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Message from the  
OSDI ’18 Program Co-Chairs

Dear colleagues,

Welcome to the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’18), held in 
Carlsbad, CA, USA!  This year’s technical program matches OSDI ’16 in including 47 exceptionally strong papers; 
these papers represent the many strengths of our community and cover a wide range of topics, including file and 
storage systems, networking, scheduling, security, formal verification of systems, graph processing, system support 
for machine learning, programming languages, fault-tolerance and reliability, debugging, and, of course, operating 
systems design and implementation.

OSDI ’18 received 257 paper submissions, which the program committee reviewed in multiple rounds. Our program 
committee consisted of 49 reviewers with a mixture of academic and industrial research and practical experience. 
The PC was divided into 24 “light” and 25 “heavy” members. All papers received three reviews in the first round; 
based on those reviews, 122 papers were selected to proceed to the second round. Second round papers received a 
minimum of two additional reviews from heavy PC members. For a small number of papers, where opinions were 
divided or where a paper was particularly specialized, we solicited additional expert reviews. In total, the PC and 
external reviewers wrote over 2^10 reviews.

As in previous OSDI review cycles, this year’s process included a response period in which authors could answer 
reviewer questions and address factual errors in the initial reviews. Authors of 191 papers submitted a response. 
Responses had a measurable impact on both our online and in-person discussions, and the author responses and 
ensuing online discussion influenced some PC members to adjust their reviews and reconsider their ratings. Overall, 
we believe author responses helped improve the quality of the selected program. 

After more than a week of online discussion across the full PC, we picked 83 papers for the heavy PC members to 
discuss at a 1.5-day PC meeting held at the University of Wisconsin in Madison, WI, USA. Almost all heavy PC 
members were able to attend in person, with just one person calling in remotely. As PC chairs, we strove to ensure 
that all the discussed papers received full and fair consideration, coming to a consensus agreement in most cases. 
Papers were placed into high-level categories according to their main topic so that similar papers could be discussed 
together at the PC meeting. All discussed papers received a summary of the PC discussion written by a heavy PC 
member. In the end, the PC selected 47 papers for presentation at the conference, resulting in an 18% acceptance 
rate. Each of the accepted papers was allocated an additional two pages and shepherded by a member of the heavy 
PC to help the authors address the reviewers’ comments in their camera-ready versions.

After finalizing the program, we created a separate committee to decide the Jay Lepreau Best Paper Awards com-
posed of PC members with no conflicts with the papers under consideration. PC members could nominate papers for 
these awards in their reviews or directly to us. We selected six papers with at least two votes for best paper as can-
didates for the award. After reading the nominated papers and considering the reviews from the full PC, the awards 
committee agreed on three Jay Lepreau Best Paper Awards. 

As PC co-chairs, we stand on the shoulders of so many who did a tremendous amount of hard work to make OSDI ’18 
a success. First, we thank the authors of all submitted papers for choosing to send their work to OSDI. Thanks also 
to the program committee for their hard work in reviewing and discussing the submissions and in shepherding the 
accepted papers. We particularly thank Yiying Zhang and Vijay Chidambaram for organizing an extensive poster 
session of more than 83 posters to be presented across two evenings. We are also grateful to the external  reviewers 
who provided additional perspectives. We thank the USENIX staff, who have been fundamental in organizing 
OSDI ’18. Finally, OSDI wouldn’t be what it is without our attendees—thank you for listening to our speakers, 
 asking challenging and insightful questions, sharing your ideas with others, and networking with one another in 
the hallways! 

We hope you will find OSDI ’18 interesting, educational, and inspiring!

Andrea Arpaci-Dusseau, University of Wisconsin-Madison 
Geoff Voelker, University of California, San Diego 
OSDI ’18 Program Co-Chairs



OSDI ’18: 
13th USENIX Symposium on 

Operating Systems Design and Implementation

October 8–10, 2018 
Carlsbad, CA, USA

Understanding Failures
Capturing and Enhancing In Situ System Observability for Failure Detection  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1
Peng Huang, Johns Hopkins University; Chuanxiong Guo, ByteDance Inc.; Jacob R. Lorch and Lidong Zhou, 
Microsoft Research; Yingnong Dang, Microsoft

REPT: Reverse Debugging of Failures in Deployed Software  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .17
Weidong Cui and Xinyang Ge, Microsoft Research Redmond; Baris Kasikci, University of Michigan; 
Ben Niu, Microsoft Research Redmond; Upamanyu Sharma, University of Michigan; Ruoyu Wang, Arizona 
State University; Insu Yun, Georgia Institute of Technology

Finding Crash-Consistency Bugs with Bounded Black-Box Crash Testing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .33
Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, and Pandian Raju, University of Texas at Austin; 
Vijay Chidambaram, University of Texas at Austin and VMware Research

An Analysis of Network-Partitioning Failures in Cloud Systems   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .51
Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer Al-Kiswany, University of Waterloo

Operating Systems
LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .69
Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang, Purdue University

The benefits and costs of writing a POSIX kernel in a high-level language  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .89
Cody Cutler, M. Frans Kaashoek, and Robert T. Morris, MIT CSAIL

Sharing, Protection, and Compatibility for Reconfigurable Fabric with AmorphoS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .107
Ahmed Khawaja, Joshua Landgraf, and Rohith Prakash, UT Austin; Michael Wei and Eric Schkufza, VMware 
Research Group; Christopher J. Rossbach, UT Austin and VMware Research Group

Adaptive Dynamic Checkpointing for Safe Efficient Intermittent Computing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .129
Kiwan Maeng and Brandon Lucia, Carnegie Mellon University

Scheduling
Arachne: Core-Aware Thread Management  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .145
Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout, Stanford University

Principled Schedulability Analysis for Distributed Storage Systems using Thread Architecture Models  .  .  . 161
Suli Yang, Ant Financial Services Group; Jing Liu, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, 
UW-Madison

µTune: Auto-Tuned Threading for OLDI Microservices  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .177
Akshitha Sriraman and Thomas F. Wenisch, University of Michigan

RobinHood: Tail Latency Aware Caching – Dynamic Reallocation from Cache-Rich to Cache-Poor  .  .  .  .  .  .195
Daniel S. Berger and Benjamin Berg, Carnegie Mellon University; Timothy Zhu, Pennsylvania State University; 
Siddhartha Sen, Microsoft Research; Mor Harchol-Balter, Carnegie Mellon University

(continued on next page)



(continued on next page)

Data
Noria: dynamic, partially-stateful data-flow for high-performance web applications   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .213
Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, and Lara Timbó Araújo, MIT CSAIL; Martin Ek, 
Norwegian University of Science and Technology; Eddie Kohler, Harvard University; M. Frans Kaashoek and 
Robert Morris, MIT CSAIL

Deconstructing RDMA-enabled Distributed Transactions: Hybrid is Better!  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .233
Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen, Shanghai Jiao Tong University

Dynamic Query Re-Planning using QOOP  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .253
Kshiteej Mahajan, UW-Madison; Mosharaf Chowdhury, U. Michigan; Aditya Akella and Shuchi Chawla, 
UW-Madison

Focus: Querying Large Video Datasets with Low Latency and Low Cost  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .269
Kevin Hsieh, Carnegie Mellon University; Ganesh Ananthanarayanan and Peter Bodik, Microsoft; Shivaram 
Venkataraman, Microsoft / UW-Madison; Paramvir Bahl and Matthai Philipose, Microsoft; Phillip B. Gibbons, 
Carnegie Mellon University; Onur Mutlu, ETH Zurich

Verification
Nickel: A Framework for Design and Verification of Information Flow Control Systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .287
Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James Bornholt, Emina Torlak, and Xi Wang, 
University of Washington

Verifying concurrent software using movers in CSpeC   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .307
Tej Chajed and Frans Kaashoek, MIT CSAIL; Butler Lampson, Microsoft; Nickolai Zeldovich, MIT CSAIL

Proving confidentiality in a file system using DiSkSeC  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .323
Atalay Ileri, Tej Chajed, Adam Chlipala, Frans Kaashoek, and Nickolai Zeldovich, MIT CSAIL

Proving the correct execution of concurrent services in zero-knowledge  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .339
Srinath Setty, Microsoft Research; Sebastian Angel, University of Pennsylvania; Trinabh Gupta, Microsoft 
Research and UCSB; Jonathan Lee, Microsoft Research

Reliability
The FuzzyLog: A Partially Ordered Shared Log   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .357
Joshua Lockerman, Yale University; Jose M. Faleiro, UC Berkeley; Juno Kim, UC San Diego; Soham Sankaran, 
Cornell University; Daniel J Abadi, University of Maryland, College Park; James Aspnes, Yale University; 
Siddhartha Sen, Microsoft Research; Mahesh Balakrishnan, Yale University / Facebook

Maelstrom: Mitigating Datacenter-level Disasters by Draining Interdependent Traffic Safely and 
Efficiently  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .373
Kaushik Veeraraghavan, Justin Meza, Scott Michelson, Sankaralingam Panneerselvam, Alex Gyori, David Chou, 
Sonia Margulis, Daniel Obenshain, Shruti Padmanabha, Ashish Shah, and Yee Jiun Song, Facebook; Tianyin Xu, 
Facebook and University of Illinois at Urbana-Champaign

Fault-Tolerance, Fast and Slow: Exploiting Failure Asynchrony in Distributed Systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .391
Ramnatthan Alagappan, Aishwarya Ganesan, Jing Liu, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau, University of Wisconsin - Madison

Taming Performance Variability   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .409
Aleksander Maricq and Dmitry Duplyakin, University of Utah; Ivo Jimenez and Carlos Maltzahn, University of 
California Santa Cruz; Ryan Stutsman and Robert Ricci, University of Utah



File Systems
Pocket: Elastic Ephemeral Storage for Serverless Analytics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .427
Ana Klimovic and Yawen Wang, Stanford University; Patrick Stuedi, Animesh Trivedi, and Jonas Pfefferle, IBM 
Research; Christos Kozyrakis, Stanford University

Sharding the Shards: Managing Datastore Locality at Scale with Akkio   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .445
Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas, Igor Zinkovsky, Luning Pan, Tony Savor, 
and David Nagle, Facebook; Michael Stumm, University of Toronto

Write-Optimized and High-Performance Hashing Index Scheme for Persistent Memory .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .461
Pengfei Zuo, Yu Hua, and Jie Wu, Huazhong University of Science and Technology

FlAShShAre: Punching Through Server Storage Stack from Kernel to Firmware for Ultra-Low 
Latency SSDs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .477
Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon Koh, and Changlim Lee, Yonsei University; Mohammad 
Alian, UIUC; Myoungjun Chun, Seoul National University; Mahmut Taylan Kandemir, Penn State University; 
Nam Sung Kim, UIUC; Jihong Kim, Seoul National University; Myoungsoo Jung, Yonsei University

Debugging
Orca: Differential Bug Localization in Large-Scale Services   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .493
Ranjita Bhagwan, Rahul Kumar, Chandra Sekhar Maddila, and Adithya Abraham Philip, Microsoft Research 
India

Differential Energy Profiling: Energy Optimization via Diffing Similar Apps  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .511
Abhilash Jindal and Y. Charlie Hu, Purdue University and Mobile Enerlytics, LLC

wPerf: Generic Off-CPU Analysis to Identify Bottleneck Waiting Events  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .527
Fang Zhou, Yifan Gan, Sixiang Ma, and Yang Wang, The Ohio State University

Sledgehammer: Cluster-Fueled Debugging  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .545
Andrew Quinn, Jason Flinn, and Michael Cafarella, University of Michigan

Machine Learning
Ray: A Distributed Framework for Emerging AI Applications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .561
Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Elibol, 
Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica, UC Berkeley

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .579
Tianqi Chen and Thierry Moreau, University of Washington; Ziheng Jiang, University of Washington, AWS; 
Lianmin Zheng, Shanghai Jiao Tong University; Eddie Yan, Haichen Shen, and Meghan Cowan, University 
of Washington; Leyuan Wang, UC Davis, AWS; Yuwei Hu, Cornell; Luis Ceze, Carlos Guestrin, and Arvind 
Krishnamurthy, University of Washington

Gandiva: Introspective Cluster Scheduling for Deep Learning  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .595
Wencong Xiao, Beihang University & Microsoft Research; Romil Bhardwaj, Ramachandran Ramjee, Muthian 
Sivathanu, and Nipun Kwatra, Microsoft Research; Zhenhua Han, The University of Hong Kong & Microsoft 
Research; Pratyush Patel, Microsoft Research; Xuan Peng, Huazhong University of Science and Technology 
& Microsoft Research; Hanyu Zhao, Peking University & Microsoft Research; Quanlu Zhang, Fan Yang, and 
Lidong Zhou, Microsoft Research

Pretzel: Opening the Black Box of Machine Learning Prediction Serving Systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .611
Yunseong Lee, Seoul National University; Alberto Scolari, Politecnico di Milano; Byung-Gon Chun, Seoul 
National University; Marco Domenico Santambrogio, Politecnico di Milano; Markus Weimer and Matteo 
Interlandi, Microsoft

(continued on next page)



Networking
Splinter: Bare-Metal Extensions for Multi-Tenant Low-Latency Storage  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .627
Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian Zhang, Robert Ricci, and Ryan Stutsman, University 
of Utah

Neural Adaptive Content-aware Internet Video Delivery  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .645
Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, and Dongsu Han, KAIST

Floem: A Programming System for NIC-Accelerated Network Applications   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .663
Phitchaya Mangpo Phothilimthana, University of California, Berkeley; Ming Liu and Antoine Kaufmann, 
University of Washington; Simon Peter, The University of Texas at Austin; Rastislav Bodik and Thomas 
Anderson, University of Washington

Security
Graviton: Trusted Execution Environments on GPUs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .681
Stavros Volos and Kapil Vaswani, Microsoft Research; Rodrigo Bruno, INESC-ID / IST, University of Lisbon

ZebRAM: Comprehensive and Compatible Software Protection Against Rowhammer Attacks   .  .  .  .  .  .  .  .  .  .697
Radhesh Krishnan Konoth, Vrije Universiteit Amsterdam; Marco Oliverio, University of Calabria/Vrije 
Universiteit Amsterdam; Andrei Tatar, Dennis Andriesse, Herbert Bos, Cristiano Giuffrida, and Kaveh Razavi, 
Vrije Universiteit Amsterdam

Karaoke: Distributed Private Messaging Immune to Passive Traffic Analysis  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .711
David Lazar, Yossi Gilad, and Nickolai Zeldovich, MIT CSAIL

Obladi: Oblivious Serializable Transactions in the Cloud  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .727
Natacha Crooks, The University of Texas at Austin; Matthew Burke, Ethan Cecchetti, Sitar Harel, Rachit 
Agarwal, and Lorenzo Alvisi, Cornell University

Graphs and Data
ASAP: Fast, Approximate Graph Pattern Mining at Scale  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .745
Anand Padmanabha Iyer, UC Berkeley; Zaoxing Liu and Xin Jin, Johns Hopkins University; Shivaram 
Venkataraman, Microsoft Research / University of Wisconsin; Vladimir Braverman, Johns Hopkins University; 
Ion Stoica, UC Berkeley

RStream: Marrying Relational Algebra with Streaming for Efficient Graph Mining on A Single 
Machine  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .763
Kai Wang, UCLA; Zhiqiang Zuo, Nanjing University; John Thorpe, UCLA; Tien Quang Nguyen, Facebook; 
Guoqing Harry Xu, UCLA

Three steps is all you need: fast, accurate, automatic scaling decisions for distributed streaming 
dataflows   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .783
Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, and Desislava Dimitrova, ETH Zurich; Matthew Forshaw, 
Newcastle University; Timothy Roscoe, ETH Zurich

Flare: Optimizing Apache Spark with Native Compilation for Scale-Up Architectures and Medium-Size 
Data   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .799
Gregory Essertel, Ruby Tahboub, and James Decker, Purdue University; Kevin Brown and Kunle Olukotun, 
Stanford University; Tiark Rompf, Purdue University



Capturing and Enhancing In Situ System Observability

for Failure Detection

Peng Huang

Johns Hopkins University

Chuanxiong Guo

ByteDance Inc.

Jacob R. Lorch Lidong Zhou

Microsoft Research

Yingnong Dang

Microsoft

Abstract
Real-world distributed systems suffer unavailability due

to various types of failure. But, despite enormous effort,

many failures, especially gray failures, still escape de-

tection. In this paper, we argue that the missing piece

in failure detection is detecting what the requesters of a

failing component see. This insight leads us to the design

and implementation of Panorama, a system designed to

enhance system observability by taking advantage of the

interactions between a system’s components. By pro-

viding a systematic channel and analysis tool, Panorama

turns a component into a logical observer so that it not

only handles errors, but also reports them. Furthermore,

Panorama incorporates techniques for making such ob-

servations even when indirection exists between compo-

nents. Panorama can easily integrate with popular dis-

tributed systems and detect all 15 real-world gray fail-

ures that we reproduced in less than 7 s, whereas existing

approaches detect only one of them in under 300 s.

1 Introduction

Modern cloud systems frequently involve numerous

components and massive complexity, so failures are

common in production environments [17, 18, 22]. De-

tecting failures reliably and rapidly is thus critical to

achieving high availability. While the problem of fail-

ure detection has been extensively studied [8, 13, 14, 20,

24, 29, 33, 34, 47], it remains challenging for practition-

ers. Indeed, system complexity often makes it hard to

answer the core question of what constitutes a failure.

A simple answer, as used by most existing detection

mechanisms, is to define failure as complete stoppage

(crash failure). But, failures in production systems can

be obscure and complex, in part because many sim-

ple failures can be eliminated through testing [49] or

gradual roll-out. A component in production may ex-

perience gray failure [30], a failure whose manifesta-

tion is subtle and difficult to detect. For example, a

critical thread of a process might get stuck while its

other threads including a failure detector keep running.

Or, a component might experience limplock [19], ran-

dom packet loss [26], fail-slow hardware [11, 25], silent

hanging, or state corruption. Such complex failures are

the culprits of many real-world production service out-

ages [1, 3, 4, 6, 10, 23, 30, 36, 38].

As an example, ZooKeeper [31] is a widely-used sys-

tem that provides highly reliable distributed coordina-

tion. The system is designed to tolerate leader or fol-

lower crashes. Nevertheless, in one production deploy-

ment [39], an entire cluster went into a near-freeze status

(i.e., clients were unable to write data) even though the

leader was still actively exchanging heartbeat messages

with its followers. That incident was triggered by a tran-

sient network issue in the leader and a software defect

that performs blocking I/Os in a critical section.

Therefore, practitioners suggest that failure detection

should evolve to monitor multi-dimensional signals of a

system, aka vital signs [30, 37, 44]. But, defining signals

that represent the health of a system can be tricky. They

can be incomplete or too excessive to reason about. Set-

ting accurate thresholds for these signals is also an art.

They may be too low to prevent overreacting to benign

faults, or too high to reliably detect failures. For exam-

ple, an impactful service outage in AWS was due to a la-

tent memory leak, which caused the system to get stuck

when serving requests and eventually led to a cascading

outage [10]. Interestingly, there was a monitor for system

memory consumption, but it triggered no alarm because

of “the difficulty in setting accurate alarms for a dynamic

system” [10]. These monitoring challenges are further

aggravated in a multi-tenant environment where both the

system and workloads are constantly changing [44].

In this paper, we advocate detecting complex produc-

tion failures by enhancing observability (a measure of

how well components’ internal states can be inferred

from their external interactions [32]). While defining the

absolute health or failure of a system in isolation is tricky,
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void syncWithLeader(long newLeaderZxid) {

QuorumPacket qp = new QuorumPacket();

readPacket(qp);

try {

if (qp.getType() == Leader.SNAP) {

deserializeSnapshot(leaderIs);

String sig = leaderIs.read("signature");

if (!sig.equals("BenWasHere"))

throw new IOException("Bad signature");

} else {

LOG.error("Unexpected leader packet.");

System.exit(13);

}

} catch (IOException e) {

LOG.warn("Exception sync with leader", e);

sock.close();

}

}

Listing 1: A follower requesting a snapshot from the leader

tries to handle or log errors but it does not report errors.

modern distributed systems consist of many highly inter-

active components across layers. So, when a component

becomes unhealthy, the issue is likely observable through

its effects on the execution of some, if not all, other com-

ponents. For example, in the previous ZooKeeper inci-

dent, even though the simple heartbeat detectors did not

detect the partial failure, the Cassandra process experi-

enced many request time-outs that caused its own un-

served requests to rapidly accumulate. Followers that re-

quested snapshots from the leader also encountered ex-

ceptions and could not continue. Thus, errors encoun-

tered in the execution path of interactive components en-

hance the observability of complex failures.

Even though an interactive component (a requester)

is well-placed to observe issues of another component

(a provider) when it experiences errors, such a requester

is often designed to handle that error but not report it

(e.g., Listing 1). For example, the requester may re-

lease a resource, retry a few times, reset its state, use

a cached result (i.e., be fail-static), or exit. This tendency

to prioritize error handling over error reporting is possi-

bly due to the modularity principle of “separation of con-

cern” [41, 42], which suggests that components should

hide as much information as they can and that failure de-

tection and recovery should be each component’s own

job. Even if a component has incentive to report, it may

not have a convenient systematic mechanism to do so. It

can write errors in its own logs to be collected and aggre-

gated by a central service, as is done in current practice.

The correlation, however, usually happens in an offline

troubleshooting phase, which is too late.

We present Panorama, a generic failure detection

framework that leverages and enhances system observ-

ability to detect complex production failures. It does so

by breaking detection boundaries and systematically ex-

tracting critical observations from diverse components.

Panorama provides unified abstractions and APIs to re-

port observations, and a distributed service to selectively

exchange observations. Also, importantly, Panorama

keeps the burden on developers low by automatically

inserting report-generation code based on offline static

analysis. In this way, Panorama automatically converts

every component into an observer of the components it

interacts with. This construction of in-situ observers dif-

ferentiates Panorama from traditional distributed crash

failure detection services [34, 47], which only measure

superficial failure indicators.

In applying Panorama to real-world system software,

we find some common design patterns that, if not treated

appropriately, can reduce observability and lead to mis-

leading observations. For example, if a requester submits

requests to a provider, but an indirection layer temporar-

ily buffers the request, the request may appear successful

even though the provider has failed. This can cause the

requester to report positive evidence about the provider.

We study such common design patterns and character-

ize their impact on system observability (§4). Based on

this, we enhance Panorama to recognize these patterns

and avoid their effects on observability.

For failure detection, Panorama includes a decision

engine to reach a verdict on the status of each component

based on reported observations. Because these reports

come from errors and successes in the execution paths

of requester components instead of artificial, non-service

signals, our experience suggests that a simple decision

algorithm suffices to reliably detect complex failures.

We have implemented the Panorama system in Go and

the static analyzer on top of Soot [46] and AspectJ [2].

Our experiences show that Panorama is easy to integrate

with popular distributed systems including ZooKeeper,

Cassandra, HDFS, and HBase. Panorama significantly

outperforms existing failure detectors in that: (1) it de-

tects crash failures faster; (2) it detects 15 real-world

gray failures in less than 7 s each, whereas other detectors

only detect one in 86 s; (3) Panorama not only detects,

but also locates failures. Our experiments also show that

Panorama is resilient to transient failures and is stable

in normal operations. Finally, Panorama introduces only

minor overhead (less than 3%) to the systems we evalu-

ate it on.

2 Problem Statement

We consider failure detection in the context of a large dis-

tributed system S composed of several subsystems. Each

subsystem has multiple components. In total, S contains

n processes P1,P2, . . . ,Pn, each with one or more threads.

The whole system lies within a single administrative do-

main but the code for different system components may

be developed by different teams. For example, a stor-
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age system may consist of a front-end tier, a distributed

lock service, a caching middleware, a messaging service,

and a persistence layer. The latter subsystem include

metadata servers, structured table servers, and extent data

nodes. An extent data node may be multi-threaded, with

threads such as a data receiver, a data block scanner, a

block pool manager, and an IPC-socket watcher. We as-

sume the components trust each other, collectively pro-

viding services to external untrusted applications.

The main goal of failure detection is to correctly re-

port the status of each component; in this work the only

components we consider are processes and threads. Tra-

ditional failure detectors focus on crash failure, i.e., us-

ing only statuses UP and DOWN. We aim to detect not only

crash failure but also gray failure, in which components

experience degraded modes “between” UP and DOWN. The

quality of a failure detector is commonly characterized

by two properties: completeness, which requires that if

a component fails, a detector eventually suspects it; and

accuracy, which requires that a component is not sus-

pected by a detector before it fails. Quality is further

characterized by timeliness, i.e., how fast true failures are

detected. Failure detectors for production systems should

also have good localization, i.e., ease of pinpointing each

failure in a way that enables expedient corrective action.

3 Panorama System

3.1 Overview

At a high level, Panorama takes a collaborative approach:

It gathers observations about each component from dif-

ferent sources in real time to detect complex production

failures. Collaborative failure detection is not a new idea.

Many existing crash-failure detectors such as member-

ship services exchange detection results among multi-

ple components using protocols like gossip [47]. But,

the scope of where the detection is done is usually lim-

ited to component instances with similar functionality or

roles in a particular layer. Panorama pushes the detec-

tion scope to an extreme by allowing any thread in any

process to report evidence, regardless of its role, layer,

or subsystem. The resulting diverse sources of evidence

enhance the observability of complex failures.

More importantly, instead of writing separate monitor-

ing code that measures superficial signals, Panorama’s

philosophy is to leverage existing code that lies near the

boundaries between different components. Examples of

such code include when one thread calls another, and

when one process makes an RPC call to another. This

captures first-hand observations, especially runtime er-

rors that are generated from the executions of these code

regions in production. When Panorama reports a failure,

there is concrete evidence and context to help localize
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Figure 1: Overview of Panorama. Each Panorama instance runs

at the same endpoint with the monitored component.

where the failure happened.

Figure 1 shows an overview of Panorama. Panorama

is a generic detection service that can be plugged into

any component in a distributed system. It provides uni-

fied abstractions to represent observations about a com-

ponent’s status, and a library for reporting and query-

ing detection results. For scalability, we use a decentral-

ized architecture: for each Pi in a monitored system, a

co-located Panorama instance (a separate process) main-

tains a Local Observation Store (LOS) that stores all the

observations that are made either by or about Pi. A local

decision engine in the instance analyzes the observations

in that LOS and makes a judgment about the process’s

status. A central verdict server allows easy querying of,

and arbitration among, these decentralized LOSes.

The Panorama service depends on many logical ob-

servers within the running components in the monitored

system. Unlike traditional failure detectors, these logi-

cal observers are not dedicated threads running detection

checks. Rather, they are diverse hooks injected into the

code. These hooks use a thin library to collect and sub-

mit observations to the LOS via local RPC calls. They

are inserted offline by a tool that leverages static analy-

sis (§5). To achieve timeliness, the observations are re-

ported in real time as Pi executes. Panorama observers

collect evidence not only about the locally attached com-

ponent, but, more importantly, about other components

that the observer interacts with. However, if Pi never in-

teracts with Pj, Pi will not put observations about Pj into

its LOS. Panorama runs a dissemination protocol to ex-

change observations among a clique of LOSes that share

common interaction components.

3.2 Abstractions and APIs

To be usable by arbitrary distributed system components,

Panorama must provide a unified way to encapsulate ob-
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Component a process or thread

Subject a component to be monitored

Observer a component monitoring a subject

Status the health situation of a subject

Observation evidence an observer finds of a subject’s status

Context what an observer was doing when it made an

observation

Verdict a decision about a subject’s status, obtained by

summarizing a set of observations of it

Table 1: Abstractions and terms used in Panorama.

servations for reporting. We now describe our core ab-

stractions and terms, summarized in Table 1.

As discussed earlier, the only components we consider

are processes and threads. A component is an observer

if it makes observations and a subject if it is observed;

a component may be both an observer and a subject. A

status is a categorization of the health of a subject; it can

be only a small pre-determined set of values, including

HEALTHY, DEAD, and a few levels of UNHEALTHY. Another

possible value is PENDING, the meaning and use of which

we will discuss in §5.4.

When an observer sees evidence of a subject’s status,

that constitutes an observation. An observation contains

a timestamp of when the observation occurred, the iden-

tities of the observer and subject, and the inferred status

of the subject. It also contains a context describing what

the observer was doing when it made the observation, at a

sufficient granularity to allow Panorama to achieve fine-

grained localization of failures. For instance, the context

may include the method the observer was running, or the

method’s class; the API call the observer was making

to the subject; and/or the type of operation, e.g., short-

circuit read, snapshot, or row mutation. A verdict is a

summary, based on a decision algorithm, of a set of ob-

servations of the same subject.

Each Panorama instance provides an API based on the

above abstractions. It can be invoked by a local compo-

nent, by another Panorama instance, or by an administra-

tion tool. When a component decides to use Panorama,

it registers with the local Panorama instance and receives

a handle to use for reporting. It reports observations us-

ing a local RPC ReportObservation; when it is done re-

porting it unregisters. A Panorama instance can register

multiple local observers. If a component does not intend

to report observations but merely wants to query compo-

nent statuses, it need not register.

Each Panorama instance maintains a watch list: the set

of subjects for which it keeps track of observations. By

default, Panorama automatically updates this list to in-

clude the components that registered observers interact

with. But, each observer can explicitly select subjects

for this list using StartObserving and StopObserving. If

another observer in another Panorama instance makes an

observation about a subject in the watch list, that obser-

vation will be propagated to this instance with a remote

RPC LearnObservation. Panorama calls JudgeSubject

each time it collects a new observation, either locally or

via remote exchange.

3.3 Local Observation Store

Each Panorama instance maintains a Local Observation

Store (LOS) that stores all observation reports made by

colocated components. The subjects of these reports in-

clude both local and remote components.

The LOS consists of two main structures: the raw ob-

servation store and the verdict table. The LOS partitions

the raw observation store by subject into multiple tables

for efficient concurrent access. Each record in a subject’s

table corresponds to a single observer; it stores a list of

the n most recent observations of that subject made by

that observer. The LOS is kept in memory to enable effi-

cient access; asynchronously, its content is persisted to

local database to preserve the full observation history,

for facilitating troubleshooting later. The raw observa-

tion store is synchronized with that of other Panorama in-

stances that share common subjects. Therefore, an LOS

contains observations made both locally and remotely.

A local decision engine analyzes the raw observation

store to reach a verdict for each subject. This decision

result is stored in the verdict table, keyed by subject. The

verdict table is not synchronized among Panorama in-

stances because it does not have to be: the decision al-

gorithm is deterministic. In other words, given synchro-

nized raw observations, the verdict should be the same.

To enable convenient queries over the distributed ver-

dict tables to, e.g., arbitrate among inconsistent verdicts,

Panorama uses a central verdict server. Note, though,

that the central verdict server is not on any critical path.

Including old observations in decisions can cause mis-

leading verdicts. So, each observation has a Time-to-

Live parameter, and a background garbage collection

(GC) task runs periodically to retire old observations.

Whenever GC changes the observations of a subject, the

decision engine re-computes the subject’s verdict.

3.4 Observers

Panorama does not employ dedicated failure detectors.

Instead, it leverages code logic in existing distributed-

system components to turn them into in-situ logical ob-

servers. Each logical observer’s main task is still to pro-

vide its original functionality. As it executes, if it en-

counters an error related to another component, in addi-

tion to handling the error it will also report it as an ob-

servation to Panorama. There are two approaches to turn
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a component into a Panorama observer. One is to insert

Panorama API hooks into the component’s source code.

Another is to integrate with the component’s logs by con-

tinuously parsing and monitoring log entries related to

other components. The latter approach is transparent to

components but captures less accurate information. We

initially adopted the latter approach by adding plug-in

support in Panorama to manage log-parsing scripts. But,

as we applied Panorama to more systems, maintaining

these scripts became painful because their logging prac-

tices differed significantly. Much information is also un-

available in logs [50]. Thus, even though we still sup-

port logging integration, we mainly use the instrumen-

tation approach. To relieve developers of the burden of

inserting Panorama hooks, Panorama provides an offline

analysis tool that does the source-code instrumentation

automatically. §4 describes this offline analysis.

3.5 Observation Exchange

Observations submitted to the LOS by a local observer

only reflect a partial view of the subject. To reduce bias

in observations, Panorama runs a dissemination proto-

col to propagate observations to, and learn observations

from, other LOSes. Consequently, for each monitored

subject, the LOS stores observations from multiple ob-

servers. The observation exchange in Panorama is only

among cliques of LOSes that share a subject. To achieve

selective exchange, each LOS keeps a watch list, which

initially contains only the local observer. When a local

observer reports an observation to the LOS, the LOS will

add the observation’s subject to the watch list to indicate

that it is now interested in others’ observations about this

subject. Each LOS also keeps an ignore list for each sub-

ject, which lists LOSes to which it should not propagate

new observations about that subject. When a local ob-

servation for a new subject appears for the first time, the

LOS does a one-time broadcast. LOSes that are not inter-

ested in the observation (based on their own watch lists)

will instruct the broadcasting LOS to include them in its

ignore list. If an LOS later becomes interested in this

subject, the protocol ensures that the clique members re-

move this LOS from their ignore lists.

3.6 Judging Failure from Observations

With numerous observations collected about a subject,

Panorama uses a decision engine to reach a verdict and

stores the result in the LOS’s verdict table. A simple

decision policy is to use the latest observation as the ver-

dict. But, this can be problematic since a subject experi-

encing intermittent errors may be treated as healthy. An

alternative is to reach an unhealthy verdict if there is any

recent negative observation. This could cause one biased

observer, whose negative observation is due to its own

issue, to mislead others.

We use a bounded-look-back majority algorithm, as

follows. For a set of observations about a subject, we first

group the observations by the unique observer, and ana-

lyze each group separately. The observations in a group

are inspected from latest to earliest and aggregated based

on their associated contexts. For an observation being

inspected, if its status is different than the previously

recorded status for that context, the look-back of obser-

vations for that context stops after a few steps to favor

newer statuses. Afterwards, for each recorded context,

if either the latest status is unhealthy or the healthy sta-

tus does not have the strict majority, the verdict for that

context is unhealthy with an aggregated severity level.

In this way, we obtain an analysis summary for each

context in each group. To reach a final verdict for each

context across all groups, the summaries from different

observers are aggregated and decided based on a sim-

ple majority. Using group-based summaries allows in-

cremental update of the verdict and avoids being biased

by one observer or context in the aggregation. The de-

cision engine could use more complex algorithms, but

we find that our simple algorithm works well in practice.

This is because most observations collected by Panorama

constitute strong evidence rather than superficial signals.

The PENDING status (Section 4.3) needs additional han-

dling: during the look-back for a context, if the current

status is HEALTHY and the older status is PENDING, that

older PENDING status will be skipped because it was only

temporary. In other words, that partial observation is now

complete. Afterwards, a PENDING status with occurrences

exceeding a threshold is downgraded to UNHEALTHY.

4 Design Pattern and Observability

The effectiveness of Panorama depends on the hooks

in observers. We initially designed a straightforward

method to insert these hooks. In testing it on real-world

distributed systems, however, we found that component

interactions in practice can be complex. Certain interac-

tions, if not treated appropriately, will cause the extracted

observations to be misleading. In this section, we first

show a gray failure that our original method failed to de-

tect, and then investigate the reason behind the challenge.

4.1 A Failed Case

In one incident of a production ZooKeeper service, ap-

plications were experiencing many lock timeouts [23].

An engineer investigated the issue by checking metrics

in the monitoring system and found that the number of

connections per client had significantly increased. It ini-
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tially looked like a resource leak in the client library, but

the root cause turned out to be complicated.

The production environment used IPSec to secure

inter-host traffic, and a Linux kernel module used Intel

AES instructions to provide AES encryption for IPSec.

But this kernel module could occasionally introduce data

corruption with Xen paravirtualization, for reasons still

not known today. Typically the kernel validated packet

checksums and dropped corrupt packets. But, in IPSec,

two checksums exist: one for the IP payload, the other

for the encrypted TCP payload. For IPSec NAT-T mode,

the Linux kernel did not validate the TCP payload check-

sum, thereby permitting corrupt packets. These were de-

livered to the ZooKeeper leader, including a corrupted

length field for a string. When ZooKeeper used the

length to allocate memory to deserialize the string, it

raised an out-of-memory (OOM) exception.

Surprisingly, when this OOM exception happened,

ZooKeeper continued to run. Heartbeats were normal

and no leader re-election was triggered. When eval-

uating this incident in Panorama, no failure was re-

ported either. We studied the ZooKeeper source code

to understand why this happened. In ZooKeeper, a re-

quest is first picked up by the listener thread, which

then calls the ZooKeeperServer thread that further in-

vokes a chain of XXXRequestProcessor threads to pro-

cess the request. The OOM exception happens in the

PrepRequestProcessor thread, the first request proces-

sor. The ZooKeeperServer thread invokes the interface

of the PrepRequestProcessor as follows:

1 try {

2 firstProcessor.processRequest(si);

3 } catch (RequestProcessorException e) {

4 LOG.error("Unable to process request: " + e);

5 }

If the execution passes line 2, it provides positive ev-

idence that the PrepRequestProcessor thread is healthy.

If, instead, the execution reaches line 4, it represents neg-

ative evidence about PrepRequestProcessor. But with

the Panorama hooks inserted at both places, no negative

observations are reported. This is because the implemen-

tation of the processRequest API involves an indirec-

tion: it simply puts a request in a queue and immedi-

ately returns. Asynchronously, the thread polls and pro-

cesses the queue. Because of this design, even though

the OOM exception causes the PrepRequestProcessor

thread to exit its main loop, the ZooKeeperServer thread

is still able to call processRequest and is unable to tell

that PrepRequestProcessor has an issue. The hooks are

only observing the status of the indirection layer, i.e.,

the queue, rather than the PrepRequestProcessor thread.

Thus, negative observations only appear when the re-

quest queue cannot insert new items; but, by default, its

capacity is Integer.MAX_VALUE!

reply

request

C1 C2

request

reply

C1 C2
reply

request

C1 C2

reply

request

C1
C2

(a) (b) (c) (d)

Figure 2: Design patterns of component interactions and their

impact on failure observability. means that failure is ob-

servable to the other component, and means that failure is

unobservable to it.

4.2 Observability Patterns

Although the above case is a unique incident, we extrap-

olate a deeper implication for failure detection: certain

design patterns can undermine failure observability in a

system and thereby pose challenges for failure detection.

To reveal this connection, consider two components C1

and C2 where C1 makes requests of C2. We expect that,

through this interaction, C1 and C2 should be able to

make observations about each other’s status. However,

their style of interaction can have a significant effect on

this observability.

We have identified the following four basic patterns of

interaction (Figure 2), each having a different effect on

this observability. Interestingly, we find examples of all

four patterns in real-world system software.

(a) No indirection. Pattern (a) is the most straightfor-

ward. C1 makes a request to C2, then C2 optionally

replies to C1. This pattern has the best degree of ob-

servability: C1 can observe C2 from errors in its request

path; C2 can also observe C1 to some extent in its re-

ply path. Listing 1 shows an example of this pattern. In

this case, C1 is the follower and C2 is the leader. C1 first

contacts C2, then C2 sends C1 a snapshot or other infor-

mation through an input stream. Failures are observed

via errors or timeouts in the connection, I/O through the

input stream, and/or reply contents.

(b) Request indirection. A level of indirection exists in

the request path: when C1 makes a request to C2, an inter-

mediate layer (e.g., a proxy or a queue) takes the request

and replies to C1. C2 will later take the request from the

intermediate layer, process it, and optionally reply to C1

directly. This design pattern has a performance benefit

for both C1 and C2. It also provides decoupling between

their two threads. But, because of the indirection, C1 no

longer directly interacts with C2 so C2’s observability is

reduced. The immediate observation C1 makes when re-

questing from C2 does not reveal whether C2 is having

problems, since usually the request path succeeds as in

the case in §4.1.

(c) Reply indirection. Pattern (c) is not intuitive. C1

makes a request, which is directly handled by C2, but the

reply goes through a layer of indirection (e.g., a queue or

a proxy). Thus, C1 can observe issues in C2 but C1’s ob-
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servability to C2 is reduced. One scenario leading to this

pattern is when a component makes requests to multiple

components and needs to collect more than one of their

replies to proceed. In this case, replies are queued so that

they can be processed en masse when a sufficient number

are available. For example, in Cassandra, when a process

sends digest requests to multiple replicas, it must wait for

responses from R replicas. So, whenever it gets a reply

from a replica, it queues the reply for later processing.

(d) Full indirection. In pattern (d), neither component

directly interacts with the other so they get the least ob-

servability. This pattern has a performance benefit since

all operations are asynchronous. But, the code logic can

be complex. ZooKeeper contains an example: When a

follower forwards a request to a leader, the request is pro-

cessed asynchronously, and when the leader later notifies

the follower to commit the request, that notification gets

queued.

4.3 Implications

Pattern (a) has the best failure observability and is eas-

iest for Panorama to leverage. The other three patterns

are more challenging; placing observation hooks with-

out considering the effects of indirection can cause in-

completeness (though not inaccuracy) in failure detec-

tion (§2). That is, a positive observation will not nec-

essarily mean the monitored component is healthy but a

negative observation means the component is unhealthy.

Pragmatically, this would be an acceptable limitation if

the three indirection patterns were uncommon. However,

we checked the cross-thread interaction code in several

distributed systems and found, empirically, that patterns

(a) and (b) are both pervasive. We also found that differ-

ent software has different preferences, e.g., ZooKeeper

uses pattern (a) frequently, but Cassandra uses pattern

(b) more often.

This suggests Panorama should accommodate indirec-

tion in extracting observations. One solution is to instru-

ment hooks in the indirection layer. But, we find that in-

direction layers in practice are implemented with various

data structures and are often used for multiple purposes,

making tracking difficult. We use a simple but robust

solution and describe it in §5.4.

5 Observability Analysis

To systematically identify and extract useful observa-

tions from a component, Panorama provides an offline

tool that statically analyzes a program’s source code,

finds critical points, and injects hooks for reporting ob-

servations.

5.1 Locate Observation Boundary

Runtime errors are useful evidence of failure. Even if

an error is tolerated by a requester, it may still indi-

cate a critical issue in the provider. But, not all errors

should be reported. Panorama only extracts errors gen-

erated when crossing component boundaries, because

these constitute observations from the requester side. We

call such domain-crossing function invocations observa-

tion boundaries.

The first step of observability analysis is to locate

observation boundaries. There are two types of such

boundaries: inter-process and inter-thread. An inter-

process boundary typically manifests as a library API in-

vocation, a socket I/O call, or a remote procedure call

(RPC). Sometimes, it involves calling into custom code

that encapsulates one of those three to provide a higher-

level messaging service. In any case, with some domain

knowledge about the communication mechanisms used,

the analyzer can locate inter-process observation bound-

aries in source code. An inter-thread boundary is a call

crossing two threads within a process. The analyzer iden-

tifies such boundaries by finding custom public methods

in classes that extend the thread class.

5.2 Identify Observer and Observed

At each observation boundary, we must identify the ob-

server and subject. Both identities are specific to the dis-

tributed system being monitored. For thread-level obser-

vation boundaries, the thread identities are statically ana-

lyzable, e.g., the name of the thread or class that provides

the public interfaces. For process-level boundaries, the

observer identity is the process’s own identity in the dis-

tributed system, which is known when the process starts;

it only requires one-time registration with Panorama. We

can also usually identify the subject identity, if the re-

mote invocations use well-known methods, via either an

argument of the function invocation or a field in the class.

A challenge is that sometimes, due to nested polymor-

phism, the subject identity may be located deep down in

the type hierarchy. For example, it is not easy to deter-

mine if OutputStream.write() performs network I/O or

local disk I/O. We address this challenge by changing the

constructors of remote types (e.g., socket get I/O stream)

to return a compatible wrapper that extends the return

type with a subject field and can be differentiated from

other types at runtime by checking if that field is set.

5.3 Extract Observation

Once we have observation boundaries, the next step is to

search near them for observation points: program points

that can supply critical evidence about observed compo-

nents. A typical example of such an observation point is
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void deserialize(DataTree dt, InputArchive ia) 

{

  DataNode node = ia.readRecord("node");

  if (node.parent == null) {

    LOG.error("Missing parent.");

    throw new IOException("Invalid Datatree");

  }

  dt.add(node);

}

void snapshot() {

  ia = BinaryInputArchive.getArchive(

      sock.getInputStream());

  try {

    deserialize(getDataTree(), ia);

  } catch (IOException e) {

    sock.close();

  }

}

Ob-Point

Ob-Point

Ob-Boundary

data flow

control flow

Figure 3: Observation points in direct interaction (§4.2).

an exception handler invoked when an exception occurs

at an observation boundary.

To locate observation points that are exception han-

dlers, a straightforward approach is to first identify the

type of exceptions an observation boundary can generate,

then locate the catch clauses for these types in code re-

gions after the boundary. There are two challenges with

this approach. First, as shown in Figure 3, an exception

could be caught at the caller or caller’s caller. Recur-

sively walking up the call chain to locate the clause is

cumbersome and could be inaccurate. Second, the type

of exception thrown by the boundary could be a generic

exception such as IOException that could be generated

by other non-boundary code in the same try clause.

These two challenges can be addressed by inserting a try

just before the boundary and a catch right after it. This

works but, if the observation boundaries are frequent, the

excessive wrapping can cause non-trivial overhead.

The ideal place to instrument is the shared exception

handler for adjacent invocations. Our solution is to add

a special field in the base Throwable class to indicate the

subject identity and the context, and to ensure boundary-

generated exceptions set this field. Then, when an ex-

ception handler is triggered at runtime, we can check if

this field is set, and if so treat it as an observation point.

We achieve the field setting by wrapping the outermost

function body of each boundary method with a try and

catch, and by rethrowing the exception after the hook.

Note that this preserves the original program semantics.

Another type of observation point we look for is one

where the program handles a response received from

across a boundary. For example, the program may

raise an exception for a missing field or wrong signa-

ture in the returned DataNode in Figure 3, indicating

potential partial failure or corrupt state in the remote

process. To locate these observation points, our ana-

lyzer performs intra-procedural analysis to follow the

data flow of responses from a boundary. If an excep-

tion thrown is control-dependent on the response, we

consider it an observation point, and we insert code to

set the subject/context field before throwing the excep-

tion just as described earlier. This data-flow analysis is

conservative: e.g., the code if (a + b > 100) {throw

Exception("unexpected");}, where a comes from a

boundary but b does not, is not considered an observation

point because the exception could be due to b. In other

words, our analysis may miss some observation points

but will not locate wrong observation points.

So far, we have described negative observation points,

but we also need mechanisms to make positive obser-

vations. Ideally, each successful interaction across a

boundary is an observation point that can report positive

evidence. But, if these boundaries appear frequently, the

positive observation points can be excessive. So, we co-

alesce similar positive observation points that are located

close together.

For each observation point, the analyzer inserts hooks

to discover evidence and report it. At each negative

observation point, we get the subject identity and con-

text from the modified exception instance. We statically

choose the status; if the status is to be some level of

UNHEALTHY then we set this level based on the severity

of the exception handling. For example, if the exception

handler calls System.exit(), we set the status to a high

level of UNHEALTHY. At each positive observation point,

we get the context from the nearby boundary and also

statically choose the status. We immediately report each

observation to the Panorama library, but the library will

typically not report it synchronously. The library will

buffer excessive observations and send them in one ag-

gregate message later.

5.4 Handling Indirection

As we discussed in §4, observability can be reduced

when indirection exists at an observation boundary. For

instance, extracted observations may report the subject

as healthy while it is in fact unhealthy. The core issue is

that indirection splits a single interaction between com-

ponents among multiple observation boundaries. A suc-

cessful result at the first observation boundary may only

indicate partial success of the overall interaction; the in-

teraction may only truly complete later, when, e.g., a

callback is invoked, or a condition variable unblocks, or

a timeout occurs. We must ideally wait for an interaction

to complete before making an observation.

We call the two locations of a split interaction the ob-

origin and ob-sink, reflecting the order they’re encoun-

tered. Observations at the ob-origin represent positive

but temporary and weak evidence. For example, in Fig-

ure 4, the return from sendRR is an ob-origin. Where the
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public List<Row> fetchRows() {

  ReadCommand command = ...;

  sendRR(command.newMessage(), endPoint, handler);

  ...

  try {

    Row row = handler.get();

  }

  catch (ReadTimeoutException ex) {

    throw ex;

  }

  catch (DigestMismatchException ex) {

    logger.error("Digest mismatch: {}", ex);

  }

}

public void response(MessageIn message) {

  resolver.preprocess(message);

  condition.signal();

}

data flow control flow

Ob-Origin

Ob-Point

Ob-Sink

Ob-Point

Ob-Sink

Figure 4: Observation points when indirection exists (§4.2).

callback of handler, response, is invoked, it is an ob-

sink. In addition, when the program later blocks waiting

for the callback, e.g., handler.get, the successful return

is also an ob-sink. If an ob-origin is properly matched

with an ob-sink, the positive observation becomes com-

plete and strong. Otherwise, an outstanding ob-origin is

only a weak observation and may degrade to a negative

observation, e.g., when handler.get times out.

Tracking an interaction split across multiple program

locations is challenging given the variety of indirection

implementations. To properly place hooks when indirec-

tion exists, the Panorama analyzer needs to know what

methods are asynchronous and the mechanisms for no-

tification. For instance, a commonly used one is Java

FutureTask [40]. For custom methods, this knowledge

comes from specifications of the boundary-crossing in-

terfaces, which only requires moderate annotation. With

this knowledge, the analyzer considers an ob-origin to be

immediately after any call site of an asynchronous inter-

face. We next discuss how to locate ob-sinks.

We surveyed the source code of popular distributed

systems and found the majority of ob-sinks fall into four

patterns: (1) invoking a callback-setting method; (2) per-

forming a blocking wait on a callback method; (3) check-

ing a completion flag; and (4) reaching another obser-

vation boundary with a third component, in cases when

a request must be passed on further. For the first two

patterns, the analyzer considers the ob-sink to be before

and after the method invocation, respectively. For the

third pattern, the analyzer locates the spin-loop body and

considers the ob-sink to be immediately after the loop.

The last pattern resembles SEDA [48]: after A asyn-

chronously sends a request to B, B does not notify A of

the status after it finishes but rather passes on the request

to C. Therefore, for that observation boundary in B, the

analyzer needs to not only insert a hook for C but also

treat it as an ob-sink for the A-to-B interaction.

When our analyzer finds an ob-origin, it inserts a

hook that submits an observation with the special sta-

tus PENDING. This means that the observer currently only

sees weak positive evidence about the subject’s status,

but expects to receive stronger evidence shortly. At any

ob-sink indicating positive evidence, our analyzer inserts

a hook to report a HEALTHY observation. At any ob-sink

indicating negative evidence, the analyzer inserts a hook

to report a negative observation.

To link an ob-sink observation with its corresponding

ob-origin observation, these observations must share the

same subject and context. To ensure this, the analyzer

uses a similar technique as in exception tracking. It adds

a special field containing the subject identity and context

to the callback handler, and inserts code to set this field

at the ob-origin. If the callback is not instrumentable,

e.g., because it is an integer resource handle, then the an-

alyzer inserts a call to the Panorama library to associate

the handle with an identity and context.

Sometimes, the analyzer finds an ob-origin but cannot

find the corresponding ob-sink or cannot extract the sub-

ject identity or context. This can happen due to either

lack of knowledge or the developers having forgotten to

check for completion in the code. In such a case, the an-

alyzer will not instrument the ob-origin, to avoid making

misleading PENDING observations.

We find that ob-origin and ob-sink separation is useful

in detecting not only issues involving indirection but also

liveness issues. To see why, consider what happens when

A invokes a boundary-crossing blocking function of B,

and B gets stuck so the function never returns. When

this happens, even though A witnesses B’s problem, it

does not get a chance to report the issue because it never

reaches the observation point following the blocking call.

Inserting an ob-origin before the function call provides

evidence of the liveness issue: LOSes will see an old

PENDING observation with no subsequent corresponding

ob-sink observation. Thus, besides asynchronous inter-

faces, call sites of synchronous interfaces that may block

for long should also be included in the ob-origin set.

6 Implementation

We implemented the Panorama service in ∼ 6,000 lines

of Go code, and implemented the observability analyzer

(§5) using the Soot analysis framework [46] and the As-

pectJ instrumentation framework [2].

We defined Panorama’s interfaces using protocol

buffers [7]. We then used the gRPC framework [5] to

build the RPC service and to generate clients in different

languages. So, the system can be easily used by various

components written in different languages. Panorama

provides a thin library that wraps the gRPC client for
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Figure 5: Number of raw observations in two Panorama ob-

servers. Each data point represents one second.

efficient observation reporting; each process participat-

ing in observation reporting is linked with this library.

The thin library provides features such as asynchronous

reporting, buffering and aggregation of frequent obser-

vations, identity resolution, rate limiting, quick cancella-

tion of PENDING statuses, and mapping of ob-sink handles

(§5.4). So, most operations related to observation report-

ing do not directly trigger local RPC calls to Panorama;

this keeps performance impact low.

7 Evaluation

In this section, we evaluate our Panorama prototype to

answer several key questions: (1) Can observations be

systematically captured? (2) Can observation capturing

detect regular failures? (3) Can Panorama detect produc-

tion gray failures? (4) How do transient failures affect

Panorama? (5) How much overhead does an observer

incur by participating in the Panorama service?

7.1 Experiment Setup

We run our experiments in a cluster of 20 physical nodes.

Each machine has a 2.4 GHz 10-core Intel Xeon E5-

2640v4 CPU, 64 GB of RAM, and a 480 GB SATA SSD;

they all connect to a single 10 Gbps Ethernet switch.

They run Ubuntu 16.04 with Linux kernel version 4.4.0.

We evaluate Panorama with four widely-used distributed

systems: ZooKeeper, Hadoop, HBase, and Cassandra.

HBase uses HDFS for storing data and ZooKeeper for

coordination, so an HBase setup resembles a service with

multiple subsystems. We continuously exercise these

services with various benchmark workloads to represent

an active production environment.

7.2 Integration with Several Systems

Panorama provides a generic observation and failure de-

tection service. To evaluate its generality, we apply it to

ZooKeeper, HDFS, Hadoop, HBase, and Cassandra, at

ZooKeeper Cassandra HDFS HBase

Annotations 24 34 65 16

Analysis Time 4.2 6.8 9.9 7.5

Table 2: Annotations and analysis time (in seconds).

both process and thread level. The integration is success-

ful without significant effort or changes to the system de-

sign. Our simple abstractions and APIs (§3.2) naturally

support various types of failure evidence in each sys-

tem. For instance, we support semantic errors, such as

responses with missing signatures; generic errors, such

as remote I/O exceptions; and liveness issues, such as in-

definite blocking or custom time-outs. The integration is

enabled by the observability analyzer (§5). In applying

the analyzer to a system, we need annotations about what

boundary-crossing methods to start with, what methods

involve indirection, and what patterns it uses (§5.4). The

annotation effort to support this is moderate (Table 2).

HDFS requires the most annotation effort, which took

one author about 1.5 days to understand the HDFS source

code, identify the interfaces and write annotation speci-

fication. Fortunately, most of these boundary-crossing

methods remain stable over releases. When running the

observability analysis, Cassandra is more challenging to

analyze compared to the others since it frequently uses

indirection. On the other hand, its mechanisms are also

well-organized, which makes the analysis systematic.

The observability analysis is mainly intra-procedural and

can finish instrumentation within 10 seconds for each

of the four systems (Table 2). Figure 5 shows the ob-

servations collected from two instrumented processes in

ZooKeeper. The figure also shows that the observations

made change as the observer executes, and depend on the

process’s interaction patterns.

7.3 Detection of Crash Failures

Panorama aims to detect complex failures not limited to

fail-stop. As a sanity check on the effectiveness of its de-

tection capability, we first evaluate how well Panorama

detects fail-stop failures. To measure this, we inject vari-

ous fail-stop faults including process crashes, node shut-

downs, and network disconnections. Table 3 shows the

detection time for ten representative crash-failure cases:

failures injected into the ZooKeeper leader, ZooKeeper

follower, Cassandra data node, Cassandra seed node,

HDFS name node, HDFS data node, HBase master and

HBase regionserver. We see that with Panorama the ob-

servers take less than 10 s to detect all ten cases, and

indeed take less than 10 ms to detect all ZooKeeper

failures. The observers make the observations lead-

ing to these detections when, while interacting with the
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Figure 7: Timeline in detecting gray failure f1 from Table 4.

dence that clears the failure observation. During the fail-

ure period, no other baseline reports failure. Figure 7

also shows the view from a ZooKeeper client that we

run continuously throughout the experiment as a refer-

ence. We can see Panorama’s reporting closely matches

the experience of this client. Interestingly, since the gray

failure mainly impacts write requests but the client exe-

cutes a mixture of read and write requests, its view is not

very stable; nevertheless, Panorama consistently reports

a verdict of UNHEALTHY during the failure period.

7.5 Fault Localization

In addition to detecting the 15 production fail-

ures quickly, Panorama also pinpoints each failure

with detailed context and observer (§3.2) informa-

tion. This localization capability allows adminis-

trators to interpret the detection results with confi-

dence and take concrete actions. For example, in de-

tecting the crash failure in the ZooKeeper follower,

the verdict for the leader is based on observations

such as |peer@3,peer@5,peer@8| 2018-03-23T02:28:58.873

{Learner: U,RecvWorker: U,QuorumCnxManager: U}, which

identify the observer as well as the contexts Learner,

RecvWorker, and QuorumCnxManager. In detecting

gray failure f1, the negative observations of the

unhealthy leader are associated with three contexts

SerializeUtils, DataTree, and StatPersisted; this lo-

calizes the failure to the serialization thread in leader.

7.6 Transient Failure, Normal Operations

Because Panorama can gather observations from any

component in a system, there is a potential concern that
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Figure 8: Verdict during transient failures.
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Figure 9: Scalability of observation propagation latency. “uni-

cast”: propagate an observation to a single Panorama in-

stance; “multicast”: propagate an observation to all interested

Panorama instances.

noisy observations will lead to many false alarms. But,

empirically, we find that this does not happen. The

Panorama analyzer assigns the context of an observation

properly to avoid falsely aggregating observations made

in interacting with different functionalities of a complex

process. The simple decision algorithm in §3.6 is robust

enough to prevent a few biased observers or transient

failures from dominating the verdict. Figure 8 shows the

verdict for the ZooKeeper leader in an experiment. A

few followers report transient faults about the leader in

one context, so Panorama decides on a negative verdict.

But, within a few seconds, the verdict changes due to

positive observations and expiration of negative observa-

tions. Panorama then judges the leader as healthy for the

remainder of the experiment, which matches the truth.

We deploy Panorama with ZooKeeper and run for 25

hours, during which multiple ZooKeeper clients contin-

uously run various workloads non-stop to emulate nor-

mal operations in a production environment. In total,

Panorama generates 797,219 verdicts, with all but 705

(0.08%) of them being HEALTHY; this is a low false alarm

rate. In fact, all of the negative observations are made

in the first 22 seconds, during which the system is boot-

strapping and unstable. After the 22 seconds, no negative

observations are reported for the remaining 25 hours.

We also inject minor faults including overloaded com-

ponent, load spike and transient network partition that

are modeled after two production ZooKeeper and HDFS

traces. These minor faults do not affect the regular ser-

vice. We find Panorama overall is resilient to these

noises in reaching a verdict. For example, an overloaded

ZooKeeper follower made a series of misleading obser-
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Figure 10: Network bandwidth usage of the Panorama instance and its monitored component.

Report ReportAsync Judge Propagate

114.6 µs 0.36 µs 109.0 µs 776.3 µs

Table 5: Average latency of major operations in Panorama.

vations that the leader is UNHEALTHY. But these biased ob-

servations from a single observer did not result in a ver-

dict of UNHEALTHY status for the leader. When there were

many such overloaded followers, however, the leader

was falsely convicted as UNHEALTHY even though the ac-

tual issues were within the observers.

7.7 Performance

Table 5 shows microbenchmark results: how long four

major operations in Panorama take on average. Report-

ing an observation to Panorama only requires a local

RPC, so the average latency of reporting is fast (around

100 µs). And, the asynchronous API for reporting takes

even less time: on average less than 1 µs. Propagation

of an observation to another Panorama instance takes

around 800 µs. Figure 9 shows how the propagation la-

tency changes as the cluster size increases.

When a Panorama instance is active, the CPU utiliza-

tion attributable to it is on average 0.7%. For each mon-

itored subject, the number of observations kept in LOS

is bounded so the memory usage is close to a constant.

Thus, the total memory usage depends on the number of

monitored subjects. When we measure the ZooKeeper

deployment with Panorama, and find that the heap mem-

ory allocation stabilizes at ∼7 MB for a moderately ac-

tive instance, and at ∼46 MB for a highly active instance.

The network bandwidth usage of Panorama instance for

System
Latency Throughput

Read Write Read Write

ZK 69.5 µs 1435 µs 14402 op/s 697 op/s

ZK+ 70.6 µs 1475 µs 14181 op/s 678 op/s

C∗ 677 µs 680 µs 812 op/s 810 op/s

C∗+ 695 µs 689 µs 802 op/s 804 op/s

HDFS 51.0 s 61.0 s 423 MB/s 88 MB/s

HDFS+ 52.5 s 62.2 s 415 MB/s 86 MB/s

HBase 746 µs 1682 µs 1172 op/s 549 op/s

HBase+ 748 µs 1699 µs 1167 op/s 542 op/s

Table 6: Performance of the original system versus the perfor-

mance of the system instrumented with Panorama hooks (Sys-

tem+). ZK stands for ZooKeeper and C∗ stands for Cassandra.

The latency results for HDFS are total execution times.

exchanging observations is small compared to the band-

width usage of the monitored components (Figure 10).

We test the end-to-end request latency and through-

put impact of integrating with Panorama for HDFS,

ZooKeeper, HBase, and Cassandra, using YCSB [16],

DFSIO and a custom benchmark tool. Table 6 shows the

results. The latency increase and throughout decrease for

each system is below 3%. We achieve this low overhead

because the reporting API is fast and because most hooks

are in error-handling code, which is not triggered in nor-

mal operation. The positive-observation hooks lie in the

normal execution path, but their cost is reduced by coa-

lescing the hooks with the analyzer (§5.3) and batching

the reporting with the thin client library. Without this op-

timization, the performance overhead can be up to 18%.
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8 Discussion and Limitations

Panorama proposes a new way of building failure de-

tection service by constructing in-situ observers. The

evaluation results demonstrate the effectiveness of lever-

aging observability for detecting complex production

failures. The process of integrating Panorama with

real-world distributed systems also makes us realize

how the diverse programming paradigms affect sys-

tems observability. For example, HDFS has a method

createBlockOutputStream that takes a list of data nodes

as argument and creates a pipeline among them; if this

method fails, it indicates one of the data nodes in the pi-

pleline is problematic. From observability point of view,

if a negative evidence is observed through this method,

it is associated with multiple possible subjects. Fortu-

nately, an errorIndex variable is maintained internally

to indicate which data node causes the error, which can

be used to determine the exact subject. It is valuable to

investigate how to modularize a system and design its in-

terfaces to make it easier to capture failure observability.

There are several limitations of Panorama that we plan

to address in future work. First, Panorama currently fo-

cuses on failure detection. To improve end-to-end avail-

ability, we plan to integrate the detection results with fail-

ure recovery actions. Second, Panorama currently does

not track causality. Enhancing observations with causal-

ity information will be useful for correctly detecting and

pinpointing failing components in large-scale cascading

failures. Third, we plan to add support for languages

other than Java to the Panorama analyzer, and evaluate

it with a broader set of distributed systems.

9 Related Work

Failure Detection. There is an extensive body of work

on studying and improving failure detection for dis-

tributed systems [8, 13, 14, 20, 29, 47]. A recent promi-

nent work in this space is Falcon [34], in which the au-

thors argue that a perfect failure detector (PFD) can be

built [9] by replacing end-to-end timeouts with layers of

spies that can kill slow processes. Panorama is compli-

mentary to these efforts, which mainly focus on detect-

ing crash failures. Panorama’s goal is to detect complex

production failures [11, 25, 30]. In terms of approach,

Panorama is unique in enhancing system observability

by constructing in-situ observers in place of any com-

ponent’s code, instead of using dedicated detectors such

as spies or sensors that are outside components’ normal

execution paths.

Monitoring and Tracing. Improving monitoring and

tracing of production systems is also an active research

area. Examples include Magpie [12], X-Trace [21],

Dapper [45] and Pivot Tracing [35]. The pervasive

metrics collected by these systems enhance system ob-

servability, and their powerful tracing capabilities may

help Panorama better deal with the indirection chal-

lenge (§4). But they are massive and difficult to reason

about [15, 37, 44]. Panorama, in contrast, leverages er-

rors and exceptions generated from an observer’s normal

execution to report complex but serious failures.

Accountability. Accountability is useful for detect-

ing Byzantine component behavior in a distributed sys-

tem [28, 51]. PeerReview [27] provides accountabil-

ity by having other nodes collecting evidence about the

correctness of a node through their message exchanges.

Panorama’s approach is inspired by PeerReview in that

it also leverages evidence about other components in a

system. But Panorama mainly targets production gray

failures instead of Byzantine faults. Unlike PeerReview,

Panorama places observability hooks in the existing code

of a component and does not require a reference imple-

mentation or a special protocol.

10 Conclusion

We present Panorama, a system for detecting produc-

tion failures in distributed systems. The key insight en-

abling Panorama is that system observability can be en-

hanced by automatically turning each component into

an observer of the other components with which it in-

teracts. By leveraging these first-hand observations, a

simple detection algorithm can achieve high detection

accuracy. In building Panorama, we further discover

observability patterns and address the challenge of re-

duced observability due to indirection. We implement

Panorama and evaluate it, showing that it introduces min-

imal overhead to existing systems. Panorama can detect

and localize 15 real-world gray failures in less than 7 s,

whereas existing detectors only detect one of them in un-

der 300 s. The source code of Panorama system is avail-

able at https://github.com/ryanphuang/panorama.
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Abstract

Debugging software failures in deployed systems is im-
portant because they impact real users and customers.
However, debugging such failures is notoriously hard in
practice because developers have to rely on limited infor-
mation such as memory dumps. The execution history is
usually unavailable because high-fidelity program trac-
ing is not affordable in deployed systems.

In this paper, we present REPT, a practical system
that enables reverse debugging of software failures in
deployed systems. REPT reconstructs the execution his-
tory with high fidelity by combining online lightweight
hardware tracing of a program’s control flow with of-
fline binary analysis that recovers its data flow. It is
seemingly impossible to recover data values thousands
of instructions before the failure due to information loss
and concurrent execution. REPT tackles these challenges
by constructing a partial execution order based on time-
stamps logged by hardware and iteratively performing
forward and backward execution with error correction.

We design and implement REPT, deploy it on Mi-
crosoft Windows, and integrate it into WinDbg. We eval-
uate REPT on 16 real-world bugs and show that it can
recover data values accurately (92% on average) and ef-
ficiently (in less than 20 seconds) for these bugs. We
also show that it enables effective reverse debugging for
14 bugs.

1 Introduction

Software failures in deployed systems are unavoidable
and debugging such failures is crucial because they im-
pact real users and customers. It is well known that ex-
ecution logs are helpful for debugging [28], but nobody
wants to pay a high performance overhead for always-on

logging/tracing when most logs or traces would be dis-
carded for normal runs. As a result, only a memory dump
is captured upon failures in deployed software to enable
post-mortem diagnosis.

Alas, it is challenging for developers to debug memory
dumps due to limited information. The result is that a
significant fraction of bugs is left unfixed [32,59]. Those
that get fixed can take weeks in certain cases [32].

To make matters worse, streamlined software pro-
cesses call for short release cycles [53], which limits
the extent of in-house testing prior to software release.
Frequent releases increase the dependency on debugging
failures reported from deployed software, because these
failure occurrences become the only way to detect cer-
tain bugs. Frequent releases also increase the demand for
quickly resolving bugs to meet short release deadlines.

There exists a rich literature on debugging failures,
which can roughly be classified into two categories:

(1) Automatic root cause diagnosis [16, 37–41, 61] at-
tempts to automatically determine the culprit statements
that cause a program to fail. Due to various limitations
(e.g., requiring code modification [37, 40, 41], inabil-
ity to handle complex software efficiently [37, 61], or
being limited to a subset of failures [37, 39]), none of
these systems are deployed in practice. Moreover, even
though root cause diagnosis can help a developer deter-
mine the reasons behind a failure, developers often re-
quire a deeper understanding of the conditions and the
state leading to a failure to fix a bug, which these sys-
tems do not provide.

(2) Failure reproduction for debugging attempts to en-
able developers to examine program inputs and state that
lead to failures. Exhaustive testing techniques such as
symbolic execution [22] and model checking [21, 58],
or state-space exploration [51] can be used to determine
inputs and state that lead to a failure for the purpose
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of debugging. Unfortunately, these techniques require
heavyweight runtime monitoring [26]. Another popular
technique for reproducing failures is record/replay sys-
tems [46, 48, 50, 52, 56] that record program executions
that can later be replayed to debug failures. This is also
known as reverse debugging [31, 55] or time-travel de-
bugging [44]. On the plus side, reverse debugging allows
a developer to go back and forth in a failed execution to
examine a program’s state (i.e., control and data flow) to
truly understand the bug and devise a fix. On the other
hand, record/replay systems incur prohibitive overhead
(up to 200% for the state-of-the-art system [56]) in mul-
tithreaded programs running on multiple cores, making
them impractical for use in deployed systems.

Due to the limitations of existing techniques, major
software vendors including Apple [17], Google [33], and
Microsoft [30] as well as open-source systems such as
Ubuntu [54] operate error reporting services to collect
data about failures in deployed software and analyze
them. To our knowledge, even the most advanced bug
diagnosis system deployed in production, namely RE-
Tracer [27], is only able to triage failures caused by ac-
cess violations.

To solve the challenge of debugging software failures
in deployed systems, we argue that we need a practical
solution that enables reverse debugging of such failures.
To be practical, the solution must (1) impose a very low
runtime performance overhead when running on a de-
ployed system, (2) should be able to recover the execu-
tion history accurately and efficiently, (3) work with un-
modified source code/binary, (4) apply to broad classes
of bugs (e.g., concurrency bugs).

In this paper, we present REPT1, a practical solution
for reverse debugging of software failures in deployed
systems. There are two key ideas behind REPT. First,
REPT leverages hardware tracing to record a program’s
control flow with low performance overhead. Second,
REPT uses a novel binary analysis technique to recover
data flow information based on the logged control flow
information and the data values saved in a memory
dump. Consequently, REPT enables reverse debugging
by combining the logged control flow and the recovered
data flow.

The main challenge faced by REPT is how to accu-
rately and efficiently recover data values based on the
logged control flow and the data values saved in the
memory dump. To be accurate, REPT must be able to
correctly recover a significant fraction of data values in
the execution history. To be efficient, REPT must incur

1REPT stands for Reverse Execution with Processor Trace and
reads as “repeat.”

low runtime monitoring overhead and should finish its
analysis within minutes. To solve this challenge, we in-
troduce a new binary analysis approach that combines
forward and backward execution to iteratively emulate
instructions and recover data values. REPT uses the fol-
lowing two new techniques for its analysis:

First, we design an error correction scheme to detect
and correct value conflicts that are introduced by mem-
ory writes to unknown addresses. When emulating a
memory write instruction, it is too conservative to mark
all memory values as unknown if the destination address
is unknown. Instead, REPT leaves memory untouched
and relies on detecting a conflict later caused by stale val-
ues in the destination memory. Unlike previous solutions
that use expensive hypothesis tests to decide memory
aliases [57], the error correction scheme enables REPT
to run its iterative analysis efficiently.

Second, we leverage the timing information pro-
vided by modern hardware to determine the order of
non-deterministic events such as races across multiple
threads. Non-determinism has been a long-standing
challenge that hinders the ability of existing record/re-
play systems to achieve high accuracy with low over-
head. REPT can identify the order of accesses to
the same memory location in most cases by using
fine-grained timestamps that modern hardware provides.
When the timing information is not enough, REPT re-
stricts the use of memory accesses whose order cannot
be inferred. This stops their values from negatively af-
fecting the recovery of other data.

We implement REPT in two components. The online
tracing component is a driver that controls Intel Proces-
sor Trace (PT) [36], and has been deployed on hundreds
of millions of machines as part of Microsoft Windows.
The offline binary analysis component is a loadable li-
brary that is integrated into WinDbg [45]. We also en-
hance Windows Error Reporting (WER) service [30] to
control hardware tracing on deployed systems.

To measure the effectiveness and efficiency of REPT,
we evaluate it on 16 real-world bugs in software such
as Chrome, Apache, PHP, and Python. Our experiments
show that REPT can enable effective reverse debugging
for 14 of them, including 2 concurrency bugs. We evalu-
ate REPT’s data recovery accuracy by comparing its re-
covered data values with those logged by Time Travel
Debugging (TTD) [44], a slow but precise record/replay
tool. Our experiments show that REPT can achieve an
average accuracy of 92% and finish its analysis in less
than 20 seconds for these bugs.
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2 Overview

2.1 Problem Statement
The overarching goal of REPT is to enable reverse de-
bugging of failures in deployed software with low run-
time overhead. REPT realizes reverse debugging in two
steps. (1) REPT uses hardware support to log the control
flow and timing information of a program’s execution.
When a failure occurs, REPT saves an enriched memory
dump including both the final program state and the ad-
ditionally recorded control flow and timing information
before the failure. (2) REPT uses a new offline binary
analysis technique to recover data values in the execu-
tion history based on the enriched memory dump.

REPT needs to recover data values because there is
no existing hardware support for efficiently logging all
data values of a program’s execution. However, there
exist hardware features such as Intel PT [36] and ARM
Embedded Trace Macrocell [18] that can efficiently log
the control flow and timing information.

2.2 Design Choices
When designing REPT, we make three design choices.

Memory Dump Only vs. Online Data Capture: We
choose to only rely on the data in a memory dump rather
than logging more data during execution to minimize the
performance overhead for deployed systems. Further-
more, to do online data capture, we would need to mod-
ify the operating system or programs because there is no
existing hardware support for that. We choose not to do
it to minimize intrusiveness.

Binary vs. Source: We choose to do the analysis at
the binary level instead of at the source code level for
three reasons. First, by performing analysis at the in-
struction level, REPT is essentially agnostic to program-
ming languages and compilers. This allows REPT to
support native languages (e.g., C/C++) as well as man-
aged languages (e.g., C#). Second, today’s applications
often consist of multiple modules/libraries from differ-
ent vendors, and not all source code may be available
for analysis [25]. Third, the mapping between the source
code and binary instructions is not straightforward due
to compiler optimizations and the use of temporary vari-
ables, thus converting source-level analysis result back
to the binary-level presents a non-trivial challenge.

Concrete vs. Symbolic: One popular approach to re-
constructing executions is symbolic execution. In sym-
bolic execution, a program is executed with symbolic in-
puts of unconstrained values (e.g., a Boolean can ini-
tially take any of the true or false values) as opposed to

concrete ones. As the program executes, symbolic ex-
ecution gathers constraints on symbolic values. When-
ever an event of interest occurs (e.g., a failure), symbolic
execution uses a constraint solver to determine the pro-
gram inputs that would have led to that failure. Con-
ceptually, symbolic execution may help with recovering
data values. We could treat operands such as registers
and memory locations referenced by each instruction as
variables, and generate constraints among these variables
based on the semantics of the instructions. However,
given a long execution trace, the constraints gathered
on the variables may grow too large (particularly when
memory locations are made symbolic) to solve within a
reasonable amount of time for even state-of-the-art con-
straint solvers. Therefore, we choose to do concrete exe-
cution instead of symbolic execution. REPT keeps con-
crete values for registers and memory locations at each
position in the instruction sequence and analyzes each
instruction to recover concrete values of its operands.

2.3 Challenges
To enable reverse debugging, REPT faces three chal-
lenges when recovering register and memory values in
the execution history.

2.3.1 Irreversible Instructions

This first challenge for REPT is handling irreversible
instructions. If every instruction is reversible (i.e., the
program state before an instruction’s execution can be
fully determined based on the program state after its ex-
ecution), then the design of REPT would be straight-
forward: invert each instruction’s semantics and recover
data values at each position in the instruction sequence.
However, many instructions are irreversible (e.g., xor
rax,rax) and thus information destroying. We solve
this challenge by using forward execution to recover val-
ues that cannot be recovered in backward execution.

2.3.2 Missing Memory Writes

The second challenge for REPT is handling memory
writes to unknown addresses. Most memory addresses
cannot be determined statically. Since the analysis may
not fully recover data values due to irreversible instruc-
tions, REPT may not know the destination of a memory
write during its analysis. When this happens, one op-
tion is to assume that values at all memory locations be-
come unknown. This is too conservative because it may
cause the analysis to miss many data values that are actu-
ally recoverable. If REPT chooses to ignore the memory
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write, the analysis will leave an invalid value at the mem-
ory location, which may propagate into other registers or
memory locations. We solve this challenge by using er-
ror correction.

2.3.3 Concurrent Memory Writes

The third challenge for REPT is correctly identifying the
order of shared memory accesses. In the presence of
multiple instruction sequences from different threads, it
may not be possible to infer the execution order of con-
current memory accesses despite timestamps provided
by hardware. REPT needs to properly handle these mem-
ory accesses, otherwise it may infer wrong values for
these memory locations. We solve this challenge by re-
stricting in the analysis the use of data values recovered
from concurrent memory accesses.

3 Design

In this section, we describe the design of REPT by focus-
ing on how it solves the three key technical challenges
discussed in the previous section.

For brevity, we define an instruction sequence as I =
{Ii|i = 1,2, ...,n} where Ii represents the i-th instruction
executed in the sequence. We assume that the memory
dump is available after the n-th instruction’s execution.
We define a program’s state, S, as a collection of all data
values in registers and memory locations. We define Si
as the program state after the i-th instruction is executed.
Therefore, S0 represents the program state before the first
instruction I1 is executed, and Sn represents the program
state stored in the memory dump. We define a state Si
as complete if all the register and memory values are
known. We define an instruction Ii as reversible if, given
a complete state Si, we can recover Si−1 completely; oth-
erwise we say the instruction is irreversible. The design
of REPT is not limited to a specific architecture, how-
ever, in the rest of the paper, we use x86-64 instructions
in our examples.

In the rest of this section, we present the design of
REPT progressively by describing how it handles in-
creasingly more complex and realistic scenarios.

• A single instruction sequence with only reversible
instructions (Section 3.1).
• A single instruction sequence with irreversible

instructions but without memory accesses (Sec-
tion 3.2).
• A single instruction sequence with irreversible in-

structions and with memory accesses (Section 3.3).

• Multiple instruction sequences with irreversible in-
structions and with memory accesses (Section 3.4).

3.1 Instruction Reversal
REPT’s first mechanism assumes that the input is a single
instruction sequence with only reversible instructions.
Since every instruction is reversible, REPT can reverse
the effects of each instruction to completely recover the
initial program state from the end of the instruction se-
quence to the beginning. For instance, if the instruction
sequence has a single instruction I1 = add rax,rbx
and S1 = {rax=3, rbx=1}, then the analysis can recover
S0 = {rax=2, rbx=1}.

3.2 Irreversible Instruction Handling
REPT’s second mechanism assumes that there is a single
instruction sequence with irreversible instructions, but
the sequence does not include any memory access. In
practice, most instructions are irreversible. For instance,
xor rbx,rbx is irreversible, because rbx’s value be-
fore the instruction is executed cannot be recovered sim-
ply based on this instruction’s semantics and rbx’s value
after the instruction is executed. Therefore, the straight-
forward backward analysis for reversible instructions is
not applicable in general.

The key idea for recovering a destroyed value is to in-
fer it in a forward analysis. As long as the destroyed
value is derived from some other registers and memory
locations, and their values are available, we can use these
values to recover the destroyed value. Extending this
idea, our basic solution is to iteratively perform back-
ward and forward analysis to recover data values until no
new values are recovered.

Conceptually, given the instruction sequence I and the
final state Sn, we first mark all register values as unknown
in program states from S0 to Sn−1. Then we do backward
analysis to recover program states from Sn−1 to S0. After
this step, we perform forward analysis to update program
states from S0 to Sn−1. We repeat these steps until a fixed
point is reached: i.e., no state is updated in a backward
or forward analysis. When we update a program state,
we only change a register’s value from unknown to an
inferred value. Crucially, this analysis will not produce
conflicting inferred values because all the initial values
are correct and no step in the analysis can introduce a
wrong value based on correct values. This also guaran-
tees that the iterative analysis will converge.

We show an example of handling irreversible instruc-
tions in Figure 1. The instruction sequence has three in-
structions, and two of them are irreversible. Since we do
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Iteration 1 Iteration 2 Iteration 3
S0 ↑ {rax=?, rbx=?}→ ↓ ↑ {rax=2, rbx=?}

I1 mov rbx, 1 S1 ↑ {rax=?, rbx=?} ↓ {rax=?, rbx=1} ↑ {rax=2, rbx=1}
I2 add rax, rbx S2 ↑ {rax=3, rbx=?} ↓ {rax=3, rbx=1} ↑ {rax=3, rbx=1}
I3 xor rbx, rbx S3 ↑ {rax=3, rbx=0} ↓ {rax=3, rbx=0}→ ↑

Figure 1: This example shows how REPT’s iterative analysis recovers register values in the presence of irreversible
instructions. We use “?” to represent “unknown”. Key updates during the analysis are marked in bold face.

Iteration 1 Iteration 2 Iteration 3
S0 ↑ {rax=?, rbx=?, [g]=3}→ ↑ {rax=?, rbx=?, [g]=2}

I1 lea rbx, [g] S1 ↑ {rax=?, rbx=?, [g]=3} ↓ {rax=?, rbx=g, [g]=3} ↑ {rax=?, rbx=g, [g]=2}
I2 mov rax, 1 S2 ↑ {rax=?, rbx=?, [g]=3} ↓ {rax=1, rbx=g, [g]=3} ↑ {rax=1, rbx=g, [g]=2}
I3 add rax, [rbx] S3 ↑ {rax=3, rbx=?, [g]=3} ↓ {rax=3, rbx=g, [g]=3} ↑ {rax=3, rbx=g, [g]=?}
I4 mov [rbx], rax S4 ↑ {rax=3, rbx=?, [g]=3} ↓ {rax=3, rbx=g, [g]=3} ↑ {rax=3, rbx=g, [g]=3}
I5 xor rbx, rbx S5 ↑ {rax=3, rbx=0, [g]=3} ↓ {rax=3, rbx=0, [g]=3}→

Figure 2: This example shows how REPT’s iterative analysis recovers register and memory values when there exist
irreversible instructions with memory accesses. We use “?” to represent “unknown”, and use “g” to represent the
memory address of a global variable. Some values are in bold-face because they represent key updates in the analysis.
We skip the fourth iteration which will recover [g]’s value to be 2 due to the space constraint.

not have instructions before the first one, we do not ex-
pect to recover rbx in S0. There are three points that are
worth noting in this example. First, we recover rbx’s
value in S1 based on the forward analysis in the second
iteration. Second, we keep rax’s value of 3 in S2 in the
second iteration of forward analysis even though rax’s
value is unknown in S1. Third, we recover rax’s value
of 2 in S1 in the last iteration of backward analysis.

3.3 Recovering Memory Writes

REPT’s third mechanism assumes that there is a single
instruction sequence with irreversible instructions and
with memory accesses. In practice, there are always
instructions that access memory. Unlike registers that
can be statically identified from instructions, the address
of a memory access may not always be known. For a
memory write instruction whose destination is unknown,
we cannot correctly update the value for the destination
memory. A missing update may introduce an obsolete
value, which would negatively impact subsequent analy-
sis. A conservative approach that marks all memory as
unknown upon a missing memory write would lead to an
unnecessary and unacceptable information loss.

Our key insight for solving the missing memory write
problem is to use error correction. The intuition behind
REPT is to keep using the memory values that are possi-
bly valid to infer other values, and to correct the values
later if the values turn out to be invalid based on conflicts.
Before describing REPT’s error correction algorithm, we
first use an example to explain the high-level idea.

The example in Figure 2 has five instructions. There

are three key updates as marked in bold face. In the first
iteration of the backward analysis, since we do not know
rbx’s value in S4, we do not change the value at the ad-
dress g. In the second iteration of the forward analysis,
there is a conflict for rax in S3. The original value is 3,
but the newly inferred value would be 4 (rax + [g] = 1
+ 3 = 4). Our analysis keeps the original value of 3 be-
cause it was inferred from the final program state which
we assume is correct. In the third iteration of the back-
ward analysis, based on rax’s value before and after the
instruction I3, we can recover [g]’s value to be 2.

Next, we describe the algorithm that REPT uses to re-
cover missing memory writes. We first introduce the data
inference graph in Section 3.3.1, and then explain how
we use the graph to detect and correct errors caused by
missing memory writes in Section 3.3.2.

3.3.1 Data Inference Graph

When performing the backward and forward analysis,
REPT maintains a data inference graph. The data infer-
ence graph is different from a traditional data flow graph
in the sense that it tracks how a data value is inferred in
either forward or backward directions while a data flow
graph tracks the program’s data flow in just one direction.

An example data inference graph is shown in Figure 3.
In this example, we use rcx to recover [rax], and then
use the latter to recover rbx. Here we assume that rax’s
value is not changed between I1 and In.

A node in the data inference graph represents a regis-
ter or a memory location that is accessed in an executed
instruction. A node is called a use node if its correspond-
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I1: mov [rax], rbx
...

In: mov rcx, [rax]

[rax]@I1 rbx@I1rax@I1

[rax]@In rcx@Inrax@In

Value edge Address edge

Use node Def node

Figure 3: An example data inference graph in REPT.
The graph indicates that REPT uses rcx@In to recover
[rax]@In, which is further used to recover [rax]@I1
and subsequently rbx@I1.

ing register or memory location is for read. Similarly, a
node is called a def node if it is for write. For instance,
rbx@I1 is a use node, and rcx@In is a def node. If
a register or memory location is accessed for both read
and write in a single instruction, we create two nodes for
it: one use node, and one def node. Finally, REPT treats
data in the memory dump as use nodes because their val-
ues can be propagated backwards like other use nodes.

There are two kinds of directional edges in the data in-
ference graph: value edges and address edges. A value
edge from node A to node B means that REPT uses A’s
value to infer B’s value. An address edge from A to B
means that A’s value is used to compute B’s address.
For instance, the edge from rcx@In to [rax]@In is
a value edge, and the edge from rax@In to [rax]@In
is an address edge. To get or set the value of a mem-
ory location, its address must be known. When setting a
memory node’s value, besides value edges, REPT adds
address edges from register nodes that are used to com-
pute the address of the memory node. A memory node
can have multiple incoming address edges (e.g., a base
register and an index register are used together to specify
the address).

There are two types of value edges. In the first type
of value edges, the connected nodes are from the same
instruction and we call them horizontal edges. Specifi-
cally, in the backward analysis, if a def node’s value is
known and can be used to infer the value of a use node in
the same instruction, we recover the use node’s value and
add a horizontal edge between the two nodes. Similarly,
in the forward analysis, if a use node’s value is known
and can be used to infer the value of a def node in the
same instruction, we recover the def node’s value and add

a horizontal edge between the nodes as well. It is worth
noting that a node may have multiple horizontal incom-
ing value edges. For instance, given add rax,rbx,
the def node of rax can have two incoming value edges
from the use nodes of rax and rbx.

In the second type of value edges, the connected nodes
are from different instructions, but they correspond to the
same register or memory location. Such value edges are
referred to as vertical edges. Intuitively, nodes connected
via vertical edges belong to the same def-use chain (i.e.,
a single def with all its reaching uses). In the back-
ward analysis, we recover values from a use node to the
preceding use node or the def node along the def-use
chain, and add vertical edges in between. Similarly, in
the forward analysis, we recover values from a def or use
node to its subsequent use node along the def-use chain
and add corresponding vertical edges as well. In other
words, a def node’s value can only be propagated for-
wardly while a use node’s value can be propagated on
both directions.

For every node in the data inference graph, REPT also
maintains a dereference level to aid in error correction
(Section 3.3.2). Specifically, all use nodes of values in
the memory dump have a dereference level of 0. For
any other node, REPT determines its dereference level
in three steps: (1) for all incoming value edges, find
the maximum dereference level of the source nodes as
D1; (2) for all incoming address edges, find the maxi-
mum dereference level of the source nodes as D2; (3)
pick the larger value between D1 and D2+1 as the target
node’s dereference level. We can see that the dereference
level actually measures the maximum number of address
edges from a value stored in the memory dump to the
given node. A node’s dereference level reflects the confi-
dence level for its value since data inference errors come
from memory due to missing memory writes. A higher
dereference level means a lower confidence level.

3.3.2 Error Correction

During the iterative backward and forward analysis,
REPT continuously updates the data inference graph and
detects and corrects inconsistencies. There are two kinds
of inconsistencies: value conflict and edge conflict. A
value conflict happens when an inferred value does not
match the existing value. An edge conflict happens when
a newly identified def node of a memory location breaks
the previously assumed def-use relationship between two
nodes connected through a vertical edge. Consider the
example in Figure 3. If REPT detects another write to
the same memory location specified by rax between I1
and In, this memory write will cause a conflict on the
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vertical edge between [rax]@In and [rax]@I1.
When REPT detects a conflict, it stops the analysis of

the current instruction, identifies the invalid node, then
runs the invalidation process. For both types of conflicts,
the invalidation process starts with an initial node. In the
case of edge conflicts, the initial node is the target node
of the broken vertical edge as it no longer belongs to the
same def-use chain. In the case of value conflicts, REPT
checks if the dereference level of the node of the newly
inferred value is less than or equal to that of the node
of the existing value (this means a higher or equal con-
fidence for the new value). If so, REPT picks the node
of the existing value as the initial node for invalidation.
Otherwise, REPT discards the newly inferred value and
moves on to the next instruction.

If REPT identifies an initial node for invalidation, it
first processes each of its outgoing value and address
edges. For a value edge, the target node is marked as
unknown. For an address edge, the target node is deleted
from the data inference graph since its address becomes
unknown and consequently such a def or use on that
memory location may no longer exist. Then REPT re-
cursively applies the invalidation process to these target
nodes. It is worth noting that the data inference graph
is guaranteed not to have cycles, because REPT adds a
node and edges into the graph only when the node’s value
is inferred for the first time.

To ensure convergence of the analysis, REPT main-
tains a blacklist of invalidated values for each node. Ev-
ery time a node is invalidated, its value is added to its
blacklist. Once a value is in a node’s blacklist, the node
cannot take that value any more. This ensures that the
iterative analysis process will not enter the conflicting
state again and consequently guarantees that the algo-
rithm will eventually converge. However, a correct value
can be incorrectly blacklisted for a node if it has a lower
confidence level than another incorrect value. This leads
to the problem that a value is recoverable but cannot be
recovered due to the use of the blacklist. We choose to
keep the blacklists to prioritize the convergence of the
analysis over the improvement in data recovery.

3.4 Handling Concurrency

When we face multiple instruction sequences executed
simultaneously on multiple cores, the problem is seem-
ingly intractable because, without a perfect order of the
executed instructions, there could be a large number of
ways to order those instructions. We have two insights
for tackling this challenge. First, we leverage the timing
information logged by hardware tracing to construct a

partial order of instructions executed in different threads.
Second, we recognize that memory writes are the only
operations whose orders may affect data recovery.

With timestamps inserted in an instruction sequence,
we refer to the instructions between two timestamps as
an instruction subsequence. We refer to the two times-
tamps as the start and end time of the subsequence.
Given two instruction subsequences from two different
instruction sequences, we infer their relative execution
order based on their start and end times. If one subse-
quence’s end time is before another subsequence’s start
time, we say the first subsequence is executed before the
other subsequence. Otherwise, we say their order can-
not be inferred, and the two subsequences are concur-
rent. Note that the order of two subsequences in the same
instruction sequence can always be determined based
on their positions in the instruction sequence. We say
two instructions are concurrent if the instruction subse-
quences they belong to are concurrent. We say two mem-
ory accesses are concurrent if the corresponding memory
access instructions are concurrent.

Given multiple instruction sequences executed simul-
taneously on multiple cores, REPT first divides them into
subsequences, then merges them into a single conceptual
instruction sequence based on the inferred orders. For
two subsequences whose order cannot be inferred, REPT
arbitrarily inserts one before the other in the newly con-
structed sequence. A natural question is whether the data
recovery is affected by this arbitrary choice of ordering
two concurrent subsequences. Obviously, if we change
the order of two subsequences that have concurrent mem-
ory accesses to the same location and one of them is
write, we may get different values for the memory lo-
cation. On the other hand, if concurrent subsequences do
not have any concurrent memory write to the same loca-
tion, it does not matter in which order REPT places them
into the merged instruction sequence.

Since we cannot tell the order of concurrent instruction
subsequences, our goal is to eliminate the impact of their
ambiguous order on data recovery. Specifically, during
the iterative analysis, for every memory access (regard-
less of read or write), REPT detects if it has a concurrent
memory write to the same location. If so, REPT takes
the following steps to limit the use of the memory ac-
cess in the data inference graph. First, REPT removes all
vertical edges of the node representing the memory ac-
cess and invalidates the target nodes of outgoing vertical
edges. Then, REPT labels the memory access node so
that it will not be used in vertical edges. This is because
REPT does not know if the memory access happens be-
fore or after the concurrent memory write to the same
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location. However, REPT still allows horizontal value
edges to infer this node’s value.

A remaining question is whether picking an arbitrary
order for concurrent instruction subsequences would af-
fect the detection of concurrent memory writes to the
same location. Our observation is that REPT’s analysis
works as long as there are no two separate concurrent
writes such that one affects the inference of another’s
destination. We acknowledge that this possibility exists
and depends on the granularity of timing information.
Given the timestamp granularity supported by modern
hardware, we deem this as a rare case in practice [39].

4 Implementation

In this section, we first describe the implementation de-
tails of REPT’s online hardware tracing and offline bi-
nary analysis. Then we describe its deployment.

4.1 Online Hardware Tracing
REPT leverages Intel Processor Trace (PT) to log
control-flow and timing information of a program’s ex-
ecution. Intel PT became available when the Broadwell
architecture was released in 2014. Intel PT supports var-
ious program tracing modes, and REPT currently uses
the per-thread circular buffer mode to trace user-space
execution of all threads within a process. REPT sup-
ports configuring the circular buffer size and the gran-
ularity of timestamps. We do not configure Intel PT to
do whole-execution tracing because that would introduce
performance overhead due to frequent interrupts (when
the trace buffer gets full) and I/O workload (when the
buffer is written to some persistent storage). When a
traced process fails, its final state and the recorded Intel
PT traces are saved in a single memory dump.

4.2 Offline Binary Analysis
REPT takes a memory dump with Intel PT trace as in-
put, and outputs the recovered execution history of each
thread. At first, REPT parses the trace to reconstruct the
control flow. Parsing an Intel PT trace requires that the
binary code in the dump is the same as the code that was
executed when the trace is collected. Therefore, REPT
supports jitted code as long as the code was not modi-
fied since its execution was logged in the circular trace
buffer. Next, REPT converts native instructions into an
intermediate representation (IR) that specifies opcodes
and operands, and conducts the forward and backward
analysis until it converges.

In addition to the final program state and constants,
REPT can leverage control dependencies to recover data.
For instance, if a conditional branch is executed only if
a register’s value is 0, then REPT can infer the register’s
value once it observes that the branch is taken.

Programs invoke system calls to request operating sys-
tem services, and the operating system may modify cer-
tain register and memory values in the process as a re-
sponse. Upon a system call, REPT will mark all volatile
registers as unknown based on the calling convention.
REPT currently does not handle memory writes by the
kernel, but instead treats those in the same way as miss-
ing memory writes and relies on the error correction
mechanism to detect and resolve conflicts. We acknowl-
edge that semantic-aware handling of system calls can
be done with more engineering effort to help improve
the data recovery, but we leave it to future work.

4.3 Deployment
We implement REPT in two components and deploy it
into the ecosystem of Microsoft Windows for program
tracing, failure reporting, and debugging.

First, we implement the online hardware tracing com-
ponent as a driver of 8.5K lines of C code. It is respon-
sible for controlling tracing of a target process and cap-
turing the trace in a memory dump when the monitored
process fails. We also modify the Windows kernel to
support per-thread tracing by swapping the trace buffers
upon context switch.

Second, we implement REPT’s offline binary analysis
and reverse debugging as a library of 100K lines of C++
code, and integrate it into WinDbg [45]. We also im-
plement common debugging functionalities such as code
and data breakpoints to facilitate the debugging process.

We enhance the Windows Error Reporting (WER) ser-
vice [30] to support REPT. Specifically, developers can
request Intel PT enriched memory dumps on WER. Then
WER selects user machines to trace the targeted pro-
gram. When a traced program causes a failure, a mem-
ory dump with Intel PT trace is captured and sent back to
WER. Finally, developers can load the enriched memory
dump in WinDbg to do reverse debugging.

5 Evaluation

In this section, we evaluate REPT to answer the follow-
ing four questions: (1) How accurately can REPT re-
cover data values? (2) How efficiently can REPT recover
data values? (3) How effectively can REPT be used to
debug failures? (4) What is the deployment status? Next,
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Program-BugId Bug Type MP SS
Apache-24483 NULL pointer deref [1] No Yes
Apache-39722 NULL pointer deref [2] No Yes
Apache-60324 Integer overflow [3] No Yes
Nasm-2004-1287 Stack buffer overrun [4] No No
PHP-2007-1001 Integer overflow [5] No Yes
PHP-2012-2386 Integer overflow [6] No No
PHP-74194 Type confusion [7] No No
PHP-76041 NULL pointer deref [8] No Yes
PuTTY-2016-2563 Stack buffer overrun [9] No No
Python-2007-4965 Integer overflow [10] No Yes
Python-28322 Type confusion [11] No No
Chrome-784183 Integer overflow [12] No No
Pbzip2 Use-after-free [29] Yes No
Python-31530 Race [13] Yes No
Chrome-776677 Race [14] Yes No
LibreOffice-88914 Deadlock [15] Yes No

Table 1: Software bugs used in our experiments. MP
means that the defect and failure threads are different. SS
means that the defect is on the same stack as the failure.

we present our experimental setup and describe our ex-
perimental results to answer these questions.

We evaluate REPT on failures caused by 16 real-world
bugs listed in Table 1. All of these bugs are from open-
source software. We focus on open-source software for
independent reproducibility. The main constraint that
limits us from evaluating REPT on more bugs is that we
need to reproduce bugs in open-source software on Mi-
crosoft Windows. When reproducing bugs, we try to pick
bugs that are from a diverse set of widely-used real-world
systems (e.g., Apache, Python, Chrome and PHP) and
from a wide spectrum of bug types (e.g., NULL pointer
dereference, race, type confusion, use-after-free, integer
overflow, and buffer overflow).

In our experiments, we configure Intel PT to use a
circular buffer of 256K bytes per thread and turn on
the most fine-grained timestamp logging (i.e., TSCEn=1,
CYCEn=1, CycThresh=0 and MTCFreq=0; see [36] for
more details).

5.1 Accuracy
To evaluate the accuracy of REPT’s data recovery, we
need to obtain the ground truth. We use Time Travel
Debugging (TTD) [44], a slow but precise record/replay
tool, to log both control and data flow of a program’s ex-
ecution. With the fully recorded execution, we create in-
puts to REPT and check the correctness of its output. To
evaluate the accuracy of REPT in handling multiple con-
current instruction sequences, we modify TTD to gener-
ate the timing information as an approximation to times-

Program-BugId # Insts Cor Unk Inc
Apache-24483 49 96.72% 1.64% 1.64%
Apache-39722 1,644 99.30% 0.70% 0.00%
Apache-60324 672 96.47% 1.83% 1.70%
Nasm-2004-1287 67,726 95.95% 3.70% 0.35%
PHP-2007-1001 54,475 99.08% 0.90% 0.02%
PHP-2012-2386 43,813 71.55% 25.40% 3.05%
PHP-74194 78,103 90.88% 7.82% 1.30%
PHP-76041 115 94.96% 3.60% 1.44%
PuTTY-2016-2563 677 99.55% 0.45% 0.00%
Python-2007-4965 1,043 95.04% 4.09% 0.87%
Python-28322 1,062 90.85% 8.60% 0.55%

Table 2: REPT’s accuracy on a single instruction se-
quence. Cor, Unk and Inc represent the percentage of
correct, unknown, and incorrect register uses.

tamps generated by Intel PT. Finally, we stress test REPT
on a highly concurrent program and report how well the
timestamps provided by Intel PT can order shared mem-
ory accesses under extreme cases.

5.1.1 Single-Thread Accuracy

In this experiment, we first use TTD to record the exe-
cution where each bug is triggered. Then, we replay the
recorded execution to construct an instruction sequence
without the timing information for the failure thread.
Next, we run REPT on the constructed instruction se-
quence and the final program state provided by the replay
engine. Finally, we compare the recovered data values
with the data values returned by the replay engine.

When we compare the data values, we only check reg-
ister uses (i.e., a register used as a source operand or
the address of a destination memory operand). We do
not check defs (i.e., a destination operand) because we
want to avoid double counting. For instance, given mov
rax,rcx, both rax and rcx will be correct or incor-
rect at the same time. When computing the data recovery
accuracy, we do not need to count both of them. We do
not check memory uses (i.e., a memory used as a source
operand) because memory values are usually read into
registers before they take on any operations. We analyze
the trace of the 16 bugs and find that the destination is
a register for 95% of memory reads. Therefore, we can
count the uses of these registers to measure the accuracy.

We present our accuracy measurements in Table 2.
Column 2 describes the number of instructions executed
from the program defect to the program failure. We iden-
tify the location of a program defect based on the bug fix.
For instance, Apache-24483 is a NULL pointer derefer-
ence bug, and its defect is where the NULL pointer check
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Figure 4: REPT’s accuracy on different instruction se-
quence sizes. For each bug, we limit REPT to analyze
1M instructions, and depict the accuracy for 10K, 100K
and 1M instructions away from failure, from left to right.

is added in the bug fix. The rest of three columns show
the percentage of correct, unknown and incorrect regis-
ter uses recovered by REPT in the instruction sequence
from the defect to the failure.

We can see that REPT achieves a high accuracy. In
most cases, the percentage of correct register uses is
above 90% for tens of thousands of instructions; the per-
centage is still above 80% within 162,208 instructions for
the Python-31530 bug. PHP-2012-2386 is an outlier case
with the lowest accuracy. This particular bug involves a
large number of memory allocation operations right be-
fore the program failure. Unfortunately, memory alloca-
tion operations are hard to reverse because the metadata
information (i.e., chunk sizes) may be completely over-
written by reallocations, resulting in a large percentage
of unknowns. We could not obtain the ground truth for
Chrome-781483 because TTD does not support Chrome.

We also evaluate how the data recovery accuracy
changes as the trace grows. We use instruction sequence
sizes of 10K, 100K and 1M, and evaluate 6 bugs, because
others have short execution histories. The results are
summarized in Figure 4. Overall, the accuracy decreases
as the number of instructions increases, and the rate of
decrease depends on the program and the workload. It is
worth noting that the accuracy does not decrease mono-
tonically as the number of instructions increases. This
is expected because REPT’s accuracy depends on a pro-
gram’s behavior. For instance, PHP-2012-2386 has the
accuracy drop in the case of 100K instructions because
these instructions have a large number of memory allo-
cation operations which are hard to reverse.

5.1.2 Multiple-Thread Accuracy

To evaluate REPT’s analysis on multiple concurrent ex-
ecutions, we need to emulate the timing information
in addition to the control flow from TTD. Currently,
TTD supports record and replay of multithreaded pro-
grams running on multiple cores by logging timestamps
at each system call and synchronization operation (e.g.,
cmpxchg). We extend TTD to log timestamps periodi-
cally in a manner similar to Intel PT during recording.
When constructing an instruction sequence, we insert
TTD’s timestamps into the sequence accordingly. We
acknowledge that such an approach may not perfectly
reflect a multithreaded program’s actual behavior on a
bare metal machine.We conduct this experiment and re-
port the results as our best estimation of REPT’s accuracy
for multithreaded programs.

We evaluate REPT on two race condition bugs, Pbzip2
and Python-31530. We do not evaluate Chrome-776677
or LibreOffice-88914 because REPT does not work for
them (see Section 5.3). We measure the accuracy on
the instructions executed on all threads from the defect
to the failure. For Pbzip2, there are 12,496 instruc-
tions, and the correct/unknown/incorrect percentages are
95.33%, 4.36%, and 0.31%. For Python-31530, there
are 511,289 instructions, and the corresponding percent-
ages are 75.72%, 24.14%, and 0.14%. We attribute the
lower accuracy on Python-31530 to the large number of
instructions elapsed between the defect and the failure.

Finally, we evaluate how well REPT can use fine-
grained timestamps from Intel PT to order memory ac-
cesses. We use Racey [34], a stress-testing benchmark
that has extremely frequent data races—each thread races
with other threads to constantly read/write a shared array
for updating a signature. We run Racey with 8 threads for
1000 iterations and instrument it to save the addresses of
memory accesses to the shared array. To minimize the
instrumentation’s impact on timing, we store the mem-
ory addresses to a pre-allocated buffer. We measure the
fraction of memory accesses that have concurrent mem-
ory writes to the same location. We find that 5.5% of
accesses to the shared array have concurrent memory
writes. Given Racey is an extreme case of concurrent
programs, we believe that the granularity of timestamps
provided by Intel PT is sufficient for a majority of real-
world programs.

5.2 Efficiency
Efficiency of REPT has two prongs, the performance
overhead caused by Intel PT when a program is running,
and REPT’s offline analysis for data recovery. The for-
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Program-BugId # Iters REPT (s)
Apache-24483 4 5.8
Apache-39722 5 3.0
Apache-60324 2 5.5
Chrome-784183 6 8.2
Nasm-2004-1287 10 18.6
Pbzip2 7 8.2
PHP-2007-1001 5 2.0
PHP-2012-2386 6 3.8
PHP-74194 7 6.3
PHP-76041 6 14.5
PuTTY-2016-2563 5 5.2
Python-2007-4965 12 10.5
Python-28322 18 17.5
Python-31530 6 10.6

Table 3: The number of iterations and the time of REPT’s
offline analysis.

mer is low and has been well studied. For instance, Fig-
ure 8 in [39] shows that the performance overhead with
circular buffers and the timing information is below 2%
for a range of applications. Furthermore, the deployment
of REPT proves that its performance overhead is accept-
able in practice, particularly when it is selectively turned
on for a program on a user machine.

We test REPT’s offline analysis on a machine run-
ning an x86-64 Windows 10 on an Intel Core i7-7700K
4.2GHZ Quad-Core CPU with 16GB RAM. In Table 3,
we show the analysis time for the 14 bugs REPT can an-
alyze. We can see that REPT finishes its analysis within
20 seconds for all the 14 bugs.

5.3 Effectiveness
To evaluate the effectiveness of REPT, we check if re-
verse debugging based on recovered data can be used to
effectively diagnose a bug. To make this check objec-
tive, we say REPT is effective if the values of variables
that are involved in the bug fix are correctly recovered.
For all the 16 bugs listed in Table 1, REPT is effective
for 14 bugs. REPT does not work for Chrome-776677
because the collected trace contains in-place code update
for jitted code, which fails Intel PT trace parsing. REPT
does not work for LibreOffice-88914, because this is a
deadlock bug that triggers an infinite loop, which easily
fills up the circular trace buffer and causes the program
execution history before the loop to be lost. Out of those
14 bugs, we select three complicated ones to demonstrate
the effectiveness of REPT.

Pbzip2. This is a use-after-free bug caused by a race
condition. Pbzip2 is a parallel file (de)compressor based
on bzip2. Specifically, it divides an input file into chunks

of an equal size and spawns multiple child threads to
process them in parallel. The main thread synchronizes
with child threads using a mutex. Unfortunately, there
is a race condition bug where the main thread may free
the mutex before all child threads finish, causing the pro-
gram to crash when a child thread dereferences a pointer
field inside the freed mutex. With REPT, a developer can
set a data breakpoint on the pointer field, and locate the
instruction that overwrites the pointer field in the heap
free operation on the main thread by going backwards
along the execution.

Python-31530. This is a race condition bug in
Python’s implementation of its file objects. Python
preloads the file content as an optimization for its file
operations. To do so, Python allocates a buffer based on
the given size bufsize and assigns it to a pointer field
f buf in the file object. Then, it reads the file con-
tent into the buffer, and finally updates another pointer
field f bufend so that it points to the end of the buffer
(i.e., f bufend=f buf+bufsize). The race condi-
tion happens when two threads preload the file content si-
multaneously. Specifically, while a thread is reading file
content into the buffer, another thread starts preloading
and overwrites f buf with a smaller buffer. Then, the
original thread updates f bufend based on the over-
written f buf and the old bufsize, which makes
f bufend point to a location beyond the actually al-
located buffer. This causes Python to crash when it at-
tempts to read the data outside of the allocated buffer.
With REPT, a developer can set data breakpoints on both
f buf and f bufend. By going backwards along the
reconstructed execution, the developer can see how the
race condition bug overwrites f buf and leads to an in-
consistent f bufend.

Chrome-784183. This is an integer overflow bug in
a validation routine used for image snipping. The val-
idation routine checks if the snipped area is within the
original image. For example, given an image represented
as a matrix of pixels, one can snip the image by choos-
ing y rows from row x. The validation routine ensures
x+y is not greater than the height of the original image.
Unfortunately, the routine does not check if x+y over-
flows. Thus, the check is incorrectly passed when a large
y causes an integer overflow. This results in the subse-
quent crash when Chrome attempts to access a pixel in
the snipped area based on y. When the crash happens,
the validation function has already returned and more
than 500K instructions have been executed afterwards.
With REPT, a developer can go back to the validation
routine and single step through it to quickly pinpoint the
actual arithmetic operation that overflows.
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5.4 Deployment

We have received anecdotal stories from Microsoft de-
velopers in using REPT to successfully debug failures
reported to WER [30]. The very first production bug that
is successfully resolved with the help of REPT had been
left unfixed for almost two years because developers can-
not reproduce the crash locally. The failure occurs in
Microsoft Edge when an exception is thrown because a
function returns with an error. The bug is hard to fix be-
cause there are two possible reasons for the function to
fail and it is difficult to tell the actual reason by look-
ing at the memory dump. With the reverse debugging
enabled by REPT, the developer is able to step through
the function based on the reconstructed execution his-
tory and quickly find out the root cause and fix the bug.
In summary, a two-year-old bug was fixed in just a few
minutes thanks to REPT.

6 Discussion

In this section, we discuss the limitations of REPT and
how we plan to address them in future work.

When developers use REPT in practice, they currently
have to deal with two main limitations. First, the control
flow trace may not be long enough to capture the defect
(e.g., the free call is not in the trace for a use-after-free
bug). Second, data values that are necessary for debug-
ging the failure are not recovered (e.g., the heap address
passed to the free call is not recovered for a use-after-free
bug). We cannot simply use a large circular trace buffer
to solve this problem because the data recovery accuracy
decreases when the trace size increases.

REPT currently does not capture any data during a
program’s execution. To fundamentally solve these two
limitations, we will need to log more data than just the
memory dump. It is an open research question to iden-
tify a good trade-off between online data logging, run-
time overhead, and offline data recovery. A potential di-
rection is to leverage the new PTWRITE instruction [36]
to log data that is important for REPT’s data recovery.

The current implementation of REPT only supports
reverse debugging of user-mode executions. While
REPT’s core analysis is on machine instructions and thus
independent of the privilege mode, we need to properly
handle kernel-specific artifacts such as interrupts to sup-
port reverse debugging of kernel-mode executions.

In addition to reverse debugging, we believe one can
leverage the execution history recovered by REPT to per-
form automatic root cause analysis. The challenge is that
the data recovery of REPT is not perfect, so the research

question is how to perform automatic root cause analysis
based on the imperfect information provided by REPT.

Our evaluation of REPT has been focused on software
running on a single machine. When developers debug
distributed systems, they usually rely on event logging.
It is an interesting research direction to study how pro-
gram tracing can be combined with event logging to help
developers debug bugs in distributed systems. We have
not been able to apply REPT to mobile applications be-
cause there is no efficient hardware tracing like Intel PT
available on mobile devices.

7 Related Work

There is a large body of related work dedicated to debug-
ging failures. More recently, there have been increas-
ing interest in debugging failures in deployed systems.
In this section, we discuss some representative examples
and describe how REPT differs.

Automatic Root Cause Diagnosis Techniques. A
large body of automated root cause diagnosis techniques
rely on statistical techniques such as sampling and out-
lier detection to isolate the key reasons behind a fail-
ure and thus help debugging. Cooperative bug isola-
tion [19, 20, 37, 41], failure sketching [40], and lazy di-
agnosis [39] are state-of-the-art techniques. Unlike these
techniques, REPT does not target at a subset of poten-
tial bugs or rely on statistical methods to isolate failure
causes, but it rather focuses on reconstructing executions.
We perceive these techniques as orthogonal and comple-
mentary to REPT.

POMP [57] is an automatic root cause analysis tool
based on a control flow trace and a memory dump. It
handles missing memory writes by running hypothe-
sis tests recursively, which significantly limits its effi-
ciency, because the number of hypotheses grows expo-
nentially with the trace size. In contrast, REPT uses a
new error correction technique to do forward/backward
analysis iteratively, which makes its analysis grow lin-
early with the trace size. We compare their performance
on 3 of the 14 bugs (Nasm-2004-1287, PuTTY-2016-
2563, and Python-2007-4965) that are evaluated by both.
REPT is 1 to 3 orders of magnitude faster than POMP.
For instance, POMP takes 30 minutes to analyze the
PuTTY-2016-2563 bug, but REPT only takes 5.2 sec-
onds. POMP is evaluated only on how well it works for
root cause analysis. There is no instruction-level accu-
racy reported in the paper, so we cannot directly com-
pare its accuracy with REPT. Furthermore, POMP only
supports a single thread, but REPT handles concurrency.

ProRace [62] attempts to recover data values based
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on the control flow logged by Intel PT and the register
values logged by Intel Processor Event Based Sampling
(PEBS) [36]. Unlike REPT, ProRace does not provide
solutions for the problems of missing memory writes and
concurrent memory writes.

PRES [51] and HOLMES [24] record execution infor-
mation (e.g., path profiles, function call traces, etc.) to
help debug failures. PRES performs state space explo-
ration using the recorded information to reproduce bugs.
HOLMES performs bug diagnosis purely based on con-
trol flow traces. REPT relies on the lightweight hard-
ware control flow tracing to reconstruct data flows from
a memory dump.

“Better Bug Reporting” [23] is a system that performs
symbolic execution on a full execution trace to generate
a new input that can lead to the same failure. Report-
ing the generated input instead of the original input can
provide better privacy. The main limitation is that it usu-
ally introduces high overhead to record a full execution
trace. Furthermore, by using a full trace, this bug report-
ing scheme does not need to handle memory aliasing, but
this is not the case for REPT.

Execution Synthesis (ESD) [60] does not assume there
is any execution trace. Given a coredump, it relies on
heuristics to explore possible paths to search for inputs
that may lead to the crash. As recognized in the ESD
paper, due to the limitations of symbolic executions for
solving complex constraints, ESD may not be able to
scale to large programs with long executions.

Delta debugging [61] iteratively isolates program in-
puts and the control flow of failing executions by repeat-
edly reproducing the failing and successful runs, and al-
tering variable values. REPT does not make the assump-
tion that failures can be reproduced and operates on a
single control flow trace and memory dump.

PSE [42] is a static analysis tool that performs back-
ward slicing and alias analysis on source code to identify
potential sources of a NULL pointer. PSE has false pos-
itives and is not evaluated on real-world crashes.

Record/Replay Techniques. As we discussed earlier,
certain techniques rely on full system record/replay [47–
49,56] to help debug failures. REPT does not rely on full
system record/replay, which is expensive for deployment
usage, but rather reconstructs executions by leveraging
lightweight control flow tracing.

Castor [43] is a recent record/replay system that relies
on commodity hardware support as well as instrumen-
tation to enable low-overhead recording. Castor works
efficiently for programs without data races. In our expe-
rience, many programs have data races in practice, which
actually make debugging very hard. REPT handles sys-

tems with data races.
Ochiai [16] and Tarantula [38] record failing and suc-

cessful executions and replay them to isolate root causes.
REPT does not rely on expensive record/replay tech-
niques nor does it assume bugs can be reproduced.

H3 [35] uses a control flow trace to reduce the con-
straint complexity for finding a schedule of shared data
accesses that can reproduce a failure. H3 does not re-
cover data values, and only applies constraint solving to
a small number of shared variables.

State-of-the-Art Techniques in Deployed Systems.
Despite extensive prior research, to our knowledge, there
are few examples of debugging techniques that are ac-
tively used in deployed systems. RETracer [27] is a bug
triaging tool that was deployed in Windows Error Re-
porting [30]. RETracer assigns “blame” to a function
for modifying a pointer that ultimately causes an access
violation. RETracer performs backward taint analysis
based on an approximate execution history recovered by
reverse execution. RETracer does not require a control
flow trace but can only recover limited data values.

8 Conclusion

We have presented REPT, a practical solution for re-
verse debugging of software failures in deployed sys-
tems. REPT can accurately and efficiently recover data
values based on a control flow trace and a memory dump
by performing forward and backward execution itera-
tively with error correction. We implement and deploy
REPT into the ecosystem of Microsoft Windows for pro-
gram tracing, failure reporting, and debugging. Our ex-
periments show that REPT can recover data values with
high accuracy in just seconds, and its reverse debugging
is effective for diagnosing 14 out of 16 bugs. Given
REPT, we hope one day developers will refuse to debug
failures without reverse debugging.
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Abstract
We present a new approach to testing file-system crash
consistency: bounded black-box crash testing (B3). B3

tests the file system in a black-box manner using work-
loads of file-system operations. Since the space of pos-
sible workloads is infinite, B3 bounds this space based
on parameters such as the number of file-system oper-
ations or which operations to include, and exhaustively
generates workloads within this bounded space. Each
workload is tested on the target file system by simulat-
ing power-loss crashes while the workload is being exe-
cuted, and checking if the file system recovers to a cor-
rect state after each crash. B3 builds upon insights de-
rived from our study of crash-consistency bugs reported
in Linux file systems in the last five years. We observed
that most reported bugs can be reproduced using small
workloads of three or fewer file-system operations on a
newly-created file system, and that all reported bugs re-
sult from crashes after fsync() related system calls.
We build two tools, CRASHMONKEY and ACE, to demon-
strate the effectiveness of this approach. Our tools are
able to find 24 out of the 26 crash-consistency bugs re-
ported in the last five years. Our tools also revealed
10 new crash-consistency bugs in widely-used, mature
Linux file systems, seven of which existed in the kernel
since 2014. The new bugs result in severe consequences
like broken rename atomicity and loss of persisted files.

1 Introduction
A file system is crash consistent if it always recovers to a
correct state after a crash due to a power loss or a kernel
panic. The file-system state is correct if the file system’s
internal data structures are consistent, and files that were
persisted before the crash are not lost or corrupted. When
developers added delayed allocation to the ext4 file sys-
tem [37] in 2009, they introduced a crash-consistency
bug that led to wide-spread data loss [24]. Given the po-
tential consequences of crash-consistency bugs and the

∗Both authors contributed equally

fact that even professionally-managed datacenters occa-
sionally suffer from power losses [39–42, 60, 61], it is
important to ensure that file systems are crash consistent.

Unfortunately, there is little to no crash-consistency
testing today for widely-used Linux file systems such as
ext4, xfs [55], btrfs [51], and F2FS [25]. The current
practice in the Linux file-system community is to not do
any proactive crash-consistency testing. If a user reports
a crash-consistency bug, the file-system developers will
then reactively write a test to capture that bug. Linux file-
system developers use xfstests [16], an ad-hoc col-
lection of correctness tests, to perform regression testing.
xfstests contains a total of 482 correctness tests that
are applicable to all POSIX file systems. Of these 482
tests, only 26 (5%) are crash-consistency tests. Thus,
file-system developers have no easy way of systemati-
cally testing the crash consistency of their file systems.

This paper introduces a new approach to testing file-
system crash consistency: bounded black-box crash test-
ing (B3). B3 is a black-box testing approach: no file-
system code is modified. B3 works by exhaustively gen-
erating workloads within a bounded space, simulating
a crash after persistence operations like fsync() in
the workload, and finally testing whether the file sys-
tem recovers correctly from the crash. We implement the
B3 approach by building two tools, CRASHMONKEY and
ACE. Our tools are able to find 24 out of the 26 crash-
consistency bugs reported in the last five years, across
seven kernel versions and three file systems. Further-
more, the systematic nature of B3 allows our tools to
find new bugs: CRASHMONKEY and ACE find 10 bugs
in widely-used Linux file systems which lead to severe
consequences such as rename() not being atomic and
files disappearing after fsync(). We have reported all
new bugs; developers have submitted patches for four,
and are working to fix the rest.

We formulated B3 based on our study of all 26 crash-
consistency bugs in ext4, xfs, btrfs, and F2FS reported in
the last five years (§3). Our study provided key insights

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    33



that made B3 feasible: most reported bugs involved a
small number of file-system operations on a new file sys-
tem, with a crash right after a persistence point (a call to
fsync(), fdatasync(), or sync that flushes data
to persistent storage). Most bugs could be found or re-
produced simply by systematic testing on a small space
of workloads, with crashes only after persistence points.
Note that without these insights which bound the work-
load space, B3 is infeasible: there are infinite workloads
that can be run on infinite file-system images.

Choosing to crash the system only after persistence
points is one of the key decisions that makes B3 tractable.
B3 does not explore bugs that arise due to crashes in
the middle of a file-system operation because file-system
guarantees are undefined in such scenarios. Moreover,
B3 cannot reliably assume that the on-storage file-system
state has been modified if there is no persistence point.
Crashing only after persistence points bounds the work
to be done to test crash consistency, and also provides
clear correctness criteria: files and directories which
were successfully persisted before the crash must survive
the crash and not be corrupted.

B3 bounds the space of workloads in several other
ways. First, B3 restricts the number of file-system op-
erations in the workload, and simulates crashes only af-
ter persistence points. Second, B3 restricts the files and
directories that function as arguments to the file-system
operations in the workload. Finally, B3 restricts the ini-
tial state of the system to be a small, new file system. To-
gether, these bounds greatly reduce the space of possible
workloads, allowing CRASHMONKEY and ACE to exhaus-
tively generate and test workloads.

An approach like B3 is only feasible if we can auto-
matically and efficiently check crash consistency for ar-
bitrary workloads. We built CRASHMONKEY, a frame-
work that simulates crashes during workload execution
and tests for consistency on the recovered file-system
image. CRASHMONKEY first profiles a given workload,
capturing all the IO resulting from the workload. It then
replays IO requests until a persistence point to create a
new file-system image we term a crash state. At each
persistence point, CRASHMONKEY also captures a snap-
shot of files and directories which have been explicitly
persisted (and should therefore survive a crash). CRASH-
MONKEY then mounts the file system in each crash state,
allows the file system to recover, and uses it’s own fine-
grained checks to validate if persisted data and metadata
are available and correct. Thus, CRASHMONKEY is able
to check crash consistency for arbitrary workloads auto-
matically, without any manual effort from the user. This
property is key to realizing the B3 approach.

We built the Automatic Crash Explorer (ACE) to ex-
haustively generate workloads given user constraints and
file-system semantics. ACE first generates a sequence of
file-system operations; e.g., a link() followed by a
rename(). Next, ACE fills in the arguments of each
file-system operation. It then exhaustively generates
workloads where each file-system operation can option-
ally be followed by an fsync(), fdatasync(), or
a global sync command. Finally, ACE adds operations
to satisfy any dependencies (e.g., a file must exist before
being renamed). Thus, given a set of constraints, ACE

generates an exhaustive set of workloads, each of which
is tested with CRASHMONKEY on the target file system.

B3 offers a new point in the spectrum of techniques
addressing file-system crash consistency, alongside veri-
fied file systems [8, 9, 53] and model checking [63, 64].
Unlike these approaches, B3 targets widely deployed file
systems written in low-level languages, and does not re-
quire annotating or modifying file-system code.

However, B3 is not without limitations as it is not
guaranteed to find all crash-consistency bugs. Currently,
ACE’s bounds do not expose bugs that require a large
number of operations or exhaustion of file-system re-
sources. While CRASHMONKEY can test such a work-
load, ACE will not be able to automatically generate the
workload. Despite these limitations, we are hopeful that
the black-box nature and ease-of-use of our tools will en-
courage their adoption in the file-system community, un-
like model checking and verified file systems. We are
encouraged that researchers at Hanyang University are
using our tools to test the crash consistency of their re-
search file system, BarrierFS [62].

This paper makes the following contributions:
• A detailed analysis of crash-consistency bugs re-

ported across three widely-used file systems and
seven kernel versions in the last five years (§3)
• The bounded black-box crash testing approach (§4)
• The design and implementation of CRASHMONKEY

and ACE1 (§5)
• Experimental results demonstrating that our tools

are able to efficiently find existing and new bugs
across widely-used Linux file systems (§6)

2 Background
We first provide some background on file-system crash
consistency, why crash-consistency bugs occur, and why
it is important to test file-system crash consistency.

Crash consistency. A file system is crash-consistent if a
number of invariants about the file-system state hold af-
ter a crash due to power loss or a kernel panic [10, 38].

1 https://github.com/utsaslab/crashmonkey
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Typically, these invariants include using resources only
after initialization (e.g., path-names point to initialized
metadata such as inodes), safely reusing resources after
deletion (e.g., two files shouldn’t think they both own
the same data block), and atomically performing cer-
tain operations such as renaming a file. Conventionally,
crash consistency is only concerned with internal file-
system integrity. A bug that loses previously persisted
data would not be considered a crash-consistency bug as
long as the file system remains internally consistent. In
this paper, we widen the definition to include data loss.
Thus, if a file system loses persisted data or files after
a crash, we consider it a crash-consistency bug. The
Linux file-system developers agree with this wider defi-
nition of crash consistency [15, 56]. However, it is im-
portant to note that data or metadata that has not been
explicitly persisted does not fall under our definition; file
systems are allowed to lose such data in case of power
loss. Finally, there is an important difference between
crash-consistency bugs and file-system correctness bugs:
crash-consistency bugs do not lead to incorrect behavior
if no crash occurs.

Why crash-consistency bugs occur. The root of crash
consistency bugs is the fact that most file-system opera-
tions only modify in-memory state. For example, when
a user creates a file, the new file exists only in memory
until it is explicitly persisted via the fsync() call or by
a background thread which periodically writes out dirty
in-memory data and metadata.

Modern file systems are complex and keep a signifi-
cant number of metadata-related data structures in mem-
ory. For example, btrfs organizes its metadata as B+
trees [51]. Modifications to these data structures are ac-
cumulated in memory and written to storage either on
fsync(), or by a background thread. Developers could
make two common types of mistakes while persisting
these in-memory structures, which consequently lead to
crash-consistency bugs. The first is neglecting to update
certain fields of the data structure. For example, btrfs had
a bug where the field in the file inode that determined
whether it should be persisted was not updated. As a re-
sult, fsync() on the file became a no-op, causing data
loss on a crash [28]. The second is improperly order-
ing data and metadata when persisting it. For example,
when delayed allocation was introduced in ext4, applica-
tions that used rename to atomically update files lost data
since the rename could be persisted before the file’s new
data [24]. Despite the fact that the errors that cause crash-
consistency bugs are very different in these two cases, the
fundamental problem is that some in-memory state that
is required to recover correctly is not written to disk.

1 create foo
2 link foo bar
3 sync
4 unlink bar
5 create bar
6 fsync bar
7 CRASH!

Figure 1: Example crash-consistency bug. The figure
shows the workload to expose a crash-consistency bug
that was reported in the btrfs file system in Feb 2018 [33].
The bug causes the file system to become un-mountable.

POSIX and file-system guarantees. Nominally, Linux
file systems implement the POSIX API, providing guar-
antees as laid out in the POSIX standard [18]. Unfor-
tunately, POSIX is extremely vague. For example, un-
der POSIX it is legal for fsync() to not make data
durable [48]. Mac OSX takes advantage of this legality,
and requires users to employ fcntl(F FULLFSYNC)
to make data durable [3]. As a result, file systems of-
ten offer guarantees above and beyond what is required
by POSIX. For example, on ext4, persisting a new file
will also persist its directory entry. Unfortunately, these
guarantees vary across different file systems, so we con-
tacted the developers of each file system to ensure we are
testing the guarantees that they seek to provide.

Example of a crash-consistency bug. Figure 1 shows
a crash-consistency bug in btrfs that causes the file
system to become un-mountable (unavailable) after the
crash. Resolving the bug requires file-system repair us-
ing btrfs-check; for lay users, this requires guidance
of the developers [7]. This bug occurs on btrfs because
the unlink affects two different data structures which be-
come out of sync if there is a crash. On recovery, btrfs
tries to unlink bar twice, producing an error.

Why testing crash consistency is important.
File-system researchers are developing new crash-
consistency techniques [13, 14, 46] and de-
signing new file systems that increase perfor-
mance [1, 5, 21, 23, 50, 54, 68, 69]. Meanwhile,
Linux file systems such as btrfs include a number of
optimizations that affect the ordering of IO requests, and
hence, crash consistency. However, crash consistency
is subtle and hard to get right, and a mistake could lead
to silent data corruption and data loss. Thus, changes
affecting crash consistency should be carefully tested.

State of crash-consistency testing today.
xfstests [16] is a regression test suite to check
file-system correctness, with a small proportion (5%)
of crash-consistency tests. These tests are aimed at
avoiding the recurrence of the same bug over time, but
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Consequence # bugs

Corruption 19

Data Inconsistency 6

Un-mountable file system 3

Total 28

Kernel Version # bugs

3.12 3

3.13 9

3.16 1

4.1.1 2

4.4 9

4.15 3

4.16 (latest) 1

Total 28

File System # bugs

ext4 2

F2FS 2

btrfs 24

Total 28

# of ops required # bugs

1 3

2 14

3 9

Total 26

Table 1: Analyzing crash-consistency bugs. The ta-
bles break down the 26 unique crash-consistency bugs
reported over the last five years (since 2013) by differ-
ent criteria. Two bugs were reported on two different file
systems, leading to a total of 28 bugs.

do not generalize to identifying variants of the bug. Ad-
ditionally, each of these test cases requires the developer
to write a checker describing the correct behavior of
the file system after a crash. Given the infinite space of
workloads, it is extremely hard to handcraft workloads
that could reveal bugs. These factors make xfstests
insufficient to identify new crash-consistency bugs.

3 Studying Crash-Consistency Bugs
We present an analysis of 26 unique crash-consistency
bugs reported by users over the last five years on widely-
used Linux file systems [58]. We find these bugs ei-
ther by examining mailing list messages or looking at the
crash-consistency tests in the xfstests regression test
suite. Few of the crash-consistency tests in xfstests
link to the bugs that resulted in the test being written.

Due to the nature of crash-consistency bugs (all in-
memory information is lost upon crash), it is hard to tie
them to a specific workload. As a result, the number of
reported bugs is low. We believe there are many crash-
consistency bugs that go unreported in the wild.

We analyze the bugs based on consequence, kernel
version, file system, and the number of file-system oper-
ations required to reproduce them. There are 26 unique
bugs spread across ext4, F2FS, and btrfs. Each unique

bug requires a unique set of file-system operations to re-
produce. Two bugs occur on two file systems (F2FS and
ext4, F2FS and btrfs), leading to a total of 28 bugs.

Table 1 presents some statistics about the crash-
consistency bugs. The table presents the kernel version
in which the bug was reported. If the bug report did
not include a version, it presents the latest kernel ver-
sion in which B3 could reproduce the bug (the two bugs
that B3 could not reproduce appear in kernel 3.13). The
bugs have severe consequences, ranging from file-system
corruption to the file system becoming un-mountable.
The four most common file-system operations involved
in crash-consistency bugs were write(), link(),
unlink(), and rename(). Most reported bugs re-
sulted from either reusing filenames in multiple file-
system operations or write operations to overlapping file
regions. Most reported bugs could be reproduced with
three or fewer file-system operations.

Examples. Table 2 showcases a few of the crash-
consistency bugs. Bug #1 [27] involves creating two
files in a directory and persisting only one of them. btrfs
log recovery incorrectly counts the directory size, mak-
ing the directory un-removable thereafter. Bug #2 [29]
involves creating a hard link to an already existing file.
A crash results in btrfs recovering the file with a size
0, thereby making its data inaccessible. A similar bug
(#5 [19]) manifests in ext4 in the direct write path, where
the write succeeds and blocks are allocated, but the file
size is incorrectly updated to be zero, leading to data loss.

Complexity leads to bugs. The ext4 file system has
undergone more than 15 years of development, and, as
a result, has only two bugs. The btrfs and F2FS file
systems are more recent: btrfs was introduced in 2007,
while F2FS was introduced in 2012. In particular, btrfs
is an extremely complex file system that provides fea-
tures such as snapshots, cloning, out-of-band deduplica-
tion, and compression. btrfs maintains its metadata (such
as inodes and bitmaps) in the form of various copy-on-
write B+ trees. This makes achieving crash consistency
tricky, as the updates have to be propagated to several
trees. Thus, it is not surprising that most reported crash-
consistency bugs occurred in btrfs. As file systems be-
come more complex in the future, we expect to see a
corresponding increase in crash-consistency bugs.

Crash-consistency bugs are hard to find. Despite the
fact that the file systems we examined were widely used,
some bugs have remained hidden in them for years. For
example, btrfs had a crash-consistency bug that was only
discovered seven years after it was introduced. The
bug was caused by incorrectly processing a hard link in
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Bug # File System Consequence # of ops ops involved (excluding persistence operations)

1 btrfs Directory un-removable 2 creat(A/x), creat(A/y)

2 btrfs Persisted data lost 2 pwrite(x), link(x,y)

3 btrfs Directory un-removable 3 link(x,A/x), link(x,A/y), unlink(A/y)

4 F2FS Persisted file disappears 3 pwrite(x), rename(x,y), pwrite(x)

5 ext4 Persisted data lost 2 pwrite(x), direct write(x)

Table 2: Examples of crash-consistency bugs. The table shows some of the crash-consistency bugs reported in the
last five years. The bugs have severe consequences, ranging from losing user data to making directories un-removable.

btrfs’s data structures. When a hard link is added, the
directory entry is added to one data structure, while the
inode is added to another data structure. When a crash
occurred, only one of these data structures would be cor-
rectly recovered, resulting in the directory containing the
hard link becoming un-removable [30]. This bug was
present since the log tree was added in 2008; however,
the bug was only discovered in 2015.

Systematic testing is required. Once the hard link bug
in btrfs was discovered, the btrfs developers quickly fixed
it. However, they only fixed one code path that could lead
to the bug. The same bug could be triggered in another
code path, a fact that was only discovered four months
after the original bug was reported. While the original
bug workload required creating hard links and calling
fsync() on the original file and parent directory, this
one required calling fsync() on a sibling in the direc-
tory where the hard link was created [31]. Systematic
testing of the file system would have revealed that the
bug could be triggered via an alternate code path.

Small workloads can reveal bugs on an empty file sys-
tem. Most of the reported bugs do not require a special
file-system image or a large number of file-system opera-
tions to reproduce. 24 out of the 26 reported bugs require
three or fewer core file-system operations to reproduce
on an empty file system. This count is low because we
do not count dependent operations: for example, a file
has to exist before being renamed and a directory has to
exist before a file can be created inside it. Such depen-
dent operations can be inferred given the core file-system
operations. Of the remaining two bugs, one required a
special command (dropcaches) to be run during the
workload for the bug to manifest. The other bug required
specific setup: 3000 hard links had to already exist (forc-
ing an external reflink) for the bug to manifest.

Reported bugs involve a crash after persistence. All
reported bugs involved a crash right after a persistence
point: a call to fsync(), fdatasync(), or the
global sync command. These commands are important

because file-system operations only modify in-memory
metadata and data by default. Only persistence points
reliably change the file-system state on storage. There-
fore, unless a file or directory has been persisted, it
cannot be expected to survive a crash. While crashes
could technically occur at any point, a user cannot com-
plain if a file that has not been persisted goes missing
after a crash. Thus, every crash-consistency bug in-
volves persisted data or metadata that is affected by the
bug after a crash, and a workload that does not have a
persistence point cannot lead to a reproducible crash-
consistency bug. This also points to an effective way to
find crash-consistency bugs: perform a sequence of file-
system operations, change on-storage file-system state
with fsync() or similar calls, crash, and then check
files and directories that were previously persisted.

4 B3: Bounded Black-Box Crash Testing
Based on the insights from our study of crash-
consistency bugs, we introduce a new approach to testing
file-system crash consistency: Bounded Black-Box crash
testing (B3). B3 is a black-box testing approach built
upon the insight that most reported crash-consistency
bugs can be found by systematically testing small se-
quences of file-system operations on a new file system.
B3 exercises the file system through its system-call API,
and observes the file-system behavior via read and write
IO. As a result, B3 does not require annotating or modi-
fying file-system source code.

4.1 Overview

B3 generates sequences of file-system operations, called
workloads. Since the space of possible workloads is in-
finite, B3 bounds the space of workloads using insights
from the study. Within the determined bounds, B3 ex-
haustively generates and tests all possible workloads.
Each workload is tested by simulating a crash after each
persistence point, and checking if the file system recovers
to a correct state. B3 performs fine-grained correctness
checks on the recovered file-system state; only files and
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directories that were explicitly persisted are checked. B3

checks for both data and metadata (size, link count, and
block count) consistency for files and directories.

Crash points. The main insight from the study that
makes an approach like B3 feasible is the choice of crash
points; a crash is simulated only after each persistence
point in the workload instead of in the middle of file-
system operations. This design choice was motivated by
two factors. First, file-system guarantees are undefined
if a crash occurs in the middle of a file-system opera-
tion; only files and directories that were previously suc-
cessfully persisted need to survive the crash. File-system
developers are overloaded, and bugs involving data or
metadata that has not been explicitly persisted is given
low priority (and sometimes not acknowledged as a bug).
Second, if we crash in the middle of an operation, there
are a number of correct states the file system could re-
cover to. If a file-system operation translates to n block
IO requests, there could be 2n different on-disk crash
states if we crashed anywhere during the operation. Re-
stricting crashes to occur after persistence points bounds
this space linearly in the number of operations compris-
ing the workload. The small set of crash points and cor-
rect states makes automated testing easier. Our choice of
crash points naturally leads to bugs where persisted data
and metadata is corrupted or missing and file-system de-
velopers are strongly motivated to fix such bugs.

4.2 Bounds used by B3

Based on our study of crash-consistency bugs, B3 bounds
the space of possible workloads in several ways:

1. Number of operations. B3 bounds the number of
file-system operations (termed the sequence length)
in the workload. A seq-X workload has X core
file-system operations in it, not counting dependent
operations such as creating a file before renaming it.

2. Files and directories in workload. We observe
that in the reported bugs, errors result from the reuse
of a small set of files for metadata operations. Thus,
B3 restricts workloads to use few files per directory,
and a low directory depth. This restriction automat-
ically reduces the inputs for metadata-related oper-
ations such as rename().

3. Data operations. The study also indicated that
bugs related to data inconsistency mainly occur due
to writes to overlapping file ranges. In most cases,
the bugs are not dependent on the exact offset and
length used in the writes, but on the interaction be-
tween the overlapping regions from writes. The
study indicates that a broad classification of writes

such as appends to the end of a file, overwrites to
overlapping regions of file, etc. is sufficient to find
crash-consistency bugs.

4. Initial file-system state. Most of the bugs analyzed
in the study did not require a specific initial file-
system state (or a large file system) to be revealed.
Moreover, most of the studied bugs could be repro-
duced starting from the same, small file-system im-
age. Therefore, B3 can test all workloads starting
from the same initial file-system state.

4.3 Fine-grained correctness checking

B3 uses fine-grained correctness checks to validate the
data and metadata of persisted files and directories in
each crash state. Since fsck is both time-consuming
to run and can miss data loss/corruption bugs, it is not a
suitable checker for B3.

4.4 Limitations

The B3 approach has a number of limitations:
1. B3 does not make any guarantees about finding

all crash-consistency bugs. It is sound but incom-
plete. However, because B3 tests exhaustively, if the
workload that triggers the bug falls within the con-
strained workload space, B3 will find it. Therefore,
the effectiveness of B3 depends upon the bounds
chosen and the number of workloads tested.

2. B3 focuses on a specific class of bugs. It does not
simulate a crash in the middle of a file-system oper-
ation and it does not re-order IO requests to create
different crash states. The implicit assumption is
that the core crash-consistency mechanism, such as
journaling [49] or copy-on-write [20, 52], is work-
ing correctly. Instead, we assume that it is the rest of
the file system that has bugs. The crash-consistency
bug study indicates this assumption is reasonable.

3. B3 focuses on workloads where files and directories
are explicitly persisted. If we created a file, waited
one hour, then crashed, and found that the file was
gone after the file-system recovered, this would also
be a crash-consistency bug. However, B3 does not
explore such workloads as they take a significant
amount of time to run and are not easily reproduced
in a deterministic fashion.

4. Due to its black-box nature, B3 cannot pinpoint the
exact lines of code that result in the observed bug.
Once a bug has been revealed by B3, finding the root
cause requires further investigation. However, B3

aids in investigating the root cause of the bug since
it provides a way to reproduce the bug in a deter-
ministic fashion.
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Figure 2: System architecture. Given bounds for ex-
ploration, ACE generates a set of workloads. Each work-
load is then fed to CRASHMONKEY, which generates a
set of crash states and corresponding oracles. The Au-
toChecker compares persisted files in each oracle/crash
state pair; a mismatch indicates a bug.

Despite its shortcomings, we believe B3 is a useful ad-
dition to the arsenal of techniques for testing file-system
crash consistency. The true strengths of B3 lie in its sys-
tematic nature and the fact that it does not require any
changes to existing systems. Therefore, it is ideal for
complex and widely-used file systems written in low-
level languages like C, where stronger approaches like
verification cannot be easily used.

5 CrashMonkey and Ace
We realize the B3 approach by building two tools,
CRASHMONKEY and ACE. As shown in Figure 2, CRASH-
MONKEY is responsible for simulating crashes at differ-
ent points of a given workload and testing if the file sys-
tem recovers correctly after each simulated crash, while
the Automatic Crash Explorer (ACE) is responsible for
exhaustively generating workloads in a bounded space.

5.1 CrashMonkey

CRASHMONKEY uses record-and-replay techniques to
simulate a crash in the middle of the workload and test if
the file system recovers to a correct state after the crash.
For maximum portability, CRASHMONKEY treats the file
system as a black box, only requiring that the file system
implement the POSIX API.

Overview. CRASHMONKEY operates in three phases as
shown in Figure 3. In the first phase, CRASHMONKEY

profiles the workload by collecting information about all
file-system operations and IO requests made during the
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Figure 3: CRASHMONKEY operation. CRASHMONKEY

first records the block IO requests that the workload
translates to, capturing reference images called oracles
after each persistence point. CRASHMONKEY then gener-
ates crash states by replaying the recorded IO and tests
for consistency against the corresponding oracle.

workload. The second phase replays IO requests until
a persistence point to create a crash state. The crash
state represents the state of storage if the system had
crashed after a persistence operation completed. CRASH-
MONKEY then mounts the file system in the crash state
and allows the file system to perform recovery. At each
persistence point, CRASHMONKEY also captures a refer-
ence file-system image, termed the oracle, by safely un-
mounting it so the file system completes any pending
operations or checkpointing. The oracle represents the
expected state of the file system after a crash. In the ab-
sence of bugs, persisted files should be the same in the
oracle and the crash state after recovery. In the third
phase, CRASHMONKEY’s AutoChecker tests for correct-
ness by comparing the persisted files and directories in
the oracle with the crash state after recovery.

CRASHMONKEY is implemented as two kernel mod-
ules and a set of user-space utilities. The kernel modules
consist of 1300 lines of C code which can be compiled
and inserted into the kernel at run time, thus avoiding
the need for long kernel re-compilations. The user-space
utilities consist of 4800 lines of C++ code. CRASHMON-
KEY’s separation into kernel modules and user-space util-
ities allows rapid porting to a different kernel version;
only the kernel modules need to be ported to the target
kernel. This allowed us to port CRASHMONKEY to seven
kernels to reproduce the bugs studied in §3.

Profiling workloads. CRASHMONKEY profiles work-
loads at two levels of the storage stack: it records block
IO requests, and it records system calls. It uses two ker-
nel modules to record block IO requests and create crash
states and oracles.

The first kernel module records all IO requests gener-
ated by the workload using a wrapper block device on
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B3 bound Insight from the study Bound chosen by ACE

Number of operations Small workloads of 2-3 core operations Maximum # of core ops in a workload is three

Files and directories Reuse file and directory names 2 directories of depth 2, each with 2 unique files

Data operations Coarse grained, overlapping ranges of writes Overwrites to start, middle & end of file, and appends

Initial file-system state No need of a special initial state or large image Start with a clean file-system image of size 100MB

Table 3: Bounds used by ACE. The table shows the specific values picked by ACE for each B3 bound.

which the target file system is mounted. The wrapper de-
vice records both data and metadata for IO requests (such
as sector number, IO size, and flags). Each persistence
point in the workload causes a special checkpoint request
to be inserted into the stream of IO requests recorded.
The checkpoint is simply an empty block IO request with
a special flag, to correlate the completion of a persistence
operation with the low-level block IO stream. All the
data recorded by the wrapper device is communicated to
the user-space utilities via ioctl calls.

The second kernel module in CRASHMONKEY is an
in-memory, copy-on-write block device that facilitates
snapshots. CRASHMONKEY creates a snapshot of the file
system before the profiling phase begins, which repre-
sents the base disk image. CRASHMONKEY provides fast,
writable snapshots by replaying the IO recorded during
profiling on top of the base disk image to generate a crash
state. Snapshots are also saved at each persistence point
in the workload to create oracles. Furthermore, since
the snapshots are copy-on-write, resetting a snapshot to
the base image simply means dropping the modified data
blocks, making it efficient.

CRASHMONKEY also records all open(), close(),
fsync(), fdatasync(), rename(), sync(), and
msync() calls in the workload so that when the work-
load does a persistence operation such as fsync(fd),
CRASHMONKEY is able to correlate fdwith a file that was
opened earlier. This allows CRASHMONKEY to track the
set of files and directories that were explicitly persisted
at any point in the workload. This information is used by
CRASHMONKEY’s AutoChecker to ensure that only files
and directories explicitly persisted at a given point in the
workload are compared. CRASHMONKEY uses its own
set of functions that wrap system calls which manipulate
files to record the required information.

Constructing crash states. To create a crash state,
CRASHMONKEY starts from the initial state of the file
system (before the workload was run), and uses a util-
ity similar to dd to replay all recorded IO requests from
the start of the workload until the next checkpoint in the
IO stream. The resultant crash state represents the state
of the storage just after the persistence-related call com-

pleted on the storage device. Since the IO stream re-
play ends directly after the next persistence point in the
stream, the generated crash point represents a file-system
state that is considered uncleanly unmounted. Therefore,
when the file system is mounted again, the kernel may
run file-system specific recovery code.

Automatically testing correctness. CRASHMONKEY’s
AutoChecker is able to test for correctness automatically
because it has three key pieces of information: it knows
which files were persisted, it has the correct data and
metadata of those files in the oracle, and it has the ac-
tual data and metadata of the corresponding files in the
crash state after recovery. Testing correctness is a simple
matter of comparing data and metadata of persisted files
in the oracle and the crash state.

CRASHMONKEY avoids using fsck because its run-
time is proportional to the amount of data in the file sys-
tem (not the amount of data changed) and it does not
detect the loss or corruption of user data. Instead, when
a crash state is re-mounted, CRASHMONKEY allows the
file system to run its recovery mechanism, like journal
replay, which is usually more lightweight than fsck.
fsck is run only if the recovered file system is un-
mountable. To check consistency, CRASHMONKEY uses
its own read and write checks after recovery. The read
checks used by CRASHMONKEY confirm that persisted
files and directories are accurately recovered. The write
checks test if a bug makes it impossible to modify files
or directories. For example, a btrfs bug made a directory
un-removable due to a stale file handle [27].

Since each file system has slightly different consis-
tency guarantees, we reached out to developers of each
file system we tested, to understand the guarantees pro-
vided by that file system. In some cases, our conversa-
tions prompted the developers to explicitly write down
the persistence guarantees of their file systems for the
first time [57]. During this process, we confirmed that
most file systems such as ext4 and btrfs implement a
stronger set of guarantees than the POSIX standard. For
example, while POSIX requires an fsync() on both a
newly created file and its parent directory to ensure the
file is present after a crash, many Linux file systems do
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not require the fsync() of the parent directory. Based
on the response from developers, we report bugs that vi-
olate the guarantees each file system aims to provide.

5.2 Automatic Crash Explorer (Ace)

ACE exhaustively generates workloads satisfying the
given bounds. ACE has two components, the workload
synthesizer and the adapter for CRASHMONKEY.

Workload synthesizer. The workload synthesizer ex-
haustively generates workloads within the state space de-
fined by the user specified bounds. The workloads gener-
ated in this stage are represented in a high-level language,
similar to the one depicted in Figure 4.

CrashMonkey Adapter. A custom adapter converts the
workload generated by the synthesizer into an equivalent
C++ test file that CRASHMONKEY can work with. This
adapter handles the insertion of wrapped file-system op-
erations that CRASHMONKEY tracks. Additionally, it in-
serts a special function-call at every persistence point,
which translates to the checkpoint IO. It is easy to ex-
tend ACE to be used with other record-and-replay tools
like dm-log-writes [4] by building custom adapters.

Table 3 shows how we used the insights from the study
to assign specific values for B3 bounds when we run
ACE. Given these bounds, ACE uses a multi-phase pro-
cess to generate workloads that are then fed into CRASH-
MONKEY. Figure 4 illustrates the four phases ACE goes
through to generate a seq-2 workload.

Phase 1: Select operations and generate workloads.
ACE first selects file-system operations for the given se-
quence length to make what we term the skeleton. By de-
fault, file-system operations can be repeated in the work-
load. The user may also supply bounds such as requir-
ing only a subset of file-system operations be used (e.g.,
to focus testing on new operations). ACE then exhaus-
tively generates workloads satisfying the given bounds.
For example, if the user specified the seq-2 workload
could only contain six file-system operations, ACE will
generate 6∗6 = 36 skeletons in phase one.

Phase 2: Select parameters. For each skeleton gen-
erated in phase one, ACE then selects the parameters
(system-call arguments) for each file-system operation.
By default, ACE uses two files at the top level and
two sub-directories with two files each as arguments for
metadata-related operations. ACE also understands the
semantics of file-system operations and exploits it to
eliminate the generation of symmetrical workloads. For
example, consider two operations link(foo, bar)
and link(bar, foo). The idea is to link two files
within the same directory, but the order of file names

chosen does not matter. In this example, one of the work-
loads would be discarded, thus reducing the total number
of workloads to be tested for the sequence.

For data operations, ACE chooses between whether a
write is an overwrite at the beginning, middle, or end
of the file or simply an append operation. Furthermore,
since our study showed that crash-consistency bugs oc-
cur when data operations overlap, ACE tries to overlap
data operations in phase two.

Each skeleton generated in phase one can lead to mul-
tiple workloads (based on different parameters) in phase
two. However, at the end of this phase, each generated
workload has a sequence of file-system operations with
all arguments identified.

Phase 3: Add persistence points. ACE optionally adds
a persistence point after each file-system operation in the
workload, but ACE does not require every operation to be
followed by a persistence point. However, ACE ensures
that the last operation in a workload is always followed
by a persistence point so that it is not truncated to a work-
load of lower sequence length. The file or directory to
be persisted in each call is selected from the same set
of files and directories used by phase two, and, for each
workload generated by phase two, phase three can gener-
ate multiple workloads by adding persistence points after
different sets of file-system operations.

Phase 4: Add dependencies. Finally, ACE satisfies vari-
ous dependencies to ensure the workload can execute on
a POSIX file system. For example, a file has to exist be-
fore being renamed or written to. Similarly, directories
have to be created if any operations on their files are in-
volved. Figure 4 shows how A, B, and A/foo are created
as dependencies in the workload. As a result, a seq-2
workload can have more than two file-system operations
in the final workloads. At the end of this phase, ACE com-
piles each workload from the high-level language into a
C++ program that can be passed to CRASHMONKEY.

Implementation. ACE consists of 2500 lines of Python
code, and currently supports 14 file-system operations.
All bugs analyzed in our study used one of these 14 file-
system operations. It is straightforward to expand ACE to
support more operations.

Running Ace with relaxed bounds. It is easy to re-
lax the bounds used by ACE to generate more workloads;
this comes at the cost of computational time used to test
the extra workloads. Care should be taken when relax-
ing the bounds, since the number of workloads increases
at a rapid rate. For example, ACE generates about 1.5M
workloads with three core file-system operations. Re-
laxing the default bound on the set of files and direc-
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Phase 1:
Select operations

Phase 2:
Select parameters

Phase 3:
Add persistence points

Phase 4:
Add dependencies

 1 rename() 
 2 link()

1 rename(A/foo,B/bar) 
2 link(B/bar, A/bar)

1 rename(A/foo,B/bar) 
  sync() 
2 link(B/bar, A/bar) 
  fsync(A/bar)

  mkdir(A) 
  mkdir(B) 
  create(A/foo) 
1 rename(A/foo,B/bar) 
  sync() 
2 link(B/bar, A/bar) 
  fsync(A/bar)

Figure 4: Workload generation in ACE. The figure shows the different phases involved in workload generation in
ACE. Given the sequence length, ACE first selects the operations, then selects the parameters for each operation, then
optionally adds persistence points after each operation, and finally satisfies file and directory dependencies for the
workload. The final workload may have more operations than the original sequence length.

tories to add one additional nested directory, increases
the number of workloads generated to 3.7M. This simple
change results in 2.5× more workloads. Note that in-
creasing the number file-system operations in the work-
load leads to an increase in the number of phase-1 skele-
tons generated, and adding more files to the argument
set increase the number of phase-2 workloads that can be
created. Therefore, the workload space must be carefully
expanded.

5.3 Testing and Bug Analysis

Testing Strategy. Given a target file system, we first
exhaustively generate seq-1 workloads and test them
using CRASHMONKEY. We then proceed to seq-2, and
then seq-3 workloads. By generating and testing work-
loads in this order, CRASHMONKEY only needs to simu-
late a crash at one point per workload. For example, even
if a seq-2 workload has two persistence points, crash-
ing after the first persistence point would be equivalent
to an already-explored seq-1 workload.

Analyzing Bug Reports. One of the challenges with a
black-box approach like B3 is that a single bug could re-
sult in many different workloads failing correctness tests.
We present two cases of multiple test failures in work-
loads, and how we mitigate them.

First, workloads in different sequences can fail be-
cause of the same bug. Our testing strategy is designed
to mitigate this: if a bug causes incorrect behavior with
a single file-system operation, it should be caught by a
seq-1 workload. Therefore, if we catch a bug only
in a seq-2 workload, it implies the bug results from
the interaction of the two file-system operations. Ideally,
we would run seq-1, report any bugs, and apply bug-
fix patches given by developers before running seq-2.
However, for quicker testing, ACE maintains a database
of all previously found bugs which includes the core file-

link(foo, bar) 
write(foo, 0, 4096) 

Inconsistent data

link(A/foo, A/bar) 
write(A/foo, 0, 4096) 

Inconsistent data

rename(foo, bar) 
creat(foo) 

File Missing

rename(foo, A/bar) 
creat(foo) 

File Missing

link() 
write() 

Inconsistent 
data

rename() 
creat() 

File Missing

Final Reports

Bug Reports

GROUP BY 
skeleton and 
consequence

Figure 5: Post-processing. The figure shows how gener-
ated bug reports are processed to eliminate duplicates.

system operations that produced each bug and the conse-
quence of the bug. For all new bugs reports generated by
CRASHMONKEY and ACE, it first compares the workload
and the consequence with the database of known bugs. If
there is a match, ACE does not report the bug to the user.

Second, similar workloads in the same sequence could
fail correctness tests due to the same bug. For efficient
analysis, we group together bug reports by the conse-
quence (e.g., file missing), and the skeleton (the sequence
of core file-system operations that comprise the work-
load) that triggered the bug, as shown in Figure 5. Us-
ing the skeleton instead of the fully fleshed-out work-
load allows us to identify similar bugs. For example, the
bug that causes appended data to be lost will repeat four
times, once with each of the files in our file set. We can
group these bug reports together and only inspect one
bug report from each group. After verifying each bug,
we report it to developers.
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6 Evaluation
We evaluate the utility and performance of the B3 ap-
proach by answering the following questions:
• Do CRASHMONKEY and ACE find known bugs and

new bugs in Linux file systems in a reasonable pe-
riod of time? (§6.2)
• What is the performance of CRASHMONKEY? (§6.3)
• What is the performance of ACE? (§6.4)
• How much memory and CPU does CRASHMONKEY

consume? (§6.5)

6.1 Experimental Setup

B3 requires testing a large number of workloads in a sys-
tematic manner. To accomplish this testing, we deploy
CRASHMONKEY on Chameleon Cloud [26], an experi-
mental testbed for large-scale computation.

We employ a cluster of 65 nodes on Chameleon Cloud.
Each node has 40 cores, 48 GB RAM, and 128 GB
SSD. We install 12 VirtualBox virtual machines running
Ubuntu 16.04 LTS on each node, each with 2 GB RAM
and 10 GB storage. Each virtual machine runs one in-
stance of CRASHMONKEY. Thus, we have a total of 780
virtual machines testing workloads with CRASHMONKEY

in parallel. We found we are limited to 780 virtual ma-
chines by the storage available to each physical node.

On a local server, we generate the workloads with ACE

and divide them into sets of workloads to be tested on
each virtual machine. We then copy the workloads over
the network to each physical Chameleon node, and, from
each node, copy them to the virtual machines.

6.2 Bug Finding

Determining Workloads. Our goal was to test whether
the B3 approach was useful and practical, not to exhaus-
tively find every crash-consistency bug. Therefore, we
wanted to limit the computational time spent on testing
to a few days. Thus, we needed to determine what work-
loads to test with our computational budget.

Our study of crash-consistency bugs indicated that it
would be useful to test small workloads of length one,
two, and three. However, we estimated that testing all 25
million possible workloads of length three was infeasible
within our target time-frame. We had to further restrict
the set of workloads that we tested. We used our study
to guide us in this task. At a minimum, we wanted to
select bounds that would generate the workloads that re-
produced the reported bugs. Using this as a guideline, we
came up with a set of workloads that was broad enough to
reproduce existing bugs (and potentially find new bugs),
but small enough that we could test the workloads in a
few days on our research cluster.

Workloads. We test workloads of length one (seq-1),
two (seq-2), and three (seq-3). We further separate
workloads of length three into three groups: one focus-
ing on data operations (seq-3-data), one focusing on
metadata operations (seq-3-metadata), and one fo-
cusing on metadata operations involving a file at depth
three (seq-3-nested) (by default, we use depth two).

The seq-1 and seq-2workloads use a set of 14 file-
system operations. For seq-3 workloads, we narrow
down the list of operations, based on what category the
workload is in. The complete list of file-system opera-
tions tested in each category is shown in Table 4.

Testing Strategy. We tested seq-1 and seq-2 work-
loads on ext4, xfs, F2FS, and btrfs, but did not find any
new bugs in ext4 or xfs. We focused on F2FS and btrfs
for the larger seq-3 workloads. In total, we spend 48
hours testing all 3.37 million workloads per file system
on the 65-node research cluster described earlier. Table 4
presents the number of workloads in each set, and the
time taken to test them (for each file system). All the
tests are run only on 4.16 kernel. To reproduce reported
bugs, we employ the following strategy. We encode the
workload that triggers previously reported bugs in ACE.
In the course of workload generation, when ACE gener-
ates a workload identical to the encoded one, it is added
to a list. This list of workloads is run on the kernel ver-
sions reported in Table 1, to validate that the workload
produced by ACE can indeed reproduce the bug.

Cost of Computation. We believe the amount of com-
putational effort required to find crash-consistency bugs
with CRASHMONKEY and ACE is reasonable. For ex-
ample, if we were to rent 780 t2.small instances on
Amazon to run ACE and CRASHMONKEY for 48 hours,
at the current rate of $0.023 per hour for on-demand in-
stances [2], it would cost 780∗48∗0.023 = $861.12. For
the complete 25M workload set, the cost of computation
would go up by 7.5×, totaling $6.4K. Thus, we can test
each file system for less than $7K. Alternatively, a com-
pany can provision physical nodes to run the tests; we
believe this would not be hard for a large company.

Results. CRASHMONKEY and ACE found 10 new crash-
consistency bugs [59] in btrfs and F2FS, in addition to
reproducing 24 out of 26 bugs reported over the past five
years. We studied the bug reports for the new bugs to
ensure they were unique and not different manifestations
of the same underlying bug. We verified each unique bug
triggers a different code path in the kernel, indicating the
root cause of each bug is not the same underlying code.

All new bugs were reported to file-system developers
and acknowledged [11, 12, 43, 44]. Developers have
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Sequence File-system operations tested # of workloads Run time

type (minutes)

seq-1 
creat, mkdir, falloc, buffered write, mmap, link


300 1

seq-2 direct-IO write, unlink, rmdir, setxattr 254K 215

removexattr, remove, unlink, truncate

seq-3-data buffered write, mmap, direct-IO write, falloc 120K 102

seq-3-metadata buffered write, link, unlink, rename 1.5M 1274

seq-3-nested link, rename 1.5M 1274

Total 3.37M 2866

Table 4: Workloads tested. The table shows the number of workloads tested in each set, along with the time taken to
test these workloads in parallel on 65 physical machines and the file-system operations tested in each category. Overall,
we tested 3.37 million workloads in two days, reproducing 24 known bugs and finding 10 new crash-consistency bugs.

submitted patches for four bugs [32, 35, 66, 67], and are
working on patches for the others [34]. Table 5 presents
the new bugs discovered by CRASHMONKEY and ACE.
We make several observations based on these results.

The discovered bugs have severe consequences. The
newly discovered bugs result in either data loss (due to
missing files or directories) or file-system corruption.
More importantly, the missing files and directories have
been explicitly persisted with an fsync() call and thus
should survive crashes.

Small workloads are sufficient to reveal new bugs.
One might expect only workloads with two or more file-
system operations to expose bugs. However, the re-
sults show that even workloads consisting of a single
file-system operation, if tested systematically, can reveal
bugs. For example, three bugs were found by seq-1
workloads, where CRASHMONKEY and ACE only tested
300 workloads in a systematic fashion. Interestingly,
variants of these bugs have been patched previously, and
it was sufficient to simply change parameters to file-
system operations to trigger the same bug through a dif-
ferent code-path.

An F2FS bug found by CRASHMONKEY and ACE

is a good example of finding variants of previously
patched bugs. The previously patched bug manifested
when fallocate() was used with the KEEP SIZE
flag; this allocates blocks to a file but does not in-
crease the file size. By calling fallocate() with
the KEEP SIZE flag, developers found that F2FS only
checked the file size to see if a file had been up-
dated. Thus, fdatasync() on the file would have
no result. After a crash, the file recovered to an in-
correct size, thereby not respecting the KEEP SIZE
flag. This bug was patched in Nov 2017 [65]; how-

ever, the fallocate() system call has several more
flags like ZERO RANGE, PUNCH HOLE, etc., and devel-
opers failed to systematically test all possible parameter
options of the system call. Therefore, our tools iden-
tified and reported that the same bug can appear when
ZERO RANGE is used. Though this bug was recently
patched by developers, it provides more evidence that the
state of crash-consistency testing today is insufficient,
and that systematic testing is required.

Crash-consistency bugs are hard to find manually.
CRASHMONKEY and ACE found eight new bugs in btrfs
in kernel 4.16. Interestingly, seven of these bugs have
been present since kernel 3.13, which was released in
2014. The ability of our tools to find four-year-old crash-
consistency bugs within two days of testing on a research
cluster of modest size speaks to both the difficulty of
manually finding these bugs, and the power of system-
atic approaches like B3.

Broken rename atomicity bug. ACE generated sev-
eral workloads that broke the rename atomicity of btrfs.
The workloads consist of first creating and persisting a
file such as A/bar. Next, the workload creates an-
other file B/bar, and tries to replace the original file,
A/bar, with the new file. The expectation is that we are
able to read either the original file, A/bar, or the new
file, B/bar. However, btrfs can lose both A/bar and
B/bar if it crashes at the wrong time. While losing re-
name atomicity is bad, the most interesting part of this
bug is that fsync() must be called on an un-related
sibling file, like A/foo, before the crash. This shows
that workloads revealing crash-consistency bugs are hard
for a developer to find manually since they don’t always
involve obvious sequences of operations.
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Bug # File System Consequence # of ops Bug present since

1 btrfs Rename atomicity broken (file disappears) 3 2014

2 btrfs Rename atomicity broken (file in both locations) 3 2018

3 btrfs Directory not persisted by fsync* 3 2014

4 btrfs Rename not persisted by fsync 3 2014

5 btrfs Hard links not persisted by fsync 2 2014

6 btrfs Directory entry missing after fsync on directory 2 2014

7 btrfs Fsync on file does not persist all its paths 1 2014

8 btrfs Allocated blocks lost after fsync* 1 2014

9 F2FS File recovers to incorrect size* 1 2015

10 F2FS Persisted file disappears* 2 2016

Table 5: Newly discovered bugs. The table shows the new bugs found by CRASHMONKEY and ACE. The bugs have
severe consequences, ranging from losing allocated blocks to entire files and directories disappearing. The bugs have
been present for several years in the kernel, showing the need for systematic testing. Note that even workloads with
single file-system operation have resulted in bugs. Developers have submitted a patch for bugs marked with *.

6.3 CrashMonkey Performance

CRASHMONKEY has three phases of operation: profiling
the given workload, constructing crash states, and testing
crash-consistency. Given a workload, the end-to-end la-
tency to generate a bug report is 4.6 seconds. The main
bottleneck is the kernel itself: mounting a file system re-
quires up-to a second of delay (if CRASHMONKEY checks
file-system state earlier, it sometimes gets an error). Sim-
ilarly, once the workload is done, we also wait for two
seconds to ensure the storage subsystem has processed
the writes, and that we can unmount the file system with-
out affecting the writes. These delays account for 84%
of the time spent profiling.

After profiling, constructing crash states is relatively
fast: CRASHMONKEY only requires 20 ms to construct
each crash state. Furthermore, since CRASHMONKEY

uses fine-grained correctness tests, checking crash con-
sistency with both read and write tests takes only 20 ms.

6.4 Ace Performance

ACE generated all the workloads that were tested (3.37M)
in 374 minutes (≈ 150 workloads generated per second).
Despite this high cost, it is important to note that gener-
ating workloads is a one-time cost. Once the workloads
are generated, CRASHMONKEY can test these workloads
on different file systems without any reconfiguration.

Deploying these workloads to the 780 virtual ma-
chines on Chameleon took 237 minutes: 34 minutes to
group the workloads by virtual machines, 199 minutes to
copy workloads to the Chameleon nodes, and 4 minutes
to copy workloads to the virtual machines on each node.

These numbers reflect the time taken for a single local

server to generate and push the workloads to Chameleon.
By utilizing more servers and employing a more sophisti-
cated strategy for generating workloads, we could reduce
the time required to generate and push workloads.

6.5 Resource Consumption

The total memory consumption by CRASHMONKEY aver-
aged across 10 randomly chosen workloads and the three
sequence lengths is 20.12 MB. The low memory con-
sumption results from the copy-on-write nature of the
wrapper block device. Since ACE’s workloads typically
modify small amounts of data or metadata, the modified
pages are few in number, resulting in low memory con-
sumption. Furthermore, CRASHMONKEY uses persistent
storage only for storing the workloads (480 KB per work-
load). Finally, the CPU consumption of CRASHMONKEY,
as reported by top, was negligible (less than 1 percent).

7 Related Work

B3 offers a new point in the spectrum of techniques ad-
dressing file-system crash consistency, alongside verified
file systems and model checking. We now place B3 in the
context of prior approaches.

Verified File Systems. Recent work focuses on creating
new, verified file systems from a specification [8, 9, 53].
These file systems are proven to have strong crash-
consistency guarantees. However, the techniques em-
ployed are not useful for testing the crash consistency of
existing, widely-used Linux file systems written in low-
level languages like C. The B3 approach targets such file
systems, which are not amenable to verification.
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Formal Crash-Consistency Models. Ferrite [6] formal-
izes crash-consistency models and can be used to test if
a given ordering relationship holds in a file system; how-
ever, it is hard to determine what relationships to test.
The authors used Ferrite to test a few simple relation-
ships such as prefix append. On the other hand, ACE and
CRASHMONKEY explore a wider range of workloads, and
use oracles and developer-provided guarantees to auto-
matically test correctness after a crash.

Model Checking. B3 is closely related to in-situ
model checking approaches such as EXPLODE [63] and
FiSC [64]. However, unlike B3, EXPLODE and FiSC re-
quire modifications to the buffer cache (to see all order-
ings of IO requests) and changes to the file-system code
to expose choice points for efficient checking, a complex
and time-consuming task. B3 does not require changing
any file-system code and it is conceptually simpler than
in-situ model checking approaches, while still being ef-
fective at finding crash-consistency bugs.

Though the B3 approach does not have the guarantees
of verification or the power of model checking, it has the
advantage of being easy to use (due to its black-box na-
ture), being able to systematically test file systems (due
to its exhaustive nature), and being able to catch crash-
consistency bugs occurring on mature file systems.

Fuzzing. The B3 approach bears some similarity to fuzz-
testing techniques which explore inputs that will reveal
bugs in the target system. The effectiveness of fuzzers is
determined by the careful selection of uncommon inputs
that would trigger exceptional behavior. However, B3

does not randomize input selection. Neither does it use
any sophisticated strategy to select workloads to test. In-
stead, B3 exhaustively generates workloads in a bounded
space, with the bounds informed by our study or pro-
vided by the user. While there exists fuzzers to test the
correctness of system calls [17, 22, 45], there seem to be
no fuzzing techniques to expose crash-consistency bugs.
The effort by Nossum and Casasnovas [45] is closest to
our work, where they generate file-system images that
are likely to expose bugs during the normal operation of
the file system (non-crash-consistency bugs).

Record and Replay Frameworks. CRASHMONKEY is
similar to prior record-and-replay frameworks such as
dm-log-writes [4], Block Order Breaker [47], and
work by Zheng et al. [70]. Unlike dm-log-writes,
which requires manual correctness tests or running
fsck, CRASHMONKEY is able to automatically test
crash-consistency in an efficient manner.

Similar to CRASHMONKEY, the Block Order Breaker
(BOB) [47] also creates crash states from recorded IO.

However, BOB is only used to show that different file
systems persist file-system operations in significantly
different ways. The Application-Level Intelligent Crash
Explorer (ALICE), explores application-level crash vul-
nerabilities in databases, key value stores etc. The major
drawback with ALICE and BOB is that they require the
user to handcraft workloads and provide an appropriate
checker for each workload. They lack systematic explo-
ration of the workload space and do not understand per-
sistence points, making it is extremely hard for a user to
write bug-triggering workloads manually.

The logging and replay framework from Zheng et
al. [70] is focused on testing whether databases provide
ACID guarantees, works only on iSCSI disks, and uses
only four workloads. CRASHMONKEY is able to test mil-
lions of workloads, and ACE allows us to generate a much
wider ranger of workloads to test.

We previewed the ideas behind CRASHMONKEY in a
workshop paper [36]. Since then, several features have
been added to CRASHMONKEY with the prominent one
being automatic crash-consistency testing.

8 Conclusion
This paper presents Bounded Black-Box Crash Testing
(B3), a new approach to testing file-system crash consis-
tency. We study 26 crash-consistency bugs reported in
Linux file systems over the past five years and find that
most reported bugs could be exposed by testing small
workloads in a systematic fashion. We exploit this in-
sight to build two tools, CRASHMONKEY and ACE, that
systematically test crash consistency. Running for two
days on a research cluster of 65 machines, CRASHMON-
KEY and ACE reproduced 24 known bugs and found 10
new bugs in widely-used Linux file systems.

We have made CRASHMONKEY and ACE available
(with demo, documentation, and a single line command
to run seq-1 workloads) at https://github.
com/utsaslab/crashmonkey. We encourage de-
velopers and researchers to test their file systems against
the workloads included in the repository.
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Abstract 
We present a comprehensive study of 136 system 
failures attributed to network-partitioning faults from 
25 widely used distributed systems. We found that the 
majority of the failures led to catastrophic effects, such 
as data loss, reappearance of deleted data, broken locks, 
and system crashes. The majority of the failures can 
easily manifest once a network partition occurs: They 
require little to no client input, can be triggered by 
isolating a single node, and are deterministic. However, 
the number of test cases that one must consider is 
extremely large. Fortunately, we identify ordering, 
timing, and network fault characteristics that 
significantly simplify testing. Furthermore, we found 
that a significant number of the failures are due to 
design flaws in core system mechanisms. 

We found that the majority of the failures could 
have been avoided by design reviews, and could have 
been discovered by testing with network-partitioning 
fault injection. We built NEAT, a testing framework 
that simplifies the coordination of multiple clients and 
can inject different types of network-partitioning faults. 
We used NEAT to test seven popular systems and 
found and reported 32 failures. 

1 Introduction 
With the increased dependency on cloud             
systems [1, 2, 3, 4], users expect high—ideally, 24/7—
service availability and data durability [5, 6]. Hence, 
cloud systems are designed to be highly             
available [7, 8, 9] and to preserve data stored in them 
despite failures of devices, machines, networks, or even 
entire data centers [10, 11, 12]. 

Our goal is to better understand the impact of a 
specific type of infrastructure fault on modern 
distributed systems: network-partitioning faults. We 
aim to understand the specific sequence of events that 
lead to user-visible system failures and to characterize 
these system failures to identify opportunities for 
improving system fault tolerance.  

We focus on network partitioning for two reasons. 
The first is due to the complexity of tolerating these 
faults [13, 14, 15, 16]. Network-partitioning fault 
tolerance pervades the design of all system layers, from 
the communication middleware and data         
replication [13, 14, 16, 17] to user API definition and 
semantics [18, 19], and it dictates the availability and 
consistency levels a system can achieve [20]. Second, 
recent studies [21, 22, 23, 24] indicate that, in 

production networks, network-partitioning faults occur 
as frequently as once a week and take from tens of 
minutes to hours to repair. 

Given that network-partitioning fault tolerance is a 
well-studied problem [13, 14, 17, 20], this raises 
questions about how these faults sill lead to system 
failures. What is the impact of these failures? What are 
the characteristics of the sequence of events that lead to 
a system failure? What are the characteristics of the 
network-partitioning faults? And, foremost, how can we 
improve system resilience to these faults?  

To help answer these questions, we conducted a 
thorough study of 136 network-partitioning failures1 
from 25 widely used distributed systems. The systems 
we selected are popular and diverse, including key-
value systems and databases (MongoDB, VoltDB, 
Redis, Riak, RethinkDB, HBase, Aerospike, Cassandra, 
Geode, Infinispan, and Ignite), file systems (HDFS and 
MooseFS), an object store (Ceph), a coordination 
service (ZooKeeper), messaging systems (Kafka, 
ActiveMQ, and RabbitMQ), a data-processing 
framework (Hadoop MapReduce), a search engine 
(Elasticsearch), resource managers (Mesos, Chronos, 
and DKron), and in-memory data structures (Hazelcast, 
Ignite, and Terracotta). 

For each considered failure, we carefully studied the 
failure report, logs, discussions between users and 
developers, source code, code patch, and unit tests. We 
manually reproduced 24 of the failures to understand 
the specific manifestation sequence of the failure. 
Failure impact. Overall, we found that network-
partitioning faults lead to silent catastrophic failures 
(e.g., data loss, data corruption, data unavailability, and 
broken locks), with 21% of the failures leaving the 
system in a lasting erroneous state that persists even 
after the partition heals.  
Ease of manifestation. Oddly, it is easy for these 
failures to occur. A majority of the failures required 
three or fewer frequently used events (e.g., read, and 
write), 88% of them can be triggered by isolating a 
single node, and 62% of them were deterministic. It is 
surprising that catastrophic failures manifest easily, 
given that these systems are generally developed using 
good software-engineering practices and are subjected 
to multiple design and code reviews as well as thorough 
testing [5, 25].  
 

1 A fault is the initial root cause, including machine and network
problems and software bugs. If not properly handled a fault may lead
to a user-visible system failure.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    51



 

 
 

Partial Network Partitions. Another unexpected result 
is that a significant number of the failures (29%) were 
caused by an unanticipated type of fault: partial 
network partitions. Partial partitions isolate a set of 
nodes from some, but not all, nodes in the cluster, 
leading to a confusing system state in which the nodes 
disagree whether a server is up or down. The effects of 
this disagreement are poorly understood and tested. 
This is the first study to analyze the impact of this fault 
on modern systems. 
Testability. We studied the testability of these failures. 
In particular, we analyzed the manifestation sequence 
of each failure, ordering constraints, timing constraints, 
and network fault characteristics. While the number of 
event permutations that can lead to a failure is 
excessively large, we identified characteristics that 
significantly reduce the number of test cases       
(Section 5). We also found that the majority of the 
failures can be reproduced through tests and by using 
only three nodes. 

Our findings debunk two common presumptions. 
First, network practitioners presume that systems, with 
their software and data redundancy, are robust enough 
to tolerate network partitioning [22]. Consequently, 
practitioners assign low priority to the repair of top-of-
the-rack (ToR) switches [22], even though these 
failures isolate a rack of machines. Our findings show 
that this presumption is ill founded, as 88% of the 
failures can occur by isolating a single node. Second, 
system designers assume that limiting client access to 
one side of a network partition will eliminate the 
possibility of a failure [28, 29, 30, 31, 32, 33, 34]. Our 
findings indicate that 64% of the failures required no 
client access at all or client access to only one side of 
the network partition. 

We examined the unit tests that we could relate to 
the studied code patches and we found that developers 
lack the proper tools to test these failures. In most 
cases, developers used mocking [26, 27] to test the 
impact of network partitioning on only one component 
and on just one side of the partition. However, this 
approach is inadequate for end-to-end testing of 
complete distributed protocols. 

Our findings motivated us to build the network 
partitioning testing framework (NEAT). NEAT 
simplifies testing by allowing developers to specify a 
global order for client operations and by providing a 
simple API for creating and healing partitions as well as 
crashing nodes. NEAT uses OpenFlow [35] to 
manipulate switch-forwarding rules and create 
partitions. For deployments that do not have an 
OpenFlow switch, we built a basic version using 
iptables [36] to alter firewall rules at end hosts. 

We used NEAT to test seven systems: Ceph [37], 
ActiveMQ [38], Apache Ignite [39], Terracotta [40], 
DKron [41], Infinispan [42], and MooseFS [43]. We 

found and reported 32 failures that led to data loss, stale 
reads, reappearance of deleted data, unavailability, 
double locking, and broken locks. 

The rest of this paper is organized as follows: In 
Section 2, we present a categorization of network-
partitioning faults, discuss the theoretical limit on 
system design, and discuss the current testing 
techniques. In Section 3, we present our methodology 
and its limitations. Then, we present our findings in 
Sections 4 and 5 and discuss a number of related 
observations in Section 6. We present the NEAT 
framework in Section 7. We present additional related 
work in Section 8. We share our insights in Section 9 
and conclude our paper in Section 10. 

2 Background 
In this section, we present the three types of network-
partitioning faults (Section 2.1), discuss the theoretical 
limit for systems design (Section 2.2), and survey the 
current approaches for testing systems’ resilience to 
network-partitioning faults (Section 2.3). 

2.1 Types of Network Partitions 
Modern networks are complex. They span multiple data 
centers [44, 45], use heterogeneous hardware and 
software [23], and employ a wide range of middle 
boxes (e.g., NAT, load balancers, route aggregators, 
and firewalls) [21, 44, 45]. Despite the high redundancy 
built into modern networks, catastrophic failures are 
common [21, 22, 23, 24]. We surveyed network-
partitioning failures and identified three types: 

Complete network partitioning leads to dividing the 
network into two disconnected parts (Figure 1.a). 
Complete partitions can happen at different scales; for 
example, they can manifest in geo-replicated systems 
due to the loss of connectivity between data centers. HP 
reported that 11% of its enterprise network failures lead 
to site connectivity problems [23]. Turner et al. found 
that a network partition occurs almost once every 4 

(a) 

 (b) 
(c) 

Figure 1. Network partitioning types. (a) Complete partition:
The system is split into two disconnected groups (b) Partial 
partition: The partition affects some, but not all, nodes in the 
system. Group 3 in Figure (b) can communicate with the 
other two groups. (c) Simplex partition, in which traffic 
flows only in one direction. 
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days in the California-wide CENIC network [24]. In a 
data center, a complete partition can manifest due to 
failures in the core or aggregation switches [22] or 
because of a ToR switch failure. Microsoft and Google 
report that ToR failures are common and have led to 40 
network partitions in two years at Google [21] and 
caused 70% of the downtime at Microsoft [22]. Finally, 
NIC failures [46] or bugs in the networking stack can 
lead to the isolation of a single node that could be 
hosting multiple VMs. Finally, network-partition faults 
caused by correlated failures of multiple devices are not 
uncommon [22, 24, 44]. Correlated switch failures are 
frequently caused by system-wide upgrades and 
maintenance tasks [21, 22]. 

Partial network partitioning is a fault that leads to the 
division of nodes into three groups (Group1, Group2, 
and Group3 in Figure 1.b) such that two groups (say, 
Group1 and Group2) are disconnected while Group3 
can communicate with both Group1 and Group2            
(Figure 1.b). Partial partitions are caused by a loss of 
connectivity between two data centers [23] while both 
are reachable by a third center, or due to inconsistencies 
in switch-forwarding rules [21]. 

Simplex network partitioning permits traffic to flow in 
one direction, but not in the other (Figure 1.c). This is 
the least common failure and can be caused by 
inconsistent forwarding rules or hardware failures (e.g., 
the Broadcom BCM5709 chipset bug [46]). The impact 
of this failure is mainly manifested in UDP-based 
protocols. For instance, a simplex network partitioning 
dropped all incoming packets to a primary server while 
allowing the primary server heartbeats to reach the 
failover server. The system hang as the failover server 
neither detected the failure nor took over [46]. 

