, realizing low latency in a rack-scale computer.

Scheduling and resource management. There is a long line

of research on job scheduling and resource management [26,

28, 29, 32, 38, 40, 42, 55, 57, 65, 66, 71]. Many systems focus

on large jobs that can run from seconds to hours, and they can

afford running sophisticated scheduling algorithms to make

effective decisions. RackSched works at microsecond scale

and optimizes the tail latency with network-system co-design.

Programmable switches. Programmable switches bring new

opportunities to improve datacenter networks and systems,

such as key-value stores [36, 48, 49, 50], coordination and

consensus [35, 45, 46, 70, 73], network telemetry [3, 33],

machine learning acceleration [61, 62] and query processing

offload [44]. There are also proposals for managing systems

built with programmable switches [30, 68, 72]. RackSched

is a new solution that leverages the programmable switch as

an inter-rack scheduler to optimize microsecond-scale tail

latency for rack-scale computers.

7 Conclusion

We present RackSched, a rack-level microsecond-scale sched-

uler that provides the abstraction of a rack-scale computer to

an external service. RackSched leverages a two-layer schedul-

ing framework to achieve scalability and low tail latency. We

hope that with the end of Moore’s law and Dennard’s scal-

ing, RackSched will inspire a new generation of datacenter

systems enabled by domain-specific hardware and hardware-

software co-design.

Acknowledgments We thank our shepherd Ryan Stutsman

and the anonymous reviewers for their valuable feedback.

We thank Jack Humphries for helping debug Shinjuku issues.

This work is supported in part by NSF grants CNS-1813487,

CCF-1918757 and CNS-1955487, a Facebook Communica-

tions & Networking Research Award, and a Google Faculty

Research Award.

References

[1] FireBox: A Hardware Building Block for

2020 Warehouse-Scale Computers. https:

//www.usenix.org/node/179918.

[2] HP The Machine. https://www.labs.hpe.

com/the-machine.

[3] In-band Network Telemetry (INT) Dataplane Specifica-

tion. https://p4.org/specs/.

[4] Intel Data Plane Development Kit (DPDK). http:

//dpdk.org/.

[5] Intel Rack Scale Design. https://

www.intel.com/content/www/us/

en/architecture-and-technology/

rack-scale-design-overview.html.

[6] Memcached key-value store. https://memcached.

org/.

[7] Redis data structure store. https://redis.io/.

[8] TPU Pods. https://cloud.google.com/

tpu/.

[9] Voltdb in-memory database. https://www.

voltdb.com.

[10] Barefoot P4 Studio. https://www.

barefootnetworks.com/products/

brief-p4-studio/.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1237

https://www.usenix.org/node/179918
https://www.usenix.org/node/179918
https://www.labs.hpe.com/the-machine
https://www.labs.hpe.com/the-machine
https://p4.org/specs/
http://dpdk.org/
http://dpdk.org/
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://memcached.org/
https://memcached.org/
https://redis.io/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://www.voltdb.com
https://www.voltdb.com
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.barefootnetworks.com/products/brief-p4-studio/

[11] Barefoot Tofino. https://www.

barefootnetworks.com/technology/.

[12] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan.

Attack of the killer microseconds. Communications of

the ACM, 2017.

[13] L. A. Barroso, J. Dean, and U. Hölzle. Web search for

a planet: The Google cluster architecture. IEEE Micro,

2003.

[14] A. Belay, G. Prekas, A. Klimovic, S. Grossman,

C. Kozyrakis, and E. Bugnion. IX: A protected dat-

aplane operating system for high throughput and low

latency. In USENIX OSDI, 2014.

[15] D. S. Berger, B. Berg, T. Zhu, S. Sen, and M. Harchol-

Balter. Robinhood: Tail latency aware caching–dynamic

reallocation from cache-rich to cache-poor. In USENIX

OSDI, 2018.

[16] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-

own, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,

G. Varghese, and D. Walker. P4: Programming protocol-

independent packet processors. SIGCOMM CCR, July

2014.

[17] S. Boucher, A. Kalia, D. G. Andersen, and M. Kaminsky.

Putting the “micro” back in microservice. In USENIX

ATC, 2018.

[18] M. Bramson, Y. Lu, and B. Prabhakar. Randomized

load balancing with general service time distributions.

ACM SIGMETRICS performance evaluation review,

38(1):275–286, 2010.

[19] F. Cerqueira and B. Brandenburg. A comparison of

scheduling latency in linux, preempt-rt, and litmus rt. In

Annual Workshop on Operating Systems Platforms for

Embedded Real-Time Applications, 2013.

[20] A. Daglis, M. Sutherland, and B. Falsafi. RPCValet:

NI-driven tail-aware balancing of µs-scale RPCs. In

ACM ASPLOS, 2019.

[21] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta,

B. Fahs, D. Rubinstein, E. C. Zermeno, E. Rubow,

J. A. Docauer, J. Alpert, J. Ai, J. Olson, K. DeCa-

booter, M. de Kruijf, N. Hua, N. Lewis, N. Kasinad-

huni, R. Crepaldi, S. Krishnan, S. Venkata, Y. Richter,

U. Naik, and A. Vahdat. Andromeda: Performance,

isolation, and velocity at scale in cloud network virtual-

ization. In USENIX NSDI, 2018.

[22] J. Dean and L. A. Barroso. The tail at scale. Communi-

cations of the ACM, February 2013.

[23] A. Demers, S. Keshav, and S. Shenker. Analysis and

simulation of a fair queueing algorithm. In ACM SIG-

COMM, 1989.

[24] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,

R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,

B. Cheyney, W. Shang, and J. D. Hosein. Maglev: A fast

and reliable software network load balancer. In USENIX

NSDI, 2016.

[25] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye,

L. Yuan, and M. Zhang. Duet: Cloud scale load balanc-

ing with hardware and software. In ACM SIGCOMM,

August 2015.

[26] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,

S. Shenker, and I. Stoica. Dominant resource fairness:

Fair allocation of multiple resource types. In USENIX

NSDI, 2011.

[27] I. Gog, M. Schwarzkopf, A. Gleave, R. N. Watson, and

S. Hand. Firmament: Fast, centralized cluster scheduling

at scale. In USENIX OSDI, 2016.

[28] R. Grandl, M. Chowdhury, A. Akella, and G. Anan-

thanarayanan. Altruistic scheduling in multi-resource

clusters. In USENIX OSDI, 2016.

[29] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulka-

rni. Graphene: Packing and dependency-aware schedul-

ing for data-parallel clusters. In USENIX OSDI, 2016.

[30] D. Hancock and J. Van der Merwe. Hyper4: Using p4

to virtualize the programmable data plane. In ACM

CoNEXT, 2016.

[31] J. L. Hennessy and D. A. Patterson. A new golden age

for computer architecture. Communications of the ACM,

2019.

[32] J. T. Humphries, K. Kaffes, D. Mazières, and

C. Kozyrakis. Mind the gap: A case for informed re-

quest scheduling at the nic. In ACM SIGCOMM HotNets

Workshop, 2019.

[33] N. Ivkin, Z. Yu, V. Braverman, and X. Jin. QPipe: Quan-

tiles sketch fully in the data plane. In ACM CoNEXT,

December 2019.

[34] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm,

D. Han, and K. Park. mTCP: a highly scalable user-

level TCP stack for multicore systems. In USENIX

NSDI, 2014.

[35] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé,

C. Kim, and I. Stoica. NetChain: Scale-free sub-RTT

coordination. In USENIX NSDI, 2018.

1238 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.barefootnetworks.com/technology/
https://www.barefootnetworks.com/technology/

[36] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,

C. Kim, and I. Stoica. NetCache: Balancing key-value

stores with fast in-network caching. In ACM SOSP,

2017.

[37] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,

M. Zhang, J. Rexford, and R. Wattenhofer. Dynamic

scheduling of network updates. In ACM SIGCOMM,

2014.

[38] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayana-

murthy, A. Tumanov, J. Yaniv, R. Mavlyutov, Í. Goiri,

S. Krishnan, J. Kulkarni, et al. Morpheus: Towards au-

tomated slos for enterprise clusters. In USENIX OSDI,

2016.

[39] K. Kaffes, T. Chong, J. T. Humphries, A. Belay,

D. Mazières, and C. Kozyrakis. Shinjuku: Preemptive

scheduling for µsecond-scale tail latency. In USENIX

NSDI, 2019.

[40] K. Kaffes, N. J. Yadwadkar, and C. Kozyrakis. Central-

ized core-granular scheduling for serverless functions.

In ACM Symposium on Cloud Computing, 2019.

[41] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter

rpcs can be general and fast. In USENIX NSDI, 2019.

[42] M. Kogias, G. Prekas, A. Ghosn, J. Fietz, and

E. Bugnion. R2P2: Making RPCs first-class datacenter

citizens. In USENIX ATC, 2019.

[43] C. Kulkarni, S. Moore, M. Naqvi, T. Zhang, R. Ricci,

and R. Stutsman. Splinter: Bare-metal extensions for

multi-tenant low-latency storage. In USENIX OSDI,

2018.

[44] A. Lerner, R. Hussein, P. Cudre-Mauroux, and U. eX-

ascale Infolab. The case for network accelerated query

processing. In CIDR, 2019.

[45] J. Li, E. Michael, and D. R. K. Ports. Eris: Coordination-

free consistent transactions using in-network concur-

rency control. In ACM SOSP, October 2017.

[46] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R.

Ports. Just say NO to Paxos overhead: Replacing consen-

sus with network ordering. In USENIX OSDI, November

2016.

[47] J. Li, J. Nelson, X. Jin, and D. R. Ports. Pegasus: Load-

aware selective replication with an in-network coher-

ence directory. Technical Report UW-CSE-18-12-01,

2018.

[48] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J.

Freedman. Be fast, cheap and in control with SwitchKV.

In USENIX NSDI, March 2016.

[49] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy,

and K. Atreya. IncBricks: Toward in-network computa-

tion with an in-network cache. In ACM ASPLOS, April

2017.

[50] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman,

X. Jin, and I. Stoica. Distcache: Provable load balancing

for large-scale storage systems with distributed caching.

In USENIX FAST, 2019.

[51] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad:

Making stateful layer-4 load balancing fast and cheap

using switching asics. In ACM SIGCOMM, 2017.

[52] NoviSwitch. http://noviflow.com/

products/noviswitch/.

[53] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu.

Stateless datacenter load-balancing with Beamer. In

USENIX NSDI, 2018.

[54] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Bal-

akrishnan. Shenango: Achieving high CPU efficiency

for latency-sensitive datacenter workloads. In USENIX

NSDI, 2019.

[55] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica.

Sparrow: Distributed, low latency scheduling. In ACM

SOSP, 2013.

[56] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg,

D. A. Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu, et al.

Ananta: Cloud scale load balancing. In SIGCOMM

CCR, 2013.

[57] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo. Opti-

mus: An efficient dynamic resource scheduler for deep

learning clusters. In EuroSys, 2018.

[58] S. Peter, J. Li, I. Zhang, D. R. Ports, A. Krishnamurthy,

T. Anderson, and T. Roscoe. Arrakis: The operating

system is the control plane. In USENIX OSDI, 2013.

[59] G. Prekas, M. Kogias, and E. Bugnion. ZygOS: Achiev-

ing low tail latency for microsecond-scale networked

tasks. In ACM SOSP, 2017.

[60] RocksDB. RocksDB. https://rocksdb.org/.

[61] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and

P. Kalnis. In-network computation is a dumb idea whose

time has come. In ACM SIGCOMM HotNets Workshop,

November 2017.

[62] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis,

C. Kim, A. Krishnamurthy, M. Moshref, D. R. Ports,

and P. Richtárik. Scaling distributed machine learning

with in-network aggregation. arXiv, 2019.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1239

http://noviflow.com/products/noviswitch/
http://noviflow.com/products/noviswitch/
https://rocksdb.org/

[63] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3:

Cutting tail latency in cloud data stores via adaptive

replica selection. In USENIX NSDI, 2015.

[64] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.

Speedy transactions in multicore in-memory databases.

In ACM SOSP, 2013.

[65] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch,

M. Harchol-Balter, and G. R. Ganger. Tetrisched: global

rescheduling with adaptive plan-ahead in dynamic het-

erogeneous clusters. In EuroSys, 2016.

[66] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agar-

wal, M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah,

S. Seth, et al. Apache Hadoop YARN: Yet another

resource negotiator. In ACM Symposium on Cloud Com-

puting, 2013.

[67] V. Venkataramani, Z. Amsden, N. Bronson, G. Cabr-

era III, P. Chakka, P. Dimov, H. Ding, J. Ferris,

A. Giardullo, J. Hoon, S. Kulkarni, N. Lawrence,

M. Marchukov, D. Petrov, and L. Puzar. TAO: How

Facebook serves the social graph. In ACM SIGMOD,

May 2012.

[68] T. Wang, H. Zhu, F. Ruffy, X. Jin, A. Sivaraman, D. R.

Ports, and A. Panda. Multitenancy for fast and pro-

grammable networks in the cloud. In USENIX HotCloud

Workshop, July 2020.

[69] A. Wierman and B. Zwart. Is tail-optimal scheduling

possible? Operations research, 60(5):1249–1257, 2012.

[70] Z. Yu, Y. Zhang, V. Braverman, M. Chowdhury, and

X. Jin. Netlock: Fast, centralized lock management

using programmable switches. In ACM SIGCOMM,

2020.

[71] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz,

and I. Stoica. Improving mapreduce performance in

heterogeneous environments. In USENIX OSDI, 2008.

[72] P. Zheng, T. Benson, and C. Hu. P4Visor: Lightweight

virtualization and composition primitives for building

and testing modular programs. In ACM CoNEXT, 2018.

[73] H. Zhu, Z. Bai, J. Li, E. Michael, D. R. Ports, I. Sto-

ica, and X. Jin. Harmonia: Near-linear scalability for

replicated storage with in-network conflict detection.

Proceedings of the VLDB Endowment, 2019.

[74] H. Zhu, K. Kaffes, Z. Chen, Z. Liu, C. Kozyrakis, I. Sto-

ica, and X. Jin. RackSched: A microsecond-scale sched-

uler for rack-scale computers (technical report). In

arXiv, 2020.

1240 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Thunderbolt: Throughput-Optimized,
Quality-of-Service-Aware Power Capping at Scale

Shaohong Li
Google LLC

Xi Wang
Google LLC

Xiao Zhang
Google LLC

Vasileios Kontorinis
Google LLC

Sreekumar Kodakara
Google LLC

David Lo
Google LLC

Parthasarathy Ranganathan
Google LLC

Abstract
As the demand for data center capacity continues to grow,

hyperscale providers have used power oversubscription to
increase efficiency and reduce costs. Power oversubscription
requires power capping systems to smooth out the spikes that
risk overloading power equipment by throttling workloads.
Modern compute clusters run latency-sensitive serving and
throughput-oriented batch workloads on the same servers,
provisioning resources to ensure low latency for the former
while using the latter to achieve high server utilization. When
power capping occurs, it is desirable to maintain low latency
for serving tasks and throttle the throughput of batch tasks.
To achieve this, we seek a system that can gracefully throttle
batch workloads and has task-level quality-of-service (QoS)
differentiation.

In this paper we present Thunderbolt, a hardware-agnostic
power capping system that ensures safe power oversub-
scription while minimizing impact on both long-running
throughput-oriented tasks and latency-sensitive tasks. It uses
a two-threshold, randomized unthrottling/multiplicative de-
crease control policy to ensure power safety with minimized
performance degradation. It leverages the Linux kernel’s CPU
bandwidth control feature to achieve task-level QoS-aware
throttling. It is robust even in the face of power telemetry un-
availability. Evaluation results at the node and cluster levels
demonstrate the system’s responsiveness, effectiveness for
reducing power, capability of QoS differentiation, and mini-
mal impact on latency and task health. We have deployed this
system at scale, in multiple production clusters. As a result,
we enabled power oversubscription gains of 9%–25%, where
none was previously possible.

1 Introduction

Data centers form the backbone of popular online services
such as search, streaming video, email, social networking,
online shopping, and cloud. The growing demand for on-
line services forces hyperscale providers to commit mas-
sive capital to continuously expand their data center fleet.

The overall capital expenditures for just the top 5 hyperscale
providers (Amazon, Google, Microsoft, Facebook, Apple) in
2019 reached $120B out of a total $210B for all data centers
worldwide [10, 11]. The majority of these investments are
allocated towards buying and building infrastructure, such as
buildings, power delivery, and cooling, to host the servers that
compose the warehouse-scale computer. Power oversubscrip-
tion is the practice of deploying more servers in a data center
than the data center’s power supply can nominally support if
all servers were 100% utilized. Power oversubscription allows
deploying more servers into a data center, and therefore re-
duces the number of data centers needed to be built. The cost
savings potential of power oversubscription amounts to bil-
lions of dollars per year and is therefore of great importance
to data center operators.

However, power oversubscription comes with a risk of over-
load during power peaks, and thus often comes with protec-
tive systems such as power capping. Power capping systems
enable safe power oversubscription by preventing overload
during power emergencies. Power capping actions include
suspending low-priority tasks [18], throttling CPU voltage
and frequency using techniques such as dynamic voltage and
frequency scaling (DVFS) and running average power limit
(RAPL) [8,13,25], or packing threads in a subset of available
cores [17]. The action needs to be compatible with the work-
loads and meet their service-level objectives (SLOs). This,
however, is challenging for clusters with throughput-oriented
workloads co-located with latency-sensitive workloads on the
same servers.

Throughput-oriented tasks represent an important class
of computation workloads. Examples are web indexing, log
processing, and machine learning model training. These work-
loads typically have deadlines on the order of hours for when
the computation needs to be completed, making them good
candidates for performance throttling when a cluster faces a
power emergency due to power oversubscription. Neverthe-
less, missing the deadline can result in serious consequences
such as lost revenue and diminished quality, thus making them
unamenable to interruption.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1241

Latency-sensitive workloads are a different class. They
need to complete the requested computation on the order of
milliseconds to seconds. A typical example is an applica-
tion that handles user requests. High latencies result in bad
user experience, eventually leading to loss of users and rev-
enue. Unlike throughput-oriented pipelines, such tasks are not
amenable to performance throttling. They often are consid-
ered high priority and need to be exempt from power capping.

In our data centers, throughput-oriented and latency-
sensitive tasks are co-located on the same server to increase
resource utilization [20]. This introduces a need for a fine-
grained power capping mechanism that throttles the perfor-
mance of throughput-oriented tasks to reduce server power
usage while exempting high-priority latency-sensitive tasks.

This paper describes a simple, robust, and hardware-
agnostic power capping system, Thunderbolt, to address these
challenges. It throttles the CPU shares of throughput-oriented
workloads to slow them down “just enough” to keep power
under specified budget, while leaving latency-sensitive tasks
unaffected. It has been deployed in large-scale production
data centers.

To our knowledge, Thunderbolt is the first industry system
that simultaneously achieves the following goals. All of these
are important to scale out mission critical systems.

• A system architecture that enables oversubscription
across large power domains. Power pooling and statisti-
cal multiplexing across machines in large power domains
maximizes the potential for power oversubscription.

• Quality-of-service-aware, hardware-agnostic power
throttling mechanism with wide applicability. Our
system relies only on established Linux kernel features,
and thus is hardware platform agnostic. This enables
the flexibility of introducing a variety of platforms into
data centers without compromising the effectiveness
of power capping. Our task-level mechanisms allow
differentiated quality-of-service (QoS). Specifically,
Thunderbolt does not affect serving, latency-sensitive
workloads co-located with throughput-oriented work-
loads on the same server, and has the ability to apply
different CPU caps on workloads with different SLOs.
The platform-agnostic and QoS-aware nature allows
the system to be tailored to the requirements of a
wide spectrum of hardware platforms and software
applications.

• Power safety with minimized performance degradation.
A two-threshold scheme with a randomized unthrot-
tling/multiplicative decrease algorithm enables minimal
performance impact while ensuring that a large amount
of power can be shed to avoid power overload during
emergencies.

• System availability in the face of power telemetry un-
availability. Power telemetry availability has not drawn

much attention in most previous power capping systems,
but we found it to be the availability bottleneck in our
system. Thunderbolt introduces a failover subsystem
to maintain power safety guarantees even when power
telemetry is unavailable.

We have deployed this system in multiple data centers over
a period of two years. We have verified proper operation at
scale and achieved oversubscription of 9–25% when none was
previously possible. At such an oversubscription level, data
centers run at high power efficiency and are close to the edge
of exceeding their power limits. Power capping is expected to
occur a few times a year. Section 7 has more details.

2 Background

Warehouse-sized data centers run very complex and diverse
workloads and need a flexible power actuator to handle com-
plicated application scenarios. Google recently published a
power capping system [18] that intentionally suspends low-
priority tasks which often results in task timeouts and failures.
Such interruption is appropriate in certain situations; for in-
stance, some tasks can tolerate occasional downtime but prefer
to have consistent performance when they run, and prefer to be
interrupted so they can be rescheduled somewhere else rather
than being slowed down. However, for throughput-oriented
workloads, this is not only wasteful of compute resources but
is also disruptive.

Popular software frameworks like Hadoop [19], Mill-
Wheel [3], and TensorFlow [1] provide checkpointing func-
tionality to allow tasks to handle failures gracefully. Check-
pointing itself, however, incurs non-negligible cost and com-
plexity. Users have to balance between the risk of failure and
the overhead of runtime checkpointing. Even with checkpoint-
ing, some amount of work is wasted when a task is killed and
restarted. For distributed computing that requires synchro-
nization among workers (e.g., synchronized machine learning
training), a killed task can easily become a straggler as others
have to wait for it to make forward progress. Our system aims
to provide a more graceful solution where traditional task
killing or suspension is too costly.

Most previous studies control CPU power to affect overall
machine power draw. Our system follows this practice, be-
cause CPU power draw is much higher than that of memory
or storage components (e.g., flash and disk) on the commodity
servers in our data centers.

Data center workloads also run at different priorities with
varying QoS. It is highly desirable to reflect differentiated
QoS even under power capping. Previous industry power cap-
ping systems, such as Dynamo [25] and CapMaestro [14],
differentiate priorities at the machine level. They assign prior-
ities to individual machines and build a global priority-aware
control policy for all machines involved. To provide QoS

1242 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

differentiation with Dynamo or CapMaestro, tasks with dif-
ferent capping priorities have to be scheduled on different
machines. This conflicts with our requirement to run mixed-
priority workloads on the same machine to improve resource
utilization. In contrast, our approach is designed to provide
QoS differentiation when workloads of different priorities run
on the same machine.

From a scheduling perspective, our problem may look sim-
ilar to the classic problem of scheduling latency-sensitive and
throughput-oriented tasks on the same machine and optimiz-
ing for latency and throughput. However, it is a different form
of the problem to which existing scheduling solutions do not
directly apply. The constraining resource is power, which nei-
ther cluster scheduler nor local node scheduler can directly
control or allocate. Instead we control power indirectly by
controlling CPU usage. We treat power as a system output,
measure it via power meters, and feed it back into the system
to build a control loop. We have to care about the availabil-
ity of power readings that are external signals. Violation of
the power budget results in not performance degradation but
high-stake physical failures (tripping circuit breakers) and
immediate power loss to thousands of machines. Therefore a
strong guarantee of power not exceeding the budget is the top
priority, requiring fast response and a wide dynamic range of
power control. Optimization for latency and throughput must
not compromise this guarantee.

3 Terminology

To facilitate the explanation of our system, we define a few
key terms summarized here for easy reference.

Thunderbolt. The power capping system as a whole, named
after the resulting power curves that look like a thunder-
bolt (see Figure 5). The overall architecture is described
in Section 4.

Load shaping. The “reactive capping” subsystem and
closed-loop control policy using power signals for fine-
grained power capping control. It is described in Sec-
tion 4.1.2. It uses CPU bandwidth control (described
below) as the node-level mechanism.

CPU bandwidth control. The node-level mechanism for
load shaping. It leverages the CPU bandwidth control
feature provided by Linux’s completely fair scheduler
to throttle the CPU usage of tasks. It is described in
Section 4.1.1.

CPU jailing. The “proactive capping” backup subsystem
that takes over when power signals are unavailable and
load shaping cannot function. It includes an open-loop
control policy of risk assessment and a node-level mech-
anism that makes use of Linux’s CPU affinity features
to limit machines’ CPU utilization. It is described in
Section 4.2.1.

Figure 1: Software architecture of Thunderbolt.

4 Architecture and Implementation

Thunderbolt is capable of performing two types of end-to-
end power capping actuation tailored to throughput-oriented
workloads: a primary mechanism called reactive capping,
and a failover mechanism called proactive capping. Reactive
capping monitors real-time power signals read from power
meters and reacts to high power measurements by throttling
workloads. When power signals become unavailable, e.g.,
due to meter downtime, proactive capping takes over and
assesses the risk of breaker trips. The assessment is based on
factors such as power in the recent past and for how long the
signals have been unavailable. If the risk is deemed high, it
proactively throttles tasks.

The reactive capping system depends on power signals pro-
vided by power meters installed close to the protected power
equipment, like circuit breakers. Meters are installed at ev-
ery power “choke point” whose limit will be first reached as
power draw increases. In our data centers the choke points
are typically power distribution units (PDUs) or medium volt-
age power planes (MVPPs) [18]. This differs from the more
widely adopted approach of collecting power measurements
from individual compute nodes and aggregating at upper lev-
els. Our approach has several advantages. It is simple. It
avoids aggregation and the associated data quality issues such
as time unalignment and partial collection failures. It also
avoids the need to estimate power drawn by non-compute
equipment, such as data center cooling, that does not provide
power measurements.

Figure 1 illustrates the software architecture of Thunder-
bolt. The meter watcher module polls power readings from
meters at a rate of one reading per second. It passes the read-
ings to the power notifier module and also stores a copy in a
power history datastore. The power notifier is a central mod-
ule that implements the control logic of reactive and proactive
capping. When power readings are available, it uses the read-
ings for the reactive capping logic. When the readings are
unavailable, it queries the risk assessor module for the proac-
tive capping logic. The risk assessor uses the historical power
information from the power history datastore to assess the
risk of breaker trips. If either logic decides to cap, the power
notifier will pass appropriate capping parameters to the ma-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1243

chine manager module, which then sends remote procedure
call (RPC) requests to the node controller of individual ma-
chines concurrently to reduce power. Important data about the
power delivery topology, such as the protected power limits
and the machines to be throttled under the power domain, are
obtained from a power topology datastore.

The scale of a power domain can vary from a few
megawatts, such as a PDU, to tens of megawatts, such as
a MVPP. One instance of Thunderbolt is deployed for each
protected power domain. The instance is replicated for fault
tolerance. There are 4 replicas in a 2-leader, 2-follower con-
figuration. Only the leader replicas can read power meters
and issue power shedding RPCs. The node controller’s power
shedding RPC services are designed to be idempotent and
can handle duplicate RPCs from different leader replicas. We
require two identical leader replicas to ensure power shedding
is available even during leader election periods. Followers
take over when leaders become unavailable.

The architecture allows Thunderbolt to scale easily. When
a new power domain is turned up, a new Thunderbolt instance
can be deployed without affecting existing instances for other
domains. When machines are added to or removed from a
power domain, only the power topology data needs to be
updated to include an up-to-date list of machines.

4.1 Primary subsystem: reactive capping

4.1.1 Node-level mechanism: CPU bandwidth control

CPU usage is a good indicator for the CPU power drawn by a
running task. We use the CPU bandwidth control feature of
the Linux completely fair scheduler (CFS) [21] to precisely
control the CPU usage of tasks running on a node, in order to
control the power drawn by the node.

Individual tasks run inside their own Linux control groups
(cgroups). The Linux scheduler provides two parameters for a
cgroup, namely quota and period. Quota controls the amount
of CPU time the workload gets to run during a period and
is replenished every period. Quota is shared and enforced by
all logical CPUs in the system. The quota and period can
be set for each cgroup and are typically specified at millisec-
ond granularity. A separate (per cgroup and per logical CPU),
cumulative runtime_remaining variable is kept inside the ker-
nel. The cumulative (per logical CPU) runtime_remaining
is consumed when a thread is running on the CPU. When it
reaches zero, it attempts to draw from the per-cgroup quota
pool. When the quota pool is empty, the running thread is
descheduled and no thread in the same cgroup can run until
quota is replenished at the beginning of the next period.

We track the historical CPU usage of all workloads running
on the machine. During a capping event, every node in the
power domain will receive an RPC to throttle throughput-
oriented workloads. The RPC contains parameters describing
how much the CPU usage of the tasks should be reduced

(details in Section 4.1.2). The node controller that receives
the RPC uses the historical CPU usage of all throughput
oriented workloads to determine how much CPU time to
throttle. The new quota and period values are then calculated
and configured for each cgroup on the machine.

Different tasks have different cgroups, and we can achieve
task-level QoS differentiation by adjusting their cgroup pa-
rameters. The Thunderbolt framework is capable of assigning
different CPU throttling levels to different cgroups, with more
restrictive levels to lower priority cgroups. In our cluster re-
source management systems, throughput-oriented tasks are
typically assigned low priorities while latency-sensitive tasks
are assigned high priorities. CPU throttling is applied only
to cgroups of throughput-oriented tasks, exempting cgroups
of latency-sensitive tasks. This is appropriate for our pro-
duction environment, where a significant portion of total
CPU resources is consumed by throughput-oriented tasks
(also known as batch tasks [20]), and it is undesirable to
throttle business-critical latency-sensitive tasks. Exempting
all latency-sensitive tasks comes with a caution about non-
sheddable power, which is explained below. Kernel threads
are also exempt from throttling and their CPU usage is very
low compared to regular tasks.