2.2 Theoretical Limit 
The data consistency model defines which values a read 
operation may return. The strong consistency        
model [47] (a.k.a. sequential consistency) is the easiest 
to understand and use. Strong consistency promises that 
a read operation will return the most recent successfully 
written value. Unfortunately, providing strong 
consistency reduces system availability and requires 
complex consistency protocols [13, 14, 17]. Gilbert and 
Lynch [20] presented a theoretical limit on system 
design. Their theorem, famously known as the CAP 
theorem, states that in the presence of a network 
partition, designers need to choose between keeping the 
service available and maintaining data consistency.  

To maintain system availability, system designers 
choose a relaxed consistency model such as the read-
your-write [11, 18, 19, 48], timeline [19, 48, 49], and 
eventually consistent [16, 19, 50, 51] models.  

Modern systems often implement consensus 
protocols that have not been theoretically proven. 
Eventually consistent systems implement unproven 

protocols (Hazelcast [29] and Redis [32]), and systems 
that implement proven, strongly consistent protocols 
(e.g., Paxos [13] and Raft [14]) often tweak these 
protocols in unproven ways [15, 31, 52]. These 
practices make modern systems vulnerable to 
unforeseen failure scenarios, such as the ones caused by 
different types of network partitions. 

2.3 Testing with Network Partitioning  
A common testing technique for network-partitioning 
failures is mocking. Mocking frameworks (e.g., 
Mockito [26]) can be used to imitate communication 
problems. Mocking can be employed to test the impact 
of a failure on a single component, but it is not suitable 
for system-level testing or for testing distributed 
protocols. A few systems use hacks to emulate a 
network partition; for instance, Mesos’ unit tests 
emulate a network partition by ignoring test-specific 
messages received by the protobuf middleware [53].  

Another possible testing approach is to use the 
Jepsen testing framework [54]. Jepsen is written in 
Clojure [55] and is tuned toward random testing. Jepsen 
testing typically involves running an auto-generated 
testing workload while the tool injects network-
partitioning faults. Jepsen does not readily support unit 
testing or all types of network partitioning. 

We built NEAT, a Java-based, system-level testing 
framework. NEAT has a simple API for deploying 
systems, specifying clients’ workloads, creating and 
healing partitions, and crashing nodes. Unlike Jepsen, 
NEAT readily supports injecting the three types of 
network-partitioning faults.  

3 Methodology and Limitations 
We studied 136 real-world failures in 25 popular 
distributed systems. We selected a diverse set of 
distributed systems (Table 1), including 10 key-value 
storage systems and databases, a coordination service, 
two file systems, an object storage system, three 
message-queueing systems, a data-processing 
framework, a search engine, three resource managers, 
and three distributed in-memory caches and data 
structures. We selected this diverse set of systems to 
understand the wide impact of network-partitioning 
faults on distributed systems and because these systems 
are widely used and are considered production quality.  

The 136 failures2 we studied include 88 failures 
extracted from the publicly accessible issue-tracking 
systems, 16 Jepsen reports [54], and 32 failures 
detected by our NEAT framework (Section 7). The 
majority of the studied tickets contain enough details to 
 

2 We differentiate failures by their manifestation sequence of events.
In a few cases, the same faulty mechanism leads to two different
failures and impacts depending on workload. We count these as
separate failures, even if they were reported in a single ticket.
Similarly, although the exact failure is sometimes reported in
multiple tickets, we count it once in our study. 
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understand the failure. These tickets document failures 
that were confirmed by the developers and include 
discussions between the users and the developers, steps 
to reproduce the failure, outputs and logs, code patch, 
and sometimes unit tests.  

The 88 failures we included in our study were 
selected as follows: First, we used the search tool in the 
issue-tracking systems to identify tickets related to 
network partitioning. We searched using the following 
keywords: “network partition,” “network failure,” 
“switch failure,” “isolation,” “split-brain,” and 
“correlated failures.” Second, we considered tickets that 
were dated 2011 or later. Third, we excluded low-
priority tickets that were marked as “Minor” or 
“Trivial.” Fourth, we examined the set of tickets to 
verify that they were indeed related to network-
partitioning failures and excluded tickets that appeared 
to be part of the development cycle; for instance, they 
discuss a feature design. Finally, some failures that are 
triggered by a node crash can also be triggered by a 
network partition isolating that node. We excluded 
failures that can be triggered by a node crash and 
studied failures that can only be triggered by a network 

partition. Out of all Jepsen blog posts (there is 25 in 
total), we included 16 that are related to the systems we 
studied. Table 1 shows the number of failures and the 
consistency model of the systems we studied. 

For each ticket, we studied the failure description, 
system logs, developers’ and users’ comments, code 
patch, and unit tests. Using NEAT, we also reproduced 
13 failures reported in the issue-tracking systems, as 
well as 11 failures reported by Jepsen to understand 
their intricate details. 

Limitations: As with any characterization study, there 
is a risk that our findings may not be generalizable. 
Here we list three potential sources of bias and describe 
our best efforts to address them. 
1) Representativeness of the selected systems. Because 

we only studied 25 systems, the results may not be 
generalizable to the hundreds of systems we did not 
study. However, we selected a diverse set of 
systems (Table 1). These systems follow diverse 
designs, from persistent storage and reliable in-
memory storage to volatile caching systems. They 
use leader-follower or peer-to-peer architectures; are 
written in Java, C, Scala, or Erlang; adopt strong or 
eventual consistency; use synchronous or 
asynchronous replication; and use chain or parallel 
replication. The systems we selected are widely 
used: ZooKeeper is a popular coordination service; 
Kafka is the most popular message-queueing 
system; MapReduce, HDFS, and HBase are the core 
of the dominant Hadoop data analytics platform; 
MongoDB, Riak, Aerospike, Redis, and VoltDB are 
popular key-value-based databases; and Hazelcast, 
Ignite, and Terracotta are popular tools in a growing 
area of in-memory distributed data structures. 

2) Sampling bias. The way we choose the tickets may 
bias the results. We designed our methodology to 
include high impact tickets. Modern systems take 
node unreachability as an indicator of a node crash. 
Consequently, a network partition that isolates a 
single node can trigger the same failures that are 
caused by a single node crash. We excluded failures 
that can be caused by a node crash and considered 
those that are solely triggered by a network 
partitioning fault (i.e., the nodes on both sides of the 
partition must be running for a failure to manifest). 
Furthermore, we eliminated all low-priority tickets 
and focused on tickets the developers considered 
important. All presented findings should be 
interpreted with this sampling methodology in mind. 

3) Observer error. To minimize the possibility of 
observer errors, all failures were independently 
reviewed by two team members and discussed in a 
group meeting before agreement was reached, and 
all team members used the same detailed 
classification methodology. 

Table 1. List of studied system. The table shows systems’ 
consistency model, number of failures, and number of 
catastrophic failures. Highlighted rows indicate systems we 
tested using NEAT, and the number of failures we found. 

System Consistency Model 
Failures 

Total Catastrophic
MongoDB [31] Strong 19 11 

VoltDB [33] Strong 4 4 

RethinkDB [52] Strong 3 3 

HBase [56] Strong 5 3 

Riak [57] Strong/Eventual 1 1 

Cassandra [58] Strong 4 4 

Aerospike [59] Eventual 3 3 

Geode [60] Strong 2 2 

Redis [32] Eventual 3 2 

Hazelcast [29] Best Effort 7 5 

Elasticsearch [28] Eventual 22 21 

ZooKeeper [61] Strong 3 3 
HDFS [1] Custom 4 2 
Kafka [30] - 5 3 

RabbitMQ [62] - 7 4 

MapReduce [4] - 6 2 

Chronos [63] - 2 1 

Mesos [64] - 4 0 

Infinispan [42] Strong 1 1 

Ignite [39] Strong 15 13 

Terracotta [40] Strong 9 9 

Ceph [37] Strong 2 2 

MooseFS [43] Eventual 2 2 

ActiveMQ [38] - 2 2 

DKron [41] - 1 1 
Total - 136 104 
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4 General Findings 
This section presents the general findings from our 
study. Overall, our study indicates that network 
partitioning leads to catastrophic failures. However, it 
identifies failure characteristics that can improve 
testing. We show that most of the studied failures can 
be reproduced using only three nodes and are 
deterministic or have bounded timing constraints. We 
show that core distributed system mechanisms are the 
most vulnerable, including leader election, replication, 
and request routing. Finally, we show that a large 
number of the failures are caused by partial network-
partitioning faults.  

4.1 Failure Impact 
Overall, our findings indicate that network-partitioning 
faults cause silent catastrophic failures that can result in 
lasting damage to systems.  

Finding 1. A large percentage (80%) of the studied 
failures have a catastrophic impact, with data loss 
being the most common (27%) (Table 2). 

We classify a failure as catastrophic if it violates the 
system guarantees or leads to a system crash. Table 2 
lists the different types of catastrophic failures. Failures 
that degrade performance or crash a single node are not 
considered catastrophic. Stale reads are catastrophic 
only when the system promises strong consistency. 
However, they are not considered failures in eventually 
consistent systems. Dirty reads happen when the system 
returns the value of a preceding unsuccessful write 
operation. For instance, a client reading from the 
primary replica in MongoDB may get a value that is 
simultaneously being written by a concurrent write 
operation [65]. If the write fails due to network 
partitioning, the read operation has returned a value that 
was never successfully written (a.k.a. dirty read). 

Compared to other causes of failures, this finding 
indicates that network partitioning leads to a 
significantly higher percentage of catastrophic failures. 
Yuan et al. [66] present a study of 198 randomly 
selected, high-priority failures from five of the systems 

we include in our study: Cassandra, HBase, HDFS, 
MapReduce, and Redis. They report that only 24% of 
failures had catastrophic effects3, compared to 80% in 
the case of network-partitioning failures (Table 2). 
Consequently, developers should carefully consider this 
fault in all phases of system design, development, and 
testing.  

Finding 2. The majority (90%) of the failures are 
silent, whereas the rest produce warnings that are 
unatonable. 

We inspected the failure reports for returned error 
messages and warnings. The majority of the failures 
were silent (i.e., no error or warning was returned to the 
client), with some failures (10%) returning warning 
messages to the client. Unfortunately, all returned 
warnings were confusing, with no clear mechanism for 
resolution. For instance, in Riak [67] with a strict 
quorum configuration, when a write fails to fully 
replicate a new value, the client gets a warning 
indicating that the write operation has updated a subset 
of replicas, but not all of them. This warning is 
confusing because it does not indicate the necessary 
action to take next. Similarly, MongoDB returns a 
generic socket exception if a proxy node cannot reach 
the data nodes [68]. 

This is alarming because users and administrators 
are not notified when a failure occurs, which delays 
failure discovery, if the failure is discovered at all. 

Finding 3. Twenty one percent of the failures lead to 
permanent damage to the system. This damage persists 
even after the network partition heals. 

While 79% of the failures affect the system only while 
there is a network partition, 21% of the failures leave 
the system in an erroneous state that persists even after 
the network partition heals. For instance, if a new node 
is unable to reach the other nodes in RabbitMQ [69]  
and Ignite (section 7.4), the node will assume that the 
rest of the cluster has failed and will form a new 
independent cluster. These clusters will remain 
separated, even after the network partition heals.  

Overall, as recent studies [21, 22, 23, 24] indicate 
that network-partitioning faults occur as frequently as 
once a week and take from tens of minutes to hours to 
repair, it is alarming that these faults can lead to silent 
catastrophic failures. This is surprising, given that these 
systems are designed for deployments in which 
component failure is the norm. For instance, all of the 
systems we studied replicate their data. In MongoDB, 
Hazelcast, Kafka, Elasticsearch, Geode, Mesos, Redis, 

Table 2. The impacts of the failures. The percentage of the 
failures that cause each impact. Broken locks include double 
locking, lock corruption, and failure to unlock. 

Impact %   
 
 
 

Catastrophic
(79.5%) 

Data loss 26.6% 
Stale read 13.2% 
Broken locks 8.2% 
System crash/hang 8.1% 
Data unavailability 6.6% 
Reappearance of deleted data 6.6% 
Data corruption 5.1% 
Dirty read 5.1% 
Performance degradation 19.1% 
Other 1.4% 

 

3 We note that these percentages are not directly comparable as our
definition of catastrophic failure is more conservative. For instance,
while Yuan et al. [66] count a loss of a single replica or a crash of a
single node as catastrophic, we do not. 
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VoltDB, and RethinkDB, if a leader node is partitioned 
apart from the majority, then the rest of the nodes will 
quickly elect a new leader. Hazelcast and VoltDB 
employ “split-brain protection,” a technique that 
continuously monitors the network and pauses nodes in 
the minority partition if a network partition is detected. 
Furthermore, ZooKeeper and MongoDB include a 
mechanism for data consolidation. How, then, do these 
failures still occur? 

4.2 Vulnerability of System Mechanisms 
Finding 4. Leader election, configuration change, 
request routing, and data consolidation are the most 
vulnerable mechanisms to network partitioning       
(Table 3). 

Leader election is the most vulnerable to network 
partitioning (was affected by 40% of the failures). We 
further analyzed leader election failures (Table 4) and 
found that the most common leader election flaw is the 
simultaneous presence of two leaders. This failure 
typically manifests as follows: A network partition 
isolates the current leader from the majority of replicas. 
The majority partition elects a new leader. The old 
leader may eventually detect that it no longer has a 
majority of replicas at its side and step down. However, 
there is a period of time in which each network partition 
has a leader. The overlap between the two leaders may 
last until the network partition heals (which may take      
hours [21]). In MongoDB [70], VoltDB [71], and Raft-
based RethinkDB [72], if a network partition isolates a 
leader, the isolated leader will not be able to update the 
data, but it will still respond to read requests from its 
local copy, leading to stale and dirty reads. 

In all of the systems we studied, the leader trusts 
that its data set or log is complete and all replicas 
should update/trim their data sets to match the leader 
copy. Consequently, it is critical to elect the leader with 
a complete and consistent data set. Table 4 shows that 
20% of leader election failures are caused by electing a 
bad leader. This is caused by using simple criteria for 
leader election, such as the node with the longest log 
wins (e.g., VoltDB), the node that has the latest 
operation timestamp wins (e.g., MongoDB), or the node 
with the lowest id wins (e.g., Elasticsearch). These 
criteria can cause data loss when a node from the 
minority partition becomes a leader and erases all 
updates performed by the majority partition.  

Conflicting election criteria lead to 3.7% of the 
leader election failures and are only reported in 
MongoDB. MongoDB leader election has multiple 
criteria for electing a leader. One can assign a priority 
for a replica to become a leader. The priority node will 
reject any leader proposal; similarly, the node with the 
latest operation timestamp will reject all leader 
proposals, leaving the cluster without a leader [73]. 

The second most affected mechanism is 
configuration change, including node join or leave and 
role changes (e.g., changing the primary replica). We 
discuss two examples of these failures in Section 4.4. 

The third most affected mechanism is data 
consolidation. Failures in this mechanism typically lead 
to data loss in both eventually and strongly consistent 
systems. For instance, Redis, MongoDB, Aerospike, 
Elasticsearch, and Hazelcast employ simple policies to 
automate data consolidation, such as the write with the 
latest timestamp wins and the log with the most entries 
wins. However, because these policies do not check the 
replication or operation status, they can lose data that is 
replicated on the majority of nodes and that was 
acknowledged to the client. 

The three ZooKeeper failures that we studied are 
related to data consolidation. For instance, ZooKeeper 
has two mechanisms for synchronizing data between 
nodes: storage synchronization that is used for syncing 
a large amount of data, and in-memory log 
synchronization that is used for a small amount of data. 
If node A misses many updates during a network 
partition, then ZooKeeper will use storage 
synchronization to bring node A up to date. 
Unfortunately, storage synchronization does not update 
the in-memory log. If A becomes a leader, and other 
nodes use in-memory log synchronization, then A will 
replicate its incomplete in-memory log [74]. 

Request routing represents the mechanism for 
routing requests or responses between clients and the 
specific nodes that can serve the request. Failures in 
request routing represent 13.2% of the failures. The 

Table 3. The percentage of the failures involving each system 
mechanism. Some failures involve multiple mechanisms. 

Mechanism % 
Leader election 39.7%
Configuration change 

 Adding a node  
 Removing a node 
 Membership management 
 Other 

 
10.3%
3.7% 
3.7% 
2.2% 

19.9%

Data consolidation 14.0%
Request routing 13.2%
Replication protocol 12.5%
Reconfiguration due to a network partition  11.8%
Scheduling 2.9% 
Data migration 3.7% 
System integration 1.5% 

 

Table 4. Leader election flaws. 
Leader election failure %
Overlapping between successive leaders 57.4% 
Electing bad leaders 20.4% 
Voting for two candidates 18.5% 
Conflicting election criteria 3.7% 
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majority of those failures are caused by failing to return 
a response. For instance, in Elasticsearch, if a replica 
(other than the primary) receives write requests, it acts 
as a coordinator and forwards the requests to the 
primary replica. If a primary completes the write 
operation but fails to send an acknowledgment back to 
the coordinator, then the coordinator will assume the 
operation has failed and will return an error code to the 
client. The next client read will return the value written 
by a write operation that was reported to have failed. 
Moreover, if the client repeats the operation, then it will 
be executed twice [75]. 

The rest of the failures were caused by flaws in the 
replication protocol, scheduling, data migration 
mechanism, system integration with ZooKeeper, and 
system reconfiguration in response to network 
partitioning failures, in which the nodes remove the 
unreachable nodes from their replica set. 

These findings are surprising because 15 of the 
systems use majority voting for leader election to 
tolerate exactly this kind of failure. Similarly, the 
primary purpose of a data consolidation mechanism is 
to correctly resolve conflicting versions of data. To 
improve resilience, this finding indicates that 
developers should enforce tests and design reviews 
focusing on network-partitioning fault tolerance, 
especially on these mechanisms. 

4.3 Network Faults Analysis 
Finding 5. The majority (64%) of the failures either do 
not require any client access or require client access to 
only one side of the network partition (Table 5). 

This finding debunks a common presumption that 
network partitioning mainly leads to data conflicts, due 
to concurrent writes at both sides of the partition. 
Consequently, developers ensure that clients can only 
access one side of the partition to eliminate the 
possibility of a failure [28, 29, 30, 31, 32, 33, 34]. As 
an example of a failure that requires client access to one 
side of the partition, in HBase, region servers process 
client requests and store them in a log in HDFS. When 
the log reaches a certain size, a new log is created. If a 
partial partition separates a region server from the 
HMaster but not from HDFS, then the HMaster will 
assume that the region server has crashed and will 
assign the region logs to other servers. At this time, if 
the old region server creates a new log, HMaster will 
not be aware of the new log and will not assign it to any 
region server. All client operations stored in the new 
log will be lost [76]. We discuss a MapReduce failure 
that does not require any client access in section 4.4. 

This finding indicates that system designers must 
consider the impact of a network partition fault on all 
system operations, including asynchronous client 
operations and offline internal operations. 

Finding 6. While the majority (69%) of the failures 
require a complete partition, a significant percentage of 
them (29%) are caused by partial partitions (Table 6). 

Partial network partitioning failures are poorly 
understood and tested, even by expert developers. For 
instance, most of the network-partitioning failures in 
Hadoop MapReduce and HDFS are caused by partial 
network-partitioning faults. In the following section, we 
discuss these failures in detail.  

Simplex network partitioning caused 2% of the 
failures. This type of fault only confuses UDP-based 
protocols and leads to performance degradation. For 
instance, in HDFS [77], a data node that can send a 
periodic heartbeat message but is unable to receive 
requests is still considered a healthy node.  

The overwhelming majority (99%) of the failures 
were caused by a single network partition. Only 1% of 
the failures required two network partitions to manifest.  

4.4 Partial Network-Partitioning Failures 
To the best of our knowledge, this the first study to 
analyze and highlight the impact of partial network 
partitions on systems. Consequently, we dedicate this 
section to discussing our insights and presenting 
detailed examples of how these failures manifest. 

We found that the majority of partial network-
partitioning failures are due to design flaws. This 
indicates that developers do not anticipate networks to 
fail in this way. Other than that, partial partitions 
failures had impact, ordering, and timing characteristics 
that are similar to complete partition failures. 

Tolerating partial network partitions is complicated 
because these faults lead to inconsistent views of a 
system state; for instance, nodes disagree on whether a 
server is up or down. This confusion leads part of the 
system to carry on normal operations, while another 
part executes fault tolerance routines. Apparently, the 
mix of these two modes is poorly tested. The following 
are four examples: 
 Scheduling in MapReduce and Elasticsearch. In 

MapReduce, if a partial network partition isolates an 
AppMaster from the resource manager while both 

Table 5. Percentage of the failures that require client access 
during the network partition 
Client Access % 

No client access necessary 28% 
Client access to one side only 36% 
Client access to both sides 36% 

Table 6. Percentage of the failures caused by each type of 
network-partitioning fault. 
Partition type % 
Complete partition 69.1% 
Partial partition 28.7% 
Simplex partition 2.2% 
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can still communicate with the cluster nodes, the 
AppMaster will finish executing the current task and 
return the result to the client. The resource manager 
will assume that the AppMaster has failed and will 
rerun the task using a new AppMaster. The new 
AppMaster will execute the task again and send a 
second result to the client. This failure will confuse 
the client and will lead to data corruption and double 
execution [78]. Note that in this failure, there is no 
client access after the network partition.  

Elasticsearch has a similar failure [75]—if a 
coordinator does not get the result from a primary 
node, the coordinator will run the task again, leading 
to double execution.  

 Data placement in HDFS. If a partial network 
partition separates a client from, say, rack 0, while 
the NameNode can reach that rack. If the NameNode 
allocates replicas on rack 0, then a client write 
operation will fail, and the client will ask for a 
different replica. The NameNode, following its rack-
aware data placement, will likely suggest another 
node from the same rack. The process repeats five 
times before the client gives up [79]. 

 Leader election in MongoDB and Elasticsearch. 
MongoDB design includes an arbiter process that 
participates in a leader election to break ties. Assume 
a MongoDB cluster with two replicas (say A and B) 
and an arbiter, with A being the current leader. 
Assume a partial network partition separates A and 
B, while the arbiter can reach both nodes. B will 
detect that A is unreachable and will start a leader 
election process; being the only contestant, it will win 
the leadership. The arbiter will inform A to step 
down. After missing three heartbeats from the current 
leader (i.e., B), A will assume that B has crashed, 
start the leader election process, and become a leader. 
The arbiter will inform B to step down. This 
thrashing will continue until the network partition 
heals [80]. MongoDB does not serve client requests 
during leader election; consequently, this failure 
significantly reduces availability.  

Elasticsearch has a similar failure [81], in which a 
partial partition leads to having two simultaneous 
leaders because nodes that can reach the two 
partitions become followers of the two leaders. Note 
that these failures do not require any client access. 

 Configuration change in RethinkDB and Hazelcast. 
RethinkDB is a strongly consistent database based on 
Raft [52]. Unlike Raft, when an admin removes a 
replica from RethinkDB cluster, the removed replica 
will delete its Raft log. This apparently minor tweak 
of the Raft protocol leads to a catastrophic failure. 
For instance, if a partial network partition breaks a 
replica set of five servers (A, B, C, D, and E) such 
that the (A, B) partition cannot reach (D, E) while C 
can reach all nodes, then if D receives a request to 

change the replication to two, D will remove A, B, 
and C from the set of replicas. C will delete its log. A 
and B will be unaware of the configuration change 
and still think that C is an active replica. C, having 
lost its Raft log that contains the configuration 
change request, will respond to A and B requests. 
This scenario creates two replica sets for the same 
keys. D and E are a majority in the new 
configuration, and A, B, and C are a majority in the 
old configuration [72].  

Hazelcast has a similar failure [82]. In Hazelcast, 
nodes delete their local data on configuration change. 
If a partial partition separates the new primary 
replica, then one replica will promote itself to 
become the primary. If the central master can reach 
both partitions, it will see that the old primary is still 
alive and inform the self-promoted replica to step 
down. That replica will step down, delete its data, 
and try to download the data from the primary. If the 
primary permanently fails before the partition heals, 
the data will be lost [82]. 

5 Failure Complexity 
To understand the complexity of these failures, we 
studied their manifestation sequence, importance of 
input events order, network fault characteristics, timing 
constraints, and system scale. The majority of the 
failures are deterministic, require three or fewer input 
events, and can be reproduced using only three nodes. 
These characteristics indicate that it is feasible to test 
for these failures using limited resource. 

5.1 Manifestation Sequence Analysis 
Finding 7. A majority (83%) of the failures triggered 
by a network partition require an additional three or 
fewer input events to manifest (Table 7). 

Table 8 lists the events that led to failures. All of the 
listed operations are frequently used. Read and write 
operations are part of over 50% of the failures, and 
12.6% of the failures do not require any events other 
than a single network-partitioning fault. As an example 
of a failure without any client access, in Redis [83], if a 
network partition separates two nodes during a sync 
operation, the data log on the receiving node will be 
permanently corrupted. Similarly, in RabbitMQ [84], if 
a partial partition isolates one node from the leader, but 
not from the rest of the replicas, that node will assume 
the leader has crashed. The isolated node will become 
the new leader. When the old leader receives a 
notification to become a follower, it will start a follower 
thread but will not stop the leader thread. The 
contention between the follower and leader threads 
results in a complete system hang. 

This is perilous, as a small number of frequently 
used events can lead to catastrophic failures. 
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Table 7. The minimum number of events required to cause a 
failure. The table counts a network-partitioning fault as an 
event. Note that 12.5% of the failures require no client access, 
neither during a network partition nor after it heals. Note that 
28% of the failures reported in Table 5 do not require client 
access during the partition, but around 15.5% require client 
access before or after the network partition occurs. 

Number of events % 
1 (just a network partition) 12.6% 

2 13.9% 
3 42.6% 
4 14.0% 

> 4 16.9% 
 

Table 8. Percentage of faults each event is involved in.  

Event type % 
Only a network-partitioning fault 12.6% 
Write request 48.5% 
Read request 34.6% 
Acquire lock 8.1% 
Admin adding/removing a node 8.0% 
Delete request 4.4% 
Release lock 3.7% 
Whole cluster reboot 1.5% 

Finding 8. All of the failures that involve multiple 
events only manifest if the events happen in a specific 
order.  

All of the 87% of failures that require multiple events 
(2 events or more in Table 7) need the events to occur 
in a specific order. This implies that to expose these 
failures we not only need to explore the combination of 
these events, but also the different permutations of 
events, which makes the event space extremely large.  

Fortunately, we identified characteristics that 
significantly prune this large event space and make 
testing tractable (Table 9). First, 84% of the 
manifestation sequences start with a network-
partitioning fault. For 27.7% of the sequences, the order 
of the rest of events is not important, and in 27% of the 
sequences the events follow a natural order; that is, 
lock() comes before unlock(), and write() before read().  

While this finding indicates that reproducing a 
failure can be complex, the probability of a failure in 
production is still high. The majority of multi-event 
failures require three or fewer events (Table 7); 
consequently, it is highly likely for a system that 
experiences a network partitioning for hours to receive 
all possible permutations of these common events. 

Finding 9. The majority (88%) of the failures manifest 
by isolating a single node, with 45% of the failures 
manifest by isolating any replica. 

It is alarming that the majority of the failures can occur 
by isolating a single node. Conceivably, isolating a 
single node is more likely than other network-
partitioning cases; it can happen because of an NIC 
failure, a single link failure, or a ToR switch failure. 
ToR switch failures are common in production 
networks leading to 40 network partitions in two years 
at Google [21] and 70% of the downtime at     
Microsoft [22]. This finding invalidates the common 
practice of assigning a low priority to ToR switch 
failures based on the presumption that data redundancy 
can effectively mask them [22]. Our results show that 
this practice aggravates the problem by prolonging the 
partition. 

We further studied the connectivity between 
replicas (Table 10) of the same object and found that 
45% of failures manifest by isolating any replica, and 
the rest requires isolating a specific node or service 
(e.g., ZooKeeper cluster). Among the failures that 
isolate a specific node, isolating a leader replica (36%) 
and central services (8.8%) are the most common. This 
does not reduce the possibility of a failure because, as 
in many systems, every node is a leader for some data 
and is a secondary replica for other data. Consequently, 
isolating any replica in the cluster will most likely 
isolate a leader. 

This finding highlights the importance of testing 
these specific faults that isolate a leader, a central 
service, and nodes with special roles (e.g., scheduler, 
and MapReduce App Master).  

5.2 Timing Constraints 
Finding 10. The majority (80%) of the failures are 
either deterministic or have known timing constraints. 

The majority of the failures (Table 11) are either 
deterministic (62%), meaning they will manifest given 
the input events, or have known timing constraints 
(18%). These known constraints are configurable or 
hard coded, such as the number of heartbeat periods to 
wait before declaring that a node has failed. 

Table 9. Ordering charactrisitcs. 
Ordering Charactrisitcs % 
Network partition does not come first  16.0%
Network partition comes first  

 Order is not important  
 Natural order 
 Other  

 
27.7%
26.9%
29.4%

84.0%

Table 10. System connectivity during the network partition. 
Examples of a central service include a ZooKeeper cluster 
and HBase master. Examples of nodes with a special role 
include MongoDB arbiter and MapReduce AppMaster. 
Network Partition Characteristics % 

Partition any replica 44.9%
Partition a specific node 
 Partition the leader 
 Partition a central service 
 Partition a node with a special role 
 Other (e.g., new node, source of 

data migration) 

 
36.0%
8.8% 
3.7% 
6.6% 

55.1%
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Furthermore, we found that the timing constraints 
immediately follow network-partitioning faults. For 
instance, if a partition isolates a leader, for a failure to 
happen, events at the old leader side should be invoked 
right after the partition, so they are processed before the 
old leader steps down; while on the majority side, the 
test should sleep for a known period until a new leader 
is elected. For instance, in RabbitMQ, Redis, Hazelcast, 
and VoltDB, a failure will happen only if a write is 
issued before the old leader steps down (e.g., within 
three heartbeats) after a partitioning fault. 

The 13% of the failures that have unknown timing 
constraints manifest when the sequence of events 
overlaps with a system internal operation. For instance, 
in Cassandra, a failure [85] will only occur if a network 
partition takes place during a data sync operation 
between the handoff node and a replica. However, these 
failures can still be tested by well-designed unit tests. 
For instance, to test the aforementioned Cassandra 
failure, a test should (1) isolate a replica to make the 
system add a handoff node. (2) Write a large amount of 
data. (3) Heal the partition. Now, the handoff node will 
start syncing the data with the replica. Finally, (4) 
create a network partition that isolates the replica 
during the sync operation and triggers the failure. 

Only 7% of the failures are nondeterministic; these 
failures are caused by multithreaded interleavings and 
by overlapping the manifestation sequence with hard-
to-predict internal system operations. 

This finding implies that testers should pay close 
attention to timing. However, we identified that timing 
constraints usually follow the partitioning fault, which 
significantly simplifies testing. 

5.3 Resolution Analysis 
Finding 11. The resolution of 47% of the failures 
required redesigning a system mechanism (Table 12). 

We consider a code patch to be fixing a design flaw if it 
involves significant changes to the affected mechanism 
logic, design, or protocol, such as implementing a new 
leader election protocol in MongoDB and changing 
configuration change protocols in Elasticsearch. 

The large percentage of the failures that led to 
changes in the mechanism design indicates that 
network-partitioning faults were not considered in the 
initial design phase. We expect that a design review 
focusing on network partitioning fault tolerance would 
have discovered systems vulnerability to these faults. 

Table 12 also reports the resolution time, which is 
the period from the time a developer acknowledges a 
failure to the time the issue is fixed. Obtaining an 
accurate resolution time is tricky. We removed outliers 
that take minutes to commit a complex patch or take 
over two years to add a simple patch. In addition, it is 
not necessary for the time reported to be spent actively 
solving the issue. Nevertheless, because these are high-
priority tickets, we think that the reported times give 
some indication of the resolution effort. Table 12 shows 
that design flaws take 2.5 times longer to resolve than 
implementation bugs. 

We noticed that some systems opted to change the 
system specification instead of fixing the issue. For 
instance, Redis documentation states that “there is 
always a window of time when it is possible to lose 
writes during partitions” [86]. RabbitMQ’s 
documentation was updated to indicate that locking 
does not tolerate network partitioning [87], and 
Hazelcast’s documentation [88] states that it provides 
“best effort consistency,” in which data updated 
through atomic operations may be lost. This could 
imply that some of the systems unnecessarily selected a 
strong consistency model where an eventual model was 
sufficient or the developers do not believe that these are 
high priority issues.  

5.4 Opportunity for Improved Testing 
Finding 12. All failures can be reproduced on a cluster 
of five nodes, with the majority (83%) of the failures 
being reproducible with three nodes only (Table 13). 

This finding implies that it is not necessary to have a 
large cluster to test these systems. In fact, it is enough 
to test them using a single physical machine that runs 
five virtual machines. 

Finding 13. The majority of the failures (93%) can be 
reproduced through tests by using a fault injection 
framework such as NEAT. 

Considering our findings, perhaps it is not surprising 
that the majority of the failures can be reproduced using 
unit and system-level tests with a framework that can 
inject network-partitioning faults. The majority of the 
failures result from a single network-partitioning fault, 
need fewer than three common input events, and are 

Table 11. Timing constraints. 
Timing constraints % 
No timing constraints 61.8%
Has timing constraints 

 Known 
 Unknown – but still can be tested 

 
18.4%
12.8%

31.2%

Nondeterministic  7% 

Table 12. Percentage of design and implementation flaws for 
failures reported in issue-tracking systems. 
Category % Average Resolution Time
Design 46.6% 205 days 
Implementation  32.2% 81 days 
Unresolved 21.2% - 

Table 13: Number of nodes needed to reproduce a failure.

Number of Nodes % 
3 nodes 83.1% 
5 nodes 16.9% 
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deterministic or have bounded timing constraints. The 
7% that cannot be easily tested are nondeterministic 
failures or have short vulnerability intervals.  

6 Discussion 
In this section, we address two additional observations: 
 Overlooking network-partitioning faults. We found in 

many cases that the system designer did not consider 
the possibility of network partitioning. For example, 
Redis promises data reliability even though it uses 
asynchronous replication, leading to data loss [89]. 
Similarly, the Hazelcast locking service relies on 
asynchronous replication, leading to double         
locking [90]. Earlier versions of Aerospike assumed 
that the network is reliable [91].  

We found implicit assumptions made in the 
studied systems that are untrue. For instance, tickets 
from MapReduce, RabbitMQ, Ignite, and HBase 
indicate that the developer assumed an unreachable 
node to have halted, which is not true with network 
partitioning. Finally, all partial network-partitioning 
failures are caused by an implicit assumption that if a 
node can reach a service, then all nodes can reach 
that service, which is not always true. 

 Lack of adequate testing tools. In general, we found 
that systems lack rigorous testing for network-
partitioning. For unit tests related to the code patches 
we studied, the developers typically used mocking 
techniques to test the impact of network partitioning 
on one component on one side of the partition. This 
makes us believe that the community lacks a 
network-partitioning fault injection tool that can be 
integrated with the current testing frameworks. 

7 NEAT Framework 
We built the network partitioning testing framework 
(NEAT), a testing framework with network-partitioning 
fault injection. NEAT supports the three types of 
partitions, has a simple API for creating and healing 
partitions, and simplifies the coordination of events 
across clients. NEAT is implemented in 1553 lines of 
Java and uses OpenFlow and the iptables tool to 
inject network-partitioning faults. 

7.1 API 
NEAT is a generic testing framework. It does not have 
any constraints on the target system. To test a system, 
the developer should implement three classes. First is 
the ISystem interface, which provides methods to 
install, start, obtain the status of, and shut down the 
target system. Second, is a Client class that provides 
wrappers around the client API (e.g., put or get calls). 
Third is the test workload and verification code.  

Listing 1 presents a test for an Elasticsearch data 
loss failure [92] with partial network partitioning. The 
network partition (line 7) isolates s1 (the primary 

replica) and client 1 from s2 and client 2. However, all 
nodes can reach s3. s2 will detect that the primary 
replica (s1) is unreachable and start a leader election 
process. s3 will vote for s2, although it can reach s1, 
resulting in two leaders. Consequently, writes on both 
sides of the partition will succeed (line 11 and 12). 
After healing the partition (line 13), s2 will detect that 
s1 is reachable. As in Elasticsearch, the replica with a 
smaller ID wins the election, so s2 will step down and 
become a follower of s1. s2 will replicate s1’s data and, 
consequently, all writes served by s2 during the 
partition will be lost and the check on line 16 will fail. 

Listing 2 presents an ActiveMQ test for double 
dequeueing with complete network partitioning. The 
network partition (line 8) isolates the master and client1 
from the rest of the cluster. The test then pops the queue 
at both sides of the partition (lines 11-13). If the two 
sides obtain the same value, then the value was 
dequeued twice and the test fails.  

7.2 Creating and Healing Network Partitions 
To create or heal a network partition, the developer 
calls one of the following methods.  
 Partition complete(List<Node> groupA, 
List<Node> groupB): creates a complete partition 
between groupA and groupB.  

Listing 1. An Elasticsearch test for data loss. The system has 
three servers: s1 (primary node), s2, and s3, and two clients. 
1 public static void testDataLoss(){ 
2  List<Node> side1 = asList(s1, client1); 
3  // other servers and clients in one group 
4  List<Node> side2 = asList(s2, client2); 
5  // create a partial partition. s3 can reach 
6  // all nodes 
7  Partition netPart = Partitioner.partial( 
8                         side1, side2); 
9  sleep(SLEEP_LEADER_ELECTION_PERIOD); 
10  // write to both sides of the partition 
11  assertTrue(client1.write(obj1, v1)); 
12  assertTrue(client2.write(obj2, v2)); 
13  Partitioner.heal(netPart); 
14  // verify the two objects 
15  assertEquals(client2.read(obj1), v1); 
16  assertEquals(client2.read(obj2), v2);    } 

Listing 2. An ActiveMQ test for a double dequeue failure. 
The system has three servers and two clients. 
1 public static void testDoubleDequeueu(){ 
2  assertTrue(client1.send(q1, msg1)); 
3  assertTrue(client1.send(q1, msg2)); 
4  // get the master node 
5  Node master = AMQSys.getMaster(q1); 
6  List<Node> minority= asList(master, client1); 
7  List<Node>majority=Partitioner.rest(minority);
8  Partition netPart = Partitioner.complete( 
9                         minority, majority);
10  // dequeue at both sides of the partition  
11  Msg minMsg = client1.receive(q1); 
12  sleep(SLEEP_PERIOD); 
13  Msg majMsg = client2.receive(q1); 
 assertNotEqual(minMsg, majMsg);     } 
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 Partition partial(List<Node> groupA, 
List<Node> groupB): creates a partition between 
groupA and groupB without effecting their 
communication with the rest of the cluster. 

 Partition simplex(List<Node> groupSrc, 
List<Node> groupDst): creates a simplex 
partition such that packets can only flow from 
groupSrc to groupDst, but not in the other direction.  

 void heal(Partition p): heals partition p. 

7.3 NEAT Design 
NEAT has three components (Figure 2): server nodes, 
which run the target system; client nodes, which issue 
client requests; and a test engine. The test engine is a 
central node that runs the test workload (e.g., Listing 1). 

The test engine simplifies testing by providing a 
global order for all client operations. The test engine 
invokes all client operations using Java RMI. The 
current NEAT prototype has two implementations of 
the network partitioner module: using OpenFlow and 
using the iptables tool. Furthermore, the test engine 
provides an API for crashing any group of nodes. 

The OpenFlow-based partitioner is a network 
controller [35] that first installs the rules for a basic 
learning switch [93]. Then it installs partitioning rules 
to drop packets from a specific set of source IP 
addresses to a specific set of destination addresses. The 
partitioning rules are installed at a higher priority than 
the learning switch rules. The partitioner is 
implemented in 152 lines of code using Floodlight [94]. 

Our choice to use SDN to build a testing framework 
for distributed systems is research based. Connecting 
the nodes to a single switch and having the ability to 
monitor and control every packet in the system is a 
powerful capability for distributed systems testing. Our 
first attempt to explore this capability is to build a 
network partitioner for NEAT. Our current research 
effort explores techniques to collect detailed system 
traces under different failure scenarios and build tools 
to verify and visualize system protocols. This will help 
developers test, debug, and inspect protocols under 
different failure scenarios.  

For deployments that do not have an OpenFlow 
switch, we implemented a partitioner by using the 
iptables tool to modify the firewall configuration on 
every node to create the specified partitions.  

7.4 Testing Systems with NEAT 
We used NEAT to test seven systems: Ceph [37] 
(v12.2.5), an object storage system; Apache Ignite [39] 
(v2.4.0), a key-value store and distributed data 
structures; Terracotta [40] (v4.3.4), a suite of distributed 
data structures; DKron [41] (v0.9.8), a job scheduling 
system; ActiveMQ [38] (v5.15.3), a message-queueing 
system; Infinispan [42] (v9.2.1), a key-value store; and 
MooseFS [43] (v3), a file system. All systems were 

configured with the most reliable configuration. For 
instance, when possible we persist data on disk, use 
synchronous replication, and set the minimum 
replication per operation to equal the majority or the 
number of all replicas.  

Testing setup. We used two testbeds to run our 
experiments: CloudLab [95] and our own cluster. We 
used six nodes in our tests. The nodes were connected 
by a single switch. One node ran the test engine, three 
nodes ran the system, and two nodes acted as clients.  

Our tests involved creating complete and partial 
partitions, then issuing simple client requests to the two 
sides of the partition, followed by performing a 
verification step. On average, tests are implemented in 
30 lines of Java code. 

The highlighted entries in Table 1 summarize our 
testing results. Our testing revealed 32 network-
partitioning failures, out of which 30 are catastrophic. 
The failures we found lead to data loss, stale reads, data 
unavailability, double locking, and lock corruption. It is 
plausible that a single design flaw or implementation 
bug (e.g., flawed replication protocol) may cause 
failures in different operations (e.g., adding to a list and 
pushing to a queue). We count these as separate 
failures. 

To demonstrate the versatility of NEAT, the 
following discusses failures that NEAT discovered. 

Examples of complete network partition failures: We 
found that all Ignite atomic synchronization primitives, 
including semaphores, compare_and_set, 
increment_and_get, and decrement_and_get, are 
violated or corrupted when a complete network 
partition isolates one of the replicas. The main culprit of 
such failures is the assumption that an unreachable node 
has crashed; consequently, nodes on both sides of a 
partition remove the nodes they cannot reach (i.e., the 
nodes on the other side of the partition) from their 
replica set and continue to use the semaphore, which 
may lead to over counting the semaphore. Furthermore, 
an unreachable client that is holding a semaphore is 
assumed to have crashed. In this case, the system will 
reclaim the client’s semaphore. If the partition heals 

 
Figure 2. NEAT architecture. 
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and the client signals the semaphore, the semaphore 
will be corrupted. These failures lead to lasting damage 
that persists after the partition heals. 
Examples of partial network partition failures: 
ActiveMQ uses ZooKeeper to keep track of the current 
leader. If a partial network partition isolates the leader 
from the replicas, but not from ZooKeeper, the system 
will hang. The leader will not be able to forward 
messages to replicas and the replicas will not elect a 
new leader as ZooKeeper does not see the failure. 

In DKron, if a partial partition separates the leader 
from the rest of DKron’s nodes—but not from the 
central data store service—then the client requests 
processed by the leader will be successfully executed at 
the local level. However, DKron will indicate that the 
task has failed.  

8 Additional Related Work 
To the best of our knowledge, this is the first in-depth 
study of the manifestation sequence of network-
partitioning failures. The manual analysis allowed us to 
examine the sequence of events in detail, identify 
common vulnerabilities, and find failure characteristics 
that can improve testing. 

A large body of previous work analyzed failures in 
distributed systems. A subset of these efforts focused 
on specific component failures such as physical [96] 
and virtual machines [97], network devices [22, 24], 
storage systems [98, 99], software bugs [100], and job 
failures [101, 102, 103]. Another set characterized a 
broader set of failures, but only for specific domain of 
systems and services, such as HPC [104, 105, 106], 
IaaS clouds [107], data-mining services [108], hosting 
services [6, 109], and data-intensive                    
systems [101, 100, 110]. Our work complements these 
efforts by focusing on failures triggered by network 
partitioning. 

Yuan et al. [66] studied 198 randomly selected 
failures from six data analytics systems. Comparing our 
results, we find that a higher percentage of network-
partitioning failures (80%) lead to catastrophic effects, 
compared to 24% reported by Yuan et al. [66]; and 
while 26% of general failures are nondeterministic, 
only 7% of network-partitioning failures are non-
deterministic. These findings indicate that network-
partitioning failures are more critical than general 
system failures, and testers need to pay close attention 
to timing.  

Jepsen’s blog posts report network-partitioning 
failures that were found using the Jepsen tool [54]. 
However, they do not detail the manifestation 
sequences, correlate failures across systems, study the 
impact of different types of network-partitioning faults, 
study client access requirements, characterize network 
faults, or analyze timing constraints. 

Majumdar et al. [111] theoretically analyzed the 
space for faulty executions in the presence of complete 
network partitioning faults. They discussed the extreme 
size of the test space and the effectiveness of random 
testing if tests isolate a specific node, place a leader in a 
minority, and test with a random order of short 
sequences of operations. 

While we identify characteristics to improve testing, 
our findings can inform other fault tolerance 
techniques. Previous efforts explored model       
checking [112, 113, 114, 115, 116], systematic fault 
injection [117, 118], and runtime verification 
techniques [119, 120] for improving systems’ fault 
tolerance. Our findings inform these techniques to 
consider all types of network partitions and discovered 
characteristics that can improve these techniques’ time 
and efficiency. 

9 Insights 
We conducted a comprehensive study of network-
partitioning failures in modern cloud systems. It is 
surprising that these production systems experience 
silent catastrophic failures due to a frequently occurring 
infrastructure fault, when a single node is isolated, and 
under simple and common workloads. Our analysis 
identified that improvements to the software 
development process and testing can significantly 
improve systems’ resilience to network partitions. 
These findings indicate that this is a high-impact 
research area that needs further effort to improve 
system design, engineering, testing, and fault tolerance. 
Our initial results with NEAT are encouraging; even 
our preliminary testing tool found bugs in production 
systems, indicating that there is a significant room for 
improvement. 

Another interesting area of research that our 
analysis identified is partial network partitions fault 
tolerance. It is surprising that a large number of failures 
in production systems are triggered by this network 
fault, yet we could not find any discussion, failure 
model, or fault tolerance techniques that address this 
type of infrastructure fault. 

Modern systems use unreachability as an indicator 
for node failure. Our analysis shows the dangers of this 
approach, as complete network partitions can isolate 
healthy nodes that lead to both sides assuming that the 
other side has crashed. Worse yet, partial partitions lead 
to a confusing state in which some nodes declare part of 
the system down while the rest of the nodes do not. 
Further, research is needed for building more accurate 
node-failure detectors and fault tolerance techniques. 

While we identify better testing as one approach for 
improving system fault tolerance, we highlighted that 
the number of test cases one needs to consider is 
excessive. Luckily, our analysis found operations, 
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timing, ordering, and network failure characteristics 
that limit the testing space. 

Our analysis highlights that the current network 
maintenance practice of assigning a low priority to ToR 
switch failure is ill founded and aggravates the 
problem. Finally, we highlight that system designers 
need to pay careful attention to internal and offline 
operations, need be wary of tweaking established 
protocols, and need to consider network partitioning 
failures early in their design process. 

10 Conclusion and Future Work 
We conducted an in-depth study of 136 failure reports 
from 25 widely used systems for failures triggered by 
network-partitioning faults. We present 13 main 
findings that can inform system designers, developers, 
testers, and administrators; and highlight the need for 
further research in network partitioning fault tolerance 
in general and with partial partitions in particular.  

We built NEAT, a testing framework that can inject 
different types of network-partitioning faults. Our 
testing of seven systems revealed 32 failures. 

In our current work, we are focusing on two 
directions: Extending NEAT to automate testing 
through workload and network fault generators and 
exploring fault tolerance techniques for partial network 
partitioning faults. Our data set and the source code are 
available at: https://dsl.uwaterloo.ca/projects/neat/  
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Abstract
The monolithic server model where a server is the unit
of deployment, operation, and failure is meeting its lim-
its in the face of several recent hardware and application
trends. To improve resource utilization, elasticity, het-
erogeneity, and failure handling in datacenters, we be-
lieve that datacenters should break monolithic servers
into disaggregated, network-attached hardware compo-
nents. Despite the promising benefits of hardware re-
source disaggregation, no existing OSes or software sys-
tems can properly manage it.

We propose a new OS model called the splitkernel to
manage disaggregated systems. Splitkernel disseminates
traditional OS functionalities into loosely-coupled mon-
itors, each of which runs on and manages a hardware
component. A splitkernel also performs resource allo-
cation and failure handling of a distributed set of hard-
ware components. Using the splitkernel model, we built
LegoOS, a new OS designed for hardware resource dis-
aggregation. LegoOS appears to users as a set of dis-
tributed servers. Internally, a user application can span
multiple processor, memory, and storage hardware com-
ponents. We implemented LegoOS on x86-64 and evalu-
ated it by emulating hardware components using com-
modity servers. Our evaluation results show that Le-
goOS’ performance is comparable to monolithic Linux
servers, while largely improving resource packing and
reducing failure rate over monolithic clusters.

1 Introduction
For many years, the unit of deployment, operation, and
failure in datacenters has been a monolithic server, one
that contains all the hardware resources that are needed
to run a user program (typically a processor, some main
memory, and a disk or an SSD). This monolithic archi-
tecture is meeting its limitations in the face of several
issues and recent trends in datacenters.

First, datacenters face a difficult bin-packing problem
of fitting applications to physical machines. Since a pro-
cess can only use processor and memory in the same ma-
chine, it is hard to achieve full memory and CPU resource
utilization [18, 33, 65]. Second, after packaging hard-
ware devices in a server, it is difficult to add, remove, or
change hardware components in datacenters [39]. More-
over, when a hardware component like a memory con-
troller fails, the entire server is unusable. Finally, mod-
ern datacenters host increasingly heterogeneous hard-
ware [5, 55, 84, 94]. However, designing new hardware

that can fit into monolithic servers and deploying them in
datacenters is a painful and cost-ineffective process that
often limits the speed of new hardware adoption.

We believe that datacenters should break mono-
lithic servers and organize hardware devices like CPU,
DRAM, and disks as independent, failure-isolated,
network-attached components, each having its own con-
troller to manage its hardware. This hardware re-
source disaggregation architecture is enabled by recent
advances in network technologies [24, 42, 52, 66, 81, 88]
and the trend towards increasing processing power in
hardware controller [9, 23, 92]. Hardware resource dis-
aggregation greatly improves resource utilization, elas-
ticity, heterogeneity, and failure isolation, since each
hardware component can operate or fail on its own and
its resource allocation is independent from other com-
ponents. With these benefits, this new architecture has
already attracted early attention from academia and in-
dustry [1, 15, 48, 56, 63, 77].

Hardware resource disaggregation completely shifts
the paradigm of computing and presents a key challenge
to system builders: How to manage and virtualize the
distributed, disaggregated hardware components?

Unfortunately, existing kernel designs cannot address
the new challenges hardware resource disaggregation
brings, such as network communication overhead across
disaggregated hardware components, fault tolerance of
hardware components, and the resource management of
distributed components. Monolithic kernels, microker-
nels [36], and exokernels [37] run one OS on a mono-
lithic machine, and the OS assumes local accesses to
shared main memory, storage devices, network inter-
faces, and other hardware resources in the machine. Af-
ter disaggregating hardware resources, it may be viable
to run the OS at a processor and remotely manage all
other hardware components. However, remote man-
agement requires significant amount of network traffic,
and when processors fail, other components are unus-
able. Multi-kernel OSes [21, 26, 76, 106] run a kernel
at each processor (or core) in a monolithic computer and
these per-processor kernels communicate with each other
through message passing. Multi-kernels still assume lo-
cal accesses to hardware resources in a monolithic ma-
chine and their message passing is over local buses in-
stead of a general network. While existing OSes could
be retrofitted to support hardware resource disaggrega-
tion, such retrofitting will be invasive to the central sub-
systems of an OS, such as memory and I/O management.

We propose splitkernel, a new OS architecture for
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hardware resource disaggregation (Figure 3). The basic
idea is simple: When hardware is disaggregated, the OS
should be also. A splitkernel breaks traditional operat-
ing system functionalities into loosely-coupled monitors,
each running at and managing a hardware component.
Monitors in a splitkernel can be heterogeneous and can
be added, removed, and restarted dynamically without
affecting the rest of the system. Each splitkernel monitor
operates locally for its own functionality and only com-
municates with other monitors when there is a need to
access resources there. There are only two global tasks
in a splitkernel: orchestrating resource allocation across
components and handling component failure.

We choose not to support coherence across different
components in a splitkernel. A splitkernel can use any
general network to connect its hardware components. All
monitors in a splitkernel communicate with each other
via network messaging only. With our targeted scale, ex-
plicit message passing is much more efficient in network
bandwidth consumption than the alternative of implicitly
maintaining cross-component coherence.

Following the splitkernel model, we built LegoOS, the
first OS designed for hardware resource disaggregation.
LegoOS is a distributed OS that appears to applications
as a set of virtual servers (called vNodes). A vNode can
run on multiple processor, memory, and storage compo-
nents and one component can host resources for multiple
vNodes. LegoOS cleanly separates OS functionalities
into three types of monitors, process monitor, memory
monitor, and storage monitor. LegoOS monitors share
no or minimal states and use a customized RDMA-based
network stack to communicate with each other.

The biggest challenge and our focus in building Le-
goOS is the separation of processor and memory and
their management. Modern processors and OSes assume
all hardware memory units including main memory, page
tables, and TLB are local. Simply moving all memory
hardware and memory management software to across
the network will not work.

Based on application properties and hardware trends,
we propose a hardware plus software solution that
cleanly separates processor and memory functionalities,
while meeting application performance requirements.
LegoOS moves all memory hardware units to the disag-
gregated memory components and organizes all levels of

processor caches as virtual caches that are accessed us-
ing virtual memory addresses. To improve performance,
LegoOS uses a small amount (e.g., 4 GB) of DRAM or-
ganized as a virtual cache below current last-level cache.

LegoOS process monitor manages application pro-
cesses and the extended DRAM-cache. Memory mon-
itor manages all virtual and physical memory space al-
location and address mappings. LegoOS uses a novel
two-level distributed virtual memory space management
mechanism, which ensures efficient foreground mem-
ory accesses and balances load and space utilization
at allocation time. Finally, LegoOS uses a space-
and performance-efficient memory replication scheme to
handle memory failure.

We implemented LegoOS on the x86-64 architecture.
LegoOS is fully backward compatible with Linux ABIs
by supporting common Linux system call APIs. To
evaluate LegoOS, we emulate disaggregated hardware
components using commodity servers. We evaluated
LegoOS with microbenchmarks, the PARSEC bench-
marks [22], and two unmodified datacenter applications,
Phoenix [85] and TensorFlow [4]. Our evaluation re-
sults show that compared to monolithic Linux servers
that can hold all the working sets of these applications,
LegoOS is only 1.3× to 1.7× slower with 25% of appli-
cation working set available as DRAM cache at proces-
sor components. Compared to monolithic Linux servers
whose main memory size is the same as LegoOS’ DRAM
cache size and which use local SSD/DRAM swapping
or network swapping, LegoOS’ performance is 0.8× to
3.2×. At the same time, LegoOS largely improves re-
source packing and reduces system mean time to failure.

Overall, this work makes the following contributions:

• We propose the concept of splitkernel, a new OS ar-
chitecture that fits the hardware resource disaggre-
gation architecture.

• We built LegoOS, the first OS that runs on and man-
ages a disaggregated hardware cluster.

• We propose a new hardware architecture to cleanly
separate processor and memory hardware function-
alities, while preserving most of the performance of
monolithic server architecture.

LegoOS is publicly available at http://LegoOS.io.
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Figure 4: Datacenter Resource Utilization.

2 Disaggregate Hardware Resource
This section motivates the hardware resource disaggre-
gation architecture and discusses the challenges in man-
aging disaggregated hardware.

2.1 Limitations of Monolithic Servers
A monolithic server has been the unit of deployment and
operation in datacenters for decades. This long-standing
server-centric architecture has several key limitations.
Inefficient resource utilization. With a server being the
physical boundary of resource allocation, it is difficult
to fully utilize all resources in a datacenter [18, 33, 65].
We analyzed two production cluster traces: a 29-day
Google one [45] and a 12-hour Alibaba one [10]. Fig-
ure 4 plots the aggregated CPU and memory utilization
in the two clusters. For both clusters, only around half of
the CPU and memory are utilized. Interestingly, a signif-
icant amount of jobs are being evicted at the same time
in these traces (e.g., evicting low-priority jobs to make
room for high-priority ones [102]). One of the main
reasons for resource underutilization in these production
clusters is the constraint that CPU and memory for a job
have to be allocated from the same physical machine.
Poor hardware elasticity. It is difficult to add, move,
remove, or reconfigure hardware components after they
have been installed in a monolithic server [39]. Because
of this rigidity, datacenter owners have to plan out server
configurations in advance. However, with today’s speed
of change in application requirements, such plans have
to be adjusted frequently, and when changes happen, it
often comes with waste in existing server hardware.
Coarse failure domain. The failure unit of monolithic
servers is coarse. When a hardware component within a
server fails, the whole server is often unusable and ap-
plications running on it can all crash. Previous analy-
sis [90] found that motherboard, memory, CPU, power
supply failures account for 50% to 82% of hardware fail-
ures in a server. Unfortunately, monolithic servers cannot
continue to operate when any of these devices fail.
Bad support for heterogeneity. Driven by application
needs, new hardware technologies are finding their ways
into modern datacenters [94]. Datacenters no longer
host only commodity servers with CPU, DRAM, and
hard disks. They include non-traditional and special-
ized hardware like GPGPU [11, 46], TPU [55], DPU [5],

FPGA [12, 84], non-volatile memory [49], and NVMe-
based SSDs [98]. The monolithic server model tightly
couples hardware devices with each other and with a
motherboard. As a result, making new hardware devices
work with existing servers is a painful and lengthy pro-
cess [84]. Mover, datacenters often need to purchase new
servers to host certain hardware. Other parts of the new
servers can go underutilized and old servers need to retire
to make room for new ones.

2.2 Hardware Resource Disaggregation
The server-centric architecture is a bad fit for the fast-
changing datacenter hardware, software, and cost needs.
There is an emerging interest in utilizing resources be-
yond a local machine [41], such as distributed mem-
ory [7, 34, 74, 79] and network swapping [47]. These so-
lutions improve resource utilization over traditional sys-
tems. However, they cannot solve all the issues of mono-
lithic servers (e.g., the last three issues in §2.1), since
their hardware model is still a monolithic one. To fully
support the growing heterogeneity in hardware and to
provide elasticity and flexibility at the hardware level, we
should break the monolithic server model.

We envision a hardware resource disaggregation
architecture where hardware resources in traditional
servers are disseminated into network-attached hardware
components. Each component has a controller and a net-
work interface, can operate on its own, and is an inde-
pendent, failure-isolated entity.

The disaggregated approach largely increases the flex-
ibility of a datacenter. Applications can freely use re-
sources from any hardware component, which makes re-
source allocation easy and efficient. Different types of
hardware resources can scale independently. It is easy to
add, remove, or reconfigure components. New types of
hardware components can easily be deployed in a data-
center — by simply enabling the hardware to talk to the
network and adding a new network link to connect it.
Finally, hardware resource disaggregation enables fine-
grain failure isolation, since one component failure will
not affect the rest of a cluster.

Three hardware trends are making resource disag-
gregation feasible in datacenters. First, network speed
has grown by more than an order of magnitude and
has become more scalable in the past decade with
new technologies like Remote Direct Memory Access
(RDMA) [69] and new topologies and switches [15, 30,
31], enabling fast accesses of hardware components that
are disaggregated across the network. InfiniBand will
soon reach 200Gbps and sub-600 nanosecond speed [66],
being only 2× to 4× slower than main memory bus in
bandwidth. With main memory bus facing a bandwidth
wall [87], future network bandwidth (at line rate) is even
projected to exceed local DRAM bandwidth [99].
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Second, network interfaces are moving closer to hard-
ware components, with technologies like Intel Omni-
Path [50], RDMA [69], and NVMe over Fabrics [29, 71].
As a result, hardware devices will be able to access net-
work directly without the need to attach any processors.

Finally, hardware devices are incorporating more pro-
cessing power [8, 9, 23, 67, 68, 75], allowing application
and OS logics to be offloaded to hardware [57, 92]. On-
device processing power will enable system software to
manage disaggregated hardware components locally.

With these hardware trends and the limitations of
monolithic servers, we believe that future datacenters
will be able to largely benefit from hardware resource
disaggregation. In fact, there have already been several
initial hardware proposals in resource disaggregation [1],
including disaggregated memory [63, 77, 78], disaggre-
gated flash [59, 60], Intel Rack-Scale System [51], HP
“The Machine” [40, 48], IBM Composable System [28],
and Berkeley Firebox [15].

2.3 OSes for Resource Disaggregation
Despite various benefits hardware resource disaggrega-
tion promises, it is still unclear how to manage or utilize
disaggregated hardware in a datacenter. Unfortunately,
existing OSes and distributed systems cannot work well
with this new architecture. Single-node OSes like Linux
view a server as the unit of management and assume all
hardware components are local (Figure 1). A potential
approach is to run these OSes on processors and access
memory, storage, and other hardware resources remotely.
Recent disaggregated systems like soNUMA [78] take
this approach. However, this approach incurs high net-
work latency and bandwidth consumption with remote
device management, misses the opportunity of exploit-
ing device-local computation power, and makes proces-
sors the single point of failure.

Multi-kernel solutions [21, 26, 76, 106, 107] (Figure 2)
view different cores, processors, or programmable de-
vices within a server separately by running a kernel on
each core/device and using message passing to commu-
nicate across kernels. These kernels still run in a single
server and all access some common hardware resources
in the server like memory and the network interface.
Moreover, they do not manage distributed resources or
handle failures in a disaggregated cluster.

There have been various distributed OS proposals,
most of which date decades back [16, 82, 97]. Most of
these distributed OSes manage a set of monolithic servers
instead of hardware components.

Hardware resource disaggregation is fundamentally
different from the traditional monolithic server model.
A complete disaggregation of processor, memory, and
storage means that when managing one of them, there
will be no local accesses to the other two. For example,

processors will have no local memory or storage to store
user or kernel data. An OS also needs to manage dis-
tributed hardware resource and handle hardware compo-
nent failure. We summarize the following key challenges
in building an OS for resource disaggregation, some of
which have previously been identified [40].

• How to deliver good performance when appli-
cation execution involves the access of network-
partitioned disaggregated hardware and current net-
work is still slower than local buses?

• How to locally manage individual hardware compo-
nents with limited hardware resources?

• How to manage distributed hardware resources?

• How to handle a component failure without affect-
ing other components or running applications?

• What abstraction should be exposed to users and
how to support existing datacenter applications?

Instead of retrofitting existing OSes to confront these
challenges, we take the approach of designing a new OS
architecture from the ground up for hardware resource
disaggregation.

3 The Splitkernel OS Architecture
We propose splitkernel, a new OS architecture for re-
source disaggregation. Figure 3 illustrates splitkernel’s
overall architecture. The splitkernel disseminates an OS
into pieces of different functionalities, each running at
and managing a hardware component. All components
communicate by message passing over a common net-
work, and splitkernel globally manages resources and
component failures. Splitkernel is a general OS architec-
ture we propose for hardware resource disaggregation.
There can be many types of implementation of splitk-
ernel. Further, we make no assumption on the specific
hardware or network type in a disaggregated cluster a
splitkernel runs on. Below, we describe four key con-
cepts of the splitkernel architecture.
Split OS functionalities. Splitkernel breaks traditional
OS functionalities into monitors. Each monitor man-
ages a hardware component, virtualizes and protects its
physical resources. Monitors in a splitkernel are loosely-
coupled and they communicate with other monitors to
access remote resources. For each monitor to operate on
its own with minimal dependence on other monitors, we
use a stateless design by sharing no or minimal states, or
metadata, across monitors.
Run monitors at hardware components. We expect each
non-processor hardware component in a disaggregated
cluster to have a controller that can run a monitor. A
hardware controller can be a low-power general-purpose
core, an ASIC, or an FPGA. Each monitor in a splitkernel
can use its own implementation to manage the hardware
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component it runs on. This design makes it easy to in-
tegrate heterogeneous hardware in datacenters — to de-
ploy a new hardware device, its developers only need to
build the device, implement a monitor to manage it, and
attach the device to the network. Similarly, it is easy to
reconfigure, restart, and remove hardware components.
Message passing across non-coherent components. Un-
like other proposals of disaggregated systems [48] that
rely on coherent interconnects [24, 42, 81], a splitker-
nel runs on general-purpose network layer like Ether-
net and neither underlying hardware nor the splitkernel
provides cache coherence across components. We made
this design choice mainly because maintaining coher-
ence for our targeted cluster scale would cause high net-
work bandwidth consumption. Instead, all communica-
tion across components in a splitkernel is through net-
work messaging. A splitkernel still retains the coherence
guarantee that hardware already provides within a com-
ponent (e.g., cache coherence across cores in a CPU),
and applications running on top of a splitkernel can use
message passing to implement their desired level of co-
herence for their data across components.
Global resource management and failure handling. One
hardware component can host resources for multiple ap-
plications and its failure can affect all these applica-
tions. In addition to managing individual components,
the splitkernel also needs to globally manage resources
and failure. To minimize performance and scalability
bottleneck, the splitkernel only involves global resource
management occasionally for coarse-grained decisions,
while individual monitors make their own fine-grained
decisions. The splitkernel handles component failure by
adding redundancy for recovery.

4 LegoOS Design
Based on the splitkernel architecture, we built LegoOS,
the first OS designed for hardware resource disaggrega-
tion. LegoOS is a research prototype that demonstrates
the feasibility of the splitkernel design, but it is not the
only way to build a splitkernel. LegoOS’ design targets
three types of hardware components: processor, mem-
ory, and storage, and we call them pComponent, mCom-
ponent, and sComponent.

This section first introduces the abstraction LegoOS
exposes to users and then describes the hardware archi-
tecture of components LegoOS runs on. Next, we ex-
plain the design of LegoOS’ process, memory, and stor-
age monitors. Finally, we discuss LegoOS’ global re-
source management and failure handling mechanisms.

Overall, LegoOS achieves the following design goals:

• Clean separation of process, memory, and storage
functionalities.
• Monitors run at hardware components and fit device

constraints.

• Comparable performance to monolithic Linux
servers.
• Efficient resource management and memory failure

handling, both in space and in performance.
• Easy-to-use, backward compatible user interface.
• Supports common Linux system call interfaces.

4.1 Abstraction and Usage Model
LegoOS exposes a distributed set of virtual nodes, or vN-
ode, to users. From users’ point of view, a vNode is like
a virtual machine. Multiple users can run in a vNode
and each user can run multiple processes. Each vNode
has a unique ID, a unique virtual IP address, and its own
storage mount point. LegoOS protects and isolates the
resources given to each vNode from others. Internally,
one vNode can run on multiple pComponents, multiple
mComponents, and multiple sComponents. At the same
time, each hardware component can host resources for
more than one vNode. The internal execution status is
transparent to LegoOS users; they do not know which
physical components their applications run on.

With splitkernel’s design principle of components not
being coherent, LegoOS does not support writable shared
memory across processors. LegoOS assumes that threads
within the same process access shared memory and
threads belonging to different processes do not share
writable memory, and LegoOS makes scheduling deci-
sion based on this assumption (§4.3.1). Applications that
use shared writable memory across processes (e.g., with
MAP SHARED) will need to be adapted to use message
passing across processes. We made this decision be-
cause writable shared memory across processes is rare
(we have not seen a single instance in the datacenter
applications we studied), and supporting it makes both
hardware and software more complex (in fact, we have
implemented this support but later decided not to include
it because of its complexity).

One of the initial decisions we made when building
LegoOS is to support the Linux system call interface
and unmodified Linux ABI, because doing so can greatly
ease the adoption of LegoOS. Distributed applications
that run on Linux can seamlessly run on a LegoOS clus-
ter by running on a set of vNodes.

4.2 Hardware Architecture
LegoOS pComponent, mComponent, and sComponent
are independent devices, each having their own hard-
ware controller and network interface (for pComponent,
the hardware controller is the processor itself). Our cur-
rent hardware model uses CPU in pComponent, DRAM
in mComponent, and SSD or HDD in sComponent. We
leave exploring other hardware devices for future work.

To demonstrate the feasibility of hardware resource
disaggregation, we propose a pComponent and an
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Figure 5: LegoOS pComponent and mComponent Architecture.

mComponent architecture designed within today’s net-
work, processor, and memory performance and hardware
constraints (Figure 5).
Separating process and memory functionalities. LegoOS
moves all hardware memory functionalities to mCompo-
nents (e.g., page tables, TLBs) and leaves only caches at
the pComponent side. With a clean separation of process
and memory hardware units, the allocation and manage-
ment of memory can be completely transparent to pCom-
ponents. Each mComponent can choose its own memory
allocation technique and virtual to physical memory ad-
dress mappings (e.g., segmentation).
Processor virtual caches. After moving all memory
functionalities to mComponents, pComponents will only
see virtual addresses and have to use virtual memory ad-
dresses to access its caches. Because of this, LegoOS
organizes all levels of pComponent caches as virtual
caches [44, 104], i.e., virtually-indexed and virtually-
tagged caches.

A virtual cache has two potential problems, commonly
known as synonyms and homonyms [95]. Synonyms
happens when a physical address maps to multiple virtual
addresses (and thus multiple virtual cache lines) as a re-
sult of memory sharing across processes, and the update
of one virtual cache line will not reflect to other lines that
share the data. Since LegoOS does not allow writable
inter-process memory sharing, it will not have the syn-
onym problem. The homonym problem happens when
two address spaces use the same virtual address for their
own different data. Similar to previous solutions [20], we
solve homonyms by storing an address space ID (ASID)
with each cache line, and differentiate a virtual address
in different address spaces using ASIDs.
Separating memory for performance and for capacity.
Previous studies [41, 47] and our own show that today’s
network speed cannot meet application performance re-
quirements if all memory accesses are across the net-
work. Fortunately, many modern datacenter applications
exhibit strong memory access temporal locality. For ex-
ample, we found 90% of memory accesses in Power-
Graph [43] go to just 0.06% of total memory and 95% go
to 3.1% of memory (22% and 36% for TensorFlow [4]
respectively, 5.1% and 6.6% for Phoenix [85]).

With good memory-access locality, we propose to

leave a small amount of memory (e.g., 4 GB) at each
pComponent and move most memory across the network
(e.g., few TBs per mComponent). pComponents’ local
memory can be regular DRAM or the on-die HBM [53,
72], and mComponents use DRAM or NVM.

Different from previous proposals [63], we propose
to organize pComponents’ DRAM/HBM as cache rather
than main memory for a clean separation of process and
memory functionalities. We place this cache under the
current processor Last-Level Cache (LLC) and call it an
extended cache, or ExCache. ExCache serves as another
layer in the memory hierarchy between LLC and mem-
ory across the network. With this design, ExCache can
serve hot memory accesses fast, while mComponents can
provide the capacity applications desire.

ExCache is a virtual, inclusive cache, and we use a
combination of hardware and software to manage Ex-
Cache. Each ExCache line has a (virtual-address) tag and
two access permission bits (one for read/write and one
for valid). These bits are set by software when a line is
inserted to ExCache and checked by hardware at access
time. For best hit performance, the hit path of ExCache is
handled purely by hardware — the hardware cache con-
troller maps a virtual address to an ExCache set, fetches
and compares tags in the set, and on a hit, fetches the hit
ExCache line. Handling misses of ExCache is more com-
plex than with traditional CPU caches, and thus we use
LegoOS to handle the miss path of ExCache (see §4.3.2).

Finally, we use a small amount of DRAM/HBM at
pComponent for LegoOS’ own kernel data usages, ac-
cessed directly with physical memory addresses and
managed by LegoOS. LegoOS ensures that all its own
data fits in this space to avoid going to mComponents.

With our design, pComponents do not need any ad-
dress mappings: LegoOS accesses all pComponent-
side DRAM/HBM using physical memory addresses and
does simple calculations to locate the ExCache set for a
memory access. Another benefit of not handling address
mapping at pComponents and moving TLBs to mCom-
ponents is that pComponents do not need to access TLB
or suffer from TLB misses, potentially making pCompo-
nent cache accesses faster [58].

4.3 Process Management
The LegoOS process monitor runs in the kernel space
of a pComponent and manages the pComponent’s CPU
cores and ExCache. pComponents run user programs in
the user space.

4.3.1 Process Management and Scheduling

At every pComponent, LegoOS uses a simple local
thread scheduling model that targets datacenter applica-
tions (we will discuss global scheduling in § 4.6). Le-
goOS dedicates a small amount of cores for kernel back-
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ground threads (currently two to four) and uses the rest
of the cores for application threads. When a new process
starts, LegoOS uses a global policy to choose a pCom-
ponent for it (§ 4.6). Afterwards, LegoOS schedules new
threads the process spawns on the same pComponent by
choosing the cores that host fewest threads. After assign-
ing a thread to a core, we let it run to the end with no
scheduling or kernel preemption under common scenar-
ios. For example, we do not use any network interrupts
and let threads busy wait on the completion of outstand-
ing network requests, since a network request in LegoOS
is fast (e.g., fetching an ExCache line from an mCompo-
nent takes around 6.5µs). LegoOS improves the overall
processor utilization in a disaggregated cluster, since it
can freely schedule processes on any pComponents with-
out considering memory allocation. Thus, we do not
push for perfect core utilization when scheduling indi-
vidual threads and instead aim to minimize scheduling
and context switch performance overheads. Only when a
pComponent has to schedule more threads than its cores
will LegoOS start preempting threads on a core.

4.3.2 ExCache Management

LegoOS process monitor configures and manages Ex-
Cache. During the pComponent’s boot time, LegoOS
configures the set associativity of ExCache and its cache
replacement policy. While ExCache hit is handled com-
pletely in hardware, LegoOS handles misses in software.
When an ExCache miss happens, the process monitor
fetches the corresponding line from an mComponent and
inserts it to ExCache. If the ExCache set is full, the
process monitor first evicts a line in the set. It throws
away the evicted line if it is clean and writes it back to
an mComponent if it is dirty. LegoOS currently supports
two eviction policies: FIFO and LRU. For each ExCache
set, LegoOS maintains a FIFO queue (or an approximate
LRU list) and chooses ExCache lines to evict based on
the corresponding policy (see §5.3 for details).

4.3.3 Supporting Linux Syscall Interface

One of our early decisions is to support Linux ABIs for
backward compatibility and easy adoption of LegoOS. A
challenge in supporting the Linux system call interface
is that many Linux syscalls are associated with states, in-
formation about different Linux subsystems that is stored
with each process and can be accessed by user programs
across syscalls. For example, Linux records the states
of a running process’ open files, socket connections, and
several other entities, and it associates these states with
file descriptors (fds) that are exposed to users. In contrast,
LegoOS aims at the clean separation of OS functionali-
ties. With LegoOS’ stateless design principle, each com-
ponent only stores information about its own resource
and each request across components contains all the in-

formation that the destination component needs to handle
the request. To solve this discrepancy between the Linux
syscall interface and LegoOS’ design, we add a layer on
top of LegoOS’ core process monitor at each pCompo-
nent to store Linux states and translate these states and
the Linux syscall interface to LegoOS’ internal interface.

4.4 Memory Management
We use mComponents for three types of data: anony-
mous memory (i.e., heaps, stacks), memory-mapped
files, and storage buffer caches. The LegoOS memory
monitor manages both the virtual and physical memory
address spaces, their allocation, deallocation, and mem-
ory address mappings. It also performs the actual mem-
ory read and write. No user processes run on mCompo-
nents and they run completely in the kernel mode (same
is true for sComponents).

LegoOS lets a process address space span multiple
mComponents to achieve efficient memory space uti-
lization and high parallelism. Each application process
uses one or more mComponents to host its data and a
home mComponent, an mComponent that initially loads
the process, accepts and oversees all system calls related
to virtual memory space management (e.g., brk, mmap,
munmap, and mremap). LegoOS uses a global memory
resource manager (GMM) to assign a home mCompo-
nent to each new process at its creation time. A home
mComponent can also host process data.

4.4.1 Memory Space Management

Virtual memory space management. We propose a two-
level approach to manage distributed virtual memory
spaces, where the home mComponent of a process makes
coarse-grained, high-level virtual memory allocation de-
cisions and other mComponents perform fine-grained
virtual memory allocation. This approach minimizes net-
work communication during both normal memory ac-
cesses and virtual memory operations, while ensuring
good load balancing and memory utilization. Figure 6
demonstrates the data structures used.

At the higher level, we split each virtual memory ad-
dress space into coarse-grained, fix-sized virtual regions,
or vRegions (e.g., of 1 GB). Each vRegion that contains
allocated virtual memory addresses (an active vRegion)
is owned by an mComponent. The owner of a vRe-
gion handles all memory accesses and virtual memory
requests within the vRegion.

The lower level stores user process virtual memory
area (vma) information, such as virtual address ranges
and permissions, in vma trees. The owner of an active
vRegion stores a vma tree for the vRegion, with each
node in the tree being one vma. A user-perceived virtual
memory range can split across multiple mComponents,
but only one mComponent owns a vRegion.
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vRegion owners perform the actual virtual memory al-
location and vma tree set up. A home mComponent can
also be the owner of vRegions, but the home mCom-
ponent does not maintain any information about mem-
ory that belongs to vRegions owned by other mCompo-
nents. It only keeps the information of which mCompo-
nent owns a vRegion (in a vRegion array) and how much
free virtual memory space is left in each vRegion. These
metadata can be easily reconstructed if a home mCom-
ponent fails.

When an application process wants to allocate a virtual
memory space, the pComponent forwards the allocation
request to its home mComponent ( 1 in Figure 6). The
home mComponent uses its stored information of avail-
able virtual memory space in vRegions to find one or
more vRegions that best fit the requested amount of vir-
tual memory space. If no active vRegion can fit the allo-
cation request, the home mComponent makes a new vRe-
gion active and contacts the GMM ( 2 and 3 ) to find a
candidate mComponent to own the new vRegion. GMM
makes this decision based on available physical memory
space and access load on different mComponents (§ 4.6).
If the candidate mComponent is not the home mCompo-
nent, the home mComponent next forwards the request
to that mComponent ( 4 ), which then performs local vir-
tual memory area allocation and sets up the proper vma
tree. Afterwards, the pComponent directly sends mem-
ory access requests to the owner of the vRegion where
the memory access falls into (e.g., a and c in Figure 6).

LegoOS’ mechanism of distributed virtual memory
management is efficient and it cleanly separates mem-
ory operations from pComponents. pComponents hand
over all memory-related system call requests to mCom-
ponents and only cache a copy of the vRegion array for
fast memory accesses. To fill a cache miss or to flush a
dirty cache line, a pComponent looks up the cached vRe-
gion array to find its owner mComponent and sends the
request to it.
Physical memory space management. Each mCompo-
nent manages the physical memory allocation for data
that falls into the vRegion that it owns. Each mCompo-
nent can choose their own way of physical memory allo-
cation and own mechanism of virtual-to-physical mem-
ory address mapping.

4.4.2 Optimization on Memory Accesses

With our strawman memory management design, all
ExCache misses will go to mComponents. We soon
found that a large performance overhead in running real
applications is caused by filling empty ExCache, i.e.,
cold misses. To reduce the performance overhead of
cold misses, we propose a technique to avoid accessing
mComponent on first memory accesses.

The basic idea is simple: since the initial content of
anonymous memory (non-file-backed memory) is zero,
LegoOS can directly allocate a cache line with empty
content in ExCache for the first access to anonymous
memory instead of going to mComponent (we call such
cache lines p-local lines). When an application creates
a new anonymous memory region, the process monitor
records its address range and permission. The applica-
tion’s first access to this region will be an ExCache miss
and it will trap to LegoOS. LegoOS process monitor then
allocates an ExCache line, fills it with zeros, and sets its
R/W bit according to the recorded memory region’s per-
mission. Before this p-local line is evicted, it only lives
in the ExCache. No mComponents are aware of it or will
allocate physical memory or a virtual-to-physical mem-
ory mapping for it. When a p-local cache line becomes
dirty and needs to be flushed, the process monitor sends
it to its owner mComponent, which then allocates phys-
ical memory space and establishes a virtual-to-physical
memory mapping. Essentially, LegoOS delays physi-
cal memory allocation until write time. Notice that it is
safe to only maintain p-local lines at a pComponent Ex-
Cache without any other pComponents knowing them,
since pComponents in LegoOS do not share any memory
and other pComponents will not access this data.

4.5 Storage Management
LegoOS supports a hierarchical file interface that is back-
ward compatible with POSIX through its vNode abstrac-
tion. Users can store their directories and files under their
vNodes’ mount points and perform normal read, write,
and other accesses to them.

LegoOS implements core storage functionalities at
sComponents. To cleanly separate storage functionali-
ties, LegoOS uses a stateless storage server design, where
each I/O request to the storage server contains all the
information needed to fulfill this request, e.g., full path
name, absolute file offset, similar to the server design in
NFS v2 [89].

While LegoOS supports a hierarchical file use inter-
face, internally, LegoOS storage monitor treats (full) di-
rectory and file paths just as unique names of a file and
place all files of a vNode under one internal directory at
the sComponent. To locate a file, LegoOS storage moni-
tor maintains a simple hash table with the full paths of
files (and directories) as keys. From our observation,
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most datacenter applications only have a few hundred
files or less. Thus, a simple hash table for a whole vNode
is sufficient to achieve good lookup performance. Using
a non-hierarchical file system implementation largely re-
duces the complexity of LegoOS’ file system, making it
possible for a storage monitor to fit in storage devices
controllers that have limited processing power [92].

LegoOS places the storage buffer cache at mCompo-
nents rather than at sComponents, because sComponents
can only host a limited amount of internal memory. Le-
goOS memory monitor manages the storage buffer cache
by simply performing insertion, lookup, and deletion of
buffer cache entries. For simplicity and to avoid coher-
ence traffic, we currently place the buffer cache of one
file under one mComponent. When receiving a file read
system call, the LegoOS process monitor first uses its
extended Linux state layer to look up the full path name,
then passes it with the requested offset and size to the
mComponent that holds the file’s buffer cache. This
mComponent will look up the buffer cache and returns
the data to pComponent on a hit. On a miss, mCom-
ponent will forward the request to the sComponent that
stores the file, which will fetch the data from storage de-
vice and return it to the mComponent. The mComponent
will then insert it into the buffer cache and returns it to the
pComponent. Write and fsync requests work in a similar
fashion.

4.6 Global Resource Management
LegoOS uses a two-level resource management mecha-
nism. At the higher level, LegoOS uses three global re-
source managers for process, memory, and storage re-
sources, GPM, GMM, and GSM. These global managers
perform coarse-grained global resource allocation and
load balancing, and they can run on one normal Linux
machine. Global managers only maintain approximate
resource usage and load information. They update their
information either when they make allocation decisions
or by periodically asking monitors in the cluster. At the
lower level, each monitor can employ its own policies
and mechanisms to manage its local resources.

For example, process monitors allocate new threads
locally and only ask GPM when they need to create a
new process. GPM chooses the pComponent that has the
least amount of threads based on its maintained approxi-
mate information. Memory monitors allocate virtual and
physical memory space on their own. Only home mCom-
ponent asks GMM when it needs to allocate a new vRe-
gion. GMM maintains approximate physical memory
space usages and memory access load by periodically
asking mComponents and chooses the memory with least
load among all the ones that have at least vRegion size of
free physical memory.

LegoOS decouples the allocation of different re-

sources and can freely allocate each type of resource
from a pool of components. Doing so largely improves
resource packing compared to a monolithic server cluster
that packs all type of resources a job requires within one
physical machine. Also note that LegoOS allocates hard-
ware resources only on demand, i.e., when applications
actually create threads or access physical memory. This
on-demand allocation strategy further improves LegoOS’
resource packing efficiency and allows more aggressive
over-subscription in a cluster.

4.7 Reliability and Failure Handling
After disaggregation, pComponents, mComponents, and
sComponents can all fail independently. Our goal is to
build a reliable disaggregated cluster that has the same
or lower application failure rate than a monolithic clus-
ter. As a first (and important) step towards achieving
this goal, we focus on providing memory reliability by
handling mComponent failure in the current version of
LegoOS because of three observations. First, when dis-
tributing an application’s memory to multiple mCompo-
nents, the probability of memory failure increases and
not handling mComponent failure will cause applications
to fail more often on a disaggregated cluster than on
monolithic servers. Second, since most modern datacen-
ter applications already provide reliability to their dis-
tributed storage data and the current version of LegoOS
does not split a file across sComponent, we leave provid-
ing storage reliability to applications. Finally, since Le-
goOS does not split a process across pComponents, the
chance of a running application process being affected by
the failure of a pComponent is similar to one affected by
the failure of a processor in a monolithic server. Thus,
we currently do not deal with pComponent failure and
leave it for future work.

A naive approach to handle memory failure is to per-
form a full replication of memory content over two or
more mComponents. This method would require at least
2×memory space, making the monetary and energy cost
of providing reliability prohibitively high (the same rea-
son why RAMCloud [80] does not replicate in memory).
Instead, we propose a space- and performance-efficient
approach to provide in-memory data reliability in a best-
effort way. Further, since losing in-memory data will not
affect user persistent data, we propose to provide mem-
ory reliability in a best-effort manner.

We use one primary mComponent, one secondary
mComponent, and a backup file in sComponent for each
vma. A mComponent can serve as the primary for some
vma and the secondary for others. The primary stores
all memory data and metadata. LegoOS maintains a
small append-only log at the secondary mComponent
and also replicates the vma tree there. When pCompo-
nent flushes a dirty ExCache line, LegoOS sends the data
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to both primary and secondary in parallel (step a and
b in Figure 6) and waits for both to reply ( c and d ).

In the background, the secondary mComponent flushes
the backup log to a sComponent, which writes it to an
append-only file.

If the flushing of a backup log to sComponent is slow
and the log is full, we will skip replicating application
memory. If the primary fails during this time, LegoOS
simply reports an error to application. Otherwise when a
primary mComponent fails, we can recover memory con-
tent by replaying the backup logs on sComponent and in
the secondary mComponent. When a secondary mCom-
ponent fails, we do not reconstruct anything and start
replicating to a new backup log on another mComponent.

5 LegoOS Implementation
We implemented LegoOS in C on the x86-64 architec-
ture. LegoOS can run on commodity, off-the-shelf ma-
chines and support most commonly-used Linux system
call APIs. Apart from being a proof-of-concept of the
splitkernel OS architecture, our current LegoOS imple-
mentation can also be used on existing datacenter servers
to reduce the energy cost, with the help of techniques
like Zombieland [77]. Currently, LegoOS has 206K
SLOC, with 56K SLOC for drivers. LegoOS supports
113 syscalls, 15 pseudo-files, and 10 vectored syscall op-
codes. Similar to the findings in [100], we found that
implementing these Linux interfaces are sufficient to run
many unmodified datacenter applications.

5.1 Hardware Emulation
Since there is no real resource disaggregation hardware,
we emulate disaggregated hardware components using
commodity servers by limiting their internal hardware
usages. For example, to emulate controllers for mCom-
ponents and sComponents, we limit the usable cores of
a server to two. To emulate pComponents, we limit the
amount of usable main memory of a server and configure
it as LegoOS software-managed ExCache.

5.2 Network Stack
We implemented three network stacks in LegoOS. The
first is a customized RDMA-based RPC framework we
implemented based on LITE [101] on top of the Mel-
lanox mlx4 InfiniBand driver we ported from Linux. Our
RDMA RPC implementation registers physical memory
addresses with RDMA NICs and thus eliminates the need
for NICs to cache physical-to-virtual memory address
mappings [101]. The resulting smaller NIC SRAM can
largely reduce the monetary cost of NICs, further saving
the total cost of a LegoOS cluster. All LegoOS internal
communications use this RPC framework. For best la-
tency, we use one dedicated polling thread at RPC server
side to keep polling incoming requests. Other thread(s)

(which we call worker threads) execute the actual RPC
functions. For each pair of components, we use one
physically consecutive memory region at a component
to serve as the receive buffer for RPC requests. The
RPC client component uses RDMA write with immedi-
ate value to directly write into the memory region and
the polling thread polls for the immediate value to get the
metadata information about the RPC request (e.g., where
the request is written to in the memory region). Immedi-
ately after getting an incoming request, the polling thread
passes it along to a work queue and continues to poll for
the next incoming request. Each worker thread checks
if the work queue is not empty and if so, gets an RPC
request to process. Once it finishes the RPC function,
it sends the return value back to the RPC client with an
RDMA write to a memory address at the RPC client. The
RPC client allocates this memory address for the return
value before sending the RPC request and piggy-backs
the memory address with the RPC request.

The second network stack is our own implementation
of the socket interface directly on RDMA. The final stack
is a traditional socket TCP/IP stack we adapted from
lwip [35] on our ported e1000 Ethernet driver. Applica-
tions can choose between these two socket implementa-
tions and use virtual IPs for their socket communication.

5.3 Processor Monitor
We reserve a contiguous physical memory region dur-
ing kernel boot time and use fixed ranges of memory
in this region as ExCache, tags and metadata for these
caches, and kernel physical memory. We organize Ex-
Cache into virtually indexed sets with a configurable set
associativity. Since x86 (and most other architectures)
uses hardware-managed TLB and walks page table di-
rectly after TLB misses, we have to use paging and the
only chance we can trap to OS is at page fault time. We
thus use paged memory to emulate ExCache, with each
ExCache line being a 4 KB page. A smaller ExCache line
size would improve the performance of fetching lines
from mComponents but increase the size of ExCache tag
array and the overhead of tag comparison.

An ExCache miss causes a page fault and traps to Le-
goOS. To minimize the overhead of context switches,
we use the application thread that faults on a ExCache
miss to perform ExCache replacement. Specifically, this
thread will identify the set to insert the missing page us-
ing its virtual memory address, evict a page in this set if it
is full, and if needed, flush a dirty page to mComponent
(via a LegoOS RPC call to the owner mComponent of the
vRegion this page is in). To minimize the network round
trip needed to complete a ExCache miss, we piggy-back
the request of dirty page flush and new page fetching in
one RPC call when the mComponent to be flushed to and
the mComponent to fetch the missing page are the same.
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LegoOS maintains an approximate LRU list for each
ExCache set and uses a background thread to sweep all
entries in ExCache and adjust LRU lists. LegoOS sup-
ports two ExCache replacement policies: FIFO and LRU.
For FIFO replacement, we simply maintain a FIFO queue
for each ExCache set and insert a corresponding entry to
the tail of the FIFO queue when an ExCache page is in-
serted into the set. Eviction victim is chosen as the head
of the FIFO queue. For LRU, we use one background
thread to sweep all sets of ExCache to adjust their LRU
lists. For both policies, we use a per-set lock and lock
the FIFO queue (or the LRU list) when making changes
to them.

5.4 Memory Monitor

We use regular machines to emulate mComponents by
limiting usable cores to a small number (2 to 5 depend-
ing on configuration). We dedicate one core to busy poll
network requests and the rest for performing memory
functionalities. The LegoOS memory monitor performs
all its functionalities as handlers of RPC requests from
pComponents. The memory monitor handles most of
these functionalities locally and sends another RPC re-
quest to a sComponent for storage-related functionalities
(e.g., when a buffer cache miss happens). LegoOS stores
application data, application memory address mappings,
vma trees, and vRegion arrays all in the main memory of
the emulating machine.

The memory monitor loads an application executable
from sComponents to the mComponent, handles applica-
tion virtual memory address allocation requests, allocates
physical memory at the mComponent, and reads/writes
data to the mComponent. Our current implementation of
memory monitor is purely in software, and we use hash
tables to implement the virtual-to-physical address map-
pings. While we envision future mComponents to imple-
ment memory monitors in hardware and to have special-
ized hardware parts to store address mappings, our cur-
rent software implementation can still be useful for users
that want to build software-managed mComponents.

5.5 Storage Monitor

Since storage is not the focus of the current version of
LegoOS, we chose a simple implementation of building
storage monitor on top of the Linux vfs layer as a load-
able Linux kernel module. LegoOS creates a normal file
over vfs as the mount partition for each vNode and issues
vfs file operations to perform LegoOS storage I/Os. Do-
ing so is sufficient to evaluate LegoOS, while largely sav-
ing our implementation efforts on storage device drivers
and layered storage protocols. We leave exploring other
options of building LegoOS storage monitor to future
work.

5.6 Experience and Discussion
We started our implementation of LegoOS from scratch
to have a clean design and implementation that can fit
the splitkernel model and to evaluate the efforts needed
in building different monitors. However, with the vast
amount and the complexity of drivers, we decided to port
Linux drivers instead of writing our own. We then spent
our engineering efforts on an “as needed” base and took
shortcuts by porting some of the Linux code. For exam-
ple, we re-used common algorithms and data structures
in Linux to easily port Linux drivers. We believe that be-
ing able to support largely unmodified Linux drivers will
assist the adoption of LegoOS.

When we started building LegoOS, we had a clear
goal of sticking to the principle of “clean separation of
functionalities”. However, we later found several places
where performance could be improved if this principle is
relaxed. For example, for the optimization in §4.4.2 to
work correctly, pComponent needs to store the address
range and permission for anonymous virtual memory re-
gions — memory-related information that otherwise only
mComponents need to know. Another example is the im-
plementation of mremap. With LegoOS’ principle of
mComponents handling all memory address allocations,
memory monitors will allocate new virtual memory ad-
dress ranges for mremap requests. However, when data
in the mremap region is in ExCache, LegoOS needs to
move it to another set if the new virtual address does not
fall into the current set. If mComponents are ExCache-
aware, they can choose the new virtual memory address
to fall into the same set as the current one. Our strategy
is to relax the clean-separation principle only by giving
“hints”, and only for frequently-accessed, performance-
critical operations.

6 Evaluation
This section presents the performance evaluation of Le-
goOS using micro- and macro-benchmarks and two un-
modified real applications. We also quantitatively ana-
lyze the failure rate of LegoOS. We ran all experiments
on a cluster of 10 machines, each with two Intel Xeon
CPU E5-2620 2.40GHz processors, 128 GB DRAM, and
one 40 Gbps Mellanox ConnectX-3 InfiniBand network
adapter; a Mellanox 40 Gbps InfiniBand switch connects
all of the machines. The Linux version we used for com-
parison is v4.9.47.

6.1 Micro- and Macro-benchmark Results
Network performance. Network communication is at the
core of LegoOS’ performance. Thus, we evaluate Le-
goOS’ network performance first before evaluating Le-
goOS as a whole. Figure 7 plots the average latency of
sending messages with socket-over-InfiniBand (Linux-
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IPoIB) in Linux, LegoOS’ implementation of socket on
top of InfiniBand (LegoOS-Sock-o-IB), and LegoOS’
implementation of RPC over InfiniBand (LegoOS-RPC-
IB). LegoOS uses LegoOS-RPC-IB for all its internal
network communication across components and uses
LegoOS-Sock-o-IB for all application-initiated socket
network requests. Both LegoOS’ networking stacks sig-
nificantly outperform Linux’s.
Memory performance. Next, we measure the perfor-
mance of mComponent using a multi-threaded user-level
micro-benchmark. In this micro-benchmark, each thread
performs one million sequential 4 KB memory loads in
a heap. We use a huge, empty ExCache (32 GB) to run
this test, so that each memory access can generate an Ex-
Cache (cold) miss and go to the mComponent.

Figure 8 compares LegoOS’ mComponent perfor-
mance with Linux’s single-node memory performance
using this workload. We vary the number of per-
mComponent worker threads from 1 to 8 with one and
two mComponents (only showing representative config-
urations in Figure 8). In general, using more worker
threads per mComponent and using more mComponents
both improve throughput when an application has high
parallelism, but the improvement largely diminishes af-
ter the total number of worker threads reaches four. We
also evaluated the optimization technique in § 4.4.2 (p-
local in Figure 8). As expected, bypassing mComponent
accesses with p-local lines significantly improves mem-
ory access performance. The difference between p-local
and Linux demonstrates the overhead of trapping to Le-
goOS kernel and setting up ExCache.
Storage performance. To measure the performance of
LegoOS’ storage system, we ran a single-thread micro-
benchmark that performs sequential and random 4 KB
read/write to a 25 GB file on a Samsung PM1725s NVMe
SSD (the total amount of data accessed is 1 GB). For
write workloads, we issue an fsync after each write to
test the performance of writing all the way to the SSD.

Figure 9 presents the throughput of this workload on
LegoOS and on single-node Linux. For LegoOS, we use
one mComponent to store the buffer cache of this file
and initialize the buffer cache to empty so that file I/Os
can go to the sComponent (Linux also uses an empty
buffer cache). Our results show that Linux’s performance
is determined by the SSD’s read/write bandwidth. Le-

goOS’ random read performance is close to Linux, since
network cost is relatively low compared to the SSD’s
random read performance. With better SSD sequential
read performance, network cost has a higher impact. Le-
goOS’ write-and-fsync performance is worse than Linux
because LegoOS requires one RTT between pCompo-
nent and mComponent to perform write and two RTTs
(pComponent to mComponent, mComponent to sCom-
ponent) for fsync.
PARSEC results. We evaluated LegoOS with a set
of workloads from the PARSEC benchmark suite [22],
including BlackScholes, Freqmine, and StreamCluster.
These workloads are a good representative of compute-
intensive datacenter applications, ranging from machine-
learning algorithms to streaming processing ones. Fig-
ure 10 presents the slowdown of LegoOS over single-
node Linux with enough memory for the entire applica-
tion working sets. LegoOS uses one pComponent with
128 MB ExCache, one mComponent with one worker
thread, and one sComponent for all the PARSEC tests.
For each workload, we tested one and four workload
threads. StreamCluster, a streaming workload, performs
the best because of its batching memory access pat-
tern (each batch is around 110 MB). BlackScholes and
Freqmine perform worse because of their larger work-
ing sets (630 MB to 785 MB). LegoOS performs worse
with higher workload threads, because the single worker
thread at the mComponent becomes the bottleneck to
achieving higher throughput.

6.2 Application Performance

We evaluated LegoOS’ performance with two real, un-
modified applications, TensorFlow [4] and Phoenix [85],
a single-node multi-threaded implementation of MapRe-
duce [32]. TensorFlow’s experiments use the Cifar-10
dataset [2] and Phoenix’s use a Wikipedia dataset [3].
Unless otherwise stated, the base configuration used for
all TensorFlow experiments is 256 MB 64-way ExCache,
one pComponent, one mComponent, and one sCompo-
nent. The base configuration for Phoenix is the same as
TensorFlow’s with the exception that the base ExCache
size is 512 MB. The total amount of virtual memory ad-
dresses touched in TensorFlow is 4.4 GB (1.75 GB for
Phoenix). The total working sets of the TensorFlow and
Phoenix execution are 0.9 GB and 1.7 GB. Our default
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ExCache sizes are set as roughly 25% of total working
sets. We ran both applications with four threads.
Impact of ExCache size on application performance.
Figures 11 and 12 plot the TensorFlow and Phoenix run
time comparison across LegoOS, a remote swapping sys-
tem (InfiniSwap [47]), a Linux server with a swap file in
a local high-end NVMe SSD, and a Linux server with
a swap file in local ramdisk. All values are calculated
as a slowdown to running the applications on a Linux
server that have enough local resources (main memory,
CPU cores, and SSD). For systems other than LegoOS,
we change the main memory size to the same size of Ex-
Cache in LegoOS, with rest of the memory on swap file.
With around 25% working set, LegoOS only has a slow-
down of 1.68× and 1.34× for TensorFlow and Phoenix
compared to a monolithic Linux server that can fit all
working sets in its main memory.

LegoOS’ performance is significantly better than
swapping to SSD and to remote memory largely because
of our efficiently-implemented network stack, simplified
code path compared with Linux paging subsystem, and
the optimization technique proposed in §4.4.2. Surpris-
ingly, it is similar or even better than swapping to lo-
cal memory, even when LegoOS’ memory accesses are
across network. This is mainly because ramdisk goes
through buffer cache and incurs memory copies between
the buffer cache and the in-memory swap file.

LegoOS’ performance results are not easy to achieve
and we went through rounds of design and implementa-
tion refinement. Our network stack and RPC optimiza-
tions yield a total improvement of up to 50%. For ex-
ample, we made all RPC server (mComponent’s) replies
unsignaled to save mComponent’ processing time and to
increase its request handling throughput. Another opti-
mization we did is to piggy-back dirty cache line flush
and cache miss fill into one RPC. The optimization of the
first anonymous memory access (§4.4.2) improves Le-
goOS’ performance further by up to 5%.
ExCache Management. Apart from its size, how an Ex-
Cache is managed can also largely affect application per-
formance. We first evaluated factors that could affect
ExCache hit rate and found that higher associativity im-
proves hit rate but the effect diminishes when going be-
yond 512-way. We then focused on evaluating the miss
cost of ExCache, since the miss path is handled by Le-
goOS in our design. We compare the two eviction poli-
cies LegoOS supports (FIFO and LRU), two implemen-

tations of finding an empty line in an ExCache set (lin-
early scan a free bitmap and fetching the head of a free
list), and one network optimization (piggyback flushing
a dirty line with fetching the missing line).

Figure 13 presents these comparisons with one and
four mComponent worker threads. All tests run the
Cifar-10 workload on TensorFlow with 256 MB 64-way
ExCache, one mComponent, and one sComponent. Us-
ing bitmaps for this ExCache configuration is always
worse than using free lists because of the cost to linearly
scan a whole bitmap, and bitmaps perform even worse
with higher associativity. Surprisingly, FIFO performs
better than LRU in our tests, even when LRU utilizes ac-
cess locality pattern. We attributed LRU’s worse perfor-
mance to the lock contention it incurs; the kernel back-
ground thread sweeping the ExCache locks an LRU list
when adjusting the position of an entry in it, while Ex-
Cache miss handler thread also needs to lock the LRU
list to grab its head. Finally, the piggyback optimization
works well and the combination of FIFO, free list, and
piggyback yields the best performance.
Number of mComponents and replication. Finally, we
study the effect of the number of mComponents and
memory replication. Figure 14 plots the performance
slowdown as the number of mComponents increases
from one to four. Surprisingly, using more mCompo-
nents lowers application performance by up to 6%. This
performance drop is due to the effect of ExCache pig-
gyback optimization. When there is only one mCompo-
nent, flushes and misses are all between the pComponent
and this mComponent, thus enabling piggyback on every
flush. However, when there are multiple mComponents,
LegoOS can only perform piggyback when flushes and
misses are to the same mComponent.

We also evaluated LegoOS’ memory replication per-
formance in Figure 14. Replication has a performance
overhead of 2% to 23% (there is a constant 1 MB space
overhead to store the backup log). LegoOS uses the same
application thread to send the replica data to the backup
mComponent and then to the primary mComponent, re-
sulting in the performance lost.
Running multiple applications together. All our experi-
ments so far run only one application at a time. Now we
evaluate how multiple applications perform when run-
ning them together on a LegoOS cluster. We use a sim-
ple scenario of running one TensorFlow instance and one
Phoenix instance together in two settings: 1) two pCom-
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Processor Disk Memory NIC Power Other Monolithic LegoOS
MTTF (year) 204.3 33.1 289.9 538.8 100.5 27.4 5.8 6.8 - 8.7

Table 1: Mean Time To Failure Analysis. MTTF numbers of devices (columns 2 to 7) are obtained from [90] and MTTF values of monolithic server and
LegoOS are calculated using the per-device MTTF numbers.
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Figure 15: Multiple Applications.

ponents each running one instance, both accessing one
mComponent(2P1M), and 2) one pComponent running
two instances and accessing two mComponents (1P2M).
Both settings use one sComponent. Figure 15 presents
the runtime slowdown results. We also vary the num-
ber of mComponent worker threads for the 2P1M setting
and the amount of ExCache for the 1P2M setting. With
2P1M, both applications suffer from a performance drop
because their memory access requests saturate the single
mComponent. Using more worker threads at the mCom-
ponent improves the performance slightly. For 1P2M,
application performance largely depends on ExCache
size, similar to our findings with single-application ex-
periments.

6.3 Failure Analysis
Finally, we provide a qualitative analysis on the failure
rate of a LegoOS cluster compared to a monolithic server
cluster. Table 1 summarizes our analysis. To measure the
failure rate of a cluster, we use the metric Mean Time To
(hardware) Failure (MTTF), the mean time to the fail-
ure of a server in a monolithic cluster or a component
in a LegoOS cluster. Since the only real per-device fail-
ure statistics we can find are the mean time to hardware
replacement in a cluster [90], the MTTF we refer to in
this study indicates the mean time to the type of hard-
ware failures that require replacement. Unlike traditional
MTTF analysis, we are not able to include transient fail-
ures.

To calculate MTTF of a monolithic server, we first
obtain the replacement frequency of different hardware
devices in a server (CPU, memory, disk, NIC, mother-
board, case, power supply, fan, CPU heat sink, and other
cables and connections) from the real world (the COM1
and COM2 clusters in [90]). For LegoOS, we envision
every component to have a NIC and a power supply, and
in addition, a pComponent to have CPU, fan, and heat
sink, an mComponent to have memory, and an sCompo-
nent to have a disk. We further assume both a monolithic
server and a LegoOS component to fail when any hard-
ware devices in them fails and the devices in them fail
independently. Thus, the MTTF can be calculated using
the harmonic mean (HM) of the MTTF of each device.

MTTF =
HMn

i=0(MTTFi)

n
(1)

where n includes all devices in a machine/component.
Further, when calculating MTTF of LegoOS, we esti-

mate the amount of components needed in LegoOS to run
the same applications as a monolithic cluster. Our esti-
mated worst case for LegoOS is to use the same amount
of hardware devices (i.e., assuming same resource uti-
lization as monolithic cluster). LegoOS’ best case is to
achieve full resource utilization and thus requiring only
about half of CPU and memory resources (since aver-
age CPU and memory resource utilization in monolithic
server clusters is around 50% [10, 45]).

With better resource utilization and simplified hard-
ware components (e.g., no motherboard), LegoOS im-
proves MTTF by 17% to 49% compared to an equivalent
monolithic server cluster.

7 Related Work
Hardware Resource Disaggregation. There have
been a few hardware disaggregation proposals from
academia and industry, including Firebox [15], HP ”The
Machine” [40, 48], dRedBox [56], and IBM Composable
System [28]. Among them, dRedBox and IBM Compos-
able System package hardware resources in one big case
and connect them with buses like PCIe. The Machine’s
scale is a rack and it connects SoCs with NVMs with a
specialized coherent network. FireBox is an early-stage
project and is likely to use high-radix switches to con-
nect customized devices. The disaggregated cluster we
envision to run LegoOS on is one that hosts hundreds to
thousands of non-coherent, heterogeneous hardware de-
vices, connected with a commodity network.

Memory Disaggregation and Remote memory. Lim
et al. first proposed the concept of hardware disaggre-
gated memory with two models of disaggregated mem-
ory: using it as network swap device and transparently
accessing it through memory instructions [63, 64]. Their
hardware models still use a monolithic server at the local
side. LegoOS’ hardware model separates processor and
memory completely.

Another set of recent projects utilize remote memory
without changing monolithic servers [6, 34, 47, 74, 79,
93]. For example, InfiniSwap [47] transparently swaps
local memory to remote memory via RDMA. These re-
mote memory systems help improve the memory re-
source packing in a cluster. However, as discussed in §2,
unlike LegoOS, these solutions cannot solve other lim-
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itations of monolithic servers like the lack of hardware
heterogeneity and elasticity.

Storage Disaggregation. Cloud vendors usually pro-
vision storage at different physical machines [13, 103,
108]. Remote access to hard disks is a common practice,
because their high latency and low throughput can eas-
ily hide network overhead [61, 62, 70, 105]. While dis-
aggregating high-performance flash is a more challeng-
ing task [38, 59]. Systems such as ReFlex [60], Deci-
bel [73], and PolarFS [25], tightly integrate network and
storage layers to minimize software overhead in the face
of fast hardware. Although storage disaggregation is not
our main focus now, we believe those techniques can be
realized in future LegoOS easily.

Multi-Kernel and Multi-Instance OSes. Multi-kernel
OSes like Barrelfish [21, 107], Helios [76], Hive [26],
and fos [106] run a small kernel on each core or pro-
grammable device in a monolithic server, and they use
message passing to communicate across their internal
kernels. Similarly, multi-instance OSes like Popcorn [17]
and Pisces [83] run multiple Linux kernel instances on
different cores in a machine. Different from these OSes,
LegoOS runs on and manages a distributed set of hard-
ware devices; it manages distributed hardware resources
using a two-level approach and handles device failures
(currently only mComponent). In addition, LegoOS dif-
fers from these OSes in how it splits OS functionali-
ties, where it executes the split kernels, and how it per-
forms message passing across components. Different
from multi-kernels’ message passing mechanisms which
are performed over buses or using shared memory in
a server, LegoOS’ message passing is performed using
a customized RDMA-based RPC stack over InfiniBand
or RoCE network. Like LegoOS, fos [106] separates
OS functionalities and run them on different processor
cores that share main memory. Helios [76] runs satel-
lite kernels on heterogeneous cores and programmable
NICs that are not cache-coherent. We took a step further
by disseminating OS functionalities to run on individual,
network-attached hardware devices. Moreover, LegoOS
is the first OS that separates memory and process man-
agement and runs virtual memory system completely at
network-attached memory devices.

Distributed OSes. There have been several distributed
OSes built in late 80s and early 90s [14, 16, 19, 27,
82, 86, 96, 97]. Many of them aim to appear as a sin-
gle machine to users and focus on improving inter-node
IPCs. Among them, the most closely related one is
Amoeba [96, 97]. It organizes a cluster into a shared pro-
cess pool and disaggregated specialized servers. Unlike
Amoeba, LegoOS further separates memory from pro-
cessors and different hardware components are loosely
coupled and can be heterogeneous instead of as a ho-

mogeneous pool. There are also few emerging propos-
als to build distributed OSes in datacenters [54, 91], e.g.,
to reduce the performance overhead of middleware. Le-
goOS achieves the same benefits of minimal middleware
layers by only having LegoOS as the system manage-
ment software for a disaggregated cluster and using the
lightweight vNode mechanism.

8 Discussion and Conclusion
We presented LegoOS, the first OS designed for hard-
ware resource disaggregation. LegoOS demonstrated the
feasibility of resource disaggregation and its advantages
in better resource packing, failure isolation, and elastic-
ity, all without changing Linux ABIs. LegoOS and re-
source disaggregation in general can help the adoption
of new hardware and thus encourage more hardware and
system software innovations.

LegoOS is a research prototype and has a lot of room
for improvement. For example, we found that the amount
of parallel threads an mComponent can use to process
memory requests largely affect application throughput.
Thus, future developers of real mComponents can con-
sider use large amount of cheap cores or FPGA to imple-
ment memory monitors in hardware.

We also performed an initial investigation in load
balancing and found that memory allocation policies
across mComponents can largely affect application per-
formance. However, since we do not support mem-
ory data migration yet, the benefit of our load-balancing
mechanism is small. We leave memory migration for fu-
ture work. In general, large-scale resource management
of a disaggregated cluster is an interesting and important
topic, but is outside of the scope of this paper.
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The benefits and costs of writing a POSIX kernel in a high-level language

Cody Cutler, M. Frans Kaashoek, Robert T. Morris
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Abstract
This paper presents an evaluation of the use of a high-level
language (HLL) with garbage collection to implement a
monolithic POSIX-style kernel. The goal is to explore
if it is reasonable to use an HLL instead of C for such
kernels, by examining performance costs, implementation
challenges, and programmability and safety benefits.

The paper contributes Biscuit, a kernel written in
Go that implements enough of POSIX (virtual memory,
mmap, TCP/IP sockets, a logging file system, poll, etc.)
to execute significant applications. Biscuit makes lib-
eral use of Go’s HLL features (closures, channels, maps,
interfaces, garbage collected heap allocation), which sub-
jectively made programming easier. The most challenging
puzzle was handling the possibility of running out of ker-
nel heap memory; Biscuit benefited from the analyzability
of Go source to address this challenge.

On a set of kernel-intensive benchmarks (including NG-
INX and Redis) the fraction of kernel CPU time Biscuit
spends on HLL features (primarily garbage collection and
thread stack expansion checks) ranges up to 13%. The
longest single GC-related pause suffered by NGINX was
115 microseconds; the longest observed sum of GC delays
to a complete NGINX client request was 600 microsec-
onds. In experiments comparing nearly identical system
call, page fault, and context switch code paths written in
Go and C, the Go version was 5% to 15% slower.

1 Introduction

The default language for operating system kernels is C:
Linux, macOS, and Windows all use C. C is popular for
kernels because it can deliver high performance via flexi-
ble low-level access to memory and control over memory
management (allocation and freeing). C, however, re-
quires care and experience to use safely, and even then
low-level bugs are common. For example, in 2017 at least
50 Linux kernel security vulnerabilities were reported
that involved buffer overflow or use-after-free bugs in C
code [34].

High-level languages (HLLs) provide type- and
memory-safety and convenient abstractions such as
threads. Many HLLs provide garbage collection to fur-
ther reduce programmer burden and memory bugs. It is

well-known that HLLs can be used in kernels: multiple
kernels have been written in HLLs, often as platforms to
explore innovative ideas (§2). On the other hand, leading
OS designers have been skeptical that HLLs’ memory
management and abstractions are compatible with high-
performance production kernels [51][47, p. 71].

While it would probably not make sense to re-write an
existing C kernel in an HLL, it is worth considering what
languages new kernel projects should use. Since kernels
impose different constraints and requirements than typical
applications, it makes sense to explore this question in the
context of a kernel.

We built a new kernel, Biscuit, written in Go [15] for
x86-64 hardware. Go is a type-safe language with garbage
collection. Biscuit runs significant existing applications
such as NGINX and Redis without source modification
by exposing a POSIX-subset system call interface. Sup-
ported features include multi-core, kernel-supported user
threads, futexes, IPC, mmap, copy-on-write fork, vnode
and name caches, a logging file system, and TCP/IP sock-
ets. Biscuit implements two significant device drivers in
Go: one for AHCI SATA disk controllers and one for Intel
82599-based Ethernet controllers. Biscuit has nearly 28
thousand lines of Go, 1546 lines of assembler, and no C.
We report lessons learned about use of Go in Biscuit, in-
cluding ways in which the language helped development,
and situations in which it was less helpful.

In most ways the design of Biscuit is that of a traditional
monolithic POSIX/Unix kernel, and Go was a comfort-
able language for that approach. In one respect the design
of Biscuit is novel: its mechanism for coping with kernel
heap exhaustion. We use static analysis of the Biscuit
source to determine how much heap memory each system
call (and other kernel activity) might need, and each sys-
tem call waits (if needed) when it starts until it can reserve
that much heap. Once a system call is allowed to continue,
its allocations are guaranteed to succeed without blocking.
This obviates the need for complex allocation failure re-
covery or deadlock-prone waiting for free memory in the
allocator. The use of an HLL that is conducive to static
analysis made this approach possible.

We run several kernel-intensive applications on Biscuit
and measure the effects of Go’s type safety and garbage
collection on kernel performance. For our benchmarks,
GC costs up to 3% of CPU. For NGINX, the longest single
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GC-related pause was 115 microseconds, and the longest
a single NGINX client request was delayed (by many
individual pauses) was a total of 600 microseconds. Other
identifiable HLL performance costs amount to about 10%
of CPU.

To shed light on the specific question of C versus Go
performance in the kernel, we modify Biscuit and a C
kernel to have nearly identical source-level code paths for
two benchmarks that stress system calls, page faults, and
context switches. The C versions are about 5% and 15%
faster than the Go versions.

Finally, we compare the performance of Biscuit and
Linux on our kernel-intensive application benchmarks,
finding that Linux is up to 10% faster than Biscuit. This
result is not very illuminating about choice of language,
since performance is also affected by differences in the
features, design and implementation of Biscuit and Linux.
However, the results do provide an idea of whether the
absolute performance of Biscuit is in the same league as
that of a C kernel.

In summary, the main contributions of this paper are:
(1) Biscuit, a kernel written in Go with good performance;
(2) a novel scheme for coping with kernel heap exhaus-
tion; (3) a discussion of qualitative ways in which use
of an HLL in a kernel was and was not helpful; (4) mea-
surements of the performance tax imposed by use of an
HLL; and (5) a direct Go-vs-C performance comparison
of equivalent code typical of that found in a kernel.

This paper does not draw any top-level conclusion
about C versus an HLL as a kernel implementation lan-
guage. Instead, it presents experience and measurements
that may be helpful for others making this decision, who
have specific goals and requirements with respect to pro-
grammability, safety and performance. Section 9 summa-
rizes the key factors in this decision.

2 Related work

Biscuit builds on multiple areas of previous work: high-
level languages in operating systems, high-level systems
programming languages, and memory allocation in the
kernel. As far as we know the question of the impact of
language choice on kernel performance, all else being
equal, has not been explored.

Kernels in high-level languages. The Pilot [44] kernel
and the Lisp machine [17] are early examples of use of
a high-level language (Mesa [14] and Lisp, respectively)
in an operating system. Mesa lacked garbage-collection,
but it was a high-priority requirement for its successor
language Cedar [48]. The Lisp machine had a real-time
garbage collector [5].

A number of research kernels are written in high-level
languages (e.g., Taos [49], Spin [7], Singularity [23], J-

kernel [19], and KaffeOS [3, 4], House [18], the Mirage
unikernel [29], and Tock [27]). The main thrust of these
projects was to explore new ideas in operating system
architecture, often enabled by the use of a type-safe high-
level language. While performance was often a concern,
usually the performance in question related to the new
ideas, rather than to the choice of language. Singular-
ity quantified the cost of hardware and software isola-
tion [22], which is related to the use of a HLL, but didn’t
quantify the cost of safety features of a HLL language, as
we do in §8.4.

High-level systems programming languages. A num-
ber of systems-oriented high-level programming lan-
guages with type safety and garbage collection seem suit-
able for kernels, including Go, Java, C#, and Cyclone [25]
(and, less recently, Cedar [48] and Modula-3 [37]). Other
systems HLLs are less compatible with existing kernel
designs. For example, Erlang [2] is a “shared-nothing”
language with immutable objects, which would likely
result in a kernel design that is quite different from tradi-
tional C shared-memory kernels.

Frampton et al. introduce a framework for language
extensions to support low-level programming features in
Java, applying it to a GC toolkit [13]. Biscuit’s goal is
efficiency for kernels without modifying Go. Kernels have
additional challenges such as dealing with user/kernel
space, page tables, interrupts, and system calls.

A number of new languages have recently emerged for
systems programming: D [11], Nim(rod) [42], Go [15],
and Rust [36]. There are a number of kernels in
Rust [12, 26, 27, 28, 39, 50], but none were written with
the goal of comparing with C as an implementation lan-
guage. Gopher OS is a Go kernel with a similar goal as
Biscuit, but the project is at an early stage of develop-
ment [1]. Other Go kernels exists but they don’t target the
questions that Biscuit answers. For example, Clive [6]
is a unikernel and doesn’t run on the bare metal. The
Ethos OS uses C for the kernel and Go for user-space
programs, with a design focused on security [41]. gVisor
is a user-space kernel, written in Go, that implements a
substantial portion of the Linux system API to sandbox
containers [16].

Memory allocation. There is no consensus about
whether a systems programming language should have
automatic garbage-collection. For example, Rust is par-
tially motivated by the idea that garbage collection cannot
be made efficient; instead, the Rust compiler analyzes the
program to partially automate freeing of memory. This
approach can make sharing data among multiple threads
or closures awkward [26].

Concurrent garbage collectors [5, 24, 30] reduce pause
times by collecting while the application runs. Go 1.10
has such a collector [21], which Biscuit uses.
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Several papers have studied manual memory allocation
versus automatic garbage collection [20, 52], focusing
on heap headroom memory’s effect in reducing garbage
collection costs in user-level programs. Headroom is also
important for Biscuit’s performance (§5 and §8.6).

Rafkind et al. added garbage collection to parts of
Linux through automatic translation of C source [43]. The
authors observe that the kernel environment made this task
difficult and adapted a fraction of a uniprocessor Linux
kernel to be compatible with garbage collection. Biscuit
required a fresh start in a new language, but as a result
required less programmer effort for GC compatibility and
benefited from a concurrent and parallel collector.

Linux’s slab allocators [8] are specifically tuned for use
in the kernel; they segregate free objects by type to avoid
re-initialization costs and fragmentation. A hypothesis in
the design of Biscuit is that Go’s single general-purpose
allocator and garbage collector are suitable for a wide
range of different kernel objects.

Kernel heap exhaustion. All kernels have to cope with
the possibility of running out of memory for the kernel
heap. Linux optimistically lets system calls proceed up
until the point where an allocation fails. In some cases
code waits and re-tries the allocation a few times, to give
an “out-of-memory” killer thread time to find and destroy
an abusive process to free memory. However, the allo-
cating thread cannot generally wait indefinitely: it may
hold locks, so there is a risk of deadlock if the victim
of the killer thread is itself waiting for a lock [9]. As a
result Linux system calls must contain code to recover
from allocation failures, undoing any changes made so
far, perhaps unwinding through many function calls. This
undo code has a history of bugs [10]. Worse, the final
result will be an error return from a system call. Once
the heap is exhausted, any system call that allocates will
likely fail; few programs continue to operate correctly
in the face of unexpected errors from system calls, so
the end effect may be application-level failure even if the
kernel code handles heap exhaustion correctly.

Biscuit’s reservation approach yields simpler code than
Linux’s. Biscuit kernel heap allocations do not fail (much
as with Linux’s contentious “too small to fail” rule [9,
10]), eliminating a whole class of complex error recovery
code. Instead, each Biscuit system call reserves kernel
heap memory when it starts (waiting if necessary), using
a static analysis system to decide how much to reserve.
Further, Biscuit applications don’t see system call failures
when the heap is exhausted; instead, they see delays.

3 Motivation

This section outlines our view of the main considerations
in the choice between C and an HLL for the kernel.

3.1 Why C?
A major reason for C’s popularity in kernels is that it
supports low-level techniques that can help performance,
particularly pointer arithmetic, easy escape from type
enforcement, explicit memory allocation, and custom al-
locators [51][47, p. 71]. There are other reasons too (e.g.
C can manipulate hardware registers and doesn’t depend
on a complex runtime), but performance seems most im-
portant.

3.2 Why an HLL?
The potential benefits of high-level languages are well
understood. Automatic memory management reduces
programmer effort and use-after-free bugs; type-safety
detects bugs; runtime typing and method dispatch help
with abstraction; and language support for threads and
synchronization eases concurrent programming.

Certain kinds of bugs seem much less likely in an HLL
than in C: buffer overruns, use-after-free bugs [40], and
bugs caused by reliance on C’s relaxed type enforcement.
Even C code written with care by expert programmers
has C-related bugs [40]. The CVE database for the Linux
kernel [34] lists 40 execute-code vulnerabilities for 2017
which would be wholly or partially ameliorated by use of
an HLL (see §8.2).

Use-after-free bugs are notoriously difficult to debug,
yet occur often enough that the Linux kernel includes
a memory checker that detects some use-after-free and
buffer overrun bugs at runtime [46]. Nevertheless, Linux
developers routinely discover and fix use-after-free bugs:
Linux has at least 36 commits from January to April of
2018 for the specific purpose of fixing use-after-free bugs.

Another area of kernel programming that would benefit
from HLLs is concurrency. Transient worker threads can
be cumbersome in C because the code must decide when
the last thread has stopped using any shared objects that
need to be freed; this is easier in a garbage collected
language.

However, use of a garbage-collected HLL is not free.
The garbage collector and safety checks consume CPU
time and can cause delays; the expense of high-level fea-
tures may deter their use; the language’s runtime layer
hides important mechanisms such as memory allocation;
and enforced abstraction and safety may reduce develop-
ers’ implementation options.

4 Overview

Biscuit’s main purpose is to help evaluate the practicality
of writing a kernel in a high-level language. Its design is
similar to common practice in monolithic UNIX-like ker-
nels, to facilitate comparison. Biscuit runs on 64-bit x86
hardware and is written in Go. It uses a modified version
of the Go 1.10 runtime implementation; the runtime is
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Figure 1: Biscuit’s overall structure.

written in Go with some assembly. Biscuit adds more as-
sembly to handle boot and entry/exit for system calls and
interrupts. There is no C. This section briefly describes
Biscuit’s components, focusing on areas in which use of
Go affected the design and implementation.

Boot and Go Runtime. The boot block loads Biscuit,
the Go runtime, and a “shim” layer (as shown in Figure 1).
The Go runtime, which we use mostly unmodified, ex-
pects to be able to call an underlying kernel for certain
services, particularly memory allocation and control of
execution contexts (cores, or in Go terminology, threads).
The shim layer provides these functions, since there is
no underlying kernel. Most of the shim layer’s activity
occurs during initialization, for example to pre-allocate
memory for the Go kernel heap.

Processes and Kernel Goroutines. Biscuit provides
user processes with a POSIX interface: fork, exec,
and so on, including kernel-supported threads and futexes.
A user process has one address space and one or more
threads. Biscuit uses hardware page protection to isolate
user processes. A user program can be written in any
language; we have implemented them only in C and C++
(not Go). Biscuit maintains a kernel goroutine correspond-
ing to each user thread; that goroutine executes system
calls and handlers for page faults and exceptions for the
user thread. “goroutine” is Go’s name for a thread, and in
this paper refers only to threads running inside the kernel.

Biscuit’s runtime schedules the kernel goroutines of
user processes, each executing its own user thread in user-
mode when necessary. Biscuit uses timer interrupts to
switch pre-emptively away from user threads. It relies
on pre-emption checks generated by the Go compiler to
switch among kernel goroutines.

Interrupts. A Biscuit device interrupt handler marks an
associated device-driver goroutine as runnable and then
returns, as previous kernels have done [35, 45]. Interrupt
handlers cannot do much more without risk of deadlock,
because the Go runtime does not turn off interrupts during
sensitive operations such as goroutine context switch.

Handlers for system calls and faults from user space
can execute any Go code. Biscuit executes this code in

the context of the goroutine that is associated with the
current user thread.

Multi-Core and Synchronization. Biscuit runs in par-
allel on multi-core hardware. It guards its data structures
using Go’s mutexes, and synchronizes using Go’s chan-
nels and condition variables. The locking is fine-grained
enough that system calls from threads on different cores
can execute in parallel in many common situations, for
example when operating on different files, pipes, sockets,
or when forking or execing in different processes. Biscuit
uses read-lock-free lookups in some performance-critical
code (see below).

Virtual Memory. Biscuit uses page-table hardware to
implement zero-fill-on-demand memory allocation, copy-
on-write fork, and lazy mapping of files (e.g., for exec)
in which the PTEs are populated only when the process
page-faults, and mmap.

Biscuit records contiguous memory mappings com-
pactly, so in the common case large numbers of mapping
objects aren’t needed. Physical pages can have multiple
references; Biscuit tracks these using reference counts.

File System. Biscuit implements a file system supporting
the core POSIX file system calls. The file system has a
file name lookup cache, a vnode cache, and a block cache.
Biscuit guards each vnode with a mutex and resolves
pathnames by first attempting each lookup in a read-lock-
free directory cache before falling back to locking each
directory named in the path, one after the other. Biscuit
runs each file system call as a transaction and has a journal
to commit updates to disk atomically. The journal batches
transactions through deferred group commit, and allows
file content writes to bypass the journal. Biscuit has an
AHCI disk driver that uses DMA, command coalescing,
native command queuing, and MSI interrupts.

Network Stack. Biscuit implements a TCP/IP stack and
a driver for Intel PCI-Express Ethernet NICs in Go. The
driver uses DMA and MSI interrupts. The system-call
API provides POSIX sockets.

Limitations. Although Biscuit can run many Linux C
programs without source modification, it is a research pro-
totype and lacks many features. Biscuit does not support
scheduling priority because it relies on the Go runtime
scheduler. Biscuit is optimized for a small number of
cores, but not for large multicore machines or NUMA.
Biscuit does not swap or page out to disk, and does not
implement the reverse mapping that would be required to
steal mapped pages. Biscuit lacks many security features
like users, access control lists, or address space random-
ization.
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5 Garbage collection

Biscuit’s use of garbage collection is a clear threat to its
performance. This section outlines the Go collector’s
design and describes how Biscuit configures the collector;
§8 evaluates performance costs.

5.1 Go’s collector
Go 1.10 has a concurrent parallel mark-and-sweep
garbage collector [21]. The concurrent aspect is critical
for Biscuit, since it minimizes the collector’s “stop-the-
world” pauses.

When the Go collector is idle, the runtime allocates
from the free lists built by the last collection. When
the free space falls below a threshold, the runtime en-
ables concurrent collection. When collection is enabled,
the work of following (“tracing”) pointers to find and
mark reachable (“live”) objects is interleaved with execu-
tion: each allocator call does a small amount of tracing
and marking. Writes to already-traced objects are de-
tected with compiler-generated “write barriers” so that
any newly installed pointers will be traced. Once all point-
ers have been traced, the collector turns off write barriers
and resumes ordinary execution. The collector suspends
ordinary execution on all cores (a “stop-the-world” pause)
twice during a collection: at the beginning to enable the
write barrier on all cores and at the end to check that all
objects have been marked. These stop-the-world pauses
typically last dozens of microseconds. The collector re-
builds the free lists from the unmarked parts of memory
(“sweeps”), again interleaved with Biscuit execution, and
then becomes idle when all free heap memory has been
swept. The collector does not move objects, so it does not
reduce fragmentation.

The fraction of CPU time spent collecting is roughly
proportional to the number of live objects, and inversely
proportional to the interval between collections [20, 52].
This interval can be made large by devoting enough RAM
to the heap that a substantial amount of space (“head-
room”) is freed by each collection.

The Go collector does most of its work during calls to
the heap allocator, spreading out this work roughly evenly
among calls. Thus goroutines see delays proportional to
the amount that they allocate; §8.5 presents measurements
of these delays for Biscuit.

5.2 Biscuit’s heap size
At boot time, Biscuit allocates a fixed amount of RAM for
its Go heap, defaulting to 1/32nd of total RAM. Go’s col-
lector ordinarily expands the heap memory when live data
exceeds half the existing heap memory; Biscuit disables
this expansion. The next section (§6) explains how Bis-
cuit copes with situations where the heap space is nearly
filled with live data.

6 Avoiding heap exhaustion

Biscuit must address the possibility of live kernel data
completely filling the RAM allocated for the heap (“heap
exhaustion”). This is a difficult area that existing kernels
struggle with (§2).

6.1 Approach: reservations
Biscuit is designed to tolerate heap exhaustion without
kernel failure. In addition, it can take corrective action
when there are identifiable “bad citizen” processes that al-
locate excessive kernel resources implemented with heap
objects, such as the structures describing open files and
pipes. Biscuit tries to identify bad citizens and kill them,
in order to free kernel heap space and allow good citizens
to make progress.

Biscuit’s approach to kernel heap exhaustion has three
elements. First, it purges caches and soft state as the
heap nears exhaustion. Second, code at the start of each
system call waits until it can reserve enough heap space
to complete the call; the reservation ensures that the heap
allocations made in the call will succeed once the wait (if
any) is over. Third, a kernel “killer” thread watches for
processes that are consuming lots of kernel heap when
the heap is near exhaustion, and kills them.

This approach has some good properties. Applications
do not have to cope with system call failures due to kernel
heap exhaustion. Kernel code does not see heap alloca-
tion failure (with a few exceptions), and need not include
logic to recover from such failures midway through a sys-
tem call. System calls may have to wait for reservations,
but they wait at their entry points without locks held, so
deadlock is avoided.

The killer thread must distinguish between good and
bad citizens, since killing a critical process (e.g., init)
can make the system unusable. If there is no obvious
“bad citizen,” this approach may block and/or kill valuable
processes. Lack of a way within POSIX for the kernel to
gracefully revoke resources causes there to be no good
solution in some out-of-memory situations.

The mechanisms in this section do not apply to non-
heap allocations. In particular, Biscuit allocates physical
memory pages from a separate allocator, not from the
Go heap; page allocations can fail, and kernel code must
check for failure and recover (typically by returning an
error to a system call).

6.2 How Biscuit reserves
Biscuit dedicates a fixed amount of RAM M for the kernel
heap. A system call only starts if it can reserve enough
heap memory for the maximum amount of simultaneously
live data that it uses, called s. A system call may allocate
more than s from the heap, but the amount over s must
be dead and can be freed by the collector. This means
that, even in the extreme case in which all but s of the
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reserve(s):
g := last GC live bytes
c := used bytes
n := reserved bytes
L := g + c + n
M := heap RAM bytes
if L + s < M:

reserved bytes += s
else:

wake killer thread
wait for OK from killer thread

release(s):
a := bytes allocated by syscall
if a < s:

used bytes += a
else:

used bytes += s
reserved bytes -= s

Figure 2: Pseudo code for heap reservations in Biscuit.

heap RAM is used by live data or is already reserved, the
system call can execute, with collections as needed to
recover the call’s own dead data in excess of s.

Ideally, a reservation should check that M minus the
amount of live and reserved data in the heap is greater
than or equal to s. However, except immediately after a
collection, the amount of live heap data is not known. Bis-
cuit maintains a conservative over-estimate of live heap
data using three counters: g, c, and n. g is the amount of
live data marked by the previous garbage collection. c is
the total amount of reservations made by system calls that
have completed. n is the total outstanding reservations of
system calls that are executing but not finished. Let L be
the sum of g, c, and n.

Figure 2 presents pseudo code for reserving and re-
leasing the reservation of heap RAM in Biscuit. Before
starting a system call, a thread checks that L+ s < M.
If L+ s < M, the thread reserves by adding s to n, oth-
erwise the thread wakes up the killer thread and sleeps.
When finished, a system call calculates a, the total amount
actually allocated, and uses a to (partially) release any
over-reservation: if a <s, the system call adds a to c and
subtracts s from n. Otherwise, a≥ s and the system call
adds s to c and subtracts s from n.

The reason for separate c and n is to carry over reser-
vations of system calls that span a garbage collection; a
collection sets c to zero but leaves n unchanged.

If heap memory is plentiful (live data � M), the
amount of live+dead data in the heap usually grows faster
than L, so collections are triggered by heap free list ex-
haustion rather than by L+ s≥M. Thus system calls do
not wait for memory, and do not trigger the killer thread.
As live heap data increases, and g+ n gets close to M,
L+ s may reach M before a collection would ordinarily
be triggered. For this reason the killer thread performs a
collection before deciding whether to kill processes.

6.3 Static analysis to find s
We have developed a tool, MAXLIVE, that analyzes the
Biscuit source code and the Go packages Biscuit uses
to find s for each system call. The core challenge is
detecting statically when allocated memory can no longer
be live, since many system calls allocate memory for
transient uses. Other challenges include analyzing loops
with non-constant bounds, and determining reservations
for background kernel activities that are not associated
with a specific system call.

We address these challenges by exploiting the charac-
teristic event-handler-style structure of most kernel code,
which does a modest amount of work and then returns
(or goes idle); system call implementations, for example,
work this way. Furthermore, we are willing to change
the kernel code to make it amenable to the reservation
approach, for example to avoid recursion (we changed
a few functions). Two modifications were required to
standard Go packages that Biscuit uses (packages time
and fmt).

6.3.1 Basic MAXLIVE operation
MAXLIVE examines the call graph (using Go’s ssa and
callgraph packages) to detect all allocations a system call
may perform. It uses escape and pointer analysis (Go’s
pointer package) to detect when an allocation does not
“escape” above a certain point in the call graph, meaning
that the allocation must be dead on return from that point.

MAXLIVE handles a few kinds of allocation specially:
go, defer, maps, and slices. go (which creates a goroutine)
is treated as an escaping allocation of the maximum kernel
stack size (the new goroutine itself must reserve memory
when it starts, much as if it were itself a system call). defer
is a non-escaping allocation, but is not represented by an
object in the SSA so MAXLIVE specifically considers it
an allocation. Every insertion into a map or slice could
double its allocated size; MAXLIVE generally doesn’t
know the old size, so it cannot predict how much memory
would be allocated. To avoid this problem, we annotate
the Biscuit source to declare the maximum size of slices
and maps, which required 70 annotations.

6.3.2 Handling loops
For loops where MAXLIVE cannot determine a useful
bound on the number of iterations, we supply a bound
with an annotation; there were 78 such loops. Biscuit
contains about 20 loops whose bounds cannot easily be
expressed with an annotation, or for which the worst case
is too large to be useful. Examples include retries to
handle wakeup races in poll, iterating over a directory’s
data blocks during a path component lookup, and iterating
over the pages of a user buffer in write.

We handle such loops with deep reservations. Each
loop iteration tries to reserve enough heap for just the one
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iteration. If there is insufficient free heap, the loop aborts
and waits for free memory at the beginning of the system
call, retrying when memory is available. Two loops (in
exec and rename) needed code to undo changes after
an allocation failure; the others did not.

Three system calls have particularly challenging loops:
exit, fork, and exec. These calls can close many file
descriptors, either directly or on error paths, and each
close may end up updating the file system (e.g. on last
close of a deleted file). The file system writes allocate
memory, and may create entries in file system caches.
Thus, for example, an exiting process that has many file
descriptors may need a large amount of heap memory
for the one exit system call. However, in fact exit’s
memory requirements are much smaller than this: the
cache entries will be deleted if heap memory is tight, so
only enough memory is required to execute a single close.
We bound the memory use of close by using MAXLIVE
to find all allocations that may be live once close returns.
We then manually ensure that all such allocations are
either dead once close returns or are evictable cache
entries. That way exit, fork, and exec only need
to reserve enough kernel heap for one call to close.
This results in heap bounds of less than 500kB for all
system calls but rename and fork (1MB and 641kB,
respectively). The close system call is the only one we
manually analyze with the assistance of MAXLIVE.

6.3.3 Kernel threads
A final area of special treatment applies to long-running
kernel threads. An example is the filesystem logging
thread, which acts on behalf of many processes. Each
long-running kernel thread has its own kernel heap reser-
vation. Since exit must always be able to proceed when
the killer thread kills a process, kernel threads upon which
exit depends must never release their heap reservation.
For example, exit may need to free the blocks of un-
linked files when closing file descriptors and thus depends
on the filesystem logging thread. Other kernel threads,
like the ICMP packet processing thread, block and wait
for heap reservations when needed and release them when
idle.

6.3.4 Killer thread
The killer thread is woken up when a system call’s reser-
vation fails. The thread first starts a garbage collection
and waits for it to complete. If the collection doesn’t
free enough memory, the killer thread asks each cache to
free as many entries as possible, and collects again. If
that doesn’t yield enough free memory, the killer thread
finds the process with the largest total number of mapped
memory regions, file descriptors, and threads, in the as-
sumption that it is a genuine bad citizen, kills it, and again
collects. As soon as the killer thread sees that enough

memory has been freed to satisfy the waiting reservation,
it wakes up the waiting thread and goes back to sleep.

6.4 Limitations
Biscuit’s approach for handling heap exhaustion requires
that the garbage collector run successfully when there is
little or no free memory available. However, Go’s garbage
collector may need to allocate memory during a collection
in order to make progress, particularly for the work stack
of outstanding pointers to scan. We haven’t implemented
it, but Biscuit could recover from this situation by detect-
ing when the work stack is full and falling back to using
the mark bitmap as the work stack, scanning for objects
which are marked but contain unmarked pointers. This
strategy will allow the garbage collection to complete, but
will likely be slow. We expect this situation to be rare
since the work stack buffers can be preallocated for little
cost: in our experiments, the garbage collector allocates
at most 0.8% of the heap RAM for work stacks.

Because the Go collector doesn’t move objects, it
doesn’t reduce fragmentation. Hence, there might be
enough free memory but in fragments too small to sat-
isfy a large allocation. To eliminate this risk, MAXLIVE
should compute s for each size class of objects allocated
during a system call. Our current implementation doesn’t
do this yet.

6.5 Heap exhaustion summary
Biscuit borrows ideas for heap exhaustion from Linux:
the killer thread, and the idea of waiting and retrying after
the killer thread has produced free memory. Biscuit sim-
plifies the situation by using reservation checks at the start
of each system call, rather than Linux’s failure checks at
each allocation point; this means that Biscuit has less
recovery code to back out of partial system calls, and
can wait indefinitely for memory without fear of dead-
lock. Go’s static analyzability helped automate Biscuit’s
simpler approach.

7 Implementation

The Biscuit kernel is written almost entirely in Go: Fig-
ure 3 shows that it has 27,583 lines of Go, 1,546 lines of
assembly, and no C.

Biscuit provides 58 system calls, listed in Figure 4. It
has enough POSIX compatibility to run some existing
server programs (for example, NGINX and Redis).

Biscuit includes device drivers for AHCI SATA disk
controllers and for Intel 82599-based Ethernet controllers
such as the X540 10-gigabit NIC. Both drivers use DMA.
The drivers use Go’s unsafe.Pointer to access de-
vice registers and in-memory structures (such as DMA de-
scriptors) defined by device hardware, and Go’s atomic
package to control the order of these accesses. The code
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Component Lang LOC

Biscuit kernel (mostly boot) asm 546
Biscuit kernel Go

Core 1700
Device drivers 4088
File system 7338
Network 4519
Other 1105
Processes 935
Reservations 749
Syscalls 5292
Virtual memory 1857
Total 27583

MaxLive Go 1299
Runtime modifications asm 1,000
Runtime modifications Go 3,200

Figure 3: Lines of code in Biscuit. Not shown are about 50,000 lines of
Go runtime and 32,000 lines of standard Go packages that Biscuit uses.

would be more concise if Go supported some kind of
memory fence.

Biscuit contains 90 uses of Go’s “unsafe” routines (ex-
cluding uses in the Go runtime). These unsafe accesses
parse and format packets, convert between physical page
numbers and pointers, read and write user memory, and
access hardware registers.

We modified the Go runtime to record the number of
bytes allocated by each goroutine (for heap reservations),
to check for runnable device handler goroutines, and to
increase the default stack size from 2kB to 8kB to avoid
stack expansion for a few common system calls.

Biscuit lives with some properties of the Go runtime
and compiler in order to avoid significantly modifying
them. The runtime does not turn interrupts off when hold-
ing locks or when manipulating a goroutine’s own private
state. Therefore, in order to avoid deadlock, Biscuit inter-
rupt handlers just set a flag indicating that a device han-
dler goroutine should wake up. Biscuit’s timer interrupt
handler cannot directly force goroutine context switches
because the runtime might itself be in the middle of a con-
text switch. Instead, Biscuit relies on Go’s pre-emption
mechanism for kernel goroutines (the Go compiler inserts
pre-emption checks in the generated code). Timer inter-
rupts do force context switches when they arrive from
user space.

Goroutine scheduling decisions and the context switch
implementation live in the runtime, not in Biscuit. One
consequence is that Biscuit does not control scheduling
policy; it inherits the runtime’s policy. Another conse-
quence is that per-process page tables are not switched
when switching goroutines, so Biscuit system call code
cannot safely dereference user addresses directly. Instead,
Biscuit explicitly translates user virtual addresses to physi-
cal addresses, and also explicitly checks page permissions.

Biscuit switches page tables if necessary before switching
to user space.

We modified the runtime in three ways to reduce de-
lays due to garbage collection. First, we disabled the
dedicated garbage collector worker threads so that ap-
plication threads don’t compete with garbage collector
threads for CPU cycles. Second, we made root marking
provide allocation credit so that an unlucky allocating
thread wouldn’t mark many roots all at once. Third, we
reduced the size of the pieces that large objects are broken
into for marking from 128kB to 10kB.

Biscuit implements many standard kernel performance
optimizations. For example, Biscuit maps the kernel text
using large pages to reduce iTLB misses, uses per-CPU
NIC transmit queues, and uses read-lock-free data struc-
tures in some performance critical code such as the direc-
tory cache and TCP polling. In general, we found that Go
did not hinder optimizations.

8 Evaluation

This section analyzes the costs and benefits of writing a
kernel in an HLL by exploring the following questions:

• To what degree does Biscuit benefit from Go’s high-
level language features? To answer, we count and
explain Biscuit’s use of these features (§8.1).

• Do C kernels have safety bugs that a high-level lan-
guage might mitigate? We evaluate whether bugs re-
ported in Linux kernel CVEs would likely apply to
Biscuit (§8.2).

• How much performance does Biscuit pay for Go’s
HLL features? We measure the time Biscuit spends
in garbage collection, bounds checking, etc., and the
delays that GC introduces (§8.4,8.5,8.6).

• What is the performance impact of using Go instead of
C? We compare nearly-identical pipe and page-fault
handler implementations in Go and C (§8.7).

• Is Biscuit’s performance in the same ballpark as Linux,
a C kernel (§8.8)?

• Is Biscuit’s reservation scheme effective at handling
kernel heap exhaustion (§8.9)?

• Can Biscuit benefit from RCU-like lock-free lookups
(§8.10)?

8.1 Biscuit’s use of HLL features
Our subjective feeling is that Go has helped us produce
clear code and helped reduce programming difficulty, pri-
marily by abstracting and automating low-level tasks.

Figure 5 shows how often Biscuit uses Go’s HLL fea-
tures, and compares with two other major Go systems:
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accept bind chdir close connect dup2 execv exit
fcntl fork fstat ftruncate futex getcwd getpid getppid
getrlimit getrusage getsockopt gettid gettimeofday info kill link
listen lseek mkdir mknod mmap munmap nanosleep open
pipe2 poll pread prof pwrite read readv reboot
recvfrom recvmsg rename sendmsg sendto setrlimit setsockopt shutdown
socket socketpair stat sync threxit truncate unlink wait4
write writev

Figure 4: Biscuit’s 58 system calls.
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Figure 5: Uses of Go HLL features in the Git repositories for Biscuit,
Golang (1,140,318 lines), and Moby (1,004,300 lines) per 1,000 lines.
For data types (such as slices), the numbers indicate the number of
declarations of a variable, argument, or structure field of that type.

the Golang repository (containing Go’s compiler, run-
time, and standard packages), and Moby1, which contains
Docker’s container software and is the most starred Go
repository on Github at the time of writing. Figure 5
shows the number of times each feature is used per 1,000
lines of code. Biscuit uses Go’s HLL features about as
much as other Go systems software.

To give a sense how these HLL features can benefit
a kernel, the rest of this section provides examples of
successful uses, as well as situations where we didn’t use
them. Biscuit relies on the Go allocator and garbage col-
lector for nearly all kernel objects. Biscuit has 302 state-
ments that allocate an object from the GC-managed heap.
Some of the objects are compound (composed of multi-
ple Go objects). For example, Biscuit’s Vmregion t,
which describes a mapped region of virtual memory, has
a red/black tree of Vminfo t, which itself is compound
(e.g., when it is backed by a file). The garbage collector
eliminates the need for explicit code to free the parts of
such compound data types.

Biscuit’s only special-purpose allocator is its physi-
cal page allocator. It is used for process memory pages,
file cache pages, socket and pipe buffers, and page table
pages.

1https://github.com/moby/moby

Biscuit uses many goroutines. For example, device
drivers create long-running goroutines to handle events
such as packet arrival. Biscuit avoids goroutine creation,
however, in frequently executed code. The reason is that
the garbage collector produces pauses proportional to the
number of goroutines; these are insignificant for thou-
sands of goroutines but a problem with hundreds of thou-
sands.

The combination of threads and garbage collection is
particularly pleasing, since it avoids forcing the program-
mer to worry about delaying frees for shared objects until
the last sharing thread has finished. For example, Biscuit’s
poll system call installs a pointer to a helper object in
each file descriptor being polled. When input arrives on
a descriptor, the goroutine delivering the input uses the
helper object to wake up the polling thread. Garbage
collection eliminates races between arriving input and
freeing the helper object.

Some Biscuit objects, when the last reference to them
disappears, need to take clean-up actions before their
memory can be collected; for example, TCP connections
must run the TCP shutdown protocol. Go’s finalizers
were not convenient in these situations because of the
prohibition against cycles among objects with finalizers.
Biscuit maintains reference counts in objects that require
clean-up actions.

Biscuit uses many standard Go packages. For example,
Biscuit imports sync in 28 files and atomic packages
in 18 files. These packages provide mutexes, condition
variables, and low-level atomic memory primitives. Bis-
cuit’s MAXLIVE tool depends on Go’s code analysis pack-
ages (ssa, callgraph, and pointer).

Biscuit itself is split into 31 Go packages. Packages
allowed some code to be developed and tested in user
space. For example, we tested the file system package for
races and crash-safety in user space. The package system
also made it easy to use the file system code to create boot
disks.

8.2 Potential to reduce bugs
An HLL might help avoid problems such as memory cor-
ruption from buffer overflows. To see how this applies
to kernels, we looked at Linux execute-code bugs in the
CVE database published in 2017 [34]. There are 65 bugs
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Type CVE-...

Use-after-free
or double-free

2016-10290, 2016-10288, 2016-8480,
2016-8449, 2016-8436, 2016-8392,
2016-8391, 2016-6791

Out-of-bounds
access

2017-1000251, 2017-6264, 2017-0622,
2017-0621, 2017-0620, 2017-0619,
2017-0614, 2017-0613, 2017-0612,
2017-0611, 2017-0608, 2017-0607,
2017-0521, 2017-0520, 2017-0465,
2017-0458, 2017-0453, 2017-0443,
2017-0442, 2017-0441, 2017-0440,
2017-0439, 2017-0438, 2017-0437,
2016-10289, 2016-10285, 2016-10283,
2016-8476, 2016-8421, 2016-8420,
2016-8419, 2016-6755

Figure 6: Linux kernel CVEs from 2017 that would not cause memory
corruption, code execution, or information disclosure in Biscuit.

where the patch is publicly available. For 11 bugs of the
65, we aren’t sure whether Go would have improved the
outcome. 14 of the 65 are logic bugs that could arise
as easily in Go as they do in C. Use of Go would have
improved the outcome of the remaining 40 bugs (listed in
Figure 6), based on manual inspection of the patch that
fixed the bug. The impact of some of these 40 bugs is
severe: several allow remote code execution or informa-
tion disclosure. Many of the bugs in the out-of-bounds
category would have resulted in runtime errors in Go, and
caused a panic. This is not ideal, but better than allow-
ing a code execution or information disclosure exploit.
The bugs in the use-after-free category would not have
occurred in Go, because garbage collection would obviate
them.

The Go runtime and packages that Biscuit relies on
also have bugs. There are 14 CVEs in Go published from
2016 to 2018. Two of them allow code execution (all in
go get) and two allow information gain (due to bugs in
Go’s smtp and math/big packages).

8.3 Experimental Setup
The performance experiments reported below were run on
a four-core 2.8 GHz Xeon X3460 with hyper-threading
disabled and 16 GB of memory. Biscuit uses Go version
1.10. Except where noted, the benchmarks use an in-
memory file system, rather than a disk, in order to stress
the CPU efficiency of the kernel. The in-memory file
system is the same as the disk file system, except that it
doesn’t append disk blocks to the in-memory log or call
the disk driver. The disk file system uses a Samsung 850
SSD.

The network server benchmarks have a dedicated ten-
gigabit Ethernet switch between a client and a server
machine, with no other traffic. The machines use Intel
X540 ten-gigabit network interfaces. The network inter-
faces use an interrupt coalescing period of 128 µs. The

client runs Linux.
Except when noted, Biscuit allocates 512MB of RAM

to the kernel heap. The reported fraction of CPU time
spent in the garbage collector is calculated as Ogc−Onogc

Ogc
,

where Ogc is the time to execute a benchmark with
garbage collection and Onogc is the time without garbage
collection. To measure Onogc, we reserve enough RAM
for the kernel heap that the kernel doesn’t run out of free
memory and thus never collects. This method does not
remove the cost to check, for each write, whether write
barriers are enabled.

We report the average of three runs for all figures ex-
cept maximums. Except when noted, each run lasts for
one minute, and variation in repeated runs for all measure-
ments is less than 3%.

Many of the performance experiments use three appli-
cations, all of which are kernel-intensive:

CMailbench CMailbench is a mail-server-like bench-
mark which stresses the virtual memory system via fork
and exec. The benchmark runs four server processes
and four associated clients, all on the same machine. For
each message delivery, the client forks and execs a helper;
the helper sends a 1660-byte message to its server over
a UNIX-domain socket; the server forks and execs a de-
livery agent; the delivery agent writes the message to a
new file in a separate directory for each server. Each
message involves two calls to each of fork, exec, and
rename as well as one or two calls to read, write,
open, close, fstat, unlink, and stat.

NGINX NGINX [38] (version 1.11.5) is a high-
performance web server. The server is configured with
four processes, all of which listen on the same socket
for TCP connections from clients. The server processes
use poll to wait for input on multiple connections. NG-
INX’s request log is disabled. A separate client machine
keeps 64 requests in flight; each request involves a fresh
TCP connection to the server. For each incoming connec-
tion, a server process parses the request, opens and reads
a 612-byte file, sends the 612 bytes plus headers to the
client, and closes the connection. All requests fetch the
same file.

Redis Redis (version 3.0.5) is an in-memory key/value
database. We modified it to use poll instead of select
(since Biscuit doesn’t support select). The benchmark
runs four single-threaded Redis server processes. A client
machine generates load over the network using two in-
stances of Redis’s “redis-benchmark” per Redis server
process, each of which opens 100 connections to the Re-
dis process and keeps a single GET outstanding on each
connection. Each GET requests one of 10,000 keys at
random. The values are two bytes.
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8.4 HLL tax
This section investigates the performance costs of Go’s
HLL features for the three applications. Figure 7 shows
the results.

The “Tput” column shows throughput in application
requests per second.

The “Kernel time” column (fraction of time spent in
the kernel, rather than in user space) shows that the results
are dominated by kernel activity. All of the benchmarks
keep all four cores 100% busy.

The applications cause Biscuit to average between 18
and 48 MB of live data in the kernel heap. They allo-
cate transient objects fast enough to trigger dozens of
collections during each benchmark run (“GCs”). These
collections use between 1% and 3% of the total CPU time.

“Prologue cycles” are the fraction of total time used by
compiler-generated code at the start of each function that
checks whether the stack must be expanded, and whether
the garbage collector needs a stop-the-world pause. “WB
cycles” reflect compiler-generated write-barriers that take
special action when an object is modified during a con-
current garbage collection.

“Safety cycles” reports the cost of runtime checks for
nil pointers, array and slice bounds, divide by zero, and
incorrect dynamic casts. These checks occur throughout
the compiler output; we wrote a tool that finds them in
the Biscuit binary and cross-references them with CPU
time profiles.

“Alloc cycles” measures the time spent in the Go alloca-
tor, examining free lists to satisfy allocation requests (but
not including concurrent collection work). Allocation is
not an HLL-specific task, but it is one that some C kernels
streamline with custom allocators [8].

Figure 7 shows that the function prologues are the
most expensive HLL feature. Garbage collection costs
are noticeable but not the largest of the costs. On the
other hand, §8.6 shows that collection cost grows with
the amount of live data, and it seems likely that prologue
costs could be reduced.

8.5 GC delays
We measured the delays caused by garbage collection (in-
cluding interleaved concurrent work) during the execution
of NGINX, aggregated by allocator call, system call, and
NGINX request.

0.7% of heap allocator calls are delayed by collection
work. Of the delayed allocator calls, the average delay is
0.9 microseconds, and the worst case is 115 microseconds,
due to marking a large portion of the TCP connection
hashtable.

2% of system calls are delayed by collection work;
of the delayed system calls, the average delay is 1.5 mi-
croseconds, and the worst case is 574 microseconds, in-
curred by a poll system call that involved 25 allocator

calls that performed collection work.
22% of NGINX web requests are delayed by collection

work. Of the delayed requests, the average total collec-
tion delay is 1.8 microseconds (out of an average request
processing time of 45 microseconds). Less than 0.3%
of requests spend more than 100 microseconds garbage
collecting. The worst case is 582 microseconds, which
includes the worst-case system call described above.

8.6 Sensitivity to heap size
A potential problem with garbage collection is that it
consumes a fraction of CPU time proportional to the
“headroom ratio” between the amount of live data and
the amount of RAM allocated to the heap. This section
explores the effect of headroom on collection cost.

This experiment uses the CMailbench benchmark. We
artificially increased the live data by inserting two or
four million vnodes (640 or 1280 MB of live data) into
Biscuit’s vnode cache. We varied the amount of RAM
allocated to the kernel heap.

Figure 8 shows the results. The two most significant
columns are “Headroom ratio” and “GC%;” together they
show roughly the expected relationship. For example,
comparing the second and last table rows shows that in-
creasing both live data and total heap RAM, so that the
ratio remains the same, does not change the fraction of
CPU time spent collecting; the reason is that the increased
absolute amount of headroom decreases collection fre-
quency, but that is offset by the fact that doubling the live
data doubles the cost of each individual collection.

In summary, while the benchmarks in §8.4 / Figure 7
incur modest collection costs, a kernel heap with mil-
lions of live objects but limited heap RAM might spend
a significant fraction of its time collecting. We expect
that decisions about how much RAM to buy for busy
machines would include a small multiple (2 or 3) of the
expected peak kernel heap live data size.

8.7 Go versus C
This section compares the performance of code paths in
C and Go that are nearly identical except for language.
The goal is to focus on the impact of language choice on
performance for kernel code. The benchmarks involve a
small amount of code because of the need to ensure that
the C and Go versions are very similar.

The code paths are embedded in Biscuit (for Go) and
Linux (for C). We modified both to ensure that the ker-
nel code paths exercised by the benchmarks are nearly
identical. We disabled Linux’s kernel page-table isola-
tion, retpoline, address space randomization, transpar-
ent hugepages, hardened usercopy, cgroup, fair group,
and bandwidth scheduling, scheduling statistics, ftrace,
kprobes, and paravirtualization to make its code paths sim-
ilar to Biscuit. We also disabled Linux’s FS notifications,
atime and mtime updates to pipes, and replaced Linux’s
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Tput Kernel Live GCs GC Prologue WB Safety Alloc
time data cycles cycles cycles cycles cycles

CMailbench 15,862 92% 34 MB 42 3% 6% 0.9% 3% 8%
NGINX 88,592 80% 48 MB 32 2% 6% 0.7% 2% 9%
Redis 711,792 79% 18 MB 30 1% 4% 0.2% 2% 7%

Figure 7: Measured costs of HLL features in Biscuit for three kernel-intensive benchmarks. “Alloc cycles” are not an HLL-specific cost, since C
code has significant allocation costs as well.

Live Total Headroom Tput GC% GCs
(MB) (MB) ratio (msg/s)

640 960 0.66 10,448 34% 43
640 1280 0.50 12,848 19% 25
640 1920 0.33 14,430 9% 13

1280 2560 0.50 13,041 18% 12

Figure 8: CMailbench throughput on Biscuit with different kernel heap
sizes. The columns indicate live heap memory; RAM allocated to the
heap; the ratio of live heap memory to heap RAM; the benchmark’s
throughput on Biscuit; the fraction of CPU cycles (over all four cores)
spent garbage collecting; and the number of collections.

scheduler and page allocator with simple versions, like
Biscuit’s. The benchmarks allocate no heap memory in
steady-state, so Biscuit’s garbage collector is not invoked.

8.7.1 Ping-pong

The first benchmark is “ping-pong” over a pair of pipes
between two user processes. Each process takes turns
performing five-byte reads and writes to the other pro-
cess. Both processes are pinned to the same CPU in order
to require the kernel to context switch between them.
The benchmark exercises core kernel tasks: system calls,
sleep/wakeup, and context switch.

We manually verified the similarity of the steady-state
kernel code paths (1,200 lines for Go, 1,786 lines for C,
including many comments and macros which compile
to nothing). The CPU-time profiles for the two showed
that time was spent in near-identical ways. The ten most
expensive instructions match: saving and restoring SSE
registers on context switch, entering and exiting the kernel,
wrmsr to restore the thread-local-storage register, the copy
to/from user memory, atomic instructions for locks, and
swapgs.

The results are 465,811 round-trips/second for Go and
536,193/second for C; thus C is 15% faster than Go on
this benchmark. The benchmark spends 91% and 93% of
its time in the kernel (as opposed to user space) for Go
and C, respectively. A round trip takes 5,259 instructions
for Go and 4,540 for C. Most of the difference is due to
HLL features: 250, 200, 144, and 112 instructions per
round-trip for stack expansion prologues, write barrier,
bounds, and nil pointer/type checks, respectively.

Biscuit Linux Ratio

CMailbench (mem) 15,862 17,034 1.07
CMailbench (SSD) 254 252 0.99
NGINX 88,592 94,492 1.07
Redis 711,792 775,317 1.09

Figure 9: Application throughput of Biscuit and Linux. “Ratio” is the
Linux to Biscuit throughput ratio.

8.7.2 Page-faults
The second Go-versus-C benchmark is a user-space pro-
gram that repeatedly calls mmap() to map 4 MB of zero-
fill-on-demand 4096-byte pages, writes a byte on each
page, and then unmaps the memory. Both kernels initially
map the pages lazily, so that each write generates a page
fault, in which the kernel allocates a physical page, zeroes
it, adds it to the process page table, and returns. We ran
the benchmark on a single CPU on Biscuit and Linux and
recorded the average number of page-faults per second.

We manually verified the similarity of the steady-state
kernel code: there are about 480 and 650 lines of code for
Biscuit and Linux, respectively. The benchmark spends
nearly the same amount of time in the kernel on both
kernels (85% on Biscuit and 84% on Linux). We verified
with CPU-time profiles that the top five most expensive
instructions match: entering the kernel on the page-fault,
zeroing the newly allocated page, the userspace store after
handling the fault, saving registers, and atomics for locks.

The results are 731 nanoseconds per page-fault for
Go and 695 nanoseconds for C; C is 5% faster on this
benchmark. The two implementations spend much of
their time in three ways: entering the kernel’s page-fault
handler, zeroing the newly allocated page, and returning
to userspace. These operations use 21%, 22%, and 15%
of CPU cycles for Biscuit and 21%, 20%, and 16% of
CPU cycles for Linux, respectively.

These results give a feel for performance differences
due just to choice of language. They don’t involve garbage
collection; for that, see §8.4 and §8.6.

8.8 Biscuit versus Linux
To get a sense of whether Biscuit’s performance is in the
same ballpark as a high-performance C kernel, we report
the performance of Linux on the three applications of §8.4.
The applications make the same system calls on Linux
and on Biscuit. These results cannot be used to conclude
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Figure 10: The amount of live data (in red) in the kernel heap during
the first 35 seconds of the heap exhaustion experiment. The blue line
indicates the RAM allocated to the kernel heap (512MB). The four
vertical black lines indicate the points at which the killer thread killed
the abusive child process.

much about performance differences due to Biscuit’s use
of Go, since Linux includes many features that Biscuit
omits, and Linux may sacrifice some performance on
these benchmarks in return for better performance in other
situations (e.g., large core counts or NUMA).

We use Debian 9.4 with Linux kernel 4.9.82. We in-
creased Linux’s performance by disabling some costly
features: kernel page-table isolation, retpoline, address
space randomization, transparent hugepages, TCP selec-
tive ACKs, and SYN cookies. We replaced glibc with
musl (nearly doubling the performance of CMailbench on
Linux) and pinned the application threads to CPUs when
it improves the benchmark’s performance. We ran CMail-
bench in two configurations: one using an in-memory
file system and the other using an SSD file system (tmpfs
and ext-4 on Linux, respectively). The benchmarks use
100% of all cores on both Biscuit and Linux, except for
CMailbench (SSD), which is bottlenecked by the SSD.
The proportion of time each benchmark spends in the
kernel on Linux is nearly the same as on Biscuit (differing
by at most two percentage points).

Figure 9 presents the results: Linux achieves up to 10%
better performance than Biscuit. The “HLL taxes” identi-
fied in §8.4 contribute to the results, but the difference in
performance is most likely due to the fact that the two ker-
nels have different designs and amounts of functionality.
It took effort to make Biscuit achieve this level of perfor-
mance. Most of the work was in understanding why Linux
was more efficient than Biscuit, and then implementing
similar optimizations in Biscuit. These optimizations had
little to do with the choice of language, but were for the
most part standard kernel optimizations (e.g., avoiding
lock contention, avoiding TLB flushes, using better data
structures, adding caches).

8.9 Handling kernel heap exhaustion
This experiment demonstrates two things. First, that the
system calls of a good citizen process do not fail when
executing concurrently with an application that tries to
exhaust the kernel heap. Second, that Biscuit’s heap RAM
reservations aren’t too conservative: that the reservations
allow most of the heap RAM to be used before forcing
system calls to wait.

The experiment involves two programs. An abusive
program repeatedly forks a child and waits for it. The
child creates many non-contiguous memory mappings,
which cause the kernel to allocate many heap objects
describing the mappings. These objects eventually cause
the kernel heap to approach fullness, at which point the
out-of-memory killer kills the child. Meanwhile, a well-
behaved program behaves like a UNIX mail daemon: it
repeatedly delivers dozens of messages and then sleeps
for a few seconds. This process complains and exits if any
of its system calls returns an unexpected error. The kernel
has 512MB of RAM allocated to its heap. The programs
run for 25 minutes, and we record the amount of live data
in the kernel heap at the end of every garbage collection.

Figure 10 shows the first 35 seconds of the experiment.
Each red cross indicates the amount of live kernel heap
data after a GC. The blue line at the top corresponds to
512MB. The four vertical lines show the times at which
the out-of-memory killer killed the abusive program’s
child process.

Biscuit allows the live data in its heap to grow to about
500 MB, or 97% of the heap RAM. The main reason that
live data does not reach 512 MB is that the reservation for
the file system logger thread is 6 MB, more than the thread
actually uses. When the child is killed, it takes a couple
seconds to release the kernel heap objects describing its
many virtual memory mappings. The system calls of the
good citizen process wait for reservations hundreds of
thousands of times, but none return an error.

8.10 Lock-free lookups
This section explores whether read-lock-free data struc-
tures in Go increase parallel performance.

C kernels often use read-lock-free data structures to
increase performance when multiple cores read the data.
The goal is to allow reads without locking or dirtying
cache lines, both of which are expensive when there is
contention. However, safely deleting objects from a data
structure with lock-free readers requires the deleter to
defer freeing memory that a thread might still be reading.
Linux uses read-copy update (RCU) to delay such frees,
typically until all cores have performed a thread context
switch; coupled with a rule that readers not hold refer-
ences across context switch, this ensures safety [32, 33].
Linux’s full set of RCU rules is complex; see “Review
Checklist for RCU patches” [31].
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Directory cache Tput

Lock-free lookups 15,862 msg/s
Read-locked lookups 14,259 msg/s

Figure 11: The performance of CMailbench with two versions of Bis-
cuit’s directory cache, one read-lock-free and one using read locks.

Garbage collection automates the freeing decision, sim-
plifying use of read-lock-free data structures and increas-
ing the set of situations in which they can safely be
used (e.g. across context switches). However, HLLs
and garbage collection add their own overheads, so it is
worth exploring whether read-lock-free data structures
nevertheless increase performance.

In order to explore this question, we wrote two variants
of a directory cache for Biscuit, one that is read-lock-free
and one with read-locks. Both versions use an array of
buckets as a hash table, each bucket containing a singly-
linked list of elements. Insert and delete lock the relevant
bucket, create new versions of list elements to be inserted
or updated, and modify next pointers to refer to the new
elements. The read-lock-free version of lookup simply
traverses the linked list.2 The read-locked version first
read-locks the bucket (forbidding writers but allowing
other readers) and then traverses the list. We use CMail-
bench for the benchmark since it stresses creation and
deletion of entries in the directory cache. The file system
is in-memory, so there is no disk I/O.

Figure 11 shows the throughput of CMailbench using
the read-lock-free directory cache and the read-locked
directory cache. The read-lock-free version provides an
11% throughput increase: use of Go does not eliminate
the performance advantage of read-lock-free data in this
example.

9 Discussion and future work

Should one write a kernel in Go or in C? We have no
simple answer, but we can make a few observations. For
existing large kernels in C, the programming cost of con-
version to Go would likely outweigh the benefits, particu-
larly considering investment in expertise, ecosystem, and
development process. The question makes more sense for
new kernels and similar projects such as VMMs.

If a primary goal is avoiding common security pitfalls,
then Go helps by avoiding some classes of security bugs
(see §8.2). If the goal is to experiment with OS ideas, then
Go’s HLL features may help rapid exploration of different
designs (see §8.1). If CPU performance is paramount,
then C is the right answer, since it is faster (§8.4, §8.5).
If efficient memory use is vital, then C is also the right

2We used Go’s atomic package to prevent re-ordering of memory
reads and writes; it is not clear that this approach is portable.

answer: Go’s garbage collector needs a factor of 2 to 3 of
heap headroom to run efficiently (see §8.6).

We have found Go effective and pleasant for kernel
development. Biscuit’s performance on OS-intensive ap-
plications is good (about 90% as fast as Linux). Achieving
this performance usually involved implementing the right
optimizations; Go versus C was rarely an issue.

An HLL other than Go might change these considera-
tions. A language without a compiler as good as Go’s, or
whose design was more removed from the underlying ma-
chine, might perform less well. On the other hand, a lan-
guage such as Rust that avoids garbage collection might
provide higher performance as well as safety, though per-
haps at some cost in programmability for threaded code.

There are some Biscuit-specific issues we would like
to explore further. We would like Biscuit to expand and
contract the RAM used for the heap dynamically. We
would like to modify the Go runtime to allow Biscuit
to control scheduling policies. We would like to scale
Biscuit to larger numbers of cores. Finally, we would
like to explore if Biscuit’s heap reservation scheme could
simplify the implementation of C kernels.

10 Conclusions

Our subjective experience using Go to implement the Bis-
cuit kernel has been positive. Go’s high-level language
features are helpful in the context of a kernel. Examina-
tion of historical Linux kernel bugs due to C suggests that
a type- and memory-safe language such as Go might avoid
real-world bugs, or handle them more cleanly than C.
The ability to statically analyze Go helped us implement
defenses against kernel heap exhaustion, a traditionally
difficult task.

The paper presents measurements of some of the perfor-
mance costs of Biscuit’s use of Go’s HLL features, on a
set of kernel-intensive benchmarks. The fraction of CPU
time consumed by garbage collection and safety checks
is less than 15%. The paper compares the performance of
equivalent kernel code paths written in C and Go, finding
that the C version is about 15% faster.

We hope that this paper helps readers to make a deci-
sion about whether to write a new kernel in C or in an
HLL.
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Abstract

Cloud providers such as Amazon and Microsoft have
begun to support on-demand FPGA acceleration in the
cloud, and hardware vendors will support FPGAs in future
processors. At the same time, technology advancements
such as 3D stacking, through-silicon vias (TSVs), and
FinFETs have greatly increased FPGA density. The mas-
sive parallelism of current FPGAs can support not only
extremely large applications, but multiple applications
simultaneously as well.

System support for FPGAs, however, is in its infancy.
Unlike software, where resource configurations are lim-
ited to simple dimensions of compute, memory, and I/O,
FPGAs provide a multi-dimensional sea of resources
known as the FPGA fabric: logic cells, floating point
units, memories, and I/O can all be wired together, lead-
ing to spatial constraints on FPGA resources. Current
stacks either support only a single application or statically
partition the FPGA fabric into fixed-size slots. These de-
signs cannot efficiently support diverse workloads: the
size of the largest slot places an artificial limit on appli-
cation size, and oversized slots result in wasted FPGA
resources and reduced concurrency.

This paper presents AMORPHOS, which encapsulates
user FPGA logic in morphable tasks, or Morphlets. Mor-
phlets provide isolation and protection across mutually
distrustful protection domains, extending the guarantees
of software processes. Morphlets can morph, dynamically
altering their deployed form based on resource require-
ments and availability. To build Morphlets, developers
provide a parameterized hardware design that interfaces
with AMORPHOS, along with a mesh, which specifies
external resource requirements. AMORPHOS explores
the parameter space, generating deployable Morphlets
of varying size and resource requirements. AMORPHOS
multiplexes Morphlets on the FPGA in both space and
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that node (in cents) where historical pricing was available [84]. The 14-
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time to maximize FPGA utilization.
We implement AMORPHOS on Amazon F1 [1] and

Microsoft Catapult [92]. We show that protected sharing
and dynamic scalability support on workloads such as
DNN inference and blockchain mining improves aggre-
gate throughput up to 4× and 23× on Catapult and F1
respectively.

1 Introduction
FPGAs offer compelling hardware acceleration in appli-
cation domains ranging from databases [28, 59, 74], fi-
nance [54, 70], neural networks [115, 104], graph pro-
cessing [36, 85], communication [57, 107, 27], and net-
working [53, 92, 27]. Over the last few decades, FPGA
compute density has grown dramatically, cost per logic
cell has dropped precipitously (Figure 1), and higher-
level programming abstractions [60, 19, 32, 20, 65, 90]
have emerged to improve programmer productivity. Cloud
providers such as Amazon [1] are offering compute re-
sources with FPGAs. However, system software has not
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kept up. The body of research effort on FPGA OS sup-
port [77, 100, 99, 86, 45, 52, 29] and sharing [30] has
yielded no first-class commodity OS support, and on-
demand FPGAs from AWS and Microsoft support a
single-application model.

Current proposals for FPGA sharing [30, 26, 42, 110,
63] partition a physical FPGA into a small number of
fixed-size slots and demand-share them across user logic
using hardware support for partial reconfiguration (PR).
PR changes the configuration of FPGA fabric within a
slot without perturbing the state of the rest of the FPGA.
User logic is pre-compiled to a bitstream that targets the
pre-defined slots, enabling a system to deploy user logic
with low latency. A reserved partition of the fabric, or
shell, implements library support. Fixed-slot designs have
significant drawbacks in practice. Forcing applications
to target fixed partitions unnecessarily constrains them:
the size of the largest partition places an artificial limit on
application size, and oversized partitions result in wasted
FPGA resources and reduced concurrency.

We present a design and prototype of protected shar-
ing and cross-platform compatibility for FPGAs called
AMORPHOS. AMORPHOS enables applications to scale
dynamically in response to load and availability, and en-
ables the system to transparently change mappings be-
tween user logic and physical fabric to increase utiliza-
tion. AMORPHOS avoids fixed-size slots and manages
physical fabric in dynamically sized zones. Zones are
demand-shared across morphable tasks, or Morphlets. A
Morphlet is a new abstraction which forms a protection
boundary and encapsulates user FPGA logic in a way
that enables it to be dynamically scaled and remapped to
the physical fabric. Morphlets express scalability dimen-
sions and resource constraints using a mesh. A mesh is
a map from feasible resource combinations to abstract
descriptions of the logic. Meshes act as an intermediate
representation (IR) that can be re-targeted at runtime to
different hardware allocations, allowing the AMORPHOS
scheduler to re-target Morphlets to available FPGA fabric.
AMORPHOS caches dynamically generated bitstreams
in a shared registry to hide the latency of re-targeting.
AMORPHOS mediates Morphlet access to OS-managed
resources through a hull, which hardens and extends a
traditional shell design with access control and support
for isolation. The hull also forms a canonical interface
that enables Morphlets to be portable.

We prototype AMORPHOS on both Amazon F1 and Mi-
crosoft Catapult. Measurements show that AMORPHOS’s
abstractions provide both compatibility and protected shar-
ing while dramatically improving utilization and through-
put. We make the following contributions:

• A minimal set of OS-level abstractions and interfaces
to enable mutually distrustful FPGA sharing and
protected access to OS-managed resources.
• A compatibility layer that enables portability of

FPGA code across Amazon F1 and Microsoft Cata-
pult FPGA systems.
• Techniques that transparently transition between

scheduling modes based on fixed and variable zones
to increase utilization and throughput.
• Evaluation of a prototype showing AMORPHOS shar-

ing support increases fabric utilization and system
throughput up to 4× (Catapult) and 23× (F1) rela-
tive to fixed-slot sharing and non-sharing designs.

2 Background
Field Programmable Gate Arrays (FPGAs) are circuits
that can be configured post-manufacture to implement
custom logic. FPGAs may be deployed in a system in
several ways:

Discrete. A FPGA can be used on its own without a
processor. Network switches, for example [17], can be
implemented this way to provide a programmable data
plane.

System-on-chip. FPGAs may include one or more hard
(in-silicon) processors [35, 16] tightly integrated with the
FPGA. Logic in the FPGA can manipulate the processor
and vice versa (e.g. FPGA logic may directly write into
processor caches or manipulate memory controllers).

Bump-in-the-wire. FPGAs can be placed on an I/O
pipeline to “transparently” manipulate data. For exam-
ple, an FPGA may be integrated into a network card or
memory and storage controller to provide line-rate en-
cryption [8].

Co-processor/Offload. FPGAs can be I/O-attached (e.g.
via PCIe) to offload compute. An application configures
the FPGA to implement a hardware accelerator and sends
data and requests to it like a co-processor. Many work-
loads targeting on-demand cloud FPGAs [1, 79], such as
DNNs [83, 116], media transcoding [9], genomics [6],
real-time risk modeling [87], and blockchain [105, 49]
fall in this category. AMORPHOS is designed for FPGAs
deployed in the co-processor/offload configuration.

2.1 Software versus Hardware

Writing Hardware. Hardware description languages
(HDLs), such as Verilog [106] and VHDL [21], enable de-
velopers to configure the various resources on the FPGA
fabric: interconnect, look-up-tables (LUTs), flip-flops, on-
chip memory (block RAM), and “hard resources” (adders,
DSPs, memory controllers, etc.). Unlike software, where
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resource arrangement is abstracted away by the ISA, hard-
ware gives developers explicit control over arranging and
connecting resources in a flexible manner.

Building and deploying hardware. To be deployed on
an FPGA, a design must be converted into a bitstream, a
binary which configures the FPGA fabric. The bitstream
is built from the HDL in two stages: First, synthesis con-
verts and maps the HDL into a netlist, which describes
how resources on the FPGA should be connected to im-
plement design logic. Synthesis is similar to software
compilation and usually takes on the order of minutes.
Second, the place-and-route (PAR) step takes the netlist
and attempts to route the design on the FPGA fabric. PAR
is a constraint-solving problem which can take hours for
a complex design. A bitstream takes 10s-100s of millisec-
onds to be loaded.

Sharing and reconfiguring hardware. Unlike software,
which can be context switched by saving and restoring
architectural state, context switching FPGA hardware at
arbitrary points requires capturing the current state of
the logic, as loading a new bitstream will reset that state.
While mechanisms do exist, they are not universally sup-
ported [47] or are in their early stages [23], and are not sup-
ported in all AMORPHOS’s target environments. There-
fore, time-sharing must either be non-preemptive, or must
forcibly revoke access to the FPGA, potentially at the cost
of losing application state.

Partial Reconfiguration. Hardware support for partial
reconfiguration [76] (PR) enables parts of an FPGA to be
reconfigured in situ without impacting the live configura-
tion or circuit state of other parts of the FPGA fabric. Use
of the feature necessitates including partial reconfigura-
tion logic along with the netlist during the place-and-route
build phase, but does not otherwise impact the process in
a fundamental way: the output is a bitstream that targets a
specific set of physical FPGA resources. Partial reconfigu-
ration can be faster because partial bitstreams are smaller.
Because PR can allow an application to change without
impacting the state of other applications, it is an attractive
primitive for implementing context switching.

Scaling Hardware. Unlike software, which is scaled
by increasing the number of cores or the number of op-
erations executed per instruction (SIMD), hardware can
scale by implementing what can be thought of as entirely
new specialized instructions or algorithms. This enables
FPGAs to provide energy-efficiency and evolvability that
are difficult to achieve with fixed-function hardware like
GPUs or TPUs [117, 46, 11]. For example, a deep neural
network (DNN) can be implemented as thousands of inde-
pendent 2-bit bitwise processors, rather than consuming

the pipeline of a general purpose 64-bit processor.

2.2 FPGA OS and Sharing Support
On-demand FPGAs in the cloud, such as Amazon F1 [1],
only enable coarse-grain sharing of a FPGA. F1 provides
developers with SDKs for developing, simulating, debug-
ging, and compiling hardware accelerators on-demand.
FPGA designs are saved as Amazon FPGA Images (AFIs)
and deployed to an F1 instance. The AWS Marketplace
functions as a library of pre-built common AFIs. At de-
ployment, an AFI is assigned the fabric of the entire
FPGA: there is no support for sharing across protection
domains. The lack of fine-grained sharing means that
both the cloud provider and the user are locked out of the
flexibility of the FPGA: once a user loads an AFI, Ama-
zon must assume that the entire FPGA is being used by
that AFI, even though the FPGA may be idle. Other than
decommissioning the instance, the user has no way to
release FPGA resources back to the cloud provider. As a
result, workloads which need to conditionally or occasion-
ally offload compute [97], or which cannot fully utilize
the FPGA, may be unable to cost-effectively use cloud
FPGAs.

Previous proposals have touched on OS-level concerns
such as cross-application sharing [31, 109, 52], hardware
abstraction layers [111, 61, 78, 62, 50, 80], and shared
runtime support [45, 103, 37], or access from a virtual
machine [88]. Theoretical aspects of spatial scheduling
on FPGAs [43, 102, 108, 31], task scheduling in hetero-
geneous CPU-FPGA platforms [25, 102, 108, 44, 18],
mechanisms for preemption [73], relocation [55], and con-
text switch [72, 93] are well-explored. Access from an
FPGA to OS-managed resources such as virtual mem-
ory [33, 15, 114, 77], file systems [100], and system
calls [77, 100] has enjoyed the research community’s
attention as well. However, no first class OS support for
FPGAs is present in modern commodity OSes and cloud
FPGA platforms support a single application model.

Recent designs for FPGA sharing in datacenters [30, 26,
42, 110, 63] leverage partial reconfiguration to demand
share fixed pre-reserved partitions of FPGA fabric among
applications with bitstreams pre-compiled to target those
partitions. AMORPHOS begins with a design of this form,
extends it to enable cross-domain protection, and replaces
the fixed slot restriction with elastic resource management
to increase utilization and throughput.

3 Goals
AMORPHOS supports demand-sharing of FPGAs by mu-
tually distrustful processes. AMORPHOS multiplexes fab-
ric spatially by default, co-scheduling user logic from
different processes, and falling back to time-sharing when
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Figure 2: AMORPHOS managing a number of DNNWeaver (see §6) Morphlets. The top row depicts the host and FPGA state while the bottom
row shows the corresponding chip layout on Catapult. At T0, a single DNNWeaver Morphlet is placed on the FPGA. At T1, AMORPHOS detects
underutilization and transitions to high-throughput mode, giving the Morphlet more area. At T2, another Morphlet is instantiated and AMORPHOS
returns to low-latency mode. Finally, at T3, 2 more DNNWeavers have been scheduled and AMORPHOS transitions to high-throughput mode to fit
them all on the FPGA.

space-sharing is infeasible due to resource constraints. A
critical design objective for AMORPHOS is avoiding the
artificial constraints on inter- and intra-Morphlet scalabil-
ity induced by a fixed-slot design. AMORPHOS enables
individual applications to utilize additional fabric if avail-
able, and enables multiple applications to share the fabric
to achieve higher aggregate utilization.

3.1 Programming Model
We target a programming model of HDL (hardware de-
scription language) over an abstract FPGA fabric. The
primary tangible change from current HDL-FPGA pro-
gramming models is the requirement for the developer to
use virtual interfaces for communication with the host and
access to on-board resources such as DRAM, network I/O,
etc. Collectively, these interfaces form a mediation and
compatibility layer called the hull, which encapsulates,
hardens, and extends current vendor-specific shells [92, 1]

3.2 Isolation
AMORPHOS provides protection guarantees similar to
those provided to processes in a software OS. Memory
and I/O protection is enforced between Morphlets. Best ef-
fort performance isolation is provided based on resource
allocation policy and scheduler hints. When FPGA re-
sources are constrained, AMORPHOS dedicates an even
share of I/O and memory bandwidth to each Morphlet, en-
forced by a hardware arbiter. AMORPHOS makes a best ef-
fort to allocate fabric fairly under contention by preferring
spatial assignments that balance the resources allocated to
each application, and time-slicing fairly when spatial shar-
ing is unfeasible (see §4.2 for details). Extending these

mechanisms to provide priority-proportional fairness is
straightforward, but our prototype currently does not pro-
vide flexible software-exposed policies, which we leave
as future work. Our current design avoids co-scheduling
Morphlets which will interfere with each other through
contention on the hardware based on scheduler hints.

AMORPHOS does not provide explicit protection
against side channels. Side channels exist and are an active
area of research where some mitigations now exist [94].
However, the attack surface for Morphlets is considerably
smaller, as Morphlets enjoy exclusive access to all the
FPGA hardware resources they use except interfaces to
AMORPHOS itself, which are implemented with cross-
domain isolation in mind. For example, special care is
taken to zero out all signals on a Morphlet’s interface
if it is not the intended recipient of a transaction, which
ensures the Morphlet can not monitor the address/data
signals of other Morphlets.

3.3 Dynamic Scalability
A key goal of AMORPHOS is increasing utilization. When
only a single application is on the FPGA, it should enjoy
exclusive access to all resources it can actually use. When
multiple Morphlets contend, if a feasible partitioning of
the fabric accommodating them all exists, applications are
mapped to shares of the fabric concurrently. If no feasible
partitioning exists, the system falls back to time-sharing
at coarse granularity. A key challenge to realizing this
vision is very high latency (potentially hours or more) of
place-and-route (PAR), which maps user-logic to physical
fabric. Using partial reconfiguration (PR) to deploy appli-
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cations avoids that latency, but constrains applications to
fixed slots, giving up elasticity. Avoiding or hiding PAR la-
tency without constraining logic to fixed slots is a primary
design goal for Morphlets and the AMORPHOS scheduler.
Furthermore, for Morphlets to take advantage of different
size partitions, the programming model must provide a
way for the developer to express scalability dimensions,
valid configurations, and hints to the system to inform the
scheduler.

While AMORPHOS’s primary sharing strategy is spa-
tial sharing, support for time-sharing is a de facto re-
quirement to avoid starvation when the FPGA is con-
tended. Preemptive time-slicing requires mechanisms for
capturing, evacuating, and restoring state on the FPGA,
and while some applicable mechanisms do exist (e.g.
ICAP [47]) they are not universally supported, and state-
capture remains an active research area [55, 72, 93, 73].
We opt for a non-preemptive context switch based on ex-
tensions to the programming that include a quiescence
interface.

3.4 Motivating Example
Figure 2 shows a series of scheduling decisions taken by
our system in response to applications requesting use of
the FPGA. The top row depicts the state of the host and
FPGA while the bottom row shows the corresponding
chip layout on Catapult V1 FPGAs [92] (Altera Stratix V
5SGSMD5H2F35I3L). At time T0, process A instantiates
a Morphlet on the FPGA. To provide on-demand access
at the lowest latency, it initially deploys A on fixed-size
zone 1 using partial reconfiguration. At time T1, AMOR-
PHOS notices the resulting under-utilization and morphs.
A’s mesh is used to select a more performant netlist that
uses as much of the FPGA as it can profitably consume,
and full reconfiguration is used to give A all the resources
not consumed by AMORPHOS itself. At time T2, process
B requests FPGA fabric. To serve that demand quickly,
AMORPHOS morphs again, reinstating A in zone 1, and
mapping B to zone 2. At some future time T3, which
represents the state after potentially many intervening
events, four processes have requested FPGA access, and
AMORPHOS has morphed by selecting netlists from each
Morphlet’s mesh to produce a single combined bitstream
that co-schedules all. Utilization and throughput are im-
proved by 2× compared to a fixed slot design.

4 Design
AMORPHOS introduces a number of new abstractions
and interconnected components. A system overview is
shown in Figure 3. User logic is encapsulated in Mor-
phlets, a zone manager tracks allocatable area of physical
FPGA fabric, and a scheduler manages the mapping be-

tween Morphlets and zones. To enable flexible mapping
of Morphlets to zones, Morphlets encapsulate informa-
tion to enable the scheduler to generate new bitstreams
on demand, in the form of meshes. To hide the latency of
PAR for dynamic re-targeting of Morphlets, the scheduler
maintains a registry that caches (potentially combined)
bitstreams that can be instantiated on a zone with low la-
tency. AMORPHOS mediates Morphlet access to memory
and I/O with a compatibility and protection layer called
the hull.

4.1 Hull
The primary job of the hull is to provide cross-domain
protection by mediating access to memory and I/O, and to
enable compatibility by presenting Morphlets with canon-
ical interfaces to interact with the rest of the platform. The
hull coordinates with the scheduler by sending and moni-
toring quiescence signals (§4.3), disabling connections to
zones of the FPGA currently being reprogrammed (§4.2),
and connecting and initializing Morphlets after reprogram-
ming is complete. The hull provides memory protection
for on-board DRAM using segment-based address transla-
tion and manages peripheral I/O devices by implementing
shared logic to interface with them, along with simple
access mediation logic (e.g. rate-limiting for contended
I/O). Finally, the hull exports interfaces to the host OS to
configure access control and protection mechanisms, e.g.
base and bounds registers for segments.

We expect that future FPGA platforms will provide
some of this functionality, address translation in particu-
lar, in “hard IP,” meaning it will be supported directly in
silicon. Our current prototypes are forced to synthesize
these functions from FPGA fabric.

4.2 Zones and Scheduling
The zone manager allocates physical FPGA fabric to Mor-
phlets. Fabric not consumed by the hull forms a global
zone, which can be recursively subdivided into smaller
reconfigurable zones that can be allocated to different
Morphlets. Our Catapult prototype supports two smaller
zones within the global zone, each of which can be further
subdivided into two. F1 hardware has considerably more
resources, and could support a considerably larger num-
ber of zones with more levels of subdivision. However,
F1 does not expose the partial reconfiguration feature, so
our F1 prototype is forced to manage only a single global
zone. Zones may be allocated to individual Morphlets
or may accommodate multiple Morphlets simultaneously.
When it is time to schedule a Morphlet, the job of the zone
manager is to find (or create) a free reconfigurable zone
matching the Morphlet’s default bitstream. If a match
is found, the Morphlet can be deployed on that zone di-
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Figure 3: AMORPHOS design overview. FPGA Morphlets (applications) are synthesized by the user and given to AMORPHOS to be converted
into bitstreams capable of being placed on the FPGA. The FPGA is split into a hull and multiple zones, in which Morphlets can be scheduled from
cocoons. Access to memory and I/O from Morphlets is virtualized by the hull, which implements the logic to interface with the resources directly and
to ensure proper access control. On the host side, communication to the Morphlet is virtualized through the lib-AMORPHOS interface.
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rectly. If one is not found, the zone manager must coalesce
free (or reclaimed) zones to form a larger one, and inform
AMORPHOS that it must re-target the Morphlet along with
any other currently-running Morphlets to be deployed on
the coalesced zone. In the limit, all Morphlets are de-
ployed together on the global zone, maximizing aggregate
utilization and individual application performance.

Zones play a key role in balancing scheduling latency
against aggregate throughput because fixed zones and PR
is better for fast deployment, while a larger zones with
multiple Morphlets is better for utilization and throughput.
AMORPHOS’s scheduler supports two modes reflecting
this tradeoff, low-latency mode and high-throughput mode,
and transitions between those modes transparently based
on demand.

In low-latency mode, reconfigurable zones enable Mor-
phlet to be deployed almost instantly through partial re-
configuration with the Morphlet’s default bitstream. The
Morphlet’s default bitstream targets one or more of the
smaller zones and includes the partial reconfiguration
logic required to enable it to use PR. PR-based schedul-
ing also allows other Morphlets to continue uninterrupted.
However, reconfigurable zones incur significant area over-
head for the additional PR logic required and increase
fragmentation of the FPGA fabric.

When the reconfigurable regions cannot accommodate
the Morphlets of all applications concurrently, a morph op-
eration occurs. The zone manager coalesces zones to form

RVector Cocoon

s t r u c t {
boo l o p t L a t e n c y ;
s i z e t minMem ;
s i z e t optMem ;

s t r u c t {
b i t s t r e a m d e f a u l t b i t s t r e a m ;
map<RVector , n e t l i s t > mesh ;

} Cocoon ;
s i z e t memBw;
s i z e t PCIeBw ;

} RVector ;

Figure 5: Object model for Cocoons.

larger ones, eventually converging to the single global
zone, and the scheduler enters high-throughput mode. To
do so, it re-targets running Morphlets by running place-
and-route to create a bitstream that includes logic for all
of them and subsequently maps that bitstream to the tar-
get zone. When the global zone is the target, this requires
reconfiguring the whole FPGA. However, the global zone
can accommodate significantly more Morphlets because
PR support fabric is freed, and fragmentation is elimi-
nated by not restricting Morphlets to exclusive partitions
of the FPGA. AMORPHOS hides the latency of place-and-
route for morph operations by caching or pre-computing
combined bitstreams targeting the global zone in a Mor-
phlet registry. The registry’s entries are bitstreams for
“co-Morphlets” representing co-compiled combinations
of Morphlets.

AMORPHOS also uses the morph operation for single
Morphlets when the FPGA fabric is underutilized. Mov-
ing a Morphlet to a larger zone or the global zone puts sig-
nificantly more resources at its disposal. The application
can then use these resources to run faster. AMORPHOS
targets applications in which Morphlets will likely run
for an extended time, so the overhead of moving Mor-
phlets to larger zones is amortized by the gains in ag-
gregate throughput. The ability of a Morphlet to benefit
from increasing resource shares is visible to AMORPHOS
through the Morphlet’s mesh, enabling AMORPHOS to
avoid morphing when it is not performance profitable to
do so.
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4.3 Morphlets and Cocoons

While Morphlets are analogous to and extend the process
abstraction, the AMORPHOS build toolchain produces Co-
coons from HDL specifications targeting AMORPHOS,
which are analogous to an application binary. In addi-
tion to the deployable bitstream produced by current
FPGA build tools, Cocoons encapsulate abstract infor-
mation about the Morphlet to enable stages of the build
toolchain to be re-invoked dynamically to produce differ-
ent bitstreams on demand. Dynamic re-targeting enables
co-scheduling of multiple Morphlets on a zone or dynamic
scaling of the fabric resources allocated to an individual
Morphlet.

Figure 5 shows the contents of a Cocoon, and Figure 4
shows how the various stages in the build and deployment
process interact with Cocoons to enable dynamic target-
ing. A cocoon’s default bitstream targets a default zone
on the device and can be deployed using PR. Its mesh en-
capsulates a constrained set of strategies for re-targeting
the Morphlet’s user logic. Concretely, a mesh is a map
of abstract descriptions of the logic, or netlists, keyed by
RVectors. An RVector describes a feasible combination
of resources and scheduler hints for the corresponding
netlist. The netlist acts as an intermediate representation
(IR) which can, potentially in combination with netlists
from other Morphlets, be used as input to place-and-route
tools to produce new deployable bitstreams. The default
bitstream is always used when the scheduler is in low-
latency mode. When the scheduler is in high-throughput
mode it may compare current system state against RVec-
tors in the mesh to select an appropriate netlist. To deploy
the dynamically chosen configuration, the scheduler can
then produce the required bitstream or look it up in in the
Morphlet registry (§4.5) to hide place-and-route latency.

RVectors. A RVector (Resource Vector) describes Mor-
phlet resource constraints and utilization hints that cannot
be derived from the netlist in the mesh. Important entries
include Boolean valued hints for memory and PCIe usage
which simplify connection to AMORPHOS FPGA-side in-
terfaces, as well as optimal and minimal memory footprint
and bandwidth estimates. Our experience implementing
AMORPHOS is that hints regarding an application’s bottle-
neck resources and access patterns are essential to guide
co-scheduling. For example, this allows the hull to be
optimized for lower memory access latency with some
bandwidth trade-off. Note that low level FPGA-specific
resources (e.g. number of LUTs, BRAMs, etc.) can be
derived from a netlist and are not included in a RVector.

Quiescence Interface. Evacuating Morphlets from the
FPGA is necessary when the enclosing process terminates
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Figure 6: AMORPHOS host stack interfaces between user space and
FPGA Morphlets.

or when the scheduler needs to reallocate a zone to an-
other Morphlet. Rather than immediately removing the
Morphlet (at risk of losing work) or attempting to capture
and save a Morphlet’s state (difficult with current hard-
ware [98, 56]), the hull provides a quiescence interface
to inform the Morphlet of the impending context switch.
The Morphlet is then given an opportunity to enter a sta-
ble state and/or save its progress. A Morphlet informs
AMORPHOS that it can be safety switched by asserting
a quiescence signal through the hull. Unresponsive Mor-
phlets are forcibly evacuated after a configurable time-out
to avoid DoS. Our current design allows Morphlets to
leave data in on-board memory in the absence of mem-
ory pressure from incoming Morphlets. Transparent swap
in/out of a Morphlet’s FPGA DRAM state is a straightfor-
ward operation; our current prototypes do not yet support
it.

4.4 Host Stack/OS interface
AMORPHOS integrates with the OS in the Catapult stack
and acts as a user-mode library for F1. The entire host
stack is depicted in Figure 6. AMORPHOS’s OS interface
exposes system calls to manage Morphlets and enables
communication between host processes and Morphlets.
The interface provides APIs to load and evacuate Mor-
phlets as well as to read and write data over the transport
layer to FPGA-resident Morphlets.

4.5 Morphlet Registry
AMORPHOS dynamically transitions between low-
latency and high-throughput scheduling mode, reflecting a
fundamental latency/density tradeoff. To hide the latency
of dynamic bitstream generation, AMORPHOS maintains
a registry, a cache of precomputed bitstreams that contain
deployable spatial sharing combinations of multiple Mor-
phlets. For a large number of Morphlets, precomputing
bitstreams for all possible combinations is impractical,
particularly when combinations include duplicate Mor-
phlets. We argue that a number of factors enable us to
reduce the search space to a practical level. First, building
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Figure 7: Cost of pre-compiling all possible combinations of Mor-
phlets given varying numbers of deployable Morphlets and varying
levels of concurrency. Cost is in dollars and reflects the cost of renting
demand infrastructure from Amazon AWS to run the build toolchains.
“Current” data are based on measurements with our present toolchain,
while projected are scaled to assume a (conservative) 20× improvement
in place-and-route performance based on [40, 39, 38].

combined Morphlets can occur in parallel. Second, reduc-
ing the latency of place-and-route is an active area, and
recent research has produced order of magnitude reduc-
tions (20-70×), e.g based on GPUs [40] or other parallel
resources [39, 38]. Third, Morphlets can be grouped by
popularity or according to hints encoded in RVectors to
bound the the number of choices, and sharing densities
need not be maximized to achieve multiplicative improve-
ments in throughput and utilization.

Figure 7 shows the cost in dollars for AWS infrastruc-
ture to pre-compile all possible combinations of Mor-
phlets for varying numbers of Morphlets and concurrency
levels using current tools and using future tools whose
performance is projected based on [40, 38, 39]. Compile
times are derived from our own benchmark builds. 1 The
dotted lines correspond to a day and a week of compute
time on 20 VMs. The AWS marketplace, at the time of
this writing, offers only 18 FPGA applications [4]. From
this pool, all possible co-schedules of 4 Morphlets can be
computed in under a day for $100 in computation time.
Faster future build tools and careful grouping to reduce
the search space can increase utilization further. For ex-
ample, if co-locatable Morphlets are partitioned in groups
of 20, all densities of up to 8 can be precomputed in a
handful of days for $1,000. The registry need not elimi-
nate lookups or maximize density to significantly improve
utilization.

5 Implementation
We implement AMORPHOS on Amazon F1 FPGA cloud
instances[1, 2] and the Microsoft Catapult open research
platform [92], available at TACC [5].

1 Concretely, a single instance of DNNWeaver can be compiled for
F1 in 103 minutes. The second and third instances bring that to 118
minutes, while 8 instances can be co-compiled in 157.

Catapult and F1 both support shells to provide three
basic forms of platform library support: 1) a bulk host-
FPGA data transfer interface, 2) a control interface to
manage FPGA applications, and 3) interfaces to on-board
DRAM. Catapult and F1 expose these functions with dif-
ferent levels of abstraction. Catapult supports packetized
bulk data transfers, a register interface for control signals,
and a simple FPGA-side memory read/write interface
with independent ports. F1’s shell exports AXI4 [3] inter-
faces to encapsulate these three functional areas. AMOR-
PHOS’s interface must encapsulate both Catapult and F1
interfaces, as well as implement address translation for
memory protection and I/O access mediation.

The AMORPHOS hull exposes 1) Control Register (Cn-
trlReg) for Morphlet management, 2) Simple PCIe for
bulk data transfer, and 3) a AMORPHOS Memory Inter-
face (AMI) supporting 64-byte read/write transactions.
Morphlets written to these interfaces are portable across
Catapult and F1. AMORPHOS transparently manipulates
address bits so Morphlets believe they have full control
of memory. OS-programmable BARs (base-address reg-
isters) are used to control and protect what regions of
memory are accessible to different Morphlets. In addition
to memory protection, AMORPHOS provides each Mor-
phlet with a virtual address space and abstracts away the
1-to-1 port-to-channel mappings imposed by F1 and Cat-
apult shells. Virtual address spaces are striped across all
memory channels. The number of co-resident Morphlets,
memory access ports per Morphlet, and number of mem-
ory channels are parameters for the hull. Furthermore,
the hull is modular and incurs no overhead for unused
interfaces on a target FPGA platform.

Logic structures, such as FIFOs, are fundamental build-
ing blocks for FPGA application designers. AMORPHOS
provides an FPGA-agnostic wrapper, HullFIFO, that ex-
poses a high level interface to efficiently map to low-level
primitives on both F1 and Catapult.

5.1 Catapult
Catapult divides FPGA fabric into a shell and user-logic
called a role. The Catapult shell interface to memory is
two 64-byte wide read/write ports over disjoint address
spaces. AMORPHOS adopts the 64-byte transaction size
but virtualizes the interfaces for multiple co-resident Mor-
phlets using segment-based address translation and buffer-
ing to support application-level read-modify-write opera-
tions.

To enable AMORPHOS to use partial reconfiguration
to manage zones we add a PR controller and PR wrapper.
The PR controller streams in PR bitstream data from the
PCIe bus and transfers it to a PR IP module (vendor-
provided Intellectual Property logic block) which uses it
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to reconfigure the zone fabric. I/O to each Morphlet is
routed through the PR wrapper, which handles driving the
Morphlet inputs and disconnecting the Morphlet outputs
during PR. This safeguards the application and prevents
spurious I/O during the programming process.

5.2 F1
F1 features a shell and a user application as Custom Logic
(CL). F1 features twice as many memory channels as Cat-
apult and requires the CL to instantiate additional memory
controllers if more than one memory channel is needed.
AMORPHOS handles instantiating the memory controllers
and is parameterized to scale itself to handle additional
memory channels. The F1 shell features many different
PCIe interfaces, some for DMA type transfers between
the host and some lower throughput for management/-
control of the CL. PCIe and Memory on F1 are exposed
over AXI4 interfaces, which are more complex than the
interfaces on Catapult. This complexity is abstracted away
from the Morphlet and implemented in our hull. The hull
sits on top of an unmodified F1 shell.

5.3 Multiplexing AMORPHOS Interfaces
Large numbers of concurrent Morphlets can stress AMOR-
PHOS’s internal FPGA-side subsystems. Each Morphlet
requires the same set of interfaces (CntrlReg, Memory,
and PCIe). Routing and connections to all of them is com-
plicated by the fact that I/O pads for each can be (and are
on F1/Catapult hardware) on different edges of the physi-
cal FPGA, which stresses place and route tools by com-
plicating the routing problem and increasing congestion.
Designing AMORPHOS’s multiplexing logic to anticipate
scale can mitigate some, but not all, of the problem. An
initial design used multiple flat multiplexers to distribute
interface signals to each Morphlet, but we found that, de-
spite plenty of available fabric, they could not scale past
4 concurrent Morphlets in most cases.

Our current design implements a pipelined binary tree
to route the CntrlReg signals. The tree-distribution net-
work enables us to add pipeline stages, making it easier
to meet timing while reducing the fanout of large data
buses. The benefit is a substantial improvement to the
scale at which AMORPHOS can route interfaces to con-
current Morphlets. The trade-off is minimal additional
latency: 1 additional cycle for each layer, easily tolerable
for CntrlReg, which is a low-bandwidth control interface.

Our current implementation takes a different approach
with memory. Rather than scale the memory subsystem to
provide N Morphlets with access to M memory channels
for an arbitrary number of Morphlets, AMORPHOS uses
flat multiplexing with up to 8 Morphlets and statically par-
titions the memory channels across groups of Morphlets

at sharing densities above 8. This policy enables us to use
a single-level of multiplexing and provide access to all
channels for all Morphlets at lower densities but avoids
the complexity and latency of an additional tree network at
high densities. The tradeoff is that Morphlets are restricted
to using a subset of DRAM channels, which does not alter
the capacity of their memory share but does reduce the
bandwidth available to them. Memory systems perform
better when they manage fewer access streams (assum-
ing sequential access) because back-to-back operations
from a single stream enable optimizations that are not
feasible between operations from different streams. The
design decision enables much higher densities as it im-
proves routability: a group of Morphlets only need to route
to a subset of the memory channels. Our experience is
that memory bandwidth contention determines the upper
bound on scalability for Morphlets which share DRAM.
Contention occurs at lower levels of concurrency than the
levels that require strict group-based DRAM channel par-
titioning, so optimizing DRAM access for high sharing
density is unlikely to provide substantial benefits.

5.4 Host Stack
AMORPHOS provides a host stack which interfaces with
userspace applications, implemented as an OS extension
in our Catapult prototype, and as a user-mode library
for F1. The host stack comprises a system call interface,
FPGA Morphlet manager and scheduler, zone manager,
and transport layer that encapsulates the control and bulk
transfer interfaces described above (§5). The interface
and stack structure are illustrated in Figure 6. Control
signals and reading/writing data are passed through the
syscall interface to the transport layer. Morphlet alloca-
tion, scheduling hints, and tear down are redirected to the
Morphlet scheduler and zone manager.

The host system call interface for Catapult is imple-
mented as a service which supports the transport layer
by wrapping the Catapult driver and library stack. The
service associates Morphlets with file descriptors, export-
ing read and write operations on them, and communicates
with the scheduler to monitor the active state of executing
Morphlets or request quiescence.

6 Evaluation
AMORPHOS runs on both a Mt Granite FPGA board in
the Catapult V1 cloud platform [92], containing an Altera
Stratix V GS running at 125 MHz with two 4 GB DDR3
channels, and an Amazon F1 cloud instance [1], using a
Xilinx UltraScale+ VU9P running at 125 MHz with four
16 GB DDR4 channels. Both platforms are connected
over a PCIe bus and support build tools we adapt to build
AMORPHOS and our benchmarks, summarized in Table 1.
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Program Description

DNNWeaver Convolutional neural network
MemDrive Memory streaming
Bitcoin Bitcoin hashing accelerator
DFADD Double-precision addition
DFMUL Double-precision multiplication
DFSIN Double-precision Sine function
MIPS Simplified MIPS processor
ADPCM Adaptive differential pulse codec
GSM Linear predictive coding analysis
JPEG JPEG image decompression
MOTION Motion vector decoding
AES Advanced encryption standard
BLOWFISH Data encryption standard
SHA Secure hash algorithm

Table 1: Benchmarks used to evaluate AMORPHOS

Benchmarks. We evaluate benchmarks that cover three
important categories for FPGA applications, defined by
whether they are memory-bound, compute-bound, or dy-
namic resource bound. Morphlets are compute-bound
when low-level FPGA resources such as LUTs, BRAMs,
etc. are limited. Morphlets are memory-bound when off-
chip memory bandwidth or latency constrains their per-
formance. Morphlets are dynamic resource bound when
they can be mapped to the fabric in ways that represent
different points along their roofline model [82], mean-
ing they can be memory- or compute-bound. Our Bitcoin
Morphlet (based on [12]) is compute-bound. It is parame-
terized to replicate hashing units and can scale to consume
most of the on-board FPGA fabric. Additional instances
of functional units increase logic utilization limiting the
maximum size/throughput of the Morphlet. Applications
that are memory-bound usually have a low compute-to-
memory ratio and directly benefit from additional off-
chip memory bandwidth. Streaming applications (e.g. in
database [75] or search [112]) access large amounts of
data, often discarding much of it or doing minimal com-
pute per datum. To represent a range of such applications,
we wrote a custom Morphlet called MemDrive (MemD)
that can be configured on the host side post-synthesis to
generate different memory traffic patterns and read/write
ratios, along with operations such as fills, reductions, and
ECC checks.

Many applications can be configured to take advantage
of either additional logic or additional memory bandwidth,
corresponding to different points along their roofline
model. To represent this class, we evaluate DNNWeaver
[96], an open source DNN design framework that can be
used to synthesize models from a description of a specific
network topology. The user controls the number of func-
tional units and data buffer sizes, translating to variable

Catapult Benchmark Logic Cells Registers BRAM Bits
DNNWeaver 39,994 108,640 387,840

MemDrive 2,449 1,488 570,496
Bitcoin 42,171 60,257 21,408

blowfish 20,581 24,082 810,850
gsm 20,910 24,716 5,552

mips 17,672 19,981 657,574
dfmul 17,759 20,586 0

aes 23,900 28,366 689,630
motion 25,178 26,734 687,366

dfadd 18,043 21,014 662,694
sha 17,772 21,380 788,806

adpcm 22,840 29,837 663,654
jpeg 42,243 40,327 1,116,312

dfsin 26,742 32,572 663,805
F1 Benchmark LUTs Flip Flops BRAM Bits

DNNWeaver 4,924 4,773 339,968
MemDrive 1,136 930 0

Bitcoin 40,106 46,191 0

Table 2: FPGA resource utilization by Morphlet type broken down by
resource type as reported by each platform.

demand for on- and off-chip resources. We instantiate
DNNWeaver with an 8-layer LeNet [71] topology.

To increase benchmark diversity, we include a num-
ber of benchmarks that perform many useful non-trivial
functions that do not fully utilize the fabric or memory
bandwidth. We use the LegUp [7] high level synthesis
(HLS) environment to generate 11 Morphlets (a subset of
CHStone[48]). LegUp applications use memory by com-
posing it from BRAMs when needed, rather than off-chip
DRAM, so they do not contend for DRAM bandwidth.
However, as many FPGA applications (DNNs included)
are optimized to ensure their working set fits in on-chip
BRAMs to minimize off-chip memory access, we believe
they are representative.

Metrics. We report resource utilization and performance
measured by throughput. The build tools for each platform
break down resource utilization into logic, registers/flip-
flops, and BlockRAMs. Morphlets are instrumented with
cycle counters to measure the runtime on the FPGA when
each is running. End-to-end execution time is measured
from the host side. Performance for MemDrive is reported
as memory throughput (bytes/cycle). Bitcoin performance
is reported as normalized hash throughput with the base-
line being a fully unrolled and pipelined instance of the
application (to the maximum the open source code permit-
ted), producing a full block hash per cycle. DNNWeaver
performance is reported as normalized throughput, where
the baseline is the number of cycles required for input data
to run through all network layers and complete inference.

We evaluate AMORPHOS with 14 different bench-
marks, listed in Table 1. The logic, register, and memory
utilization of these benchmarks is listed for both Catapult
and (partially for) F1 in Table 2.

Table 3 shows increases in utilization and system
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Catapult Configuration # ALMs Utilization Sys. Throughput
1 Bitcoin 63,973 1.00x 1.00x
2 Bitcoin 93,908 1.47x 2.00x
4 Bitcoin 141,139 2.21x 4.00x
1 DNNWeaver 92,619 1.45x 1.00x
2 DNNWeaver 134,972 2.11x 2.00x
4 DNNWeaver 154,956 2.42x 3.31x
1 DNN, 1 MemD 92,135 1.44x 1.41x
2 DNN, 2 MemD 148,249 2.32x 0.80x
1 DNN, 1 BTC 112,010 1.75x 2.00x
2 DNN, 2 BTC 140,635 2.20x 3.68x
1 DNN, 1 BTC, 2 MemD 96,994 1.52x 1.86x
2 BTC, 2 MemD 95,936 1.50x 2.77x
F1 Configuration # LUTs Utilization Sys. Throughput
1 MemD 68,885 1.00x 1.00x
2 MemD 89,161 1.29x 1.67x
4 MemD 100,773 1.46x 1.37x
8 MemD 127,530 1.85x 0.78x
1 Bitcoin 104,851 1.52x 1.00x
4 Bitcoin 229,482 3.33x 4.00x
8 Bitcoin 484,879 7.03x 8.00x
1 DNNWeaver 90,118 1.31x 1.00x
4 DNNWeaver 129,925 1.89x 3.94x
8 DNNWeaver 187,839 2.73x 7.80x
16 DNNWeaver 294,290 4.28x 14.80x
32 DNNWeaver 397,580 5.78x 23.22x

Table 3: Morphlet configurations run in AMORPHOS with correspond-
ing ALM/LUT (logic) usage, relative system utilization improvement,
and relative system throughput.

throughput that are made possible by co-scheduling Mor-
phlets using AMORPHOS. Utilization is measured as
ALM (adaptive logic module) or LUT (lookup table) us-
age relative to the smallest configuration on each platform,
1 Bitcoin for Catapult and 1 MemDrive for F1. System
throughput is reported as the sum of each Morphlet’s nor-
malized throughput, relative to a single instance of that
Morphlet. In only two cases does co-scheduling Mor-
phlets result in reduced system throughput, both of which
involve multiple MemDrive Morphlets, which interfere
significantly with other memory-dependant Morphlets. In
the best cases, co-scheduling Morphlets results in 7.03x
increased utilization and 23.22x increased throughput.

6.1 CHStone
We evaluate CHStone benchmarks to illustrate generality
and to demonstrate that useful accelerators can be co-
scheduled at high density with AMORPHOS to increase
throughput. We find that the upper bound on density for
all is determined by AMORPHOS’s ability to route control
interfaces to them, which translates to an upper bound of
8 on our Catapult prototype. Because the LegUp com-
piler implements memory with BRAM, rather than by
connecting to on-board DRAM, the CHStone workloads
only shared resource is the CntrlReg interface. Absent
any source of contention, they scale linearly to the upper
bound when co-scheduled as Morphlets on AMORPHOS.
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Figure 8: Total and per-MemDrive memory bandwidth for different
numbers of Morphlets running in AMORPHOS on Catapult.

We do not report measurements on our F1 prototype as
they illustrate the same phenomenon.

6.2 MemDrive

We study contention between memory-bound Morphlets
using MemDrive, which stresses memory bandwidth.
AMORPHOS’s 64-byte read/write interface maps well
to Catapult, but does not support burst transactions (one
transaction returning multiple data payloads), which is
necessary to achieve high read throughput on F1’s AXI
interface to memory. While we were able to achieve peak
write-bandwidth on F1 and observe contention due to mul-
tiple applications running concurrently, we were unable
to saturate read-bandwidth. In future work, our intention
is to introduce burst detection and dynamically coalesce
memory requests.

Catapult’s memory system has a theoretical bandwidth
of of 128 bytes/cycle. Experiments on our Catapult pro-
totype show that the total achievable memory bandwidth
is roughly 100 bytes/cycle for writes and 90 bytes/cycle
for reads. We ran MemDrive in AMORPHOS and directly
on the Catapult system to confirm that our virtualization
layer incurs no bandwidth loss. Figure 8 shows the per-
Morphlet and total system read/write bandwidth when run-
ning 1–8 Morphlets of MemDrive in AMORPHOS. Total
system bandwidth decreases as the number of co-resident
Morphlets rises from 1 up to 4, and saturates from 4 to 8.
On F1, we observed similar contention when scaling from
1 to 8 MemDrive Morphlets. The RVector of each Mor-
phlet provides hints to AMORPHOS’s on-FPGA memory
scheduler, enabling it to manage contention fairly, and
improve effective memory bandwidth (e.g. by batching
memory requests) or minimize latency for Morphlets that
are latency sensitive. MemDrive is not latency sensitive,
but its ability to saturate memory has implications for the
memory scheduler, which must take care to ensure that
latency sensitive Morphlets such as DNNWeaver are not
impacted by that saturation.
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6.3 DNNWeaver
Table 3 shows how DNNWeaver scales when instantiat-
ing multiple Morphlets. We see that aggregate throughput
increases with more Morphlets, but contention causes the
deviation from perfect linear-scaling to increase with in-
creasing co-resident Morphlets. Both Catapult and F1 the-
oretically have enough bandwidth to support up to 4 and
32 DNNWeaver Morphlets, respectively. Contention for
the memory system manifests as an increase in memory
latency for DNNWeaver. We further show this contention
in Table 3 by pairing DNNWeaver with MemDrive. Since
DNNWeaver performance can suffer if it is paired with a
memory-bound Morphlet, encoding a Morphlet’s sensitiv-
ity to memory bandwidth/latency in the RVector is useful
for the AMORPHOS scheduler.

6.4 Bitcoin
Up to 4 and 8 Bitcoin Morphlets can be co-resident on
Catapult and F1 respectively. Table 3 shows that scaling
is linear as Bitcoin only contends for on-chip resources,
which are assigned during bitstream generation. The RVec-
tor for a Bitcoin-type application specifies that there is
no runtime overhead except fabric resources. This would
enable AMORPHOS to intelligently co-schedule Bitcoin
with other Morphlets that make heavy use of memory but
require much less fabric resources, such as MemDrive.
Compute-bound Morphlets would be great for utilizing un-
used fabric as they can scale with available logic resources
without hurting the performance of memory-bound Mor-
phlets. We show this in Table 3 by pairing Bitcoin with
DNNWeaver and MemDrive.

6.5 Density Limits
To determine the limits on sharing density we co-schedule
as many concurrent Morphlets as possible, manually ma-
nipulating the build process where necessary to achieve
higher density. While AMORPHOS can achieve high lev-
els of concurrency this way, practically attainable and
performance profitable levels are lower. High density co-
scheduling of Morphlets stresses build tools because inter-
faces must be routed to each Morphlet. Avoiding routing
congestion at higher densities require manipulation of
the build tools. For example, configuring the build tools
to focus on congestion rather than logic minimization
spreads out the design and replicates logic, increasing
area overheads. Routing is heuristic, so successfully meet-
ing timing can depend on trying multiple random seeds.
Such interventions are impractical to automate in an OS
scheduler, and a production deployment of AMORPHOS
would necessarily tolerate sharing densities below the
maximum possible.

Morphlet MaxPerf MaxTools Max
DNNWeaver 32 8 32
Bitcoin 8 4 8
MemDrive 2 8 32

Table 4: Limits on AMORPHOS F1 sharing density for DNNWeaver,
MemDrive, and Bitcoin. The MaxPerf column indicates the level of
Morphlet concurrency at which throughput is maximal. The MaxTools
column indicates the maximum concurrency achievable without manual
intervention in the build process. The Max column indicates the max-
imum level we attained with manual intervention in the build process.
For example, DNNWeaver’s maximal performance is achieved at 32
Morphlets, which is only achievable with manual effort; the build tool
chain defaults achieve a maximum density of 8.

Limits on sharing density differ across workloads. Ta-
ble 4 shows maximum densities on F1 when the up-
per bound is determined by best throughput, build trans-
parency, or physical limits of the FPGA.

6.6 End-to-End Performance
To compare AMORPHOS against other FPGA sharing
designs, we measure the time required to run 1-8 Bit-
coin instances on Catapult using AMORPHOS in high-
throughput mode, several slot-based approaches, and a
no-sharing baseline. The performance of slot-based ap-
proaches is emulated by running AMORPHOS in low-
latency mode, which uses PR to switch between zones of
equal size. The performance of not sharing is emulated by
running AMORPHOS with a single Morphlet. Since pro-
gramming the whole FPGA using the Catapult tools takes
a significant portion of time, we also emulate optimal full
FPGA reconfiguration by adding a delay of 200ms, which
is comparable to programming the whole FPGA via PR.
The overhead of using AMORPHOS to emulate these ap-
proaches is negligible compared to application runtime,
so we expect our results to be accurate for all approaches.

In high-throughput mode, AMORPHOS can fit 4 full-
sized Bitcoin Morphlets on the FPGA: we assume that the
registry is pre-populated with the required bitstream (see
§4.5). When using fixed slots, only two Bitcoin instances
can be co-resident. Since slots may not always be able
to fit the largest version of Bitcoin, we emulate three
different sizes of slots, which we refer to as small, medium,
and large. The small slot can fit a quarter-speed variant
of Bitcoin, the medium slot can fit a half-speed variant,
and the large slot can fit the full-speed variant. In the no-
sharing approach, a single full-sized Bitcoin Morphlet is
instantiated.

Figure 9 reports the full system runtime of each ap-
proach. When running only a single Bitcoin Morphlet,
AMORPHOS is comparable to both the no sharing and two
large slot approaches. The smaller slot-based approaches
limit the size of the application and already perform worse
than AMORPHOS. With two Bitcoin Morphlets, only
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Figure 9: End-to-end runtime of Bitcoin executing under several
different sharing schemes. Runtime is plotted logarithmically with lower
runtimes being better.

AMORPHOS and two large slots are comparable. Finally,
with 3 or more Bitcoin Morphlets, AMORPHOS is consis-
tently able to attain higher logic densities and therefore
better throughput than all other competing approaches.
While AMORPHOS cannot always run in high-throughput
mode as shown here, we expect AMORPHOS to main-
tain the same comparative advantage in the long run as
it will only have to operate in low-latency mode until a
high-throughput bitstream has been generated.

6.7 Hierarchical Zone Management
AMORPHOS can manage a zone in three ways. It can
allocate the zone for exclusive use by a single Morphlet,
co-schedule multiple Morphlets on it, or recursively subdi-
vide it into two smaller zones. Subdividing top-level zones
may be attractive if Morphlets do not fully utilize those
zones or if Morphlet response time is more important than
end-to-end run time. This flexibility gives rise to a policy
space that trades off between density, performance, and
registry overhead.

To characterize these trade-offs, we run three Bitcoin
Morphlets on our Catapult prototype, in which AMOR-
PHOS uses a single global zone or two top-level reconfig-
urable zones, each of which may be subdivided in two. We
measure end-to-end execution time to completion for all
three Morphlets, using a lower-bound baseline that does
not share (non-sharing) and an upper-bound baseline that
co-schedules all Morphlets on the global zone (global).
We evaluate three different policies for managing the top-
level zones. The first implements only a single-level of
zone partitioning (single-level) with no co-scheduling
within the zones. The second policy schedules combined
Morphlets on zones without subdividing the zones (co-
schedule). The third policy (subdivide) can subdivides
the top-level zones. Registry entries for all combined bit-
streams are pre-populated. For the co-schedule and sub-
divide cases, we morph the second two Morphlets by
scaling them down to fit concurrently in a top-level recon-
figurable zone, which reduces their throughput by a factor
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Figure 10: End-to-end performance of various zone-sharing schemes
when executing 3 Bitcoin Morphlets.

of 4, but allows us to run all three Morphlets in parallel.
Figure 10 shows end-to-end speedup relative to the

non-sharing case for all policies. In this scenario, a sin-
gle level of zone partitioning is the best option when co-
scheduling on the global zone is not possible. This enables
the first two Morphlets to run concurrently, providing ad-
ditional concurrency that results in a performance gain
relative to the no-sharing strategy. Both strategies for sub-
dividing a top-level reconfigurable zone perform worse
than the sequential case, for two reasons. First, perfor-
mance is reduced by scaling them to fit a subdivided zone.
Second, subdividing zones does not make all the under-
lying resources available to each subdivision. Additional
PR logic is required for each, which consumes additional
area and reduces routability.

Measurements of overhead for PR on Catapult FPGAs
show that it grows linearly with density. Interconnect is
the bottleneck resource, with 4% of global interconnect
and 2% of global logic consumed by PR per Morphlet.
While the 4% interconnect overhead can become a signifi-
cant fraction of the allocatable fabric, density is primarily
limited by fragmentation (we observe an average utiliza-
tion loss of 16% in our workloads), which makes multiple
levels of subdivision unprofitable for all but very small
Morphlets on Catapult.

However, multiple levels of subdivision may be useful
on F1 FPGAs, where the fraction of resources allocatable
through PR zones is larger. F1 does not expose PR, so to
predict sharing densities for PR-based subdivision on F1,
we extrapolate assuming the same average 16% fragmen-
tation per PR zone and 2% per-Morphlet overhead for PR
logic. We assume that all fabric not consumed by AMOR-
PHOS and PR logic can be divided evenly and allocated
to Morphlets, but we impose a 90% upper bound on uti-
lization per resource type, which is suggested by Xilinx to
be the likely upper bound on UltraScale FPGAs [14]. This
over-estimates utilizable fabric: other vendor guidance is
more conservative [10] and our measured utilization does
not exceed 70% for any workload.
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Derived upper bounds on density for F1 hardware show
that CLBs (Configurable Logic Blocks, which encapsu-
late multiple LUTs) are the limiting resource. We predict
maximum sharing density with PR to be 16 and 4 for
DNNWeaver and Bitcoin, respectively.2 This suggests
that zone subdivision will likely be possible and effective
on F1. Our experience building AMORPHOS, however, is
that subdividing zones increases the design complexity of
hardware components and limits density unnecessarily by
increasing fragmentation. In contrast, increasing density
by co-scheduling Morphlets on a global zone can provide
much higher densities with potentially higher effective
deployment latency, but shifts much of the complexity to
a software registry.

7 Related Work
FPGA programmability. Improving FPGA programma-
bility is an active area largely characterized by efforts to
enable programming with higher level languages, includ-
ing C/C++ and other imperative languages [60, 19, 34, 69,
13, 18, 51, 68, 67], DSLs [32, 69, 95, 20, 81, 101, 66, 91],
and even managed sequential languages such as C# [32]
and map-reduce [95]. Progress in this area motivates our
work, but is also orthogonal to it.

FPGA access to OS-managed resources. Prior work
has explored exposing file systems [100] and the syscall
interface [77, 100] to FPGAs. Much of this work has
similar goals to our own, but we decided to focus on the
exploration of cross-domain sharing and basic memory
virtualization. A more mature AMORPHOS could clearly
benefit from the rich body of work on memory virtualiza-
tion for FPGAs [33, 15, 114, 77].

FPGA OSes. Previous work on FPGA OSes has fo-
cused on theoretical foundations for spatial sharing [43,
102, 108, 31], mechanisms for task preemption [73], re-
location [55], context switch [72, 93], and scheduling of
hardware and software tasks [25, 102, 108, 44]. While
these explore ideas pertinent to OS primitives, end-to-end
OS system-building was not their goal.

Extending current OS abstractions to FPGAs is another
area of active research. ReconOS [77] extends a multi-
threaded programming model to configurable SoCs that
enables programmers to use “hardware threads” to trans-
parently access OS-managed objects in the eCos [41]
embedded OS. Hthreads [86] implements a similar hard-
ware thread abstraction. Borph [100, 99] uses a hard-
ware process abstraction to encapsulate FPGA logic in a
process-like protection domain. Multi-application sharing
for FPGAs is explored in [31, 109, 52], but some works

2We do not predict density for MemDrive as it is bottlenecked by
memory bandwidth at low densities.

restrict the programming model or design space [111], or
do not tackle isolation and protection [31]. AMORPHOS
differs by proposing new OS abstractions that differ from
the existing CPU-oriented programming models.

MURAC [45] is the most closely related work to
AMORPHOS. In MURAC, a process’ logical address
space encompasses all on-device resources that logically
“belong to it”, enabling the scheduler to support context
switch using an ICAP (Internal Configuration Access
Port). AMORPHOS takes a similar position on protec-
tion domains, but focuses on spatial scheduling and does
not rely on hardware support for state capture.

FPGA Virtualization. Systems have been proposed that
virtualize FPGAs with regions [88], tasks [89], processing
elements [37], IPC-like communication primitives [80],
and abstraction layers/overlays over diverse FPGA hard-
ware [62, 50, 24, 61, 103]. Works virtualizing FPGAs in
the cloud [30, 1, 79] share many of our core goals and
tackle similar challenges. While these platforms use sim-
ilar primitives to those of AMORPHOS, they typically
restrict the programming and/or deployment model and
do not support cross-domain sharing of FPGA fabric.

Overlays. FPGA overlays provide a virtualization layer
to make a design independent of specific FPGA hard-
ware [24, 113], enabling fast compilation times and low
deployment latency [58, 64], at the cost of reduced hard-
ware utilization and throughput. Like AMORPHOS, many
overlays support some time-sharing and or spatial shar-
ing. Overlays implement the same virtual architecture on
different devices, they form a compatibility layer at the
hardware interface. In contrast, AMORPHOS provides
compatibility at the application-OS interface. Unlike Mor-
phlets, overlays run on a virtual architecture, introducing
overheads that limit utilization and performance.

8 Conclusion

This paper has described AMORPHOS, a design for FPGA
protected sharing and compatibility based on abstractions
that preserve existing programming models. AMORPHOS
modulates between space- and time-sharing policies and
isolates logic from different applications, enabling cross-
cloud compatibility and dramatically improved through-
put and utilization.
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Abstract
Energy-harvesting devices have the potential to be the

foundation of emerging, sensor-rich application domains
where the use of batteries is infeasible, such as in space
and civil infrastructure. Programming on an energy-
harvesting device is difficult because the device operates
only intermittently, as energy is available. Intermittent
operation requires the programmer to reason about en-
ergy to understand data consistency and forward progress
of their program. Energy varies with input and environ-
ment, making intermittent programming difficult. Ex-
isting systems for intermittent execution provide an un-
familiar programming abstraction and fail to adapt to
energy changes forcing a compromise of either perfor-
mance or assurance of forward progress.

This paper presents Chinchilla, a compiler and run-
time system that allows running unmodified C code ef-
ficiently on an energy-harvesting device with little ad-
ditional programmer effort and no additional hardware
support. Chinchilla overprovisions code with check-
points to assure the system makes progress, even with
scarce energy. Chinchilla disables checkpoints dynam-
ically to efficiently adapt to energy conditions. Experi-
ments show that Chinchilla improves programmability,
is performant, and makes it simple to statically check
the absence of non-termination. Comparing to two sys-
tems from prior work, Alpaca and Ratchet, Chinchilla
makes progress when Alpaca cannot, and has 125%
mean speedup against Ratchet.

1 Introduction
The maturation of energy-harvesting technology and

low-power microcontrollers fostered batteryless devices
that operate using energy from their environment.
Energy-harvesting devices operate by collecting and
buffering energy in a capacitor, and only intermittently
executing the software when there is available energy
in the capacitor. During execution, a device computes,
uses volatile and non-volatile (e.g., FRAM [50]) mem-
ory, reads sensors and communicates. Recent work en-
abled intermittent software execution [30]. Some cap-
ture checkpoints [36, 44, 51] automatically at arbitrary
points to make progress despite power failures. Other
work asks the programmer to decompose code into idem-

potent, atomic tasks [12, 31, 35] that attempt to execute
repeatedly until completing uninterrupted.

While successful enablers of intermittent computing,
these prior systems compromise on one or more impor-
tant system design aspects: performance, programmabil-
ity, and avoidance of non-termination. Automatic check-
pointing approaches [36,44,51] make programming sim-
ple, but often incur a high execution time overhead due to
excessive checkpoints. Explicit task models [12, 31, 35]
require the programmer to adhere to the task-based pro-
gramming model, hampering programmability. Check-
pointing and task-based systems also do not provide a
simple way of checking whether the system can en-
counter non-termination. The code between two con-
secutive checkpoints or within a task (we refer to both
as “task execution”) may require more energy to com-
plete than will ever be available in the device’s fixed en-
ergy buffer. When a task’s execution consumes more en-
ergy than hardware can buffer, the task will not execute
to completion, and the system faces non-termination —
repeated attempts to execute a task that will never com-
plete. Even a hard reboot does not recover from non-
termination, because intermittent operation spans power
failures. The only fix is to change the code to use smaller
tasks or add more frequent checkpoints and re-flashing
the code onto the device.

Avoiding non-termination is an important correctness
property in an intermittent system that no prior system
satisfactorily provides. Task-based systems [12, 31, 35]
complicate programming by asking the programmer to
estimate the energy use of code regions and to di-
vide code into arbitrary tasks that execute atomically.
Checkpoint-based systems [36, 44, 51] place checkpoint
at semantically meaningful points in a program, obliv-
ious to energy consumption between checkpoints. En-
ergy consumption may vary with input and the environ-
ment, and static energy modeling [4,7,13] is often impre-
cise and overly conservative. Without a way of reliably
checking a program for non-termination, the burden of
writing performant, correct applications lies entirely on
the programmer in existing intermittent systems.

In this work, we observe that adaptation of check-
point timing based on energy consumption is the key
to achieve the three goals: high performance, accessi-
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ble programmability, and a simple static check for the
absence of non-termination. Based on this observation,
we propose Chinchilla, 1 a checkpointing, task-based
runtime system that dynamically adapts the interval be-
tween checkpoints based on direct observations of pro-
gram progress. Chinchilla does not ask the programmer
to specify task boundaries, making programming sim-
ple. Chinchilla statically overprovisions a program with
potential checkpoints and makes it simple to check that
the span between two potential checkpoints will not ex-
ceed the device’s energy capacity. Chinchilla achieves
high performance by dynamically adapting which poten-
tial checkpoints to collect, based on the program’s rate of
progress, which will vary across platforms and inputs.

We implemented a full prototype of Chinchilla in-
cluding compiler support, a runtime system, and a non-
termination checker. We evaluated Chinchilla running
on several real RF-harvesting hardware setups, run-
ning a collection of programs from the literature [19,
35] and comparing to two representative systems from
prior work, Alpaca and Ratchet [35, 51]. We show
that Chinchilla improves programmability, supporting
most of the C language (including libraries) and avoids
re-engineering code for every new platform. Chin-
chilla achieves high performance, with a 2.25x aver-
age speedup compared to Ratchet, the previous state-
of-the-art automatic checkpointing system. Chinchilla
achieves performance parity with the task-based Al-
paca that is faster than Ratchet, but requires substantial
code re-engineering. Additionally, we show that Chin-
chilla makes it simple to check for the absence of non-
termination, providing an assurance that code will run
correctly once deployed.

In summary, Chinchilla’s main features are:

• A substantial performance improvement compared to
state-of-the-art intermittent checkpointing systems.

• Enabling a simple, static check that gives assurance
that a program avoids non-termination.

• A simple programming model that supports most of the
C language.

• A dynamic run-time checkpointing adaptation mech-
anism that accommodates varied inputs and environ-
mental conditions.

2 Background
Energy-harvesting devices extract energy from their

environment and execute software according to the in-
termittent execution model, which presents unique chal-
lenges that are not present under continuous execution.

1Correct, Hardware-agnostic INtermittent CHeckpointing
Instrumentation Layer with Low-overhead Adaptation

2.1 Energy-Harvesting Devices
An energy-harvesting device includes a microcon-

troller (MCU), sensors, volatile and non-volatile mem-
ory, and radios. An energy-harvesting device extracts
energy from its environment, e.g., radio, vibration, or
light, and operates intermittently, only when energy is
available. A device collects energy into a fixed size en-
ergy buffer, usually a capacitor. While the device is in-
active, energy slowly accumulates in the buffer. When
the energy level in the buffer reaches a defined threshold,
the device operates, quickly consuming the buffered en-
ergy. The time to accumulate energy is usually greater
by orders of magnitude than the time to consume the en-
ergy. For example, a WISP with a nearby RF power sup-
ply may charge for a second to support 10 ms of opera-
tion [14, 47]. At a failure, the device loses the contents
of its registers, volatile memory, and peripheral config-
uration, while retaining the contents of its non-volatile
memory (e.g., FRAM [50]).

2.2 Correctness in Intermittent Execution
Software on an energy-harvesting device executes ac-

cording to the intermittent execution model. After a
power failure, control resumes from some prior point and
execution continues instead of terminating. Key chal-
lenges of intermittent execution are: ensuring (1) mem-
ory consistency, and (2) forward progress.

Figure 1 shows the challenges of intermittent execu-
tion. The figure shows a code for a 1-D convolution that
preserves execution progress on each power failure by
collecting a volatile execution context (registers, stack)
on each outer loop iteration (a model similar to Me-
mentos [44]). The out array is allocated in non-volatile
memory, initialized to zero. The two executions in the
figure show two problematic intermittent execution be-
haviors. Execution 1 shows that if power fails after up-
dating out[0] but without reaching the checkpoint, con-
trol flow reverts to the top of the inner loop (j = 0) on
reboot. However, the partially updated value of out[0]
persists after the power failure. On reboot, the code up-
dates out[0] again, leading to a memory state that is
impossible in a continuously-powered execution. Exe-
cution 2 shows that if the inner loop’s bound, K, is suf-
ficiently large, the system will exhaust its energy before
reaching the checkpoint, leading to a non-termination.

Several prior strategies successfully ensure memory
consistency on intermittent execution, i.e. they solved
the problem from Execution 1. However, they show lim-
itations in avoiding non-termination (problem from Ex-
ecution 2). We discuss how two popular previous ap-
proaches — explicit task-based models and automatic
checkpointing systems — try to avoid non-termination
on intermittent execution and what their limitations are.
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int a[N]; 
int b[K]; 
int out[NK+1]; 
 
for(i=0;i<NK+1;i++) 
 for(j=0;j<K;j++) 
  out[i]+= 
   a[i+j]*b[K(j+1)]; 

out[0]

i=0; 
j=0; 
out[i]+=a[0]*b[K1]; 
j++; 

checkpoint

power failure 

*Checkpoint saves volatile
state. Assume array out is
non-volatile and zero-
initialized. 

0

state of out[0] 
Attempt 1 

out[0]

j=0; 
out[i]+=a[0]*b[K1]; 
j++; 

a[0]*b[K1]Attempt 2 

out[0]
a[0]*b[K1] 
+a[0]*b[K1]

Problem 1. invalid state Problem 2. program
never completes 

Attempt 1 

j=0; 
out[i]+=a[0]*b[K1]; 
j++; 

Attempt 2 

j=0; 
out[i]+=a[0]*b[K1]; 
j++; 

Attempt N 

.
.
.

Program w/ checkpoint Execution 1 Execution 2

i=0; 
j=0; 
out[i]+=a[0]*b[K1]; 
j++; 

Figure 1: Challenges of intermittent execution. Code
with volatile state checkpoints may leave memory incon-
sistent (Execution 1) or never terminate (Execution 2).

Explicit Task Models Explicit task-based intermittent
programming and execution models require the pro-
grammer to explicitly specify task boundaries [12, 31,
35]. In these models, it is solely the programmer’s re-
sponsibility to avoid non-termination. These models re-
quire careful programming, because if a task consumes
more energy than the device can buffer, the task will en-
ter non-termination. The programmability cost of speci-
fying task boundaries is high, especially because estimat-
ing the energy use of a task for various inputs is difficult.

Automatic Checkpointing Systems Automatic
checkpointing systems statically insert a checkpoint at
arbitrary program points using compiler and runtime
support [36, 44, 51]. Most of these systems insert a
large number of checkpoints throughout the binary
without considering whether there are sufficiently fre-
quent checkpoints to avoid non-termination. Excessive
frequent checkpoints can have high overhead, and there
is no easy way in such a system to statically check the
presence of non-termination. Additionally, automatic
checkpointing systems do not allow the programmer
to control over the duration and energy consumption
of a task. If task energy demand exceeds the device
energy supply, the programmer has no recourse to fix the
issue, because checkpoint placement is not part of the
programming model. Some propose ad hoc, dynamic
fallbacks that can have high overhead, and are difficult
to characterize [51].

Some recent systems tried to estimate task energy cost
and place checkpoints accordingly instead of heuristi-
cally. However, prior work showed that precisely esti-
mating the energy cost for an arbitrary code is a chal-
lenge even when restricting the model only to the MCU
core instead of the full system [9,29]. Models that rely on
the instruction counting as a proxy for energy [4] or that
use statistical energy models [13] are useful, but limited

if(i<NK+1) 
 gotoTask(t1); 
else 
 gotoTask(t3); 

if (j<K) 
 gotoTask(t2); 
else{ 
 i++; j=0; 
 gotoTask(t0);} 

for(k=0;k<K/2;k++,j++) 
 out[i]+= 
  a[i+j]*b[K(j+1)]; 
gotoTask(t1); 

task t0  task t1 

task t2 

...

(a) Explicit task model

int a{N]; 
int b[K]; 
int out[NK+1]; 
 
for(i=0;i<NK+1;i++) 
 for(j=0;j<K;j++) 
  out[i]+= 
   a[i+j]*b[K(j+1)]; 

checkpoint

WAR

(b) Automatic check-
pointing system

Figure 2: Different systems for the convolution. A
convolution code written in (a) explicit task model (Al-
paca [35]), and a code generated by (b) automatic check-
pointing system (Ratchet [51]).

in precision. To make non-termination checking simple,
Chinchilla should have a static check that accounts for
full-system power and does not rely on proxy measure-
ments or statistical models.

2.3 Programmability and Performance in
Existing Models

In addition to non-termination, prior systems may
make programming complex or have poor performance.
Figure 2 shows how prior task and checkpointing sys-
tems may have programmability and performance issues.

Explicit Task Models Programming with explicit
tasks is difficult. Figure 2a shows how the program-
mer could write a 1-D convolution code in a task-based
model [12, 35]. The syntax deviates from plain C and
requires the programmer to decide how many loop itera-
tions fit in a task without exceeding the device’s energy
budget (e.g., task t2 is chosen to hold K/2 loop itera-
tions). A bad choice that puts too many iterations in a
task leads to non-termination. A different bad choice that
puts too few iterations in a task sacrifices performance.
Crucially, if the energy buffer or input changes, the pro-
grammer has to re-write the code to make tasks differ-
ently. Recent platforms support a dynamically variable
energy buffer size [14], making the problem more urgent.

Automatic Checkpointing Systems Although auto-
matic checkpoint insertion to the binary incurs low to no
additional programming effort, an excess of checkpoints
may lead to high execution time overhead. As shown
in Figure 2b, Ratchet [51], the state-of-the-art automatic
checkpointing system, inserts checkpoint between every
Write-After-Read (WAR) dependence, possibly insert-
ing two checkpoints on each inner loop iteration and one
checkpoint on each outer loop iteration in the example.
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If the system’s energy buffer can complete multiple iter-
ations of the loop without a power failure, Ratchet suf-
fers an unnecessarily high overhead. Ratchet cannot se-
lectively skip a checkpoint because checkpointing is re-
quired by Ratchet’s memory consistency model.

2.4 Task Atomicity
An automatic checkpointing system also fails to

provide a mechanism for specifying and enforcing
application-level atomicity constraints on checkpoint
placement. For example, if a program should access two
sensors atomically at the same time, they should not be
interleaved by a checkpoint. If a checkpoint splits the
atomic region, the value collected by the first sensor may
be from before a power interruption, and the value col-
lected from the second sensor access may be from much
later, after the power interruption, resulting in stale data.
Chinchilla allows the programmer to specify such atom-
icity constraints if an application needs them.

3 System Overview
Chinchilla is a software system that uses a novel,

adaptive checkpointing scheme to make software on an
intermittently-operating system execute correctly and ef-
ficiently. Chinchilla statically overprovisions code with
potential checkpoints and dynamically deactivates un-
necessary checkpoints at run time to minimize perfor-
mance overhead. Chinchilla is designed to improve
the programmability and efficiency of intermittent sys-
tems, while avoiding non-termination. Programming is
easy, because Chinchilla inserts checkpoints automati-
cally. Execution is efficient, because Chinchilla’s dy-
namic adaptation mechanism minimizes its checkpoint-
ing and state management overhead. Chinchilla ex-
poses a simple, statically-checkable property to deter-
mine whether a program will behave correctly on a given
platform, allowing Chinchilla to avoid non-termination
and effectively making Chinchilla portable to systems
with a wide range of energy buffering capacities.

Figure 3 provides an overview of Chinchilla’s main
features, which are implemented in an instrumenting
compiler analysis and software runtime system. Chin-
chilla compiler inserts checkpointing instrumentation
that captures registers and part of the non-volatile data.
The compiler also uses static analysis to detect which
protected data must persist across checkpoints and power
failures. Chinchilla’s runtime system implements check-
point and restart, a non-volatile stack to avoid full stack
checkpointing, dynamic support for selectively activat-
ing checkpoints, and undo logging to ensure consistency.

First, we discuss where the compiler inserts check-
points, second we describe what data are checkpointed
and logged, and third, we describe how Chinchilla selec-
tively activates checkpoints to mitigate overheads.

3.1 Placing Checkpoints to Enable
Static Non-Termination Checks

Chinchilla inserts checkpoints into a program that pre-
serve its progress by saving execution context that Chin-
chilla can restore after a power failure. Chinchilla’s
goals in placing checkpoints, are to preserve progress
and avoid non-termination, and to minimize run time
overhead. These goals are in tension. To avoid non-
termination, Chinchilla must insert a checkpoint along
any program path that consumes more energy than the
system can buffer, conservatively checkpointing as fre-
quently as possible to avoid non-termination with an
arbitrarily small energy buffer. To minimize check-
point overheads, Chinchilla should only checkpoint at
the boundaries of a path that consumes more energy
than the device can buffer, ideally checkpointing as in-
frequently as possible. Compounding the problem, mea-
suring the full-system energy consumption of arbitrary
code is challenging and imprecise [13, 29] because path
energy depends on inputs and peripheral state.

Chinchilla escapes the checkpoint placement dilemma
by inserting checkpoints conservatively into the pro-
gram so that the resulting program can be simply as-
sured to avoid non-termination, and selectively disabling
checkpoints that are unnecessary to minimize overhead.
Chinchilla inserts a checkpoint at each boundary of
arbitrarily-defined spans of the program, which we refer
to as checkpoint blocks. A checkpoint block defines the
minimum span of code after which a checkpoint might
occur — Chinchilla inserts checkpoints at the boundaries
of checkpoint blocks, but not inside a block. If no check-
point block consumes more energy than the device can
buffer, then the program will not suffer non-termination.
Given this block energy sufficiency premise, eventually
every checkpoint block will complete, reaching the next
checkpoint, and preserving its progress.

The effectiveness of Chinchilla relies on a well-chosen
definition of a checkpoint block. A well-chosen block
definition is easily identifiable statically, permits fre-
quent block boundaries, allows easily measuring block
energy cost, and yields blocks with low energy variance.
Statically identifying block extents is important for stat-
ically enumerating all possible program control-flow be-
havior, especially in the presence of complex I/O. Block
boundaries must naturally occur frequently enough in a
program, or must be easy to insert arbitrarily frequently
to ensure block energy sufficiency, even with a small en-
ergy buffer. A block’s energy should be easy to mea-
sure and have low variance, which precludes any block
definition that has unbounded loops or input-dependent
control-flow paths with wildly different energy costs.

While many block definitions may fit these require-
ments, Chinchilla uses the basic block as its checkpoint
block definition because it fits the criteria well. Basic
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blocks are statically defined, frequently occurring, and
can be arbitrarily subdivided by a compiler as needed to
suit small energy buffers. Basic blocks do not contain
branches precluding loops and input-dependent paths,
which may vary substantially in energy consumption.

Some multi-basic-block regions of code must be
atomic and cannot be spliced by a checkpoint, such as
code that reads, processes, and records values from re-
lated sensors (cf. Section 2.4). The programmer can an-
notate such code as an atomic block, and Chinchilla will
treat it as a single checkpoint block. The programmer
must manually ensure that such an atomic block meets
the criteria of a well-chosen checkpoint block. Annota-
tion of the atomic blocks is also a feature of Chinchilla
that previous compiler-based systems neglected [44, 51].
Checking for Non-Termination. While Chinchilla
compiler itself does not provide a static termination guar-
antee, it makes checking for non-termination simple: if
no block’s energy consumption exceeds the device’s en-
ergy buffer, the program avoids non-termination. A pro-
grammer can check for non-termination by measuring
basic block energy consumption under exhaustive, ran-
domized, or representative inputs. In this work, Chin-
chilla adapts the CleanCut energy-measuring compiler’s
block measurement tool [13] to check block energy, ex-
posing the checker directly to the programmer. After the
compiler instruments each checkpoint block and the pro-
grammer checked that no block’s energy consumption
leads to non-termination using the checker, the program
is safe, but over-provisioned with checkpoints. Sec-
tion 3.3 describes how Chinchilla selectively disables
checkpoints to avoid excessive overheads.
Limitations of Chinchilla’s Assurance of Non-
Termination. Even with Chinchilla’s compiler and
checker, Chinchilla cannot always guarantee the ab-
sence of non-termination due to possible variation in
energy consumption with variation in input and envi-
ronment. Despite this limitation, Chinchilla provides
two major advantages. First, Chinchilla shifts the scope
of reasoning about non-termination from arbitrary inter-
checkpoint code regions to a single basic block. Sin-
gle basic blocks have a lower variance in their en-
ergy consumption, simplifying energy measurement and
non-termination reasoning [13, 29]. Second, Chinchilla
selectively disables unnecessary checkpoints allowing
for conservative, static over-provisioning with check-
points (i.e., on every block). Leveraging these prop-
erties Chinchilla provides improved assurance of non-
termination (although not a guarantee of its absence in
all conditions). Practically, Chinchilla eliminates non-
termination. Our evaluation shows that Chinchilla’s con-
servative over-provisioning with checkpoints leaves a
2,100% margin between the device’s energy capacity and
the highest energy cost of any block; even extreme vari-
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Storage 
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Figure 3: Overview of Chinchilla.

ation in block energy cost due to inputs or environment
is unlikely to exceed such a large margin and cause non-
termination (Figure 8).

3.2 Checkpointing and Undo Logging
Chinchilla checkpoints execution context to preserve

and uses undo logging to keep selected, protected non-
volatile data consistent across failures.
Checkpointing. Chinchilla checkpoints the execution
context, consisting of just the register file and part of the
non-volatile data, but not the stack or global data, making
the time and energy cost of checkpointing small and pre-
dictable. Chinchilla is unlike prior work that uses a fully
non-volatile stack (e.g., [25, 45, 51]) to afford register-
only checkpointing. Instead, Chinchilla uses an efficient
volatile stack and promotes a subset of variables to reside
in non-volatile memory. Chinchilla only promotes data
that may not be re-initialized after a checkpoint to non-
volatile memory, leaving all other data on the volatile
stack. Chinchilla compiler uses a live-range analysis [3]
to identify stack data to promote. If a variable’s live
range begins after a checkpoint, the variable will be as-
signed before it is read after a power interruption. Such
a variable is safe to leave on the volatile stack without
additional protection. The data which need promotion
but are not visible to the compiler pass (e.g, data gener-
ated by the latter stage of the compiler) is handled by our
non-volatile stack discussed below.
Undo Logging. Chinchilla keeps compiler-selected pro-
tected, non-volatile variables consistent using undo log-
ging. The key problem, as prior work [12, 25, 31, 35, 43,
51] observed, is that if a non-volatile memory access is
involved in a write-after-read (WAR) dependence, then
an update to the variable during an execution attempt be-
fore a power interruption may incorrectly be visible to a
re-executed read after the power interruption.

To prevent code from reading incorrect values, Chin-
chilla instruments each write to a protected variable with
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undo logging code. At run time, the undo logging code
saves to a log the value of the protected variable before
the variable’s first write after a checkpoint. Chinchilla
rolls back updates to protected variables before restart-
ing execution after a power interruption using the log.
Section 4.3 describes our undo logging implementation.
Non-Volatile Stack Data. Chinchilla uses a small non-
volatile stack to persist stack data that are not visible
to Chinchilla compiler pass. These data include return
addresses and spilled registers. Compared to the stack,
which may be kilobytes, the non-volatile stack is typ-
ically small (∼10 bytes) and its elements short-lived.
Section 4.2 describes the compiler back-end and runtime
system for the non-volatile stack.

3.3 Selective Checkpointing
Checkpointing on every basic block would have a high

run time cost that is usually unnecessary because a sys-
tem is unlikely to fail on every basic block. Chinchilla
mitigates the cost of its non-termination-avoiding, con-
servative, provisioning of checkpoints by skipping some
checkpoints at execution time.

Chinchilla sets a timer at startup that, upon its expira-
tion, indicates that Chinchilla should collect the next dy-
namically executed checkpoint. The runtime skips any
checkpoint it encounters while the timer is running, i.e.,
before it elapses. The key challenge for Chinchilla is
identifying a timer duration that expires before the de-
vice exhausts its buffered energy (ideally checkpointing
before failing), but does not expire too frequently (ide-
ally checkpointing only just before failing).

Chinchilla binary searches for an ideal timer interval
at runtime. Chinchilla’s search starts by running with a
long timer interval. If power fails before the timer ex-
pires and Chinchilla collects no checkpoint, the interval
is too long; Chinchilla halves the interval and tries again.
Assuming that no block consumes more energy than the
device can buffer, the timer duration eventually decreases
sufficiently to reach a checkpoint.

After finding a sufficiently short interval Chinchilla
tries to avoid excessively frequent checkpointing by op-
portunistically increasing the interval again. Given a new
shorter interval and the old longer interval, Chinchilla in-
creases the interval to a new median interval halfway be-
tween the new and old intervals. Chinchilla increases its
interval to the median interval only if execution continues
past the new median interval and successfully captures a
checkpoint. While non-termination requires immediate
interval adjustment, increasing the interval is less urgent.
Chinchilla allows the user to decide when in the code to
update intervals (e.g., every 100 reboots, each outer loop)
by manually annotating a tuning point. We put a tuning
point on the outermost loop in our benchmarks.

4 Chinchilla Implementation
We implemented a prototype of Chinchilla with four

parts: an instrumenting compiler pass and back-end, a
runtime library, and a block non-termination checker.

4.1 The Chinchilla Compiler
Chinchilla’s compiler transforms C code to use the

Chinchilla runtime for safe intermittent execution. The
compiler performs five transformations on the code.
First, the compiler adds checkpoints at the entry of each
basic block. Second, the compiler uses live variable anal-
ysis to identify variables that need protection. Third,
Chinchilla adds undo logging instrumentation to writes
to protected variables. Fourth, the compiler lays out pro-
tected variables in memory to efficiently support meta-
data. Fifth, Chinchilla re-writes main() to re-initialize
peripherals and roll back the undo logs on reboot.
Checkpoint Instrumentation. The Chinchilla com-
piler inserts checkpoint code between every pair of basic
blocks, except for blocks in explicitly annotated atomic
regions. The checkpoint code checks a flag maintained
by the Chinchilla runtime that indicates whether the
checkpoint interval has elapsed since the last power fail-
ure. When the flag is set, the interval has elapsed and the
checkpoint code captures a checkpoint.
Liveness Analysis and Non-Volatile Promotion. Chin-
chilla’s compiler performs liveness analysis for every
variable used in the program to identify protected vari-
ables. Variables that are not protected do not need undo
logging instrumentation. Chinchilla’s liveness analysis
calculates the span of code over which a variable may be
used without being re-written [3] using a local, context-
insensitive, backward CFG traversal from the variable’s
first use to any definition. Chinchilla leverages LLVM’s
(conservative) alias analysis: an operation that may use a
variable starts a live range; only an operation that must
write to a variable ends its live range. If a variable’s
live range crosses a checkpoint, the variable is protected
and Chinchilla allocates it in non-volatile memory. Chin-
chilla keeps protected data consistent using undo log.
Undo Logging Instrumentation. Chinchilla’s compiler
adds undo logging code at accesses to protected vari-
ables. Chinchilla inserts a call to uLog, which imple-
ments undo logging, before every potential write to a
protected variable that may be the variable’s first write
since a checkpoint. uLog takes the address of the variable
as an argument and logs the variable’s value before the
write executes. Chinchilla uses the log to restore values
after a power interruption. The compiler does not instru-
ment accesses to data that do not change throughout the
program, such as constant pointers to global arrays. The
Chinchilla compiler pre-allocates non-volatile log stor-
age equal in size to the sum of the protected variables’
sizes and separated from the protected data store by a
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Figure 4: Tight loop optimization. (a) Original code
and (b) optimized code. In the optimized code, if the sys-
tem follows the common pass (blue), no undo log (uLog)
function is called.

fixed offset for fast lookups. Chinchilla uses undo log-
ging rather than redo logging (e.g., [35]) because undo
logging requires no frequent commit and no instrumen-
tation on read operations. Section 4.3 explains our undo
logging implementation.
Memory Layout. Chinchilla organizes protected vari-
ables into aligned, fixed-size blocks placed in non-
volatile memory with which it associates undo logging
metadata; Section 4.3 explains the metadata. Chin-
chilla uses block metadata, rather than variable- or byte-
metadata to amortize its storage overhead. The compiler
puts variables smaller than a block in the same block, but
disallows a variable to span two blocks. The compiler
aligns a variable larger than a block to a block boundary.
Chinchilla uses 8 byte blocks, which Section 5 empiri-
cally justifies.
Reinitialization. The Chinchilla compiler rewrites the
main function to include peripheral reinitialization and
log restoration code. The compiler inserts code to restore
protected variables from the undo log on reboot. The
compiler also inserts a call to a programmer-provided
init function at the beginning of the main function that
reinitializes peripherals on each reboot. Programmers
can also perform task-specific re-initialization of the pe-
ripherals by setting a non-volatile flag in the task that can
be referred in init.
Optimized Undo Logging in Tight Loops. Chinchilla’s
compiler optionally optimizes tight loops, which are
loops with short bodies that can execute many iterations
without exceeding the device’s energy buffer. The op-
timization eliminates per-write undo logging on some
variables, instead safely performing undo logging when
collecting a checkpoint. Figure 4 shows the optimiza-
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main:
  ...
  push.nv r15
  call func
  pop.nv r15 
  push.nv r13
  ... 
func:
  push.nv ret_addr 
  push.nv r4
  push.nv r5
  ...
  checkpoint
  ...
  ... 
  pop.nv r5
  pop.nv r4
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  ret

Figure 5: Non-volatile stack. The Chinchilla back-end
redirects certain push and pop operation to the non-
volatile stack (push.nv, pop.nv). (1) Some data are
pushed to the non-volatile stack. (2) On a checkpoint,
only the updated part gets checkpointed. (3) If power
fails after non-volatile stack is updated, (4) only the up-
dated part is rolled back.

tion applied to the undo logging of i. The optimization
deletes the undo-logging code in the loop, instead log-
ging (1) in the loop pre-header, and (2) after every check-
point within the loop (Figure 4b). If the loop checkpoints
less than once per iteration (i.e., following Figure 4b’s
blue path), Chinchilla runs the undo logging function
once per checkpoint, rather than once per iteration. If
the loop never checkpoints, the undo logging in the pre-
header ensures correctness and the optimization never
changes program behavior. To avoid optimizing long
loops that may checkpoint many times per iteration and
lose performance, Chinchilla heuristically selects loops
that (1) are inner loops, (2) do not call a function, and (3)
have only few (<6) basic blocks in their body.

The optimization idea is different from the static log
coalescing from the previous work [4], since it is effec-
tively coalescing the logging function only when there is
enough energy to run multiple iterations.

4.2 Lightweight Non-Volatile Stack
After compilation, Chinchilla uses a compiler back-

end transformation to modify compiled code, to redi-
rect stack accesses that need to be protected but were
not visible to Chinchilla’s compiler pass, making them
refer to Chinchilla’s non-volatile stack. These accesses
are inserted by the compiler back-end and include sav-
ing return addresses, saving and loading caller context,
and spilling and reloading registers. Chinchilla must pre-
serve in non-volatile memory the data involved in these
accesses when there is a checkpoint between a write and
a read of such data.
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Chinchilla’s back-end replaces these accesses with in-
lined runtime calls that maintain the non-volatile stack.
Chinchilla identifies return address pushes and caller
context saves and loads based on the calling convention.
Chinchilla identifies register spills and reloads using
LLVM IR metadata. We implemented the non-volatile
stack transformation in a script that directly modifies as-
sembly; an alternative implementation might modify the
LLVM back-end (like Ratchet [51]) at additional imple-
mentation effort.

Chinchilla’s non-volatile stack has an explicit top
pointer and a depth pointer that tracks the deepest depth
to which the top was popped since the most recent check-
point. Chinchilla uses these pointers to efficiently keep
the non-volatile stack consistent across failures. Chin-
chilla saves with each checkpoint the part of the stack
between the top and the depth: the small fraction of
the non-volatile stack changed since the last reboot.
Clank [25] used a similar differential stack scheme, al-
beit with architecture support. Figure 5 illustrates the
operation of the non-volatile stack management.

4.3 Chinchilla Runtime Library
The Chinchilla runtime library implements adaptive

checkpoint collection and restore, undo logging, and
non-volatile stack management.
Implementation of uLog. Chinchilla’s uLog function
implements undo logging for protected variables. uLog

takes the address of the variable being accessed as its
argument. uLog first defensively checks to ensure that
it only does undo logging for memory addresses in the
range of protected variables, simply returning otherwise.
This is necessary because the compiler conservatively in-
serts undo logging before writes that may write to pro-
tected variables. Chinchilla compiler omits inserting
such defensive check if the accessed data is statically
known to be protected.

Chinchilla explicitly tracks whether an access to a
variable is its first write since the last checkpoint using
an efficient, block-based versioning scheme. Recall that
Chinchilla divides memory into blocks of fixed size (Sec-
tion 4.1). Each block has a one-byte version counter
associated with it to track the first write to the block.
Chinchilla maintains a global version counter that incre-
ments at each collected checkpoint, and at each power
interruption. Chinchilla writes the value of the global
version counter into a block’s version counter each time
uLog backs up the block (i.e., when a variable contained
by the block is written for the first time since a check-
point.) Chinchilla checks whether a block is in the undo
log since the most recent checkpoint by comparing the
global version counter to the block’s version counter. If
a block’s version counter is less than the global version
counter, the block must be copied to the undo log. Chin-

Figure 6: Undo logging. Chinchilla (1) checks the meta-
data and (2) backs up the data before overwriting, (3)
updates metadata and the undo log index.

chilla clears all blocks’ versions when the global version
overflows. Figure 6 illustrates how Chinchilla uses ver-
sions for undo logging.

When uLog determines that an access is the first write
to a variable in a block since the most recent checkpoint,
Chinchilla must copy the variable’s block to the undo
log, which allows restoring the variable’s value after a
power interruption. A block’s undo log location is a fixed
offset away from the block; finding the undo log block
requires adding the address and offset.

Chinchilla uses an undo log index to record backed-
up blocks. The index makes it efficient to restore val-
ues from the undo log after a power failure, by iterating
over the list of index only, not all log storage. Our im-
plementation uses a space-inefficient fixed size index of
1000 entries, although a perfect index with one entry per
block of protected variables is also possible. If the fixed-
size index were to overflow, it should have the same ef-
fect as power failure has; Chinchilla will restart from a
checkpoint and subsequently checkpoint more frequently
to avoid a second overflow. Chinchilla ensures frequent
checkpoints by decreasing its checkpoint timer, which
we describe next.
Implementation of Checkpointing. Chinchilla’s run-
time system implements checkpoint collection and
restoration. At a checkpoint, the system backs up the
register file, saves the updated part of the non-volatile
stack, and clears the undo log index. Chinchilla backs
up the register file by saving the contents of registers to
a fixed memory region. Chinchilla does not checkpoint
the entire non-volatile stack, instead saving the update
since the last checkpoint, which is contained between
the top pointer and depth pointer as discussed in Sec-
tion 4.2. Chinchilla’s checkpoints are double buffered,
and if power fails while capturing a checkpoint, Chin-
chilla reverts to the last successful checkpoint. After a
checkpoint, Chinchilla clears its undo log index by reset-
ting the iterator of the index.
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Implementation of Restoring. After a power interrup-
tion, Chinchilla executes a restore procedure to revert
the execution context to the most recent checkpoint be-
fore continuing execution. The procedure calls the init
function, (discussed in Section 4.1) to reconfigure the
system’s peripherals. It then uses its undo log to revert
modified protected variables to their value at the previous
checkpoint and restores the changed portion of the non-
volatile stack since the previous checkpoint. Finally, the
restore routine restores the contents of the register file,
restoring the program counter and continuing execution.

If power fails during restoration, Chinchilla contin-
ues to try to restore to the same checkpoint after reboot-
ing. Chinchilla keeps its iterator of the undo log in non-
volatile memory and during the continuation of the re-
store procedure Chinchilla can start restoring protected
variables from where it left off in the undo log. Assum-
ing the restore procedure successfully reverts at least one
protected variable from the undo log, the amount of work
in the restore procedure decreases with each attempt. Af-
ter eventually reverting all entries in the undo log, the
only restoration work remaining is to repopulate the reg-
ister file and continue execution.
Timer Adaptation. Chinchilla uses a checkpoint timer
to determine when to checkpoint. Chinchilla maintains
the timer’s interval and configures the timer to count
that interval after a reboot. After the timer expires, the
next checkpoint call executed collects a checkpoint; be-
fore the timer expires, checkpoints do nothing. Chin-
chilla adjusts the timer’s interval during execution to
avoid checkpointing too frequently or infrequently. If
the interval is too long, power repeatedly fails before
the timer expires each time Chinchilla reboots from the
last checkpoint. On observing many consecutive fail-
ures with no progress, Chinchilla makes a large decre-
ment to its checkpoint timer interval by halving its inter-
val. If the checkpoint timer interval is very close to the
device’s operating period, power may occasionally fail
before collecting a checkpoint. On observing a failure
before reaching a checkpoint followed by a successfully
collected checkpoint (i.e., non-repeated failures), the de-
vice makes a small decrement to its interval of half the
amount of its last change (i.e., small or large).

If the timer interval is very short, Chinchilla may col-
lect checkpoints too frequently. Chinchilla avoids this
overhead in two ways. If the checkpoint timer expires
twice without a power failure, Chinchilla makes a large
increment by doubling the timer’s interval. Chinchilla in-
creases its checkpoint timer interval using a second opti-
mization timer with an interval longer than the check-
point timer by half the last change in the checkpoint
timer’s interval. If the optimization timer expires with-
out a power failure and takes a checkpoint, Chinchilla
makes a small increment to the checkpoint timer interval

by assigning the value of the optimization timer interval,
and again set the optimization timer interval longer by
half the last change in the checkpoint timer’s interval.

We implemented both the checkpoint timer and the op-
timization timer using a single hardware timer that counts
up with two separate handlers. Chinchilla only keeps one
context-insensitive checkpoint timer interval, assuming
the time from boot to power failure is roughly constant
regardless of which code is executing. Maintaining dif-
ferent timer intervals may provide a benefit for a system
that varies significantly in its operating power (e.g., due
to peripheral activity).

4.4 Non-Termination Checker
Our Chinchilla implementation places checkpoints on

every basic block, making it simple to statically measure
block energy consumption with high precision and en-
sure the absence of non-termination for a given device’s
energy buffer. We implemented an energy checker based
on CleanCut [13], that measured block energy and com-
pares to device energy automatically.

The checker extracts code between checkpoints from
the program’s assembly code and generates a measure-
ment binary containing initialization code and the ex-
tracted code only. Memory accesses using an unknown
reference are redirected to a known location, avoiding
referencing invalid memory space as in CleanCut [13].
The checker inserts code that measures energy (i.e., ca-
pacitor voltage) at the start and end of the extracted code
using EDB [11]. The checker applies this measurement
procedure to every basic block in a program and repeat-
edly executes it multiple times to compensate for mea-
surement noise. If none uses energy that exceeds the de-
vice’s capacitor energy, the program is unlikely to expe-
rience non-termination.

If the checker reveals that a basic block uses more
than the capacitor’s energy, the block should be subdi-
vided into multiple blocks by the compiler or the pro-
grammer. A subdivision is not often necessary: a typical
device [47] can run thousands or tens of thousands of
instructions before exhausting buffered energy, avoiding
non-termination — since our checkpoint blocks are usu-
ally small, none of our experiments required subdivision
(Section 5.4).

5 Evaluation
We evaluated Chinchilla on real hardware, the

WISP5 [47] energy harvesting platform equipped with
a TI MSP430FR5969 processor. We wirelessly pow-
ered the platform using RF energy from the ThingMagic
Astra-EX RFID reader at various power levels, placed
20cm apart. We experimented with two WISP hardware
configurations: a stock WISP5 (WISP), with the stan-
dard 47µF capacitor, and a physically modified WISP5
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(WISP-tiny) on which we replaced the standard capacitor
with a much smaller 10µF capacitor.

We compared to three previous systems, Alpaca [35],
which is the most recent task-based intermittent pro-
gramming model, Chain [12], another task-based pro-
gramming model, and Ratchet [51], a compiler-
automated approach. Alpaca is a task-based program-
ming and execution model that asks the programmer to
write a program as a collection of tasks, complicating
programming but leading to high performance by elim-
inating some inefficiencies of automatic checkpointing
systems. Alpaca’s tasks have a fixed size and may exceed
the device’s energy buffer, leading to non-termination
and limiting portability. Chain is similar to Alpaca, al-
though with a more complex, channel-based memory
model. Ratchet inserts checkpoints automatically while
asking nothing of the programmer, but sacrificing per-
formance for this programming simplicity. Ratchet also
provides no easy way to check that an inter-checkpoint
region will not exceed the device’s energy buffer, risk-
ing non-termination. Our comparative evaluation shows
that Chinchilla’s adaptive checkpointing approach is “the
best of both worlds,” with programmability similar to
Ratchet and performance comparable to Alpaca. More-
over, Chinchilla’s simple block energy checking pro-
cedure allows deploying code with confidence that no
block exceeds the device energy buffer, a unique feature
that neither Alpaca nor Ratchet provides.

We used the released versions of Alpaca and Chain,
directly from the authors. In correspondence with its
authors, we ported Ratchet to MSP430 because Ratchet
originally targeted ARM only [51]. Our port omits some
ARM-specific back-end optimizations from Ratchet, re-
sulting in possibly around 1.6x slowdown on average for
our port according to the original work [51].

5.1 Application Benchmarks
We evaluated Chinchilla using all six benchmarks

from the Alpaca paper, ported to run on all systems in our
setup [35]. The benchmarks are Cold-chain Equipment
Monitoring (CEM), Cuckoo Filter (CF), RSA encryption
(RSA), Activity Recognition (AR), Bitcount (BC), and
Blowfish encryption (BF). For Alpaca, we directly used
the benchmarks written by the authors.

CEM reads temperature sensor values and LZW-
compresses them. For repeatability, we emulated the
sensor with pseudo-random numbers. We used a 512-
entry dictionary and a 64-byte compressed block size.
CF stores and reads an input data stream using a cuckoo
filter with 128 entries. RSA encrypts an eleven character
string using RSA with a 64-bit key. AR computes the
mean and standard deviation of a window of accelerom-
eter readings to train a nearest neighbor model to detect
a shaking movement. We used a window size of three
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Figure 7: Run time in different power conditions.

and read 128 samples from each class (shaking or sta-
tionary) in the training phase. BF encrypts a given string
of length 13 using blowfish encryption. BC counts the
number of one bits in a bitstream. For every result pre-
sented, we executed the experiment repeatedly, at most
more than 200 times if necessary, until the confidence
interval converged into less than 10% of the result.

5.2 Chinchilla is Efficient
Chinchilla ensures a program runs with reasonable

overheads in a variety of different wireless power condi-
tions, outperforming state-of-the-art task-based and au-
tomatic checkpointing systems in many cases. We mea-
sured run time with RF power at 17.25dBm, 22.25dBm,
and 30dBm. Figure 7 shows the results.

Chinchilla’s run time is faster than the previous
programmability-oriented system, Ratchet, in all bench-
marks except for CEM, showing an average speedup
around 2.25x. Even when compared to the performance-
oriented Alpaca, Chinchilla shows near-parity perfor-
mance, with 2% speedup on average. The plot omits data
comparing to Chain for brevity; Chinchilla consistently
out-performed Chain, with 2.98x average speedup. The
main performance benefit of Chinchilla comes from its
ability to disable checkpoints, which will be further dis-
cussed in Section 5.4.

5.3 Chinchilla is Effectively Portable
Figure 8 shows the energy use of each basic block of

Chinchilla in different benchmarks with standard devi-
ation, measured with our checker. We compare block
energy to both WISP and the WISP-tiny, shown in the
plot as WISP and tiny. The result from the checker
shows that all the benchmarks can run reliably on both
platforms, with ample headroom of 2100% (WISP) and
375% (tiny). Thanks to Chinchilla’s adaptive check-
pointing scheme, this apparent overprovisioning does not
impede high performance.

We measured Chinchilla’s performance and ability to
make progress with different energy buffer sizes (WISP,
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tiny), and with varied input sizes. We built variants of CF,
RSA, and AR with larger inputs that scale execution time
due to an input dependent loop. We increased CF’s filter
size to 512. We increased RSA’s key size to 256. We
increased AR’s input window size to 30. We performed
all tests at 17.25dBm.

The data in Figure 9 show that Chinchilla efficiently
operates across a wide range of energy configurations,
while Alpaca fails to complete in 4 out of 9 cases
(CF(512), RSA(256), AR(30), BF) using WISP-tiny.

Ratchet’s lack of adaptability makes it slower than
Chinchilla across many inputs and energy buffers. Ad-
ditionally, Ratchet inserts many checkpoints in these ap-
plications and never faces non-termination in these data.
However, there is no simple way to check that for a dif-
ferent input or hardware configuration Ratchet will avoid
non-termination.

5.4 Chinchilla Selectively Checkpoints
We evaluated Chinchilla’s ability to adaptively check-

point only when necessary. We ran complete trials of
each application repeatedly and dynamically counted the
number of collected checkpoints (Chinchilla, Ratchet) or
task transition (Alpaca) and we refer to both as “check-
point” for brevity.

0 20 40 60 80 100
Portion of Run Time (%)

BC
BF
AR

RSA
CF

CEM
app ulog NV skip chkpt

Figure 10: Overhead breakdown. Time spent for ap-
plication code (app), undo log (ulog), non-volatile stack
management (NV), skipping disabled checkpoint (skip),
and checkpoint and restore (chkpt) is shown.

Table 1 shows the result of the experiment. On av-
erage, Alpaca collected 2,185% more checkpoints than
Chinchilla and Ratchet collected 21,817% more check-
points than Chinchilla. The result implies that neither the
programmer (Alpaca) nor the compiler (Ratchet) places
fixed checkpoints efficiently.

Table 1: Number of checkpoints taken

# Chkpt. CEM CF RSA AR BF BC
Chinchilla 30 10 16 26 175 15
Alpaca 1611 452 315 265 1081 710
Ratchet 2319 2478 7643 2911 31881 8907

We characterize the major overheads of Chinchilla in
each app to explain its performance. We measured using
a Saleae Digital Logic Analyzer timing GPIO pulses in-
strumented into code to indicate when different operation
types occur. To allow timing instrumentation, we mea-
sured overhead on continuous power, emulating power
failures using a timer. The major overheads are undo log-
ging (ulog), managing the non-volatile stack (NV), skip-
ping disabled checkpoints (skip), and checkpointing and
restoring the checkpoint (chkpt).

Figure 10 shows that undo logging is Chinchilla’s ma-
jor overhead. In contrast, checkpointing and restoring
is less than 3.5% of run time across benchmarks, illus-
trating that Chinchilla avoids unnecessary checkpoints.
The result shows that Chinchilla can effectively elimi-
nate checkpointing overhead, which is the major source
of performance improvement against Ratchet. How-
ever, the additional cost of undo-logging and non-volatile
stack management for enabling dynamic checkpointing
became the new bottleneck of the system.

5.5 Chinchilla Programming is Simple
Chinchilla makes programming simple by allowing

the programmer to use all of C, except for dynamic
memory allocation, which is uncommon in embedded
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code with strict resource constraints. Programming with
Chinchilla is simpler than programming with a task-
based system. We compare the programmability of Chin-
chilla against three task-based systems, Alpaca [35],
Chain [12], and DINO [31].

There are three aspects of Chinchilla that make it eas-
ier to program than task-based models. First, Chin-
chilla allows using plain C with no special keywords,
and Chinchilla’s compiler automatically makes code
intermittence-safe. Second, Chinchilla allows complex
use of pointers, by disambiguating memory references
dynamically during undo logging. In comparison, Chain
and DINO prohibit pointers to non-volatile memory [12,
31] and Alpaca prohibits some uses of pointers [35].
Third, Chinchilla’s block energy checker frees the pro-
grammer from reasoning directly about energy consump-
tion while coding. Chinchilla also eliminates the need to
rewrite code when hardware or input changes.

Table 2 quantifies programming complexity counting
system-specific keywords in our test programs. Chin-
chilla only requires the programmer to place a check-
point timer interval tuning function, which our bench-
marks do at each outer loop iteration. Chinchilla also
allows, but does not require, the programmer to mark
atomic regions and none of our applications called for
any atomic regions. Compared to other systems, Chin-
chilla asks very little of the programmer: Alpaca, Chain,
and DINO require the programmer to declare system-
specific data structures, define tasks, and manually place
boundaries and checkpoints.

Table 2: Summary of programming complexity.

App Chinchilla Alpaca Chain DINO

# Keywords

CEM 1 47 122 13
CF 1 48 132 11
RSA 1 67 203 35
AR 1 45 110 8
BC 1 49 106 10
BF 1 42 122 9

Prog. Complexity Similar to C High High Med
Portability No Extra Cost Low Low Med
Pointer Support Always Med Low Low

5.6 Metadata Block Size
As Section 4.1 describes, Chinchilla associates undo

logging metadata with a block of data. A larger block
size has a lower metadata storage overhead, but incurs a
higher run time undo logging cost because the undo log
moves data at block granularity. We measured the stor-
age and run time overhead for different block sizes. We
omit full data due to space constraints, but we experi-
mentally determined that when the metadata overhead is
12.5% or more (i.e., eight-byte blocks), time overhead
is low. Larger blocks had higher run time overhead and
we use eight-byte blocks. We also found that few vari-
ables (1%–4%) could be kept in SRAM and most were
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Figure 11: Compiled code size of different systems.

promoted to non-volatile memory because most lifetimes
spanned a checkpoint.

5.7 Code Size Increase
Chinchilla inserts checkpointing code between every

basic block, increasing code size. Figure 11 shows the
normalized code size, measured by directly inspecting
compiled binaries. Note that while the plain C code is
smallest, it does not run correctly on intermittent energy.

All intermittent computing systems see a code size in-
crease due to instrumentation and libraries. Chinchilla
has a 3.56x code size increase compared to plain C, 1.66x
compared to Alpaca, and 1.86x compared to Ratchet.
The code size increase is the cost Chinchilla pays for
its performance and reliability benefits. While increased
code size may increase instruction cache miss rate, Sec-
tion 5.2 shows that Chinchilla has higher performance
than prior systems regardless of any potential increase.

5.8 Alternate Checkpointing Heuristic
We studied an alternative to Chinchilla’s timer-based

checkpoint disabling heuristic that decides whether to
collect a checkpoint based on whether the checkpoint
was used to restore in the recent past. If execution never
resumes from a checkpoint, the checkpoint is unlikely to
be useful and should be disabled.

We implemented this alternative history-based check-
point disabling heuristic that disables checkpoints that
were collected but not used for a fixed period of the
execution. The system stores a score for each check-
point that indicates its likely usefulness. On power fail-
ure, the system updates a checkpoints’ scores, increment-
ing the score of the checkpoint used for restoration, and
decrementing the scores of checkpoints collected and not
used. Periodically, the system disables checkpoints with
a score below a threshold.

Figure 12 compares the performance of Chinchilla
and Chinchilla reimplemented to use this alternative
heuristic. We observed that the history-based heuris-
tic was sometimes comparable to Chinchilla’s approach,
but suffered performance degradation for some bench-

140    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



CEM CF RSA AR BF BC GEOMEAN
0.0

0.5

1.0

1.5

2.0

2.5
Ru

n 
tim

e 
(n

or
m

. b
y 

tim
er

-b
as

ed
)

Timer-based
History-based

Figure 12: Run time of two different heuristics. Run
time of timer-based checkpoint disabling versus history-
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marks. The heuristic does especially poorly with func-
tions called from multiple different calling contexts be-
cause the score associated with a checkpoint is context-
insensitive. The timer-based heuristic was more consis-
tent and simpler to implement. We ultimately exclude
the history-based heuristic from Chinchilla’s design.

6 Related Work
Various prior work influenced the design of Chin-

chilla. The most related work is on intermittent com-
putation on energy-harvesting devices. Work on main-
taining non-volatile memory consistency and approaches
that leverage undo logging to maintain consistent execu-
tion of the program, such as transactional memory, is re-
lated as well. Our work is also related to the prior work
that tried to estimate energy use of an arbitrary code.
Intermittent Execution Prior work [36, 44, 51] pre-
serves progress with automatically inserted checkpoints
of the execution context. Automatic checkpointing of-
ten insert redundant checkpoints, impeding performance.
Ensuring progress or atomicity with these techniques
is complex because they insert checkpoints arbitrarily.
Some systems estimate code energy cost to place check-
points [4,7,13], but estimating energy in arbitrary code is
difficult and error-prone [13]. Task systems ask the pro-
grammer to place task boundaries [12, 31, 35], requiring
the programmer to form tasks that do not consume too
much energy. Mayfly [23] adds real-time constraints on
I/O processing to a task system. Forcing the programmer
to define tasks complicates programming and offers no
simple way to ensure non-termination. Moreover, these
models preclude some C features. Chinchilla eliminates
programming complexity and allows most of C. Some
systems checkpoint “on demand” [5, 6, 26, 45] by mon-
itoring supply voltage. These avoid unnecessary check-
points, but require extra hardware, and require complex
tuning of a checkpoint trigger threshold; a bad thresh-
old risks failing to checkpoint. Non-volatile processors
(NVP) [34] change the architecture to save state. Inci-

dental computing [33] and NEOFog [32] optimize the
NVP for latency insensitive code and fog computing.
Clank [25] implements undo-logging in microarchitec-
ture. Capybara [14] adds a flexible energy storage ca-
pacitor, meeting varied energy demand. UFoP [21] as-
signs a capacitor for each peripheral, and Flicker [22]
assists rapid prototyping of an energy-harvesting device.
TARDIS and CusTARD [24] keeps time with low power
on an energy-harvesting device. Chinchilla requires no
architecture or hardware support.

Abundant prior work addressed low-energy embed-
ded systems, but not explicitly intermittent execution.
Tock [28] is an OS with multi-tenancy for low-power
systems [2]. Dewdrop [8] supports energy-harvesting,
but not intermittent execution. Eon [48] allows specify-
ing how tasks of different cost should be scheduled as
energy conditions change. ZebraNet [27] used energy-
harvesting devices to track wildlife, but with large bat-
teries and solar panels, not intermittent operation. Other
work addresses deep neural networks on an energy-
harvesting devices [18]. Some work helps develop inter-
mittent code. Wisent [49] and Stork [1] update software
on intermittent hardware. Ekho [54] and EDB [11] helps
with testing on energy-harvesting devices.
Non-Volatile Memory Consistency Prior work on
memory persistency in powered systems support consis-
tency in mixed-volatility memory with access reorder-
ing [41, 42, 55]. Others support consistent, non-volatile
data structure and file systems [10, 15, 16, 17, 39, 40,
52, 53]. Transactions and transactional memory sys-
tems [20, 37, 38, 46] also support consistency and per-
sistence. Chinchilla also supports non-volatile mem-
ory consistency (i.e., persistency), but unlike prior work,
does so for intermittently powered devices. The rate of
failures and constraints on energy and resources faced by
Chinchilla makes adopting these solutions difficult.
Energy Measurement CleanCut [13] estimates energy
cost of arbitrary code, to aid in checkpoint placement.
Other work [4, 7] estimates energy use of code by look-
ing at instruction or cycle count. Both have limitations
in precisely estimating the energy use correctly. Chin-
chilla avoids the problem by confining energy measure-
ment to a basic block. Other works outside the domain
of energy-harvesting also tried estimating energy use of
code by using evolutionary modeling [29] or by the num-
ber of active gates [9]. However, these approaches only
estimate the energy use of a processor core, while Chin-
chilla checker checks the energy of the entire platform.

7 Conclusion
Chinchilla is a fully-automatic, adaptive system that

enables correct intermittent execution without additional
programming complexity. Automatic compilation and
undo logging enables writing unmodified C code. dy-
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namic checkpoint adaptation offers portability across
platforms, inputs, and environments without recompila-
tion. Chinchilla brings its benefits with low run time
cost compared to the state of the art, with an average
2% speedup compared to Alpaca, and a 125% speedup
over Ratchet. Chinchilla is the first system to simplify
programmability using adaptive checkpoints, and pro-
vide strong static assurance of progress without the aid
of specialized hardware.
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Abstract
Arachne is a new user-level implementation of threads that
provides both low latency and high throughput for appli-
cations with extremely short-lived threads (only a few mi-
croseconds). Arachne is core-aware: each application de-
termines how many cores it needs, based on its load; it al-
ways knows exactly which cores it has been allocated, and
it controls the placement of its threads on those cores. A
central core arbiter allocates cores between applications.
Adding Arachne to memcached improved SLO-compliant
throughput by 37%, reduced tail latency by more than 10x,
and allowed memcached to coexist with background ap-
plications with almost no performance impact. Adding
Arachne to the RAMCloud storage system increased its
write throughput by more than 2.5x. The Arachne thread-
ing library is optimized to minimize cache misses; it can
initiate a new user thread on a different core (with load bal-
ancing) in 320 ns. Arachne is implemented entirely at user
level on Linux; no kernel modifications are needed.

1 Introduction
Advances in networking and storage technologies have
made it possible for datacenter services to operate at ex-
ceptionally low latencies [5]. As a result, a variety of low-
latency services have been developed in recent years, in-
cluding FaRM [11], Memcached [23], MICA [20], RAM-
Cloud [30], and Redis [34]. They offer end-to-end re-
sponse times as low as 5 µs for clients within the same
datacenter and they have internal request service times as
low as 1–2 µs. These systems employ a variety of new
techniques to achieve their low latency, including polling
instead of interrupts, kernel bypass, and run to comple-
tion [6, 31].

However, it is difficult to construct services that pro-
vide both low latency and high throughput. Techniques
for achieving low latency, such as reserving cores for peak
throughput or using polling instead of interrupts, waste
resources. Multi-level services, in which servicing one re-
quest may require nested requests to other servers (such
as for replication), create additional opportunities for re-
source underutilization, particularly if they use polling to
reduce latency. Background activities within a service,
such as garbage collection, either require additional re-
served (and hence underutilized) resources, or risk in-
terference with foreground request servicing. Ideally, it
should be possible to colocate throughput-oriented ser-
vices such as MapReduce [10] or video processing [22]
with low-latency services, such that resources are fully

occupied by the throughput-oriented services when not
needed by the low-latency services. However, this is rarely
attempted in practice because it impacts the performance
of the latency-sensitive services.

One of the reasons it is difficult to combine low latency
and high throughput is that applications must manage their
parallelism with a virtual resource (threads); they cannot
tell the operating system how many physical resources
(cores) they need, and they do not know which cores have
been allocated for their use. As a result, applications can-
not adjust their internal parallelism to match the resources
available to them, and they cannot use application-specific
knowledge to optimize their use of resources. This can
lead to both under-utilization and over-commitment of
cores, which results in poor resource utilization and/or
suboptimal performance. The only recourse for appli-
cations is to pin threads to cores; this results in under-
utilization of cores within the application and does not
prevent other applications from being scheduled onto the
same cores.

Arachne is a thread management system that solves
these problems by giving applications visibility into the
physical resources they are using. We call this approach
core-aware thread management. In Arachne, application
threads are managed entirely at user level; they are not vis-
ible to the operating system. Applications negotiate with
the system over cores, not threads. Cores are allocated
for the exclusive use of individual applications and remain
allocated to an application for long intervals (tens of mil-
liseconds). Each application always knows exactly which
cores it has been allocated and it decides how to sched-
ule application threads on cores. A core arbiter decides
how many cores to allocate to each application, and ad-
justs the allocations in response to changing application
requirements.

User-level thread management systems have been im-
plemented many times in the past [39, 14, 4] and the basic
features of Arachne were prototyped in the early 1990s in
the form of scheduler activations [2]. Arachne is novel in
the following ways:
• Arachne contains mechanisms to estimate the number

of cores needed by an application as it runs.
• Arachne allows each application to define a core pol-

icy, which determines at runtime how many cores the
application needs and how threads are placed on the
available cores.

• The Arachne runtime was designed to minimize cache
misses. It uses a novel representation of scheduling
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information with no ready queues, which enables low-
latency and scalable mechanisms for thread creation,
scheduling, and synchronization.

• Arachne provides a simpler formulation than sched-
uler activations, based on the use of one kernel thread
per core.

• Arachne runs entirely outside the kernel and needs
no kernel modifications; the core arbiter is imple-
mented at user level using the Linux cpuset mech-
anism. Arachne applications can coexist with tradi-
tional applications that do not use Arachne.

We have implemented the Arachne runtime and core
arbiter in C++ and evaluated them using both synthetic
benchmarks and the memcached and RAMCloud storage
systems. Arachne can initiate a new thread on a different
core (with load balancing) in about 320 ns, and an appli-
cation can obtain an additional core from the core arbiter
in 20–30 µs. When Arachne was added to memcached, it
reduced tail latency by more than 10x and allowed 37%
higher throughput at low latency. Arachne also improved
performance isolation; a background video processing ap-
plication could be colocated with memcached with almost
no impact on memcached’s latency. When Arachne was
added to the RAMCloud storage system, it improved write
throughput by more than 2.5x.

2 The Threading Problem
Arachne was motivated by the challenges in creating ser-
vices that process very large numbers of very small re-
quests. These services can be optimized for low latency or
for high throughput, but it is difficult to achieve both with
traditional threads implemented by the operating system.

As an example, consider memcached [23], a widely
used in-memory key-value-store. Memcached processes
requests in about 10 µs. Kernel threads are too expen-
sive to create a new one for each incoming request, so
memcached uses a fixed-size pool of worker threads. New
connections are assigned statically to worker threads in a
round-robin fashion by a separate dispatch thread.

The number of worker threads is fixed when mem-
cached starts, which results in several inefficiencies. If
the number of cores available to memcached is smaller
than the number of workers, the operating system will
multiplex workers on a single core, resulting in long de-
lays for requests sent to descheduled workers. For best
performance, one core must be reserved for each worker
thread. If background tasks are run on the machine during
periods of low load, they are likely to interfere with the
memcached workers, due to the large number of distinct
worker threads. Furthermore, during periods of low load,
each worker thread will be lightly loaded, increasing the
risk that its core will enter power-saving states with high-
latency wakeups. Memcached would perform better if it
could scale back during periods of low load to use a smaller

number of kernel threads (and cores) more intensively.
In addition, memcached’s static assignment of con-

nections to workers can result in load imbalances under
skewed workloads, with some worker threads overloaded
and others idle. This can impact both latency and through-
put.

The RAMCloud storage system provides another ex-
ample [30]. RAMCloud is an in-memory key-value store
that processes small read requests in about 2 µs. Like
memcached, it is based on kernel threads. A dispatch
thread handles all network communication and polls the
NIC for incoming packets using kernel bypass. When a
request arrives, the dispatch thread delegates it to one of a
collection of worker threads for execution; this approach
avoids problems with skewed workloads. The number of
active worker threads varies based on load. The maximum
number of workers is determined at startup, which creates
issues similar to memcached.

RAMCloud implements nested requests, which result
in poor resource utilization because of microsecond-scale
idle periods that cannot be used. When a worker thread
receives a write request, it sends copies of the new value
to backup servers and waits for those requests to return
before responding to the original request. All of the repli-
cation requests complete within 7-8 µs, so the worker
busy-waits for them. If the worker were to sleep, it would
take several microseconds to wake it up again; in addi-
tion, context-switching overheads are too high to get much
useful work done in such a short time. As a result, the
worker thread’s core is wasted for 70-80% of the time to
process a write request; write throughput for a server is
only about 150 kops/sec for small writes, compared with
about 1 Mops/sec for small reads.

The goal for Arachne is to provide a thread management
system that allows a better combination of low latency and
high throughput. For example, each application should
match its workload to available cores, taking only as many
cores as needed and dynamically adjusting its internal par-
allelism to reflect the number of cores allocated to it. In ad-
dition, Arachne should provide an implementation of user-
level threads that is efficient enough to be used for very
short-lived threads, and that allows useful work to be done
during brief blockages such as those for nested requests.

Although some existing applications will benefit from
Arachne, we expect Arachne to be used primarily for new
granular applications whose threads have lifetimes of
only a few microseconds. These applications are diffi-
cult or impossible to build today because of inefficiencies
in current threading infrastructure.

3 Arachne Overview
Figure 1 shows the overall architecture of Arachne. Three
components work together to implement Arachne threads.
The core arbiter consists of a stand-alone user process plus
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Figure 1: The Arachne architecture. The core arbiter
communicates with each application using one socket for
each kernel thread in the application, plus one page of
shared memory.

a small library linked into each application. The Arachne
runtime and core policies are libraries linked into applica-
tions. Different applications can use different core poli-
cies. An application can also substitute its own threading
library for the Arachne runtime and core policy, while still
using the core arbiter.

The core arbiter is a user-level process that manages
cores and allocates them to applications. It collects in-
formation from each application about how many cores
it needs and uses a simple priority mechanism to divide
the available cores among competing applications. The
core arbiter adjusts the core allocations as application re-
quirements change. Section 4 describes the core arbiter in
detail.

The Arachne runtime creates several kernel threads and
uses them to implement user threads, which are used by
Arachne applications. The Arachne user thread abstrac-
tion contains facilities similar to thread packages based
on kernel threads, including thread creation and deletion,
locks, and condition variables. However, all operations
on user threads are carried out entirely at user level with-
out making kernel calls, so they are an order of magni-
tude faster than operations on kernel threads. Section 5
describes the implementation of the Arachne runtime in
more detail.

The Arachne runtime works together with a core policy,
which determines how cores are used by that application.
The core policy computes the application’s core require-
ments, using performance information gathered by the
Arachne runtime. It also determines which user threads
run on which cores. Each application chooses its core pol-
icy. Core policies are discussed in Section 6.

Arachne uses kernel threads as a proxy for cores. Each
kernel thread created by the runtime executes on a separate
core and has exclusive access to that core while it is run-
ning. When the arbiter allocates a core to an application,
it unblocks one of the application’s kernel threads on that
core; when the core is removed from an application, the
kernel thread running on that core blocks. The Arachne
runtime runs a simple dispatcher in each kernel thread,
which multiplexes several user threads on the associated
core.

Arachne uses a cooperative multithreading model for

user threads: the runtime does not preempt a user thread
once it has begun executing. If a user thread needs to exe-
cute for a long time without blocking, it must occasionally
invoke a yield method, which allows other threads to
run before the calling thread continues. We expect most
threads to either block or complete quickly, so it should
rarely be necessary to invoke yield.

One potential problem with a user-level implementation
of threads is that a user thread might cause the underlying
kernel thread to block. This could happen, for example, if
the user thread invokes a blocking kernel call or incurs a
page fault. This prevents the kernel thread from running
other user threads until the kernel call or page fault com-
pletes. Previous implementations of user-level threads
have attempted to work around this inefficiency in a variety
of ways, often involving complex kernel modifications.

Arachne does not take any special steps to handle block-
ing kernel calls or page faults. Most modern operating
systems support asynchronous I/O, so I/O can be imple-
mented without blocking the kernel thread. Paging is
almost never cost-effective today, given the low cost of
memory and the large sizes of memories. Modern servers
rarely incur page faults except for initial loading, such as
when an application starts or a file is mapped into virtual
memory. Thus, for simplicity, Arachne does not attempt
to make use of the time when a kernel thread is blocked for
a page fault or kernel call.

Note: we use the term core to refer to any hardware
mechanism that can support an independent thread of
computation. In processors with hyperthreading, we think
of each hyperthread as a separate logical core, even though
some of them share a single physical core.

4 The Core Arbiter
This section describes how the core arbiter claims con-
trol over (most of) the system’s cores and allocates them
among applications. The core arbiter has three interesting
features. First, it implements core management entirely
at user level using existing Linux mechanisms; it does not
require any kernel changes. Second, it coexists with exist-
ing applications that don’t use Arachne. And third, it takes
a cooperative approach to core management, both in its
priority mechanism and in the way it preempts cores from
applications.

The core arbiter runs as a user process with root priv-
ilege and uses the Linux cpuset mechanism to manage
cores. A cpuset is a collection of one or more cores and one
or more banks of memory. At any given time, each kernel
thread is assigned to exactly one cpuset, and the Linux
scheduler ensures that the thread executes only on cores in
that cpuset. By default, all threads run in a cpuset contain-
ing all cores and all memory banks. The core arbiter uses
cpusets to allocate specific cores to specific applications.

The core arbiter divides cores into two groups: man-
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aged cores and unmanaged cores. Managed cores are allo-
cated by the core arbiter; only the kernel threads created by
Arachne run on these cores. Unmanaged cores continue to
be scheduled by Linux. They are used by processes that do
not use Arachne, and also by the core arbiter itself. In addi-
tion, if an Arachne application creates new kernel threads
outside Arachne, for example, using std::thread,
these threads will run on the unmanaged cores.

When the core arbiter starts up, it creates one cpuset for
unmanaged cores (the unmanaged cpuset) and places all
of the system’s cores into that set. It then assigns every
existing kernel thread (including itself) to the unmanaged
cpuset; any new threads spawned by these threads will also
run on this cpuset. The core arbiter also creates one man-
aged cpuset corresponding to each core, which contains
that single core but initially has no threads assigned to it.
To allocate a core to an Arachne application, the arbiter re-
moves that core from the unmanaged cpuset and assigns an
Arachne kernel thread to the managed cpuset for that core.
When a core is no longer needed by any Arachne applica-
tion, the core arbiter adds the core back to the unmanaged
cpuset.

This scheme allows Arachne applications to coexist
with traditional applications whose threads are managed
by the Linux kernel. Arachne applications receive prefer-
ential access to cores, except that the core arbiter reserves
at least one core for the unmanaged cpuset.

The Arachne runtime communicates with the core ar-
biter using three methods in the arbiter’s library package:
• setRequestedCores: invoked by the runtime

whenever its core needs change; indicates the total
number of cores needed by the application at various
priority levels (see below for details).

• blockUntilCoreAvailable: invoked by a ker-
nel thread to identify itself to the core arbiter and put
the kernel thread to sleep until it is assigned a core. At
that point the kernel thread wakes up and this method
returns the identifier of the assigned core.

• mustReleaseCore: invoked periodically by the
runtime; a true return value means that the calling
kernel thread should invoke blockUntilCore-
Available to return its core to the arbiter.

Normally, the Arachne runtime handles all communica-
tion with the core arbiter, so these methods are invisible
to applications. However, an application can implement
its own thread and core management by calling the arbiter
library package directly.

The methods described above communicate with the
core arbiter using a collection of Unix domain sockets and
a shared memory page (see Figure 1). The arbiter library
opens one socket for each kernel thread. This socket is
used to send requests to the core arbiter, and it is also used
to put the kernel thread to sleep when it has no assigned
core. The shared memory page is used by the core arbiter

to pass information to the arbiter library; it is written by
the core arbiter and is read-only to the arbiter library.

When the Arachne runtime starts up, it invokes set-
RequestedCores to specify the application’s initial
core requirements;setRequestedCores sends a mes-
sage to the core arbiter over a socket. Then the runtime
creates one kernel thread for each core on the machine;
all of these threads invoke blockUntilCoreAvail-
able. blockUntilCoreAvailable sends a request
to the core arbiter over the socket belonging to that ker-
nel thread and then attempts to read a response from the
socket. This has two effects: first, it notifies the core ar-
biter that the kernel thread is available for it to manage
(the request includes the Linux identifier for the thread);
second, the socket read puts the kernel thread to sleep.

At this point the core arbiter knows about the applica-
tion’s core requirements and all of its kernel threads, and
the kernel threads are all blocked. When the core arbiter
decides to allocate a core to the application, it chooses one
of the application’s blocked kernel threads to run on that
core. It assigns that thread to the cpuset corresponding to
the allocated core and then sends a response message back
over the thread’s socket. This causes the thread to wake up,
and Linux will schedule the thread on the given core; the
blockUntilCoreAvailable method returns, with
the core identifier as its return value. The kernel thread
then invokes the Arachne dispatcher to run user threads.

If the core arbiter wishes to reclaim a core from an ap-
plication, it asks the application to release the core. The
core arbiter does not unilaterally preempt cores, since the
core’s kernel thread might be in an inconvenient state
(e.g. it might have acquired an important spin lock);
abruptly stopping it could have significant performance
consequences for the application. So, the core arbiter sets
a variable in the shared memory page, indicating which
core(s) should be released. Then it waits for the applica-
tion to respond.

Each kernel thread is responsible for testing the infor-
mation in shared memory at regular intervals by invoking
mustReleaseCore. The Arachne runtime does this in
its dispatcher. If mustReleaseCore returns true, then
the kernel thread cleans up as described in Section 5.4 and
invokes blockUntilCoreAvailable. This notifies
the core arbiter and puts the kernel thread to sleep. At this
point, the core arbiter can reallocate the core to a different
application.

The communication mechanism between the core ar-
biter and applications is intentionally asymmetric: re-
quests from applications to the core arbiter use sockets,
while requests from the core arbiter to applications use
shared memory. The sockets are convenient because they
allow the core arbiter to sleep while waiting for requests;
they also allow application kernel threads to sleep while
waiting for cores to be assigned. Socket communication is
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relatively expensive (several microseconds in each direc-
tion), but it only occurs when application core require-
ments change, which we expect to be infrequent. The
shared memory page is convenient because it allows the
Arachne runtime to test efficiently for incoming requests
from the core arbiter; these tests are made frequently (ev-
ery pass through the user thread dispatcher), so it is impor-
tant that they are fast and do not involve kernel calls.

Applications can delay releasing cores for a short time
in order to reach a convenient stopping point, such as a
time when no locks are held. The Arachne runtime will not
release a core until the dispatcher is invoked on that core,
which happens when a user thread blocks, yields, or exits.

If an application fails to release a core within a timeout
period (currently 10 ms), then the core arbiter will forcibly
reclaim the core. It does this by reassigning the core’s ker-
nel thread to the unmanaged cpuset. The kernel thread will
be able to continue executing, but it will probably experi-
ence degraded performance due to interference from other
threads in the unmanaged cpuset.

The core arbiter uses a simple priority mechanism for
allocating cores to applications. Arachne applications can
request cores on different priority levels (the current im-
plementation supports eight). The core arbiter allocates
cores from highest priority to lowest, so low-priority appli-
cations may receive no cores. If there are not enough cores
for all of the requests at a particular level, the core arbiter
divides the cores evenly among the requesting applica-
tions. The core arbiter repeats this computation whenever
application requests change. The arbiter allocates all of
the hyperthreads of a particular hardware core to the same
application whenever possible. The core arbiter also at-
tempts to keep all of an application’s cores on the same
socket.

This policy for core allocation assumes that applications
(and their users) will cooperate in their choice of priority
levels: a misbehaving application could starve other appli-
cations by requesting all of its cores at the highest priority
level. Anti-social behavior could be prevented by requir-
ing applications to authenticate with the core arbiter when
they first connect, and allowing system administrators to
set limits for each application or user. We leave such a
mechanism to future work.

5 The Arachne Runtime
This section discusses how the Arachne runtime imple-
ments user threads. The most important goal for the run-
time is to provide a fast and scalable implementation of
user threads for modern multi-core hardware. We want
Arachne to support granular computations, which consist
of large numbers of extremely short-lived threads. For ex-
ample, a low latency server might create a new thread for
each incoming request, and the request might take only a
microsecond or two to process; the server might process

millions of these requests per second.

5.1 Cache-optimized design
The performance of the Arachne runtime is dominated by
cache misses. Most threading operations, such as creat-
ing a thread, acquiring a lock, or waking a blocked thread,
are relatively simple, but they involve communication be-
tween cores. Cross-core communication requires cache
misses. For example, to transfer a value from one core
to another, it must be written on the source core and read
on the destination core. This takes about three cache miss
times: the write will probably incur a cache miss to first
read the data; the write will then invalidate the copy of the
data in the destination cache, which takes about the same
time as a cache miss; finally, the read will incur a cache
miss to fetch the new value of the data. Cache misses can
take from 50-200 cycles, so even if an operation requires
only a single cache miss, the miss is likely to cost more
than all of the other computation for the operation. On our
servers, the cache misses to transfer a value from one core
to another in the same socket take 7-8x as long as a context
switch between user threads on the same core. Transfers
between sockets are even more expensive. Thus, our most
important goal in implementing user threads was to mini-
mize cache misses.

The effective cost of a cache miss can be reduced by per-
forming other operations concurrently with the miss. For
example, if several cache misses occur within a few in-
structions of each other, they can all be completed for the
cost of a single miss (modern processors have out-of-order
execution engines that can continue executing instructions
while waiting for cache misses, and each core has multi-
ple memory channels). Thus, additional cache misses are
essentially free. However, modern processors have an out-
of-order execution limit of about 100 instructions, so code
must be designed to concentrate likely cache misses near
each other.

Similarly, a computation that takes tens of nanoseconds
in isolation may actually have zero marginal cost if it oc-
curs in the vicinity of a cache miss; it will simply fill the
time while the cache miss is being processed. Section 5.3
will show how the Arachne dispatcher uses this technique
to hide the cost of seemingly expensive code.

5.2 Thread creation
Many user-level thread packages, such as the one in
Go [14], create new threads on the same core as the par-
ent; they use work stealing to balance load across cores.
This avoids cache misses at thread creation time. How-
ever, work stealing is an expensive operation (it requires
cache misses), which is particularly noticeable for short-
lived threads. Work stealing also introduces a time lag be-
fore a thread is stolen to an unloaded core, which impacts
service latency. For Arachne we decided to perform load-
balancing at thread creation time; our goal is to get a new
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thread on an unloaded core as quickly as possible. By op-
timizing this mechanism based on cache misses, we were
able to achieve thread creation times competitive with sys-
tems that create child threads on the parent’s core.

Cache misses can occur during thread creation for the
following reasons:
• Load balancing: Arachne must choose a core for the

new thread in a way that balances load across available
cores; cache misses are likely to occur while fetching
shared state describing current loads.

• State transfer: the address and arguments for the
thread’s top-level method must be transferred from the
parent’s core to the child’s core.

• Scheduling: the parent must indicate to the child’s
core that the child thread is runnable.

• Thread context: the context for a thread consists of
its call stack, plus metadata used by the Arachne run-
time, such as scheduling state and saved execution
state when the thread is not running. Depending on
how this information is managed, it can result in addi-
tional cache misses.

We describe below how Arachne can create a new user
thread in four cache miss times.

In order to minimize cache misses for thread contexts,
Arachne binds each thread context to a single core (the
context is only used by a single kernel thread). Each user
thread is assigned to a thread context when it is created,
and the thread executes only on the context’s associated
core. Most threads live their entire life on a single core.
A thread moves to a different core only as part of an ex-
plicit migration. This happens only in rare situations such
as when the core arbiter reclaims a core. A thread context
remains bound to its core after its thread completes, and
Arachne reuses recently-used contexts when creating new
threads. If threads have short lifetimes, it is likely that the
context for a new thread will already be cached.

To create a new user thread, the Arachne runtime must
choose a core for the thread and allocate one of the thread
contexts associated with that core. Each of these opera-
tions will probably result in cache misses, since they ma-
nipulate shared state. In order to minimize cache misses,
Arachne uses the same shared state to perform both op-
erations simultaneously. The state consists of a 64-bit
maskAndCount value for each active core. 56 bits of the
value are a bit mask indicating which of the core’s thread
contexts are currently in use, and the remaining 8 bits are
a count of the number of ones in the mask.

When creating new threads, Arachne uses the “power
of two choices” approach for load balancing [26]. It se-
lects two cores at random, reads their maskAndCount
values, and selects the core with the fewest active thread
contexts. This will likely result in a cache miss for each
maskAndCount, but they will be handled concurrently
so the total delay is that of a single miss. Arachne then

scans the mask bits for the chosen core to find an avail-
able thread context and uses an atomic compare-and-swap
operation to update the maskAndCount for the chosen
core. If the compare-and-swap fails because of a concur-
rent update, Arachne rereads themaskAndCount for the
chosen core and repeats the process of allocating a thread
context. This creation mechanism is scalable: with a large
number of cores, multiple threads can be created simulta-
neously on different cores.

Once a thread context has been allocated, Arachne
copies the address and arguments for the thread’s top-level
method into the context and schedules the thread for ex-
ecution by setting a word-sized variable in the context to
indicate that the thread is runnable. In order to minimize
cache misses, Arachne uses a single cache line to hold all
of this information. This limits argument lists to 6 one-
word parameters on machines with 64-byte cache lines;
larger parameter lists must be passed by reference, which
will result in additional cache misses.

With this mechanism, a new thread can be invoked on
a different core in four cache miss times. One cache miss
is required to read the maskAndCount and three cache
miss times are required to transfer the line containing the
method address and arguments and the scheduling flag, as
described in Section 5.1.

The maskAndCount variable limits Arachne to 56
threads per core at a given time. As a result, programming
models that rely on large numbers of blocked threads may
be unsuitable for use with Arachne.

5.3 Thread scheduling
The traditional approach to thread scheduling uses one
or more ready queues to identify runnable threads (typ-
ically one queue per core, to reduce contention), plus a
scheduling state variable for each thread, which indicates
whether that thread is runnable or blocked. This represen-
tation is problematic from the standpoint of cache misses.
Adding or removing an entry to/from a ready queue re-
quires updates to multiple variables. Even if the queue is
lockless, this is likely to result in multiple cache misses
when the queue is shared across cores. Furthermore, we
expect sharing to be common: a thread must be added to
the ready queue for its core when it is awakened, but the
wakeup typically comes from a thread on a different core.

In addition, the scheduling state variable is subject to
races. For example, if a thread blocks on a condition vari-
able, but another thread notifies the condition variable be-
fore the blocking thread has gone to sleep, a race over the
scheduling state variable could cause the wakeup to be
lost. This race is typically eliminated with a lock that con-
trols access to the state variable. However, the lock results
in additional cache misses, since it is shared across cores.

In order to minimize cache misses, Arachne does not
use ready queues. Instead of checking a ready queue, the
Arachne dispatcher repeatedly scans all of the active user
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thread contexts associated with the current core until it
finds one that is runnable. This approach turns out to be
relatively efficient, for two reasons. First, we expect only
a few thread contexts to be occupied for a core at a given
time (there is no need to keep around blocked threads for
intermittent tasks; a new thread can be created for each
task). Second, the cost of scanning the active thread con-
texts is largely hidden by an unavoidable cache miss on the
scheduling state variable for the thread that woke up. This
variable is typically modified by a different core to wake
up the thread, which means the dispatcher will have to take
a cache miss to observe the new value. 100 or more cycles
elapse between when the previous value of the variable
is invalidated in the dispatcher’s cache and the new value
can be fetched; a large number of thread contexts can be
scanned during this time. Section 7.4 evaluates the cost of
this approach.

Arachne also uses a new lockless mechanism for
scheduling state. The scheduling state of a thread is repre-
sented with a 64-bit wakeupTime variable in its thread
context. The dispatcher considers a thread runnable if
its wakeupTime is less than or equal to the processor’s
fine-grain cycle counter. Before transferring control to a
thread, the dispatcher sets its wakeupTime to the largest
possible value. wakeupTime doesn’t need to be modi-
fied when the thread blocks: the large value will prevent
the thread from running again. To wake up the thread,
wakeupTime is set to 0. This approach eliminates the
race condition described previously, since wakeupTime
is not modified when the thread blocks; thus, no synchro-
nization is needed for access to the variable.

The wakeupTime variable also supports timer-based
wakeups. If a thread wishes to sleep for a given time
period, or if it wishes to add a timeout to some other
blocking operation such as a condition wait, it can set
wakeupTime to the desired wakeup time before block-
ing. A single test in the Arachne dispatcher detects both
normal unblocks and timer-based unblocks.

Arachne exports the wakeupTime mechanism to ap-
plications with two methods:
• block(time) will block the current user thread.

The time argument is optional; if it is specified,
wakeupTime is set to this value (using compare-and-
swap to detect concurrent wakeups).

• signal(thread) will set the given user thread’s
wakeupTime to 0.

These methods make it easy to construct higher-level syn-
chronization and scheduling operators. For example, the
yieldmethod, which is used in cooperative multithread-
ing to allow other user threads to run, simply invokes
block(0).

5.4 Adding and releasing cores
When the core arbiter allocates a new core to an applica-
tion, it wakes up one of the kernel threads that was blocked

in blockUntilCoreAvailable. The kernel thread
notifies the core policy of the new core as described in Sec-
tion 6 below, then it enters the Arachne dispatcher loop.

When the core arbiter decides to reclaim a core from an
application, mustReleaseCore will return true in the
Arachne dispatcher running on the core. The kernel thread
modifies its maskAndCount to prevent any new threads
from being placed on it, then it notifies the core policy of
the reclamation. If any user threads exist on the core, the
Arachne runtime migrates them to other cores. To migrate
a thread, Arachne selects a new core (destination core) and
reserves an unoccupied thread context on that core using
the same mechanism as for thread creation. Arachne then
exchanges the context of the thread being migrated with
the unoccupied context, so that the thread’s context is re-
bound to the destination core and the unused context from
the destination core is rebound to the source core. Once
all threads have been migrated away, the kernel thread on
the reclaimed core invokes blockUntilCoreAvail-
able. This notifies the core arbiter that the core is no
longer in use and puts the kernel thread to sleep.

6 Core Policies
One of our goals for Arachne is to give applications pre-
cise control over their usage of cores. For example, in
RAMCloud the central dispatch thread is usually the per-
formance bottleneck. Thus, it makes sense for the dis-
patch thread to have exclusive use of a core. Furthermore,
the other hyperthread on the same physical core should be
idle (if both hyperthreads are used simultaneously, they
each run about 30% slower than if only one hyperthread is
in use). In other applications it might be desirable to colo-
cate particular threads on hyperthreads of the same core or
socket, or to force all low-priority background threads to
execute on a single core in order to maximize the resources
available for foreground request processing.

The Arachne runtime does not implement the policies
for core usage. These are provided in a separate core pol-
icy module. Each application selects a particular core pol-
icy at startup. Writing high-performance core policies
is likely to be challenging, particularly for policies that
deal with NUMA issues and hyperthreads. We hope that
a small collection of reusable policies can be developed to
meet the needs of most applications, so that it will rarely
be necessary for an application developer to implement a
custom core policy.

In order to manage core usage, the core policy must
know which cores have been assigned to the application.
The Arachne runtime provides this information by invok-
ing a method in the core policy whenever the application
gains or loses cores.

When an application creates a new user thread, it spec-
ifies an integer thread class for the thread. Thread classes
are used by core policies to manage user threads; each
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thread class corresponds to a particular level of service,
such as “foreground thread” or “background thread.” Each
core policy defines its own set of valid thread classes. The
Arachne runtime stores thread classes with threads, but
has no knowledge of how they are used.

The core policy uses thread classes to manage the place-
ment of new threads. When a new thread is created,
Arachne invokes a method getCores in the core pol-
icy, passing it the thread’s class. The getCores method
uses the thread class to select one or more cores that are
acceptable for the thread. The Arachne runtime places the
new thread on one of those cores using the “power of two
choices” mechanism described in Section 5. If the core
policy wishes to place the new thread on a specific core,
getCores can return a list with a single entry. Arachne
also invokes getCores to find a new home for a thread
when it must be migrated as part of releasing a core.

One of the unusual features of Arachne is that each ap-
plication is responsible for determining how many cores
it needs; we call this core estimation, and it is handled
by the core policy. The Arachne runtime measures two
statistics for each core, which it makes available to the
core policy for its use in core estimation. The first statis-
tic is utilization, which is the average fraction of time that
each Arachne kernel thread spends executing user threads.
The second statistic is load factor, which is an estimate of
the average number of runnable user threads on that core.
Both of these are computed with a few simple operations
in the Arachne dispatching loop.
6.1 Default core policy
Arachne currently includes one core policy; we used the
default policy for all of the performance measurements in
Section 7. The default policy supports two thread classes:
exclusive and normal. Each exclusive thread runs on a sep-
arate core reserved for that particular thread; when an ex-
clusive thread is blocked, its core is idle. Exclusive threads
are useful for long-running dispatch threads that poll. Nor-
mal threads share a pool of cores that is disjoint from the
cores used for exclusive threads; there can be multiple nor-
mal threads assigned to a core at the same time.
6.2 Core estimation
The default core policy requests one core for each ex-
clusive thread, plus additional cores for normal threads.
Estimating the cores required for the normal threads re-
quires making a tradeoff between core utilization and fast
response time. If we attempt to keep cores busy 100%
of the time, fluctuations in load will create a backlog of
pending threads, resulting in delays for new threads. On
the other hand, we could optimize for fast response time,
but this would result in low utilization of cores. The more
bursty a workload, the more resources it must waste in
order to get fast response.

The default policy uses different mechanisms for scal-
ing up and scaling down. The decision to scale up is based

CloudLab m510[36]

CPU Xeon D-1548 (8 x 2.0 GHz cores)
RAM 64 GB DDR4-2133 at 2400 MHz
Disk Toshiba THNSN5256GPU7 (256 GB)
NIC Dual-port Mellanox ConnectX-3 10 Gb
Switches HPE Moonshot-45XGc

Table 1: Hardware configuration used for benchmarking.
All nodes ran Linux 4.4.0. C-States were enabled and
Meltdown mitigations were disabled. Hyperthreads were
enabled (2 hyperthreads per core). Machines were not
configured to perform packet steering such as RSS or XPS.

on load factor: when the average load factor across all
cores running normal threads reaches a threshold value,
the core policy increases its requested number of cores by
1. We chose this approach because load factor is a fairly
intuitive proxy for response time; this makes it easier for
users to specify a non-default value if needed. In addition,
performance measurements showed that load factor works
better than utilization for scaling up: a single load factor
threshold works for a variety of workloads, whereas the
best utilization for scaling up depends on the burstiness
and overall volume of the workload.

On the other hand, scaling down is based on utiliza-
tion. Load factor is hard to use for scaling down because
the metric of interest is not the current load factor, but
rather the load factor that will occur with one fewer core;
this is hard to estimate. Instead, the default core policy
records the total utilization (sum of the utilizations of all
cores running normal threads) each time it increases its
requested number of cores. When the utilization returns
to a level slightly less than this, the runtime reduces its
requested number of cores by 1 (the “slightly less” fac-
tor provides hysteresis to prevent oscillations). A separate
scale-down utilization is recorded for each distinct number
of requested cores.

Overall, three parameters control the core estimation
mechanism: the load factor for scaling up, the interval
over which statistics are averaged for core estimation, and
the hysteresis factor for scaling down. The default core
policy currently uses a load factor threshold of 1.5, an av-
eraging interval of 50 ms, and a hysteresis factor of 9%
utilization.

7 Evaluation
We implemented Arachne in C++ on Linux; source code is
available on GitHub [33]. The core arbiter contains 4500
lines of code, the runtime contains 3400 lines, and the de-
fault core policy contains 270 lines.

Our evaluation of Arachne addresses the following
questions:
• How efficient are the Arachne threading primitives,

and how does Arachne compare to other threading sys-
tems?

• Does Arachne’s core-aware approach to threading pro-
duce significant benefits for low-latency applications?
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Benchmark Arachne Arachne RQ std::thread Go uThreads
No HT HT No HT HT

Thread Creation 275 ns 320 ns 524 ns 520 ns 13329 ns 444 ns 6132 ns
One-Way Yield 83 ns 149 ns 137 ns 199 ns N/A N/A 79 ns
Null Yield 14 ns 23 ns 13 ns 24 ns N/A N/A 6 ns
Condition Notify 251 ns 272 ns 459 ns 471 ns 4962 ns 483 ns 4976 ns
Signal 233 ns 254 ns N/A N/A N/A N/A N/A
Thread Exit Turnaround 328 ns 449 ns 408 ns 484 ns N/A N/A N/A

Table 2: Median cost of scheduling primitives. Creation, notification, and signaling are measured end-to-end, from initiation
in one thread until the target thread wakes up and begins execution on a different core. Arachne creates all threads on a different
core from the parent. Go always creates Goroutines on the parent’s core. uThreads uses a round-robin approach to assign
threads to cores; when it chooses the parent’s core, the median cost drops to 250 ns. In “One-Way Yield”, control passes from
the yielding thread to another runnable thread on the same core. In “Null Yield”, there are no other runnable threads, so control
returns immediately to the yielding thread. “Thread Exit Turnaround” measures the time from the last instruction of one thread
to the first instruction of the next thread to run on a core. N/A indicates that the threading system does not expose the measured
primitive. “Arachne RQ” means that Arachne was modified to use a ready queue instead of the queueless dispatch mechanism
described in Section 5.3. “No HT” means that each thread ran on a separate core using one hyperthread; the other hyperthread
of each core was inactive. “HT” means the other hyperthread of each core was active, running the Arachne dispatcher.

• How do Arachne’s internal mechanisms, such as
its queue-less approach to thread scheduling and its
mechanisms for core estimation and core allocation,
contribute to performance?

Table 1 describes the configuration of the machines used
for benchmarking.
7.1 Threading Primitives
Table 2 compares the cost of basic thread opera-
tions in Arachne with C++ std::thread, Go, and
uThreads [4]. std::thread is based on kernel threads;
Go implements threads at user level in the language run-
time; and uThreads uses kernel threads to multiplex user
threads, like Arachne. uThreads is a highly rated C++ user
threading library on GitHub and claims high performance.
The measurements use microbenchmarks, so they repre-
sent best-case performance.

Arachne’s thread operations are considerably faster
than any of the other systems, except that yields are faster
in uThreads. Arachne’s cache-optimized design performs
thread creation twice as fast as Go, even though Arachne
places new threads on a different core from the parent
while Go creates new threads on the parent’s core.

To evaluate Arachne’s queueless approach, we modi-
fied Arachne to use a wait-free multiple-producer-single-
consumer queue [7] on each core to identify runnable
threads instead of scanning over all contexts. We se-
lected this implementation for its speed and simplicity
from several candidates on GitHub. Table 2 shows that
the queueless approach is 28–40% faster than one using a
ready queue (we counted three additional cache misses for
thread creation in the ready queue variant of Arachne).

We designed Arachne’s thread creation mechanism not
just to minimize latency, but also to provide high through-
put. We ran two experiments to measure thread creation
throughput. In the first experiment (Figure 2(a)), a sin-
gle “dispatch” thread creates new threads as quickly as
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Figure 2: Thread creation throughput as a function of
available cores. In (a) a single thread creates new threads as
quickly as possible; each child consumes 1 µs of execution
time and then exits. In (b) 3 initial threads are created for
each core; each thread creates one child and then exits.

possible (this situation might occur, for example, if a sin-
gle thread is polling a network interface for incoming re-
quests). A single Arachne thread can spawn more than
5 million new threads per second, which is 2.5x the rate
of Go and at least 10x the rate of std::thread or
uThreads. This experiment demonstrates the benefits of
performing load balancing at thread creation time. Go’s
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Experiment Program Keys Values Items PUTs Clients Threads Conns Pipeline IR Dist

Realistic Mutilate [27] ETC ETC 1M .03 20+1 16+8 1280+8 1+1 GPareto
Colocation Memtier [24] 30B 200B 8M 0 1+1 16+8 320+8 10+1 Poisson
Skew Memtier 30B 200B 8M 0 1 16 512 100 Poisson

Table 3: Configurations of memcached experiments. Program is the benchmark program used to generate the workload (our
version of Memtier is modified from the original). Keys and Values give sizes of keys and values in the dataset (ETC recreates
the Facebook ETC workload [3], which models actual usage of memcached). Items is the total number of objects in the dataset.
PUTs is the fraction of all requests that were PUTs (the others were GETs). Clients is the total number of clients (20+1 means
20 clients generated an intensive workload, and 1 additional client measured latency using a lighter workload). Threads is the
number of threads per client. Conns is the total number of connections per client. Pipeline is the maximum number of outstanding
requests allowed per connection before shedding workload. IR Dist is the inter-request time distribution. Unless otherwise
indicated, memcached was configured with 16 worker threads and memcached-A scaled automatically between 2 and 15 cores.
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(a) memcached: 16 worker threads, 16 cores
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(b) memcached: 16 workers; both: 8 cores

Memcached (99%)

Memcached-A (99%)

Memcached (50%)

Memcached-A (50%)

Figure 3: Median and 99th-percentile request latency as a function of achieved throughput for both memcached and memcached-
A, under the Realistic benchmark. Each measurement ran for 30 seconds after a 5-second warmup. Y-axes use a log scale.

work stealing approach creates significant additional over-
head, especially when threads are short-lived, and the par-
ent’s work queue can become a bottleneck. At low core
counts, Go exhibits higher throughput than Arachne be-
cause it runs threads on the creator’s core in addition to
other available cores, while Arachne only uses the cre-
ator’s core for dispatching.

The second experiment measures thread creation
throughput using a distributed approach, where each of
many existing threads creates one child thread and then
exits (Figure 2(b)). In this experiment both Arachne and
Go scaled in their throughput as the number of available
cores increased. Neither uThreads nor std::thread
had scalable throughput; uThreads had 10x less through-
put than Arachne or Go andstd::threadhad 100x less
throughput. Go’s approach to thread creation worked well
in this experiment; each core created and executed threads
locally and there was no need for work stealing since the
load naturally balanced itself. As a result, Go’s throughput
was 1.5–2.5x that of Arachne. Arachne’s performance re-
flects the costs of thread creation and exit turnaround from
Table 2, as well as occasional conflicts between concurrent
thread creations.

Figure 2 also includes measurements of the ready queue
variant of Arachne. Arachne’s queueless approach pro-
vided higher throughput than the ready queue variant for
both experiments.

7.2 Arachne’s benefits for memcached
We modified memcached [23] version 1.5.6 to use
Arachne; the source is available on GitHub [19]. In the

modified version (“memcached-A”), the pool of worker
threads is replaced by a single dispatch thread, which waits
for incoming requests on all connections. When a request
arrives, the dispatch thread creates a new Arachne thread,
which lives only long enough to handle all available re-
quests on the connection. Memcached-A uses the default
core policy; the dispatch thread is “exclusive” and workers
are “normal” threads.

Memcached-A provides two benefits over the original
memcached. First, it reduces performance interference,
both between kernel threads (there is no multiplexing)
and between applications (cores are dedicated to applica-
tions). Second, memcached-A provides finer-grain load-
balancing (at the level of individual requests rather than
connections).

We performed three experiments with memcached;
their configurations are summarized in Table 3. The
first experiment, Realistic, measures latency as a func-
tion of load under realistic conditions; it uses the Muti-
late benchmark [17, 27] to recreate the Facebook ETC
workload [3]. Figure 3(a) shows the results. The max-
imum throughput of memcached is 20% higher than
memcached-A. This is because memcached-A uses two
fewer cores (one core is reserved for unmanaged threads
and one for the dispatcher); in addition, memcached-
A incurs overhead to spawn a thread for each request.
However, memcached-A has significantly lower latency
than memcached. Thus, if an application has service-
level requirements, memcached-A provides higher use-
able throughput. For example, if an application requires
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a median latency less than 100 µs, memcached-A can
support 37.5% higher throughput than memcached (1.1
Mops/sec vs. 800 Kops/sec). At the 99th percentile,
memcached-A’s latency ranges from 3–40x lower than
memcached. We found that Linux migrates memcached
threads between cores frequently: at high load, each thread
migrates about 10 times per second; at low load, threads
migrate about every third request. Migration adds over-
head and increases the likelihood of multiplexing.

One of our goals for Arachne is to adapt automatically to
application load and the number of available cores, so ad-
ministrators do not need to specify configuration options
or reserve cores. Figure 3(b) shows memcached’s behav-
ior when it is given fewer cores than it would like. For
memcached, the 16 worker threads were multiplexed on
only 8 cores; memcached-A was limited to at most 8 cores.
Maximum throughput dropped for both systems, as ex-
pected. Arachne continued to operate efficiently: latency
was about the same as in Figure 3(a). In contrast, mem-
cached experienced significant increases in both median
and tail latency, presumably due to additional multiplex-
ing; with a median latency limit of 100 µs, memcached
could only handle 300 Kops/sec, whereas memcached-A
handled 780 Kops/sec.

The second experiment, Colocation, varied the load dy-
namically to evaluate Arachne’s core estimator. It also
measured memcached and memcached-A performance
when colocated with a compute-intensive application (the
x264 video encoder [25]). The results are in Figure 4. Fig-
ure 4(a) shows that memcached-A used only 2 cores at
low load (dispatch and one worker) and ramped up to use
all available cores as the load increased. Memcached-A
maintained near-constant median and tail latency as the
load increased, which indicates that the core estimator
chose good points at which to change its core requests.
Memcached’s latency was higher than memcached-A and
it varied more with load; even when running without the
background application, 99th-percentile latency was 10x
higher for memcached than for memcached-A. Tail la-
tency for memcached-A was actually better at high load
than low load, since there were more cores available to
absorb bursts of requests.

When a background video application was colocated
with memcached, memcached’s latency doubled, both at
the median and at the 99th percentile, even though the
background application ran at lower priority. In con-
trast, memcached-A was almost completely unaffected
by the video application. This indicates that Arachne’s
core-aware approach improves performance isolation be-
tween applications. Figure 4(a) shows that memcached-A
ramped up its core usage more quickly when colocated
with the video application. This suggests that there was
some performance interference from the video applica-
tion, but that the core estimator detected this and allocated
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Figure 4: Memcached performance in the Colocation
experiment. The request rate increased gradually from
10 Kops/sec to 1 Mops/sec and then decreased back to 10
Kops/sec. In some experiments the x264 video encoder [25]
ran concurrently, using a raw video file (sintel-1280.y4m)
from Xiph.org [21]. When memcached-A ran with x264,
the core arbiter gave memcached-A as many cores as it
requested; x264 was not managed by Arachne, so Linux
scheduled it on the cores not used by memcached-A. When
memcached ran with x264, the Linux scheduler determined
how many cores each application received. x264 sets a
“nice” value of 10 for itself by default; we did not change
this behavior in these experiments. (a) shows the number of
cores allocated to memcached-A; (b) shows 99th percentile
tail latency for memcached and memcached-A; (c) shows
median latency, plus the rate of requests; (d) shows the
throughput of the video decoder (averaged over trailing
4 seconds) when running by itself or with memcached or
memcached-A.

cores more aggressively to compensate.
Figure 4(d) shows the throughput of the video applica-

tion. At high load, its throughput when colocated with
memcached-A was less than half its throughput when
colocated with memcached. This is because memcached-
A confined the video application to a single unmanaged
core. With memcached, Linux allowed the video appli-
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Figure 5: Median and tail latency in the Colocation
experiment with the core arbiter (“Memcached-A”, same as
Figure 4) and without the core arbiter (“NoArbiter”).

cation to consume more resources, which degraded the
performance of memcached.

Figure 5 shows that dedicated cores are fundamental
to Arachne’s performance. For this figure, we ran the
Colocation experiment using a variant of memcached-A
that did not have dedicated cores: instead of using the
core arbiter, Arachne scaled by blocking and unblock-
ing kernel threads on semaphores, and the Linux ker-
nel scheduled the unblocked threads. As shown in Fig-
ure 5, this resulted in significantly higher latency both
with and without the background application. Additional
measurements showed that latency spikes occurred when
Linux descheduled a kernel thread but Arachne contin-
ued to assign new user threads to that kernel thread; dur-
ing bursts of high load, numerous user threads could be
stranded on a descheduled kernel thread for many mil-
liseconds. Without the dedicated cores provided by the
core arbiter, memcached-A performed significantly worse
than unmodified memcached.

Figures 4 and 5 used the default configuration of the
background video application, in which it lowered its ex-
ecution priority to “nice” level 10. We also ran the exper-
iments with the video application running at normal pri-
ority; median and tail latencies for memcached increased
by about 2x, while those for memcached-A were almost
completely unaffected. We omit the details, due to space
limitations.

The final experiment for memcached is Skew, shown
in Figure 6. This experiment evaluates memcached per-
formance when the load is not balanced uniformly across
client connections. Since memcached statically parititions
client connections among worker threads, hotspots can
develop, where some workers are overloaded while oth-
ers are idle; this can result in poor overall throughput. In
contrast, memcached-A performs load-balancing on each
request, so performance is not impacted by the distribution
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Figure 6: The impact of workload skew on memcached
performance with a target load of 1.5 Mops/sec. Initially,
the load was evenly distributed over 512 connections (each
memcached worker handled 512/16 = 32 connections); over
time, an increasing fraction of total load was directed to
one specific “hot” worker thread by increasing the request
rate on the hot worker’s connections and decreasing the
request rate on all other connections. The bottom graph
shows the overall throughput, as well as the throughput of
the overloaded worker thread in memcached.
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Figure 7: Throughput of a single RAMCloud server when
many clients perform continuous back-to-back write RPCs
of 100-byte objects. Throughput is measured as the number
of completed writes per second.

of load across client connections.

7.3 Arachne’s Benefits for RAMCloud
We also modified RAMCloud [30] to use Arachne. In
the modified version (“RAMCloud-A”), the long-running
pool of worker threads is eliminated, and the dispatch
thread creates a new worker thread for each request.
Threads that are busy-waiting on nested RPCs yield af-
ter each iteration of their polling loop. This allows other
requests to be processed during the waiting time, so that
the core isn’t wasted. Figure 7 shows that RAMCloud-A
has 2.5x higher write throughput than RAMCloud. On the
YCSB benchmark [9] (Figure 8), RAMCloud-A provided
54% higher throughput than RAMCloud for the write-
heavy YCSB-A workload. On the read-only YCSB-C
workload, RAMCloud-A’s throughput was 15% less than
RAMCloud, due to the overhead of Arachne’s thread in-
vocation and thread exit. These experiments demonstrate
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that Arachne makes it practical to schedule other work
during blockages as short as a few microseconds.

7.4 Arachne Internal Mechanisms
This section evaluates several of the internal mechanisms
that are key to Arachne’s performance. As mentioned
in Section 5.3, Arachne forgoes the use of ready queues
as part of its cache-optimized design; instead, the dis-
patcher scans the wakeupTime variables for occupied
thread contexts until it finds a runnable thread. Conse-
quently, as a core fills with threads, its dispatcher must
iterate over more and more contexts. To evaluate the cost
of scanning these flags, we measured the cost of signal-
ing a particular blocked thread while varying the number
of additional blocked threads on the target core; Figure 9
shows the results. Even in the worst case where all 56
thread contexts are occupied, the average cost of waking
up a thread increased by less than 100 ns, which is equiv-
alent to about one cache coherency miss. This means that
an alternative implementation that avoids scanning all the
active contexts must do so without introducing any new
cache misses; otherwise its performance will be worse
than Arachne. Arachne’s worst-case performance in Fig-
ure 9 is still better than the ready queue variant of Arachne
in Table 2.
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free core available and (b) when it must reclaim a core from
a competing application.

Figures 10 and 11 show the performance of Arachne’s
core allocation mechanism. Figure 10 shows the distri-
bution of allocation times, measured from when a thread
callssetRequestedCores until a kernel thread wakes
up on the newly-allocated core. In the first scenario, there
is an idle core available to the core arbiter, and the cost
is merely that of moving a kernel thread to the core and
unblocking it. In the second scenario, a core must be
reclaimed from a lower priority application so the cost
includes signaling another process and waiting for it to
release a core. Figure 10 shows that Arachne can real-
locate cores in about 30 µs, even if the core must be re-
claimed from another application. This makes it practical
for Arachne to adapt to changes in load at the granularity
of milliseconds.

Figure 11 shows the timing of each step of a core request
that requires the preemption of another process’s core.
About 80% of the time is spent in socket communication.

8 Related Work
Numerous user-level threading packages have been de-
veloped over the last several decades. We have already
compared Arachne with Go [14] and uThreads [4]. Boost
fibers [1], Folly [13], and Seastar [37] implement user-
level threads but do not multiplex user threads across mul-
tiple cores. Capriccio [39] solved the problem of blocking
system calls by replacing them with asynchronous sys-
tem calls, but it does not scale to multiple cores. Cilk [8]
is a compiler and runtime for scheduling tasks over ker-
nel threads, but does not handle blocking and is not core-
aware. Carbon [16] proposes the use of hardware queues
to dispatch hundred-instruction-granularity tasks, but it
requires changes to hardware and is limited to a fork-join
model of parallelism. Wikipedia [40] lists 21 C++ thread-
ing libraries as of this writing. Of these, 10 offer only
kernel threads, 3 offer compiler-based automatic paral-
lelization, 3 are commercial packages without any pub-
lished performance numbers, and 5 appear to be defunct.
None of the systems listed above supports load balancing
at thread creation time, the ability to compute core require-
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Figure 11: Timeline of a core request to the core arbiter. There are two applications. Both applications begin with a single
dedicated core, and the top application also begins with a thread waiting to be placed on a core. The top application has higher
priority than the bottom application, so when the top application requests an additional core the bottom application is asked to
release its core.

ments and conform to core allocations, or a mechanism for
implementing application-specific core policies.

Scheduler activations [2] are similar to Arachne in that
they allocate processors to applications to implement user-
level threads efficiently. A major focus of the scheduler
activations work was allowing processor preemption dur-
ing blocking kernel calls; this resulted in significant kernel
modifications. Arachne focuses on other issues, such as
minimizing cache misses, estimating core requirements,
and enabling application-specific core policies.

Akaros [35] and Parlib [15] follow in the tradition of
scheduler activations. Akaros is an operating system that
allocates dedicated cores to applications and makes all
blocking system calls asynchronous; Parlib is a framework
for building user schedulers on dedicated cores. Akaros
offers functionality analogous to the Arachne core arbiter,
but it does not appear to have reached a level of maturity
that can support meaningful performance measurements.

The core arbiter’s controlling of process scheduling pol-
icy in userspace while leaving mechanism to the kernel
resembles policy modules in Hydra [18].

The traditional approach for managing multi-threaded
applications on multi-core machines has been gang
scheduling [12, 29]. In gang scheduling, each application
unilaterally determines its threading requirements; the op-
erating system then attempts to schedule all of an applica-
tion’s threads simultaneously on different cores. Tucker
and Gupta pointed out that gang scheduling results in in-
efficient multiplexing when the system is overloaded [38].
They argued that it is more efficient to divide the cores
so that each application has exclusive use of a few cores;
an application can then adjust its degree of parallelism to
match the available cores. Arachne implements this ap-
proach.

Event-based applications such as Redis [34] and ng-
inx [28] represent an alternative to user threads for
achieving high throughput and low latency. Behren et
al. [39] argued that event-based approaches are a form of
application-specific optimization and such optimization is
due to the lack of efficient thread runtimes; Arachne of-
fers efficient threading as a more convenient alternative to

events.
Several recent systems, such as IX [6] and Zygos [32],

have combined thread schedulers with high-performance
network stacks. These systems share Arachne’s goal of
combining low latency with efficient resource usage, but
they take a more special-purpose approach than Arachne
by coupling the threading mechanism to the network stack.
Arachne is a general-purpose mechanism; it can be used
with high-performance network stacks, such as in RAM-
Cloud, but also in other situations.

9 Future Work
We believe that Arachne’s core-aware approach to
scheduling would be beneficial in other domains. For
example, virtual machines could use a multi-level core-
aware approach, where applications use Arachne to nego-
tiate with their guest OS over cores, and the guest OSes use
a similar approach to negotiate with the hypervisor. This
would provide a more flexible and efficient way of man-
aging cores than today’s approaches, since the hypervisor
would know how many cores each virtual machine needs.

Core-aware scheduling would also be beneficial in clus-
ter schedulers for datacenter-scale applications. The clus-
ter scheduler could collect information about core require-
ments from the core arbiters on each of the cluster ma-
chines and use this information to place applications and
move services among machines. This would allow deci-
sions to be made based on actual core needs rather than
statically declared maximum requirements. Arachne’s
performance isolation would allow cluster schedulers to
run background applications more aggressively without
fear of impacting the response time of foreground applica-
tions.

There are a few aspects of Arachne that we have not
fully explored. We have only preliminary experience im-
plementing core policies, and our current core policies do
not address issues related to NUMA machines, such as
how to allocate cores in an application that spans multiple
sockets. We hope that a variety of reusable core policies
will be created, so that application developers can achieve
high threading performance without having to write a cus-
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tom policy for each application. In addition, our experi-
ence with the parameters for core estimation is limited.
We chose the current values based on a few experiments
with our benchmark applications. The current parameters
provide a good trade-off between latency and utilization
for our benchmarks, but we don’t know whether these will
be the best values for all applications.

10 Conclusion
One of the most fundamental principles in operating sys-
tems is virtualization, in which the system uses a set of
physical resources to implement a larger and more diverse
set of virtual entities. However, virtualization only works
if there is a balance between the use of virtual objects and
the available physical resources. For example, if the usage
of virtual memory exceeds available physical memory, the
system will collapse under page thrashing.

Arachne provides a mechanism to balance the usage of
virtual threads against the availability of physical cores.
Each application computes its core requirements dynam-
ically and conveys that to a central core arbiter, which
then allocates cores among competing applications. The
core arbiter dedicates cores to applications and tells each
application which cores it has received. The applica-
tion can then use that information to manage its threads.
Arachne also provides an exceptionally fast implementa-
tion of threads at user level, which makes it practical to use
threads even for very short-lived tasks. Overall, Arachne’s
core-aware approach to thread management enables gran-
ular applications that combine both low latency and high
throughput.
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Abstract
In this paper, we present an approach to systematically
examine the schedulability of distributed storage sys-
tems, identify their scheduling problems, and enable ef-
fective scheduling in these systems. We use Thread Ar-

chitecture Models (TAMs) to describe the behavior and
interactions of different threads in a system, and show
both how to construct TAMs for existing systems and
utilize TAMs to identify critical scheduling problems.
We identify five common problems that prevent a system
from providing schedulability and show that these prob-
lems arise in existing systems such as HBase, Cassandra,
MongoDB, and Riak, making it difficult or impossible to
realize various scheduling disciplines. We demonstrate
how to address these schedulability problems by devel-
oping Tamed-HBase and Muzzled-HBase, sets of mod-
ifications to HBase that can realize the desired schedul-
ing disciplines, including fairness and priority schedul-
ing, even when presented with challenging workloads.

1 Introduction
The modern data center is built atop massive, scalable
storage systems [12, 25, 42, 51]. For example, a typical
Google cluster consists of tens of thousands of machines,
with PBs of storage spread across hard disk drives (or
SSDs) [51]. These expansive storage resources are man-
aged by Colossus, a second-generation scalable file sys-
tem that replaced the original GFS [25]; many critical
Google applications (e.g., Gmail and Youtube), as well
as generic cloud-based services, co-utilize Colossus and
thus contend for cluster-wide storage resources such as
disk space and I/O bandwidth.

As a result, a critical aspect of these storage systems is
how they share resources. If, for example, requests from
one application can readily drown out requests from an-
other, building scalable and predictable applications and
services becomes challenging (if not impossible).

To address these concerns, scalable storage systems
must provide correct and efficient request scheduling as
a fundamental primitive. By controlling which client
or application is serviced, critical features including fair
sharing [28, 38, 58, 66], throughput guarantees [54, 68],
low tail latency [19, 29, 47, 63, 72] and performance iso-
lation [9, 55, 62] can be successfully realized.

Unfortunately, modern storage systems are complex,
concurrent programs. Many systems are realized via an

∗ Work done while at University of Wisconsin-Madison.
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Figure 1: TAM Enable SLOs (HBase). Muzzled-HBase
supports multiple scheduling policies under YCSB benchmark.
Experiment setup described in §4.2.

intricate series of stages, queues, and thread pools, based
loosely on SEDA design principles [64]. For example,
HBase [24] consists of ~500K lines of code, and involves
~1000 interacting threads within each server when run-
ning. Understanding how to introduce scheduling control
into systems is challenging even for those who develop
them; a single request may flow through numerous stages
across multiple machines while being serviced.

All of the open-source storage systems we examined
have significant scheduling deficiencies, thus rendering
them unable to achieve desired scheduling goals. As
shown in Figure 1, the original HBase fails to provide
weighted fairness or isolation against background work-
loads, yet our implemenation of Muzzled-HBase suc-
cessfully achieved these goals. Such scheduling deficien-
cies have also caused significant problems in production,
including extremely low write throughput or even data
loss for HBase [5], unbounded read latency for Mon-
goDB [6, 7], and imbalance between workloads in Cas-
sandra [4]. All above problems have been assigned major
or higher priority by the developers, but remain unsolved
due to their complexities and the amount of changes re-
quired to the systems.

To remedy this problem, and to make the creation of
flexible and effective scheduling policies within com-
plex storage systems easy, this paper presents a novel
approach to such schedulability analysis, which allows
systematic reasoning on how well a system could sup-
port scheduling based on its thread architecture. Specif-
ically, we define a Thread Architecture Model (TAM),
which captures the behavior and interactions of differ-
ent threads within a system. By revealing the resource
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consumption patterns and dependencies between com-
ponents, a TAM effectively links the performance of a
storage system to its architecture (while abstracting away
implementation details). Using a TAM, various schedul-
ing problems can be discerned, pointing toward solutions
that introduce necessary scheduling controls. The sys-
tem can then be transformed to provide schedulability
by fixing these problems, allowing realization of various
scheduling policies atop it. TAMs are also readily visu-
alized using Thread Architecture Diagrams (TADs), and
can be (nearly) automatically obtained by tracing a sys-
tem of interest under different workloads.

We use TAMs to analyze the schedulability of four
important and widely-used scalable storage systems:
HBase/HDFS [24, 56], Cassandra [36], MongoDB [15],
and Riak [33], and highlight weaknesses in the schedul-
ing architecture of each. Our analysis centers around five
essential problems we have discovered, each of which
leads to inadequate scheduling controls: a lack of lo-
cal scheduling control points, unknown resource usage,
hidden competition between threads, uncontrolled thread
blocking, and ordering constraints upon requests. Fortu-
nately, these problems can be precisely specified using
TAMs, enabling straightforward and automatic problem
identification. These problems can also be visually iden-
tified using TADs, allowing system architects to readily
understand where problems arise.

By fixing the problems identified using TAM, HBase,
the most complex system we studied, can be trans-
formed to provide schedulability. We show via simula-
tion that Tamed-HBase (TAM-EnableD HBase) utilizes
a problem-free thread architecture to enable fair sharing
under intense resource competition and provide strong
tail latency guarantees with background interference; it
also achieves proper isolation despite variances in re-
quest amount, size, and other workload factors. We im-
plement Muzzled-HBase (an approximation of Tamed-
HBase) to show that TAM-guided schedulability analysis
corresponds to the real world.

The rest of this paper is structured as follows. We first
introduce the thread architecture model (TAM) (§2), and
then discuss how to use TAM to perform schedulability
analysis, centered around the five scheduling problems
(§3). We use HBase/HDFS as a case study to demon-
strate how to use TAM to analyze the schedulability of a
realistic system, and make said system schedulable (§4).
We then present the schedulability analysis results of
other systems (§5). Next, we discuss the limitations of
TAM and how it can be extended (§6). Finally, we dis-
cuss related work (§7) and conclude (§8).

2 Thread Architecture Model
Implementing new scheduling policies in existing sys-
tems is non-trivial; most modern scalable storage sys-
tems have complex structures with specific features that

complicate the realization of scheduling policies. We in-
troduce thread architecture models (TAMs) to describe
these structures. The advantage of TAM is that one can

perform schedulability analysis with only information

specified in this model, abstracting away all the imple-

mentation details. We first give a general and intuitive
description of TAM (§2.1) and describe its visualization
using TAD (§2.2). We then discuss how to automatically
obtain TAM for existing systems (§2.3). Finally, we give
a formal definition of the TAM model (§2.4).

2.1 TAM: General Description
We model scheduling in a storage system as containing
requests that flow through the data path consuming vari-
ous resources while a control plane collects information
and determines a scheduling plan to realize the system’s
overall goal (e.g., fairness). This plan is enforced by lo-
cal schedulers at different points along the data path.

In modern SEDA-based distributed storage systems,
the data path consists of many distinct stages residing
in different nodes. A stage contains threads performing
similar tasks (e.g., handling RPC requests or performing
I/O). A thread refers to any sequential execution (e.g., a
kernel thread, a user-level thread, or a virtual process in
a virtual machine). Within a stage, threads can be orga-
nized as a pool with a fixed (or maximum) number of ac-
tive threads (bounded stage) or can be allocated dynam-
ically as requests increase (on-demand stage). In certain
stages, some requests may need to be served in a specific
order for correctness; this is an ordering constraint.

Each bounded stage has an associated queue from
which threads pick tasks; each queue is a potential
scheduling point where schedulers can reorder requests.
The queue can be either implicit (e.g., the default FIFO
queue of a Java thread pool) or explicit (with an API to
allow choice of policy, or hard-coded decisions).

A stage may pass requests to its downstream stages for
processing. After a thread issues a request to downstream
stages, the thread may immediately proceed to another
request, or block until notified that the request completed
at other stages.

Resources are consumed within a stage as requests are
processed; we consider CPU, I/O, network and lock1 re-
sources, but other resources can be readily added to our
model. Instead of specifying the exact amount of re-
sources used in each stage (which can change based on
specific characteristics of workloads), we only consider
whether a resource is extensively used in a stage. This
simplification allows us to abstract away the details of
slightly different workloads but still captures important
problems related to resource usage (shown in §3). Exten-

1We treat each lock instance as a separate resource, but are usually
only interested in one or two highly contended locks in the system, e.g.,
the namespace lock in HDFS.
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CPU, I/O, network, lock resource [Left to right. Square 
bracket: unknown usage]! " #$%&

Node boundary

stage [Boxes above: its resource vector. Stop: ordering 
constraints]

Blocking relationship [Stage A blocks on the stage B]BA

Downstream relationship [Stage A issues requests to stage B]BA

Scheduling point [Plug!"allows pluggable schedulers. No 
scheduling point: on-demand stage]

name
! "% #$%&

Table 1: Notation for Thread Architecture Diagrams.
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Figure 2: HBase/HDFS Thread Architecture. Based
on HBase 2.0.0 and Hadoop 2.7.1. Some stages are omitted
to simplify discussion. Red: main RPC processing flow; green:
processing flow that requires HDFS read; blue: processing flow
that requires data modifications.

sive resource usage is interpreted as “any serious usage
of resources that is worth considering during schedul-
ing”; we discuss how we choose the threshold in §2.3. If
a stage may or may not extensively use a resource during
processing based on different workloads, it has unknown

resource usage for this resource.
All the stages and their collective behaviors, relation-

ships, and resource consumption patterns form the thread

architecture of a system.

2.2 Visualization with TAD
One advantage of TAM is that it allows direct visual-
izations using Thread Architecture Diagrams (TADs).
Table 1 summarizes the building blocks in TADs; Fig-
ure 2 through 5 show the TADs of HBase/HDFS [24, 56],
MongoDB [15], Cassandra [36] and Riak [33] (labels on
the arrows and important workload flows are manually
added to aid understanding, and are not parts of TAD).
TAM and TAD can be thought of as duals: TAD is the
graphical representation of TAM, while TAM is the sym-
bolic representation of TAD; one can easily transform a
TAD to its underlying TAM, and vice versa.

We now use the (simplified) HBase/HDFS TAD in
Figure 2 to illustrate how to read a TAD and identify spe-
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Figure 3: MongoDB Thread Architecture. (v3.2.10)
Red: processing flow for requests that do not block on replica-
tion; blue: processing flow for requests that do.

cific features of system scheduling from it.

When HBase clients send queries to the RegionServer,
the RPC Read stage reads from the network and passes
the request to the RPC Handle stage (1). Based on the re-
quest type (Put or Get) and whether data is cached, RPC
Handle may have different behavior. One may insert cus-
tom schedulers into RPC Handle (plug symbol).

If the RPC needs to read data, RPC Handle checks if
the data is local. If not, RPC Handle sends a read re-
quest to the Data Xceive stage in a Datanode and blocks
(r1 − r2, where blocking is indicated by dashed r2). If
it is local, RPC Handle directly performs short-circuited
reads, consuming I/O. I/O resource usage in RPC Handle
is initially unknown and thus marked with a bracket.

For operations that modify data, RPC Handle appends
WAL entries to a log (a1) and blocks until the entry is
persisted. LOG Append fetches WAL entries from the
queue in the same order they are appended (stop symbol),
and writes them to HDFS by passing data to Data Stream
(w1), which sends the data to Data Xceive (w2 − w3).
All WAL entries append to the same HDFS file, so Data
Stream and Data Xceive must process them in sequence.
LOG Append also sends information about WAL entries
to LOG Sync (a2), which blocks (w7) until the write
path notifies it of completion (further details omitted);
it then tells RPC Handle to proceed (dashed a3). RPC
Handle may also flush changes to the MemStore cache
(f1); when the cache is full, the content is written to
HDFS with the same steps as with LOG Append writes
(w1 − w7), though without the ordering constraint.

Finally, after RPC Handle finishes an RPC, it passes
the result to RPC Respond and continues another
RPC (2). In most cases, RPC Respond responds to the
client, but if the connection is idle, RPC Handle bypasses
RPC Respond and responds directly.

HBase has more than ten complex stages exhibiting
different local behaviors (e.g., bounded vs. on-demand),
resource usage patterns (e.g., unknown I/O demand), and
interconnections (e.g., blocking and competing for the

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    163



! "
C-ReqHandle

! "
Msg In

! #$%
Read 

! #$%
Mutation

! #$%
V-Mutation

!
Respond

! "
C-Respond

! "
Msg Out

...

! "
Msg In

! #$%
Read

! #$%
Mutation

! #$%
V-Mutation

!
Respond

! "
Msg Out

1

...

2

3

3

3

4

4

4

1

5

6

7

l1

l2

6

7

3
3
3

4

4

4

5

l2

8Cassandra Node

Cassandra Node

5

l1

Figure 4: Cassandra Thread Architecture. (v3.0.10)
The ellipsis represent other database processing stages. Red:
remote mutation processing flow; blue: remote read processing
flow; green: local read processing flow.

same resources across stages). All of them are compactly
encoded in its TAM/TAD, enabling us to identify prob-
lematic scheduling, as we discuss later (§3).

2.3 Automatic Obtainment
TAM is defined with automatic procurement in mind: all
information specified in TAM can be (relatively) easily
obtained, allowing automation of the schedulability anal-
ysis. We now present TADalyzer, a tool we developed to
auto-discover TAM/TAD for real systems using instru-
mentation and tracing techniques. The workflow to gen-
erate the TAM of a given system with TADalyzer con-
sists of four steps:

1. Stage Naming: the user lists (and names) important
stages in the system.

2. Stage Annotation: the user identifies thread creation
code in the code base and annotates if the new thread
belongs to one of the stages previously named. Fig-
ure 6 shows a sample annotation. Threads not explic-
itly annotated default to a special NULL stage.

3. Monitoring: the user deploys the system and
feeds various workloads (e.g., hot-/cold-cached, lo-
cal/remote) to it. TADalyzer automatically collects
necessary information for later TAM generation. If
the user missed some important stages in step 1, TAD-
alyzer would notice that some threads in the NULL

stage are overly active, and alert the user with the
stack trace of these threads. Based on the alert, the
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Figure 5: Riak Thread Architecture. (v2.1.4) Red: local
request processing flow; blue: remote request processing flow.

RPC_READ
RPC_HANDLE
LOG_IO
RPC_RESPOND
…
NULL(default)

static void *rpc_handle_run(void* args)
{
 
       ...
}

pthread_create(&tid, NULL,(void *)
              &rpc_handle_run, args);                         

Stage Name List:

Figure 6: Sample Annotation.

user identifies the missing stages and repeats step 1-3.
4. Generating: After enough information is collected,

the user asks TADalyzer to generate the TAM; some
information TADalyzer cannot obtain (see Figure 7),
and the user needs to provide manually. TADalyzer
also automatically plots TAD from the TAM (though
the TADs shown in the paper are drawn manually).

This workflow requires the user to know the important
(but not all) stages in the system. From our experience,
someone unfamiliar with the code base usually misses
naming some stages initially. However, TADalyzer pro-
vides enough information to point the user to the code of
the missing stages to aid further annotation, and one can
typically get a satisfactory TAM within a few (< 5) it-
erations of the workflow. In HBase and MongoDB such
annotation took ~50 lines of code, and ~20 in Cassandra.

We now briefly describe how TADalyzer generates the
TAM. Based on user annotation, TADalyzer monitors
thread creation and termination, and builds a mapping
between threads and stages. Using this mapping, it auto-
matically discovers the following information:

Stage Type: TADalyzer tracks active threads at each
stage to classify bounded or on-demand stages.

Resource Consumption: Using Linux kernel tracing
tools [1, 40], TADalyzer attaches hooks to relevant ker-
nel functions (e.g., vfs read, socket read) to monitor
the I/O and network consumed at each stage. CPU con-
sumption is tracked through /proc/stat; the lock resource
by automatically instrumenting relevant lock operations.

Intra-Node Data Flow: TADalyzer automatically in-
struments standard classes that are commonly used to
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Figure 7: TADalyzer Summary. Black: component in
TAM, Blue: how TADalyzer obtain corresponding information
in real system, Red: information TADalyzer could not provide.

pass requests, such as util.AbstractQueue in Java
and std<queue> in C++, to build data flow between
stages within the same node.

Inter-Node Data Flow: TADalyzer tracks how much
data each thread sends and receives on different ports. By
matching the IP and port information, TADalyzer builds
the data flow between stages on different nodes.

Blocking Relationship: TADalyzer injects delays in a
stage and determines whether other stages block by ob-
serving if the delay propagates to these stages.

The current version of TADalyzer cannot automati-
cally derive if a stage provides a pluggable scheduling
point or has an ordering constraint, and requests this in-
formation from the user. Figure 7 summarizes how TAD-
alyzer obtains TAM information; based on the informa-
tion, TADalyzer generates the TAM/TAD.

When generating TAM, TADalyzer needs to deter-
mine the threshold for extensive resource usage of a
stage. In a typical system there exist many “light” stages
that are occasionally activated to perform bookkeeping
and consume few resources (e.g., a timer thread); even
for stages that are actively involved in request process-
ing, they may perform tasks with a particular resource
pattern and only very lightly use other resources. When
accumulating the resource consumption in a long run, we
observe that these stages use at most 1% of the concerned
resource, while the stages that are actively consuming
resources when processing requests typically use more
than 10% (or much higher) of the resource. For example,
in MongoDB the Worker stage consumes up to 95% of
the total CPU time, while the Fetcher stage consumes at
most 0.2%; similarly, in HBase the RPC Respond stage is
responsible for 20% to 80% of the total bytes transferred
through network, but its I/O consumption never exceeds
1%. TADalyzer thus chooses the extensiveness thresh-
old to be within 1% and 10% to prevent these “light”
stages from unnecessarily complicating the TAM (the ex-
act threshold is set to 5%).

TADalyzer has certain limitations (detailed discussion
omitted for brevity); in particular, the TAMs generated
by TADalyzer are correct, but maybe incomplete (miss-

ing stages or flows).2 However, we would like to em-
phasize that TAM defines a clear set of obtainable in-

formation (see §2.4), which enables tools that automati-
cally extract this information to construct TAM and per-
form schedulability analysis. TADalyzer is just one such
tool we built to demonstrate the feasibility of automatic
schedulability analysis; we encourage other tools to be
developed that deploy different techniques (e.g., those
in [8, 11, 14, 69]) to discover the information listed in
Figure 7 and optimize the process of obtaining TAM.

2.4 TAM: Formal Definition
We now give a more formal definition of the thread archi-
tecture model, which precisely specifies the information
encoded in a TAM. Such formalism is critical for both
automatically constructing TAMs (§2.3) and for system-
atically identifying the scheduling problems (§3).

Definition 1. A thread architecture is defined by the 3-
tuple (S,D,B), where

• S is a finite set; each element s ∈ S is a stage, which
is defined in Definition 2.

• D is a function that maps S to P(S) (the power set
of S); D represents the downstream relationship. For
example, D(s1) = {s2, s3} means s1 issues requests
to s2 and s3.

• B is a function that maps S to P(S); B represents the
blocking relationship. For example, B(s1) = {s2}
means stage s1 blocks on stage s2.

Definition 2. A stage is defined by the 5-tuple
(n, h, r, o, q), where

• n is a string representing the name of the stage.
• h is a positive integer indicating host ID. Stages with

the same h value are on the same node.
• r is a 4-vector representing the resource usage pattern

of this stage. Each component in r can take one of
the three values: true, false, or unknown, indicating
whether the corresponding resource (CPU, I/O, net-
work, lock) is used extensively in this stage.

• o is a boolean value representing whether the stage has
an ordering constraint or not.

• q represents the local scheduling type, and can take
one of the three values: on demand, pluggable or
general, indicating whether the stage is on-demand,
allows pluggable schedulers, or has hard-coded or im-
plicit scheduling logic.

3 Scheduling Problems
TAM allows us to identify scheduling problems without
being concerned about low-level implementation details;
it also points towards solutions that introduce necessary
scheduling controls. We now discuss how to perform
schedulability analysis using TAM/TAD. Our analysis

2All TAM/TADs shown in the paper (except MongoDB) have been
validated by each system’s developers [21, 23, 27].
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centers around five common problems we discovered in
modern distributed storage systems: no scheduling, un-

known resource usage, hidden contention, blocking, and
ordering constraint. To illustrate the process clearly, we
begin by focusing on systems with only a single prob-
lem; in Section 4 we consider the HBase TAM in which
multiple problematic stages are interconnected.

For each problem, we first give a general description,
then precisely specify the problem in TAM and TAD. We
use simulation to demonstrate how problematic thread
architecture hinders scheduling policy realization; differ-
ent scheduling policies including fairness, latency guar-
antees, and priority scheduling are investigated.

The simulation framework (built on simpy [39]) pro-
vides building blocks such as requests, threads, stages,
resources, and schedulers. Using TAMs as blueprints,
stages can be assembled to form various thread architec-
tures that refect existing or hypothetical system designs.
With a given thread architecture, one can specify work-
load characteristics (e.g., request types and arrival dis-
tribution), resource configurations (e.g., CPU frequency
and network bandwidth), and scheduling policies; the
framework then simulates how requests flow through the
stages and consume the resources, and reports detailed
performance statistics.

Unless noted, all simulations in this section use a
common configuration: two competing clients (C1 and
C2) continuously issue requests; C1 has 40 threads, C2
varies; each node has a 1 GHz CPU, 100 MB/s disk, and
a 1 Gbps network connection.

3.1 No Scheduling
Each resource-intensive stage in a thread architecture
should provide local scheduling. With local scheduling
for a stage, requests are explicitly queued and resource-
intensive activities can be ordered according to system’s
overall scheduling goal. In contrast, an on-demand stage
with no request queue and extensive resource usage suf-
fers the no scheduling problem (e.g., the Data Stream and
Data Xceive stages in HBase, and the Req In-Out and
Process stages in Riak).

TAM: A TAM (S,D,B) suffers no scheduling if ∃s ∈
S, s.t. s.r ̸= [false, false, false, false] ∧ s.q =
on demand. 3

TAD: A TAD suffers no scheduling if it contains stages
with non-empty resource boxes but no queues.

Figure 8(a) shows a simple TAD with two stages,
the second of which has no scheduling (an on-demand
stage with intensive I/O). The scheduler for Req Handle
(Q1) attempts to provide a latency guarantee to C1 us-
ing earliest-deadline-first (EDF) but is unsuccessful: as

3A more stringent definition may require each resource intensive
stage to provide pluggable scheduling point to allow flexible schedul-
ing policy realization; we opt for a looser definition here.
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Figure 8: The No Scheduling Problem. Each client
request requires 100 us CPU and 100 KB I/O, making I/O the
bottleneck. The deadline is set to 15 ms for C1, 500 ms for C2;
the gray area indicates latency within the C1 deadline. The left
y-axis shows the average latency of C1; the right y-axis shows
the number of C2 requests competing with C1 at the I/O stage.

C2 issues requests with more threads, the latency of C1
exceeds the deadline by as much as 5x. The problem oc-
curs because Q1 scheduling is irrelevant when Req Han-
dle is not the bottleneck: the average queue length of Q1
is zero. Meanwhile, as shown in Figure 8(a), there are
many requests contending for I/O in the I/O stage, which
is not managed by a scheduler.

Figure 8(b) shows another architecture which has the
same functionality but does not suffer the no schedul-
ing problem as it possesses a scheduling point at the I/O
stage. Local scheduling points enable the system to reg-
ulate I/O resource usage at the point where the resource
is contended, thus simply and naturally ensuring latency
guarantees and isolation of the two clients.

3.2 Unknown Resource Usage
Each stage within a system should know its resource us-
age patterns. However, in some stages, requests may fol-
low different execution paths with different resource us-
age, and these paths are not known until after the stage
begins. For example, a thread could first check if a re-
quest is in cache, and if not, perform I/O; the requests in
this stage have two execution paths with distinct resource
patterns and the scheduler does not know this ahead of
time. In such cases, the stage suffers unknown resource

usage (e.g., the RPC Handle stage in HBase due to the
short-circuited reads it might perform). Unknown re-
source usage forces schedulers to make decisions before
information is available.
TAM: A TAM (S,D,B) suffers unknown resource us-
age if ∃s ∈ S, ∃i ∈ {1, 2, 3, 4}, s.t. s.r[i] = unknown.
TAD: A TAD suffers unknown resource usage if it con-
tains resource symbols surrounded by square brackets.