Non-sheddable power, the lower bound of the power control
range, is an important consideration for power oversubscrip-
tion and capping. With our implementation of Thunderbolt,
non-sheddable power can be attributed to CPU usage by ex-
empt tasks, machine idle power, and other uncontrolled power
users such as cooling equipment. We deliberately set the
oversubscription level so that non-sheddable power does not
exceed the protected power limits. We run continuous moni-
toring and rigorous analysis to predict and alert on the portion
of non-sheddable power in our data centers. In an unlikely
event when high non-sheddable power is predicted in a cluster,
site operators can leverage global load balancing to redirect
traffic of latency-sensitive tasks elsewhere to offset the risk.

The relationship between throttling levels and power draw
is nonlinear and workload dependent, therefore we always use
CPU bandwidth control in conjunction with power metering
and negative feedback to ensure expected power reduction
is achieved. The feedback loop is described in detail in Sec-
tion 4.1.2.

Characteristics of CPU bandwidth control. CPU band-
width control has two important properties:

Platform-agnostic. CPU bandwidth control is a pure soft-
ware feature supported by the upstream Linux kernel. It
can be switched on for almost any new platform with
minimal additional effort.

Task-level control. CPU bandwidth control is at the task
(cgroup) level. Specifically, tasks of varying priorities
are co-located on the same server and can even run on
the same physical core. CPU bandwidth control has the

1244 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 1: Comparison between CPU bandwidth control, DVFS, and RAPL for power limiting.

CPU bandwidth control DVFS RAPL
Response time 1 ms 100 µs 100 µs

Spatial granularity cgroup Physical core Processor socket
Power feedback control Requires external Requires external Processor built-in

Mechanism Pure software Requires hardware support Requires hardware support

required fine-grained visibility and control to provide
the differentiated QoS.

These properties make CPU bandwidth control a good fit for
our needs. We have also considered other popular hardware-
based alternatives, in particular dynamic voltage and fre-
quency scaling (DVFS) and Intel’s running average power
limit (RAPL). Below we compare and discuss CPU band-
width control and the two alternatives, and explain why, de-
spite the merits of the two alternatives, we do not adopt them
for Thunderbolt.

We summarize several attributes of CPU bandwidth control,
DVFS, and RAPL in Table 1. Given their nature of hardware
control, DVFS and RAPL both have faster power response
times than bandwidth control. In practice, however, we find
that the longer response time of CPU bandwidth control is
still fast enough to be an effective load shedding mechanism
for safe power oversubscription (see Section 6).

CPU bandwidth control vs RAPL: RAPL is available only
on Intel platforms. More importantly, the power limit can
only be set on a per socket basis, which means it does not
provide task-level control granularity. Alternative approaches
are possible to achieve differentiated task QoS using RAPL
if additional support is added to the node controller. For in-
stance, tasks with different QoS may be scheduled on different
sockets. Apart from the extra complexity, such a scheduling
constraint has a disadvantage of limiting CPU resource over-
commitment opportunity, which is undesirable for our cluster
scheduler [22].

CPU bandwidth control vs DVFS: DVFS is available on
most modern high-performance platforms, bringing its com-
patibility close to CPU bandwidth control. However, it may
also have problems supporting task-level control. For exam-
ple, per-core DVFS is supported by Intel only for Haswell
and later generations, and it is not supported by some non-x86
vendors. In terms of power control and performance impact,
as we will show in Section 5, DVFS is incapable of throt-
tling down to very low power levels but it has better power
efficiency than bandwidth control.

Operational factors. The platform-agnostic nature of CPU
bandwidth control is vital to new platform introductions. Even
if a new microarchitecture supports fine-grained DVFS, driver
support for new platforms often have issues that require extra

work. More importantly, per-task DVFS setting is not sup-
ported by the upstream Linux kernel. It is also not rare to find
chip errata that require workarounds. Using CPU bandwidth
control as either the main throttling mechanism or as a fall-
back mechanism removes these uncertainties in the critical
path. It makes us more comfortable about scaling up our data
centers with heterogeneous processor microarchitectures.

Overall we consider CPU bandwidth control essential to
the success of Thunderbolt. In the future DVFS can be added
as a node-level optimization. When Thunderbolt was first
deployed, per-task DVFS setting was not available in our
Linux kernel. We have recently added per-task DVFS support
to the Linux kernel to enable additional trade-offs between
performance and efficiency on Intel servers. The same kernel
mechanism can be used for power throttling.

4.1.2 Control policy: load shaping

The load shaping control policy determines when and how
much the actuator (CPU bandwidth control) should throttle
CPU usage in order to control power.

Formally, the power draw of a power domain can be written
as

p(t) =
N

∑
i=1

fi(ci(t)+ui(t))+n(t) (1)

where t is (discrete) time, p is the total power draw, N is the
number of machines, fi is the power drawn by machine i as a
monotonic function of the normalized machine CPU utiliza-
tion (in the range of [0, 1]), ci is the CPU used by controllable
tasks, ui is the uncontrollable CPU used by exempt tasks and
the Linux kernel, and n is the power drawn by non-machine
equipment. Our goal is to cap ci so that p < l for a power
limit l. Preventing overload (p > l) is the top priority, while
keeping p close to l when p < l is also desirable for efficiency.

We use a randomized unthrottling/multiplicative decrease
(RUMD) algorithm. If p(t)> l, then we apply a cap for the
CPU usage of each controllable task. The cap is equal to the
task’s previous usage multiplied by a multiplier, m, in the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1245

range of (0, 1). Then the power draw at the next time step is

p(t +1) =
N

∑
i=1

fi(ci(t +1)+ui(t +1))+n(t +1)

≤
N

∑
i=1

fi(mci(t)+ui(t +1))+n(t +1)

(2)

This cap is updated every second, and ci decreases exponen-
tially with time, until p < l. Note that, because of the ui and n
terms, there is no guarantee that p(t+1)< p(t). Nevertheless,
as explained in Section 4.1.1, in practice we ensure with high
confidence that non-sheddable power is less than the power
limit, that is,

N

∑
i=1

fi(ui(t))+n(t)< l,∀t (3)

Therefore power will eventually be reduced below the limit.
The system works on a time scale of seconds: power mea-

surements are read once per second, and throttling parameters
are updated every second. This is because the typical end-to-
end response time is 1–2 seconds from a high power draw to
power being sufficiently reduced by throttling. This is mostly
attributed to metering delays. We conservatively budget 5
seconds to account for occasionally longer metering delays
and network tail latency.

Throttling stops when p decreases to be below l. To avoid
fast power surges, throttling should stop in a progressive man-
ner. We do this by removing the CPU cap on a random portion
of machines every second. For instance, if it is configured
to completely unthrottle all machines in 5 seconds, then a
random non-overlapping set of 20% of machines will be un-
throttled every second. Alternatively, one may progressively
lift the cap in an additive manner for each machine at the same
time, leading to an additive increase/multiplicative decrease
(AIMD) algorithm [5]. We choose a randomized unthrottling
scheme instead of AIMD because it is simpler (no need for an
additive increase parameter), and AIMD’s "fairness" property
(machines converging to having the same CPU utilization) is
not required for our system, as long as randomization avoids
any machine from being disproportionally impacted.

Similar to AIMD, our RUMD algorithm also has the de-
sirable partial distributedness property. The central policy
controller requires no detailed system states, such as the CPU
usage and task distribution of each machine, other than the
total power. The distributed node controllers can make inde-
pendent decisions based solely on a few parameters that the
policy controller sends to all node controllers.

The result of the RUMD algorithm is a power curve oscil-
lating around the capping limit in a sawtooth-like pattern, as
can be seen in Section 6.2.

Implementation details. Here we give some details about
our implementation of the RUMD algorithm. In particular,

we explain how we balance two competing properties, re-
sponsiveness for power safety and efficiency for minimizing
performance impact, by maintaining two capping thresholds,
one high and one low. The high threshold, placed close to
the protected power limit, is associated with a hard multiplier
close to 0 in order to quickly reduce power for safety. The
low threshold, placed with a larger margin from the protected
limit, is associated with a soft multiplier for gentle throttling.

We start by explaining the high threshold for power safety.
Our end-to-end response time budget is 5 seconds. In 5 sec-
onds, we have observed that power in a nearly full cluster
will increase by no more than 2% of the protected equipment
limit. Therefore we place the high threshold at 98% of the
limit. The hard multiplier associated with this threshold is
set to be close to 0 for a quick reduction of a large amount
of power. This is because the only strong power guarantee is
non-sheddable power being less than the limit (Equation 3),
and thus sheddable power has to be reduced to nearly zero
quickly to guarantee responsiveness and safety.

It is worth noting that most circuit breakers do not imme-
diately trip when their rated power limit is reached. They
may tolerate a few seconds to tens of minutes of power over-
load [9]. In theory we may make use of this time buffer and
set the capping threshold at the power limit. However, how
long a breaker can sustain a power overload depends on many
factors, such as the design of the breaker, the magnitude of
the overload, and ambient temperature [9], and is thus hard
to predict. Power overload also decreases the equipment’s
lifetime. Therefore we choose to place the high threshold
2% below the power limit to avoid tapping into the overload
region.

We do not reduce the CPU cap of a task below a mini-
mum value (0.01) because the quota value in CPU bandwidth
control has to be greater than zero. This has a production im-
plication: when continuous throttling is applied long enough,
affected tasks will eventually converge to the minimum CPU
share. In this case, while all affected tasks cannot make mean-
ingful progress and power will be low, some tasks can still
respond to health checks and survive. Because of this, task
failures due to continuous throttling are expected to be fewer
than failures caused by completely suspending tasks, as can
be seen in Section 6.2.

The hard multiplier close to zero, while being responsive
and safe, is not efficient for utilizing the power budget because
it leads to power oscillation with a large amplitude. Therefore
we introduce the low threshold associated with the soft multi-
plier. The soft multiplier is close to 1 to improve efficiency
at the cost of responsiveness, and the low threshold is placed
below the high threshold to allow the longer response time.

We further optimize our design by not activating the low
threshold until throttling is triggered, and deactivating it after
throttling has not been active for a while. This way power is
allowed to reach the range between the two thresholds without
throttling.

1246 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 2: Load shaping power control.

Table 2: Load shaping parameters used in production.

Load shaping parameter Value
High threshold 98% of protected limit
Low threshold 96% of protected limit
Hard multiplier 0.01
Soft multiplier 0.75

Low threshold expiration 5 minutes
Throttling timeout 1–20 seconds

Randomized unthrottling is implemented by assigning to
each machine a random throttling timeout in a range. A ran-
dom timeout is included in the throttling RPCs and sent to
each machine every second to refresh its timeout. When power
is below the capping threshold, the machines will stop receiv-
ing the RPCs and will unthrottle after the last received timeout
has passed. We choose a repeatedly-refreshed timeout instead
of a stop-throttling RPC because stop-throttling RPCs may
be dropped or even never reach some machines if the network
becomes partitioned.

Figure 2 illustrates the power trace in a typical throttling
scenario. Table 2 lists the parameters we use in production.

4.2 Failover subsystem: proactive capping
The feedback control of reactive capping relies on power
meters. However, power meters and the facility network con-
necting the meters to the production network are not always
available. On average, individual meters and facility network
have about 99.9% availability in our data centers, and it varies
by location. Transient network issues can cause seconds to
minutes of power signal interruption, while meter downtime
can be days before the meter gets repaired.

Without power signals, it is not straightforward to use CPU
bandwidth control for an open-loop control. We have built
models to map machine power utilization to CPU utilization,

so we may distribute the power domain’s total power budget to
individual machines and translate a machine’s power budget
to a CPU budget. However, it would require a sophisticated al-
gorithm to allocate the machine’s CPU budget among individ-
ual tasks while respecting the tasks’ QoS difference. Instead
of introducing a complex algorithm, we implement a simple
mechanism, CPU jailing, that specifies a total CPU budget for
a machine and leverages the Linux CFS scheduler to provide
task QoS differentiation (although the differentiation is re-
laxed compared to when meter is available, which is explained
further below). In a nutshell, CPU jailing is coarser-grained
than CPU bandwidth control, but much easier to reason about
when power signals are unavailable.

DVFS or RAPL, where supported, may also be used for
proactive capping because we only need machine-level con-
trol. However, we favor the platform-independent CPU jailing
for the same reasons as we favor the platform independence
of CPU bandwidth control.

We have also considered collecting power signals from
secondary sources, such as the machines’ power supply units,
or from power models. However, we found that the data qual-
ity of the sensors and the accuracy of the models for some
hardware do not meet our production requirements.

4.2.1 Node-level mechanism: CPU jailing

CPU jailing masks out (“jails”) a certain number of logical
CPUs from tasks’ runnable CPU affinity [15] to cap total
machine power. We refer to the portion of jailed CPUs as
jailing fraction, denoted by J. CFS will maintain proportional
fairness among tasks on the remaining available logical CPUs.
Each jailing request comes with a timeout that can be re-
newed. Once jailing expires, previously masked CPUs will
immediately become available to all tasks.

CPU jailing immediately caps peak power draw as it effec-
tively limits maximum CPU utilization to (1− J) on every
single machine. It sets an upper bound for power draw, al-
lowing safe operation for an extended time without power
signals. Because of increased idleness, jailed CPUs have a
higher chance of entering deep sleep to further reduce ma-
chine power.

The jailing fraction is uniformly applied to individual ma-
chines, regardless of their CPU utilization. Consequently, ma-
chines with low utilization are less impacted than highly uti-
lized machines. As an extreme example, CPU jailing might
not affect tasks at all on machines with utilization well below
(1− J).

Certain privileged processes, such as critical system dae-
mons, are explicitly exempt (i.e., they can still run on jailed
CPUs). The rationale is that their CPU usage is very low com-
pared to regular tasks but the consequences of them being
CPU starved can be devastating (e.g., machine cannot func-
tion correctly). A side effect of exemption is that it puts some
sporadic usage on the jailed CPUs and occasionally prevents

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1247

them from entering deep sleep state.
A main disadvantage of CPU jailing is the relaxed QoS

differentiation. For example, the latency of a serving task
can be severely affected when too many cores are jailed.
Although this effect is attenuated by the fact that latency-
sensitive tasks run at higher priorities and can preempt lower-
priority throughput-oriented tasks during CPU resource con-
tention, CPU jailing is less favorable than CPU bandwidth
control and is only employed where load shaping is not appli-
cable.

Technically, one may achieve strict QoS differentiation by
applying CPU jailing to only throughput-oriented tasks while
exempting latency-sensitive ones. However, doing so without
power signals is intangible in practice. If latency-sensitive
tasks are exempt from CPU jailing, the only strong guarantee
we have about power is that non-sheddable power does not ex-
ceed power limit (Equation 3). In this situation, guaranteeing
power safety would require not running throughput-oriented
tasks at all, which we cannot afford.

Determining jailing fraction J. A proper jailing fraction J
can be determined from two factors: the relation between CPU
utilization and power utilization, and power oversubscription
ratio.