Figure 9 (a) shows a single stage with unknown I/O us-
age (the bracket around the I/O resource), where Q1 per-
forms dominate resource fairness (DRF) [26] with equal
weighting. When C2 issues a mix of cold and cached re-
quests, Q1 schedules C2-cold and C2-cached in the same
way. Even though there are idle CPU resources, Q1 can-
not schedule additional C2-cached requests to utilize the
CPU because it does not know whether the request would
later cause I/O, which is currently contended. Unknown
resource usage thus causes low CPU utilization and low
throughput of C2-cached.
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and 100 KB I/O. C2 also issues cached requests that requires
only 100 us CPU but no I/O. In (a) the Req Handle threads first
look up the cache when serving a request, and perform I/O if it
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Figure 10: The Hidden Contention Problem. C1 sends
1 KB requests and receives 10 KB replies; C2 also sends 1 KB
requests but its reply size varies (shown in the x-axis). The line
graph below shows the throughput of C1. The bar graph above
shows the bandwidth each stage is forced to allocate to C1 or
C2 to maintain work conservation: when scheduling, there are
only C1/C2 requests in the queue. C1-S1 means the bandwidth
S1 (Req Read) is forced to allocate to C1, and so on.

Figure 9(b) shows another system with the same func-
tionality but one stage split into two. The Req Han-
dle stage performs CPU-intensive cache lookups while a
new stage performs I/O for requests that miss the cache.
Each stage has its own scheduler. Q1 freely admits re-
quests when there are enough CPU resources, leading to
high CPU utilization and C2-Cached throughput. Mean-
while, not only does Q2 know a request needs I/O, it also
knows the size and location of the I/O, enabling Q2 to
make better scheduling decisions. System(b) is thus free
from the unknown resource usage problem.

3.3 Hidden Contention
When multiple stages with independent schedulers com-
pete for the same resource, they suffer from hidden con-

tention which impacts overall resource allocation (e.g.,
the Worker and Oplog Writer stages in MongoDB for
database locks, and the Read, Mutation, View-Mutation
stages in Cassandra for CPU and I/O). The hidden con-
tention in MongoDB is reported to cause unbounded read
latencies in production [6]. Hidden contention is ubiqui-
tous, because some contention is difficult to avoid (e.g.,
most stages use CPU).

TAM: A TAM (S,D,B) suffers hidden contention if
∃s1 ∈ S, ∃s2 ∈ S, ∃i ∈ {1, 2, 3, 4} s.t. s1 ̸= s2 ∧
s1.h = s2.h ∧ s1.q ̸= on demand ∧ s2.q ̸= on demand

∧ s1.r[i] ̸= false ∧ s2.r[i] ̸= false.
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Figure 11: The Blocking Problem. Initially both C1
and C2 issue requests that require 100 us CPU time and can
be completed within the Req Handle Stage. At time 60, C2
switches to an I/O intensive workload where each request ad-
ditionally requires 100 KB I/O at the I/O stage. C1 continues to
issue CPU-only requests. The table below shows the average
number of blocking threads in Req Handle (10 threads in total).

TAD: A TAD suffers hidden contention if it contains
stages within a node boundary that have separate queues
but the same resource in the resource usage boxes.

Figure 10(a) shows a two-stage system with the net-
work as the source of hidden contention; one stage reads
requests and the other sends replies. Both Q1 and Q2 pre-
form fair queuing [26] with equal weighting. However,
enforcing fairness at each stage does not guarantee fair
sharing at the node level. When C2 increases its reply
size (i.e., its network usage), it unfairly consumes up to
95% of the network and reduces throughput of C1. With
larger C2 reply size, S2 is frequently forced to schedule
C2 because there are no requests from C1 in its queue.
As there is no regulation on contention between stages,
S2 effectively monopolizes the network when it sends
larger replies (on behalf of C2) and prevents S1 from us-
ing the network; this causes fewer requests to be com-
pleted at S1 and flow to S2, further limiting the chocies
available to S2. Hidden network contention between the
two stages thus causes unfair scheduling.

Figure 10(b) shows a system where one stage handles
both reading and replying RPCs. Q1 has full control of
the network and can isolate C1 and C2 perfectly.

3.4 Blocking
For optimal performance, even when some requests are
waiting to be serviced, each stage should allow other re-
quests to make progress if possible; a problem occurs if
there are no unblocked threads to serve these requests.
A system has a blocking problem if a bounded stage may
block on a downstream stage (e.g., the RPC Handle stage
in HBase, and the Worker stage in MongoDB), as scenar-
ios may occur where all threads in that stage block at one
path and other requests that could have been completed
cannot be scheduled. The blocking problem of HBase is
reported to cause extremely low throughput or even data
loss in production [5]. Blocking forces upstream sched-
ulers to account for downstream progress.

TAM: A TAM (S,D,B) suffers blocking if ∃s ∈ S, s.t.
s.q ̸= on demand ∧ B(s) ̸= ∅.
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Figure 12: The Ordering Constraint Problem. High
priority C1 issues requests in burst; low priority C2 steadily
issues requests with more threads. Each request requires 100 us
CPU time at the Worker stage, and 100 KB I/O at the LOG
Append stage. The left y-axis shows the average latency of C1;
the right y axis shows the average queue size of LOG Append.

TAD: A TAD suffers blocking if it contains stage boxes
with queues and dashed arrows pointing to them.

Figure 11(a) shows a system with blocking at Req
Handle. Requests in Req Handle have two paths: they
may complete in this stage or block on the I/O stage; the
schedulers perform DRF [26] with equal weighting. Ini-
tially both C1 and C2 receive high throughput as they
issue cached requests without blocking; however, when
C2 switches to an I/O-intensive workload, the through-
put of C1 (which is still CPU-only) suffers. The table
below shows that all threads in Req Handle are blocked
on I/O, leaving no threads to process C1 requests.

In contrast, Figure 11(b) shows a system in which the
Req Handle stage is asynchronous. No threads block; all
perform useful work, leading to high throughput for C1.

3.5 Ordering Constraint
Many storage systems use Write-Ahead Logging (WAL),
which requires the writes to the log to occur in sequence.
When a system requires some requests at a resource-
intensive stage to be served in a specific order to ensure
correctness, it has the ordering constraint problem (e.g.,
the Data Stream and Data Xceive stage in HBase). Or-
dering constraint leaves the scheduling framework with
fewer or no choices, because the local scheduler cannot
reorder resource-intensive activities as desired.
TAM: A TAM (S,D,B) suffers ordering constraint if
∃s ∈ S, ∃i ∈ {1, 2, 3, 4} s.t. s.o = true ∧ s.r[i] ̸=
false.
TAD: A TAD suffers ordering constraint if it contains
stages with stop symbols and non-empty resource boxes.

Figure 12(a) shows a two-stage system with ordering
constraint on the second stage. The schedulers enforce
priorities, where high priority requests are served first as
long as this does not break correctness. In this system,
C1 (high priority) suffers much longer latency when C2
(low priority) issues requests aggressively. The majority
of this latency occurs from queuing delay in the second
stage since low priority requests must be serviced first if
they enter the stage earlier.

Figure 12(b) shows a system that eliminates the prob-
lem by separating requests from different clients into dif-
ferent streams that share no common states (e.g., each

stream has its own WAL); even though requests within
a stream are still serviced in order, the scheduler can
choose which stream to serve and provide differentiated
services on a per-stream basis. The figure shows that C1
maintains low latency despite the larger queue size at the
LOG Append stage when C2 issues more requests: free
from the ordering constraint, Q2 can pick the high prior-
ity requests from C1 first.

3.6 Discussion
We have identified five categories of scheduling prob-
lems. For each category, we have given an example
that highlights the problem. In some cases the example
highlights a fairness problem; in others it highlights a la-
tency or utilization problem. However, one should note
that each of these problems can manifest in many dif-
ferent ways, causing violations in any scheduling disci-
pline. For example, in §3.1 we show how no scheduling
causes excessive latencies; since there are no scheduling
points to prioritize requests, it could as easily cause un-
fairness or priority inversions. How (and whether) the
scheduling problems manifest depends on the resources
available, the workload, and the scheduling policy; when
TAM/TAD suggests a scheduling problem, it means that
there exist certain workloads/resource configurations un-
der which the problem manifests.

Each of the five scheduling problem by itself is not
very surprising. However, by compactly representing
the thread architecture and exposing scheduling prob-
lems, TAM can serve a useful conceptual tool that allows
the system designer to identify and fix all the problems
in an existing system, or to design a problem-free ar-
chitecture for a new system. In addition, TAD enables
visual analysis, making it clear where problems arise,
while the TAM-based simulation can be used to study
how scheduling problems actually manifest given certain
workloads and resource configurations.

Do the five categories of problems exhaustively de-
scribe how system structure could hinder scheduling?
For now we can only answer this question empirically.
We analyzed systems with distinct architectures (thread-
based vs. loose SEDA vs. strict SEDA) and thread be-
haviors (kernel- vs. user-level threads). Only these prob-
lems arise and fixing them allows us to realize various
scheduling policies effectively. We leave proving the
completeness of the problems to future work.

4 HBase: A Case Study
Given the TAM of a system, multiple scheduling prob-
lems may be discovered, pointing towards solutions
that introduce necessary scheduling controls. By fix-
ing these problems, the system can be transformed to
provide schedulability. We now perform such anal-
ysis on a realistic storage system, the HBase/HDFS
storage stack (hereinafter just HBase). We focus on
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HBase, as it presents the most complex architecture, is
widely deployed in many production environments [24],
and achieving schedulability remains difficult despite re-
peated attempts [3, 5, 37, 63, 68]. We analyze the
schedulability of MongoDB [15], Cassandra [36] and
Riak [33] later (§5).

4.1 TAM simulations
We simulate an HBase cluster with 8 nodes; one mas-
ter node hosts the HMaster and NameNode, and 7 slave
nodes host RegionServers and DataNodes. Each node
has a 1 GHz CPU, 100 MB/s disk, and a 1 Gbps network
connection. Using this simulation, we compare the orig-
nal HBase (Orig-HBase) and the HBase modified with
our solutions (Tamed-HBase, with its TAD shown in Fig-
ure 14); later we implement the solutions to show that
our TAM-based simulation corresponds to the real world.
The solutions can be used to realize any scheduling pol-
icy; in our simulation the schedulers simply attempt to
isolate C1’s performance from C2’s workload changes.

4.1.1 No Scheduling

Problem: The Data Xceive and Data Stream stages in
HBase have a non-empty resource vector and on demand

scheduling type, indicating the no scheduling problem.

Solution: In the Tamed-HBase TAM, we change the
scheduling type of Data Xceive and Data Stream from
on demand to pluggable, so it is free from no schedul-
ing. In a real system, this corresponds to adding schedul-
ing points to the two stages and exporting an API to allow
different schedulers to be plugged into each.

We simulate a workload where C1 and C2 keep issuing
(uncached) Gets, each of which incurs 128 K I/O at Data
Xceive. C1 has 40 threads issuing requests in parallel;
the number of threads of C2 increases from 40 to 200.
Figure 13(a) shows that even though the original TAM
does not isolate C1 from C2, our modified TAM provides
stable throughput to C1 despite the change of C2.

4.1.2 Unknown Resource Usage

Problem: In HBase TAM, the I/O and network com-
ponents of the RPC Handle resource vector take the
unknown value, indicating unknown resource usage.

Further code inspection reveals that the RPC Han-
dle threads only sends responses when the network is
idle, so it does not interfere with scheduling. TAM pro-
duces a false positive here because the threads exhibited
“scheduler-like” behavior (deciding whether to perform
a task based on the status of the resource) without going
through the schedulers, which is not captured by TAM.
Short-circuited reads, which are unknown when the re-
quest is scheduled, do cause contention for I/O and lead
to ineffective scheduling.

Solution: We remove the unknown resource usage in
the RPC Handle stage by moving short-circuited reads

from RPC Handle to Data Xceive. Instead of performing
reads by itself, once the RPC Handle stage recognizes
a short-circuited read, it directly passes the read to the
local Data Xceive stage without going through network
transferring; at this point, the Data Xceive scheduler has
knowledge of the I/O size and locations.

We simulate a standalone HBase node, which en-
sures that all HDFS reads at the RegionServer are short-
circuited, thus isolating the effect of unknown resource
usage. In Figure 13(b), both C1 and C2 issue Gets on
cold data, which incurs 100 KB short-circuited reads at
RPC Handle. C2 also issues cached Gets that do not re-
quire I/O. One can see that Tamed-HBase achieves addi-
tional throughput for the cached Gets of C2 compared to
Orig-HBase, without reducing the throughput of C1 or
C2’s cold-cached Gets.

4.1.3 Hidden Contention

Problem: Within the same node of the HBase TAM,
both the RPC Handle and Data Xceive stages have an I/O
component in their resource vectors; the RPC Read, RPC
Handle, RPC Respond, Data Stream, and Data Xceive
stage resource vectors all share the network component;
many stage resource vectors contain the CPU compo-
nent. All of them lead to the hidden contention problem.

Solution: To remove hidden contention, we restructure
the stages so that in Tamed-HBase, each resource is man-
aged by one dedicated stage. In general, one cannot com-
pletely eliminate hidden contention by dividing stages
based on resource usage for two reasons:

1. Without special hardware, network packet processing
requires significant CPU [16, 20, 30], so the network
stage inevitably incurs both network and CPU usage.

2. Lock usage typically cannot be separated to a dedi-
cated stage: it may be pointless to obtain a lock without
doing some processing and consuming other resources.

In the case of HBase, the highly contended namespace
lock is obtained to perform namespace manipulation (not
shown in the simplified TAD), which does not incur ex-
tensive usage on other resources, so the lock stage can
be separated. The network stage in Tamed-HBase does
incur CPU usage; however, by moving most CPU inten-
sive tasks to the CPU stage (e.g., serialization and check-
sum verification), we can reduce the hidden contention
on CPU between the network stage and the CPU stage
to a minimal level. The restructured stages are shown
in Figure 14; to avoid no scheduling, all the new stages
have pluggable scheduling points, but the blocking re-
lationships and order constraints are inherited from the
old stages to the new ones (until further fixes).

We simulate a workload where C1 and C2 keep issuing
1 KB RPC requests. C1’s response size remains 20 KB,
while C2’s response size varies from 10 to 200 KB. Fig-
ure 13(c) shows Tamed-HBase, with the hidden con-
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Figure 13: Tamed-HBase Simulation. Problem and solution for (a) no scheduling; (b) unknown resource usage; (c) hidden
contention; (d) blocking; (e) ordering constraints.

tention on network removed, isolates C1 from C2’s reply
size change; Orig-HBase cannot provide isolation.

4.1.4 Blocking

Problem: In the HBase TAM, three stages are bounded
and have a non-empty blocking set: RPC Handle, Mem
Flush, and Log Sync, suggesting the blocking problem
(which actually occurs in production [5]).

Solution: In Tamed-HBase (with stages restructured to
remove hidden contention), we make the CPU and Log
Sync stage asynchronous to fix the blocking problem.

In Figure 13(d) we simulate a workload where initially
both C1 and C2 issue cached Gets. At time 60s C2 re-
quest uncached data, causing threads to block on I/O.
When C2 switches to an I/O intensive workload, Tamed-
HBase allows C1 to achieve high throughput. In contrast,
Orig-HBase delivers very low throughput even though
the system has enough resources to process C1 requests.

4.1.5 Ordering Constraints

Problem: In the HBase TAM, the Data Stream and Data
Xceive stage have ordering constraints and resource us-
ages, which points to the ordering constraint problem
(the Log Sync stage also has ordering constraint, but does
not incur extensive usage on any resources, so does not
lead to the ordering constraint problem).

Solution: By re-designing the consistency mechanism,
the ordering constraint can be removed. For example,
each client can maintain a separate WAL, thus eliminat-
ing the need to preserve request ordering across clients
and removing the ordering constraint in the Log Append
and I/O stage in Tamed-HBase.

We simulate a workload where both C1 and C2 issue 1
KB Puts, resulting in 1 KB WAL appends. Figure 13(e)
shows that unlike in Orig-HBase, where the throughput
drops sharply as C2 issues more requests, Tamed-HBase,
with the ordering constraint removed, is able to isolate
C2’s effect on C1.

4.1.6 Discussion

HBase does attempt to provide scheduling, in the form
of exporting a scheduling API at the RPC Handle stage;
however, this effort is rather incomplete as it fails to solve
any of the scheduling problems HBase possesses, thus
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Figure 14: Tamed-HBase Thread Architecture. Stages
in grey are replaced by new stages.

suggesting the importance of systematic schedulability
analysis. The TAD of Tamed-HBase is shown in Fig-
ure 14. With the aid of TAM, we are able to identify and
solve all of HBase’s scheduling problems (except for the
hidden contention on CPU, which we reduce to a low
level), and transform HBase to provide schedulability.

4.2 Implementing Schedulable HBase

In this section, we demonstrate that real HBase suffers
from the scheduling problems we identified, and fixing
these problems leads to schedulability. The schedula-
ble HBase implementation gives us experience realizing
schedulability in real systems and validates that the TAM
simulations are excellent predictors of the real world.

To match the simulation environment, we run experi-
ments on an 8-node cluster. Each node has two 8-core
CPUs at 2.40 GHz (plus hyper-threading), 128 GB of
RAM, an 480 GB SSD (to run the system) and two
1.2 TB HDD (to host the HDFS data). The nodes are
connected via 10 Gbps network. One node hosts the
HMaster, NameNode, and Secondary NameNode; the
other seven nodes host RegionServers and DataNodes.
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4.2.1 Schedulability in Real Implementation

In §4.1 we showed via simulation how Tamed-HBase
solves the scheduling problems by changing the thread
architecture. However, realizing these changes in im-
plementation may be too difficult and risky; for exam-
ple, making stages asynchronous requires changing the
RPC programming model of HBase, and removing the
ordering constraint is akin to re-designing the consis-
tency mechanism. Thus in implementation we use var-
ious approaches to alleviate the effects of the schedul-
ing problems and approximate the control achieved by
Tamed-HBase, with minimal changes to the TAM; we
call the resulted implementation Muzzled-HBase (for it
is not completely tamed).

No Scheduling: We add scheduling points to the Data
Xceive and Data Stream stages to fix the no scheduling
problem in HBase. Figure 15(a) illustrates that HBase
suffered the no scheduling problem and as a result, the
throughput of client C1 is significantly harmed when
C2 issues more requests; further, it shows that adding
scheduling points at resource-intensive stages provides
performance isolation in the real-world.

Unknown Resource Usage: For ease of implementa-
tion, in Muzzled-HBase we do not move short-circuited
read processing to Data Xceive, as we did for Tamed-
HBase (§4.1.2). Instead, we keep the TAM unchanged
and use speculative execution to work around this prob-
lem. We track the workload pattern of each client; when
the CPU is idle, we speculatively execute requests from
the CPU-intensive clients. If, during speculation, a re-
quest is found to require I/O, it is aborted and put back
on the queue where it is subjected to normal scheduling.

The unknown resource problem that exists in HBase
is shown in Figure 15(b): when client C2 requests in-
cache data, Orig-HBase is not able to efficiently uti-
lize the CPU. Muzzled-HBase with speculative execu-
tion dramatically improves the throughput of C2 with-
out harming C1, achieving roughly the same effects as
Tamed-HBase, though at the cost of wasted CPU cycles.

Hidden Contention: The complete solution to the hid-
den contention problem requires restructuring the TAM;
this is further complicated by the fact that these stages re-

side in two separate processes (RegionServer and DataN-
ode). For implementation simplicity, in Muzzled-HBase
we only combine the RPC Read and RPC Respond stage,
which are mostly responsible for network resource con-
sumption. We work around the remaining contention by
having a controller monitor resource usage and adjust
client weights at each stage. If stage S1 is excessively
using resource on behalf of client C1, the weight of C1
is reduced across all stages so that fewer C1 requests are
issued to S1, forcing S1 to either use fewer resources or
serve other clients; this algorithm is similar to the one
deployed in Retro [37].

Figure 15(c) verifies that HBase suffered hidden con-
tention across multiple stages, which manifests when one
stage consumes more resources on behalf of a particular
client (i.e., more network for C2). The small difference
between the implementation and simulation results for a
reply size of 64KB occurs because in the implementa-
tion, after transferring 64KB, the RPC Respond thread
switches to another request; we did not simulate this de-
tail. With two network-intensive stages combined and
cross-stage coordination, Muzzled-HBase is able to con-
trol the hidden contention and largely ensures isolation,
though incurs extra communication overheads.

Blocking: We work around the blocking problem in the
RPC Handle stage in HBase without changing the RPC
programming model by treating RPC Handle threads as a
resource and allocating them between clients like CPU or
I/O resources. This approach does not eliminate block-
ing, but prevents one client from occupying all threads
and allows other clients to make progress.

The blocking problem that exists within HBase is il-
lustrated in Figure 15(d). In Orig-HBase, when the work-
load of one client switches from CPU to I/O-intensive
(C2 at time 60), both clients are harmed because not
enough threads are available. Our solution, however,
protects C1 from the workload change of C2. The slight
difference in the implementation and simulation results
occurs because we did not simulate page cache effects.

Ordering Constraint: Directly removing ordering con-
straints from the TAM would require re-designing the
consistency mechanism of HBase. In Muzzled-HBase,
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we work around this by scheduling at RPC Handle,
above the ordering-constrained LOG Append stage.
Note that we already schedule based on RPC Handle
time in this stage to solve the blocking problem. Since
threads block until WAL writes are done, under a sta-
ble workload, blocking time is roughly proportional to
the number of downstream requests, and scheduling RPC
Handle time indirectly schedules the WAL writes before
passing it to LOG Append. However, the number of RPC
Handle threads are typically larger than the I/O paral-
lelism in the system, making this approach less effective;
therefore, we compare two settings of Muzzled-HBase,
with 10 or 30 RPC Handle threads.

HBase’s ordering problem is shown in Figure 15(e);
when C2 writes more data, the throughput of C1 suffers.
Again, this problem is alleviated in Muzzled-HBase by
limiting the number of outstanding requests to the lower
stage to 10 or 30; 30 outstanding requests leads to worse
isolation than 10, as C1 competes with more requests
from C2 after they enter RPC Handle.

Summary: The TAD of Muzzled-HBase is shown in
Figure 16. We can see that the no scheduling prob-
lem and the hidden contention between RPC Read and
RPC Respond are fixed. However, it still exhibits other
problems, including unknown resource usage, block-
ing, ordering constraint, and hidden contention among
other stages; changing the thread architecture of HBase
to fix these problems would be too difficult. Various
approaches are used instead to mitigate the effects of
these problems and achieve approximate scheduling con-
trol, but these approaches also incur overheads (e.g.,
wasted CPU cycles on aborted requests or communica-
tion across stages).

On top of Muzzled-HBase, multiple scheduling poli-
cies are implemented, including FIFO, DRF and prior-
ity scheduling. Client identifiers are propagated across

stages with requests, so each scheduler can map requests
back to the originating client. In our implementation,
a centralized controller collects information and coordi-
nates local scheduler behavior; however, other mecha-
nisms such as distributed coordination are also possible.
For now the scheduler only performs network resource
scheduling on server bandwidth; we anticipate incorpo-
rating global network bandwidth allocation [35] in the
future. The final implementation consists of ∼4800 lines
of code modification to HBase and ∼3000 to HDFS.

The performance of Muzzled-HBase for YCSB [17]
is shown in Figure 1. For Figure 1(a), five clients are
each given a different weight and we use DRF-based lo-
cal scheduler to achieve global weighted fairness. Orig-
HBase was unable to provide weighted fairness across
clients with different priorities, instead delivering ap-
proximately equal throughput to each; Muzzled-HBase,
in contrast, enforces weighted fairness as desired. For
Figure 1(b), priority scheduling is implemented atop
Muzzled-HBase by always reserving a small subset of
resources, including the RPC Handle threads for fore-
ground workloads. With Orig-HBase, the tail latencies of
the foreground workload increase significantly when dif-
ferent types of workloads run in background; Muzzled-
HBase, however, is able to maintain stable latencies de-
spite the interference from the background workloads.

4.2.2 Discussion

Schedulability can be achieved by modifying the prob-
lematic TAM to eliminate scheduling problems. How-
ever, as we can see in the case of HBase, changing the
TAM for existing systems usually involves restructuring
the system, which is labor-intensive. To minimize the
changes to the architecture or lower the engineering ef-
fort, often we are forced to keep the same TAM, but use
various approaches to work around its inherent structural
flaws and alleviate the effects of the scheduling prob-
lems. Unfortunately, these approaches only provide ap-
proximate scheduling control and incur overheads.

We thus encourage developers to take schedulability
into consideration in the early phase of system design;
this is especially important in a cloud-based world where
users demand isolation and quality of service guaran-
tees. By specifying the TAM of a system, potential
scheduling problems can be discovered early, avoid-
ing the painful process of retrofitting scheduling con-
trol later. Of course, schedulability may need to be bal-
anced with other system design goals. For example, the
system architects may decide that having a simple syn-
chronous programming model is more important, and ac-
cept blocking at some stages. However, these kind of
compromises should be made only after carefully weigh-
ing the trade-offs between different goals, not just due to
the obliviousness of their schedulability ramification.
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5 Schedulability of Other Systems
Earlier we showed how to transform HBase to provide
schedulability. Other concurrent systems can be ana-
lyzed and tranformed in the same way. Here, we analyze
the schedulability of MongoDB [15], Cassandra [36],
and Riak [33]. Table 2 presents a summary of their
scheduling problems. Some of the problems predicted
by TAM have been experienced in production environ-
ments [4, 5, 6]; these problems and their solutions have
also been verified by simulation results (see [67]).

MongoDB: The TAD of MongoDB is shown in Fig-
ure 3. From its TAM we can identify (a) the unknown
resource usage problem at the Worker stage, which pro-
cesses client requests until completion; (b) the hidden
contention problem in the secondary node; most no-
tably, the Worker and Oplog Writer stages compete for
database locks, causing reads to have unbounded delay
under heavy write load, which is reported in produc-
tion [6]; (c) the blocking problem at the Worker stage.

Lessons: MongoDB resembles the traditional thread-per-
request architecture and thus suffers unknown resource
usage, which stems from the complex execution path
within one thread. The complex path and resource pat-
terns within the Worker stage makes it challenging to
work around this problem. We expect that altering Mon-
goDB to provide schedulability will be difficult and may
require substantial structural changes.

Cassandra: The TAD of Cassandra is shown in Figure 4.
From its TAM we identify (a) unknown resource usage
in the Read, Mutation, View-Mutation stages since those
stages may perform I/O; (b) hidden contention between
many stages for CPU, I/O and network; (c) blocking in
the C-ReqHandle stage.

Lessons: Cassandra closely follows the standard SEDA
architecture, where all activities are managed in con-
trolled stages; unfortunately, schedulability does not au-
tomatically follow. Too many stages with the same re-
source pattern leads to hidden contention and the “in-
ability to balance reads/writes/compaction/flushing”, as
reported by developers [4]; likewise, CPU- and I/O-
intensive operations in the same stage leads to unknown
resource usage. More thoughts on how to divide stages
are needed to build a highly schedulable system. Instead
of dividing stages based on functionality, we recommend
dividing stages based on resource usage patterns to give
more resource information to the scheduler and reduce
hidden competition. Cassandra is currently moving to-
ward this direction: developers have proposed combin-
ing different processing stages into a single non-blocking
stage, and moving I/O to a dedicated thread pool [4].

Riak: The TAD of Riak is shown in Figure 5. From
its TAM we can identify (a) the no scheduling problem
at the Req In-Out and Req Process stages; (b) unknown
resource usage in the Process and Cmd Handle stages;

N U C B O

HBase [24] ✖ ✖ ✖ ✖ ✖

MongoDB [15] ✖ ✖ ✖

Cassandra [36] ✖ ✖ ✖

Riak [33] ✖ ✖ ✖

Table 2: Scheduling Problems Identified From TAM.
✖:have the corresponding problem.

(c) hidden contention across all stages.

Lessons: Riak also closely follows the SEDA architec-
ture. Riak relies heavily on light-weighted processes and
transparent IPC provided by the Erlang virtual machine,
which makes resource management implicit [22]. Creat-
ing a new Erlang process may have low overhead; cre-
ating them on-demand leads to the no scheduling prob-
lem. Similarly, with transparent IPC, many stages may
consume network bandwidth without knowing it, caus-
ing unknown resource usage and hidden contention. To
make Riak schedulable, one must either explicitly man-
age the above mechanisms, or change Erlang VM to al-
low scheduling policies to be passed from Riak to the
VM, which manges the resources.

6 Model Limitations
We have shown that TAM is a useful tool for schedu-
lability analysis and delivers promising results. In this
section we discuss some of its limitations and how we
can extend TAM to further help schedulability analysis.

First, current TAM is best suited for describing SEDA-
like systems, where each thread belongs to a specific
stage. However, in other concurrency models, threads
and stages may not be statically bound. For example, in
a run-to-completion model, a single thread may perform
multiple tasks until a request is completed, and be sched-
uled (possibly by yielding) before each task. In this case,
a stage would be better defined as the execution between
scheduling points, allowing one thread to cross multiple
stages. We leave extending TAM to other concurrency
models to future work.

Second, various workarounds can be used to mitigate
the effects of scheduling problems; most of them involve
coordination among stages or predicting workload char-
acteristics. Encoding these mechanisms into TAM, pos-
sibly in the form of information flow between stages,
would allow it to capture the scheduling effects of in-
direct workarounds.

Finally, even though different systems might possess
the same scheduling problems, the difficulty of fixing
their problems could vary vastly based on the system’s
internal structure and code base. Fixing the unknown
resource problem directly in HBase requires only sepa-
rating the short-circuited read processing from the RPC
Read stage; fixing this problem in MongoDB, however,
requires a major re-structuring of the Worker stage to ac-
count for its complex execution paths. TAM is effective
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in identifying the problems, but does not give many in-
dications on how difficult solving these problems would
be; systematically reasoning about such difficulties is an-
other interesting direction to extend TAM.

7 Related Work
Scheduling as a general problem has been extensively
studied in computer science, manufacturing, operational
research, and many other fields [34, 52, 53, 60]. Our
work differs from the previous ones as we separate
the scheduling problem in distributed storage systems
into two sub-problems: the meta schedulability prob-
lem and the specific scheduling problem. For a general-
purpose storage system that is designed to work for var-
ious workloads and meet various peformance measures,
the schedulability problem is answered at the system de-
sign/build phase, and concerns whether the system of-
fers proper scheduling support: are schedulers placed at
the right points in the system and given necessary infor-
mation and control? Once proper scheduling support is
built in (i.e., the system provides schedulability), the user
can solve his/her own specific scheduling problem: given
her workload, which scheduling policy should she imple-
ment on top of the scheduling support provided by the
system to realize a particular performance goal?

Such separation distinguishes the TAM approach from
other formalization of the scheduling problems, such as
queuing networks [13, 32, 41, 59] or stochastic Petri
nets [18, 46, 60, 70, 71], which focus on solving specific
scheduling problems. For example, traditional queuing
network models encode specific scheduling plan infor-
mation and workload characteristics, and output perfor-
mance measures [43, 50, 59]. One could view TAM as a
queuing network skeleton, stripped of all information but
that available at system design time; our schedulability
analysis aims to derive properties from the limited infor-
mation encoded in TAM that would hold after the TAM
skeleton is augmented with various workload/queing dis-
cipline information to form a complete queuing network.
Some techniques developed in the queuing theory con-
text may be borrowed to prove certain properties of the
TAM [31, 65]; we leave that as future work.

From a more system-oriented perspective, previous
work has focused on proposing scheduling plans that
achieve various specific goals [47, 54, 55, 57, 63, 68].
For example, Pisces [55] discusses how to allocate lo-
cal weights to match client demands and achieve global
fairness; Cake [63] proposes a feedback loop to adjust
local scheduler behavior to provide latency guarantees;
Retro [37] supports different scheduling policies, but by
translating these policies into rate limits at local sched-
ulers. All the above works need proper scheduling sup-
port to enforce their plans. As current systems usually
lack such support (§5), people indeed encouter the five
categories of problems we have identified during the re-

alization of their scheduling plans [38, 54, 63, 68]: Mace
et al. found that unknown resource usage and blocking
prevented them from achieving fairness [38]; Cake [63]
had to add scheduling points to HDFS to enforce SLOs.
However, in these systems the encountered problems are
solved in an ad hoc manner; the solutions are often buried
in implementation details or not discussed at all. A gen-
eral framework that addresses the schedulability problem
explicitly and systematically is thus strongly called for.

Monotasks [44] advocates an architecture in which
jobs are broken into units of work that each use a single
resource, and each resource is managed with a dedicated
scheduler. From the TAM perspective, such an architec-
ture eliminates the unknown resource usage and the hid-
den contention problem, allowing the system to provide
better schedulability. The authors indeed observe that
this architecture “allows MonoSpark to avoid resource
contention and under utilization”, as predicted by TAM.

Our work is also similar to SEDA [64] and Flash [45]
in the sense that it studies and modifies the thread struc-
ture and interactions to improve system performance.
Like our work, Capriccio [61] automatically deduces a
flow graph and places scheduling points at the graph
nodes for thread scheduling.

8 Conclusions
With sharing being one of the key aspects of modern
scalable storage systems, correct and flexible schedul-
ing becomes a central goal in system design. To en-
sure scheduling works as desired, schedulability analysis
should be included as an integrated part of the concur-
rency architecture. The thread architecture model pro-
vides a systematic way of performing such analysis, thus
turning the art of enabling effective scheduling into a
science that is easily accessible and automatable. The
software for schedulability analysis (e.g., TADalyzer and
the TAM-based simulation framework) is available at
http://research.cs.wisc.edu/adsl/Software/TAM.
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ABSTRACT
Modern On-Line Data Intensive (OLDI) applications have
evolved from monolithic systems to instead comprise
numerous, distributed microservices interacting via Re-
mote Procedure Calls (RPCs). Microservices face sub-
millisecond (sub-ms) RPC latency goals, much tighter
than their monolithic counterparts that must meet ≥ 100
ms latency targets. Sub-ms–scale threading and concur-
rency design effects that were once insignificant for such
monolithic services can now come to dominate in the
sub-ms–scale microservice regime. We investigate how
threading design critically impacts microservice tail la-
tency by developing a taxonomy of threading models—a
structured understanding of the implications of how mi-
croservices manage concurrency and interact with RPC
interfaces under wide-ranging loads. We develop µTune,
a system that has two features: (1) a novel framework that
abstracts threading model implementation from applica-
tion code, and (2) an automatic load adaptation system
that curtails microservice tail latency by exploiting in-
herent latency trade-offs revealed in our taxonomy to
transition among threading models. We study µTune in
the context of four OLDI applications to demonstrate up
to 1.9× tail latency improvement over static threading
choices and state-of-the-art adaptation techniques.

1 Introduction
On-Line Data Intensive (OLDI) applications, such as web
search, advertising, and online retail, form a major frac-
tion of data center applications [113]. Meeting soft real-
time deadlines in the form of Service Level Objectives
(SLOs) determines end-user experience [21, 46, 55, 95]
and is of paramount importance. Whereas OLDI appli-
cations once had largely monolithic software architec-
tures [50], modern OLDI applications comprise numer-
ous, distributed microservices [66, 90, 116] like HTTP
connection termination, key-value serving [72], query
rewriting [48], click tracking, access-control manage-

ment, protocol routing [25], etc. Several companies,
such as Amazon [6], Netflix [1], Gilt [37], LinkedIn [17],
and SoundCloud [9], have adopted microservice architec-
tures to improve OLDI development and scalability [144].
These microservices are composed via standardized Re-
mote Procedure Call (RPC) interfaces, such as Google’s
Stubby and gRPC [18] or Facebook/Apache’s Thrift [14].

Whereas monolithic applications face ≥ 100 ms
tail (99th+%) latency SLOs (e.g.,∼300 ms for web
search [126, 133, 142, 150]), microservices must often
achieve sub-ms (e.g., ∼100 µs for protocol routing [151])
tail latencies as many microservices must be invoked se-
rially to serve a user’s query. For example, a Facebook
news feed service [79] query may flow through a serial
pipeline of many microservices, such as (1) Sigma [15]:
a spam filter, (2) McRouter [118]: a protocol router, (3)
Tao [56]: a distributed social graph data store, (4) My-
Rocks [29]: a user database, etc., thereby placing tight
sub-ms latency SLOs on individual microservices. We ex-
pect continued growth in OLDI data sets and applications
to require composition of ever more microservices with
increasingly complex interactions. Hence, the pressure
for better microservice latency SLOs continually mounts.

Threading and concurrency design have been shown
to critically affect OLDI response latency [76, 148]. But,
prior works [71] focus on monolithic services, which
typically have ≥ 100 ms tail SLOs [111]. Hence, sub-ms–
scale OS and network overheads (e.g., a context switch
cost of 5-20 µs [101, 141]) are often insignificant for
monolithic services. However, sub-ms–scale microser-
vices differ intrinsically: spurious context switches, net-
work/RPC protocol delays, inept thread wakeups, or lock
contention can dominate microservice latency distribu-
tions [39]. For example, even a single 20µs spurious con-
text switch implies a 20% latency penalty for a request to a
100 µs SLO protocol routing microservice [151]. Hence,
prior conclusions must be revisited for the microservice
regime [49].

In this paper, we study how threading design affects mi-
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croservice tail latency, and leverage these design effects
to dynamically improve tails. We develop a system called
µTune, which features a framework that builds upon open-
source RPC platforms [18] to enable microservices to ab-
stract threading model design from service code. We ana-
lyze a taxonomy of threading models enabled by µTune.
We examine synchronous or asynchronous RPCs, in-line
or dispatched RPC handlers, and interrupt- or poll-based
network reception. We also vary thread pool sizes dedi-
cated to various purposes (network polling, RPC handling,
response execution). These design axes yield a rich space
of microservice architectures that interact with the un-
derlying OS and hardware in starkly varied ways. These
threading models often have surprising OS and hardware
performance effects including cache locality and pollu-
tion, scheduling overheads, and lock contention.

We study µTune in the context of four full OLDI ser-
vices adopted from µSuite [134]. Each service com-
prises sub-ms microservices that operate on large data
sets. We focus our study on mid-tier microservers: widely-
used [50] microservices that accept service-specific RPC
queries, fan them out to leaf microservers that perform
relevant computations on their respective data shards,
and then return results to be integrated by the mid-tier
microserver, as illustrated in Fig. 1. The mid-tier mi-
croserver is a particularly interesting object of study since
(1) it acts as both an RPC client and an RPC server, (2) it
must manage fan-out of a single incoming query to many
leaf microservers, and (3) its computation typically takes
tens of microseconds, about as long as OS, networking,
and RPC overheads.

We investigate threading models for mid-tier microser-
vices. Our results show that the best threading model de-
pends critically on the offered load. For example, at low
loads, models that poll for network traffic perform best,
as they avoid expensive OS thread wakeups. Conversely,
at high loads, models that separate network polling from
RPC execution enable higher service capacity and block-
ing outperforms polling for incoming network traffic as it
avoids wasting precious CPU on fruitless poll loops.

We find that the relationship between optimal threading
model and service load is complex—one could not expect
a developer to pick the best threading model a priori. So,
we build an intelligent system that uses offline profiling
to automatically adapt to time-varying service load.

µTune’s second feature is an adaptation system that
determines load via event-based load monitoring and
tunes both the threading model (polling vs. blocking
network reception; inline vs. dispatched RPC execution)
and thread pool sizes in response to load changes. µTune
improves tail latency by up to 1.9× over static peak load-
sustaining threading models and state-of-the-art adapta-
tion techniques, with < 5% mean latency and instruction
overhead. Hence, µTune can be used to dynamically cur-
tail sub-ms–scale OS/network overheads that dominate in
modern microservices.

In summary, we contribute:

• A taxonomy of threading models: A structured un-
derstanding of microservice threading models and
their implications on performance.

• µTune’s framework 1 for developing microservices,
which supports a wide variety of threading models.

• µTune’s load adaptation system for tuning thread-
ing models and thread pools under varying loads.

• A detailed performance study of OLDI services’ key
tier built with µTune: the mid-tier microserver.

2 Motivation
We motivate the need for a threading taxonomy and adap-
tation systems that respond rapidly to wide-ranging loads.

Many prior works have studied leaf servers [63, 107,
108, 123, 142, 143], as they are typically most numer-
ous, making them cost-critical. Mid-tier servers [68, 98],
which manage both incoming and outgoing RPCs to many
clients and leaves, perhaps face greater tail latency opti-
mization challenges, but have not been similarly scruti-
nized. Their network fan-out multiplies underlying soft-
ware stack interactions. Hence, performance and scalabil-
ity depend critically on mid-tier threading model design.

Expert developers extensively tune critical OLDI ser-
vices via trial-and-error or experience-based intuition [84].
Few services can afford such effort; for the rest, we must
appeal to software frameworks and automatic adaptation
to improve performance. µTune aims to empower small
teams to develop performant mid-tier microservices that
meet latency goals without enormous tuning efforts.

The need for a threading model taxonomy. We de-
velop a structured understanding of rational design op-
tions for architecting microservices’ OS/network interac-
tions in the form of a taxonomy of threading models. We
1Available at https://github.com/wenischlab/MicroTune
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by 1.35x at low load, and saturates at high load.

study these models’ latency effects under diverse loads to
offer guidance on when certain models perform best.

Prior works [69,83,84,146,148] broadly classify mono-
lithic services as: thread-per-request synchronous or
event-driven asynchronous. We note threading design
space dimensions beyond these coarse-grain designs. We
build on prior works’ insights, such as varying parallelism
to reduce tail latency [76], to consider a more diverse tax-
onomy and spot sub-ms performance concerns.

The need for automatic load adaptation. Subtle
changes in a microservice’s OS interaction (e.g., how
it accepts incoming RPCs) can cause large tail latency
differences. For example, Fig. 2 depicts the 99th% tail
latency for a sample RPC handled by an example mid-tier
microservice as a function of load. We use a mid-tier mi-
croserver with 36 physical cores that dispatches requests
received from the front-end to a group of worker threads
which then invoke synchronous calls to the leaves. The
yellow line is the tail latency when we dedicate a thread
to poll for incoming network traffic in a CPU-unyielding
spin loop. The blue line blocks on the OS socket interface
awaiting work to the same RPC handler. We see a stark
load-based performance inflection even for these simple
designs. At low load, a poll-based model gains 1.35× la-
tency as it avoids OS thread wakeups. Conversely, at high
load, fruitless poll loops waste precious CPU that might
handle RPCs. The poll-based model becomes saturated,
with arrivals exceeding service capacity and unbounded
latency growth. Blocking-based models conserve CPU
and are more scalable.

We assert that such design trade-offs are not obvious:
no single threading model is optimal at all loads, and even
expert developers have difficulty making good choices.
Moreover, most software adopts a threading model at
design time and offers no provision to vary it at runtime.

A microservice framework. Instead, we propose a
novel microservice framework in µTune that abstracts
threading design from the RPC handlers. The µTune sys-

tem adapts to load by choosing optimal threading models
and thread pool sizes dynamically to reduce tail latency.

µTune aims to allow a microservice to be built once
and be scalable across wide-ranging loads. Many OLDI
services experience drastic diurnal load variations [79].
Others may face “flash crowds” that cause sudden load
spikes (e.g., intense traffic after a major news event). New
OLDI services may encounter explosive customer growth
that surpasses capacity planning (e.g., the meteoric launch
of Pokemon Go [31]). Supporting load scalability over
many orders of magnitude in a single framework facili-
tates rapid scale-up of a popular new service.

3 A Taxonomy of Threading Models
A threading model is a software system design choice that
governs how responsibility for key application functional-
ity will be divided among threads and how the application
will achieve request concurrency. Threading models criti-
cally impact the service’s throughput, latency, scalability,
and programmability. We characterize preemptive instead
of co-operative (e.g., node.js [140]) threading models.

3.1 Key dimensions
We identify three threading model dimensions and discuss
their programmability and performance implications.

Synchronous vs. asynchronous communication.
Prior works have identified synchronous vs. asynchronous
communication as a key design choice in monolithic
OLDI services [69,83,84,146,148]. Synchronous models
map a request to a single thread throughout its lifetime.
Request state is implicitly tracked via the thread’s PC
and stack—programmers simply maintain request state in
automatic variables. Threads use blocking I/O to await
responses from storage or leaf nodes. In contrast, asyn-
chronous models are event-based—programmers explic-
itly define state machines for a request’s progress [83].
Any ready thread may progress a request upon event re-
ception; threads and requests are not associated.

Programmability: Synchronous models are typically
easier to program, as they entail writing straight-forward
code without worrying about elusive concurrency-related
subtleties. Conversely, asynchronous models require ex-
plicit reasoning about request state, synchronization, and
races. Ensuing code is often characterized as “spaghetti”—
control flow is obscured by callbacks, continuations, fu-
tures, promises, and other sophisticated paradigms. Due
to this vast programmability gap, we spent three weeks
implementing synchronous and four months for asyn-
chronous models.

Performance: As synchronous models await leaf re-
sponses before progressing new requests, they face re-
quest/response queuing delays, producing worse response
latencies and throughput than asynchronous [69,114,146].
Adding more synchronous threads can allay queuing, but
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can induce secondary bottlenecks, such as cache pollution,
lock contention, and scheduling/thread wakeup delays.

Synchronous apps: Azure SQL [5], Google Cloud
SQL’s Redmine [10, 100], MongoDB replication [28]

Asynchronous apps: Apache [3], Azure blob
storage [27], Redis replication [34], Server-Side
Mashup [105], CORBA Model, Aerospike [2]

In-line vs. dispatch-based RPC processing. In in-
line models, a single thread manages the entire RPC
lifetime, from the point where it is accepted from the
RPC library until its response is returned. Dispatch-based
models separate responsibilities between network threads,
which accept new requests from the underlying RPC in-
terface, and worker threads, which execute RPC handlers.

Programmability: In-line models are simple; thread
pools block/poll on the RPC arrival queue and execute
an RPC completely before receiving another. Dispatched
models are more complex; RPCs are explicitly passed
from network to worker threads via thread-safe queues.

Performance: In-line models avoid the explicit state
hand-off and thread-hop to pass work from network to
worker threads. Hence, they are efficient at low loads and
for short requests, where dispatch overheads dominate
service times. But, if a single thread cannot sustain the
service load, multiple threads contending to accept work
typically outweighs hand-off costs, which can be carefully
honed. In-line models are prone to high queuing, as each
thread processes whichever request it receives. In contrast,
dispatched models can explicitly prioritize requests.

In-line apps: Redis [41, 58], MapReduce workers [64]
Apps that dispatch: IBM’s WebSphere for z/OS [22,

81], Oracle’s EDT image search [20], Mule ESB [12],
Malwarebytes [19], Celery for RabbitMQ and Redis [11],
Resque [35] and RQ [36] Redis queues, NetCDF [74]

Block- vs. poll-based RPC reception. While the syn-
chronous and in-line dimensions address outgoing RPCs,
the block vs. poll dimension concerns incoming RPCs. In
block-based models, threads await new work via block-
ing system calls, yielding CPU if no work is available.
Threads block on I/O interfaces (e.g., read() or epoll()
system calls) awaiting work. In poll-based models, a
thread spins in a loop, continuously looking for new work.

Performance: The poll vs. block trade-off is intrinsic:
polling reduces latency, while blocking frees a waiting
CPU to perform other work. Polling incurs lower latency
as it avoids OS thread wakeups [106] to which blocking
is prone. But, polling wastes CPU time in fruitless poll
loops, especially at low loads. Yet, many latency-sensitive
services opt to poll [34], perhaps solely to avoid unex-
pected hardware or OS actions, such as a slow transition
to a low-power mode [51]. Many polling threads can
contend to cause pathologically poor performance [88].

Apps that block: Redis BLPOP [7]
Apps that poll: Intel’s DPDK Poll Driver [32], Re-
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Figure 3: Execution of an RPC by (a) SIB/SIP (b) SDB/SDP

dis replication [34], Redis LPOP [24], DoS attacks and
defenses [117, 125, 132], GCP Health Checker [38]

These three dimensions lead to eight mid-tier threading
models. We also vary thread pool sizes for these models.

3.2 Synchronous models
In synchronous models, we create maximally sized thread
pools on start-up and then “park” extraneous threads on
condition variables, to rapidly supply threads as needed
without pthread_create() call overheads. To simplify
our figures, we omit parked threads from them.

The main thread handling each RPC uses fork-join par-
allelism to fan concurrent requests out to many leaves.
The main thread wakes a parked thread to issue each out-
going RPC, blocking on its reply. As replies arrive, these
threads decrement a shared atomic counter before parking
on a condition variable to track the last reply. The last
reply signals the main thread to execute the continuation
that merges leaf results and responds to the client.

We next detail each synchronous model with respect to
a single RPC execution. For simplicity, our figures show
a three-tier service with a single client, mid-tier, and leaf.

Synchronous In-line Block (SIB). This model is the
simplest, having only a single thread pool (Fig. 3(a)). In-
line threads block on network sockets awaiting work, and
then execute a received RPC to completion, signalling
parked threads for outgoing RPCs as needed. The thread
pool must grow with higher load.

Synchronous In-line Poll (SIP). SIP differs from SIB
in that threads poll for new work using non-blocking APIs
(Fig. 3(a)). SIP avoids blocked thread wakeups when
work arrives, but, each in-line thread fully utilizes a CPU.

Synchronous Dispatch Block (SDB). SDB comprises
two thread pools (Fig. 3(b)). The network threads block
on socket APIs awaiting new work. But, rather than exe-
cuting the RPC, they dispatch the RPC to a worker thread
pool by using producer-consumer task-queues and sig-
nalling condition variables. Workers pull requests from
task queues, and then process them much like the prior
in-line threads (i.e., forking for fan-out and issuing syn-
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chronous leaf requests). A worker sends the RPC reply to
the front-end, before blocking on the condition variable
to await new work. Both network and worker pool sizes
are variable. Concurrency is limited by the worker pool
size. Typically, a single network thread is sufficient.

SDB restricts incoming socket interactions to the net-
work threads, which improves locality; RPC and OS in-
terface data structures do not migrate among threads.

Synchronous Dispatch Poll (SDP). In SDP, network
threads poll on front-end sockets for new work (Fig. 3(b)).

3.3 Asynchronous models
Asynchronous models differ from synchronous in that
they do not tie an execution thread to a specific RPC—all
RPC state is explicit. Such models are event-based—an
event, such as a leaf request completion, arrives on any
thread and is matched to its parent RPC using shared
data structures. So, any thread may progress any RPC
through its next execution stage. This approach requires
drastically fewer thread switches during an RPC lifetime.
For example, leaf request fan-outs require a simple for
loop, instead of a complex fork-and-wait.

To aid non-blocking calls to both leaves and front-end
servers, we add another thread pool that exclusively han-
dles leaf server responses—the response thread pool.

Asynchronous In-line Block (AIB). AIB (Fig. 4(a))
uses in-line threads to handle incoming front-end requests,
and response threads to execute leaf responses. Both
thread pools block on their respective sockets awaiting
new work. An in-line thread initializes a data structure
for an RPC, records the number of leaf responses it ex-
pects, records a functor for the continuation to execute
when the last response returns, and then fans leaf requests
out in a simple for loop. Responses arrive (potentially
concurrently) on response threads, which record their
results in the RPC data structure and count down until
the last response arrives. The final response invokes the
continuation to merge responses and complete the RPC.

Asynchronous In-line Poll (AIP). In AIP, in-line and
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Figure 5: µTune: system design

response threads poll their respective sockets (Fig. 4(a)).
Asynchronous Dispatch Block (ADB). In ADB, dis-

patch enables network thread concentration, improving
locality and socket contention (Fig. 4(b)). Like SDB,
network and worker threads accept and execute RPCs, re-
spectively. Response threads count-down and merge leaf
responses. We do not explicitly dispatch responses, as all
but the last response thread do negligible work (stashing
a response packet and decrementing a counter). All three
thread pools vary in size. Typically, one network thread
is sufficient, while the other pools must scale with load.

Asynchronous Dispatch Poll (ADP). Network and re-
sponse threads poll for new work (Fig. 4(b)).

4 µTune: System Design
µTune has two features: (a) an implementation of all eight
threading models, abstracting RPC (OS/network interac-
tions) within the framework (Fig. 5(a)); and (b) an adapta-
tion system that judiciously tunes threading models under
changing load (Fig. 5(b)). µTune’s system design chal-
lenges include (1) offering a simple interface that abstracts
threading from service code, (2) quick load shift detection
for efficient dynamic adaptation, (3) adept threading mod-
els switches, and (4) sizing thread pools without thread
creation, deletion, or management overheads. We discuss
how µTune’s design meets these challenges.

Framework. µTune abstracts the threading model
boiler-plate code from service-specific RPC implementa-
tion details, wrapping the underlying RPC API. µTune
enables characterizing the pros and cons of each model.

µTune offers a simple abstraction where service-
specific code must implement RPC execution interfaces.
For synchronous modes, the service must supply a Pro-
cessRequest() method per RPC. ProcessRequest()
is invoked by in-line or worker threads. This method pre-
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pares a concurrent outgoing leaf RPC batch and passes
it to InvokeLeaf(), which fans it out to leaf nodes. In-
vokeLeaf() returns to ProcessRequest() after receiv-
ing all leaf replies. The ProcessRequest() continua-
tion merges replies and forms a response to the client.

For asynchronous modes, µTune’s interface is slightly
more complex. Again, the service must supply Process-

Request(), but, it must explicitly represent RPC state in
a shared data structure. ProcessRequest() may make
one/more calls to InvokeLeafAsync(). These calls are
passed an outgoing RPC batch, a tag identifying the par-
ent RPC, and a FinalizeResponse() callback. The
tags enable request-response matching. The last arriving
response thread invokes FinalizeReponse(), which
may access the RPC data structure and response protocol
buffers from each leaf. A developer must ensure thread-
safety. FinalizeResponse() may be invoked any time
after InvokeLeafAsync(), and may be concurrent with
ProcessRequest(). Reasoning about races is the key
challenge of asynchronous RPC implementation.

Automatic load adaptation. A key feature of µTune
is its ability to automatically select among threading mod-
els in response to load, thereby relieving developers of
the burden of selecting a threading model a priori.

Synchronous vs. asynchronous microservices have a
major programmability gap. Although µTune’s frame-
work hides some complexity, it is not possible to switch
automatically and dynamically between synchronous and
asynchronous modes, as their API and application code
requirements necessarily differ. If an asynchronous imple-
mentation is available, it will outperform its synchronous
counterpart. So, we build µTune’s adaption separately for
synchronous and asynchronous models.

µTune picks the latency-optimal model among the four
options (in-line vs. dispatch; block vs. poll) and tunes
thread pool sizes dynamically with load. µTune aims
to curtail 99th% tail latency. It monitors service load
and (a) picks a latency-optimal threading model, then (b)
scales thread pools by parking/unparking threads. Both
adaptations use profiles generated during an offline train-
ing phase. We describe the training and adaptation steps
shown in Fig. 5(b).

Training phase. (1) During offline characterization,
we use a synthetic load generator to drive specific load
levels for sustained intervals. During these intervals, we
vary threading model and thread pool sizes and observe
99th% tail latencies. The load generator then ramps load
incrementally, and we re-characterize at each load step.
(2) µTune then builds a piece-wise linear model relating
offered load to observed tail latency at each load level.

Runtime adaptation. (1) µTune uses event-based win-
dowing to monitor loads offered to the mid-tier at runtime.
(2) µTune records each request’s arrival timestamp in a cir-
cular buffer. (3) It then estimates the inter-arrival rate by

using the circular buffer’s size, and youngest and oldest
recorded timestamps. The adaptation system’s respon-
siveness can be tuned by adjusting the circular buffer’s
size. Careful buffer size tuning can ensure quick, efficient
adaptation by avoiding oscillations triggered by outliers.
Event-based monitoring can quickly detect precipitous
load increases. (4) The inter-arrival rate estimate is then
fed as input to the switching logic that interpolates within
the piece-wise linear model to estimate tail latency for
each configuration under each model and thread pool
size. (5) µTune then transitions to the predicted lowest
latency threading model. µTune transitions by “parking”
the current threading model and “unparking” the newly
selected model using its framework abstraction and condi-
tion variable signaling, to (a) alternate between poll/block
socket reception, (b) process requests in-line or via prede-
fined task queues that dispatch requests to workers, or (c)
park/unpark various thread pools’ threads to handle new
requests. Successive asynchronous requests invoke the
(6) ProcessRequest(), (7) InvokeLeafAsync(), and
(10) FinalizeResponse() pipeline as dictated by the
new threading model. In-flight requests during transitions
are handled by the earlier model.

5 Implementation
Framework. µTune builds upon Google’s open-source
gRPC [18] library, which uses protocol buffers [33]—a
language-independent interface definition language and
wire format—to exchange RPCs. µTune’s mid-tier frame-
work uses gRPC’s C++ APIs: (1) Next() and Async-

Next() with a zero second timeout are used to respec-
tively block or poll for client requests, (2) RPCName()
and AsyncRPCName() are called via gRPC’s stub object
to send requests to leaves. µTune’s asynchronous models
explicitly track request state using finite state machines.
Asynchronous models’ response threads call Next() or
AsyncNext() for block- or poll-based receive.

µTune uses AsyncRPCName() to handle asynchronous
clients. For asynchronous µTune, leaves must use gRPC’s
Next() APIs to accept requests through explicitly man-
aged completion queues; for synchronous, the leaves can
use underlying synchronous gRPC abstractions.

Using µTune’s framework to build a new microservice
is simple, as only a few service specific functions must be
defined. We took ∼2 days for each service in Sec. 6.

Automatic load adaptation. We construct the piece-
wise linear model of tail latency by averaging five 30s
measurements of each threading model-thread pool pair at
varying loads. µTune’s load detection relies on a thread-
safe circular buffer built using scoped locks and condition
variables. The circular buffer capacity is tuned to quickly
detect load transients while avoiding oscillation. We use a
5-entry circular buffer in all experiments. µTune’s switch-
ing logic uses C++ atomics and condition variables to
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switch among threading models seamlessly. µTune’s
adaptation code spans 2371 LOC of C++.

6 Experimental Setup
We characterize threading models in the context of four
information retrieval OLDI applications’ mid-tier and leaf
microservices adopted from µSuite [134].

HDSearch. HDSearch performs content-based image
similarity search by matching nearest neighbors (NN) in
a high-dimensional feature space. It serves a 500K image
corpus from Google’s Open Images data set [30]. Each
image is indexed via a 2048-dimensional feature vector
created using Google’s Inception V3 model [136] imple-
mented in TensorFlow [42]. HDSearch locates response
images whose feature vectors are near the query’s [65,96].

Mid-tier microservice. Modern k-NN libraries use in-
dexing structures, such as Locality-Sensitive Hash (LSH)
tables, kd-trees, or k-means, to reduce exponentially the
search space relative to brute-force linear search [44, 52,
75,85,110,129,137–139]. HDSearch’s mid-tier uses LSH
(an accurate and fast algorithm [45, 62, 67, 131]) via an
open-source k-NN library called Fast Library for Approx-
imate Nearest Neighbors (FLANN) [115]. The mid-tier’s
LSH tables store {leaf-server, point id} tuples indicating
feature vectors in the leaf’s data shards. While executing
RPCs, the mid-tier probes its in-memory LSH tables to
gather potential NNs. It then sends RPCs with potential
NN point IDs to the leaves. Leaves compute distances
to return a distance-sorted list. The mid-tier merges leaf
responses to return the k-NN across all shards.

Leaf microservice. The leaf’s distance computations
are embarrassingly parallel, and can be accelerated with
SIMD, multi-threading, and distributed computing [65].
We employ all techniques. We distribute distance compu-
tations over multiple leaves until the distance computation
time and network communication overheads are roughly
balanced. Hence, the mid-tier’s latency, and its ability
to fan out RPCs quickly, becomes critical: the mid-tier
microservice and network overheads limit the leaf mi-
croservice’s scalability. Leaves compare query feature
vectors against point lists received from the mid-tier using
the high-accuracy Euclidean distance metric [75].

Router. Router performs replication-based protocol
routing for scaling fault-tolerant key-value stores. Queries
are get or set requests. Gets contain keys, and return
the corresponding value. Sets contain key-value pairs,
and return a set completion acknowledgement. Get and
set query distributions mimic YCSB’s Workload A [59]
(1:1 ratio). Queries are from a "Twitter" data set [71].

Mid-tier microservice. The mid-tier uses Spooky-
Hash [8] to distribute keys uniformly across leaf mi-
croservers and route get and set queries. Router repli-
cates data for better availability, allowing the same data to
reside on several leaves. The mid-tier routes sets to all

replicas and distributes gets among replicas. The mid-
tier merges leaf responses and sends them to the client.

Leaf microservice. The leaf microserver builds a gRPC-
based communication wrapper around a memcached [72]
instance, exporting get and set RPCs.

Set Algebra. Set Algebra performs document
search by intersecting posting lists. It searches a cor-
pus of 4.3 million WikiText documents in Wikipedia [40]
sharded uniformly across leaf microservers, to identify
documents containing all search terms. Leaf microservers
index posting lists for each term in their shard of the
document corpus. Stop words determined by collection
frequency [149] are excluded from the term index to re-
duce leaf computation. Search queries (typically a series
of ≤ 10 words [4]) are synthetically generated based on
the probability of word occurrences in Wikipedia [40].

Mid-tier microservice. The mid-tier forwards client
queries containing search terms to the leaf microservers,
which then return intersected posting lists to the mid-tier
for their respective shards. The mid-tier aggregates the
per-shard posting lists and returns their union to the client.

Leaf microservice. Leaves look up posting lists for
all search terms and then intersect the sorted lists. The
resulting intersection is returned to the mid-tier.

Recommend. Recommend is a recommendation ser-
vice that performs user-based collaborative filtering on a
data set of 10K {user, item, rating} tuples—derived from
the MovieLens movie recommendation data set [78]—to
predict a user’s rating for an item. The data set is sharded
equally among leaves. Recommend uses a fast, flexible
open-source ML library called mlpack [60] to perform
collaborative filtering using matrix decomposition.

Mid-tier microservice. The mid-tier gets {user, item}
query pairs and forwards them to the leaves. Item ratings
sent by the leaves are averaged and sent to the client.

Leaf microservice. Leaves perform collaborative
filtering on a pre-composed matrix of {user,item,rating}
tuples. Rating predictions are then sent to the mid-tier.

We use a load generator that mimics many clients to
send queries to each mid-tier microservice under con-
trolled load scenarios. It operates in a closed-loop mode
while measuring peak sustainable throughput. We mea-
sure end-to-end (across all microservices) 99th% latency
by operating the load generator in open-loop mode with
Poisson inter-arrivals [57]. The load generator runs on
separate hardware and we validated that the load generator
and network bandwidth are not performance bottlenecks.

Our distributed system has a load generator, a mid-tier
microservice, and (1) four-way sharded leaf microservice
for HDSearch, Set Algebra, and Recommend and (2)
16-way sharded leaf microservice with three replicas for
Router. The hardware configuration of our measurement
setup is in Table 1. The leaf microservers run within
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Table 1: Mid-tier microservice hardware specification.

Processor Intel Xeon E5-2699 v3 “Haswell”
Clock frequency 2.30 GHz

Cores / HW threads 36 / 72
DRAM 500 GB
Network 10Gbit/s

Linux kernel version 3.19.0

Linux tasksets limiting them to 20 logical cores for
HDSearch, Set Algebra, and Recommend and 5 logical
cores for Router. Each microservice runs on a dedicated
machine. The mid-tier is not CPU bound; saturation
throughput is limited by leaf server CPU.

To test the effectiveness of µTune’s load adaptation
system and measure its responsiveness to load changes,
we construct the following load generator scenarios. (1)
Load ramp: We increase offered load in discrete 30s steps
from 20 Queries Per Second (QPS) up to a microservice-
specific near-saturation load. (2) Flash crowd: We in-
crease load suddenly from 100 QPS to 8K/13K QPS. In
addition to performance metrics measured by our load
generator, we also report OS and microarchitectural statis-
tics. We use Linux’s perf utility to profile the number of
cache misses and context switches incurred by the mid-
tier microservice. We use Intel’s HITM (hit-Modified)
PEBS coherence event to detect true sharing of cache
lines; an increase in HITM events indicates a correspond-
ing increase in lock contention [109]. We measure thread
wakeup delays (reported as latency histograms) using the
BPF run queue (scheduler) latency tool [23].

7 Evaluation
We first characterize our threading models. We then com-
pare µTune to state-of-the-art adaptation systems.

7.1 Threading model characterization
We explore microservice threading models by first com-
paring synchronous vs. asynchronous performance. We
then separately explore trade-offs among the synchronous
and asynchronous models to report how the latency-
optimal threading model varies with load.

7.1.1 Synchronous vs. Asynchronous
The synchronous vs. asynchronous trade-off is one of
programmability vs. performance. It would be unusual
for a development team to construct both microservice
designs; if the team invests in the asynchronous design,
it will almost certainly be more performant. Still, our
performance study serves to quantify this gap.

Saturation throughput. We record saturation
throughput for the “best” threading model at saturation
(SDB/ADB). In Fig. 6, we see that the greater asyn-
chronous efficiency improves saturation throughput for
µTune’s asynchronous models, a 42% mean throughput
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Figure 6: Sync. vs. async. saturation throughput: async. does
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Figure 7: Best sync:async tail latency ratio: async. is faster by a
mean 12% at sync.-achievable loads & infinitely faster at high
loads.

boost across all services. But, we spent 5× more effort to
build, debug, and tune the asynchronous models.

Tail latency. Latency cannot meaningfully be mea-
sured at saturation, as the offered load is unsustainable
and queuing delays grow unbounded. So, we compare tail
latencies at load levels from 64 QPS up to synchronous
saturation. In Fig. 7, we show the best sync-to-async ra-
tio of 99th% tail latency across all threading models and
thread pool sizes at each load level; we study inter-model
latencies later. We find asynchronous models improve tail
latency up to ∼ 1.3× (mean of ∼ 1.12×) over synchronous
models (for loads that synchronous models can sustain;
i.e., ≤ 8K). This substantial tail latency gap arises because
asynchronous models prevent long queuing delays.

7.1.2 Synchronous models
We study the tail latency vs. load trade-off for services
built with µTune’s synchronous models. We show a cross-
product of the threading taxonomy across loads for HD-
Search in Fig. 8. Each data point is the best 99th% tail
latency for that threading model and load based on an ex-
haustive thread pool size search. Points above the dashed
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Figure 8: Graph: Latency vs. load trade-off for HDSearch sync.
models. Table: Latencies at each load normalized to the best
latency for that load—No threading model is always the best.

line are in saturation, where tail latencies are very high
and meaningless. The table reports the same graph data
with each load latency normalized to the best latency for
that load, which is highlighted in blue. We omit graphs
for other applications as they match the HDSearch trends.

We make the following observations:
SDB enables highest load. SDB, with a single net-

work thread and a large worker pool of 50 threads is the
only model that sustains peak loads (≥ 10K QPS). SDB
is best at high loads as (1) its worker pool has enough
concurrency so that leaf microservers, rather than the
mid-tier, pose the bottleneck; and (2) the single network
thread is enough to accept and dispatch the offered load.
SDB outperforms SDP at high load as polling consumes
CPU in fruitless poll loops. For example, at 10,000 QPS,
the mid-tier microserver receives one query every 100
microseconds. In SDP, poll loops are often shorter than
100 microseconds. Hence, some poll loops that do not
retrieve any requests are wasted work and may delay crit-
ical work scheduling, such as RPC response processing.
Under SDB, the CPU time wasted in empty poll loops
can instead be used to progress an ongoing request.

SIP has lowest latency at low load. While SDB sus-
tains peak loads, it is latency-suboptimal at low loads. SIP
offers 1.4× better low-load tail latency by avoiding up to
two OS thread wakeups relative to alternative models: (1)
network thread wakeups via interrupts on query arrivals,
and (2) worker wakeups for RPC dispatch. Work hand-off
among threads may cause OS-induced scheduling tails.

SDP is best at intermediate loads. SIP ceases being
the best model when the offered load grows too large for
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incurs more wakeups.
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Figure 10: Relative frequency of sync. contention, context
switches & cache misses at 10K QPS: SIP does worst.

one in-line thread to sustain. Adding more in-line polling
threads causes contention in the OS and RPC reception
code paths. Additional in-line blocking threads are less
disruptive, but SIB never outperforms SDP. By switching
to a dispatched model, a single network thread can still
accept the incoming RPCs, avoiding contention and local-
ity losses of running the gRPC [18] and network receive
stacks across many cores. The workers add sufficient
concurrency to sustain RPC and response processing. We
further note that SDP tail latencies at intermediate loads
are better than at low load, since there is better tempo-
ral locality and OS and networking performance tend to
improve due to batching effects in the networking stack.

OS and microarchitectural effects. We report OS
thread wakeup latency distributions for HDSearch syn-
chronous models at 64 QPS in Fig. 9. Although some
OS thread wakeups are fast (∼5 µs), blocking models
frequently incur 32-64 µs range wakeups. This data also
depicts the advantage of in-line over dispatched models
with respect to low-load worker wakeup costs.

Fig. 10 shows the relative frequency of true sharing
misses (HITM), context switches, and cache misses for
threading models at high load (10K QPS). These results
show why SIP fails to scale as load increases. SIP needs
multiple threads to sustain loads ≥ 512 QPS. Multiple
pollers contend pathologically on the network receive pro-
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Figure 11: Graph: Latency vs. load for Set Algebra async.
models. Table: Latencies at each load normalized to the best
latency for that load—No threading model is always the best.

cessing, incurring many sharing misses, context switches,
and cache misses. SIB in-line threads contend less as
they block, rather than poll. SDB and SDP exhibit similar
contention. However, SDB outperforms SDP, since SDP
incurs a mean ∼ 10% higher wasted CPU utilization.

Additional Tests. (1) We measured µTune with null
(empty) RPC handlers. Complete services incur higher
tails than null RPCs as mid-tier and leaf computations add
to tails. For null RPCs, SIP outperforms SDB by 1.57×
at low loads. (2) We measured HDSearch on another
hardware platform (Intel Xeon “Skylake” vs. “Haswell”).
We notice similar trends as on our primary Haswell plat-
form, with SIP outperforming SDB by 1.42× at low loads.
(3) We note that the median latency follows a similar trend,
but, with lower absolute values (e.g., HDSearch’s SIP out-
performs SDB by 1.26× at low load). We omit figures for
these tests as they match the reported HDSearch trends.
Threading performance gaps will be wider for faster ser-
vices (e.g., 200K QPS Memcached [26]) as slightest
OS/network overheads will become magnified [122].

7.1.3 Asynchronous models

We show results for Set Algebra’s asynchronous mod-
els in Fig. 11. As above, we omit figures for additional
services as they match Set Algebra trends. Broadly,
trends follow the synchronous models, but latencies are
markedly lower. We note the following differences:

Smaller thread pool sizes. Significantly smaller (≤ 4
threads) thread pool sizes are sufficient at various loads,
since asynchronous models capitalize on the available
concurrency by quickly moving on to successive requests.
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Figure 13: Async. Set Algebra’s relative frequency of con-
tention, context switches, & cache misses over best model at
peak load: AIP performs worst.

Fig. 12 shows Set Algebra’s asynchronous thread
pool sizes that achieve the best tails for each load level.
We find four threads enough to sustain high loads. Larger
thread pools deteriorate latency by contending for net-
work sockets or CPU resources. In contrast, SIB, SDB,
and SDP need many threads (as many as 50) to exploit
available concurrency.

AIP scales much better than SIP. AIP with just one
in-line and response thread can tolerate much higher load
(up to 4096 QPS) than SIP, since queuing delays engen-
dered by both the front-end network socket and leaf node
response sockets are avoided by the asynchronous design.

ADP scales worse than SDP. ADP with 4 worker and
response threads copes worse than SDP at loads ≥ 8192
QPS even though it does not have a large thread pool con-
tending for CPU (in contrast to SDP at high loads). This
design fails to scale since response threads contend on the
completion queue tied to leaf node response sockets.

OS and microarchitectural effects. Unlike SDP,
ADP incurs more context switches, caches misses, and
HITMs, due to response thread contention (Fig. 13).

7.2 Load adaptation
We next compare µTune’s load adaptation against state-
of-the-art baselines [43, 76, 97] for various load patterns.

7.2.1 Comparison to the state-of-the-art
We compare µTune’s run-time performance to state-of-
the-art adaptation techniques [43, 76, 97]. We find that
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µTune offers better tail latency than these approaches.

Few-to-Many (FM) parallelism. FM [76] uses offline
profiling to vary parallelism during a query’s execution.
The FM scheduler decides when to add parallelism for
long-running queries and by how much, based on the
dynamic load that is observed every 5 ms. In consultation
with FM’s authors, we opt to treat a microservice as an
FM query, to create a fair performance analogy between
µTune and FM. In our FM setup, we mimic FM’s offline
profiling by building an offline interval table that notes
the software parallelism to add for varied loads in terms
of thread pool sizes. We use the peak load-sustaining
synchronous and asynchronous models (SDB and ADB).
During run-time, we track the mid-tier’s loads every 5 ms
and suitably vary SDB/ADB’s thread pool sizes. FM
varies only pool sizes (vs. µTune also varying threading
models), and we find that FM underperforms µTune.

Integrating Polling and Interrupts (IPI). Langen-
doen et al. [97] propose a user-level communication sys-
tem that adapts between poll- and interrupt-driven request
reception. The system initially uses interrupts. It starts to
poll when all threads are blocked. It reverts to interrupts
when a blocked thread becomes active. We study this sys-
tem for synchronous modes only; as its authors note [97],
it does not readily apply for asynchronous modes.

To implement this technique, we keep (1) a global
count of all threads, and (2) a shared atomic count of
blocked threads for the mid-tier. Before a thread becomes
blocked (e.g., invokes a synchronous call), it increments
the shared count and decrements it when it becomes active
(i.e., synchronous call returns). After revising the shared
count, a thread checks if the system’s active thread count
exceeds the machine’s logical core count. If higher, the
system blocks, otherwise, it shifts to polling. We find
that µTune outperforms this technique, as it considers
additional model dimensions (such as inline/dispatch), as
well as dynamically scales thread pools based on load.

Time window-Based Detection (TBD). Abdelzaher
et al. [43] periodically observe request arrival times in
fixed observation windows to track request rate. In our
setup, we replace µTune’s event-based detector with this
time-based detector. We pick 5 ms time-windows (like
FM) to track low loads and react quickly to load spikes.

We evaluate the tail latency exhibited by µTune across
all services, and compare it to these state-of-the-art ap-
proaches [43, 76, 97] for both steady-state and transient
loads. We examine µTune’s ability to pick a suitable
threading model and size thread pools for time-varying
load. We offer loads that differ from those used in train-
ing. We aim to study if µTune selects the best threading
model, as compared to an offline exhaustive search.

7.2.2 Steady-state adaptation
Fig. 14 shows µTune’s ability in converging to the best
threading model and thread pool size for steady-state
loads. Our test steps up and down through the displayed
load levels. We report the tail latency at each load aver-
aged over five trials. The SIP1, SDP1-20, and SDB1-50
bars are optimal threading configurations for some loads.
The nomenclature is the threading model followed by the
pool sizes, in the form model-network-worker-response.
The FM [76], Integrated Poll/Interrupt (IPI) [97], and
Time-Based Detection (TBD) [43] bars are the tail latency
of state-of-the-art systems. The red bars are µTune’s tail
latency; bars are labelled with the configuration µTune
chose.

In synchronous mode (Fig. 14 (top)), µTune first selects
an SIP model with a single thread, until load grows to
about 1K QPS, at which point it switches to SDP, and be-
gins ramping up the worker thread pool size. At 8K QPS,
it switches to SDB and continues growing the worker
thread pool, until it reaches 50 threads, which is sufficient
to meet the peak load the leaf microservice can sustain.

µTune boosts tail latency by up to 1.7× for HDSearch,
1.6× for Router, 1.4× for Set Algebra, and 1.5× for
Recommend (at 20 QPS) over SDB—the static model that
sustains peak loads. µTune boosts tail latency by a mean
1.3x over SDB across all loads and services. µTune also
outperforms all state-of-the-art [43, 76, 97] techniques
(except TBD) for at least one load level and never un-
derperforms. µTune outperforms FM by up to 1.3× for
HDSearch and Recommend, and 1.4× for Router and
Set Algebra under low loads, as FM only varies SDB’s
thread pool sizes and hence incurs high network poller and
worker wakeups. µTune outperforms the IPI approach
by up to 1.6× for HDSearch, 1.5× for Router and Rec-

ommend, and 1.4× for Set Algebra under low loads. At
low load, IPI polls with many threads (to sustain peak
load), succumbing to expensive contention. TBD does
as well as µTune as the requests mishandled during the
5 ms monitor window fall in tails greater than the 99th%
percentile that we monitor for 30s for each load level.

In asynchronous mode (Fig. 14 (bottom)), µTune again
initially selects an in-line poll model with small-sized
pools, transitioning to ADP and then ADB as load grows.
Four worker and response threads suffice for all loads.
We show that µTune outperforms static threading choices
and state-of-the-art techniques by up to 1.9× for at least
one load level.

Across all loads, µTune selects threading models and
thread pool sizes that perform within 5% of the best
model as determined by offline search. µTune incurs less
than 5% mean instruction overhead over the load-specific
“best” threading model, as depicted in Fig. 15. Hence, we
find our piece-wise linear model sufficient to make good
threading decisions. Note that µTune always prefers a
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Figure 14: Synchrounous (top) & asynchronous (bottom) steady-state adaptation.

single thread interacting with the front-end socket. This
finding underscores the importance of maximizing local-
ity and avoiding contention on the RPC receive path.

7.2.3 Load transients

Table 2 indicates µTune’s response to load transients,
where the columns are a series of varied-duration load
levels. The rows are the 99th% tail latency for the models
between which µTune adapts in this scenario (SIP/AIP
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SDB 1.49 1.07 1.40 ADB 1.48 1.10 1.40
FM 1.35 13.00 1.32 FM 1.28 4.73 1.33
IPI 1.59 1.10 1.50 IPI NA NA NA

H
D
S
e
a
r
c
h

TBD 1.03 8.69 1.02 TBD 1.06 2.63 1.08
µTune 1.01 1.09 0.99 µTune 0.98 1.13 0.96

SIP 1.10 >1s >1s AIP 1.01 >1s >1s
SDB 1.31 0.83 1.36 ADB 1.35 1.13 1.31
FM 1.33 9.40 1.40 FM 1.30 12.95 1.30
IPI 1.4 1.10 1.38 IPI NA NA NA

R
o
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e
r

TBD 1.13 4.51 1.11 TBD 1.03 6.24 1.01
µTune 1.12 0.88 1.13 µTune 0.99 1.02 0.98

SIP 0.95 >1s >1s AIP 1.04 >1s >1s
SDB 1.30 0.92 1.32 ADB 1.26 0.99 1.23
FM 1.30 12.00 1.25 FM 1.28 4.14 1.27
IPI 1.20 0.94 1.12 IPI NA NA NA
TBD 1.00 8.45 1.03 TBD 1.09 6.62 1.1

S
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µTune 0.97 0.92 1.03 µTune 1.06 1.1 1.06

SIP 1.00 >1s >1s AIP 1.03 >1s >1s
SDB 1.26 0.96 1.22 ADB 1.37 1.30 1.32
FM 1.23 >1s >1s FM 1.28 8.61 1.20
IPI 1.13 1.02 1.13 IPI NA NA NA
TBD 1.02 4.96 1.03 TBD 1.06 6.00 1.07

R
e
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e
n
d

µTune 1.00 1.00 1.00 µTune 1.06 1.39 1.04

Table 2: 99th% tail latency (ms) for load transients.

and SDB/ADB), state-of-the-art [43, 76, 97] techniques,
and µTune. The key step in this scenario is the 8K/13K
QPS load level, which lasts only 1s. We pick spikes of 8K
QPS and 13K QPS for synchronous and asynchronous as
these loads are SIP and AIP saturation levels, respectively.

We find that the in-line poll models accumulate a large
backlog during the transient as they saturate, and thus
perform poorly even during successive low loads. FM
and TBD incur high transient tail latencies as they allow
requests during the 5 ms load detection window to be
handled by sub-optimal threading choices. FM saturates
at 8K QPS for Recommend since the small SDB thread
pool size opted by FM at 100 QPS causes unbounded
queuing during the load monitoring window. IPI works
only for synchronous and performs poorly at low loads as

its fixed-size thread pool leads to polling contention. We
show that µTune detects the transient and transitions from
SIP/AIP to SDB/ADB fast enough to avoid accumulating
a backlog that affects tail latency. Once the flash crowd
subsides, µTune transitions back to SIP/AIP, avoiding the
latency penalty SDB/ADB suffer at low load.

8 Discussion
We briefly discuss open questions and µTune limitations.

Offline training. µTune uses offline training to build
a piece-wise linear model. This phase might be removed
by analyzing dynamically OS and hardware signals, such
as context switches, thread wakeups, queue depths, cache
misses, and lock contention, to switch threading models.
Designing heuristics to switch optimally based on such
run-time metrics remains an open question; our perfor-
mance characterization can help guide their development.

Thread pool sizing. µTune tunes thread pool sizes
using a piece-wise linear model. µTune differs from prior
thread pool adaptation systems [76, 86, 93] in that it also
tunes threading models. Some of these systems use more
sophisticated tuning heuristics, but we did not observe
opportunity for further improvement in our microservices.

CPU cost of polling. µTune polls at low loads to avoid
thread wakeups. Polling can be costly as it wastes CPU
time in fruitless poll loops. However, as most operators
over-provision CPU to sustain high loads [130], when
load is low, spare CPU time is typically available [79].

µTune’s asynchronous framework. Asynchronous
RPC state must be maintained in thread-safe structures,
which is challenging. More library/language support
might simplify building asynchronous microservices with
µTune. We leave such support to future work.

Comparison with optimized systems that use
kernel-bypass, multi-queue NICs, etc. It may be
interesting to study the implications of optimized
systems [53, 87, 91, 103, 121, 122] that incorporate kernel-
bypass, multi-queue NICs, etc., on threading models
and µTune. Multi-queue NICs may improve polling
scalability; multiple network pollers currently contend
for the underlying gRPC [18] queues under µTune.
OS-bypass may further increase the application threading
model’s importance; for example, it may magnify the
trade-off between in-line and dispatch RPC execution,
as OS-bypass eliminates latency and thread hops in the
OS TCP/IP stack, shifting the break-even point to favor
in-line execution for longer RPCs. However, in this paper,
we have limited our scope to study designs that can
layer upon (unmodified) gRPC [18]; we defer studies that
require extensive gRPC [18] changes (or an alternative
reliable transport) to future work.
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9 Related Work

We discuss several categories of related work.

Web server architectures. Web servers can have
(a) thread-per-connection [119], (b) event-driven [120],
(c) thread-per-request [84], or (d) thread-pool architec-
tures [104]. Pai et al. [119] build thread-per-connection
servers as multi-threaded processes. Knot [145] is a
thread-per-connection non-blocking server. In contrast,
µTune is a thread-per-request thread-pool architecture
that scales better for microservices [104]. The Single Pro-
cess Event-Driven (SPED) [119] architecture operates on
asynchronous ready sockets. In contrast, µTune supports
both synchronous and asynchronous I/O. The SYmmet-
ric Multi-Process Event-Driven (SYMPED) [120] archi-
tecture runs many processes as SPED servers via con-
text switches. The Staged Event-Driven Architecture
(SEDA) [148] joins event-driven stages via queues. A
stage’s thread pool is driven by a resource controller.
Apart from considering synchronous and asynchronous
I/O like prior works [69,83,84,120,146,148], µTune also
studies a full microservice threading model taxonomy.
gRPC-based systems such as Envoy [13] or Finagle [16]
act as load balancers or use a single threading model.

Software techniques for tail latency: Prior
works [84, 148] note that monolithic service software
designs can significantly impact performance. But, micro-
second–scale OS and network overheads that dominate in
µTune’s regime do not manifest in these slower services.
Some works improve web server software via software
pattern re-use [127, 128], caching file systems [84], or
varying parallelism [76], all of which are orthogonal to
the questions we investigate. Kapoor et al. [91] also
note that OS and network overheads impact short-running
cloud services, but, their kernel bypass solution may not
apply for all contexts (e.g., a shared cloud infrastructure).

Parallelization to reduce latency: Several prior
works [54, 61, 89, 94, 99, 104, 124, 135, 147] reduce tails
via parallelization. Others [47, 70, 80, 112] improve me-
dians by adaptively sharing resources. Prior works use
prediction [86,93], hardware parallelism [76], or data par-
allelism [73] to reduce monolithic services’ tail latency.
Lee et al. [99] use offline analysis (like µTune) to tune
thread pools. We study microservice threading, and vary
threading models altogether. But, we build on prior works’
thread pool sizing insights.

Hardware mechanisms for tail latency: Several
other prior works improve leaf service tail latency via
better co-location [102], voltage boosting [82, 92], or ap-
plying heterogeneity in multi-cores [77]. But, they do
not study microservice tail latency effects engendered by
software threading, OS, or network.

10 Conclusion
Prior works study monolithic OLDI services, where
microsecond-scale overheads are negligible. The rapid ad-
vent of faster I/O and low-latency microservices calls for
analyzing threading effects for the microsecond regime.
In this paper, we presented a structured threading model
taxonomy for microservices. We identified different mod-
els’ performance effects under diverse load. We proposed
µTune—a novel framework that abstracts microservice
threading from application code and automatically adapts
to offered load. We show that selecting load-optimal
threading models can improve tail latency by up to 1.9x.
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Abstract
Tail latency is of great importance in user-facing web ser-
vices. However, maintaining low tail latency is challeng-
ing, because a single request to a web application server
results in multiple queries to complex, diverse backend
services (databases, recommender systems, ad systems,
etc.). A request is not complete until all of its queries have
completed. We analyze a Microsoft production system
and find that backend query latencies vary by more than
two orders of magnitude across backends and over time,
resulting in high request tail latencies.

We propose a novel solution for maintaining low re-
quest tail latency: repurpose existing caches to mitigate
the effects of backend latency variability, rather than just
caching popular data. Our solution, RobinHood, dynam-
ically reallocates cache resources from the cache-rich
(backends which don’t affect request tail latency) to the
cache-poor (backends which affect request tail latency).
We evaluate RobinHood with production traces on a 50-
server cluster with 20 different backend systems. Sur-
prisingly, we find that RobinHood can directly address
tail latency even if working sets are much larger than the
cache size. In the presence of load spikes, RobinHood
meets a 150ms P99 goal 99.7% of the time, whereas the
next best policy meets this goal only 70% of the time.

1 Introduction
Request tail latency matters. Providers of large user-
facing web services have long faced the challenge of
achieving low request latency. Specifically, companies
are interested in maintaining low tail latency, such as the
99th percentile (P99) of request latencies [26, 27, 36, 44,
63, 83, 92]. Maintaining low tail latencies in real-world
systems is especially difficult when incoming requests
are complex, consisting of multiple queries [4, 26, 36,
90], as is common in multitier architectures. Figure 1
shows an example of a multitier architecture: each user
request is received by an application server, which then
sends queries to the necessary backends, waits until all
queries have completed, and then packages the results
for delivery back to the user. Many large web services,
such as Wikipedia [71], Amazon [27], Facebook [20],
Google [26] and Microsoft, use this design pattern.

The queries generated by a single request are indepen-
dently processed in parallel, and may be spread over many
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Figure 1: In a multitier system, users submit individual
requests, which are received by application servers. To
complete a request, an application server issues a series of
queries to various backend services. The request is only
complete when all of its queries have completed.

backend services. Since each request must wait for all
of its queries to complete, the overall request latency is
defined to be the latency of the request’s slowest query.
Even if almost all backends have low tail latencies, the
tail latency of the maximum of several queries could be
high.

For example, consider a stream of requests where each
request queries a single backend 10 times in parallel.
Each request’s latency is equal to the maximum of its
ten queries, and could therefore greatly exceed the P99
query latency of the backend. The P99 request latency
in this case actually depends on a higher percentile of
backend query latency [26]. Unfortunately, as the number
of backends in the system increases and the workload
becomes more heterogeneous, P99 request latency may
depend on different (higher or lower) percentiles of query
latency for each backend, and determining what these
important percentiles are is difficult.

To illustrate this complexity, this paper focuses
on a concrete example of a large multitier architec-
ture: the OneRF page rendering framework at Mi-
crosoft. OneRF serves a wide range of content including
news (msn.com) and online retail software stores (mi-
crosoft.com, xbox.com). It relies on more than 20 back-
end systems, such as product catalogues, recommender
systems, and user entitlement systems (Figure 1).

The source of tail latency is dynamic. It is common in
multitier architectures that the particular backend causing
high request latencies changes over time. For example,
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Figure 2: Normalized 99-th percentile (P99) latencies
over the course of a typical day for four backends in the
OneRF production system. Each backend has the highest
tail latency among all backends at some point during the
day, indicating that latencies are not only unbalanced
between backends, but the imbalance changes over time.

Figure 2 shows the P99 query latency in four typical back-
end services from OneRF over the course of a typical
day. Each of the four backends at some point experiences
high P99 query latency, and is thus responsible for some
high-latency requests. However, this point happens at a
different time for each backend. Thus any mechanism
for identifying the backends that affect tail request la-
tency should be dynamic—accounting for the fact that the
latency profile of each backend changes over time.

Existing approaches. Some existing approaches for re-
ducing tail latency rely on load balancing between servers
and aim to equalize query tail latencies between servers.
This should reduce the maximum latency across multi-
ple queries. Unfortunately, the freedom to load balance
is heavily constrained in a multitier architecture, where
a given backend typically is unable to answer a query
originally intended for another backend system (e.g., the
user entitlements backend cannot answer product cata-
logue queries). While some limited load balancing can be
done between replicas of a single backend system, load
balancing is impossible across different backends.

Alternatively, one might consider reducing tail la-
tency by dynamically auto-scaling backend systems—
temporarily allocating additional servers to the backends
currently experiencing high latency. Given the rapid
changes in latency shown in Figure 2, it is important
to be able to scale backends quickly. Unfortunately, dy-
namic auto-scaling is difficult to do quickly in multitier
systems like OneRF because backends are stateful [30].
In fact, many of the backends at Microsoft do some form
of auto-scaling, and Figure 2 shows that the systems are
still affected by latency spikes.

The RobinHood solution. In light of these challenges,
we suggest a novel idea for minimizing request tail la-
tency that is agnostic to the design and functionality of
the backend services. We propose repurposing the exist-
ing caching layer (see Figure 1) in the multitier system to
directly address request tail latency by dynamically parti-
tioning the cache. Our solution, RobinHood, dynamically
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Figure 3: Comparison of the P99 request latency of Robin-
Hood, two production caching systems, and three state-
of-the-art research caching systems, which we emulated
in our testbed. All systems are subjected to three load
spikes, as in Figure 2. We draw a dashed line at 150ms,
which is the worst latency under RobinHood.

allocates cache space to those backends responsible for
high request tail latency (cache-poor backends), while
stealing space from backends that do not affect the re-
quest tail latency (cache-rich backends). In doing so,
RobinHood makes compromises that may seem counter-
intuitive (e.g., significantly increasing the tail latencies of
certain backends) but which ultimately improve overall
request tail latency. Since many multitier systems already
incorporate a caching layer that is capable of dynamic
partitioning, RobinHood can be deployed with very little
additional overhead or complexity.

RobinHood is not a traditional caching system. While
many multitier systems employ a caching layer, these
caches are often designed only to improve average (not
tail) latency of individual queries (not requests) [3, 11, 17,
25, 40]. In all of the production workloads we study, an
application’s working set is larger than the available cache
space, and thus the caching layer can improve average
query latency by allowing fast accesses (cache hits) to
the most popular data. By contrast, request tail latency is
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caused almost entirely by cache misses. In fact, conven-
tional wisdom says that when the application’s working
set does not fit entirely in the cache, the caching layer
does not directly address tail latency [26]. Thus, despite
various efforts to optimize the caching layer in both indus-
try and academia (see Section 7), none of these systems
are designed to reduce request tail latency.

Contributions. RobinHood is the first caching system
that minimizes the request tail latency. RobinHood is
driven by a lightweight cache controller that leverages ex-
isting caching infrastructure and is agnostic to the design
and functionality of the backend systems.

We implement1 and extensively evaluate the Robin-
Hood system along with several research and production
caching systems. Our 50-server testbed includes 20 back-
end systems that are modeled after the 20 most queried
backends from Microsoft’s OneRF production system.
Figure 3 shows a preview of an experiment where we
mimic the backend latency spikes in OneRF: RobinHood
meets a 150ms P99 goal 99.7% of the time, whereas the
next best policy meets this goal only 70% of the time.

Our contributions are the following:

• Section 2. We find that there are many different types
of requests, each with their own request structure that
defines which backend systems are queried. We ana-
lyze structured requests within the OneRF production
system, and conclude that request structure must be in-
corporated by any caching system seeking to minimize
request tail latency.

• Section 3. We present RobinHood, a dynamic caching
system which aims to minimize request tail latency by
considering request structure. RobinHood identifies
which backends contribute to the tail over time, using a
novel metric called request blocking count (RBC).

• Section 4. We implement RobinHood as a scalable
distributed system. We also implement the first dis-
tributed versions of state-of-the-art research systems:
LAMA [40], Cliffhanger [25], and FAIR [19, 65, 85] to
use for comparison.

• Section 5. We evaluate RobinHood and prior systems
against simultaneous latency spikes across multiple
backends, and show that RobinHood is far more robust
while imposing negligible overhead.

We discuss how to generalize RobinHood to architec-
ture beyond OneRF in Section 6, survey the related work
in Section 7, and conclude in Section 8.

2 Background and Challenges
The RobinHood caching system targets tail latency in
multitier architectures, where requests depend on queries

1RobinHood’s source code is available at https://github.
com/dasebe/robinhoodcache .

to many backends. One such system, the OneRF system,
serves several Microsoft storefront properties and relies
on a variety of backend systems. Each OneRF application
server has a local cache. Incoming requests are split into
queries which first lookup up in the cache. Cache misses
are then forwarded, in parallel, to clusters of backend
servers. Once each query has been answered, the applica-
tion server can serve the user request. Thus, each request
takes as long as its slowest query. A OneRF request can
send any number of queries (including 0) to each backend
system.

Before we describe the RobinHood algorithm in Sec-
tion 3, we discuss the goal of RobinHood in more depth,
and how prior caching systems fail to achieve this goal.

2.1 The goal of RobinHood
The key idea behind RobinHood is to identify backends

whose queries are responsible for high P99 request la-
tency, which we call “cache-poor” backends. RobinHood
then shifts cache resources from the other “cache-rich”
backends to the cache-poor backends. RobinHood is a
departure from “fair” caching approaches [65], treating
queries to cache-rich backends unfairly as they do not
affect the P99 request latency. For example, increasing
the latency of a query that occurs in parallel with an-
other, longer query, will not increase the request latency.
By sacrificing the performance of cache-rich backends,
RobinHood frees up cache space.

RobinHood allocates free cache space to cache-poor
backends (see Section 3). Additional cache space typ-
ically improves the hit ratios of these backends, as
the working sets of web workloads do not fit into
most caches [3, 20, 41, 61, 72]. As the hit ratio in-
creases, fewer queries are sent to the cache-poor backends.
Since backend query latency is highly variable in prac-
tice [4, 26, 29, 36, 45, 62, 68, 83], decreasing the number
of queries to a backend will decrease the number of high-
latency queries observed. This will in turn improve the
P99 request latency.

In addition, sending fewer queries can also reduce re-
source congestion and competition in the backends, which
is often the cause of high tail latency [26, 35, 77]. Small
reductions in resource congestion can have an outsized
impact on backend latency [34, 39] and thus significantly
improve the request P99 (as we will see in Section 5).

2.2 Challenges of caching for tail latency
We analyze OneRF traces collected over a 24 hour

period in March 2018 in a datacenter on the US east coast.
The traces contain requests, their queries, and the query
latencies for the 20 most queried backend systems, which
account for more than 99.95% of all queries.

We identify three key obstacles in using a caching sys-
tem to minimizing tail request latencies.
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2.2.1 Time-varying latency imbalance
As shown in Figure 2, it is common for the latencies of

different backends to vary widely. Figure 5 shows that the
latency across the 20 backends varies by more than 60×.
The fundamental reason for this latency imbalance is that
several of these backend systems are complex, distributed
systems in their own right. They serve multiple customers
within the company, not just OneRF.

In addition to high latency imbalance, backend laten-
cies also change over time (see Figure 2). These changes
are frequently caused by customers other than OneRF and
thus occur independently of the request stream seen by
OneRF applications servers.
Why latency imbalance is challenging for existing sys-
tems. Most existing caching systems implicitly assume
that latency is balanced. They focus on optimizing cache-
centric metrics (e.g., hit ratio), which can be a poor repre-
sentation of overall performance if latency is imbalanced.
For example, a common approach is to partition the cache
in order to provide fairness guarantees about the hit ra-
tios of queries to different backends [19, 65, 85]. This
approach is represented by the FAIR policy in Figure 3,
which dynamically partitions the cache to equalize back-
end cache hit ratios. If latencies are imbalances between
the backends, two cache misses to different backends
should not be treated equally. FAIR fails to explicitly ac-
count for the latency of cache misses and thus may result
in high request latency.

Some production systems do use latency-aware static
cache allocations, e.g., the “arenas” in Facebook’s
TAO [20]. However, manually deriving the optimal static
allocation is an open problem [20], and even an “optimal”
static allocation will become stale as backend latencies
vary over time (see Section 5).
2.2.2 Latency is not correlated with specific queries

nor with query rate
We find that high latency is not correlated with spe-

cific queries as assumed by cost-aware replacement poli-
cies [21, 52]. Query latency is also not correlated with a
query’s popularity (the rate at which the query occurs),
but rather reflects a more holistic state of the backend
system at some point in time. This is shown in Figure 4
with a scatterplot of a query’s popularity and its latency
for the four OneRF backends shown in Figure 2 (other
backends look similar).

We also find that query latency is typically not cor-
related with a backend’s query rate. For example, the
seventh most queried backend receives only about 0.06×
as many queries as the most backend, but has 3× the query
latency (Figure 5). This is due to the fact that backend
systems are used by customers other than OneRF. Even
if OneRF’s query rate to a backend is low, another ser-
vice’s query stream may be causing high backend latency.
Additionally, queries to some backends take inherently
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Figure 4: Scatterplots of query popularity and query la-
tency for each backend from Figure 2. We find that query
latency is neither correlated with query rate nor with par-
ticular queries.

longer than others, e.g., generating a personalized prod-
uct recommendation takes 4× longer than looking up a
catalogue entry.
Why uncorrelated latency is challenging for existing
systems. Many caching schemes (including OneRF)
share cache space among the backends and use a com-
mon eviction policy (such as LRU). Shared caching sys-
tems [17,52] inherently favor backends with higher query
rates [9]. Intuitively, this occurs because backends with
higher query rates have more opportunities for their ob-
jects to be admitted into the cache. Cost-aware replace-
ment policies also suffer from this problem, and are gen-
erally ineffective in multitier architectures such OneRF as
their assumptions (high latency is correlated with specific
queries) are not met.

Another common approach is to partition cache space
to maximize overall cache hit ratios as in Cliffhanger [25].
All these approaches allocate cache space in proportion
to query rate, which leads to suboptimal cache space
allocations when latency is uncorrelated with query rate.
As shown in Figure 3, both OneRF and Cliffhanger lead
to high P99 request latency. In order to minimize request
tail latency, a successful caching policy must directly
incorporate backend latency, not just backend query rates.
2.2.3 Latency depends on request structure, which

varies greatly
The manner in which an incoming request is split into

parallel backend queries by the application server varies
between requests. We call the mapping of a request to its
component backend queries the request structure.

To characterize the request structure, we define the
number of parallel queries to a single backend as the
backend’s batch size. We define the number of distinct
backends queried by a request as its fanout. For a given
backend, we measure the average batch size and fanout
of requests which reference this backend.

Table 1 summarizes how the query traffic of different
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Figure 5: Normalized P99 latencies for the 20 most
queried backends in the OneRF system during a typi-
cal 10 minute period. The backends are ordered by their
query rates during this period. We see that query rate is
not correlated with backend tail latency.

backends is affected by the request structure. We list
the percentage of the overall number of queries that go
to each backend, and the percentage of requests which
reference each backend. We also list the average batch
size and fanout by backend. We can see that all of these
metrics vary across the different backends and are not
strongly correlated with each other.

Why request structure poses a challenge for existing
systems. There are few caching systems that incorporate
latency into their decisions, and they consider the average
query latency as opposed to the tail request latency [18,
40]. We find that even after changing these latency aware
systems to measure the P99 query latency, they remain
ineffective (see LAMA++ in Figure 3).

These systems fail because a backend with high query
latency does not always cause high request latency. A
simple example would be high query latency in backend
14. As backend 14 occurs in less than 0.2% of all requests,
its impact on the P99 request latency is limited—even if
backend 14 was arbitrarily slow, it could not be responsi-
ble for all of the requests above the P99 request latency. A
scheme that incorporates query rate and latency might de-
cide to allocate most of the cache space towards backend
14, which would not improve the P99 request latency.

While the specific case of backend 14 might be simple
to detect, differences in batch sizes and fanout give rise
to complicated scenarios. For example, Figure 5 shows
that backend 3’s query latency is higher than backend
4’s query latency. Table 1 shows that, while backend 3
has a large batch size, backend 4 occurs in 4.5× more
requests, which makes backend 4 more likely to affect
the P99 request latency. In addition, backend 4 occurs
in requests with a 55% smaller fanout, which makes it
more likely to be the slowest backend, whereas backend
3’s query latency is frequently hidden by slow queries to
other backends.

As a consequence, minimizing request tail latency is
difficult unless request structure is explicitly considered.

Backend-ID Query % Request % Mean Batch Size Mean Fanout
1 37.7% 14.7% 15.4 5.6
2 16.0% 4.5% 32.3 7.4
3 15.3% 4.5% 25.7 7.4
4 14.0% 20.0% 1.6 4.8
5 7.7% 19.0% 1.9 4.9
6 4.2% 4.7% 14.5 7.3
7 2.4% 10.8% 2.0 5.3
8 1.6% 15.5% 1.0 5.3
9 0.7% 3.4% 2.0 7.5
10 0.2% 0.7% 2.5 9.1

Table 1: Four key metrics describing the 10 most queried
OneRF backends. Backend-IDs are ordered by query rate
starting with the most queried backend, backend 1. Query
% describes the percentage of the total number of queries
directed to a given backend. Request % denotes the per-
centage of requests with at least one query to the given
backend. Batch size describes the average number of par-
allel queries made to the given backend across requests
with at least one query to that backend. Fanout describes
the average number of backends queried across requests
with at least one query to the given backend.

3 The RobinHood Caching System
In this section, we describe the basic RobinHood algo-
rithm (Section 3.1), how we accommodate real-world
constraints (Section 3.2), and the high-level architecture
of RobinHood (Section 3.3). Implementation details are
discussed in Section 4.

3.1 The basic RobinHood algorithm
To reallocate cache space, RobinHood repeatedly taxes

every backend by reclaiming 1% of its cache space, iden-
tifies which backends are cache-poor, and redistributes
wealth to these cache-poor backends.

RobinHood operates over time windows of ∆ seconds,
where ∆ = 5 seconds in our implementation.2 Within
a time window, RobinHood tracks the latency of each
request. Since the goal is to minimize the P99 request
latency, RobinHood focuses on the set of requests, S,
whose request latency is between the P98.5 and P99.5 (we
explain this choice of range below). For each request in S,
RobinHood tracks the ID of the backend corresponding
to the slowest query in the request. RobinHood then
counts the number of times each backend produced the
slowest query in a request. We call each backend’s total
count its request blocking count (RBC). Backends with a
high RBC are frequently the bottleneck in slow requests.
RobinHood thus considers a backend’s RBC as a measure
of how cache-poor it is, and distributes the pooled tax to
each backend in proportion to its RBC.
Choosing the RBC metric. The RBC metric captures
key aspects of request structure. Recall that, when min-
imizing request tail latency, it is not sufficient to know

2This parameter choice is determined by the time it takes to reallocate
1% of the cache space in off-the-shelf caching systems; see Section 4.
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only that a backend produces high query latencies. This
backend must also be queried in such a way that it is
frequently the slowest backend queried by the slowest
requests in the system. Metrics such as batch size and
fanout width will determine whether or not a particular
backend’s latencies are hidden or amplified by the request
structure. For example, if a slow backend is queried in
parallel with many queries to other backends (high fanout
width), the probability of the slow backend producing the
slowest query may be relatively small. We would expect
this to result in a lower RBC for the slow backend than its
query latency might suggest. A backend with a high RBC
indicates not only that the backend produced high-latency
queries, but that reducing the latency of queries to this
backend would have actually reduced the latency of the
requests affecting the P99 request latency.
Choosing the set S. The set S is chosen to contain re-
quests whose latency is close to the P99 latency, specif-
ically between the P98.5 and P99.5 latencies. Alterna-
tively, one might consider choosing S to be the set requests
with latencies greater than or equal to the P99. However,
this set is known to include extreme outliers [27] whose la-
tency, even if reduced significantly, would still be greater
than the P99 latency. Improving the latency of such out-
liers would thus be unlikely to change the P99 request
latency. Our experiments indicate that choosing a small
interval around the P99 filters out most of these outliers
and produces more robust results.

3.2 Refining the RobinHood algorithm
The basic RobinHood algorithm, described above, is

designed to directly address the key challenges outlined
in Section 2. However, real systems introduce additional
complexity that must be addressed. We now describe
two additional issues that must be considered to make the
RobinHood algorithm effective in practice.

Backends appreciate the loot differently. The basic
RobinHood algorithm assumes that redistributed cache
space is filled immediately by each backend’s queries.
In reality, some backends are slow to make use of the
additional cache space because their hit ratios are already
high. RobinHood detects this phenomenon by monitoring
the gap between the allocated and the used cache capacity
for each backend. If this gap is more than 30% of the used
cache space, RobinHood temporarily ignores the RBC of
this backend to avoid wasting cache space. Note that such
a backend may continue to affect the request tail latency.
RobinHood instead chooses to focus on backends which
can make use of additional cache space.

Local decision making and distributed controllers.
The basic RobinHood algorithm assumes an abstraction
of a single cache with one partition per backend. In real-
ity (e.g., at OneRF), incoming requests are load balanced
across a cluster of application servers, each of which has

C1

RobinHood
Controller

C2 C3
Cache

1 2 3

RBC
Server

Request

Statistics

RBC
Application

Servers

Client Request

Figure 6: RobinHood adds a distributed controller to each
application server and a latency statistics (RBC) server.

its own local cache (see Section 2). Due to random load
balancing, two otherwise identical partitions on differ-
ent application servers may result in different hit ratios3.
Therefore, additional cache space will be consumed at dif-
ferent rates not only per backend, but also per application
server. To account for this, RobinHood’s allocation deci-
sions (such as imposing the 30% limit described above)
are made locally on each application server. This leads to
a distributed controller design, described in Section 3.3.

One might worry that the choice of distributed con-
trollers could lead to diverging allocations and cache
space fragmentation across application servers over time.
However, as long as two controllers exchange RBC data
(see Section 3.3), their cache allocations will quickly
converge to the same allocation regardless of initial differ-
ences between their allocations. Specifically, given ∆ = 5
seconds, any RobinHood cache (e.g., a newly started one)
will converge to the average allocation within 30 minutes
assuming all servers see sufficient traffic to fill the caches.
In other words, the RobinHood cache allocations are not
in danger of “falling off a cliff” due to diverging alloca-
tions — RobinHood’s distributed controllers will always
push the caches back to the intended allocation within a
short time span.

3.3 RobinHood architecture
Figure 6 shows the RobinHood architecture. It consists

of application servers and their caches, backend services,
and an RBC server.

RobinHood requires a caching system that can be dy-
namically resized. We use off-the-shelf memcached in-
stances to form the caching layer on each application
server in our testbed (see Section 4). Implementing Robin-
Hood requires two additional components not currently
used by production systems such as OneRF. First, we
add a lightweight cache controller to each application
server. The controller implements the RobinHood algo-
rithm (Sections 3.1 and 3.2) and issues resize commands
to the local cache’s partitions. The input for each con-
troller is the RBC, described in Section 3.1. To prevent

3While most caches will contain roughly the same data, it is likely
that at least one cache will look notably different from the others.
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an all-to-all communication pattern between controllers,
we add a centralized RBC server. The RBC server aggre-
gates request latencies from all application servers and
computes the RBC for each backend. In our implementa-
tion, we modify the application server caching library to
send (in batches, every second) each request’s latency and
the backend ID from the request’s longest query. In the
OneRF production system, the real-time logging frame-
work already includes all the metrics required to calculate
the RBC, so RobinHood does not need to change appli-
cation libraries. This information already exists in other
production systems as well, such as at Facebook [77]. The
controllers poll the RBC server for the most recent RBCs
each time they run the RobinHood algorithm.

Fault tolerance and scalability. The RobinHood sys-
tem is robust, lightweight, and scalable. RobinHood con-
trollers are distributed and do not share any state, and
RBC servers store only soft state (aggregated RBC from
the last one million requests, in a ring buffer). Both com-
ponents can thus quickly recover after a restart or crash.
Just as RobinHood can recover from divergence between
cache instances due to randomness (see Section 3.2),
RobinHood will recover from any measurement errors
that might result in bad reallocation messages being sent
to the controllers. The additional components required to
run RobinHood (controller and statistics server) are not
on the critical path of requests and queries, and thus do
not impose any latency overhead. RobinHood imposes
negligible overhead and can thus scale to several hundred
application servers (Section 5.6).

4 System Implementation and Challenges
To demonstrate the effectiveness and deployability of
RobinHood, we implement the RobinHood architecture
using an off-the-shelf caching system. In addition, we
implement five state-of-the-art caching systems (further
described in Section 5.1) on top of this architecture.

4.1 Implementation and testbed
The RobinHood controller is a lightweight Python pro-

cess that receives RBC information from the global RBC
server, computes the desired cache partition sizes, and
then issues resize commands to the caching layer. The
RBC server and application servers are highly concurrent
and implemented in Go. The caching layer is composed of
off-the-shelf memcached instances, capable of dynamic
resizing via the memcached API. Each application server
has a local cache with 32 GB cache capacity.

To test these components, we further implement dif-
ferent types of backend systems and a concurrent traffic
generator that sends requests to the application servers.
On average, a request to the application server spawns
50 queries. A query is first looked up in the local mem-
cached instance; cache misses are then forwarded to the

corresponding backend system. During our experiments
the average query rate of the system is 200,000 queries
per second (over 500,000 peak). To accommodate this
load we had to build highly scalable backend systems.
Specifically, we use three different types of backends. A
distributed key-value store that performs simple lookup
queries (similar to OneRF’s product rating and query ser-
vice). A fast MySQL cluster performs an indexed-join and
retrieves data from several columns (similar to OneRF’s
product catalogue systems). And, a custom-made matrix-
multiplier system that imitates a recommendation predic-
tion (similar to various OneRF recommender backends).

Our experimental testbed consists of 16 application
servers and 34 backend servers divided among 20 back-
end services. These components are deployed across 50
Microsoft Azure D16 v3 VMs4.

4.2 Implementation challenges
The central challenge in implementing our testbed was

scaling our system to handle 200,000-500,000 queries per
second across 20 different backend systems.

For example, our initial system configuration used a
sharded distributed caching layer. We moved away from
this design because the large batch size within some re-
quests (up to 300 queries) meant that every cache had
to be accessed [20, 77]. Our current testbed matches the
design used in the OneRF production system in that each
application server only queries its local cache.

Another challenge we compensate for is the delay of
reallocating cache space in off-the-shelf memcached in-
stances. Memcached’s reallocation API works at the gran-
ularity of 1MB pages. To reallocate 1% of the cache space
(Section 3), up to 327 memcached pages need to be real-
located. To reallocate a page, memcached must acquire
several locks, in order to safely evict page contents. High
load in our experiments leads to memcached-internal lock
contention, which delays reallocation steps. Typically
(95% of the time), reallocations take no longer than 5 sec-
onds, which is why ∆ = 5 seconds (in Section 3). To toler-
ate atypical reallocations that take longer than 5 seconds,
the RobinHood controller can defer cache allocations to
future iterations of the RobinHood algorithm.

Finally, we carefully designed our testbed for repro-
ducible performance results. For example, to deal with
complex state throughout the deployment (e.g., in various
backends), we wipe all state between repeated experi-
ments, at the cost of a longer warmup period.

4.3 Generating experimental data
Microsoft shared with us detailed statistics of produc-

tion traffic in the OneRF system for several days in 2017
and 2018 (see Section 2). We base our evaluation on the

4The servers are provisioned with 2.4 GHz Intel E5-2673v3 with
eight cores, 64GB memory, 400GB SSDs with up to 24000 IOPS, and
8Gbit/s network bandwidth.
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Figure 7: P99 latency of backend queries in our experi-
ment. The four latency spikes emulate the latency spikes
in the OneRF production systems (see Figure 2).

2018 dataset. The dataset describes queries to more than
40 distinct backend systems.

In our testbed, we replicate the 20 most queried back-
end systems, which make up more than 99.95% of all
queries. Our backends contain objects sampled from the
OneRF object size distribution. Across all backends, ob-
ject sizes range between a few bytes to a few hundred KB,
with a mean of 23 KB. In addition, our backends approx-
imately match the design of the corresponding OneRF
backend.

Our request traffic replicates key features of produc-
tion traffic, such as an abundance of several hundreds of
different request types, each with their own request struc-
tures (e.g., batch size, fanout, etc). We sample from the
production request type distribution and create four-hour-
long traces with over 50 million requests and 2.5 billion
queries. We verified that our traces preserve statistical
correlations and locality characteristics from the produc-
tion request stream. We also verified that we accurately
reproduce the highly varying cacheability of different
backend types. For example, the hit ratios of the four
backends with latency spikes (Figure 2) range between
81-92% (backend 1), 51-63% (backend 5), 37-44% (back-
end 6), and 96-98% (backend 8) in our experiments. The
lowest hit ratio across all backends is 10% and the highest
is 98%, which means that the P99 tail latency is always
composed of cache misses (this matches our observations
from the production system). None of the working sets
fit into the application server’s cache, preventing trivial
scenarios as mentioned in the literature [26].

5 Evaluation
Our empirical evaluation of RobinHood focuses on five
key questions. Throughout this section, our goal is to meet
a P99 request latency Service Level Objective (SLO) of
150ms, which is a typical goal for user-facing web ap-
plications [26, 27, 34, 50, 56, 59, 90, 91]. Every 5s, we
measure the P99 over the previous 60s. We define the
SLO violation percentage to be the fraction of observa-
tions where the P99 does not meet the SLO. We compare

Name Optimization goal Dy-
namic

Latency-
aware

Request
structure

RobinHood Minimize request P99 yes yes yes
OneRFpolicy Minimize miss ratio no no no
TAO++ [20] Minimize request P99 no no no
Cliffhgr++ [25] Minimize miss ratio yes no no
FAIR++ [19, 65] Equalize miss ratios yes no no
LAMA++ [18, 40] Equalize query P99 yes yes no

Table 2: The six caching systems evaluated in our experi-
ments. RobinHood is the only dynamic caching system
that seeks to minimize the tail request latency and the first
caching system that utilizes request structure rather than
just queries.

RobinHood to five state-of-the-art caching systems, de-
fined in Section 5.1, and answer the following questions:

Section 5.2: How much does RobinHood improve SLO
violations for OneRF’s workload? Quick answer: Robin-
Hood brings SLO violations down to 0.3%, compared to
30% SLO violations under the next best policy.

Section 5.3: How much variability can RobinHood
handle? Quick answer: for quickly increasing backend
load imbalances, RobinHood maintains SLO violations
below 1.5%, compared to 38% SLO violations under the
next best policy.

Section 5.4: How robust is RobinHood to simultaneous
latency spikes? Quick answer: RobinHood maintains
less than 5% SLO violations, while other policies do
significantly worse.

Section 5.5: How much space does RobinHood save?
Quick answer: The best clairvoyant static allocation re-
quires 73% more cache space in order to provide each
backend with its maximum allocation under RobinHood.

Section 5.6: What is the overhead of running Robin-
Hood? Quick answer: RobinHood introduces negligible
overhead on network, CPU, and memory usage.

5.1 Competing caching systems
We compare RobinHood to two production systems

and three research caching systems listed in Table 2.
The two production systems do not currently dynam-

ically adjust the caches. OneRFpolicy uses a single
shared cache, which matches the configuration used in
the OneRF production system. TAO++ uses static allo-
cations. As manually deriving the optimal allocation is
an open problem [20], we actually use RobinHood to
find a good allocation for the first 20% of the experiment
in Section 5.2. TAO++ then keeps this allocation fixed
throughout the experiment. This is an optimistic version
of TAO (thus the name TAO++) as finding its allocation
would have been infeasible without RobinHood.5.

We evaluate three research systems, Cliffhanger [25],
FAIR [19,65,85], and LAMA [40] (which is conceptually

5For example , we have also experimented with brute-force searches,
but the combinatorial search space for 20 partitions is too large. We did
not find a better allocation over the course of 48 hours.
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Figure 8: Request SLO as a function of SLO violations for (a) P99 SLOs, (b) P90 SLOs, (c) P50 SLOs. For a given
violation percentage the plot shows what SLO would have been violated with that frequency. A lower value indicates a
system is able to meet lower latency SLOs with fewer SLO violations. RobinHood is the only system that is robust
against latency spikes on backends and violates a 150ms P99 SLO only 0.3% of the time (dashed horizontal line in (a)).
FAIR++ and Cliffhgr++ are not shown as their SLO violations are too high to be visible.

similar to [18]). All three systems dynamically adjust
the cache, but required major revisions before we could
compare against them. All three research systems are only
designed to work on a single cache. Two of the systems,
Cliffhanger and FAIR, are not aware of multiple backends,
which is typical for application-layer caching systems.
They do not incorporate request latency or even query
latency, as their goal is to maximize the overall cache hit
ratio and the fairness between users, respectively. We
adapt Cliffhanger and FAIR to work across distributed
application servers by building a centralized statistics
server that aggregates and distributes their measurements.
We call their improved versions Cliffhgr++ and FAIR++.
LAMA’s goal is to minimize mean query latency, not tail
query latency (and it does not consider request latency).
To make LAMA competitive, we change the algorithm to
use P99 query latency and a centralized statistics server.
We call this improved version LAMA++.

Our evaluation does not include cost-aware replace-
ment policies for shared caches, such as Greedy-Dual [21]
or GD-Wheel [52]. Due to their high complexity, it is
challenging to implement them in concurrent caching sys-
tems [11]; we are not aware of any production system
that implements these policies. Moreover, the OneRF
workload does not meet the basic premise of cost-aware
caching (Section 2.2.2).

5.2 How much does RobinHood improve SLO viola-
tions for OneRF’s workload?

To compare RobinHood to the five caching systems
above, we examine a scenario that replicates the magni-
tude and rate with which query latency varies over time
in the OneRF production system, as shown in Figure 2.
In production systems, this variability is often caused by
temporary spikes in the traffic streams of other services
which share these backends (Section 2).
Experimental setup. To make experiments reproducible,
we emulate latency imbalances by imposing a variable
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Figure 9: Comparison of how well different caching sys-
tems balance the RBC at three times in the experiment
from Figure 7. RobinHood is the only system whose
RBCs do not significantly exceed 50%.

resource limit on several backends in our testbed. De-
pending on the backend type (see Section 4), a backend
is either IO-bound or CPU-bound. We use Linux control
groups to limit the available number of IOPS or the CPU
quota on the respective backends. For example, to emu-
late the latency spike on Backend 6 at 4AM (Figure 2), we
limit the number of IOPS that this backend is allowed to
perform, which mimics the effect of other traffic streams
consuming these IOPS.

We emulate latency variability across the same four
backends as shown in Figure 2: backends 1, 5, 6, and 8.
Our experiments span four hours each, and we use the first
25% of the experiment time to warm the backends and
caches. Figure 7 shows the P99 latency of queries in our
experiments under the OneRFpolicy (ignoring an initial
warmup period). We verified that the latency spikes are
similar in magnitude to those we observe in the OneRF
production system (Figure 2).
Experimental results. We compare RobinHood to the
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Figure 10: Results from sensitivity experiments where latency is uncorrelated with query rate. The load on Backend 7
increases either slowly (left column) or quickly (right column). Even when load increases quickly, RobinHood violates
a 150ms P99 SLO less than 1.5% of the time. In contrast, the second best system (LAMA++) has 38% SLO violations.

competing systems along several dimensions: the P99
request latency, the rate of SLO violations, and how well
they balance the RBC between backends.

Figure 3 shows the P99 request latency for each system
over the course of the experiment. Throughout the experi-
ment, RobinHood maintains a P99 below our SLO target
of 150ms. Both the production and research systems ex-
perience high P99 latencies during various latency spikes,
and Cliffhgr++ and FAIR++ even experience prolonged
periods of instability. RobinHood improves the P99 over
every competitor by at least 3x during some latency spike.

Figure 8 summarizes the frequency of SLO violations
under different SLOs for each caching system in terms
of the P99, P90 and P50 request latency. If the goal is
to satisfy the P99 SLO 90% of the time, then the graph
indicates the strictest latency SLO supported by each
system (imagine a vertical line at 10% SLO violations).
If the goal is to meet a particular P99 SLO such as 150ms,
then the graph indicates the fraction of SLO violations
(imagine a horizontal line at 150ms). The figure does not
show FAIR++ and Cliffhgr++ as the percentage of SLO
violations is too high to be seen. We find that RobinHood
can meet much lower latency SLOs than competitors
with almost no SLO violations. For example, RobinHood
violates a P99 SLO of 150ms (Figure 8a) less than 0.3% of
the time. By contrast, the next best policy, OneRFpolicy,
violates this same SLO 30% of the time.

Throughout these experiments, RobinHood targets the
P99 request latency (Section 3). We discuss in Section 6
how to generalize RobinHood’s optimization goal. How-
ever, even though RobinHood focuses on the P99, it still
performs well on the P90 and P50. For example, for a
P90 SLO of 50ms (Figure 8b), RobinHood leads to less
than 1% SLO violations, whereas OneRFpolicy leads to
about 20% SLO violations.

Figure 9 shows the RBC (defined in Section 3) for
the four backends affected by latency spikes under each
caching system at 50 min, 100 min, and 150 min into the
experiment, respectively. This figure allows us to quantify
how well each system uses the cache to balance RBCs

across backend systems. We refer to the dominant back-
end as the backend which accounts for the highest per-
centage of RBCs. RobinHood achieves the goal of main-
taining a fairly even RBC balance between backends—in
the worst case, RobinHood allows the dominant backend
to account for 54% of the RBC. No other competitor is
able to keep the dominating backend below 85% in all
cases and even the average RBC of the dominant backend
exceeds 70%.

5.3 How much variability can RobinHood handle?
To understand the sensitivity of each caching policy to

changes in backend load, we perform a more controlled
sensitivity analysis.
Experimental setup. To emulate the scenario that some
background work is utilizing the resources of a backend,
we limit the resources available to a backend system. In
these experiments, we continuously decrease the resource
limit on a single backend over a duration of 50 minutes.
We separately examine two backends (backend 1 and
backend 7) and test two different rates for the resource
decrease—the “quick” decrease matches the speed of the
fastest latency spikes in the OneRF production system,
and the “slow” decrease is about one third of that speed.
Experimental results. Figure 10 shows the P99 request
latency under increasing load on backend 7. This experi-
ment benchmarks the typical case where high latency is
uncorrelated with query rate (Section 2). Figure 10(a)
shows that, when load increases slowly, RobinHood never
violates a 150ms SLO. In contrast, OneRFpolicy and
TAO++ are consistently above 150ms after 40min, when
the latency imbalance becomes more severe than in Sec-
tion 5.2. Of the research systems, FAIR++ and Cliffhgr++

are above 150ms after 10min. LAMA++, the only system
that is latency aware, violates the SLO 3.3% of the time.

Figure 10(b) shows that, when load increases quickly,
RobinHood maintains less than 1.5% SLO violations. All
other systems become much worse, e.g., OneRFpolicy
and TAO++ are above 150ms already after 20min. The
second best system, LAMA++, violates the SLO more
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Figure 11: Results from sensitivity experiments where latency is correlated with query rate. The load on Backend 1
increases either slowly (left column) or quickly (right column). Even when load increases quickly, RobinHood never
violates a 150ms P99 SLO. In contrast, the second best system (OneRFpolicy) has 33% SLO violations.

than 38% of the time, which is 25× more frequent than
RobinHood.

Figure 11 shows the P99 request latency under increas-
ing load on backend 1, where high latency is correlated
with query rate, which is not typical in production sys-
tems. Figure 11(a) shows that, when load increases slowly,
RobinHood never violates a 150ms SLO. OneRFpolicy
and TAO++ lead to lower P99s than when latency is un-
correlated, but still violate the 150ms SLO more than 28%
of the time. Of the research systems, Cliffhgr++ is the
best with about 8.2% SLO violations.

Figure 11(b) shows that, when load increases quickly,
RobinHood never violates the SLO. The second best sys-
tem, OneRFpolicy, violates the SLO more than 33% of
the time.

5.4 How robust is RobinHood to simultaneous la-
tency spikes?

To test the robustness of RobinHood, we allow the
backend resource limits to vary randomly and measure
RobinHood’s ability to handle a wide range of latency
imbalance patterns.

Experimental setup. We adjust resource limits over time
for the same backends and over the same ranges as those
used in the experiments from Section 5.2. However, rather
than inducing latency spikes similar to those in the OneRF
production system, we now allow resource limits to vary
randomly. Hence, each backend will have multiple peri-
ods of high and low latency over the course of the exper-
iment. Additionally, multiple backends may experience
high latency at the same time. To generate this effect, we
randomly increase or decrease each backend’s resource
limit with 50% probability every 20 seconds.

Experimental results. Figure 12 shows the results of our
robustness experiments. Figure 12(a) shows the backend
resource limits (normalized to the limits in Section 5.2)
over time for each of the backends that were resource
limited during the experiment. Note that at several times
during the experiment, multiple backends were highly lim-
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Figure 12: Results from robustness experiments in which
backend resource limits vary randomly, see (a). In this
challenging scenario, RobinHood still meets 150ms P99
SLO 95% of the time, see (b).

ited at the same time, making it more difficult to maintain
low request tail latency.

Figure 12(b) shows the rate of SLO violations for each
caching system during the robustness experiments. In this
challenging scenario, RobinHood violates a 150ms SLO
only 5% of the time. The next best policy, TAO++, vio-
lates the SLO more than 24% of the time. RobinHood also
helps during parts of the experiment where all backends
are severely resource constrained. Overall, RobinHood’s
maximum P99 latency does not exceed 306ms whereas
the next best policy, TAO++, exceeds 610ms.

We observe that the there is no single “second
best” caching system: the order of the competitors
OneRFpolicy, TAO++, and LAMA++ is flipped between
Figures 12 and 8. In Figure 12(b), TAO++ performs well
by coincidence and not due to an inherent advantage of
static allocations. TAO++’s static allocation is optimized
for the first part of the experiment shown in Figure 7,
where a latency spike occurs on backend 6. Coinciden-
tally, throughout our randomized experiment, backend
6 is also severely resource limited, which significantly
boosts TAO++’s performance.

5.5 How much space does RobinHood save?
Figure 13 shows RobinHood’s allocation per backend

in the experiments from Sections 5.2 and 5.4. To get an
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Figure 13: RobinHood’s overall cache allocation during
the experiments from Sections 5.2 and 5.4.

estimate of how much space RobinHood saves over other
caching systems, we consider what static allocation would
be required by TAO++ in order to provide each backend
with its maximum allocation under RobinHood. This sig-
nificantly underestimates RobinHood’s advantage, since
it assumes the existence of an oracle that knows Robin-
Hood’s allocations ahead of time. Even given advance
knowledge of these allocations, TAO++ would need 73%
more cache space than RobinHood.

5.6 What is the overhead of running RobinHood?
We consider three potential sources of overhead.

Network overhead. In our implementation of Robin-
Hood, application servers send request statistics to an
RBC server (Section 3) once every second. These updates
include the request latency (32-bit integer) and the ID of
the request’s blocking backend (32-bit integer). Given a
request rate of 1000 requests per second per application
server, this amounts to less than 8 KB/s.
CPU and memory overhead. RobinHood adds a
lightweight controller to each application server (Sec-
tion 3). Throughout all experiments, the controller’s CPU
utilization overhead was too small to be measured. The
memory overhead including RobinHood’s controller is
less than 25 KB. However, we measured bursts of memory
overhead up to several MBs. This is due to memcached
not freeing pages immediately after completing dealloca-
tion requests. Future implementations could address these
bursts by refining the memcached resizing mechanism.
Query hit latency overhead. In multi-threaded caching
systems, such as memcached, downsizing a partition will
cause some concurrent cache operations to block (Sec-
tion 4). We quantify this overhead by measuring the P99
cache hit latency for queries in RobinHood and OneRF
for the five backends with the largest change in partition
sizes (backends 1, 5, 6, 8, and 9). These measurements
are shown in Figure 14. RobinHood increases the P99
cache hit latency for queries by 13% to 28% for the five
backends, but does not significantly affect the other back-
ends. Importantly, recall that request latency is different
from query latency. The cause of high request tail latency
is almost solely due to cache misses. Consequently, these
hit latencies do not increase the request latency of Robin-
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Figure 14: The cache hit latencies under RobinHood
and the OneRFpolicy. The small overhead introduced by
RobinHood does not affect request tail latency.

Hood even for low percentiles (cf. the P50 request latency
in Figure 8c).
Query miss latency overhead. RobinHood can increase
the load on cache-rich backends. Across all experiments,
the worse-case increase of an individual backend (back-
end 20, the least queried backend), is 2.55× over OneRF.
Among the top 5 backends, RobinHood never increases
query latencies by more than 61%. On the other hand,
RobinHood improves the P99 query latency by more than
4× for the overloaded backend during the first latency
spike in Figure 7. By sacrificing the performance of
cache-rich backends, RobinHood frees up cache space to
allocate towards cache-poor backends that are contribut-
ing to slow request latency. This trade-off significantly
improves the request latency both at the P99 as well as at
other percentiles (Section 5.2).

6 Discussion
We have seen that RobinHood is capable of meeting a
150ms SLO for the OneRF workload even under challeng-
ing conditions where backends simultaneously become
overloaded. Many other systems, e.g., at Facebook [20],
Google [26], Amazon [27], and Wikipedia [14], use a
similar multitier architecture where a request depends on
many queries. However, these other systems may have
different optimization goals, more complex workloads,
or slight variations in system architecture compared to
OneRF. In this section, we discuss some of the challenges
that may arise when incorporating RobinHood into these
other systems.
Non-convex miss curves. Prior work has observed non-
convex miss ratio curves (a.k.a. performance cliffs) for
some workloads [12, 25, 73, 80]. This topic was also fre-
quently raised in our discussions with other companies.
While miss ratio curves in our experiments are largely con-
vex, RobinHood does not fundamentally rely on convexity.
Specifically, RobinHood never gets stuck, because it ig-
nores the miss ratio slope. Nevertheless, non-convexities
can lead to inefficiency in RobinHood’s allocation. If miss
ratio curves are highly irregular (step functions), we sug-
gest convexifying miss ratios using existing techniques
such as Talus [12] and Cliffhanger [25].
Scaling RobinHood to more backend systems and
higher request rates. The RobinHood algorithm scales
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linearly in the number of backend systems and thus can
support hundreds of backends (e.g. services in a microser-
vice architecture). Even at high request rates, Robin-
Hood’s overhead is only a few MB/s for up to a million
requests per second (independent of the query rate). At a
sufficiently high request rate, RobinHood’s central RBC
server may become the bottleneck. However, at this scale,
we expect that it will no longer be necessary to account for
every request when calculating the RBC. Sampling some
subset of the traffic will still produce a P99 estimate with
enough observations to accurately depict the system state.
It is also worth noting that typical production systems
already have latency measurement systems in place [77]
and thus would not require a dedicated RBC server.
Interdependent backends. RobinHood assumes that
query latencies are independent across different backends.
In some architectures, however, multiple backends share
the same underlying storage system [3]. If this shared stor-
age system were the bottleneck, allocating cache space to
just one of the backends may be ineffective. RobinHood
needs to be aware of such interdependent backends. A
future version of RobinHood could fix this problem by
grouping interdependent backends into a single unit for
cache allocations.
Multiple webservices with shared backends. Optimiz-
ing tail latencies across multiple webservices which make
use of the same, shared backend systems is challenging.
RobinHood can introduce additional challenges. For ex-
ample, one webservice running RobinHood may increase
the load significantly on a shared backend which can neg-
atively affect request latencies in a second webservice.
This could arise if the two services see differently struc-
tured requests—the shared backend could seem unimpor-
tant to one webservice but be critical to another. If both
webservices run RobinHood, a shared backend’s load
might oscillate between low and high as the two Robin-
Hood instances amplify the effect of each other’s alloca-
tion decisions. A solution to this problem could be to give
RobinHood controllers access to the RBC servers of both
webservices (effectively running a global RobinHood in-
stance). If this is impossible, additional constraints on
RobinHood’s allocation decisions could be necessary. For
example, we can constrain RobinHood to assign at least
as much capacity to the shared backend as it would get in
a system without RobinHood.
Distributed caching. Many large webservices rely on a
distributed caching layer. While these layers have access
to large amounts of cache capacity, working sets typically
still do not fit into the cache and the problem of tuning par-
tition sizes remains [20]. RobinHood can accommodate
this scenario with solely a configuration change, associat-
ing a RobinHood controller with each cache rather than
each application server. We have tested RobinHood in this
configuration and verified the feasibility of our proposal.

However, distributed caching leads to the known problem
of cache hotspots under the OneRF workload, regardless
of whether or not RobinHood is running (see Section 4.2
and [20, 77]). Addressing this issue is outside the scope
of this work, and hence we focus on the cache topology
used by OneRF rather than a distributed caching layer.
Scenarios where cache repartitioning is not effective.
If the caching layer is severely underprovisioned, or if
the workload is highly uncacheable, repartitioning the
cache might not be sufficient to reduce P99 request la-
tency. However, we note that RobinHood’s key idea—
allocating resources to backends which affect P99 request
latency—can still be exploited. For instance, if caching is
ineffective but backends can be scaled quickly, the RBC
metric could be used to drive these scaling decisions in or-
der to reduce request tail latency. Even if backends are not
scalable, RBC measurements collected over the course of
a day could inform long-term provisioning decisions.
Performance goals beyond the P99. Depending on the
nature of the application, system designers may be con-
cerned that a using single optimization metric (e.g., P99)
could lead to worse performance with respect to other met-
rics (e.g., the average request latency). However, Robin-
Hood explicitly optimizes whatever optimization metric
is used to calculate the RBC. Hence, it is possible to use
other percentiles or even multiple percentiles to calculate
the RBC by choosing the set S accordingly (see Section 3
for a definition of S). Conceptually, RobinHood is modu-
lar with regard to both the resources it allocates and with
regard to the metric that is used to drive these allocations.

7 Related Work
A widely held opinion is that “caching layers . . . do not
directly address tail latency, aside from configurations
where it is guaranteed that the entire working set of an
application can reside in a cache” [26]. RobinHood is
the first work that shows that caches can directly address
tail latency even if working sets are much larger than the
cache size. Thus, RobinHood stands at the intersection of
two bodies of work: caching and tail latency reduction.

Caching related work. Caching is a heavily studied area
of research ranging from theory to practice [10]. For the
most part, the caching literature has primarily focused
on improving hit ratios (e.g., [2, 8, 13, 15–17, 21, 22, 42,
57, 87]). Prior work has also investigated strategies for
dynamically partitioning a cache to maximize overall hit
ratio (e.g., [1, 24, 25, 40, 60, 75]) or to provide a weighted
or fair hit ratio to multiple workloads (e.g., [19,46,65,85]).
Importantly, while hit ratio is a good proxy for average
latency, it does not capture the effect of tail latency, which
is dominated by the backend system performance.

Another group of caching policies incorporates “miss
cost” (such as retrieval latency) into eviction decisions [18,
21, 33, 52, 64, 70, 81, 86]. As discussed in Section 2.2.2,
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the OneRF workload does not meet the premise of cost-
aware caching. Specifically, all these systems assume
that the retrieval latency is correlated (fixed) per object.
At OneRF, latency is highly variable over time and not
correlated with specific objects.

The most relevant systems are LAMA [40] and Hy-
perbolic [18]. LAMA partitions the cache by backend
and seeks to balance the average latency across backends.
Hyperbolic does not support partitions, but allows esti-
mating a metric across a group of related queries such
as all queries going to the same backend. This enables
Hyperbolic to work similarly to LAMA. Both LAMA and
Hyperbolic are represented optimistically by LAMA++

in our evaluation. Unfortunately, LAMA++ leads to high
P99 request latency because the latency of individual
queries is typically not a good indicator for the overall
request tail latency (see Section 2). Unlike LAMA or
Hyperbolic, RobinHood directly incorporates the request
structure in its caching decisions.

Another branch of works seeks to improve the caching
system itself, e.g., the throughput [31, 66], the latency of
cache hits [67], cache-internal load balancing [32, 43],
and cache architecture [31, 55, 72]. However, these works
are primarily concerned with the performance of cache
hits rather than cache misses, which dictate the overall
request tail latency.

Tail latency related work. Reducing tail latency and mit-
igating stragglers is an important research area that has
received much attention in the past decade. Existing tech-
niques can be subdivided into the following categories:
redundant requests, scheduling techniques, auto-scaling
and capacity provisioning techniques, and approximate
computing. Our work serves to introduce a fifth category:
using the cache to reduce tail latency.

A common approach to mitigating straggler effects is
to send redundant requests and use the first completed re-
quest [5–7,45,69,78,79,82,84,88]. When requests cannot
be replicated, prior work has proposed several schedul-
ing techniques, e.g., prioritization strategies [36, 89, 92],
load balancing techniques [48, 53, 83], and systems that
manage queueing effects [4, 28, 29, 54, 62, 68, 74]. These
are useful techniques for cutting long tail latencies, but
fundamentally, they still have to send requests to backend
systems, whereas our new caching approach eliminates a
fraction of traffic to backend systems entirely.

While these first two approaches consider systems with
static resource constraints, other works have considered
adjusting the overall compute capacity to improve tail
latency. These techniques include managing the compute
capacity through auto-scaling and capacity provisioning
for clusters [34,45,47,58,90,91], and adjusting the power
and/or compute (e.g., number of cores) allocated to per-
forming the computation [37, 38, 49, 76]. Alternatively,
there is a branch of tail latency reduction work known

as approximate computing, which considers reducing the
computational requirements by utilizing lower quality
results [6, 23, 45, 51]. Importantly, these are all orthogo-
nal approaches for reducing tail latency, and our work is
proposing a new type of technique that can be layered on
top of these existing techniques.

Why RobinHood is different. RobinHood is unique in
several ways. First, it is the only system to utilize the
cache for reducing overall request tail latency. Second,
RobinHood is the only caching system that takes request
structure into account. Third, by operating at the caching
layer, RobinHood is uniquely situated to influence many
diverse backend systems without requiring any modifica-
tions to the backend systems.

8 Conclusion
This paper addresses two problems facing web service
providers who seek to maintain low request tail latency.
The first problem is to determine the best allocation of
resources in multitier systems which serve structured re-
quests. To deal with structured requests, RobinHood in-
troduces the concept of the request blocking count (RBC)
for each backend, identifying which backends require
additional resources. The second problem is to address
latency imbalance across stateful backend systems which
cannot be scaled directly to make use of the additional re-
sources. RobinHood leverages the existing caching layer
present in multitiered systems, differentially allocating
cache space to the various backends in lieu of being able
to scale them directly.

Our evaluation shows that RobinHood can reduce SLO
violations from 30% to 0.3% for highly variable work-
loads such as OneRF. RobinHood is also lightweight,
scalable, and can be deployed on top of an off-the-shelf
software stack. The RobinHood caching system demon-
strates how to effectively identify the root cause of P99
request latency in the presence of structured requests. Fur-
thermore, RobinHood shows that, contrary to popular
belief, a properly designed caching layer can be used to
reduce higher percentiles of request latency.
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Abstract

We introduce partially-stateful data-flow, a new stream-
ing data-flow model that supports eviction and recon-
struction of data-flow state on demand. By avoiding state
explosion and supporting live changes to the data-flow
graph, this model makes data-flow viable for building
long-lived, low-latency applications, such as web appli-
cations. Our implementation, Noria, simplifies the back-
end infrastructure for read-heavy web applications while
improving their performance.

A Noria application supplies a relational schema and a
set of parameterized queries, which Noria compiles into
a data-flow program that pre-computes results for reads
and incrementally applies writes. Noria makes it easy
to write high-performance applications without manual
performance tuning or complex-to-maintain caching lay-
ers. Partial statefulness helps Noria limit its in-memory
state without prior data-flow systems’ restriction to win-
dowed state, and helps Noria adapt its data-flow to
schema and query changes while on-line. Unlike prior
data-flow systems, Noria also shares state and computa-
tion across related queries, eliminating duplicate work.

On a real web application’s queries, our prototype
scales to 5× higher load than a hand-optimized MySQL
baseline. Noria also outperforms a typical MySQL/mem-
cached stack and the materialized views of a commercial
database. It scales to tens of millions of reads and mil-
lions of writes per second over multiple servers, outper-
forming a state-of-the-art streaming data-flow system.

1 Introduction
Web applications must serve many users at low latency.
They respond to each user request using data queried
from backend stores, usually relational databases. The
vast majority of such store accesses are reads, and
evaluating them as repeated queries over the normal-
ized schema of a relational database is inefficient [54,
57]. Hence, many applications explicitly include pre-
computed query results in their database schemas, or
cache such results in separate key-value stores [8, 54].
For example, the Lobsters news aggregator [43] stores
stories’ computed vote counts and “hotness” in separate

∗ equal contribution

table columns to avoid re-computing them on every page
load [42]. As each vote is reflected in several places, ap-
plication logic must explicitly update computed columns
every time a value changes. Hence, pre-computation
complicates both application reads and writes. In gen-
eral, developers must choose between convenient, but
slow, “natural” relational queries (e.g., with inline aggre-
gations), and increased performance at the cost of appli-
cation and deployment complexity (e.g., due to caching).

Noria applications do not need to choose. Noria ex-
poses a high-level query interface (SQL), but unlike
in conventional systems, Noria accelerates the execu-
tion of even complex natural queries by answering with
pre-computed results where possible. At its core, No-
ria runs a continuous, but dynamically changing, data-
flow computation that combines the persistent store, the
cache, and elements of application logic. Each write to
Noria streams through a joint data-flow graph for the
current queries and incrementally updates the cached,
eventually-consistent internal state and query results.

Making this approach work for web applications is
challenging. A naı̈ve implementation might maintain un-
bounded pre-computed state, causing unacceptable space
and time overhead, so Noria must limit its state size.
Writes can update many pre-computed results, so Noria
must ensure that writes are fast and avoid unnecessary
work. Finally, since many web applications frequently
change their queries [20, 61], Noria must accommodate
changes without iterating over all data.

Existing data-flow systems either cannot perform fine-
grained incremental updates to state [36, 52, 75], or limit
the growth of operator state using “windowed” state (e.g.,
this week’s stories). This bounds their memory footprint
but prohibits reading older data [11, 39, 46, 51]. No-
ria’s data-flow operator state is partial instead of win-
dowed, retaining only the subset of records that the ap-
plication has queried. This is possible thanks to a new,
partially-stateful data-flow model: when in need of miss-
ing state, operators request an upquery that derives the
missing records from upstream state. Ensuring correct-
ness with this model requires careful attention to invari-
ants, as ordinary updates and upqueries can race. With-
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Figure 1: Overview of how current website backends and Noria process frontend reads and writes.

out care, such races could produce permanently incorrect
state, and therefore incorrect cached query results.

The state that Noria keeps is similar to a material-
ized view, and its data-flow processing is akin to view
maintenance [2, 37]. Noria demonstrates that, contrary
to conventional wisdom, maintaining materialized views
for all application queries is feasible. This is possible
because partially-stateful operators can evict rarely-used
state, and discard writes for that state, which reduces
state size and write load. Noria further avoids redundant
computation and state by jointly optimizing its queries to
merge overlapping data-flow subgraphs.

Few existing streaming data-flow systems can change
their queries and input schemas without downtime. For
example, Naiad must re-start to accommodate changes,
and Spark’s Structured Streaming must restart from a
checkpoint [18]. Noria, by contrast, adapts its data-flow
to new queries without interrupting existing clients. It ap-
plies changes while retaining existing state and while re-
maining live for reads throughout. Writes from current
clients see sub-second interruptions in the common case.

Noria’s techniques remain compatible with traditional
parallel and distributed data-flow, and allow Noria to
parallelize and scale fine-grained, partially materialized
view maintenance over multiple cores and machines.

In summary, Noria makes four principal contributions:
1. the partially-stateful data-flow model, its correct-

ness invariants, and a conforming system design;
2. automatic merge-and-reuse techniques for data-

flow subgraphs in joint data-flows over many
queries, which reduce processing cost and state size;

3. near-instantaneous, dynamic transitions for data-
flow graphs in response to changes to queries or
schema without loss of existing state; and

4. a prototype implementation and an evaluation that
demonstrates that practical web applications benefit
from Noria’s approach.

Our Noria prototype exposes a backwards-compatible
MySQL protocol interface and can serve real web appli-
cations with minimal changes, although its benefits in-

crease for Noria-optimized applications. When serving
the Lobsters web application on a single Amazon EC2
VM, our prototype outperforms the default MySQL-
based backend by 5× while simultaneously simplifying
the application (§8.1). For a representative query, our
prototype outperforms the widely-used MySQL/mem-
cached stack and the materialized views of a commer-
cial database by 2–10× (§8.2). It also scales the query
to millions of writes and tens of millions of reads per
second on a cluster of EC2 VMs, outperforming a state-
of-the-art data-flow system, differential dataflow [46, 51]
(§8.3). Finally, our prototype adapts the data-flow with-
out any perceptible downtime for reads or writes when
transitioning the same query to a modified version (§8.5).

Nevertheless, our current prototype has some limita-
tions. It only guarantees eventual consistency; its evic-
tion from partial state is randomized; it is inefficient for
sharded queries that require shuffles in the data-flow; and
it lacks support for some SQL keywords. We plan to ad-
dress these limitations in future work.

2 Background

We now explain how current website backends and Noria
process data. Figure 1 shows an overview.

Many web applications use a relational database to
store and query data (Figure 1a). Page views generate
database queries that frequently require complex compu-
tation, and the query load tends to be read-heavy. Across
one month of traffic data from a HotCRP site and the
production deployment of Lobsters [32], 88% to 97%
of queries are reads (SELECT queries), and these reads
consume 88% of total query execution time in HotCRP.
Since read performance is important, application devel-
opers often manually optimize it. For example, Lob-
sters stores individual votes for stories in a votes ta-
ble, but also stores per-story vote counts as a column in
the stories table. This speeds up read queries of vote
counts, but “de-normalizes” the schema and complicates
vote writes, which must update the derived counts.
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Websites often deploy an in-memory key-value
cache (like Redis, memcached, or TAO [8]) to speed
up common-case read queries (Figure 1b). Such a
cache avoids re-evaluating the query when the under-
lying records are unchanged. However, the application
must invalidate or replace cache entries as the records
change. This process is error-prone and requires complex
application-side logic [37, 48, 57, 64]. For example, de-
velopers must carefully avoid performance collapse due
to “thundering herds” (viz., many database queries issued
just after an invalidation) [54, 57]. Since the cache can
return stale records, reads are eventually-consistent.

Some sites use stream-processing systems [13, 39] to
maintain results for queries whose re-execution over all
past data is infeasible. One major problem for these sys-
tems is that they must maintain state at some operators,
such as aggregations. To avoid unbounded growth, exist-
ing systems “window” this state by limiting it to the most
recent records. This makes it difficult for a stream pro-
cessor to serve the general queries needed for websites,
which need to access older as well as recent state. More-
over, stream processors are less flexible than a database
that can execute any relational query on its schema: in-
troducing a new query often requires a restart.

Noria, as shown in Figure 1c, combines the best of
these worlds. It supports the fast reads of key-value
caches, the efficient updates and parallelism of streaming
data-flow, and, like a classic database, supports changing
queries and base table schemas without downtime.

3 Noria design
Noria is a stateful, dynamic, parallel, and distributed
data-flow system designed for the storage, query process-
ing, and caching needs of typical web applications.

3.1 Target applications and deployment

Noria targets read-heavy applications that tolerate even-
tual consistency. Many web applications fit this model:
they accept the eventual consistency imposed by caches
that make common-case reads fast [15, 19, 54, 72]. No-
ria’s current design primarily targets relational operators,
rather than the iterative or graph computations that are
the focus of other data-flow systems [46, 51], and pro-
cesses structured records in tabular form [12, 16]. Large
blobs (e.g., videos, PDF files) are best stored in external
blob stores [7, 24, 50] and referenced by Noria’s records.

Noria runs on one or more multicore servers that com-
municate with clients and with one another using RPCs.
A Noria deployment stores both base tables and derived
views. Roughly, base tables contain the data typically
stored persistently, and derived views hold data an appli-
cation might choose to cache. Compared to conventional
database use, Noria base tables might be smaller, as No-
ria derives data that an application may otherwise pre-

1 /* base tables */

2 CREATE TABLE stories
3 (id int, author int, title text, url text);
4 CREATE TABLE votes (user int, story_id int);
5 CREATE TABLE users (id int, username text);
6 /* internal view: vote count per story */

7 CREATE INTERNAL VIEW VoteCount AS
8 SELECT story_id, COUNT(*) AS vcount
9 FROM votes GROUP BY story_id;

10 /* external view: story details */

11 CREATE VIEW StoriesWithVC AS
12 SELECT id, author, title, url, vcount
13 FROM stories
14 JOIN VoteCount ON VoteCount.story_id = stories.id
15 WHERE stories.id = ?;

Figure 2: Noria program for a key subset of the Lobsters
news aggregator [43] that counts users’ votes for stories.

compute and store in base tables for performance. Views,
by contrast, will likely be larger than a typical cache foot-
print, because Noria derives more data, including some
intermediate results. Noria stores base tables persistently
on disk, either on one server or sharded across multiple
servers, but stores views in server memory. The applica-
tion’s working set in these views should fit in memory
for good performance, but Noria reduces memory use by
only materializing records that are actually read, and by
evicting infrequently-accessed data.

3.2 Programming interface

Applications interact with Noria via an interface that
resembles parameterized SQL queries. The application
supplies a Noria program, which registers base tables
and views with parameters supplied by the application
when it retrieves data. Figure 2 shows an example Noria
program for a Lobsters-like news aggregator application
(? is a parameter). The Noria program includes base ta-
ble definitions, internal views used as shorthands in other
expressions, and external views that the application later
queries. Internally, Noria instantiates a data-flow to con-
tinuously process the application’s writes through this
program, which in turn maintains the external views.

To retrieve data, the application supplies Noria with an
external view identifier (e.g., StoriesWithVC) and one
or more sets of parameter values. Noria then responds
with the records in the view that match those values.
To modify records in base tables, the application per-
forms insertions, updates, and deletions, similar to a SQL
database. Noria applies these changes to the appropriate
base tables and updates dependent views.

The application may change its Noria program to add
new views, to modify or remove existing views, and to
adapt base table schemas. Noria expects such changes
to be common and aims to complete them quickly. This
contrasts with most previous data-flow systems, which
lack support for efficient changes without downtime.
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Figure 3: Noria’s data-flow operators can query into up-
stream state: a join issues an upquery (I) to retrieve a
record from upstream state to produce a join result (II).

In addition to its native SQL-based query interface,
Noria provides an implementation of the MySQL bi-
nary protocol, which allows existing applications that use
prepared statements against a MySQL database to in-
teract with Noria without further changes. The adapter
turns ad-hoc queries and prepared SQL statements into
writes to base tables, reads from external views, and in-
crementally effects Noria program changes. Noria sup-
ports much, but not all, SQL syntax. We discuss the ex-
perience of building and porting applications in §7.

3.3 Data-flow execution

Noria’s data-flow is a directed acyclic graph of relational
operators such as aggregations, joins, and filters. Base
tables are the roots of this graph, and external views form
the leaves. Noria extends the graph with new base tables,
operators, and views as the application adds new queries.

When an application write arrives, Noria applies it to
a durable base table and injects it into the data-flow as
an update. Operators process the update and emit de-
rived updates to their children; eventually updates reach
and modify the external views. Updates are deltas [46,
60] that can add to, modify, and remove from down-
stream state. For example, a count operator emits deltas
that indicate how the count for a key has changed; a
join may emit an update that installs new rows in down-
stream state; and a deletion from a base table generates
a “negative” update that revokes derived records. Neg-
ative updates remove entries when Noria applies them
to state, and retain their negative “sign” when combined
with other records (e.g., through joins). Negative updates
hold exactly the same values as the positives they revoke
and thus follow the same data-flow paths.

Noria supports stateless and stateful operators. State-
less operators, such as filters and projections, need no
context to process updates; stateful operators, such as
count, min/max, and top-k, maintain state to avoid inef-
ficient re-computation of aggregate values from scratch.
Stateful operators, like external views, keep one or more
indexes to speed up operation. Noria adds indexes based
on indexing obligations imposed by operator semantics;

for example, an operator that aggregates votes by user ID
requires a user ID index to process new votes efficiently.

In most stream processors, join operators keep a win-
dowed cache of their inputs [3, 76], allowing an up-
date arriving at one input to join with all relevant state
from the other. In Noria, joins instead perform upqueries,
which are requests for matching records from stateful an-
cestors (Figure 3): when an update arrives at one join
input, the join looks up the relevant state by querying
its other inputs. This reduces Noria’s space overhead,
since joins often need not store duplicate state, but re-
quires care in the presence of concurrent updates, an is-
sue further discussed in §4. Upqueries also impose in-
dexing obligations that Noria detects and satisfies.

3.4 Consistency semantics

To achieve high parallel processing performance, Noria’s
data-flow avoids global progress tracking or coordina-
tion. An update injected by a base table takes time to
propagate through the data-flow, and the update may ap-
pear in different views at different times. Noria opera-
tors and the contents of its external views are eventually-
consistent. Eventual consistency is attractive for perfor-
mance and scalability, and is sufficient for many web ap-
plications [15, 54, 72].

Noria does ensure that if writes quiesce, all external
views eventually hold results that are the same as if the
queries had been executed directly against the base ta-
ble data. Making this work correctly requires some care.
Like most data-flow systems, Noria requires that opera-
tors are deterministic functions over their own state and
the inputs from their ancestors. In addition, Noria must
avoid races between updates and upqueries; avoid re-
ordering updates on the same data-flow path; and resolve
races between related updates that arrive independently
at multi-ancestor operators via different data-flow paths.
Consider an OR that combines filters using a union oper-
ator, or a join between data-flow paths connected to the
same base table: such operators’ final output (and state)
must be commutative over the order in which updates
arrive at their inputs. The standard relational operators
Noria supports have this property.

Web applications sometimes rely on database trans-
actions, e.g., to atomically update pre-computed val-
ues. Noria approach’s is compatible with basic,
optimistically-concurrent multi-statement transactions,
but Noria also often obviates the need for them. For ex-
ample, Lobsters uses transactions only to avoid write-
write conflicts on vote counts and stories’ “hotness”
scores. A multi-statement transaction is required only be-
cause baseline Lobsters pre-computes hotness for perfor-
mance. Noria instead computes hotness in the data-flow,
which avoids write-write conflicts without a transaction,
albeit at the cost of eventual consistency for reads. We
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Figure 4: A partially-stateful view sends a recursive up-
query to derive evicted state (⊥) for key k from upstream
state (I); the response fills the missing state (II).

omit further discussion of transactions with Noria in this
paper; we plan to describe them in future work.

3.5 Challenges

An efficient Noria design faces two key challenges: first,
it must limit the size of its state and views (§4); and sec-
ond, changes to the Noria program must adapt the data-
flow without downtime in serving clients (§5).

4 Partially-stateful data-flow
Noria must limit the size of its views, as the state for
an application with many queries could exceed available
memory and become too expensive to maintain.

The partially-stateful data-flow model lets operators
maintain only a subset of their state. This concept of par-
tial materialization is well-known for materialized views
in databases [79, 80], but novel to data-flow systems. Par-
tial state reduces memory use, allows eviction of rarely-
used state, and relieves operators from maintaining state
that is never read. Partially-stateful data-flow generalizes
beyond Noria, but we highlight specific design choices
that help Noria achieve its goals.

Partial state introduces new data-flow messages to No-
ria. Eviction notices flow forward along the update data-
flow path; they indicate that some state entries will no
longer be updated. Operators drop updates that would
affect these evicted state entries without further pro-
cessing or forwarding. When Noria needs to read from
evicted state—for instance, when the application reads
state evicted from an external view—Noria re-computes
that state. This process sends recursive upqueries to the
relevant ancestors in the graph (Figure 4). An ancestor
that handles such an upquery computes the desired value
(possibly after sending its own upqueries), then forwards
a response that follows the data-flow path to the query-
ing operator. When the upquery response eventually ar-
rives, Noria uses it to populate the evicted entry. After the
evicted entry has been filled, subsequent updates through
the data-flow keep it up-to-date until it is evicted again.

For correctness, upqueries must produce eventually-
consistent results. For performance, Noria should con-
tinue to process updates—including updates to the wait-
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Figure 5: Definitions for partial state entry e (yellow)
in VoteCount: an in-flight update from votes (blue) is
in Te, but not yet in Se; the entry in StoriesWithVC is
key-descendant from e via story id (green).

ing operator—while (possibly slow) upqueries are in
flight. These requirements complicate the design.

4.1 Data-flow model and invariants

We first describe high-level correctness invariants of No-
ria’s partially-stateful data-flow. These invariants ensure
that Noria remains eventually-consistent and never re-
turns results contaminated by duplicate, missing, or spu-
rious updates. Since Noria allows operators to execute in
parallel to take advantage of multicore processors, these
invariants must hold in the presence of concurrent up-
dates and eviction notices. The invariants concern state
entries, where a state entry models one record in one op-
erator or view. Data-flow implementations derive state
entry values from input records, possibly after multi-
ple steps. For ease of expression, we model a state en-
try as the multiset of input records that produced that
entry’s value. Noria’s eventual consistency requires that
each state entry’s contents approach the ideal set of input
records that would produce the most up-to-date value.
Given some state entry e, we define:

• Te is the set of all input records received so far that, in
a correct implementation of the data-flow graph, would
be used to compute e.

• Se is either the multiset of input records actually used
to compute in e, or ⊥, which represents an evicted entry.
We use a multiset so the model can represent potential
bugs such as duplicate updates.

• De is the set of key-descendant entries of e. These
are entries of operators downstream of e in the data-flow
that depend on e through key lookup.
Te and Se are time-dependent, whereas the dependencies
represented in De can be determined from the data-flow
graph. If e is the VoteCount entry for some story in
Figure 5, then Te contains all input votes ever received
for that story; Se contains the updates represented in its
vcount; and De includes its StoriesWithVC entry.

Correctness of partially-stateful data-flow relies on en-
suring these invariants:
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1. Update completeness: if Se 6=⊥, then either all up-
dates in Te−Se are in flight toward e, or an eviction
notice for e is in flight toward e.

2. No spurious or duplicate updates: Se ⊆ Te.
3. Descendant eviction: if Se =⊥, then for all d ∈De,

either Sd =⊥, or an eviction notice for d is in flight
toward d’s operator.

4. Eventual consistency: if Te stops growing, then
eventually either Se = Te or Se =⊥.

We now explain the mechanisms that Noria uses to real-
ize this data-flow model and maintain the invariants.

4.2 Update ordering

Noria uses update ordering to ensure eventual consis-
tency without global data-flow coordination. Each oper-
ator totally orders all updates and upquery requests it re-
ceives for an entry; and, critically, the downstream data-
flow ensures that all updates and upquery responses from
that entry are processed by all consumers in that order.
Thus, if the operator orders update u1 before u2, then
every downstream consumer likewise processes updates
derived from u1 before those derived from u2. Noria data-
flows can split and merge (e.g., at joins), but update or-
dering and operator commutativity ensure that the even-
tual result is correct independent of processing order.

4.3 Join upqueries

Join operators use upqueries (§3.3): when an update ar-
rives at one input, the join upqueries its other input for the
corresponding records, and combines them with the up-
date. Join upqueries reach the next upstream stateful op-
erator, which computes a snapshot of the requested state
entry and forwards it along the data-flow to the querying
join. Intermediate operators process the response as ap-
propriate. Unlike normal updates, upquery responses fol-
low the single path back to the querying operator without
forking. Upquery responses also commute neither with
each other nor with previous updates. This introduces a
problem for join update processing, since every such up-
date requires an upquery that produces non-commutative
results, yet must produce an update that does commute.

Noria achieves this by ensuring that no updates are
in flight between the upstream stateful operator and the
join when a join upquery occurs. To do so, Noria lim-
its the scope of each join upquery to an operator chain
processed by a single thread. Noria executes updates on
other operator chains in parallel with join upqueries.

This introduces a trade-off between parallelism and
state duplication: join processing must stay within a sin-
gle operator chain, so copies of upstream state may be
required in each operator chain that contains a join.

4.4 Eviction and recursive upqueries

Evicted state introduces new challenges for Noria’s data-
flow. If the application requests evicted state, Noria must

use recursive upqueries to fill it in. Moreover, operators
now encounter evicted state when they handle updates.
These factors influence the Noria design in several ways.

First and simplest, Noria operators drop updates that
encounter evicted entries. This reduces the time spent
processing updates downstream, but necessitates the de-
scendant eviction invariant: operators downstream of an
evicted entry never see updates for that entry, so they
must evict their own dependent entries lest they remain
permanently out of date.

Second, recursive upqueries now occasionally cascade
up in the data-flow until they encounter the necessary
state—in the worst case, up to base tables. Responses
then flow forward to the querying operator. Upquery re-
sults are snapshots of operator state, and do not com-
mute with updates. For unbranched chains, update order-
ing (§4.2) and the fact that updates to evicted state are
dropped ensure that the requested upquery response is
processed before any update for the evicted state.

Recursive upqueries of branching subgraphs, such as
joins, are more complex. A join operator must emit a sin-
gle correct response for each upquery it receives, even if
it must make one or more recursive upqueries of its own
to produce the needed state. Combining the upqueries’
results directly would be incorrect: those upqueries exe-
cute independently, and updates can arrive between their
responses. Joins thus issue recursive upqueries, but com-
pute the final result exclusively with join upqueries once
the recursive upqueries complete (multiple rounds of re-
cursive upqueries may be required). These join upqueries
execute within a single operator chain and exclude con-
current updates. Noria supports other branching opera-
tors, such as unions, which obey the same rules as joins.

Finally, a join upquery performed during update pro-
cessing may encounter evicted state. In this case, No-
ria chooses to drop the update and evict dependent en-
tries downstream; Noria statically analyzes the graph to
compute the required eviction notices. There is a trade-
off here: computing the missing entry could avoid future
upqueries. Noria chooses to evict to avoid blocking the
write path while filling in the missing state.

Such evictions are rare, but they can occur.
For example, imagine a version of Figure 2 that
adds AuthorVotes, which aggregates VoteCount by
stories.author, and the following system state:

• stories[id=1] has author=Elena.
• VoteCount[story id=1] has vcount=8.
• AuthorVotes[author=Elena] has vcount=8.
• stories[id=2] has author=Bob.
• VoteCount[story id=2] is evicted.

Now imagine that an update changes story 2’s au-
thor to Elena. When this update arrives at the join
for AuthorVotes, that join operator upqueries for
VoteCount[story id=2], which is evicted. As a result,
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Noria sends an eviction notice for Elena—whose number
of votes has changed—to AuthorVotes.

4.5 Partial and full state

Noria makes state partial whenever it can service up-
queries using efficient index lookups. If Noria would
have to scan the full state of an upstream operator to sat-
isfy upqueries, Noria disables partial state for that oper-
ator. This may happen because every downstream record
depends on all upstream ones—consider e.g., the top 20
stories by vote count. In addition, the descendant evic-
tion invariant implies that partial-state operators cannot
have full-state descendants.

Partial-state operators in Noria start out fully evicted
and are gradually and lazily populated by upqueries. As
we show next, this choice has important consequences
for Noria’s ability to transition the data-flow efficiently.

5 Dynamic data-flow
Application queries evolve over time, so Noria’s dy-
namic data-flow represents a continuously-changing set
of SQL expressions. Existing data-flow systems run sep-
arate data-flows for each expression, initialize new op-
erators with empty state and reflect only new writes, or
require restarting from a checkpoint. Changes to the No-
ria program instead adapt the data-flow dynamically.

Given new or removed expressions, Noria transitions
the data-flow to reflect the changes. Noria first plans the
transition, reusing operators and state of existing expres-
sions where possible (§5.1). It then incrementally applies
these changes to the data-flow, taking care to maintain its
correctness invariants (§5.2). Once both steps complete,
the application can use new tables and queries.

The key challenges for transitions are to avoid unnec-
essary state duplication and to continue processing reads
and writes throughout. Operator reuse and partial state
help Noria address these challenges.

5.1 Determining data-flow changes

To initiate a transition, the application provides Noria
with sets of added and removed expressions. Noria then
computes required changes to the currently-running data-
flow. This process resembles traditional database query
planning, but produces a long-term joint data-flow across
all expressions in the Noria program. This allows Noria
to reuse existing operators for efficiency: if two queries
include the same join, the data-flow contains it only once.

To plan a transition, Noria first translates each new ex-
pression into an extended query graph [21]. The query
graph contains a node for each table or view in the ex-
pression, and an edge for every join or group-by clause.
Noria uses query graphs to inexpensively reject many ex-
pressions from consideration [21, §3.4, 78, §3] and to
quickly establish a set of sharing candidates for each

new expression. The sharing candidates are existing ex-
pressions that likely overlap with the new expression.
Next, Noria generates a verbose intermediate represen-
tation (IR), which splits the new expression into more
fine-grained operators. This simplifies common subex-
pression detection, and allows Noria to efficiently merge
the new IR with the cached IR of the sharing candidates.

For each sharing candidate, Noria reorders joins in the
new IR to match the candidate when possible to max-
imize re-use opportunities. It then traverses the candi-
date’s IR in topological order from the base tables. For
each operator, Noria searches for a matching operator (or
clique of operators) in the new IR. A match represents a
reusable subexpression, and Noria splices the two IRs to-
gether at the deepest matches.

This process continues until Noria has considered all
identified reuse candidates, producing a final, merged IR.

5.2 Data-flow transition

The combined final IRs of all current expressions rep-
resent the transition’s target data-flow. Noria must add
any operator in the final IR that does not already exist in
the data-flow. To do so, Noria first informs existing op-
erators of index obligations (§3.3) incurred by new op-
erators that they must construct indexes for. Noria then
walks the target data-flow in topological order and inserts
each new operator into the running data-flow and boot-
straps its state. Finally, after installing new operators and
deleting removed queries’ external views, Noria removes
obsolete operators and state from the data-flow.

Bootstrapping operator state. When Noria adds a
new stateful operator, it must ensure that the operator
starts with the correct state. Partially-stateful operators
and views start processing immediately. They are ini-
tially empty and bootstrap via upqueries in response to
application reads during normal operation, amortizing
the bootstrapping work over time. Fully-stateful opera-
tors are initially marked as “inactive”, which causes them
to ignore all incoming updates. Noria then executes a
special, large upquery for all keys on behalf of the fully-
stateful operator. Once the last upquery response has ar-
rived, Noria activates the operator for update processing
and moves on to the next new operator.

Base table changes. As applications evolve, develop-
ers often add or remove base table columns [17]. This
affects existing operators in the data-flow: new updates
from the base table may now lack values that existing op-
erators expect. Noria could rebuild the data-flow or trans-
form the existing base table state to effect such a change,
but this would be inefficient for large base tables. Instead,
Noria base tables internally track all columns that have
existed in the table’s schema, including those that have
been deleted. When a base table processes an application
write, it automatically injects default values for missing
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columns (but does not store them). This permits queries
for different base table schemas to coexist in the data-
flow graph, and makes most base table changes cheap.

6 Implementation
Our Noria prototype implementation consists of 45k
lines of Rust and can operate both on a single server and
across a cluster of servers. Applications interface with
Noria either through native Rust bindings, using JSON
over HTTP, or through a MySQL protocol adapter.

6.1 Persistent data storage

Noria persists base tables in RocksDB [66], a high-
performance key-value store based on log-structured
merge (LSM) trees. Batches of application updates are
synchronously flushed into RocksDB’s log before No-
ria acknowledges them and admits them into the data-
flow; a background thread asynchronously merges log
entries into the LSM trees. Each base table index forms
a RocksDB “column family”. For base tables with non-
unique indexes, Noria uses RocksDB’s ordered iterators
to efficiently retrieve all rows for an index key [14, 67].

Persistence reduces Noria’s write throughput by about
5% over in-memory base tables. Reads are not greatly
impacted when an application’s working set fits in mem-
ory: only occasional upqueries access RocksDB, and
these add < 1ms of additional latency on a fast SSD.

6.2 Parallel processing

Noria shards the data-flow and allows concurrent reads
and writes with minimal synchronization for parallelism.

Sharding. Noria processes updates in parallel on a
cluster by hash-partitioning each operator on a key and
assigning shards to different servers. Each machine runs
a Noria instance, a process that contains a complete copy
of the data-flow graph, but holds state only for its shards
of each operator. When an operator with one hash parti-
tioning links to an operator with a different partitioning,
Noria inserts “shuffle” operators that perform inter-shard
transfers over TCP connections. Upqueries across shuf-
fle operators are expensive since they must contact all
ancestor shards. This limits scalability, but allows opera-
tors below a shuffle to maintain partial state.

Multicore parallelism. Noria achieves multicore par-
allelism within each server in two ways: a server can
handle multiple shards by running multiple Noria in-
stances, and each instance runs multiple threads to pro-
cess its shard. Each instance has two thread pools: data-
flow workers process updates within the data-flow graph,
and read handlers handle reads from external views.

At most one data-flow worker executes updates for
each data-flow operator at a time. This arrangement
yields CPU parallelism among different operators, and
also allows lock-free processing within each operator.

There are typically fewer data-flow workers than oper-
ators in the data-flow graph, so Noria multiplexes opera-
tor work across the worker threads. Within one instance,
Noria schedules chains of operators with the same key as
a unit. This reduces queueing and inter-core data move-
ment at operator boundaries. It also allows Noria to op-
timize some upqueries: an upquery within a chain can
simply access the ancestor’s data synchronously, without
worry of contamination from in-flight updates (§4.3).

Read handlers process clients’ RPCs to read from ex-
ternal views. They must access the view with low latency
and high concurrency, even while a data-flow worker is
applying updates to the view. To minimize synchroniza-
tion, Noria uses double-buffered hash tables for external
views [27]: the data-flow worker updates one table while
read handlers read the other, and an atomic pointer swap
exposes new writes. This trades space and timeliness for
performance: with skewed key popularity distributions,
it can improve read throughput by 10× over a single-
buffered hash table with bucket-level locks.

6.3 Distributed operation

A Noria controller process manages distributed in-
stances on a cluster of servers, and informs them of
changes to the data-flow graph and of shard assign-
ments. Noria elects the controller and persists its state
via ZooKeeper [34]. Clients discover the controller via
ZooKeeper, and obtain long-lived read and write handles
to send requests directly to instances.

Noria handles failures by rebuilding the data-flow. If
the controller fails, Noria elects a new controller that re-
stores the data-flow graph. It then streams the persistent
base table data from RocksDB to rebuild fully-stateful
operators and views. Partial operators are instead pop-
ulated through on-demand upqueries. If individual in-
stances fail, Noria rebuilds only the affected operators.

6.4 MySQL adapter

Our prototype includes an implementation of the
MySQL binary protocol in a dedicated stateless adapter
that appears as a standard MySQL server to the applica-
tion. This adapter allows developers to easily run existing
applications on Noria. The adapter transparently trans-
lates prepared statements and ad-hoc queries into transi-
tions on Noria’s data-flow, and applies reads and writes
using Noria’s API behind the scenes. Its SQL support is
sufficiently complete to run some unmodified web appli-
cations (e.g., JConf [74] written in Django [22]), and to
run Lobsters with minimal syntax adaptation.

6.5 Limitations

Our current prototype has some limitations that we plan
to address in future work; none of them are fundamental.
First, it only shards by hash partitioning on a single col-
umn, and resharding requires sending updates through
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a single instance, which limits scalability. Second, it
re-computes data-flow state on failure; recovering from
snapshots or data-flow replicas would be more efficient
(e.g., using selective rollback [35]). And third, it does not
currently support range indices or multi-column joins.

7 Applications
This section discusses our experiences with developing
Noria applications. Noria aims to simplify the develop-
ment of high-performance web applications; several as-
pects of our implementation help it achieve that goal.

First, applications written for a MySQL database can
use Noria directly via its MySQL adapter, provided
they generate parameterized SQL queries (for instance,
via libraries like PHP Data Objects [69] or Python’s
MySQL connector [55, §10.6.8]). Porting typically pro-
ceeds in three steps. First, the developer points the appli-
cation at the Noria MySQL adapter instead of a MySQL
server and imports existing data into Noria from database
dumps. The application will immediately see perfor-
mance improvements for read queries that formerly ran
substantial in-line compute. Though the MySQL adapter
even supports ad-hoc read queries (it transitions the
data-flow as required to support each query), the most
benefit will be seen for frequently-reused queries. Sec-
ond, the developer creates views for computations that
the MySQL application manually materialized, such as
the per-story vote count in Lobsters. These views co-
exist with the manual materializations, and allow exist-
ing queries to continue to work as the developer updates
the write path so that it no longer manually updates de-
rived views and caches. Third, the developer incremen-
tally rewrites their application to rely on natural views
and remove manual write optimizations. These changes
gradually increase application performance as the devel-
oper removes now-unnecessary complexity from the ap-
plication’s read and write paths.

The porting process is not burdensome. We ported
a PHP web application for college room ballots—
developed by one of the authors and used production
for a decade—to Noria; the process took two evenings,
and required changes to four queries. We also used
the MySQL adapter to port the Lobsters application’s
queries to Noria; the result is a focus of our evaluation.

Developing native Noria applications can be even eas-
ier. We developed a simple web application to show the
results of our continuous integration (CI) tests for No-
ria. The CI system stores its results in Noria, and the
web application displays performance results and aggre-
gate statistics. Since we developed directly for Noria, we
were not tempted to cache intermediate results or ap-
ply other manual optimizations, and could use aggrega-
tions and joins in queries without fear that performance
would suffer as a result (e.g., due to aggregations over the

long commit history). Most application updates reduced
to single-table inserts, deletes, or updates.

Limitations. Though applications traditionally use
parameterized queries to avoid SQL injection attacks
and cache query plans, Noria parameterized queries also
build materialized views. An application with many dis-
tinct parameterized queries can thus end up with more
views than necessary. The developer can correct this by
adding shared views. Our prototype does not yet support
update and delete operations conditioned on non-primary
key columns, and lacks support for parameterized range
queries (e.g., age > ?), which some applications need.
Planned support for range indexes and an extended base
table implementation will address these limitations.

8 Evaluation
We evaluated our Noria prototype using backend work-
loads generated from the production Lobsters web appli-
cation, as well as using individual queries. Our experi-
ments seek to answer the following questions:

1. What performance gains does Noria deliver for a
typical database-backed web application? (§8.1)

2. How does Noria perform compared to a
MySQL/memcached stack, the materialized
views of a commercial database, and an idealized
cache-only deployment? (§8.2)

3. Given a scalable workload, how does our prototype
utilize multiple servers, and how does it compare to
a state-of-the-art data-flow system? (§8.3)

4. What space overhead does Noria’s data-flow state
impose, and how does Noria perform with limited
memory and partial state? (§8.4)

5. Can Noria data-flows adapt to new queries and input
schema changes without downtime? (§8.5)

Setup. In all experiments, Noria and other storage
backends run on an Amazon EC2 c5.4xlarge instance
with 16 vCPUs; clients run on separate c5.4xlarge in-
stances unless stated otherwise. Our setup is “partially
open-loop”: clients generate load according to a Poisson
distribution of interarrival-times and have a limited num-
ber of backend requests outstanding, queueing additional
requests. This ensures that clients maintain the measure-
ment frequency even during periods of high latency [45].
Our test harness measures offered request throughput and
“sojourn time” [62], which is the delay from request gen-
eration until a response returns from the backend.

8.1 Application performance: Lobsters

We first evaluate Noria’s performance on a realistic web
application workload to answer two questions:

1. Do Noria’s fast reads help it outperform a conven-
tional database on a real application workload, even
on a hand-optimized application?
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Figure 6: Noria scales Lobsters to a 5× higher load
than MariaDB (2.3×with baseline queries) at sub-100ms
95%ile latency (dashed: median). MariaDB is limited by
read computation, while Noria becomes write-bound.

2. Can Noria preserve good performance for an appli-
cation without hand optimization?

Our workload models production Lobsters traffic. The
benchmark emulates authenticated Lobsters users vis-
iting different pages according to the access frequen-
cies and popularity distributions in the production work-
load [32]. Lobsters is a Ruby-on-Rails application, but
our benchmark generates database operations directly in
order to eliminate Rails overhead. We seed the database
with 9.2k users, 40k stories and 120k comments—the
size of the real Lobsters deployment—and run increasing
request loads to push the different setups to their limits.

The baseline queries include the Lobsters developers’
optimizations, which manually materialize and maintain
aggregate values like vote counts to reduce read-side
work. We also developed “natural” queries that produce
the same results using Noria data-flow to compute ag-
gregations rather than manual optimizations. We com-
pare MariaDB (a community-developed MySQL fork;
v10.1.34) with Noria using baseline queries, and then
to Noria using natural queries (both via Noria’s MySQL
adapter). We configured MariaDB to use a thread pool,
to avoid flushing to disk after transactions, and to store
the database on a ramdisk to remove overheads unrelated
to query execution. With the baseline queries, the median
page view executes 11 queries; this reduces to eight with
natural queries. This experiment uses an m5.24xlarge
EC2 instance for the CPU-intensive clients.

Figure 6 shows the results as throughput-latency
curves. An ideal system would show as a horizontal line
with low latency; in reality, each setup hits a “hockey
stick” once it fails to keep up with the offered load.
MariaDB scales to 1,000 pages/second, after which it
saturates all 16 CPU cores with read-side computation
(e.g., for per-page notification counts [33]). Noria run-
ning the same baseline queries scales to a 2.3× higher
offered load, since its incremental write-side processing
avoids redundant re-computation on reads.

The baseline queries manually pre-compute aggre-
gates. MariaDB requires this for performance: without
the pre-computation, it supports just 20 pages/sec. Noria
instead maintains pre-computed aggregates in its data-
flow. This allows us to include the aggregations directly
in the queries, which normalizes the base table schema,
reduces write load, and avoids bugs due to missed up-
dates to pre-computed values. With all aggregate compu-
tation moved into Noria’s data-flow (“natural queries”),
throughput scales higher still, to 5,000 pages/second (5×
MariaDB). Eliminating application pre-computation re-
duces overall write load and compacts the data-flow,
which lets Noria parallelize it more effectively.

The result is that Noria achieves both good perfor-
mance and natural, robust queries. We observed similar
benefits with other applications (e.g., a synthetic TPC-
W-like workload), which we omit for space.

8.2 In-depth performance comparison

We compare to alternative systems using a subset of
Lobsters. This restriction gives us better control over
workload properties, while capturing the aspects of web
workloads that motivated the Noria design. We use one
kind of write, inserting a vote, and one read query,
StoriesWithVC from Figure 2. This read query fetches
stories and their vote counts; 85% of page views in pro-
duction Lobsters are for pages that execute this query.

We compare five single-server deployments that all
have access to the same resources, but differ in how they
store and calculate the per-story vote count. MariaDB
uses the baseline Lobsters approach of pre-computing
and storing vote counts in a column of the Lob-
sters stories table. System Z, a commercial database
with materialized view support, uses an incrementally-
maintained materialized view defined similarly to
StoriesWithVC; we use System Z to compare database
view maintenance with Noria’s data-flow-based ap-
proach. MariaDB and System Z run at the fastest transac-
tional isolation level (“read uncommitted”) and are con-
figured to keep data in memory. MariaDB+memcached
adds a demand-filled memcached (v1.5.6) cache [54]
to MariaDB that caches StoryWithVC entries. This re-
duces read load on MariaDB, but complicates applica-
tion code even beyond pre-computation: writes must in-
validate the cache and reads must sometimes populate it.
We also measure memcached-only without a relational
backend. This setup offers good performance, but is un-
realistic: it does not store individual votes or stories, is
not persistent, and cannot prevent double-voting. It helps
us estimate how a backend that serves all reads from
memory and does minimal work for writes might per-
form. Finally, we measure Noria sharded four ways on
stories.id, with the remaining 12 cores serving reads.
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(a) Read-heavy workload (95%/5%): Noria outperforms all
other systems (all but memcached at 100–200k requests/sec).
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(b) Mixed read-write workload (50%/50%): Noria outperforms
all systems but memcached (others are at 20k requests/sec).

Figure 7: A Lobsters subset (Figure 2) benchmarked on Noria hand-optimized MariaDB, System Z’s materialized
views, a MariaDB/memcached setup, and on memcached only, all with Zipf-distributed (s = 1.08) reads and votes.
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Figure 8: For a uniformly-distributed, read-heavy
(95%/5%) workload on Figure 2, Noria performs simi-
larly to the (unrealistic) memcached-only setup.

Noria uses natural queries; other systems except System
Z manually pre-compute vote counts.

Clients read and insert votes for randomly-chosen sto-
ries; we measure the 95th-percentile latency for each of-
fered load. Before measurement begins, we populate the
stories table with 500k records and perform 40 sec-
onds of warmup using the same workload as the bench-
mark itself. Absolute throughput is higher in these ex-
periments because the data-flow only contains a single
query and clients batch reads and writes for up to 1ms.

Figure 7 shows results for a skewed workload simi-
lar to Lobsters’, with story popularity following a Zip-
fian distribution (s = 1.08). With 95% reads, Noria
outperforms all other systems, including the unrealis-
tic cache-only deployment (Figure 7a). Most updates
write votes for popular stories, which creates write
contention problems in MariaDB and System Z. The
MariaDB+memcached setup performs equally poorly:
on memcached invalidations for popular keys, multiple
clients miss and a “thundering herd” of clients simulta-
neously issues database queries [54, §3.2.1]. memcached
on its own scales, but Noria outperforms it (despite do-
ing more work) since Noria’s lockless views avoid con-
tention for popular keys. Noria scales to 14M request-

s/second with four shards. Noria also handles a write-
heavy workload (50% writes) well (Figure 7b): although
absolute performance has dropped, Noria still outper-
forms all other systems apart from the cache-only setup.
This is because sharding allows data-parallel write pro-
cessing, which helps Noria scale to 2M requests/second.

With a (less-realistic) uniform workload, other
systems come closer to Noria’s 5M requests/second
(Figure 8). System Z does better than before, but
suffers from slow writes to the materialized view.
MariaDB+memcached, perhaps surprisingly, performs
worse than MariaDB, which scales to 3M requests/sec-
ond: the reason lies in the extra work (and RPCs) the ap-
plication must perform for invalidations. This illustrates
that a look-aside cache only helps if it avoid expensive
queries; a write-through cache avoids invalidation over-
heads, but would still perform worse than the idealized
memcached-only setup (and thus, than Noria).

Separately, we evaluated Noria’s view maintenance
against DBToaster [2, 53], a state-of-the-art material-
ized view maintenance system that compiles view def-
initions to native code. DBToaster (v2.2.3387) lacks
support for persistent base tables, concurrent reads, or
multicore parallelism—its only read operation snap-
shots entire views—but it does provide fast updates
to materialized views. When we constrain Noria to
only one shard and data-flow worker thread, we expect
DBToaster to outperform it, since DBToaster’s generated
C++ code does close-to-minimal work to incrementally
maintain the vote count. We measure the write through-
put of 50M uniformly-distributed votes that update
StoriesWithVC for 500k stories. Noria achieves 240k
single-record writes/second for fully-populated state, and
1M writes/second for fully-evicted state. DBToaster only
supports fully-populated state, and achieves 520k single-
record writes/second. At the same time, Noria is more
memory-efficient, using 6.2 GB of memory for base ta-
bles and all derived state, 36% of DBToaster’s 17 GB.
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Figure 9: For a uniform 95%/5% workload, Noria scales
to ten machines with sub-100ms 95th %tile latency by
sharding the data-flow. Differential dataflow [44] scales
less well due to its inter-worker coordination.

Additionally, Noria can process shards in parallel and use
more machines to increase throughput.

8.3 Distribution over multiple servers

We next evaluate Noria’s support for distributed opera-
tion. Can Noria effectively use multiple machines’ re-
sources given a scalable workload?

We evaluate the 95%-read Lobsters subset from §8.2
with two million stories. We shard the data-flow on
stories.id and vary the number of machines from one
to ten, with each machine hosting four shards. For a de-
ployment with n Noria machines, we scale client load to
n×3M requests/second in a partially open-loop test har-
ness. This arrangement achieves close to Noria’s maxi-
mum load at sub-100ms 95th-percentile latency for two
million stories on one machine. Load generators select
stories uniformly at random, so the workload is perfectly
shardable. The ideal result is a straight diagonal, with n
machines achieving n times the throughput of a single
one. Figure 9 shows that Noria achieves this and serves
the full per-machine load at all points.

We also implemented this benchmark for a state-
of-the-art Differential Dataflow (DD) implementation
(v0.7) in Rust [44] based on Naiad and its earlier version
of DD [46, 51]. Since DD lacks a client-facing RPC in-
terface, we co-locate DD clients with workers; this does
not disadvantage DD since load generation is cheap com-
pared to RPC processing. DD uses 12 worker threads and
four network threads per machine.

Figure 9 shows that Noria is competitive with DD on
this benchmark. On one and two machines, DD supports
a slightly higher per-machine load (3.5M requests/sec-
ond vs. Noria’s 3M) within our 95th-percentile latency
budget of 100ms. Beyond four machines, however, DD
fails to meet Noria’s maximum per-machine load. Its
supported throughput tails off to around 20M requests/-
sec at ten machines. This tail-off is due to DD’s progress-
tracking protocol, which coordinates between workers to
expose writes atomically, and which imposes increasing

overhead as the number of machines grows. DD amor-
tizes this coordination by increasing its batch size, and
consequently sees increased latency as throughput in-
creases. Noria avoids such coordination and scales well,
but offers only eventually-consistent reads.

8.4 State size

Noria relies on partial state to keep its memory footprint
low. How much of Noria’s state for Lobsters can be par-
tial, and how does Noria perform when it evicts from par-
tial state to meet a memory limit? We investigate these
questions using the full Lobsters application, first at Lob-
sters production scale, and then at 10× scale.

The Noria data-flow for the natural Lobsters queries
has 235 operators, of which 60 of are stateful. With par-
tial state disabled, i.e., forcing all data-flow operators
to keep full state, Noria needs 789 MB of in-memory
state (8× the base table size of 137 MB). With partial
state enabled, 35 of the stateful operators can use partial
state; the remaining 25 are part of unparameterized views
(e.g., all stories on the front page) whose state Noria can-
not make partial as they lack suitable keys. Together,
the non-partial state occupies 73 MB: Noria’s essential
memory requirement for Lobsters therefore amounts to
9% of total state (adding an overhead of 53% of base ta-
ble size). Noria can evict and re-compute the remaining
91% of state should it exceed a memory limit.

As for any cache, this memory limit should exceed
the application’s working set size to achieve low read
latency and avoid thrashing of evictions and upqueries.
For Lobsters, the working set size depends on the of-
fered load, as higher load means a wider range of sto-
ries are read. We determine it by varying Noria’s state
size limit (and hence, eviction frequency) and measur-
ing 95th-percentile read latency. With production-scale
Lobsters data, Noria’s working set contains 525 MB of
state (60% of total, 3.8× base tables) at an offered load of
2,300 pages/second. However, with a few thousand users,
the production Lobsters deployment is small. Our bench-
mark further understates its size as we use synthetic story
and comment texts of a few bytes. Hence, we repeated
this experiment with the Lobsters data scaled up by 10×.
Noria meets sub-100ms 95th percentile latency at 2,300
pages/second if the memory limit exceeds the 2.6 GB
working set (38% of 7 GB total state; 3× base tables).

These results suggest that Noria imposes a reasonable
space overhead (around 3× base table size) for Lobsters,
and that partial state is key to reducing the overhead.

8.5 Live data-flow adaptation

In a traditional database, query changes are easy and
instantaneous. Can Noria’s data-flow adaptation seam-
lessly transition to include new SQL expressions? The
goal is for the transition to complete quickly, for write
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Figure 10: Reuse and partial state allow Noria to adapt
the live data-flow. Gray lines delimit start and end of the
transition (in (a) and (b), the transitions are almost in-
stantaneous); the green shaded area shows the fraction of
new view reads that require no upqueries. Reads from the
old view (not shown) proceed at full speed throughout.

performance to remain stable, for reads from existing
views to be unaffected, and for reads from newly-added
views to quickly achieve low latency.

We test this by adding a modified version of the
StoriesWithVC view to the Lobsters subset. This
new view, StoriesWithRatings, uses numeric rat-
ings stored in a ratings base table instead of votes.
It also reflects old votes scaled to a rating. We first
load an unsharded Noria with 2M stories and 30M
votes, then transition to the new program. Once the
transition finishes, clients perform “rating reads” from
StoriesWithRatings and start writing to the new
ratings table. Throughout the experiment, clients
also read the StoriesWithVC view, and write to the
votes table. We expect post-transition throughput to
be reduced—the new data-flow graph is larger, with
more tables and deeper paths—although removing the
old view would increase throughput again. However, we
hope that throughput and latency do not suffer greatly
during the transition.

Figure 10a shows the transition with reuse and par-
tial materialization enabled. The transition completes im-
mediately: Noria creates the new operators and view as
empty, and populates them on demand in response to
reads. Due to the skewed read and write distributions,
upqueries for only a few popular keys suffice for No-

ria to serve the majority of rating reads without recur-
sive upqueries. Reuse is also crucial: without reusing
VoteCount, Noria must upquery rating reads by re-
computing from the base tables. This leads to slow up-
queries for popular stories, as the data-flow must re-
count their votes. With reuse enabled, pre-computed vote
counts satisfy the upqueries. The results also follow this
pattern for a uniform workload (Figure 10b). Initially,
most rating reads are slow, but fast reads increase as the
partial state populates; write throughput is reduced be-
cause data-flow updates contend with upquery responses.
Contention increases as more entries populate, since
fewer updates hit evicted state.

Figure 10c shows the same transition (with a Zip-
fian workload), but with partial materialization and
operator reuse disabled. Noria fully populates the
StoriesWithRatings view and all internal stateful
operators during the transition. It copies votes and
stories to bootstrap the rating aggregation state, and
then copies the resulting state again to initialize the
new external view. Each copy stops write processing
for several seconds, and Noria’s state transfer to the
new operators via the data-flow slows down concurrent
writes. When transition completes after 25 seconds, the
StoriesWithRatings view is fully materialized and all
rating reads are fast. This illustrates that partial state and
reuse are crucial for downtime-free data-flow transitions.

How often can Noria achieve a live transition in
practice? In a separate analysis of query and schema
changes in HotCRP and TPC-W, we found that Noria
live-transitioned for over 95% of program changes. Ex-
isting approaches are less flexible: System Z must rebuild
its materialized views on change; a memcached clus-
ter must be carefully transitioned [54, §4.3]; DBToaster
lacks support for query changes; and even relational
databases pause writes during some schema updates.

8.6 Discussion

We evaluated Lobsters both at production scale and at
10× scale, but many web applications are much larger
still. We believe that Noria can also support such appli-
cations. For applications with many queries, and conse-
quently a large data-flow, Noria can assign shards of only
some operators to each machine, sending cross-operator
traffic over the network. Similarly, Noria can shard large
base tables and operators with large state across ma-
chines. Efficient resharding and partitioning the data-
flow to minimize network transfers are important future
work for Noria to achieve truly large scale.

We also believe Noria is well suited for applications
whose working sets change over time. Many large, real-
world applications see such changing workloads; for in-
stance, an old story may suddenly become popular. As
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clients request such items, Noria’s upqueries bring them
into the working set, making subsequent reads fast.

9 Related work
Noria builds on considerable related work.

Data-flow systems excel at data-parallel comput-
ing [36, 51], including on streams, but cannot serve web
applications directly. They only achieve low-latency in-
cremental updates at the expense of windowed state (and
incomplete results) or by keeping full state in memory.
Noria’s partially-stateful data-flow lifts this restriction. A
few data-flow systems can reuse operators automatically:
for example, Nectar [28] detects similar subexpressions
in DryadLINQ programs, similar to Noria’s automated
operator reuse, using DryadLINQ-specific merge and
rewrite rules. Support for dynamic changes to a running
data-flow is more common: CIEL [52] dynamically ex-
tends batch-processing data-flows, as does Ray [58] for
stateful “actor” operators’ state transitions in reinforce-
ment learning applications. Noria dynamically changes
long-running, low-latency streaming computations by
modifying the data-flow; unlike existing streaming data-
flow systems like Naiad [51] or Spark Streaming [76], it
has no need for a restart or recovery from a checkpoint.

Stream processing systems [3, 11, 39, 71, 76] often
use data-flow, but usually have windowed state and static
queries that process only new records. STREAM [6]
identifies opportunities for operator reuse among static
queries; Noria achieves similar reuse for dynamic
queries. S-Store [47] lacks Noria’s partial materialization
and state reuse, but combines a classic database with a
stream processing system using trigger-based view main-
tenance. S-Store enables transactional processing, a fu-
ture goal for Noria.

Database materialized views [29, 41] were devised
to cache expensive analytical query results. Commercial
databases’ materialized view support [1] is limited [49,
63] and views must usually be rebuilt on change. How-
ever, there is considerable research on incremental view
maintenance in databases [30, 40, 41, 70, 77, 81]. No-
ria builds upon ideas from this work, but applies them
in the context of a concurrent, stateful data-flow system
for web applications. This requires efficient fine-grained
access to views, solutions to new coordination problems
and concurrency races, as well as inexpensive long-term
adaptation as view definitions change. DBToaster [2, 53]
supports incremental view maintenance under high write
loads with generated recursive delta query implemen-
tations. Noria sees lower single-threaded performance,
but supports parallel processing and changing queries;
adding native-code generation to Noria might further im-
prove its performance, but would complicate operator
reuse. Pequod [37] and DBProxy [4] support partial ma-
terialization in response to client demand, although Pe-

quod is limited to static queries, and unlike Noria, neither
shares state nor processing across queries.

The problem of detecting shared subexpressions
(§5.1) is a multi-query optimization (MQO) prob-
lem [21, 59, 78]. MQO tries to maximize sharing across
a batch of expressions, with the freedom to rewrite any
expression to suit the others. Like joint query process-
ing systems [10, 25, 31], Noria faces the more restricted
problem of mutating new expressions to increase their
opportunity to share existing expressions in the data-flow.

A wide array of tools deal with websites’ query and
schema transitions [9, 23, 26, 56, 65]. Like Noria,
they aim to transition backend stores without interrup-
tion in client service, but they require developers to
manually configure complex “ghost tables” or binlog-
following triggers. Base table schema changes increase
complexity further [73]. Noria handles query changes
transparently, and efficiently applies common base table
schema changes by supporting many concurrent base ta-
ble schemas. Most of its data-flow transitions are live for
reads and writes without added complexity.

Finally, some open-source systems have experi-
mented with flexible query and schema changes. Apache
Kafka [5] achieves some flexibility in query and schema
changes as used by the New York Times [68], and sim-
ilar ideas were proposed as an extension proposal for
Samza [38]. To our knowledge, however, no prior sys-
tem achieves the performance and flexibility of Noria.

10 Conclusions
Noria is a web application backend that delivers high
performance while allowing for simplified application
logic. Partially-stateful data-flow is essential to achiev-
ing this goal: it allows fast reads, restricts Noria’s mem-
ory footprint to state that is actually used, and enables
live changes to the data-flow. In future work, we plan
to add more flexible sharding, range indexes, and better
eviction strategies.

Noria is open-source software and available at:

https://pdos.csail.mit.edu/noria
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Abstract

There is currently an active debate on which RDMA

primitive (i.e., one-sided or two-sided) is optimal for dis-

tributed transactions. Such a debate has led to a number

of optimizations based on one RDMA primitive, which

was shown with better performance than the other.

In this paper, we perform a systematic comparison be-

tween different RDMA primitives with a combination of

various optimizations using representative OLTP work-

loads. More specifically, we first implement and com-

pare different RDMA primitives with existing and our

new optimizations upon a single well-tuned execution

framework. This gives us insights into the performance

characteristics of different RDMA primitives. Then we

investigate the implementation of optimistic concurrency

control (OCC) by comparing different RDMA primitives

using a phase-by-phase approach with various transac-

tions from TPC-C, SmallBank, and TPC-E. Our results

show that no single primitive (one-sided or two-sided)

wins over the other on all phases. We further conduct

an end-to-end comparison of prior designs on the same

codebase and find none of them is optimal.

Based on the above studies, we build DrTM+H, a new

hybrid distributed transaction system that always em-

braces the optimal RDMA primitives at each phase of

transactional execution. Evaluations using popular OLTP

workloads including TPC-C and SmallBank show that

DrTM+H achieves over 7.3 and 90.4 million transac-

tions per second on a 16-node RDMA-capable cluster

(ConnectX-4) respectively, without locality assumption.

This number outperforms the pure one-sided and two-

sided systems by up to 1.89X and 2.96X for TPC-C with

over 49% and 65% latency reduction. Further, DrTM+H

scales well with a large number of connections on mod-

ern RDMA network.

1 Introduction

Distributed transactions with serializability and high

availability provide a powerful abstraction to program-

mers with the illusion of a single machine that executes

transactions with strong consistency and never fails. Al-

though distributed transaction used to seem slow [19],

the prevalence of fast networking features such as

RDMA has boosted the performance of distributed trans-

actions by orders of magnitudes [51, 5, 11, 18]. RDMA

NIC (RNIC) provides high bandwidth, ultra-low latency

datagram communication (two-sided primitive), together

with offloading technology (one-sided primitive): the net-

work card can directly access the memory of remote ma-

chines while bypassing kernel and remote CPUs.

Recently, there is an active debate over which RDMA

primitive, namely one-sided or two-sided, is better

suited for distributed transactions. One-sided primitive

(e.g., READ, WRITE, and ATOMIC) provides higher perfor-

mance and lower CPU utilization [10, 11, 51, 5]. On

the other hand, two-sided primitive simplifies applica-

tion programming and is less affected by hardware re-

strictions such as the limitation of RNIC’s cache capac-

ity [16, 18].

It is often challenging for system designers to choose

the right primitive for transactions based on previ-

ous studies. Most work on RDMA-enabled transactions

presents a new system built from scratch and compares

its performance with previous ones using other code-

bases. Some only compare the performance of differ-

ent primitives or designs using micro-benchmarks. This

makes their results hard to interpret: differences in hard-

ware configurations and software stacks affect the observ-

able performance. Further, different RDMA primitives

may significantly affect the overall performance [16, 17].

There have been several valuable studies in the

database community in comparing different transactional

systems [55, 13]. Harding et al. [13] conduct a compre-

hensive study on how different transaction protocols be-

have under different workloads in a distributed setting us-

ing a single framework. However, for a particular proto-

col, there may be many different implementations which

have very different performance, especially when em-

bracing new hardware features like RDMA.

In this paper, we conduct the first systematic study on

how different choices of RDMA primitives and designs

affect the performance of distributed transactions.1 Un-

like most previous research efforts which compare differ-

ent overall systems, we compare different designs within

1Note that optimizing distributed transaction protocol is not the focus

of this work.
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a single execution framework. The goal is to provide

a guideline on optimizing distributed transactions with

RDMA, and potentially, for other RDMA-enabled sys-

tems (e.g., distributed file systems [26, 38] and graph

processing systems [52, 36, 58]). In summary, this paper

makes the following contributions:

A primitive-level comparison using a well-tuned RDMA

execution framework (§4). We implement and tune an

execution framework with all RDMA implementation

techniques we know so far. We then systematically

compare the performance of different primitives with

existing and our newly proposed optimizations using

micro-benchmarks that simulate common transactional

workloads. The main results are the following (§4.2):

• One-sided primitive has better performance than

two-sided with the same round trips.

• Two-sided primitive has better scalability with small

payloads in large clusters.

• Two-sided primitive can be faster than one-sided when

receiving ACK is done off the critical path.

A phase-by-phase evaluation of transactional exe-

cution (§5). We carefully study different primitives

at different phases of transactional execution, includ-

ing all optimizations proposed on both primitives,

and then present their performance. More specif-

ically, we focus on transactions with optimistic

concurrency control (OCC)2 for strong consistency

and primary-backup replication for high availabil-

ity. Nowadays OCC is widely used for transactions,

from centralized databases [47, 49, 21] to distributed

databases [11, 57, 24, 5, 18]. OCC is efficient and

scalable on common workloads which stimulates many

OCC-based RDMA-enabled transactions [11, 5, 18].

The protocol contains four steps: Execution, Validation,

Logging and Commit phase. We show that no single

primitive always wins over the other. To gain optimal

performance for such phases, the main findings include:

• Using hybrid primitives for the execution (§5.1) and

validation phases (§5.2).

• Using two-sided primitives for the commit

phase (§5.3)

• Using one-sided primitives for the logging

phase (§5.4).

• Using hybrid primitives and one-sided primitives for

the read and validation phases of read-only transac-

tions, respectively (§5.5).

2We use the shorter but more general term transactions to refer to dis-

tributed transactions executed using OCC in the rest of this paper.
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committed
serialization 

point

validate

Fig. 1: A phase-by-phase overview of transaction processing

with OCC. C, P, and B stand for the coordinator, the primary

and the backup of replicas, respectively. P1 is read and P2
is written. The dashed, solid, and dotted lines stand for read,

write, and hardware ack operations, and rectangles stand for

record data.

An end-to-end study of existing and our new system

on a single platform (§6). By further leveraging results

from our phase-by-phase evaluations, we built DrTM+H, a

hybrid design that optimizes every phase executed with

appropriate primitives (§6.1). Evaluations using two pop-

ular OLTP workloads on a 16-node RDMA-capable clus-

ter show that DrTM+H can perform over 7.3 and 90.4 mil-

lion transactions per second for simplified TPC-C and

SmallBank respectively. Further, our hybrid design does

not suffer from scalability issues on an emulated 80-node

connection setting (§6.2). Note that we do not make lo-

cality assumptions like previous work [18].

We finally make a comparable study on how previous

systems leverage RDMA by evaluating three representa-

tive designs upon a single execution framework. To emu-

late previous systems, we choose the primitives and opti-

mizations at each phase as the original design and imple-

ment them using the same codebase and transaction pro-

tocol. The experimental results show that none of them

has the optimal performance (§6.3). Our hybrid design

can outperform the pure two-sided design (FaSST) and

the pure one-sided design (DrTM+R) by up to 2.96X and

1.89X for simplified TPC-C, respectively.

The source code of our execution framework and

DrTM+H, including all benchmarks, are available at

https://github.com/SJTU-IPADS/drtmh.

2 Background

2.1 RDMA and Its Primitives

RDMA (Remote Direct Memory Access) is a network

feature with high speed, low latency, and low CPU over-

head [10, 17]. It has generated considerable interests in

applying it in modern datacenters [11, 46, 12]. RDMA is

well known for its one-sided primitive including READ,

WRITE and ATOMIC operations, which can directly ac-

cess the memory of a remote machine without involv-

ing kernel and remote CPUs. Because RDMA bypasses

the kernel and traditional network stack, RPC implemen-

tations over RDMA (two-sided primitive) can also have
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orders of magnitude higher throughput than those using

TCP/IP [10, 18].

Fig. 2 presents the workflow of these two primi-

tives. No matter which primitive an application uses,

the client (sender) uses a similar interface to post re-

quests to (and poll results from) the server (receiver) via

the RDMA-capable NIC (RNIC). The interface, called

queue pairs (QPs), is used to communicate between the

client (sender) and server (receiver). The client starts an

RDMA request by posting the requests (called Verbs) to

the sender queue, which can either be one-sided or two-

sided verbs. The client can get the completion events of

requests by polling a completion queue (CQ) associated

with the QP. For two-sided primitives, the server polls re-

quests from a receiver queue, calls a local RPC routine

and posts results back to the sender queue.

Moreover, QPs have different transport modes which

support different sets of primitives, as summarized in Ta-

ble 1. The Reliable Connected (RC) mode supports all

RDMA primitives, while the Unreliable Datagram (UD)

mode only supports two-sided primitive (SEND/RECV).

On the other hand, UD is connectionless so the applica-

tion can use fewer UD QPs than RC QPs [18].

2.2 RDMA-enabled Distributed Transactions

There is an active line of research in using RDMA for

serializable distributed transactions [11, 5, 18]. Most of

such systems use variants of optimistic concurrency con-

trol (OCC) for consistency [22] and variants of primary-

backup replication (PBR) for availability [23]. PBR uses

fewer round trips and messages to commit one transac-

tion than Paxos [11], which fits distributed transactions

in a well-connected cluster.

Although these systems have different design choices

and leverage different RDMA primitives, they use a sim-

ilar transaction protocol (OCC)3 to execute and commit

serializable transactions. The operations performed in

the protocol can be briefly summarized as four consec-

3While DrTM [51] implements a two phase locking (2PL) scheme us-

ing HTM and RDMA, it provides no high availability support and a

later version [5] uses a variant of OCC to provide high availability. We

are not aware of other RDMA-enabled distributed transaction systems

using 2PL. Hence, we focus on OCC in this paper.

Table 1: Different transport modes of QP and supported opera-

tions. RC, UC, and UD stand for Reliable Connection, Unreliable

Connection, and Unreliable Datagram, respectively.

SEND/RECV WRITE READ/ATOMIC

RC ✓ ✓ ✓

UC ✓ ✓ ✗

UD ✓ ✗ ✗

utive phases, as shown in Fig. 1. A transaction first exe-

cutes by reading the records in its read set (Execution).

Then it executes a commit protocol, which locks the

records in the write set and validates the records in the

read set is unchanged (Validation). If there is no con-

flicting transaction, the coordinator sends transaction’s

updates to each backup and waits for the accomplish-

ment (Logging). Upon successful, the transaction will be

committed by writing and unlocking the records at the

primary node (Commit). Note that the execution order

of the protocol is very important. For example, the trans-

action is considered to be committed if and only if the

log replies have been received [11, 18]. Thus the commit

phase must be executed after the completion of logging.

OCC can be directly used to execute read-only trans-

actions, which is an important building block for modern

applications [25]. A read-only transaction may use a two-

phase protocol: the first phase reads all records (Read),

and then the second phase validates all of them have not

been changed (Validation).

3 Execution Framework

To provide an apple-to-apple comparison on different

primitives and transactions, we implement an execution

framework for RDMA, which contains both one-sided

and two-sided RDMA primitives, various prior optimiza-

tions and our newly proposed optimization.

3.1 Primitives

Symmetric model. We use a symmetric model in our ex-

periments as prior work [51, 5, 11, 18]. In a symmet-

ric model, each machine acts both a client and a server.

On each machine, we register the memory with huge

pages for RNIC to reduce RNIC’s page translation cache

misses [10].4

QP creation. We use a dedicated context to create QPs

for each thread; otherwise, there will be false synchro-

nizations within the driver even each thread uses its own

QP. The performance impact is shown in Fig. 3(a)5. The

root cause is that each QP uses a pre-mapped buffer to

send MMIOs to post requests while the buffer may be

shared. The buffer is allocated from a context according

to Mellanox’s driver implementation, where each context

4Currently, we use kernel’s native huge page support (i.e., 2MB), which

is sufficient for our current workloads.
5The details of experimental setup can be found in §4.1.
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has limited buffers. For example, the mlx4 driver [41]

uses 7 dedicated buffers and 1 shared buffer. This means

that if the context is used to create more than 8 QPs,

then extra QPs have to share the same buffer. Even if

each thread uses one exclusive QP, the throughput of a

shared context drops by up to 63% with the increase of

threads. The overhead comes from synchronizations on

the shared MMIO buffer.

One-sided primitive. Each thread manages n RC QPs to

connect to n machines. We use standard Verbs API to

post a one-sided request to the QP corresponding to the

machine. RDMA WRITE requests with payloads less than

64 bytes are inlined to improve throughput [16]. Note

that we do not simply wait until the completion of the

operation (§3.2): we execute other application requests

or RPC functions for better utilizing CPU and network

bandwidth.

Two-sided primitive. Unlike one-sided primitive which

has a simple and straightforward implementation, there

are many proposed RPC implementations (two-sided

primitive) atop of RDMA [10, 16, 18, 26, 46, 39]. They

can be categorized into SEND/RECV verb based [18],

RDMA WRITE based [10, 39, 46, 26] and hybrid

one [16].

We use SEND/RECV verbs over UD QP as our two-

sided implementation in this paper for three reasons.

First, in a symmetric setting, SEND/RECV verbs over UD

has better performance than other implementations over

RDMA, especially for transaction systems [18]. This is

also confirmed in our experiment (see Fig. 3(b)). Sec-

ond, based on our studies of one-sided RDMA perfor-

mance, one-sided RDMA based RPC is unlikely to out-

perform UD based RPC especially for small messages.

The peak throughput of one-sided WRITE reaches 130M

reqs/s when the payload size is smaller than or equal

to 64 bytes (Fig. 5). For an RPC communication, two

RDMA WRITEs are required (one for send and one for re-

ply). Thus, the peak throughput of RPC implemented by

one-sided RDMA operations is about 65M reqs/s, lower

than that of the implementation based on SEND/RECV

over UD (79M reqs/s).

Discussions. SEND/RECV over UD does not provide a

reliable connection channel. Therefore, it may be un-

fair to compare it to RC based two-sided implementa-

tions which have reliability guarantees. However, since

RDMA network assumes a lossless link layer, UD

has much higher reliability than expected [18]. Further,

packet losses can be handled by transaction’s proto-

col [18].

3.2 Optimizations Review and Passive ACK

Many optimizations have been proposed in prior work to

better leverage RDMA [10, 16, 17]. We first briefly re-

view them here and show that when using RDMA prop-

erly, one-sided primitive yields better performance than

two-sided primitive with the same round trips. We fur-

ther propose a new optimization, Passive ACK, which im-

proves RDMA primitives when the completion acknowl-

edgement (ACK) of the request is not on the critical path

of the application.

Coroutine (CO). Even the latency of RDMA operations

reaches several microseconds, it is still higher than the ex-

ecution time of many applications [18]. Thus, it is worth

to use coroutines to further hide the network latency by

sending multiple requests from different transactions in a

pipelined fashion. FaSST [18] uses coroutine to improve

the throughput of its RPC. FaRM [10, 11] optimizes both

one-sided operations and RPCs using an event loop to

schedule transactions with RDMA operations. We use

a set of coroutines to execute application logic at each

thread. Each coroutine yields after issuing some network

requests (including both one-sided and two-sided ones),

and they resume the execution until they receive the com-

pletions of one-sided requests (or the replies of two-sided

RPCs). Typically, a small number of coroutines is suffi-

cient for RDMA latency hiding (e.g., 8) [18].

Outstanding requests (OR). Even coroutine overlaps

computation with I/O from different transactions, it

is still important to send requests from one transac-

tion in parallel. This further increases the utilization of

RNICs and reduces the end-to-end latency of transac-

tions, i.e., there is no need to wait for the completion of

one request before issuing another one. For example, the

read/write set of many OLTP transactions can be known

in advance [37]. Therefore, it is possible to issue these

reads and writes in parallel.

Doorbell batching (DB). There are several ways to issue

multiple outstanding requests to RNIC. A common ap-

proach is to post several MMIOs corresponding to differ-

ent requests. On the other hand, doorbell batching rings

a doorbell to notify RNIC to fetch multiple requests by

itself using DMA [17]. MMIO is costly which usually re-

quires hundreds of cycles. Therefore, doorbell batching

can reduce CPU overhead on the sender side and make
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Fig. 4: A sample of passive ACK for two-sided primitive.

a better usage of PCIe bandwidth, since it only requires

one MMIO per batch to ring the doorbell.

One restriction of doorbell batching is that only re-

quests from one QP can be fetched by the RNIC in

a batched way. This means that different one-sided re-

quests cannot be batched together if they are not sent to

the same machine. Due to this limitation, doorbell batch-

ing is usually applied to two-sided implementation based

on UD QP [18].

Passive ACK (PA). The performance can be further im-

proved if the completion of requests (ACK) is done off

the critical path of transactional execution. We achieve

this by acknowledging the request passively.

For one-sided primitive, the request is marked as

unsignaled, and then the completion of the request is con-

firmed passively after a successful polling of one subse-

quent signaled request. This avoids consuming RNIC’s

bandwidth.6 For two-sided primitive, the optimization

has the potential to double the throughput in a symmet-

ric model by piggybacking the reply messages with the

request messages. As shown in Fig. 4, passive ACK can

save half of the messages (replies).

It should be noted that not all of the completions

can be acknowledged passively. For example, one-sided

READ requires a completion event; otherwise, the applica-

tion does not know whether the read is successful or not.

Fortunately, in transactional execution, a transaction is

considered to be committed when the log has been suc-

cessfully written to all backups (see Fig. 1). Hence the

write-back request at the commit phase can be acknowl-

edged passively.

4 A Primitive-level Performance Analysis

In this section, we first present our execution frame-

work with both one-sided and two-sided primitive of

RDMA. We then present the basic performance of dif-

ferent RDMA primitives, including raw RDMA perfor-

mance and the performance of micro-benchmarks. The

micro-benchmarks simulate common transactional work-

loads. These experimental results serve as the guideline

for using the appropriate primitives for transactions.

6Verbs from the same send queue are processed in a FIFO manner [2].
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4.1 Setup

Testbed. Unless otherwise specified, we use a local rack-

scale RDMA-capable cluster with 16 machines for all

experiments. Each machine is equipped with two 12-

core Intel Xeon E5-2650 v4 processors, 128GB of RAM,

and two ConnectX-4 MCX455A 100Gbps Infiniband

NIC via PCIe 3.0 x16 connected to a Mellanox SB7890

100Gbps InfiniBand Switch.

Execution. We run 24 worker threads (same as the num-

ber of available cores per machine) on each machine in

our experiments. Each worker thread runs an event loop

to execute transactions, handles RPC requests, and polls

RDMA events. The events of RDMA including the com-

pletion of one-sided RDMA requests and the reception

of RPC requests/replies. We follow FaSST [18] by us-

ing coroutine from Boost C++ library to manage context

switches between clients when issuing network requests.

Boost coroutine is efficient in our experiments, which has

very low overhead for context switch (about 20 ns).

4.2 Primitive-level Performance Analysis

RDMA raw performance. Prior work has shown that

two-sided primitives have better performance and scala-

bility than one-sided ones [18]. This conclusion is drawn

from an old generation of RNIC (ConnectX-3). Further,

they only show the poor scalability of one-sided primi-

tive using small payloads (less than 32 bytes). We extend

their evaluation [18] on raw RDMA performance to show

that: one-sided primitives have better performance than

two-sided ones using 16 nodes, as shown in Fig. 5(a).

More importantly, the scale of the cluster only affects

one-sided primitives with small payloads. For example,

with our emulated 80-node connection setting, one-sided

primitives still outperform two-sided ones when data pay-

loads are larger than 64 bytes.

Emulating massive RDMA connections. On our 16-node

cluster, we create 5 RC QPs to connect to each ma-

chine at each worker. The number of QPs (5x16 QPs

per thread) is sufficient to run in an 80-node cluster. We

choose the QPs randomly to post upon issuing a request.

Note that the total number of QPs (960 per NIC) has ex-

ceeded the total number of QPs that can be cached at

RNIC.
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Primitive evaluation. Fig. 5(a) presents the evaluation re-

sults of the primitive analysis. For read operations, one-

sided primitives (READ) outperform two-sided ones by

up to 1.6X when payload size is below 64 bytes, and

by up to 1.37X for larger payloads. For write operations,

one-sided primitives (WRITE) outperform reads on small

payloads but get a similar trend on large payloads (from

1.03X to 1.35X). Note that we do not incur memory

copy overhead for two-sided primitives, as done in prior

work [18], since adding such overhead will affect the

performance of two-sided ones, especially for large mes-

sages.

Fig. 5(b) further presents the results on an emulated 80-

node connection setting. The performance of one-sided

READ becomes slow-growing with the decrease of pay-

loads from 128 bytes. This is because RNIC experiences

QP cache misses at this time.7 However, one-sided READs

can still outperform two-sided primitives when payloads

are larger than 64 bytes. Because the cost of data transfer

instead of QP cache misses dominates the performance

for larger payloads.

A final takeaway is that, although one-sided ATOMIC

is relatively slow [17], it can still achieve 48M reqs/s

on each machine, which is much higher than the re-

quirements of many workloads (e.g., TPC-C). Therefore,

the performance will not be the main obstacle to lever-

age one-sided atomic primitives in transactional execu-

tion (e.g., distributed spinlock). We evaluate this ap-

proach in the transactional workload (§5.2).

Micro-benchmarks. Better performance in raw through-

put does not always mean better performance in real ap-

plications. We use two micro-benchmarks to compare

how different primitive performs under common transac-

tional workloads, and how previous optimizations affect

the performance (Fig. 6).

Workloads. We use a workload with multi-object reads

and writes to compare the performance of different

RDMA primitives. This workload simulates common

operations in transactional workloads: at the execution

phase, transaction reads multiple records from remote

servers; at the commit phase, transaction writes multiple

updates back to remote servers. Note that the workloads

use fixed-length 64-byte payloads, and issue 10 opera-

tions.

Effects of optimizations. We first show how existing op-

timizations improve the performance of each primitive

from Fig. 6. Coroutine, outstanding requests and door-

bell can be applied to both workloads.

Coroutine hides the latency and improves the perfor-

mance of one-sided and two-sided by 7X and 6.46X, re-

7We use PCIe counters to measure QP cache misses, similar to pmu-

tools (https://github.com/andikleen/pmu-tools).
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Fig. 6: A comparison of one-sided and two-sided primitives for

multiple-object (a) reads and (b) writes with 64-byte payloads.

spectively. Adding outstanding requests by posting more

requests per batch further improve the throughput due to

better uses of RNIC’s processing capability.

Doorbell batching does not always improve the per-

formance of one-sided primitive, but it constantly im-

proves the throughput of two-sided ones. This is because

doorbell batching can only apply to a single QP, which

is suitable for UD-based two-sided implementation. On

the contrary, one-sided requests are sent through multi-

ple RC QPs, which reduces the chances of using door-

bell batching. Further using doorbell batching requires

bookkeeping the status of posted requests, which adds

additional overhead.

Offloading when completion is required. By enabling

passive acknowledgement (PA), the performance of

one-sided WRITE is further improved by 1.13X, while

that of two-sided primitive is nearly doubled (1.96X)

due to the reduction of half of the messages (for reply).

This makes the only case where two-sided outperforms

one-sided. Otherwise, one-sided primitive always has

better performance than two-sided ones. This is consis-

tent with the results in Fig. 5. For example, multiple

READs can achieve peak throughput about 8.43M, which

is close to the raw performance of one-sided READ (about

86.9M per machine).

5 A Phase-by-phase Performance Analysis

In this section, we study the performance of transac-

tions phase-by-phase with different RDMA primitives.

Table 2 summaries whether we apply the optimization

discussed in §3.2 at different phases of transactional exe-

cution. Below is some highlights of our phase-by-phase

analysis:

• One-sided primitive is faster when the number of

round trips is the same and the completion acknowl-

edgement of requests are required (§5.1,5.2,5.4,5.5).

• It is always worth checking and filling the lookup
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cache for one-sided primitive, even using two-sided

primitive (§5.1).

• One-sided primitive is faster, even using more network

round trips, for CPU-intensive workloads (§5.1).

• Two-sided primitive with passive ACK has compara-

ble or better performance than one-sided (§5.3).

Benchmarks. We use two popular OLTP benchmarks,

TPC-C [44] and SmallBank [42], to measure the perfor-

mance8 of every phase with different primitives, since

they represent CPU-intensive and network-intensive

workloads respectively. We use a partitioned data store

where data is sharded by rows and then distributed to all

machines. We enable 3-way logging and replication to

achieve high availability, namely each primary partition

has two backup replicas.

TPC-C simulates an order processing application. We

scale the database by deploying 384 warehouses to 16

machines. We use this benchmark as a CPU-intensive

workload. TPC-C is known for good locality: only around

10% of transactions access remote records. To avoid the

impact of local transactions, which our work does not fo-

cus on, we only run new-order transaction of TPC-C

and make transactions always distributed, which is a

major type of transaction (45%) and representative in

TPC-C.9

SmallBank simulates a simple banking application. Each

transaction performs simple reads and writes operations

on account data, such as transferring money between

different users. We use this benchmark as a network-

intensive workload because transaction only contains

simple arithmetic operations on few records. We do not

assume locality as previous work [18], which means that

all transactions use network operations to execute and

commit transactions. To scale the benchmark, we deploy

100,000 accounts per thread, while 4% of records are ac-

cessed by 90% of transactions.

5.1 Execution (E)

Overview. The transaction coordinator fetches the

records a transaction reads in the execution phase. This

requires traversing the index structure and fetching the

record. We can simply send an RPC to remote server to

fetch the record, which only requires one round-trip com-

munication. On the other hand, we can also leverage one-

sided RDMA READs to traverse the data structure and

read the record. This typically requires multiple round

trips but saves remote CPUs. Prior work has proposed

two types of optimizations to reduce the number of round

trips required by one-sided primitives [29, 10, 51, 30].

8We scale up the concurrent requests handled by the server to achieve

the peak throughput.
9For brevity, we refer to our simplified TPC-C benchmark as TPC-C/no.

Table 2: A summary of optimizations on RDMA primitives at

different phases (§3.2). OR, DB, CO and PA stand for outstanding

request, doorbell batching, coroutine, and passive ACK. RW and

RO stand for read-write and read-only transactions. I and II

stand for one-sided and two-sided primitives.

OR DB CO PA

I II I II I II I II

RW

E ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗

V ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

L ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗

C ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

RO
R ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗

V ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗

RDMA-friendly key-value store. Many hash-based data

structures can be optimized to reduce the number of

RDMA operations for traversing the remote server to find

the given key, these include cuckoo hashing [29], hop-

scotch hashing [10], and cluster hashing [51]. We adopt

DrTM-KV [51], a state-of-the-art RDMA-friendly key-

value store in all experiments.

RDMA-friendly index cache. The ideal case for one-

sided primitive is to use one one-sided READ to get

the record back. DrTM [51] introduces a location-based

cache to eliminate the lookup cost (one RDMA READ)

in the common case. FaRM [11] and Cell [30] use a

similar design for caching the internal nodes of B-tree.

In our experiment, we maintain a 300MB index cache

on each machine, which will be used and filled in the

execution phase. Note that the index cache is quite ef-

fective since a relatively small cache is usually enough

for skewed OLTP workloads [15, 8, 3, 33, 20], such as

SmallBank [42], TATP [32], and YCSB [6].

Evaluation. Fig. 7 compares the performance of us-

ing one-sided and two-sided primitives for the execu-

tion phase on TPC-C/no and SmallBank, respectively.

Two-sided uses one RPC to fetch the record. One-sided

fetches records with at least two one-sided READs (one

for index and one for payload). One-sided/Cache always

fetches the indexes from the local index cache and then

get the record from a remote server using a single one-

sided READ. This presents an ideal case for the perfor-

mance of the execution phase using one-sided primitives.

TPC-C/no: One-sided/Cache outperforms Two-sided by

up to 1.45X in throughput (from 1.26X), and the me-

dian latency is only around 69% of Two-sided (from

89%). The benefits mainly come from the better perfor-

mance of one-sided READs. Two-sided outperforms One-

sided (no cache) by up to 1.28X in throughput. Without

caching, the coordinator requires an average of double

round trips (one for lookup and another for read) to fetch

one record.

Interestingly, when increasing the number of corou-
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Fig. 7: The performance of (a) TPC-C/no and (b) SmallBank

with different implementations of Execution phase.

tines, the peak throughput of One-sided (no cache) out-

performs that of Two-sided (about 13%). The median

latency is also slightly better when using more than

10 coroutines. The performance gain comes from lower

CPU utilization on each machine. This confirms the ben-

efits of using one-sided primitives when remote servers

are busy [29, 30]. The adaptive caching scheme in prior

work [29, 30] can be used to get better performance by

balancing CPU and network.

SmallBank: Not surprisingly, One-sided/Cache still out-

performs Two-sided by up to 1.36X in throughput due to

the better performance and CPU utilization of one-sided

READ. However, compared to One-sided (no cache), the

speedup of peak throughput for Two-sided reaches up to

2.01X (from 1.13X). This is due to two reasons. First,

without location-based cache, one-sided uses more round

trips to finish the execution phase. Further, the perfor-

mance of Smallbank is bottlenecked by network band-

width since it is a network-intensive workload.

Summary. If one round-trip RDMA READ can retrieve

one record using the index cache, one-sided primitive

is always a better choice than two-sided one. Otherwise,

two-sided primitive should be used when servers are not

overloaded. Hence, a hybrid scheme should be used in

the execution phase. Specifically, we should always en-

able the index cache and look from it before choosing ei-

ther one-sided primitive (on cache hit) or two-sided prim-

itive (on cache miss). We should also always refill the

cache even if two-sided primitive is chosen upon a miss.

5.2 Validation (V)

Overview. To ensure serializability, OCC atomically

checks the read/write sets of the transaction in the val-

idation phase. The coordinator first locks all records in

the transaction’s write set and then validates all records

in the read/write set to ensure that they have not been

changed after the execution phase.

Lock. RDMA provides one-sided atomic compare and

swap operations (ATOMIC), which can be used to imple-

ment distributed spinlock [51, 5]. Although ATOMIC is

slower than other two-sided primitives, on recent gener-

ation of RNIC (e.g., ConnectX-4), ATOMIC can achieve

48M reqs/s, which is enough for many OLTP workloads
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Fig. 8: The performance of (a) TPC-C/no and (b) SmallBank

with different implementations of locking in Validation phase.

(e.g., TPC-C). More importantly, the throughput of two-

sided primitive (76M) was evaluated with an empty RPC

workload. When locking the record in the RPC routine,

the impact of CPU efficiency may change the relative per-

formance of one-sided and two-side primitives. This is

especially the case for the symmetric model adopted by

transaction systems [51, 5, 11, 18, 56], when the servers

are busy processing transactions.

Validate. Different from the execution phase, a single

RDMA READ is enough to retrieve the current version

of the record for validation, thanks to caching the index

in the execution phase of the transaction. Therefore, one-

sided primitive is always a better choice for read-only

records compared to two-sided one, according to the re-

sults in Fig. 5 and Fig. 7.

Optimization. OCC demands the validation should start

exactly after locking all records [47, 11]. This takes two

round trips for every read-write record in the validation

phase. Fortunately, the locked record can be validated im-

mediately since it can not be changed again. Therefore,

each read-write record can be handled by both one-sided

and two-sided primitives in one round trip. For one-sided,

the RDMA READ request will be posted just after the

RDMA CAS request in a doorbelled way to the same send

queue of target QP, since they are processed in a FIFO

manner. Further, with passive ACK, the CAS request can

be made unsignaled (§3.2). For two-sided, the RPC rou-

tine will first lock the record and then read its version.

On commodity x86 processors, compiler fences are suf-

ficient to ensure the required ordering.

Restriction of RDMA atomicity. Currently, the key chal-

lenge for using one-sided primitive (RDMA ATOMIC)

for distributed locking is that ATOMIC cannot correctly

work with CPU’s atomic operations (e.g., CAS). To rem-

edy this, local atomic operations must also use RNIC’s

atomic operations [51], which will slow down the vali-

dation phase of local transactions. Leveraging advanced

hardware features, like hardware transactional memory

(HTM), can overcome this issue [51].

Evaluation. Fig. 8 compares the performance of us-

ing one-sided and two-sided primitives for the valida-

tion phase on TPC-C/no and SmallBank, respectively.
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Fig. 9: The performance of (a) TPC-C/no and (b) SmallBank

with different implementations of Commit phase.

Since the read/write sets are the same in TPC-C/no and

SmallBank, one-sided will send one ATOMIC and one

READ sequentially to lock the record and retrieve the cur-

rent version in one round trip. We can see in Fig 8 that for

both workloads, one-sided primitive (ATOMIC) is faster,

even it has lower peak throughput.

Summary. Although RDMA ATOMIC is slower than

other RDMA network primitives, it may not be the bot-

tleneck for many applications and can further improve

the performance of many workloads. If the atomicity be-

tween RNIC and CPU will not cause a performance is-

sue, One-sided RDMA ATOMIC is a better choice to im-

plement distributed locking due to high CPU efficiency.

Otherwise, two-sided primitive is preferred in this phase

since local CASs are much faster than RNIC’s CASs.

5.3 Commit (C)

Overview. In the commit phase, the coordinator first

writes the updates of the transaction back and then re-

leases the locks. One-sided WRITE can be used to im-

plement the commit operation with two requests, one to

write updates back and one to release the locks (i.e., ze-

roing the lock state of the record).

Similar to the validation phase, two one-sided WRITEs

(one to write the update back and one to release the lock)

will be posted sequentially to the same QP in a door-

belled way, which preserves the required ordering (re-

lease after write-back). Therefore, the commit phase can

be handled by both one-sided and two-sided primitives

in one round trip.

Optimization with passive ACK. Since the transaction is

considered to be committed after the completion of log-

ging, the completion of the commit message can be ac-

knowledged passively by piggybacking with other mes-

sages. Thus we enable passive ACK optimization to both

one-sided and two-sided primitives in the commit phase.

Evaluation. Fig. 9 presents the performance of

TPC-C/no and SmallBank using different commit

approaches. Note that we use two-sided as the validation

implementation in this experiment. This is because

one-sided ATOMICs cannot work correctly with the

commit phase with two-sided primitive due to the

atomicity issue with our current RNIC.
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Fig. 10: The performance of (a) TPC-C/no and (b) SmallBank

with different implementations of Logging phase.

For both workloads, without passive ACK, one-sided

WRITEs are faster due to better CPU utilization at the re-

ceiver’s side. With passive ACK, two-sided is faster. This

is because, although two-sided primitive costs more CPU

at the receiver side, it can save CPU at sender side due to

doorbell batching [17] (see Table 2). One-sided primitive

requires multiple MMIOs to commit multiple records,

while two-sided primitive can chain these requests by us-

ing one doorbell. Passive ACK can further save the cost

of two-sided primitives when sending the replies back.

These results match up with the results observed in our

primitive-level performance analysis (§4).

Summary. To commit transactions, two-sided primitive

with passive ACK is the better choice.

5.4 Logging (L)

Overview. In the logging phase, the coordinator writes

transaction logs with all updates to all backups. After re-

ceiving the completion acknowledgements from all back-

ups, the transaction commits. The coordinator will notify

backups to reclaim the space of logs lazily by updating

records in-place.

One-sided primitive. To enable logging with one-sided

RDMA WRITE, each machine maintains a set of ring-

buffers for remote servers to log. The integrity of the

log is enforced by setting the payload size at the begin

and end of the message, similar to previous work [10].

Note that since we use RC (Reliable Connection) QP

to post one-sided WRITEs, the logging is considered suc-

cess after polling the ACK from the RNIC. We use two-

sided primitive to reclaim the log since it must involve

remote CPUs [11]. Since log reclaiming is not on the

critical path of transactional execution, this request can

be marked as unsignaled and the claiming can be done in

the background.

Two-sided primitive. Logging with two-sided primitive is

relatively simple. The RPC routine copies the log content

to a local buffer after receiving the log request, and then

it sends a reply to the sender. The log reclaiming can also

be executed in the background.

Evaluation. Fig. 10 presents the performance of

TPC-C/no and SmallBank using different logging ap-

proaches. For both of them, one-sided logging always
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Table 3: A summary of execution time (cycles) and payload size

(bytes) in different phases for TPC-C and SmallBank.

TPC-C SmallBank

Time Payload Time Payload

Execution 342 68 678 71

Validation 454 157 185 105

Logging 363 1006 134 149

Commit 108 34 87 20

has higher throughput and lower latency than its two-

sided counterpart, thanks to offloading write operations

to one-sided primitives. Using one-sided logging in-

creases the throughput of TPC-C/no and SmallBank by

up to 1.29X (from 1.24X) and 1.12X (from 1.10X), re-

spectively. One-sided logging has more improvements in

peak throughput in TPC-C/no since the payload size of

logs in TPC-C is much larger than that of SmallBank

(1,006B vs. 149B), as shown in Table 3.

Summary. Since the logging phase can be offloaded us-

ing one-sided RDMA WRITEs with one round trip, one-

sided primitive is always preferred to write logs.
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with different implementations of the read-only transaction

(Read and Validation phases).

5.5 Read-only Transaction (R+V)

Overview. We use a simplified two-phase protocol to

run read-only transactions as prior work [25]. The first

phase reads all records like the execution phase, and the

second phase validates that the versions of all records

have not been changed, which is similar to the operations

in the validation phase for the records in read set. For

single-key read-only transactions, the validation phase

can be ignored. These transactions are popular in many

OLTP workloads (e.g., TATP [32]), as reported by prior

work [11, 18].

Evaluation. With a proper sharding, there is no dis-

tributed read-only transaction in TPC-C, which needs re-

mote data accesses. Further, there is only one single-

key read-only transaction in Smallbank (i.e., Balance),

which does not require the second phase (validation) [11,

18]. Therefore, we use the customer-position trans-

action in TPC-E [43] to evaluate the performance of dis-

tributed read-only transactions.
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Fig. 12: The performance of DrTM+H with the increase of ma-

chines for (a) TPC-C/no and (b) SmallBank.

TPC-E. is designed to be a more realistic OLTP bench-

mark, which simulates the workload of a brokerage firm.

One of well-known characteristics is the high proportion

of read-only transactions, reaching more than 79%. The

customer-position transaction is read-only and has

the highest execution ratio. It simulates the process of

retrieving the customer’s profile and summarizing their

overall standing based on current market values for all

assets. The assets prices are fetched in a distributed way.

Fig. 11 compares different choices of primitives for

distributed read-only transactions. As expected, by of-

floading read operations to RNICs and bypassing re-

mote CPUs, using one-sided primitives for both the read

and validation phases can gain the best performance

in both throughput and latency. One-sided outperforms

Two-sided by about 10% in peak throughput (0.19 vs.

0.21), and the median latency is around 80% of Two-

sided. Enabling the index cache (One-sided/Cache) in the

read phase will further improve the peak throughput by

close to 20% (0.25 vs. 0.21) and reduce the median la-

tency more than 20%.

Summary. The hybrid scheme used in the execution

phase (see §5.1) is also suitable to the first phase, and

one-sided READ is always a better choice for the second

phase (see §5.2). For single-key read-only transactions, a

single one-sided READ is usually efficient.

6 Fast Transactions using Hybrid Schemes

In this section, we conclude our studies of using RDMA

primitives for transactions by showing how to improve

the performance of prior designs by choosing appropri-

ate primitives and techniques at different phases of trans-

actional execution. This leads to DrTM+H, an efficient dis-

tributed transaction system using hybrid schemes.

6.1 Design of DrTM+H

DrTM+H optimizes different phases of the transaction by

choosing the right primitives guided by our previous stud-

ies (§4 and §5). DrTM+H supports serializable transaction

with log replication for high availability. Currently, we

have not implemented the reconfiguration and recovery,

which is necessary to achieve high availability. Yet, since

our replication protocol is exactly the same as the one
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respectively. Optimizations are cumulative from left to right. (d) A performance comparison between original and emulated FaSST.

used in FaRM [11], DrTM+H can use its method to recover

from failure.

Execution. DrTM+H uses a hybrid design of one-sided

READs with caching and two-sided RPC. If the record’s

address has been cached locally, one RDMA READ is suf-

ficient to fetch the record. Otherwise, DrTM+H uses RPC

to fetch the record and its address.

Validation. DrTM+H uses one-sided ATOMIC for valida-

tion if there is no atomic issue ( e.g., Network accesses

do not conflict with local ones). Otherwise two-sided is

preferred since using RDMA atomic operations will slow

down local operations [51].

Logging. DrTM+H always uses one-sided WRITEs to

replicate transaction logs to all backups and uses two-

sided primitive to lazily reclaim logs on backups.

Commit. DrTM+H uses one-sided WRITEs to commit if

one-sided ATOMIC is used in the validation phase. Other-

wise DrTM+H uses two-sided RPC. DrTM+H always uses

passive ACK optimization since the completion of com-

mit message is not on the critical path of transactional

execution.

Using outstanding request with speculative execution. In

§5.1, we disable the outstanding request optimization at

the execution phase to avoid requiring advance knowl-

edge of read/write set. However, this usually means that

transaction must fetch records one-by-one, which in-

creases the latency of a single transaction.10 We found

that even the record has not been fetched to local, the

transaction can still speculatively execute until the in-

volved value is really used. This can greatly reduce the

lifespan of a transaction. For example, the remote records

required by new-order transaction in TPC-C are in-

dependent. Thus DrTM+H uses speculative execution to

fetch these records in parallel.

6.2 Performance Evaluation

Fig. 12 presents the throughput and scalability of DrTM+H

using TPC-C/no and SmallBank. To show that DrTM+H’s

usage of one-sided primitive has good scalability on

a larger-scale cluster, we use the QP setting which is

enough to run on an 80-node cluster (DrTM+H-80). Each

10We still send multiple requests in parallel for different transactions

using coroutines.

Table 4: A review of the existing RDMA-enabled transaction

systems. I and II stand for one-sided and two-sided primitives.

RW-TX RO-TX

E V L C R V

FaRM I II+I I II I I

DrTM+R I I+I I I+I I I

FaSST II II II II II II

DrTM+H I/II I/II I I/II I/II I

thread uses 80 QPs (16x5) to connect to 16 nodes and

chooses the usage of QP in a round-robin way.

Performance and scalability. DrTM+H scales linearly

with the increasing of machines. The throughput of

TPC-C/no and SmallBank decrease 5% and 9% on

the emulated 80-node connection setting, respectively.

SmallBank is more sensitive to the number of QPs since

its payload size is much smaller than that of TPC-C/no.

However, SmallBank is still 1.3X higher than a pure two-

sided solution in throughput, with a significant decrease

in the tail latency. The 50
th (median), 90th, and 99

th la-

tency are reduced by 22%, 39%, and 49%, respectively.

Factor analysis. To investigate the contribution of the

primitive choices in DrTM+H, we conduct a factor anal-

ysis in Fig. 13. Due to space limits, we only report

the experimental results of TPC-C/no; SmallBank is

similar. First, we observe that using one-sided primi-

tives can significantly improve the throughput and la-

tency when servers are underloaded (1 coroutine). This

is because one-sided primitive has lower CPU utiliza-

tion and lower latency compared to two-sided one. Sec-

ond, by increasing coroutines, the two-sided implemen-

tation has close throughput with one-sided one. How-

ever, a hybrid scheme in DrTM+H improves both median

and tail latency. Finally, when leveraging RDMA, the

number of round trips has more impacts on latency but

not throughput, especially for CPU-intensive workloads

(e.g., TPC-C). When using 16 coroutines, the throughput

increases even using more network round trips (adding

one-sided READs). This is because coroutines hide most

of waiting for request’s completion while one-sided prim-

itive has lower CPU utilization.
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6.3 Comparison Against Prior Designs

There have been several designs to optimize transactional

execution using RDMA. To understand the effects of

RDMA primitive decisions, we implemented and eval-

uated emulated versions of FaRM [11], DrTM+R [5]

and FaSST [18].11 We adopted the same codebase and

transaction protocol (OCC) of DrTM+H, but choosing the

RDMA primitives and techniques at different phases of

transactional execution as the originals. Table 4 summa-

rizes the primitives used in the three systems and com-

pares the performance of emulated versions of them with

DrTM+H. Note that all existing optimizations on RDMA

primitives are enabled, including coroutine, outstanding

requests, and doorbell batching.

Emulating FaRM. FaRM [11] is designed to run trans-

actions atop of a global memory space over RDMA

networking. FaRM uses one-sided READ at the execu-

tion/logging phase and one-sided WRITE at the logging

phase, as well as a hybrid choice at the validation phase.

Moreover, FaRM adopts an RDMA-friendly memory

store (FaRM-KV) proposed in their prior work [10]. Our

emulated store (DrTM-KV) has been shown to have

a comparable performance even without the location

cache [51]. Further, our two-sided RPC implementation

has also better performance than the implementation in

FaRM [18] (see RC WRITE w/ IMM in Fig 3(b)). Hence,

we believe our emulated version has similar or even bet-

ter performance compared to the vanilla FaRM.

Emulating DrTM+R. DrTM+R [5] offloads all network

operations to one-sided RDMA primitives for CPU effi-

ciency, including using one-sided ATOMIC for locking re-

mote records in the validation phase. Further, DrTM+R

exploits hardware transactional memory (HTM) [14] to

handle local transactions, but does not leverage corou-

tines to obtain higher throughput. To focus on compar-

ing different choices of RDMA primitives, our emulated

version disables HTM (similar to the implementation of

DrTM-OCC [4]) but enables coroutine optimization.

Emulating FaSST. FaSST [18] proposes a well-

optimized RPC implementation (see UD SEND/RECV in

Fig 3(b)) based on two-sided primitives for running trans-

actions. Since our framework provides a similar UD-

based RPC implementation, it is straightforward to em-

ulate FaSST by using two-sided primitives at all phases

of transactional execution. Since FaSST uses a simplified

OCC protocol [18] by moving lock operations from the

validation phase to the execution phase, we use FaSST-

OCC to name the pure two-sided implementation on our

platform with OCC protocol, to avoid confusion.

11FaRM is not open-sourced, DrTM+R depends on hardware transac-

tional memory, and FaSST uses a simplified OCC and protocol.
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Fig. 14: An end-to-end comparison of different designs for (a)

TPC-C/no and (b) SmallBank.

Calibrating performance with FaSST. Since the source

code of FaSST is available and does not depend on

specialized hardwares, we compare the performance of

the original version and our emulated version using the

SmallBank benchmark with 24 threads and 1 NIC per

machine.12 Note that we also implement their specific

OCC protocol which can reduce one network round

trip with advance knowledge of transaction’s read/write

set.As shown in Fig. 13(d), emulating FaSST on our plat-

form can achieve comparable performance. Further, un-

der our guideline for using the appropriate primitives,

a hybrid design can also improve the implementation

of FaSST’s protocol by using one-sided primitives in

the validation phase and the logging phase. As shown

in Fig. 13(d), the hybrid choice (Hybrid FaSST) outper-

forms the original FaSST by up to 11% in throughput.

Evaluation. Compared to other prior designs, DrTM+H

always embraces the best performance in terms of

latency and throughput. Fig. 14 presents our results.

DrTM+H has the best throughput than previous designs

with the right choice of RDMA primitives and a set

of optimizations to better leverage the chosen primitive.

On TPC-C/no, DrTM+H’s throughput is up to 2.96X of

FaSST (from 1.41X), up to 1.89X of DrTM+R (from

1.12X) and up to 2.50X of FaRM (from 1.21X). When

using 16 coroutines, the median latency is reduced by

33%, 23% and 34%, respectively. We broke down the per-

formance improvements in §6.2. FaRM optimizes base-

line two-sided (FaSST) by using one-sided operation

for logging and execution. DrTM+R further adds loca-

tion cache and use one-sided for validation and commit.

In TPC-C/no, FaRM and DrTM+R outperforms FaSST

due to better leveraging one-sided primitives for CPU-

intensive workloads. DrTM+R outperforms FaRM due

to the usage of location cache at the execution phase and

the usage of atomics at the validation phase. FaSST has a

comparable performance to FaRM for SmallBank since

two-sided primitive is faster at the execution phase.

Latency breakdown. To study the performance influence

of choosing RDMA primitives, we further show the la-

tency breakdown in each phase for different designs

12The original FaSST does not support the TPC-C benchmark, and we

utilized the configuration as suggested by the authors of FaSST.
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Fig. 15: The latency breakdown of TPC-C/no using (a) 1 corou-

tine and (b) 16 coroutines.

in Fig. 15. By leveraging one-sided READs, the latency

of the execution phase is reduced by 13% and 41%

in FaRM and DrTM+R respectively, when using one

coroutine. However, the increase of coroutines can nar-

row the performance gap by hiding the latency of net-

work operations. FaSST can outperform FaRM by 22%

when using 16 coroutines, since FaRM requires more net-

work round trips to read remote data. To remedy this,

DrTM+R enables the location-based cache [51] for one-

sided operations and achieves the lowest latency (less

than 0.7ms). In the validation phase, DrTM+R has the

lower latency by offloading lock operations to RDMA

NICs. Using one-sided WRITEs, the latency of the log-

ging phase in DrTM+R and FaRM is reduced by about

69% and 75% respectively, compared to using two-sided

primitives (FaSST). Finally, DrTM+H can always choose

appropriate RDMA primitives to embrace the latency re-

duction at each phase. Note that DrTM+H has the lowest

latency at the commit phase due to enabling Passive ACK

optimization (§3.2), such that receiving the acknowledge-

ment of commit messages is done off the critical path.

Table 5: Different RDMA NICs used in the experiments. N de-

notes the number of nodes. C/N denotes the number of RNICs

per node. P/C denotes the number of ports per RNIC. Each ma-

chine is the same as in §4.1.

Name N C/N P/C RNIC

CX3 5 2 1 40Gbps ConnectX-3 InfiniBand

RoCE 2 2 1 100Gbps ConnectX-4 RoCE

CX5 2 1 1 100Gbps ConnectX-5 InfiniBand

7 Other RDMA NICs

The design choice of using specific RDMA primitive is

guided by our primitive analysis in §4. The analysis itself

depends on the performance of RNIC for different prim-

itives. So our results depend on specific RNIC hardware

characteristics.

In this section, we provide experiments using differ-

ent RDMA platforms to show how our results applied to

other settings. The experiment settings are summarized

in Table 5. In summary, if RNIC can provide better per-

formance for one-sided primitive using the same round
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Fig. 16: A comparison of one-sided and two-sided primitives

using ConnectX-3 RNICs for multiple-object (a) reads and (b)

writes with 256-byte payloads.

trip, our results generally hold. We have observed faster

one-sided primitive in recent generations of RNICs, like

ConnectX-4 (CX4) and ConnectX-5 (CX5). On the other

hand, if one-sided primitive cannot provide better perfor-

mance, which is the case in old generations of RNIC, like

ConnectX-3 (CX3), two-sided primitive shall be used.

ConnectX-3 (CX3). CX3 is an old generation of RNIC

released in 2011. It is well-known for its poor one-sided

performance [17, 18]. Using our micro-benchmarks, as

shown in Fig. 16, one-sided primitive cannot provide bet-

ter performance than two-sided primitive even using the

same number of network round trips. Further, one-sided

ATOMICS blocks RNIC operations [17] in CX3, resulting

in relatively poor performance.

The poor performance of one-sided primitive in CX3

makes two-sided primitive a better design choice. This

is because UD based two-sided primitive is less affected

by hardware restrictions [16, 17]. Fig. 17 shows the end-

to-end comparison of prior designs we reviewed in §6

using CX3. We can see that FaSST achieves the best per-

formance due to better performance of two-sided primi-

tives at each phase. FaRM uses slower one-sided prim-

itive with more round-trip at the execution phase (for

traversing the index). DrTM+R achieves the slowest per-

formance because its performance is bottlenecked by

the one-sided ATOMICS. Yet, DrTM+H can still choose

the right primitive based on the evaluation results and

achieve the best results.

RDMA over Converged Ethernet (RoCE). RoCE is a

network protocol which allows RDMA to run atop of an

Ethernet network. It uses Ethernet as the link layer com-

pared to the Infiniband network. Since RoCE only uses

a different link layer, it usually has little effects on the

comparison between one-sided and two-sided primitives.

Fig. 18 presents the results of micro-benchmarks using

ConnectX-4 RNICs in an RoCE cluster. One-sided prim-
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Fig. 17: An end-to-end comparison of different designs for (a)

TPC-C/no and (b) SmallBank using ConnectX-3 RNICs.
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Fig. 18: A comparison of one-sided and two-sided primitives

using RoCEv2 NICs for multiple-object (a) reads and (b) writes

with 256-byte payloads.

itive still has better performance, except when two-sided

one uses the passive-ACK optimization.

Fig. 19 further presents the end-to-end comparisons

of prior designs using the RoCE cluster. We can achieve

similar results as in §6. Note that both workloads achieve

a better performance in this experiment. This is because

both workloads use 2-way replication due to the restric-

tions of cluster size.

ConnectX-5 (CX5). Finally, we evaluate different sys-

tems using CX5, the later product of CX4. Due to the

restrictions of RNIC (1 per machine), we utilize threads

on the same socket for the experiments using CX5.

Fig. 20 presents the performance of primitive level

analysis. One-sided primitives can achieve better perfor-

mance, even when applying passive-ack optimization for

two-sided primitive. This result is as we expected since

Mellanox marks CX5 and CX4 as the same generation

RNIC in its document (while CX3 is the previous gen-

eration RNIC). Fig. 21 further presents the end-to-end

comparisons on TPC-C/no and SmallBank using CX5.

The results are similar to results when using CX4.

8 Discussion

Trends, features, and extensions. Our studies focus

on Mellanox ConnectX-4 RNIC. Previous generations

of RNICs like ConnectX-3 yields slower performance

of one-sided READs. However, we have seen a trend
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Fig. 19: An end-to-end comparison of different designs for (a)

TPC-C/no and (b) SmallBank using RoCEv2 NICs.
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Fig. 20: A comparison of one-sided and two-sided primitives

using ConnectX-5 RNICs for multiple-object (a) reads and (b)

writes with 256-byte payloads.

that one-sided primitives become faster and more scal-

able in recent RNICs, from Connect-IB to ConnectX-

4 to ConnectX-5. Further, new generation RNIC may

introduce more features for one-sided primitives. For

example, ConnectX-5 integrates one-sided WRITE with

NVM [27]. This suggests an optimistic opinion about

providing offloading features in modern data centers.

On the other hand, one-sided primitive still has many

limitations due to the lack of expressiveness [51]. For

example, it is not competent for complicated operations,

like searching in a sorted store. Furthermore, one-sided

primitive is unlikely to have orders of magnitude higher

performance than messaging, because we have also seen

a trend on providing fast messaging rate in later gener-

ation RNICs [28]. Hence, how to properly choose the

right primitive is very important given a specific work-

load. This paper gives an example of how to optimize

transactional processing with a combination of different

primitives in a phase-by-phase way. The resulting system

and insights may be reused for further studies.

Some proposed RDMA extensions, including the co-

herence of atomic operations, atomic object reads [9],

and multi-address atomics [35], may provide further ex-

ploration spaces once being commercialized. We believe

that there will be a continued line of research in this field

with more new features, implementations and application

domains.
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Fig. 21: An end-to-end comparison of different designs for (a)

TPC-C/no and (b) SmallBank using ConnectX-5 NICs.

Emulating a large-scale RDMA cluster. Currently, we

mainly focus on emulating massive RDMA connections

in a rack-scale cluster, because QP cache misses will

dominate the impact on the performance of various prim-

itives. Consequently, we do not consider other scalabil-

ity issues in a real large-scale RDMA cluster. For exam-

ple, a large cluster has to use multiple layers of RDMA

networking such as multiple switches or congestion con-

trol mechanism [60]. However, such aspects affect all net-

work primitives instead of affecting only primitives. We

plan to further validate our conclusion on a real, large

RDMA-capable cluster in future.

9 Related Work

Existing RDMA optimizations. A set of optimizations

on how to better leverage RDMA have been proposed.

FaRM [10] proposes a set of techniques to mitigate cache

pressure of RNIC, including using huge page to reduce

page entries stored in RNIC and sharing QPs between

threads to reduce the connections. HERD [16] first dis-

covers the benefits of using UD QPs for messaging to

improve performance and scalability. A recent guideline

paper of RDMA [17] describes several optimizations on

better leveraging RDMA features, including using door-

bell mechanism to post a batch of requests. It also studies

how low-level factors (e.g., payload inlining) impact the

overall performance. FaSST [18] argues that UD, though

unreliable as its name, has high reliability in modern dat-

acenters because RDMA assumes a lossless link layer.

Hence, UD QP is well suited for two-sided primitives.

Finally, LITE [46] proposes a kernel indirection layer for

RDMA which improves the scalability and programma-

bility of RDMA. Many of such optimizations can be used

cumulatively to improve performance. We apply most of

them in our execution framework to make a fair compar-

ison between one-sided and two-sided primitives, except

for LITE. Because the optimization requires modifying

the kernel and is not designed for our scenario.

Comparisons on RDMA primitives. Prior work has

done valuable comparisons on different RDMA primi-

tives [16, 10, 11, 18]. Our work continues such com-

parisons with a comprehensive study of both RDMA

primitives and state-of-the-art optimizations. Further, we

show that, even if one primitive performs better in micro-

benchmarks, applications still need careful choices of

RDMA primitives and optimizations to achieve the op-

timal performance.

Fast distributed transaction systems. We continue the

line of research of providing fast distributed transac-

tions [45, 7, 59, 31, 53, 51, 1, 24, 11, 57, 1, 54, 5, 18, 56].

Some systems leverage variants of OCC for consis-

tency [24, 11, 5, 18], while others use algorithms such

as 2PL [51] and SI [56] to handle workloads with more

contentions. This paper uses OCC as an example to illus-

trate the effectiveness of a novel combination of RDMA

primitives. We believe our insights on RDMA primitives

may be applied to other concurrency control algorithms.

Other RDMA-enabled systems. A large number of sys-

tems have used RDMA features to improve performance.

These include transaction processing systems [51, 11, 5,

18, 56, 50], key-value stores [30, 29, 16, 10, 40], dis-

tributed file systems [26, 38], consensus algorithms [34,

48] and graph processing systems [52, 36, 58]. Such sys-

tems also have different RDMA primitive choices accord-

ing to their own demands. Our study may also inspire an

optimal use of RDMA primitives on such systems.

10 Conclusion

We have presented a detailed analysis of how different

choices of RDMA primitive affect the performance of

transactional execution. Unlike previous studies, we com-

pare different primitives and techniques using one well-

optimized RDMA framework. This makes the compari-

son of techniques and primitives comparable and com-

prehensive. The main observations made by our study is

that no single primitive is the winner all the time, even

at different phases of transactional execution. We then

propose a hybrid solution which uses the most appropri-

ate primitive at each phase of transactions. This not only

improves the throughput but also reduces the latency of

transactions. Finally, our study gives hints about whether

it is cost-effective to offload RDMA one-sided, or just

use two-sided for easy porting. We hope this can stim-

ulate and provide a guideline for future co-design with

RDMA.
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Abstract
Modern data processing clusters are highly dynamic –

both in terms of the number of concurrently running jobs
and their resource usage. To improve job performance, re-
cent works have focused on optimizing the cluster sched-
uler and the jobs’ query planner with a focus on picking
the right query execution plan (QEP) – represented as
a directed acyclic graph – for a job in a resource-aware
manner, and scheduling jobs in a QEP-aware manner.
However, because existing solutions use a fixed QEP
throughout the entire execution, the inability to adapt
a QEP in reaction to resource changes often leads to large
performance inefficiencies.

This paper argues for dynamic query re-planning,
wherein we re-evaluate and re-plan a job’s QEP during
its execution. We show that designing for re-planning
requires fundamental changes to the interfaces between
key layers of data analytics stacks today, i.e., the query
planner, the execution engine, and the cluster scheduler.
Instead of pushing more complexity into the scheduler
or the query planner, we argue for a redistribution of re-
sponsibilities between the three components to simplify
their designs. Under this redesign, we analytically show
that a greedy algorithm for re-planning and execution
alongside a simple max-min fair scheduler can offer prov-
ably competitive behavior even under adversarial resource
changes. We prototype our algorithms atop Apache Hive
and Tez. Via extensive experiments, we show that our
design can offer a median performance improvement of
1.47× compared to state-of-the-art alternatives.

1 Introduction
Batch analytics is widely used today to drive business in-
telligence and operations at organizations of various sizes.
Such analytics is driven by systems such as Hive [5] and
SparkSQL [19] that offer SQL-like interfaces running
atop cluster computing frameworks such as Hadoop [4]
and Spark [59]. Figure 1 shows the key layers of data
analytics stacks today. At the core of these systems are
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Figure 1: Traditional batch query execution pipeline.

query planners (QPs) , such as Calcite for Hive [3] and
Catalyst for SparkSQL [19]. QPs leverage data statistics
to evaluate several potential query execution plans (QEPs)
for each query to determine an optimized QEP. The opti-
mized QEP is a DAG of interconnected stages, where each
stage has many tasks. An execution engine then handles
the scheduling of these tasks on the underlying cluster
by requesting resources from a scheduler. The scheduler
allocates resources considering a variety of metrics such
as packing, fairness, and job performance [35, 36, 61].

To improve query performance, existing works have
primarily looked at optimizations limited to specific lay-
ers in the data analytics stack. Some of them [58, 61,
18, 34, 36, 35, 51] have focused on improved scheduling
given the optimized QEP by incorporating rich informa-
tion, such as task resource requirements, expected task
run times, and dependencies. Others have considered im-
proving the QP to take into account resource availability
at query launch time (in addition to data statistics) to find
good resource-aware QEPs [54, 55].

We argue that these state-of-the-art techniques fall short
in dynamic environments, where resource availability can
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Figure 2: Dynamic replanning in action using QOOP. Omitted
part of the query planner is similar to that of Figure 1.

vary significantly over the duration of a job’s lifetime.
This is because existing techniques are early-binding in
nature – a QEP is pre-chosen at query launch time and the
QEP’s low-level details (e.g., the physical tasks, task re-
source needs, dependencies) are used to make scheduling
decisions (which tasks to run and when). This fundamen-
tally leaves limited options to adapt to resource dynamics.
Our paper makes a case for constant query replanning in
the face of dynamics. Here, a given job switches query
plans during its execution to adapt to changing resource
availability and ensure fast completion.

Dynamic resource variabilities can arise in at least two
situations: (i) running multiple jobs on small private clus-
ters, which is a very common use-case in practice [6];
and (ii) leveraging spot market instances for running an-
alytics jobs, which is an attractive option due to the cost
savings it can offer [45, 52, 62, 38]. We empirically study
resource changes in these situations in Section 2.

To enable effective adaptation in these situations, we
develop and analyze strategies for query replanning. We
prove two basic results: (1) When dynamically switching
QEPs, it is important for a query to potentially back-
track and forgo already completed work. Given imperfect
knowledge of future resource availability, a query’s per-
formance can be arbitrarily bad without backtracking. (2)
A greedy algorithm – which always picks a QEP offering
the best completion time assuming current allocation per-
sists into the future – performs well. We prove that the
greedy algorithm has a competitive ratio of 4; the lower
bound for any online algorithm is 2.

To realize the aforementioned replanning strategies
in practice, we eschew the early binding in today’s ap-
proaches. Instead, we propose a new system, QOOP, that
has the following radically different division of labor and
interfaces among the layers of analytics stacks (Figure 2):

• The cluster scheduler implements simple cluster-
wide weighted resource shares and explicitly informs a
job’s execution engine of changes to its cluster share. The
cluster share of a job is defined as the total amount of
each resource divided by the number of active jobs. Dur-
ing a jobs’s execution, our scheduler tracks a job’s current
resource usage – measured as the maximum of the frac-
tions of any resource it is using – and allocates freed up
resources to the job with the least current usage, emu-
lating simple max-min fair sharing. Thus, the scheduler
decouples the feedback about cluster contention – this
helps queries replan and adapt – from task-level resource
allocation, which is instantaneously max-min fair.

• When resource shares change significantly, the query
planner compares a query’s remaining time to completion
based on its current progress against its expected com-
pletion time from replanning and switching to a different
plan. It uses a model of task executions and available
checkpoints in the execution engine to make this deci-
sion. It picks a better QEP to switch to (if one exists), and
informs the execution engine of the new set of tasks to
execute and existing ones to revoke.

• The execution engine supports the query planner by
informing it of the query’s current progress and main-
taining checkpoints of the query’s execution from which
alternate QEPs’ computation can begin.

Overall, QOOP pushes complexity up the stack, out of
cluster schedulers – where most of the scheduling com-
plexity exists today – and into a tight replanning feedback
loop between the query planner and the execution engine.
We show that the resulting late binding enables better
dynamic query adaptation.

We prototype QOOP by refactoring the interfaces be-
tween Hive, Tez, and YARN. Our evaluations on a 20-
node cluster using TPC-DS queries show that QOOP’s
dynamic query replanning and simple scheduler outper-
form existing state-of-the-art static approaches. From a
single job’s perspective, QOOP strictly outperforms a
resource-aware but static QP. For example, when resource
profiles fluctuate rapidly, with high volatility, QOOP of-
fers more than 50% of the jobs improvements of 1.47×
or more; 10% of the jobs see more than 4× gains! We
also use QOOP to manage the execution of multiple jobs
on a small 20-node private cluster. We find that QOOP
performs well on all three key metrics, i.e., job comple-
tion times, fairness, and efficiency, by approaching close
to the individual best solutions for each metric.

2 Background and Motivation
In this section, we highlight multiple sources of resource
dynamics in a cluster (§2.1), discuss the opportunities lost
from not being able to switch a query’s plan in response to
resource dynamics (§2.2), and why the existing interfaces
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Figure 3: Analysis of resource perturbations in a shared cluster and spot market. The gaps between each pair of the same symbols in
(a) demarcate one resource volatility event.

between cluster schedulers, execution engines, and query
planners make dynamic switching difficult (§2.3).

2.1 Resource Dynamics in Big Data Environments

Modern big data queries run in dynamic environments that
range from dedicated resources in private clusters [25, 22]
and public clouds [1] to best-effort resources put together
from spot markets in the cloud [45, 52, 62, 38].

In case of the former, resources are arbitrated between
queries by an inter-job scheduler [35, 30, 36, 61, 18]. As
new jobs arrive and already-running jobs complete, re-
source shares of each job are dynamically adjusted by the
scheduler based on criteria such as fairness, priority, and
time-to-completion. Although in large clusters, such as
those run by Google [25, 28] and Microsoft [22], indi-
vidual job arrivals or departures have negligible impact
on other jobs, most on-premise and cloud-hosted clusters
comprise less than 100 machines [6, 9] and run only a
handful of jobs concurrently. A 2016 Mesosphere sur-
vey [6] found that 96% of new users, and 75% of regular
users use fewer than 100 nodes. A single job’s arrival or
completion in such scenarios can create large resource
perturbations.

To better highlight resource perturbations in small clus-
ters, we ran a representative workload on a 20-node clus-
ter managed by Apache YARN. The cluster uses the
Tetris [34] cluster scheduler, and it can concurrently run
600 containers at it’s maximum capacity (1 core per con-
tainer in a 600 core cluster). For our workload, we use
the TPC-DS [12] workload, where jobs arrive following a
Poisson process with an average inter-arrival time of 20
seconds. The average completion time per job is around
500s. We pick a job executed in the cluster and show it’s
view of cluster resources in Figure 3a. Specifically, we
show the number of cores allocated (out of a maximum of
600) to all the other jobs running concurrently. During its
lifetime, the job we picked experiences resource volatility
– we call an x% increase or decrease in resource (number
of cores in this case) over some period of time as an x%
resource volatility. In Figure 3a, we identify 15% resource
volatility within uniquely shaped red markers; e.g., the

region between two solid red circles indicates one such
15% resource volatility. The job observes 3 such resource
volatility events during its lifetime (identified within simi-
larly shaped markers). To understand resource volatility
as observed by different jobs for different resource volatil-
ity magnitudes (different values of x), in Figure 3b, we
plot a CDF of the number of resource volatility events
seen by each of the individual jobs in our workload for
three values of x = 10%, 15% and 20%. We observe that
almost 78% of the jobs experience at least one 10% re-
source volatility event during their lifetime, and 20% of
the jobs see at least 4 resource volatility events of 10% or
more.

At the other extreme, running jobs on spot instances
– with their input on blob storage like Amazon S3 [2]
– is becoming common because spot instances offer an
attractive price point [45, 52, 62, 38]. However, cloud
providers can arbitrarily revoke spot instances, which can
cause perturbations in the number of machines available
to a job. We now empirically examine the extent of such
potential resource variations as experienced by a resource-
intensive, batch job that runs for five hours. We use the
spot-market price trend for i3.2xlarge instance type in
Amazon EC2 cluster in the us-west-2c region for the
time period from 17:00 UTC to 21:00 UTC for Septem-
ber 21, 2017. We also assume that the job has a budget
of 5$/hour and that spot instances that were reserved at
less than the current spot market price are taken away
immediately. The spot instance prices typically update
every minute. We use a simple cost-saving bidding strat-
egy where the job progressively adds 2 spot instances
every minute, provided the budget is not exceeded, by
bidding at a price 5% over the current spot market price.
Under such a bidding strategy and a budget of 5$, the
maximum number of machines that the job gets is 20 and
the minimum is 2. The number of spot instances available
to the job over time is shown in Figure 3c. We make the
following observations. First, the job experiences many
perturbations in the number of machines, which is espe-
cially true with cost-saving bidding strategies. Second,
the magnitude of perturbation is the largest around the 3
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Volcano chooses the QEP on the left (as this plan has the least resource consumption) that completes at t = 9. Clarinet chooses an
optimal resource-aware QEP (under static resources) at t = 0 that completes at t = 7; however, it ceases to be resource-aware when
available resources change at t = 1. QOOP re-plans to switch to a new plan at t = 1 and completes the fastest at t = 6.

hour mark when the spot market instance price reaches
a maxima of 0.5828$/hour and all but 2 machines are
revoked. Finally, throughout the entire duration of the
job, the job experiences 60, 53 and 40 resource volatility
events of 10%, 15% and 20% respectively.

Other common sources of resource fluctuations include
machine/rack failures, planned or unplanned upgrades,
network partitions, etc. [21, 56].

2.2 Query Execution Today: Fixed Plans

Regardless of the extent of resource dynamics, existing
approaches keep the query plan fixed throughout the en-
tire duration of a query’s execution. However, these ap-
proaches do vary in terms of what information they use
during query planning and how they execute a query.
Resource-Agnostic Query Execution: A large number
of today’s data-analytics jobs are submitted as SQL
queries via higher-level interfaces such as Hive [5] or
Spark SQL [19] to cluster execution engines (Figure 1).

A cost-based optimizer (CBO) examines multiple
equivalent logical plans for executing a query, and lever-
ages heuristics to select a good plan, also called a query
execution plan (QEP).1 The QEP represents the selected
logical plan and its relational operators as a job with a
directed acyclic graph (DAG) of computation stages and
corresponding tasks that will be executed by the underly-
ing execution engine on a cluster of machines. Given the
chosen QEP – also called the physical plan – the execution
engine interacts with the cluster resource scheduler in a
repeated sequence of resource requests and corresponding
allocations until all the tasks in the physical plan of the job
complete. Crucially, the optimizer’s heuristics are based
on data statistics and not resource availability; thus, it
is resource-agnostic. An example is the Volcano query

1Some optimizers consider a narrow set of resources, such as the
buffer cache or memory, but ignore disk and network [5].

planner in Hive [5]. Figure 4 shows a Volcano-generated
plan – a QEP corresponding to a “left deep” plan – that is
preferred by the Volcano CBO based on data statistics.
Resource-Aware QEP Selection: Given the obvious in-
flexibility of resource-agnostic query optimization, some
recent works [54, 55] have proposed resource-aware QEP
selection. In this case, the CBO takes available resources
into account before selecting a QEP and handing it over to
the execution engine. While this is an improvement over
the state-of-the-art, the execution engine still runs a fixed
QEP even when resource availability changes over time.
An example of a resource-aware planner is Clarinet [54].
As shown in Figure 4, the Clarinet plan is chosen based
on the resources available at t = 0. When the resources
change at t = 1, the static plan ceases to be the best.
Room for Improvement: Instead of sticking to the orig-
inal resource-aware or -agnostic QEP throughout exe-
cution, one can find room for improvements by switch-
ing to a new QEP on the fly based on resource changes.
For example, when the available resource increases at
t = 1 in Figure 4, we can switch to a different join order
– (A 1C) 1 (B 1 D) instead of (A 1 B) 1 (C 1 D) – and
further decrease query completion time.

Although this is a toy example, overall benefits of dy-
namic query re-planning improve with the complexity
of query plans, magnitudes of resource volatility, and
pathological fluctuations of resources due to unforeseen
changes in the future (§6).

2.3 Scheduler Constraints on QEP Switching

Unfortunately, today’s cluster schedulers and their inter-
faces with the execution engine and the query planner
make resource-aware QEP switching challenging.

On the one hand, existing schedulers provide little feed-
back to jobs about the level of resource contention in
a cluster – today, jobs simply ask the scheduler for re-
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sources for runnable tasks and the scheduler grants a
subset of those requests. Consequently, it is difficult for
a job to know how to adapt in an informed manner to
changing cluster contention or resource availability. One
may think that jobs can infer contention by looking at the
rate at which their resource requests are satisfied. How-
ever, such an inference mechanism can be biased by the
resource requirements of the tasks in the currently chosen
QEP instead of being correlated to the level of contention.

On the other hand, scheduling decisions are tied to
the intrinsic knowledge of job physical plan. Schedulers
are tasked with improving inter-job and cluster-wide met-
rics, such as fairness, makespan, and average completion
time [30, 34, 27, 35, 36]. For example, DRF tracks domi-
nant resources, which relies on the multi-dimensional re-
source requirements of physical tasks. Others [36, 34, 35]
go further and combine resource requirements with the
number of outstanding tasks and dependencies to esti-
mate finish times using which scheduling decisions are
made. The tight coupling of schedulers with pre-chosen
QEPs constrains the scheduler to make decisions to match
resources with the demands imposed by the pre-chosen
QEP’s tasks.

Overall, neither the job nor the scheduler has any way
of knowing whether picking a different QEP with a very
different structure and task-level resource requirements
would have performed better – w.r.t. per-job or cluster-
wide metrics – under resource dynamics.

3 QOOP Design
In this paper, we argue for breaking the constraints of
fixed QEPs, and we make a case for continuous query
re-planning by rethinking the division of labor between
cluster schedulers, execution engines, and query planners.
We first give an overview of our design (§3.1) and then
present its three key components: a simple max-min fair
scheduler (§3.2), an execution engine design to track ad-
ditional states needed to speed up dynamic re-planning
(§3.3), and a greedy QP that performs well with provable
performance guarantees (§3.4).

3.1 Design Overview

The state-of-the-art approaches for improving query per-
formance universally argue for pushing more complexity
into the inter- and intra-job scheduling to achieve effi-
ciency and improve job performance; by design, this pre-
vents adaptation at the query level. Instead, to achieve
replanning, we propose a significant refactoring. (1) We
advocate having a simple max-min fair scheduler that
effectively does “1-over-n” allocation of every resource
across n jobs. (2) Jobs are informed as soon as their share
changes due to changing n or machine/rack failures. (3)
We push re-planning complexity up the stack, maintaining
a dynamic re-planning feedback loop between the query

planner and the execution engine: based on changes to the
share, the planner – with help from the execution engine –
determines if a better QEP exists and how to switch to it.

We choose this work division because each instance of
an application framework today implements its own query
planner and execution engine (e.g., both implemented in
the Job Manager in case of frameworks using Apache
YARN), whereas all jobs running in a cluster share the
same centralized resource scheduler (i.e., the Resource
Manager in Apache YARN). Our division of labor has the
benefit of enabling many different applications with their
intrinsic continuous re-planners to effectively run atop our
simple cluster scheduler. For simplicity, our paper focuses
just on re-planning batch SQL queries.

Figure 2 presents our architecture with the sequence
of actions that take place on a resource change event: 1
The cluster scheduler or the resource manager notifies
the execution engine of its new resource share (§3.2). 2
The execution engine, in turn, notifies the query planner
of the current state, which includes the current QEP it is
executing along with its progress, current resource avail-
ability it received from the scheduler, and the available
set of checkpoints it is maintaining (§3.3). 3 Given this
information, the query planner must determine whether
switching to a new plan is feasible (considering available
checkpoints, cost of possible backtracking, and hystere-
sis) (§3.4). 4 If the decision is yes, then it informs the
execution engine of the new QEP. 5 Finally, the execu-
tion engine will switch to the new QEP; if required, it will
cancel some already-running stages and tasks.

Realizing dynamic re-planning raises a few key algo-
rithmic questions. First, what is a good switching strategy
when resources change? A simple and easy-to-implement
choice is Greedy: i.e., always pick the QEP that offers
the least estimated finish time assuming the new resource
availability persists into the future. Does this offer good
properties under arbitrary resource fluctuations? Second,
switching from a QEP with partial progress to a new one
that needs to be started from scratch necessarily wastes
work. Is this “backtracking” necessary? In Section 4, we
show that the simple Greedy approach performs well, and
that backtracking is essential.

Before presenting the analysis, in Sections 3.3 and 3.4,
we discuss key systems issues that arise in supporting
greedy behavior with backtracking: How to estimate the
relative runtimes of different QEPs? How to preserve
work to support backtracking and leverage already com-
puted work when switching to a new QEP? We start by
outlining the functionality of our inter-job scheduler next.

3.2 Cluster Resource Scheduler

Our inter-job scheduler is simple (Pseudocode 1). For
each job, our scheduler tracks the job’s current (weighted)
share in every resource dimension, i.e., the total fraction
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of the resource that all currently running tasks of the job
are using. The scheduler computes the current share of
the job as the maximum of these fractions taken over all
resources. When a resource is freed on a machine, our
scheduler simply assigns it to the job with the lowest
current share that can run on that machine, emulating
simple instantaneous max-min fair allocation of resources
across jobs, similar to [14, 30]. This is shown in lines 4–8.
We are algorithmically similar to DRF, but differ in API.
When resources become available DRF allocates to the
job with least dominant-share; QOOP informs each job
of its dominant share on resource-change events.

To enable re-planning, we introduce two changes to the
interface between the scheduler and the execution engine.
First, we do not require the execution engine to propagate
the entire QEP to the cluster scheduler. Decoupling the
QEP from the resources assigned to a job has the desirable
property that the execution engine can change the QEP
without affecting its fair share of resources, which is not
the case for the state-of-the-art techniques [30, 36, 35].

Second, we introduce feedback from the cluster sched-
uler to the execution engine (line 9 in Pseudocode 1).
Whenever the current cluster share of a job changes, the
scheduler informs the job’s execution engine. The cluster-
wide fair-share informs each job of its minimum resource
share given the current contention in the cluster. This acts
as a minimum resource guarantee for the query planner
when determining whether to re-plan in order to finish
faster. In fact, any scheduler that can offer feedback in
the form of an eventual minimum resource guarantee of
resources to each job is compatible with QOOP.

3.3 Execution Engine

We discuss how job execution engine redesign can enable
query re-planning, specifically backtracking.
Task Execution: Given a job QEP DAG (i.e., the output
of a query planner), the execution engine executes tasks
by interacting with the cluster scheduler while maintain-
ing their dependencies. To determine the order of task
execution, it can simply traverse the DAG in a breadth-
first manner [59, 19] or use a multi-resource packing
algorithm such as Tetris [34]. In QOOP, we use Tetris.
Checkpointing for Potential Switching Points: On any
multi-resource update from the cluster scheduler, the ex-
ecution engine relays the updated resource vector to the
query planner to evaluate the possibility of switching to a
different QEP. Determining whether to actually switch to
a new QEP relies on multiple factors (§3.4). A major one
is finding the suitable point(s) in the currently executing
DAG to switch from. One may consider that switching
from the currently executing stage or its immediate parent
stage(s) would suffice. However, we prove in Section 4
that backtracking to ancestor stage(s) is essential for com-
petitively coping with unknown future resource changes.

Pseudocode 1 Cluster Scheduler
1: J . active jobs prioritized by lowest current share
2:
−→
R . total cluster resource capacity

3:
−→
U . consumed cluster resource portion

4: procedure MAXMINFAIRSCHEDULER

5: pick first J ∈ J . triggered when
−→
R −−→U >

−→
0

6: allocate demand
−→
Di ∈ J s.t. maxi,m

−→
Di ·(
−→
Rm−

−→
Um)

7: update J
8: end procedure

9: procedure RESOURCEFEEDBACK(Event E)
10: J = J ⊕ GETJOBCHANGES(E)
11:

−→
R =
−→
R ⊕ GETRESOURCECHANGES(E)

12: f airShare =
−→
R
|J|

13: for all Jk ∈ J do
14: SENDRESOURCEFEEDBACKUPDATE(Jk,

f airShare)
15: end for
16: end procedure
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Figure 5: Progress propagation. First, we obtain logical operator
trees for stages S3 and T 3 from provenance. Stages S3, T 3 are
deemed equivalent as their logical operator trees are equivalent.

Consequently, QEP switching may not just re-plan the
future stages of the query, but it requires the ability to
checkpoint past progress and switch to a different QEP
from an ancestor stage that was executed in the past. To
enable this, the execution engine needs to checkpoint past
progress for all the different QEPs it has executed thus
far. Each checkpoint includes the intermediate outputs of
completed tasks. Note that checkpointing of intermedi-
ate data is common in modern execution engines – disk-
based frameworks write intermediate data to disks [25, 7],
whereas in-memory frameworks periodically checkpoint
to avoid long recomputation chains [59, 60]. QOOP can
use this existing checkpointing.
Switching the QEP: The call back to the query planner
(upon resource updates) is asynchronous. While the query
planner is evaluating possible alternatives, the execution
engine continues on with the current plan. When the query
planner suggests a change, the execution engine revokes
the resource requests for runnable tasks not belonging
to the new QEP. Additionally, the execution engine may
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abort running tasks not belonging to the new QEP. There-
after, the execution engine resumes running tasks from
the most-recent set of checkpoints for the new QEP.

3.4 Query Planner (QP)

In Section 4, we show that effective re-planning requires
backtracking and that a greedy approach to re-planning
results in a competitive online algorithm. Here, we present
the details of how our query re-planner implements greedy
re-planning by leveraging backtracking.

We introduce two key changes to the design of tradi-
tional QPs; neither requires extensive modifications. First,
instead of discarding intermediate computations to ex-
plore and choose a particular QEP, we generate and cache
several candidate QEPs. The cached QEPs later aid us in
dynamic query re-planning. We also annotate each QEP
with provenance, which consists of the original logical
plan the QEP was derived from and the list of logical
operators associated with each stage of the QEP. Figure 5
shows the provenance of each stage of a QEP.

Second, unlike traditional QPs [3, 54], our QP is made
aware of the underlying resource contention to accurately
predict runtimes for each QEP and greedily switch to the
QEP with minimum completion time. To do so, we extend
the interface between the QP and the execution engine so
that the QP receives parameters to its dynamic cost model
– the current resources available to the job (the share that
the execution engine obtains from the cluster scheduler),
the intra-job scheduling logic (packing), the progress of
the current QEP and the available set of checkpoints.

Whenever the query planner receives a notification
about resource changes from the execution engine, it trig-
gers a cost-based optimization that involves predicting the
completion times of all the QEPs and greedily switching
to the QEP with earliest completion time. There are two
steps to evaluate a particular QEP: progress propagation
and completion time estimation.
Progress Propagation: To evaluate a candidate QEP, the
QP first evaluates the work in the candidate QEP that
is already done by the currently running QEP. It does
so by identifying common work between the tasks of
the candidate QEP, the running tasks of the current QEP,
and the current set of checkpoints. We refer to this as
progress propagation, and it is crucial in evaluating which
candidate QEP to switch to and where to execute it from.

To identify common work as part of progress propa-
gation, we identify equivalence between the stages of a
candidate QEP and the set of checkpointed stages and the
current running stages of the current QEP. To evaluate
equivalence between two stages we generate the stages’
logical operator trees using the provenance associated
with each QEP. Two stages are deemed equivalent if their
logical operator trees are equivalent. Equivalence of log-
ical operator trees is evaluated using standard relational

algebra equivalence rules. This is illustrated in Figure 5.
Completion Time Estimation: Next, we perform a sim-
ulated execution of the remaining tasks in the candidate
QEP being evaluated (i.e., candidate QEP tasks whose
work is not captured in the currently running QEP). Using
the scheduling algorithm of the intra-job scheduler, i.e.,
Tetris, the remaining tasks are tightly packed in space and
time given the current available resources. This yields an
estimate for this QEPs completion time assuming that the
current resource availability will persist in the future.

After evaluating the completion times of all candidate
QEPs, query planner triggers a query plan switch if it finds
a QEP that finishes faster than the currently running QEP.
To avoid unnecessary query plan flapping, we add hystere-
sis by having a threshold on the percentage improvement
of the query completion time – a query plan switch is
triggered only if improvements exceed this threshold.

In case of a switch, the query planner sends the new
QEP to the execution engine. This QEP is modified from
its original form so that the DAG now contains the check-
points as input stages, marks the running stages it shares
with the running stages of the current QEP, and identifies
the dataflow from these to the remaining stages.

4 Analysis
We now present analysis of the query planner (QP; Sec-
tion 3.4). Each query has several alternative query exe-
cution plans (QEPs). We motivate the choices made in
the query replanning algorithm regarding why, when and
which QEP to switch to during the execution of a query in
response to the resource allocations made by the scheduler
to the query. This is an online algorithm since it operates
without the knowledge of future resource allocations. We
analyze the performance of our online algorithm in the
form of its competitive ratio. Our goal is to argue that our
online algorithm performs well no matter the sequence of
resource allocations made to the query. We will compare
our online algorithm’s performance against an hindsight
optimal (a.k.a. offline) algorithm which chooses the single
best QEP knowing the entire sequence of resource alloca-
tions made to the query. The competitive ratio is the ratio
of the performance of the online algorithm to that of the
hindsight optimal (a.k.a. offline) algorithm. We provide a
precise measure of comparison shortly (Section 4.3).

4.1 Notation and Assumptions

Notation: We represent each QEP as a×b. This denotes
a QEP with a bag of b tasks, each task needing a resource-
units (e.g., number of cores) and each task completing in
1 step. The total work for this QEP is denoted by w and is
equal to ab.
Assumptions: For the upper and lower bounds on per-
formance, we assume an adversarial scheduler that can
look at the algorithm’s choices in the previous steps and
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change future resource allocation in a worst-case manner.
We require that the QP has the ability to backtrack a QEPs
execution i.e., the QP can checkpoint each completed task
in a QEP and any completed task need not be re-executed
when the QP decides to switch back to and resume the
execution of that QEP. We also assume that backtracking
does not incur any overheads; in other words that our
analysis ignores system-level costs (time spent and com-
pute/memory used) in writing checkpoints and reading
from checkpoints during a QEP switch.

4.2 Motivating Example

We motivate why QEP switching and specifically back-
tracking is necessary to obtain a bound on the perfor-
mance of our online algorithm.

Our toy examples, with large work-differences in QEPs,
serve to show that if the online algorithm does not make
good decisions then its performance can become unbound-
edly worse.

Example 4.1.
QEP switching is necessary. Consider a query with two
QEP choices: the first one being 2× 2 and the second
one being 1×100. Suppose that the scheduler starts by
giving the query 2 resource-units in the first step. We also
suppose that the query cannot switch QEPs.
CASE-1: If the query starts running the 1×100 QEP, the
scheduler gives it another 2 resource-units in the second
step. With this allocation, the optimal choice would be to
run the 2×2 QEP, finishing in two steps and performing
only 4 units of work. The online algorithm instead per-
forms 100 units of work if it continues to use the 1×100
QEP.
CASE-2: On the other hand, if the query starts running
the 2×2 QEP, the scheduler switches to a resource allo-
cation of 1 resource-unit second step and onwards. Now
the 2×2 QEP is stalled. Unless the algorithm switches
to the 1×100 QEP, it is unable to finish.
QEP backtracking is necessary. Backtracking helps
avoid stalling, ensures fast completion, and bounds wasted
work. We continue the previous example. As before, the
scheduler continues to be adversarial. It allocates 1 and
2 resource-units in the next step whenever the query is
executing 2×2 and 1×100 QEP in the current step, re-
spectively. Also, we now suppose that the query has the
ability to switch QEPs but not backtrack i.e., no ability to
checkpoint and resume QEPs from checkpoint.
We continue from where we left-off in the previous exam-
ple i.e., CASE-2 where the query is executing the 2× 2
QEP and the scheduler allocates 1 resource-unit in the
second step. With the ability to switch, to avoid stalling,
the query switches to the 1×100 QEP in the second step.
Without backtracking, the query has to restart execution
of 1× 100 QEP from the beginning. Now on switching
to the 1×100 QEP, the adversarial scheduler gives the

query 2 resource-units third step onwards. This leads us
back to CASE-1. If the QEP continues with the 1×100
QEP it leads to slower completion.
If instead the query switches back to 2× 2 QEP in the
third step, without backtracking the QEP restarts execu-
tion from the beginning and the adversarial scheduler
gives the query 1 resource-unit fourth step and onwards.
This is CASE-2 all over again. We can now see that, with-
out backtracking, the query flips between CASE-1 and
CASE-2 and stalls infinitely with unbounded wasted work.
Even if the query decides to limit wasted work by stopping
the switch to 2× 2 QEP, complete execution of 1× 100
QEP to completion leads to 100 units of additional work
and 100 additional steps. This leads to slower completion
as in CASE-1.
If the query could backtrack – we would have only one
additional task to run from the 2×2 QEP in the third step
and the query would complete execution in the third step
with just 1 units of wasted work.

4.3 Competitive Ratio

A natural way to compare the performance of our algo-
rithm against the hindsight optimal algorithm is to com-
pare the time each algorithm takes to complete the query.
As the next example shows, this is not a meaningful com-
parison, because the scheduler has the power to starve the
online algorithm after a single bad choice.

Example 4.2. Starvation. Consider the above example
again. As before, the scheduler starts by giving the query
2 resource-units in the first step. If the query starts run-
ning the 1× 100 QEP, the scheduler gives it another 2
resource-units in the second step, and then gives no more
resources to this query in subsequent steps. Regardless of
whether the query continues running the 1×100 QEP or
switches to the 2×2 QEP in the second step, the query is
unable to finish the work and stalls. Its completion time
is unbounded. With the same allocation of resources, the
hindsight optimal algorithm could have finished the query
by just running the 2×2 QEP.

On the other hand, say the query starts running the
2× 2 QEP and the scheduler gives 1 unit resource for
the next 99 steps and then gives no more resources. Once
again no matter what the online algorithm does, it cannot
complete the query. However, the hindsight optimal algo-
rithm would have been able to complete the query given
these resources.

In each of the cases in the above example, the sched-
uler could stall the query for an unlimited time, whereas
the hindsight optimal algorithm terminates in bounded
time. In order to allow for some wasted work due to the
online nature of the algorithm, the scheduler must pro-
vide more resources to the online algorithm than just the
minimum necessary for the hindsight optimal algorithm.
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Pseudocode 2 Online Query Planning Algorithm
Input n QEPs, ai×bi, with a1 < a2 < a3 < · · ·< an

1: Let wi = aibi denote the total work of QEP i.
2: for all i ∈ [n] do
3: if wi >

1
2 wi−1 then remove QEP i from the list.

4: end if
5: end for
6: At every step, given the current resource allocation a,

consider all QEPs with ai ≤ a. Of these, run the QEP
with the least remaining processing time, breaking
ties in favor of the QEP with the smallest ai.

To formalize this, we will compare the completion time
of the online algorithm to that of an hindsight optimal
algorithm that is required to perform extra work.

Definition 4.1. Competitive Ratio. We say that an on-
line QEP selection algorithm achieves a competitive ratio
of α if for any query and any sequence of resource al-
locations, the completion time achieved by the online
algorithm is at most equal to the completion time of an
offline optimum that runs α back-to-back copies of the
query.

We note that α above does not have to be an integer.

4.4 Bounds for the Competitive Ratio

We show that no online algorithm can achieve a competi-
tive ratio < 2. Proofs for the theorems below can be found
in extended version of QOOP [47].

Theorem 4.1. No online query planning algorithm can
achieve a competitive ratio of 2−ε for any constant ε > 0
when the resource allocation is adversarial.

Our query planning algorithm corresponding to the sim-
plifying assumptions in Section 4.1 is formally described
above. It is greedy and at every step runs the QEP with the
least remaining completion time with the assumption that
the resource allocation persists forever. Also, it is “lazy”
as it switches QEPs only when the resource allocation
changes. Our overall approach in Sections 3.4 and 3.3 is
a generalization of this algorithm for complex queries.

We prove that this algorithm is competitive:

Theorem 4.2. The online greedy query planning algo-
rithm described above achieves a competitive ratio of 4.
Further, if the QEPs satisfy the property that every pair
of QEPs is sufficiently different in terms of total work, in
particular, wi ≤ 1

2 wi−1 for all i > 1, then the competitive
ratio is ≤ 2, matching the lower bound.

We note that constant competitive ratio implies that the
performance of our online query planning algorithm is in-
dependent of the nature of workloads or the environment.

5 Implementation
Implementation of QOOP involved changes to Calcite [3],
Hive [5], Tez [7], and YARN [53]. QOOP’s implemen-
tation took ∼13k SLOC. The majority of our changes
were in Tez mostly devoted to dynamic CBO module we
elaborate upon shortly.
Hive and Calcite: Hive uses the Volcano query planner
implemented in Calcite to get a cost-based optimized
(CBO) plan. We add the ability to cache several logical
plans in Calcite during its plan evaluation process and
make changes to Hive to fetch multiple physical plans (i.e.,
Tez QEPs). Also, we make changes to annotate each QEP
with provenance—the set of logical relational operators
associated with each stage of the QEP. We widened the
RPC interface from Hive to Tez, to push multiple QEPs
to Tez as part of a single job.
Tez and Yarn: To enable dynamic query plan switching
we added modules to Tez that are responsible for (i) ac-
counting checkpoints to enable backtracking; (ii) dynamic
cost-based optimization to make Tez QEP switching deci-
sions; (iii) runtime QEP changes to realize QEP switch-
ing; and (iv) the RPC mechanism from YARN to Tez to
give resource feedback (i.e., resource updates about the
dynamic “1-over-n” share of resources).

Any resource change event from YARN triggers our dy-
namic CBO module that evaluates all QEPs. This module
first propagates progress using provenance and estimates
completion time of each QEP via simulated packing in
the available resource share (§3.4). Our CBO relies on es-
timates of tasks’ resource demands—CPU, memory, disk,
and the network—and their durations. Peak resource esti-
mates are based on prior runs for each QEP. We use these
peak resource estimates to decide the container request
sizes for tasks in the currently executing QEP.)

Checkpointing for backtracking and runtime changes
to the QEP involve changes to the QEP, Vertex, and Task
state machines in Tez. All checkpointing state is main-
tained at the Tez QEPAppMaster—which keeps the file
handle of task output after every task completion event.
For QEP switching, we added the SWITCHING state to the
QEP state machine. On a resource change event a QEP is
forced from RUNNING to SWITCHING. Any running tasks
of the QEP continue running in this state but the launch of
any new vertex (and hence its tasks) is prevented in this
state. The QEP switches to RUNNING state after, if at all,
QEP switching happens. During a QEP switch, the set of
runnable Vertices is re-initialized to those from the new
QEP. The Vertex definition is changed so that the inputs
for the tasks spawned by any runnable Vertex points to
the appropriate checkpoint.

6 Evaluation
In this section, we evaluate QOOP in situations with vary-
ing degrees of resource variabilities. We examine both
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the performance of an individual query using QOOP’s
replanning as well as overall performance when multiple
queries run atop QOOP.

We start by studying the execution of a single job, sub-
jecting it to real resource change events or resource pro-
files. Specifically, in these micro-benchmarks, our focus is
on answering the following key question: does QOOP’s
dynamic query re-planning improve a job’s completion
time when compared to static, early-binding approaches?

Next, we evaluate the key system components of QOOP
– backtracking, overheads of QEP switching, robustness
to errors in the task estimates, and hysteresis.

Finally, we consider a small private cluster, where
QOOP is used to manage the execution of multiple jobs.
We evaluate QOOP by running multiple jobs on the
testbed, wherein job arrivals and completions can lead to
large resource perturbations. This macro-benchmark ad-
dresses the question: does QOOP’s simple cluster sched-
uler and dynamic query re-planner approach improve
system-wide objectives when compared against systems
with complex schedulers and static query planners?

6.1 Experimental Setup

Workloads: Our workloads consist of queries from the
publicly available TPC-DS [12] benchmark. We experi-
ment with a total of 50 queries running at a scale of 500,
i.e., running on a 500GB dataset. 2 For micro-benchmarks,
we focus on the perspectives of individual queries. For
macro-benchmarks, each workload consists of jobs drawn
at random from our 50 queries and arriving in a Poisson
process with an average inter-arrival time of 80s. 3

Cluster: Our testbed has 20 bare-metal servers – each ma-
chine has 32 cores, 128 GB of memory, 480 GB SSD, 1
Gbps NIC and runs Ubuntu 14.04. For micro-benchmarks,
we evaluate QOOP under different realistic resource pro-
files, as elaborated later in this section. In such experi-
ments, we provide as much resources from the cluster
to each job over time as dictated by the resource profile.
Specifically, whenever there is an increase in the amount
of resources in the resource profile we make available
to the job corresponding number of containers, whereas
whenever there is a decrease in the amount of resources
in the resource profile we immediately revoke equivalent
number of containers and fail any tasks running on them.

For macro-benchmarks, we run our entire collection of
jobs across the entire cluster. At its maximum capacity,
the cluster can run 600 tasks (containers) in parallel.
Baselines: In micro-benchmarks, we compare QOOP’s
query planner against static query plans obtained from

2We cached plans obtained while exploring QEPs in the Volcano
planner, and retained plans with significant differences in cost according
to Volcano’s cost model. We used the first 50 TPC-DS queries that gave
the most number of QEP alternatives.

3Google cluster trace [8] analysis on 20-machine sets yielded an
average job inter-arrival time of 80s.

the Clarinet QP, which is a resource-aware QP imple-
mented in Hive [54] that improves upon Volcano. We
only compare against Clarinet QP as it outperforms Vol-
cano. We adapted Clarinet to our setting to choose a QEP
that minimizes completion time using resource estimates
just before query execution begins. It represents the per-
formance upper-bound of fixed-QEP approaches.

In macro-benchmarks, we compare QOOP – dynamic
query planner on top of our simple max-min fair scheduler
– against the following approaches on the three system-
wide objectives of fairness, job completion time, and ef-
ficiency: (1) DRF: The default DRF multi-resource fair
scheduler [30] in conjunction with Hive’s default Vol-
cano QP; (2) Tetris: A multi-resource packing scheduler
[34] with Volcano; (3) SJF: Shortest-Job-First scheduler
[27] with Volcano; (4) Carbyne: A meta-scheduler that
leverages DRF, Tetris, and SJF [35] with Volcano; (5)
DRF+Clarinet: DRF with the Clarinet QP [54]; (6) Car-
byne+Clarinet: Carbyne scheduler with Clarinet QP.

These reflect combinations of query planners that differ
in whether they are resource-aware with schedulers that
differ in the complexity of information they leverage in
making scheduling decisions.
Metrics: Our primary metric to quantify performance
improvement using QOOP is improvement in the average
job completion time (JCT): (Average) JCT of an Approach

(Average) JCT of QOOP
Additionally, in multi-job scenarios, we consider Jain’s

fairness index [42] to measure fairness between jobs, and
makespan (i.e., when the last job completes in a workload)
to measure overall resource efficiency of the cluster.

6.2 QOOP in Micro-Benchmarks

QOOP has two core components: the dynamic query re-
planning logic for a single query (Sections 3.3 and 3.4),
and the simple cross-job cluster wide scheduler (Sec-
tion 3.2). We study the two separately, with this section
focusing on the former using micro-benchmarks.

Specifically, in these micro-benchmarks, we ask: given
a certain resource change profile, how well does a single
query perform from using QOOP’s query replanning al-
gorithms? We study QOOP under two classes of resource
change profiles, spot instances and cluster resources .

6.2.1 Spot Markets Resource Profiles

We obtained a 5-hour spot market price trend for
i3.2xlarge instance type in Amazon EC2 cluster in
the us-west-2c region for the time period from 17:00
UTC to 21:00 UTC for September 21, 2017. We infer the
resource profile for the spot market price trend by apply-
ing the bidding strategy described in Section 2. We then
divide the entire resource profile into “low”, “medium”,
and “high” regions by time. To do so, we divide the entire
resource profile into 10 minute regions and calculate the
maximum increase or decrease in the resources in this 10
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Figure 6: Improvements using QOOP w.r.t. Clarinet under re-
source variations observed in different resource profiles.

minute region. We call an x% increase or decrease in re-
source in atleast one of the resource dimensions (compute
or memory) over some period of time as an x% resource
volatility. If the maximum resource volatility in resources
is less than 10% then we classify this region as “low”, if
it is between 10% and 20% then we classify this region as
“medium”, if it is greater than 20% then it is classified as
“high”. We also refer to these as having “low”, “medium”
and “high” resource volatility . We then run each of our
50 TPC-DS queries individually against each of these
three resource profiles – “low”, “medium”, and “high” –
using both QOOP and Clarinet. For each query run with
a particular resource profile type, we pick 10 different
randomly selected regions of that particular profile type
and report the mean from these 10 runs.

We plot the CDF of QOOP’s improvements over Clar-
inet for the three resource profiles in Figure 6a. We see
that QOOP strictly outperforms Clarinet, with its gains im-
proving with increasing resource volatility – overall, 58%,
62% and 66% of the jobs experience faster completion
times in each of “low”, “medium”, and “high” profiles, re-
spectively. Median improvements for the “low”, “medium”
and “high” profiles are respectively 1.08×, 1.11× and
1.47×. For “high” profiles, 10% of jobs see gains > 4×!
We also note that 34% of the jobs show no improvements
over Clarinet even with “high”. On further analysis, we
found that these jobs are queries in the TPC-DS workload
that are either (i) less complex queries with lesser number
of joins, or (ii) queries with short durations. Less com-
plex queries may lack attractive alternative QEPs, whereas
short queries may miss out on resource perturbations. This
limits opportunities for re-planning and improvement. We
dig deeper into these issues later in this section.

6.2.2 Shared Cluster Resource Profile

Similar to the spot market scenario, we generate three
different resource profiles for the shared cluster scenario
described in Section 2. Following a similar methodol-
ogy, we identify “low”, “medium” and “high” resource
volatility periods, and we run each of the 50 queries.

As before, we plot the CDF of QOOP’s improvements
in Figure 6b. We see the trends similar to that of the
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Figure 7: Improvements vs. job durations using QOOP
w.r.t. Clarinet under different resource profiles.

spot market trace – overall, 56%, 58% and 60% of the
jobs complete faster in “low”, “medium”, and “high” pro-
files, respectively. The median improvements in the three
profiles are 1.08×, 1.11× and 1.20×, with higher perfor-
mance improvements in greater resource volatility scenar-
ios; for the “high” profile, 10% of jobs see gains > 3.3×.

In both the spot instance and cluster profiles, gains are
higher for profiles with higher volatility. In other words,
QOOP’s dynamic replanning is most effective relative to
static query plans when resource volatility is at its highest.
Also, the improvements for spot market and shared cluster,
while similar for “low” and “medium”, differ on the “high”
resource profiles. We attribute this to spot market “high”
resource profiles experiencing 7% larger magnitudes of
resource changes at median than that of the shared cluster.

6.2.3 Delving into Improvements

Next, we take a deep dive into the aforementioned sce-
narios to understand when QOOP offers the greatest/least
improvements. We study the impact of job duration, com-
plexity, and the number of QEP switches that occur.
Job Durations vs. Observed Gains: The improvements
in per-job performance due to QOOP as a function of
job duration is shown in Figures 7a and 7b for the spot
market and cluster resource profiles, respectively. Both
figures also show results for the “low”, “medium” and
“high” volatility profiles using different-colored dots. In
both cases, QOOP’s benefits increase with increasing job
durations. This is because longer jobs receive more op-
portunities for switching query plans and the comparative
overhead of a switch of a longer job is smaller w.r.t. its
completion time. Nevertheless, some shorter jobs benefit
from QOOP in case of higher resource volatility.
Job Complexity vs. Improvement: Figures 8a and 8b
show improvements obtained with QOOP as we increase
query complexity for the spot market and cluster profiles,
respectively. We measure query complexity in terms of
the number of join operations in the query. We make two
observations. First, increased query complexity gener-
ally correlates with increased gains. This is because the
number of alternate query execution plans is higher with
a greater number of joins. Second, keeping complexity

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    263



10 20 30 40 50
Number of Joins

2

4

6
Fa

ct
or

 o
f

Im
pr

ov
em

en
t Spot Low

Spot Medium
Spot High

(a) Spot market

10 20 30 40 50
Number of Joins

1

2

3

4

Fa
ct

or
 o

f
Im

pr
ov

em
en

t Cluster Low
Cluster Medium
Cluster High

(b) Shared cluster

Figure 8: Improvements vs. query complexity (number of joins)
using QOOP w.r.t. Clarinet under various resource profiles.
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Figure 9: Improvements vs. number of QEP switches using
QOOP w.r.t. Clarinet under various resource profiles.

constant, higher volatility results in the highest factor of
improvement (as indicated above).
QEP switches vs. Improvement: Figures 9a and 9b
shows the trend between improvements and number of
runtime QEP switches. First, we see that an increase in the
number of query execution plan switches correlates with
increased gains. Second, keeping the number of switches
constant, higher volatility results in the highest factor of
improvement. In general, the greater flexibility a query
intrinsically has in terms of multiple alternate plans to-
gether with the flexibility QOOP offers in switching to
these plans results in a higher degree of improvement.
Task Throughput: Finally, we consider how fast QOOP
helps the query complete tasks over time. We measure
task throughput as the average number of tasks of the
job executed per second; higher implies better utilization.
In Figure 10 we show the task throughput of QOOP and
Clarinet across queries. The number of tasks per second
in the case of QOOP exceeds Clarinet by ∼ 24% in the
average case. Further analysis showed that an increase in
the number of resources available leads QOOP to switch
to query execution plans that favor more parallelism (i.e.,
“bushy” joins) and contributes to increased utilization.

6.3 Impact of Various QOOP Features

In this section, we study the effect of different aspects of
QOOP on the performance observed by a single query.
Backtracking: Figure 12 shows the relationship between
improvement factor and the depth of backtracking in a
shared cluster setting with different resource profiles. We
observe that the depth of backtracking (i.e. the maximum
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Figure 10: Improvements
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Figure 13: Improvements
with and without backtracking.

distance of the vertex in the switched-to QEP from any
running/completed vertex in the current QEP) increases
with the magnitude of resource change events. 5.7% of
all the runs experience a backtracking to two stages deep
in the past and is triggered only by “high” volatile re-
source profile. 85.3% of the experimental runs with “low”
volatile resource profile experienced no backtracking. We
observe similar results for spot market setting. Figure 13
shows the CDF of factor of improvement w.r.t. Clarinet
with and without backtracking turned on for the runs of
all our TPC-DS queries when run under shared cluster
resource profiles. We observe that when backtracking is
turned on QOOP yields higher factor of improvement as
backtracking finds better QEP switches.
Overhead of QEP switch: Figure 11 shows the over-
heads of QOOP in the shared cluster and spot market
settings. We measure overhead as the time a job spends
in switching to alternate QEPs as a percentage of total
job time. The overheads in the shared cluster are 0.15%
higher than in the spot market setting. This is because of
the higher number of overall QEP switches when a job
runs in a shared cluster – also shown in Figure 9b. On
the whole, however, the overhead due to QEP switching
has negligible impact (< 1%) on overall job performance.
The overall QEP switching overhead is low as hysteresis
prevents unnecessary QEP switching and the absolute
number of QEP switches in a job is low – at most 3 as
shown in Figures 9a and 9b.
Robustness to Error: Figure 15 shows QOOP’s ro-
bustness to error in the estimates of task resource de-
mands and durations. We introduce X% errors in our
estimated task demands and durations. Specifically, we
select X in [-25, 25] as suggested by prior work [35],
and increase/decrease resource demands by tasknewReq =
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Figure 16: Effect of hystere-
sis on improvements.

(1+X/100)∗ taskorigReq, and task durations change simi-
larly. We study these errors in simulation against low and
high volatile spot market resource profiles. We observe
even at the highest error rates of ±25%, QOOP offers
substantial performance improvements (e.g., 1.4× for the
high volatile profile). For low volatile resource profile,
QOOP is more robust to estimation errors: at 25% error
rate, the performance improvement is 1.18× compared
to 1.25× at no error. However, mis-estimations are costly
at high volatility: errors ≥ 10% cause performance im-
provement to drop 33% or more; nevertheless, QOOP’s
performance is always better than Clarinet.
Hysteresis: Figure 16 shows the effect of our hysteresis
threshold (h) on the improvements. In QOOP, hysteresis
prevents QEP switch unless there is an h% improvement
in the estimated job completion time. We experiment with
different values of h for “high” resource profiles for both
spot market and shared cluster. A very high hysteresis
threshold prevents switching, hurting performance. By
definition, setting hysteresis parameter (h) to 0 causes
more QEP switching (because of lower thresholds for
QEP switching) and hence slightly higher overhead; we
still see positive gains. However, for both traces, we ob-
serve that there is a wide range of h values where the
factor of improvement sustains it’s peak. This means that
QOOP has flexibility to choose h; any value in the 10%
- 25% range offers good performance at low switching
overhead.

6.4 QOOP in Macro-Benchmarks

So far we have evaluated QOOP in offline, micro-
benchmarks against the Clarinet QP with an aim to under-
stand its query re-planning capabilities. In a real cluster,
however, jobs arrive in an online fashion. Consequently,
the impact of scheduling on job performance and its inter-

play with the QP become important.
In this section, we evaluate QOOP in an online setting

in our shared cluster, where 200 TPC-DS jobs – randomly
drawn from the 50 TPC-DS queries – arrive following a
Poisson process with an average inter-arrival time of 80
seconds (Figure 14). As mentioned earlier, we compare
QOOP against a wide range of solutions in both cate-
gories: scheduling and query planning. On the one hand,
we consider a variety of scheduling solutions such as DRF,
Tetris, SJF, and Carbyne that focus on objectives ranging
from simple fairness (QOOP) to improving multiple goals.
On the other hand, we consider QPs that range from static
resource-agnostic planning (Volcano in Hive) to resource-
aware early-binding (Clarinet) to QOOP’s late-binding
re-planner. Finally, in addition to focusing only on job
completion time, which is useful only to individual jobs,
we consider cluster-level metrics such as fairness (mea-
sured in terms of Jain’s fairness index [42]) and efficiency
(measured in terms of makespan).
Job Performance: First, we observe that QOOP signifi-
cantly improves the average JCT w.r.t. simple state-of-the-
art solutions (Tetris, DRF) and comes closest to the aver-
age JCT of SJF (Figure 14a). Furthermore, it outperforms
the state-of-the-art in complex scheduling and QP alterna-
tives: Carbyne and DRF+Clarinet, respectively. Only by
combining two complicated solutions (Carbyne+Clarinet),
the state-of-the-art can come close to QOOP. This sug-
gests that the inflexibility of the current interfaces have
tangible costs and overcoming them requires introducing
complexities at every layer of the analytics stack.
Fairness Between Jobs: If performance were the only
concern, one could get away with simply using SJF in-
stead of using the complex alternatives or QOOP. How-
ever, performance and fairness have a strong tradeoff [35]
as shown in Figure 14b – SJF has the worst fairness char-
acteristics! We observe that while DRF and DRF+Clarinet
are the most fair solutions, QOOP comes the closest to
them while ensuring almost 1.5× smaller average JCT.
Cluster Efficiency: Finally, Tetris performs well in its
goal of packing tasks better and achieving high efficiency
(Figure 14c), but QOOP again comes the closest to Tetris.

Overall, QOOP improves all three metrics – perfor-
mance, fairness, and efficiency – over complex state-of-
the-art solutions or combinations thereof, and achieves
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these benefits using a simple scheduler with a dynamic,
resource-aware QP that can re-plan queries at runtime.

7 Related Work
Other Applications: Although we focus SQL queries,
the high-level principle of designing dynamic resource-
aware plan switching can be applied to many other appli-
cations. This is because many frameworks use query plan-
ners to create execution plans for workloads, e.g., in ma-
chine learning [32, 44, 49], graph processing [33, 46, 48],
approximation [15, 10] and streaming [60, 11, 13, 16, 50].
Query Planners in Big Data Clusters: Query planning
is a well-trodden research area with numerous prior work
[37]. We restrict our focus on query planners designed
for distributed big data clusters that fall into two broad
categories: those who plan a query in a resource-agnostic
manner [3, 19] and those who are resource-aware [54].
Both, however, result in static query plans throughout the
execution of a job. There is a massive body of work on
adaptive query processing [26] in the context of traditional
(single-machine) database systems. We focus on big data
analytics in multi-node clusters.
Execution Engines: Execution engines take job DAGs
and interact with the cluster scheduler to run all the tasks
of each job until its completion. Examples of popular exe-
cution engines include Apache Spark [59], Dryad [39, 57],
and Apache Tez [7]. Execution engines such as Tez [7]
and DryadLINQ [57] allow for dynamic optimizations
to the job DAG in the form of dynamism in vertex paral-
lelism, data partitioning, and aggregation tree but lack the
interfaces to make logical-level DAG switches.
Cluster Schedulers: Today’s schedulers are multi-
resource [30, 34, 43, 24, 17], DAG-aware [23, 34, 59],
and allow a variety of constraints [61, 40, 18, 31, 58].
Given all these inputs, they optimize for objectives such
as fairness [30, 41, 29, 20], performance [27], efficiency
[34], or different combinations of the three [35, 36]. Over
time, schedulers are becoming more complex and tak-
ing increasingly more job-level information as inputs. In
contrast, we propose a simplified scheduler and argue for
pushing complexity up the stack.

8 Conclusion
In this paper, we considered the problem of improving
query performance in dynamic environments – e.g., in
small private clusters, where resources vary with job
arrivals and completions, and in clusters composed of
spot instances, where resource availability changes due
to changing prices. We showed that existing approaches
are insufficient to adapt to dynamics because they use a
fixed QEP throughout execution. We made the case for
on-the-fly query re-planning and argued that it requires
rethinking the division of labor among three key compo-
nents of modern data analytics stacks: cluster scheduler,

execution engine, and query planner. We propose a greedy
re-planning algorithm, which offers provably competitive
behavior, coupled with a simple cluster-wide scheduler
that informs jobs of their current share. Our evaluation of
a prototype using various workloads and resource profiles
shows that our replanning approach driven by a simple
scheduler matches or outperforms state-of-the-art solu-
tions with complex schedulers and query planners.
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Abstract
Large volumes of video are continuously recorded by
cameras deployed for traffic control and surveillance with
the goal of answering “after the fact” queries such as:
identify video frames with objects of certain classes (cars,
bags) from many days of recorded video. Current systems
for processing such queries on large video datasets incur
either high cost at video ingest time or high latency at
query time. We present Focus, a system providing both
low-cost and low-latency querying on large video datasets.
Focus’ architecture flexibly and effectively divides the
query processing work between ingest time and query
time. At ingest time (on live videos), Focus uses cheap
convolutional network classifiers (CNNs) to construct
an approximate index of all possible object classes in
each frame (to handle queries for any class in the future).
At query time, Focus leverages this approximate index
to provide low latency, but compensates for the lower
accuracy of the cheap CNNs through the judicious use
of an expensive CNN. Experiments on commercial video
streams show that Focus is 48× (up to 92×) cheaper than
using expensive CNNs for ingestion, and provides 125×
(up to 607×) lower query latency than a state-of-the-art
video querying system (NoScope).

1. Introduction
Cameras are ubiquitous, with millions of them deployed
by public and private entities at traffic intersections, enter-
prise offices, and retail stores. Videos from these cameras
are continuously recorded [2,6], with the main purpose of
answering “after-the-fact” queries such as: identify video
frames with objects of certain classes (like cars or bags)
from many days of recorded video. Because the results
from these video analytics queries may be needed quickly
in many use cases, achieving low latency is crucial.

Advances in convolutional neural networks (CNNs)
backed by copious training data and hardware accelerators
(e.g., GPUs [12]) have led to highly accurate results in
tasks like object detection and classification of images.
For instance, the ResNet152 classifier CNN [45], winner
of the ImageNet challenge 2015 [73], surpasses human-
level performance in classifying 1,000 object classes on
a public image dataset that has labeled ground truths [44].

Despite the accuracy of image classifier CNNs (like
ResNet152) and object detectors (like YOLOv2 [68]),
using them for video analytics queries is both expensive

and slow. For example, even after using various motion
detection techniques to filter out frames with no moving
objects, using an object detector such as YOLOv2 [68]
to identify frames with a given class (e.g., ambulance)
on a month-long traffic video requires ≈ 190 hours on
a high-end GPU (NVIDIA P100 [12]) and costs over
$380 in the Azure cloud (Standard_NC6s_v2 instances).
To achieve a query latency of say one minute on 190
GPU hours of work would require tens of thousands of
GPUs detecting objects in the video frames in parallel,
which is two to three orders of magnitude more than
what is typically provisioned (few tens or hundreds of
GPUs) by traffic jurisdictions or retail stores. Recent work
like NoScope [51] has significantly improved the filtering
of frames by using techniques like lightweight binary
classifiers for the queried class (e.g., ambulance) before
running heavy CNNs. However, the latencies are still
long, e.g., it takes 5 hours to query a month-long video on
a GPU, in our evaluations. Moreover, videos from many
cameras often need to be queried, which increases the
latency and the GPU requirements even more.

The objective of our work is to enable low-latency and
low-cost querying over large historical video datasets.

A natural approach to enable low latency queries is
doing most of the work at ingest-time, i.e., on the live
video that is being captured. If object detection, using say
YOLO, were performed on frames at ingest-time, queries
for specific classes (e.g., ambulance) would involve only a
simple index lookup to find video frames with the queried
object class. There are, however, two main shortcomings
with this approach. First, most of the ingest-time work
may be wasteful because typically only a small fraction
of recorded frames ever get queried [16], e.g., only after
an incident that needs investigation. Second, filtering
techniques that use binary classifiers (as in NoScope [51])
are ineffective at ingest-time because any of a number
of object classes could be queried later and running even
lightweight binary classifiers for many classes can be
prohibitively expensive.
Objectives & Techniques. We present Focus, a system
to support low-latency, low-cost queries on large video
datasets. To address the above challenges and shortcom-
ings, Focus has the following goals: (a) provide low-
cost indexing of multiple object classes in the video at
ingest-time, (b) achieve high accuracy and low latency
for queries, and (c) enable trade-offs between the cost at
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ingest-time and the latency at query-time. Focus takes as
inputs from the user a ground-truth CNN (or “GT-CNN”,
e.g., YOLO) and the desired accuracy of results that Focus
needs to achieve relative to the GT-CNN. With these in-
puts, Focus uses three key techniques to achieve the above
goals: (1) an approximate indexing scheme at ingest-time
using cheap CNNs, (2) redundancy elimination by clus-
tering similar objects, and (3) a tunable mechanism for
judiciously trading off ingest cost and query latency.

(1) Approximate indexing using a cheap ingest CNN.
To make video ingestion cheap, Focus uses compressed
and specialized versions of the GT-CNN that have fewer
convolutional layers [78], use smaller image sizes, and
are trained to recognize the classes specific to each video
stream. The cheap ingest CNNs, however, are less accu-
rate than the expensive GT-CNN, both in terms of recall
and precision. We define recall as the fraction of frames
in the video that contain objects of the queried class that
were actually returned in the query’s results. Precision,
on the other hand, is the fraction of frames in the query’s
results that contain objects of the queried class.

Using a cheap CNN to filter frames upfront risks incor-
rectly eliminating frames. To overcome this potential loss
in recall, Focus relies on an empirical observation: while
the top (i.e., most confident) classification results of the
cheap CNNs and expensive GT-CNN often do not match,
the top result of the expensive CNN often falls within the
top-K most confident results of the cheap CNN. Therefore,
at ingest-time, Focus indexes each frame with the “top-K”
results of the cheap CNN, instead of just the top result.
To increase precision, at query-time, after filtering frames
using the top-K index, we apply the GT-CNN and return
only frames that actually contains the queried object class.

(2) Redundancy elimination via clustering. To reduce
the query-time latency of using the expensive GT-CNN,
Focus relies on the significant similarity between objects
in videos. For example, a car moving across a camera will
look very similar in consecutive frames. Focus leverages
this similarity by clustering the objects at ingest-time. We
classify only the cluster centroids with the GT-CNN at
query-time, and assign the same class to all objects in the
cluster. This considerably reduces query latency. Clus-
tering, in fact, identifies redundant objects even across
non-contiguous and temporally-distant frames.

(3) Trading off ingest cost vs. query latency. Focus
intelligently chooses its parameters (including K and the
cheap ingest-time CNN) to meet user-specified targets
on precision and recall. Among the parameter choices
that meet the accuracy targets, it allows the user to trade
off between ingest cost and query latency. For example,
using a cheaper ingest CNN reduces the ingest cost but
increases the query latency as Focus needs to use a larger K
for the top-K index to achieve the accuracy targets. Focus
automatically identifies the “sweet spot” in parameters,

which sharply improves one of ingest cost or query latency
for a small worsening of the other. It also allows for
policies to balance the two, depending on the fraction of
videos the application expects to get queried.

In summary, Focus’ ingest-time and query-time oper-
ations are as follows. At ingest-time, Focus classifies
the detected objects using a cheap CNN, clusters simi-
lar objects, and indexes each cluster centroid using the
top-K most confident classification results, where K is
auto-selected based on the user-specified precision, recall,
and cost/latency trade-off point. At query-time, Focus
looks up the ingest index for cluster centroids that match
the class X requested by the user and classifies them using
the GT-CNN. Finally, Focus returns all objects from the
clusters that are classified as class X to the user.

Evaluation Highlights. We build Focus and evaluate it
on fourteen 12-hour videos from three domains – traffic
cameras, surveillance cameras, and news. We compare
against two baselines: “Ingest-heavy”, which uses the heavy
GT-CNN for ingest, and “NoScope”, a recent state-of-the-
art video querying system [51]. We use YOLOv2 [68] as
the GT-CNN. On average, across all the videos, Focus is
48× (up to 92×) cheaper than Ingest-heavy and 125× (up
to 607×) faster than NoScope, all the while achieving ≥
99% precision and recall. In other words, the latency to
query a month-long video drops from 5 hours to only 2.4
minutes, at an ingest cost of $8/month/stream. Figure 1
also shows representative results with different trade-off
alternatives for a surveillance video.
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Figure 1: Effectiveness of Focus at reducing both ingest cost
and query latency, for an example surveillance video. We
compare against two baselines: “Ingest-heavy” that uses the
YOLOv2 [68] object detector CNN for ingestion, and “No-
Scope”, the state-of-the-art video querying system [51]. On
the left, we see that Focus (the Focus-Balance point) is simul-
taneously 84× cheaper than Ingest-heavy in its cost (the I
value) and 607× faster than NoScope in query latency (the
Q value), all the while achieving at least 99% precision and
recall (not plotted). Zooming in, also shown are two alter-
native Focus designs offering different trade-offs, Focus-Opt-
Query and Focus-Opt-Ingest, each with at least 99% precision
and recall.
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Contributions: Our contributions are as follows.
• We present a new architecture for low-cost and low-

latency querying over large video datasets, based on a
principled split of ingest and query functionalities.

• We propose techniques for efficient indexing of multi-
ple object classes: we create a top-K index at ingest
time for high recall, while ensuring high precision by
judiciously using expensive CNNs at query time.

• We show new policies that trade off between ingest
cost and query latency: our system is significantly
cheaper than an ingest-heavy design and significantly
faster than query-optimized techniques like NoScope.

2. Background and Motivation
We first provide a brief overview of convolutional Neural
Networks, the state-of-the-art approach to detecting and
classifying objects in images (§2.1). We then discuss new
observations we make about real-world videos, which
motivate the design of our techniques (§2.2).

2.1. Convolutional Neural Networks
Convolution Neural Networks (CNNs) are the state-of-the-
art method for many computer vision tasks such as object
detection and classification (e.g., [45, 53, 59, 68, 84]).

Figure 2 illustrates the architecture of a representa-
tive image classification CNN. Broadly, CNNs consist of
different types of layers including convolutional layers,
pooling layers and fully-connected layers. The output
from the final layer of a classification CNN is the prob-
abilities of all object classes (e.g., dog, flower, car), and
the class with the highest probability is the predicted class
for the object in the input image.
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Figure 2: Architecture of an image classification CNN.

The output of the penultimate (i.e., previous-to-last)
layer can be considered as “representative features” of
the input image [53]. The features are a real-valued vec-
tor, with lengths between 512 and 4096 in state-of-the-art
classifier CNNs (e.g., [45, 53, 78, 84]). It has been shown
that images with similar feature vectors (i.e., small Eu-
clidean distances) are visually similar [24, 53]. Thus,
the distance between feature vectors is a standard met-
ric to measure similarity of images in many applications,
such as face recognition (e.g., [47]) and image retrieval
(e.g., [23, 24, 67]).

Because inference using state-of-the-art CNNs is com-
putationally expensive (and slow), two main techniques
have been developed to reduce the cost of inference. First,
compression is a set of techniques that can dramatically
reduce the cost of inference at the expense of accuracy.
Such techniques include removing some expensive con-
volutional layers [78], matrix pruning [34, 42], reducing
input image resolution [68], and others [48,71]. For exam-
ple, ResNet18, which is a ResNet152 variant with only 18
layers, is 8× cheaper. Likewise, Tiny YOLO [68], a shal-
lower variant of the YOLO object detector, is 5× cheaper
than YOLOv2. However, the tradeoff is that compressed
CNNs are usually less accurate than the original CNNs.

The second technique is CNN specialization [43],
where the CNNs are trained on a subset of a dataset
specific to a particular context (such as a video stream).
Specialization simplifies the task of a CNN because spe-
cialized CNNs only need to consider a particular context.
For example, differentiating object classes in any possible
video is much more difficult than doing so in a traffic
video, which is likely to contain far fewer object classes
(e.g., cars, bicycles, pedestrians). As a result, specialized
CNNs can be more accurate and smaller at the expense of
generality. Leveraging compressed and specialized CNNs
is a key facet of our solution (see §4).

2.2. Characterizing Real-world Videos
We aim to support queries of the form: find all frames
in the video that contain objects of class X. We identify
some key characteristics of real-world videos towards
supporting these queries: (i) large portions of videos can
be excluded (§2.2.1), (ii) only a limited set of object
classes occur in each video (§2.2.2), and (iii) objects of
the same class have similar feature vectors (§2.2.3). The
design of Focus is based on these characteristics.

We analyze six 12-hour videos from three domains:
traffic cameras, surveillance cameras, and news channels
(§6.1 provides the details.) In this paper, we use results
from YOLOv2 [68], trained to classify 80 object classes
based on the COCO [60] dataset, as the ground truth.
2.2.1. Excluding large portions of videos. We find con-
siderable potential to avoid processing large portions of
videos at query-time. Not all the frames in a video are
relevant to a query because each query looks only for a
specific class of objects. In our video sets, an object class
occurs in only 0.16% of the frames on average, and even
the most frequent object classes occur in no more than
26%− 78% of the frames. This is because while there
are usually some dominant classes (e.g., cars in a traffic
camera, people in a news channel), most other classes are
rare. Overall, the above data suggests considerable poten-
tial to speed up query latencies by indexing frames using
the object classes. Also, in our experience, a system for
querying videos is more useful for less frequent classes:
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querying for “ambulance” in a traffic video is more in-
teresting than querying for something commonplace like
“car”.

2.2.2. Limited set of object classes in each video. Most
video streams have a limited set of objects because each
video has its own context (e.g., traffic cameras can have
automobiles, pedestrians or bikes, but not airplanes).
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Figure 3: CDF of frequency of object classes. The x-axis is
the fraction of classes out of the 80 classes recognized by the
COCO [60] dataset (truncated to 12%).

Figure 3 shows the cumulative distribution function
(CDF) of the frequency of object classes in our videos
(as classified by YOLOv2). We make two observations.
First, 2%−10% of the most frequent object classes cover
≥ 95% of the objects in all video streams. In fact, for
some videos like Auburn and Jackson Hole we find that
only 11%−19% object classes occur in the entire video.
Thus, for each video stream, if we can automatically
determine its most frequent object classes, we can train
efficient CNNs specialized for these classes. Second, a
closer analysis reveals that there is little overlap between
the object classes among different videos. On average, the
Jaccard index [85] (i.e., intersection over union) between
the videos based on their object classes is only 0.46. This
implies that we need to specialize CNNs for each video
stream separately to achieve the most benefits.

2.2.3. Feature vectors for finding duplicate objects.
Objects moving in the video often stay in the frame for
several seconds; for example, a pedestrian might take 15
seconds to cross a street. Instead of classifying each in-
stance of the same object across the frames, we would like
to inexpensively find duplicate objects and only classify
one of them using a CNN (and apply the same label to all
duplicates). Thus, given n duplicate objects, we would
like only one CNN classification operation instead of n.

Comparing pixel values across frames is an obvious
technique to identify duplicate objects, however, this
technique turns out to be highly sensitive to even small
changes in the camera’s view of an object. Instead, feature
vectors extracted from the CNNs (§2.1) are more robust
because they are specifically trained to extract visual fea-
tures for classification. We verify the robustness of feature
vectors using the following analysis. In each video, for

each object i, we find its nearest neighbor j using feature
vectors from a cheap CNN (ResNet18) and compute the
fraction of object pairs that belong to the same class. This
fraction is over 99% in each of our videos, which shows
the promise of using feature vectors from cheap CNNs to
identify duplicate objects even across frames that are not
temporally contiguous.

3. Overview of Focus
The goal of Focus is to index live video streams by the
object classes occurring in them and enable answering
“after-the-fact” queries later on the stored videos of the
form: find all frames that contain objects of class X. Op-
tionally, the query can be restricted to a subset of cameras
and a time range. Such a query formulation is the basis for
many widespread applications and could be used either
on its own (such as for detecting all cars or bicycles in
the video) or used as a basis for further processing (e.g.,
finding all collisions between cars and bicycles).
System Configuration. Focus is designed to work with
a wide variety of current and future CNNs. The user
(system administrator) provides a ground-truth CNN (GT-
CNN), which serves as the accuracy baseline for Focus,
but is far too costly to run on every video frame. Through
a sequence of techniques, Focus provides results of nearly-
comparable accuracy but at greatly reduced cost. In this
paper, we use YOLOv2 [68] as the default GT-CNN.

Because different applications require different accura-
cies, Focus permits the user to specify the accuracy target,
while providing reasonable defaults. The accuracy target
is specified in terms of precision, i.e., fraction of frames
output by the query that actually contain an object of
class X according to GT-CNN, and recall, i.e., fraction
of frames that contain objects of class X according to
GT-CNN that were actually returned by the query.
Architecture: Figure 4 overviews the Focus design.
• At ingest-time (left part of Figure 4), Focus classifies

objects in the incoming video frames and extracts
their feature vectors. For its ingest, Focus uses highly
compressed and specialized alternatives of the GT-
CNN model (IT1 in Figure 4). Focus then clusters
objects based on their feature vectors (IT2) and assigns
to each cluster the top K most likely classes these
objects belong to (based on classification confidence
of the ingest CNN) (IT3). It creates a top-K index,
which maps each class to the set of object clusters
(IT4). The top-K index is the output of Focus’ ingest-
time processing of videos.

• At query-time (right part of Figure 4), when the user
queries for a certain class X (QT1), Focus retrieves the
matching clusters from the top-K index (QT2), runs the
centroids of the clusters through GT-CNN (QT3), and
returns all frames from the clusters whose centroids
were classified by GT-CNN as class X (QT4).
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Figure 4: Overview of Focus.

The top-K ingest index is a mapping between the object
classes and the clusters. In particular, we create a mapping
from each object class to the clusters with top K matching
object classes. Separately, we store the mapping between
clusters and their corresponding objects and frames. The
structure of the index is:
object class → 〈cluster ID〉
cluster ID → [centroid object, 〈objects〉 in
cluster, 〈frame IDs〉 of objects]

We next explain how Focus’ key techniques keep ingest
cost and query latency low while also meeting the user-
specified recall and precision targets.
1) Top-K index via cheap ingesting: Focus makes index-
ing at ingest-time cheap by using compressed and special-
ized alternatives of the GT-CNN for each video stream.
Compression of CNNs [34, 42, 48, 78] uses fewer con-
volutional layers and other approximations (§2.1), while
specialization of CNNs [43,75] uses the observation that a
specific video stream contains only a small number of ob-
ject classes and their appearance is more constrained than
in a generic video (§2.2.2). Both optimizations are done
automatically by Focus and together result in ingest-time
CNNs that are up to 96× cheaper than the GT-CNN.

The cheap ingest-time CNNs are less accurate, i.e.,
their top-most results often do not match the top-most
classifications of GT-CNN. Therefore, to improve recall,
Focus associates each object with the top-K classification
results of the cheap CNN, instead of only its top-most re-
sult. Increasing K increases recall because the top-most re-
sult of GT-CNN often falls within the ingest-time CNN’s
top-K results. At query-time, Focus uses the GT-CNN to
remove objects in this larger set that do not match the
class, to regain the precision lost by including the top-K.
2) Clustering similar objects. A high value of K at
ingest-time increases the work done at query time, thereby
increasing query latency. To reduce this overhead, Focus
clusters similar objects at ingest-time using feature vec-
tors from the cheap ingest-time CNN (§2.2.3). In each
cluster, at query-time, we run only the cluster centroid
through GT-CNN and apply the classified result from the
GT-CNN to all objects in the cluster. Thus, a tight cluster-
ing of objects is crucial for high precision and recall.

3) Trading off ingest vs. query costs. Focus automati-
cally chooses the ingest CNN, its K, and specialization
and clustering parameters to achieve the desired precision
and recall targets. These choices also help Focus trade off
between the work done at ingest-time and query-time. For
instance, to save ingest work, Focus can select a cheaper
ingest-time CNN, and then counteract the resultant loss
in recall by using a higher K and running the expensive
GT-CNN on more objects at query time. Focus chooses its
parameters so as to offer a sharp improvement in one of
the two costs for a small degradation in the other cost. Be-
cause the desired trade-off point is application-dependent,
Focus provides users with options: “ingest-optimized”,
“query-optimized”, and “balanced” (the default). Figure 1
(§1) presents an example result.

4. Video Ingest & Querying Techniques
We describe the main techniques used in Focus: construct-
ing approximate indexes with cheap CNNs at ingest-time
(§4.1), specializing the CNNs to the specific videos (§4.2),
and identifying similar objects and frames to save on
redundant CNN processing (§4.3). §4.4 describes how
Focus flexibly trades off ingest cost and query latency.

4.1. Approximate Index via Cheap Ingest
Focus indexes the live videos at ingest-time to reduce the
query-time latency. We detect and classify the objects
within the frames of the live videos using ingest-time
CNNs that are far cheaper than the ground-truth GT-CNN.
We use these classifications to index objects by class.
Cheap ingest-time CNN. As noted earlier, the user pro-
vides Focus with a GT-CNN. Optionally, the user can
also provide other CNN architectures to be used in Focus’
search for cheap CNNs. Examples include object detector
CNNs (which vary in their resource costs and accura-
cies) like YOLO [68] and Faster RCNN [69] that jointly
detect the objects in a frame and classify them. Alterna-
tively, objects can be detected separately using relatively
inexpensive techniques like background subtraction [28],
which are well-suited for static cameras, as in surveillance
or traffic installations, and then the detected objects can
be classified using object classification CNN architectures
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such as ResNet [45], AlexNet [53] and VGG [78].1

Starting from these user-provided CNNs, Focus ap-
plies various levels of compression, such as removing
convolutional layers and reducing the input image reso-
lution (§2.1). This results in a large set of CNN options
for ingest, {CheapCNN1, . . . , CheapCNNn}, with a wide
range of costs and accuracies, out of which Focus picks
its ingest-time CNN, CheapCNNingest.
Top-K Ingest Index. To keep recall high, Focus indexes
each object using the top K object classes from the output
of CheapCNNingest, instead of using just the top-most
class. Recall from §2.1 that the output of the CNN is
a list of classes for each object in descending order of
confidence. We make the following empirical observation:
the top-most output of the expensive GT-CNN for an
object is often contained within the top-K classes output
by the cheap CNN, for a small value of K.

Figure 5 demonstrates the above observation by plot-
ting the effect of K on recall on one of our video streams
from a static camera, lausanne (see §6.1). We explore
many cheaper ResNet18 [45] models by removing one
layer at a time with various input image sizes. The trend
is the same among the CNNs we explore so we present
three models for clarity: ResNet18, and ResNet18 with
4 and 6 layers removed; correspondingly to each model,
the input images were rescaled to 224, 112, and 56 pixels,
respectively. These models were also specialized to the
video stream (more in §4.2). We make two observations.
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Figure 5: Effect of K on the recall of three cheap classifier
CNNs to classify the detected objects. Recall is measured
relative to the results of the GT-CNN, YOLOv2 [68].

First, we observe steady increase in recall with increas-
ing K, for all three CheapCNNs. As the figure shows, all
the cheap CNNs reach ≥ 99% recall when K ≥ 4. Note
that all these models recognize 80 classes, so K = 4 rep-
resents only 5% of the possible classes. Second, there
is a trade-off between different models – typically, the
cheaper they are, the lower their recall with the same
K. However, we can compensate for the loss in recall in
cheaper models using a larger K to reach a certain recall
value. Overall, we conclude that by selecting the appro-

1Focus is agnostic to whether object detection and classification
are done together or separately. In practice, the set of detected object
bounding boxes (but not their classifications!) remain largely the same
with different ingest CNNs, background subtraction, and the GT-CNN.

priate model and K, Focus can achieve the target recall.
Achieving precision. Focus creates the top-K index from
the top-K classes output by CheapCNNingest for every
object at ingest-time. While filtering for objects of the
queried class X using the top-K index (with the appro-
priate K) will have a high recall, this will lead to very
low precision. Because we associate each object with
K classes (while it has only one true class), the average
precision is only 1/K. Thus, at query time, to improve
precision, Focus determines the actual class of objects
from the top-K index using the expensive GT-CNN and
returns only the objects that match the queried class X .
Skipping GT-CNN for high-confidence indexes. Focus
records the prediction confidence along with the top-K
results by CheapCNNingest. The system can skip invok-
ing GT-CNN for the indexes with prediction confidence
higher than a chosen threshold (Skipth). Not invoking
GT-CNN for these indexes can cause precision to fall if
the threshold is too low. Hence, this parameter needs to
be carefully selected to retain high precision.
Parameter selection. The selection of the cheap ingest-
time CNN model (CheapCNNingest) and the K value (for
the top-K results) has a significant influence on the recall
of the output produced. Lower values of K reduce recall,
i.e., Focus will miss frames that contain the queried ob-
jects. At the same time, higher values of K increase the
number of objects to classify with GT-CNN at query time,
and hence adds to the latency. §4.4 describes how Focus
sets these parameters because they have to be jointly set
with other parameters described in §4.2 and §4.3.

4.2. Video-specific Specialization of Ingest CNN
To further reduce the ingest cost, Focus specializes the
ingest-time CNN model to each video stream. As §2.1
describes, model specialization [43] reduces cost by sim-
plifying the task of CNNs. Specifically, model specializa-
tion takes advantage of two characteristics in real-world
videos. First, most video streams have a limited set of ob-
ject classes (§2.2.2). Second, objects in a specific stream
are often visually more constrained than objects in general
(say, in the COCO [60] dataset). The cars and buses that
occur in a specific traffic camera have much less variabil-
ity, e.g., they have very similar angle, distortion and size,
compared to a generic set of vehicle images. Thus, clas-
sifying objects from a specific camera is a much simpler
task than doing so from all cameras, resulting in cheaper
ingest-time CNNs.

While specializing CNNs to specific videos has been
attempted in computer vision research (e.g., [43, 75]), we
explain its two key implications within Focus.
1) Lower K values. Because the specialized CNN classi-
fies across fewer classes, they are more accurate, which
enables Focus to achieved the desired recall with a much
smaller K (for the top-K ingest index). We find that spe-
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cialized models can usually use K ≤ 4 (Figure 5), much
smaller compared to the typical K needed for generic
cheap CNNs. A smaller K translates to fewer objects
that have to be classified by GT-CNN at query time, thus
reducing latency.
2) Most frequent classes. On each video stream, Focus
periodically obtains a small sample of video frames and
classifies their objects using GT-CNN to estimate the
ground truth of the distribution of object classes for the
video (similar to Figure 3). From this distribution, Focus
selects the most frequently occurring Ls object classes to
retrain new specialized models. Because just a handful
of classes often account for a dominant majority of the
objects (§2.2.2), low values of Ls usually suffice.

While Focus specializes the CNN towards the most
frequently occurring Ls classes, we also want to support
querying of the less frequent classes. For this purpose,
Focus includes an additional class called “OTHER” in the
specialized model. Being classified as OTHER simply
means not being one of the Ls classes. At query time,
if the queried class is among the OTHER classes of the
ingest CNN’s index, Focus extracts all the clusters that
match the OTHER class and classifies their centroids
through the GT-CNN model.2

The parameter Ls (for each video stream) exposes the
following trade-off. Using a small Ls enables us to train a
simpler model with cheaper ingest cost and lower query-
time latency for the popular classes, but, it also leads to a
larger fraction of objects falling in the OTHER class. As
a result, querying for the OTHER class will be expensive
because all those objects will have to be classified by the
GT-CNN. Using a larger value of Ls, on the other hand,
leads to more expensive ingest and query-time models,
but cheaper querying for the OTHER classes. We select
Ls in §4.4.

4.3. Redundant Object Elimination
At query time, Focus retrieves the objects likely matching
the user-specified class from the top-K index and infers
their actual class using the GT-CNN. This ensures preci-
sion of 100%, but could cause significant latency at query
time. Even if this inference were parallelized across many
GPUs, it would incur a large cost. Focus uses the fol-
lowing observation to reduce this cost: if two objects are
visually similar, their feature vectors are also similar and
they would likely be classified as the same class (e.g.,
cars) by the GT-CNN model (§2.2.3).

Focus clusters objects that are similar, invokes the ex-
pensive GT-CNN only on the cluster centroids, and as-
signs the centroid’s label to all objects in each cluster.

2Specialized CNNs can be retrained quickly on a small dataset.
Retraining is relatively infrequent and done once every few days. Also,
because there will be considerably fewer objects in the video belonging
to the OTHER class, we proportionally re-weight the training data to
contain equal number of objects of all the classes.

Doing so dramatically reduces the work done by the GT-
CNN classifier at query time. Focus uses the feature vector
output by the previous-to-last layer of the cheap ingest
CNN (see §2.1) for clustering. Note that Focus clusters
the objects in the frames and not the frames as a whole.3

The key questions regarding clustering are how we
cluster and when we cluster. We discuss both below.
Clustering Heuristic. We require two properties in our
clustering technique. First, given the high volume of
video data, it should be a single-pass algorithm to keep the
overhead low, unlike most clustering algorithms, which
are quadratic complexity. Second, it should make no
assumption on the number of clusters and adapt to outliers
in data points on the fly. Given these requirements, we use
the following simple approach for incremental clustering,
which has been well-studied in the literature [30, 65].

We put the first object into the first cluster c1. To cluster
a new object i with a feature vector fi, we assign it to the
closest cluster c j if c j is at most distance T away from
fi, where T is a distance threshold. However, if none
of the clusters are within a distance T , we create a new
cluster with centroid at fi. We measure distance as the L2
norm [9] between the cluster centroid feature vector and
the object feature vector fi. To bound the time complexity
for clustering, we keep the number of clusters actively
being updated at a constant C. We do this by sealing the
smallest cluster when the number of clusters hits C+1,
but we keep growing the popular clusters (such as similar
cars). This maintains the complexity as O(Cn), which is
linear in n, the total number of objects. The value of C
has a very minor impact on our evaluation results, and we
set C as 100 in our evaluations.

Clustering can reduce precision and recall depending
on the parameter T . If the centroid is classified by GT-
CNN as the queried class X but the cluster contains an-
other object class, it reduces precision. If the centroid is
classified as a class different than X but the cluster has an
object of class X, it reduces recall. §4.4 discuss setting T .
Clustering at Ingest vs. Query Time. Focus clusters the
objects at ingest-time rather than at query-time. Cluster-
ing at query-time would involve storing all feature vectors,
loading them for objects filtered from the ingest index
and then clustering them. Instead, clustering at ingest
time creates clusters right when the feature vectors are
created and stores only the cluster centroids in the top-K
index. This makes the query-time latency much lower
and also reduces the size of the top-K index. We observe
that the ordering of indexing and clustering operations
is mostly commutative in practice and has little impact

3Recall from §4.1 that Focus’ ingest process either (i) employs an
object detector CNN (e.g., YOLO) that jointly detects and classifies ob-
jects in a frame; or (ii) detects objects with background subtraction and
then classifies objects with a classifier CNN (e.g. ResNet). Regardless,
we obtain the feature vector from the CNNs for each object in the frame.
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on recall and precision (we do not present these results
due to space constraints). We therefore use ingest-time
clustering due to its latency and storage benefits.

4.4. Trading off Ingest Cost and Query Latency
Focus’ goals of high recall/precision, low ingest cost and
low query latency are affected by its parameters: (i) K, the
number of top results from the ingest-time CNN to index
an object; (ii) Ls, the number of popular object classes
we use to create a specialized model; (iii) CheapCNNi,
the specialized ingest-time cheap CNN; (iv) Skipth, the
confidence threshold to skip invoking GT-CNN; and (v)
T , the distance threshold for clustering objects.
Viable Parameter Choices. Focus first prunes the param-
eter choices to only those that meet the desired precision
and recall targets. Among the five parameters, four param-
eters (K, Ls, CheapCNNi, and T ) impact recall; only T
and Skipth impact precision. Focus samples a representa-
tive fraction of the video stream and classifies them using
GT-CNN for the ground truth. Next, for each combination
of parameter values, Focus computes the precision and
recall (relative to GT-CNN’s outputs) achievable for each
of the object classes, and selects only those combinations
that meet the precision and recall targets.

Among the viable parameter choices that meet the
precision and recall targets, Focus balances ingest- and
query-time costs. For example, picking a more accurate
CheapCNNingest will have higher ingest cost, but lower
query cost because we can use a smaller K. Using a less
accurate CheapCNNingest will have the opposite effect.
Pareto Boundary. Focus identifies “intelligent defaults”
that sharply improve one of the two costs for a small
worsening of the other cost. Figure 6 illustrates the trade-
off between ingest cost and query latency for one of our
video streams. The figure plots all the viable “configu-
rations” (i.e., parameter choices that meet the precision
and recall targets) based on their ingest cost (i.e., cost of
CheapCNNingest) and query latency (i.e., the number of
clusters that need to be checked at query time according
to K,Ls,T and Skipth).

We first extract the Pareto boundary [17], which is
defined as the set of configurations among which we can-
not improve one of the metrics without worsening the
other. For example, in Figure 6, the yellow triangles are
not Pareto optimal when compared to the points on the
dashed line. Focus can discard all non-Pareto configura-
tions because at least one point on the Pareto boundary is
better than all non-Pareto points in both metrics.
Tradeoff Policies. Focus balances ingest cost and query
latency (Balance in Figure 6) by selecting the configu-
ration that minimizes the sum of ingest cost and query
latency. We measure ingest cost as the compute cycles
taken to ingest the video and query latency as the average
time (or cycles) required to query the video on the object
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Figure 6: Parameter selection based on the ingest cost and
query latency trade-off. The ingest cost is normalized to the
cost of ingesting all video frames with GT-CNN (YOLOv2),
while the query latency is normalized to the query latency
using NoScope. The dashed line is the Pareto boundary.

classes that are recognizable by the ingest CNN. By de-
fault, Focus chooses a Balance policy that equally weighs
ingest cost and query latency. Users can also provide any
other weighted function to optimize their goal.

Focus also allows for other configurations based on
the application’s preferences and query rates. Opt-Ingest
minimizes the ingest cost and is applicable when the ap-
plication expects most of the video streams to not get
queried (such as surveillance cameras), as this policy min-
imizes the amount of wasted ingest work. On the other
hand, Opt-Query minimizes query latency but it incurs
a larger ingest cost. More complex policies can be eas-
ily implemented by changing how the query latency cost
and ingest cost are weighted in our cost function. Such
flexibility enables Focus to fit a number of applications.

5. Implementation
Because Focus targets large video datasets, a key require-
ment of Focus’ implementation is the ability to scale and
distribute computation across many machines. To this
end, we implement Focus as three loosely-coupled mod-
ules which handle each of its three key tasks. Figure 7
presents the architecture and the three key modules of
Focus: the ingest processor (M1), the stream tuner (M2),
and the query processor (M3). These modules can be flex-
ibly deployed on different machines based on the video
dataset size and the available hardware resources (such as
GPUs). We describe each module in turn.

5.1. Ingest Processor
Focus’ ingest processor (M1) generates the approximate
index (§4.1) for the input video stream. The work is
distributed across many machines, with each machine
running one worker process for each video stream’s inges-
tion. An ingest processor handles its input video stream
with a four-stage pipeline: (i) extracting the moving ob-
jects from the video frames (IP1 in Figure 7), (ii) inferring
the top-K indexes and the feature vectors of all detected
objects with the ingest-time CNN (IP2 in Figure 7, §4.1),
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(iii) using the feature vector to cluster objects (IP3 in Fig-
ure 7, §4.3), and (iv) storing the top-K indexes of centroid
objects in a database for efficient retrieval at query time.

An ingest processor is configured differently for static
(fixed-angle) and moving cameras. For static cameras, we
extract object boxes by subtracting each video frame from
the background frame, which is obtained by averaging
the frames in each hour of the video. We then index each
object box with an ingest-time object classifier CNN. We
accelerate the background subtraction with GPUs [14].
We use background subtraction for static cameras because
running background subtraction with a cheap object clas-
sifier is much faster than running an ingest-time object
detector CNN, and we find that both approaches have
almost the same accuracy in detecting objects in static
cameras. Hence, we choose the cheaper ingest option.

For moving cameras, we use a cheap, ingest-time ob-
ject detector CNN (e.g., Tiny YOLO [68]) to generate
the approximate indexes. We choose the object detection
threshold (the threshold to determine if a box has an ob-
ject) for the object detector CNN such that we do not miss
objects in GT-CNN while minimizing spurious objects.

5.2. Stream Tuner
The stream tuner (M2) determines the ingest-time CNN
and Focus’ parameters for each video stream (§4.4). It
takes four inputs: the sampled frames/objects, the GT-
CNN, the desired accuracy relative to the GT-CNN, and
the tradeoff policy between ingest cost and query latency
(§4.4). Whenever executed, the stream tuner: (i) generates
the ground truth of the sampled frames/objects with the
GT-CNN; (ii) trains specialized ingest-time CNNs based
on the ground truth (ST1 in Figure 7); and (iii) selects the
ingest-time CNN and Focus’ parameters (ST2 in Figure 7).

Focus executes the stream tuner for each video stream
before launching the corresponding ingest processor. As
the characteristics of video streams may change over
time, Focus periodically launches the stream tuner to vali-
date the accuracy of the selected parameters on sampled

frames. The ingest-time CNN and the system parameters
are re-tuned if necessary to meet the accuracy targets.

5.3. Query Processor
The task of the query processor is to return the video
frames that contain the user’s queried object class. In re-
sponse to a user query for class X , the query processor first
retrieves the centroid objects with matching approximate
indexes (QP1 in Figure 7), and then uses the GT-CNN to
determine the frames that do contain object class X (QP2
in Figure 7, §4.1). The GT-CNN evaluation can be easily
distributed across many machines, if needed.

We employ two optimizations to reduce the overhead
of GT-CNN evaluation. First, we skip the GT-CNN eval-
uation for high-confidence indexes (§4.1). Second, we
apply a query-specialized binary classifier [51] on the
frames that need to be checked before invoking the GT-
CNN. These two optimizations make the query processor
more efficient by not running GT-CNN on all candidate
centroid objects.

6. Evaluation
We evaluate our Focus prototype with more than 160
hours of videos from 14 real video streams that span
traffic cameras, surveillance cameras, and news channels.
Our main results are:
• Focus is simultaneously 48× cheaper on average (up

to 92×) than the Ingest-heavy baseline in processing
videos and 125× faster on average (up to 607×) than
NoScope [51] in query latency — all the while achiev-
ing at least 99% precision and recall (§6.2, §6.3).

• Focus provides a rich trade-off space between ingest
cost and query latency. If a user wants to optimize for
ingest cost, Focus is 65× cheaper on average (up to
96×) than the Ingest-heavy baseline, while reducing
query latency by 100× on average. If the goal is to
optimize for query latency, Focus can achieve 202×
(up to 698×) faster queries than NoScope with 53×
cheaper ingest. (§6.4).
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Table 1: Video dataset characteristics
Type Camera Name Description

auburn_c A commercial area intersection in the
City of Auburn [5]

Traffic Static

auburn_r A residential area intersection in the
City of Auburn [4]

bellevue_d
A downtown intersection in the City of
Bellevue. The video streams are
obtained from city traffic cameras.

bellevue_r A residential area intersection in the
City of Bellevue

bend A road-side camera in the City of
Bend [7]

jackson_h A busy intersection in Jackson Hole [8]

jackson_ts
A night street in Jackson Hole. The
video is downloaded from the NoScope
project website [50].

Surveillance Static

coral An aquarium video downloaded from
the NoScope project website [50]

lausanne A pedestrian plaza (Place de la Palud)
in Lausanne [10]

oxford A bookshop street in the University
of Oxford [15]

sittard A market square in Sittard [3]

News Moving
cnn News channel
foxnews News channel
msnbc News channel

6.1. Methodology
Software Tools. We use OpenCV 3.4.0 [13] to decode
the videos into frames, and we feed the frames to our
evaluated systems, Focus and NoScope. Focus runs and
trains CNNs with Microsoft Cognitive Toolkit 2.4 [64], an
open-source deep learning system. Our ingest processor
(§5.1) stores the approximate index in MongoDB [11] for
efficient retrieval at query time.
Video Datasets. We evaluate 14 video streams that span
across traffic cameras, surveillance cameras, and news
channels. We record each video stream for 12 hours to
cover both day time and night time. Table 1 summarizes
the video characteristics. We strengthen our evaluation by
including down sampling (or frame skipping), one of the
most straightforward approaches to reduce ingest cost and
query latency, into our evaluation baseline. Specifically,
as the vast majority of objects show up for at least one
second in our evaluated videos, we evaluate each video at
1 fps instead of 30 fps. We find that the object detection
results at these two frame rates are almost the same. Each
video is split evenly into a training set and a test set. The
training set is used to train video-specialized CNNs and
select system parameters. We then evaluate the systems
with the test set. In some figures, we show results for only
eight representative videos to improve legibility.
Accuracy Target. We use YOLOv2 [68], a state-of-the-
art object detector CNN, as our ground-truth CNN (GT-
CNN): all objects detected by GT-CNN are considered
to be the correct answers.4 For each query, our default
accuracy target is 99% recall and precision. To avoid over-

4We do not use the latest YOLOv3 or other object detector CNN
such as FPN [59] as our GT-CNN because one of our baseline systems,
NoScope, comes with the YOLOv2 code. Fundamentally, there is no
restriction on the selection of GT-CNN for Focus.

fitting, we use the training set of each video to explore
system parameters with various recall/precision targets
(i.e., 100%–95% with a 0.5% step), and we report the
best system parameters that can actually achieve the re-
call/precision target on the test set. We also evaluate other
recall/precision targets such as 97% and 95% (§6.5).
Baselines. We use baselines at two ends of the design
spectrum: (1) Ingest-heavy, the baseline system that uses
GT-CNN to analyze all frames at ingest time, and stores
the results as an index for query; and (2) NoScope, a re-
cent state-of-the-art querying system [51] that analyzes
frames for the queried object class at query time. We
also use a third baseline, Ingest-NoScope that uses No-
Scope’s techniques at ingest time. Specifically, Ingest-
NoScope runs the binary classifiers of NoScope for all
possible classes at ingest time, invokes GT-CNN if any of
the binary classifiers cannot produce a high-confidence
result, and stores the results as an index for query. To
further strengthen the baselines, we augment all baseline
systems with background subtraction, thus eliminating
frames with no motion. As Focus is in the middle of
the design spectrum, we compare Focus’ ingest cost with
Ingest-heavy and Ingest-NoScope, and we compare Focus’
query latency with NoScope.
Metrics. We use two performance metrics. The first met-
ric is ingest cost, the end-to-end machine time to ingest
each video. The second metric is query latency, the end-
to-end latency for an object class query. Specifically, for
each video stream, we evaluate the object classes that
collectively make up 95% of the detected objects in GT-
CNN. We report the average query latency on these object
classes. We do not evaluate the bottom 5% classes be-
cause they are often random erroneous results in GT-CNN
(e.g., “broccoli” or “orange” in a traffic camera).

Both metrics include the time spent on all processing
stages, such as detecting objects with background subtrac-
tion, running CNNs, clustering, reading and writing to
the approximate index, etc. Similar to prior work [51, 68],
we report the end-to-end execution time of each system
while excluding the video decoding time, as the decoding
time can be easily accelerated with GPUs or accelerators.
Experimental Platform. We run the experiments on
Standard_NC6s_v2 instances on the Azure cloud. Each
instance is equipped with a high-end GPU (NVIDIA Tesla
P100), 6-core Intel Xeon CPU (E5-2690), 112 GB RAM,
a 10 GbE NIC, and runs 64-bit Ubuntu 16.04 LTS.

6.2. End-to-End Performance
Static Cameras. We first show the end-to-end perfor-
mance of Focus on static cameras when Focus aims to
balance these two metrics (§4.4). Figure 8 compares the
ingest cost of Focus and Ingest-NoScope with Ingest-heavy
and the query latency of Focus with NoScope. We make
three main observations.
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Figure 8: (Top) Focus ingest cost compared to Ingest-heavy.
(Bottom) Focus query latency compared to NoScope.

First, Focus significantly improves query latency with
a very small cost at ingest time. Focus achieves 162×
speedup (on average) in query latency over NoScope with
a very small ingest cost (57× cheaper than Ingest-heavy,
on average), all the while retaining 99% recall and preci-
sion (not shown). Focus achieves two orders of magnitude
speedup over NoScope because: (i) the ingest-time ap-
proximate indexing drastically narrows down the frames
that need to be checked at query time; and (ii) the feature-
based clustering further reduces the redundant work. In
contrast, NoScope needs to go through all the frames at
query time, which is especially inefficient for the object
classes that appear infrequently. We conclude that Focus’
architecture provides a valuable trade-off between ingest
cost and query latency.

Second, directly applying NoScope’s techniques at in-
gest time (Ingest-NoScope) does not save much cost over
Ingest-heavy. There are two reasons for this: (1) While
each binary classifier is relatively cheap, running multi-
ple instances of binary classifiers (for all possible object
classes) imposes non-trivial cost. (2) The system needs
to invoke GT-CNN when any one of the binary classifiers
cannot derive the correct answer. As a result, GT-CNN
is invoked for most frames. Hence, the ingest cost of
Focus is much cheaper than both, Ingest-heavy and Ingest-
NoScope. This is because Focus’ architecture only needs
to construct the approximate index at ingest time which
can be done cheaply with an ingest-time CNN.

Third, Focus is effective across videos with varying
characteristics. It makes queries 46× to 622× faster
than NoScope with a very small ingest cost (35× to
92× cheaper than Ingest-heavy) among busy intersections
(auburn_c, bellevue_d and jackson_h), normal inter-
sections (auburn_r, bellevue_r, bend), a night street

(jackson_ts), busy plazas (lausanne and sittard),
a university street (oxford), and an aquarium (coral).
The gains in query latency are smaller for some videos
(auburn_r, bellevue_r, bend, and jackson_ts). This
is because Focus’ ingest CNN is less accurate on these
videos, and Focus selects more conservative parameters
(e.g., a larger K such as 4–5 instead of 1–2) to attain the
recall/precision targets. As a result, there is more work
at query time for these videos. Nonetheless, Focus still
achieves at least 40× speedup over NoScope in query la-
tency. We conclude that the core techniques of Focus are
general and effective on a variety of real-world videos.

Moving Cameras. We evaluate the applicability of Fo-
cus on moving cameras using three news channel video
streams. These news videos were recorded with moving
cameras and they change scenes between different news
segments. For moving cameras, we use a cheap object
detector (Tiny YOLO, which is 5× faster than YOLOv2
for the same input image size) as our ingest-time CNN.
Figure 9 shows the end-to-end performance of Focus on
moving cameras.

5X 5X 5X 5X

1

10

cn
n

fo
xn

ew
s

m
sn

bc Av
g

In
ge

st
 ch

ea
pe

r t
ha

n 
In

ge
st

-h
ea

vy
 b

y 
(fa

ct
or

)

27X

122X
34X 49X

1

10

100

1000

cn
n

fo
xn

ew
s

m
sn

bc Av
g

Q
ue

ry
 fa

st
er

 th
an

 
N

oS
co

pe
 b

y 
(fa

ct
or

)
Figure 9: Focus performance on moving cameras. (Left)
Focus ingest cost compared to Ingest-heavy. (Right) Focus
query latency compared to NoScope.

As the figure shows, Focus is effective in reducing query
latency with only a modest ingest cost. Focus achieves a
49× speedup in query latency on average over NoScope,
with ingest cost that is 5× cheaper than Ingest-heavy. We
make two main observations. First, the ingest cost im-
provements on moving cameras (5×) is lower than the
ones on static cameras (57×). This is because moving
cameras require a detector CNN to detect objects, and it
is more costly to run a cheap object detector (like Tiny
YOLO) as opposed to using background subtraction to
detect the objects and then classifying them using a cheap
classifier CNN (like compressed ResNet18). Our design,
however, does not preclude using much cheaper detectors
than Tiny YOLO, and we can further reduce the ingest
cost of moving cameras by exploring even cheaper object
detector CNNs. Second, Focus’ techniques are very effec-
tive in reducing query latency on moving cameras. The
approximate index generated by a cheap detector CNN
significantly narrows down the frames that need to be
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checked at query time. We conclude that the techniques
of Focus are general and can be applied to a wide range
of object detection CNNs and camera types.

Averaging over both static and moving cameras, Fo-
cus’ ingest cost is 48× cheaper than Ingest-heavy and its
queries are 125× faster than NoScope.

We now take a deeper look at Focus’ performance using
representative static cameras.

6.3. Effect of Different Focus Components
Figure 10 shows the breakdown of query latency gains
for two core techniques of Focus: (1) Approximate indexing,
which indexes each object with the top-K results of the
ingest-time CNN, and (2) Approximate indexing + Cluster-
ing, which adds feature-based clustering at ingest time to
reduce redundant work at query time. We show the results
that achieve at least 99% recall and precision. We make
two observations.
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Figure 10: Effect of different Focus components on query
latency reduction

First, approximate indexing is the major source of
query latency improvement. This is because approxi-
mate indexing effectively eliminates irrelevant objects for
each query and bypasses the query-time verification for
high-confidence ingest predictions. As a result, only a
small fraction of frames need to be resolved at query time.
On average, approximate indexing alone is 114× faster
than NoScope in query latency.

Second, clustering is a very effective technique to fur-
ther reduce query latency. Using clustering (on top of ap-
proximate indexing) reduces the query latency by 195×,
significantly better than approximate indexing alone. We
see that clustering is especially effective on surveillance
videos (e.g., coral, lausanne, and oxford) because ob-
jects in these videos tend to stay longer in the camera (e.g.,
“person” on a plaza compared to “car” in traffic videos),
and hence there is more redundancy in these videos. This
gain comes with a negligible cost because we run our
clustering algorithm (§4.3) on the otherwise idle CPUs
of the ingest machine while the GPUs run the ingest-time
CNN model.

6.4. Ingest Cost vs. Query Latency Trade-off
One of the important features of Focus is the flexibility
to tune its system parameters to achieve different appli-

cation goals (§4.4). Figure 11 (the zoom-in region of
Figure 1) depicts three alternative settings for Focus that il-
lustrate the trade-off space between ingest cost and query
latency, using the oxford video stream: (1) Focus-Opt-
Query, which optimizes for query latency by increasing
ingest cost, (2) Focus-Balance, which is the default option
that balances these two metrics (§4.4), and (3): Focus-
Opt-Ingest, which is the opposite of Focus-Opt-Query. The
results are shown relative to the Ingest-heavy and NoScope
baselines. Each data label (I,Q) indicates its ingest cost
is I× cheaper than Ingest-heavy, while its query latency is
Q× faster than NoScope.
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Figure 11: Focus’ trade-off policies on an example video

As Figure 11 shows, Focus offers very good options
in the trade-off space between ingest cost and query la-
tency. Focus-Opt-Ingest is 90× cheaper than Ingest-heavy,
and makes the query 403× faster than a query-optimized
system (NoScope). On the other hand, Focus-Opt-Query
reduces query latency even more (by 698×) but it is still
53× cheaper than Ingest-heavy. As these points in the
design space are all good options compared to the base-
lines, such flexibility enables a user to tailor Focus for
different contexts. For example, a camera that requires
fast turnaround time for queries can use Focus-Opt-Query,
while a video stream that will be queried rarely would
choose Focus-Opt-Ingest to reduce the amount of wasted
ingest cost in exchange for longer query latencies.

Figure 12 shows the (I,Q) values for both Focus-Opt-
Ingest (Opt-I) and Focus-Opt-Query (Opt-Q) for the repre-
sentative videos. As the figure shows, the flexibility to
make different trade-offs exists in most other videos. On
average, Focus-Opt-Ingest is 65× (up to 96×) cheaper
than Ingest-heavy in ingest cost while providing 100× (up
to 443×) faster queries. Focus-Opt-Query makes queries
202× (up to 698×) faster with a higher ingest cost (53×
cheaper than Ingest-heavy). Note that there is no funda-
mental limitation on the spread between Focus-Opt-Query
and Focus-Opt-Ingest as we can expand the search space
for ingest-time CNNs to further optimize ingest cost at
the expense of query latency (or vice versa). We conclude
that Focus enables flexibly optimizing for ingest cost or
query latency for application’s needs.
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Figure 12: Ingest cost vs. query latency trade-off

It is worth noting that the fraction of videos that get
queried can affect the applicability of Focus, especially in
the case where only a tiny fraction of videos gets queried.
While Focus-Opt-Ingest can save the ingest cost by up to
96×, it can be more costly than any purely query-time-
only solution if the fraction of videos that gets queried
is less than 1

96 ≈ 1%. In such a case, a user can still use
Focus to significantly reduce query latency, but the cost
of Focus can be higher than query-time-only solutions.

6.5. Sensitivity to Recall/Precision Target
Figure 13 illustrates Focus’ reduction in query latency
compared to the baselines under different recall/precision
targets. Other than the default 99% recall and precision
target, we evaluate both Focus and NoScope with two
lower targets, 97% and 95%.
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Figure 13: Sensitivity of query latency reduction to re-
call/precision target

We observe that with lower accuracy targets, the query
latency improvement decreases slightly for most videos,
while the ingest cost improvement does not change much
(not graphed). The ingest cost is not sensitive to the accu-
racy target because Focus still runs similar ingest CNNs.
NoScope can however apply more aggressive query-time
optimization to reduce query latency given lower accu-
racy targets. This decreases Focus’ improvement over
NoScope for several videos. On average, Focus is faster
than NoScope in query latency by 195×, 167×, and 169×
with recall/precision of 99%, 97%, and 95%, respectively.
We conclude that Focus’ techniques can achieve signifi-
cant improvements on query latency, irrespective of re-
call/precision targets.

6.6. Sensitivity to Object Class Numbers
We use the 1000 object classes in the ImageNet
dataset [73] to study the sensitivity of Focus’ performance

to the number of object classes (compared to the 80 de-
fault object classes in the COCO [60] dataset). Our result
shows that Focus is 15× faster (on average) in query la-
tency and 57× cheaper (on average) in ingest cost than
the baseline systems, while achieving 99% recall and pre-
cision. We observe that the query latency improvements
with 1000 object classes is lower than the ones with 80
object classes. The reason is that ingest-time CNNs are
less accurate on more object classes, and we need to select
a larger K to achieve the target recall. Nonetheless, the im-
provements of Focus are robust with more object classes
as Focus is over one order of magnitude faster than the
baseline systems when differentiating 1000 object classes.