For power safety, we need to ensure power is reduced to
a safe level after a certain fraction of CPUs are jailed. This
value of J can be calculated from the power oversubscription
ratio and the CPU utilization-power utilization relation of the
given collection of hardware in the power domain, as follows:

J = 1−Ucpu = 1−gpower→cpu(
1

1+ r
) (4)

In the formula, Ucpu is the highest allowed CPU utilization
(normalized to the total CPU capacity), gpower→cpu is a func-
tion to convert power utilization (normalized to the theoretical
total peak power) to CPU utilization, and r is the oversubscrip-
tion ratio defined by the extra oversubscribed power capacity
as a fraction of the nominal capacity. 1/(1+ r) gives the
maximum safe power utilization, which can be converted to
Ucpu given that the CPU utilization-power utilization relation
is monotonic. A greater r leads to smaller allowed power
utilization and smaller Ucpu, which in turn leads to greater J.

In production, we set J to 20%–50% depending on a clus-
ter’s workloads and risk profiles. This is a deliberate trade-off
between performance SLO and power oversubscription op-
portunity.

4.2.2 Control policy: risk assessment of power signal
unavailability

As a fallback approach, CPU jailing is triggered when we
lose power measurements from the meters and the risk of
power overloading is high. The risk is determined by two fac-
tors, predicted power draw and meter unavailability duration.
Higher predicted power draw and longer meter unavailability

Figure 3: CPU power response to bandwidth control, DVFS,
and RAPL.

means higher risk. The end-to-end delay from risk assess-
ment to power reduction is typically 1–2 seconds, similar to
load shaping. In our implementation, we use a simple and
conservative probabilistic model to estimate the probability
of power reaching the protected equipment limit during cer-
tain meter downtime given the power draw of the recent past.
CPU jailing is triggered if the probability is high due to high
recent power draw and long enough downtime. Our conser-
vative model favors low false negatives (i.e., CPU jailing is
triggered when overload would have happened without it) at
the cost of relatively high false positives (i.e., CPU jailing is
triggered even when it does not have to). This is appropriate
because power safety is our top priority and power reading
unavailability is infrequent. The probabilistic model is not
the focus of this paper, but one can freely use any model that
estimates the risk from any available data and plug it in here.

5 Evaluation Results at the Node Level

Before discussing data center-level aggregated data, we show
two examples of node-level data from experiments performed
on an Intel Skylake CPU.

CPU power and set point. To quantify the effectiveness of
CPU bandwidth control, DVFS, and RAPL to control power,
we measure total CPU power under various set points of
the three knobs. We ran Intel’s “power virus” workload [7]
that stresses the CPU and the memory to maximize power
draw. We then separately used CPU bandwidth control, DVFS,
and RAPL to limit CPU power and compared the results,
which are shown in Figure 3. CPU power is normalized to the
highest power observed when none of the power management
mechanisms are enabled.

Figure 3(a) shows that, with CPU bandwidth control, we
are able to reduce CPU power to 0.34 due to significant deep
sleep state residency from bandwidth control.

In comparison, Figure 3(b) shows that with DVFS, power
draw is still relatively high at 0.57 when the lowest frequency
limit is applied. The frequency limit is normalized to the base
frequency of the processor.

1248 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 4: Throughput of a video transcoding task as a function
of CPU power under bandwidth control and DVFS.

Figure 3(c) shows RAPL has the widest power reduction
range among the three. It is able to reduce power to 0.22. How-
ever, we noticed system management tasks were sluggish to re-
spond when RAPL approached the lowest power limits, which
suggests higher machine timeout risks if these limits were
actually used in practice. By contrast, CPU bandwidth control
used in our system only throttles throughput-oriented tasks
and the system management tasks are not affected. Thanks to
its built-in feedback loop, RAPL is fairly accurate in achiev-
ing the provided power budget [26]. RAPL’s predictability is
an advantage over DVFS or CPU bandwidth control.

CPU power and throughput. In this experiment, we run a
throughput-oriented video transcoding task under various set
points of CPU bandwidth control and DVFS, and measure
CPU power and task throughput. This gives us information
about the throughput impact of the two mechanisms under a
power budget. Throughput is calculated as the reciprocal of
the wall clock time of completing the task, normalized to the
throughput where no power throttling is applied. CPU power
is normalized to the highest power observed when power virus
is run and no power throttling is applied (matching Figure 3).

Results are shown in Figure 4. Throughput is only mildly
affected when power is greater than 0.85 for both bandwidth
control and DVFS. Possibly memory bandwidth, rather than
CPU bandwidth, is the bottleneck in this region. Throughput
drops notably as power drops below 0.85 for both mecha-
nisms, but DVFS has higher throughput than bandwidth con-
trol under the same power. Therefore, DVFS is more power
efficient than bandwidth control. However, in terms of power
control dynamic range, DVFS can only reduce power by 40%
when the lowest frequency limit is applied, whereas band-
width control is capable of nearly 60% power reduction. This
is consistent with the power virus result in Figure 3. Load
shaping events happen infrequently in our data centers, thus
power efficiency is not a major factor for our use case.

6 Evaluation Results at Data Center Scale

To characterize the system at scale, we performed experiments
in clusters comprising tens of thousands of machines running

Figure 5: Typical load shaping patterns. (a1) and (a2) show the
normalized power and CPU utilization of a load-shaped power
domain, with 0.01 hard multiplier and 0.5 soft multiplier. (b1)
and (b2) show similar data for the same power domain but
with 0.01 hard multiplier and 0.95 soft multiplier. The blue
horizontal dashed lines are low power thresholds associated
with the soft multipliers. The red vertical lines mark the start
of load shaping. (The power and CPU readings are not exactly
time-aligned due to sampling delays.)

diverse production workloads in our data centers. Throttling
was manually triggered with various combinations of parame-
ters. Power data is collected from data center power meters,
which is the same data that Thunderbolt also uses. Power mea-
surement data is normalized to the power domain’s equipment
limit.

Other metrics are sampled from individual machines and
aggregated at the same power domain level corresponding
to the power readings. Machine metrics such as CPU usage
are normalized to the total capacity of all machines in the
power domain unless specified otherwise. Task failures are
normalized to the total number of affected tasks.

Latency data are collected from low-level storage services
that read and write Linux files and support Google’s dis-
tributed file system. They are critical services widely deployed
in our data centers, running at high priorities and thus exempt
from load shaping. They are not exempt from CPU jailing but
have high priority to access the remaining CPUs.

6.1 Load shaping in typical scenarios
In this experiment, we picked a production cluster that is dom-
inated by throughput-oriented workloads to test the typical
behavior of load shaping. Load shaping was triggered by man-
ually lowering the high power threshold to be just below the
ongoing power draw of a power domain.

Power and CPU usage patterns. Figure 5(a1) shows a typi-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1249

Table 3: Load shaping duration, task failure fraction, and 99%-
ile read latency of storage services under different scenarios.

Duration Failure fraction Latency
Baseline 25 min. 0.00002 79 ms

0.95 soft mult. 5 min. 0.00000 79 ms
0.75 soft mult. 10 min. 0.00003 80 ms
0.5 soft mult. 5 min. 0.00007 78 ms

cal load shaping pattern of power oscillating around the low
threshold. Seconds after throttling is triggered, power is re-
duced by a large margin because of the hard multiplier. Mean-
while the low threshold is activated. Throttling is gradually
lifted as power drops below the low threshold, and power
goes back up until it reaches the low threshold. Then power
is reduced again, but by a smaller margin because of the soft
multiplier. The process continues as throttling is turned on
and off repeatedly, resulting in power oscillating around the
low threshold. Figure 5(b1), as compared to (a1), shows a
soft multiplier closer to 1.0 leads to oscillations of a smaller
amplitude, as expected. The response time from load shaping
triggering to significant power reduction is about 2 seconds.

Figure 5(a2) and (b2) show the CPU utilization correspond-
ing to (a1) and (b1) respectively. At the shown CPU utilization
level, about 0.1 reduction of CPU utilization is needed to re-
duce 0.02 of power.

Task failures. While tasks are slowed down, we want to en-
sure that most of them do not fail because of CPU starvation
or unexpected side effects. Table 3 shows task failure frac-
tions (the number of failed tasks normalized to the total num-
ber of affected tasks) of the same power domain under load
shaping with various soft multipliers. “Baseline” indicates no
throttling and serves as the baseline for comparison. All load
shaping events have a hard multiplier of 0.01 (not shown in
the table) while the soft multiplier varies from 0.5 to 0.95.
Clearly load shaping does not cause noticeably more failures.
The failure fraction remains low compared to the baseline.

Latencies. To assess load shaping’s effect on the latencies
of latency-sensitive tasks, we inspect the tail 99%-ile read
latency of latency-sensitive storage services, shown in Ta-
ble 3. As expected, the latency is not affected by load shaping
because the tasks are exempt from the mechanism.

Differentiation of QoS. To test Thunderbolt’s ability to dif-
ferentiate QoS, we classified tasks into two groups based on
their priority, and load-shaped the low-priority group while
exempting the high-priority group. Figure 6 shows the total
power draw and CPU usage of the two groups of tasks, dur-
ing the event. The CPU usage of the shaped and the exempt
group is reduced by about 0.1 and 0.03, respectively. The
exempt group is indirectly affected because the tasks in the

Figure 6: Power and CPU utilization during a load shaping
event with multiplier 0.1 that directly affects a subset of tasks.
The red vertical line marks the start of the event. The CPU
reduction of the load-shaped tasks are more prominent than
that of the exempt tasks. The exempt tasks are indirectly
affected because of their interaction with the shaped tasks.
(The power and CPU readings are not exactly time-aligned
due to sampling delays.)

two groups are production tasks with complex interactions.
One of such interactions is that a high-priority controller task
in the exempt group coordinates low-priority workers in the
shaped group, and the controller task has less work to do and
consumes less CPU when the workers are throttled. Never-
theless, the ability of load shaping to differentiate tasks is
evident.

6.2 Load shaping pushed to the limit
In typical scenarios, as demonstrated in Section 6.1, load
shaping reduces power to a safe level just below the threshold
and allows power to oscillate around it. However, in extreme
cases where power stays above the threshold, the system will
need to continuously reduce tasks’ CPU usage, eventually to
the preset minimum value. The affected tasks will essentially
be stopped and make no forward progress. For example, power
may remain high after throttling is triggered because new
compute-intense tasks are continuously scheduled, or many
high-priority tasks exempt from the mechanism spike in their
CPU usage. In such cases it is the right trade-off to stop the
low-priority tasks in order to prevent power overloading.

To test the behavior of load shaping in such extreme
scenarios, we picked a cluster with some low-priority, non-
production, throughput-oriented workloads and applied a mul-
tiplier continuously to those tasks. (Most of the tasks in that
cluster are high-priority, which we exempt from this test
thanks to load shaping’s ability to differentiate tasks.) We com-

1250 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 7: Power responsiveness of continuous throttling and
of SIGSTOP. (a) and (b) are throttling with a multiplier of
0.95 and 0.01, respectively. (c) is SIGSTOP. The red vertical
lines mark the start of throttling and SIGSTOP.

pared continuous throttling to explicitly stopping the tasks by
sending them a SIGSTOP signal followed by a SIGCONT
signal after 60–75 seconds.

Power responsiveness and range of control. Figure 7 shows
the power responsiveness of continuous throttling and of
SIGSTOP. Here power is reduced noticeably in 2 seconds.
This is true for all the tested multipliers as well as for
SIGSTOP. In 4 seconds, about 3% of power is shed by throt-
tling with a 0.01 multiplier and by SIGSTOP, and 0.5% by
throttling with a 0.95 multiplier, respectively.

If throttling is applied continuously, we expect tasks to
eventually have close-to-zero CPU shares and we achieve
similar power reduction as SIGSTOP. This is indeed true. Fig-
ure 8 compares the power reduction by continuous throttling
with two multipliers, and compares them to SIGSTOP. It plots
the same data as Figure 7 but on a larger time scale to show
the power reduction. (Note that the x axes of the sub-figures
are scaled differently because the power reduction happens at
different time scales.) Power is reduced at a slower pace with
a multiplier closer to 1, but given enough time it is eventu-
ally reduced by an amount similar to SIGSTOP (about 0.015)
regardless of multiplier. This is expected, because the cumula-
tive effect of applying any multiplier between 0 and 1 should
eventually converge to CPU shares that are close to zero. This
also implies that the selection of the multiplier does not affect
the effectiveness of power reduction in terms of sheddable
power. The selection of the multiplier does affect responsive-
ness, however, which is important when power spikes need to
be throttled quickly.

Task failures. Table 4 lists the task failure fractions during the
test periods of continuous throttling and SIGSTOP. “Baseline”

Figure 8: Power reduction by continuous throttling and by
SIGSTOP. (a) and (b) are throttling with a multiplier of 0.95
and 0.01, respectively. (c) is SIGSTOP. The red vertical lines
mark the start of throttling and SIGSTOP. The x axes of the
sub-figures are scaled differently because the power reduction
happens at different time scales.

Table 4: Power shedding duration, task failure fraction, and
99%-ile read latency of storage services under different sce-
narios.

Duration Failure fraction Latency
Baseline 15 min. 0.0007 126 ms

0.95 mult. 20 min. 0.0007 122 ms
0.01 mult. 2 min. 0.003 125 ms
SIGSTOP 2 min. 0.06 135 ms

indicates no throttling or SIGSTOP and serves as baseline
for comparison. Throttling with a 0.95 multiplier has mild
effect on failure fraction and can be continuously applied to
tasks for longer time (20 minutes here). Both throttling with a
0.01 multiplier and SIGSTOP were only performed for a short
period of time (2 minutes), but they caused skyrocketed failure
fraction by one to two orders of magnitude. The failures are
mostly attributed to tasks being terminated because they fail
to respond to health checks. The increased failure fraction of
continuous throttling with a 0.01 multiplier is contrasted with
the low failure fractions of load shaping in Table 3. Those
load shaping events in Table 3 had a 0.01 hard multiplier in
effect only for a few seconds, because the hard multiplier
was progressively lifted in seconds after power drops below
the high power threshold. The failure fraction of continuous
throttling with a 0.01 multiplier is one order of magnitude
lower than that of SIGSTOP because the throttled tasks still
have a minimum CPU share, and some of them can respond

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1251

Figure 9: Responsiveness and power reduction of CPU jailing
with 20% jailing fraction. Power is reduced by 0.02 in 5
seconds when the power domain’s CPU utilization is about
60% (not shown in the figure).

Table 5: Effect of 20% CPU jailing on machine CPU utiliza-
tion.

Machine CPU utilization
Duration 50%ile 95%ile 99%ile

Baseline 60 min. 0.58 0.80 0.94
CPU jailing 55 min. 0.55 0.69 0.75

to health checks and survive.

Latencies. Table 4 shows the tail 99%-ile read latency of
latency-sensitive storage services. As expected, the latency is
not notably affected by either load shaping or SIGSTOP, both
of which are not applied to those services.

6.3 CPU jailing
For this experiment of CPU jailing, we picked the same pro-
duction cluster as in Section 6.1, which is dominated by
throughput-oriented workloads. We manually performed CPU
jailing with a 0.2 jailing fraction, denoted by “20% CPU jail-
ing”, and collected data for power, CPU usage, CPU cores in
deep sleep states, task failures, and latencies. The same types
of data were collected during a period before the CPU jailing
event; those data will serve as the baseline for comparison.

Power responsiveness. For the purpose of a failover mecha-
nism, response time is not a concern in most cases, except for
the corner case where meter signals are lost while load shap-
ing is, or very close to being, active. Nevertheless, Figure 9
shows that power utilization is reduced by 0.02 (from 0.72 to
0.70) in 5 seconds under 20% CPU jailing. The power reduc-
tion is relatively small, because most machines had lower than
80% CPU utilization even before 20% jailing was applied to
them. This can be seen in Table 5, discussed further below.

CPU usage. CPU jailing affects machines with high CPU
utilization more than those with low CPU utilization. This is
evident from Table 5. The median machine CPU utilization

Table 6: Task failure fraction and 99%-ile read latency of
storage services under 20% CPU jailing.

Duration Failure fraction Latency
Baseline 60 min. 0.00003 79 ms

CPU jailing 55 min. 0.00002 86 ms

without CPU jailing is 0.58, and it is only mildly affected
by 20% CPU jailing that limits available machine CPU ca-
pacity to 80%. In contrast, the 99%-ile and 95%-ile machine
CPU utilizations, which are close to or higher than 80%, are
reduced significantly during CPU jailing.

While CPU jailing is a pure software mechanism, it can get
extra benefits with hardware support that puts idle cores in
power-saving states. In our experiment with 20% CPU jailing,
5% of affected CPU cores entered deep sleep states (C6/C7
states) as compared to 1% of cores without jailing. Noticeably,
although 20% of cores are jailed, the portion of deep-sleep
cores is always less than 20% due to processes exempt or
unaffected by the mechanism.

Task failures and latencies. Table 6 shows the task failure
fraction and the 99%-ile read latency of storage services of
a power domain in a 20% CPU jailing event. There is no
notable difference in failure fraction and latency compared to
the baseline. Both latencies are far below our SLO. However,
in a separate experiment of 80% CPU jailing we observed an
order of magnitude higher latency (not shown in the table),
which is not surprising because severe CPU contention is
expected with such heavy jailing.

7 Deployment at Scale and Benefits

Thunderbolt has been deployed at scale in our logs processing
clusters and has enabled 9%–25% power oversubscription rel-
ative to the nominal capacity, depending on the power delivery
architecture. The oversubscription is determined by an SLO
with the clusters’ stakeholders about the expected occurrence
frequency of throttling events under realistic worst conditions.
Other throughput-oriented clusters, such as web indexing, are
also in scope of more aggressive power oversubscription with
Thunderbolt.

Logs processing workloads are mostly throughput-oriented
and continuously running. Resources are provisioned to ac-
commodate worst-case daily throughput demands, and any
disruptive power capping actuation on the worst day is a waste
of the resources and cancels the benefits of aggressive power
oversubscription. Thunderbolt, by gently throttling computa-
tion, distributes the actual work throughout the day, gracefully
allowing throughput to be conserved. Despite that most work-
loads are throughput-oriented, there are still critical latency-
sensitive workloads such as low-level storage services, and

1252 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

therefore QoS differentiation is important.
The reactive capping mechanism has been activated three

times by exceptionally high power draw in three production
clusters in the first 130 days of year 2020. The proactive
capping mechanism has been activated two times by power
telemetry unavailability in two high-power production clus-
ters in the same period of time. Such incidents could have
resulted in tripping data center breakers without the protection
from the power capping system. The activation events went
unnoticed by stakeholders, with negligible adverse effect on
production.

8 Challenges and Future Work

Thunderbolt, implemented as described in this paper, is suit-
able for our production clusters running a mix of throughput-
oriented and latency-sensitive workloads. Those clusters have
a sizable portion of power drawn by throughput-oriented tasks,
and a stable usage pattern of latency-sensitive workloads.
Therefore, we are able to set an appropriate oversubscrip-
tion level with high confidence that non-sheddable power will
not pose a risk, and that CPU jailing will not starve latency-
sensitive tasks. Nevertheless, the Thunderbolt framework is
flexible enough for extension and optimization to accommo-
date clusters of different workload patterns. Here we discuss
some directions and challenges.

Our implementation exempts all high-priority latency-
sensitive workloads from load shaping but this is not always
required. In clusters where latency-sensitive workloads may
use too much power, one could further break them down into
multiple priority buckets and throttle them as appropriate un-
der their SLOs. Doing so in practice is a challenge as latency-
sensitive tasks are generally not amenable to CPU throttling.
It will likely require a co-design of throttling policy, SLO,
and software infrastructure. For example, one could have an
SLO that permits affecting the latencies for a small fraction
of time, and design the workload and software infrastructure
to respond to high latency properly. For cloud data centers
where the infrastructure owner has limited control over the
workloads, cloud providers may carefully design service-level
agreements (SLAs) to allow throttling “abusive” behaviors,
and possibly use price incentives to encourage “good” behav-
iors.

Thunderbolt sheds power by controlling CPU usage. This
may not be effective if the majority of power is used by non-
CPU components, such as hardware accelerators. While hard-
ware support is needed to effectively throttle such components,
the Thunderbolt software architecture and control policies of
load shaping and proactive capping can be adapted to control
additional hardware throttling knobs. QoS differentiation will
depend on the control granularity of the hardware. For exam-
ple, if an accelerator supports per-chip throttling and a chip is
used by one task at a time, then task-level QoS differentiation
is possible.

While proactive capping addresses the availability bottle-
neck of power telemetry unavailability, it may become a lim-
iting factor for power oversubscription. We have to set the
jailing fraction conservatively (i.e., it may be set greater than
necessary) for the open-loop control to be safe. For clusters
with a high portion of latency-sensitive tasks, only a small
jailing fraction may be feasible, leading to a small oversub-
scription. To increase oversubscription for those clusters, it
may be worth investing in building a reliable secondary source
of power signals, either from rack- or machine-level power
sensors or from machine learning models that map resource
usage to power, so that closed-loop control is still functional
when the primary source, data center power meters, is unavail-
able. Proactive capping may be used as the last resort when
both the primary and the secondary sources are unavailable.

Thunderbolt is a reactive system (not to be confused with
"reactive capping" defined in this paper), in the sense that it
reacts to riskily high data center power that is present (in the
case of reactive capping) or expected (in the case of proactive
capping). A more proactive approach, such as power-aware
job scheduling and admission control, may actively balance
load to avoid riskily high data center power via scheduling
rather than throttling. Job scheduling and admission control
are largely orthogonal and complementary to Thunderbolt
and are valuable candidates for future work.

9 Related Work

This work has a similar architecture as Google’s power
capping for medium-voltage power planes (MVPPs) [18].
It shares many advantages of the MVPP power capping,
such as fast response, priority- and QoS-awareness, platform-
independence, and scalability, while making a critical im-
provement of not interrupting throughput-oriented workloads.
This is to be contrasted with the MVPP power capping design
that uses Linux SIGSTOP and SIGKILL signals. This work
also introduces the proactive capping sub-system to improve
system availability, which the MVPP capping system does
not have.

Our primary, reactive capping subsystem uses node-level
CPU bandwidth control provided by the Linux kernel’s CFS
scheduler. To our knowledge this is the first time this node-
level mechanism, applicable on a per-task basis, is used
for data center power management. There is literature [2]
that discusses using CPU bandwidth control for power man-
agement of mobile devices, but not for data centers. Other
node-level mechanisms used for power management include
DVFS [6,16,24], RAPL [25], Intel node manager [14], power
gating [16], and thread packing [6, 17].

Reactive capping also uses load shaping, a data center-level
closed-loop control, as the the power control policy. Load
shaping is implemented at one level of the power delivery
“choke point” that constrains the overall power capacity. It is

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1253

simpler than multi-level controls in other large-scale imple-
mentations [14, 24, 25].

Our failover, proactive capping subsystem to mitigate the
risk of power signal unavailability, uses node-level CPU affin-
ity control. It is the same low-level mechanism as “thread
packing” [6, 17], but in this work we use it only as a failover
mechanism when power signals are unavailable because of
its limitations compared to CPU bandwidth control.

Other studies also use power-aware job scheduling and
admission control to limit power draw [4,12,23]. Compared to
node-level and hardware-level power throttling mechanisms
such as ours, these scheduler-level techniques can improve
availability and performance of running jobs. It is a valuable
direction for future work, as discussed in Section 8.

10 Summary

In this paper we present Thunderbolt, a throughput-optimized
and QoS-aware power capping system that is robust and scal-
able. We elaborate important design choices and present pro-
duction evaluation of its policy decisions. Thunderbolt has
been deployed in warehouse-sized data centers and saved us
millions of dollars on capital expenses by enabling otherwise
nonexistent additional power capacity in our data centers.

Acknowledgments

This work is the result of multi-year efforts contributed by
many engineers, managers, and supporting staff. We would
like to thank Strata Chalup, Greg Imwalle, Tom Kennedy,
Dave Landhuis, Mian Luo, Matthew Nuckolls, Pablo Perez,
Etienne Perot, Brad Strand, Jeff Swenson, Jikai Tang, Steve
Webster, Quincy Ye, Henry Zhao, and Steven Zhao for their
contributions and support for the Thunderbolt program. We
are also grateful to David Culler, Gernot Heiser, Jeff Mogul,
and the anonymous reviewers for their constructive feedback.

References

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), 2016.

[2] Y. Ahn and K. Chung. User-centric power manage-
ment for embedded CPUs using CPU bandwidth control.
IEEE Transactions on Mobile Computing, 15(9):2388–
2397, 2016.

[3] Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava
Chernyak, Josh Haberman, Reuven Lax, Sam McVeety,
Daniel Mills, Paul Nordstrom, and Sam Whittle. Mill-
wheel: Fault-tolerant stream processing at internet scale.
In Very Large Data Bases, pages 734–746, 2013.

[4] Arka A. Bhattacharya, David Culler, Aman Kansal, Sri-
ram Govindan, and Sriram Sankar. The need for speed
and stability in data center power capping. Sustainable
Computing: Informatics and Systems, 2013.

[5] Dah-Ming Chiu and Raj Jain. Analysis of the increase
and decrease algorithms for congestion avoidance in
computer networks. Computer Networks and ISDN Sys-
tems, 17(1):1 – 14, 1989.

[6] Ryan Cochran, Can Hankendi, Ayse K. Coskun, and
Sherief Reda. Pack & cap: Adaptive DVFS and thread
packing under power caps. In 2011 44th Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 175–185, 2011.

[7] Intel Corporation. Power Stress and
Shaping Tool. https://01.org/
power-stress-and-shaping-tool. Accessed:
2020-04-15.

[8] Howard David, Eugene Gorbatov, Ulf R. Hanebutte,
Rahul Khanna, and Christian Le. RAPL: Memory power
estimation and capping. In 2010 ACM/IEEE Interna-
tional Symposium on Low-Power Electronics and De-
sign (ISLPED), pages 189–194, 2010.

[9] Xing Fu, Xiaorui Wang, and Charles Lefurgy. How
much power oversubscription is safe and allowed in data
centers? In Proceedings of the 8th ACM International
Conference on Autonomic Computing, ICAC ’11, pages
21–30, New York, NY, USA, 2011.

[10] Gartner, Inc. Gartner says global IT spending to decline
8% in 2020 due to impact of COVID-19. https://bit.
ly/gartner-2020-05-13. Accessed: 2020-05-19.

[11] Synergy Research Group. Hyperscale operator
spending on data centers up 11% in 2019 de-
spite only modest capex growth. https://bit.ly/
synergy-2020-03-24. Accessed: 2020-05-19.

[12] Chang-Hong Hsu, Qingyuan Deng, Jason Mars, and
Lingjia Tang. Smoothoperator: Reducing power frag-
mentation and improving power utilization in large-scale
datacenters. In Proceedings of the Twenty-Third Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
2018, Williamsburg, VA, USA, March 24-28, 2018, pages
535–548. ACM, 2018.

1254 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://01.org/power-stress-and-shaping-tool
https://01.org/power-stress-and-shaping-tool
https://bit.ly/gartner-2020-05-13
https://bit.ly/gartner-2020-05-13
https://bit.ly/synergy-2020-03-24
https://bit.ly/synergy-2020-03-24

[13] Wonyoung Kim, Meeta Sharma Gupta, Gu-Yeon Wei,
and David Brooks. System level analysis of fast, per-
core DVFS using on-chip switching regulators. In
HPCA ’08: 14th International Conference on High-
Performance Computer Architecture, pages 123–134,
2008.

[14] Y. Li, C. R. Lefurgy, K. Rajamani, M. S. Allen-Ware,
G. J. Silva, D. D. Heimsoth, S. Ghose, and O. Mutlu.
A scalable priority-aware approach to managing data
center server power. In 2019 IEEE International Sym-
posium on High Performance Computer Architecture
(HPCA), pages 701–714, 2019.

[15] Robert Love. CPU Affinity. https://www.
linuxjournal.com/article/6799. Accessed: 2020-
04-15.

[16] Kai Ma and Xiaorui Wang. PGCapping: exploiting
power gating for power capping and core lifetime balanc-
ing in CMPs. In Proceedings of the 21st International
Conference on Parallel Architectures and Compilation
Techniques, 2012.

[17] Sherief Reda, Ryan Cochran, and Ayse K. Coskun.
Adaptive power capping for servers with multithreaded
workloads. IEEE Micro, 2012.

[18] Varun Sakalkar, Vasileios Kontorinis, David Landhuis,
Shaohong Li, Darren De Ronde, Thomas Blooming,
Anand Ramesh, James Kennedy, Christopher Malone,
Jimmy Clidaras, and Parthasarathy Ranganathan. Data
center power oversubscription with a medium voltage
power plane and priority-aware capping. In ASPLOS

’20: Architectural Support for Programming Languages
and Operating Systems, pages 497–511. ACM, 2020.

[19] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The Hadoop distributed file sys-
tem. In 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), 2010.

[20] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E.
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. Borg: The next generation. In
Proceedings of the Fifteenth European Conference on
Computer Systems, EuroSys ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[21] Paul Turner, Bharata B Rao, and Nikhil Rao. CPU band-
width control for CFS. In Proceedings of the Linux
Symposium, pages 245–254, 2010.

[22] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In Pro-
ceedings of the European Conference on Computer Sys-
tems (EuroSys), Bordeaux, France, 2015.

[23] Guosai Wang, Shuhao Wang, Bing Luo, Weisong Shi,
Yinghang Zhu, Wenjun Yang, Dianming Hu, Longbo
Huang, Xin Jin, and Wei Xu. Increasing large-scale
data center capacity by statistical power control. In
Proceedings of the Eleventh European Conference on
Computer Systems, 2016.

[24] Xiaorui Wang, Ming Chen, Charles Lefurgy, and Tom W.
Keller. SHIP: A scalable hierarchical power control
architecture for large-scale data centers. IEEE Trans.
Parallel Distrib. Syst., 23(1):168–176, 2012.