7. Other Applications
Applications that leverage CNNs to process large and
continuously growing data share similar challenges as
Focus. Examples of such applications are:
1) Video and audio. Other than querying for objects,
many emerging video applications are also based on
CNNs, such as event detection (e.g., [90]), emotion recog-
nition (e.g., [49]), video classification (e.g., [52]), and
face recognition (e.g., [74]). Audio applications such as
speech recognition (e.g., [19]) are also based on CNNs.
2) Bioinformatics and geoinformatics. Many bioinfor-
matics and geoinformatics systems leverage CNNs to
process a large dataset, such as anomaly classification in
biomedical imaging (e.g., [57, 72]), information decoding
in biomedical signal recordings (e.g., [82]), and pattern
recognition in satellite imagery (e.g., [20, 35]).

Naturally, these applications need to answer user-
specified queries, such as “find all brain signal recordings
with a particular perception” or “find all audio record-
ings with a particular keyword”. Supporting these queries
faces similar challenges to Focus, as a system either: (i)
generates a precise index at ingest time, which incurs high
cost; or (ii) does most of the heavy-lifting at query time,
which results in high query latency. Hence, Focus’ archi-
tecture offers a low-cost and low-latency option: building
an approximate index with cheap CNNs at ingest time
and generating precise results based on the approximate
index at query time. While the indexing structure may
need to be adapted to different applications, we believe
Focus’ architecture and techniques can benefit many of
these emerging applications.

8. Related Work
To our knowledge, Focus is the first system that offers low-
cost and low-latency queries for CNN-based object de-
tection in videos by effectively splitting query-processing
work between ingest time and query time. We discuss key
works related to our system.
1) Cascaded classification. Various works in vision re-
search propose speeding up classification by cascading a
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series of classifiers. Viola et al. [88] is the earliest work
that cascades a series of classifiers (from the simplest to
the most complicated) to quickly disregard regions in an
image. Many improvements follow (e.g., [58, 91, 92]).
CNNs are also cascaded (e.g., [29, 43, 56, 83]) to reduce
object detection latency. Our work is different in two
major ways. First, we decouple the compressed CNN
from the GT-CNN, which enables us to choose from a
wider range of ingest-time CNNs and thus enables better
trade-offs between ingest cost and query latency, a key
aspect of our work. Second, we cluster similar objects
using CNN features to eliminate redundant work, which
is an effective technique for video streams.
2) Context-specific model specialization. Context-
specific specialization of models can improve accu-
racy [63] or speed up inference [43, 51, 75]. Among
these, the closest to our work is NoScope [51]. No-
Scope optimizes for the specified class at query-time using
lightweight binary classifiers. In contrast, Focus’ architec-
ture splits work between ingest and query times, leading
to two orders of magnitude lower latency (§6). To achieve
these gains, Focus uses techniques to index all possible
classes at ingest-time, and thus can handle any class that
will get queried in the future. Focus’ indexing is espe-
cially effective for less frequent object classes, which is
arguably of more interest for video querying systems.
3) Stream processing systems. Systems for general
stream data processing (e.g., [1,18,22,25,31,32,61,66,86,
87, 95]) and specific to video stream analytics (e.g., [96])
mainly focus on general stream processing challenges
such as load shedding, fault tolerance, distributed exe-
cution, or limited network bandwidth. In contrast, our
work is specific to querying on recorded video data with
ingest and query trade-offs, and, thus, mostly orthogonal.
Focus coud be integrated with one of these general stream
processing systems.
4) Video indexing and retrieval. A large body of work
in multimedia and information retrieval research proposes
various content-based video indexing and retrieval tech-
niques to facilitate queries on videos (e.g., [46,55,80,81]).
Among them, most works focus on indexing videos for
different types of queries, such as shot boundary detection
(e.g., [94]), semantic video search (e.g., [33,37,41]), video
classification (e.g., [27]), spatio-temporal information-
based video retrieval (e.g., [38, 70]) or subsequence simi-
larity search (e.g., [76, 97]). Some works (e.g., [36, 79])
focus on the query interface to enable querying by key-
words, concepts, or examples. These works are largely
orthogonal to our work because we focus on reducing cost
and latency of CNN-based video queries, not on creating
an indexing structure for new query types or query inter-
faces. We believe our approach of splitting ingest-time
and query-time work can be extended to many different
types of video queries (§7).

5) Database indexing. Using index structures to reduce
query latency [77] is a commonly-used technique in con-
ventional databases (e.g., [26, 54]), key-value databases
(e.g., [62]), similarity search (e.g., [39,40]), graph queries
(e.g., [93]), genome analysis (e.g., [21, 89]), and many
others. Our Ingest-heavy and Ingest-NoScope baselines are
also examples that index all video frames at ingest time.
While queries are naturally faster with these baselines,
they are too costly and are potentially wasteful for large-
scale videos. In contrast, our work offers new trade-off
options between ingest cost and query latency by creating
low-cost approximate indexes at ingest time and retaining
high accuracy with little work at query time.

9. Conclusion
Answering queries of the form, find me frames that con-
tain objects of class X, is an important workload on
recorded video datasets. Such queries are used by an-
alysts and investigators for various immediate purposes,
and it is crucial to answer them with low latency and
low cost. We present Focus, a system that flexibly di-
vides the query processing work between ingest time and
query time. Focus performs low-cost ingest-time analytics
on live video that later facilitates low-latency queries on
the recorded videos. At ingest time, Focus uses cheap
CNNs to construct an approximate index of all possible
object classes in each frame to retain high recall. At
query time, Focus leverages this approximate index to pro-
vide low latency, but compensates for the lower precision
by judiciously using expensive CNNs. This architecture
enables orders-of-magnitude faster queries with only a
small investment at ingest time, and allows flexibly trad-
ing off ingest cost and query latency. Our evaluations
using real-world videos from traffic, surveillance, and
news domains show that Focus reduces ingest cost on av-
erage by 48× (up to 92×) and makes queries on average
125× (up to 607×) faster compared to state-of-the-art
baselines. We conclude that Focus’ architecture and tech-
niques make it a highly practical and effective approach to
querying large video datasets. We hope that the ideas and
insights behind Focus can be applied to designing efficient
systems for many other forms of querying on large and
continuously-growing datasets in many domains, such as
audio, bioinformatics, and geoinformatics.
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Abstract
Nickel is a framework that helps developers design and
verify information flow control systems by systemati-
cally eliminating covert channels inherent in the interface,
which can be exploited to circumvent the enforcement of
information flow policies. Nickel provides a formulation
of noninterference amenable to automated verification,
allowing developers to specify an intended policy of per-
mitted information flows. It invokes the Z3 SMT solver
to verify that both an interface specification and an im-
plementation satisfy noninterference with respect to the
policy; if verification fails, it generates counterexamples
to illustrate covert channels that cause the violation.
Using Nickel, we have designed, implemented, and

verified NiStar, the first OS kernel for decentralized in-
formation flow control that provides (1) a precise specifi-
cation for its interface, (2) a formal proof that the interface
specification is free of covert channels, and (3) a formal
proof that the implementation preserves noninterference.
We have also applied Nickel to verify isolation in a small
OS kernel, NiKOS, and reproduce known covert chan-
nels in the ARINC 653 avionics standard. Our experience
shows that Nickel is effective in identifying and ruling out
covert channels, and that it can verify noninterference for
systems with a low proof burden.

1 Introduction
Operating systems often provide information flow con-
trol mechanisms to improve application security. These
mechanisms enforce policies ranging from strict isola-
tion to more flexible models using labels [12, 60]. By
tracking and mediating data access, they aim to regu-
late the propagation of information among applications
to provide secrecy and integrity guarantees.
Malicious applications can circumvent information

flow control systems by encoding and transferring infor-
mation indirectly, such as through temporary files, pro-
cess names, or CPU and memory usage [47]. Many such
covert channels exist not only in the POSIX interface but
also in specialized information flow control systems (see
§2 for a survey). For example, Krohn et al. [45] have de-
scribed covert channels in Asbestos [15] that allow appli-
cations to leak data at a high bandwidth. Covert channels

in the interface are critical flaws as no secure implementa-
tion of such an interface can exist [44]. Eliminating these
channels at the interface level is thus a key challenge in
the design of information flow control systems.

Even if an interface specification is free of covert chan-
nels, it remains challenging to correctly implement the
system—incorrect or missing checks will invalidate the
guarantees of information flowcontrol. For instance, both
KLEE [6: §5.3] and STACK [78: §6.1] have found such
bugs in HiStar [82]. As another example, the implemen-
tation of Flume [45] relies on the Linux kernel, which is
likely to contain bugs given its complexity [8, 51, 63].

This paper presents Nickel, a framework for system-
atically eliminating covert channels from such systems
through formal verification of noninterference. Nonin-
terference is a general security criterion that has been
extensively studied in prior work [24, 53, 67]. Intuitively,
given two mutually distrustful threads between which in-
formation flow is prohibited, noninterference requires the
output of operations in one thread to be independent of op-
erations in the other thread. This restriction ensures that a
malicious thread can neither infer secrets nor influence the
execution path of another thread via operations defined
in the interface; any violation indicates a covert channel.
However, applying noninterference to reason about an in-
terface requires considering the precise behavior of each
operation as well as the interaction of all pairs of opera-
tions [38, 39], which is non-trivial. Nickel helps automate
this reasoning using an SMT solver such as Z3 [11].

Nickel introduces both a formulation of noninterfer-
ence and new proof strategies that are amenable to auto-
mated verification. It asks developers to specify a con-
cise and intuitive policy that describes permitted flows in
a system, and checks whether a given interface specifi-
cation satisfies noninterference for that policy. Further-
more, it extends our previous work on push-button verifi-
cation [62, 70] to check whether a given implementation
preserves noninterference through refinement. Verifying
both an interface and an implementation this way incurs
a low proof burden (see §8). An additional advantage of
automated reasoning is that Nickel will provide a coun-
terexample when it finds a covert channel in either the
interface or the implementation, which is valuable for
debugging and revising the design.
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We have applied Nickel to three systems. The foremost
is NiStar, a new OS kernel with provably secure decen-
tralized information flow control (DIFC) [60]. DIFC is
a flexible mechanism that allows applications to express
powerful policies, but this flexibility makes it challeng-
ing to analyze covert channels and security implications
of DIFC systems [44]. Inspired by HiStar [82], NiStar
provides DIFC support through a small number of kernel
object types. Unlike HiStar, however, NiStar provides a
formal proof that both its interface and implementation
satisfy noninterference, ruling out covert channels in the
design. To the best of our knowledge, NiStar is the first
formally verified DIFC OS kernel.
To demonstrate Nickel’s applicability to a broader set

of systems, we have used Nickel to verify NiKOS, an OS
kernel that mirrors mCertiKOS [10] to enforce process
isolation. We have also applied Nickel to formalize and
analyze the specification of the communication interface
ofARINC653 [1], an industrial avionics standard. Nickel
was able to reproduce the three covert channels in ARINC
653 previously reported by Zhao et al. [86].
Nickel reasons about sequential (uniprocessor) systems

and provides no guarantees in concurrent settings. It fo-
cuses on eliminating covert channels inherent in the in-
terface; physical effects (e.g., timing, sound, and energy)
that are not captured by the interface specification are be-
yond the scope of this paper. We discuss these limitations
further in §3.5.
In summary, this paper makes three contributions:

(1) a formulation of noninterference and proof strategies
amenable to automated reasoning; (2) the Nickel frame-
work for verifying noninterference for the interface and
implementation of information flow control systems; and
(3) the formal specifications of three systems, including
the first formally verified DIFC OS kernel.
The rest of this paper is organized as follows. §2 sur-

veys common patterns of covert channels in interfaces. §3
formalizes noninterference and introduces theorems for
proving noninterference. §4 gives an overview of the de-
velopment workflow usingNickel. §5 presents guidelines
for interface design. §6 describes the design, implemen-
tation, and verification of DIFC in NiStar. §7 describes
the verification of isolation in NiKOS and ARINC 653.
§8 reports our experience with using Nickel. §9 relates
Nickel to prior work. §10 concludes.

2 Covert channels in interfaces
Nickel’s main goal is to help developers identify and
eliminate covert channels in the interface of an informa-
tion flow control system. This section surveys common
examples of covert channels and shows how to apply non-
interference to understand them.
Consider two threadsT1 andT2 that are prohibited from

communicating as per the information flow policy. What

kinds of interface operations can be exploited by the two
threads to collude and bypass the policy (or equivalently,
allow an adversarialT2 to infer secret information from an
uncooperative T1)? As a simple example, if an operation
introduces sharedmemory locations that both threads can
read and write, then the two threads can use these mem-
ory locations as covert channels to transfer information.
Unintended covert channels, however, are often subtle
and difficult to spot, as detailed next.

Resource names. Resource names, such as thread iden-
tifiers, page numbers, and port numbers, can be used
to encode information. Consider a system call spawn that
creates new threads with sequential identifiers. ThreadT2
first spawns a thread with an identifier, say, 3; the other
threadT1 then spawns x times, creating threads with iden-
tifiers from 4 to x+3; and threadT2 spawns another thread,
whose identifier will be x + 3 + 1. In doing so, thread T2
learns the secret x from T1 through the difference of the
identifiers of the two threads it has created [10: §5].

Resource exhaustion. Suppose that the system has a total
of N pages shared by all threads. Thread T1 first allocates
N−1 pages, and encodes a one-bit secret by either allocat-
ing the last page or not. The other thread T2 then tries to
allocate one page and learns the secret based on whether
the allocation succeeds [82: §3]. This covert channel is
effective especially when a resource is limited and can be
easily exhausted.

Statistical information. A thread’s world-readable infor-
mation, such as its name, number of open file descriptors,
and CPU and memory usage, can be used to encode se-
cret data or by adversarial threads to learn secrets [35, 85].
For example, if thread T1’s memory usage is accessible
to another thread T2 through procfs or system calls, T1
could leak a secret x by allocating x pages.

Error handling. Error handling is known to be prone to
information leakage [54], such as the TENEX password-
guessing attack using page faults [48] and the POODLE
attack against TLS [55]. As an example, consider a sys-
tem call for querying the status of a page, which returns
-ENOENT if the given page is free and -EACCES if the page
is in use but not accessible by the calling thread. Thread
T1 encodes a one-bit secret by allocating a particular page
or not; the other thread T2 queries the status of that page
and learns the secret based on whether the error code is
-ENOENT or -EACCES.

Scheduling. Suppose an OS kernel uses a round-robin
scheduler that distributes time slices evenly among
threads. Thread T1 encodes a secret by forking a number
of threads (e.g., a fork bomb), which causes the other
thread T2 to observe the reduction of time allocated for
itself and learn the secret from T1; alternatively, T2 can
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continuously ping a remote server, which will learn the
secret from the time between pings [82: §9]. Access to
only logical time suffices for such covert channels.

External devices and services. Suppose the system al-
lows threads to communicate with external devices and
services. Thread T1 can write secret data to the registers
of a device, or encode the secret as the frequency of ac-
cessing a device or even through a service bill [47]; the
other thread T2 can then retrieve the secret at a later time
from the same device or service.

Mutable labels. Many information flow control systems
express security policies by assigning labels to objects.
Label changes complicate such systems and can lead to
covert channels [12]. As an example, consider a system
where each thread can be labeled as either tainted or
untainted. The systemenforces a tainting policy: a tainted
thread cannot transfer information to an untainted thread
without tainting it. To enforce this policy, the system
raises the label of an untainted thread to tainted when
another tainted thread sends data to it. Suppose thread
T1 is tainted and thread T2 is untainted. To bypass the
policy, T2 first spawns an untainted helper thread H. T1
encodes a one-bit secret by choosing whether to send data
to taint H, which in turn chooses to send data to T2 only
if it is untainted and do nothing otherwise. In this way,
T2 learns the secret from T1 by whether it receives data
from H, without becoming tainted itself [44: §3].

2.1 Applying noninterference
Given two threads T1 and T2 that are prohibited from
communicating with each other, noninterference states
that the output of operations in one thread should not
be affected by whether operations in the other thread
occur. Now we will show how to apply noninterference
to uncover covert channels.
Take the spawn system call as an example, which

returns sequential thread identifiers and introduces
a covert channel due to resource names. Figure 1
illustrates this channel. We denote an action of invoking
a system call as a left half-circle spawn and its return
value as a right half-circle 3 . We use different colors to
distinguish system calls from different threads: spawn1
in T1; spawn0 and spawn2 in T2.

We apply noninterference to uncover the covert channel
introduced by spawn in three steps. First, construct a
trace of actions from both threads, for instance, spawn0
spawn1 spawn2 . Assume that the corresponding return
values (i.e., outputs) are 3 4 5 , as spawn sequentially
allocates identifiers. Second, to examine possible effects
of T1 on T2, construct a new trace that purges the actions
from T1 and retains the actions only from T2, resulting in
spawn0 spawn2 . Third, replay this purged trace to the
system, obtaining a new sequence of outputs 3 4 . This

s0 s1 s2 s3

s0 s1 s′2

spawn0 3 spawn1 4 spawn2 5

spawn0 3 spawn2 4

Figure 1: The output of spawn2 changes from 5 in the original trace (first
row) to 4 in the purged trace (second row), indicating a covert channel.
Circles denote states, arrows denote state transitions, left half-circles
denote actions, and right half-circles denote outputs.

sequence differs from the original output of the same
actions, which is 3 5 . The change of output in T2
(in particular, the return value of spawn2 ) caused by an
action in T1 violates noninterference, indicating a covert
channel with which T1 may transfer information to T2.
On the other hand, with a version of spawn that does not
introduce a covert channel, the outputs of T2’s actions in
the purged and original traces would be the same.

One can similarly apply noninterference to uncover the
other covert channels described in this section. The chal-
lenge is to find a trace of actions that manifests the covert
channel, and if there are no such channels, to exhaustively
show that no trace violates noninterference. Nickel au-
tomates this task using formal verification techniques, as
we will describe next.

3 Proving noninterference
This section formalizes the notion of noninterference used
in Nickel and presents the main theorems that enable
Nickel to prove noninterference for systems.

First, we address how to specify the intended policy of
an information flow control system. The policy is trusted
as the top-level specification of the system, which will be
used to catch and fix potential covert channels in both the
interface specification and the implementation (§3.1).

Next, we give a formal definition of noninterference
in terms of traces of actions, which precisely captures
whether an interface specification satisfies a given pol-
icy (§3.2).

To prove noninterference for an interface specification,
Nickel introduces an unwinding verification strategy that
requires reasoning only about individual actions, rather
than traces of actions (§3.3). To extend the guarantee of
noninterference to an implementation, Nickel introduces
a restricted form of refinement that preserves noninterfer-
ence (§3.4). Both strategies are amenable to automated
verification using an SMT solver.

We end this section with a discussion of the limitations
of the Nickel approach (§3.5).

3.1 Policy
We model the execution of a system as a state machine in
a standard way [67]. A systemM is defined as a tuple

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    289



⟨A,O, S, init, step, output⟩, where A is the set of actions,
O is the set of output values, S is the set of states, init
is the initial state, step ∶ S × A→ S is the state-transition
function, and output ∶ S × A→ O is the output function.
An action transitions the system from state to state. In

the context of an OS, an action can be either a user-space
operation (e.g., memory access), or the handling of a
trap due to system calls, exceptions, or scheduling. Each
action consists of an operation identifier (e.g., the system
call number) and arguments. We write output(s, a) and
step(s, a) to denote the output value (e.g., the return value
of a system call) and the next state, respectively, for the
state s and action a. Actions are considered to be atomic;
for instance, we assume that an OS kernel executes each
trap handler with interrupts disabled on a uniprocessor
system [40, 62].
A trace is a sequence of actions. We use run(s, tr)

to denote the state produced by executing each action in
trace tr starting from state s. The run function is defined
as follows:

run(s, ε) B s

run(s, a ○ tr) B run(step(s, a), tr).

Here, ε denotes the empty trace, and a ○ tr denotes the
concatenation of action a and trace tr.

Definition 1 (Information Flow Policy). A policy P for
systemM is defined as a tuple ⟨D,↝, dom⟩, where D is the
set of domains, ↝ ⊆ (D × D) is the can-flow-to relation
between two domains, and the function dom ∶ A × S → D
maps an action with a state to a domain.

Intuitively, a domain is an abstract representation of the
exercised authority of an action. A policy associates each
action a performed from state s with a domain, denoted
by dom(a, s); the can-flow-to relation↝ defines permitted
information flows among these domains. The goal of a
policy is to explicitly specify permitted flows and ensure
that any trace of actions, given their specifications, will
not lead to covert channels that enable unintended flows
and violate the policy.
Below we show the policies for two example sys-

tems. We write u↝ v and u  v to mean (u, v) ∈ ↝
and (u, v) ∉↝, respectively.

Example (Tainting). Consider the label-based system
mentioned in §2: it has a number of threads, where the
label of each thread is either tainted or untainted. The sys-
tem enforces a tainting policy as depicted in Figure 2. The
policy permits information flow from untainted threads
to either untainted or tainted threads, and between two
tainted threads, but it prohibits untainted threads from
directly communicating with tainted ones.
For this policy, we designate {tainted, untainted} as

the set of domains. The can-flow-to relation consists of

tainteduntainted

Figure 2: The tainting policy: information cannot flow from tainted
threads to untainted threads.

p1 p2 . . . pn−1

p0

Figure 3: The isolation policy of NiKOS: information cannot flow
between any two of the regular processes p1, p2, . . . , pn−1 (except
through the scheduler p0 indirectly).

the following three permitted flows: tainted↝ tainted,
untainted↝untainted, and untainted↝ tainted. The dom

function returns the label of the thread currently running.
NiStar employs amore sophisticated version of this policy
using DIFC (see §6).

Example (Isolation). Consider a Unix-like kernel with
n processes: a special scheduler process p0, and regular
processes p1, p2, . . . , pn−1. The system enforces a process
isolation policy as depicted in Figure 3, which permits in-
formation flows from a process to itself, from the sched-
uler to any process, and from any process to the scheduler;
no information flow is permitted between any two regular
processes except indirectly through the scheduler [10].

To specify this isolation policy, we designate the
processes {p0, p1, . . . , pn−1} as the set of domains, where
p0 is the scheduler. The can-flow-to relation consists
of the permitted flows p0↝ pi , pi↝ p0, and pi↝ pi , for
all i ∈ [0, n − 1]. The dom function returns the currently
running process as the domain for system call actions,
and returns the scheduler p0 as the domain for context
switching actions. NiKOS employs this policy (see §7).

We highlight two features in our policy definition
(Definition 1). First, it allows the can-flow-to relation ↝
to be intransitive [67]. For instance, the isolation policy
permits processes p1 and p2 to communicate through
the scheduler, but prohibits them from communicating
directly with each other. In other words, p1↝ p0 and
p0↝ p2 do not have to imply p1↝ p2, though that would
also be accepted by Nickel if it were the intended policy.

This generality enables Nickel to support a broad range
of policies, as practical systems often need downgrading
operations (e.g., intentional declassification and endorse-
ment) [49]. As a simple example, a system may prefer to
have an untrusted application send data to an encryption
program, which in turn is permitted to reach the network,
while the application itself is prohibited from sending
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sources(ε, u, s) B {u}

sources(a ○ tr, u, s) B sources(tr, u, step(s, a)) ∪
⎧⎪⎪
⎨
⎪⎪⎩

{dom(a, s)} if ∃v ∈ sources(tr, u, step(s, a)). dom(a, s)↝ v

∅ otherwise.

Figure 4: sources(tr, u, s) is the set of domains that are allowed to influence domain u over a trace tr, starting from state s.

purge(ε, u, s) B {ε}

purge(a ○ tr, u, s) B {a ○ tr′ ∣ tr′ ∈ purge(tr, u, step(s, a))} ∪
⎧⎪⎪
⎨
⎪⎪⎩

∅ if dom(a, s) ∈ sources(a ○ tr, u, s)
purge(tr, u, s) otherwise.

Figure 5: purge(tr, u, s) is the set of all sub-traces of tr that retain the actions that are allowed to influence domain u, starting from state s.

data directly over the network. Such policies require
intransitive can-flow-to relations [67, 80].
Second, in classical noninterference [24, 67], the dom

function is state-independent (A→ D). The definition of
dom used in Nickel is state-dependent (A × S → D). This
extension is necessary for reasoning about many systems
in which the domain (i.e., authority) of an action depends
on the currently running thread or process [56, 68]. As
we will show next, we have developed a definition of
noninterference and theorems for proving noninterference
that accommodate this extension.

3.2 Noninterference
Given a system and a policy for the system, what kind of
action can violate the policy and introduce covert chan-
nels? As described in §2, to check for noninterference,
one can construct a trace of actions, obtain a purged trace
by removing actions from the original trace as per the pol-
icy, and compare the output of the corresponding actions
in both traces—any change of output indicates a covert
channel. Below we give a precise definition of noninter-
ference that captures this intuition, in three steps.
First, suppose that a system has executed a trace tr to

reach the state ŝ = run(init, tr), and is about to perform
action â next. To construct a purged trace of tr, we need
to identify the actions that the policy permits to influence
a domain u and therefore should be retained in the trace.
This set is defined using the sources(tr, u, s) function
shown in Figure 4, which returns the set of domains that
can transfer information to domain u over trace tr from
state s, either directly specified by the can-flow-to relation
or indirectly through the domain of another intermediate
action in the trace.
Second, to obtain a purged trace that retains the ac-

tions identified by sources, we define the purge(tr, u, s)
function as shown in Figure 5. It returns the set of all
sub-traces of tr where each action in the sources of u from
state s has been retained; the actions whose domains are
not identified by sources are optionally removed.

Third, let tr′ denote a purged trace in the set
purge(tr, dom(â, ŝ), init); like other traces in this set,
tr′ is obtained by retaining actions in trace tr that can
transfer information to action â. Now let’s replay the
purged trace tr′ from the start, resulting in a new state
ŝ′ = run(init, tr′). If the system satisfies noninterfer-
ence for the policy, then invoking â from state ŝ should
produce the same output as invoking â from state ŝ′.

Formally, we define noninterference as follows:

Definition 2 (Noninterference). Given a system M =
⟨A,O, S, init, step, output⟩ and a policy P = ⟨D,↝, dom⟩,
M satisfies noninterference for P if and only if the fol-
lowing holds for any trace tr, action a, and purged trace
tr′ ∈ purge(tr, dom(a, run(init, tr)), init):

output(run(init, tr), a) = output(run(init, tr′), a).

To ensure that our definition of noninterference is
reasonable, we show two properties of this definition.
First, recall that we use a state-dependent dom func-
tion; if dom is restricted to be state-independent, that is,
dom(a, s) = dom(a) holds for any a and s, then our defini-
tion reduces to classical noninterference [67], suggesting
that our definition is a natural extension.

Second, a reasonable definition of noninterference
should be monotonic [17]: a system satisfying non-
interference for some policy should also satisfy non-
interference for a more relaxed policy in which more
flows are permitted. More formally, given two policies
P = ⟨D,↝, dom⟩ and P ′ = ⟨D,↝′, dom⟩, we say P ′ con-
tains P to mean that any flow permitted by P is also
permitted by P ′ (i.e., ↝ ⊆ ↝′). We have proved the fol-
lowing monotonicity property as a sanity check on our
definition of noninterference: if a system M satisfies
noninterference for a policy P , then it also satisfies non-
interference for any policy P ′ that contains P .

3.3 Unwinding
It is difficult to directly apply Definition 2 to prove non-
interference for a given system and policy, as it requires
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I is a state invariant:
I(init) ∧ (I(s)⇒ I(step(s, a)))

u
≈ is an equivalence relation:

u
≈ is reflexive, symmetric, and transitive

u
≈ is consistent with dom:

I(s) ∧ I(t) ∧ s
dom(a,s)

≈ t ⇒ dom(a, s) = dom(a, t)
u
≈ is consistent with ↝:
I(s) ∧ I(t) ∧ s

u
≈ t ⇒ (dom(a, s)↝u⇔ dom(a, t)↝u)

output consistency:

I(s) ∧ I(t) ∧ s
dom(a,s)

≈ t ⇒ output(s, a) = output(t, a)
local respect:
I(s) ∧ dom(a, s) u⇒ s

u
≈ step(s, a)

weak step consistency:

I(s) ∧ I(t) ∧ s
u
≈ t ∧ s

dom(a,s)
≈ t ⇒ step(s, a)

u
≈ step(t, a)

Figure 6: Unwinding conditions. Each formula is universally quantified
over its free variables, such as domain u, action a, and states s and t.

reasoning about all possible traces. A standard approach
is to define a set of unwinding conditions, which together
imply noninterference but require reasoning only about
individual actions. We generalize the classical unwind-
ing conditions given by Rushby [67] to obtain an unwind-
ing theorem that accommodates our state-dependent dom
function and is amenable to automated verification. Prov-
ing noninterference using the unwinding theorem requires
two extra inputs from developers: a state invariant and
an observational equivalence relation, as described next.
A state invariant I [46] is a state predicate that must

hold on all reachable states (i.e., the set of states pro-
duced by running any trace starting from the init state).
The state invariant overapproximates the set of reachable
states, as it may also hold for unreachable states. If the
unwinding theorem holds for states satisfying I, then
it holds for all reachable states of the system. We use
this overapproximation to enable automation: in contrast
to reachability, which cannot be expressed in first-order
logic, the state invariant can be both expressed and effec-
tively checked with an SMT solver.
The next input required for the unwinding theorem

is an observational equivalence relation ≈ ⊆ (D × S × S).
The observational equivalence describes, for each do-
main, the set of states that appear to that domain to be
indistinguishable. We write u

≈ to mean the binary rela-
tion {(s, t) ∣ (u, s, t) ∈ ≈} relating all equivalent states for
domain u, and s

u
≈ t to mean (u, s, t) ∈ ≈.

We then define the unwinding conditions of systemM
for policy P , shown in Figure 6, and prove the following
unwinding theorem:

Theorem 1 (Unwinding). A systemM satisfies nonin-
terference for a policy P if there exists a state invariant I
and an observational equivalence relation ≈ for which the
unwinding conditions in Figure 6 hold.

The unwinding theorem obviates the need to reason
about traces to prove noninterference; instead, it suffices
to show that the unwinding conditions hold for each ac-
tion. This theorem enables Nickel to automate the check-
ing using the Z3 SMT solver (see §4). Both the state
invariant I and the observational equivalence relation ≈
are untrusted: any instances that satisfy the conditions
are sufficient to establish noninterference.

We give some intuition behind the unwinding theo-
rem. The first four conditions are natural: they ask for
a reasonable state variant I and observational equiva-
lence relation ≈ (i.e., u≈ should be an equivalence relation
and be consistent with the policy). The remaining three
conditions, output consistency, local respect, and weak
step consistency, provide more hints to interface design,
as follows. As a shorthand, we say “objects” to mean
individual storage locations in the system state.

First, the output of an action should depend only on
objects that the domain of the action can read. Restricting
the output prevents an adversarial application from in-
ferring information about system state via return values,
such as the error-handling channel described in §2.

Second, if an action attempts to modify an object, the
domain of the action should be able to write to that ob-
ject, and its new value should depend only on the old
value and objects that the domain of the action can read.
This requirement prevents unintended flows while updat-
ing the system state, such as the resource-name channel
introduced by spawn sequentially allocating identifiers.

Third, if an action attempts to create a new object, that
new object should have equal or less authority than the do-
main of the action; similarly, if an object becomes newly
readable after an action, then the domain of the action
should have been able to read that object before the call.
These restrictions preclude “runaway” authority—no ac-
tion can arbitrarily increase the authority of its domain,
or create an object more powerful than itself.

3.4 Refinement
Refinement is widely used for verifying systems: devel-
opers describe the intended system behavior as a high
level, abstract specification and check that any behav-
ior exhibited by a low level, concrete implementation is
allowed by the specification. Refinement allows develop-
ers to reason about many properties of the system at the
specification level, which is often simpler than reasoning
about the implementation directly.

In our case, it would be ideal to prove noninterference
(using the unwinding theorem) for an interface specifica-
tion, and extend that guarantee to an implementation that
refines the specification. However, it is well known that
noninterference is generally not preserved under refine-
ment [25, 52]; for example, the implementationmay intro-
duce extra stuttering steps that leak information. Nickel
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supports a restricted form of refinement over state ma-
chines and policies. We show here that this refinement
preserves noninterference as defined in §3.2.
Let’s consider the following systems:
• M1 = ⟨A,O, S1, init1, step1, output1⟩, and
• M2 = ⟨A,O, S2, init2, step2, output2⟩.

These two systems share the set of actions A and the set
of outputs O, but differ in the state spaces, as well as the
state-transition and output functions. One may consider
M1 as the specification andM2 as the implementation.
We say thatM2 is a data refinement ofM1 to mean that
they produce the same output for any trace [33, 46]. Data
refinement is particularly useful for verifying systems
with a well-defined interface, such as OS kernels [41, 62].
A standard way to prove data refinement ofM1 byM2

is to ask developers to identify a data refinement relation
∝ ⊆ (S2 × S1); we write s2∝ s1 to mean (s2, s1) ∈∝. Let
I2 denote a state invariant forM2. To prove thatM2
is a data refinement ofM1, it suffices to show that the
following refinement conditions hold:

• init2∝ init1.
• I2(s2) ∧ s2∝ s1 ⇒ step2(s2, a)∝ step1(s1, a).
• I2(s2)∧ s2∝ s1 ⇒ output2(s2, a) = output1(s1, a).

Each formula is universally quantified over s1, s2, and a.
Given policiesP1 = ⟨D,↝, dom1⟩ andP2 = ⟨D,↝, dom2⟩

for systemsM1 andM2, respectively, we say thatP2 is a
policy refinement ofP1 with respect toM1 andM2 if and
only if the following holds for any action a and trace tr:
dom1(a, run1(init1, tr)) = dom2(a, run2(init2, tr)). Here
run1 and run2 apply a trace starting from a given state for
M1 andM2, respectively (§3.2).
With these notions of data refinement and policy refine-

ment, we have proved the following refinement theorem
for noninterference:

Theorem 2 (Refinement). Given two systemsM1 and
M2 and policy P forM1,M2 satisfies noninterference
for any policy refinement of P with respect toM1 and
M2 if:

• there exists a state invariant I1 of systemM1 and an
observational equivalence relation ≈ for which the
unwinding conditions ofM1 for P hold; and

• there exists a state invariant I2 of systemM2 and a
data refinement relation∝ for which the refinement
conditions ofM1 byM2 hold.

The refinement theorem enables Nickel to check non-
interference for an implementation by checking the un-
winding conditions for the interface specification and the
refinement conditions (see §4). As with the unwinding
theorem, the state invariants I1 and I2, the observational
equivalence relation ≈, and the data refinement relation∝
are untrusted for establishing noninterference.

3.5 Discussion and limitations
Nickel’s formulation of noninterference falls into the cat-
egory of intransitive noninterference [67]; in other words,
it allows the can-flow-to relation of a policy to be either
transitive or intransitive. As explained in §3.1, this flex-
ibility is particularly useful for verifying practical sys-
tems, which often require downgrading operations. In
addition, unlike classical noninterference, Nickel uses a
state-dependent dom function, inspired by the formulation
used to verify multiapplicative smart cards [68] and the
seL4 kernel [57].

Nickel extends previous work in the following ways:
the formulation supports a general set of policies and
systems, which enables us to verify DIFC in NiStar (§6)
and isolation in NiKOS and ARINC 653 (§7); all of its
verification conditions for unwinding and refinement are
expressible using an SMT solver, enabling automated ver-
ification to minimize the proof burden; and it provides a
restricted form of refinement that preserves noninterfer-
ence froman interface specification to an implementation.

Nickel’s formulation of noninterference has the follow-
ing limitations. It cannot uncover covert channels based
on resources that are not captured in the interface spec-
ification, such as timing, sound, and energy. Modeling
the effects of these resources is an orthogonal problem.
Recent microarchitectural attacks [5, 42, 50] suggest the
need for new hardware designs and primitives in order to
eliminate such channels [21, 22].

Nickel does not support reasoning about concurrent
systems. Concurrency is challenging not just for verifica-
tion in general, but also for its implications on noninter-
ference [71, 75]. In addition, Nickel models systems as
deterministic state machines and requires developers to
eliminate nondeterminism from the interface design (see
§5). This requirement enables better proof automation
and simplifies noninterference under refinement, but it
restricts the types of interfaces that Nickel can verify [77].

Nickel’s can-flow-to relation ↝ is state-independent,
which means that Nickel cannot reason about dynamic,
state-dependent policies [17] (though state-dependent dom
functions partially compensate for this limitation). More-
over, Nickel’s notion of refinement requires the interface
specification and the implementation to use the same sets
of actions and domains; this equality is sufficient for
verifying systems like NiStar and NiKOS. Extending
Nickel to support dynamic policies and more flexible re-
finements [76] would be useful future work.

4 Using Nickel
This section explains how the Nickel framework works
and describes the steps needed to design and verify infor-
mation flow control systems using Nickel.

Figure 7 depicts an overview of the Nickel framework
and the required inputs from system developers (shaded
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Figure 7: An overview of development flow using Nickel. Shaded
boxes denote files written by system developers and the rest are provided
by the framework. Circled numbers denote the steps. Solid and dashed
arrows denote proof flows in SMT and Coq, respectively.

boxes with circled numbers). As part of the framework,
the unwinding and refinement theorems (Theorem 1 and
Theorem 2) serve as the metatheory for Nickel. We have
formalized and proved both theorems using the Coq in-
teractive theorem prover [74].
Developers write the system implementation in C and

specify the rest of the inputs in Python. In particular, the
development flow of using Nickel is the following:
1. Write the intended information flow policy to serve

as the top-level specification of the system.
2. Model the system as a state machine and write a pre-

cise specification of each operation in the interface.
3. Construct a state invariant and observational equiv-

alence for the interface specification, and invoke
Nickel to check the unwinding conditions.

4. Implement each operation in the interface.
5. Construct a state invariant for the implementation

and data refinement between the interface specifica-
tion and the implementation, and invoke Nickel to
check the refinement conditions.

Nickel extends the specification and verification in-
frastructure from Hyperkernel [62] to support reasoning
about noninterference. It reduces all the inputs to SMT
constraints—for instance, by performing symbolic exe-
cution on the LLVM intermediate representation of the
implementation—and invokes Z3 to verify noninterfer-
ence by checking the unwinding and refinement condi-
tions. As with Hyperkernel, the initialization and glue
code of the implementation is unverified. Interested read-
ers can refer to Nelson et al. [62] for more information.
For verifying noninterference for an interface specifica-

tion, the trusted computing base includes the information
flow policy, the checker of unwinding conditions from
Nickel, and Z3. For verifying noninterference for an im-
plementation, it further includes the checker of refinement

conditions from Nickel and the unverified initialization
and glue code of the implementation.

Below we highlight two features of the development
flow using Nickel.

A simple API for specifying the policy. As described in
§3.1, a policy consists of a set of domains, a can-flow-
to relation over domains, and a dom function associating
each action in a state with a domain. Nickel provides a
simple and intuitive API for specifying policies.

As an example, recall the isolation policy in Figure 3:
each process pi is a domain; the permitted flows in the
system are: p0↝ pi , pi↝ p0, and pi↝ pi for i ∈ [0, n−1].
In Nickel, this policy is written as follows:

class ProcessDomain:

def __init__(self, pid):

self.pid = pid

def can_flow_to(self, other):

# Or is a built-in logical operator

return Or(

self.pid == 0, # p0 ~> pi

other.pid == 0, # pi ~> p0

self.pid == other.pid, # pi ~> pi

)

In addition, the dom function of this policy returns the
process currently running by default, or the scheduler p0
for context switching actions (say, the yield system call):

class State:

current = PidT() # PidT is an integer type

...

def dom(action, state):

if action.name == 'yield':

return ProcessDomain(0)

else:

return ProcessDomain(state.current)

This is all Nickel needs for the policy of NiKOS (§7).
Since a policy is the top-level specification of a system

and must be trusted, developers should carefully audit the
policy and ensure that it captures the design intention. We
hope that the simple API for policies provided by Nickel
makes auditing easier.

Debugging through counterexamples. To verify nonin-
terference for an interface specification, Nickel checks
the unwinding conditions from Theorem 1. If verification
fails, Nickel produces a counterexample that illustrates
the violation, including the operation name, an assign-
ment of the operation arguments and system state(s), and
the offending unwinding conditions.

Counterexamples provide useful information for de-
bugging two types of failures. First, the violation may be
in the interface specification, indicating a covert channel.
Developers can use the counterexample to understand the
violation and iterate on the interface design (see §5 for
guidelines) until verification passes. Second, the state

294    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



invariant or the observational equivalence may be insuffi-
cient to establish noninterference. Developers can consult
the counterexample to fix these inputs. Debugging the
verification of an implementation follows similar steps.

5 Designing interfaces for noninterference
We have applied Nickel to verify noninterference in three
systems: NiStar (§6), NiKOS (§7), and ARINC 653 (§7).
While they have different information flow policies, our
experience with these systems suggests several common
guidelines for interface design.

Perform flow checks early. In general, operations need
to validate parameters, especially those from untrusted
sources (e.g., user-specified values in system calls), and
return error codes indicating the cause of failure. As de-
scribed in §2, returning error codes requires care to avoid
covert channels. One simple way to avoid such channels
is to use fewer error codes (or drop error codes altogether),
but doing so makes debugging applications difficult.
NiStar addresses this issue by performing flow checks

as early as possible. For example, many system calls need
to check whether the current thread has permission to
access specified data. After such a flow check succeeds,
the system call has more liberty to validate parameters
and return more specific error codes without violating
noninterference.

Limit resource usage with quotas. Shared resources can
lead to covert channels due to resource exhaustion. Sys-
tems may impose a quota on shared resources for each
domain to avoid such channels. There are several quota
schemes. One simple scheme is to statically assign prede-
termined quotas to domains; for instance, allowing pro-
cesses to allocate only a predetermined number of iden-
tifiers for child processes [10]. However, this scheme
limits the functionality of the system if the quota is too
low, and wastes resources if the quota is set too high.
A more flexible and explicit quota scheme is to orga-

nize resources into a hierarchy of containers [4, 69, 82],
where each container has a quota for resources such as
memory and CPU time. A thread can allocate objects
from a container, including creating subcontainers, if the
container has sufficient quota and the policy allows the
thread to access the container. A thread can also transfer
quotas between two containers if the policy allows the
thread to access both containers. NiStar uses containers
to manage resources.

Partition names among domains. Resource names in a
shared namespace, such as thread identifiers and page
numbers, can lead to covert channels. A per-domain
naming scheme partitions names among domains to
eliminate such channels. A classical example is us-
ing ⟨process identifier, virtual page number⟩ pairs to re-

fer to memory pages, effectively partitioning page num-
bers among processes. As another example, a sys-
tem with container-based resource management may use
⟨container identifier, resource identifier⟩ pairs to refer to
resources [82]; a thread may access the resource only if
the policy permits it to access the container. Both NiStar
and NiKOS employ per-domain naming schemes.

Encrypt names from a large space. Using encrypted
names is an alternative way to address covert channels
due to resource names. Many DIFC systems allocate
sequential identifiers for resources, but return encrypted
values to make them unpredictable [15, 45, 82]. This
design technically violates noninterference, but since the
identifier space is sufficiently large (e.g., 64 bits), the
amount of information that can be leaked through this
channel is negligible in practice. However, verifying
noninterference for this design would require probabilis-
tic reasoning [44] and complicate the semantics of nonin-
terference [17: §6.4]. We therefore do not use encrypted
names for the systems verified using Nickel.

Expose or enclose nondeterminism. As mentioned in
§3.5, Nickel does not allow nondeterministic behavior
in the interface specification (for instance, a system call
that allocates an unspecified physical page), since doing
so would complicate refinement for noninterference.

There are several options for revising the semantics
of such system calls to eliminate nondeterminism. The
first option is to make the (nondeterministic) decision ex-
plicit as a system call parameter, for example, asking user
space to decide which page to allocate, similarly to exok-
ernels [18, 37, 62]. The second option is to ask developers
to explicitly describe the behavior (e.g., the allocation al-
gorithm) as part of the interface specification. Thismakes
the interface specification less abstract but simplifies the
verification of noninterference under refinement; NiStar
uses this option for memory management. The third op-
tion is to enclose the source of nondeterminism below
the interface [28], for example, using virtual addresses to
refer to memory pages and removing the use of physical
pages from the interface. NiKOS uses this option.

Reduce flows to the scheduler. An OS scheduler is gen-
erally associated with a powerful domain, such as in Fig-
ure 3. The scheduler decides and updates which process
to run, and other domains usually need to access this infor-
mation (e.g., to look up the process currently running),
creating inherent flows from the scheduler to other do-
mains. Many scheduling approaches access information
about processes to make scheduling decisions, creating
flows from other domains to the scheduler. The com-
bination of these flows makes the scheduler a powerful
domain that two processes might exploit to communicate.
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One way to control this risk is to enforce a stricter
policy that prohibits flows to the scheduler. This policy
restricts the power of the scheduler, since it can no longer
query state that belongs to other domains. One simple
design that satisfies this policy is to use a static, prede-
termined schedule [1, 57] that does not need to query the
system state for scheduling decisions. NiStar instead sat-
isfies this policy with a more flexible design: like exoker-
nels [18, 37], it allows applications to allocate time slices
to implement dynamic scheduling policies. Unlike exok-
ernels, NiStar performs flow checks at run time to prevent
these allocations introducing covert channels (see §6.2).

6 DIFC in NiStar
NiStar is a new OS kernel that supports decentralized in-
formation flow control (DIFC). NiStar’s design is inspired
by HiStar [82]: the kernel tracks information flow using
labels and enforces DIFC through seven object types, and
a user-space library implements POSIX abstractions on
top of these kernel object types. Unlike HiStar, however,
we have formalized NiStar’s information flow policy and
verified that both its interface specification and imple-
mentation satisfy noninterference for this policy. This
section describes how we designed the NiStar interface
to eliminate covert channels and used Nickel to achieve
automated verification.

6.1 Labels
Like other DIFC systems [23, 45, 65], NiStar uses tags
and labels to track information flow across the system. It
follows a scheme used in DStar [83] and a revised version
of HiStar [84]. A tag is an opaque integer, which has no
inherent meaning. For instance, Alice uses tags tS and tI
to represent the secrecy and integrity of her data, respec-
tively. A label is a set of tags. Every object in the system is
associated with a triple of ⟨secrecy, integrity, ownership⟩
labels, which we designate as the domain of the object.
For instance, Alice labels her files with ⟨{tS}, {tI},∅⟩.
We use Figure 8 as an example to illustrate how Alice

can constrain untrusted applications using labels. Sup-
pose Alice launches a spellchecker to scan her files; the
spellchecker consults a shared dictionary and prints the
results (misspelled words) to her terminal. An updater
periodically queries a server through the netd daemon
and keeps the dictionary up to date. Alice trusts her
ttyd daemon to declassify data only to her terminal. She
trusts neither the spellchecker nor the updater, which may
each be buggy, compromised, or malicious. Alice hopes
to achieve the following security goals: (1) neither the
spellchecker nor the updater can modify her files; and
(2) her spellchecked files can not be leaked to the network.
Classical information flow control expresses policies

using only secrecy and integrity labels (i.e., ignoring own-
ership). Given two objects with domains L1 = ⟨S1, I1,O1⟩

TTY
⟨∅,∅,∅⟩

NET
⟨∅,∅,∅⟩

Alice’s ttyd
⟨∅,∅, {tS}⟩

spellchecker
⟨{tS},∅,∅⟩

updater
⟨∅, {dI}, {dI}⟩

netd

⟨∅,∅,∅⟩

Alice’s files
⟨{tS}, {tI},∅⟩

dictionary
⟨∅, {dI},∅⟩

Figure 8: Information flow of a spellchecker and updater. Cloud boxes
represent terminal (TTY) and network (NET); rounded boxes represent
threads; and rectangular boxes represent data. Each object is associated
with a triple of ⟨secrecy, integrity, ownership⟩ labels; arrows denote the
flows of information allowed by these labels.

and L2 = ⟨S2, I2,O2⟩, respectively, it is safe in the classical
model for information to flow from L1 to L2 if (1) the se-
crecy of S1 is subsumed by that of S2 and (2) the integrity
of I1 subsumes that of I2: S1 ⊆ S2∧I2 ⊆ I1. In otherwords,
a flow is safe if it neither discloses secrets nor compro-
mises the integrity of any object. For example, given the
label assignment in Figure 8 and a system enforcing such
flow checks, Alice can conclude that her files will not
be modified by the spellchecker or the updater: her files
have tI in their integrity labels, but the spellchecker and
updater do not, ruling out flows from them to her files.

The classical model is often too restrictive for practi-
cal systems. For instance, a password checker needs to
declassify whether login succeeds to untrusted users; as
another example, to output misspelled words in Figure 8,
the spellchecker (with tS in secrecy) needs to communi-
cate with to Alice’s trusted ttyd (without tS). Like other
DIFC systems, NiStar supports such intentional down-
grading without a centralized authority. It uses the own-
ership label to relax label checking for trusted threads,
giving them the privilege to temporarily remove tags from
secrecy labels (declassification) or add tags to integrity
labels (endorsement), as follows:

Definition 3 (Safe Flow). Information can flow from L1 =
⟨S1, I1,O1⟩ to L2 = ⟨S2, I2,O2⟩, denoted as L1↝ L2, if and
only if (S1 −O1 ⊆ S2 ∪O2) ∧ (I2 −O2 ⊆ I1 ∪O1).

This can-flow-to relation is central to NiStar’s informa-
tion flow policy. L1↝ L2 means that L1 and L2 can com-
bine their ownership to allow the maximum flow from L1
to L2; that is, L1 lowers its secrecy to S1−O1 and raises its
integrity to I1 ∪O1, while L2 raises its secrecy to S2 ∪O2
and lowers its integrity to I2 −O2.

Referring to Figure 8, as information can flow from
the spellchecker to Alice’s ttyd given their label assign-
ments, ⟨{tS},∅,∅⟩↝ ⟨∅,∅, {tS}⟩, Alice’s ttyd is able to
print out misspelled words. In addition, Alice can con-
clude that her files will not be leaked to the network: the
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spellchecker cannot directly leak information to the net-
work given its label assignment. The spellchecker can,
however, indirectly write to Alice’s terminal only through
her ttyd, which she trusts to declassify data only to the
terminal; no other threads in the system are trusted. This
example shows how labels can minimize the amount of
application code that must be trusted.

6.2 Kernel objects
NiStar provides seven object types:

• labels represent domains of objects;
• containers are basic units for managing resources;
• threads are basic execution units;
• gates provide protected control transfer;
• page-table pages organize virtual memory;
• user pages represent application data; and
• quanta represent time slices for scheduling.

Each object, other than labels, is associatedwith a domain
of ⟨secrecy, integrity, ownership⟩ labels; only threads and
gates can have non-empty ownership labels. The kernel
interface consists of a total of 46 operations for ma-
nipulating these objects. Each operation performs flow
checks among objects using their labels. NiStar’s design
goal is to ensure that the interface specification satisfies
noninterference for the policy given by Definition 3.
NiStar largely follows HiStar’s object types [82], with

the following exceptions: it provides a new object type,
quantum, for scheduling; and to make the interface finite
and therefore amenable to automated verification, it uses
fixed-sized page-table pages and user pages similar to
Hyperkernel [62] and seL4 [40]. Interested readers can
refer to Zeldovich et al. [84] for details of object types and
label checks; below, we highlight three key differences in
NiStar that close covert channels.
Given L1 = ⟨S1, I1,O1⟩ and L2 = ⟨S2, I2,O2⟩, we intro-

duce the following notations for flow checks:
• L1 ⊑R L2 means that L1 can be read by L2:

(S1 ⊆ S2 ∪O2) ∧ (I2 −O2 ⊆ I1).
• L1 ⊑W L2 means that L1 can write to L2:

(S1 −O1 ⊆ S2) ∧ (I2 ⊆ I1 ∪O1).
As a shorthand, we write L2 ⊑R L1 ⊑W L2 to mean that L1
can modify L2: (L2 ⊑R L1) ∧ (L1 ⊑W L2). It is generally
difficult for L1 to modify L2 without receiving any infor-
mation in return (e.g., error code), and so this definition
includes L1 being able to read L2. By definition, L1 ⊑W L3
and L3 ⊑R L2 together imply L1↝ L2 for any L1, L2, and
L3; we will use this fact below to analyze covert channels.
We denote Lx as the domain of object x.

Maintain accurate quotas in containers. Like HiStar,
NiStar manages all system resources in a hierarchy of
containers, starting from a root container created during
kernel initialization. Each container maintains a set of
quotas, indicating the amount of memory pages and time
quanta it owns. A thread T may allocate an object O

from a container C only if it can modify the container
(i.e., LC ⊑RLT ⊑WLC), the new object does not exceed
the authority of the thread (i.e., LT ⊑WLO), and the con-
tainer has sufficient quota for the object.

NiStar maintains accurate quotas in containers, which
differs from HiStar in two ways. First, NiStar sets the
memory quota of the root container to be number of
available physical pages upon booting, rather than infin-
ity [82: §3.3], avoiding a potential covert channel due to
resource exhaustion. Second, NiStar does not allow an
object to be linked by multiple containers, which would
require the kernel to conservatively charge each container
as in HiStar. Instead, each object is uniquely owned by
one container. This design leads to a simpler invariant:
for each resource type, the sum of the quotas of each ob-
ject in a container equals the total quota of the container.

Enforce can-write-to-object on deallocation. In HiStar,
to deallocate an object O from a container C, a thread T
must be able to write to the container, but not necessarily
to the object itself. This relaxed check supports reclaim-
ing zombie objects to which no one else can write (e.g.,
those with a unique integrity tag) [81]. However, it leads
to a covert channel. Consider a thread T ′ whose domain
permits it to read object O (i.e., LO ⊑RLT ′ ) but pro-
hibits it from receiving information from thread T (i.e.,
LT  LT ′ ). To bypass DIFC, thread T encodes a one-bit
secret by either deallocating objectO from containerC or
not. T ′ learns the secret by observing whether object O
still exists [82: §3.2], violating noninterference since the
label assignment prohibits information flow from T to T ′.

NiStar enforces a stricter flow check on deallocation
by requiring that thread T can write to object O (i.e.,
LT ⊑WLO). With this stricter check, this covert channel
is closed: if threadT ′ can read object O (i.e., LO ⊑RLT ′ ),
the new check implies that thread T ′ is permitted to re-
ceive information from thread T , since LT ⊑WLO and
LO ⊑RLT ′ together imply LT ↝LT ′ .

NiStar considers reclaiming zombie objects an admin-
istrative decision and leaves it to user space. Some sys-
temsmay consider it legitimate for a user to create objects
that no one else can reclaim; since NiStar enforces accu-
rate quotas, adversarial users cannot create “runaway”
zombie objects that exceed their quotas. On the other
hand, a systemwishing to reclaim zombie objects can em-
ulate the HiStar behavior by setting up a trusted garbage
collector with a powerful domain during booting, without
baking this requirement into flow checks in the kernel.

Remove flows to the scheduler using quanta. As noted in
§5, two processes can exploit the scheduler to commu-
nicate in violation of information flow policy. To close
this channel, NiStar borrows the design of the exokernel
scheduler [18] and extends it with label checking. NiStar
associates the scheduler with domain ⟨∅,U,∅⟩, where U
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denotes the universal label of all tags. This domain al-
lows the scheduler to switch to any thread (its universal
integrity allows it to influence any thread it runs) while
restricting it from leaking information (its empty secrecy
and ownership prevent it receiving secrets). The resulting
scheduler allows applications to implement more flexible
scheduling schemes compared to static scheduling.
NiStar introduces time quanta to allow the scheduler

to make decisions while respecting this label assignment.
The system is configured with a fixed number of quanta,
each associated with a thread identifier for scheduling.
Like other resources, all quanta are initially owned by
the root container; a thread can move quanta between
two containers only if it can modify both containers. To
schedule thread T ′ at quantum Q, thread T writes the
identifier of T ′ to Q. Thread T can perform this write
only if it can write to quantum Q (i.e., LT ⊑WLQ).
To schedule using time quanta, assume that the system

delivers an infinite stream of timer interrupts. Upon the
arrival of a timer interrupt, the scheduler cycles through
all the quanta in a round-robin fashion and retrieves the
thread identifier T ′ associated with the next quantum Q.
If quantum Q can be read by thread T ′ (i.e., LQ ⊑RLT ′ ),
the scheduler switches to T ′; otherwise, it idles.
To see why these flow checks suffice to close the chan-

nel, suppose T is able to schedule T ′ to execute at quan-
tum Q. The checks ensure LT ⊑WLQ and LQ ⊑RLT ′ ,
which together imply LT ↝LT ′ ; in other words, the label
assignment permits T to communicate with T ′.
This design closes covert channels arising from logical

time. As mentioned in §3.5, physical timing is beyond
the scope of this paper, for which NiStar provides no
guarantees of noninterference.

6.3 Implementation
To demonstrate that NiStar’s interface is practical, we
have built a prototype implementation for x86-64 proces-
sors, and have applied Nickel to verify that both the in-
terface specification and the implementation satisfy non-
interference for the policy given by Definition 3.
To simplify verification, NiStar borrows ideas from

previous verifiedOSkernels. First, likeHyperkernel [62],
NiStar uses separate page tables for the kernel and user
space. It uses an identity mapping for the kernel ad-
dress space, sidestepping the complication of reasoning
about virtual memory for kernel code [43]. Second, like
seL4 [40], NiStar enables timer interrupts only in user
space and disables them in the kernel. This restriction
ensures that the execution of system calls and exception
handling is atomic, avoiding reasoning about interleaved
executions. Third, NiStar disables all other interrupts and
requires device drivers to use polling, a common practice
in high-assurance systems [1, 57].

For user space, we have ported the musl C standard
library [59] to NiStar, running on top of an emulation
layer for Linux system calls. A library implements the
abstraction of Unix-like processes on top of NiStar’s ker-
nel object types, similar to HiStar’s emulation layer [82].
The file-system service is implemented as a thin wrapper
over containers and user pages, and the network service is
provided by lwIP [13]. Although our current user space
implementation is incomplete, it is able to run programs
such as a set of POSIXutilities fromToybox, aweb server,
and the TinyEMU emulator to boot Linux.

7 Verifying isolation
Nickel generalizes to information flow control systems
beyond DIFC. This section describes applying Nickel to
two such systems: NiKOS and ARINC 653.

Process isolation. NiKOS is a small OS that enforces
an isolation policy among processes (Figure 3). The
interface of NiKOS mirrors that of a version of mCer-
tiKOS as described by Costanzo et al. [10]. It consists of
seven operations, including spawning a process, query-
ing process status, printing to console, yielding, and han-
dling a page fault. Like mCertiKOS, NiKOS imposes
a memory quota on each process and statically parti-
tions identifiers among processes, avoiding covert chan-
nels due to resource names and exhaustion (§5). We im-
plemented a prototype of NiKOS for x86-64 processors
and ported user-space applications from mCertiKOS. We
used Nickel to verify that both the interface and imple-
mentation satisfy noninterference for the isolation policy.
This effort took one author a total of two weeks.

We made one change to the design in order to verify
noninterference. In mCertiKOS, the spawn system call
creates a new process and loads an executable file; the
specification of spawn models file loading as a no-op,
whereas the implementation allocates pages and con-
sumes memory quota [26]. In NiKOS, to match the
memory quota in the specification with that in the im-
plementation, spawn creates an empty address space and
the page-fault handler lazily loads each page of the exe-
cutable file instead.

Partition isolation. ARINC 653 [1] is an industrial stan-
dard for safety-critical avionics operating systems. It
models the system as a set of partitions and defines an
inter-partition communication interface comprising 14
operations. Figure 9 depicts its isolation policy among
partitions: information can flow to a partition only from
the transmitter, the scheduler, and itself. The transmit-
ter forwards messages among partitions as configured at
boot time; each dashed arrow represents a flow that can be
independently enabled in the configuration. The sched-
uler uses a pre-configured fixed schedule, and so does not
require flows from other domains to the scheduler (§5).

298    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



p1 p2 . . . pn

scheduler

transmitter

Figure 9: The isolation policy of ARINC 653: information can flow
between the transmitter and each partition pi for i ∈ [1, n] as per a
boot-time configuration (dashed arrows); it cannot flow between any
two partitions, or from any partition or the transmitter to the scheduler.

Using Nickel, we formalized the specification of the
communication interface based on the pseudocode pro-
vided by the ARINC 653 standard. Applying Nickel to
verify noninterference for the partition isolation policy
reproduced all three known covert channels first discov-
ered by Zhao et al. [86], which were caused by missing
partition permission checks, allocating identifiers in a
shared namespace, and returning error codes that leak
information; verification succeeded once we fixed these
channels. This effort took one author a total of one week.

8 Experience
This section reports our experience with using Nickel and
reflects lesson learned during development. Experiments
ran on an Intel Core i7-7700K CPU at 4.5 GHz.

Covert channel discussion. To test the effectiveness of
Nickel for detecting covert channels, we injected each of
the examples in §2 into the NiStar interface specification.
In each case, Nickel was able to find a counterexample
pointing to the issue. As a concrete example, we switched
NiStar’s scheduler to a round-robin one. When verifying
this round-robin scheduler, Nickel failed and produced a
counterexample (§4).
Figure 10 shows empirical evidence of a covert channel

by comparing the NiStar scheduler with the round-robin
one. In this experiment, one process sampled the current
(logical) time, while a background process repeatedly
forked and then killed 30 child processes. The measuring
process recorded the duration between scheduling points
in terms of number of quanta. With the round-robin
scheduler, the gaps observed by the measuring process
vary as the background task forks and kills its children,
creating patterns that indicate the covert channel. With
the NiStar scheduler, which is verified using Nickel, the
gaps between scheduling points remain constant regard-
less of the behavior of the background process. This
result suggests that the Nickel is effective in identifying
and proving the absence of covert channels.

Development effort using Nickel. Figure 11 shows the
sizes of the three systems we verified using Nickel:

0
10
20
30
40
50
60

0 100 200 300 400 500

de
lta

qu
an
ta

elapsed quanta

NiStar scheduler
round-robin scheduler

Figure 10: A round-robin scheduler leaks background thread behavior
through patterns in logical time; no such pattern is observed in NiStar.

component NiStar NiKOS ARINC 653

specification:
information flow policy 26 14 33
interface specification 714 82 240

proof input:
interface invariant 398 63 66
observational equivalence 127 56 80
implementation invariant 52 7 –
data refinement 139 30 –

implementation:
interface implementation 3,155 343 –
user space implementation 9,348 389 –
common kernel infrastructure 4,829 (shared by NiStar/NiKOS)

Figure 11: Lines of code for the three systems verified using Nickel.

NiStar, NiKOS, andARINC653. The lines of code for the
interface implementations of both NiStar and NiKOS do
not include common kernel infrastructure (C library func-
tions and x86 initialization), and those of the user space
implementations do not include third-party libraries (e.g.,
musl and lwIP). The implementation of the Nickel frame-
work is split between the formalization of the metatheory
(1,215 lines of Coq) and the verifier for the unwinding and
refinement conditions (3,564 lines of C++ and Python).

The information flow policies for the three systems are
concise compared to the rest of the specification and im-
plementation, indicating the simplicity of creating poli-
cies ranging from DIFC to isolation using Nickel (§4).

In our experience, the most time-consuming part of the
verification process was coming up with an appropriate
observational equivalence relation—it was non-trivial to
determine which part of the system state was observable
by each domain, and the complexity increased as the size
of the system state and the number of interface operations
grew. We found the counterexamples produced by Nickel
particularly useful for debugging and fixing observational
equivalence. The specification and verification of NiStar,
NiKOS, and ARINC 653 took one author six weeks, two
weeks, and one week, respectively; as a comparison, im-
plementing NiStar took several researchers roughly six
months. This comparison shows that the proof effort re-
quired when using Nickel is low, thanks to its support for
automated verification and counterexample generation.
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Using Z3 4.6.0, verifying NiStar, NiKOS, and ARINC
653 on four cores took 72 minutes, 7 seconds, and 8 sec-
onds, respectively.

Lessons learned. Our development of Nickel was guided
by two motives. First, in our previous work on Hyperker-
nel [62], we proved memory isolation among processes,
but this did not preclude covert channels through system
calls; Nickel extends push-button verification to support
proving stronger guarantees about noninterference. Sec-
ond, we aimed to develop a general framework that can
help analyze and design interfaces not only for isolation,
but also for mechanisms as flexible as DIFC.
While designing Nickel, we spent a total of twomonths

iterating through several formulations of noninterference
before settling on the one described in §3. Among these
alternatives were classical transitive noninterference [29]
and intransitive noninterference [67], as well as variants
such as nonleakage [56, 77]. As discussed in §3.5,
Nickel’s formulation has the advantage of supporting
both a spectrum of policies and automated verification.
As Figure 7 shows, Nickel combines both automated

and interactive theorem provers: Z3 automates proofs
for individual systems, while the proofs in Coq improve
confidence in Nickel’s metatheory. Similar approaches
have been used for the verification of compiler optimiza-
tions [72], static bug checkers [79], and Amazon’s s2n
TLS library [9]. We believe that this combination is an
effective approach to developing verified systems.

9 Related work
Verifying noninterference in systems. Noninterference is
a desirable security definition for operating systems look-
ing to guarantee information flow properties [66]. For
example, the seL4 microkernel [40] is proven to satisfy a
variant of noninterference for a given access control pol-
icy [56, 57]; a version ofmCertiKOS [27] includes a proof
of process isolation [10]; Ironclad [32] proves end-to-end
guarantees for applications using a form of input and out-
put noninterference; and Komodo [19] proves noninter-
ference for isolated execution of software-based enclaves.
Noting the difficulty of extending noninterference proofs
to concurrent systems, Covern [58] provides a logic for
the shared memory setting. Noninterference also has ap-
plications in secure hardware [20, 21], programming lan-
guages [49, 73], as well as browsers and servers [36, 64].
Nickel takes inspiration from these efforts, focusing on
formalizations and interface designs that are amenable to
automated verification of noninterference.

DIFC operating systems. Information flow control was
originally envisioned as a mechanism to enforce multi-
level security in military systems [2, 3]. Decentralized
information flow control (DIFC) additionally allows ap-
plications to declare new classifications [60, 61]. The

design of NiStar was influenced by prior DIFC operating
systems [7, 15, 45, 65, 82], particularly HiStar and Flume.

HiStar [82, 84] enforces DIFC with a small number of
types of kernel objects. All label changes in HiStar are
explicit, closing the covert channel in Asbestos due to
implicit label changes [15]. NiStar’s design draws from
HiStar, using a similar set of kernel object types, but
adapted to close remaining covert channels and enable
automated verification.

Flume [45] is a DIFC system built on top of the Linux
kernel. Building on top of an existing kernel makes port-
ing easier, but expands Flume’s TCB. Flume’s design
has a pen-and-paper proof [44] of noninterference for a
single label assignment, modeled using Communicating
Sequential Processes [34]; a more general formalization
of Flume is given by Eggert [16]. NiStar takes this effort
a step further, with the first noninterference proof of both
the interface and implementation of a DIFC OS kernel.

Reasoning about information flows for applications. As-
signing DIFC labels for applications is a non-trivial task.
To help application developers, Asbestos offers a domain-
specific language [14] for generating label assignments
from high-level specifications. The SWIM tool [30] gen-
erates label assignments from lists of prohibited and al-
lowed flows, and has been further extended using synthe-
sis techniques [31]. These tools can benefit from a precise
specification of the DIFC framework they use to imple-
ment policies for, such as the one provided by NiStar.

10 Conclusion
Nickel is a framework for designing and verifying infor-
mation flow control systems through automated verifica-
tion techniques. It focuses on helping developers elimi-
nate covert channels from interface designs and provides
a new formulation of noninterference to uncover covert
channels or prove their absence using an SMT solver. We
have applied Nickel to develop three systems, including
NiStar, the first formally verified DIFC OS kernel. Our
experience shows that the proof burden of using Nickel
is low. We believe that Nickel offers a promising ap-
proach to the design and implementation of secure sys-
tems. All of Nickel’s source code is publicly available at
https://unsat.cs.washington.edu/projects/nickel/.
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Abstract
Writing concurrent systems software is error-prone, be-
cause multiple processes or threads can interleave in many
ways, and it is easy to forget about a subtle corner case.
This paper introduces CSPEC, a framework for formal
verification of concurrent software, which ensures that
no corner cases are missed. The key challenge is to re-
duce the number of interleavings that developers must
consider. CSPEC uses mover types to re-order commuta-
tive operations so that usually it’s enough to reason about
only sequential executions rather than all possible inter-
leavings. CSPEC also makes proofs easier by making
them modular using layers, and by providing a library of
reusable proof patterns. To evaluate CSPEC, we imple-
mented and proved the correctness of CMAIL, a simple
concurrent Maildir-like mail server that speaks SMTP and
POP3. The results demonstrate that CSPEC’s movers and
patterns allow reasoning about sophisticated concurrency
styles in CMAIL.

1 Introduction
Achieving high performance on a single computer re-
quires concurrency, such as running on multiple cores or
interleaving disk and network I/O with computation. Con-
current software, however, is difficult to get right because
threads can interleave in many ways, and reasoning about
all possible interleavings is hard. Furthermore, testing is
insufficient, because there are usually too many interleav-
ings to consider, and because it is difficult to reproduce a
bug unless the developer knows the precise interleaving
that caused it. By contrast, formal verification can prove
that a system behaves correctly (i.e., satisfies its specifica-
tion) in every possible interleaving, including all corner
cases.

There has been some prior work on machine-checked
verification of concurrent systems software on a single
computer. For example, CertiKOS has verified spinlocks
for protecting scheduling queues [13, 21]. As we dis-
cuss in detail in §2, that work focuses on lock-based
concurrency. Systems in which concurrency takes the
form of multiple processes sharing a file system tend to
avoid the use of locks because they interact badly with
crashes. This requires reasoning about many possible
interleavings, since there is no lock enforcing sequential
execution during critical sections. Work on a concur-
rent garbage collector [17, 18] supports reasoning about
lock-free shared-memory concurrency, but relies on pen-

and-paper proofs for key theorems, and does not support
important proof patterns needed for CMAIL.

This paper presents CSPEC, a framework for specifying,
implementing, and proving the correctness of concurrent
systems. CSPEC supports reasoning about concurrent
processes that share a file system, as well as about con-
current threads that share data structures in memory. All
of CSPEC is implemented and proven in the Coq proof
assistant [36].

To show that CSPEC makes it fairly easy to prove the
correctness of concurrent software, we used it to develop
a simple concurrent mail server, CMAIL. Typical mail
servers such as Maildir do not use file locks for mail
delivery, since locks are fragile if a process is killed or
suspended while holding the lock [3]. Instead, Maildir
relies on careful reasoning about atomicity and ordering
of file system operations (e.g., writing data to a temporary
file before renaming it into the user’s mailbox directory).
Mail delivery must interact safely with mail pickup (e.g.,
retrieving mail via POP3)—for instance, retrieving mail
from a mailbox in the presence of concurrent deliveries to
the same mailbox. Finally, other parts of the mail server
do use POSIX file locking—for example, to ensure that a
message cannot be retrieved and deleted at the same time.

The key challenge in CSPEC is to reduce the number
of interleavings that the developer must consider in code
like CMAIL’s lock-free delivery. To achieve this, CSPEC
uses the notion of mover types [27], which exploits the
fact that certain operations are left- or right-commutative
with respect to concurrent operations by other processes.
CSPEC uses mover types to re-order operations so that
processes appear to execute longer blocks of sequential
code. This reduces the problem of reasoning about all
interleavings to reasoning about just the atomic execu-
tion of these longer sequential blocks. CSPEC builds on
prior work that used mover types to reason about concur-
rency [11, 16, 18], and provides the first general mover
framework with a machine-checked proof of its imple-
mentation (see §2).

CSPEC allows the developer to separately tackle differ-
ent aspects of the design by structuring the overall system
as a stack of layers. Each layer has a formal specification
and its own implementation and proof. CSPEC provides a
library of patterns for different kinds of proofs that a layer
might need, such as mover types, retry loops, abstracting
state, partitioning state, and proving that the code follows
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a protocol (i.e., a set of rules), such as accessing memory
only while holding a lock.

We evaluate two key aspects of CSPEC: whether CSPEC
makes it possible to do correctness proofs for sophis-
ticated concurrent software, and whether the resulting
concurrency translates into actual speedup. CMAIL is
our primary case study of verifying concurrent software.
CSPEC allowed us to handle its challenging concurrency
patterns, such as a delivery process that modifies a mail-
box directory at the same time the user is picking up mail,
multiple delivery processes that write messages into the
same mailbox, and concurrent processes sharing the same
temporary directory to store partially received messages.

CSPEC’s layering allowed us to decompose the over-
all correctness argument for CMAIL into smaller steps,
each layer addressing a specific aspect of CMAIL’s con-
currency and using a CSPEC proof pattern to formally
verify it. All of CSPEC’s proof patterns were important
in CMAIL, and most patterns were used multiple times.
Designing and building CSPEC and CMAIL took two peo-
ple approximately 6 months, on top of another 12 months
of experimenting with several failed alternative designs.
Experiments show that CMAIL’s concurrency makes it
run faster on a multi-core machine.

CMAIL’s concurrency model is based on processes
sharing a file system. CSPEC also allows developers to
reason about other concurrency models. To demonstrate
this, we specified a model of x86-TSO [34], consisting of
a shared memory with per-core write buffers. On top of
this model, we implemented and proved the correctness
of an atomic counter. We used 10 layers to verify this
counter, re-using proof patterns that we developed for
CMAIL.

To summarize, the contributions of this paper are:

• CSPEC, a framework for verifying concurrent systems
using mover types, which is fully machine-checked in
Coq.

• A modular approach that simplifies proofs using layers
and a library of proof patterns.

• An evaluation that uses CSPEC to formally prove the
correctness of a concurrent mail server on top of a
POSIX file system, and an atomic counter on top of a
weak shared-memory model. The results demonstrate
that CSPEC allows reasoning about a wide range of
concurrency styles.

The source code of CSPEC and the example applica-
tions are publicly available at https://github.com/
mit-pdos/cspec. Our prototype has several limitations.
CMAIL does not include verified parsing or protocol im-
plementations of SMTP or POP3. CSPEC uses Coq’s
extraction to generate executable code, which means the
executable programs rely on either Haskell or OCaml at

runtime; hence, one of these is part of the trusted comput-
ing base. Finally, CSPEC cannot be applied to existing
software, since it requires the program to be written in
CSPEC’s framework.

2 Related work
CSPEC adopts many ideas from previous research in spec-
ification and verification of concurrent shared-memory
and distributed-systems software.

Verification approaches. There are many ways to verify
concurrent software. After experimenting with several
different approaches (including several versions of con-
current separation logic [5] and rely-guarantee [12, 20]),
we settled on using the state machines and refinement that
underlie TLA and I/O automata [23, 24, 30, 31], com-
bined with the proof pattern of movers [27].

CIVL [17, 18] (and its predecessor QED [11]) is the
work most closely related to CSPEC, and CSPEC borrows
many ideas from it. CIVL uses the state-machine ap-
proach with support for atomic actions, movers, a mover
pattern inspired by CIVL’s yield sufficiency automaton,
and location invariants to reduce the proof burden. It is im-
plemented as an extension to Boogie, and the authors used
it to specify and verify a concurrent garbage collector that
uses an algorithm by Dijkstra et al. [10] that has tricky
concurrency reasoning. Subsequent work used CIVL to
reason about concurrent programs on x86-TSO [4].

CSPEC borrows atomic actions and movers from CIVL,
but differs in two ways. First, many of CIVL’s proofs
(e.g., all the proofs in §4 of [18]) are done with pen and pa-
per [15], whereas all parts of CSPEC are machine-checked
in Coq. Second, CSPEC supports some patterns not found
in CIVL, such as retry loops, which were important for
reasoning about concurrency in CMAIL. Furthermore,
this paper reports on our experience in using CSPEC for
a different application (namely, a file-system-based mail
server rather than a concurrent garbage collector), which
exhibits different styles of concurrency.

The advantage of the fact that CSPEC has machine-
checked proofs, compared to CIVL’s pen-and-paper
proofs, is that it gives us confidence that all of the proof
patterns are correct (once we prove them). This, in turn,
makes it easier to experiment with proof patterns. For ex-
ample, during the development of CSPEC, we added (and
modified) a number of proof patterns (see §6). Having
machine-checked proofs gave us confidence that we did
not introduce any bugs.

Like CSPEC, CertiKOS’s CCAL [14] organizes rea-
soning about concurrent execution into layers and has a
linking theorem to “compile” top-level operations into
bottom-layer operations. CCAL has been used for fully
machine-checked proofs of several lock implementations
and of CertiKOS’s concurrent scheduling queue [13, 21].
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CCAL has no notion of movers; it uses rely-guarantee-
style reasoning to prove atomicity for operations in a
shared log. The only case in which CCAL can avoid rea-
soning about interleaving is when a thread accesses only
thread-private memory. This is insufficient for CMAIL,
which accesses shared files and directories all the time:
for instance, mail pickup can read a message that was just
written by a concurrent delivery process.

Another notable example of verifying concurrent sys-
tems software is Microsoft’s HyperV verification, which
used VCC [7–9], but the work on VCC and HyperV ap-
pears to have stopped after verifying about 20% of Hy-
perV [7]. In contrast to CSPEC, the VCC approach did
not use mover types for reasoning about concurrency.

Distributed systems. Related work in verifying dis-
tributed systems focuses on network protocols (message
loss and re-ordering) as well as node failures and network
partitions, while assuming a static partitioning of state
across nodes [16, 26, 33, 37]. The focus of CSPEC, in
contrast, is on dynamic sharing of state between processes
on a single node, and on the patterns that help develop-
ers construct proofs for different styles of concurrency.
CSPEC does not address node failures.

IronFleet [16] uses the notion of trace inclusion and
movers in their reduction argument, which has been
machine-checked [19]. However, IronFleet’s verified re-
duction argument is specialized for IronFleet’s specific
use case, and has a hard-coded list of movers: sending
and receiving UDP packets, and acquiring and releasing
locks [28]. In contrast, CSPEC is a general-purpose mover
framework.

Mail servers. Affeldt and Kobayashi verified a part of a
mail server written in Java, by manually translating the
Java program into a Coq function, and verifying proper-
ties of the Coq function [1, 2]. They verified the SMTP
receiver part of the mail server, but do not model the inter-
action between the mail server and the file system. We use
CSPEC to verify CMAIL, which includes both delivery via
SMTP as well as pickup via POP3, and prove that CMAIL
correctly uses the file system.

Ntzik [32] developed a concurrent specification for
POSIX file systems using a concurrent separation logic,
and used it to reason about snippets of mail server code for
spam filtering. In contrast, CMAIL is a fully operational
concurrent mail server, with a complete specification and
machine-checked proof of its implementation.

3 Goal and challenges
The goal of CSPEC is to allow developers to write spec-
ifications for concurrent systems software such as the
mail server and to prove that an implementation satisfies
the spec. The proof should ensure that every possible
interleaving, no matter how unlikely, is handled correctly.

1 def deliver(user, msg):
2 tmpname = "/tmp/%d" % getpid()
3 f = open(tmpname, "w")
4 f.write(msg)
5 f.close()
6

7 while True:
8 mboxfn = "/var/mail/%s/%d" % (user, random())
9 if link(tmpname, mboxfn) == ok:

10 unlink(tmpname)
11 return

Figure 1: Pseudocode for delivery in a Maildir-like mail server.

1 def pickup(user):
2 files = readdir("/var/mail/%s" % user)
3 messages = []
4 for fn in files:
5 f = open("/var/mail/%s/%s" % (user, fn))
6 messages.append(f.read())
7 f.close()
8 return messages

Figure 2: Pseudocode for pickup in a Maildir-like mail server.

To illustrate why this is hard, consider a mail server
running on top of a file system, as a prototypical example
of concurrent systems software. A mail server performs
two main operations: deliver, which accepts incoming
messages and writes them to the file system, and pickup,
which allows users to download their messages. A mail
server typically runs many processes, which concurrently
perform deliveries and pickups.

For instance, consider the Maildir-like [3] server shown
in Figures 1 and 2. In Maildir, each user’s mailbox is a
directory containing one file for each message. Maildir
does not use locks for most concurrency control; instead,
deliver and pickup choose file names and issue file sys-
tem operations that are carefully designed to avoid races.

deliver first writes the incoming message into a tem-
porary file with a unique filename (based on the process
ID) and then links the file into the user’s mailbox directory
with a randomly chosen name. If the link fails because
the filename already exists (which can happen because
of another delivery that chose the same random name),
deliver retries it with a different filename. To read a
user’s messages, pickup calls readdir to list the files in
the user’s mailbox, and reads them one at a time.

Even though the code appears to be simple, it is care-
fully designed to handle many subtle interleavings of file
system operations that arise when multiple concurrent pro-
cesses invoke deliver and pickup. For example, pickup
will not return any partially written messages to the user,
because deliver will link a message into the user’s mail-
box only after it has been fully written to a file. As another
example, two deliver processes will not overwrite each
other’s messages, because they choose distinct filenames
in the temporary directory, and because they use link to
atomically place a message into the mailbox directory if
and only if the filename does not already exist.
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Definition message := string.

(* Defines a new type, [Op], representing operations, where
running an [Op retT] returns a value of type [retT]. *)

Inductive Op : forall (retT : Type), Type :=
(* one operation is [Deliver], which takes two arguments,
[u] and [msg], and returns a [bool] *)

| Deliver : forall (u : user) (msg : message), Op bool
| Pickup : forall (u : user), Op (list (msgid * message))
| CheckUser : forall (u : user), Op bool
| Delete : forall (u : user) (id : msgid), Op unit.

(* The abstract state is a two-level map: from users to
mailboxes, which are maps from IDs to messages. *)

Definition State := Map.t user (Map.t msgid message).

(* The semantics, defining valid transitions for operations. *)
Inductive step :
(* Transitions depend on the operation being executed, the
current PID, and the initial state .. *)

forall ‘(op : Op retT) (pid : nat) (st : State)
(* .. and determine the operation’s return value (whose
type depends on the operation) and the final state *)

(r : retT) (st’ : State), Prop :=
| StepDeliverOK : forall u msg pid id st mbox,
(* if user [u]’s mailbox is [mbox] *)
Map.MapsTo u mbox st ->
(* .. and message ID [id] is not used in [mbox] *)
~ Map.In id mbox ->
(* .. then the following is a valid transition: *)
(Deliver u msg, pid, st) |->

(true, Map.set u (Map.set id msg mbox) st)
| StepDeliverErr : forall u msg pid st,
(Deliver u msg, pid, st) |-> (false, st)

(* Some transitions omitted for space reasons *)
| StepDelete : forall u id pid st mbox,
Map.MapsTo u mbox st ->
(Delete u id, pid, st) |->

(tt, Map.set u (Map.remove id mbox) st)
where "(op, pid, st) |-> (r, st’)" := step op pid st r st’.

Figure 3: Specification of the mail server. Code snippets in this paper
have been simplified for readability; the full code of CSPEC and CMAIL
is available at https://github.com/mit-pdos/cspec.

4 Approach to proving atomicity
CSPEC’s approach to verifying concurrent software is
to specify the atomic semantics of operations such as
deliver and pickup, and then prove that their implemen-
tations, such as the code shown in Figure 1 and Figure 2,
meet their specs.

To use CSPEC, a developer first specifies the desired
behavior of each operation if it were to execute atomi-
cally; then writes code in CSPEC to achieve this behavior,
even when running concurrently; and finally the developer
proves that the code indeed meets the atomic spec in all
possible cases, with the help of CSPEC’s proof patterns.

For example, Figure 3 shows the atomic spec of the
main operations in CMAIL. The first statement in Figure 3
defines the set of allowed operations, using a Coq induc-
tive type called Op. The next statement defines the abstract
state. The last statement defines the semantics, by describ-
ing the allowed transitions using a Coq inductive type.
For example, the first allowed transition, StepDeliverOK,
states one legal way for a Deliver operation to execute
with some arguments u and msg. Namely, if u’s mailbox
is mbox, then Deliver adds the incoming message with
a new identifier id in the user’s mailbox. Here, Deliver
denotes the primitive operation in the semantics, whereas

S0 S1 S2

C0 C1 C2 C3 C4 C5 C6
1: write 2: link 1: close 1: link 3: readdir 1: unlink

2: deliver 1: deliver

Figure 4: Example diagram of a simulation proof, connecting code
from Figure 1 with the spec from Figure 3. In the example, processes 1
and 2 each deliver a message concurrently, while process 3 is running
pickup.

the pseudocode of deliver from Figure 1 describes a
possible implementation of Deliver.

To understand why proving correctness is hard, con-
sider the approach based on a simulation proof [30], used
by many frameworks [16, 25, 35]. The idea is to define
an abstraction relation that connects the spec-level states
with code-level states, and to show that this relation is
preserved by every possible transition at the code level.

Figure 4 shows a simulation argument for one execu-
tion of the mail server: two processes concurrently deliv-
ering a mail message. At the bottom are code-level states,
representing the states and transitions of the file system,
corresponding to code from Figure 1 (in this example,
the mail server is handling an incoming SMTP message).
At the top are spec-level states, representing the abstract
state and transitions of the mail server, corresponding to
the specification in Figure 3. The abstraction relation,
shown as vertical arrows, captures the correspondence
between the abstract spec-level state (set of messages in
each user mailbox) and the concrete code-level state (files
and directories representing the mailboxes). For each
code-level transition, the simulation proof shows that the
new code-level state corresponds to a spec-level state after
zero or more spec-level transitions.

Proving atomicity using simulation turns out to be hard,
because it requires the developer to consider many possi-
ble interleavings, such as the one shown at the bottom of
Figure 4 among others. This leads to a secondary compli-
cation: the abstraction relation must describe all reachable
code-level states, including ones in which many processes
are halfway through executing their updates.

We would like to reduce the problem of reasoning about
concurrent execution to reasoning about sequential execu-
tion as much as possible. To provide some intuition for
why this might work, consider deliver from Figure 1. We
would like to ignore interleavings with other processes be-
fore link (lines 2-8) and after link (lines 9-11), because
operations on lines 2-8 affect that process’s temporary file,
which is specific to that process’s PID. Other processes
will not interfere with it. However, the interleavings with
respect to link (line 9) do matter, because the message
created by link in the shared mailbox can now affect
other processes running deliver or pickup.

To formalize this intuition, CSPEC uses the idea of left-,
right-, and non-movers [27], which captures the notion
that operations from different processes might (or might
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open write link open write close link unlink readdir unlink

Time

Figure 5: Example interleaving of file system operations executed by
3 separate processes: circles correspond to a process running deliver,
squares correspond to another process running deliver, and diamonds
correspond to another process running pickup. Dotted operations and
arrows indicate re-ordering with the help of mover types.

not) commute with one another. Movers help CSPEC
reason about atomicity, by proving that certain sets of
interleavings all produce the same outcome, and hence
that it suffices to consider just the interleaving where the
code executes atomically.

Consider the interleaving in Figure 5, which depicts
the code-level steps from the bottom of Figure 4. (Ignore
the dashed elements for now.) In this example, the open,
write, and close operations from process 1 (denoted by
circles) are right-movers, which means that moving their
execution to the right in the diagram (past the transitions
of other processes) produces the same outcome. This is
because open and write modify a temporary file that’s
named by the process ID and hence not accessed by any
other process, and because close does not interact with
other processes at all. Similarly, the unlink operation
from process 1 is a left-mover, which means that it can be
moved earlier (left) in the execution (past the transitions of
other processes) without changing the outcome. However,
note that the link operation from process 1 is neither a
left- or right-mover (i.e., a non-mover), since moving it
to the left or right can change the outcome by affecting a
readdir from a concurrent pickup.

By using left- and right-movers in Figure 5, we can re-
order the execution of deliver in process 1 to be atomic,
as shown by the dashed elements in Figure 5. This re-
ordering corresponds to a sequential execution of deliver,
and allows us to prove that deliver can be thought of as
executing atomically. We do the same style of reasoning
for pickup, showing that we can rearrange operations so
that they form a sequential execution of pickup, and then
proving that the implementation preserves the atomicity
of pickup. This further allows us to prove correctness of
arbitrary interleavings of processes by considering just
the sequential executions of deliver and pickup.

5 Design of CSPEC

This section provides an overview of CSPEC’s design by
describing what a layer is, how CSPEC defines correctness,
and how a developer proves an implementation correct.

5.1 Layers
CSPEC’s workflow involves defining layers. The spec
of a layer has three parts: the set of operations (Op), the
state manipulated by those operations (State), and the

Definition pathname := list string.

Inductive Op : forall (retT : Type), Type :=
| Read : forall (pn : pathname), Op (option string)
| Link : forall (src : pathname) (dst : pathname), Op bool
| Unlink : forall (pn : pathname), Op unit
| List : forall (dirpn : pathname), Op (list string)
(* Some operations omitted for space reasons *).

Inductive State : Type :=
| ST : forall (Files : Map.t pathname string)

(Locks : Map.t pathname bool), State.

Inductive step : forall ‘(op : Op retT) (pid : nat)
(st : State) (r : retT) (st’ : State), Prop :=

| StepReadOK : forall pn fs pid msg locks,
Map.MapsTo pn msg fs ->
(Read pn, pid, ST fs locks) |-> (Some msg, ST fs locks)

| StepReadNone : forall pn fs pid locks,
~ Map.In pn fs ->
(Read pn, pid, ST fs locks) |-> (None, ST fs locks)

(* Some transitions omitted for space reasons *)
| StepLinkOK : forall fs pid dst data pn locks,
Map.MapsTo pn data fs ->
~ Map.In dst fs ->
(Link pn dst, pid, ST fs locks) |->

(true, ST (Map.set dst data fs) locks)
| StepLinkErr : forall fs pid dst pn locks,
(Link pn dst, pid, ST fs locks) |-> (false, ST fs locks)

where "(op, pid, st) |-> (r, st’)" := step op pid st r st’.

Figure 6: Low layer for the mail server example.

semantics, describing how each operation updates this
state and what value it returns (the step relation).

For example, the top layer of the mail server is the spec
shown in Figure 3. The bottom layer is the file system,
partially shown in Figure 6. This layer defines the file
system operations, the file system state (a tuple, called ST,
consisting of a map representing the contents of all files,
and a map representing whether each file is locked using
POSIX file locking), and the results of each operation:
how it updates the state and what values it returns.

Layers are an important modularity technique. Many
proofs in CSPEC require considering all possible transi-
tions made by other processes (e.g., when proving that an
operation is a right- or left-mover). Doing so directly on
top of the file system layer would be tedious, because
there are many possible transitions (corresponding to
many operations), and because the transitions operate
in terms of low-level file system state. Re-defining the
operations and state in an intermediate layer can simplify
the proof, because the state is smaller and there are fewer
operations to consider. For instance, to prove CMAIL, we
decomposed it into 13 layers as shown in Figure 7, with
each layer (except the bottom) implemented using the
operations of the layer below it. As an example, Figure 8
shows the implementation connecting the MailboxTmp-
Abs and Deliver layers.

Connecting two layers requires writing code for every
higher-level operation that uses only lower-level opera-
tions, and a proof that this code meets the layer’s spec.
CSPEC then links multiple layers together by chaining
their implementations and proofs. It’s much easier to do
the proofs if they map onto CSPEC’s proof patterns.
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Layer name Operations State Pattern

MailServerComposed Deliver, Pickup, Delete, CheckUser (Figure 3) Messages in user mailboxes (Figure 3) PartMailServerPerUser Per-user Deliver, Pickup, Delete Messages in one user’s mailbox AbsMailServerLockAbs same as above + Lock on mailbox for serializing Pickup and Delete Mov+Prot

Pe
r-

us
er

la
ye

rs

Mailbox + List and Read; - Pickup same as above AbsMailboxTmpAbs same as above Additional temporary directory MovDeliver + Create, Link, and Unlink; - Deliver same as above Mov+ProtDeliverListPid + Filtered List returning files with caller’s PID same as above Mov+ProtMailFS + GetPID; - Filtered List same as above AbsMailFSStringAbs same as above File names are strings instead of pairs MovMailFSString Operations now in terms of string names same as above AbsMailFSPathAbs same as above Per-user file system MovMailFSPath Per-user file system operations same as above Part+AbsMailFSMerged File system operations (Figure 6) File system (Figure 6)

Figure 7: Layers used for verifying the mail server. The operations column describes the Op type for that layer. The state column describes the
abstract state, State, over which the layer’s semantics are defined. The pattern column lists the CSPEC proof patterns (described in §6) used for
connecting two layers. This layering corresponds to “plan 1” described later on in §8.1; not shown is one intermediate layer used for “plan 2.”

For example, some of the lower layers in Figure 7 deal
with how the mail server state is encoded using directories
and file names. That is, these layers have a different defi-
nition of State, but typically the same list of operations
(i.e., same Op) as higher layers. All of the layers above,
however, assume that the mail server’s mailbox is com-
pletely disjoint from the temporary directory, and assume
that file names are pairs of process ID and message ID
(i.e., their State is just a map, as in Figure 3). As a result,
the code and proofs at higher layers need not worry about
file name encoding, pathnames, traversing directories, etc.

5.2 Defining correctness

CSPEC’s definition of correctness revolves around the ob-
servable behaviors allowed by the specification, and the
observable behaviors that can be produced by the imple-
mentation. CSPEC uses a standard notion of correctness:
it requires that the behaviors of the implementation be a
subset of the behaviors allowed by the spec.

More formally, CSPEC models the interaction with the
outside world using the notion of events [24, 30]. The
idea is to annotate operations that interact with the outside
world (e.g., accepting a connection, reading or writing
network messages, closing a connection, etc) as produc-
ing events. These events reflect the external behavior of
our system: SMTP messages coming in and being ac-
knowledged, and POP3 requests coming in and getting
responses. The sequence of events produced by a system
thus defines its externally visible behavior, which we call
a trace.

CSPEC defines correctness of an application by requir-
ing that the traces of events produced by the application
when using the concurrent implementation of operations
(e.g., deliver and pickup) must be a subset of the traces
that can be produced by the application using the spec-
ification of those operations (e.g., Figure 3 for the mail
server). In other words, if the actual implementation of

Definition deliver_core (msg : message) :=
ok <- Call (DeliverOp.CreateWriteTmp msg);
match ok with
| true => ok <- Call (DeliverOp.LinkMail);

_ <- Call (DeliverOp.UnlinkTmp);
Ret ok

| false => _ <- Call (DeliverOp.UnlinkTmp);
Ret false

end.

Definition compile_op ‘(op : MailboxOp.Op T) :=
match op with
| MailboxOp.Deliver msg => deliver_core msg
| MailboxOp.Read pn => Call (DeliverOp.Read pn)
| MailboxOp.Delete pn => Call (DeliverOp.Delete pn)
...
end.

Figure 8: Implementation connecting the MailboxTmpAbs and Deliver
layers.

the system can exhibit some behavior, then this behavior
must be allowed by the atomic specification.

Trace inclusion is a good fit for specifying concurrent
systems, compared to some of the alternative approaches
that have been used by recent systems, such as postcon-
ditions [6]. Postconditions allow specifying the return
values from a procedure, but this does not help with pro-
cedures that never return, such as the mail server that
accepts incoming connections in an infinite loop.

CSPEC also uses the notion of trace inclusion to define
the correctness of intermediate layers, such as the 13
layers used in CMAIL. Transitively, if each layer produces
a subset of traces allowed by the layer above it, the entire
stack of layers is correct: the traces produced by the
bottom-most code are a subset of traces allowed by the
top-most specification.

5.3 Implementation
An implementation is a module that provides one function,
compile_op, which implements higher-level operations in
terms of lower-level operations. For instance, CMAIL has
12 such implementations, connecting its 13 layers. Imple-
mentations of multiple layers can be chained together; for
instance, CMAIL chains together its implementations to
translate high-level operations like Deliver and Pickup
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Lemma createwritetmp_right_mover : forall data,
right_mover DeliverRestrictedAPI.step

(DeliverOp.CreateWriteTmp data).
Proof.
unfold right_mover; intros.
...

Qed.

Lemma unlinktmp_left_mover :
left_mover DeliverRestrictedAPI.step

(DeliverOp.UnlinkTmp).
Proof.
split; eauto.
...

Qed.

Figure 9: Example lemmas about movers that arise in verifying the
implementation of the MailboxTmpAbs layer on top of the Deliver
layer. DeliverRestrictedAPI.step refers to a restricted version of the
semantics of the Deliver layer (using the protocol pattern from §6.2),
where the filename of any file linked into a user’s mailbox must contain
the PID of the process that called link().

into low-level file system operations from Figure 6, such
as the pseudocode shown in Figure 1 and Figure 2 (except
that our actual implementation is in Coq, which is not as
easy to read as the Python-like pseudocode).

To produce runnable code, CSPEC extracts this code to
Haskell using Coq’s code extraction facility, and replaces
the low-level operations with actual file system calls. An
unproven driver, written in Haskell, interfaces with the
network (e.g., accepts connections using sockets) and
calls the appropriate top-level operations. To verify the
driver would require verifying the parsing of SMTP and
POP3 messages, which we didn’t do because it has little
to do with concurrency. Finally, the Haskell compiler
produces an ELF executable.

5.4 Proving
Verifying the implementation entails proving that the
code generated by compile_op correctly implements ev-
ery high-level operation in terms of the lower-level op-
erations. This includes proving that the code preserves
the atomicity of high-level operations, given the atomicity
of the lower-level operations. To make this task easier,
CSPEC provides several proof patterns that encapsulate
proof techniques to prove theorems about the behavior of
a concurrent system.

For instance, the mover approach described in §4 is
one such technique. It allows the developer to prove that
certain operations are atomic. Figure 9 shows the lem-
mas needed to prove the atomicity of deliver_core of
Figure 8. The lemmas state that CreateWriteTmp is a
right mover and UnlinkTmp is a left mover, and the devel-
oper must write a proof in Coq (and checked by Coq) to
show that this is true. CSPEC provides a general-purpose
theorem (discussed in §6) that translates these developer-
proven lemmas into a proof that the entire implementation
of deliver_core executes atomically.

Note that compile_op in Figure 8 translates many oper-
ations one-to-one to lower-level operations. It is trivial to

prove that they are atomic because the lower-level opera-
tions are atomic, and CSPEC does this automatically.

CSPEC chains the proofs of each layer’s compile_op to
provide an end-to-end proof that the resulting executable
system meets the top-level atomicity specification.

6 CSPEC’s proof patterns
CSPEC provides a library of proof patterns that help in
proving that the code connecting two layers is correct.
This section presents each proof pattern in turn.

6.1 Mover pattern
The key pattern provided by CSPEC for reasoning about
concurrency is the mover pattern. As we saw in §4, this re-
duces the problem of reasoning about many interleavings
(i.e., concurrent execution) to a combination of reasoning
about just one interleaving (i.e., atomic sequential exe-
cutions) and proving that certain operations are left- or
right-movers.

For instance, consider the implementation of Deliver
shown in Figure 8 as deliver_core. Running this imple-
mentation concurrently with other Deliver and Pickup
operations can produce many interleavings, since there
are no locks. It is not even possible to enumerate all
the possible interleavings, since there can be an arbitrary
number of concurrent processes.

Intuitively, we can reason about the execution of
deliver_core by observing that the link operation is
the commit point. That is, before link other processes are
not affected (e.g., they cannot observe partially delivered
messages), and after link other processes can observe the
delivered message (if link succeeds).

Equivalence. To formalize this line of reasoning, CSPEC
reasons about equivalent executions—that is, two inter-
leavings that must produce the same trace of events. For
example, changing the order of the unlink in Deliver,
with respect to other processes, produces the same trace.

To prove the atomicity of a procedure using CSPEC’s
mover pattern the developer shows that certain operations
are left- or right-movers with respect to other operations,
and that the code of the procedure consists of these left-
and right-movers operations in a certain order. Given
these lemmas, CSPEC provides a theorem that proves the
equivalence of other interleavings.

Movers. CSPEC models the concurrent execution of an
overall system by repeatedly executing one operation
from some process, which leads to a particular execu-
tion sequence. Treating an entire operation as a single
transition captures the idea that operations are atomic.
The choice of the process whose operation is executed
at each point in this execution sequence determines a
particular interleaving. By considering all processes at
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Definition right_mover step ‘(opA : Op TA) :=
forall ‘(opB : Op TB) st0 st1 st2 pidA rA pidB rB,
pidA <> pidB ->
step opA pidA st0 rA st1 ->
step opB pidB st1 rB st2 ->
exists st1’,
step opB pidB st0 rB st1’ /\
step opA pidA st1’ rA st2.

Figure 10: Definition of the right mover.

Theorem trace_incl_movers : forall ‘(p : proc Op T),
right_left_mover_pattern p -> trace_incl p (Atomic p).

Figure 11: Mover pattern theorem. proc Op T is a type denoting a
procedure that returns a value of type T and can invoke operations
described by Op. Atomic p denotes a procedure that atomically executes
p.

each point in the execution sequence, CSPEC considers
all possible interleavings between concurrent processes.

Figure 10 formally defines what it means for a certain
operation, opA, to be a right-mover. Specifically, it con-
siders every possible execution where opA is followed
by some other operation, opB, from a different process
(with process ID pidB). In this execution, opA changes
the state from st0 to st1, and opB changes the state from
st1 to st2. In order for opA to be a right-mover, it must
be possible to swap opA with opB in this execution: that is,
if opB ran first, it must produce some state st1’ such that
opA will then produce st2, and opB and opA produce the
same return values rB and rA respectively. Left movers
are defined similarly (there are some subtle differences
that we discuss later). As an example, Figure 9 showed
how one layer of CMAIL uses these definitions.

Showing that an operation O is a left- or right-mover
requires considering how O interacts with every possible
operation from another process. Layers help by making
it possible to define the operations in a way that makes it
easier to prove that other operations commute.

Composing movers. In order to reason sequentially
about the execution of a procedure, its code must con-
sist of a sequence of right-movers, followed by zero or
one non-movers, followed by a sequence of left-movers.
This structure allows CSPEC to show that any possible
execution sequence is equivalent to one where the proce-
dure executes sequentially, with no intervening operations
from other processes. Specifically, CSPEC provides a the-
orem, shown in Figure 11, stating that any trace produced
by procedure p is also produced by procedure Atomic p
(which executes p in a single atomic step), as long as p
follows the above mover pattern.

CSPEC proves this theorem by moving all of the right-
movers to the right and all of the left-movers to the left, so
that they appear to execute sequentially with the optional
non-mover in the middle. The non-mover (for example,
link in Deliver) is the commit point of the operation.

Left-mover challenges. Proving the theorem in Fig-
ure 11 is difficult, and required addressing several chal-
lenges with the formalization of left-movers.

First, operations can be left-movers just with specific
arguments or just in specific states. For example, the
implementation of Pickup first lists the files in a user’s
mailbox directory and then opens and reads the files one
at a time, as shown in Figure 2. Here, the open operation
is a left-mover only if called with the pathname of a file in
the user’s mailbox. (The implementation of Pickup holds
a lock to prevent concurrent deletes, but does not prevent
concurrent deliveries.) It is not a left-mover if called with
a filename in the temporary directory, because opening a
temporary file might succeed or fail depending on what
a concurrent Deliver does in the temporary directory.
Furthermore, open is a left-mover only if the file already
exists before the other operation (i.e., the operation being
re-ordered with respect to the open). Otherwise, this other
operation might be Deliver creating the file in question
in the mailbox.

CSPEC supports state- and argument-dependent left
movers by restricting the states and arguments that have
to be considered by the left-mover. Specifically, CSPEC
requires the left-mover to consider only those states and
arguments that can arise after executing the prefix of the
operations leading up to the left mover. For instance, the
procedure p shown in Figure 11 may be composed of
several right-movers, followed by a non-mover, followed
by several left-movers. The left-movers have to consider
only the states that can arise after the right-movers and
the non-mover have executed.

To take advantage of state-dependent left-movers, the
developer first states an invariant that is established by
executing the right-movers followed by the non-mover.
The developer then proves a lemma that, starting from
any state, executing the right-movers followed by the non-
mover establishes this invariant. Finally, when reasoning
about a left-mover, the developer can invoke this lemma
to prove that the state observed by the left-mover satisfies
the invariant.

Second, CSPEC’s model of operations allows for op-
erations to be disabled: that is, the semantics forbids an
operation to execute in a given state. This is represented
by a step relation that does not provide any legal transi-
tions for a particular operation and a particular state. In
the top-level and lowest-level layers such restrictions do
not appear, because CMAIL can always deliver and pickup
mail and the file system can always execute an operation
(even if only to return an error). However, disabled opera-
tions are helpful in intermediate layers, in order to prove
that other processes follow certain rules.

The simplest example is a lock that protects memory
accesses. Reads and writes to memory protected by a lock
commute with other threads, because those threads cannot
access the locked memory. By taking advantage of the
fact that reads and writes are disabled for other threads
that do not hold the lock, CSPEC allows a proof that
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Acquire Read Write Read Release . . . Read . . . Release

Time

Figure 12: Use of left movers in an example process that acquires a
lock, reads a variable, writes a variable, then reads a variable again and
releases the lock. The gray shading of the Release on the right indicates
that, although the Release is part of the code for the round process, the
execution sequence shown is one where the Release never gets around
to executing (e.g., due to other threads preempting it).

reads and writes are movers. (CSPEC’s protocol pattern,
described in §6.2, allows a developer to show that it is
correct to assume that certain operations are disabled.)

Disabled operations complicate the notion of a left-
mover, because moving an operation to the left requires
showing that it can be executed earlier, which requires
showing that it is enabled earlier. Consider a simple exam-
ple shown in Figure 12. Reading from a locked memory
region requires that the caller hold the lock. Moving the
second read earlier requires showing that the caller holds
the lock at that point. CSPEC deals with this by requiring
a proof that a left-mover is stably enabled. This means
that if the operation was enabled in a certain state (e.g., at
the point where the second read actually ran in Figure 12),
then it must be enabled in a prior state before another
operation from a different process ran (e.g., in its dashed
location in Figure 12). The read is stably enabled because
the process must have held the lock, and no other process
can acquire or release this process’s lock.

The final challenge has to do with liveness. For ex-
ample, the Release in Figure 12 is a left-mover, and we
would like to use this fact to make the entire sequence
of five operations into an atomic step. However, in our
example, Release never actually ran (i.e., it is not part
of the execution sequence). This might be because the
scheduler is not fair and repeatedly ran other processes
instead. How can we re-order the Release if it does not
appear in the execution sequence to begin with?

To deal with this problem, CSPEC’s proof considers all
possible execution sequences. If an execution sequence
contains the Release, the proof uses the fact that it is a
left-mover to move it left. However, if an execution se-
quence does not contain the Release (i.e., if the Release
never runs), then it is safe to insert that Release into the
execution sequence. Stable enablement of left movers
guarantees that Release is enabled at the point where
we would like to insert it (i.e., the Release cannot have
been waiting for another process to do something), and
Release being a left-mover guarantees that other opera-
tions from this execution sequence will not be affected by
inserting this Release (because they never saw the lock
being released in the first place).

Definition op_abs :=
forall ‘(op : Op T) st st’ ST pid r,
absR st ST ->
lo_step op pid st r st’ ->
exists ST’,
absR st’ ST’ /\ hi_step op pid ST r ST’.

Figure 13: Definition of abstraction.

6.2 Protocol pattern
Proving that operations are left- or right-movers some-
times requires reasoning about what other processes will
do, not just about what operations they have. In the lock
example above, proving that memory accesses are movers
while holding the lock requires knowing that other pro-
cesses will not access the same memory while this pro-
cess is holding the lock. To reason about such examples,
CSPEC requires the developer to define a protocol, which
is a restricted version of the step execution semantics
that disables certain transitions. In the lock example, this
restricted semantics requires that the caller hold the lock
in order to read or write memory. With this restricted
step relation memory accesses are movers, because other
processes are not allowed to access the same memory
location while not holding the lock.

In reality, nothing prevents another process from ac-
cessing memory without holding the lock. Thus, a proof
that is sound to use the restricted semantics requires a
proof that all users of the API correctly follow this proto-
col. Specifically, this entails proving that any execution
of a process’s code on the unrestricted semantics is also a
valid execution on the restricted semantics.

In theory, this requires reasoning about many inter-
leavings. In practice, however, the reason that a proce-
dure follows a protocol is often simple (e.g., syntactically,
the program never calls Release unless it called Acquire
first). Thus, the proof needs only limited reasoning about
the execution of other processes. In the locking example,
proving that a process reads or writes memory only while
holding a lock requires just one helper lemma: that other
processes will not release a lock held by this process.

6.3 Abstraction pattern
To connect layers with different types of states, CSPEC
provides an abstraction pattern. The abstraction pattern
requires the developer to define an abstraction relation
that connects low-level and high-level states, and to prove
that every operation preserves this relation. This pattern
is a specialized version of a standard simulation proof: it
requires that the operations remain the same.

Figure 13 formally defines the proof obligation for the
abstraction pattern. It requires a proof that, for every
operation op, if op runs from state st to st’ in the low-
level semantics, and low-level state st corresponds to
high-level state ST according to the abstraction relation
absR, then there’s a state ST’ that corresponds to st’ such
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that the same op runs from ST to ST’ with the same return
value.

The rest of this subsection describes two stylized uses
of the abstraction pattern that we have found particularly
useful in developing CMAIL and the x86-TSO locked
counter example.

Invariant. The abstraction pattern allows a developer to
prove that a layer follows an invariant: some property
of states at that layer that is maintained by that layer’s
semantics. This in turn can help the developer apply other
patterns, such as movers or the protocol pattern.

Operationally, the developer first specifies an invariant
by defining a layer whose semantics require the invariant
to hold in the initial and final state of every operation; the
operations and the type of state remain the same. The
developer then defines an identity abstraction relation
(connecting states one-to-one). Finally, the proof of the
abstraction relation shows that, if the invariant holds in
some state, running any operation results in a state that
also satisfies the invariant.

Error state. The abstraction pattern can also allow a
developer to defer reasoning about unreachable states by
defining an explicit error state. This is useful at lower-
level layers, which have insufficient information to prove
that certain states are unreachable (e.g., because it is up to
the implementation of higher layers to avoid those states).
This is simpler than an alternative plan that fully describes
what happens in these states, and allows subsequent layers
to treat all of these error states identically.

Operationally, the developer defines a protocol that they
expect to follow (much as in the protocol pattern from
§6.2), and augments the state with a designated error state.
The developer then modifies the execution semantics so
that, if the protocol is not followed, the execution transi-
tions into the error state. Once the execution enters the
error state, it remains in that state forever.

To connect an error-state layer to a lower layer without
an error state, the developer defines an abstraction relation
that allows the high-level error state to correspond to any
low-level state. To connect two layers with error states,
the developer defines an abstraction relation that connects
the error states at the two layers. To finally dismiss the
error state, the developer uses the protocol pattern to show
that an implementation never enters the error state, and
thus the error state is unreachable.

6.4 Other patterns
Retry loop. CSPEC provides a specialized pattern for
reasoning about retry loops. For example, when the mail
server is delivering a message into a mailbox, it guesses
a name that is unlikely to exist (using the current times-
tamp), and attempts to link the new message under that
name. If link returns an error (i.e., the name already
exists), CMAIL guesses a new filename and retries.

Component Lines of code/proof

Core: processes, layers, etc. 4,594
Proof patterns 2,117
Helper: Maps, Sets, etc. 2,869

Total 9,580

Figure 14: Combined lines of code and proof for CSPEC components

The retry loop pattern requires a proof that the body of
the loop either has the correct effect (such as delivering
the message into a mailbox) and exits the loop, or has
no effect and retries. This allows CSPEC to prove that
executing the loop is equivalent to just running the body
once, at exactly the right time (when it finally succeeds),
because it can provably ignore all previous attempts (since
they must have had no effect).

Partitioning. CSPEC provides a partitioning pattern to
reason about disjoint parts of the state. For example,
CMAIL has a separate mailbox for every user. Without
explicit support for partitioning, the developer would need
to reason about pairs of users at every layer of CMAIL—
for instance, showing that an operation is a right-mover
would require considering concurrent operations both on
the same mailbox and on other mailboxes.

To use CSPEC’s partitioning pattern, the developer im-
plements and proves layer A on top of layer B, using
CSPEC’s other patterns, where A and B represent a single
shard of the overall system state. For example, the core
of CMAIL implements the per-user MailServerPerUser
layer on top of the per-user MailFSPath layer, as shown
in Figure 7. The developer must also specify how these
shards are named (e.g., by string username in the case of
CMAIL). The partitioning pattern turns this proven single-
shard implementation into a proven implementation for
many shards (e.g., all users in CMAIL).

As shown in Figure 7, cross-mailbox operations show
up just at the top and bottom layers of the CMAIL stack.
At the bottom layer, the proof must show that mailboxes
are correctly partitioned in the file system—that is, each
mailbox gets its own directory that is independent of all
other mailbox directories. At the top level, the developer
must specify and prove how the entire state of the sys-
tem can be decomposed into per-user partitions. This is
straightforward for CMAIL because the top-level abstract
state (Figure 3) consists of a mailbox per user.

7 Implementation
We implemented CSPEC in Coq. Figure 14 shows the
lines of code, specification, and proof for the major com-
ponents. Developers implement, specify, and prove their
concurrent software in Coq, and CSPEC produces exe-
cutable code using Coq’s extraction support to Haskell.
Our prototype of CSPEC and CMAIL is available at
https://github.com/mit-pdos/cspec.
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One technical difficulty in implementing CSPEC is that
Coq (like many other formal reasoning systems) makes it
cumbersome to reason about infinite objects (i.e., Coq’s
CoInductive), as opposed to arbitrary-sized objects (i.e.,
Coq’s Inductive). This made it hard for us to model
the possibly infinite traces of events produced by the
execution of a concurrent system.

To deal with this, we borrowed an idea from Lynch [29:
§13], taking advantage of the fact that CSPEC is target-
ing only safety properties. A violation of safety can be
observed in a finite prefix of the trace. Thus, we define
trace inclusion in Coq for possibly infinite traces as trace
inclusion for every finite prefix of that infinite trace.

8 Evaluation
This section answers five questions to evaluate CSPEC:

• Can CSPEC enable developers to specify, implement,
and verify concurrent software? §8.1 answers this
in the context of CMAIL, and §8.2 demonstrates that
CSPEC’s patterns are also applicable for a different
style of concurrency: namely, weak shared memory.

• Can software developed using CSPEC actually achieve
speed-ups by taking advantage of concurrency? (§8.3)

• How much effort is required to use CSPEC? (§8.4)

• How important are CSPEC’s patterns? (§8.5)

• What are the trusted components of CSPEC and
CMAIL? (§8.6)

We answer the above questions by exploring two case
studies built using CSPEC: a concurrent mail server
(CMAIL) and a concurrent counter that uses locks im-
plemented on top of an x86-TSO memory model.

CMAIL is a simple but complete mail server that sup-
ports SMTP and POP3. It runs on top of any file system
on Linux and we have tested its compatibility with sev-
eral SMTP and POP3 clients, including the SMTP library
in Go, and the postal and rabid mail server benchmarks.
CMAIL lacks sophisticated features found in standard mail
servers, such as spam filtering, logging, TLS support, etc.

8.1 Verifying CMAIL

To show that CSPEC enables reasoning about concurrency,
we give examples of concurrency from our two case stud-
ies. This subsection describes the examples of concur-
rency from CMAIL, and the next subsection describes our
experience verifying an atomic counter on top of x86-TSO
weak memory.

Figure 15 summarizes the examples of concurrency
from CMAIL, by describing pairs of processes that might
run concurrently, the state that they might access concur-
rently, the plan for dealing with this concurrent execution,
and how we as developers were able to use CSPEC to
formally reason about the correctness of this concurrent

interaction. The rest of this subsection describes these
examples in more detail.

Deliver/Deliver: temp directory. Accepting an incom-
ing message requires CMAIL to first write it to a temporary
directory. However, there can be concurrent deliveries
writing to the same directory at the same time. For cor-
rectness, a CMAIL process includes its PID in the names
of its temporary files, which ensures two processes never
conflict on files in the temporary directory. In CSPEC,
we formally reason about this by showing that operations
on the temporary directory always commute between dif-
ferent processes, because they have different PIDs in the
filenames.

Pickup/Delete. If a user has two connections to CMAIL,
and deletes a message on one connection while picking up
messages via another connection, then the code for pickup,
which lists and picks up messages, might discover halfway
through that it cannot read a message file because the file
has been deleted. CMAIL deals with this by acquiring
a lock (using POSIX flock) on the user’s mailbox, in
both pickup and delete (but not in deliver; concurrency
between deliver and pickup will be discussed next). We
reason formally about this in CSPEC by first proving that
CMAIL follows a protocol that requires holding a lock to
delete any messages, and then showing that reading an
existing message file is a both-mover while the lock is
held.

Deliver/Pickup by another user. When CMAIL delivers
or picks up mail for different users in different processes
the concurrency plan is easy: these operations are inde-
pendent because they operate on different mailboxes. In
CSPEC, we show that operations on different mailboxes
are commutative.

Deliver/Pickup by same user. A user can pick up (list
and read) the messages in their mailbox while CMAIL is
concurrently delivering new messages to that same mail-
box (by creating files). CMAIL handles this like Maildir:
it first creates new messages in a temporary directory,
and then atomically renames them into the mailbox direc-
tory. When a user picks up their mail, CMAIL first calls
readdir to list the files in the mailbox, and then reads
the files in a loop. This is correct even in the presence
of concurrent deliveries, because deliveries never delete
existing files. To reason formally about this in CSPEC,
we show that creating temporary files during delivery is
a right-mover, and the atomic rename by delivery is a
non-mover. On the pickup side, readdir is a non-mover,
but all subsequent reads of existing files are left-movers.

Deliver/Deliver: files in mailbox, plan 1. Concurrent
deliveries into the same user mailbox must ensure they
pick different file names for the new messages. CMAIL
implements two plans for this scenario, to demonstrate
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Process 1 Process 2 State Concurrency plan CSPEC approach

Deliver message Deliver message Temp. directory File names based on PID Both-movers due to commutativity
List mailbox Delete a message Files in mailbox Lock the mailbox directory Protocol: both-movers while holding lock
Deliver to one user Pickup by another user Files in mailbox Per-user directories Both-movers due to commutativity
Deliver to one user Pickup by same user Files in mailbox Atomic rename / readdir Non-mover rename, non-mover readdir
Deliver to one user Deliver to same user Files in mailbox List files by PID and pick next List-per-PID is a mover
Deliver to one user Deliver to same user Files in mailbox Retry link to random filename Retry loop

Figure 15: Examples of concurrency from CMAIL supported by CSPEC.

how different approaches can work. In the first approach
(which differs from Figure 1), filenames in the mailbox di-
rectory are based on the PID of the process that delivered
the message. To pick an available filename, the delivery
process calls readdir to list the directory, and chooses
the next available filename that contains its PID.

Formally reasoning about this turns out to be tricky
in two ways. First, readdir is not a mover, because its
results can be affected by concurrent deliveries. To use
mover-based reasoning, we implemented a function that
filters the output of readdir and returns only the file-
names of the caller’s PID. This PID-filtered readdir
function is a both-mover, because concurrent deliveries
by different processes have filenames with different PIDs.

Second, in the presence of concurrent message deletion,
even PID-filtered readdir is not quite a mover. We solve
this by allowing it to return a superset of files that exist:
that is, it must return all files that exist but can also return
some non-existent files. This suffices because a filename
that is not in the superset is guaranteed to not exist. This
PID-filtered readdir is a right-mover in the presence of
deletion (though not a left-mover), and so we can use the
mover pattern to reason about its concurrent execution.

Deliver/Deliver: files in mailbox, plan 2. The second
plan we implemented for concurrent deliveries to the
same mailbox is to pick a random filename and try using
it. POSIX link returns an error if the file already exists,
so in case of an error CMAIL picks a new random filename
(actually, it uses the current timestamp) and retries. To
reason about this we use the retry pattern, showing that
link either succeeds or returns an error and has no effect.

8.2 Verifying a counter on x86-TSO
CMAIL’s concurrency model is based on processes with
private memory sharing a file system. To demonstrate that
CSPEC can also be used to reason about other concurrency
models, we developed a model of x86-TSO [34], the
predominant memory model of x86 processors. On top of
x86-TSO, we implemented a lock, and used the lock to
implement a counter. The lock implementation is a loop
around an atomic test-and-set instruction, which includes
an implicit write barrier (on x86, this corresponds to a
LOCK prefix on the test-and-set instruction). We used 10
layers to verify this counter, as shown in Figure 16.

The top layer is a counter with two atomic operations:
increment and decrement. The bottom layer, TSO, models
x86-TSO: there is a shared memory and a per-core store
buffer, and individual cores can issue reads, writes, or
atomic test-and-set instructions, as well as perform a write
barrier to flush that core’s store buffer. Every operation at
this bottom layer allows any core to flush any part of its
store buffer at any time.

One challenge in the TSO layer is that background
flushes of store buffers can happen on any core at any
time. To help address this challenge, we showed that
the TSO layer is equivalent to the TSODelayNondet layer
which does not allow store buffer flushes on write (in-
stead, postponing them to a subsequent read, barrier, or
test-and-set).

The LockOwner layer introduces abstract state to keep
track of which core owns the lock, using the abstraction
pattern. Our intention is that the lock protects reads and
writes to a shared memory location. However, this proper
use of the lock is not established until a higher layer
(namely, Lock). As a result, the LockOwner layer uses an
explicit error state (§6.3) to indicate when the locking
rules are not being followed. This error state is proven
to be unreachable in the Lock layer (using the protocol
pattern).

The LockInvariant layer additionally tracks the pre-
vious lock owner as part of the state. This is necessary
because the implementation of lock release does not issue
a write barrier. As a result, even though the lock may
have been released, the lock value in shared memory may
still appear to be locked, and pending writes to shared
data are also in some core’s store buffer. By tracking the
previous lock owner, the LockInvariant layer states an
invariant that either there are no pending writes to the
lock or shared data in any core’s store buffer, or they are
in the previous lock owner’s store buffer. The next layer,
SeqMem, builds on this invariant to present a sequentially
consistent view of shared memory, abstracting away the
store buffer details.

The RawLock layer introduces an Acquire operation
that waits until it can acquire the lock. This layer is
implemented on top of SeqMem by repeatedly trying to
acquire the lock in a loop. The proof is constructed with
the help of CSPEC’s loop pattern.

318    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Layer name Operations State Semantics Pattern

Counter Inc, Dec Counter value Atomic Inc and Dec AbsLockedCounter Inc, Dec Counter value + lock Atomic Inc and Dec MovLock Read, Write, Acquire, Release SC memory + lock Read/Write allowed only while holding lock ProtRawLock Read, Write, Acquire, Release SC memory + lock Read/Write allowed any time LoopSeqMem Read, Write, TryAcquire, Clear SC memory + lock Single value in memory, no SBs AbsLockInvariant Read, Write, TryAcquire, Clear Mem + SBs + cur/prev LOs SBs empty except current or prev lock owner AbsLockOwner Read, Write, TryAcquire, Clear Mem + SBs + current LO TSO + error state for violating lock protocol AbsTAS_TSO Read, Write, TryAcquire, Clear Mem + SBs TryAcquire grabs lock; Clear releases lock MovTSODelayNondet Read, Write, TestAndSet, Barrier Mem + SBs Reduced number of background SB flushes AbsTSO Read, Write, TestAndSet, Barrier Mem + SBs SB may choose to flush on every operation

Figure 16: Layers used for verifying the x86-TSO locked counter. The operations column describes the Op type for that layer. The state column
describes the abstract state, State, over which the layer’s semantics are defined. The semantics column describes the semantics. The pattern column
indicates which CSPEC proof pattern is used in connecting adjacent layers. “SC” stands for sequentially consistent. “SB” stands for store buffer. “LO”
stands for lock owner.
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Figure 17: Throughput of CMAIL with a varying number of cores.

8.3 Speedup

To demonstrate that CMAIL can take advantage of mul-
tiple cores because it executes concurrently, we run a
mixed workload of SMTP deliveries of new messages and
POP3 requests that read and delete messages. The mix
is an equal ratio of new messages being delivered and
existing messages being read and deleted. Each request
(delivery or pickup) chooses one of 100 users at random.
Although CMAIL supports full-fledged SMTP and POP3
over the network, we simulated SMTP and POP3 requests
on the same machine to stress CMAIL’s scalability. We
ran the experiment on a server with two Intel Xeon CPU,
each with 6 cores running at 3.47 GHz. To keep the
disk from being the bottleneck, we ran CMAIL on Linux
tmpfs. To compare the performance of CMAIL to that of
an unverified implementation, we implemented an equiv-
alent mail server in Go, called GoMail, and measured its
performance in the same setup.

Figure 17 shows the performance (in requests per sec-
ond) for different numbers of cores of both CMAIL and
GoMail. The results show that CMAIL scales well with
more cores. This is because tmpfs can execute the file
system calls of the different CMAIL processes in parallel.
In terms of absolute performance, CMAIL achieves 81-
97% of GoMail’s throughput, depending on the number
of cores.

MailServerComposed78 lines of spec
11 lines of code
65 lines of proof

MailServerPerUser129 lines of spec
0 lines of code

51 lines of proof
MailServerLockAbs63 lines of spec

34 lines of code
470 lines of proof

Mailbox138 lines of spec
0 lines of code

70 lines of proof
MailboxTmpAbs93 lines of spec

25 lines of code
261 lines of proof

Deliver173 lines of spec
34 lines of code

204 lines of proof
DeliverListPid181 lines of spec

27 lines of code
106 lines of proof

MailFS146 lines of spec
0 lines of code

172 lines of proof
MailFSStringAbs166 lines of spec

36 lines of code
128 lines of proof

MailFSString145 lines of spec
0 lines of code

302 lines of proof
MailFSPathAbs200 lines of spec

17 lines of code
72 lines of proof

MailFSPath138 lines of spec
31 lines of code

579 lines of proof
MailFSMerged323 lines of spec

Figure 18: Combined lines of code and proof for CMAIL layers. The
number next to arrow indicates number of lines of code and proof for
the implementation connecting two layers.

8.4 Effort
Figure 18 shows the size of CMAIL: the lines of Coq
code to specify each layer (i.e., define operations, state,
and semantics) and the lines of Coq code required to con-
nect layers (i.e., implement one layer in terms of a lower
layer and prove the correctness of that code). Develop-
ing CSPEC and CMAIL took two people ∼6 months of
part-time effort.

The figure shows that the effort required per layer is
modest. Each layer spec is 100-200 lines of Coq code,
which are largely repetitive, with only small differences
between adjacent layers. Informally, the specs of adjacent
layers differ in roughly half the lines, and even the differ-
ing lines are often similar (e.g., an extra state component
is added everywhere). Better language support, perhaps
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Proof pattern # of uses # of uses
in CMAIL in x86-TSO

Movers 6 2
Abstraction 5 5
Protocol 3 1
Partitioning 2 0
Retry loop 1 1

Figure 19: Use of proof patterns in CMAIL and the x86-TSO example.

along the lines of CIVL’s [22], could eliminate the repeti-
tion. A layer often maps a high-level operation directly
onto a low-level operation, so it should be sufficient to
write the spec only once. For example, CMAIL’s GetPID
is the same in each of the 13 layers.

The code and proof is sometimes shorter than the layer
spec because some code takes advantage of CSPEC’s pat-
terns so well that it requires little additional proof effort.
This is particularly true for the abstraction pattern that
introduces additional state not seen at a higher layer (e.g.,
adding state for a lock that is hidden at a higher layer).

The most significant code and proof effort connects the
MailServerLockAbs and Mailbox layers, where CMAIL
implements atomic pickup. This requires a proof that
pickup’s file reads are left-movers, and inductive rea-
soning about a loop that reads all files. This is partic-
ularly hard because the file read is a state- and argument-
dependent left mover, which requires reasoning about the
set of files that exist in the system after readdir returns.

Evolution. To evaluate how hard it is to make incremen-
tal changes to a verified system in CSPEC, we report the
effort it took us to make several significant changes to
CMAIL as we were developing it. Initially our mail server
supported POP3 retrieval but not deletion. Adding dele-
tion support took about a day: we had to change some
mover proofs because deletion made certain operations
into non-movers. Our initial mail server used plan 1 to
choose unique file names in a mailbox (see §8.1); imple-
menting plan 2 using retry loops with link took us about
a day. Finally, adding support for multiple users took
us about a week. After a day, we realized that manually
adding users to each layer was too tedious, and spent a
week developing the partitioning pattern in CSPEC. After-
wards, supporting multiple users took about a day.

8.5 Patterns

Figure 19 shows the number of uses of a proof pattern
in CMAIL and in the x86-TSO example. Typically each
layer uses one proof pattern, but a few layers are split
into several modules, each module using a distinct proof
pattern. The results show that all patterns are important;
that movers is the most commonly used pattern in CMAIL;
and that abstraction is the most common pattern in x86-
TSO.

8.6 Trusted computing base
Whether CMAIL does the right thing depends on several
unverified assumptions and components. The first assump-
tion is that the top-level specification (Figure 3) captures
the right behavior. Second, the specification of the bot-
tom layer (Figure 6) must be an accurate model of the
underlying file system. Finally, the Haskell runtime and
interpreter used to run CMAIL must behave appropriately.

CMAIL also requires Coq to be sound, but inside of
Coq, CMAIL and CSPEC are fully proven. We used the
Print Assumptions command in Coq to verify that the
end-to-end theorem about correctness of CMAIL does not
depend on any unproven axioms (aside from standard
assumptions like Coq’s functional extensionality).

9 Conclusion
CSPEC is a framework for verifying concurrent systems
software. It uses mover types to simplify reasoning about
both lock-based and lock-free concurrency, with the first
fully machine-checked proofs. To further simplify proofs,
CSPEC has layers and a library of proof patterns. CMAIL
demonstrates that CSPEC can verify all the concurrency
patterns in a Maildir-like mail server. Furthermore, we
demonstrate that CSPEC’s proof pattern can also be used
to prove an atomic lock-based counter on top of x86-TSO
shared memory. CMAIL achieves speedup on a multicore
machine due to concurrency. We hope that CSPEC and its
ideas will help others to verify concurrent software.
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Atalay İleri, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich
MIT CSAIL

Abstract
SFSCQ is the first file system with a machine-checked
proof of security. To develop, specify, and prove SFSCQ,
this paper introduces DISKSEC, a novel approach for rea-
soning about confidentiality of storage systems, such as a
file system. DISKSEC addresses the challenge of specify-
ing confidentiality using the notion of data noninterfer-
ence to find a middle ground between strong and precise
information-flow-control guarantees and the weaker but
more practical discretionary access control. DISKSEC
factors out reasoning about confidentiality from other
properties (such as functional correctness) using a no-
tion of sealed blocks. Sealed blocks enforce that the file
system treats confidential file blocks as opaque in the
bulk of the code, greatly reducing the effort of proving
data noninterference. An evaluation of SFSCQ shows
that its theorems preclude security bugs that have been
found in real file systems, that DISKSEC imposes little
performance overhead, and that SFSCQ’s incremental
development effort, on top of DISKSEC and DFSCQ, on
which it is based, is moderate.

1 Introduction
Many security problems today stem from bugs in software.
Although there has been significant effort in reducing
bugs through better testing, fuzzing, model checking, and
so on, subtle bugs remain and continue to be exploited.
Machine-checked verification is a powerful approach that
can eliminate a large class of bugs by proving that an
implementation meets a precise specification.

Prominent examples of machine-checked security
proofs include verification of strict isolation (with confi-
dentiality) for an OS kernel in CertiKOS [15], seL4 [26],
and Komodo [17], as well as security proofs in Iron-
clad [20] about applications like a password hasher and
a notary service. However, proving the security of sys-
tems with rich sharing semantics, such as file systems,
is an open problem. For example, unlike prior examples
that focus on strict isolation without controlled sharing,
users in a file system can share files with one another, and
the underlying implementation has shared data structures
(such as a buffer cache or write-ahead log) that contain
data from different users.

Proving security for a file system requires addressing
two key challenges. The first challenge lies in specify-
ing security. Integrity can be expressed as simply as a
functional correctness property. Confidentiality is more

challenging to specify. For example, consider a natural
specification for readdir, which allows the file system to
return the names in a directory in any order. This nonde-
terminism could be abused by a buggy or malicious file
system to leak confidential file data through careful ma-
nipulation of the order of readdir results. Furthermore,
nondeterminism is essential to a file system, because file
systems must deal with crashes, which can occur nonde-
terministically at any time.

One approach to specifying confidentiality is to for-
mulate it as a noninterference property, such as in most
information-flow-control systems. This means that the
execution of one process (a potential victim processing
confidential data) cannot influence the execution of an-
other process (an adversary trying to learn that data). Non-
interference can be stated concisely, and is easy for appli-
cations to use. However, information-flow-control style
guarantees are stronger than what file systems aim for.
Instead, file systems aim for weaker notions of confiden-
tiality, along the lines of discretionary access control on
files that reveal some metadata, such as file lengths.

A second challenge lies in proving confidentiality. Con-
fidentiality is a “two-safety” property [34], which requires
reasoning about pairs of executions to show that an ad-
versary cannot observe any differences correlated with
confidential data. However, reasoning about pairs of exe-
cutions is more complicated than reasoning about a single
execution, which is sufficient for proving integrity and
functional correctness.

This paper presents DISKSEC, an approach for proving
the security, and specifically confidentiality, for storage
systems, such as file systems. The paper demonstrates
the benefits of DISKSEC by developing, specifying, and
proving the security of a file system in a prototype called
SFSCQ, based on the DFSCQ file system [13].

DISKSEC addresses the specification challenge by us-
ing a notion of data noninterference that both matches
what file systems aim to provide and is concise and easy
to use for applications. Data noninterference requires that
an adversary’s execution be independent of the contents
of individual files, but it allows the adversary to observe
other metadata, such as file length and directory entries,
and allows for discretionary access control (i.e., a user
can choose to disclose their data).

To address the challenge of proving security, DISKSEC
factors out reasoning about confidentiality from all other
properties, such as functional correctness. DISKSEC does
so by introducing a notion of sealed blocks. This builds
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on the intuition that file systems do not look inside of
the blocks that represent user file contents. As a result,
DISKSEC is able to treat confidential file blocks as opaque
in much of the file-system code, greatly reducing the need
for manual proofs of two-safety that consider pairs of
executions. The only manual proofs of two-safety are in
the top-level read and write system calls.

We implemented DISKSEC and SFSCQ in the Coq
proof assistant [35]. All proofs of security are machine-
checked by Coq, eliminating the possibility of bugs that
violate SFSCQ’s specification. An evaluation of SFSCQ
shows that its specifications are complete enough to prove
confidentiality of a simple application. The evaluation
also shows that DISKSEC’s approach allowed us to de-
velop SFSCQ with a modest amount of effort, and that
SFSCQ achieves comparable performance to the DFSCQ
file system that it is based on.

The contributions of this paper are:

• SFSCQ, the first file system with a machine-checked
proof of confidentiality. SFSCQ has a concise specifi-
cation that captures discretionary access control using
data noninterference, and deals with nondeterminism
due to crashes.

• DISKSEC, an approach for specifying and proving
confidentiality for storage systems that reduces proof
effort. DISKSEC uses the idea of sealed blocks to
factor out reasoning about confidentiality from most
of the file system code.

• An evaluation that demonstrates that DISKSEC’s ap-
proach leads to negligible performance overheads in
SFSCQ, that it precludes the possibility of confiden-
tiality bugs that have been found in existing file sys-
tems, and that SFSCQ’s specification allows applica-
tions to reason about their confidentiality.

Our SFSCQ prototype has several limitations. Since
it relies on Coq’s extraction to Haskell, inherited from
DFSCQ, its trusted computing base (TCB) includes the
Haskell runtime and compiler. The version of SFSCQ
with fully machine-checked proofs does not support
changing permissions. A newer version of SFSCQ sup-
ports dynamic permissions but has a few proofs that have
not been repaired to reflect this change. Finally, SFSCQ’s
access-control mechanisms are relatively simple, support-
ing owned and public files but not groups or separate read
and write permissions.

2 Related Work
DISKSEC builds on a large body of prior work in several
dimensions, as we discuss in the rest of this section.

Data noninterference. DISKSEC’s notion of data non-
interference builds on prior work on formalizing noninter-
ference properties [19, 25, 26, 29, 30, 32]. Specifically,

data noninterference can be thought of as a specializa-
tion of abstract noninterference [18], relaxed noninterfer-
ence [24], or observation functions [15]. One difference
in our approach is that data noninterference stops at the
file-system API boundary; applications are not subject
to data-noninterference policies. This matches well the
traditional discretionary access-control policies enforced
by file systems.

Formalizing data noninterference requires reasoning
about two executions, since confidentiality is a two-safety
property [34]. In this context, our contribution lies in a
specification and a proof style based on sealed blocks that
helps us prove a data-noninterference two-safety property
about the file system.

Machine-checked security in systems. Several prior
projects have proven security (and, specifically, confi-
dentiality) properties about their system implementations:
seL4 [23, 26], CertiKOS [15], and Ironclad [20]. For
seL4 and CertiKOS, the theorems prove complete isola-
tion: CertiKOS requires disabling IPC to prove its security
theorems, and seL4’s security theorem requires disjoint
sets of capabilities. In the context of a file system, com-
plete isolation is not possible: one of the main goals of a
file system is to enable sharing. Furthermore, CertiKOS
is limited to proving security with deterministic specifi-
cations. Nondeterminism is important in a file system
to handle crashes and to abstract away implementation
details in specifications.

Ironclad proves that several applications, such as a no-
tary service and a password-hashing application, do not
disclose their own secrets (e.g., a private key), formu-
lated as noninterference. Also using noninterference, Ko-
modo [17] reasons about confidential data in an enclave
and showing that an adversary cannot learn the confiden-
tial data. Ironclad and Komodo’s approach cannot specify
or prove a file system: both systems have no notion of a
calling principal or support for multiple users and there
is no possibility of returning confidential data to some
principals (but not others). Finally, there is no support for
nondeterministic crashes.

Information flow and type systems. Another approach
to ensuring security is to rely on types or runtime en-
forcement mechanisms. Although this does not give a
machine-checked theorem of security, we build on aspects
of this approach, namely, the sealed disk has typed blocks.

Type systems and static-analysis algorithms, as with
Jif’s labels [27, 28] or the UrFlow analysis [14], have been
developed to reason about information-flow properties of
application code. However, these analyzers are static and
would be hard to use for reasoning about data structures
inside of a file system (such as a write-ahead log or a
buffer cache) that contain data from different users.
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Bug description Filesystem(s) year

anyone can change POSIX ACLs btrfs [5], gfs2 [3] 2010
anyone can change POSIX ACLs NFS [8] 2016
file permissions can be changed

by writing to hidden file reiserfs [2] 2010
truncated data can be accessed btrfs [7] 2015
crash can expose deleted data ext4 [9] 2017
crash can expose data ext4 [22] 2014
can overwrite append-only file ext4 [4], btrfs [6] 2010
can overwrite arbitrary files ext4 [1] 2009

Figure 1: Bugs in various Linux file systems that can lead to data-
disclosure or integrity violations.

Dynamic tools, such as Jeeves and Jacqueline [37, 38]
and Resin [39], deal with dynamic data structures but
require sophisticated and expensive runtime enforcement
mechanisms. DISKSEC avoids the overhead of runtime
enforcement and an additional trusted runtime checker.

Formalizing file-system security. Prior work has exten-
sively studied the security guarantees provided by file sys-
tems, both formally and informally [10]. However, none
of the prior work articulated a precise, machine-checkable
model and specification for file-system security.

Symbolic models of cryptography. Our proof strategy
is related to techniques introduced to reason about crypto-
graphic protocols. Many cryptographic-protocol proofs
are done in the Dolev-Yao model of perfect cryptog-
raphy [16]. There programs are modeled as algebraic
expressions, which developers reason about using equa-
tional axioms, like that decryption is the inverse of encryp-
tion, when called with identical symmetric keys. No equa-
tions allow breaking encryption without knowing the key.
This model is attractive for its simplicity, and protocol-
analysis tools like ProVerif [11] and Tamarin [33] build on
it. HACL* [40] uses a similar proof strategy for proving
its cryptographic library. DISKSEC’s block-sealing ab-
straction extends this idea with the notion of a permission
associated with each sealed block.

3 Motivation: bugs
File systems are an important building block for appli-
cations, which rely on the file system for security. For
example, a mail server relies on the file system to ensure
that data written to one user’s mailbox file does not end
up in some other user’s mailbox file. Unfortunately, file
systems have had bugs that allowed for data disclosure or
modifying other users’ files: we list several such bugs in
Figure 1. In this section we describe several of these bugs
in more detail.

File-system data leak. ext4 has an optimization called
delayed allocation where new blocks for files are not ac-
tually allocated (but simply tracked) until they must be
flushed to disk. It is important that even after a crash,

blocks allocated in this manner have their new data writ-
ten before ending up as part of the file; otherwise the old
data in the block is leaked, potentially disclosing data
from any user. For some time ext4 used its write-ahead
log to ensure the new data was written atomically with the
metadata changes to the file. An optimization introduced
in 2012 removed this write-ahead logging [36], reasoning
that the new data was always written to disk immediately
with delayed allocation, before flushing the log. This opti-
mization is incorrect: the disk may reorder writes so that
the journal is actually written to disk first, exposing the
old data on crash; the bug was fixed in 2016 by restoring
the old behavior of writing the newly allocated blocks
through the write-ahead log.

Access-control checks. File systems implement sophis-
ticated policies for controlled sharing, such as file permis-
sions, append-only or read-only files, and shared directo-
ries. It is easy for file-system developers to make mistakes
in implementing these policies. For example, several file
systems forgot to correctly implement append-only files
when the file was being modified through a special in-
terface for efficiently moving file data [4, 6]. In these
examples, the file system did not read or write the file
data itself but instead changed the data-block pointers in-
side of the file’s inode. Another example is the privileged
nfsd daemon, which forgot to check permissions when
local users changed POSIX ACLs on a file [8]. A final
example is a file system that stored metadata (including
ACLs) in a separate file but failed to prevent users from
directly modifying that separate file [2].

4 Goal
The goal of DISKSEC is to use machine-checked verifica-
tion to ensure the absence of security bugs in file systems.
Using a proof assistant (Coq) to check our proofs ensures
that we consider all possible corner cases in our imple-
mentation when proving that it meets our specification.
Thus, as long as our specification excludes the possibility
of certain bugs, such as the ones described in the previous
section, Coq will provide a high degree of assurance that
no such bugs can exist in the implementation.

4.1 Threat model
From the perspective of verification, we would like to
have confidence that the file system is secure purely based
on the file system’s security specification. This means that
we have to treat the developer of the file system with an
adversarial mindset. This subsumes all possible bugs that
a well-meaning but error-prone developer might introduce
into the implementation.

As a result, our threat model is that the adversary both
develops the file system and runs an adversarial appli-
cation on top of the file system in an attempt to obtain
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confidential file data. However, the adversary does pro-
vide a proof that their file-system implementation meets
our security specification. The potential victim runs on
top of the same file system but sets their permissions so
that the confidential files are not accessible to the adver-
sary’s process. Our goal is to ensure that the security
specification is so strong that it prevents leaks even when
the file-system developer is colluding with adversarial
processes running on top of the file system.

Our threat model is focused on proving that the file-
system implementation has no confidentiality bugs, rather
than proving the absence of bugs in the environment out-
side of the file system. Thus, we assume that our model
of how the file-system implementation executes is correct.
That is, we are not concerned with bugs in unverified
software or hardware outside of the file system, or users
mounting malicious disk images. We do prove that mkfs
produces a correct image, but ensuring confidentiality on
top of an intentionally corrupted file system image is dif-
ficult, even without formal verification. We also do not
reason about timing channels, as we do not model time.

4.2 Challenges
The most difficult aspect of formally proving the security
of a file system lies in guaranteeing confidentiality. This
is difficult for several reasons.

Two-safety. First, proving confidentiality is more diffi-
cult than proving functional correctness: as mentioned
earlier, confidentiality is a two-safety property. Functional
correctness is a one-safety property because a violation
of functional correctness can be demonstrated by a single
execution. For instance, if an application wrote one byte
to a file and then read back a different byte, this single
execution shows that the file system is incorrect. Thus,
functional correctness of a file system is a theorem that
says that all executions meet the spec (i.e., there are no
such violations). Integrity properties, such as ensuring
that one user cannot corrupt another user’s data, are an
example of a one-safety functional-correctness property
and can be handled using standard verification techniques.

In contrast, demonstrating a violation of confidential-
ity requires two executions, where the results observed
by an adversary differ depending on the secret data. For
instance, consider a file system with block-level dedupli-
cation that also exposes the number of free blocks. An
adversary who wants to learn the contents of a victim’s
file could write their guess for the victim’s block into the
adversary’s own file and then check whether the num-
ber of free blocks stayed the same or decreased. If the
file system implemented deduplication across users, this
attack allows an adversary to learn whether their guess
block was already present in the file system, thus inferring
whether the victim has that data.

In the above example, looking at a single execution
does not allow one to directly conclude that data was
leaked, because the system appears to be functioning
correctly. Determining that data is leaking requires one
to consider a pair of executions, in which the adversary
performs the same operations, but the confidential user
data is different. If these two executions produce different
adversary-observable results, the adversary is able to infer
information about confidential data.

By stating confidentiality as a two-safety property, the
above deduplication example would violate confidential-
ity, and thus could not appear in an implementation that
was proven to achieve confidentiality. Specifically, sup-
pose the starting states of the two executions differed in
the contents of a confidential file, where in one execu-
tion the file matched the adversary’s guess and in the
other execution it didn’t match. In this case, the number
of free blocks returned by the adversary would differ in
the two executions, which would not be allowed by the
confidentiality definition.

Nondeterminism and probabilities. Another complica-
tion in proving confidentiality lies in the fact that many
specifications, including those in the file system, are non-
deterministic. Some nondeterminism is unavoidable be-
cause file systems must deal with crashes (e.g., due to
power failure), which can occur at any time. Thus, it is
impossible to know what are the exact contents of the disk
after a crash; the on-disk state could reflect any prefix of
the writes issued by the file system. Modern disks com-
plicate this situation even further by buffering writes in
memory inside the disk controller; as a result, the writes
can be made durable out-of-order, and the state of the
disk after a crash might reflect some out-of-order writes.
Even in the absence of crashes, the file system implemen-
tation may want to use randomness (e.g., to randomize
directory hash tables), which makes the execution non-
deterministic.

Other nondeterminism comes from specifications that
hide irrelevant details. For instance, the inode allocator
in the file system does not specify which precise inode
number will be returned; instead, its specification sim-
ply states that it will return some inode number that is
not already in use. As another example, the specification
for readdir in a file system likely allows the files in a
directory to be returned in any order. The use of nonde-
terminism is important for keeping specifications concise
and for allowing implementations to change (e.g., to im-
plement performance optimizations) without modifying
the specification.

Any nondeterminism is a potential leak of confidential
data. The nondeterministic specification of the block allo-
cator from above does not preclude the allocator from
leaking confidential data, because it could, in theory,
choose the next inode number based on the confiden-
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tial contents of files, without violating its specification
(i.e., still returning some unused inode number). Sim-
ilarly, the nondeterministic specification for readdir is
also not a good confidentiality specification, because a
bug might cause the order of entries returned by readdir
to be affected by the contents of some confidential file.

Even the nondeterminism associated with the state of
the disk after a crash can be taken advantage of by an
adversarial file-system implementation to leak data. For
instance, a high-performance file-system specification
allows the file system to delay flushing data to disk. An
adversarial implementation could choose whether to flush
data immediately or defer the flush based on one bit of
confidential data from a victim’s file. To take advantage
of this, an adversary could wait for the system to crash
and, after the crash, check whether any writes appear to
have been lost. If so, the adversary concludes the file
system must have deferred the writes, which would have
only happened if the confidential bit was zero. This, in
turn, can allow the adversary to infer confidential bits.

More generally, the possibility of leaking confidential
data arises because nondeterministic specifications cap-
ture what might be possible, but an adversary may have
more precise information about the actual probabilities of
different outcomes. For instance, consider a hypothetical
system call that returned random data. An adversarial
file-system implementation could leak confidential data
through this system call by sometimes returning uniformly
random data and sometimes returning confidential data
from some file. A naïve view of this system call might be
that, since any return value is possible, this system call
is not leaking any data. However, an adversary can lever-
age the distribution of outcomes to learn confidential data
over time, by invoking this system call many times and
observing what value is being returned more frequently
than one would expect from a uniform distribution.

Indirect disclosure. Yet another complication with con-
fidentiality is that an adversarial file system might not
immediately leak confidential data. For example, an ad-
versarial file system may wait for a legitimate user to read
confidential data, at which point the file system would
be allowed to access this data, since it has to return it to
the user. However, in addition to returning this data, an
adversarial file system could also stash away a copy of
it, so that the adversary can later retrieve it. For instance,
the file system could change the order of entries in an
on-disk directory structure, or change the allocated inode
numbers or block numbers, based on the confidential data
that it wants to leak. Preventing this attack is difficult
because the adversarial file system appears to have legiti-
mate access to the user’s data when operating on behalf
of that user.

File-system complexity. Finally, file systems are com-
plex software. Linux ext4, for instance, consists of ap-
proximately 50,000 lines of code. Even the simple veri-
fied DFSCQ file system consists of thousands of lines of
executable code [13]. The proofs of functional correct-
ness for DFSCQ are already tens of thousands of lines of
Coq code. The complexity of proving two-safety, which
is a more challenging property, could easily spiral out of
control.

5 Specification: data noninterference
To capture the notion of confidentiality in a file system,
DISKSEC defines the notion of data noninterference.
Loosely speaking, data noninterference states that two
executions are indistinguishable with respect to specific
confidential data (e.g., the contents of a file). Data non-
interference allows an application to conclude that an
adversary cannot learn the contents of a file from the file
system but may be able to learn other information about
the file (e.g., its length, its creation time, the fact that it
was created at all, etc.). Furthermore, data noninterfer-
ence does not place any restrictions on application code,
which captures the discretionary aspect of typical file-
system permissions. This notion intuitively corresponds
to the security guarantees provided by Linux file systems.

s0

s′0

s1

s′1

s2

s′2

equivalentadv

puser

puser

r0

r′0

padv

padv

r1

r′1

Figure 2: Overview of DISKSEC’s approach to reasoning about confi-
dentiality.

Two-safety formulation. DISKSEC formulates data
noninterference in terms of two-safety, as shown in Fig-
ure 2. Specifically, data noninterference considers two
executions that run the same code but start from different
states. In Figure 2, the executions are shown as horizontal
transitions between states, indicated by the gray outlines.
The executions consist of a step by the user (running
procedure puser, corresponding to some system call) and
then a step by the adversary (running padv, corresponding
to some other system call). Although Figure 2 shows
one particular pair of executions, DISKSEC’s theorems
consider all possible such pairs of executions.

The starting states in these two executions (s0 and s′0)
agree on all data visible to the adversary but could have
different contents of confidential files. We call these two
states equivalentadv, to indicate that they are equivalent
with respect to the adversary. This equivalence is indi-
cated by the squiggly line in Figure 2. The essence of
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data noninterference is allowing the states to differ in
the contents of confidential data while requiring all other
metadata (such as file length, directory order, etc.) to
remain the same.

The definition of data noninterference consists of two
requirements. The first is state noninterference, which
requires that after every transition, the resulting states
remain equivalentadv. This is indicated in Figure 2 by the
squiggly lines between s1 and s′1, as well as between s2
and s′2. This requirement ensures that confidential data
from s0 and s′0 does not suddenly become accessible to
the adversary in a subsequent state, and it addresses the
indirect-data-disclosure challenge (e.g., an adversarial
implementation of the read system call stashing away the
results).

The second requirement is return-value noninterfer-
ence, which requires that transitions by the adversary
return exactly the same values in both executions. For
example, Figure 2 shows that the adversary’s padv returns
r1 in the top execution and r′1 in the bottom execution.
Return-value noninterference requires that r1 = r′1, as
indicated by the dotted arrow. This prevents the adver-
sary from learning any confidential data, such as through
collusion with an adversarial file system that affects the or-
der of readdir results, or through missing access control
checks.

Capturing file-system security. Achieving the two re-
quirements from data noninterference ensures that the
adversary cannot obtain confidential data from the file
system. This is because state noninterference maintains
equivalenceadv regardless of what the adversary does (i.e.,
the squiggly lines will continue to connect states in all
possible pairs of executions), and any attempts by the
adversary to observe information will produce identical
results, based on return-value noninterference, because
they run in equivalentadv states.

The discretionary nature of data noninterference shows
up in the fact that legitimate users can obtain different
results depending on the confidential data. For example,
in Figure 2, the results of the user’s execution of puser, r0
and r′0, might be different, because puser could correspond
to the user reading a confidential file. At this point, a user
has the discretion to disclose this information (e.g., by
writing it to a public file). Data noninterference does not
prevent this, by design, because it is attempting to model
the standard discretionary access control in a POSIX file
system.

Defining return-value noninterference. Figure 3
presents DISKSEC’s definition of return-value noninter-
ference, in a simplified notation. This definition relies on
the definition of exec, which describes how procedures
execute. exec takes four arguments: the procedure that
is executing (p), the principal on whose behalf p is

running (u), the starting state (st0), and the randomness
for this execution (rand). exec returns two things:
the outcome and an unseal trace, which we describe
later. The outcome can be either Finished st’ r,
indicating that the procedure ended in state st’ and
returned r, or Crashed st’, indicating that the system
crashed in state st’. The unseal traces are irrelevant for
now and are used only as part of the proof technique
described in §6. This definition also relies on a notion
of two states being equivalent for a particular principal,
equivalent_for_principal, which captures the intuitive
notion equivalentadv from above.

Definition equivalent_for_principal u st0 st1 :=
(* all parts of st0 and st1 that are accessible to
principal u are identical *).

Definition ret_noninterference ‘(p : proc T) :=
forall u st0 st0’ rand ret tr0 st1,
exec p u st0 rand =

Some (Finished st0’ ret, tr0) ->
equivalent_for_principal u st0 st1 ->
forall st1’ tr1,
exec p u st1 rand =

Some (Finished st1’ ret’, tr1) ->
ret’ = ret.

Figure 3: Definition of return-value noninterference, capturing that
return values do not leak other users’ confidential data.

The definition of return-value noninterference captures
the intuition about the adversary not being able to learn
information about confidential data: the return value ob-
tained by the adversary by running some code does not
depend on the confidential data. To make this precise,
ret_noninterference of procedure p considers pairs of
states, st0 and st1, which are equivalent as far as some
principal u is concerned. Here, u is representing the adver-
sary, and confidential data is represented by the difference
between st0 and st1 that the adversary should not be able
to observe. If u runs procedure p in state st0 and gets
return value ret, then it must also have been possible for
the adversary to get the same return value, ret, if he ran
p in state st1 instead.

Defining state noninterference. Figure 4 presents
DISKSEC’s definition of state noninterference, which
complements return-value noninterference. This defini-
tion helps DISKSEC deal with the indirect-disclosure chal-
lenge from §4.2. This definition considers two principals:
a viewer and a caller. The definition intuitively says
that, by running procedure p, the caller will not create any
state differences observable to viewer.

More formally, state_noninterference considers two
executions by caller, running the same procedure p, with
the same exact arguments (encoded inside of p). If the
caller runs p in two states that appear equivalent to viewer,
then the resulting states in res0 and res1 will still appear
equivalent to viewer. This definition includes the possi-
bility of a crash while running p.
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Definition equiv_state_for_principal u res0 res1 :=
exists st0 st1,
equivalent_for_principal u st0 st1 /\
(res0 = Crashed st0 /\ res1 = Crashed st1 \/
exists v0 v1,
res0 = Finished st0 v0 /\
res1 = Finished st1 v1).

Definition state_noninterference ‘(p : proc T) :=
forall viewer caller st0 rand res0 tr0 st1,
exec p caller st0 rand = Some (res0, tr0) ->
equivalent_for_principal viewer st0 st1 ->
forall res1 tr1,
exec p caller st1 rand = Some (res1, tr1) ->
equiv_state_for_principal viewer res0 res1.

Figure 4: Definition of state noninterference, capturing that caller
does not indirectly disclose state to viewer.

Handling non-determinism and probabilities. Both
Figure 3 and Figure 4 quantify over an argument called
rand that is passed to exec. rand is an oracle that sup-
plies all non-determinism used during execution, includ-
ing non-deterministic values used by the file system im-
plementation (e.g., getting a random number), as well
as non-determinism representing the effect of a crash
(i.e., the point at which the crash occurred, and which
recent writes made it to disk). The execution semantics,
exec, queries the rand oracle whenever it needs to make
a non-deterministic decision. The exec function is de-
terministic given a specific rand, but DISKSEC allows
non-determinism by permitting different executions with
different non-determinism oracles. One way to think of
this rand oracle is that it represents a seed for a logical
random-number generator.

Factoring out the randomness rand from the execu-
tion semantics exec helps DISKSEC handle probabilities
without fully formalizing probabilistic reasoning in Coq.
Since the exec function is deterministic (given a specific
randomness oracle rand), the probability of a particu-
lar outcome is the sum of the probabilities of different
rand oracles that lead to that outcome. Following the
random-number generator seed analogy, the probability
of an outcome is simply the fraction of seeds that lead to
that outcome.

DISKSEC’s theorem statements require that, for any
choice of rand, both the return values and states are equiv-
alent. This ensures that the probabilities of equivalent
return values and states are also equal, since the probabili-
ties of these outcomes are simply the sums of probabilities
of individual rand values. Using the samples to relate the
probabilities of outcomes is reminiscent of a coupling
argument [21], although we do not explicitly reason about
probabilities in DISKSEC. Since the probabilities of the
outcomes are equal, this prevents an adversary from learn-
ing confidential data based on the observed probabilities
of different outcomes.

6 Proof approach: sealed blocks
Proving that every system call in a file system satis-
fies ret_noninterference and state_noninterference
would require a proof that reasons about two executions,
which is complex. To reduce proof effort, DISKSEC in-
troduces an implementation and proof approach called
sealed blocks. This approach factors out reasoning about
confidentiality of files from most of the file-system logic,
by reasoning about the confidentiality of disk blocks. The
intuition behind this approach is threefold. First, all confi-
dential data lives in file blocks. Second, the file system
itself rarely needs to look inside of the file blocks. Finally,
permissions on files translate directly into permissions on
the underlying blocks comprising the file.

data data dataReal disk:

block
perm

block
perm

block
permLogical disk:

File system: block
perm

block
perm

Read
block

Write
block

block block

def read(...):
if can_access():
unseal(block)

...

def write(...):
perm = file.acl
seal(block, perm)
...

Syscall
wrappers:

Figure 5: Overview of DISKSEC’s proof approach using sealed blocks.

Figure 5 presents an overview of DISKSEC’s block-
sealing approach. There are three parts to the block-
sealing approach. The first is to create a logical disk
where every disk block is associated with a permission,
which defines the set of principals that can access this
block. Some permissions are public, indicating that the
block is accessible to anyone. Other permissions might
restrict access to some users, indicating that this block
is storing confidential file data. DISKSEC is agnostic to
the specific choice of principals or permissions; that is,
all of DISKSEC is parameterized over arbitrary types for
principals and permissions. The logical disk is purely a
proof strategy and does not appear at runtime; the real
disk, shown at the bottom of Figure 5, has no permissions.

The second part is a sealed-block abstraction, indicated
by shaded blocks in Figure 5. A sealed block represents
the raw block contents and the associated permission, but
the file system cannot directly access a sealed block’s
contents. Instead, the file-system implementation must
explicitly call seal() and unseal() to translate between
sealed blocks and their raw contents. These seal() and
unseal() functions are also purely part of the proof and
do not appear at runtime.
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The code of the file system can read and write arbi-
trary blocks on disk, but the result of a read is a sealed
block that must be explicitly unsealed if needed. The
file-system internals can unseal public blocks (e.g., con-
taining allocator bitmaps or inodes) but cannot unseal
private blocks. This avoids the need to reason about the
file-system implementation when proving confidentiality,
because the file-system implementation never has access
to confidential data.

The third part is the wrappers for system calls that han-
dle confidential data, namely, read() and write(). These
wrappers are responsible for explicitly calling seal() and
unseal() to translate between the raw data seen by the
user (on top of the system call) and the sealed blocks that
are handled in the rest of the file-system implementation.

DISKSEC’s sealed-block approach is a good fit for the
challenges outlined in §4.2. Specifically, there are very
few places where a file system must access the actual con-
tents of a file’s disk block—namely, in the wrappers for
the read() and write() syscalls. As a result, most speci-
fications in a file system remain largely the same. The key
difference is that the specifications promise that the proce-
dure in question does not look inside of any confidential
blocks. This means that any nondeterminism present in
the specification cannot be used to leak confidential data.

This approach allows file-system developers to avoid
proving explicit confidentiality theorems for most of the
file system, but it still allows DISKSEC to conclude that
confidentiality is not violated. DISKSEC provides a the-
orem that proves two-safety for any file-system imple-
mentation that correctly uses the sealed-block abstraction.
As a result, the file-system developer need not reason
about complex two-safety theorems and can limit their
reasoning to single executions.

6.1 Formalizing sealed blocks
To formally define DISKSEC’s sealed-block abstraction,
DISKSEC uses the notion of a handle to represent a sealed
block. DISKSEC requires the developer to perform two
steps. The first is to modify their code to use the sealed-
block abstraction: that is, to pass around handles for
blocks and to call seal() and unseal() as necessary. The
second is to prove that their code correctly follows the
unsealing rules. This boils down to ensuring that sealed
blocks are unsealed only when the principal has appropri-
ate permission for that block.

DISKSEC models this by extending traditional Hoare
logic to reason about unseal operations. Specifically,
DISKSEC builds on CHL [12], where functional correct-
ness specifications are written in terms of pre- and post-
conditions. DISKSEC, first, extends the execution se-
mantics (as we describe next) to produce an unseal trace
consisting of unseal operations and, second, extends the

specifications to require that the unseal trace contain only
allowed unseals.

We expect that systems built on top of DISKSEC would
often group multiple blocks into a single object (e.g.,
multiple blocks comprising a single file in a file system).
To help developers reason about all of these blocks sharing
the same permissions, DISKSEC introduces the notion of a
domain. This is a layer of indirection between blocks and
permissions. Specifically, sealed blocks point to a domain
ID (e.g., an inode number in the case of a file system),
and the domain in turn specifies the permission for those
blocks (e.g., the permission reflected in the inode’s data
structure).

Execution model. DISKSEC’s execution model requires
the implementation to be written in a domain-specific
language, based on CHL and implemented inside of Coq,
which provides several primitive operations. These opera-
tions include reading and writing the disk, manipulating
sealed blocks by sealing and unsealing, as well as others
for sequencing computation, returning values, flushing
disk writes, etc.

Figure 6 shows a simplified version of DISKSEC’s exe-
cution semantics. The semantics are defined as a function
that takes the code being executed (of type proc T), the
principal u running the operation (of type Principal), the
starting state st (of type State), and a randomness oracle
rand. The function produces a tuple consisting of a result
(of type result T) and a trace of unsealed permissions
(of type trace). The function is allowed to return None (as
indicated by the option type) when there is no execution
possible for the supplied randomness (e.g., the randomly
chosen handle is already in use).

For example, consider the case that handles the Read a
operation, which describes the execution of reading ad-
dress a from disk. There are three sub-cases. If the ad-
dress is out of bounds, the Read returns a handle for a
zero block, with an empty unseal trace. If the handle h
supplied by the randomness oracle is already in use, no
execution is possible. Otherwise, the Read initializes the
new handle to represent the block from address a, with
the block’s domain ID, and returns that handle, with an
empty trace because no blocks were unsealed.

As another example, the Unseal h operation produces
a nonempty trace, consisting of the permission of the
sealed block whose handle h was unsealed, as long as the
handle was valid (otherwise, Unseal returns zero). Since
the sealed block points to a domain ID, dom, the semantics
of Unseal look up the corresponding permissions of that
domain. One omitted rule handles concatenation of unseal
traces when a developer sequences one statement after
another.

The ChangePerm dom newperm operation allows the de-
veloper to change permissions of a domain. This oper-
ation is used in implementing chown. The semantics of
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Inductive nondet_decision :=
| RandomHandle (h:handle)
(* Other types of non-determinism omitted for space *)
| CrashHere.

Definition oracle := list nondet_decision.

Definition exec ‘(code:proc T) (u:Principal) (st:State)
(rand:oracle) : option (result T * trace) :=

match code, rand with
| ChangePerm _ _, CrashHere => None
| _, CrashHere => Some (Crashed st, [])
| Read a, RandomHandle h =>
if addr_out_of_bounds st a then
Some (Finished st hzero, [])

else if handle_used st h then
None

else
let data := disk_block_data st a in
let dom := disk_block_dom st a in
let st’ := install_handle st h (data, dom) in
Some (Finished st’ h, [])

| Write a h, _ =>
if handle_used st h then
let data := handle_data st h in
let dom := handle_dom st h in
let st’ := disk_block_write st a (data, dom) in
Some (Finished st’ tt, [])

else
Some (Finished st tt, [])

(* Some transitions omitted for space reasons *)
| Seal data dom, RandomHandle h =>
if handle_used st h then
None

else
let st’ := install_handle st h (data, dom) in
Some (Finished st’ h, [])

| Unseal h, _ =>
if handle_used st h then
let data := handle_data st h in
let dom := handle_dom st h in
let perm := domain_perm st dom in
Some (Finished st data, [perm])

else
Some (Finished st zero, [])

| ChangePerm dom newperm, _ =>
let oldperm := domain_perm st dom in
let st’ := domain_set_perm st dom newperm in
Some (Finished st tt, [oldperm])

| _, _ => None
end.

Figure 6: Execution semantics with logging of unseal operations.

ChangePerm modify the permission associated with the
domain, and produce an unseal trace containing the do-
main’s old permission, to reflect that data with that per-
mission may have been disclosed. Since the domains are
purely a proof construct, ChangePerm is a purely logical
operation, which does not perform any actions at runtime.

Finally, exec describes the possible crash behaviors
of the system. For example, the case for _, CrashHere
states that it is possible to crash in the starting state, re-
gardless of what code was being executed, if the ran-
domness oracle tells us CrashHere. A combination of
other rules, not shown, allow crashing in the middle

of a sequence of operations. The very first case, for
ChangePerm _ _, CrashHere, says that ChangePerm can-
not crash. This reflects the fact that ChangePerm is a purely
logical operation.

Specification and verification of unseal rules.
DISKSEC requires developers to write specifications
for each procedure, using pre- and postconditions. The
postcondition describes how the procedure modifies the
state of the system, along with what must be true of the
procedure’s return value, assuming that the precondition
(a predicate over the system state and the procedure’s
arguments) held at the start of the procedure.

To reason about what blocks a procedure might unseal,
DISKSEC augments specification postconditions with re-
quirements about the permissions that appear in the unseal
trace produced by the execution of the procedure.

Definition unseal_safe ‘(p : proc T) :=
forall u st rand res tr,
exec p u st rand = Some (res, tr) ->
forall perm,
In perm tr -> can_access u perm.

Figure 7: Definition of unseal safety.

Figure 7 shows DISKSEC’s definition of unseal safety.
This definition says that procedure p is “unseal-safe” if,
for every principal u that runs this procedure and any start-
ing state st, all permissions produced by this procedure
in its unseal trace tr will be accessible to the calling prin-
cipal. Proving unseal safety leads to a proof obligation
for the file-system developer—namely, proving that the
implementation will unseal a block only if the current
principal has access to it.

File-system implementation code falls into three cat-
egories with respect to proving unseal safety. The first
category are procedures that do not invoke any Unseal
operations. For these procedures, the resulting unseal
trace is always empty, and DISKSEC is able to prove
unseal safety without any developer input. Most of the
file-system code falls in this category.

The second category are procedures that unseal pub-
lic blocks. Examples include accessing inodes, allocator
bitmaps, directories, etc. These procedures do produce
unseal traces containing permissions, but all of the per-
missions should be public. Thus, the developer’s job is
to show that these permissions are indeed public; once
this is established, showing that the current principal has
access is straightforward (since every principal has access
to public permissions).

To prove that the permissions are indeed public, the
developer relies on representation invariants of the file
system. For example, the invariant for the block allocator
states that all of the bitmap blocks are public. The devel-
oper can assume this invariant within any implementation
of the block allocator API, which helps her prove that
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the block in question has public permissions. In turn the
developer must prove that the invariant is preserved by
every procedure (including across crashes and recovery),
and show that it is established at initialization time by
mkfs.

The final category are procedures that unseal private
blocks. In a file system, this happens only in the imple-
mentation of the read system call, which returns file data
to the caller. The implementation (wrapper) of the read
system call contains explicit code to obtain the current
principal, get the file’s ACL (access control list) from the
inode, and compare them. The developer’s job is to prove
that this code correctly performs the permission check.
This proof typically relies on the file’s representation in-
variant, which asserts that every file block is tagged with
a permission matching the ACL stored in the inode.

Definition unseal_public ‘(p : proc T) :=
forall u st rand res tr,
exec p u st rand = Some (res, tr) ->
forall perm,
In perm tr -> perm = Public.

Figure 8: Definition of unseal_public.

DISKSEC also provides a stronger version of unseal-
safety, as shown in Figure 8, called unseal_public. A
procedure satisfies this definition if all of its code falls in
the first two categories above: that is, the procedure either
unseals no blocks at all or unseals only public blocks.
This alternative definition is strictly stronger than unseal-
safety; any procedure that satisfies unseal_public is also
unseal-safe. The distinction between these two notions
will help the developer prove noninterference theorems,
as we will describe in §6.2.

Crashes. DISKSEC’s approach naturally extends to rea-
soning about crashes. DISKSEC’s disk-crash model builds
on the CHL model of disk crashes [12, 13]. After a crash,
disk blocks can be updated nondeterministically, as in
CHL, based on outstanding writes that are in the disk’s
write buffer but have not been flushed yet to durable stor-
age. However, domains always follow the data for pend-
ing writes; that is, logically, the content of the disk block
is updated atomically together with its domain ID.

All handles are invalidated after a crash, to model the
fact that the computer reboots and all in-memory state
is lost. All recovery code, such as log replay or fsck, is
proven correct in DISKSEC, which means that it must
follow the same block-sealing rules as the rest of the file-
system code. This ensures that no data can be disclosed
by the recovery code.

6.2 Proving noninterference
To help the developer prove the two types of noninter-
ference, DISKSEC provides helper theorems. Figure 9
shows the first one, which proves return-value noninter-
ference based on unseal-safety. DISKSEC proves this

theorem by considering all operations performed by pro-
cedure p. Each operation must produce the same result in
the two executions being considered, since the states are
equivalent for the principal in question, u. The only way
in which the executions could differ is if they unsealed a
block that was not accessible to u. However, unseal_safe
says that this is impossible. This theorem also applies to
procedures that are unseal_public, since that notion is
strictly stronger than unseal_safe.

Theorem unseal_safe_to_ret_noninterference :
forall ‘(p : proc T),
unseal_safe p -> ret_noninterference p.

Figure 9: Theorem connecting unseal-safety to return-value noninter-
ference.

Figure 10 shows the second theorem provided by
DISKSEC, for reasoning about state noninterference. This
theorem requires that the procedure satisfy the stronger
definition, unseal_public, to ensure state noninterfer-
ence. The intuition for why this theorem is true lies in
the fact that a procedure that unseals only public blocks
cannot obtain any confidential data in the first place. As a
result, this procedure’s execution will be identical regard-
less of the contents of confidential blocks, and thus the
state after this procedure’s execution will remain equiva-
lent from the adversary’s point of view. DISKSEC proves
this theorem formally in Coq.

Theorem unseal_public_to_state_noninterference :
forall ‘(p : proc T),
unseal_public p -> state_noninterference p.

Figure 10: Theorem connecting unseal_public to state noninterfer-
ence.

DISKSEC does not provide a general-purpose theorem
for reasoning about state noninterference for procedures
that satisfy only the weaker notion of unseal-safety (i.e.,
that unseal private blocks), such as the read() system call.
Such procedures can indirectly disclose data as described
in §4.2 to legitimately unseal confidential data on behalf
of the currently executing principal but then stash a copy
of it. It is up to the file-system developer to prove the
state noninterference of those procedures. §7 will discuss
in more detail how SFSCQ structures its implementation
to simplify these proofs; in the case of SFSCQ, the only
system call that requires this type of reasoning is read.

6.3 Code generation
To generate efficient executable code, DISKSEC must
avoid explicitly sealing and unsealing blocks. To do so,
DISKSEC eliminates any notion of handles, sealing, or
unsealing at runtime. DISKSEC does so by representing
each handle with the actual disk-block contents them-
selves, when generating executable code. DISKSEC’s
theorems ensure that the code does not look at the disk
contents at runtime unless it has the appropriate permis-
sions. As a result, it is safe to perform this elimination.
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Similarly, this allows the sealing and unsealing operations
also to be eliminated from runtime code.

7 Case study: File system
To evaluate whether DISKSEC allows specifying and prov-
ing confidentiality for a file system, we applied DISKSEC
to the DFSCQ verified file system, producing the SFSCQ
verified secure file system, as described below.

7.1 Specifying security
The core specification of confidentiality for SFSCQ lies
in the write system call, as shown in Figure 11. This
specification says that the data argument to the write
system call remains confidential. This is stated formally
by considering two different executions, starting from the
same state st, where different data (data0 and data1) are
written to the same offset off of the same file f. The
results, res0 and res1, must be equivalent for any adver-
sary adv that does not have permission to access file f.
Since equivalent_state_for_principal considers both
crashing and noncrashing executions, this definition en-
sures that the data passed to write remains confidential
regardless of whether the system crashes or not.

Theorem write_confidentiality :
forall f off data0 data1 caller st rand res0 tr0,
exec (write f off data0) caller st rand =

Some (res0, tr0) ->
exists res1 tr1,
exec (write f off data1) caller st rand =

Some (res1, tr1) /\
forall adv,
~ can_access adv (file_perm st f) ->
equiv_state_for_principal adv res0 res1.

Figure 11: Confidentiality specification for the write system call.

The other part of the security specification lies in the
chown system call, which changes the permissions on
existing files, and thus affects what data is or is not con-
fidential. Because chown can disclose the contents of
a previously confidential file, the standard definition of
state non-interference from Figure 4 does not hold for
chown. Specifically, even if an adversary viewer could
not distinguish states st0 and st1 before some caller
executed chown, the adversary may nonetheless be able to
distinguish st0 and st1 after the chown runs because the
adversary may now have permission to read the previously
confidential file.

The security of chown is defined by a specialized ver-
sion of state non-interference, which considers three cases.
The first case is that the adversary viewer does not have
access to the file after the chown (i.e., is not the new
owner). In this case, state non-interference holds. The
second case is that the adversary viewer does gain access
to the file after chown (i.e., is the new owner), but the file
had the same contents in the two executions (i.e., in states
st0 and st1). In this case, state non-interference holds

as well. Finally, the adversary viewer may gain access
to the file and the files had different contents in the two
executions. In this case, state non-interference does not
apply. Figure 12 summarizes this formally.

Definition chown_state_noninterference f new_owner :=
forall viewer caller st0 rand res0 tr0 st1,
exec (chown f new_owner) caller st0 rand =

Some (res0, tr0) ->
( file_data st0 f = file_data st1 f \/
viewer <> new_owner ) ->

equivalent_for_principal viewer st0 st1 ->
exists res1 tr1,
exec (chown f new_owner) caller st1 rand =

Some (res1, tr1) /\
equiv_state_for_principal viewer res0 res1.

Figure 12: Confidentiality specification for the chown system call.

The write and chown specifications, shown above, are
the only parts of the security specification that are specific
to the file system, because they define where confidential
data enters the system in the first place, and how permis-
sions on that confidential data can change. Somewhat
counter-intuitively, no special treatment is required in the
specifications of other system calls, such as read. In-
stead, it suffices to prove the two general noninterference
theorems for all system calls (i.e., ret_noninterference
and state_noninterference). This is because we do not
want to consider specific attacks, such as whether read
has a missing access-control check. Instead, DISKSEC’s
noninterference definitions ensure that confidential data
cannot be disclosed regardless of what system calls the
adversary tries to use.

Integrity of the file system is a functional-correctness
property and thus is covered by SFSCQ’s specifications,
alongside other correctness properties. Integrity did not
require SFSCQ to use any machinery from DISKSEC for
reasoning about confidential data.

7.2 Modifying the implementation
Changing representation invariants. DFSCQ consists
of many modules, such as the write-ahead log, the bitmap
allocator, the inode module, etc. Each module has its
own invariant that describes how that module’s state is
represented in terms of blocks. For example, the bitmap
allocator describes how the free bits are packed into disk
blocks, where they are stored on disk, and the semantics
of each bit.

For SFSCQ, we modified all invariants that describe
disk blocks to state the domain IDs that go along with
those blocks. For instance, we modified the invariant of
the allocator to state that the bitmap blocks are public. We
modified the write-ahead log layer to expose the underly-
ing domain IDs on disk blocks to modules implemented
on top of the write-ahead log (in addition to modifying
the log invariant to state that the log metadata is public).
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The only nonpublic data is the file contents. We modi-
fied the file invariant to state that the domain ID of every
file block matches the file’s inode number, and the permis-
sions for a particular domain ID match the ACL stored
in the inode with the inode number matching the domain
ID.

One surprising issue that we encountered came up in
the DFSCQ write-ahead log. For performance, DFSCQ’s
write-ahead log used checksums to verify block contents
after a crash. As a result, the recovery procedure unsealed
blocks from the write-ahead log after a crash, including
blocks that contain confidential data.

To address this issue, we switched to a barrier-based
write-ahead log instead, which is the default design of
Linux ext4. Instead of using checksums, the barrier-
based write-ahead log issues a disk flush between writ-
ing the contents of new log entries and updating the log
header. (DFSCQ already included an implementation of
this barrier-based write-ahead log but did not use it by
default.)

Modifying code. Loosely speaking, DFSCQ modules
handle two kinds of blocks: blocks that they manipulate
(e.g., the bitmap allocator manipulating the bitmap blocks)
and blocks that they pass through (e.g., the write-ahead
log handling reads and writes as part of a transaction, or
the file layer handling file reads and writes). The first cate-
gory required a module to access the block contents, so we
added Seal and Unseal operations accordingly. Virtually
all operations that fell in this category involved sealing
and unsealing public data. For the second category, we
did not seal or unseal the data and instead transparently
passed through the handle representing the block; as a
result, the module was oblivious to the domain IDs asso-
ciated with the disk block.

Private data is sealed and unsealed at the top of the
SFSCQ implementation; that is, in the implementation of
the read and write system calls. We modified the write
system-call implementation to Seal the blocks with the
file’s inode number as the domain ID, before processing
them further. We modified the read system call to im-
plement the permission-checking logic—i.e., reading the
ACL from the file’s inode, checking whether the currently
running principal has access to the file, and unsealing the
block only if the check passes.

Changing intermediate specifications. We augmented
the Hoare-logic specifications of all internal SFSCQ pro-
cedures to require that the procedure be unseal_public.
This change required little manual effort, because we
simply changed the underlying definition of the Hoare-
logic specification to require unseal_public. For the
write-ahead log, we added additional constraints in the
specification of the log_write procedure, requiring that

the blocks written as part of a transaction must be public,
as described above.

7.3 Proving security
Reproving functional correctness. Many existing
proofs in DFSCQ broke after we made the above changes.
The proofs broke for three reasons: there were now ad-
ditional Seal and Unseal operations in the code (e.g.,
the bitmap allocator now sealed and unsealed its bitmap
blocks), the logical representation of a block changed
to include a domain ID, and the specification changed
(e.g., augmenting the invariant to state the domain ID
of a block). This required manually tweaking most of
the proofs to fix them. The proof changes were simple
since the code’s logic and the proof argument remained
unchanged.

Proving unsealing. In addition to fixing existing proofs,
SFSCQ’s specifications required us to prove that the
Unseal operation was used correctly. For most proce-
dures, the specification required that the procedure satisfy
unseal_public. Proving that only public blocks were
unsealed required us to demonstrate that the block was
indeed public by referring to the invariant.

For the implementation of the read system call, which
unseals private data, we had to prove that read correctly
implements the permission check in its code. This means
proving that read calls Unseal only after checking permis-
sions, and that the code for the permission check returns
“allowed” only if the current principal really does have
permission to access the file contents. This proof mostly
boiled down to showing that the code implementing the
access-control check in read matches the logical permis-
sion required by the specification.

Proving noninterference. Proving that SFSCQ pro-
vides confidentiality required us to prove three theorems.
The first is that write implements the specification from
Figure 11. This shows that SFSCQ will treat data passed
by an application to write as confidential. The second
is that system calls satisfy ret_noninterference. This
shows that an adversary cannot use any of SFSCQ’s sys-
tem calls to learn confidential data. The final is that all
system calls satisfy state_noninterference. This shows
that SFSCQ will not indirectly leak a user’s data when
the user invokes an otherwise-benign system call. Taken
together, these theorems allow an application to formally
conclude that its data remains private, as we show in §9.

Proving ret_noninterference was the easiest, using
DISKSEC’s theorem from Figure 9. All SFSCQ proce-
dures are proven to be unseal safe, so no further proof
effort is required.

Proving state_noninterference was simple for all
system calls except read, because those system calls sat-
isfy unseal_public, allowing us to apply DISKSEC’s
theorem from Figure 10. For read, we structured the
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system-call implementation in two parts: a read_helper,
which returns the handle to the data read from the file,
and a wrapper around read_helper that unseals the data
and returns it to the user. read_helper is unseal_public,
allowing us to apply DISKSEC’s theorem from Figure 10.
The wrapper required a manual proof, but the proof was
short since the wrapper is two lines of code.

Finally, to prove that write meets its confidentiality
specification, we similarly split write into a wrapper and
a write_helper. The wrapper’s job is to seal all input
data and pass the handles to write_helper. Much as with
read, this reduced the proof effort to just the wrapper.

8 Implementation
We implemented DISKSEC by extending the CHL frame-
work from FSCQ [12]. The changes involved modifying
the model of the disk to keep track of logical permissions,
adding primitive operations to seal and unseal blocks, and
changing the execution semantics to keep track of unseal
permissions, as shown in Figure 6. We also changed the
meaning of Hoare-logic specifications to require either
unseal-safety or the stronger unseal_public notion. The
source code of DISKSEC and SFSCQ is publicly avail-
able at https://github.com/mit-pdos/fscq.