[25] Qiang Wu, Qingyuan Deng, Lakshmi Ganesh, Chang-
Hong Hsu, Yun Jin, Sanjeev Kumar, Bin Li, Justin Meza,
and Yee Jiun Song. Dynamo: Facebook’s data center-
wide power management system. In Proceedings of the
43rd International Symposium on Computer Architec-
ture, ISCA ’16, pages 469–480, Piscataway, NJ, USA,
2016.

[26] Huazhe Zhang and Henry Hoffmann. A quantitative
evaluation of the RAPL power control system. Feedback
Computing, 2015.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1255

https://www.linuxjournal.com/article/6799
https://www.linuxjournal.com/article/6799

	osdi20_proceedings_cover
	osdi20_full_proceedings
	osdi20_front-matter_final
	osdi20_full_proceedings_interior
	1_wed_papers
	osdi20-boos
	Introduction
	Rust Language Background
	Theseus Overview and Design Principles
	Structure of Runtime-Persistent Cells
	Bootstrapping Theseus with the nano_core

	Power to the Language
	Matching the Language's Runtime Model
	Intralingual OS Design
	Examples of Intralingual Subsystems
	Memory Management
	Task Management

	State Management in Theseus
	Opaque Exportation through Intralinguality
	Management of Special States in Theseus
	Intralinguality and Spill Freedom: Examples

	Realizing Evolvability and Availability
	Live Evolution via Cell Swapping
	Availability via Fault Recovery

	Evaluation
	Live Evolution
	Fault Recovery
	Cost of Intralinguality & State Spill Freedom

	Limitations and Discussion
	Related Work
	Artifact Appendix
	Abstract
	Artifact check-list
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected result
	Live evolution case studies
	Fault injection and recovery
	IPC fault comparison
	Evaluation of MappedPages
	Evaluation of runqueue state spill in tasking
	Heap microbenchmarks
	LMBench microbenchmarks

	Experiment customization
	AE Methodology

	osdi20-narayanan_vikram
	Introduction
	Isolation in Language-Based Systems
	RedLeaf Architecture
	Domains and Fault Isolation
	Heap Isolation and Sharing
	Exchangeable Types
	Ownership Tracking
	Cross-Domain Call Proxying
	Interface Validation

	Zero-copy Communication

	Implementation
	Microkernel
	Dynamic Domain Loading
	Safe Device Drivers
	Device Driver Recovery
	Rv6 Operating System Personality

	Evaluation
	Overheads of Domain Isolation
	Device Drivers
	Ixgbe Network Driver
	NVMe Driver

	Application Benchmarks
	Device Driver Recovery

	Related Work
	Conclusions
	Acknowledgments

	osdi20-nelson
	Introduction
	Related work
	Case study
	An overview of BPF
	Bugs in BPF JITs
	Summary

	Specification
	JIT correctness
	Stepwise specification
	Applying the stepwise specification
	Discussion and limitations

	Proving JIT correctness
	Implementing a JIT
	Experience
	Reflection and conclusion
	Artifact appendix
	Patches to the Linux kernel developed using Jitterbug
	Development of the BPF JIT for RV32
	Bug fixes and new test cases
	Optimizations for existing BPF JITs

	Bug-fixing commits in BPF JITs in the Linux kernel (May 2014–April 2020)

	osdi20-tan
	1 Introduction and motivation
	2 Overview and technical background
	2.1 Setup and scenarios
	2.2 Verification problem statement
	2.3 Starting point: intuition and brute force

	3 Verifying serializability in cobra
	3.1 Combining writes
	3.2 Coalescing constraints
	3.3 Pruning constraints
	3.4 Solving
	3.5 On strict serializability

	4 Garbage collection and scaling
	4.1 The challenge
	4.2 Epochs and fence transactions
	4.3 Garbage collection

	5 Implementation
	6 Experimental evaluation
	6.1 one-shot verification
	6.2 Scaling
	6.3 Online overheads
	6.4 Summary of experimental evaluation

	7 Related work
	8 Discussion, future work, and conclusion
	A Artifact Appendix

	osdi20-chang
	Introduction
	Related Work
	SCFTL Design and Implementation
	Flash disk overview
	Address translation
	Crash recovery
	Garbage collection

	Formal Verification Framework
	Specification of disk behavior
	Snapshot consistency
	Behavioral correctness and snapshot consistency of SCFTL
	Per-operation correctness

	Verifying the SCFTL Implementation
	Modeling flash states and crashes
	Crafting the abstraction relations and representation invariants
	Categorizing the invariants
	Partitioning the proofs

	Discussion
	Validating unverified conditions
	Support for concurrency

	Evaluation
	Stress testing and crash state simulation
	Comparing SCFTL with other FTLs
	Modifying xv6 with SCFTL

	Conclusion

	osdi20-hance
	1 Introduction
	2 Assumptions and Background
	2.1 Assumptions
	2.2 TLA+-Style State-Machine Refinement
	2.3 Floyd-Hoare Verification
	2.4 Verifying Distributed Systems

	3 Verifying Storage Systems
	3.1 An Environment Model with Crashes
	3.1.1 Corruption
	3.1.2 Application Specification

	3.2 Refinement Verification Techniques

	4 Disciplined Automation
	5 Language Improvements
	5.1 Linear Variables
	5.2 Compiling to C++

	6 VeriBetrKV: A High-Performance, Verified Key-Value Store
	6.1 VeriBetrKV's Implementation
	6.1.1 BTree Background
	6.1.2 Node-Buffer Data Structures
	6.1.3 Caching, Copy-on-Write, and Indirection Tables
	6.1.4 Optimizing Syncs with a Journal

	6.2 VeriBetrKV's Proof
	6.2.1 VeriBetrKV's Refinement Proof
	6.2.2 Simple State-Machine Refinement
	6.2.3 VeriBetrKV's IOSystem Refinement
	6.2.4 VeriBetrKV's Floyd-Hoare Proof

	7 Evaluation
	7.1 Developer Experience
	7.2 Performance
	7.2.1 YCSB
	7.2.2 Linear Data Structures

	8 Related Work
	8.1 Verified Storage Systems
	8.1.1 Concurrent Storage

	8.2 Automation Strategies
	8.3 Additional Verified Systems

	9 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list
	A.3 Description
	A.3.1 How to access
	A.3.2 Hardware dependencies
	A.3.3 Software dependencies
	A.3.4 Data sets

	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization
	A.8 AE Methodology

	osdi20-wei
	Introduction
	RDMA-based Key-Value Store
	Analysis of RDMA-based Ordered KVs
	Approach and Overview
	Design and Implementation
	Data Structures
	Client-direct Operations
	Get
	Scan
	Non-existent Keys

	Server-centric Operations
	Update
	Insert and Delete

	Durability
	Scaling out XStore

	Discussion
	Evaluation
	Experimental Setup
	YCSB Performance
	Production Workload Performance
	Scale-out Performance
	Model (Re-)Training and Expansion
	Memory Footprint of XCache
	Data Distribution
	Durability
	Variable-length Value
	Application Performance

	Related Work
	Conclusion
	Acknowledgment
	Artifact Appendix
	Abstract
	Artifact Check-list
	How to Access
	Hardware Dependencies
	Software Dependencies

	Installation
	Experiment Workflow
	Evaluation and Expected Result
	Experiment Customization
	Notes
	AE Methodology

	osdi20-ren
	Introduction
	Background and Related Work
	Motivation
	Design of CrossFS
	CrossFS Design Principles
	CrossFS Layers
	Scaling Concurrent Access
	Per-File Descriptor I/O Queues
	Concurrency Constraints
	Delegating Concurrency Control to Host-CPUs
	Supporting Concurrent Readers and a Writer
	Supporting Concurrent Writers
	File Commit (fsync) as a Barrier
	Metadata-heavy Operations
	Block Cache and Memory-map Support.

	Cross-Layered Crash Consistency
	Multi-Queue File-Descriptor Scheduler
	Scheduling Policies.

	Security and Permission Checking

	Implementation
	Evaluation
	Experimental Setup
	Microbenchmarks
	Concurrency Analysis
	Multi-Process Performance
	Commit Frequency
	Urgency-aware Scheduler
	CrossFS Performance Breakdown.
	Sensitivity Analysis - Host-side Configuration
	Sensitivity Analysis - Device Configuration

	Macrobenchmark: Filebench
	Real-World Applications

	Conclusion

	osdi20-dai
	osdi20-hao
	osdi20-yang
	Introduction
	In-memory Caching at Twitter
	Service Architecture and Caching
	Twemcache Provisioning
	Overview of Twemcache
	Cache Use Cases
	Caching for Storage
	Caching for Computation
	Transient data with no backing store

	Methodology
	Log Collection
	Log Overview

	Production Stats and Workload Analysis
	Miss Ratio
	Request Rate and Hot Keys
	Types of Operations
	Relative usage comparison
	Write ratio

	TTL
	TTL Usages
	Working Set Size and TTL

	Popularity Distribution
	Object Size
	Size Distribution
	Size Distribution Over Time

	Further Analysis of Workload Properties
	Correlations between Properties
	Properties of Different Cache Use Cases
	Caching for Storage
	Caching for Computation
	Transient Data with No Backing Store

	Eviction Algorithms
	Eviction algorithm candidates
	Simulation Setup
	Miss Ratio Comparison
	Aggregated Statistics

	Implications
	Write-heavy Caches
	Short TTLs
	Highly Skewed Object Popularity
	Object Size
	Dynamic Object Size Distribution

	Related Work
	Conclusion

	osdi20-sarthi
	Introduction
	Overview
	Preliminaries
	SQL Operators
	Resin operators

	Resin optimizations
	Assumptions
	Generalized sub-query fusion
	Base rule
	Recursive fusion of unary operators
	Binary operator fusion
	Operator alignment and exact fusion

	Binary operator elimination

	Implementation
	Evaluation
	Optimization opportunity
	Speedup from Resin optimizations
	Impact of Resin optimizations on systems resources
	Impact on larger scale data

	Related Work
	Conclusions

	osdi20-pirelli
	osdi20-lin
	Introduction
	Motivation
	Requirements
	Limitations of Existing Designs
	Pipeline Designs
	Manycore Designs
	Reconfigurable Match+Action (P4) Designs

	PANIC Overview
	Design
	RMT Pipeline
	High Performance Interconnect
	Centralized Scheduler
	Hybrid Push/Pull Scheduling and Load Balancing
	Packet Scheduling
	Performance Provisioning:

	Compute Unit

	ASIC Analysis
	FPGA Prototype
	Evaluation
	Testbed and methodology
	PANIC System Microbenchmarks
	Comparison with the Pipeline Design
	RISC-V Core Performance
	Hardware Resource Usage
	End-to-End Performance

	Related Work
	Conclusions
	Artifact Appendix
	Abstract
	Artifact check-list
	Description
	How to access
	Software dependencies

	Experiment workflow
	Evaluation and expected result
	Notes
	AE Methodology

	osdi20-wang
	osdi20-fried
	Introduction
	Motivation
	Background
	Existing Approaches to Interference
	Limitations of Hardware Extensions

	Challenges and Approach
	Caladan's Approach

	Design
	Overview
	The Caladan Scheduler
	The Top-level Core Allocator
	The Memory Bandwidth Controller
	The Hyperthread Controller
	An Example: Reacting to Garbage Collection

	ksched: Fast and Scalable Scheduling

	Implementation
	Evaluation
	Comparison to Other Systems
	Diverse Colocations
	Microbenchmarks

	Discussion
	Related Work
	Conclusion
	Acknowledgments
	Parameter Tuning and Sensitivity
	Artifact

	osdi20-cho
	osdi20-ruan
	Introduction
	Background and Related Work
	Motivation
	AIFM Design
	Overview
	Remoteable Memory Abstractions
	Remoteable Pointers
	Dereference Scopes
	Evacuation Handlers
	Remote Devices
	Semantic Hints

	AIFM Runtime
	Hiding Remote Access Latency
	Remoteable Memory Layout
	Pauseless Memory Evacuator
	Co-design with the Thread Scheduler

	Remoteable Data Structure Examples
	Implementation
	Evaluation
	End-to-end Performance
	Synthetic Web Service Frontend
	DataFrame Application

	Data Structures
	Hashtable
	Array

	Design Drill-Down
	Fast/Slow Path Costs
	Operating Point
	Memory Evacuator

	Conclusion

	osdi20-lu
	Introduction
	Background
	Performance-Optimal Read Transactions
	Reasoning About Performance
	Approach Overview
	NOC: Optimal Performance

	The NOCS Theorem
	NOCS is Impossible
	The Broad Scope of NOCS
	NOCS Is Tight

	NOCS Connects Theory with Practice
	Theoretical Insights
	Guiding System Designs

	PORT Design
	Version Clocks
	Basic PORT Design
	Write Omission
	Keeping Reads Fresh
	Correctness and Generality

	PORT Implementation and Evaluation
	Implementation
	Evaluation Overview
	Throughput and Latency
	Scalability
	Data Staleness
	Low Contention Evaluation

	Improving an Existing System
	Eiger Overview and Rationale
	Eiger-PORT

	Eiger-PORT Evaluation
	Performance Improvement
	Data Staleness

	Related Work
	Conclusion
	Artifact Appendix
	Abstract
	Artifact check-list
	Description
	How to access

	Installation
	Experiment workflow
	Evaluation and expected result
	AE Methodology

	osdi20-alfatafta
	Introduction
	Definitions
	Causes of Partial Network Partitioning
	Analysis of Partial Network-Partitioning Failures
	Methodology
	Limitations
	Findings
	Insights

	Dissecting Modern Fault Tolerance Techniques
	Identifying the Surviving Clique
	Checking Neighbors’ Views
	RabbitMQ
	Elasticsearch

	Failure Verification
	Neutralizing Partitioned Nodes
	Summary

	Nifty Design
	Evaluation
	Overhead Evaluation
	Handling Partial Partitions
	Classification API Utility

	Related Work
	Concluding Remarks

	osdi20-kadekodi
	Introduction
	Whither disk-adaptive redundancy
	Longitudinal production trace analyses
	Causes of transition overload
	Informing a solution

	Design goals
	Design of pacemaker
	Proactive-transition-initiator
	 Deciding when to RDn a disk
	Deciding when to RUp a disk

	Rgroup-planner
	Transition-executor

	Implementation of pacemaker in HDFS
	Evaluation
	pacemaker on Google Cluster1 in-depth
	pacemaker on the other three clusters
	Sensitivity analyses and ablation studies
	Evaluating HDFS + pacemaker

	Related work
	Conclusion
	Acknowledgements

	osdi20-li_jialin
	Introduction
	Motivation
	Existing Approaches
	Pegasus Goals

	System Model
	A Case for In-Network Directories
	Coherence Directory for Replicated Data
	Implementing Coherence Directory in the Network
	A Coherence Protocol for the Network
	Load-Aware Scheduling
	Feasibility of An In-Network Coherence Directory

	Pegasus Overview
	Pegasus Protocol
	Switch State
	Core Protocol: Request and Reply Processing
	Handling Client Requests
	Handling Server Replies
	Correctness

	Adding and Removing Replicated Keys
	Avoiding Duplicate Requests
	Server Selection Policy
	Additional Protocol Details