We developed SFSCQ by modifying the DFSCQ file
system [13], making the changes described in §7. In par-
ticular, as mentioned in §7.2, we switched from DFSCQ’s
checksum-based write-ahead log to a two-barrier-based
log in SFSCQ (which is also the default for Linux ext4).
SFSCQ retains all other optimizations from DFSCQ, in-
cluding log-bypass writes, deferred commit, etc (with
proofs). As with DFSCQ, we produce executable code
by extracting the Coq implementation to Haskell and
running it on top of FUSE. To erase the block seal-
ing and unsealing operations at runtime, DISKSEC uses
the Extract Constant command in Coq to represent
DISKSEC’s handles using the raw blocks themselves, and
it implements Seal and Unseal as no-ops.

We built two versions of DISKSEC and SFSCQ. The
first version is fully proven, but lacks support for changing
permissions on an existing file (i.e., changing the permis-
sions on a file would require copying the file’s data into a
new file with the new permissions), and lacks support for
randomness oracles. The second version extends the first
version with support for randomness oracles and dynamic
permissions. These changes caused existing proofs to
break, and a few of them have not been repaired. See the
source code for details.

The DISKSEC approach worked reasonably well for
SFSCQ because the underlying FSCQ file system does
not unseal user data unless the user explicitly reads it. The
one exception was in the checksum-based write-ahead log,
as mentioned above. Other file system features that look
at file contents might also be a challenge for DISKSEC,

such as proactive checksum verification of file contents,
de-duplication, storing small file contents in the inode
itself, etc.

9 Evaluation
This section experimentally answers the following ques-
tions:

• Are SFSCQ’s specifications trustworthy? That is, are
SFSCQ’s theorems sufficient for applications to prove
confidentiality of their own data? What assumptions
do these proofs rely on?

• How much effort was required to develop DISKSEC,
and to use DISKSEC to prove the security of SFSCQ?

• How much runtime overhead does DISKSEC’s ap-
proach impose in SFSCQ?

9.1 Specification trustworthiness
To evaluate the trustworthiness of SFSCQ’s specifica-
tions, we performed several analyses.

End-to-end application confidentiality. To demon-
strate that SFSCQ’s specifications capture confidentiality
in a useful way, we developed a simple application on top
of SFSCQ that copies a file, wrote a confidentiality spec-
ification for this application (namely, that the application
does not leak the data of the copied file), and proved it.
This application tests two aspects of SFSCQ’s specs. The
first is, does SFSCQ’s specification actually guarantee
confidentiality? The second has to do with SFSCQ’s
discretionary access control model: can application devel-
opers demonstrate that they are not inadvertently leaking
data, despite having the discretion to do so?

We were able to prove the correctness and security of
our implementation of cp. This suggests that SFSCQ’s
specifications capture sufficient information for cp to con-
clude that its data remains confidential, and that it is
possible for application developers to show that they do
not abuse their discretionary privileges by leaking data.

Bug case study. To evaluate whether SFSCQ’s specifica-
tions would eliminate real security bugs, we qualitatively
analyzed the bugs presented in §3 to determine whether
SFSCQ’s theorems preclude the possibility of that bug.
Figure 13 shows the results. Functional correctness theo-
rems preclude the possibility of integrity bugs. DISKSEC
state noninterference precludes the possibility of all confi-
dentiality bugs in our study. No bugs were prevented by
return-value noninterference, because return-value non-
interference captures a particularly simple kind of bug,
such as the file system forgetting to check the ACL on
open(). No file-system developers made this mistake in
our study. Nonetheless, return noninterference is impor-
tant for completeness of SFSCQ’s theorems. Overall, the
results demonstrate that SFSCQ’s theorems preclude the
possibility of all studied bugs.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    335

https://github.com/mit-pdos/fscq


Description Theorem
violated

anyone can change POSIX ACLs [3, 5, 8] state NI
reiserfs permissions can be changed

by writing to hidden file [2] state NI
truncated data can be accessed [7] state NI
crash can expose deleted data in ext4 [9] state NI
crash can expose data in ext4 [22] state NI
can overwrite append-only file in ext4, btrfs [4, 6] integrity
can overwrite arbitrary files in ext4 [1] integrity

Figure 13: Security bugs in Linux file systems and which SFSCQ
theorem precludes them.

Trusted computing base. SFSCQ assumes the correct-
ness of several components. SFSCQ assumes that Coq’s
proof checking kernel is correct, because it verifies
SFSCQ’s proofs. SFSCQ assumes that the Haskell run-
time and support libraries (and the underlying Linux ker-
nel) do not have bugs, since SFSCQ generates executable
code through extraction to Haskell. SFSCQ assumes that
DISKSEC’s model of the disk is accurate. In particular, all
non-determinism in DISKSEC’s execution semantics must
be “realizable,” in the sense that it is actually possible for
an execution to observe all specified non-determinism
(e.g., crashing at any point), and this non-determinism
must be independent of confidential data. All proofs in
DISKSEC and SFSCQ are checked by Coq.

9.2 Effort
To understand how much effort was required to verify
DISKSEC and SFSCQ, we compared SFSCQ to the
implementation of DFSCQ on which SFSCQ is based.
Figure 14 shows the results (counting the sum of lines
removed and lines added), breaking down the differences
into several categories. The core infrastructure, including
improvements to DFSCQ’s CHL, amounted to around
9,300 lines. We made significant changes to DFSCQ to
develop SFSCQ, but many of these changes were mechan-
ical fixes to proofs to address small changes. In addition,
using DISKSEC in SFSCQ required around 1,900 lines of
new code and proofs. Porting DFSCQ to the first version
of DISKSEC (without support for changing permissions)
took one author about 3 months, and another 2 months to
mostly finish support for permission changes.

Component Changes to DFSCQ

DISKSEC 9,283
DFSCQ proof fixes −10,471, +26,433

(36,094 total)
SFSCQ impl. and proofs 1,837
Verified cp application 407

Figure 14: Lines of code change required to implement DISKSEC and
apply it to build SFSCQ. Counts measure the diff between DFSCQ and
SFSCQ.

9.3 Performance
We expect that the performance overhead of DISKSEC
is nearly zero, because most of its code changes (such
as handles, sealing, and unsealing) are eliminated in the
process of generating executable code. (All of the Seal
and Unseal operations turn into return statements.) The
only exception is checking permissions when reading data
from a file; the original DFSCQ implementation had no
permission checks, which we added in SFSCQ.

To check that DISKSEC introduces almost no overhead,
we used two microbenchmarks (LFS smallfile and large-
file benchmarks [31] as modified by DFSCQ [13]). As a
baseline, we compare with two versions of DFSCQ, on
which SFSCQ is based. The first is unmodified DFSCQ.
The second is a version of DFSCQ with a two-disk-barrier
write-ahead log (instead of its default checksum-based
log). This matches the modification we made to SFSCQ,
as mentioned in §7.2. For comparison with other file
systems, such as Linux ext4, we refer the reader to the
detailed evaluation in the DFSCQ paper [13: §7.4].

Figure 15 shows the results, which confirm that
SFSCQ performs nearly identically to DFSCQ in the
same logging configuration. The use of a two-disk-barrier
write-ahead log incurs some performance overhead for
smallfile; largefile performance is not impacted because
its file data writes bypass the log.

Filesystem smallfile largefile

DFSCQ 446 files/s 108 MB/s
DFSCQ (no checksums) 295 files/s 109 MB/s
SFSCQ 299 files/s 100 MB/s

Figure 15: Benchmarks showing performance of SFSCQ compared to
DFSCQ and a version of DFSCQ with a comparable logging implemen-
tation. Numbers shown are the median of 30 runs.

10 Conclusion
SFSCQ is the first file system with a machine-checked
proof of security. DISKSEC enabled us to specify
and prove SFSCQ’s confidentiality with modest effort.
DISKSEC’s key techniques are the use of a sealed block
abstraction, as well as the notion of data noninterference
as the top-level theorem statement, which is a good fit
for discretionary file access control. Experimental eval-
uation shows that SFSCQ’s theorems would preclude
security bugs that have been found in real file systems,
that SFSCQ’s development effort was moderate, and that
there is little performance impact of using DISKSEC.
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Proving the correct execution of concurrent services in zero-knowledge

Srinath Setty⋆, Sebastian Angel⋆⋄, Trinabh Gupta⋆†, and Jonathan Lee⋆
⋆Microsoft Research ⋄University of Pennsylvania †UCSB

Abstract. This paper introduces Spice, a system for
building verifiable state machines (VSMs). A VSM is
a request-processing service that produces proofs estab-
lishing that requests were executed correctly according
to a specification. Such proofs are succinct (a verifier
can check them efficiently without reexecution) and zero-
knowledge (a verifier learns nothing about the content
of the requests, responses, or the internal state of the
service). Recent systems for proving the correct execu-
tion of stateful computations—Pantry [25], Geppetto [34],
CTV [30], vSQL [83], etc.—implicitly implement VSMs,
but they incur prohibitive costs. Spice reduces these costs
significantly with a new storage primitive. More notably,
Spice’s storage primitive supports multiple writers, mak-
ing Spice the first system that can succinctly prove the cor-
rect execution of concurrent services. We find that Spice
running on a cluster of 16 servers achieves 488–1167
transactions/second for a variety of applications including
inter-bank transactions [27], cloud-hosted ledgers [28],
and dark pools [63]. This represents an 18,000–685,000×
higher throughput than prior work.

1 Introduction
We are interested in a system for building verifiable state
machines (VSMs). A VSM is similar to a traditional state
machine except that it produces correctness proofs of
its state transitions. Such proofs can be checked effi-
ciently by a verifier without locally reexecuting state
transitions and without access to the (plaintext) content
of requests, responses, or the internal state of the ma-
chine. Consequently, VSMs enable a wide class of real-
world services to prove their correct operation—without
compromising privacy. For example, by appropriately
programming state transitions, VSMs can implement
verifiable versions of payment networks [27, 61], dark
pools [63], ad exchanges [4], blockchains and smart con-
tracts [12, 29, 48, 59], and any request-processing appli-
cation that interacts with a database.

There is an elegant solution to build VSMs by em-
ploying efficient arguments [40, 43, 46, 47, 56, 58],
a primitive that composes probabilistically checkable
proofs (PCPs) [6, 7] with cryptography. Specifically, an
untrusted service can maintain state (e.g., in a key-value
store), run appropriate computations that manipulate that
state in response to clients’ requests, and produce proofs
that it faithfully executed each request on the correct state.
Such proofs are succinct, in the sense that the proofs are

small (e.g., constant-sized) and are efficient to verify. In
some constructions, the proofs are zero-knowledge [42],
meaning that they reveal nothing beyond their validity:
the state maintained by the service, along with the content
of requests and responses, is kept private from a verifier.

While the original theory is too expensive to imple-
ment, recent systems [8, 14, 18, 25, 33, 34, 38, 49, 64, 66–
68, 70, 72, 73, 75–79, 82–84] make significant progress.
Beyond reducing the costs of the theory by over 1020×,
some of them can prove the correct execution of stateful
computations like MapReduce jobs and database queries.

Despite this progress, the costs remain prohibitive: the
service incurs several CPU-seconds per storage operation
(e.g., put, get on a key-value store) when generating a
proof of correct execution (§2.1, §7). This is over 106×
slower than an execution that does not produce proofs.
Besides costs, storage primitives in prior systems support
only a single writer, which limits them to a sequential
model of execution. Consequently, they cannot scale out
with additional resources by processing requests concur-
rently; this limits throughput that applications built atop
prior systems can achieve.

We address these issues with Spice, a new system for
building VSMs. Spice introduces a storage primitive with
a key-value store interface, called SetKV, that is consider-
ably more efficient than storage primitives used by prior
systems (§3). Furthermore, SetKV admits concurrent writ-
ers with sequential consistency [52] (and in some cases
linearizability [45]) semantics, and supports serializable
transactions [21, 62]. This makes Spice the first system
to build VSMs with support for a concurrent execution
model (§4). Finally, we compose SetKV with prior and
new techniques to ensure that a verifier can check the
correct execution of requests using only cryptographic
commitments that hide the content of requests, responses,
and the state of the service (§3–5).

In more detail, SetKV extends a decades-old mecha-
nism for verifying the correctness of memories [5, 23,
31, 35]. SetKV is based on set data structures whereas
prior systems employ (Merkle) trees [25, 30] or com-
mitments [34, 83]. This has two implications. First, the
cost of a storage operation is a constant under SetKV
(when amortized over a batch of operations) whereas
in prior storage primitives it is logarithmic [25, 30] or
linear [34, 83] in the size of the state. Second, SetKV
allows concurrent writers since operations on sets—such
as adding an element to a set—commute.

We implement Spice atop a prior framework [1, 78].
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A programmer can express a VSM in a broad subset of
C (augmented with APIs for SetKV and transactions),
and compile it to executables of clients that generate
requests, servers that process those requests and gener-
ate proofs, and verifiers that check the correctness of
responses by verifying proofs. We build several realis-
tic applications with Spice: an inter-bank transaction ser-
vice [27], a cloud-hosted ledger [28], and a dark pool [63].
Our experimental evaluation shows that Spice’s VSMs
are 29–2,000× more CPU-efficient than the same VSMs
built with prior work. Furthermore, they achieve 18,000–
685,000× higher throughput than prior work by employ-
ing multiple CPUs. Concretely, Spice’s VSMs support
488–1167 transactions/second on a cluster of 16 machines,
each with 32 CPU cores and 256 GB of RAM.

Despite these advances, Spice has limitations. To
achieve high throughput, Spice proves state transitions in
batches, so one must wait for a batch to be verified be-
fore determining the correctness of any individual request,
which introduces latency (§3, §7.2). The CPU cost to pro-
duce proofs remains large (§7.1, §7.3) when compared to
an execution that does not produce proofs. Nevertheless,
Spice opens the door to VSMs that support a concurrent
model of computation and to many exciting applications.

2 Problem statement and background
Spice’s goal is to produce verifiable state machines
(VSMs). We begin by reviewing state machines, which
we use as an abstraction to represent a request-processing
service. A state machine is specified by a tuple (Ψ,S0),
where Ψ is a deterministic program that encodes state
transitions, and S0 is the initial state of the machine (e.g.,
a set of key-value pairs). The state machine maintains
its state with Scur, which is initialized to S0. When the
machine receives a request x, it executes Ψ with x and its
state Scur as inputs; this mutates the state of the machine
and produces a response y. More formally, the machine
executes a request x to produce a response y as follows:

(Si, y)← Ψ(Scur, x)

Scur ← Si

A state machine may execute a batch of requests con-
currently to achieve a higher throughput. In such a case,
the behavior of the state machine (i.e., the state after exe-
cuting a batch of requests, and the responses produced by
the machine) depends on the desired correctness condi-
tion for concurrent operations. In this paper we focus on
sequential consistency [52] as the correctness condition
for concurrent operations on single objects, and serializ-
ability for multi-object transactions [21, 62].

A verifiable state machine permits the verification of
state transitions without reexecution and without access
to the (plaintext) contents of requests, responses, and

clients

verifiers

requests

backing 
store

tests
accept/
reject

program

concurrent 
prover

trace

responses

FIGURE 1—Overview of verifiable state machines (see text).

the state of the machine (Scur). Specifically, a VSM is a
protocol involving a prover P , a set of clients that issue re-
quests, and one or more verifiers {V1, . . . ,Vℓ} that check
the correctness of the execution (clients can be verifiers).
We depict this protocol in Figure 1; it proceeds as follows.

1. P runs a state machine (Ψ,S0) that processes requests
concurrently and maintains its state on a persistent
storage service (e.g., a key-value store).

2. Clients issue a set of requests, x1, . . . , xm, concurrently
to P and get back responses, y1, . . . , ym.

3. Each verifier Vj receives an opaque trace from P and
runs a local check on the trace that outputs accept or
reject. Concretely, the trace contains a commitment1 to
the initial state of the machine, a commitment to the
final state after executing the batch of requests, and a
commitment and proof for each request-response pair.

An efficient VSM must satisfy the following properties.

• Correctness. If P is honest (i.e., P’s behavior is equiv-
alent to a correct execution of requests in a sequential
order) then P can make a Vj output true.

• Soundness. If P errs (e.g., it does not execute Ψ or vio-
lates semantics of storage), then Pr[Vj outputs true] ≤
ϵ, where ϵ is small (e.g., 1/2128).2

• Zero-knowledge. The trace does not reveal anything
to a verifier Vj beyond the correctness of P , the number
of requests executed by P , and the size of P’s state.

• Succinctness. The size of each entry in the trace should
be small, ideally a constant (e.g., a few hundred bytes).
The cost to a Vj to verify an entry is linear in the size
of the entry (e.g., a few milliseconds of CPU-time).

• Throughput. P should be able to execute (and gener-
ate proofs for) hundreds of requests/second.

VSMs are related to recent systems for proving the cor-
rect execution of stateful computations [8, 25, 30, 34, 38,
83]. However, in prior systems: (1) P lacks mechanisms

1 A commitment c to a value x is hiding and binding. Hiding means that
c does not reveal anything about x. Binding means that it is infeasible
to find a value x′ ̸= x which produces the same commitment.

2We discuss how to prevent P from equivocating (i.e., showing different
traces to different verifiers) or omitting requests in Section 9.
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to prove that it correctly executed requests concurrently,
and (2) P incurs high CPU costs to produce proofs. Con-
sequently, prior systems do not satisfy our throughput
requirement. We provide an overview of a prior system
below, but note that Spice addresses both issues.

2.1 A prior instantiation of VSMs

We now describe a prior system that implements VSMs;
our goal is to introduce concepts necessary to describe
Spice and to highlight why prior systems are inefficient.
We focus on Pantry [25]; Section 8 discusses other work.

Programming model and API. Pantry [25] follows the
VSM protocol structure introduced above. In Pantry, a
state machine’s program (i.e., Ψ) is expressed in a subset
of C, which includes functions, structs, typedefs, pre-
processor macros, if-else statements, loops (with static
bounds), explicit type conversions, and standard integer
and bitwise operations. For Ψ to interact with a storage
service, Pantry augments the above C subset with sev-
eral storage APIs; an example is the get and put API
of a key-value store. Also, Pantry supports commit (and
decommit) APIs to convert blobs of data (e.g., a request)
into commitments (and back)—to hide data from verifiers.

Mechanics. Pantry meets the correctness, sound-
ness, zero-knowledge, and succinctness properties of
VSMs (§2). To explain how, we provide an overview
of Pantry’s machinery; we start with a toy computation.

int increment(int x) {
int y = x + 1;
return y;

}

Pantry proceeds in three steps to execute a computation.
(1) Express and compile. A programmer expresses

the desired computation in the above subset of C, and
uses Pantry’s compiler to transform the program into a
low-level mathematical model of computation called alge-
braic constraints. This is essentially a system of equations
where variables can take values from a finite field Fp over
a large prime p (i.e., the set {0, 1, . . . , p − 1}). For the
above toy computation, Pantry’s compiler produces the
following system of equations (uppercase letters denote
variables and lowercase letters denote concrete values):

C =

 X − x = 0
Y − (X + 1) = 0

Y − y = 0


A crucial property of this transformation is that the

set of equations is satisfiable—there exists a solution (a
setting of values to variables) to the system of equations—
if and only if the output is correct. For the above constraint
set, observe that if y = x + 1, {X ← x, Y ← y} is a
solution. If y ̸= x + 1, then there does not exist any
solution and the constraint set is not satisfiable.

(2) Solve. The prover solves the equations using the
input x provided by the client. In other words, the prover
obtains an assignment for each of the variables in the
system of equations and sends the output y to the client.

(3) Argue. The prover argues (or proves) that the sys-
tem of equations has a solution (which by the above trans-
formation property establishes that y is the correct output
of the computation with x as the input). To prove that a
system of equations is satisfiable, the prover could send its
solution (i.e., values for each of the variables in the equa-
tion) to a verifier, and the verifier could check that each
equation is satisfiable. However, this approach meets nei-
ther the succinctness nor the zero-knowledge requirement
of VSMs: the size of the proof is linear in the running
time of the computation, and the solution reveals inputs,
outputs, and the internal state of the computation.

To guarantee both properties, Pantry employs an argu-
ment protocol referred to as a zkSNARK [22] to encode
the prover’s solution to the system of equations as a short
proof. Furthermore, a zkSNARK is non-interactive and of-
ten supports public verifiability, meaning that anyone (act-
ing as a verifier) can check the correctness of proofs with-
out having to interact with the prover. Details of how these
protocols work are elsewhere [14, 18, 25, 44, 64, 78, 81];
we first focus on costs and then discuss a subset of mech-
anisms in Pantry that are relevant to our work.

Pantry’s costs. Since costs depend on the choice of
argument protocol and Pantry implements several [64, 67],
we assume a recent protocol due to Groth [44]. The costs
to a Vj are small: the proof produced by P and sent over
the network to Vj per Ψ is short (128 bytes); Vj’s cost to
validate a proof is only a few milliseconds of CPU-time.
P’s costs to produce a proof scale (roughly) linearly with
the number of constraints of the program; concretely, this
cost is ≈150µs of CPU-time per constraint.3

2.1.1 Interacting with external resources

A key limitation of the above algebraic constraint formal-
ism is that it cannot handle interactions with the external
“world” such as accessing disk, or sending and receiving
packets over a network. To address this, Pantry relies on
the concept of exogenous computations.

An exogenous computation is a remote procedure
call (RPC) to an external service, which can be used to
read from a disk or interact with remote servers (using
OS services). Such an external service is executed outside
of the constraint formalism (hence the name). The RPC
simply returns a response that is then assigned to appro-
priate variables in the constraint set of a computation. We
illustrate this concept with an example below.

3The time complexity and the concrete per-constraint cost we provide
assume that the constraint set is produced in the quadratic form [40, 67]:
each constraint is of the form P1 · P2 = P3, where P1, P2, and P3 are
degree-1 polynomials over the variables in the constraint set.
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Suppose that the computation is y =
√

x, where x
is a perfect square. Of course, one could represent the
square-root function using constraints and apply the above
machinery, but the resulting constraint set is highly ver-
bose (which increases the prover’s cost to solve and ar-
gue). Exogenous computations offer a way to express the
equivalent (and much cheaper) computation with:

int sqrt(int x) {
int y = RPC(SQRT, x); //exogenous computation
assert(y*y == x);
return y;

}

The above code compiles to the following constraint set:

C =

 X − x = 0
(Yexo · Yexo)− X = 0

Yexo − y = 0


The prover computes

√
x outside of constraints (e.g., by

running a Python program) and assigns the result to Yexo

when solving the equations (Step 2). The assert state-
ment becomes an additional constraint that essentially
forces the prover to prove that it has verified the correct-
ness of Yexo. A similar approach can be used to interact
with services like databases. The challenge is defining an
appropriate assert statement, as we discuss next.

2.1.2 Handling state

As discussed above, exogenous computations enable a
program Ψ to interact with a key-value store by issuing
an RPC. This alone is insufficient because the prover is
untrusted and can return any response to RPCs. For ex-
ample, if the prover maintains a key-value store with the
tuple (k, v), and Ψ issues an RPC(GET, k); the prover
could return v′ ̸= v. Consequently, as in the above sqrt
example, Ψ must verify the result of every RPC.

To enable this verification, Pantry borrows the idea of
self-verifying data blocks from untrusted storage systems:
it names data blocks using their collision-resistant hashes
(or digests). The following example takes as input a digest
and increments the value of the corresponding data.

Digest increment(Digest d) {
// prover supplies value of block named by d
int block = RPC(GETBLOCK, d);
assert(d == Hash(block));
int new_block = block + 1;
// supply to prover a new block and get digest
Digest new_d = RPC(PUTBLOCK, new_block);
assert(new_d == Hash(new_block));
return new_d;

}

Pantry abstracts these operations with two APIs: (1)
PutBlock which takes as input a block of data and re-
turns its digest, and (2) GetBlock which returns a pre-
viously stored block of data given its digest (these APIs

take care of the RPC call and the appropriate asserts and
invocations of the hash function). Atop this API, Pantry
builds more expressive storage abstractions using prior
ideas [23, 39, 54, 57]. To support RAM, Pantry encodes
the state in a Merkle tree [23, 57]. To support a key-value
store, Pantry uses a searchable Merkle tree: an AVL tree
where internal nodes store a hash of their children. To
read (or update) state in these tree-based storage prim-
itives, the program executes a series of GetBlock (and
PutBlock) calls starting with the root of the tree.

Hiding requests and responses. The above storage prim-
itive can be used to hide requests and responses from a
verifier. Specifically, the prover keeps the plaintext re-
quests and responses in its persistent storage and releases
cryptographic commitments to requests and responses to
a verifier. As in the increment example, a C program
must take as input a commitment to a request, obtain the
plaintext version of it using an RPC, and produce a com-
mitment to the response. This logic is abstracted with the
commit and decommit APIs.

Costs. We now assess the cost of a key-value store op-
eration under Pantry. A get(k) makes ⌈log2 n⌉ calls to
GetBlock (where n is the number of key-value pairs), and
each GetBlock call requires encoding a hash function as
constraints (to represent the assert statement that veri-
fies the return value of the RPC); a put requires twice as
many operations. Thus, a single get on a key-value store
that supports as few as n = 1,000 entries requires 44,000
constraints (§7.1); this translates to 6.6 CPU-seconds for
producing a proof. Furthermore, in Pantry the root of a
Merkle tree is a point of contention so a batch of opera-
tions cannot execute concurrently.

2.2 Outlook and roadmap

Given the overwhelming expense to execute (and produce
a proof for) a simple storage operation when using a tree-
based data structure, we believe that making meaningful
progress requires revisiting mechanisms for verifying in-
teractions with storage. In Section 3.1, we describe an
entirely different way to verify storage operations that
relies on a set—rather than a tree—data structure. In Sec-
tion 3.2, we show how to employ this set-based storage
primitive to realize efficient VSMs, and in Section 4 we
show how, unlike Merkle trees, this set-based primitive
allows requests to be processed concurrently. Finally, Sec-
tion 5 describes how to instantiate the set-based storage
primitive efficiently such that each get and put operation
can be represented with about a thousand constraints.

3 Efficient storage operations in VSMs
This section presents a new mechanism to handle storage
operations in VSMs. We first discuss the design of a
verifiable key-value store based on set data structures; the
design itself is orthogonal to VSMs and can be used to
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build a stand-alone untrusted storage service. We then
show to how to compose the new key-value store with
prior machinery to realize efficient VSMs.

3.1 SetKV: A verifiable key-value store

The goal of a verifiable key-value store is to enable an
entity VK to outsource a key-value storeK to an untrusted
server PK, while being able to verify that interactions
with K are correct. Specifically, PK receives operations
from VK and executes them on K such that VK can check
that a get on a key returns the value written by the most
recent put to that key. This protocol proceeds as follows.

1. VK calls init to obtain an object that encodes the
initial empty state of K.

2. VK issues inserts, gets, and puts sequentially to PK
and receives responses. VK locally updates its object
for every request-response pair.

3. After a batch of operations, VK runs audit that com-
putes over its local object (and auxiliary responses from
PK), and outputs whether or not PK operated correctly.

We desire the following properties from this protocol.

• If PK correctly executes operations on K, then it can
make VK’s audit output true.

• If PK errs, then Pr{audit outputs true} < θ, where
θ is very small (e.g., 1/2128).

• VK maintains little state (e.g., tens of bytes).

Figure 2 depicts our construction. We call this con-
struction SetKV for ease of reference, but note that it
introduces small—albeit critical—changes to the offline
memory checking scheme of Blum et al. [23] (and its
follow-up refinement [31]) and the Concerto key-value
store [5]. We discuss our modifications at the end of this
subsection; these changes are necessary to build VSMs
using SetKV (§3.2). We prove that SetKV meets all de-
sired properties in Appendix C.1 [65]. Below, we describe
how SetKV works starting with a straw man design.

A straw man design. Suppose VK maintains a totally-
ordered log where it records all key-value operations it
issues to PK along with the responses supplied by PK.
VK can execute the following audit procedure: for each
get on a key k recorded in the log, identify the most
recent put to k (by traversing the log backwards starting
from the point at which the get is recorded) and check if
the value returned by the get matches the value written
by the put. If all the checks pass, VK outputs true.

There are two issues with this straw man: (1) VK’s
log size is proportional to the number of key-value store
operations and it grows indefinitely; (2) the cost to verify
the correctness of each get is linear in the size of the log.

Mechanics of SetKV. SetKV addresses both issues as-

1: function init( )
2: return s← VKState{0, 0, 0}
3: function insert(s, k, v)
4: ts′ ← s.ts + 1
5: RPC(INSERT, k, (v, ts′)) // PK executes INSERT on K
6: ws′ ← s.ws⊙H({(k, v, ts′)})
7: return VKState{s.rs, ws′, ts′}
8: function get(s, k)
9: (v, t)← RPC(GET, k) // PK executes GET on K

10: rs′ ← s.rs⊙H({(k, v, t)})
11: ts′ ← max (s.ts, t) + 1
12: RPC(PUT, k, (v, ts′)) // PK executes PUT on K
13: ws′ ← s.ws⊙H({(k, v, ts′)})
14: return VKState{rs′, ws′, ts′}, v
15: function audit(s)
16: rs′ ← s.rs
17: keys← RPC(GETKEYS) // PK returns a list of keys in K
18: for k in keys do
19: (v, t)← RPC(GET, k) // PK executes GET on K
20: rs′ ← rs′ ⊙H({(k, v, t)})
21: if keys has duplicates or rs′ ̸= s.ws then return false
22: else return true

FIGURE 2—SetKV: A verifiable key-value store based on set
data structures [5, 23, 31, 35]. The logic depicted here is run by
VK;PK responds to RPCs. VK’s state consists of two set-digests
and a timestamp ts;H is an incremental set collision-resistant
hash function; see text for details. A put is similar to get except
that lines 11 and 13 use the value being written instead of v.

sociated with the straw man. It lowers verification cost by
relying on two sets instead of an append-only log, and it
reduces the size of the state maintained by VK by leverag-
ing a particular type of cryptographic hash function that
operates on sets. We elaborate on these next.

(1) Using sets. Instead of a totally-ordered log, suppose
that VK maintains a local timestamp counter ts along with
two sets, a “read set” (RS) and a “write set” (WS). SetKV’s
key idea is to design a mechanism that combines all the
checks in the straw man design (performed on the return
value of each get using a log) into a single check on these
two sets; if the server executes any operation incorrectly,
the check fails. Of course, unlike the above log-based
checks, if the set-based check fails, VK will not know
which particular operation was executed incorrectly by
PK, but this dramatically reduces verification costs.

Details of the set-based check. First, we structure the
key-value store K so that each entry is of the form (k, v, t)
where k is a key, v is the associated value, and t is a
timestamp (more precisely a Lamport clock [51]) that
indicates the last time the key was read (or updated). VK
initializes RS and WS to empty, and ts to 0. When VK
wants to insert a new key-value pair (k, v) into K, it
increments the local timestamp ts, adds the tuple (k, v, ts)
into WS, and sends this tuple to PK. Similarly, when
VK wishes to execute a get (or a put) operation on an
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existing key k, VK performs the following five steps:

1. Get from PK via an RPC the current value v and time-
stamp t associated with key k

2. Add the tuple (k, v, t) into RS

3. Update the local timestamp ts← max(ts, t) + 1

4. Add the tuple (k, v′, ts) into WS (where v′ = v for a
get, or the new value for a put)

5. Send the new tuple (k, v′, ts) to PK via an RPC

Observe that the sets maintained by VK preserve two
important invariants: (1) every element added to RS and
WS is unique because ts is incremented after each opera-
tion; and (2) RS “trails” WS by exactly the last write to
each key (i.e., RS ⊆ WS). These lead to an efficient audit
procedure: VK can request the current state of K (i.e., the
set of key, value, and timestamp tuples) from PK (denote
this returned set as M), and check if:

RS ∪M = WS

There is also a check in audit that verifies whether all the
keys in M are unique. This check prevents the following
double insertion attack: if VK issues to PK an insert
operation with a key that already exists inK, a correct PK
should return an error message. However, a malicious PK
could return success for both inserts, and in the future,
return either value for a get on such a key.

Correctness intuition. We now use an example to pro-
vide intuition about the set-based check. Suppose that
after initialization, VK inserts a new key-value pair (k, v)
into K (via the above protocol). VK’s state will be:

RS={}, WS={(k, v, 1)}, ts=1

If VK runs the audit procedure, then a correct PK can re-
turn its state, which in this case is simply M = {(k, v, 1)}.
This leads VK’s audit to return true since RS∪M=WS,
and the set of keys in M has no duplicates. Suppose that
VK then calls get(k) and PK misbehaves by returning
(v′, 1) where v′ ̸= v. VK’s state will be updated to:

RS={(k, v′, 1)}, WS={(k, v, 1), (k, v′, 2)}, ts=2

Observe that for any set M, RS ∪ M ̸= WS (this is be-
cause RS ⊈ WS). By returning an incorrect response, PK
permanently damaged its ability to pass a future audit.

(2) Compressing VK’s state. VK cannot track the two
sets explicitly since they are larger than K. Instead, VK
employs a particular type of hash functionH(·) that acts
on sets and produces a succinct set-digest [9, 31].Hmeets
two properties. First, it is set collision-resistant, meaning
that it is computationally infeasible to find two different
sets that hash to the same set-digest. Second,H is incre-
mental: given a set-digest dS for a set S, and a set W, one

can efficiently compute a set-digest for S ∪ W. Specifi-
cally, there is an operation ⊙ (that takes time linear in the
number of elements in W) such that:

H(S ∪W) = H(S)⊙H(W)

= dS ⊙H(W)

VK leverages H to create (and incrementally update)
set-digests that encode RS and WS, and it keeps these
digests and the local timestamp in a small data structure:

struct VKState {
SetDigest rs; // a set-digest of RS
SetDigest ws; // a set-digest of WS
int ts;

}

The same correctness argument (discussed above) ap-
plies except that we must account for the case where PK
identifies a collision in H, which can allow it to misbe-
have and still pass the audit. Fortunately, the probability
that PK can find any collision is very small (θ ≤ 2−128).

Note that while the audit procedure (Figure 2) appears
to require VK to keep state linear in the size of K to store
the set of all keys (to check for duplicates), this is not
the case. If getkeys (Fig. 2, Line 17) returns a sorted
list of keys, the uniqueness check can be expressed as
a streaming computation. Consequently, VK only needs
enough state for VKState, and the metadata required to
track the status of the streaming computation; all of this
is tens of bytes, which meets our requirement.

Differences with prior designs. SetKV supports insert-
ing any number of keys, whereas offline memory check-
ing protocols [23, 31, 35] have a fixed memory size.
To support insertion, we add the insert procedure,
the getkeys RPC, and the uniqueness check (Figure 2,
Line 21). To prevent P from denying that a particular key
has been inserted, and to disallow P from maintaining a
key-value store with duplicate keys, we have additional
checks (Appendix A.4 [65]). Concerto [5] also supports
inserts but it is more expensive than SetKV since it re-
quires VK to issue two additional RPCs per insert (and
two additional calls toH to update rs and ws) to maintain
an index of keys, so Concerto’s approach is up to 3×
more expensive than SetKV for VK.

Several prior schemes [5, 23, 35] use instances of H
that require VK to use cryptographic material that must
be kept secret from PK. While this is not an issue in
the standalone setting presented in this section (since VK
updates set-digests locally), it is problematic in the VSM
context where the prover P executes these operations on
behalf of clients (§3.2). In contrast, our construction of
H does not require secret cryptographic material (§5.2).
Finally, the audit procedure of SetKV does not modify
VK’s set-digests (as is the case in Concerto’s), which
lowers the costs of audit by 2×.
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3.2 Building VSMs using SetKV

Spice follows an approach similar to Pantry to build
VSMs. As with the Pantry baseline discussed in the prior
section, Spice uses Groth’s argument protocol [44] as a
black box (Spice can also use many other argument proto-
cols, as we discuss in Section 9). The principal difference
between the two systems is in how they handle storage
operations, which we discuss next.

Recall from Section 2.1 that a VSM’s program Ψ in-
teracts with external services (e.g., a storage service) by
issuing RPCs. Since the prover is untrusted and can return
incorrect responses to RPCs, Ψ must verify each RPC
response via an assert; Section 2.1.2 discusses the veri-
fication mechanism in Pantry. We now discuss an alternate
mechanism based on SetKV.

At a high level, Spice’s idea is to employ SetKV’s veri-
fier (i.e., VK) to check the interactions of Ψ with a storage
service. To accomplish this, we build a C library that
implements the init, insert, get, put, and audit pro-
cedures in Figure 2. A VSM programmer uses this library
to write Ψ, and compiles Ψ into algebraic constraints
(and client, server, verifier executables). To illustrate this
idea, we start with an example in which Ψ increments an
integer value associated with a key requested by a client.

Value increment(VKState* s, Key k) {
Value v;
// prover supplies value v for key k
get(s, k, &v); //setkv library call (updates s)
v = (Value) ((int) v + 1);
put(s, k, v); // setkv library call (updates s)

// batch-verify all storage operations
assert(audit(*s) == true); // setkv library call
return v;

}

Observe that the high-level structure of the above pro-
gram is nearly identical to the example we discussed
in the context of Pantry. A key difference, however, is
that under Pantry, Ψ verifies each storage operation (e.g.,
GetBlock) with an assert; under Spice, Ψ verifies all
storage operations at the end with a single assert that
calls SetKV’s audit procedure.

Costs. Since init, insert, get, and put execute a con-
stant number of arithmetic operations (Figure 2), Spice
compiles them into a constant number of equations when
transforming Ψ into the constraint formalism. audit,
however, computes over the entire state of the key-value
store, so it compiles to a constraint set with size linear
in the number of objects in the key-value store (say n).
Fortunately, audit is called only once, so its costs are
amortized over all storage operations in Ψ.

In more detail, if Ψ executes O(n) storage operations
before calling audit, the (amortized) cost of each stor-
age operation is a constant. However, for the services that

Spice targets (§1, §6), Ψ executes far fewer storage oper-
ations than n. This leads to an undesirable situation: the
amortized cost of a storage operation can be worse than in
Pantry (where each storage operation’s cost is logarithmic
in n). Spice addresses this by decoupling the call to audit
from the rest of Ψ. We discuss this below.

Spice’s VSMs. Let Ψ be a program with the same struc-
ture as the previous increment example: Ψ takes as input
a request x and a VKState s, interacts with the storage via
RPCs, verifies those interactions at the end via assert,
updates s, and outputs a response y. Spice splits Ψ into
two independent programs: Ψreq and Ψaudit, where Ψreq

is same as Ψ except that it does not have the assert
statement at the end; Ψaudit is the following program:

void audit_batch(VKState s) {
assert(audit(s) == true);

}

This decomposition achieves the following: proving
the correct execution of m instances of Ψ is equivalent
to proving the correct execution of the corresponding
m instances of Ψreq and a single instance of Ψaudit. By
equivalent, we mean that a verifier V outputs true to m+1
proofs (one per instance of Ψreq and Ψaudit) if and only
if V would have output true to the m proofs produced
by instances of Ψ. Thus, if m=O(n), the O(n) constraints
needed to express Ψaudit are effectively amortized over the
m requests, making the (amortized) number of constraints
for each storage operation in Ψreq a constant. Note that the
costs of Ψaudit can actually be amortized across different
computations (they can be instances of different Ψreq).

This approach has two drawbacks. First, it increases la-
tency since V confirms the correct execution of any given
instance Ψreq only after it has verified all m + 1 proofs.
Second, if the proof of Ψaudit fails, V does not learn which
of the storage operations (and therefore which instance of
Ψreq) returned an incorrect result. However, as we show in
our evaluation (§7), this decomposition reduces the cost
of storage operations by orders of magnitude over Pantry,
even for modest values of m.

Trace. Recall from Section 2 that each verifier Vj re-
ceives a trace from P to verify a batch of m instances of
Ψreq. This trace contains m tuples and a proof for Ψaudit:

(xi, si−1, yi, si,πi)∀i ∈ [1, m] and πaudit

where πi is the proof of correct execution of the ith in-
stance of Ψreq with (si−1, xi) as input and (si, yi) as out-
put. Each state si is an object of type VKState (s0 is a
VKState object for an empty key-value store), xi is a
request, and yi is the corresponding response. πaudit estab-
lishes the correct execution of Ψaudit with sm as input.

Observe that the above trace is sufficient to guarantee
correctness and soundness (since each Vj has all the in-
formation needed to verify the actions of P), but it does
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not satisfy zero-knowledge or succinctness. This trace
is not succinct since the sizes of requests and responses
could be large (they depend on the application). The trace
is not zero-knowledge since requests and responses ap-
pear in plaintext. Moreover, a VKState object leaks the
timestamp field and the set-digests (unlike commitments,
hashes bind the input but do not hide it; see Footnote 1).

Commitments. To make the trace succinct and zero-
knowledge, a programmer writes a VSM that takes as
input (and produce as output) commitments to requests,
responses, and VKState. For example, the programs Ψreq

and Ψaudit discussed earlier are expressed as:

Commitment incr_comm(Commitment* cs, Commitment ck) {
// prover passes value via RPC (checked by assert)
VKState s = (VKState) decommit(*cs);
Key k = (Key) decommit(ck);
Value v = increment(&s, k); // prior program logic
*cs = commit(s);
return commit(v);

}

void audit_batch_comm(Commitment cs) {
VKState s = (VKState) decommit(cs);
audit_batch(s); // prior program logic

}

In more detail, a client sends to P the plaintext request
xi (k in the example). P computes the program (with-
out commitments) outside of the constraint formalism
and sends back to the client the output yi (v in the exam-
ple). P then generates a proof πi for the version of the
program that uses commitments (incr_comm in the ex-
ample). Specifically, P first generates a commitment to xi

outside of the constraint formalism and uses it to solve the
constraint set of Ψreq (Section 9 discusses what prevents
P from omitting requests or generating an incorrect com-
mitment). P then adds to its trace commitments to each
of (si, xi, yi) and the corresponding proof πi. Each verifier
Vj uses these commitments—instead of their plaintext
versions—when verifying proofs (including πaudit), since
the above programs use commitments as inputs and out-
puts. Thus, a verifier Vj does not learn anything about the
requests, responses, or states beyond their correctness, the
number of requests, and the size of the state. Also, since
the size of each commitment and each proof is a constant,
it satisfies the succinctness property of VSMs.

4 Supporting concurrent services

Prior instantiations of VSMs—including our design in
Section 3—do not support a prover P that executes re-
quests concurrently. A key challenge is producing proofs
that establish that P met a particular consistency seman-
tic. Note that this problem is hard even without the zero-
knowledge or succinctness requirements of VSMs [71].

4.1 Executing requests concurrently

To make P execute requests concurrently, we introduce a
concurrent version of SetKV, called C-SetKV, which we
later integrate with Spice’s design from the prior section.

C-SetKV’s prover PK interacts with multiple instances
of VK (V(0)

K , . . . ,V(ℓ)
K ) that issue insert, put, and get

requests concurrently. C-SetKV guarantees sequential
consistency [52]: an audit returns true if and only if
the concurrent execution is equivalent to a sequential exe-
cution of operations and the sequential execution respects
the order of operations issued by individual instances
of VK. In a few cases, C-SetKV guarantees linearizabil-
ity [45]. We formalize these guarantees and provide de-
tails in Appendix C.2 [65], but the key differences be-
tween C-SetKV and SetKV are:

1. Enforcement of isolation. In SetKV (Figure 2), VK is-
sues two RPCs for each get and put; they are executed
in isolation by a correct PK because there is only one
outstanding operation. In C-SetKV, PK must explicitly
ensure that both RPCs are executed in isolation since it
receives and executes many concurrent operations.

2. Support for independent VKStates. In SetKV, VK
maintains a single VKState object that encodes its key-
value store operations since initialization. In C-SetKV,
each V(j)

K has its own independent VKState object that
contains only the effects of operations issued by V(j)

K .

We discuss the details of these differences below.

Enforcement of isolation. We now discuss how a cor-
rect PK can execute C-SetKV’s four key-value store oper-
ations in isolation. It is straightforward to execute insert
in isolation since it issues a single RPC. audit does not
modify PK’s state, so PK can executes it in isolation us-
ing a snapshot of its state. To ensure the two RPCs of put
and get execute in isolation (in the presence of multiple
instances of VK), PK can keep track of when the first
RPC starts and block any other request that attempts to
operate on the same key until the second RPC (for the
same key) completes. A simple approach to achieve this
is for PK to lock a key during the first RPC and release
the lock on the second RPC. A malicious PK could of
course choose not to guarantee isolation, but as we show
in Appendix C.2 [65], a future audit will fail. Note that
in Spice, PK corresponds to the external storage, so the
mechanism that ensures isolation happens outside of the
constraint formalism (i.e., it is not encoded in Ψ).

Support for independent VKStates. Since each V(j)
K is-

sues requests independently, it maintains a local VKState
object. This creates two issues. First, the set-digests and
timestamp in the VKState object of V(j)

K do not capture
the operations issued by other instances of VK. As a result,
we need a mechanism to combine the VKState objects of
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all instances of VK prior to invoking audit—since audit
accepts a single VKState object. Second, the timestamp
field ts is no longer unique for each operation since each
V(j)
K initializes its VKState object with ts = 0. We discuss

how we address these issues below.
Combining VKState objects. To obtain a single

VKState object, each V(j)
K collects VKState objects from

every other instance and locally combines all objects.4

Combining set-digests is possible because sets are un-
ordered and the union operation is commutative. More-
over,H(·) preserves this property since the operation⊙ is
commutative. As a result, each V(j)

K constructs set-digests
that capture the operations of all instances of VK as if they
were issued by a single entity. For example, the combined
read set-digest is computed as rs = rs(0) ⊙ . . . ⊙ rs(j)

(similarly for ws). Finally, the timestamp of the combined
VKState object is simply 0 since it is not used in audit.

Handling duplicate entries. Since different VK in-
stances start with the same timestamp ts=0, it is possible
for two different instances to add the same element into
their local set-digests (in a VKState object); this creates
a problem when multiple VKState objects are combined.
We use an example to illustrate the problem. Suppose
there are three instances of VK: V(1)

K ,V(2)
K ,V(3)

K . Suppose
V(1)
K calls insert(k, v), making its VKState:

ws = H({(k, v, 1)}), rs = H({}), ts = 1

Suppose V(2)
K and V(3)

K call get(k) concurrently and
PK returns an incorrect value v′ ̸= v. Specifically, PK
returns (k, v′, 1) to both, so their VKState object is:

ws = H({(k, v′, 2)}), rs = H({(k, v′, 1)}), ts = 2

Now, if each VK instance combines set-digests in the
three VKState objects, they get the following (we use
exponents to indicate the number of copies of an element):

ws = H({(k, v, 1), (k, v′, 2)2}), rs = H({(k, v′, 1)2})

Unfortunately, since H(·) is a set hash function the
above leads to undefined behavior: H’s input domain is
a set, but the above is a multiset.5 Worse, some construc-
tions [5] use XOR for ⊙, so H({(k, v′, 1)2} = H({})
(i.e., adding an element that already exists to a set-digest
removes the element!). Such a hash function would lead
to the following combined set-digests:

ws = H({(k, v, 1)}), rs = H({})

For these set-digests, a PK can make audit pass by re-
turning M = {(k, v, 1)}—even though it misbehaved by
returning an incorrect value to V(2)

K and V(3)
K .

4Exchanging VKState objects is easy in the context of VSMs since
(commitments to) all VKState objects appear in the trace.

5A multiset is a set that can contain duplicate elements.

There are two solutions. First, we can use aH(·) that is
multiset collision-resistant (our construction in Section 5
satisfies this). In that case, even if different instances of
VK add the same elements to their set-digests, the aggre-
gated set-digest will track the multiplicity of set members
(i.e., the number of times an element is added to a set-
digest). If PK misbehaves, the aggregated rs will not
be a submultiset of the aggregated ws, which prevents
a future audit from passing (Appendix C.2 [65]). The
second solution is to guarantee that there are no dupli-
cate entries. We discuss this second solution in detail in
Appendix A.1 [65].

Using C-SetKV to execute requests concurrently. P
executes (and generates proofs for) multiple instances of
Ψreq simultaneously using different threads of execution
(e.g., on a cluster of VMs). As before, each instance of
Ψreq interacts with a storage service through exogenous
computation. A key difference is that unlike the design
in Section 3.2, each instance of Ψreq checks the response
from the storage service using a different instance of C-
SetKV’s verifier. This is essentially the desired solution,
but we now specify a few details.

A verifier Vj receives commitments to a set of VKState
objects, one from each thread of execution, in P’s trace.
This means that Vj cannot execute the ⊙ operator on the
commitments sent by P , since ⊙ works on set-digests
and not on commitments. To address this, P supports a
computation Ψcomb that takes as input commitments to
VKState objects and outputs a commitment to the com-
bined VKState object. That is, P helps Vj combine com-
mitments to VKState objects—without revealing any-
thing about the objects and without requiring Vj to trust P
(P produces a proof for Ψcomb). Vj then uses the resulting
commitment in Ψaudit.

4.2 Supporting transactional semantics

Many services compute over multiple key-value tuples
when processing a request, so they require transactional
semantics. To support such services, we first build low-
level mutual-exclusion primitives. We then use these prim-
itives to build a transactional interface to C-SetKV that
guarantees serializability [21, 62]. Finally, we show how
those low-level primitives can be used to build other con-
currency control protocols.

Mutual-exclusion primitives. Spice supports two APIs:
(1) lock takes as input a key and returns the current value
associated with the key; and (2) unlock takes as input a
key and an updated value, and associates the new value
with the key before unlocking the key. Figure 3 depicts our
implementation of these APIs by essentially decomposing
SetKV’s get and put (Figure 2).

In essence, these primitives provide mutual-exclusion
semantics by leveraging the requirement that PK in C-
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1: function lock(s, k)
2: (v, t)← RPC(GET, k) // PK executes GET and locks k
3: rs′ ← s.rs⊙H({(k, v, t)})
4: ts′ ← max (s.ts, t)
5: return VKState{rs′, s.ws, ts′}, v
6: function unlock(s, k, v)
7: ts′ ← s.ts + 1
8: RPC(PUT, k, (v, ts′)) // PK executes PUT and unlocks k
9: ws′ ← s.ws⊙H({(k, v, ts′)})

10: return VKState{s.rs, ws′, ts′}

FIGURE 3—Mechanics of lock and unlock (see text).

1: function beg_txn(s, keys)
2: s′ ← s, vals← [ ]
3: for k in keys do
4: (s′, v)← lock(s′, k)
5: vals← vals + (v) // append the value
6: return s′, vals
7: function end_txn(s, tuples)
8: s′ ← s
9: for (k, v) in tuples do

10: s′ ← unlock(s′, k, v)
11: return s′

FIGURE 4—Mechanics of beg_txn and end_txn (see text).

SetKV must execute GET and PUT RPCs on the same key
in isolation. Specifically, if a request executes lock on a
key k, PK must block all operations on k until the lock-
owner calls unlock (otherwise a future audit fails).

Simple transactions. We now describe how the above
mutual-exclusion primitives can be used to build transac-
tions with known read/write sets: all the keys that will be
accessed are known before the transaction execution be-
gins. Spice abstracts this transactional primitive with two
APIs: (1) beg_txn takes as input a list of keys on which
a transaction wishes to operate and returns the values as-
sociated with those keys; (2) end_txn takes as input the
list of keys and the values that the transaction wishes to
commit. Between calls to these two APIs, a program Ψreq

can execute arbitrary computation in Spice’s subset of C.
Figure 4 depicts our implementation of these APIs.

beg_txn calls lock on each key in its argument to get
back the current value associated with the key. end_txn
calls unlock on each key (which stores the updated value
before releasing the lock). This guarantees serializability
since lock and unlock ensure mutual-exclusion.6

General transactions. We note that a transaction exe-
cuted by Ψreq does not need to acquire locks on all keys
involved in the transaction at once. A programmer can
write a Ψreq that acquires locks on keys (using lock) over
its lifetime and then releases locks (using unlock). This
supports transactions with arbitrary read/write sets and

6Deadlock can be avoided by acquiring locks in a deterministic order.

guarantees serializability if Ψreq implements two-phase
locking: all locks on keys involved in the transaction are
acquired before releasing any lock. Appendix A.3 [65]
discusses how to implement serializable transactions with
optimistic concurrency control instead.

5 Efficient instantiations
We now describe an efficient implementation of Ψaudit

and the cryptographic primitives necessary to build Spice.

5.1 Parallelizing audits

Recall from Section 3.2 that P periodically produces
πaudit to prove the correct execution of Ψaudit. We ob-
serve that Ψaudit can be expressed as a MapReduce job;
thus, P can use existing verifiable MapReduce frame-
works [25, 34, 38] to reduce the latency of producing
πaudit by orders of magnitude. The details (of what each
mapper and reducer computes) are in Appendix A.2 [65],
but we discuss the costs. This approach increases each
verifier’s CPU costs and the size of πaudit by a factor of
|mappers|+ |reducers|. This is because each mapper and
reducer generates a separate proof.7 This is an excellent
trade-off since checking πaudit is relatively cheap: 3 ms of
CPU-time to check a mapper’s (or a reducer’s) proof, and
each proof is 128 bytes.

5.2 Efficient cryptographic primitives

Set hash function. Recall from Section 3.2 that Spice
represents the logic of SetKV’s VK (Figure 2) in con-
straints. An important component is encodingH(·) as a
set of equations; all other operations in VK (such as com-
parisons and integer arithmetic) are already supported by
the existing framework (§6). Spice instantiatesH(·) using
MSet-Mu-Hash [31] defined over an elliptic curve EC:

H({e1, . . . eℓ}) =
ℓ∑

i=1

H({ei})

where H(·) is a random oracle that maps a multiset of
elements to a point in EC, and point addition is the group
operation. We use an elliptic curve group since prior
work [17, 34, 50] shows how to express elliptic curve
operations with only a handful of constraints.

However, one issue remains: we need a candidate for
H(·) with an efficient representation as a constraints set.
Our starting point for H(·) is H(·) = ϕ(R(·)), where R(·)
is a random oracle (instantiated using a collision-resistant
hash function). R takes as input a multiset of elements
and outputs an element of a set S (e.g., SHA-256 maps

7CTV [30] avoids the cost increase for a verifier, but incurs >10×
higher expense for P . The recent work of Wu et al. [82] offers an
alternative by distributing P’s work for any computation in a blackbox
manner; applying it to audit_batch is future work.
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an arbitrary length binary string to a 256-bit string); ϕ(·)
maps elements in S uniformly to a point in EC.

A challenge is that building ϕ(·) using prior tech-
niques [36] is expensive; more critically, common hash
functions (e.g., SHA-256, Keccak) perform bitwise oper-
ations (XOR, shift, etc.), which are expensive to express
with algebraic constraints (it takes at least 1 constraint for
each bit of the inputs) [64, 69]. We discuss our solution
in detail in Appendix B [65], but we make the follow-
ing contribution. We show that the requirement that H(·)
be a random oracle can be relaxed (we still require its
constituent R(·) to be a random oracle). We leverage this
relaxation to construct an efficient ϕ(·) from Elligator-
2 [20]; to build R(·), we use a relatively new block cipher
called MiMC [2], which is more efficient than SHA-256 in
the constraints formalism. In summary, our construction
of H(·) requires 10,000× fewer constraints than using
SHA-256 and a prior construction for ϕ(·) [36].

Commitments. Pantry [25] employs HMAC-SHA256 to
implement commit() but requires ≈ 250,000 constraints
to generate a commitment to a 150-byte message. Spice
takes a different approach. For a message x ∈ Fp (recall
from §2.1 that constraint variables are elements in Fp), a
commitment is (x + t, R(t)) where t ∈ Fp is a randomly-
chosen value and R(·) is the MiMC-based random oracle
introduced above. This is binding because R(t) binds t due
to the collision-resistance of R(·). It is hiding because x+t
is uniformly random; hence the tuple (x + t, R(t)) is inde-
pendent of the message x. Finally, the scheme generalizes
to larger messages x ∈ Fk

p in two ways: commit to each
component of x independently (which increases the size
of the commitment by k times), or output (R(x) + t, R(t)).
Compared to Pantry’s HMAC-SHA256, Spice’s commit-
ments require ≈300× fewer constraints.

6 Implementation and applications
We build Spice atop pequin [1], which provides a com-
piler to convert a broad subset of C to constraints, and
links to libsnark [55] for the argument protocol (step 3;
§2.1). We extend this compiler with Spice’s SetKV API
(including transactions and commitments) based on the de-
sign discussed in Sections 3–5. Spice uses leveldb [41]
as its backing store to provide persistent state. In total,
Spice adds about 2,000 LOC to Pequin. Our implementa-
tion of the applications discussed below consists of 1,300
lines of C and calls to Spice’s API.

6.1 Applications of Spice

We built three applications atop Spice. These applications
require strong integrity and privacy guarantees, and have
transactions on state that can be executed concurrently.
Furthermore, they tolerate batch verification (i.e., P can
produce πaudit after many requests) since clients can levy
financial penalties if they detect misbehavior ex post facto.

// pk_c is the public key of the caller
issue(VKState* s, PK pk_c, PK pk, Asset as, int a) {
return insert(s, pk||as, a); // || is concatenation

}

retire(VKState* s, PK pk, Asset as, int a) {
Value v[1];
beg_txn(s, [pk||as], v); // updates s and v
if (v[0] >= a) v[0] -= a;
end_txn(s, [(pk||as, v[0])]); // updates s

}

// pk1, pk2 are the keys of caller and recipient
transfer(VKState* s, PK pk1, PK pk2, Asset as, int a) {
Value v[2];
beg_txn(s, [pk1||as, pk2||as], v); // updates s, v
if (v[0] >= a) { v[0] -= a; v[1] += a; }
end_txn(s, [(pk1||as, v[0]), (pk2||as, v[1])]);

}

FIGURE 5—Pseudocode for a Sequence-like app using Spice’s
API. The requests, except the public key of the caller, are
wrapped in commitments; however, this part is not depicted.

Cloud-based ledger service. We consider a cloud-
hosted service that maintains a ledger with balances of
assets for different clients. Examples of assets include cur-
rency in a mobile wallet (e.g., Square, WeChat) and cred-
its in a ride-sharing application. Clients submit three types
of requests: transfer, issue, and retire. transfer
moves an assert from one client to another, whereas
issue and retire move external assets in and out of
the ledger. For example, in WeChat, clients move cur-
rency from their bank accounts to their mobile wallets.
This application is inspired by Sequence [28]. However, to
verify the correct operation of Sequence, a verifier needs
access to sensitive details of clients’ requests (e.g., the
amount of money) and the service’s state. We address this
limitation by implementing a Sequence-like service as a
VSM using Spice. The ledger maintained by the service
is the VSM’s state and the request types discussed above
are state transitions. Figure 5 depicts our implementation
of this application in Spice’s programming model.

Payment networks. Our second application is a pay-
ment network inspired by Solidus [27]. Banks maintain
customer balances, and customers submit requests to
move money from their accounts to other accounts (in the
same bank or a different bank). This is similar to the pre-
vious application except that it also supports an inter-bank
transfer. For such a transfer, the sender and recipient’s
banks must coordinate out-of-band: the sender’s bank ex-
ecutes the debit part of a transfer and the recipient’s
bank executes the credit part. A verifier can check that
banks are processing requests correctly without learning
the content of requests: destination account, amount, etc.

A securities exchange (dark pool). A securities ex-
change is a service that allows buyers to bid for securities
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(e.g., stock) sold by sellers. The service maintains an or-
der book—a list of buy and sell orders sorted by price.
Clients submit buy or sell orders to the service, who
either fulfills the order if there is a match, or adds the or-
der to the order book. Although traditional exchanges are
public (clients can see the order book), private exchanges
(or dark pools) have gained popularity in light of attacks
such as “front-running” [63]. Dark pools, however, are
opaque; indeed, there are prior incidents where dark pools
have failed to match orders correctly [37, 60].

We implement the exchange as a VSM: the order book
is the state, and submit and withdraw order are state tran-
sitions. At a high level, we represent the sorted order book
as a doubly-linked list using Spice’s storage API. Then,
submit removes or inserts nodes to the list depending on
whether there is a match or not, and withdraw removes
nodes from the list. With Spice, verifiers learn nothing
about the orders beyond the identity of the submitter, and
yet they can check the correct operation of the exchange.

7 Experimental evaluation
We answer the following questions in the context of our
prototype implementation and applications (§6).

1. How does Spice compare to prior work?

2. How well does Spice scale with more CPUs?

3. What is the performance of apps built with Spice?

Baselines. We compare Spice to two prior systems for
building VSMs: Pantry [25] and Geppetto [34]. Sec-
tions 2.1 and 8 provide details of their storage primitives,
but briefly, Pantry’s storage operations incur costs loga-
rithmic in the size of the state (due its use of Merkle trees),
and the costs are linear in the size of the state in Geppetto.
Besides these baselines, we consider a Pantry variant,
which we call Pantry+Jubjub, that uses a Merkle tree
instantiated with a recent hash function [32]. Finally, we
compare our payment network app (§7.3) to Solidus [27].

Setup and metrics. We use a cluster of Azure D64s_v3
instances (32 physical CPUs, 2.4 GHz Intel Xeon E5-
2673 v3, 256 GB RAM) running Ubuntu 17.04. We mea-
sure CPU-time, storage costs, and network transfers at
the prover P and each verifier Vj, and the throughput and
latency of P . Finally, we measure Spice’s performance ex-
perimentally, but estimate baselines’ performance through
microbenchmarks and prior cost models; we use the same
argument protocol for Spice and the baselines, so P’s
CPU costs in all the systems scale (roughly) linearly with
the number of constraints of a Ψ.

Microbenchmarks. To put our end-to-end results in con-
text, we measure the costs to each Vj and P in Spice’s
underlying argument protocol (§6), and the number of
constraints needed to represent Spice’s cryptographic
primitives. Figure 6 depicts our results.

costs of argument protocol (§2.1, §6)
P’s CPU-time per constraint ≈ 149µs
V’s CPU-time to check a proof ≈ 3 ms
size of a proof 128 bytes

#constraints for basic primitives (§5.2)
random oracle R(·) on a 32-byte message 167
map ϕ(·) on a 32-byte element to EC 105
add two points in EC (i.e., ⊙ in §3.1) 8
commit to a 32-byte message 168

FIGURE 6—Microbenchmarks.

7.1 Spice’s approach to state VS. prior solutions

We consider a computation Ψ that invokes a batch of get
(or put) operations on a key-value store preloaded with
a varying number of key-value pairs; each key and each
value is 64 bits. Our metric here is the number of con-
straints required to represent a storage operation. Figure 7
depicts the cost of different key-value store operations
under Spice and our baselines. For Spice, the reported
costs include error-checking code that prevents P from
claiming that a key does not exist (Appendix A.4 [65]).

We find that the cost of a storage operation is lower
for Spice than prior works as long as P’s state contains
at least a few hundred key-value pairs. As an example,
for a get on 1M key-value pairs in P’s state, Spice re-
quires 57× fewer constraints than Pantry, 29× fewer than
Pantry+Jubjub, and 2,000× fewer than Geppetto.

However, Spice must execute (and produce a proof for)
Ψaudit, which requires constraints linear in the size of the
state (§3.2). Fortunately, this can be amortized over a
batch of m operations on state. Naturally, if m = 1 (i.e.,
we run Ψaudit after every storage operation), then Spice’s
costs are higher than prior systems. But even for modest
values of m, Spice comes out on top. For example, when
the state is 1M key-value pairs, m ≥ 6,920 is sufficient
to achieve per-operation costs that are lower than Pantry.
Furthermore, each request in our applications (e.g., fi-
nancial transactions) perform multiple storage operations;
the number of requests per batch that must be verified to
outperform the baselines is much smaller.

7.2 Benefits of Spice’s concurrent execution

We now assess how well Spice’s prover P can leverage
multiple CPUs and concurrent execution to achieve better
throughput. For these experiments, we assume P executes
Ψaudit periodically in the background (e.g., every minute).
We discuss Spice’s throughput, latency, and the amortized
costs of operations as a function of audit frequency.

Throughput. We setup P with a key-value store
preloaded with 1M key-value pairs. We then have P run
Ψreq instances on a varying number of CPU cores, where
each instance invokes a batch of get (or put) operations;
Ψreq selects keys according to two different distributions:
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get cost put cost

size of state (# key-value pairs) 1 103 106 1 103 106

Pantry 4.1K 44.9K 85.7K 8.2K 89.8K 171.5K
Geppetto 3 3.0K 3.0M 4 4.0K 4.0M
Pantry+Jubjub 2.1K 23.1K 44.1K 4.2K 46.2K 88.2K

Spice 1.5K 1.5K 1.5K 1.5K 1.5K 1.5K
Ψaudit 1250/m 561K/m 582M/m 561/m 561K/m 582M/m

FIGURE 7—Per-operation cost of get and put—in terms of number of algebraic constraints—for Spice and its baselines with
varying number of key-value pairs in P’s state. We also depict the costs for Spice’s Ψaudit; m denotes the number of storage operations
after which P runs Ψaudit to produce πaudit. Figure 6 depicts P’s and each Vj’s CPU-time as a function of the number of constraints.
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FIGURE 8—Benefits of Spice’s concurrent request execution. The workload is a stream of gets or puts and P’s state contains 1M
key-value pairs. The keys are chosen uniformly at random or follow a Zipfian distribution (exponent of 1.0).

get put

Pantry 0.078 0.039
Pantry+Jubjub 0.153 0.076
Geppetto 0.002 0.002

Spice (1-thread) 3.6 3.6
Spice (512-threads) 1366 1370

FIGURE 9—Throughput (ops/sec) for get and put in Spice and
its baselines. The size of the state is 1M key-value pairs.

uniform and Zipfian (exponent of 1.0). We measure the
number of storage operations performed (and proofs pro-
duced) by P per second. Figure 8 depicts our results.

We find that Spice’s prover achieves a near-linear
speedup with increasing number of cores. When keys
are chosen uniformly, P (with 512 cores) achieves 379×
higher throughput compared to a single-core execution
(for both get and put workloads). When the workload
is Zipfian, the speedup is 180× due to higher contention
(recall from Section 4.1 that P locks keys outside of the
constraint formalism to guarantee isolation). In absolute
terms, Spice’s prover executes 648–1,370 key-value store
operations/second on 512 CPU cores.

Compared to its baselines (Figure 9), Spice’s through-
put is 92× that of Pantry, 47× that of Pantry+Jubjub, and
1,800× that of Geppetto for puts. The gap widens when
Spice leverages 512 cores: Spice’ throughput is 35,100×
higher than Pantry, 18,000× higher than Pantry+Jubjub,
and 685,000× higher than Geppetto.

Latency. P needs additional resources to periodically
produce πaudit. Meanwhile, the time that P needs to gener-

ate πaudit dictates the latency of storage operations—since
a verifier Vj must check πaudit before establishing the cor-
rectness of prior storage operations (§3.2). We start by
measuring P’s time to run Ψaudit and produce πaudit.

Recall from Section 5.1 that the cost of generating
πaudit scales linearly with the size of P’s state and we
parallelize this using MapReduce (§5.1). We experiment
with P’s state containing 1M key-value pairs. We run a
MapReduce job on 1,024 CPU cores consisting of 1,024
mappers, where each mapper reads 1,024 key-value tu-
ples and produces a single set-digest (the details of the
MapReduce job are in Appendix A.2 [65]). We then
run 33 reducers (split over two levels containing 32 and
1 reducers) and a final aggregator. We find that the job
(including proof generation) takes 3.63 minutes. As a re-
sult, if P runs Ψaudit every k minutes the latency of any
key-value store operation is at most k + 3.63 minutes.

Amortized costs of storage operations. Suppose we set
k=10 minutes, which covers a batch of 800,000 storage
operations (recall that P executes 1,360 ops/sec under a
uniform distribution). The amortized cost of Ψaudit would
be 582 · 106/800, 000 ≈ 728 constraints, and the per-
operation storage cost (in terms of #constraints) would be
728 + 1500 ≈ 2228 constraints. This is 76× lower than
Pantry, 39× lower than Pantry+Jubjub, and 1790× lower
than Geppetto for put operations (1M key-value pairs in
P’s state). With larger k (larger latency), this gap widens.

Verifier’s costs. A verifier’s costs to check a proof of
correct execution for a Ψreq is 3 ms of CPU-time; the
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FIGURE 10—Throughput (requests processed/second) for the various applications (§6). Requests of type issue, transfer, and retire
are for the cloud-based ledger service (Figure 5); issue, transfer, retire, debit, and credit are for the payment network application; and,
submit requests are for the dark pool application.

proof itself is only 128 bytes (Figure 6). As we discuss in
Section 5.1, the size of a proof and cost to verify Ψaudit

depends on the chosen MapReduce parameters. In partic-
ular, the size of πaudit is (M+R+1) ·128 bytes since each
mapper and each reducer produce a different proof, and
verifying the entire proof takes (M + R + 1)· 3 ms. For
the above MapReduce job (M=1024, R=33), checking
πaudit takes 3.2 CPU-seconds.

7.3 Performance of apps built with Spice

We now assess whether Spice’s prover P meets our
throughput requirement (§2). We experiment with the ap-
plications that we built using Spice (§6). Specifically, we
run a concurrent P with a varying number of CPUs and
measure its throughput for different transaction types (e.g,.
credit, debit). The keys for various requests are cho-
sen according to both uniform and Zipfian distributions,
and requests compute over a million key-value pairs.

Figure 10 depicts our results for the uniform distri-
bution case; for the Zipfian case, the throughput is 2–
3.3× lower due to higher contention. Across the board, P
achieves a near-linear speedup in transaction-processing
throughput with a varying number of CPUs. Furthermore,
when using 512 CPU cores, P achieves 488–1167 re-
quests/second, which exceeds our throughput requirement.
We now discuss the specifics of each application.

Cloud-based ledger service. Among the three trans-
action types supported by our first application, issue
and retire involve a single storage operation whereas
transfer requires two (to update the balances at the
sender and the recipient of a transaction). Note that these
storage operations are in addition to various checks on
balances (see Figure 5). However, in terms of the number
of constraints, storage operations dominate. As a result,
P’s throughput for issue and retire is about 2× higher
than that of transfer. Furthermore, the throughput for
issue and retire is roughly the throughput that Spice’s
prover achieves for a get (or a put) workload (Figure 8).

Payment networks. We only experiment with inter-
bank transaction types: credit and debit (intra-bank

transfers are the same as in our first application). These
transactions involve one storage operation, soP’s through-
put is similar to issue and retire in the first application.
We compare with Solidus [27], which achieves similar
guarantees as our app with specialized machinery. Solidus
with 32K accounts (i.e., key-value tuples) achieves 20 stor-
age ops/sec and up to 10 tx/sec, whereas Spice’s payment
network on 512 CPU cores supports >1,000 tx/sec (100×
higher throughput). Note that unlike our implementation,
Solidus hides the sender’s identity in a transaction from a
verifier; achieving this in our context is future work.

Dark pools. Our third app supports two transactions,
submit and withdraw. We depict only submit because
withdraw has similar costs. P achieves 488 tx/second.
This is lower than our other apps because the dark pool ap-
plication is more complex: the state is a linked list layered
on top of a key-value store (where each operation on the
linked list is multiple storage operations), and transactions
manipulate the linked list to process orders (§6.1).

8 Related work
Proving correct executions via efficient arguments.
The problem of proving the correct execution of a com-
putation is decades old [7]; many systems have reduced
the expense of this theory (see [81] for a survey of this
progress). While early works [33, 49, 64, 66, 68, 70, 72,
73, 75] support only stateless computations, recent sys-
tems [8, 14, 18, 25, 30, 34, 38, 78, 83, 84] support state.
Section 2.1 discusses the approach in Pantry [25]; below,
we discuss other approaches and how they relate to Spice.

Ben-Sasson et al. [14, 18], Buffet [78], and vRAM [84]
propose a RAM abstraction based on permutation net-
works [13, 19, 80]. This technique can be more efficient
than using Merkle trees. For example, Buffet [78] shows
that each RAM operation (load, store, etc.) can be rep-
resented with several hundred constraints (compared to
tens of thousands under Pantry’s RAM). However, the per-
mutation networks technique cannot be used to maintain
state that persists across different request executions—a
requirement of VSMs (§2).
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Geppetto [34] can transfer values associated with pro-
gram variables (int, char, etc.) from one computation
to another. To support this, Geppetto introduces custom
machinery that requires a single constraint per value trans-
ferred, so this is more efficient than Pantry for certain
scenarios (e.g., sending output of a mapper as input to a
reducer in MapReduce). However, it is not a good substi-
tute to Merkle trees for key-value stores (or RAM): each
storage operation requires scanning all the state. Fiore et
al. [38] hybridize Geppetto-style and Pantry-style stor-
age primitives, but it incurs the same costs as Pantry to
support a key-value store.

ADSNARK [8] supports computations over state rep-
resented with an authenticated digest, but this approach
does not support transferring state to other computations.
vSQL [83] builds a storage primitive by representing state
(e.g., a database table) as a polynomial. However, this
storage primitive has the same issue as Geppetto: reading
or updating a single value of the state (e.g., a row) inside
a Ψreq requires scanning the entire state.

Compared to prior systems, Spice proposes a cheaper
and more expressive storage primitive (under a batch veri-
fication setting): Spice supports a transactional key-value
store (§3, §4), which makes it possible to build useful
services with plausible performance (§6–§7). Two excep-
tions: (1) for random access over state within a single
computation, permutation networks are more efficient (in-
deed, Spice relies on Buffet for RAM within threads); (2)
for intermediate state in a MapReduce job, Geppetto-style
state transfer can be more efficient.

Concurrent systems with verifiability. Spice’s use of
offline memory checking [23, 31] is inspired by Con-
certo [5], but there are three differences. First, Concerto
is limited to a key-value store whereas Spice supports
(arbitrary) concurrent services expressed in a large sub-
set of C. Second, Spice supports transactional semantics
whereas Concerto is limited to single-object key-value
operations. Finally, Concerto requires trusted hardware
(e.g., Intel SGX) to run VK. It is possible to avoid trusted
hardware by letting clients act as verifiers, but the result-
ing system would expose the content of the key-value
store (along with requests and responses); it would not
guarantee zero-knowledge or succinctness (§2).

Orochi [71] enables verifiability for concurrent appli-
cations (and the underlying data store) running on an
untrusted server. Orochi’s key technique is a clever reex-
ecution of all requests at the verifier—one that accom-
modates concurrent execution of requests at the server.
Compared to Spice, Orochi imposes minimal overheads
to the server. However, Orochi’s verifier must keep a full
copy of the server’s state to verify requests along with
contents of all requests and the corresponding responses.
Consequently, Orochi does not satisfy the zero-knowledge
or succinctness properties of VSMs (§2).

9 Discussion and summary
Equivocation and omission. Spice’s P proves its cor-
rect operation by producing a trace that is checked by
verifiers. However, P can equivocate: it can expose dif-
ferent traces to different verifiers. If the set of verifiers
form a permissioned group (i.e., admitting new verifiers
requires approval from a quorum of existing verifiers),
then verifiers can agree on a single trace by employing
traditional distributed consensus [26, 53], thus prevent-
ing equivocation. If the set of verifiers is unbounded, P
can embed metadata about its trace in a permissionless
blockchain [74]. Besides equivocation,P can omit clients’
requests. To address this, clients must check if their re-
quests are included in the trace agreed upon by verifiers.

Fault-tolerance. We can make Spice’s services fault-
tolerant via standard techniques. This does not require
implementing a replication protocol as a VSM. This is
because Spice’s services maintains their internal state in
a database (Spice uses leveldb), and interacts with it via
RPCs (§2.1). Thus, the service could instead keep the
state in a fault-tolerant storage system (e.g., DynamoDB).

Trusted setup. Spice can use many different argument
protocols, but our implementation employs an argu-
ment [44] that requires a trusted setup: a trusted party
must create cryptographic material that depends on Ψ
but not on inputs or outputs to Ψ. In our context (§6),
such a trusted setup can be executed by a verifier (if
there is a single verifier), or in a distributed protocol [15]
(when there is more than one verifier). Recent argu-
ments [3, 10, 11, 16, 24, 79] do not require such a trusted
setup. We leave it to future work to integrate them with
Spice and explore trade-offs.

Summary. Spice is a substantial improvement over prior
systems that implement VSMs: it improves transaction-
processing throughput by over four orders of magnitude.
And, although Spice’s absolute costs (e.g., prover’s CPU-
time) are large, it enables a new set of realistic services by
opening up a concurrent model of computation and achiev-
ing throughputs of over a thousand transactions/second.
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Abstract

The FuzzyLog is a partially ordered shared log abstrac-
tion. Distributed applications can concurrently append
to the partial order and play it back. FuzzyLog appli-
cations obtain the benefits of an underlying shared log
– extracting strong consistency, durability, and failure
atomicity in simple ways – without suffering from its
drawbacks. By exposing a partial order, the FuzzyLog
enables three key capabilities for applications: linear
scaling for throughput and capacity (without sacrificing
atomicity), weaker consistency guarantees, and tolerance
to network partitions. We present Dapple, a distributed
implementation of the FuzzyLog abstraction that stores
the partial order compactly and supports efficient ap-
pends / playback via a new ordering protocol. We im-
plement several data structures and applications over the
FuzzyLog, including several map variants as well as a
ZooKeeper implementation. Our evaluation shows that
these applications are compact, fast, and flexible: they
retain the simplicity (100s of lines of code) and strong
semantics (durability and failure atomicity) of a shared
log design while exploiting the partial order of the Fuzzy-
Log for linear scalability, flexible consistency guarantees
(e.g., causal+ consistency), and network partition toler-
ance. On a 6-node Dapple deployment, our FuzzyLog-
based ZooKeeper supports 3M/sec single-key writes, and
150K/sec atomic cross-shard renames.

1 Introduction

Large-scale data center systems rely on control plane ser-
vices such as filesystem namenodes, SDN controllers,
coordination services, and schedulers. Such services
are often initially built as single-server systems that
store state in local in-memory data structures. Proper-
ties such as durability, high availability, and scalability
are retrofitted by distributing service state across ma-
chines. Distributing state for such services can be dif-
ficult; their requirement for low latency and high respon-
siveness precludes the use of external storage services

with fixed APIs such as key-value stores, while custom
solutions can require melding application code with a
medley of distributed protocols such as Paxos [29] and
Two-Phase Commit (2PC) [21], which are individually
complex, slow/inefficient when layered, and difficult to
merge [40, 60].

A recently proposed class of designs centers on the
shared log abstraction, funneling all updates through a
globally shared log to enable fault-tolerant databases [9–
11, 19, 51], metadata and coordination services [8, 12],
key-value and object stores [3, 41, 57], and filesystem
namespaces [50, 56]. Services built over a shared log
are simple, compact layers that map a high-level API to
append/read operations on the shared log, which acts as
the source of strong consistency, durability, failure atom-
icity, and transactional isolation. For example, a shared
log version of ZooKeeper uses 1K lines of code, an order
of magnitude lower than the original system [8].

Unfortunately, the simplicity of a shared log requires
imposing a system-wide total order that is expensive,
often impossible, and typically unnecessary. Previous
work showed that a centralized, off-path sequencer can
make such a total order feasible at intermediate scale
(e.g., a small cluster of tens of machines) [7, 8]. How-
ever, at larger scale – in the dimensions of system size,
throughput, and network bandwidth/latency – imposing a
total order becomes expensive: ordering all updates via a
sequencer limits throughput and slows down operations
if machines are scattered across the network. In addi-
tion, for deployments that span geographical regions, a
total order may be impossible: a network partition can
cut off clients from the sequencer or a required quorum
of the servers implementing the log. On the flip side, a
total order is often unnecessary: updates to disjoint data
(e.g., different keys in a map) do not need to be ordered,
while updates that touch the same data may commute
because the application requires weak consistency guar-
antees (e.g., causal consistency [5]). In this paper, we
explore the following question: can we provide the sim-
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a geographical region.

plicity of a shared log without imposing a total order?
We propose the FuzzyLog abstraction: a durable, iter-

able, and extendable order over updates in a distributed
system. Crucially, a FuzzyLog provides a partial order
as opposed to the total order of a conventional shared
log. The FuzzyLog is a directed acyclic graph (DAG) of
nodes representing updates to a sharded, geo-replicated
system (see Figure 1). The FuzzyLog materializes a
happens-after relation between updates: an edge from A
to B means that A must execute after B.

The FuzzyLog captures two sources of partial ordering
in distributed systems: data sharding and geo-replication.
Internally, nodes in the FuzzyLog are organized into
colors, where each color contains updates to a single
application-level data shard. A color is a set of inde-
pendent, totally ordered chains, where each chain con-
tains updates originating in a single geographical region.
Chains within a color are connected by cross-links that
represent update causality. The entire DAG – consisting
of multiple colors (one per shard) and chains within each
color (one per region) – is fully replicated at every re-
gion and lazily synchronized, so that each region has the
latest copy of its own chain, but some stale prefix of the
chains of other regions. Figure 1 shows a FuzzyLog de-
ployment with two data shards (i.e,. two colors) and two
regions (i.e., two chains per color).

The FuzzyLog API is simple: a client can append a
new node by providing a payload describing an update
and the color of the shard it modifies. The new node is
added to the tail of the local chain for that color, with
outgoing cross-links to the last node seen by the client in
each remote chain for the color. The client can synchro-
nize with a single color, playing forward new nodes in the
local region’s copy of that color in a reverse topological
sort order of the DAG. A node can be appended atomi-
cally to multiple colors, representing a transactional up-
date across data shards.

Applications built over the FuzzyLog API are nearly
as simple as conventional shared log systems. As shown
in Figure 1, FuzzyLog clients are application servers that
maintain in-memory copies or views of shared objects.
To perform an operation on an object, the application
appends an entry to the FuzzyLog describing the muta-
tion; it then plays forward the FuzzyLog, retrieving new
entries from other clients and applying them to its lo-
cal view, until it encounters and executes the appended
entry. The local views on the application servers consti-
tute soft state that can be reconstructed by replaying the
FuzzyLog. A FuzzyLog application that uses only a sin-
gle color for its updates and runs within a single region is
identical to its shared log counterpart; the FuzzyLog de-
generates to a totally ordered shared log, and the simple
protocol described above provides linearizability [23],
durability, and failure atomicity for application state.

By simply marking each update with colors corre-
sponding to data shards, FuzzyLog applications achieve
scalability and availability. They can use a color per
shard to scale linearly within a data center; transac-
tionally update multiple shards via multi-color appends;
obtain causal consistency [5] within a shard by using
a color across regions; and toggle between strong and
weak consistency when the network partitions and heals
by switching between regions.

Implementing the FuzzyLog abstraction in a scalable
and efficient manner requires a markedly different design
from existing shared log systems. We describe Dapple, a
system that realizes the FuzzyLog API over a collection
of in-memory storage servers. Dapple scales throughput
linearly by storing each color on a different replica set
of servers, so that appends to a single color execute in a
single phase, while appends that span colors execute in
two phases (in the absence of failures) that only involve
the respective replica sets. Dapple achieves this via a
new fault-tolerant ordering algorithm that provides linear
scaling for single-color appends, serializable isolation
for multi-color appends, and failure atomicity. Across
regions, a lazy synchronization protocol propagates each
color’s local chain to remote regions.

We implemented a number of applications over the
FuzzyLog abstraction and evaluated them on Dapple.
AtomicMap (201 lines of C++) is a linearizable, durable
map that supports atomic cross-shard multi-puts, scal-
ing to over 5.5M puts/sec and nearly 1M 2-key multi-
puts/sec on a 16-server Dapple deployment. CRDTMap
(284 LOC) provides causal+ consistency by layering a
CRDT over the FuzzyLog. CAPMap (424 LOC) of-
fers strong consistency in the absence of network par-
titions, but degenerates to causal+ consistency during
partitions. We implemented a ZooKeeper clone over
the FuzzyLog in 1881 LOC that supports linear scaling
across shards and supports atomic cross-shard renames.
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We also implemented a map that provides Red-Blue con-
sistency [32], as well as a transactional CRDT [6].

Existing implementations of these applications are
monolithic and complex; they often re-implement com-
mon mechanisms for storing, propagating, and order-
ing updates (such as protocols for atomic commit, con-
sensus, and causality tracking). The FuzzyLog imple-
ments this common machinery efficiently under an ex-
plicit abstraction, hiding the details of protocol imple-
mentation while giving applications fine-grained control
over sharding and geo-replication. As a result, appli-
cations can express different ordering requirements via
simple invocations on the FuzzyLog API without imple-
menting low-level distributed protocols.
Contributions: We propose the novel abstraction of a
FuzzyLog (§3): a durable, iterable DAG of colored nodes
representing the partial order of updates in a distributed
system. We argue that this abstraction is useful (§4), de-
scribing and evaluating application designs that obtain
the simplicity of the shared log approach while scaling
linearly with atomicity, obtaining weaker consistency,
and tolerating network partitions. We show that the ab-
straction is practically feasible (§5), describing and eval-
uating a scalable, fault-tolerant implementation called
Dapple.

2 Motivation

The shared log approach makes distributed services sim-
ple to build by deriving properties such as durability, con-
sistency, failure atomicity, and concurrency control via
simple append/read operations on a shared log abstrac-
tion. We describe the pros and cons of this approach.

2.1 The simplicity of a shared log

In the shared log approach, application state resides in
the form of in-memory objects backed by a durable,
fault-tolerant shared log. In effect, an object exists in two
forms: an ordered sequence of updates stored durably in
the shared log; and any number of views, which are full
or partial copies of the data structure in its conventional
form – such as a tree or a map – stored in DRAM on
clients (i.e., application servers). Importantly, views con-
stitute soft state and are instantiated, reconstructed, and
updated on clients as required by playing the shared log
forward. A client modifies an object by appending a new
update to the log; it accesses the object by first synchro-
nizing its local view with the log.

As described in prior work [7, 8], this design simpli-
fies the construction of distributed systems by extracting
key properties via simple appends/reads on the shared
log, obviating the need for complex distributed protocols.
Specifically, the shared log is the source of consistency:
clients implement state machine replication [46] by fun-
neling writes through the shared log and synchronizing

their views with it on reads. The shared log also provides
durability: clients can recover views after crashes simply
by replaying the shared log. It acts as a source of failure
atomicity and isolation for transactions: the shared log is
literally the serializable order of transactions.

2.2 The drawbacks of a total order

The shared log approach achieves a total order over all
updates in a distributed system. We argue that such a to-
tal order can be expensive or impossible to achieve when
services scale beyond the confines of a small cluster.

Total ordering is expensive. The traditional way to
impose a total order is via a leader that receives up-
dates from clients and sequences them; however, this
limits the throughput of the system at the I/O band-
width of a single machine [16]. CORFU [7] uses an
off-path sequencer – instead of a leader – that issues
tokens or contiguous positions in an address space to
clients. To append data, a client first obtains a token
from the sequencer – effectively reserving an address
in the address space – and then writes the payload di-
rectly to a stripe of storage servers responsible for stor-
ing that address. This allows clients to totally order
updates to a cluster of storage servers without pushing
all I/O through a single machine; instead, the aggregate
throughput of the system is limited by the speed at which
the sequencer can update a counter and hand out tokens
(roughly 600K ops/sec in CORFU [8]). To leverage the
total order without requiring all clients to play back ev-
ery entry, runtimes built over CORFU such as Tango [8]
and vCorfu [57] support selective playback via streams
and materialized streams, respectively. This requires se-
quencer state to be more complex than a single counter
(e.g., per-stream backpointers [8] or additional stream-
specific counters [57]).

While an off-path sequencer works well for small clus-
ters (e.g., 20 servers in two adjacent racks [8]), it does
not scale along a number of key dimensions. One such
dimension is network diameter: since the sequencer lives
in a fixed point in the network, far-away clients must in-
cur expensive round-trips on each append. A second di-
mension is network bandwidth; sequencers are not I/O-
bound or easily parallelizable, and cannot keep pace with
recent order-of-magnitude increases in I/O bandwidth.
On 1 Gbps networks, a sequencer that runs at 600K ops/s
can support a 20-server CORFU deployment (1 Gbps per
server or 30K 4KB appends/sec); however, on a 40 Gbps
network, supporting 20 servers will require the sequencer
to run at 24M ops/s. A third dimension is payload gran-
ularity: shared log applications do not store large pay-
loads (in the limit, these could be 64-bit pointers to big-
ger items stored in some external blob store). With 100-
byte payloads, the same sequencer will now have to run
at nearly 1 billion ops/s. A final dimension is system size:
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// constructs a new handle for playing a color
FL ptr new instance(colorID color , snapID snap=NULL);
// appends a node to a set of colors
int append(FL ptr handle, char ⇤buf, size t bufsize ,

colorset ⇤nodecolors) ;
// synchronizes with the log
snapId sync(FL ptr handle , void (⇤ callback ) (char ⇤buf,

size t bufsize ) ) ;
// trims the color
int trim(FL ptr handle , snapID snap) ;

Figure 2: The FuzzyLog API.

if we want to support 40 servers, we now need 2 billion
ops/s from the sequencer.

Published numbers for sequencers in fully functional
systems include: roughly 200K ops/sec (CORFU [7]),
250K ops/sec (NOPaxos [33]), and 600K ops/sec
(Tango [8]). Stand-alone sequencers (i.e., simple coun-
ters without per-stream state) are faster; e.g., an RDMA-
based counter runs at 122M ops/sec (80X faster than the
next highest in the literature) [25]. Even at this speed,
the largest cluster supported at 100 Gbps and a 512-byte
payload would have just four servers.

Some approaches bypass the sequencer throughput
cap at the cost of increasing append latency, either by
aggressive batching [51] or writing out-of-order in the
shared log address space and waiting for preceding holes
to be filled [41]. The added append latency can be unten-
able for control plane services.

Total ordering is impossible. Regardless of how the
total order is generated, it is fundamentally vulnerable
to network partitions. Any protocol that provides a to-
tal order consistent with a linearizable order (i.e, if an
update B starts in real time after another update A com-
pletes, then B occurs after A in the total order) is subject
to unavailability during network partitions [14].

We find ourselves at a seeming impasse: a shared log
enables simplicity and strong semantics for distributed
systems, but imposes a total order that is expensive and
sometimes impossible. We break this impasse with a par-
tially ordered shared log abstraction.

3 The FuzzyLog Abstraction

The FuzzyLog addresses the ordering limitations in Sec-
tion 2 via an expressive partial ordering API. The Fuzzy-
Log’s API captures two general patterns via which ap-
plications partially order operations. First, applications
partition their state across logical data shards, such that
updates against different shards are processed concur-
rently. Second, when deployed across geographical re-
gions, applications weaken consistency to avoid syn-
chronous cross-region coordination on the critical path
of requests; as a result, updates across regions – even to
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the same logical data partition – can occur concurrently.
A FuzzyLog is a type of directed acyclic graph (DAG)

that can be constructed and traversed concurrently by
multiple clients. For clarity, we use the term ‘node’ ex-
clusively to refer to nodes in the FuzzyLog DAG. Each
node in the DAG is tagged with one or more colors.
Colors divide an application’s state into logical shards;
nodes tagged with a particular color correspond to up-
dates against the corresponding logical shard.

Each color is a set of totally ordered chains, one
per region, with cross-edges between them that indicate
causality. Every region has a full but potentially stale
copy of each color; the region’s copy has the latest up-
dates of its own chain for the color, but stale prefixes of
the other per-region chains for that color. Clients interact
only with their own region’s local copy of the DAG; they
can modify this copy by appending to their own region’s
chain for a color.

Figure 2 shows the FuzzyLog API. A client creates an
instance of the FuzzyLog with the new instance call,
supplying a single color to play forward. It can play
nodes of this color with the sync call. It can append
a node to a set of colors. We first describe the operation
of these calls in a FuzzyLog deployment with a single
color (i.e., an application with a single data shard).

The sync call is used by the client to synchronize its
state with the FuzzyLog. A sync takes a snapshot of the
set of nodes currently present at the local region’s copy
of a color, and plays all new nodes since the last sync
invocation. Once all new nodes have been provided to
the application via a passed-in callback, the sync returns
with an opaque ID describing the snapshot. The nodes
are seen in a reverse topological sort order of the DAG.
Nodes in each chain are seen in the reverse order of edges
in the chain. Nodes in different chains are seen in an or-
der that respects cross-edges. Nodes in different chains
that are not ordered by cross-edges can be seen in any
order. Note that each node effectively describes a list of
nodes – via its position in a totally ordered chain, and via
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explicit pointers for cross-edges – that must be seen be-
fore it. Figure 3 shows the client synchronizing with the
region in panel 1; trailing behind in panels 2 and 3; and
synchronizing once again in panel 4. Snapshot IDs re-
turned by sync calls at different clients can be compared
to check if one subsumes the other.

When a client appends a node to a color with append,
an entry is inserted into the local region’s chain for that
color. The entry becomes the new tail of the chain, and it
has an edge in the DAG pointing to the previous tail; we
define the tail as the only node in a non-empty chain with
no incoming edge. The local region chain imposes a total
order over all updates generated at that region. Further,
outgoing cross-edges are added from the new node to the
last node played by the client from every other per-region
chain for the color. In effect, the newly appended node is
ordered after every node of that color seen by the client.
For example, in Figure 3 (panel 3), a client appends a
new node I to the region’s local chain (after node H),
with a cross-edge to E, which is the latest node in the
remote chain seen by the client.

To garbage collect the FuzzyLog, clients can call trim
on a snapshot ID to indicate that the nodes in it are
no longer required (e.g., because the client stored the
corresponding materialized view in some durable exter-
nal store). A snapshot ID can also be provided to the
new instance call, in which case playback skips nodes
within the snapshot; this allows a new client to join the
system without playing the FuzzyLog from the begin-
ning.

While the sync and trim calls operate over a single
color, the FuzzyLog supports appending to multiple col-
ors. An append to a set of colors atomically appends the
entry to the local chains for each color. The new node is
reflected by sync calls on any one of the colors involved.
If a node is in multiple colors, trimming it in one color
does not remove it from the other colors it belongs to.

Semantics: Operations to a single color across regions
are causally consistent. In other words, two append op-
erations to the same color issued by clients in different
regions are only ordered if the node introduced by one
of them has already been seen by the client issuing the
other one. In this case, an edge exists in the DAG from
the second node to the first one. The internal structure
of the DAG ensures that the copies at each region con-
verge even though concurrent updates can be applied in
different orders to them: since the clients at each region
modify a disjoint part of the DAG (i.e., they append to
their own per-region chain), there are never any conflicts
when the copies are synchronized.

Operations within a single region are serializable. All
append and sync operations issued by clients within a
region execute in a manner consistent with some serial
execution. This serialization order is linearizable if the

operations are to a single color within the region (i.e., on
a single chain); it does not necessarily respect real-time
ordering when append operations span multiple colors.

Discussion: Designing the FuzzyLog API required
balancing the power of the API against its simplicity and
the feasibility of implementing it. In earlier candidates
for the API, we directly exposed chains to programmers
and allowed append/sync on any subset of them with
a choice of consistency guarantees. This API rendered
a scalable implementation much more difficult; for ex-
ample, guaranteeing a topological sort order for nodes
in a subset of chains required us to potentially traverse
every chain in the system. In addition, the consistency
choices required programmers to reason about the per-
formance and availability of different combinations (e.g.,
strongly consistent multi-appends on chains in different
regions can block due to network partitions). We were
able to drastically simplify the API once we realized the
equivalence between colors and shards: for example, it
makes sense for clients to play a single color since doing
otherwise negates the scaling benefit of sharding; and to
obtain causal consistency within a color since it is geo-
replicated across regions that can partition.

4 FuzzyLog Applications

This section describes how applications can use the
FuzzyLog API with a case study of an in-memory
key-value storage service. In this section, the term
‘server’ refers exclusively to application servers storing
in-memory copies of the key-value map, which in turn
are FuzzyLog clients. We start with a simple design
called LogMap that runs over a single color within a sin-
gle region (i.e., it effectively runs over a single totally
ordered shared log). Each LogMap server has a local in-
memory copy of the map and supports put/get/delete
operations on keys. The server continuously executes a
sync on the log in the background and applies updates
to keep its local view up-to-date. A get operation at the
server simply waits for a sync to complete that started
after it was issued, before accessing the local view and
returning; this ensures that any updates that were ap-
pended to the FuzzyLog before the get was issued are
reflected in the local view, providing linearizability. A
put/delete operation appends a node to the FuzzyLog
describing the update; it then waits for a sync to apply
the update to the local view, at which point it returns.

This basic LogMap design – implemented in just
193 lines of code – enables durability, high availabil-
ity, strong consistency, concurrency control and failure
atomicity. It is identical to previously described de-
signs [7] over a conventional shared log. However, its
reliance on a single total order comes at the cost of scal-
ability, performance, and availability. The remainder of
this section describes how LogMap can be modified to
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use the FuzzyLog to circumvent each of these limita-
tions.

4.1 Scaling with atomicity within a region

We first describe applications that run within a single
region and need to scale linearly. In ShardedMap (193
LOC), each server stores a shard of the map; each shard
corresponds to a FuzzyLog color. Updates to a particular
shard are appended as nodes of the corresponding color
to the FuzzyLog; each server syncs its local state with
the color of its shard. This simple change to LogMap –
requiring just the color parameter to be set appropriately
on calls to the FuzzyLog – provides linear scalability for
linearizable put/get operations.

The FuzzyLog supports atomicity across shards. If the
atomic operation required is a simple blind multi-put
that doesn’t return a value, all we require is a simple
change to append an update to a set of colors instead
of a single one, corresponding to the shards it modifies.
AtomicMap (201 LOC, Figure 4 (Left)) realizes this de-
sign. One subtle point is that since FuzzyLog multi-color
appends are serializable, AtomicMap is also serializable,
not linearizable or strictly serializable.

To implement read/write transactions with stronger
isolation levels, we use a protocol identical to the one
used by Tango [8]. In TXMap (417 LOC), each server
executes read-write transactions speculatively [8, 10],
tracking read-sets and buffering write-sets. To commit,
the server appends a speculative intention node into the
FuzzyLog to the set of colors corresponding to the shards
being read and written. When a server encounters the in-
tention node in the color it is playing, it appends a sec-
ond node with a yes/no decision to the set of colors. To
generate this decision, the server examines the sub-part
of the transaction touching its own shard and indepen-
dently (but deterministically) validates it (e.g., checking
for read-write conflicts when providing strict serializabil-
ity). A server only applies the transaction to its local state
if it encounters both the original intention and a decision
marked yes for each color involved.

Interestingly, this protocol provides strict serializabil-
ity even though the FuzzyLog itself is only serializable.
Intuitively, within a single color, if a client waits after ap-

pending an intention for a transaction T until it plays the
node, it is guaranteed to have seen all transactions that
could appear before T in the serial order. As a result, fu-
ture transactions must appear later in the serial order, en-
suring strict serializability. In a multi-color transaction,
we need to ensure that all transactions in all the colors
involved that could appear before T have been seen. A
decision node conveys two things: that all such transac-
tions in a color have been seen; and whether they con-
flict with the transaction. As in Tango [8], our protocol
requires at least one application server to be available for
each shard in order to generate decision records.

4.2 Weaker consistency across regions

Applications can often tolerate weaker consistency guar-
antees. One example is causal consistency [5], which
roughly requires the following: if a server performs an
update U1 after having seen an update U0, then any other
server in the system must see U0 before U1. If U1 and
U2 were performed independently by servers that did not
see each other’s update, they can be seen in any order.

CRDTMap implements a causally consistent map. In
Figure 4 (Middle), the map is replicated across two re-
gions, one in NYC and another in SF. CRDTMap simply
uses a single color for all updates to a map; in each re-
gion, put operations are appended to the local chain for
the color and propagated asynchronously to the other re-
gion. Since the partial order within a color is exactly the
causal order of updates, each server playing the color ob-
serves updates in a causally consistent order.

To achieve convergence when servers see causally in-
dependent updates in different orders, we employ a de-
sign for CRDTMap based on the Observed-Remove set
CRDT [47], which exploits commutativity to execute
concurrent updates in conflicting orders without requir-
ing rollback logic. The CRDT design achieves this by
predicating deletions performed by a server on put oper-
ations that the server has already seen; accordingly, each
delete node in the DAG lists the put operations that it
subsumes.
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4.3 Tolerating network partitions

While CRDTMap can provide availability during net-
work partitions, it does so by sacrificing consistency
even when there is no partition in the system. CAPMap
(named after the CAP conjecture [14]) provides strong
consistency in the absence of network partitions and
causal consistency during them (see Figure 4 (Right)).

As with our other map designs, CAPMap appends en-
tries on put operations and then syncs until it sees the
appended node. Unlike them, CAPMap requires servers
to communicate with each other, albeit in a simple way:
servers route FuzzyLog appends through proxies in other
regions. To perform a put in the absence of network par-
titions, the server routes its append through a proxy in a
primary region; it then syncs with its own region’s copy
of the FuzzyLog until it sees the new node, before com-
pleting the put. As a result, a total order is imposed on
all updates (via the primary region’s chain for the color),
and the map is linearizable.

When a secondary region is partitioned away from the
primary region, servers switch over to appending to the
FuzzyLog in the local region, effectively ‘forking’ the to-
tal order. CAPMap sets a flag on these updates to mark
them as secondary nodes (i.e., appends occurring at the
secondary). Updates that were in-flight during the net-
work partition event may be re-appended to the local
region, appearing in the DAG as identical nodes in the
primary and secondary forks. When the network parti-
tion heals, servers at the secondary stop appending lo-
cally and resume routing appends through the proxy at
the primary. Every routed append includes the snapshot
ID of the last sync call at the secondary client; the proxy
blocks the append until it sees a subsuming snapshot ID
on a sync, ensuring that all the nodes seen by the sec-
ondary client have also been seen by the proxy and are
available at the primary region.

The FuzzyLog explicitly captures the effects of a net-
work partition, including concurrent activity in the re-
gions and duplicate updates. As a result, CAPMap can
relax and reimpose strong consistency via a simple play-
back policy over the FuzzyLog. Any server playing
the DAG after the partition heals enforces a determin-
istic total order over nodes in the forked section: when
it encounters any secondary nodes, it buffers them un-
til the next primary node (i.e., the joining node). All
buffered nodes are then applied immediately before the
joining node (ignoring duplicate updates), ensuring that
all servers observe the same total order and converge to
the same state.

Secondary servers that experience a network parti-
tion continue operating over the local fork, applying
changes to a speculative copy of state. When the partition
heals, each secondary server throws away its speculative

changes after the forking node and replays the nodes in
the forked region of the DAG, applying updates in the
primary fork before re-applying the secondary fork. Our
CAPMap implementation realizes this speculative copy
by cloning state on a fork, and throwing away the clone
when the partition heals; but more efficient copy-on-
write mechanisms could be used as well.

As a result, we obtain causal+ consistency [35] dur-
ing network partitions and linearizability otherwise. Im-
portantly, CAPMap achieves these properties via simple
append and playback policies over the structure and con-
tents of the FuzzyLog.

4.4 Other designs

TXCRDTMap: Two properties discussed so far –
transactions within a single region and weak consis-
tency across regions – can be combined to provide
geo-distributed transactions. By changing 80 LOC in
CRDTMap, we can obtain a transactional CRDT that
provides cross-shard failure atomicity [6] (or equiva-
lently, an isolation guarantee similar to Parallel Snapshot
Isolation [48]).

RedBlueMap: The FuzzyLog can support RedBlue
consistency [32], in which blue operations commute with
each other and with all red operations, while red opera-
tions have to be totally ordered with respect to each other,
but not blue operations. RedBlue consistency can be im-
plemented with a single color. One of the regions is des-
ignated a primary, and ‘Red’ operations are routed to the
primary via a proxy (and thus totally ordered, similar to
CAPMap). ‘Blue’ operations are performed at the local
region. We implemented RedBlueMap in 330 LOC.

COPSMap: While CRDTMap can be scaled by
sharding system state across different per-color in-
stances, an end-client interacting with such a store will
not get causal consistency across shards [35, 36]. Con-
cretely, in a system with two regions and two colors, an
end-client in one region may issue a put on a red server,
and subsequently issue a put on a blue server. Once the
blue put propagates to the remote region, a different end-
client may issue a get on a blue server, and subsequently
a get on a red server. If the end-client sees the blue put,
it must also see the red put, since they are causally re-
lated. To provide such a guarantee, the map server can
return a snapshot ID with each operation; the end-client
can maintain a set of the latest returned snapshot IDs for
each color and provide it to the map server on each oper-
ation, which in turn can include it in the appended node.
In such a scheme, when the blue server in the remote re-
gion sees the blue put, it contacts a red server to make
sure the causally preceding red node has been seen by it
and exists in the region. Such a design requires servers
playing different colors to gossip the last snapshot IDs
they have seen for their respective colors. We leave the
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COPSMap implementation for future work.

4.5 Garbage collection

As with shared log systems, GC is enormously simplified
by the nature of the workload: the log is used to store a
history of commands rather than first-class data, and can
be trimmed in increasing prefixes. At any time, the appli-
cation can store its current in-memory state (and the as-
sociated snapshot ID) durably on some external storage
system, or alternatively ensure that enough application
servers have a copy of it. Once it does so, it can issue the
trim command on the snapshot ID. Clients that are lag-
ging behind may encounter an already trimmed error,
in which case they must retrieve the latest durable state
from the external store, and then continue playing the log
from that point.

5 Dapple Design / Implementation

Dapple is a distributed implementation of the FuzzyLog
abstraction, designed with a particular set of require-
ments in mind. The first is scalability: reads and appends
must scale linearly with the number of colors used by the
application and the number of servers deployed by Dap-
ple, assuming that load is balanced evenly across colors.
The second requirement is space efficiency: the Fuzzy-
Log partial order has to be stored compactly, with edges
represented with low overhead. A third requirement is
performance: the append and sync operations must in-
cur low latency and I/O overhead.

Dapple implements the FuzzyLog abstraction over a
collection of storage servers called chainservers, each
of which stores multiple in-memory log-structured ad-
dress spaces. Dapple partitions the state of the FuzzyLog
across these chainservers: each color is stored on a sin-
gle partition. Each partition is replicated via chain repli-
cation [54]. Our current implementation assumes for
durability that storage servers are outfitted with battery-
backed DRAM [17, 24]. We first describe operations
against a single color on an unreplicated chainserver.

5.1 Single-color operation

Recall that each FuzzyLog color consists of a set of to-
tally ordered chains, one per region; each region has the
latest copy of its own local chain, but a potentially stale
copy of the other regions’ chains. Dapple stores each
chain on a single log, such that the order of the entries
in the log matches the chain order (i.e., if a chain con-
tains an edge from B to A, B appears immediately after
A in the corresponding log). In a deployment with R re-
gions, each region stores R logs, one per chain. Clients
in the region actively write to one of these (the local
log), while the remaining are asynchronously replicated
from other regions (we call these shadow logs). Each
server exposes a low-level API consisting of three prim-

itives: log-append, which appends an entry to a log;
log-snapshot, which accepts a set of logs and returns
their current tail positions; and log-read, which returns
the log entry at a given position.

Clients implement the sync on a color via a
log-snapshot on the logs for that color, followed
by a sequence of log-reads. The return value of
log-snapshot acts as a vector timestamp for the color,
summarizing the set of nodes present for that color in the
local region; this is exactly the snapshot ID returned by
the sync call. The client library fetches new nodes that
have appeared since its last sync via log-read calls.
When the application calls append on a color, the client
library calls log-append on the local log for that color.
It includes the vector timestamp of nodes seen thus far in
the new entry; as a result, each appended entry includes
pointers to the set of nodes it causally depends on (these
are the cross-edges in the FuzzyLog DAG). On a sync,
the client library checks each entry it reads for dependen-
cies and recursively fetches them before delivering them
to the application. In this manner, the client ensures that
playback of a single color happens in DAG order.

Each chainserver periodically synchronizes with its
counterparts in remote regions, updating the shadow logs
with new entries that originated in those regions. To fetch
updates, the chainserver itself acts as a client to the re-
mote chainserver and uses a sync call; this ensures that
cross-chain dependencies are respected when it receives
remote nodes. Copied-over entries are reflected in sub-
sequent sync calls by clients and played; new entries ap-
pended by the clients then have cross-edges to them.

Dapple replicates each partition via chain replica-
tion. Each log-append operation is passed down
the chain and acknowledged by the tail replica, while
log-snapshot is sent directly to the tail. Once the client
obtains a snapshot, subsequent log-read operations can
be satisfied by any replica in the chain. The choice of
replication protocol is orthogonal to the system design:
we could equally use Multi-Paxos.

5.2 Multi-color operation

The FuzzyLog API supports appending a node to multi-
ple colors. In Dapple, this requires atomically appending
a node to multiple logs: one log per color corresponding
to its local region chain. To do so, Dapple uses a classical
total ordering protocol called Skeen’s algorithm (which
is unpublished but described verbatim in other papers,
e.g., Section 4 in Guerraoui et al. [22]) to consistently
order appends.

Skeen’s original algorithm produces a serializable or-
der for operations by multiple clients across different
subsets of servers. Unfortunately, it is not tolerant to the
failure of its participants. In our setting, each ‘server’
is a replicated partition of chainservers and can be as-
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Figure 5: Distributed ordering for multi-appends:
servers return timestamps X.Y in phase 1 where X is a
local logical clock and Y is a server-specific nonce.

sumed to not fail. However, the clients in our system are
unreplicated application servers that can crash. We as-
sume that such client failures are infrequent; this pushes
us towards a protocol that is fast in the absence of client
failures and slower but safe when such failures do occur.
Accordingly, we add three fault-tolerance mechanisms
– leases, fencing, and write-ahead logging – to produce
a variant of Skeen’s that completes in two phases in a
failure-free ‘fast’ path, but can safely recover if the ori-
gin client crashes.

Each chainserver maintains a local logical Lamport
clock [28]. All client operations are predicated on rela-
tively coarse-grain leases [20] (e.g., 100 ms), which they
obtain from each server (or the head of the replica chain
for each partition); if the lease expires, or the head of the
replica chain changes, the operation is rejected.

We now describe failure-free operation. The fast path
consists of two phases, and has to execute from start to
completion within the context of a single set of leases,
one per involved partition. For ease of exposition, we
assume each partition has one chainserver replica.

In the first phase, an origin client (i.e., a client originat-
ing a multi-append) contacts the involved chainservers,
each of which responds with a timestamp consisting of
the value of its clock augmented with a server-specific
unique nonce to break ties. Each chainserver inserts the
multi-append operation into a pending queue along with
the returned timestamp. For example, in Figure 5, origin
client C1 contacts S1, which responds with 2.1, where
the local clock value is 2 and the unique nonce is 1. In
addition, the origin client provides a WAL (write-ahead
log) entry that each chainserver stores; this includes the
payload, the colors involved, and the set of leases used
by the multi-append.

Once the client hears back from all the involved chain-
servers, it computes the max across all received times-
tamps, and transmits that back to the chainservers in a

second phase: this max is the timestamp assigned to
the multi-append and is sufficient to serialize the multi-
appends in a region. For example, in Figure 5, client
C1 sends back a max timestamp of 2.2 to servers S1 and
S2. When a chainserver receives this message, it moves
the multi-append from the pending queue to a delivery
queue; it then waits until there is no other multi-append
in the pending queue with a lower returned timestamp,
or in the delivery queue with a lower max timestamp
(i.e., no other multi-append that could conceivably be
assigned a lower max timestamp). Once this condition
is true, the multi-append is removed from the delivery
queue and processed. In Figure 5, server S1 receives a
phase 2 message with a max timestamp of 3.1 from client
C2, but does not respond immediately since it previously
responded to a phase 1 message from client C1 with a
timestamp of 2.1. Once C1 sends a phase 2 message
with a max timestamp of 2.2, S1 knows the ordering for
both outstanding multi-appends and can respond to both
C1 and C2.

The protocol described above completes in two
phases. A third step off the critical path involves the
client sending a clean-up message to delete the per-
append state (the WAL, plus a status bit indicating the
last executed phase) at the chainservers; this is lazily ex-
ecuted after a multiple of the lease time-out, and can be
piggybacked on other messages. If a lease expires be-
fore the two phases are executed at the corresponding
server, or the origin client crashes, it leaves one or more
servers in a wedged state, with the multi-append stuck
in the pending queue and blocking new appends to the
colors involved. After a time-out, the chainserver begins
responding to new append requests with a stuck-err error
message, along with the WAL entry of the stuck multi-
append. A client that receives such an error message can
initiate the recovery protocol for the multi-append.

A client recovering a stuck multi-append (i.e., a re-
covery client) proceeds in three phases: it fences activity
by the origin client or other recovery clients; determines
the wedged state of the system; and completes the multi-
append. The fencing phase involves accessing the lease
set of the original client (which is stored in the WAL),
invalidating it at the servers, and writing a new recov-
ery lease set at a designated test-and-set location on one
of the chainservers. If some other recovery client already
stored a lease set at this location, we wait for that client to
recover the append, fencing it after a time-out. Fencing
ensures that at any given point, only one client is active;
the WAL allows clients to deterministically roll forward
the multi-append.

Correctness: Skeen’s protocol has been proven to
generate a total order by others [22, 45]. To prove our
recovery protocol correct, we wrote conventional proofs
as well as a machine-checked proof in Coq. We omit the
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full proof for lack of space. Informally, we prove that the
test-and-set mechanism ensures that only one client is ac-
tively mutating the state of the system at any given point
in time. Further, we show that each append can be mod-
eled as a four-stage state machine (some servers in phase
1, some uninitiated; some in phase 1, some in phase 2;
some in phase 2, some completed; all completed). Any
recovery client finds the system in a particular state and
advances it in a manner identical to the non-failing case.

Performance and availability: The append protocol
takes two phases in the fast path and three in the recov-
ery path. The protocol can block if the logs being ap-
pended to reside on different sides of a network parti-
tion; however, the semantics of colors in FuzzyLog en-
sure that we only append to logs within a single region.
Single-color appends follow the same protocol as multi-
appends, but complete in a single phase that compresses
the two phases of the fast path.

A subtle point is that a missed fast path deadline will
block other multi-appends from completing, but will not
cause them to miss their own deadlines; they are free to
complete the fast path and receive a timestamp, and only
block in the delivery queue. As a result, a crashed client
will cause a latency spike but not a cascading series of re-
coveries. In addition, this protocol is subject to FLP [18]
and susceptible to livelock, since recovery clients can
fence each other perpetually. Our implementation mit-
igates this by having clients back-off for a small, ran-
domized time-out if they encounter an ongoing recovery,
before fencing it and taking over recovery.

6 Evaluation

We run all our experiments on Amazon EC2 using
c4.2xlarge instances (8 virtual cores, 15 GiB RAM, Intel
Xeon E5-2666 v3 processors). Most of the experiments
run within a single EC2 region; for geo-distributed ex-
periments, we ran across the us-east-2 (Ohio) and the ap-
northeast-1 (Tokyo) regions, which are separated by an
average ping latency of 168ms. In all experiments, we
run Dapple with two replicas per partition unless other-
wise specified. All throughput numbers are without any
application-level batching.

We first report latency micro-benchmarks for Dapple
on a lightly loaded deployment. Figure 6 shows the
distribution of latencies for 16-byte appends involving
one color (top) and two colors on different chainservers
(middle), as well as the latency to recover stuck multi-
appends due to crashed clients (bottom). In all cases,
latency increases with increasing replication factor due
to chain replication. At every replication factor, single-
color appends are executed with lower latency than two-
color appends, which in turn require lower latency than
two-color recovery. This difference in latency arises be-
cause single-color appends execute in a single phase,
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Figure 6: Dapple executes single-color appends in one
phase; multi-color appends in two phases; and recovers
from crashed clients in three phases.
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Figure 7: Dapple scales with workload parallelism, but
a centralized sequencer bottlenecks emulated Tango.

while two-color appends execute in two phases and two-
color recoveries execute in three phases.

The remainder of our evaluation is structured as fol-
lows: First, we evaluate the differences between Dapple
and prior shared log designs (§6.1). Second, we use the
Map variants from §4 to show that Dapple provides linear
scaling with atomicity (§6.2), weaker consistency guar-
antees (§6.3), and network partition tolerance (§6.4). Fi-
nally, we describe a ZooKeeper clone over Dapple (§6.5).

6.1 Comparison with shared log systems

In this experiment, we show that centralized sequencers
in existing shared log systems fundamentally limit scal-
ability. Shared log systems such as Tango [8] and
vCorfu [57] use a centralized sequencer to determine
a unique monotonic sequence number for each append.
Based on its sequence number, each append is deter-
ministically replicated on a different set of servers. The
sequencer therefore becomes a centralized point of co-
ordination, even when requests execute against differ-
ent application-level data-structures or shards. In con-
trast, Dapple allows applications to naturally express
their sharding requirements via colors, and can execute
appends to disjoint sets of colors independently.

We emulate Tango’s append protocol in Dapple by us-
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Figure 8: AtomicMap scales throughput while support-
ing multi-shard transactions. Each bar labelled N / K
shows throughput with N AtomicMap servers running
against a K-server Dapple deployment.

ing five chainserver partitions to store data, and a sin-
gle unreplicated server to disperse sequence numbers;
given a sequence number, appends are deterministically
written (via a Dapple-append) to one of the five chain-
server partitions in a round-robin fashion. We com-
pare this to a FuzzyLog deployment that uses five chain-
server partitions. The number of partitions and replica-
tion factor in emulated Tango and Dapple are identical,
while emulated Tango uses an extra server for sequenc-
ing. We run a workload where each client appends to
a particular color, mixing single-color appends with a
fixed percentage of appends that include a second, ran-
domly picked color. Figure 7 shows average throughput
over a 10-second run for workloads with different per-
centages of two-color appends. Emulated Tango cannot
scale beyond four clients due to its use of a centralized
sequencer. Dapple scales near-linearly when the work-
load is fully partitionable (0% multi-color appends), is
2X faster at 1% multi-color appends, and matches Tango
at 10% multi-color appends. At 100% multi-color ap-
pends, Dapple performs worse because the required par-
tial order is nearly a total order, which Tango provides
more efficiently.

6.2 Scalable multi-shard atomicity

The FuzzyLog allows applications to scale within a re-
gion by sharding across colors, and supports multi-shard
transactions via multi-color appends. We now demon-
strate the scalability of an AtomicMap (Section 4.1),
which partitions its state across multiple colors. Each
AtomicMap server is a Dapple client, and is affinitized
with a unique color (corresponding to a logical parti-
tion of the AtomicMap’s state). Each client performs a
combination of single puts against its local partition and
multi-puts against its partition and a randomly selected

remote partition.
Figure 8 shows the results of the AtomicMap ex-

periment. For different percentages of multi-puts in
the workload (on the x-axis), we vary system size and
plot throughput on the y-axis. We use between 8 and
16 chainservers in Dapple (deployed without replication
since we ran into EC2 instance limits). We use 8-byte
keys and 8-byte values to emulate a workload where the
AtomicMap acts as an index storing pointers to an ex-
ternal blob store. Keys for put operations are selected
uniformly at random from a key space of 1M keys.

Figure 8 shows that under 0% multi-shard puts,
throughput scales linearly from 1 to 16 AtomicMap
servers. The throughput jump from 16 to 32 servers is
slightly less than 2x because we pack two Dapple clients
per AtomicMap server at the 32 client data point (due
to the EC2 instance limit). As the percentage of multi-
shard puts increases from 0.1% to 100%, scalability and
absolute throughput degrade gracefully. This is expected
due to the extra cost of executing multi-shard puts (each
requires a two-phase multi-color append).

6.3 Weaker consistency guarantees

Dapple allows geo-distributed applications to perform
updates to the same color with low latency. By compos-
ing a single color out of multiple totally ordered chains,
one per geographical region, a client in a particular re-
gion can append updates to a color without performing
any coordination across regions in the critical path. This
section demonstrates this capability via a CRDTMap.

In Figure 9, we host a single, unpartitioned CRDTMap
on five application servers (i.e., Dapple clients); we lo-
cate each in a virtual region with its own Dapple copy,
all running in the same EC2 region. Four of these servers
are writers issuing put operations at a controlled aggre-
gate rate (left y-axis), while the fifth is a reader issuing
get operations on the CRDTMap. Each writing server
uses four writer processes. The gets observe some fron-
tier of the underlying DAG, and can therefore lag behind
by a certain number of puts (right y-axis), but are fast,
local operations. Midway through the experiment, we
spike the put load on the system; this does not slow down
get operations at the reader (not shown in the graph), but
instead manifests as staleness.

6.4 Network partition tolerance

Dapple allows applications to provide strong consistency
during normal operation and weak consistency under
network partitions. In this experiment, we demonstrate
this capability by running CAPMap across a primary and
a secondary region (us-east-2 and ap-northeast-1, respec-
tively). The experiment lasts for 14 seconds. From 0-
6 seconds, the primary and secondary regions are con-
nected. Between 6-8 seconds, we simulate a network
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Figure 9: CRDTMap provides a trade-off between
throughput and staleness.

partition between the primary and secondary. Finally,
from 8-14 seconds, connectivity between the primary
and secondary is restored. Each region runs two servers,
one issuing puts and one issuing gets. We measure the
latency of gets and puts (y-axis), against the wall-clock
time they are issued at (x-axis).

Figure 10 shows the results of the experiment. In nor-
mal operation (0 to 6 seconds), all updates are stored in
a single primary chain, and both regions get strong con-
sistency; the secondary has high latencies for puts and
gets due to the 168 ms inter-region roundtrip it incurs
to access the primary chain. At 6 seconds, the network
between the regions partitions; the primary continues to
obtain strong consistency and low latency, but the sec-
ondary switches to weaker consistency, storing its up-
dates on a local secondary chain (and obtaining much
lower latency for puts/gets in exchange for the weaker
consistency). At 8 seconds, the network heals; the sec-
ondary appends a joining node to the primary chain via
a proxy in the primary region. As part of this joining
request, the secondary provides a snapshot ID reflect-
ing the last node it appended to its local chain. The
proxy at the primary waits until the nodes in the snap-
shot are replicated to the primary region and seen by it
before completing the joining append. The joining ap-
pend causes a high latency put by the secondary just after
the partition heals, and a spike in get latency on the pri-
mary as it plays nodes appended to the secondary chain
during the partition.

6.5 End-to-end applications

We implemented a ZooKeeper clone, DappleZK in 1881
LOC of Rust. DappleZK partitions a namespace across
a set of servers, each of which acts as a Dapple client,
storing a partition of the namespace in in-memory data-
structures backed by a FuzzyLog color.

This section compares DappleZK’s performance with

Figure 10: CAPMap switches between linearizability
and causal+ consistency during network partitions.

ZooKeeper. Each DappleZK server is responsible for
an independent shard of the ZooKeeper namespace, and
atomically creates and renames files. Create operations
are restricted to a single DappleZK shard. Each rename
atomically moves a file from one DappleZK shard to an-
other via the distributed transaction protocol described in
Section 4.1.

We partition the ZooKeeper namespace across 12
DappleZK shards, and run one DappleZK server per
shard. We deploy Dapple with either one or two parti-
tions. Each partition is configured with three replicas.
DappleZK uses two coloring schemes; a color per parti-
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tion and a color per DappleZK shard. In the color per par-
tition deployment, each color holds updates correspond-
ing to multiple DappleZK server shards.

We run conventional ZooKeeper with three replicas,
and also include a partitioned ZooKeeper deployment
with two partitions. Our ZooKeeper deployments keep
their state in DRAM to enable a fair comparison. Note
that ZooKeeper does not support atomic renames; we
emulated renames on it by executing a delete and cre-
ate operation in succession. We include the ZooKeeper
comparison for completeness; we expect the FuzzyLog
single-partition case to outperform ZooKeeper largely
due to the different languages used (Rust vs. Java) and
the difference between prototype and production-quality
code.

Figure 11 shows the results of the experiment. We
vary the percentage of renames in the workload on the
x-axis, and plot throughput on the y-axis. Each x-axis
point shows a cluster of bars corresponding to the four
DappleZK configurations and two ZooKeeper configura-
tions. With a single color and a single partition, every
DappleZK server stores its state on the same color. Dap-
pleZK servers perform their appends and reads against
the same color, which limits their throughput. With two
partitions, the number of DappleZK servers per color is
halved, which increases throughput. When we switch
to a color per DappleZK server, throughput increases
dramatically because requests from different DappleZK
servers do not need to be serialized against the same
color. The addition of another partition further increases
throughput because the colors can be spread across two
partitions. When deployed with a single partition, Dap-
ple servers were overloaded, which led to extra schedul-
ing overhead and caused the two partition case to out-
perform a single partition by over 2X (in both color per
ZK shard and color per partition cases). With an increas-
ing fraction of atomic renames, throughput decreases be-
cause DappleZK must perform a distributed transaction
across the involved DappleZK servers. In comparison to
DappleZK, ZooKeeper provided 36K and 66K ops/s with
one and two partitions respectively.

7 Related Work

Abstractions for ordering updates in a distributed sys-
tem have a long history. Examples include Virtual Syn-
chrony [13, 53], State Machine Replication [46], View-
stamp Replication [42], Multi-Paxos [52], and newer
approaches such as Raft [43]. Most of these impose
a total order on updates; the exceptions track particu-
lar partial orders imposed by operation commutativity
(pessimistically [30, 37] and optimistically [26]), causal
consistency (as in Virtual Synchrony and Lazy Replica-
tion [27]), or network partitions (as in Extended Virtual
Synchrony [38]). In contrast, the FuzzyLog expresses the

partial orders relating to both causality and data sharding
within a single ordering abstraction.

FuzzyLog designs for providing weaker consistency
are informed by a number of systems: COPS [35] and
Eiger [36] provide causal consistency in a partitioned
store, while Bayou allows for disconnected updates and
eventual reconciliation [44, 49]. TARDiS [15] exposes
branch-on-conflict as an abstraction in a fully replicated,
multi-master store. In contrast to the TARDiS DAG, the
FuzzyLog allows applications to construct a wider range
of partial orders (e.g., CAPMap branches on network
partitions rather than conflicts), and enables distributed
transactions via color-based partitioning.

A number of systems provide distributed transactions
over addresses or objects [4, 34]. Recent systems lever-
age modern networks such as RDMA and Infiniband to
enable high-speed transactions [17, 31]. FuzzyLog pro-
vides a lower layer of abstraction, which in turn sup-
ports general-purpose transactions using shared log tech-
niques [8, 10]. There has also been recent interest in
improving distributed transaction throughput and latency
via techniques such as transaction chopping [39, 58, 59,
61]. These mechanisms could be employed by transac-
tional FuzzyLog applications.

Finally, the FuzzyLog is heavily inspired by shared log
designs from research [7, 8, 10] and industry [1, 2, 55].

8 Conclusion

The shared log approach simplifies the construction of
control plane services, but tightly bounds the scalability
and consistency of the resulting systems. The FuzzyLog
abstraction – and its implementation in Dapple – extends
the shared log approach to partial orders, allowing appli-
cations to scale linearly without sacrificing transactional
guarantees, obtain a range of consistency guarantees, and
switch seamlessly between these guarantees when the
network partitions and heals. Crucially, applications can
achieve these capabilities in hundreds of lines of code via
simple, data-centric operations on the FuzzyLog, retain-
ing the core simplicity of the shared log approach.
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Abstract

We present Maelstrom, a new system for mitigating and
recovering from datacenter-level disasters. Maelstrom
provides a traffic management framework with modular,
reusable primitives that can be composed to safely and ef-
ficiently drain the traffic of interdependent services from
one or more failing datacenters to the healthy ones.

Maelstrom ensures safety by encoding inter-service
dependencies and resource constraints. Maelstrom uses
health monitoring to implement feedback control so that
all specified constraints are satisfied by the traffic drains
and recovery procedures executed during disaster mitiga-
tion. Maelstrom exploits parallelism to drain and restore
independent traffic sources efficiently.

We verify the correctness of Maelstrom’s disaster mit-
igation and recovery procedures by running large-scale
tests that drain production traffic from entire datacenters
and then retore the traffic back to the datacenters. These
tests (termed drain tests) help us gain a deep understand-
ing of our complex systems, and provide a venue for con-
tinually improving the reliability of our infrastructure.

Maelstrom has been in production at Facebook for
more than four years, and has been successfully used to
mitigate and recover from 100+ datacenter outages.

1 Introduction

Modern Internet services are composed of hundreds
of interdependent systems spanning dozens of geo-
distributed datacenters [7, 20]. At this scale, seemingly
rare natural disasters, such as hurricanes blowing down
power lines and flooding [29, 42], occur regularly. Fur-
ther, man-made incidents such as network fibercuts, soft-
ware bugs and misconfiguration can also affect entire
datacenters [22, 33, 37]. In our experience, outages that
affect one or more datacenters cannot be addressed by
traditional fault-tolerance mechanisms designed for indi-
vidual machine failures and network faults as co-located
redundant capacity is also likely impaired.

In a disaster scenario, mitigation is almost always the
first response to reduce user-visible impact, before root

causes are discerned and systems are recovered. In our
experience, outages affecting physical infrastructure take
a long time to repair as they often involve work by on-site
maintenance personnel. Software failures can be hard to
debug and fix, and thus it is hard to guarantee a resoluton
time [9, 22, 23, 55].

The basic idea of disaster mitigation is to quickly drain
traffic—redirect requests originally sent to failing dat-
acenters and reroute them to healthy datacenters. Our
assumption when draining traffic is that a disaster af-
fects only a fraction of our overall infrastructure—this
assumption is reasonable because most natural disasters
(e.g., hurricanes and earthquakes) are locality based. For
software failures caused by bugs and misconfiguration,
we adopt a locality-based staged rollout strategy, par-
tially driven by our ability to use Maelstrom to quickly
drain traffic from an affected datacenter.

We find that most failures are not instantaneous and
thus can be detected and mitigated in time. For instance,
we had about one week of notice before Hurricane Flo-
rence made landfall in North Carolina on September 15,
2018. This advance notice allowed us to plan and execute
mitigations were Facebook’s Forest City datacenter to be
affected. Further, it is far more likely that a failure affects
parts of a datacenter or certain infrastructure components
(e.g., several network backbone cables) than resulting in
total loss of a physical datacenter. In all these cases, de-
veloping the mechanism to quickly redirect user traffic
as well as inter-service traffic, which we term “draining
traffic,” is key to disaster readiness.

The conceptually simple idea of draining traffic turns
out to be rather challenging in practice. In our experi-
ence, disasters often trigger failures that affect multiple
interdependent systems simultaneously. Ideally, every
system should be implemented with a multi-homed de-
sign [25], where any traffic can be sent to and served
by any datacenter. However, we observe that most
of today’s Internet services are composed of a number
of heterogeneous systems including singly-homed and
failover-based systems with complex, subtle dependen-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    373



cies, and distinct traffic characteristics [12, 29, 42, 48].
The most challenging aspect of mitigation is to en-

sure that dependencies among systems are not violated.
For instance, in a distributed caching system, if we drain
cache invalidation traffic before redirecting read traffic
from clients, we risk serving stale data. Or, in a web
service, if we drain intra-datacenter traffic between web
servers and backend systems before redirecting user re-
quests, we risk increasing response latency due to cross-
datacenter requests. Hence, we need a disaster mitigation
system that can track dependencies among services, and
also sequence operations in the right order.

Different systems may require customized mitigation
procedures due to their distinct traffic characteristics,
e.g., draining stateless web traffic requires a different
procedure from draining stateful database traffic. With-
out unified, holistic tooling, each system might end up
maintaining their own, incompatible disaster mitigation
scripts that cannot be composed or tuned for scenarios
with varying levels of urgency. As shown in §5.3, drain-
ing systems sequentially can significantly slow down the
mitigation process, and prolong the impact of a disaster.

Disaster mitigation and recovery strategies also need
to monitor shared resources, such as network bandwidth
and datacenter capacity. Naı̈vely redirecting all traffic
from one datacenter to another could overwhelm the net-
work and trigger cascading failures.

1.1 Maelstrom for Disaster Mitigation & Recovery

We present Maelstrom, a system used for mitigating and
recovering from datacenter-level disasters1 at Facebook.
Maelstrom safely and efficiently drains traffic of interde-
pendent systems from one or more failing datacenters to
the healthy ones to maintain availability during a disas-
ter. Once the disaster is resolved, Maelstrom restores the
datacenter to a healthy state.

Maelstrom offers a generic traffic management frame-
work with modularized, reusable primitives (e.g., shift-
ing traffic, reallocating containers, changing configura-
tion, and moving data shards). Disaster mitigation and
recovery procedures are implemented by customizing
and composing these primitives. Inter-system dependen-
cies specify the order of executing the primitives, and re-
source constraints control the pace of executing individ-
ual primitives. This design is driven by two observations:
1) while each system has its own procedures for mitiga-
tion and recovery, these procedures share a common set
of primitives, and 2) different procedures share similar
high-level flows—draining traffic while maintaining sys-
tem health and SLAs. Therefore, it is feasible to build a

1Maelstrom does not target machine-level failures (which should be
tolerated by any large-scale system), or software bugs and misconfigu-
ration that can be immediately reverted.

generic system to satisfy the needs of a wide variety of
systems with heterogeneous traffic characteristics.

To ensure safety, Maelstrom coordinates large-scale
traffic shifts by respecting inter-system dependencies and
resource constraints. Dependencies are rigorously en-
coded and maintained. We employ critical path analy-
sis to identify bottlenecks and decrease time to mitigate
disasters. Maelstrom implements a closed feedback loop
to drain traffic as fast as possible without compromising
system health. In order to mitigate disasters efficiently,
Maelstrom exploits parallelism to drain independent traf-
fic sources, which significantly speeds up execution of
the mitigation and recovery procedures.

We find that Maelstrom makes disaster mitigation
and recovery significantly easier to understand and rea-
son about, in comparison to monolithic, opaque scripts.
Maelstrom also incorporates extensive UI support to dis-
play the mitigation and recovery steps, and their runtime
execution states, to assist human proctoring and interven-
tion in disaster scenarios (cf. §3).

1.2 Drain Tests for Verifying Disaster Readiness

We employ Maelstrom to run different types of large-
scale tests that simulate real-world disasters. We find
that annual, multi-day failure drills such as DiRT [29]
and GameDay [42] are useful to verify that entire data-
centers can be shutdown and restarted. However, besides
these annual tests, we desire a regimen of continuous
tests that can be executed at daily and weekly frequen-
cies to ensure that our mitigation and recovery keep up
with rapidly-changing systems and infrastructure.

We present our practical approach, termed drain tests,
to address the challenge. A drain test is a fully auto-
mated test that uses Maelstrom to drain user-facing and
internal traffic from our datacenters in the same way as
if these datacenters are failing. Running drain tests on a
regular basis enables our systems to always be prepared
for various disaster scenarios by maintaining and exer-
cising the corresponding mitigation procedures. Drain
tests also force us to gain a deep understanding of our
complex, dynamic systems and infrastructure, and help
us plan capacity for projected demand, audit utilization
of shared resources, and discover dependencies.

Drain tests operate on live production traffic and thus
could be disruptive to user-facing services, if not done
carefully. It has taken us multiple years to reach our cur-
rent state of safety and efficiency. Our original tests only
targeted one stateless system: our web servers. The first
set of drain tests were painful—they took more than 10
hours, and experienced numerous interruptions as we un-
covered dependencies or triggered failures that resulted
in service-level issues. As we built Maelstrom and be-
gan using it to track dependencies, drain tests gradually
became smooth and efficient. After a year, we extended
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drain tests to two more services: a photo sharing service
and a real-time messaging service. Currently, Maelstrom
drains hundreds of services in a fully automated man-
ner, with new systems being onboarded regularly. We
can drain all user-facing traffic, across multiple product
families, from any datacenter in less than 40 minutes.

1.3 Contributions

Maelstrom has been in operation at Facebook in the past
4 years, and has been used to run hundreds of drain tests
and has helped mitigate 100+ disasters. The paper makes
the following contributions:

• Maelstrom is the first generic framework that can drain
heterogeneous traffic of interdependent systems safely
and efficiently to mitigate datacenter-level disasters.

• We introduce drain tests as a novel reliability engineer-
ing practice for continuously testing and verifying the
disaster readiness of Internet services.

• We share the lessons and experiences in running regu-
lar drain tests, as well as mitigating real disasters at a
large-scale Internet service.

2 Background

This section provides an overview of Facebook’s infras-
tructure and traffic management primitives which are
similar to other major Internet services [10, 20, 32].

2.1 Infrastructure Overview

As Figure 1 shows, user requests to www.Facebook.com
are sent to an ISP which maps the URL to an IP ad-
dress using a DNS resolver. This IP address points to
one of the tens of edge locations (also known as Point-
of-Presence or PoPs) distributed worldwide. A PoP con-
sists of a small number of servers, typically co-located
with a peering network [43,54]. A PoP server terminates
the user’s SSL session and then forwards the request on
to an L4 load balancer (Edge LB) which forwards the re-
quest on to a particular datacenter. A user request can be
served from any of our datacenters.

We group machines in a datacenter into logical clus-
ters such as frontend clusters composed of web servers,
backend clusters of storage systems, and generic “ser-
vice” clusters. We define a service as the set of sub-
systems that support a particular product.

Within a datacenter, an L7 web load balancer (Web
LB) forwards the user request to a web server in a fron-
tend cluster. This web server may communicate with tens
or hundreds of services, and these services typically need
to further communicate with other services and back-
ends, to gather the data needed to generate a response.
We employ a set of service load balancers (Service LBs)
to distribute requests amongst service and backend clus-
ters. The web server handling the user request is also
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Figure 1: An overview of Facebook’s infrastructure. The configurable
edge and cluster weights determine how user requests are routed from
PoPs to particular datacenters, and then on to particular clusters.

Traffic Affinity State Strategy

Stateless — — reroute
Sticky X — reroute ! tear down
Replication — X customized
Stateful X X master promotion

Table 1: Traffic type, property, and mitigation strategy (cf. §2.3).

responsible for returning the response to the PoP which
then forwards it on to the end user.

2.2 Traffic Management Primitives

The PoP server parses each request URI and maps it to
a service. Our traffic management system assigns each
service a virtual IP (VIP). Traffic for each VIP is con-
trolled by two configurable values: edge weight and clus-
ter weight. Edge weights specify the fraction of requests
that the PoP should forward to each of the datacenters.
Cluster weights specify the fraction of requests that each
cluster is capable of handling.

Since PoPs and frontend clusters are stateless, a user
request can be sent to any PoP and forwarded to any fron-
tend web server. This property allows us to program-
matically reconfigure edge and cluster weights to reroute
traffic in disaster scenarios. For instance, if a network
fiber-cut disconnects a datacenter from the rest, we push
out a configuration change to all PoPs that sets the edge
weight for the disconnected datacenter to 0; this results
in the traffic originally sent to the failing datacenter being
routed to the other datacenters.

Internal service traffic (e.g., RPC traffic) within and
across datacenters are controlled by L7 service load bal-
ancers based on configurable knobs in a similar vein.

2.3 Traffic Types

Table 1 categorizes the traffic types of different systems
based on affinity and state properties, as well as the com-
mon strategies for draining them during disasters.

• Stateless. The vast majority of web traffic is stateless,
consisting of users’ web requests directed from PoPs

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    375



to one or more datacenters. Stateless traffic can be
drained by rerouting it away from a failing datacenter,
or from particular sets of clusters, racks, or machines.

• Sticky. Interactive services (e.g., messaging) improve
user experience by pinning requests to particular ma-
chines that maintain the state for a user in a session.
Sticky traffic can be drained by rerouting incoming
session requests and tearing down the established ses-
sions to force them reconnect to other machines.

• Replication. In a disaster, we may need to alter or even
stop replication traffic from egressing or ingressing the
failing datacenter for distributed storage systems. The
replicas can be re-created in other datacenters to serve
reads. This requires configuration changes or other
heavyweight changes that influence resource sharing,
such as intra- and inter-datacenter networks.

• Stateful. For master-slave replication based systems,
the mitigation for a master failure is to promote a sec-
ondary to be the new master. This may require copying
states from the failing datacenter to the new. The state
copy requires careful control based on the network ca-
pacity to transfer data out to healthy machines.

3 Maelstrom Overview

Maelstrom is a disaster mitigation and recovery system.
During a datacenter-level disaster, operators2 use Mael-
strom to execute a runbook that specifies the concrete
procedure for mitigating the particular disaster scenario
by draining traffic out of the datacenter; after the root
causes are resolved, a corresponding recovery runbook
is used to restore the traffic back.

Maelstrom provides a generic traffic management
framework. A runbook can be created via Maelstrom’s
UI by composing a set of tasks. A task is a specific oper-
ation, such as shifting a portion of traffic, migrating data
shards, restarting container jobs, and changing configu-
ration. Tasks can have dependencies that determine the
order of execution—a task should not be started before
its dependent tasks are completed. Figure 2 shows an
example of a runbook and its corresponding tasks. We
elaborate the runbook-based framework in §4.2.

Every service maintains its own service-specific run-
books for disaster mitigation. Taking our interactive mes-
saging service as an example, the runbook for draining
the service’s sticky traffic (upon software failures in a
datacenter) includes two tasks in order: 1) redirecting
new session requests to the other datacenters, and 2) ter-
minating established sessions in the failing datacenter to
force them reconnect. A recovery runbook can be used
to restore messaging traffic back to the datacenter.

2In this paper, we use “operators” as a general term for anyone help-
ing with operations, including Software Engineers, Site Reliability En-
gineers, Production Engineers, and System Administrators.
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Figure 2: Maelstrom executes runbooks, each specifying the procedure
for mitigating a particular disaster scenario. A runbook is composed of
interdependent tasks (e.g., traffic shift and job updates). These tasks are
scheduled by Maelstrom’s scheduler based on their dependencies, and
are executed in multiple stages by Maelstrom’s executor. Maelstrom
monitors and displays the runtime status of tasks in its UI.

If an entire datacenter is down (e.g., due to network
fibercuts that disconnect it from our infrastructure), a
datacenter evacuation runbook will be used to drain traf-
fic of all the services in the datacenter. A datacenter
evacuation runbook is composed of service-specific run-
books, where each runbook drains or restores the traffic
for a particular service deployed in a datacenter. These
service-specific runbooks are aggregated through exter-
nal dependencies that link tasks in different runbooks.

Runbooks are executed by Maelstrom’s runtime en-
gine consisting of two main components: 1) the sched-
uler that schedules tasks to execute based on the pol-
icy specified in the runbook (including dependencies and
conditions), and 2) the executor that is responsible for
executing each individual task. A task can be executed
in multiple stages based on its implementation (cf. §4.3).

As shown in Figure 2, Maelstrom is equipped with a
UI that visualizes the runtime information of a runbook,
including the state of every task, their dependencies, and
the associated health metrics. We keep improving the UI
with an operator-centric methodology. Each disaster is a
learning opportunity for us to interact with operators and
to improve usability. Our UI design focuses on helping
operators understand the mitigation and recovery status,
and on efficiently controlling the runbook execution.

At Facebook, we use Maelstrom to run different types
of tests with different frequencies. Besides weekly drain
tests, we also run storm tests at a quarterly cadence. The
primary difference between a drain test and a storm test
is that a drain test is focused on draining user traffic out
of a datacenter as fast as possible without user perceiv-
able impact. In contrast, a storm test extends beyond user
traffic to drain all RPC traffic amongst services, stops
data replication, and applies network ACLs to isolate the
tested data center. Thus, a storm test is a more rigorous
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endeavor that verifies that all of Facebook’s products and
systems can function correctly despite the total loss of a
datacenter. From our understanding, storm tests are akin
to Google’s DiRT [29] and Amazon’s GameDay [42] ex-
ercises. In this paper, we focus on drain tests as a new
type of large-scale, fully-automated test for production
services, which can be run on a daily or weekly basis.

3.1 Drain Tests

Maelstrom requires runbooks to always keep updated
with our rapidly-evolving software systems and physical
infrastructure. However, maintaining up-to-date infor-
mation (e.g., service dependencies) is challenging due to
the complexity and dynamics of systems at scale, akin to
the observations of other cloud-scale systems [5, 29, 33].

Drain tests are our practical solution to continuously
verify and build trust in the runbooks. A drain test is a
fully automated test that uses Maelstrom to drain user-
facing and internal service traffic from our datacenters
in the same way as if these datacenters are failing. Inter-
nal services include various asynchronous jobs, data pro-
cessing pipelines, machine learning systems, software
development tools, and many other services that are key
components of our infrastructure.

We run multiple drain tests per week to simulate vari-
ous types of disaster scenarios (e.g., those listed in [19])
on a least-recently-tested datacenter. Tests are scheduled
at different time of a day to cover various traffic patterns
(e.g., peak and off-peak time). We also vary the duration
of each test to understand how the rest of our infrastruc-
ture serve user and service traffic when the disaster is in
effect. Running drain tests brings many benefits:

• verifying that runbooks can effectively mitigate and
recover from various types of disasters and meet our
recovery objectives;

• aid planning by identifying capacity needs during var-
ious disaster scenarios;

• testing the pace at which a service can offload traffic
without overwhelming its downstream systems;

• auditing how shared resources are utilized to identify
resource bottlenecks;

• tease apart complex inter-system dependencies and
continuously discover new dependencies.

A drain test is not expected to have any user-visible
or service-level impact. If this expectation is not met,
we follow up with the engineering teams to understand
why a given disaster scenario was not handled well, and
schedule followup tests to verify fixes.

3.2 Failure Mitigation

Maelstrom was initially built for mitigating disasters of
physical infrastructure. We experience a handful of inci-
dents each year that result in the temporary catastrophic

loss of one or more datacenters, usually due to power or
network outages. We mitigate and recover from these
disasters using datacenter evacuation runbooks.

Over time, our practice of rigorously verifying run-
books via drain tests has resulted in its evolution as a
trusted tool for handling a wide variety of failures, in-
cluding service-level incidents caused by software er-
rors including bugs and misconfiguration. These service-
level incidents are an order of magnitude more frequent.
Note that most service incidents are recovered by revert-
ing the buggy code or configuration changes, so traffic
drains are rare. We will discuss how Maelstrom is used
to deal with various failure scenarios in §5.1.

The actual failures and disasters are mitigated using
the same runbooks as drain tests. Drain tests are fully
automated—operators are only paged when the test trig-
gers unexpected issues. During a disaster, operators may
choose to accelerate steps to speed up mitigation.

4 Design and Implementation

4.1 Design Principles

Composability. In our experience, despite the hetero-
geneity of mitigation and recovery procedures of differ-
ent systems, they share common structures and can be
composed of a common set of primitives. Maelstrom en-
ables services to implement their own runbooks by com-
posing various primitives. Composability offers a num-
ber of benefits: 1) it allows Maelstrom to exploit paral-
lelism among primitives; 2) it enforces modularity and
reusability of mitigation- and recovery-related code, and
3) it makes runbooks easy to understand and maintain.
Separation of policy and mechanism. Maelstrom sep-
arates policies that define how traffic should be drained
and restored in a specific disaster scenario and the mech-
anisms for executing traffic shifts and other related oper-
ations (cf. §2.2).
Safety as a constraint. Disaster mitigation and re-
covery themselves must not create new outages—when
shifting traffic, Maelstrom should avoid cascading fail-
ures that overload the remaining healthy datacenters.
Further, drain tests as a regular operation should not have
any user-visible, service-level impact.
Embracing human intervention. We have learned that
it is critical for a disaster mitigation and recovery sys-
tem to embrace human intervention, even with fully au-
tomated runbooks (cf. §6). The design should minimize
tedious operations to let operators focus on critical deci-
sion making.

4.2 Runbook Framework

A runbook is created through the Maelstrom UI by spec-
ifying the following information:
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Task Template Parameter Description

TrafficShift {vip type, target, ratio, ...} Shift traffic into or out of a cluster or a datacenter (specified by target):
vip type specifies the traffic; ratio specifies the amount of traffic to shift.

ShardShift {service id, target, ratio, ...} Move persistent data shards into or out of a cluster or a datacenter via our
shard manager (target and ratio have same semantics as in TrafficShift).

JobUpdate {operation, job ids, ...} Stop or restart jobs running in containers.
ConfigChange {path, rev id, content, ...} Revert and/or update configuration in our distributed configuration store.

Table 2: Several common templates used to materialize tasks in runbooks, and their descriptions. Note that we have omitted the optional parameters
that provide fine-grained control (e.g., latency and stability optimization) from this table.

• Task specifications. Tasks are materialized by apply-
ing parameters to a library of templates. Table 2 lists
several task templates and their descriptions.

• Dependency graph. We use a directed acyclic graph
(DAG) to represent dependencies amongst the tasks in
a runbook. Every node Ti in the DAG refers to a task
in the runbook. A directed edge T1 ! T2 represents
a dependency: Task T1 must precede Task T2, which
means that T2 can only be scheduled for execution af-
ter T1 is completed.

• Conditions. A task can have pre-conditions (checking
if it is safe to start) and post-conditions (determining if
it is completed successfully). Pre-conditions are typi-
cally used as safeguards to ensure that the service is in
a healthy state, while a post-condition could check if
the target traffic reaches zero.

• Health metrics. Each task is associated with a num-
ber of service-health metrics, which are visualized in
Maelstrom’s UI to help human operators monitor the
status of task execution.

Each service maintains its service-specific runbook for
disaster mitigation and recovery. We also maintain an
evacuation runbook for each of our datacemters which
aggregates service-specific runbooks. The aggregation
is accomplished by adding dependencies between tasks
from different service-specific runbooks. We run the
evacuation runbooks during each drain test and thus ex-
ercise all the related service-specific runbooks. There-
fore, every drain test covers hundreds of services—we
run tests far more often than we experience real failures.

4.3 Runtime Engine

Maelstrom’s runtime engine is responsible for executing
a runbook. The runtime engine consists of two compo-
nents: 1) a scheduler that determines the order of exe-
cuting tasks by tracking their dependencies, and 2) an
executor that executes each task and validates the results.

• Scheduler. The scheduler generates an optimal sched-
ule of task execution by parallelizing independent
tasks. The scheduler marks a task ready for execu-
tion and sends its specification to the executor, when
and only when all the parent tasks that must precede

this task are completed and all the pre-conditions are
satisfied. Note that this schedule is generated dynam-
ically based on the runtime status of each task, and
it supports operator intervention (e.g., skipping and
stopping tasks).

• Executor. The executor materializes each task based
on the parameters in the specification sent by the
scheduler, and then executes the task. A task is exe-
cuted in multiple steps. For example, a TrafficShift
task for draining 100% web traffic out of a datacen-
ter can be done in one step, or in five steps (with wait
time in between)—each one draining 20%—based on
the desired pacing (cf. §4.7).

Maelstrom models a task as a nondeterministic finite
state machine, with a set of stages S, a set of runtime
inputs, transitions between stages, an initial stage I 2
S, and a set of exit stages E ✓ S. A stage accepts
one or more inputs, performs the desired action, and
then optionally invokes a transition to the next stage. A
stage can have multiple outgoing and incoming transi-
tions. Each stage can generate outputs, as inputs for other
stages. The executor starts from I and continues exe-
cuting subsequent stages following the transitions, until
reaching an exit stage. This design allows us to reuse
stages as the basic unit for implementing task templates.

We implement a library of stages that capture com-
mon operations like instructing load balancers to alter
traffic allocation [6,17, 36,46], managing containers and
jobs [12,44,51], changing system configuration [45,47],
migrating data shards [1, 13], etc. We also implement
various helper stages for communication and coordina-
tion, such as Barrier, TimedWait, and ChangeLog.

4.4 Executing Runbooks: Putting It All Together

Figure 3 illustrates how Maelstrom executes a service-
specific runbook to drain traffic of a messaging ser-
vice. Maelstrom executes two tasks in order: 1) redi-
recting new incoming session requests away, and 2) tear-
ing down the remaining established sessions so clients
can reconnect to machines in other datacenters. Mael-
strom verifies that all of a task’s parent dependencies
are drained, and pre-conditions are satisfied. The sec-
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Figure 3: A runbook to drain a messaging service’s sticky traffic. The
runbook has two tasks: redirecting new sessions and tearing down ex-
isting sessions—both are executed in multiple steps.

ond task uses its pre-condition as a safety check to con-
firm that the number of active sessions has dropped be-
low a preset threshold to minimize the impact of tearing
down all existing sessions. Maelstrom marks a task as
completed when the post-conditions are met.

Drains are blocked if the pre-/post-conditions are not
met, because this signifies that the service is in an unex-
pected state. Maelstrom compares the duration of each
task to the 75th percentile of the execution time of prior
tests/incidents to determine whether the task is stuck in
execution. If so, the operator will be alerted. We prior-
itize safety over speed, and stall subsequent operations
until an operator intervenes—we find stalls to be a rare
event that occurs only once every several dozen tests.
When handling actual failures, Maelstrom allows hu-
man operators to override particular pre-/post-conditions
if they wish—each of these overrides are logged and re-
viewed in postmortems to improve automation.

Maelstrom’s traffic drains and restorations are guided
by a variety of constraints:

• physical and external constraints, including network
over-subscription within a datacenter, cache hit rate,
I/O saturation in backend systems, etc.

• service-specific constraints—different types of traffic
have distinct constraints, e.g., draining sticky traffic
is prone to a thundering-herd effect as session estab-
lishment is resource intensive; draining stateful traffic
leads to master promotion which requires the slaves to
catch up with all updates, or restore states from logs;
restoring replication traffic requires syncing updates
with volumes proportional to down time, and the sync
speed is constrained by network bandwidth.

4.5 Dependency Management

Broadly, we find that there are three common relation-
ships amongst services that manifest as dependencies:

• Bootstrapping: A service depends on low-level system
components to prepare the execution environment and
setup configuration before serving traffic.

• RPC: A service makes remote procedure calls (RPCs)
to fetch data from other services.

Figure 4: An example of a service dependency that determines the
order of drains. A web service with HTTPS traffic communicates with
backend services via RPC traffic (we say the web service depends on
the backend services). So, the web service’s HTTPS traffic must be
drained before the backend service’s RPC traffic is drained.
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Service B Service G Service C

Service C Service C Service Y

Service D Service I

Service A Service F Service X

Service B Service G

Service YService D Service I

Dependency chains Dependency graph

Service C

Figure 5: To build a runbook, we start with independent dependency
chains (left). We identify highly connected components (HCCs), like
Service C, and merge the dependency chains at the HCCs to form a
dependency graph (right).

• State: Traffic can have states. For instance, a service
with sticky traffic may depend on a proxy to coordi-
nate and manage session establishment.

Discovery and sequencing. We employ a combina-
tion of methods to discover the aforementioned depen-
dencies when onboarding a new service to Maelstrom.
First, we design scenario-driven questionnaires to help
service teams reason about their dependencies with up-
stream and downstream services under different types of
failures and disasters. Moreover, we leverage our trac-
ing systems (e.g., [26]) to analyze how the target service
interacts with other services through RPC and network
communications. Our analysis incorporates our service
discovery systems to map the interactions to specific ser-
vices. We further analyze the traces and logs of soft-
ware components to reason about state-based dependen-
cies based on the causal models of service behavior [16].
Figure 4 illustrates the dependency between traffic of two
services, which enforces the order of drains.

After identifying dependencies, the next challenge is
to sequence drains amongst multiple interdependent sys-
tems in the right order. We tackle this problem by first
organizing services into chains of parent-child dependen-
cies in a disconnected dependency graph (we often do
not have one single complete graph at a time). Next, we
identify common services across chains—the common
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Figure 6: Restoring web traffic (left y-axis) at minute 55 caused a
proportional increase in errors (right y-axis) until a backend service
that the web traffic depended on was restored at minute 375.

services are often highly connected components (HCCs)
that hold the dependency graph, as illustrated in Figure 5.
Draining a HCC service will likely require us to drain its
parents first; once the HCC service is drained, its chil-
dren can likely be drained concurrently.
Continuous verification. We use Maelstrom to em-
pirically verify that independent services can be drained
and restored in parallel. For a new service, we use Mael-
strom to cautiously validate the specified dependencies
via small-scale drain tests, while closely monitoring the
health of all involved services. We gradually enlarge the
radius of the drain tests until all levels of traffic drains
can be performed regularly. We find this process to be
time consuming but worthwhile, as a principled way of
verifying dependencies in a controlled, scalable manner.

Figure 6 illustrates how a previously unknown depen-
dency was discerned in a drain test. This issue was
caused by an out-of-order restore, where a backend ser-
vice was drained while its dependent web traffic was re-
stored. This made the error count proportional to the
web traffic, as the web service was trying to query the
unavailable backend. The error rate went down to zero
after the operator also restored the backend service. Af-
ter this test, the dependency was added into the runbook,
together with improved monitoring of the error count.
Critical path analysis. Maelstrom performs auto-
mated critical path analysis after each drain test as well
as each disaster mitigation and recovery event. Critical
path analysis helps us optimize mitigation time by iden-
tifying bottlenecks in our dependency graphs.

When adding a new dependency into an existing run-
book, we run drain tests to check if the new dependency
is on the critical path or not. If it is, we engage with the
service team responsible for that dependency to optimize
drain and recovery performance. We also actively exam-
ine dependencies on slow, heavy tasks (e.g., data shard
migration) to try to move these dependencies off the crit-
ical path. If a dependency lengthens the critical path, the
service team evaluates whether the dependency provides
value, given its failure mitigation cost.

Maelstrom allows a dependency to be tagged as weak,
while by default all dependencies are strong. Strong de-
pendencies affect correctness, and thus are expected to
be respected in most failure scenarios. Weak dependen-
cies affect a system’s performance and reliability SLA.
Drain tests respect both strong and weak dependencies.
During a disaster, operators can override weak depen-
dencies to stabilize a system or speed up mitigation. For
instance, in case of a fibercut disconnecting a datacenter,
an operator might move all user traffic to a different dat-
acenter in a single step which minimizes user impact, but
might affect the hit rate of any underlying caching sys-
tems, and possibly push backend storage systems to their
limits. We curate weak dependencies by analyzing the
dependencies on the critical path as discussed above. We
also perform experiments that intentionally break weak
dependencies in a controlled fashion to assess the corre-
sponding service-level impact.

4.6 Preventing Resource Contention

Safely draining traffic with Maelstrom involves ensuring
that shared resources (e.g., server compute capacity and
network bandwidth) do not become overloaded during a
drain. Our approach to reducing the effect of resource
contention is guided by the following three principals:

• Verifying capacity. We verify that the shared infras-
tructure has enough capacity to absorb the spikes in
utilization caused by draining with Maelstrom through
regular testing. Since Facebook has full monitoring
and control of its backbone network, we can observe
how draining affects peak network utilization. When
bottlenecks arise during tests, we work with teams to
update our routing policies, traffic tagging and priori-
tization schemes, or bandwidth reservation configura-
tion so we can drain services safely. At the network
level, we provision multiple diverse paths both intra-
and inter-datacenters, and plan 75% utilization for our
switches [34].

• Prioritizing important traffic. To handle the event of
a widespread failure where shared resources cannot
support demand, we have a prioritization scheme for
how we drain traffic from a datacenter. We prioritize
draining user-facing traffic as soon as possible to limit
the user-perceivable impact of a failure, and then drain
stateful service traffic. This ensures that the effect of
the drain on an end user is minimized, and it also min-
imizes the overhead of state migration.

• Graceful degradation. Finally, we plan for systems to
degrade gracefully in the case of resource overload.
Some systems employ PID controllers to reduce the
complexity of serving requests (e.g., by incrementally
turning off ranking algorithm complexity to reduce
server compute capacity). Other systems are able to
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respond automatically to resource contention by per-
forming large-scale traffic redirection, while safely ac-
counting for the effect of traffic changes.

4.7 Pacing and Feedback Control

Maelstrom implements a closed feedback loop to pace
the speed of traffic drains based on extensive health mon-
itoring. The drain pace is determined by the step size
(traffic fraction to reduce) and wait time before the next
step. The runbook uses past drain parameters from test-
s/incidents as a starting value for step size and wait time.
When running an actual drain, these parameters are fur-
ther tuned to be more aggressive or conservative based
on the health of underlying systems.

Our pacing mechanism seeks to balance safety and
efficiency—we wish to drain as fast as possible with-
out overloading other datacenters. Specifically, Mael-
strom breaks down a drain operation into multiple steps,
and for each step, tunes the weights such that no traffic
shift breaches the health metrics of any datacenter. For
instance, when draining web traffic from 100% to 0%,
Maelstrom typically does not drain in one step (which
could have ripple effect such as significant cache misses).
Instead, the drain takes multiple steps (with specified
wait time in between), gradually increasing the traffic
shift proportion, in order to allow cache and other sys-
tems to warm up with smoothly increasing load without
getting overwhelmed. The health metrics are also dis-
played in Maelstrom’s UI, so operators can audit opera-
tions and intervene as needed.

Maelstrom reads the health data maintained as time
series. In our experience, a few key metrics from each
service can provide good coverage of their health, and
we infrequently need to add new metrics.

We use drain tests to experiment with various starting
speeds. Based on the empirical mapping from speed to
health metric impact, we tune the default value to the
maximal speed without compromising health or safety.

4.8 Fault Tolerance

Maelstrom is designed to be highly fault tolerant in
the presence of both component and infrastructure fail-
ures. We deploy multiple Maelstrom instances in geo-
distributed datacenters so at least one instance is avail-
able even when one or more datacenters fail. We also
have a minimal version of Maelstrom that can be built
and run on any of our engineering development servers.

We verify the correctness of runbooks by leverage
continuous tests that validate the invariants in every ser-
vice’s runbook including checking for circular depen-
dencies, reachability (no inexistent dependencies), du-
plication, ordering (every drain step is undone with a re-
store), and configuration (mandatory parameters are al-
ways set). If a test fails, the service’s oncall engineers

will be notified to review the service’s tests, dependen-
cies, health indicators, etc. If all tests pass, but other cor-
rectness violations manifest during a drain test (due to in-
sufficient tests), the disaster-recovery team will arbitrate
between services to ensure that problems are fixed and
continuous tests are updated. As discussed in §4.4, live
locks (e.g., due to failures of task execution or condition
checks) are detected by comparing the execution time of
tasks with the 75th percentile of prior running time.

Maelstrom stores its metadata and runtime state in a
highly-available, multi-homed database system. Both
task and stage level state is recorded so both the sched-
uler and executor can be recovered in case of failure.
Maelstrom also records the state of each task (waiting,
running, or completed) into the database so it can re-
sume at the last successful step of a drain or recovery
procedure. For a running task, Maelstrom records the
runtime state of each stage and transition in the database
based on the state machine it generated. Hence, if there is
a crash of Maelstrom (including both the scheduler and
the executor), we can use standard recovery techniques
to read the last committed state from the database to ini-
tialize Maelstrom and resume the execution.

Maelstrom also relies on a highly-available time-series
database to fetch health monitoring data [39]. The
database continuously provides data even in the presence
of failures by varying the resolution of data points.

5 Evaluation

Maelstrom has been in use at Facebook for more than
four years, where it has been used to run hundreds of
drain tests, and helped mitigate and recover from 100+
datacenter-level failures and service-level incidents.

Our evaluation answers the following questions:

• Does Maelstrom enable us to mitigate and recover
from real disasters safely and efficiently?

• Does Maelstrom provide a safe and efficient method-
ology for regular drain tests?

• How quickly does Maelstrom drain and restore differ-
ent types of traffic?

5.1 Mitigating Disasters

Power and network outages. Maelstrom is our pri-
mary tool to mitigate and recover from disasters impact-
ing physical infrastructure whether caused by power out-
ages or backbone network failures, resulting in the total
or partial unavailability of datacenters. Taking the net-
work as an example, a single fibercut almost never dis-
connects a datacenter; typically, one link is lost and net-
work flows reroute over alternate paths. This rerouting
procedure often takes tens of seconds and could impact
users. On the other hand, a single-point-of-failure link,
e.g., a trans-Atlantic or trans-Pacific optical cable, can
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get cut [34]—such incidents are severe in both magni-
tude and duration-to-fix, thus requiring datacenter drains.

A recent incident caused by fibercuts led to the loss of
over 85% of the capacity of the backbone network that
connects a datacenter to our infrastructure. This inci-
dent was immediately detected as we experienced a dip
in site egress traffic. The disaster was mitigated by the
site operators using Maelstrom to drain all user and ser-
vice traffic out of the datacenter in about 1.5 hours, with
most user-facing traffic drained in about 17 minutes. The
remaining network capacity was used to replicate data
to the storage systems resident in that datacenter (which
helps efficiently redirect user traffic back, once the fiber
is repaired). It took several hours to repair the backbone
network, at which point we used Maelstrom to restore all
traffic back to the datacenter.

Note: when a datacenter is drained, users may expe-
rience higher latency, as they are redirected to a remote
datacenter, or experience reconnection (only for sticky
services). Draining faster could reduce the amount of
time during which users experience increased latency.
We are continually working to decrease dependencies
and optimize constraints to enable faster drains.

Software failures. Maelstrom is also used to respond to
service-level incidents caused by software errors, includ-
ing bugs and misconfiguration [22, 23, 33, 52, 53]. These
incidents are typically triggered in two ways:

• software errors in ongoing rollouts. Despite the wide
adoption of end-to-end testing, canaries, and staged
rollout, bugs or misconfiguration can still make their
way into production systems.

• latent software errors. A software release or configu-
ration change might trigger latent bugs or misconfigu-
ration residing in production systems.

In both cases, any error or disruption ought to trigger an
alert and inform operators. The operators need to decide
between two options: reverting the offending change(s),
or fixing forward after diagnosing the problem.

Unfortunately, neither of these options is trivial. First,
it may take time to identify the offending change (or
changes) due to the challenge of debugging large-scale
distributed systems. Second, rollback to an early version
may cause other issues such as version incompatibility,
which can result in other failures. Third, it takes time to
diagnose, code up a fix, test it thoroughly, and then de-
ploy it into production [55]. During this time, the error
continues to manifest in production.

Maelstrom provides a pragmatic solution for reducing
the impact of failures by moving diagnosis and recovery
out of the critical path—it simply drains service-specific
traffic from the failing datacenters when failures are de-
tected. We find that this mitigation approach is robust

Figure 7: Draining stateless traffic. We apply a multiplier (dotted line)
to the edge weight (cf. §2) of stateless traffic in Target DC to drain
stateless traffic. The long tail of Target DC traffic is from DC-internal
requests that are controlled separately from the edge weight.

when paired with a locality-based, staged rollout strat-
egy for all software and configuration changes.

Maelstrom was used to mitigate a recent service in-
cident where a configuration change was rolled out to
all instances of our search aggregator deployed in one of
our datacenters. The configuration change inadvertently
triggered a new code path and exposed a latent bug in the
aggregator code (a dangling pointer). All the instances
in the datacenter immediately crashed due to segfaults.

This incident was mitigated by draining service traf-
fic from the datacenter where the misconfigured search
aggregators were deployed. Detecting the incident took
only 2 minutes as it immediately triggered alerts. It took
7 minutes to drain service requests out of the affected
datacenter using Maelstrom. Failure diagnosis (identify-
ing the root cause) took 20 minutes. Thus, Maelstrom re-
duced the duration of service-level impact by about 60%.

5.2 Draining Different Types of Traffic

5.2.1 Service-specific Traffic

Stateless traffic. Figure 7 shows how Maelstrom drains
stateless web traffic of one of our services out of a target
datacenter in a drain test. We normalize the data, be-
cause different datacenters have different sizes (in terms
of the magnitude of traffic served) and we want to high-
light the relative trends of each datacenter during the
drain. The runbook for draining web traffic includes a
TrafficShift task which manipulates the edge weights
of the target datacenter by applying a drain multiplier
between [0.0, 1.0]. The drain was executed in multiple
steps indicated by the drain multiplier changes in Fig-
ure 7. Splitting the drain into multiple steps prevents
traffic from shifting too fast and overloading the other
datacenters (cf. §4.7).

As shown in Figure 7, the traffic follows the changes
of the drain multiplier instantly. Maelstrom can drain
stateless traffic fast. Maelstrom can drain traffic of most
of our web services out of a datacenter in less than 10
minutes without any user-visible, service-level impact.
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Figure 8: Draining sticky traffic. We drain sticky traffic by first apply-
ing a multiplier (dotted line) to the edge weight of a target DC (similar
to stateless traffic). We then restart the jobs in the target DC to force
already-established sessions in the target DC to reconnect in other DCs.

Figure 9: Drain and restore replication traffic to mitigate an incident.
The “protected” line denotes the limit of steady state network utiliza-
tion (which is 75% of the maximum capacity, cf. §4.6), as it includes
the buffer for maintenance and upgrades. The replication service had a
significant spike that, combined with network utilization by other ser-
vices, consumed all available network bandwidth for recovery.

The 10-minute duration is used as a baseline for draining
web traffic during real disasters (cf. §5.1).
Sticky traffic. Figure 8 shows how Maelstrom drains
sticky traffic for a messaging service. This runbook con-
tains two tasks as described in §4.4: (1) changing edge
weights to redirect new, incoming session requests (at
the 42nd minute), and then (2) tearing down established
sessions by restarting container jobs, if the client can still
connect to the datacenter (at the 75th minute). Figure 8
shows the effects of these two tasks—it took about 25
minutes to reduce the number of sessions down to 50%,
and the remaining time to restart jobs and reset connec-
tions. Note that we need to pace job restarts to avoid
a thundering-herd effect caused by computationally ex-
pensive session establishment. During real disasters, we
find that clients’ connections are severed due to network
disconnections or server crashes, so drains are faster.
Replication traffic. Figure 9 shows how Maelstrom
drains and restores replication traffic of a multi-tenant
storage system when the target datacenter was subject to
a network partition. Maelstrom drains replication traffic
by disabling the replication to the storage nodes in the

Figure 10: Draining stateful traffic. Maelstrom moves primary data
shards from a storage system and simultaneously drains traffic from
the services that access the storage system.

Traffic Service # Tasks # Steps Drain Time

Stateless Web service 1 10 10 min
Sticky Messaging 2 1 ! 5 3 min ! 61 min
Replication KV store (replica) 1 1 3 min
Stateful KV store (master) 1 24 18 min

Table 3: Time for draining different types of traffic of representative
services at Facebook. The time is collected from our recent drain tests.
For sticky traffic, ! denotes the two tasks for draining the traffic.

target datacenter after pointing read traffic away from
the replicas. The drain was smooth, but the restoration
caused an incident. Upon re-enabling replication for re-
covery, the system attempted to resolve its stale state as
quickly as possible, transferring data from other datacen-
ters at more than 10⇥ the steady-state rate. This sat-
urated network capacity at multiple layers in our back-
bone and datacenter network fabric and triggered pro-
duction issues in other systems that shared the network.
Figure 9 shows how a spike in network bandwidth con-
sumption from a replication service can crowd out other
services. In this incident, we found that other critical ser-
vices could not transfer data cross-region which resulted
in delays to serve user traffic. We have addressed this
problem by incorporating network utilization limits for
different services, and also considering network usage
when running recovery for multiple services in parallel.

Stateful traffic. Figure 10 shows how Maelstrom
drained stateful traffic of three services: an “ads”, an
“aggregator–leaf”, and a “classification” service. All
three services store their data in a multi-tenant stateful
storage system where the data are sharded. The storage
system distributes replicas of each shard in multiple dat-
acenters to ensure high availability. During the drain,
Maelstrom promotes a replica outside of the datacenter
to be the new primary shard, and then shifts traffic to it.

Figure 10 plots the fraction of primary shards in the
datacenter being drained. From the perspective of the
storage system, each of these services is independent
of the others because their data are sharded separately.
This allows Maelstrom to drain writes and promote their
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Figure 11: Draining and restoring traffic for 100+ production systems
in a datacenter. Each line corresponds to the traffic of a specific service.
“Facebook Web” refers to the traffic of Facebook’s main web service.

Figure 12: Datacenter utilization when the traffic of an entire datacen-
ter is drained and restored.

masters in parallel while respecting shared resource con-
straints. Note that Figure 10 only highlights three ser-
vices for clarity—Maelstrom drains tens of thousands of
shards for hundreds of services in the datacenter.
Timing. Table 3 shows the time for Maelstrom to drain
one representative service that displays each type of traf-
fic pattern. Note that they vary significantly in duration
from 3 minutes for a replication system where a drain is
as simple as redirecting read requests and shutting the in-
stance down, to a sticky service that takes 61 minutes to
drain at its natural pace. Note that we encourage services
to plan for different disaster scenarios but do not force
particular policies for timing or reliability unless the ser-
vice is in the critical path for evacuating a datacenter.

5.2.2 Draining All the Traffic of a Datacenter

Figure 11 shows a drain test that drains a wide variety
of service traffic hosted in the datacenter, including both
user traffic as well as internal service traffic. We see
that no single service constitutes a majority of the traffic.
Maelstrom achieved a high degree of parallelism while
maintaining safety by ordering drains according to the
dependency graph encoded in the runbook (cf. §4.5).

Figure 12 is a complement of Figure 11 that depicts
the normalized utilization of both the target datacenter
that is being drained of traffic, and the other datacenters
that the traffic is being redirected to and then restored

Runbook # Tasks # Dep. # Tasks on CP

Mitigation (drain) 79 109 8 (9.6%)
Recovery (restore) 68 93 5 (7.4%)

Table 4: Aggregate statistics of the runbooks that drain and restore all
user-facing traffic in one of our datacenters, respectively. “CP” is an
abbreviation of critical path.

Figure 13: Histogram of number
of tasks to drain and restore user-
facing traffic.

Figure 14: Histogram of number
of steps per task when draining
and restoring user-facing traffic.

from. We see that once all traffic is drained, the utiliza-
tion of the target datacenter drops to zero. Meanwhile,
the utilization of the other datacenters increases as they
need to serve more traffic. None of the remaining data-
centers were overloaded—traffic is evenly distributed.

Aggregate statistics. Table 4 analyzes the runbooks
used to drain and restore all user-facing traffic and their
dependent services from one of our datacenters. Our
goal is to provide insights into the policies we encode
in Maelstrom. The mitigation runbook consists of 79
tasks with 109 dependencies, of which less than 10% of
the tasks are on the critical path. Note that this minimal
critical path is not an organic outcome but rather the re-
sult of continually optimizing and pruning dependencies
over four years, based on the critical path analysis de-
scribed in §4.5. The recovery component has fewer tasks
on the critical path, implying that there is higher paral-
lelism during recovery than mitigation.

The histogram displayed in Figure 13 shows that there
are 13 different template types in use in this runbook.
Further, we find that TrafficShift is the most frequently
used template. This is because most user traffic is deliv-
ered over HTTPS to our web servers, and hence manipu-
lated by tuning weighs in our software load balancers.

Figure 14 plots the number of steps per tasks—observe
that most tasks were executed in more than one step, and
several were paced in more than 10 steps, during both the
mitigation and recovery phases.

5.3 Efficiency

We leverage drain tests to estimate how fast we are able
to mitigate a real disaster. In this section, we focus on the
scenario where an entire datacenter fails. Table 5 shows
the time taken by Maelstrom to drain and restore traffic
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Phases (Traffic Shift)
Time Duration

Maelstrom Sequential

Drain web traffic 10 min ⇥1
Drain all user-facing traffic 40 min ⇥6.6
Drain all service traffic 110 min ⇥6.3
Restore web traffic 50 min ⇥1
Restore internal service traffic 1.5 hour ⇥4.3
Restore all service traffic 2 hour ⇥5.6

Table 5: Time duration of draining and restoring traffic of a datacenter.
The data are collected from a real disaster for which we drained all the
traffic out of the entire datacenter (and restored it after repair).

in a datacenter in different phases. The traffic of Face-
book’s main web service, referred to as web traffic in
Figure 11 and Table 5, is used as the baseline. It takes
less than a minute to propagate a change of drain multi-
plier (cf. §5.2.1) to Edge LBs when draining web traffic.
Maelstrom typically does not drain web traffic in one step
but gradually adjusts speed based on health monitoring.
It takes about 10 minutes to fully drain web traffic, and
50 minutes to restore it. Restoration is slow as we wish
to minimize backend overload due to cold caches. Over-
all, it takes 40 minutes to drain all the user-facing traffic,
and 110 minutes to drain all service traffic including the
traffic of internal systems.

We next evaluate whether Maelstrom provides an effi-
cient methodology to mitigate and recover from a data-
center failure. We calculate the time needed to drain and
restore the datacenter sequentially by summing up the
time used by the traffic drain and restoration of every ser-
vice in a runbook. As shown in Table 5, sequential drain
and restoration would take up to 6⇥ longer than Mael-
strom. The results verify the efficiency of Maelstrom and
demonstrate the importance of parallelizing operations.

Note that restoring traffic back to a datacenter encoun-
ters a narrower bottleneck where a single target data-
center is receiving more load, in comparison to draining
traffic from a datacenter to many others. We prioritize
restoring user-facing traffic back into the datacenter as
this minimizes the risk of exposing users to multiple in-
dependent datacenter failures.

6 Experience

Drain tests help us understand interactions amongst

systems in our complex infrastructure. We find drain
tests to be one of the most efficient ways to understand
how a system fits into our infrastructure. A success-
ful drain test is a validation of our tooling which tracks
inter-system dependencies and health monitoring, while
a failed drain test reveals gaps in our understanding. We
find that drain tests are truer validators of inter-service
dependencies than other methods we have experimented
with, such as methods based on log and trace analysis.

Drain tests help us prepare for disaster. Prior to run-
ning regular drain tests, we often encountered delays in
disaster mitigation due to our tools having atrophied as
they did not account for evolving software, configuration
and shared infrastructure components. Drain tests ex-
ercise our tooling continuously and confirm operational
behavior in a controlled manner.
Drain tests are challenging to run. We observe that
infrastructure changes, new dependencies, software re-
gressions, bugs and various other dynamic variables in-
evitably trigger unexpected issues during a drain test. We
strive to continually tune and improve our monitoring
systems to quickly assess impact and remediate issues.
Further, we have focused on communication and contin-
ually educate engineering teams at Facebook on our tests
and their utility so our systems are prepared.
Automating disaster mitigation completely is not a

goal. Our initial aspiration was to take humans out of
the loop when mitigating disasters. However, we have
learned that it is prohibitively difficult to encode the an-
alytical and decision making skills of human operators
without introducing tremendous complexity. The current
design of Maelstrom is centered around helping opera-
tors triage a disaster and efficiently mitigate it using our
tools and well-tested strategies. We intentionally expose
runtime states of each task and allow human operators
to override operations. This strategy has proved sim-
pler and more reliable than attempting to automate every-
thing. Our experience with operators confirms that Mael-
strom significantly reduces operational overhead and the
errors that are inevitable in a manual mitigation strategy.
Building the right abstractions to handle failures is

important, but takes time and iteration. We have
evolved Maelstrom’s abstractions to match the mental
model of the teams whose systems are managed by Mael-
strom. We find that our separation of runbooks and
tasks allows each team to focus on maintaining their own
service-specific policies without the need to (re-)build
mechanisms. This separation also allows us to efficiently
onboard new services, and ensure a high quality bar for
task implementation. Lastly, we find that as new systems
are onboarded, we need to create new task templates and
other supporting extensions to satisfy their needs.

7 Limitation and Discussion

Maelstrom, and draining traffic in general to respond to
outages, is not a panacea. In fact, we find that there is no
single approach or mechanism that can mitigate all the
failures that might affect a large-scale Internet service.

Capacity planning is critical to ensure that healthy dat-
acenters and shared infrastructure like backbone and the
datacenter network fabric have sufficient headroom to
serve traffic from a failing datacenter. Drain tests can
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help validate capacity plans but shortfalls can still be dif-
ficult to address as it takes time to purchase, deliver, and
turn-up machines and network capacity. If a capacity
shortfall were to exist, it is wholly possible that draining
traffic from a failing datacenter might overwhelm healthy
datacenters and trigger cascading failures. Our strategy
is to work in lockstep with capacity planning, and also
regularly perform drills (storm tests) that isolate one or
more datacenters and confirm that the remaining capac-
ity can serve all our user and service needs.

If an outage is triggered by malformed client requests,
or a malicious payload, redirecting traffic away from a
failing datacenter to healthy ones will spread the failure.
We handle this scenario by applying traffic shifts in mul-
tiple steps; the first step is intentionally small so we can
monitor all systems in the target datacenter and confirm
their health before initiating a large-scale drain.

Traffic drains may not always be the fastest mitigation
strategy. Specifically, outages triggered by buggy soft-
ware or configuration changes might be mitigated faster
by reverting suspect changes. We expect operators to de-
cide which mitigation strategy to use.

8 Related Work

Many prior papers study failures and outages in large
scale systems running on cloud infrastructure [18,22–24,
27, 33, 35, 37, 38, 56]. These papers share several com-
mon conclusions: 1) outage is inevitable at scale when
systems are exposed to a myriad set of failure scenarios,
2) large-scale, complex systems cannot be completely
modeled for reliability analysis, and thus failure response
cannot be predicted in advance; and 3) the philosophy of
building and operating highly-available services is to an-
ticipate disasters and proactively prepare for them. We
agree with these conclusions and built Maelstrom to mit-
igate and recover from failures.

Many prior studies have focused on fast recovery [11,
14, 38, 40, 41] and efficient diagnosis [9, 15, 31, 57, 58].
While these studies help resolve the root cause of failures
and outages in a timely manner, our experience shows
that even this speedy resolution exposes users to a frus-
trating experience. We use Maelstrom to mitigate failure
and reduce user-visible impact, which buys us time for
thorough diagnosis and recovery.

Fault-injection testing has been widely adopted to con-
tinuously exercise the fault tolerance of large-scale sys-
tems [2–5,8,21,30,49]. Maelstrom is not a fault-injection
tool like Chaos Monkey [8, 49]. Specifically, Maelstrom
is not designed for simulating machine- or component-
level failures, but rather for responding to disastrous fail-
ures at the datacenter level.

Drain tests are different from annual, multi-day testing
drills such as DiRT [29] and GameDay [42]. Fundamen-
tally, drain tests focus on testing mitigation and recov-

ery for user traffic and services without fully isolating or
shutting down a datacenter. Drain tests are fully auto-
mated and run frequently. In contrast, DiRT and Game-
Day intentionally disconnect or shutdown one or more
datacenters fully and exercise the entire technical and op-
erational spectrum, including detection, mitigation, esca-
lation, and recovery components of a response strategy.
Aside: we also use Maelstrom in our own periodic large-
scale, DiRT-like drills to verify the capability and end-
to-end effectiveness of our disaster response strategies.

Kraken and TrafficShifter [32, 50] leverage live traf-
fic for load testing to identify resource utilization bottle-
necks; TrafficShift [28] can also drain stateless web traf-
fic. Maelstrom uses similar underlying traffic manage-
ment primitives to Kraken (cf. §2), and goes beyond Traf-
ficShift in its capability to drain different traffic types,
track dependencies, and order operations.