	Beyond a Single Rack
	Switch Implementation
	Switch Dataplane Implementation

	Evaluation
	Impact of Skew
	Read/Write Ratio
	Scalability
	Object Sizes
	Impact of Number of Replicated Keys
	Server Selection Policies
	Handling Dynamic Workloads
	Multi-Rack

	Related Work
	Conclusion
	References
	Artifact Appendix
	Artifact check-list
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Compiling Client and Server Code
	Compiling P4 Code

	Experiment workflow
	P4 Switch
	End-Hosts

	Evaluation and expected result
	AE Methodology

	osdi20-shi
	osdi20-lepers
	Introduction
	OLCP Overview
	OLCP in a nutshell
	OLCP interface
	Scans, propagation and space reclamation
	Informal correctness argument
	Example

	Using OLCP in practice
	MOLAP analytics
	ROLAP analytics
	MapReduce analytics

	Implementation
	KVell
	Conventional SI
	Steam
	OLCP in KVell+
	OLCP in other stores

	Evaluation
	Goals
	Experimental settings
	YCSB-T
	Space amplification
	Throuphput
	Overhead of propagations

	TPC-CH performance
	Production workloads performance

	Related Work
	Conclusion

	2_thu_papers
	osdi20-gujarati
	Introduction
	Background and Motivation
	Predictable Performance
	Design
	Overview
	Consolidating Choice
	Challenges for Predictable Inference
	Predictable DNN Worker
	Central Controller

	Implementation
	Models
	DNN Workers
	Central Controller

	Evaluation
	How Does Clockwork Compare?
	Can Clockwork Serve Thousands?
	How Low Can Clockwork Go?
	Can Clockwork Isolate Performance?
	Are Realistic Workloads Predictable?
	Can Clockwork Scale?
	Summary

	Discussion
	Related Work
	Conclusion
	Artifact Appendix
	Abstract
	Artifact check-list
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	AE Methodology

	osdi20-jiang
	Introduction
	Background
	Distributed DNN Training
	All-reduce
	Parameter Server (PS)

	Motivation and BytePS Architecture
	Motivation
	Architecture Overview

	BytePS Communication Design
	Inter-machine Communication
	Communication Efficiency Analysis

	Intra-machine Communication
	PCIe-only Topology
	NVLink-based Topology
	Discussion

	Summation Service
	Implementation
	Multi-Stage Pipeline
	Address RDMA Performance Issues
	BytePS Usage

	Evaluation
	Inter-machine Microbenchmarks
	Leverage CPU Machines
	Adapt to Intra-machine Topology
	Scalability

	Observations and Discussion
	Related Work
	Conclusion
	Acknowledgement

	osdi20-narayanan_deepak
	Introduction
	Background
	Deep Neural Network (DNN) Training
	Performance Optimizations

	System Overview
	Heterogeneity-Aware Policies
	Round-based Scheduling Mechanism
	Throughput Estimator
	Limitations and Non-Goals

	Scheduling Policies
	Max-Min Fairness as an Optimization Problem
	Other Policies as Optimization Problems
	Hierarchical Scheduling Policies
	Properties of Gavel's Policies

	Scheduling Mechanism
	Implementation
	Evaluation
	Experiment Setup
	End-to-End Results on Physical Cluster
	End-to-End Results in Simulation
	Scalability of Heterogeneity-Aware Policies
	Efficacy of Scheduling Mechanism
	Impact of Throughput Estimation

	Related Work and Discussion
	Conclusion
	Acknowledgements
	Artifact Appendix
	Abstract
	Artifact check-list
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Datasets

	Installation
	Experiment workflow
	Evaluation and expected result
	Experiment customization
	AE Methodology

	osdi20-bai
	Introduction
	Motivation
	GPU Clusters
	Fine-Grained Time-Sharing GPU

	PipeSwitch Overview
	PipeSwitch Design
	Profiling Task Switching Overhead
	Pipelined Model Transmission
	Unified Memory Management
	Active-Standby Worker Switching
	Discussion

	Implementation
	Evaluation
	End-to-End Experiments
	Pipelined Model Transmission
	Unified Memory Management
	Active-Standby Worker Switching

	Related Work
	Conclusion

	osdi20-zhao_hanyu
	osdi20-xiao
	Introduction
	Motivation
	Deep Learning Training
	Characterizing Production DL Cluster
	Opportunities in DL Uniqueness

	Design
	Dynamic Scaling in DL Frameworks
	Memory Management
	Computation Management

	Collaborative Scheduler
	Scheduling Policy

	Implementation
	Deep Learning Framework
	Cluster Scheduler

	Evaluation
	Benchmark
	Trace Experiment
	Cluster Experiment

	Related Work
	Conclusion

	osdi20-liao
	Introduction
	Background
	Basic Ordering Guarantee Approach
	Ordering Guarantee Acceleration

	Motivation
	Write Dependency Overhead
	Write Dependency Analysis
	Limitation of Existing Work

	The Horae Foundation
	Design
	Proof
	Example

	The Horae IO stack
	Overview
	Ordering Guarantee
	Durability Guarantee
	Handling Dependency Loops
	Crash Consistency
	The API of Horae and Use Cases
	The API of Horae
	The HoraeFS File System
	The HoraeStore Distributed Storage Backend

	Implementation Details and Discussion

	Evaluation
	Experimental Setup
	Basic Performance Evaluation
	File System Evaluation
	In-Place Update Evaluation
	Crash Recovery Evaluation
	Application Evaluation
	MySQL
	SQLite
	BlueStore

	Discussion
	Related Work
	Conclusion
	Acknowledgement

	osdi20-satija
	Introduction
	Background
	Basic properties
	Building blocks

	Comparison with Existing Blockchains
	Resource usage by member nodes
	Scale of participation
	Transaction throughput
	Incentives to Participants
	Other related work

	Architecture Overview
	Two-tier Architecture
	Offloading work to Politicians
	Division of responsibilities

	Threat Model
	Attack vector of Citizens
	Attack vector of Politicians

	Design
	System Configuration
	Selecting Committee of Citizens
	Fork-proof Structural Validation
	Transaction Validation
	Block Proposal
	Pick winning proposer
	Pre-declared commitments

	Block Commit Protocol
	Consensus Protocol

	Optimizations
	Prioritized Gossip
	Sampling-based Merkle Tree Read/Write

	Proofs of Safety, Liveness, and Fairness
	Implementation
	Citizen nodes
	Politician nodes

	Evaluation
	Experimental setup
	Transaction Throughput and Latency
	Timeline of Citizens and Politicians
	Impact of Optimizations
	Load on Citizens

	Conclusion

	osdi20-ngo
	Introduction
	Slowdown Tolerance
	Replicated State Machine Primer
	Defining Slowdown Tolerance
	Why Existing Protocols Slowdown
	Summary and Insights

	Design
	Model
	Ordering
	Execution
	Fast Takeover
	Additional Design
	Why Copilot is 1-Slowdown-Tolerant

	Correctness
	Safety
	Liveness

	Optimizations
	Ping-Pong Batching
	Null Dependency Elimination

	Evaluation
	Implementation and Baseline
	Experimental Setup
	Transient Slowdowns
	Slowdowns of Varying Severity
	Slowdowns of Varying Manifestations
	Performance Without Slow Replicas

	Related Work
	Conclusion

	osdi20-aguilera
	Introduction
	Background
	Microsecond Apps and Computing
	State Machine Replication
	RDMA

	Overview of Mu
	Architecture
	RDMA Communication

	Replication Plane
	Basic Algorithm
	Extensions

	Background Plane
	Leader Election
	Permission Management
	Log Recycling
	Adding and Removing Replicas

	Implementation
	Evaluation
	Common-case Replication Latency
	End-to-End Application Latency
	Fail-Over Time
	Throughput

	Related Work
	Conclusion

	osdi20-balakrishnan
	osdi20-zhang_yunhao
	1 Introduction
	2 Background and motivation
	3 Byzantine ordered consensus
	4 Pompe
	4.1 Protocol description
	4.2 Proofs of safety and liveness
	4.3 Byzantine influence in Pompe

	5 Implementation
	6 Experimental evaluation
	6.1 End-to-end performance: Throughput and latency
	6.2 Performance with a geo-distributed setup
	6.3 Scalability
	6.4 Network overhead

	7 Related work
	8 Discussion
	9 Concluding remarks

	osdi20-rommel
	Introduction
	Problem Analysis: Quiescence
	The WfPatch Approach
	System Interface
	Implementation for Linux
	User-Space Library

	Evaluation
	Implementation of Quiescence
	Binary Patch Generation
	Request Latencies
	Memory and Run-Time Overheads

	Discussion
	Related Work
	Conclusion

	osdi20-rigger
	Introduction
	Background
	Pivoted Query Synthesis
	Approach Overview
	Query Generation & Checking
	Random State Generation
	Important Implementation Details

	Evaluation
	Experimental Setup
	Bug Reports Overview
	SQL Statements Overview

	Interesting Bugs
	Containment Bugs
	Error Bugs
	Implementation Size and Coverage

	Discussion
	Related Work
	Conclusion

	osdi20-ruffy
	Introduction
	Background and Motivation
	Approaches to Testing Compilers
	Motivating Gauntlet's Design
	Goals and Non-Goals

	Background on P4
	Random Program Generation
	Design
	Implementation

	Translation Validation
	Design
	Implementation

	Model-Based Testing
	Design
	Implementation
	Limitations

	Results
	Sources of Bugs
	Performance on Large P4 Programs
	Deep Dive into Bugs
	Lessons Learned

	Future Work
	Related Work
	Conclusion

	osdi20-yaseen
	Introduction
	Motivation: A Cloud-scale NAT Gateway
	Design Goals
	Aragog's Architecture
	Specification Language
	Event Definitions
	Invariant-Violation (IV) Specifications
	Transformations
	Event Expressions

	State Machine Generation
	Constructing the SFA
	Local State Machines
	Suppressible Transitions
	Local State Machine Construction
	Suppressing Events Locally

	Runtime System
	Workflow Overview
	(Location) Variable Tracking
	Fault Tolerance

	Implementation
	Evaluation
	Bugs Identified by Aragog
	Throughput of Aragog
	Overhead of Aragog
	Efficacy of Suppression

	Related Work
	Discussion and Conclusion
	Artifact Appendix
	Code Structure
	SFA generation
	Global Verifier
	Local Verifier

	Firewall Demo

	osdi20-hu
	Introduction
	Background and Motivation
	Definition
	Case Studies
	Code Patterns
	Approaches to Detect Specious Config

	Overview of Violet
	Symbolic Execution to Analyze Performance Effect of Configurations
	Violet Workflow

	The Design of Violet
	Make Config Variable Symbolic
	Make Related Config Symbolic
	Discover Control Dependent Configs
	Execute Software Symbolically
	Profile Execution Paths
	Analyze State Traces
	Continuous Specious Config Checker

	Scaling Violet to Large Software
	Choice of Symbolic Execution Engine
	Handle Complex Input Structure
	Reduce Profiling Overhead
	Path Explosion and Complex Constraints

	Implementation
	Evaluation
	Target Systems
	Detecting Known Specious Config
	Comparison with Testing
	Exposing Unknown Specious Config
	User Study on Violet Checker
	Coverage of Analyzed Configs
	Accuracy of Violet Profiling
	False Positives
	Performance
	Sensitivity Analysis

	Limitations
	Related Work
	Conclusion

	osdi20-sun
	Introduction
	Motivation
	Contributions

	Background and Examples
	Ctest Overview
	Ctest Definition
	Ctest Usage
	Creating a Ctest Infrastructure

	Ctest Generation
	Parameterization
	Transformation
	Identifying Parameters Exercised in Tests
	Generating Parameter Sets for Ctests

	Rewriting

	Generating Thousands of Ctests
	Evaluated Systems and their Test Suites
	Ctest Generation Results
	Detecting Bugs and Hidden Constraints
	Rewriting Ctests

	Evaluation of Ctest Effectiveness
	Evaluating Ctests on Real-world Failures
	Effectiveness
	Comparison with State-of-the-Art Techniques

	EvaluatingCtestson DiverseMisconfigurations
	Effectiveness on Injected Misconfigurations
	Time-Budget Analysis

	Evaluating Ctests on Configuration Files
	Ctests Effectiveness on Configuration Files
	Ctest Running Time on Configuration Files

	Discussion and Limitations
	Related Work
	Conclusion

	osdi20-ambati_rev
	Introduction
	Background and related work
	Characterizing unallocated resources
	Harvest Virtual Machines
	Providing SLOs for Harvest VMs
	Harvest Hadoop
	Evaluation
	Methodology
	Benefits of Harvest VMs
	Accuracy of SLOs for Harvest VMs
	Harvest VMs and Harvest Hadoop
	Cost comparisons

	Lessons from production deployment
	Conclusion

	osdi20-berg
	osdi20-tang
	Introduction
	Twine Design and Implementation
	Twine Ecosystem
	Entitlements
	Allocator
	Scheduler
	TaskControl
	Host Profiles
	Application-Level Schedulers
	Small Machines and Autoscaling

	Scaling to One Million Machines
	Scale Out via Sharding
	Scale Out via Separation of Concerns
	Comparison of Sharding and Federation

	Availability and Reliability
	Evaluation
	TaskControl
	Autoscaling
	Host Profiles
	Power-efficient Small Machines

	Experience with Shared Infrastructure
	Economies of Scale in twshared
	Path to Shared Infrastructure
	Case Study of twshared Migration

	Lessons Learned
	Entitlement Fragmentation
	Controlled Customization
	Supporting Global Services
	Challenges with Small Machines

	Related Work
	Conclusion

	osdi20-qiu
	Introduction
	Background & Characterization
	The FIRM Framework
	Tracing Coordinator
	Critical Path Extractor
	Critical Component Extractor
	SLO Violation Mitigation Using RL
	Action Execution
	Performance Anomaly Injector

	Evaluation
	Experimental Setup
	Critical Component Localization
	RL Training & SLO Violation Mitigation
	End-to-End Performance

	Discussion
	Related Work
	Conclusion
	Acknowledgment
	Artifact Appendix
	Abstract
	Artifact Check-list
	Description
	How to Access
	Hardware Dependencies
	Software Dependencies
	Data Sets

	Installation
	Experiment Workflow
	Experiment Customization
	AE Methodology

	osdi20-suresh
	Introduction
	Motivation
	Declarative Programming with DCM
	DCM Design
	DCM compiler
	Syntax and expressiveness
	Compiler workflow
	Generating scalable encodings

	Testing and debugging models
	Implementation

	Experience using DCM
	Evaluation
	Q1: Scalability evaluation
	Q2: Decision quality evaluation
	Q3: Extensibility

	Discussion and future work opportunities
	Related work
	Conclusion

	osdi20-hadary
	Introduction
	Background and Motivation
	Azure – A Global-Scale Public Cloud
	Workload Analysis
	Takeaways

	Rule-Based Allocation Agent
	Metrics and Constraints
	Allocation Rules
	Accounting for Multiple Rules
	Discussion

	Architecture
	Protean Implementation
	Preliminaries
	Caching for Efficient Machine Selection
	Caching Rule State
	Caching Rule Evaluation State
	Additional Cache Hierarchies
	Efficiently Updating the Cache
	Discussion

	Conflict Detection and Reduction

	Evaluation
	Methodology
	Performance and Scale
	Allocation Quality

	Related Work
	Conclusion

	3_fri_papers
	osdi20-zheng
	osdi20-ma
	Introduction
	Motivation
	Rammer's Design
	rOperator
	Virtualized Parallel Device
	rTask-aware DFG Compiler

	Implementation
	Rammer on NVIDIA CUDA GPUs
	rOperator in CUDA
	vDevice and vEU on CUDA GPU
	Executing black rTask on vEU in CUDA
	Transforming Legacy CUDA Operators

	Rammer on Other Accelerators
	Rammer on AMD GPUs
	Rammer on Graphcore IPU
	Rammer on x86 CPUs

	Evaluation
	Experimental Setup
	Evaluation on CUDA GPUs
	End-to-end Performance
	GPU Utilization
	Scheduling Overhead
	Interplay of Intra and Inter Operator Scheduling
	Fine-grained Synchronization

	Evaluation on Other Accelerators
	End-to-end Performance on ROCm GPUs
	End-to-end Performance on Graphcore IPU

	Discussion
	Related Work
	Conclusion

	osdi20-nakandala
	Introduction
	Background and Challenges
	Traditional ML and DNNs
	Challenges

	System Overview
	High-level Approach
	System Architecture and Implementation
	Assumptions and Limitations

	Compilation
	Compiling Tree-based Models
	Summary of Other Techniques

	Optimizations
	Heuristics-based Strategy Selection
	Runtime-independent Optimizations

	Experimental Evaluation
	Micro-benchmarks
	Tree Ensembles
	Operators

	Optimizations
	Tree Models Implementation
	Runtime-independent Optimizations.

	End-to-end Pipelines

	Related Work
	Conclusions
	Acknowledgements
	Artifact Appendix
	Abstract
	Artifact check-list
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Experiment workflow
	Evaluation and expected result
	Experiment customization
	Notes
	AE Methodology

	osdi20-zhang_quanlu
	osdi20-mai
	Introduction
	Adaptation in ML Systems
	Parameters in distributed ML systems
	Setting parameters in ML systems
	Dynamic adaptation of parameters
	Open challenges

	Adaptation Policies
	Overview
	Sample AP for batch size adaptation
	Adaptation Policy interface
	Practical considerations

	Supporting Monitoring in KungFu
	Design overview
	Embedding monitoring within dataflows
	Collective communication for dataflows
	Accelerating collective communication with NCCL

	Adapting Parameters of Workers
	Adapting dataflow parameters
	Protecting consistency under adaptation

	Evaluation
	Experimental set-up
	Adaptation policies
	Adaptation overhead
	Performance

	Related Work
	Conclusions

	osdi20-kwon
	Introduction
	Background
	NVM and NVMe Protocol
	Storage Virtualization
	Paravirtualization
	Host Sidecore Approach
	On-device Sidecore Approach
	Direct Device Assignment

	Motivation
	CPU-inefficient Storage Virtualization
	Weak Computing Power of SoC Cores
	Absence of Interposition Layer

	FVM Design and Implementation
	Design Goals
	FPGA-assisted Storage Virtualization
	Front-end: VM-to-FVM-Engine
	Back-end: FVM-Engine-to-SSD
	FVM Core Design
	HLS

	Evaluation
	Experimental Setup
	Performance
	Random I/O Benchmark
	RocksDB

	Scalability
	Programming Example Functions

	Discussion
	Related Work
	Conclusion

	osdi20-brunella
	Introduction
	Concept and overview
	Goals and Requirements
	XDP Primer
	Challenges
	hXDP Overview

	hXDP Compiler
	Instructions reduction
	ISA extension
	Instruction Parallelism
	Compiler design

	Hardware Module
	Architecture and components
	Programmable Input queue
	Active Packet Selector
	Sephirot
	Helper Functions
	Maps

	Pipeline Optimizations
	Implementation

	Evaluation
	Compiler
	Hardware performance
	Applications performance
	Microbenchmarks
	Comparison to other FPGA solutions

	Discussion

	Future work
	Related Work
	Conclusion

	osdi20-korolija
	Introduction
	Foundations
	The static region
	The dynamic region
	The software component

	OS abstractions on an FPGA
	Processes, tasks, and threads
	Execution environment
	Scheduling
	Virtual memory
	Memory management
	IPC, I/O, and other services

	Evaluation
	Macro-benchmark: decision trees
	Space overhead
	Micro-benchmark: context switching
	Resource sharing
	Striping
	Demand paging

	Related work
	Conclusion
	Artifact Appendix
	Abstract
	Artifact check-list
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Hardware build
	Driver
	Software build
	Simulation

	Evaluation and expected result
	Experiment customization
	AE Methodology

	osdi20-anderson
	osdi20-zhang_wen
	Introduction
	Persimmon Overview
	Design Goals
	Persimmon Persistent State Machine Model
	Persimmon Persistent State Machine API
	Persimmon Persistent State Machine Guarantees

	Persimmon Runtime
	Data Structures
	Initialization and Normal Execution
	Persimmon Shadow Process
	Persistent Memory Management

	Crash-Consistent Shadow Execution
	Overview
	Undo Log Layout and Operations
	Dynamic Binary Instrumentation

	Recovery
	Implementation
	Evaluation
	Programming Experience
	Porting Redis
	Porting TAPIR

	Performance Evaluation
	Redis Performance
	TAPIR Performance
	Optimization Microbenchmarks

	Related Work
	Conclusion

	osdi20-neal
	Introduction
	Background and Challenges
	Persistent Memory Programming
	Challenges of Detecting PM Bugs

	PM Bug Study and Classification
	Missing Flush/Fence Pattern
	Extra Flush/Fence Pattern
	Other Bugs
	Summary and Insights

	Design
	PM Model and PM State Tracking
	Persistency Bug Oracles
	Universal Persistency Bug Oracles
	Custom Bug Oracles

	PM-Aware Search Algorithm
	Whole-Program Static Priority Computation
	State Exploration Strategy

	Implementation
	Evaluation
	Overview
	Agamotto Reporting
	Performance Analysis
	Case Study: PM Performance Bugs

	Related Work
	Conclusion
	Acknowledgements
	Artifact Appendix
	Abstract
	Artifact check-list
	Description
	How to access

	Installation
	Evaluation and expected result
	Notes

	osdi20-roth
	Introduction
	Overview
	Differential privacy
	Alternative approaches
	Honeycrisp
	Approach and roadmap

	Query language
	Running example: k-means
	Language features
	Alternative languages

	Query transformation
	Program zones
	The bmcs operator
	Extracting dependencies
	Transformation to bmcs form
	Optimizations
	Limitations

	Query execution
	Overall workflow
	Security: Aggregator
	Security: Malicious clients
	Handling churn

	Implementation
	Evaluation
	Coverage
	Optimizations
	Robustness to malicious users
	Experimental setup
	Cost for normal participants
	Cost for the committee
	Cost for the aggregator

	Related work
	Conclusion

	osdi20-zhao_zhipeng
	Introduction
	Background & Motivation
	IDS/IPS Functionality
	FPGA Basics
	FPGAs and IDS/IPS Performance

	System Overview
	An FPGA-First Design
	Pigasus Datapath
	Memory Resource Management
	Threat Model

	Reassembly
	Design Space for TCP Reassembly
	Pigasus TCP Reassembler
	Implementing the Flow Table
	Worst-Case Performance

	Multi-String Pattern Matching
	MSPM in Software
	MSPM in Pigasus

	Evaluation
	Setup
	End-to-end performance and costs
	Microbenchmarks and sensitivity analysis
	Future outlook

	Related Work
	Conclusions
	Artifact Appendix
	Abstract
	Artifact check-list
	Description
	Installation
	Evaluation and expected result
	Experiment customization
	Artifact Evaluation Methodology

	osdi20-dauterman_dory
	Introduction
	Summary of techniques

	Finding DORY: identifying a system model
	System requirements
	Distributed trust requirements
	Opportunities
	Building a distributed trust system
	Future directions

	System design overview
	The underlying filesystem
	The DORY API
	System architecture
	Threat model and security properties

	Search design
	A strawman search index
	Eliminating search access patterns
	Protecting against malicious attackers
	Supporting dynamic membership
	Generalizing to oblivious filesystems

	Replication across trust domains
	Algorithm
	Batching

	Implementation
	Parallelism
	Fast PRF evaluation

	Evaluation
	Baselines
	Latency
	Throughput
	Storage
	Bandwidth
	Cost

	Related Work
	Conclusion
	Artifact Appendix
	Abstract
	Artifact check-list
	Description
	How to access
	Software dependencies
	Data sets

	Installation
	Experiment workflow
	Evaluation and expected result
	Experiment customization
	Notes
	AE Methodology

	osdi20-dauterman_safetypin
	1 Introduction
	2 The setting
	3 System goals
	4 Architecture overview
	4.1 The back-up process
	4.2 The recovery process

	5 Protecting the mapping of users to HSMs with location-hiding encryption
	6 The distributed log
	6.1 Underlying data structure
	6.2 Building a distributed log
	6.3 Transparency and external auditability

	7 Forward security by puncturable encryption
	7.1 Background: Puncturable encryption
	7.2 Outsourced storage with secure deletion
	7.3 Our secure outsourced storage scheme

	8 Extensions and deployment considerations
	9 Implementation and evaluation
	9.1 Microbenchmarks
	9.2 End-to-end costs

	10 Related work
	11 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list
	A.3 Description
	A.3.1 How to access
	A.3.2 Hardware dependencies
	A.3.3 Software dependencies

	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization
	A.8 Notes
	A.9 AE Methodology

	osdi20-behrens
	Introduction
	Motivation
	Goal and threat model
	Approach: Unmapped speculation contract
	Design
	Overview
	World switch
	Mitigations
	Kernel text
	Memory management
	Process management
	File system
	Pipes
	Discussion

	Implementation
	Evaluation
	Experimental methodology
	Ward's USC-based fast mitigations
	World switch
	Ward memory overhead
	Security

	Discussion
	Related work
	Conclusion

	osdi20-levy
	Introduction
	Background and Motivation
	Target System and Goal
	Are Failures Predictable?
	Why Reacting on Predicted Failure?
	Why Static Mitigation Is Insufficient?

	Overview
	Narya Workflow
	Key Optimization Metric
	Challenges

	Predicting Node Failures
	Input Signals
	Rule-based Prediction
	Learning-based Prediction

	Mitigation Actions
	Decision Logic for Adaptive Mitigation
	Online Experimentation with A/B testing
	Bandit Modeling
	Extension to Bandits
	Safe Guards

	Narya System Design and Implementation
	Failure Predictor
	Mitigation Engine
	Learner

	Evaluation
	VM Interruption Savings
	Savings Trend Over Time
	Accuracy and Timeliness of Prediction
	Comparing AB Testing and Bandit
	Convergence to Optimal Action
	Case Studies
	Reward Collection Schemes
	Safe Guards
	Scale and Performance

	Discussion and Limitations
	Related Work
	Conclusion

	osdi20-li_yuliang
	Introduction
	Need for Tight Time-uncertainty Bound
	Failures in Clock Synchronization System
	Background on Clock Synchronization
	Impact of Failures on
	Failures that Induce Large Frequency Variations
	Connectivity Failures
	Broken Clocks and Message Corruption

	Sundial Design and Implementation
	Sundial Hardware Design
	Frequent Synchronous Messaging
	Fast Failure Detection
	Time-uncertainty Bound Calculation

	Sundial Software Design
	Centralized Controller
	Failure Handler in the Device Software

	Implementation
	Practical Considerations
	Sundial's Position in the Design Space
	Design Space of Clock Synchronization
	Sundial's Design Choices

	Application Access to Synchronized Clocks
	Evaluation
	Time-uncertainty Bound () in Testbed
	Methodology
	 Distribution without Failures
	 Distribution during Failures
	Microbenchmarks

	Large-scale Simulations
	Application Performance Improvement

	Related Work
	Conclusion
	Acknowledgements

	osdi20-zhang_haoran
	1 Introduction
	2 Background and Goals
	2.1 Serverless functions
	2.2 Requirements and assumptions

	3 Design Overview
	3.1 Initial inspiration: Olive
	3.2 Beldi's API
	3.3 Beldi's runtime infrastructure

	4 Executing and Logging Operations in Beldi
	4.1 Linked DAAL
	4.2 Read
	4.3 Write
	4.4 Conditional write
	4.5 Invocation of SSFs and local functions

	5 Garbage Collection
	6 Supporting Locks and Transactions
	6.1 Locks
	6.2 Transactions

	7 Evaluation
	7.1 Implementation
	7.2 Experimental setup
	7.3 What are the costs of Beldi’s primitives?
	7.4 How does Beldi perform on our applications?
	7.5 What is the effect of garbage collection?

	8 Discussion
	9 Related Work
	10 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list
	A.3 Description
	A.3.1 How to access

	A.4 Installation
	A.4.1 Set up docker container
	A.4.2 Set AWS Credentials

	A.5 Evaluation and expected result
	A.5.1 Primitives (Figure xs _toksmatch = *__futurtok fig:13??)
	A.5.2 Garbage Collection (Figure xs _toksmatch = *__futurtok fig:10??)
	A.5.3 Movie review service (Figure xs _toksmatch = *__futurtok fig:14??)
	A.5.4 Travel Reservation (Figure xs _toksmatch = *__futurtok fig:15??)

	osdi20-chung
	Introduction
	Hidden inter-job dependencies in Cosmos
	Cosmos
	Inter-job dependencies
	Observations on inter-job dependencies

	Inter-job dependency predictability
	Prediction model
	Predictability evaluation

	The Wing dependency profiler
	
	
	
	
	
	
	
	

	
	
	Simulation setup
	
	

	
	Benefits of Wing guidance
	Sensitivity and ablation studies
	Cluster-wide queue and value metrics

	Related work
	Conclusion

	osdi20-zhu
	Introduction
	Design Decisions
	RackSched Design
	System Architecture
	Request Processing
	Request Scheduling
	Request Affinity
	Server Tracking
	Handling Scheduling Requirements

	Evaluation
	Methodology
	Synthetic Workloads
	Scalability
	Application: RocksDB
	Comparison with Other Solutions
	Analysis of RackSched
	Request Affinity

	Discussion
	Related Work
	Conclusion

	osdi20-li_shaohong
	Introduction
	Background
	Terminology
	Architecture and Implementation
	Primary subsystem: reactive capping
	Node-level mechanism: CPU bandwidth control
	Control policy: load shaping

	Failover subsystem: proactive capping
	Node-level mechanism: CPU jailing
	Control policy: risk assessment of power signal unavailability

	Evaluation Results at the Node Level
	Evaluation Results at Data Center Scale
	Load shaping in typical scenarios
	Load shaping pushed to the limit
	CPU jailing

	Deployment at Scale and Benefits
	Challenges and Future Work
	Related Work
	Summary

	Blank Page
	Blank Page

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /All
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeGothicStd-Bold
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