Traffic draining has been anecdotally mentioned as a
method for mitigating failures for site reliability [10, 28,
29]. To our knowledge, existing systems only work with
one service or one type of traffic, and cannot drain differ-
ent types of traffic of heterogenous services. Maelstrom
serves as the sole system for draining and restoring all
the services in all the datacenters at Facebook.

9 Conclusion

As our infrastructure grows, we have learned that it is
critical to develop trusted tools and mechanisms to pre-
pare for and respond to failure. We describe Maelstrom
which we have built and improved over the past four
years to handle datacenter-level disasters. Maelstrom
tracks dependencies amongst services and uses feedback
loops to handle outages safely and efficiently. We pro-
pose drain tests as a new testing strategy to identify de-
pendencies amongst services, and ensure that tools and
procedures for handling failures are always up to date.

Much of the focus of Maelstrom has been around en-
suring that Facebook stays available when an incident af-
fects an entire datacenter. In practice, we find that many
incidents affect only a subset of hardware and software
systems rather than entire datacenters. Our next focus is
on building tools to isolate outages to the minimal subset
of the systems they affect.
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Abstract
We introduce situation-aware updates and crash re-

covery (SAUCR), a new approach to performing repli-
cated data updates in a distributed system. SAUCR adapts
the update protocol to the current situation: with many
nodes up, SAUCR buffers updates in memory; when fail-
ures arise, SAUCR flushes updates to disk. This situation-
awareness enables SAUCR to achieve high performance
while offering strong durability and availability guaran-
tees. We implement a prototype of SAUCR in ZooKeeper.
Through rigorous crash testing, we demonstrate that
SAUCR significantly improves durability and availabil-
ity compared to systems that always write only to mem-
ory. We also show that SAUCR’s reliability improvements
come at little or no cost: SAUCR’s overheads are within
0%-9% of a purely memory-based system.

1 Introduction
The correctness and performance of a fault-tolerant sys-
tem depend, to a great extent, upon its underlying repli-
cation protocols. In the modern data center, these proto-
cols include Paxos [45], Viewstamped Replication [48],
Raft [57], and ZAB [39]. If these protocols behave incor-
rectly, reliability goals will not be met; if they perform
poorly, excess resources and cost will be incurred.

A key point of differentiation among these protocols
relates to how they store system state (§2). In one ap-
proach, which we call disk durable, critical state is repli-
cated to persistent storage (i.e., hard drives or SSDs)
within each node of the system [13, 14, 17, 37, 57]. In
the contrasting memory durable approach, the state is
replicated only to the (volatile) memory of each ma-
chine [48, 55]. Unfortunately, neither approach is ideal.

With the disk-durable approach, safety is paramount.
When correctly implemented, by committing updates
to disks within a majority of nodes, the disk-durable
approach offers excellent durability and availability.
Specifically, data will not be lost if the nodes crash and
recover; further, the system will remain available if a
bare majority of nodes are available. Unfortunately, the
cost of safety is performance. When forcing updates
to hard drives, disk-durable methods incur a 50× over-
head; even when using flash-based SSDs, the cost is high
(roughly 2.5×).

With the memory-durable approach, in contrast, per-
formance is generally high, but at a cost: durability. In
the presence of crash scenarios where a majority of nodes
crash (and then recover), existing approaches can lead to
data loss or indefinite unavailability.

The distributed system developer is thus confronted
with a vexing quandary: choose safety and pay a high
performance cost, or choose performance and face a
potential durability problem. A significant number of
systems [17, 41, 48, 55, 61] lean towards performance,
employing memory-durable approaches and thus risking
data loss or unavailability. Even when using a system
built in the disk-durable manner, performance concerns
can entice the unwary system administrator towards dis-
aster; for instance, the normally reliable disk-durable
ZooKeeper can be configured to run in a memory-
durable mode [5], leading (regrettably) to data loss [30].

In this paper, we address this problem by introducing
situation-aware updates and crash recovery or SAUCR

(§3), a hybrid replication protocol that aims to provide
the high performance of memory-durable techniques
while offering strong guarantees similar to disk-durable
approaches. The key idea underlying SAUCR is that the
mode of replication should depend upon the situation the
distributed system is in at a given time. In the common
case, with many (or all) nodes up and running, SAUCR

runs in memory-durable mode, thus achieving excellent
throughput and low latency; when nodes crash or become
partitioned, SAUCR transitions to disk-durable operation,
thus ensuring safety at a lower performance level.

SAUCR applies several techniques to achieve high
performance and safety. For example, a mode-switch
technique enables SAUCR to transition between the fast
memory-durable and the safe disk-durable modes. Next,
given that SAUCR can operate in two modes, a node re-
covering from a crash performs mode-aware crash re-
covery; the node recovers the data from either its local
disk or other nodes depending on its pre-crash mode. Fi-
nally, to enable a node to safely recover from a fast-mode
crash, the other nodes store enough information about the
node’s state within them in the form of replicated last-
logged entry (LLE) maps.

The effectiveness of SAUCR depends upon the simul-
taneity of failures. Specifically, if a window of time ex-
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ists between individual node failures, the system can de-
tect and thus react to failures as they occur. SAUCR takes
advantage of this window in order to move from its fast
mode to its slow-and-safe mode.

With independent failures, such a time gap between
failures exists because the likelihood of many nodes fail-
ing together is negligible. Unfortunately, failures can
often be correlated as well, and in that case, many
nodes can fail together [31, 35, 42, 64]. Although many
nodes fail together, a correlated failure does not neces-
sarily mean that the nodes fail at the same instant: the
nodes can fail either non-simultaneously or simultane-
ously. With non-simultaneous correlated failures, a time
gap (ranging from a few milliseconds to a few seconds)
exists between the individual failures; such a gap allows
SAUCR to react to failures as they occur. With simul-
taneous failures, in contrast, such a window does not
exist. However, we conjecture that such truly simulta-
neous failures are extremely rare; we call this the Non-
Simultaneity Conjecture (NSC). While we cannot defini-
tively be assured of the veracity of NSC, our analysis
(§2.3) of existing data [31, 33] hints at its likely truth.

Compared to memory-durable systems, SAUCR im-
proves reliability under many failure scenarios. Under
independent and non-simultaneous correlated failures,
SAUCR always preserves durability and availability, of-
fering the same guarantees as a disk-durable system; in
contrast, memory-durable systems can lead to data loss
or unavailability. Additionally, if NSC holds, SAUCR al-
ways provides the same guarantees as a disk-durable sys-
tem. Finally, when NSC does not hold and if more than a
majority of nodes crash in a truly simultaneous fashion,
SAUCR remains unavailable, but preserves safety.

We implement (§4) and evaluate (§5) a prototype of
SAUCR in ZooKeeper [4]. Through rigorous fault injec-
tion, we demonstrate that SAUCR remains durable and
available in hundreds of crash scenarios, showing its ro-
bustness. This same test framework, when applied to ex-
isting memory-durable protocols, finds numerous cases
that lead to data loss or unavailability. SAUCR’s reli-
ability improvements come at little or no performance
cost: SAUCR’s overheads are within 0%-9% of memory-
durable ZooKeeper across six different YCSB work-
loads. Compared to the disk-durable ZooKeeper, with
a slight reduction in availability in rare cases, SAUCR im-
proves performance by 25× to 100× on HDDs and 2.5×
on SSDs.

2 Distributed Updates and Recovery
In this section, we first describe the disk-durable and
memory-durable protocols. We then describe the char-
acteristics of different kinds of failures. Finally, we draw
attention to the non-reactiveness to failures and the static
nature of existing protocols.

Mode Avg. Latency (µs) Throughput (ops/s)
HDD

cluster1
fsync-s disabled 327.86 3050.1

disk durability 16665.18 (50.8× ↑) 60.0 (50.8× ↓)
SSD

cluster2
fsync-s disabled 461.2 2168.34

disk durability 1027.3 (2.3× ↑) 973.4 (2.3× ↓)

Table 1: Disk Durability Overheads. The table shows the over-
heads of disk durability. The experimental setup is detailed in §5.2.

2.1 Disk-Durable Protocols
Disk-durable protocols always update the disk on a cer-
tain number of nodes upon every data modification.
For example, ZooKeeper [4], etcd [24], and other sys-
tems [14,49,53,62] persist every update on a majority of
nodes before acknowledging clients.

With the exception of subtle bugs [2], disk-durable
protocols offer excellent durability and availability.
Specifically, committed data will never be lost under any
crash failures. Further, as long as a majority of nodes are
functional, the system will remain available. Unfortu-
nately, such strong durability and availability guarantees
come at a cost: poor performance.

Disk-durable protocols operate with caution and pes-
simistically flush updates to the disk (e.g., by invoking
the fsync system call [11, 60]). Such forced writes in
the critical path are expensive, often prohibitively so. To
highlight these overheads, we conduct a simple experi-
ment with ZooKeeper in the following modes: first, in
the disk-durable configuration in which the fsync calls
are enabled; second, with fsync calls disabled. A client
sends update requests in a closed loop to the leader which
then forwards the requests to the followers. We run the
experiment on a five-node cluster and thus at least three
servers must persist the data before acknowledgment.

As shown in Table 1, on HDDs, forced writes incur
a 50× performance overhead compared to the fsync-
disabled mode. Even on SSDs, the cost of forced writes
is high (2.3×). While batching across many clients may
alleviate some overheads, disk-durable protocols are fun-
damentally limited by the cost of forced writes and thus
suffer from high latencies and low throughput.

A disk-durable update protocol is usually accompa-
nied by a disk-based recovery protocol. During crash-
recovery, a node can immediately join the cluster just af-
ter it recovers the data from its disk. A recovering node
can completely trust its disk because the node would not
have acknowledged any external entity before persisting
the data. However, the node may be lagging: it may not
contain some data that other nodes might have stored af-
ter it crashed. Even in such cases, the node can imme-
diately join the cluster; if the node runs for an election,
the leader-election protocol will preclude this node from
becoming the leader because it has not stored some data
that the other nodes have [2, 57]. If a leader already ex-
ists, the node fetches the missed updates from the leader.
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Figure 1: Problems in Memory-Durable Approaches. (a) and
(b) show how a data loss or an unavailability can occur with oblivious
and loss-aware memory durability, respectively. In (i), the nodes fail
simultaneously; in (ii), they fail non-simultaneously, one after the other.

2.2 Memory-Durable Protocols
Given the high overheads imposed by a disk-durable pro-
tocol, researchers and practitioners alike have proposed
alternative protocols [17,55], in which the data is always
buffered in memory, achieving good performance. We
call such protocols memory-durable protocols.

2.2.1 Oblivious Memory Durability
The easiest way to achieve memory “durability” is obliv-
ious memory durability, in which any forced writes in
the protocol are simply disabled, unaware of the risks of
only buffering the data in memory. Most systems provide
such a configuration option [8, 22, 27, 62]; for example,
in ZooKeeper, turning off the forceSync flag disables all
fsync calls [5]. Turning off forced writes increases per-
formance significantly, which has tempted practitioners
to do so in many real-world deployments [29, 38, 59].

Unfortunately, disabling forced writes might lead to a
data loss [5, 43] or sometimes even an unexpected data
corruption [68]. Developers and practitioners have re-
ported several instances where this unsafe practice has
led to disastrous data-loss events in the real world [7,30].

Consider the scenarios shown in Figure 1(a), in which
ZooKeeper runs with forceSync disabled. If a majority
of nodes crash and recover, data could be silently lost.
Specifically, the nodes that crash could form a major-
ity and elect a leader among themselves after recovery;
however, this majority of nodes have lost their volatile
state and thus do not know of the previously committed
data, causing a silent data loss. The intact copies of data
on other nodes (servers 4 and 5) can be overwritten by
the new leader because the followers always follow the
leader’s state in ZooKeeper [2, 57].

2.2.2 Loss-Aware Memory Durability
Given that naı̈vely disabling forced writes may lead to a
silent data loss, researchers have examined more careful
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Figure 2: Summary of Protocol Behaviors and Guarantees. The
figure shows how the disk-durable and memory-durable protocols be-
have under failures and the guarantees they provide.

approaches. In these approaches, a node, after a crash
and a subsequent reboot, realizes that it might have lost
its data; thus, a recovering node first runs a distinct re-
covery protocol. We call such approaches loss-aware
memory-durable approaches.

The view-stamped replication (VR) protocol [55] is
an example of this approach. Similarly, researchers at
Google observed that they could optimize their Paxos-
based system [17] by removing disk flushes, given that
the nodes run a recovery protocol. For simplicity, we use
only VR as an example for further discussion.

In VR, when a node recovers from a crash, it first
marks itself to be in a recovering state, in which the
node can neither participate in replication nor give votes
to elect a new leader (i.e., a view change) [48]. Then,
the node sends a recovery message to other servers. A
node can respond to this message if it is not in the re-
covering state; the responding node sends its data to the
recovering node. Once the node collects responses from
a majority of servers (including the leader of the latest
view), it can fix its data. By running a recovery protocol,
this approach prevents a silent data loss.

Unfortunately, the loss-aware approach can lead to un-
availability in many failure scenarios. Such an unavail-
ability event could be permanent: the system may re-
main unavailable indefinitely even after all nodes have
recovered from failures. For example, in Figure 1(b), a
majority of nodes crash and recover. However, after re-
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covering from the crash, none of the nodes will be able to
collect recovery responses from a majority of nodes (be-
cause nodes in the recovering state cannot respond to the
recovery messages), leading to permanent unavailability.
Protocols Summary. Figure 2 summarizes the behav-
iors of the disk-durable and memory-durable protocols.
A node either could be functional or could have failed
(crashed or partitioned). Disk-durable protocols remain
available as long as a majority are functional. The sys-
tem becomes temporarily unavailable if a majority fail;
however, it becomes available once a majority recover.
Further, the protocol is durable at all times.

The oblivious memory-durable protocol becomes tem-
porarily unavailable if a majority fail. After recovering
from a failure, a node could be lagging: it either recov-
ers from a crash, losing all its data, or it recovers from
a partition failure, and so it may not have seen updates.
If such functional but lagging nodes form a majority, the
system can silently lose data.

The loss-aware memory-durable approach becomes
temporarily unavailable if the system is unable to form
a majority due to partitions. However, the system be-
comes permanently unavailable if a majority or more
nodes crash at any point; the system cannot recover from
such a state, regardless of how many nodes recover.

2.3 Failures and Failure Asynchrony
Given that existing approaches compromise on either
performance or reliability, our goal is to design a dis-
tributed update protocol that delivers high performance
while providing strong guarantees. Such a design needs
a careful understanding of how failures occur in data-
center distributed systems, which we discuss next.

Similar to most distributed systems, our goal is to tol-
erate only fail-recover failures [34, 36, 45, 57] and not
Byzantine failures [16, 46]. In the fail-recover model,
nodes may fail any time and recover later. For instance,
a node may crash due to a power loss and recover when
the power is restored. When a node recovers, it loses
all its volatile state and is left only with its on-disk data.
We assume that persistent storage will be accessible af-
ter recovering from the crash and that it will not be cor-
rupted [32]. In addition to crashing, sometimes, a node
could be partitioned and may later be able to communi-
cate with the other nodes; however, during such partition
failures, the node does not lose its volatile state.

Sometimes, node failures are independent. For ex-
ample, in large deployments, single-node failure events
are often independent: a crash of one node (e.g., due
to a power failure) does not affect some other node. It
is unlikely for many such independent failures to occur
together, especially given the use of strategies such as
failure-domain-aware placement [3, 44, 50].

With independent failures, the likelihood that a ma-

jority of nodes fail together is negligible. Under such a
condition, designing a protocol that provides both high
performance and strong guarantees is fairly straightfor-
ward: the protocol can simply buffer updates in memory
always. Given that a majority will not be down at any
point, the system will always remain available. Further,
at least one node in the alive majority will contain all the
committed data, preventing a data loss.

Unfortunately, in reality, such a failure-independence
assumption is rarely justified. In many deployments, fail-
ures can be correlated [12,20,25,35,64,66]. During such
correlated crashes, several nodes fail together, often due
to the same underlying cause such as rolling reboots [31],
bad updates [54], bad inputs [26], or data-center-wide
power outages [42].

Given that failures can be correlated, it is likely that
the above naı̈ve protocol may lose data or become un-
available. An ideal protocol must provide good perfor-
mance and strong guarantees in the presence of corre-
lated failures. However, designing such a protocol is
challenging. At a high level, if the updates are buffered in
memory (aiming to achieve good performance), a corre-
lated failure may take down all the nodes together, caus-
ing the nodes to lose the data, affecting durability.

Although many or all nodes fail together, a correlated
failure does not mean that the nodes fail at the same
instant; the nodes can fail either non-simultaneously
or simultaneously. With non-simultaneous correlated
crashes, a time gap between the individual node failures
exists. For instance, a popular correlated-crash scenario
arises due to bad inputs: many nodes process a bad input
and crash together [26]. However, such a bad input is
not applied at exactly the same time on all the nodes (for
instance, a leader applies an input before its followers),
causing the individual failures to be non-simultaneous.

In contrast, with simultaneous correlated crashes, such
a window between failures does not exist; all nodes may
fail before any node can detect a failure and react to
it. However, we conjecture that such truly simultane-
ous crashes are extremely rare; we call this the Non-
Simultaneity Conjecture (NSC). Publicly available data
supports NSC. For example, a study of failures in Google
data centers [31] showed that in most correlated failures,
nodes fail one after the other, usually a few seconds apart.

We also analyze the time gap between failures in the
publicly available Google cluster data set [33]. This data
set contains traces of machine events (such as the times
of node failures and restarts) of about 12K machines over
29 days and contains about 10K failure events. From the
traces, we randomly pick five machines (without consid-
ering failure domains) and examine the timestamps of
their failures. We repeat this 1M times (choosing differ-
ent sets of machines). We find that the time between two
failures among the picked machines is greater than 50
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ms in 99.9999% of the cases. However, we believe the
above percentage is a conservative estimate, given that
we did not pick the machines across failure domains; do-
ing so is likely to increase the time between machine fail-
ures. Thus, we observe that truly simultaneous machine
failures are rare: a gap of 50 ms or more almost always
exists between the individual failures.

Given that in most (if not all) failure scenarios, a win-
dow of time exists between the individual failures, a sys-
tem can take advantage of the window to react and per-
form a preventive measure (e.g., flushing to disk). A sys-
tem that exploits this asynchrony in failures can improve
durability and availability significantly.

2.4 Non-Reactiveness and Static Nature
We observe that existing update protocols do not react to
failures. While it may be difficult to react to truly simul-
taneous failures, with independent and non-simultaneous
failures, an opportunity exists to detect failures and per-
form a corrective step. However, existing protocols do
not react to any failure.

For example, the oblivious memory-durable proto-
col can lose data, regardless of the simultaneity of the
failures. Specifically, a data loss occurs both in Fig-
ure 1(a)(i) in which the nodes crash simultaneously and
(a)(ii) in which they fail non-simultaneously. Similarly,
the loss-aware approach can become unavailable, regard-
less of the simultaneity of the failures (as shown in Fig-
ure 1(b)). This is the reason we do not differentiate si-
multaneous and non-simultaneous failures in Figure 2;
the protocols behave the same under both failures.

Next, we note that the protocols are static in nature:
they always update and recover in a constant way, regard-
less of the situation; this situation-obliviousness is the
cause for poor performance or reliability. For example,
the disk-durable protocol constantly anticipates failures,
forcing writes to disk even when nodes never or rarely
crash; this unnecessary pessimism leads to poor perfor-
mance. In contrast, when nodes rarely crash, a situation-
aware approach would buffer updates in memory, achiev-
ing high performance. Similarly, the memory-durable
protocol always optimistically buffers updates in mem-
ory even when only a bare majority are currently func-
tional; this unwarranted optimism results in poor durabil-
ity or availability. In contrast, when only a bare majority
are alive, a situation-aware approach would safely flush
updates to disk, improving durability and availability.

Our approach, situation-aware updates and crash re-
covery or SAUCR, reacts to failures quickly with correc-
tive measures, and adapts to the current situation of the
system. Such reactiveness and situation-awareness en-
ables SAUCR to achieve high performance similar to a
memory-durable protocol while providing strong guar-
antees similar to a disk-durable protocol.

3 Situation-Aware Updates and Recovery
The main idea in SAUCR is that of situation-aware oper-
ation, in which the system operates in two modes: fast
and slow. In the common case, with many or all nodes
up, SAUCR operates in the fast mode, buffering updates
in memory and thus achieving high performance. When
failures arise, SAUCR quickly detects them and performs
two corrective measures. First, the nodes flush their data
to disk, preventing an imminent data loss or unavailabil-
ity. Second, SAUCR commits subsequent updates in slow
mode, in which the nodes synchronously write to disk,
sacrificing performance to improve reliability.

When a node recovers from a crash, it performs mode-
aware recovery. The node recovers its data either from its
local disk or from other nodes depending on whether it
operated in slow or fast mode before it crashed.

We first outline SAUCR’s guarantees (§3.1) and provide
an overview of SAUCR’s modes (§3.2). Next, we discuss
how SAUCR detects and reacts to failures (§3.3), and de-
scribe the mechanisms that enable mode-aware recovery
(§3.4). We then explain how crash recovery works and
show its safety (§3.5). Finally, we summarize SAUCR’s
key aspects and describe the guarantees in detail (§3.6).

3.1 Guarantees
We consider three kinds of failures: independent, cor-
related non-simultaneous, and correlated simultaneous
failures. SAUCR can tolerate any number of indepen-
dent and non-simultaneous crashes; under such failures,
SAUCR always guarantees durability. As long as a ma-
jority of servers eventually recover, SAUCR guarantees
availability. Under simultaneous correlated failures, if
a majority or fewer nodes crash, and if eventually a ma-
jority recover, SAUCR will provide durability and avail-
ability. However, if more than a majority crash simulta-
neously, then SAUCR cannot guarantee durability and so
will remain unavailable. However, we believe such truly
simultaneous crashes are extremely rare. We discuss the
guarantees in more detail later (§3.6).

3.2 SAUCR Modes Overview
We first describe some properties common to many
majority-based systems. We then highlight how SAUCR

differs from existing systems in key aspects.
Most majority-based systems are leader-based [6,57];

the clients send updates to the leader which then forwards
them to the followers. The updates are first stored in a
log and are later applied to an application-specific data
structure. A leader is associated with an epoch: a slice
of time; for any given epoch, there could be at most one
leader [6, 57]. Because only the leader proposes an up-
date, each update is uniquely qualified by the epoch in
which the leader proposed it and the index of the update
in the log. The leader periodically checks if a follower
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Figure 3: Saucr Modes. The figure shows how SAUCR’s modes
work. S1 is the leader. Entries in a white box are committed but are only
buffered (e.g., e1 and e2 in the first and second states). Entries shown
grey denote that they are persisted (e.g., e1 – e3 in the third state). In
fast mode, a node loses its data upon a crash and is annotated with a
crash symbol (e.g., S5 has lost its data in the second state).

is alive or not via heartbeats. If the followers suspect
that the leader has failed, they compete to become the
new leader in a new epoch. Most systems guarantee the
leader-completeness property: a candidate can become
the leader only if it has stored all items that have been
acknowledged as committed [2, 57]. SAUCR retains all
the above properties of majority-based systems.

In a memory-durable system, the nodes always buffer
updates in memory; similarly, the updates are al-
ways synchronously persisted in a disk-durable system.
SAUCR changes this fundamental attribute: SAUCR either
buffers the updates or synchronously flushes them to disk
depending on the situation. When more nodes than a
bare minimum to complete an update are functional, los-
ing those additional nodes will not result in an immediate
data loss or unavailability; in such situations, SAUCR op-
erates in fast mode. Specifically, SAUCR operates in fast
mode if more than a bare majority are functional (i.e.,
functional ≥ dn/2e+1, where n is the total nodes, typi-
cally a small odd number). If nodes fail and only a bare
majority (dn/2e) are functional, losing even one addi-
tional node may lead to a data loss or unavailability; in
such situations, SAUCR switches to the slow mode. Be-
cause the leader continually learns about the status of the
followers, the leader determines the mode in which a par-
ticular request must be committed.

We use Figure 3 to give an intuition about how
SAUCR’s modes work. At first, all the nodes are func-
tional and hence the leader S1 replicates entry e1 in fast
mode. The followers acknowledge e1 before persisting it
(before invoking fsync); similarly, the leader also only
buffers e1 in memory. In fast mode, the leader acknowl-
edges an update only after dn/2e+1 nodes have buffered
the update. Because at least four nodes have buffered
e1, the leader acknowledges e1 as committed. Now, S5
crashes; the leader detects this but remains in fast mode
and commits e2 in fast mode.

Next, S4 also crashes, leaving behind a bare major-
ity; the leader now immediately initiates a switch to slow

mode and replicates all subsequent entries in slow mode.
Thus, e3 is replicated in slow mode. Committing an en-
try in slow mode requires at least a bare majority to per-
sist the entry to their disks; hence, when e3 is persisted
on three nodes, it is committed. Further, the first entry
persisted in slow mode also persists all previous entries
buffered in memory; thus, when e3 commits, e1 and e2
are also persisted. Meanwhile, S4 and S5 recover and
catch up with other nodes; therefore, the leader switches
back to fast mode, commits e4 in fast mode, and contin-
ues to commit entries in fast mode until further failures.

3.3 Failure Reaction
In the common case, with all or many nodes alive, SAUCR

operates in fast mode. When failures arise, the system
needs to detect them and switch to slow mode or flush to
disk. The basic mechanism SAUCR uses to detect failures
is that of heartbeats.
Follower Failures and Mode Switches. If a follower
fails, the leader detects it via missing heartbeats. If the
leader suspects that only a bare majority (including self)
are functional, it immediately initiates a switch to slow
mode. The leader sends a special request (or uses an
outstanding request such as e3 in the above example) on
which it sets a flag to indicate to the followers that they
must respond only after persisting the request; this also
ensures that all previously buffered data will be persisted.
All subsequent requests are then replicated in slow mode.
When in fast mode, the nodes periodically flush their
buffers to disk in the background, without impacting the
client-perceived performance. These background flushes
reduce the amount of data that needs to be written when
switching to slow mode. Once enough followers recover,
the leader switches back to fast mode. To avoid fluctua-
tions, the leader switches to fast mode after confirming a
handful number of times that it promptly gets a response
from more than a bare majority; however, a transition to
slow mode is immediate: the first time the leader sus-
pects that only a bare majority of nodes are alive.
Leader Failures and Flushes. The leader takes care
of switching between modes. However, the leader it-
self may fail at any time. The followers quickly detect a
failed leader (via heartbeats) and flush all their buffered
data to disk. Again, the periodic background flushes re-
duce the amount of data that needs to be written.

3.4 Enabling Safe Mode-Aware Recovery
When a node recovers from a crash, it may have lost
some data if it had operated in fast mode; in this case, the
node needs to recover its lost data from other nodes. In
contrast, the node would have all the data it had logged
on its disk if it had crashed in slow mode or if it had
flushed after detecting a failure; in such cases, it recov-
ers the data only from its disk. Therefore, a recovering
node first needs to determine the mode in which it last
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operated. Moreover, if a node recovers from a fast-mode
crash, the other nodes should maintain enough informa-
tion about the recovering node. We now explain how
SAUCR satisfies these two requirements.

3.4.1 Persistent Mode Markers
The SAUCR nodes determine their pre-crash mode as fol-
lows. When a node processes the first entry in fast mode,
it synchronously persists the epoch-index pair of that en-
try to a structure called the fast-switch-entry. Note that
this happens only for the first entry in the fast mode. In
the slow mode or when flushing on failures, in addition
to persisting the entries, the nodes also persist the epoch-
index pair of the latest entry to a structure called the
latest-on-disk-entry. To determine its pre-crash mode, a
recovering node compares the above two on-disk struc-
tures. If its fast-switch-entry is ahead1 of its latest-on-
disk-entry, then the node concludes that it was in the fast
mode. Conversely, if the fast-switch-entry is behind the
latest-on-disk-entry, then the node concludes that it was
in the slow mode or it had safely flushed to disk.

3.4.2 Replicated LLE Maps
Once a node recovers from a crash, it must know how
many entries it had logged in memory or disk before it
crashed. We refer to this value as the last logged entry
or LLE of that node. The LLE-recovery step is crucial
because only if a node knows its LLE, it can participate
in elections. Specifically, a candidate requests votes from
other nodes by sending its LLE. A participant grants its
vote to a candidate if the participant’s LLE and current
epoch are not ahead of the candidate’s LLE and current
epoch, respectively [57] (provided the participant had not
already voted for another candidate in this epoch).

In a majority-based system, as long as a majority of
nodes are alive, the system must be able to elect a leader
and make progress [10,57]. It is possible that the system
only has a bare majority of nodes including the currently
recovering node. Hence, it is crucial for a recovering
node to immediately recover its LLE; if it does not, it
cannot participate in an election or give its vote to other
candidates, rendering the system unavailable.

If a node recovers from a slow-mode crash, it can re-
cover its LLE from its disk. However, if a node recovers
from a fast-mode crash, it would not have its LLE on its
disk; in this case, it has to recover its LLE from other
nodes. To enable such a recovery, as part of the repli-
cation request, the leader sends a map of the last (po-
tentially) logged entry of each node to every node. The
leader constructs the map as follows: when replicating
an entry at index i in epoch e, the leader sets the LLE of
all the functional followers and self to e.i and retains the
last successful value of LLE for the crashed or partitioned

1An entry a is ahead of another entry b if (a.epoch > b.epoch) or
(a.epoch == b.epoch and a.index > b.index).

followers. For instance, if the leader (say, S1) is replicat-
ing an entry at index 10 in epoch e to S2, S3, and S4, and
if S5 has crashed after request 5, then the map will be
〈S1:e.10, S2:e.10, S3:e.10, S4:e.10, S5:e.5〉. We call this
map the last-logged entry map or LLE-MAP. In the fast
mode, the nodes maintain the LLE-MAP in memory; in
slow mode, the nodes persist the LLE-MAP to the disk.

3.5 Crash Recovery
In a disk-durable system, a node recovering from a crash
performs three distinct recovery steps. First, it recovers
its LLE from its disk. Second, it competes in an election
with the recovered LLE. The node may either become the
leader or a follower depending on its LLE’s value. Third,
the node recovers any missed updates from other nodes.
If the node becomes the leader after the second step, it is
guaranteed to have all the committed data because of the
leader-completeness property [2, 57], skipping the third
step. If the node becomes a follower, it might be lagging
and so fetches the missed updates from the leader.

In SAUCR, a node recovering from a crash could have
operated either in slow or fast mode before it crashed. If
the node was in slow mode, then its recovery steps are
identical to the disk-durable recovery described above;
we thus do not discuss slow-mode crash recovery any
further. A fast-mode crash recovery, however, is more
involved. First, the recovering node would not have its
LLE on its disk; it has to carefully recover its LLE from
the replicated LLE-MAPs on other nodes. Second, it has
to recover its lost data irrespective of whether it becomes
the leader or a follower. We explain how a node performs
the above crash-recovery steps.
Max-Among-Minority. A SAUCR node recovering from
a fast-mode crash recovers its LLE using a procedure that
we call max-among-minority. In this procedure, the node
first marks itself to be in a state called recovering and
then sends an LLE query to all other nodes. A node may
respond to this query only if it is in a recovered (not re-
covering) state; if it is not, it simply ignores the query.
Note that a node can be in the recovered state in two
ways. First, it could have operated in fast mode and not
crashed yet; second, it could have last operated in slow
mode and so has the LLE-MAP on its disk. The recover-
ing node waits to get responses from at least a bare mi-
nority of nodes, where bare-minority = dn/2e−1; once
the node receives a bare-minority responses, it picks the
maximum among the responses as its LLE. Finally, the
node recovers the actual data up to the recovered LLE. For
now, we assume that at least a bare minority will be in
recovered state; we soon discuss cases where only fewer
than a bare minority are in the recovered state (§3.6).

We argue that the max-among-minority procedure
guarantees safety, i.e., it does not cause a data loss. To
do so, let us consider a node N that is recovering from a
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fast-mode crash and let its actual last-logged entry (LLE)
be L. When N runs the max-among-minority procedure,
it retrieves L′ as its LLE and recovers all entries up to L′.

If N recovers exactly all entries that it logged before
crashing (i.e., L′=L), then it is as though N had all the
entries on its local disk (similar to how a node would re-
cover in a disk-durable protocol, which is safe). There-
fore, if the retrieved L′ is equal to the actual last-logged
entry L, the system would be safe.

However, in reality, it may not be possible for N to re-
trieve an L′ that is exactly L. If N crashes after the leader
sends a replication request but before N receives it, N
may retrieve an L′ that is greater than L. For example,
consider the case shown in Figure 4(a)(i). The leader
(S1) has successfully committed entry-1 in fast mode and
now intends to replicate entry-2; hence, the leader popu-
lates the LLE-MAP with 2 as the value for all the nodes.
However, S3 crashes before it receives entry-2; conse-

quently, its LLE is 1 when it crashed. However, when S3
recovers its LLE from LLE-MAPs of S1 and S5 using the
max-among-minority algorithm, the recovered L′ will be
2 which is greater than 1. Note that if L′ is greater than L,
it means that N will recover additional entries that were
not present in its log, which is safe. Similarly, it is pos-
sible for N to retrieve an L′ that is smaller than L. For
instance, in Figure 4(a)(ii), S3 has actually logged two
entries; however, when it recovers, its L′ will be 1 which
is smaller than the actual LLE 2. L′ < L is the only case
that needs careful handling.

We now show that the system is safe even when the
recovered L′ is smaller than L. We first establish a lower
bound for L′ that guarantees safety. Then, we show that
max-among-minority ensures that the recovered L′ is at
least as high as the established lower bound.
Lower bound for L′. Let N’s log when it crashed be
D and let CN be the last entry in D that is committed.
For example, in Figure 4(a)(ii), for S3, D contains entries
1 and 2, and the last entry in D that was committed is
1. Note that CN need not be the latest committed entry;
the system might have committed more entries after N
crashed but none of these entries will be present in N’s
log. For example, in Figure 4(b), for S3, CN is 2 while
the latest committed entry in the system is 3.

For the system to be safe, all committed entries must
be recovered, while the uncommitted entries need not be
recovered. For example, in Figure 4(a)(ii), it is safe if S3
does not recover entry-2 because entry-2 is uncommit-
ted. However, it is unsafe if N does not recover entry-1
because entry-1 is committed. For instance, imagine that
S3 runs an incorrect recovery algorithm that does not re-
cover entry-1 in Figure 4(a)(ii). Now, if S1 and S2 also
run the incorrect algorithm, then it is possible for S1, S2,
and S3 to form a majority and lose committed entry-1.
Therefore, if the recovery ensures that N recovers all the
entries up to CN , committed data will not be lost, i.e., L′

must be at least as high as the last entry in N’s log that is
committed. In short, the lower bound for L′ is CN . Next,
we show that indeed the L′ recovered by max-among-
minority is equal to or greater than CN .
Proof Sketch for L′≥CN . We prove by contradiction.
Consider a node N that is recovering from a fast-mode
crash and that CN is the last entry in N’s log that was
committed. During recovery, N queries a bare minority.
Let us suppose that N recovers an L′ that is less than CN .
This condition can arise if a bare minority of nodes hold
an LLE of N in their LLE-MAPs that is less than CN . This
is possible if the bare minority crashed long ago and re-
cently recovered, or they were partitioned. However, if
a bare minority had crashed or partitioned, it is not pos-
sible for the remaining bare majority to have committed
CN in fast mode (recall that a fast-mode commitment re-
quires at least bare-ma jority+1 nodes to have bufferred
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Figure 5: SAUCR Summary and Guarantees. The figure summa-
rizes how SAUCR works under failures and the guarantees it provides.

CN and updated their LLE-MAPs). Therefore, CN could
have either been committed only in slow mode or not
committed at all. However, if CN was committed in slow
mode, then N would be recovering from a slow-mode
crash which contradicts the fact that N is recovering from
a fast-mode crash. The other possibility that CN could
not have been committed at all directly contradicts the
fact that CN is committed. Therefore, our supposition
that L′ is less than CN must be false.

Once a node has recovered its LLE, it can participate
in elections. If an already recovered node or a node that
has not failed so far becomes the leader (for example, S1
or S5 in Figure 4(a)(i)), it will already have the LLE-MAP,
which it can use in subsequent replication requests. On
the other hand, if a recently recovered node becomes the
leader (for example, S3 in Figure 4(a)(i)), then it needs to
construct the LLE-MAP values for other nodes. To enable
this construction, during an election, the voting nodes
send their LLE-MAP to the candidate as part of the vote re-
sponses. Using these responses, the candidate constructs
the LLE-MAP value for each node by picking the maxi-
mum LLE of that node from a bare-minority responses.
Data recovery. Once a node has successfully recovered
its LLE, it needs to recover the actual data. If the recov-
ering node becomes the follower, it simply fetches the
latest data from the leader. In contrast, if the recovering
node becomes the leader, it recovers the data up to the
recovered LLE from the followers.

3.6 Summary and Guarantees
We use Figure 5 to summarize how SAUCR works and the
guarantees it offers; a node fails either by crashing or by
becoming unreachable over the network. We guide the
reader through the description by following the sequence
numbers shown in the figure. 1 At first, we assume all
nodes are in recovered state; in this state, SAUCR operates
in the fast mode; when nodes fail, SAUCR stays in the fast
mode as long as the number of nodes failed is less than

a bare minority. 2 After a bare minority of nodes fail,
SAUCR switches to slow mode. 3 Once in slow mode,
if one or more nodes recover and respond promptly for a
few requests, SAUCR transitions back to fast mode. 4 In
slow mode, if any node fails, SAUCR becomes temporar-
ily unavailable. 5 Once a majority of nodes recover, the
system becomes available again.

To explain further transitions, we differentiate non-
simultaneous and simultaneous crashes and network par-
titions. In the presence of non-simultaneous crashes,
nodes will have enough time to detect failures; the leader
can detect follower crashes and switch to slow mode and
followers can detect the leader’s crash and flush to disk.
Thus, despite any number of non-simultaneous crashes,
SAUCR always transitions through slow mode. Once in
slow mode, the system provides strong guarantees.

However, in the presence of simultaneous crashes,
many nodes could crash instantaneously while in fast
mode; in such a scenario, SAUCR cannot always transi-
tion through slow mode. 6 If the number of nodes that
crash in fast mode does not exceed a majority, SAUCR

will only be temporarily unavailable; in this case, at least
a bare minority will be in recovered state or will have
previously crashed in slow mode making crash recovery
possible (as described in §3.5). 7 In rare cases, more
than a bare majority of nodes may crash in fast mode, in
which case, crash recovery is not possible: the number
of nodes that are in recovered state or previously crashed
in slow mode will be less than a bare minority. Dur-
ing such simultaneous crashes, which we believe are ex-
tremely rare, SAUCR remains unavailable.

In the presence of partitions, all nodes could be alive,
but partitioned into two; in such a case, the minority par-
tition would be temporarily unavailable while the other
partition will safely move to slow mode if a bare major-
ity are connected within the partition. The nodes in the
minority partition would realize they are not connected to
the leader and flush to disk. Both of these actions guar-
antee durability and prevent future unavailability.

4 Implementation
We have implemented situation-aware updates and crash
recovery in Apache ZooKeeper (v3.4.8). We now de-
scribe the most important implementation details.
Storage layer. ZooKeeper maintains an on-disk log
to which the updates are appended. ZooKeeper also
maintains snapshots and meta information (e.g., current
epoch). We modified the log-update protocol to not issue
fsync calls synchronously in fast mode. Snapshots are
periodically written to disk; because the snapshots are
taken in the background, foreground performance is un-
affected. The meta information is always synchronously
updated. Fortunately, such synchronous updates hap-
pen rarely (only when the leader changes), and thus do
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not affect common-case performance. In addition to the
above structures, SAUCR maintains the fast-switch-entry
in a separate file and synchronously updates it the first
time when the node processes an entry in the fast mode.
In slow mode, the LLE-MAP is synchronously persisted.
SAUCR maintains the map at the head of the log file. The
latest-on-disk-entry for a node is its own entry in the per-
sistent LLE-MAP (LLE-MAP is keyed by node-id).
Replication. We modified the QuorumPacket [9] (which
is used by the leader for replication) to include the mode
flag and the LLE-MAP. The leader transitions to fast mode
after receiving three consecutive successful replication
acknowledgements from more than a bare majority.
Failure Reaction. In our implementation, the nodes
detect failures through missing heartbeats, missing re-
sponses, and broken socket connections. Although
quickly reacting to failures and flushing or switching
modes is necessary to prevent data loss or unavailability,
hastily declaring a node as failed might lead to instability.
For example, if a follower runs for an election after miss-
ing just one heartbeat from the leader, the system may
often change leader, affecting progress. SAUCR’s imple-
mentation avoids this scenario as follows. On missing
the first heartbeat from the leader, the followers suspect
that the leader might have failed and so quickly react to
the suspected failure by flushing their buffers. However,
they conservatively wait for a handful of missing heart-
beats before declaring the leader as failed and running
for an election. Similarly, while the leader initiates a
mode switch on missing the first heartbeat response, it
waits for a few missing responses before declaring the
follower as failed. If a majority of followers have not re-
sponded to a few heartbeats, the leader steps down and
becomes a candidate.
Recovery Protocol. We modified the leader election
protocol so that a node recovering from a fast-mode crash
first recovers its LLE before it can participate in elections.
A responding node correctly handles LLE-query from a
node and replication requests from the leader that arrive
concurrently. If a node that recovers from a fast-mode
crash becomes the leader, it fetches the data items up to
its LLE from others. However, due to the background
flushes, several items might already be present on the
disk; the node recovers only the missing items. The re-
sponding node batches several items in its response.

5 Evaluation
We now evaluate the durability, availability, and perfor-
mance of our SAUCR implementation.

5.1 Durability and Availability
To evaluate the guarantees of SAUCR, we developed a
cluster crash-testing framework. The framework first
generates a graph of all possible cluster states as shown
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Figure 6: Cluster-State Sequences. The figure shows the possible
cluster states for a five-node cluster and how cluster-state sequences
are generated. One example cluster-state sequence is traced.

in Figure 6. Then, it generates a set of cluster-state se-
quences. For instance, 12345→ 345→ 45→ 1245→
1→ 13→ 12345 is one such sequence. In this sequence,
at first, all five nodes are alive; then, two nodes (1 and 2)
crash; then, 3 crashes; next, 1 and 2 recover; then 2, 4, 5
crash; 3 recovers; finally, 2, 4, 5 recover. To generate a
sequence, we start from the root state where all nodes are
alive. We visit a child with a probability that decreases
with the length of the path constructed so far, and the dif-
ference in the number of alive nodes between the parent
and the child. We produced 1264 such sequences (498
and 766 for a 5-node and 7-node cluster, respectively).

The cluster-state sequences help test multiple update
and recovery code paths in SAUCR. For example, in the
above sequence, 12345 would first operate in fast mode;
then 345 would operate in slow mode; then 1245 would
operate in fast mode; 1 would flush to disk on detecting
that other nodes have crashed; in the penultimate state, 3
would recover from a slow-mode crash; in the last state,
2, 4, and 5 would recover from a fast-mode crash.

Within each sequence, at each intermediate cluster
state, we insert new items if possible (if a majority of
nodes do not exist, we cannot insert items). 12345a →
345b → 45→ 1245c → 1→ 13→ 12345d shows how
entries a-d are inserted at various stages. In the end, the
framework reads all the acknowledged items. If the clus-
ter does not become available and respond to the queries,
we flag the sequence as unavailable for the system un-
der test. If the system silently loses the committed items,
then we flag the sequence as data loss.

We subject the following four systems to the cluster-
crash sequences: memory-durable ZK (ZooKeeper with
the forceSync flag turned off), VR (viewstamped repli-
cation), disk-durable ZK (ZooKeeper with forceSync
turned on), and finally SAUCR. Existing VR implementa-
tions [65] do not support a read/write interface, prevent-
ing us from directly applying our crash-testing frame-
work to them. Therefore, we developed an ideal model
of VR that resembles a perfect implementation.
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ZK-mem
5 498 248 0 250 n/a 498 248 0 250
7 766 455 0 311 n/a 766 455 0 311

VR-ideal
5 498 28 470 0 n/a 498 28 470 0
7 766 189 577 0 n/a 766 189 577 0

ZK-disk
5 498 498 0 0 n/a 498 498 0 0
7 766 766 0 0 n/a 766 766 0 0

SAUCR

5 498 498 0 0
other 475 475 0 0

!min-rec 23 0 23 0

7 766 766 0 0
other 725 725 0 0

!min-rec 41 0 41 0

Table 2: Durability and Availability. The table shows the durabil-
ity and availability of memory-durable ZK (ZK-mem), VR (VR-ideal),
disk-durable ZK (ZK-disk), and SAUCR. !min-rec denotes that only less
than a bare minority are in recovered state.

5.1.1 Non-simultaneous Crashes

We first test all sequences considering that failures are
non-simultaneous. For example, when the cluster tran-
sitions from 12345 to 345, we crash nodes 1 and 2 one
after the other (with a gap of 50 ms). Table 2 shows the
results. As shown, the memory-durable ZK loses data
in about 50% and 40% of the cases in the 5-node and
7-node tests, respectively. The ideal VR model does not
lose data; however, it leads to unavailability in about 90%
and 75% of the cases in the 5-node and 7-node tests, re-
spectively. As expected, disk-durable ZooKeeper is safe.
In contrast to memory-durable ZK and VR, SAUCR re-
mains durable and available in all cases. Because fail-
ures are non-simultaneous in this test, the leader detects
failures and switches to slow mode; similarly, the follow-
ers quickly flush to disk if the leader crashes, leading to
correct behavior.

5.1.2 Simultaneous Crashes

We next assume that failures are simultaneous. For ex-
ample, if the cluster state transitions from 124567 to 12,
we crash all four nodes at the same time, without any
gap. Note that during such a failure, SAUCR would be
operating in fast mode and suddenly many nodes would
crash simultaneously, leaving behind less than a bare mi-
nority. In such cases, less than a bare minority would be
in the recovered state; SAUCR cannot handle such cases.
Table 2 shows the results. As shown, memory-durable
ZK loses data in all cases in which it lost data in the non-
simultaneous test. This is because memory-durable ZK
loses data, irrespective of the simultaneity of the crashes.
Similarly, VR is unavailable in all the cases where it was
unavailable in the non-simultaneous crash tests. As ex-
pected, disk-durable ZK remains durable and available.
SAUCR remains unavailable in a few cases by its design.
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Figure 7: Micro-benchmarks. (a) and (b) show the update
throughput on memory-durable ZK, SAUCR, and disk-durable ZK on
HDDs and SSDs, respectively. Each request is 1KB in size. The num-
ber on top of each bar shows the performance normalized to that of
memory-durable ZK.

5.2 Performance
We conducted our performance experiments on two clus-
ters (cluster-1: HDD, cluster-2: SSD), each with five ma-
chines. The HDD cluster has a 10 Gb network, and each
node is a 20-core Intel Xeon CPU E5-2660 machine with
256 GB memory running Linux 4.4, with a 1-TB HDD.
The SSD cluster has 10 Gb network, and each node is
a 20-core Intel E5-2660 machine with 160 GB mem-
ory running Linux 4.4, with a 480-GB SSD. Numbers
reported are the average over five runs.

5.2.1 Update Micro-benchmark
We now compare SAUCR’s performance against memory-
durable ZK and disk-durable ZK. We conduct this exper-
iment for an update-only micro-benchmark.

Figure 7(a) and (b) show the results on HDDs and
SSDs, respectively. As shown in the figure, SAUCR’s
performance is close to the performance of memory-
durable ZK (overheads are within 9% in the worst case).
Note that SAUCR’s performance is close to memory-
durable ZK but not equal; this small gap exists because,
in the fast mode, SAUCR commits a request only after
four nodes (majority + 1) acknowledge, while memory-
durable ZK commits a request after three nodes (a bare
majority) acknowledge. Although the requests are sent
to the followers in parallel, waiting for acknowledgment
from one additional follower adds some delay. Com-
pared to disk-durable ZK, as expected, both memory-
durable ZK and SAUCR are significantly faster. On
HDDs, they are about 100× faster. On SSDs, however,
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Figure 8: Macro-benchmarks. The figures show the throughput
under various YCSB workloads for memory-durable ZK, SAUCR, and
disk-durable ZK for eight clients. The number on top of each bar shows
the performance normalized to that of memory-durable ZK.

the performance gap is less pronounced. For instance,
with a single client, memory-durable ZK and SAUCR are
only about 2.1× faster than disk-durable ZK. We found
that this inefficiency arises because of software over-
heads in ZooKeeper’s implementation that become dom-
inant atop SSDs.

5.2.2 YCSB Workloads
We now compare the performance of SAUCR against
memory-durable ZK and disk-durable ZK across the fol-
lowing six YCSB [23] workloads: load (all writes),
A (w:50%, r:50%), B (w:5%, r:95%), C (only reads),
D (read latest, w:5%, r:95%), F (read-modify-write,
w:50%, r:50%). We use 1KB requests.

Figure 8(a) and (b) show the results on HDDs and
SSDs, respectively. For all workloads, SAUCR closely
matches the performance of memory-durable ZK; again,
the small overheads are a result of writing to one ad-
ditional node. For write-heavy workloads (load, A, F),
SAUCR’s performance overheads are within 4% to 9%
of memory-durable ZK. For such workloads, memory-
durable ZK and SAUCR perform notably better than disk-
durable ZK (about 100× and 2.5× faster on HDDs and
SSDs, respectively). For workloads that perform mostly
reads (B and D), SAUCR’s overheads are within 1% to 4%
of memory-durable ZK. For such read-heavy workloads,
memory-durable ZK and SAUCR are about 25× and 40%
faster than disk-durable ZK on HDDs and SSDs, respec-
tively. For the read-only workload (C), all three systems
perform the same on both HDDs and SSDs because reads
are served only from memory.
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Figure 9: Performance Under Failures. The figure shows SAUCR’s
performance under failures; we conduct this experiment with eight
clients running an update-only workload on SSDs.

5.2.3 Performance Under Failures
In all our previous performance experiments, we showed
how SAUCR performs in its fast mode (without failures).
When failures arise and if only a bare majority of nodes
are alive, SAUCR switches to the slow mode until enough
nodes recover. Figure 9 depicts how SAUCR detects fail-
ures and switches to slow mode when failures arise.
However, when enough nodes recover from the failure,
SAUCR switches back to fast mode.

5.3 Heartbeat Interval vs. Performance
SAUCR uses heartbeats to detect failures. We now exam-
ine how varying the heartbeat interval affects workload
performance. Intuitively, short and aggressive intervals
would enable quick detection but lead to worse perfor-
mance. Short intervals may degrade performance for two
reasons: first, the system would load the network with
more packets; second, the SAUCR nodes would consider
a node as failed upon a missing heartbeat/response when
the node was merely slow and thus react spuriously by
flushing to disk or switching to slow mode.

To tackle the first problem, when replication requests
are flowing actively, SAUCR treats the requests them-
selves as heartbeats; further, we noticed that even when
the heartbeat interval is lower than a typical replication-
request latency, the additional packets do not affect the
workload performance significantly. The second prob-
lem of spurious reactions can affect performance.

For the purpose of this experiment, we vary the heart-
beat interval from a small (and unrealistic) value such
as 1 µs to a large value of 1 second. We measure three
metrics: throughput, the number of requests committed
in slow mode (caused by the leader suspecting follower
failures), and the number of flushes issued by a follower
(caused by followers suspecting a leader failure). Fig-
ure 10 shows the result. As shown, when the interval is
equal to or greater than 1 ms, the workload performance
remains mostly unaffected. As expected, with such rea-
sonably large intervals, even if the nodes are slow oc-
casionally, the likelihood that a node will not receive a
heartbeat or a response is low; thus, the nodes do not re-
act spuriously most of the times. As a result, only a few
spurious flushes are issued by the followers, and very few
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Figure 10: Heartbeat Interval vs. Performance. The figure
shows how varying the heartbeat interval affects performance. The
left y-axis shows the average number of flushes issued by a follower
per second or the average number of requests committed in slow mode
by the leader per second. We measure the performance (right y-axis)
by varying the heartbeat interval (x-axis). We conduct this experiment
with eight clients running the YCSB-load workload on SSDs.

requests are committed in slow mode. In contrast, when
the interval is less than 1 ms, the SAUCR nodes react more
aggressively, flushing more often and committing many
requests in slow mode, affecting performance. In sum-
mary, for realistic intervals of a few tens of milliseconds
(used in other systems [28]) or even for intervals as low
as 1 ms, workload performance remains unaffected.

Finally, although the nodes react aggressively (with
short intervals), they do not declare a node as failed be-
cause there are no actual failures in this experiment. As
a result, we observe that the leader does not step down
and the followers do not run for an election.

5.4 Correlated Failure Reaction
We now test how quickly SAUCR detects and reacts to a
correlated failure that crashes all the nodes. On such a
failure, if at least a bare minority of nodes flush the data
to disks before all nodes crash, SAUCR will be able to
provide availability and durability when the nodes later
recover. For this experiment, we use a heartbeat interval
value of 50 ms. We conduct this experiment on a five-
node cluster in two ways.

First, we crash the active leader and then successively
crash all the followers. We vary the time between the
individual failures and observe how many followers de-
tect and flush to disk before all nodes crash. For each
failure-gap time, we run the experiment five times and
report the average number of nodes that safely flush to
disk. Figure 11 shows the result: if the time between the
failures is greater than 30 ms, then at least a bare minority
of followers always successfully flush the data, ensuring
availability and durability.

Second, we crash the followers, one after the other. In
this case, the leader detects the failures and switches to
slow mode. As shown in the figure, if the time between
the individual failures is greater than 50 ms, the system
will be available and durable after recovery. As we dis-
cussed earlier (§2.3), in a real deployment, the time be-
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Figure 11: Correlated Failure Reaction. The figure shows how
quickly SAUCR reacts to correlated failures; the y-axis denotes the num-
ber of nodes that detect and flush to disk before all nodes crash when
we vary the time between the individual failures (x-axis). We conduct
this experiment on SSDs.

tween individual failures is almost always greater than
50 ms; therefore, in such cases, with a heartbeat interval
of 50 ms, SAUCR will always remain safe.

Note that we run this experiment with a 50-ms heart-
beat interval; shorter intervals (such as 1 ms used in Fig-
ure 10) will enable the system to remain durable and
available (i.e., a bare minority or more nodes would
safely flush or switch to slow mode) even when the fail-
ures are only a few milliseconds apart.

6 Discussion
We now discuss two concerns related to SAUCR’s adop-
tion in practice. First, we examine whether SAUCR will
offer benefits with the advent of faster storage devices
such as non-volatile memory (NVM). Second, we dis-
cuss whether applications will be tolerant of having low
throughput when SAUCR operates in slow mode.
Faster Storage Devices. The reliability of memory-
durable approaches can be significantly improved if ev-
ery update is forced to disk. However, on HDDs or
SSDs, the overhead of such synchronous persistence is
prohibitively expensive. New storage devices such as
NVMe-SSDs and NVM have the potential to reduce the
cost of persistence and thus improve reliability with low
overheads. However, even with the advent of such faster
storage, we believe SAUCR has benefits for two reasons.

First, although NVMe-SSDs are faster than HDDs
and SSDs, they are not as fast as DRAM. For example,
a write takes 30 µs on Micron NVMe-SSDs which is
two orders of magnitude slower than DRAM [19] and
thus SAUCR will have performance benefits compared
to NVMe-SSDs. While NVM and DRAM exhibit the
same latencies for reads, NVM writes are more expen-
sive (roughly by a factor of 5) [40, 67]. Further, writing
a few tens of kilobytes (as a storage system would) will
be slower than published numbers that mostly deal with
writing cachelines. Hence, even with NVMs, SAUCR
will demonstrate benefit.

Second, and more importantly, given the ubiquity of
DRAM and their lower latencies, many current systems
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and deployments choose to run memory-only clusters
for performance [17, 43], and we believe this trend is
likely to continue. SAUCR would increase the durability
and availability of such non-durable deployments signif-
icantly without affecting their performance at no addi-
tional cost (i.e., upgrading to new hardware).
Low Performance in Slow Mode. Another practical
concern regarding SAUCR’s use in real deployments is
that of the low performance that applications may ex-
perience in slow mode. While SAUCR provides low per-
formance in slow mode, we note that this trade-off is a
significant improvement over other existing methods that
can either lead to permanent unavailability or lose data.
Further, in a shared-storage setting, we believe many ap-
plications with varying performance demands will coex-
ist. While requests from a few latency-sensitive appli-
cations may time out, SAUCR allows other applications
to make progress without any hindrance. Furthermore,
in slow mode, only update requests pay the performance
penalty, while most read operations can be served with-
out any overheads (i.e., at about the same latency as in the
fast mode). Finally, this problem can be alleviated with a
slightly modified system that can be reconfigured to in-
clude standby nodes when in slow mode for a prolonged
time. Such reconfiguration would enable the system to
transition out of the slow mode quickly. We believe this
extension could be an avenue for future work.

7 Related Work
We now discuss how prior systems and research efforts
relate to various aspects of our work.
Situation-Aware Updates. The general idea of dynam-
ically transitioning systems between different modes is
common in real-time systems [15]. Similarly, the idea of
fault-detection-triggered mode changes has been used in
cyber-physical distributed systems [18]. However, we do
not know of any previous work that dynamically adapts a
distributed update protocol to the current situation. Many
practical systems statically define whether updates will
be flushed to disk or not [8, 22, 27, 62]. A few systems,
such as MongoDB, provide options to specify the dura-
bility of a particular request [51]. However such dynam-
icity of whether the request will be persisted or buffered
is purely client-driven: the storage system does not au-
tomatically make any such decisions, depending on the
current failures.
Recovery. RAMCloud [58,64] has a similar flavor to our
work. However, the masters always construct their data
from remote backups, unlike SAUCR, which performs
mode-specific recovery. SAUCR’s recovery is similar to
VR’s recovery [48]. However, SAUCR’s recovery differs
from that of VR in two ways. First, in VR, a recovering
node waits for a majority responses before it moves to the
recovered state, while in SAUCR, a recovering node has

to wait only for a bare minority responses. Second, and
more importantly, in VR, a responding node can readily
be in the recovered state only if it has not yet crashed. In
contrast, in SAUCR, a node can readily be in the recov-
ered state in two ways: either it could have operated in
fast mode and not failed yet, or it might have operated in
slow mode previously or flushed to disk. These differ-
ences improves SAUCR’s availability. SAUCR’s recovery
is also similar to how replicated-state-machine (RSM)
systems recover corrupted data from copies [1].
Performance Optimizations in RSM systems. Sev-
eral prior efforts have optimized majority-based RSM
systems by exploiting network properties [47, 61]; other
optimizations have also been proposed [41, 52]. How-
ever, to our knowledge, most of these systems are only
memory-durable. SAUCR can augment such systems to
provide stronger guarantees while not compromising on
performance. A few systems [14, 21, 56] realize that
synchronous disk writes are a major bottleneck; these
systems have proposed techniques (e.g., batching) that
make disk I/O efficient. SAUCR’s implementation in-
cludes such optimizations in its slow mode.

8 Conclusion
Fault-tolerant replication protocols are the foundation
upon which many data-center systems and applications
are built. Such a foundation needs to perform well, yet
also provide a high level of reliability. However, exist-
ing approaches either suffer from low performance or can
lead to poor durability and availability. In this paper, we
have presented situation-aware updates and crash recov-
ery (SAUCR), a new approach to replication within a dis-
tributed system. SAUCR reacts to failures and adapts to
current conditions, improving durability and availability
while maintaining high performance. We believe such a
situation-aware distributed update and recovery protocol
can serve as a better foundation upon which reliable and
performant systems can be built.
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The performance of compute hardware varies: software
run repeatedly on the same server (or a different server
with supposedly identical parts) can produce performance
results that differ with each execution. This variation
has important effects on the reproducibility of systems
research and ability to quantitatively compare the perfor-
mance of different systems. It also has implications for
commercial computing, where agreements are often made
conditioned on meeting specific performance targets.

Over a period of 10 months, we conducted a large-
scale study capturing nearly 900,000 data points from
835 servers. We examine this data from two perspectives:
that of a service provider wishing to offer a consistent
environment, and that of a systems researcher who must
understand how variability impacts experimental results.
From this examination, we draw a number of lessons
about the types and magnitudes of performance variabil-
ity and the effects on confidence in experiment results.
We also create a statistical model that can be used to un-
derstand how representative an individual server is of the
general population. The full dataset and our analysis tools
are publicly available, and we have built a system to in-
teractively explore the data and make recommendations
for experiment parameters based on statistical analysis of
historical data.

1 Introduction
Variability is an unavoidable aspect of computer systems
performance. In the research community, rigorous com-
parison of systems requires understanding, analysis, and
control of system variability [45, 21, 12, 27]. In the
commercial space, understanding and controlling per-
formance variability is critical to providing good user
experience [14, 23] and to plan resource provisioning [1].

Large systems have many sources of performance vari-
ability (hereafter referred to as simply “variability”), but
one that cannot be avoided is the variability of hardware.
For this paper, we consider two types of variability: vari-
ability of the same physical system under repeated ex-
periments, and variance between different physical sys-
tems that are supposedly identical. Hardware can exhibit
variability due to temperature [17], variations in timings
and orderings, remapped storage blocks [44] or mem-
ory cells [52], variance in manufacture [65], “fail-slow”

hardware [25], and many more causes.
We present findings and recommend best practices

from two different perspectives: infrastructure-as-a-
service (IaaS) providers and their users. On the provider
side, we consider the amount of variability that can rea-
sonably be controlled by factoring out unrepresentative
servers, and how to reliably detect such devices. On the
user side, we consider the variability that remains, how to
cope with it when running experiments, and how to avoid
certain pitfalls. Our intention is to make experimentation
in the face of variability easier by demystifying its sources
and quantities and by making concrete recommendations.

We collected data from servers in CloudLab [60], a plat-
form for systems research that provides exclusive “raw”
access to compute and storage resources. CloudLab al-
locates an entire server to one user at a time; we ran our
benchmarks on servers when they were not allocated to
any other user. This enables us to report performance
numbers that users could reasonably expect to see in their
own applications, unaffected by other simultaneous users.
This data was collected on an IaaS provider that consti-
tutes research infrastructure (a “testbed”), but we believe
these lessons also apply to other settings in which there
is an agreement between providers and users to supply a
specific, measurable level of performance, such as clouds
and datacenters.

In this paper, we:
• Provide a refresher of statistical methods used to

assess confidence in performance results (§2) and
the impact of variability on experimentation
• Describe our testing framework, the servers we

tested, and the resulting dataset (§3)
• Analyze this dataset (§4) to understand the sources

and quantities of variability
• Present a new method for estimating how many repe-

titions of an experiment to run (§5) and CONFIRM,
our tool to aid experimenters in gathering statistically
significant results
• Devise methods for service providers to identify

servers with unrepresentative behavior (§6).
• Cover defensive practices (§7) that help avoid pitfalls

with respect to variability
Throughout, we identify specific findings (identified

with ♦) aimed at helping service providers provide more
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consistent facilities and assisting users in understanding
and coping with the variability inherent in computer sys-
tems. We close with related work and future directions.

2 The Statistics of Performance Variability
The fundamental way variability impacts systems research
is that it affects our confidence in the statistical power of
our results and the correctness of conclusions that we
draw. When we run experiments and calculate statistics
(mean, median, etc.) we are producing empirical statistics
from a sample (a finite number) of a notional popula-
tion (an infinite number) of executions. As we run more
repetitions of an experiment, we can be more confident
that our empirical distributions are close to the population
distributions, and for key statistics such as the mean and
median, we can compute confidence intervals (CIs).

For a chosen confidence level α , a CI defines a range in
which we are α% sure that the population mean lies. For
example, a sample mean of 10.0, with a CI of 9.9−10.1
at 95% confidence indicates a 95% confidence that the
true mean lies within r = 1% of our estimate 10.0. In
order to make a strong statement that one sample mean
is higher than another, their CIs should not overlap [31];
if they do, it is possible that the true population means
have the reverse relationship. When an experiment is
analyzing a small effect (for example, a 5% performance
improvement), a wide CI may invalidate the conclusion.

♦ Perform enough repetitions to achieve tight
confidence intervals
Techniques from statistics provide robust
foundations for making strong statements about
performance differences between systems.

Statistical methods fit into two broad classes: para-
metric and nonparametric techniques. The former class,
which is more well-known, relies on the assumption that
the analyzed data stems from known probability distri-
butions, typically the Normal/Gaussian distribution. A
variety of closed-form expressions for statistics of in-
terest enable powerful parametric analysis. In contrast,
nonparametric techniques are used when the probability
distributions are unknown, and require fewer assumptions.
Nonparametric methods, which have fewer closed-form
equations, involve less powerful counterparts of popular
parametric techniques, e.g. the Kruskal-Wallis test [40]
instead of ANOVA. In nonparametric analysis, empiri-
cal mean and standard deviation can be computed, but
their interpretation is different compared to the parametric
case: rather then using them to fit distribution curves, they
reveal only high-level information about the shapes of
population distributions. The two most common metrics
of interest, the median and CI for the median, can be

used to compare pairs or sets of sampled nonparametric
distributions.

Many studies suggest that the normality assumption
does not hold for the data obtained in computer systems
experiments, especially when the data includes measure-
ments of performance. This applies both on a single
machine [34] and in parallel programs running on super-
computers [67]. Indeed, as we document in §4.3, most
data in our dataset does not follow the normal distribution.
Thus, we adopt nonparametric statistics for the remain-
der of this paper, and recommend that, for performance
experiments, these methods be used unless normality can
be demonstrated. In [27] and [13], the authors provide
advice for statistically sound performance analysis and
argue for applying robust nonparametric techniques.

In nonparametric analysis, one uses the median, rather
than the mean, as the measure of central tendency. To
get CIs for a set of measurements X , one first sorts
X . Then (as described in [41]), compute

⌊
n−z
√

n
2

⌋
and⌈

1+ n+z
√

n
2

⌉
, where n is the number of elements in X ,

and z is the standard score (or z-score) [31]. z depends
only on the desired confidence level, and is 1.96 for the
commonly-used level of α = 95%. These two numbers
are then used as indexes into the sorted X : the values at
those locations are the top and the bottom bounds of the
CI. Note that one of these numbers will be larger than
the median (at index

⌊ n
2

⌋
) and the other will be smaller,

and they will not necessarily be symmetric around the
median. These bounds tend to get tighter—to approach
the sample mean—with more repetitions. Typically, we
are concerned with the relative difference r% between the
CI bounds and the mean.

A natural question is how many repetitions of an ex-
periment are likely to be needed to achieve a sufficiently
narrow CI (e.g., indicating that the empirical median dif-
fers from the true median by no more than r = 1%) for a
given confidence level α (e.g. 95%): we want to be sure
to run enough repetitions to be confident in our results,
but don’t want to waste time running more than neces-
sary. We use E(r,α,X) to represent this value for a set
of experiment results X . The value of E can vary widely
depending on the data in X ; intuitively, the more variation
between measurements in X , the more runs it will tend
to take to narrow the CI to the target of r%. So that we
can compare values of E to each other, for the remainder
of this paper we adopt E(1%,95%,X) as our standard
target and denote it as Ě(X). It is important to note that
this is an estimate of what is required to get the desired
confidence: empirical CIs must still be computed from
the data gathered.

Finding Ě(X) for parametric models is straightforward,
as most such models have a closed-form equation that
uses an estimate of the variance of X , obtained by running
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a handful of exploratory experiments. In the nonparamet-
ric case, this number is harder to find, since we cannot
make any assumptions about the distribution and there
is therefore no equation we can use. One of the major
contributions of this paper, covered in §5 is a resampling-
based technique for estimating Ě(X) for nonparametric
models, and a tool we have built that makes it easy for
experimenters to get these estimates.

3 Methodology
Over a period of 10 months, from May 20, 2017 to April 1,
2018, we collected performance measurements on servers
that are part of the three CloudLab [60] clusters. Our
experiments were run while servers were not allocated
to other users, meaning that they did not affect, nor were
they affected by, other users of the facility.

3.1 Testing Framework
Our testing framework is built with geni-lib [5], a
Python library for interacting with GENI-compatible
testbeds such as CloudLab. We wrote an orchestration
script which selects free servers, runs benchmarks, and
collects the results. In order to avoid consuming excessive
resources on CloudLab, this script runs at a fixed interval
every six to eight hours on each CloudLab cluster. Three
to five servers (depending on the size of the cluster) are
selected by fetching a list of the target cluster’s available
servers, checking them against our database of previous
runs, and prioritizing never-tested servers, followed by
least recently tested servers. Servers that have had a re-
cent failure are not re-tested for a week to avoid having
them remain at the highest priority.

Once the test servers are provisioned, the orchestration
script waits for the provisioning process to be completed,
logs into the server, and automatically runs the tests (de-
scribed below). A single run can take between 30 minutes
and 5 hours; the majority of this time is spent running
disk tests.

As a side effect of the way that the CloudLab alloca-
tion policies and usage patterns work, servers were not
sampled uniformly: some servers were unavailable for up
to months at a time, as they were part of long-running ex-
periments. In general, the more popular the type of server,
the more sparsely sampled it is. Times of heavy testbed
utilization, such as major deadlines, are also sparsely sam-
pled. This requires us to use analyses that are robust with
respect to different sample sizes.

3.2 Benchmarks
We selected a set of benchmarks to cover three key re-
sources: memory, storage, and networking. In our selec-
tion of benchmarks, we struck a balance between observ-
ing the performance of the hardware when pushed to the
limit (to detect degraded performance), and what might be

seen in a more typical application (to understand “typical”
behavior of the hardware). Hyper-optimized benchmarks
can often come at the expense of practicality, and often
make use of instructions, settings, and “tricks” that are
limited to specific processors or I/O devices. We also
required benchmarks that were portable across different
architectures, due to the presence of both x86-64 and
ARM machines in CloudLab. Our primary benchmarks
follow both principles, and we have some supplementary
x86-specific benchmarks that use intrinsics to maximize
performance. Memory and storage results have been col-
lected since the beginning of our study, and we started
collecting network benchmarks about 6 months later.

Memory We use two different benchmark suites for our
memory tests. First, STREAM [43] (a standard bench-
mark for HPC machines) gathers a simple set of single-
threaded and multi-threaded micro-benchmarks that per-
form basic operations such as memory copies and simple
mathematical manipulation of memory contents. Sec-
ond, we use a suite of micro-benchmarks by Alex W.
Reece [51, 50] for supplemental non-portable tests uti-
lizing Intel x86 intrinsics such as SSE and AVX. We
found that, while absolute numbers differed, these other
benchmarks did not alter our conclusions, so we discuss
only the STREAM benchmarks in this paper. All tests
use sufficient memory to minimize caching effects.

While we made no modifications to any timed portions
of the benchmarks, we did modify both benchmarks to
provide more complete reporting of statistics at the end of
their runs. In addition, we altered the overall STREAM
workflow to run a single-threaded test followed by a multi-
threaded test. In the case of Intel processors, we run tests
both with a standard frequency-scaling setting and with a
setting that disables turbo boost and sets the performance
governor to “performance.” In the case of multi-socket
machines, we test on each socket independently using
numactl to avoid bottlenecks with QPI. Both memory
benchmarks are built from source during each run us-
ing gcc with exactly the same compile flags every time;
this helps with our multi-architecture environment, and
means that gcc applies the optimizations appropriate to
that environment.

Storage We test storage by using fio [3] to issue direct
4KB asynchronous I/O requests to target raw block de-
vices. For the boot device, we run fio on the partition of
that device containing the remaining empty space. Oth-
erwise, we run fio on the entire device. We test both
sequential and random reads and writes independently,
and each workload is run both with a high and low num-
ber of I/Os issued to the device at any given time. A low
I/O depth (we use 1) is more sensitive to device latency,
whereas a high one (we use 4096) is more sensitive to
bandwidth and internal parallelism. In the case of SSDs,
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Type # Model Processor S C RAM Boot Disk Other Disks
m400 315 HPE m400 ARM64 X-Gene 1 8 64 GB (8x4) SATA III SSD None
m510 270 HPE m510 Xeon D-1548 1 8 64 GB (4x8) NVMe SSD None
c220g1 90 Cisco c220m4 Xeon E5-2630v3 2 16 128 GB (8x8) SAS-2 HDD SAS-2 HDD &
c220g2 163 Cisco c220m4 Xeon E5-2660v3 2 20 160 GB (8x10) SAS-2 HDD SATA III SSD
c8220 96 Dell C8220 Xeon E5-2660v2 2 20 256 GB (16x16) SATA II HDD SATA II HDD
c6320 84 Dell C6320 Xeon E5-2683v3 2 28 256 GB (16x16) SATA II HDD SATA II HDD

Table 1: Server configurations. “S” is the number of sockets, and “C” is the total core count (across all sockets). RAM
is described as “(DIMM size x # DIMMs)”. SAS-2 HDDs are all 10k RPM, and SATA II HDDs are all 7.2k RPM.

we issue a TRIM to the device using blkdiscard before
we run any write workload. This clears certain block
state, allowing for more efficient write operations [26].
We install fio from the Ubuntu package repository.

Network For each site, we set a fixed destination server
that every server runs network tests against over a shared
VLAN. For latency tests, we use a simple ICMP ping

in flood mode. For Bandwidth tests, we use iperf3 [30]
with TCP and take measurements bidirectionally. Some of
servers we test are rack-local with the destination server,
and others require multiple layer-2 hops. Since CloudLab
makes its topology public, we know that all non-local
servers we are testing are three to four Ethernet hops
away, and we record switch-path information along with
each test. We install iperf3 from the Ubuntu package
repository, and ping is already bundled with the base
operating system.

3.3 Servers Tested
We gathered our results from CloudLab’s three primary
clusters: Utah, Wisconsin, and Clemson. Servers at each
site are divided into a small number of distinct homoge-
neous types; no sites currently have overlapping types.
All servers we tested are interconnected via a 10 Gbps
“experiment” network within each site. At the time of our
tests, each of these sites had two “dominant” types consist-
ing of tens to hundreds of servers. Some sites have types
with only a few instances containing specialized hardware
such as GPUs or many disks; we did not test these types
to avoid consuming CloudLab’s scarcest resources.

A summary of the server types we tested can be found
in Table 1. The two Utah types are designed on the low-
power and high-density Moonshot platform from HPE,
with 45 servers in each 4U chassis. The two Clemson
types are somewhat less dense, with four to eight servers
per 2U chassis, while the Wisconsin servers are in in-
dependent 1U chassis. The Wisconsin servers have the
most disks, with each server having a boot HDD, plus one
“extra” HDD and SSD each. More detailed information
regarding the experimented-upon server types, such as
specific component models, can be found on the Cloud-
Lab Hardware documentation pages [61, 59].

3.4 Software Consistency
While we focus on hardware-based variance in this paper,
we recognize that software differences can have a major
impact on performance. To this end, our testing frame-
work tracks, for each test, the version information of the
kernel, versions of key packages (such as the compiler),
and the revision of our repository containing our test
script and memory benchmark sources. The key software
remained at the same version throughout this test: the op-
erating system release (Ubuntu 16.04, standard CloudLab
image), the Linux kernel release (4.4.0-75-generic),
ping (iputils-s20121221), and iperf3 (3.0.11).
While our testing repository was updated several times
over the testing period, no modifications were made to
any timed areas of our memory benchmarks. Finally, al-
most all runs utilized the same gcc version (5.4.0) and
fio version (2.2.10). A very small percentage (< 1%)
of our runs used slightly earlier versions of both gcc and
fio, so to maintain software consistency we excluded
them while performing our analysis.

CloudLab released disk images with mitigations for
Spectre and Meltdown (which are known to affect per-
formance) on April 2, 2018; we intentionally use data
through April 1 so that we can focus on hardware vari-
ance in this paper. We are continuing to collect data, and
expect variance due to system software to be an interest-
ing topic for study in its own right.

3.5 Resulting Dataset
From the period of May 20th 2017 to April 1st 2018,
we collected 10,400 total runs from 835 total machines.
A complete breakdown of machines tested and runs by
hardware type can be found in Table 2. Since each run
involved execution of a multitude of benchmarks in differ-
ent configurations, we ended up with a total of 892,964
distinct data points over this period.

We use the term “configuration” to refer to the combi-
nation of hardware type, configuration, and benchmark
settings. For example, the possible memory configura-
tions come from varying hardware type, socket number,
single- or multi-threaded operation, frequency scaling,
and type of memory operation; this results in 590 pos-
sible configurations for memory. Similarly, there are

412    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



CloudLab
Site

Hardware
Type

Tested/
Total

Servers

Total
Runs

Mean/
Median
Runs

Utah m400

m510

223/315
221/270

3583
2007

16/8
9/7

Wisconsin c220g1

c220g2

88/90
125/163

800
1527

9/7
12/8

Clemson c8220

c6320

96/96
82/84

1742
741

18/12
9/8

Total 835/1,018 10,400 12/8

Table 2: Coverage of our dataset

Figure 1: CoV for a variety of configurations.

96 possible configurations for storage, and 27 possible
configurations for network tests. Each data point in the
dataset comes from executing one configuration.

4 Understanding Variability
We begin our analysis of the dataset with an exploration
of some of the key statistics computed from it. All data
used in this section has had measurements from servers
that are outliers removed, so it represents the unavoidable
variation that experimenters must cope with even when
the service provider does its best to provide consistently-
performing servers. The procedure that we developed for
removing unrepresentative servers is described in §6.

4.1 Unavoidable Variability
We first use our dataset to answer questions of importance
to experimenters and other users who need consistency
from the platforms they use. These stem from the basic
question “How much variability must I account for in my
experiments?”

Aiming to perform fair high-level assessment, we se-
lect a subset of 70 benchmark × hardware combinations
with relatively even distribution: 24 disk (all for boot
devices), 19 memory (variants of copy benchmark), and
27 network (both latency and bandwidth) configurations
being tested. We use coefficient of variance (CoV), the
ratio of the standard deviation to the mean, to compare
these configurations; absolute standard deviation cannot
be used here due to the difference in the scales and units
of compared measurements. Displayed in Figure 1 and
ordered by CoV, the analyzed configurations reveal the
following insights:

Networking Both top and the bottom of the list are
dominated by the network tests: primarily, latency tests
are at the top with CoV in the range [16.9%,29.2%], while
the bandwidth tests are at the bottom with CoV < 0.1%.
For the configuration with the largest CoV, we notice that
the standard deviation is 7.7µs is quite small in absolute
terms. However, it is a significant fraction of the empir-
ical mean for the latency at 26.3µs. This seems to stem
from a couple of sources: First, we are using standard,
unoptimized, tools to measure latency, and the timescales
are small enough that effects within the kernel networking
stack are noticeable (even loopback ping displays some
variation). Second, the granularity of timestamps reported
by ping is sufficiently coarse (1µs) that measurements
group into discrete bands instead of being continuously
distributed. In contrast, the 3.3×105 standard deviation
on most bandwidth tests corresponds to only 330kbps
out of the median of 9.4Gbps. We note that CloudLab
allocates network bandwidth in such a way as to attempt
to guarantee each experiment the full bandwidth it has
requested, free of interference from other users. The low
CoV in bandwidth tests suggests that it is effective in
doing so. Not all datacenters have similar bandwidth al-
location policies, and this result may vary in a different
setting.

c6320 Memory A block of memory tests for the c6320
servers stands out for having higher CoVs than other mem-
ory tests: they are in the range [14.5%,16.0%]. There is
no clear cause for this variability, but it is remarkable for
being the only set of configurations for which a particular
type of server is tightly grouped. The lesson we take from
this is that it it underscores the need to test all configura-
tions rather than assuming that similar types of resources
exhibit similar variability.

Clemson HDDs Clemson servers stood out in another
way as well: the HDDs on both Clemson types show
moderately high CoV for high-iodepth random I/O for
both reads and writes. These disks (which are the same
model on both types) are the only 7.2k RPM HDDs in
CloudLab, as well as the only SATA HDDs.

Bulk of the Tests The remaining block of 44 tests con-
sists of intermingled disk and memory configurations.
CoVs for this set of tests are in the range [0.3%,9.0%].
While this is a fairly wide range, there is no clear pattern
within it; for example, the data does not support the hy-
pothesis that disk bandwidth consistently exhibits more
variability than memory or vice versa. Also, unlike the re-
sults for c6320, individual server types show no grouping,
leading us to the conclusion that, on the whole, there is
little correlation between server type and CoV. Based on
this analysis, we expect CoV for hardware performance
metrics observed in practice to be roughly in this range
most of the time and, in rare cases, exceed the 10% mark.
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HDDs@c8220 HDDs@c220g1 SSDs@c220g1

6.85% (rr, H) 5.66% (r, L) 9.86% (rr, L)
6.42% (rw, H) 3.68% (rr, H) 5.38% (r, L)
6.08% (rr, L) 1.93% (r, H) 4.65% (rw, L)
5.82% (r, L) 1.90% (w, H) 3.95% (w, L)
5.32% (rw, L) 0.99% (rw, L) 1.00% (w, H)
4.96% (w, L) 0.93% (rr, H) 0.68% (r, H)
1.27% (w, H) 0.58% (rr, L) 0.53% (rw, H)
1.20% (r, H) 0.14% (w, L) 0.09% (rr, H)

Table 3: Coefficient of Variance. Values are annotated
with the type of test and iodepth: read, write, randread,
randwrite. “L” and “H” denote iodepth 1 and 4096.

♦ Some amount of variation is unavoidable
Some degree of variation in hardware performance
is unavoidable, no matter what steps the facility
provider takes to provide consistent hardware.
Coefficients of Variance of up to 10% may be
attributed to hardware variability and considered
expected, while higher values may indicate room for
improvement from the measurement standpoint.

For the aforementioned CoV range, we determine that
the configuration with CoV = 0.3% is likely to require
only Ě(X) = 10 experiments in order to make the corre-
sponding CI sufficiently small. In contrast, this number
significantly increases, up to Ě(X) = 240, for the configu-
ration with CoV = 9.0%. This demonstrates the need for
careful experiment design that takes into account varia-
tion of the specific resources that are exercised, and we
present further analysis of the relationship between the
two metrics in §5.

4.2 Disk I/O
SSDs are well-known to have complex performance pro-
files [26] due to the write characteristics of flash and their
internal Flash Translation Layers (FTLs). In addition,
different types of HDDs have performance characteris-
tics based on their rotational latency, attachment protocol,
density, etc. We wanted to answer the question “Are SSDs
more consistent (lower CoV) than HDDs?”, so we look
at the variability for two different types of HDDs (one
model at Wisconsin and one at Clemson), and for SSDs
at Wisconsin. The devices at Wisconsin are higher-end:
10k RPM SAS-2 HDDs and enterprise Intel SSDs, while
the HDDs at Clemson are 7.2k RPM SATA III devices.

As shown in Table 3, the answer to our question de-
pends on the level of parallelism (iodepth) and the type
of HDD. With high iodepth, SSDs use their internal par-
allelism and demonstrate both much higher performance
and more consistency. The SSDs we tested are 2.3–2.4

Figure 2: Histogram of iodepth=1 randread on c220g1.

Figure 3: Testing normality of the collected data.

times faster on sequential tests than HDDs, and from
82.5 up to 262.3 times faster on random reads and writes.
CoVs for these tests were in the range [0.09%,1.0%] for
SSDs, lower than most HDD CoVs.

On HDDs, unsurprisingly, iodepth is not strongly cor-
related with CoV: these devices have less internal paral-
lelism, and it is harder to exploit due to the lack of an
abstraction layer as complex as the FTL. Because SSDs
have such high CoV on low-iodepth tests, some HDDs
are competitive in terms of CoV (if not absolute perfor-
mance). The reason for this can be seen in Figure 2, which
examines the case of random reads. HDDs have a per-
formance curve that is fairly compact: it is dominated by
seek time and rotational delay, and roughly bounded by
the maximum values of those two variables. This curve is
more compact for the higher-RPM SAS dives at Wiscon-
sin, which have lower CoV for most low-iodepth test than
the SSDs. The SSDs that we tested, on the other hand,
exhibit a bimodal pattern; the exact underlying cause is
difficult to ascertain because of the opaque nature of the
vendor’s FTL, but the effect on experiments is clear and
dramatic. The lower-RPM SATA HDDs at Clemson are
less competitive against the SDDs in terms of CoV; this
is likely due, in part, to their higher rotational latency.

4.3 Testing For Normality
The statistics commonly used to analyze the performance
of computer systems [31] tend to assume that measure-
ments are normally distributed. We use the Shapiro-Wilk
test [55] to test for normality in our dataset, and find that
benchmarks of individual configurations across different
servers are not normally distributed. We apply this test
to all configurations and show our results in Figure 3.
Each point, shown in the order of increasing p-values,
characterizes samples for a specific configuration. For
points above the threshold, we cannot reject the null hy-
pothesis (stating that the samples come from populations
which have normal distributions). For points below this
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Figure 4: Testing stationarity of the collected data.

threshold, we reject the null hypothesis at this confidence
level (95% in this figure), and assume non-normality. Our
analysis shows that we should reject the null hypothesis
for over 99% of the configurations (710 out of 713). Intu-
itively (and confirmed by inspecting the underlying data),
when we measure maximum bandwidth of a device, there
is a practical maximum that cannot be exceeded except
by measurement error, and most measurements lie near
this maximum. On the other hand, some measurements
are significantly lower than the maximum, leading to a
skewed distribution with a compressed range above the
median and a much larger range below it. The situation is
reversed for latency tests. Considering the large number
of samples in the analyzed configurations, from 70 in the
smallest up to 3,571 in the largest, we reject the normality
hypothesis for tests across servers; hence, our focus on
nonparametric analyses in this paper.

♦ Use nonparametric confidence intervals to
avoid assumptions of normality.
Many computer systems performance results have
skewed distributions (longer tails on one side);
nonparametric confidence intervals are simple to
compute, and work for these distributions (as well as
normally-distributed results).

We also test normality for sets of data points that are all
drawn from the same server. We filter data by selecting
servers with at least 20 data points coming from memory
tests (this number coming from [55]). Given the way
we schedule tests, many servers have not executed more
than 20 tests and thus this subset corresponds to 42,680
data points. After applying Shapiro-Wilk to this subset,
roughly half of the points (26,695) can be considered to
be coming from a normal distribution. Intuitively, we can
assume normality in this subset because data points are
obtained by running a configuration on the same machine,
that is, the hardware and software are the same for all
points. This suggests that experimenters should proceed
with caution when analyzing results from a single server:
data may be normally-distributed and thus suitable for
analyses that assume normality, but a test such as Shapiro-
Wilk should be run to confirm or deny this assumption.

♦ For some configurations, single-server tests can
be assumed to be from a normal distribution.
Evaluating normality for tests run on a single server
can simplify the analysis since parametric statistics
can be employed for these single-server results.

4.4 Checking Stationarity
Most statistical tests—including confidence intervals—
assume stationarity: that is, that the properties of the
underlying distribution (such as median and variance)
do not change over time. In addition to affecting data
analysis, non-stationary distributions would harm repro-
ducibility: if performance is not stable over time, future
experiments cannot reliably be compared to past ones.
We use the Augmented Dickey–Fuller (ADF) [15] test to
check for stationarity in our data.

For all 70 configurations shown in Figure 1, we run
ADF and get a range of p values allowing us to accept
or reject the non-stationarity null hypothesis in each case.
These values, shown in Figure 4, indicate that nearly
all of the analyzed datasets present strong evidence for
stationarity: we can reject the hypothesis that they are
non-stationary with the confidence level α = 95% for
all points below the line. Among the handful of non-
stationary cases (above the line), we find several memory
(copy benchmark run on c220g1) and network bandwidth
(also run on c220g1) tests. Among the evaluated disk
tests there is more tendency towards non-stationarity in
the tests with iodepth = 1. Recall that our measurements
are not sampled from servers uniformly, as described in §3.
This appears to be a cause of some of the non-stationary
patterns we observe: during some periods, certain servers
are over-sampled, and, as they are slightly outside the
mean for the whole population, this produces a temporary
shift in the mean. These effects could be visible to Cloud-
Lab’s users, since during periods of heavy utilization,
users frequently creating and terminating experiments
could see the same set of servers repeatedly. Our remedy
to this, detailed in §6, is to find and remove servers that
have significant statistical departures from the rest of the
population.

5 CONFIRM: How Many Measurements
Are Enough?

Given that some amount of variability is inevitable, we
turn to a perennial question for experimenters: “How
many repetitions do I need to run in order to be confident
in my results?” As described in §2, given a set of mea-
surements and a desired confidence level (such as 95%),
we can compute a confidence interval (CI) for the mean
or median. A standard procedure is to “invert” this cal-
culation, and for a given desired confidence level and CI
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(a) 88 HDDs at Wisconsin (c220g1),
random reads, iodepth=4096
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(b) 82 HDDs at Clemson (c6320),
random reads, iodepth=4096

0 200 400 600

Number of Samples

580

600

620

640

660

K
B

/s

670

(c) 82 HDDs at Clemson (c6320),
random reads, iodepth=1

Figure 5: Nonparametric confidence intervals produced by CONFIRM. As the number of samples grows, 95% CIs
(filled areas) for the medians (thick blue lines) shrink and fit within the 1% error bounds (dashed lines). This stopping
condition is depicted with red lines and annotated with the numbers of recommended measurements Ě(X).

width, estimate how many repetitions are likely necessary
to achieve the desired confidence.

When assuming normality, there is a closed-form equa-
tion to calculate this estimate [31]; the main input to this
equation is an estimate of variance, typically obtained by
running a small number of trial runs. In the nonparamet-
ric space, there is no closed-form equation, so producing
such an estimate requires a more complex technique. We
have developed such a technique using resampling:

For a set of collected measurements X with n values,
we randomly select a subset of s ≤ n values for which
we estimate the bounds of the CI for the median as de-
scribed in §2. We shuffle X , select another subset of s
values, and obtain new estimates of the CI. After we re-
peat this process c times, we calculate the means of the
lower and upper CI bounds. Obtained using sampling
without replacement, each of these random selections or
“trials” represents a hypothetical scenario where a smaller,
partial subset of measurements was collected by an ex-
perimenter. The aforementioned averaging eliminates the
dependence of the results on the properties of a particular
subset and provides an aggregate view on the convergence
of the CI observed across many trials. The results pre-
sented in the rest of the paper are obtained using c = 200.
To estimate the recommended number of measurements
Ě(X), we start at s = 10, assuming that smaller subsets
are insufficient to estimate nonparametric CIs reliably and
should not be considered. Then, we increase s until s = n
or the mean CIs fit within the desired error bounds. In
the former case, we conclude that these n samples are
insufficient for meeting the stopping condition, while in
the latter case, we note that the experimentation could
have stopped after Ě(X) = s measurements according to
the selected allowed error and confidence level.

We have implemented this technique in a service we
call CONFIRM or CONFIdence-based Repetition Me-
ter. This dashboard imports our benchmarking datasets
and facilities interactive nonparametric analysis of CIs for
measurements collected from individual servers, groups

of servers, and entire hardware types available on Cloud-
Lab. We present three analyses here to demonstrate how
CONFIRM can help guide experimentation: looking at
the how variability affects experiments on different types
of HDDs; quantifying how much a single outlier can in-
crease the number of repetitions that must be run; and
looking at the relationship between variance and Ě(X).

HDD Variation In the first set of experiments, we com-
pare 88 HDDs at Wisconsin with 82 HDDs at Clemson,
revisiting results from §4.2 from the perspective of varia-
tion. CONFIRM produces visualizations of the CIs and
the Ě(X) estimates that are depicted in Figure 5. Fig-
ure 5 (a)-(b) show the difference of over 10× in Ě(X)
for two disk types running the same benchmark (random
reads, iodepth = 4096), with Clemson disks exhibiting
higher variance and wider CIs. A similar benchmark—
random reads, iodepth = 1—demonstrates an even more
severe case, as shown in Figure 5 (c). For the same set of
Clemson HDDs we have to use as many as 670 samples
(almost all of the measurements we have collected) in
order to fit the CI within the same 1% error bounds. If we
were to select a set of servers based on reproducibility of
disk-heavy workloads, the Wisconsin servers would be
the clear choice; conversely, if our experiments must be
run on the Clemson servers, we will need to be careful to
run many repetitions to get statistically significant results.

Effects of Outliers In the second set of experiments,
we start with a randomly selected set of 9 c220g2 servers
at Wisconsin, add one more “badly” performing server
of the same type (one that will be eliminated using the
method in §6), and analyze CIs for memory tests with and
without this outlier. We run CONFIRM on the combi-
nation of the selected servers and four variations of the
copy memory test and record obtained Ě(X) estimates
in Table 4. We can see that inclusion of this server re-
sults in a 2.1–5.9× increase in the recommended number
of repetitions. Our analysis shows that the distribution
of the performance data obtained on these 10 servers is
highly skewed, with the “long tail” caused by the low-
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Memory test /
frequency-scaling /

tested socket
9 servers

10 servers
(same 9 +

1 “outlier” server)

copy / no / 0 18 63
copy / no / 1 10 58
copy / yes / 0 33 68
copy / yes / 1 10 54

Table 4: Recommended number of measurements Ě(X)
for 9- and 10-server sets. Estimates are produced using
CONFIRM for Wisconsin c220g2 servers.

Figure 6: Relationship between CoV and Ě(X).

performance measurements. In this and similar cases, not
only we are less confident about the value of the statis-
tic of interest—in this case, sample median—but we are
likely to make poor conclusions using insufficient number
of measurements. Thus, further analysis of the data shown
in Table 4 confirms that if we stop after 10 measurements
in the 10-server case, our reported median values will be
outside of the 95% CIs around the medians reported after
the recommended 58-68 measurements.

♦ Use low-variance hardware whenever possible
The higher the performance variance of the
underlying hardware, the more repetitions must be
run to establish statistical significance; conversely, if
not enough repetitions are run, there is a greater
chance that the conclusions are incorrect.

CoV vs. Ě(X) Figure 6 shows the relationship between
the CoV and the number of repetitions recommended by
CONFIRM for the bulk of the configurations from §4.1.
This figure is generally favorable for experimenters: most
configurations up to about 4% CoV require only tens of
repetitions to reach the target of r = 1% for CIs. Some
configurations, however, are extreme outliers, requiring
hundreds of experiments to reach this level of confidence.
These outliers do not show a consistent pattern in either
the type of configuration nor the relationship between
CoV and Ě(X). The reason that the CoV and Ě(X) are
not perfectly correlated is that they react differently to
outliers and multi-modal distributions. Outliers can skew
means and standard deviations quite a bit, but the median

is less sensitive to them, and nonparametric CIs effec-
tively take into account the presence of points outside the
CI but not their magnitudes. For extreme multi-modal
distributions, such as the one seen in Figure 2, the mean
and standard deviation have no problem computing val-
ues “in the middle” where no points actually lie, but the
median and nonparametric CIs can only pick from points
actually in the dataset, making it take much longer for
them to converge—or preventing them from converging at
all. This figure shows the importance of a tool like CON-
FIRM: our intuitions about variance, confidence, and the
number of repetitions are not always correct, and actual
measurements are needed to inform rigorous experiment
design.

♦ Base experiment design on past measurements
The relationship between variance and the number
of repetitions required is complex; good estimates of
the latter require significant prior data.

Using CONFIRM We run CONFIRM as a service
at https://confirm.fyi/ to help users of CloudLab
plan their experiments. The tool itself is open-source, so
it can be applied to any other facility for which similar
data can be collected. We note than when using CON-
FIRM to estimate the number of repetitions needed for
an experiment, it should be used as an initial estimate,
by selecting the resource(s) that the performance of the
experiment is most likely to depend on. Once data is
collected, empirical CIs should be computed for the col-
lected data (as described in §2) to ensure that the target
allowed error range has been met; the level of variability
in a higher-level system may be higher or lower than those
found in the low-level benchmarks that CONFIRM uses
to compute its estimates.

6 Detecting Unrepresentative Servers
We now turn our attention to the provider’s perspective:
given what we have seen about the effects of variance on
users, what can a provider do to provide resources with
consistent performance? As we have seen, some variance
is unavoidable, so we pursue the goal of having a set of
servers where every server is representative of the whole.
Put another way, in a distribution drawn from all servers,
if we draw samples from a particular server, we should not
be able to distinguish those samples from the complete
population. This is a strong analysis, as it gets directly
at the goal of a testbed or service provider that it should
not matter which server(s) an experiment uses: all should
provide results that are statistically indistinguishable.
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(a) Identifying outlier servers. All values
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(c) Using 8 benchmarks (4 disk +
4 memory), we exclude unrepresentative
servers for each of the hardware types.

Figure 7: MMD-based server evaluation for c220g2 (a-b) and outlier elimination for all tested hardware types (c).

♦ Provide indistinguishable resources
When servers—even those that are supposedly
identical—exhibit performance differences that can
be detected reliably through statistical tests,
reproducible experimentation is more difficult.

Statistical distributions can be compared based on in-
dependent samples using the Mann-Whitney U-test [42].
Unlike its parametric counterpart, the t-test, the nonpara-
metric U-test does not assume normality of the compared
distributions. As reviewed in [33], many authors have
focused on this problem and offered various sophisticated
approaches. Appearing in the recent machine learning
literature, a kernel1 two-sample test based on maximum
mean discrepancy (MMD) [24] offers a powerful solution
that is suitable to large-scale datasets and naturally sup-
ports multivariate comparisons. This kernel-based testing
can be summarized as follows:

The test compares samples X = {x1, . . . ,xn} and Y =
{y1, . . . ,ym} from distributions P and Q, where n and m
do not need to be equal. No assumption is made about
P and Q, and the robustness of this test with different n
and m is important for our setting, since we will be using
it to compare the samples for an individual server to the
rest of the population. MMD provides a measure of sim-
ilarity (or dissimilarity) between P and Q, expressed as
a distance between their embeddings in the reproducing
kernel Hilbert space (RKHS) [6]. Abstract in its formula-
tion, this distance metric is still straightforward to use in
practice. Similar to many statistical tests, the univariate
values obtained using MMD can be compared against
thresholds calculated for a given confidence level α and
used to estimate probabilities of P and Q being the same
distribution given the analyzed samples. The test comes
with the quadratic-time and linear-time (w.r.t. m+n) es-
timation variants. The former is a more powerful test as

1A kernel or a kernel function in this context refers to the dot product
of features of compared objects.

it uses every measurement to the maximum effect, while
the latter is more suitable to online processing where the
analysis is performed as the data becomes available.

We use the quadratic test implemented in Shogun [57],
an open-source machine learning library for Python. One
important aspect of MMD testing is kernel selection:
we chose a meaningful range of kernel parameters and
found that the results of our analysis are not sensitive
to particular parameters selected, so we use a common
smooth kernel function, a Gaussian kernel,2 with the band-
width parameter σ ∈ [5%,50%] of the analyzed measure-
ments. Designed to be robust to individual outliers, MMD
tests can point out distribution differences, including pro-
nounced skew and frequent outliers, that are statistically
significant.

Based on the MMD statistic, we develop the following
method for identifying unrepresentative servers:

Use multiple benchmarks to characterize servers of
a particular type. To increase robustness to outliers and
avoid bias caused by uneven magnitudes of values in
different dimensions, we divide all values by the medians
in each dimension prior to kernel testing. Figure 7 (a)
demonstrates how such scaled data looks for two disk
benchmarks (random read and write tests). In this figure,
it is possible to visually identify outlier servers, but it
would not be possible to eliminate the outliers cleanly
using a simple threshold as the observed distributions
overlap (for red and green clusters). In this case, we
notice two servers that are unrepresentative—with a small
consistent degradation (red) and a larger spread of outlier-
like measurements (purple)—in one of the dimensions
and a representative server with a single outlier (blue) in
the other dimension.

Rank servers: Using the selected benchmarks, we run
MMD tests that compare an individual server’s samples
against samples from all other servers of the same type.
This statistic, which represents a measure of dissimilarity,

2Gaussian kernel functions facilitate comparison of non-Gaussian
distributions and detect differences between multivariate clusters.
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is the highest for the least representative servers. In the
disk example, the unrepresentative servers end up at the
top of the sorted list, as shown in Figure 7 (b). We also
observe an expected yet nontrivial result: the same proce-
dure with two different disk benchmarks (sequential tests
instead of random), points at performance issues with
the same two servers. The exact server ordering in the
ranking that uses these sequential tests would be different,
but both rankings demonstrate the same elbow-shaped
decreasing pattern. At the same time, we confirm that the
single-outlier server (blue in Figure 7 (a)) does not show
up at the beginning of either ranking as the majority of its
samples appear unquestionable.

Eliminate consistent outliers: Actionable insights
provided by these dissimilarity rankings allow us to ex-
clude the least representative servers from the pool avail-
able to users. We remove them iteratively, one at a time,
starting with the least representative server; this ensures
that the MMD statistics for the remaining servers are not
skewed by the inclusion of the removed servers. Results
obtained during such elimination are shown in Figure 7
(c). The elbow-shaped curves indicate that the largest
reduction of dissimilarity comes from excluding a few
servers at the beginning: from two to seven, representing
only 2% of the overall population. Subsequent server
elimination provides diminishing returns (note the log
scale of the figure).

We have tested this elimination procedure in a variety
of settings—in 2D, 4D, and 8D, with each “dimension”
being a different configuration—and conclude that the de-
scribed procedure helps identify the servers with nontriv-
ial performance abnormalities for all analyzed hardware
types. The MMD statistic that this test uses is abstract,
and does not directly correspond to units in the original
space (Gbps, µs, etc.), but this is a necessary side-effect
of simultaneously testing metrics that are measured with
different units and have different scales; nonetheless, the
shape of the curve makes it very clear which servers are
not representative. Testbed or service providers can use
this procedure to investigate the most unrepresentative
servers and take appropriate actions. This method can
also help users understand how representative or unrepre-
sentative the servers they use are by revealing their ranks
within relevant populations.

7 Steering Clear of Pitfalls

While performing analyses, we ran into situations that
resulted in surprising or counter-intuitive results. The
potential set of such pitfalls is large, and we have certainly
not uncovered all of them, even within the CloudLab
environment. However, we can recommend defensive
practices that help steer clear of them and likely others.

7.1 ♦ Randomize experiment orderings
Unexpected differences appeared in the memory band-
width measurements on the two server types at CloudLab
Wisconsin: we expected similar results, but the older
c221g1 servers outperformed the newer c220g2 servers
by a factor of nearly 3 (about 36 GB/s versus 12 GB/s)
in multi-threaded benchmarks. After a long search, we
traced this problem to an unbalanced DIMM configuration
in the c220g2 servers: as a result of their larger mem-
ory, the first memory channels were populated with two
DIMMs, while the others all had one DIMM. When we
had the extra DIMMs removed from one of the c220g2
servers, memory performance jumped to expected lev-
els. This imbalance appears to interact poorly with a
combination of Intel’s memory-striping algorithms [28],
Linux’s allocation of pages in sequential physical order,
and the nature of the STREAM benchmark. The result
is that STREAM’s memory appears to reside mostly or
completely on one memory channel, preventing the bench-
mark from using the hardware’s full bandwidth.

While tracking down the cause of this behavior, we
found an even more surprising effect: the order in which
we ran benchmarks had a dramatic effect on STREAM’s
performance. In the most extreme case, running a partic-
ular benchmark would cause subsequent STREAM runs
(until the server was rebooted) to increase their perfor-
mance by a factor of three, “recovering” approximately
the expected performance. Though the exact mechanism
behind this recovery is not clear, it appears that the way
one benchmark allocates memory—both the size of the
allocation and the specific pattern—has an effect on the
other’s layout on physical channels, so the order in which
we run these benchmarks matters. This is an effect that
we would not have noticed had we not tried a variety of
benchmarks in different orders. Trying to predict ahead of
time which orderings would reveal which types of effects
would be fruitless; thus a good defensive practice is to
randomize the order of experiments to expose effects
that they might have on each other. Others [48, 45]
have made similar observations for other benchmarks.

7.2 ♦ Check configuration sensitivity
The experience related in the previous section also raises
another important question: should it be considered a
“bug” for a facility like CloudLab to have hardware with
an unbalanced memory configuration? Placing blame
for the behavior is complex: In the Intel platform, this
configuration of DIMMs is legal, but results in fallback
to a lower-performance mode that is not widely known.
Linux’s physical page management policy could also be
blamed: FreeBSD does not allocate physical pages se-
quentially and we found that it exhibits full memory band-
width performance in this hardware configuration. Our
memory benchmarks could also be considered to be at
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fault: while they use sufficient RAM to avoid caching
issues, they do not use enough to ensure that all DIMMs
get exercised. A facility like CloudLab aims to provide
servers that are representative of servers in the wider
world, and this is a configuration that is not unique to
CloudLab.

Ultimately, we believe the primary lesson is the fact
that experiments are more sensitive to small details of spe-
cific configurations than is commonly acknowledged, and
that both facility and user share responsibility for being
aware of this sensitivity. The service provider should aim
for the highest-quality resources possible. At the same
time, it cannot be aware of every interaction between hard-
ware configuration, system software, and workload. The
best defensive practice for users is to perform sensitivity
analyses with respect to the hardware configuration:
run experiments on hardware with multiple configura-
tions to understand the extent to which results depend on
a particular configuration.

7.3 ♦ Match hardware and software
When we first ran the STREAM benchmarks on the Wis-
consin and Clemson servers, we discovered variance
that was much higher than we expected. This was be-
cause these servers are dual-socket NUMA machines, and
STREAM is not NUMA-aware. Not only did this have
a deleterious effect on average performance (lowering it
20–25%), but it had an even more pronounced effect on
the CoV (raising it from about 80 MB/s to 8,000 MB/s—
two orders of magnitude). This problem was simple to
resolve: we bind STREAM to one socket at a time, and
test each socket separately.

Despite the ease of resolution, this points to a larger
problem in experimentation: mismatch between the prop-
erties of the hardware and what the software was prepared
to handle. Bigger and faster are not always better when it
comes to running experiments, and can be worse because
they typically imply greater complexity. Experimenters
should carefully consider whether they need features
like NUMA, hyperthreading, complex memory hier-
archies, etc. before selecting servers that have them.
Using hardware with features not supported in software
runs the risk of invalidating results by affecting absolute
performance and causing variability that harms the ability
to make solid claims backed by statistics.

7.4 ♦ Don’t assume independence: check
It is tempting to treat repeated experiments as indepen-
dent: that earlier experiments do not have an effect on the
outcomes of later ones. This is not always the case; one
particular instance of this seen in our dataset is the perfor-
mance of SSDs. Figure 8 shows performance results from
a single representative SSD on a c220g2 server over a pe-
riod of several months; a clear periodic pattern is present.

Figure 8: Periodic behavior on a c220g2 SSD over time
for sequential writes with iodepth 4096. Gaps between
successive points can represent different durations of time.

Recall that we run blkdiscard before every one of these
experiments: in theory, this should return the drive to a
“clean” state. This periodic behavior seems to be present
for two reasons. First, there is likely some sort of “lazy”
process that does not do the work of blkdiscard all at
once but saves part of it for later, resulting in noticeable
performance artifacts. Second, this SSD does not seem
to be heavily used by other experimenters (it is not the
boot disk) so each time we run a new experiment, we are
picking up where we left off in the disk’s lifecycle.

The effect is that earlier experiments can affect later
ones, such as through the quantity of data they write
or where they write it, and this effect can persist many
weeks later through multiple reboots. Effects may have
been even worse if we had not run blkdiscard, since
this would have left more FTL state from previous exper-
iments. If we assumed independence between runs, we
might very well come to incorrect statistical conclusions,
as many techniques assume IID (Independent, Identically
Distributed) results. This provides more motivation for
randomizing the order of experiments, since the sets of
experiments that affect one another is not the same for
every run. To test for independence, we can compare
the samples in their original order with with a shuffled
version. These comparisons can be done using the Mann-
Whitney test or the kernel-based MMD test, similar to the
nonparametric two-sample testing we described in §6.

7.5 ♦ Be careful on shared infrastructure

Some experimenters, by choice or necessity, run exper-
iments on virtualized resources in shared environments
such as clouds. The most prominent issue with operating
in a shared environment is the potential for the presence
of “noisy neighbors,” whose behavior can impact exper-
imental results, and into which the experimenter has no
visibility. Prior work [58, 49, 62, 8] has shown that work-
loads run by one tenant can affect other tenants in a shared
environment. This has implications for variations on three
different scales:

• Competing workloads increase variability during
their runtime, affecting the variability seen during
individual experiments.
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• Competing workloads may come and go on
timescales from minutes to days, causing experi-
ments to get different results on the same VM at dif-
ferent times, or changing results during long-running
experiments.
• Noisy neighbors may be more prevalent on some

hosts than others, making different VMs perform
differently.

This poses a problem for ensuring accurate experiment
results—every bit of additional variance makes it harder
to present results with high confidence. In some sense, the
presence of a noisy neighbor is analogous to the addition
of an “outlier” server as presented in Table 6. To get an
intuition for how added variance can affect confidence
in results, consider the data reported in Figure 5 (a): this
configuration has a CoV of 1.0%, and requires 12 repe-
titions to achieve the desired confidence. A seemingly
modest increase in CoV to 5.0% (Figure 5 (b)) results
in a 10× increase in the number of repetitions required
(to 121), and a further increase to 8.1% (Figure 5 (c))
requires 670 repetitions (55×). It is also important to note
that these calculations assume a stationary distribution:
that the distribution from which performance results are
pulled does not change over time. Clearly, this is not
the case with transient noisy neighbors, requiring even
more careful experimentation techniques to detect and/or
compensate for changing performance characteristics.

Studies have found high CoVs in commercial
clouds [18, 29]—particularly for network and disk
operations—and the long performance tails in clouds are
well-known [14]. Farley et al. [18] found CoVs on EC2
from 0.35% to 25.4% for network bandwidth (average
4.4%), and from 0.5% to 40.9% (average 9.8%) for stor-
age performance. They also found significant differences
in performance (typically around 1.2×, but as high as
3.7×) from different VM instances of the same “type”
(eg. m1-small). Compared with the CoVs found in this
study—0.004% CoV for network bandwidth, and average
3.3% CoV (max. 9.86%) for disk I/O—experimenters
are likely to require many more repetitions to gain high
confidence.

Another issue with running on shared infrastructure
is that virtualization adds a layer of abstraction. Even if
there are no noisy neighbors to contend with, there is still
the presence of the hypervisor. Other studies [49, 62, 56,
11] have explored the extent to which the hypervisor layer
impacts the performance of various workloads, including
increasing variance.

It is important to note that, as we have explored in this
paper, running on non-shared, non-virtualized resources
does not shield the user entirely from variability: even
“bare” hardware has complex, opaque behavior, and the
OS kernel can introduce variability just as the hypervisor
does. The additional variance from shared resources does

not make it impossible to run good experiments, but it can
make it much harder. Earlier work has looked to address
issues with running workloads in shared environments.
Some solutions [46, 10, 7] focus on the perspective of the
provider, and seek to manage these interference effects
by varying virtual machine placement or resource alloca-
tion. Others [69] approach this from the perspective of the
client and try to find the “best” type of virtual machine.
The common thread between these solutions, however,
is the reality that performance interference effects must
be managed and cannot be entirely avoided. To achieve
statistical confidence, the experimenter is likely to have
to run many more experiments, and to consider sources of
variation that are not stationary, which makes experiment
design far more complex. Conversely, experiments run
in this environment that do not account for increased and
more complex variance run a larger risk of coming to in-
correct conclusions: for a fixed number of runs, the more
variance is present, the wider the confidence intervals.
The wider the confidence intervals, the larger the effect
that can be potentially misreported.

Our overall recommendation is to run experiments
in a shared (and therefore, likely high-variance) envi-
ronment only if it is unavoidable. If experiments must
be run in such an environment, design them in ways that
help compensate for variability: run many more repeti-
tions, run on many different VMs and at different times to
avoid over-measuring artifacts from particular neighbors,
and ensure that the experiment design does not introduce
systematic bias.

7.6 ♦ Plan experiments for uncertainty
It is not always practical to run a large number of repeti-
tions of an experiment. This can be due to factors such as
monetary costs, long execution times or both. Techniques
in Active Learning [53] and Bayesian Optimization [54]
help design sequences of experiments that efficiently “ex-
plore” available configurations. Generally speaking, the
former class of techniques focuses on reducing the uncer-
tainty about experiments’ outcomes, while the latter helps
find configurations corresponding to the maximums (or
minimums) of the objective functions studied via experi-
mentation. In contrast with classical (static) experiment
design, these iterative techniques train Machine Learning
models on the data available from existing experiments
and use the recommendations produced by these mod-
els to run subsequent additional experiments. There is
a wealth of literature describing optimizations for these
techniques, including [20] and [36], as well as specific
computer applications, such as [16], [22], and [4], among
many other studies. While these experimentation tech-
niques are mostly outside the scope of this study, as part
of our future work, we intend to equip CONFIRM with
the ability to recommend specific servers and specific
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hardware and benchmark configurations for additional
experiments on the basis of high performance variability
and observed outliers.

8 Related Work
In [37], the authors present a profiling study of a
Warehouse-Scale Computer where they analyze 12 to
36 months worth of performance counter metrics for ap-
plications running on Google data centers. The study
focuses on microarchitecture-level statistics to identify
hotspots in distributed applications, main memory and
CPU cache latencies, among others. In contrast, we focus
on coarser-grained metrics such as runtime and band-
width of microbenchmarks with the goal of taking into
account the points of view of both system administrators
and users. Similar studies have focused on other cloud
platforms such as Microsoft’s Azure [39]. Other related
profiling efforts have the goal of improving the schedul-
ing of applications on shared infrastructure by identifying
and reducing contention between applications [35, 70].
More recently, in [25], the authors present a study of the
impact of slow failures (i.e. “hardware that is still run-
ning and functional but in a degraded mode, slower than
its expected performance”) found in large-scale cluster
deployments in 12 institutions.

In [48] the authors describe a suite of tests composed of
of microbenchmarks that run continuously over the entire
Grid5000 infrastructure. The heuristic to decide which
tests to run and where is similar to ours, but in our case
we prioritize testbed coverage. In [47] a set of open ques-
tions for experimental testbeds are outlined, with respect
to reproducibility of experiments. In particular, the topic
of “Respective Responsibilities of Testbeds and Experi-
menters” poses the questions of “How far should testbeds
go with providing advanced services to experimenters?
What should be left as a burden for experimenters?” As
part of our work, we have introduced the foundation for a
new service that aids experimenters in getting a better un-
derstanding of the variability of the underlying platform
with respect to the performance of basic subcomponents
(CPU, memory bandwidth, network and storage).

Another two broad topics that relate to our work
are anomaly detection [9, 64, 63] and straggler analy-
sis [14, 2, 68]. In the former, runtime metrics are ana-
lyzed either offline or online in order to identify events
that do not conform with the performance expectation of
the operator, either at hardware or software levels. Strag-
gler analysis deals with identifying a small proportion of
subjobs that cause significant degradations on the parent
job. We see our work as complementary to these two
topics and envision the methodology and analysis pre-
sented here as a way of generating a baseline on which
new techniques and approaches in both can be evaluated.

DCBench [32], CloudSuite [19], TailBench [38] and

BigDataBench [66] are benchmarking suites whose goal
is to recreate workloads that run on cloud infrastructures.
In our case, our goal was to target any type of workload
running on CloudLab and thus we ended up selecting a
generic (and simple) workload for our study.

9 Conclusion and Future Work
In this paper, we have explored the types and magnitudes
of hardware performance variation that are an inevitable
part of measuring the performance of computer systems.
The method we developed for finding unrepresentative
resources can be used to provide more consistent envi-
ronments, and the CONFIRM system can help to design
better experiments. These results demonstrate valuable
properties of a large, shared experimentation platform:
scale is required in order to determine which servers are
representative and which are not, and measurement and
analysis done once can be used for many experiments.

In this study, we have deliberately focused on the set
of hardware resources whose performance is of the most
interest in the CloudLab testbed. Differences due to sys-
tem software and libraries—kernels, compilers, memory
allocators, etc. should not be discounted, and there are
many more hardware metrics that are of interest. We hope
to expand our study to include these factors in the future.

Code and Data
Raw Data and Analysis Code:

doi:10.5281/zenodo.1435969

CONFIRM: https://gitlab.flux.utah.edu/

emulab/confirm

Benchmarks: https://gitlab.flux.utah.edu/

emulab/cloudlab-benchmarks

Benchmark Orchestration: https://gitlab.flux.

utah.edu/emulab/cloudlab-orchestration

Specific versions within the git repositories used for
this paper are identified with the osdi18 tag.
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Abstract
Serverless computing is becoming increasingly popu-
lar, enabling users to quickly launch thousands of short-
lived tasks in the cloud with high elasticity and fine-
grain billing. These properties make serverless comput-
ing appealing for interactive data analytics. However
exchanging intermediate data between execution stages
in an analytics job is a key challenge as direct commu-
nication between serverless tasks is difficult. The nat-
ural approach is to store such ephemeral data in a re-
mote data store. However, existing storage systems are
not designed to meet the demands of serverless applica-
tions in terms of elasticity, performance, and cost. We
present Pocket, an elastic, distributed data store that au-
tomatically scales to provide applications with desired
performance at low cost. Pocket dynamically rightsizes
resources across multiple dimensions (CPU cores, net-
work bandwidth, storage capacity) and leverages multi-
ple storage technologies to minimize cost while ensuring
applications are not bottlenecked on I/O. We show that
Pocket achieves similar performance to ElastiCache Re-
dis for serverless analytics applications while reducing
cost by almost 60%.

1 Introduction

Serverless computing is becoming an increasingly popu-
lar cloud service due to its high elasticity and fine-grain
billing. Serverless platforms like AWS Lambda, Google
Cloud Functions, and Azure Functions enable users to
quickly launch thousands of light-weight tasks, as op-
posed to entire virtual machines. The number of server-
less tasks scales automatically based on application de-
mands and users are charged only for the resources their
tasks consume, at millisecond granularity [17, 36, 56].

While serverless platforms were originally developed
for web microservices and IoT applications, their elas-
ticity and billing advantages make them appealing for
data intensive applications such as interactive analytics.
Several recent frameworks launch large numbers of fine-
grain tasks on serverless platforms to exploit all avail-

Pareto frontier

Figure 1: Example of performance-cost trade-off for
a serverless video analytics job using different storage
technologies and VM types in Amazon EC2

able parallelism in an analytics job and achieve near real-
time performance [32, 45, 27]. In contrast to traditional
serverless applications that consist of a single function
executed when a new request arrives, analytics jobs typ-
ically consist of multiple stages and require sharing of
state and data across stages of tasks (e.g., data shuffling).

Most analytics frameworks (e.g., Spark) implement
data sharing with a long-running framework agent on
each node buffering intermediate data in local stor-
age [78]. This enables tasks from different execution
stages to directly exchange intermediate data over the
network. However, in serverless deployments, there is
no long-running application framework agent to manage
local storage. Furthermore, serverless applications have
no control over task scheduling or placement, making di-
rect communication among tasks difficult. As a result of
these limitations, the natural approach for data sharing in
serverless applications is to use a remote storage service.
For instance, early frameworks for serverless analytics
either use object stores (e.g., S3 [16]), databases (e.g.,
CouchDB [1]) or distributed caches (e.g., Redis [51]).

Unfortunately, existing storage services are not a good
fit for sharing short-lived intermediate data in server-
less applications. We refer to the intermediate data as
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ephemeral data to distinguish it from input and out-
put data which requires long-term storage. File sys-
tems, object stores and NoSQL databases prioritize pro-
viding durable, long-term, and highly-available storage
rather than optimizing for performance and cost. Dis-
tributed key-value stores offer good performance, but
burden users with managing the storage cluster scale and
configuration, which includes selecting the appropriate
compute, storage and network resources to provision.

The availability of different storage technologies (e.g.,
DRAM, NVM, Flash, and HDD) increases the complex-
ity of finding the best cluster configuration for perfor-
mance and cost. However, the choice of storage tech-
nology is critical since jobs may exhibit different stor-
age latency, bandwidth and capacity requirements while
different storage technologies vary significantly in terms
of their performance characteristics and cost [48]. As
an example, Figure 1 plots the performance-cost trade-
off for a serverless video analytics application using a
distributed ephemeral data store configured with differ-
ent storage technologies, number of nodes, compute re-
sources per node, and network bandwidth (see §6.1 for
our AWS experiment setup). Each resource configura-
tion leads to different performance and cost. Finding
Pareto efficient storage allocations for a job is non-trivial
and gets more complicated with multiple jobs.

We present Pocket, a distributed data store designed
for efficient data sharing in serverless analytics. Pocket
offers high throughput and low latency for arbitrary size
data sets, automatic resource scaling, and intelligent data
placement across multiple storage tiers such as DRAM,
Flash, and disk. The unique properties of Pocket result
from a strict separation of responsibilities across three
planes: a control plane which determines data placement
policies for jobs, a metadata plane which manages dis-
tributed data placement, and a ‘dumb’ (i.e., metadata-
oblivious) data plane responsible for storing data. Pocket
scales all three planes independently at fine resource and
time granularity based on the current load. Pocket uses
heuristics, which take into account job characteristics, to
allocate the right storage media, capacity, bandwidth and
CPU resources for cost and performance efficiency. The
storage API exposes deliberately simple I/O operations
for sub-millisecond access latency. We intend for Pocket
to be managed by cloud providers and offered to users
with a pay-what-you-use cost model.

We deploy Pocket on Amazon EC2 and evaluate the
system using using three serverless analytics workloads:
video analytics, MapReduce sort, and distributed source
code compilation. We show that Pocket is capable
of rightsizing the type and number of resources such
that jobs achieve similar performance compared to us-
ing ElastiCache Redis, a DRAM-based key-value store,
while saving almost 60% in cost.

In summary, our contributions are as follows:

• We identify the key characteristics of ephemeral
data in serverless analytics and synthesize require-
ments for storage platforms used to share such data
among serverless tasks.

• We introduce Pocket, a distributed data store whose
control, metadata and data planes are designed
for sub-second response times, automatic resource
scaling and intelligent data placement across stor-
age tiers. To our knowledge, Pocket is the first plat-
form targeting data sharing in serverless analytics.

• We show that Pocket’s data plane delivers sub-
millisecond latency and scalable bandwidth while
the control plane rightsizes resources based on the
number of jobs and their attributes. For a video an-
alytics job, Pocket reduces the average time server-
less tasks spend on ephemeral I/O by up to 4.1×
compared to S3 and achieves similar performance
to ElastiCache Redis while saving 59% in cost.

Pocket is open-source software. The code is available
at: https://github.com/stanford-mast/pocket.

2 Storage for Serverless Analytics

Early work in serverless analytics has identified the chal-
lenge of storing and exchanging data between hundreds
of fine-grain, short-lived tasks [45, 32]. We build on our
study of ephemeral storage requirements for serverless
analytics applications [49] to synthesize essential prop-
erties for an ephemeral data storage solution. We also
discuss why current systems are not able to meet the
ephemeral I/O demands of serverless analytics applica-
tions. Our focus is on ephemeral data as the original in-
put and final output data of analytics jobs typically has
long-term availability and durability requirements that
are well served by the variety of file systems, object
stores, and databases available in the cloud.

2.1 Ephemeral Storage Requirements
High performance for a wide range of object sizes:
Serverless analytics applications vary considerably in the
way they store, distribute, and process data. This diver-
sity is reflected in the granularity of ephemeral data that
is generated during a job. Figure 2 shows the ephemeral
object size distribution for a distributed lambda compi-
lation of the cmake program, a serverless video analyt-
ics job using the Thousand Island (THIS) video scan-
ner [63], and a 100 GB MapReduce sort job on lamb-
das. The key observation is that ephemeral data ac-
cess granularity varies greatly in size, ranging from hun-
dreds of bytes to hundreds of megabytes. We observe a
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Figure 2: Objects are 100s of bytes to 100s of MBs.

straight line for sorting as its ephemeral data size is equal
to the partition size. However, with a different dataset
size and/or number of workers, the location of the line
changes. Applications that read/write large objects de-
mand high throughput (e.g., we find that sorting 100 GB
with 500 lambdas requires up to 7.5 GB/s of ephemeral
storage throughput) while low latency is important for
small object accesses. Thus, an ephemeral data store
must deliver high bandwidth, low latency, and high IOPS
for the entire range of object sizes.

Automatic and fine-grain scaling: One of the key
promises of serverless computing is agility to dynam-
ically meet application demands. Serverless frame-
works can launch thousands of short-lived tasks instan-
taneously. Thus, an ephemeral data store for serverless
applications can observe a storm of I/O requests within a
fraction of a second. Once the load dissipates, the stor-
age (just like the compute) resources should be scaled
down for cost efficiency. Scaling up or down to meet
elastic application demands requires a storage solution
capable of growing and shrinking in multiple resource
dimensions (e.g., adding/removing storage capacity and
bandwidth, network bandwidth, and CPU cores) at a fine
time granularity on the order of seconds. In addition,
users of serverless platforms desire a storage service that
automatically manages resources and charges users only
for the fine-grain resources their jobs actually consume,
so as to match the abstraction that serverless comput-
ing already provides for compute and memory resources.
Automatic resource management is important since nav-
igating cluster configuration performance-cost trade-offs
is a burden for users. For example, finding the Pareto
optimal point outlined in Figure 1 is non-trivial; it is the
point beyond which adding resources only increases cost
without improving execution time while using any lower-
cost resource allocation results in sub-optimal execution
time. In summary, an ephemeral data store must auto-
matically rightsize resources to satisfy application I/O
requirements while minimizing cost.

Storage technology awareness: In addition to right-
sizing cluster resources, the storage system also needs to
decide which storage technology to use for which data.
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Figure 3: Objects have short lifetime.

The variety of storage media available in the cloud al-
low for different performance-cost trade-offs, as shown
in Figure 1. Each storage technology differs in terms of
I/O latency, throughput and IOPS per GB of capacity,
and the cost per GB. The optimal choice of storage me-
dia for a job depends on its characteristics. Hence, the
ephemeral data store must place application data on the
right storage technology tier(s) for performance and cost
efficiency.

Fault-(in)tolerance: Typically a data store must deal
with failures while keeping the service up and run-
ning. Hence, it is common for storage systems to use
fault-tolerance techniques such as replication and era-
sure codes [42, 66, 46]. For data that needs to be stored
long-term, such as the original input and final output data
for analytics workloads, the cost of data unavailability
typically outweighs the cost of fault-tolerance mecha-
nisms. However, as shown in Figure 3, ephemeral data
has a short lifetime of 10-100s of seconds. Unlike the
original input and final output data, ephemeral data is
only valuable during the execution of a job and can eas-
ily be regenerated. Furthermore, fault tolerance is typi-
cally baked into compute frameworks, such that storing
the data and computing it become interchangeable [39].
For example, Spark uses a data abstraction called re-
silient distributed datasets (RDDs) to mitigate stragglers
and track lineage information for fast data recovery [78].
Hence, we argue that an ephemeral storage solution does
not have to provide high fault-tolerance as expected of
traditional storage systems.

2.2 Existing Systems

Existing storage systems do not satisfy the combination
of requirements outlined in § 2.1. We describe different
categories of systems and summarize why they fall short
for elastic ephemeral storage in Table 1.

Severless applications commonly use fully-managed
cloud storage services, such as Amazon S3, Google
Cloud Storage, and DynamoDB. These systems extend
the ‘serverless’ abstraction to storage, charging users
only for the capacity and bandwidth they use [16, 28].
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Elastic scaling Latency Throughput Max object size Cost
S3 Auto,

coarse-grain
High Medium 5 TB $

DynamoDB Auto, fine-grain,
pay per hour

Medium Low 400 KB $$

Elasticache
Redis

Manual Low High 512 MB $$$

Aerospike Manual Low High 1 MB $$
Apache Crail Manual Low High any size $$
Desired for λ s Auto, fine-grain,

pay per second
Low High any size $

Table 1: Comparison of existing storage systems and desired properties for ephemeral storage in serverless analytics.

While such services automatically scale resources based
on usage, they are optimized for high durability hence
their agility is limited and they do not meet the perfor-
mance requirements of serverless analytics applications.
For example, S3 has high latency overhead (e.g., a 1
KB read takes ∼12 ms) and insufficient throughput for
highly parallel applications. For example, sorting 100
GB with 500 or more workers results in request rate limit
errors when S3 is used for intermediate data.

In-memory key-value stores, such as Redis and Mem-
cached, provide another option for storing ephemeral
data [51, 8]. These systems offer low latency and high
throughput but at the higher cost of DRAM. They also
require users to manage their own storage instances and
manually scale resources. Although Amazon and Azure
offer managed Redis clusters through their ElastiCache
and Redis Cache services respectively, they do not au-
tomate storage management as desired by serverless ap-
plications [13, 57]. Users must still select instance types
with the appropriate memory, compute and network re-
sources to match their application requirements. In addi-
tion, changing instance types or adding/removing nodes
can require tearing down and restarting clusters, with
nodes taking minutes to start up while the service is
billed for hourly usage.

Another category of systems use Flash storage to de-
crease cost, while still offering good performance. For
example, Aerospike is a popular Flash-based NoSQL
database [69]. Alluxio/Tachyon is designed to enable
fast and fault-tolerant data sharing between multiple
jobs [53]. Apache Crail is a distributed storage system
that uses multiple media tiers to balance performance and
cost [2]. Unfortunately, users must manually configure
and scale their storage cluster resources to adapt to elas-
tic job I/O requirements. Finding Pareto optimal deploy-
ments for performance and cost efficiency is non-trivial,
as illustrated for a single job in Figure 1. Cluster con-
figuration becomes even more complex when taking into
account the requirements of multiple overlapping jobs.

3 Pocket Design

We introduce Pocket, an elastic distributed storage ser-
vice for ephemeral data that automatically and dynam-
ically rightsizes storage cluster resource allocations to
provide high I/O performance while minimizing cost.
Pocket addresses the requirements outlined in §2.1 by
applying the following key design principles:

1. Separation of responsibilities: Pocket divides re-
sponsibilities across three different planes: the con-
trol plane, the metadata plane, and the data plane.
The control plane manages cluster sizing and data
placement. The metadata plane tracks the data
stored across nodes in the data plane. The three
planes can be scaled independently based on vari-
ations in load, as described in §4.2.

2. Sub-second response time: All I/O operations are
deliberately simple, targeting sub-millisecond la-
tencies. Pocket’s storage servers are optimized for
fast I/O and are only responsible for storing data
(not metadata), making them simple to scale up or
down. The controller scales resources at second
granularity and balances load by intelligently steer-
ing incoming job data. This makes Pocket elastic.

3. Multi-tier storage: Pocket leverages different stor-
age media (DRAM, Flash, disk) to store a job’s data
in the tier(s) that satisfy the I/O demands of the ap-
plication while minimizing cost (see §4.1).

3.1 System Architecture
Figure 4 shows Pocket’s system architecture. The system
consists of a logically centralized controller, one or more
metadata servers, and multiple data plane storage servers.

The controller, which we describe in §4, allocates stor-
age resources for jobs and dynamically scales Pocket
metadata and storage nodes up and down as the number
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of jobs and their requirements vary over time. The con-
troller also makes data placement decisions for jobs (i.e.,
which nodes and storage media to use for a job’s data).

Metadata servers enforce coarse-grain data placement
policies generated by the controller by steering client re-
quests to appropriate storage servers. Pocket’s metadata
plane manages data at the granularity of blocks, whose
size is configurable. We use a 64 KB block size in our
deployment. Objects larger than the block size are di-
vided into blocks and distributed across storage servers,
enabling Pocket to support arbitrary object sizes. Clients
access data blocks on metadata-oblivious, performance-
optimized storage servers equipped with different stor-
age media (DRAM, Flash, and/or HDD).

3.2 Application Interface

Table 2 outlines Pocket’s application interface. Pocket
exposes an object store API with additional functions tai-
lored to the ephemeral storage use-case. We describe
these functions and how they map to Pocket’s separate
control, metadata and data planes.

Control functions: Applications use two API calls,
register job and deregister job, to interact with
the Pocket controller. The register job call accepts
hints about a job’s characteristics (e.g., degree of par-
allelism, latency-sensitivity) and requirements (e.g., ca-
pacity, throughput). These optional hints help the con-
troller rightsize resource allocations to optimize perfor-
mance and cost (see §4.1). The register job call re-
turns a job identifier and the metadata server(s) assigned
for managing the job’s data. The deregister job call
notifies the controller that a serverless job has completed.

Metadata functions: While control API calls are is-
sued once per job, serverless tasks in a job can inter-
act with Pocket metadata servers multiple times during
their lifetime to write and read ephemeral data. Server-
less clients use the connect call to establish a connec-
tion with Pocket’s metadata service. Data in Pocket is
stored in objects which are organized in buckets. Ob-
jects and buckets are identified using names (strings).
Clients can create and delete buckets and enumerate ob-
jects in buckets by passing their job identifier and the
bucket name. Clients can also lookup and delete existing
objects. These metadata operations are similar to those
supported by other object stores like Amazon S3.

In our current design, Pocket stores all of a job’s data
in a top-level bucket identified by the job’s ID, which
is created during job registration by the controller. This
implies each job is assigned to a single metadata server,
since a bucket is only managed by one metadata server, to
simplify consistency management. However, a job is not
fundamentally limited to one metadata server. In general,
jobs can create multiple top-level buckets which hash to
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Figure 4: Pocket system architecture and the steps to reg-
ister job C, issue a PUT from a lambda and de-register
the job. The colored bars on storage servers show used
and allocated resources for all jobs in the cluster.

different metadata servers. In §6.2 we show that a sin-
gle metadata server in our deployment supports 175K re-
quests per second, which for the applications we study is
sufficient to support jobs with thousands of lambdas.

Storage functions: Clients put and get data to/from
objects at a byte granularity. Clients provide their job
identifier for all operations. Put and get operations first
involve a metadata lookup. Pocket enhances the basic
put and get object store API calls by accepting an op-
tional data lifetime management hint for these two calls.
Since ephemeral data is usually only valuable during the
execution of a job, Pockets default coarse-grained be-
havior is to delete a job’s data when the job deregisters.
However, applications can set flags to override the de-
fault deletion policy for particular objects.

If a client issues a put with the PERSIST flag set to
true, the object will persist after the job completes. The
object is stored on long-running Pocket storage nodes
(see §4.2) and will remain in Pocket until it is explicitly
deleted or a (configurable) timeout period has elapsed.
The ability to persist objects beyond the duration of a
job is useful for piping data between jobs. If a client is-
sues a get with the DELETE flag set to true, the object
will be deleted as soon as it is read, allowing for more
efficient garbage collection. Our analysis of ephemeral
I/O characteristics for serverless analytics applications
reveals that ephemeral data is often written and read only
once. For example, a mapper writes an intermediate ob-
ject destined to a particular reducer. Such data can be
deleted as soon as it is consumed instead of waiting for
the job to complete and deregister.

3.3 Life of a Pocket Application

We now walk through the life of a serverless analytics
application using Pocket. Before launching lambdas, the
application first registers with the controller and option-
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Client API Function Description
register job(jobname, hints=None) register job with controller and provide optional hints,

returns a job ID and metadata server IP address
deregister job(jobid) notify controller job has finished, delete job’s

non-PERSIST data
connect(metadata server address) open connection to metadata server
close() close connection to metadata server
create bucket(jobid, bucketname) create a bucket
delete bucket(jobid, bucketname) delete a bucket
enumerate(jobid, bucketname) enumerate objects in a bucket
lookup(jobid, obj name) return true if obj name data exists, else false
delete(jobid, obj name) delete data
put(jobid, src filename, obj name, PERSIST=false) write data, set PERSIST flag if want data to remain

after job finishes
get(jobid, dst filename, obj name, DELETE=false) read data, set DELETE true if data is only read once

Table 2: Main control, metadata, and storage functions exposed by Pocket’s client API.

ally provides hints about the job’s characteristics (step i
in Figure 4). The controller determines the storage tier
to use (DRAM, Flash, disk) and the number of storage
servers across which to distribute the job’s data to meet
its throughput and capacity requirements. The controller
generates a weight map, described in §4.1, to specify the
job’s data placement policy and sends this information
to the metadata server which it assigned for managing
the job’s metadata and steering client I/O requests (step
ii). If the controller needs to launch new storage servers
to satisfy a job’s resource allocation, the job registration
call stalls until these nodes are available.

When registration is complete, the job launches lamb-
das. Lambdas first connect to their assigned metadata
server, whose IP address is provided by the controller
upon job registration. Lambda clients write data by
first contacting the metadata server to get the IP address
and block address of the storage server to write data to.
For writes to large objects which span multiple blocks,
the client requests capacity allocation from the metadata
server in a streaming fashion; when the capacity of a sin-
gle block is exhausted, the client issues a new capacity
allocation request to the metadata server. Pocket’s client
library internally overlaps metadata RPCs for the next
block while writing data for the current block to avoid
stalls. Similarly, lambdas read data by first contacting the
metadata server in a similar fashion. Clients cache meta-
data in case they need to read an object multiple times.

When the last lambda in a job finishes, the job deregis-
ters the job to free up Pocket resources (step iii). Mean-
while, as jobs execute, the controller ontinuously moni-
tors resource utilization in storage and metadata servers
(the horizontal bars on storage servers in Figure 4) to ad-
d/remove servers as needed to minimize cost while pro-
viding high performance (see §4.2).

3.4 Handling Node Failures

Though Pocket is not designed to provide high data dura-
bility, the system has mechanisms in place to deal with
node failures. Storage servers send heartbeats to the con-
troller and metadata servers. When a storage server fails
to send heartbeats, metadata servers automatically mark
its blocks as invalid. As a result, client read operations
to data that was stored on the faulty storage server will
return a ‘data unavailable’ error. Pocket currently ex-
pects the application framework to re-launch serverless
tasks to regenerate lost ephemeral data. A common ap-
proach is for application frameworks to track data lin-
eage, which is the sequence of tasks that produces each
object [78, 39]. For metadata fault tolerance, Pocket sup-
ports logging of all metadata RPC operations on shared
storage. When a metadata server fails, its state can be re-
constructed by replaying the shared log. Controller fault
tolerance can be achieved through master-slave replica-
tion, though we do not evaluate this in our study.

4 Rightsizing Resource Allocations

Pocket’s control plane elastically and automatically
rightsizes cluster resources. When a job registers,
Pocket’s controller leverages optional hints passed
through the API to conservatively estimate the job’s la-
tency, throughput and capacity requirements and find a
cost-effective resource assignment, as described in §4.1.
In addition to rightsizing resource allocations for jobs
upfront, Pocket continuously monitors the cluster’s over-
all utilization and decides when and how to scale stor-
age and metadata nodes based on load. §4.2 describes
Pocket’s resource scaling mechanisms along with its data
steering policy to balance load.
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Hint Impact on throughput T Impact on capacity C Impact on storage media
No hint (default policy) T = Tdefault

(T = 50× 8 Gb/s)
C =Cdefault

(C = 50× 1960 GB)
Fill storage tiers in order of
high to low performance
(DRAM first, then Flash)

Latency sensitivity - - If latency sensitive, use
default policy above.
Otherwise, choose the
storage tier with the lowest
cost for the estimated
throughput T and capacity C
required for the job.

Maximum number of
concurrent lambdas N

T = N× per-λ Gb/s limit
(T = N ×0.6 Gb/s)

C ∝ N× per-λ Gb/s limit
(C = N×0.6

8 Gb/s × 1960 GB)
Total ephemeral
data capacity D

T ∝ D
(T = D

1960GB ×8 Gb/s)
C = D

Peak aggregate bandwidth B T = B C ∝ B
(C = B

8 Gb/s ×1960GB)

Table 3: The impact that hints provided about the application have on Pocket’s resource allocation decisions for
throughput, capacity and the choice of storage media (with specific examples in parentheses for our AWS deployment
with i3.2xl instances, each with 8 cores, 60 GB DRAM, 1.9 TB Flash and ∼8 Gb/s network bandwidth).

4.1 Rightsizing Application Allocation

When a job registers, the controller first determines its
resource allocation across three dimensions: throughput,
capacity, and the choice of storage media. The controller
then uses an online bin-packing algorithm to translate the
resource allocation into a resource assignment on nodes.

Determining job I/O requirements: Pocket uses
heuristics that adapt to optional hints passed through the
register job API. Table 3 lists the hints that Pocket
supports and their impact on the throughput, capacity,
and choice of storage media allocated for a job, with ex-
amples (in parentheses) for our deployment on AWS.

Given no hints about a job, Pocket uses a default re-
source allocation that conservatively over-provisions re-
sources to achieve high performance, at high cost. In
our AWS deployment, this consists of 50 i3.2xl nodes,
providing DRAM and NVMe Flash storage with 50 GB/s
aggregate throughput. By default, Pocket conservatively
assumes that a job is latency sensitive. Hence, Pocket
fills the job’s DRAM resources before spilling to other
storage tiers, in order of increasing storage latency. If a
job hints that it is not sensitive to latency, the controller
does not allocate DRAM for the job and instead uses the
most cost-effective storage technology for the through-
put and capacity the controller estimates the job needs.

Knowing a job’s maximum number of concurrent
lambdas, N, allows Pocket to compute a less conserva-
tive estimate of the job’s throughput requirement. If this
hint is provided, Pocket allocates throughput equal to N
times the peak network bandwidth limit per lambda (e.g.,
∼600 Mb/s per lambda on AWS). N can be limited by
the job’s inherent parallelism or the cloud provider’s task
invocation limit (e.g., 1000 default on AWS).

Pocket’s API also accepts hints for the aggregate
throughput and capacity requirements of a job, which
override Pocket’s heuristic estimates. This informa-
tion can come from profiling. When Pocket receives a

throughput hint with no capacity hint, the controller allo-
cates capacity proportional to the job’s throughput allo-
cation. The proportion is set by the storage throughput to
capacity ratio on the VMs used (e.g., i3.2xl instances
in AWS provide 1.9 TB of capacity per ∼ 8 Gb/s of net-
work bandwidth). Vice versa, if only a capacity hint is
provided, Pocket allocates throughput based on the VM
capacity:throughput ratio. In the future, we plan to allow
jobs to specify their average per-lambda throughput and
capacity requirements, as these can be more meaningful
than aggregate throughput and capacity hints for a job
when the number of lambdas used is subject to change.

The hints in Table 3 can be specified by applica-
tion developers or provided by the application frame-
work. For example, the framework we use to run lambda-
distributed software compilation automatically infers and
synthesizes a job’s dependency graph [31]. Hence, this
framework can provide Pocket with hints about the job’s
maximum degree of parallelism, for instance.

Assigning resources: Pocket translates a job’s re-
source allocation into a resource assignment on specific
storage servers by generating a weight map for the job.
The weight map is an associative array mapping each
storage server (identified by its IP address and port) to
a weight from 0 to 1, which represents the fraction of a
job’s dataset to place on that storage server. If a storage
server is assigned a weight of 1 in a job’s weight map,
it will store all of the job’s data. The controller sends
the weight map to metadata servers, which enforce the
data placement policy by routing client requests to stor-
age servers using weighted random selection based on
the weights in the job’s weight map.

The weight map depends on the job’s resource re-
quirements and the available cluster resources. Pocket
uses an online bin-packing algorithm which first tries to
fit a job’s throughput, capacity and storage media allo-
cation on active storage servers and only launches new
servers if the job’s requirements cannot be satisfied by
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sharing resources with other jobs [67]. If a job requires
more resources than are currently available, the con-
troller launches the necessary storage nodes while the
application waits for its job registration command to re-
turn. Nodes take a few seconds or minutes to launch,
depending on whether a new VM is required (§6.2).

4.2 Rightsizing the Storage Cluster

In addition to rightsizing the storage allocation for each
job, Pocket dynamically scales cluster resources to ac-
commodate elastic application load for multiple jobs
over time. At its core, the Pocket cluster consists of a
few long-running nodes used to run the controller, the
minimum number of metadata servers (one in our de-
ployment), and the minimum number of storage servers
(two in our deployment). In particular, data written with
the PERSIST flag described in §3.2, which has longer
lifetime, is always stored on long-running storage servers
in the cluster. Beyond these persistent resources, Pocket
scales resources on demand based on load. We first de-
scribe the mechanism for horizontal and vertical scaling
and then discuss the policy Pocket uses to balance cluster
load by carefully steering requests across servers.

Mechanisms: The controller monitors cluster re-
source utilization by processing heartbeats from storage
and metadata servers containing their CPU, network, and
storage media capacity usage. Nodes send statistics to
the controller every second. The interval is configurable.

When launching a new storage server, the controller
provides the IP addresses of all metadata servers that the
storage server must establish connections with to join the
cluster. The new storage server registers a portion of
its capacity with each of these metadata servers. Meta-
data servers independently manage their assigned capac-
ity and do not communicate with each other. Storage
servers periodically sends heartbeats to metadata servers.

To remove a storage server, the controller blacklists
the storage server by assigning it a zero weight in the
weight maps of incoming jobs. This ensures that meta-
data servers do not steer data from new jobs to this node.
The controller instructs a randomly selected metadata
server to set a ‘kill’ flag in the heartbeat responses of the
blacklisted storage server. The blacklisted storage server
waits until its capacity is entirely freed, as jobs termi-
nate and their ephemeral data are garbage collected. The
storage server then terminates and releases its resources.

When the controller launches a new metadata server,
the metadata server waits for new storage servers to also
be launched and register their capacity. To remove a
metadata server, the controller sends a ‘kill’ RPC to the
node. The metadata server waits for all the capacity it
manages to be freed, then notifies all connected storage
servers to close their connections. When all connections

close, the metadata server terminates. Storage servers
then register their capacity that was managed by the old
metadata server across new metadata servers.

In addition to horizontal scaling, the controller man-
ages vertical scaling. When the controller observes that
CPU utilization is high and additional cores are available
on a node, the controller instructs the node via a heart-
beat response to use additional CPU cores.

Cluster sizing policy: Pocket elastically scales the
cluster using a policy that aims to maintain overall uti-
lization for each resource type (CPU, network band-
width, and the capacity of each storage tier) within a tar-
get range. The target utilization range can be configured
separately for each resource type and managed sepa-
rately for metadata servers, long-running storage servers
(which store data written with the PERSIST flag set) and
regular storage servers. For our deployment, we use a
lower utilization threshold of 60% and a upper utiliza-
tion threshold of 80% for all resource dimensions, for
both the metadata and storage nodes. The range is em-
pirically tuned and depends on the time it takes to add/re-
move nodes. Pocket’s controller scales down the cluster
by removing a storage server if overall CPU, network
bandwidth and capacity utilization is below the lower
limit of the target range. In this case, Pocket removes
a storage server belonging to the tier with lowest capac-
ity utilization. Pocket adds a storage server if overall
CPU, network bandwidth or capacity utilization is above
the upper limit of the target range. To respond to CPU
load spikes or lulls, Pocket first tries to vertically scale
CPU resources on metadata and storage servers before
horizontally scaling the number of nodes.

Balancing load with data steering: To balance load
while dynamically sizing the cluster, Pocket leverages
the short-lived nature of ephemeral data and serverless
jobs. As ephemeral data objects only live for tens to
hundreds of seconds (see Figure 3), migrating this data
to re-distribute load when nodes are added or removed
has high overhead. Instead, Pocket focuses on steering
data for incoming jobs across active and new storage
servers joining the cluster. Pocket controls data steering
by assigning specific weights for storage servers in each
job’s weight map. To balance load, the controller assigns
higher weights to under-utilized storage servers.

The controller uses a similar approach, at a coarser
granularity, to balance load across metadata servers. As
noted in §3.2, the controller currently assigns each job
to one metadata server. The controller estimates the
load a job will impose on a metadata server based on
its throughput and capacity allocation. Combining this
estimate with metadata server resource utilization statis-
tics, the controller selects a metadata server to use for
an incoming job such that the predicted metadata server
resource utilization remains within the target range.
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5 Implementation

Controller: Pocket’s controller, implemented in Python,
leverages the Kubernetes container orchestration system
to launch and tear down metadata and storage servers,
running in separate Docker containers [7]. The controller
uses Kubernetes Operations (kops) to spin up and down
virtual machines that run containers [6]. As explained
in §4.2, Pocket rightsizes cluster resources to maintain a
target utilization range. We implement a resource moni-
toring daemon in Python which runs on each node, send-
ing CPU and network utilization statistics to the con-
troller every second. Metadata servers also send stor-
age tier capacity utilization statistics. We empirically
tune the target utilization range based on node startup
time. For example, we use a conservative target utiliza-
tion range when the controller needs to launch new VMs
compared to when VMs are running and the controller
simply launches containers.

Metadata management: We implement Pocket’s
metadata and storage server architecture on top of the
Apache Crail distributed data store [2, 71]. Crail is de-
signed for low latency, high throughput storage of arbi-
trarily sized data with low durability requirements. Crail
provides a unified namespace across a set of heteroge-
neous storage resources distributed in a cluster. Its mod-
ular architecture separates the data and metadata plane
and supports pluggable storage tier and RPC library im-
plementations. While Crail is originally designed for
RDMA networks, we implement a TCP-based RPC li-
brary for Pocket since RDMA is not readily available in
public clouds. Like Crail, Pocket’s metadata servers are
implemented in Java. Each metadata server logs its meta-
data operations to a file on a shared NFS mount point,
such that the log can be accessed and replayed by a new
metadata server in case a metadata server fails.

Storage tiers: We implement three different storage
tiers for Pocket. The first is a DRAM tier implemented
in Java, using NIO APIs to efficiently serve requests
from clients over TCP connections. The second tier uses
NVMe Flash storage. We implement Pocket’s NVMe
storage servers on top of ReFlex, a system that allows
clients (i.e., lambdas) to access Flash over commodity
Ethernet networks with high performance [47]. ReFlex
is implemented in C and leverages Intel’s DPDK [43]
and SPDK [44] libraries to directly access network and
NVMe device queues from userspace. ReFlex uses a
polling-based execution model to efficiently process net-
work storage requests over TCP. The system also uses
a quality of service (QoS) aware scheduler to manage
read/write interference on Flash and provide predictable
performance to clients. The third tier we implement is
a generic block storage tier that allows Pocket to use
any block storage device (e.g., HDD or SATA/SAS SSD)

Pocket
server

EC2
server

DRAM
(GB)

Storage
(TB)

Network
(Gb/s)

$ / hr

Controller m5.xl 16 0 ∼8 0.192
Metadata m5.xl 16 0 ∼8 0.192
DRAM r4.2xl 61 0 ∼8 0.532
NVMe i3.2xl 61 1.9 ∼8 0.624
SSD i2.2xl 61 1.6 . 2 1.7051

HDD h1.2xl 32 2 ∼8 0.468

Table 4: Type and cost of EC2 VMs used for Pocket

via a standard kernel device driver. Similar to ReFlex,
this tier is implemented in C and uses DPDK for effi-
cient, userspace networking. However, instead of using
SPDK to access NVMe Flash devices from userspace,
this tier uses the Linux libaio library to submit asyn-
chronous block storage requests to a kernel block device
driver. Leveraging userspace APIs for the Pocket NVMe
and generic block device tiers allows us to increase per-
formance and resource efficiency. For example, ReFlex
can process up to 11× more requests per core than a con-
ventional Linux network-storage stack [47].

Client library: Since the serverless applications we
use are written in Python, we implement Pocket’s ap-
plication interface (Table 2) as a Python client library.
The core of the library is implemented in C++ to opti-
mize performance. We use Boost to wrap the code into
a Python library. The library internally manages TCP
connections with metadata and storage servers.

6 Evaluation

6.1 Methodology
We deploy Pocket on Amazon Web Service (AWS). We
use EC2 instances to run Pocket storage, metadata, and
controller nodes. We use four different kinds of storage
media: DRAM, NVMe-based Flash, SATA/SAS-based
Flash (which we refer to as SSD), and HDD. DRAM
servers run on r4.2xl instances, NVMe Flash servers
run on i3.2xl instances, SSD servers run on i2.2xl in-
stances, and HDD servers run on h1.2xl instances. We
choose the instance families based on their local storage
media, shown in Table 4. We choose the VM size to pro-
vide a good balance of network bandwidth and storage
capacity for the serverless applications we study.

We run Pocket storage and metadata servers as con-
tainers on EC2 VMs, orchestrated with Kubernetes v1.9.
We use AWS Lambda as our serverless computing plat-
form. We enable lambdas to access Pocket EC2 nodes by
deploying them in the same virtual private cloud (VPC).

1The cost of the i2 instance is particularly high since it is an old
generation instance that is being phased out by AWS and replaced by
the newer generation i3 instances with NVMe Flash devices.
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We configure lambdas with 3 GB of memory. Ama-
zon allocates lambda compute resources proportional to
memory resources [18]. We compare Pocket’s perfor-
mance and cost-efficiency to ElastiCache Redis (cluster-
mode enabled) and Amazon S3 [13, 51, 16]. We present
results from experiments conducted in April 2018.

We study three different serverless analytics applica-
tions, described below. The applications differ in their
degree of parallelism, ephemeral object size distribution
(Figure 2), and throughput requirements.

Video analytics: We use the Thousand Island Scanner
(THIS) for distributed video processing [63]. Lambdas
in the first stage read compressed video frame batches,
decode, and write the decoded frames to ephemeral stor-
age. Each lambda fetches a 250 MB decoder executable
from S3 as it does not fit in the AWS Lambda deploy-
ment package. Each first stage lambda then launches
second stage lambdas, which read decoded frames from
ephemeral storage, compute a MXNET deep learning
classification algorithm and output an object detection
result. We use a 25 minute video with 40K 1080p frames.
We tune the batch size for each stage to minimize the
job’s end-to-end execution time; the first stage consists
of 160 lambdas while the second has 305 lambdas.

MapReduce Sort: We implement a MapReduce sort
application on AWS Lambda, similar to PyWren [45].
Map lambdas fetch input files from long-term storage
(we use S3) and write intermediate files to ephemeral
storage. Reduce lambdas merge and sort intermediate
data and upload output files to long-term storage. We
run a 100 GB sort, which generates 100 GB of ephemeral
data. We run the job with 250, 500, and 1000 lambdas.

Distributed software compilation (λ -cc): We use
gg to infer software build dependency trees and in-
voke lambdas to compile source code with high par-
allelism [4, 31]. Each lambda fetches its dependen-
cies from ephemeral storage, computes (i.e., compiles,
archives or links), and writes its output to ephemeral stor-
age, including the final executable for the user to down-
load. We present results for compiling the cmake project
source code. This build job has a maximum inherent par-
allelism of 650 tasks and generates a total of 850 MB
ephemeral data. Object size ranges from 10s of bytes to
MBs, as shown in Figure 2.

6.2 Microbenchmarks

Storage request latency: Figure 5 compares the 1
KB request latency of S3, Redis, and various Pocket
storage tiers measured from a lambda client. Pocket-
DRAM, Pocket-NVMe and Redis latency is below 540
µs, which is over 45× faster than S3. The latency of
the Pocket-SSD and Pocket-HDD tiers is higher due to
higher storage media access times. Pocket-HDD get
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Figure 5: Unloaded latency for 1KB access from lambda
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Figure 6: Total GB/s for 1MB requests from 100 lambdas

latency is higher than put latency since lambdas issue
random reads while writes are sequential; the metadata
server routes writes to sequential logical block addresses.
Pocket-DRAM has higher latency than Redis mainly due
to the metadata lookup RPC, which takes 140 µs. While
Redis cluster clients simply hash keys to Redis nodes,
Pocket clients must contact a metadata server. While this
extra RPC increases request latency, it allows Pocket to
optimize data placement per job and dynamically scale
the cluster without redistributing data across nodes.

Storage request throughput: We measure the get

throughput of S3, Redis (cache.r4.2xl) and various
Pocket storage tiers by issuing 1 MB requests from 100
concurrent lambdas. In Figure 6, we sweep the num-
ber of nodes in the Redis and Pocket clusters and com-
pare the cumulative throughput to that achieved with
S3. Pocket-DRAM, Pocket-NVMe and Redis all achieve
similar throughput. With a single node, the bottle-
neck is the 1 GB/s VM network bandwidth. With two
nodes, Pocket’s DRAM and NVMe tiers achieve higher
throughput than S3. Pocket’s SSD and HDD tiers have
significantly lower throughput. The HDD tier is limited
by the 40 MB/s random access bandwidth of the disk on
each node. The SSD tier is limited by poor network-
ing (less than ∼2 Gb/s) on the old generation i2.2xl

instances. Hence, we also plot the throughput using
i2.8xl instances which have 10 Gb/s networking. The
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bottleneck becomes the 500 MB/s throughput limit of the
SATA/SAS SSD.

We focus the rest of our evaluation of Pocket on the
DRAM and NVMe Flash tiers as they demand the high-
est data plane software efficiency due to the technology’s
low latency and high throughput. We also find that in our
AWS deployment, the DRAM and NVMe tiers offer sig-
nificantly higher performance-cost efficiency compared
to the HDD and SSD tiers. For example, NVMe Flash
servers, which run on on i3.2xl instances, provide 1
GB/s per 1900 GB capacity at a cost of $0.624/hour.
Meanwhile, HDD servers, which run on h1.2xl in-
stances, provide only 40 MB/s per 2000 GB capacity at
a cost of $0.468/hour. Thus, the NVMe tier offers 19.7×
higher throughput per GB per dollar.

Metadata throughput: We measure the number of
metadata operations that a metadata server can handle
per second. A single core metadata server on the m5.xl
instance supports up to 90K operations per second and
up to 175K operations per second with four cores. The
peak metadata request rate we observe for the serverless
analytics applications we study is 75 operations per sec-
ond per lambda. Hence, a multi-core metadata server can
support jobs with thousands of lambdas.

Adding/removing servers: Since Pocket runs in con-
tainers on EC2 nodes, we measure the time it takes to
launch a VM, pull the container image, and launch the
container. Pocket storage servers must also register their
storage capacity with metadata servers to join the cluster.
Figure 7 shows the time breakdown. VM launch time
varies across EC2 instance types. The container image
for the metadata server and DRAM server has a com-
pressed size of 249 MB while the Pocket-NVMe com-
pressed container image is 540 MB due to dependencies
for DPDK and SPDK to run ReFlex. The image pull
time depends on the VM’s network bandwidth. The VM
launch time and container image pull time only need to
be done once when the VM is first started. Once the VM
is warm, meaning the image is available locally, starting
and stopping containers takes only a few seconds. The
time to terminate a VM is tens of seconds.
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Figure 8: Pocket leverages cumulative hints about job
characteristics to allocate resources cost-efficiently.

6.3 Rightsizing Resource Allocations

We now evaluate Pocket with the three different server-
less applications described in §6.1.

Rightsizing with application hints: Figure 8 shows
how Pocket leverages user hints to make cost-effective
resource allocations, assuming each hint is provided in
addition to the previous ones. With no knowledge of ap-
plication requirements, Pocket defaults to a policy that
spreads data for a job across a default allocation of 50
nodes, filling DRAM first, then Flash. With knowledge
of the maximum number of concurrent lambdas (250,
160, and 650 for the sort, video analytics and λ -cc jobs,
respectively), Pocket allocates lower aggregate through-
put than the default allocation while maintaining simi-
lar job execution time (within 4% of the execution time
achieved with the default allocation). Furthermore, these
jobs are not sensitive to latency; the sort job and the
first stage of the video analytics job are throughput in-
tensive while λ -cc and the second stage of the video
analytics job are compute limited. The orange bars in
Figure 8 show the cost savings of using NVMe Flash as
opposed to DRAM when the latency insensitivity hint is
provided for these jobs. The green bar shows the rela-
tive resource allocation cost when applications provide
explicit hints for their capacity and peak throughput re-
quirements; such hints can be obtained from a profiling
run. Across all scenarios, each job’s execution time re-
mains within 4% of its execution time with the default
resource allocation.

Reclaiming capacity using hints: Figure 9 shows
the capacity used over time for the video analytics job,
with and without data lifetime management hints. All
ephemeral data in this application is written and read
only once, since each first stage lambda writes ephemeral
data destined to a single second stage lambda. Hence for
all get operations, this job can make use of the DELETE
hint which informs Pocket to promptly garbage collect an
object as soon as it has been read. By default, when the
DELETE hint is not specified, Pocket waits until the job
deregisters to delete the job’s data. The job in Figure 9
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Figure 9: Example of using the DELETE hint for get
operations in a video analytics job, enabling Pocket to
readily reclaim capacity by deleting objects after they
have been read versus waiting for the job to complete.

completes at the 158 second mark. We show that leverag-
ing the DELETE hint allows Pocket to reclaim capacity
more promptly, making more efficient use of resources
as this capacity can be offered to other jobs.

Rightsizing cluster size: Elastic and automatic re-
source scaling is a key property of Pocket. Figure 10
shows how Pocket scales cluster resources as multiple
jobs register and deregister with the controller. Job regis-
tration and deregistration times are indicated by upwards
and downwards arrows along the x-axis, respectively. In
this experiment, we assume Pocket receives capacity and
throughput hints for each job’s requirements. The first
job is a 10 GB sort application requesting 3 GB/s, the
second job is a video analytics application requesting 2.5
GB/s and the third job is a different invocation of a 10
GB sort also requesting 3 GB/s. Each storage server pro-
vides 1 GB/s. We use a minimum of two storage servers
in the cluster. We provision seven VMs for this exper-
iment and ensure that storage server containers are lo-
cally available, such that when the controller launches
new storage servers, only container startup and capacity
registration time is included.

Figure 10 shows that Pocket quickly and effectively
scales the allocated storage bandwidth (dotted line) to
meet application throughput demands (solid line). The
spike surpassing the allocated throughput is due to a
short burst in EC2 VM network bandwidth. The VMs
provide ‘up to 10 Gb/s’, but since we typically observe
a ∼8 Gb/s bandwidth limit in practice, the controller al-
locates throughput assuming each node provides 8 Gb/s.
As the controller rightsizes resources for each job, job
execution time stays within 5% of its execution time
when running on 50 nodes, the conservative default re-
source allocation. If the controller had to spin up new
VMs to accommodate a job’s requirements instead of
just launching containers, the job’s start time would be
delayed by up to 215 seconds (see EC2 NVMe server
startup time in Figure 7) since the register job call
blocks until the required storage servers are available.
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Figure 10: Pocket’s controller dynamically scales cluster
resources to meet I/O requirements as jobs come and go.

6.4 Comparison to S3 and Redis
Job execution time: Figure 11 plots the per-lambda ex-
ecution time breakdown for the MapReduce 100 GB sort
job, run with 250, 500, and 1000 concurrent lambdas.
The purple bars show the time spent fetching original in-
put data and writing final output data to S3 while the blue
bars compare the time for ephemeral data I/O with S3,
Redis and Pocket-NVMe. S3 does not support sufficient
request rates when the job is run with 500 or more lamb-
das. S3 returns errors, advising to reduce the I/O rate.
Pocket provides similar throughput to Redis, however
since the application is not sensitive to latency, Pocket
uses NVMe Flash instead of DRAM to reduce cost.

Similarly, for the video analytics job, we observe that
Pocket-NVMe achieves the same performance as Redis.
However, using S3 for the video analytics job increases
the average time spent on ephemeral I/O by each lambda
in the first stage (video decoding) by 3.2× and 4.1×
for lambdas in the second stage (MXNET classification),
compared to using Pocket or Redis.

The performance of the distributed compilation job
(λ -cc cmake) is limited by lambda CPU resources [49].
A software build job has inherently limited parallelism;
early-stage lambdas compile independent files in paral-
lel, however lambdas responsible for archiving and link-
ing are serialized as they depend on the outputs of the
early-stage lambdas. We observe that the early-stage
lambdas are compute-bound on current serverless infras-
tructure. Although using Pocket or Redis reduces the
fraction of time each lambda spend on ephemeral I/O,
the overall execution time for this job remains the same
as when using S3 for ephemeral storage, since the bottle-
neck is dependencies on compute-bound lambdas.

Cost analysis: Table 4 shows the hourly cost of run-
ning Pocket nodes on EC2 VMs in April 2018. Our min-
imum size Pocket cluster, consisting of one controller
node, one metadata server and two i3.2xl storage nodes
costs $1.632 per hour on EC2. However, Pocket’s fixed
cost can be amortized as the system is designed to sup-
port multiple concurrent jobs from one or more tenants.
We intend for Pocket to be operated by a cloud provider
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Figure 11: Execution time breakdown of 100GB sort.

Job S3 Redis Pocket
100 GB sort 0.05126 5.320 2.1648
Video analytics 0.00034 1.596 0.6483
λ -cc cmake 0.00005 1.596 0.6480

Table 5: Hourly ephemeral storage cost (in USD)

and offered as a storage service with a pay-what-you-use
cost model for users, similar to the cost model of server-
less computing platforms. Hence, for our cost analysis,
we derive fine-grain resource costs, such as the cost of
a CPU core and the cost of storage per GB, using AWS
EC2 instance pricing. For example, we calculate NVMe
Flash $/GB by taking the difference between i3.2xl and
r4.2xl instance costs (since these VMs have the same
CPU and DRAM configurations but i3.2xl includes a
1900 GB NVMe drive) and dividing by the GB capacity
of the i3.2xl NVMe drive.

Using this fine-grain resource pricing model for
Pocket, Table 5 compares the cost of running the 100
GB sort, video analytics and distributed compilation jobs
with S3, ElastiCache Redis, and Pocket-NVMe. We use
reduced redundancy pricing for S3 and assume the GB-
month cost is charged hourly [15]. We base Redis costs
on the price of entire VMs, not only the resources con-
sumed, since ElastiCache Redis clusters are managed
by individual users rather than cloud providers. Pocket
achieves the same performance as Redis for all three jobs
while saving 59% in cost. S3 is still orders of magnitude
cheaper. However, S3’s cloud provider based cost is not
a fair comparison to the cloud user based cost model we
use for Pocket and Redis. Furthermore, while the λ -cc
job has similar performance with Pocket, Redis and S3
due to a lambda compute bottleneck, the video analytics
and sort job execution time is 40 to 65% higher with S3.

7 Discussion

Choice of API: Pocket’s simple get/put interface pro-
vides sufficient functionality for the applications we
studied. Lambdas in these jobs consume entire data ob-
jects that they read and they do not require updating or
appending files. However, POSIX-like I/O semantics

for appending or accessing parts of objects could ben-
efit other applications. Pocket’s get/put API is imple-
mented on top of Apache Crail’s append-only stream ab-
straction which allows clients to read at file offsets and
append to files with single-writer semantics [3]. Thus,
Pocket’s API could easily be modified to expose Crail’s
I/O semantics. Other operators such as filters or multi-
gets could also help optimize the number of RPCs and
bytes transferred. The right choice of API for ephemeral
storage remains an open question.

Security: Pocket uses access control to secure appli-
cations in a multi-tenant environment. To prevent mali-
cious users from accessing other tenants’ data, metadata
servers issue single-use certificates to clients which are
verified at storage servers. An I/O request that is not
accompanied with a valid certificate is denied. Clients
communicate with metadata servers over SSL to protect
against man in the middle attacks. Users set cloud net-
work security rules to prevent TCP traffic snooping on
connections between lambdas and storage servers. Al-
ternatively, users can encrypt their data. Pocket does
not currently prevent jobs from issuing higher load than
specified in job registration hints. Request throttling can
be implemented at metadata servers to mitigate interfer-
ence when a job tries to exceed its allocation.

Learning job characteristics: Pocket currently re-
lies on user or application framework hints to cost-
effectively rightsize resource allocations for a job. Cur-
rently, Pocket does not autonomously learn application
properties. Since users may repeatedly run jobs on differ-
ent datasets, as many data analytics and modern machine
learning jobs are recurring [55], Pocket’s controller can
maintain statistics about previous invocations of a job
and use this information combined with machine learn-
ing techniques to rightsize resource allocations for future
runs [48, 10]. We plan to explore this in future work.

Applicability to other cloud platforms: While we
evaluate Pocket on the AWS cloud platform, the sys-
tem addresses a real problem applicable across all cloud
providers as no available platform provides an optimized
way for serverless tasks to exchange ephemeral data.
Pocket’s performance will vary with network and storage
capabilities of different infrastructure. For example, if a
low latency network is available, the DRAM storage tier
provides significantly lower latency than the NVMe tier.
Such variations emphasize the need for a control plane to
automate resource allocation and data placement.

Applicability to other cloud workloads: Though we
presented Pocket in the context of ephemeral data shar-
ing in serverless analytics, Pocket can also be used for
other applications that require distributed, scalable tem-
porary storage. For instance, Google’s Cloud Dataflow,
a fully-managed data processing service for streaming
and batch data analytics pipelines, implements the shuf-
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fle operator – used for transforms such as GroupByKey –
as part of its service backend [35]. Pocket can serve as
fast, elastic storage for the intermediate data generated
by shuffle operations in this kind of service.

Reducing cost with resource harvesting: Cloud jobs
are commonly over-provisioned in terms CPU, DRAM,
network, and storage resources due to the difficulty of
rigthsizing general jobs and the need to accommodate
diurnal load patterns and unexpected load spikes. The
result is significant capacity underutilization at the clus-
ter level [21, 74, 29]. Recent work has shown that the
plethora of allocated but temporarily unused resources
provide a stable substrate that can be used to run ana-
lytics job [22, 79]. We can similarly leverage harvested
resources to dramatically reduce the total cost of running
Pocket. Pocket’s storage servers are particularly well
suited to run on temporarily idle resource as ephemeral
data has short lifetime and low durability requirements.

8 Related Work

Elastic resource scaling: Various reactive [34], predic-
tive [25, 50, 65, 30, 62, 72, 75] and hybrid [24, 41, 33, 60]
approaches have been proposed to automatically scale re-
sources based on demand [64, 61]. Muse takes an eco-
nomic approach, allocating resources to their most effi-
cient use based on a utility function that estimates the
impact of resource allocations on job performance [23].
Pocket provisions resources upfront for a job based on
hints and conservative heuristics while using a reactive
approach to adjust cluster resources over time as jobs
enter and leave the system. Pocket’s reactive scaling
is similar to Horizontal Pod autoscaling in Kubernetes
which collects multidimensional metrics and adjusts re-
sources based on utilization ratios [5]. Petal [52] and the
controller by Lim et al. [54] propose data re-balancing
strategies in elastic storage clusters while Pocket avoids
redistributing short-lived data due to the high overhead.
CloudScale [68], Elastisizer [40], CherryPick [11], and
other systems [73, 77, 48] take an application-centric
view to rightsize a job at the coarse granularity of tra-
ditional VMs as opposed to determining fine-grain stor-
age requirements. Nevertheless, the proposed cost and
performance modeling approaches can also be applied to
Pocket to autonomously learn job resource preferences.

Intelligent data placement: Mirador is a dynamic
storage service that optimizes data placement for per-
formance, efficiency, and safety [76]. Mirador focuses
on long-running jobs (minutes to hours), while Pocket
targets short-term (seconds to minutes) ephemeral stor-
age. Tuba manages geo-replicated storage and, simi-
lar to Pocket, optimizes data placement based on per-
formance and cost constraints received from applica-
tions [20]. Extent-based Dynamic Tiering (EDT) uses

access pattern simulations and monitoring to find a cost-
efficient storage solution for a workload across multiple
storage tiers [38]. The access pattern of ephemeral data is
often simple (e.g., write-once-read-once) and the data is
short-lived, hence it is not worth migrating between tiers.
Multiple systems make storage configuration recommen-
dation based on workload traces [19, 70, 9, 59, 12].
Given I/O traces for a job, Pocket could apply similar
techniques to assign resources when a job registers.

Fully managed data warehousing: Cloud providers
offer fully managed infrastructure for querying large
amounts of structured data with high parallelism and
elasticity. Examples include Amazon Redshift [14],
Google BigQuery [37], Azure SQL Data Ware-
house [58], and Snowflake [26]. These systems are de-
signed to support relational queries and high data dura-
bility, while Pocket is designed for elastic, fast, and
fully managed storage of data with low durability re-
quirements. However, a cloud data warehouse like
Snowflake, which currently stores temporary data gener-
ated by query operators on local disk or S3, could lever-
age Pocket to improve elasticity and resource utilization.

9 Conclusion

General-purpose analytics on serverless infrastructure
presents unique opportunities and challenges for perfor-
mance, elasticity and resource efficiency. We analyzed
challenges associated with efficient data sharing and pre-
sented Pocket, an ephemeral data store for serverless an-
alytics. In a similar spirit to serverless computing, Pocket
aims to provide a highly elastic, cost-effective, and fine-
grained storage solution for analytics workloads. Pocket
achieves these goals using a strict separation of respon-
sibilities for control, metadata, and data management.
To the best of our knowledge, Pocket is the first sys-
tem designed specifically for ephemeral data sharing in
serverless analytics workloads. Our evaluation on AWS
demonstrates that Pocket offers high performance data
access for arbitrary size data sets, combined with auto-
matic fine-grain scaling, self management and cost ef-
fective data placement across multiple storage tiers.
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Abstract
Akkio is a locality management service layered between
client applications and distributed datastore systems. It
determines how and when to migrate data to reduce re-
sponse times and resource usage. Akkio primarily tar-
gets multi-datacenter geo-distributed datastore systems.
Its design was motivated by the observation that many of
Facebook’s frequently accessed datasets have low R/W
ratios that are not well served by distributed caches or
full replication. Akkio’s unit of migration is called a µ-
shard. Each µ-shard is designed to contain related data
with some degree of access locality. At Facebook, µ-
shards have become a first-class abstraction.

Akkio went into production at Facebook in 2014, and
it currently manages ∼100PB of data. Measurements
from our production environment show that Akkio re-
duces access latencies by up to 50%, cross-datacenter
traffic by up to 50%, and storage footprint by up to 40%
compared to reasonable alternatives. Akkio is scalable:
it can support trillions of µ-shards and process many 10’s
of millions of data access requests per second. And it is
portable: it currently supports five datastore systems.

1 Introduction

This paper regards the management of data access lo-
cality in large distributed datastore systems. Our work in
this area was initially motivated by our aim to reduce ser-
vice response times and resource usage in our cloud en-
vironment which operates globally and at scale: the com-
puting and storage resources are located in multiple geo-
distributed datacenters, hundreds of petabytes of data
must be available for access, data accesses occur at the
rate of many tens of millions per second, and the location
from which any data item is accessed changes dynam-
ically over time. Many organizations are increasingly
faced with some, if not all, of these aspects, as they tar-
get a growing user base around the world. Indeed, geo-
distributed systems are becoming increasingly prevalent

and important, as witnessed by Spanner Cloud and Cock-
roachDB, two cloud-based geo-distributed datastore sys-
tems available to any organization [17, 38].

Managing data access locality1 in geo-distributed sys-
tems is important because doing so can significantly im-
prove data access latencies, given that intra-datacenter
communication latencies are two orders of magnitude
smaller than cross-datacenter communication latencies;
e.g., 1ms vs. 100ms. Locality management can also
significantly reduce cross-datacenter bandwidth usage,
which is important because the bandwidth available be-
tween datacenters is often limited (§2.1), potentially
leading to communication bottlenecks and attendantly
higher communication latencies. Managing locality is all
the more challenging when considering that access pat-
terns can change geographically over time; particularly,
when shifting workload from one datacenter operating at
high utilization (e.g., during its day) to another operating
at low utilization (e.g., its night) (§2.2).

We argue that explicit data migration is a necessary
mechanism for managing data access locality in geo-
distributed environments, because existing alternatives
have serious drawbacks in many scenarios. For instance,
distributed caches can be used to improve data read ac-
cess locality. However, because misses often incur re-
mote communications, these caches require extremely
high cache hit rates to be effective, thus demanding
significant hardware infrastructure. Further, distributed
caches do not typically offer strong consistency (§2.4).
Another alternative is to fully replicate data with a copy
in each datacenter to allow for (fast) localized read ac-
cesses. However, as the number of datacenters increases,
storage overhead becomes exorbitant with large amounts
of data, and also write overheads increase significantly,
as all replicas need to be updated on each write (§2.1).
At Facebook, many of the heavily accessed datasets have

1 Our use of the term locality should not be confounded with the
term localization; the solution we propose here is not suitable for seg-
regating data by region.
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relatively low read-write ratios (§2.3), so full replication
would consume excessive cross-datacenter bandwidth. A
third alternative is function shipping. But this can also
be ineffective, as it may still result in significant cross-
datacenter communications, the target datacenter may be
operating at peak capacity, or the required data may be
located in multiple datacenters.

Akkio. In this paper we present Akkio,2 a local-
ity management service for distributed datastore systems
whose aim is to improve data access response times and
to reduce cross-datacenter bandwidth usage as well as
the total amount of storage capacity needed. Akkio is
layered between client applications servicing client re-
quests and the distributed datastore systems used natively
by the client applications. It decides in which datacen-
ter to place and how and when to migrate data, and it
does so in a way that is transparent to its clients and the
underlying datastore system.3 It helps direct each data
access to where the target data is located, and it tracks
each access to be able to make appropriate placement
decisions. Akkio has been in production use at Face-
book since 2014 and thus operates at scale: it currently
manages over 100PB of data and processes many tens of
millions of data accesses per second (despite Akkio not
being suitable many of Facebook’s datasets).

µ-shards. Having migration as the basis for providing
data access locality raises the question: what is the right
granularity for migrating data? A ubiquitous method in
distributed datastore systems is to partition the data into
shards using key ranges or key hashing [26, 37]. Shards
serve as the unit for replication, failure recovery, and load
balancing (e.g., upon detection of query or storage load
imbalances, shards are migrated from one node to an-
other to rebalance the load). Each shard is on the order of
one to a few tens of gigabytes, is assigned in its entirety
to a node, and multiple shards (10s – 100s) are assigned
to a node. Shard sizes are set by the datastore administra-
tor to balance (i) the amount of metadata needed to man-
age the shards with (ii) effectiveness in load balancing
and failure recovery (§2.5). Notably, datastore systems
define shards in an application-transparent manner.

Given the ubiquity of shards, migrating data at shard
granularity is an option; in fact, a few systems that do this
have been proposed [4, 12, 29, 40]. However, this ap-
proach has a serious drawback given typical shard sizes:
the vast majority of the migrated data would likely not
belong to the working set of the accessing workload at
the new location, thus incurring unnecessary migration

2 Akkio is a play on Harry Potter’s Accio Summoning Charm that
summons an object to the caster, potentially over a significant dis-
tance [31].

3 In this paper we use the term “underlying datastore system” to
refer to the datastore system used natively by the client application. It
may be different than the datastore system used by Akkio.
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Figure 1: Cumulative distribution of cross-datacenter transfer
times. Each curve contains data obtained from 10,000 ran-
domly sampled data points across all cross-datacenter links at
Facebook. Avg. shard size is 2GB; avg. µ-shard size is 200KB.

overhead and wasting inter-datacenter WAN communi-
cation bandwidth. At Facebook, because the working set
size of accessed data tends to be less than 1MB, migrat-
ing an entire shard (1-10GB) would be ineffective.

In this paper, by way of Akkio, we advocate for the no-
tion of finer-grained datasets to serve as the unit of migra-
tion when managing locality. We call these finer-grained
datasets µ-shards. Each µ-shard is defined to contain re-
lated data that exhibits some degree of access locality
with client applications. It is the application that deter-
mines which data is assigned to which µ-shard. At Face-
book, µ-shard sizes typically vary from a few hundred
bytes to a few megabytes in size, and a µ-shard (typi-
cally) contains multiple key-value pairs or database table
rows. Each µ-shard is assigned (by Akkio) to a unique
shard in that a µ-shard never spans multiple shards.

µ-shards are motivated by our observation that there
exist datasets that exhibit good access locality with re-
spect to a client application, but that they are best iden-
tified by the client application. Hence, µ-shards are not
simply smaller-sized shards. The primary difference be-
tween shards and µ-shards, besides size, is the way data
is assigned to them. With the former, data is assigned to
shards by key partitioning or hashing with little expec-
tation of access locality. With the later, the application
assigns data to µ-shards with high expectation of access
locality. As a result, µ-shard migration has an overhead
that is an order of magnitude lower than that of shard
migration (Fig. 1), and its utility is far higher.

µ-shards offer their best advantages in contexts where
it is unambiguous how to set the unit of migration so that
it is simultaneously as large as possible, meets the con-
straints of good access locality, and primarily contains
data belonging to the same working set of an accessing
workload. We have found that there exist many datasets
where these parameters are easily identified; see Table 1
for some examples. Because of this, we argue it is propi-
tious to make µ-shards a first class abstraction, such that
they are visible to and specified by client applications.
The motivation is that only the client applications have
the domain knowledge to best determine which data are
related and likely to be used together.

Having the application identify related data is not an
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Figure 2: Cumulative distribution of Shard and µ-shard size for
ViewState datasets. The ViewState service keeps track of con-
tent previously shown to the end-user. ViewState µ-shard sizes
tend to be larger than the size of the typical µ-shards managed
by Akkio (500KB avg. vs. 200KB avg.).

unreasonable expectation. Many applications already
group together data by prefixing keys with a common
identifier to ensure that related data are assigned to the
same shard. This approach has been used for a long time
in practice. Similarly, some databases support the con-
cept of separate partition keys. Spanner supports “di-
rectories” although Spanner may shard directories into
multiple fragments [11]. Finally, a number of Facebook-
internally developed databases, including ZippyDB, sup-
port µ-shards as a first class abstraction in the sense that
each access request also includes a µ-shard id [3, 8, 34].

Akkio’s functionality. Akkio is implemented as a layer
between client applications and the underlying datastore
system that implements sharding. Although µ-shards are
defined by the client applications, Akkio manages them
in an application-transparent manner. Akkio is respon-
sible for: (i) tracking client-application accesses to µ-
shards so it can take access history into account in its
decision making; (ii) deciding where to place each µ-
shard; (iii) migrating µ-shards according to a given mi-
gration policy for the purpose of reducing access laten-
cies and WAN communication; and (iv) directing each
access request to the appropriate µ-shard. Akkio takes
capacity constraints and resource loads into account in
its placement and migration decisions, even in the face
of a heterogeneous environment with a constantly churn-
ing hardware fleet.

Akkio is able to support a variety of replication config-
urations and consistency requirements (including strong
consistency) as specified by each client application ser-
vice. This flexibility is provided because the client ap-
plication service owners are in the best position to make
the right tradeoffs between availability, consistency, re-
source cost-effectiveness, and performance. Akkio maps
each µ-shard with a specified replication requirement
onto a shard configured with the same replication and
consistency requirements in the underlying datastore sys-
tem. As well, it enforces the specified level of consis-
tency during µ-shard migrations.

Other applications. While this paper focuses on

– web application user profile information
– Amazon user browsing history to inform recommendations
– Spotify user listening history to inform subsequent content
– Facebook viewing history to inform subsequent content
– Slack group recent messages
– Reddit subreddits
– email folders
– messaging queues

Table 1: Example datasets conducive to µ-shards. Note that all
but the first exhibit relatively low read-write ratios.

Akkio managing locality for geo-distributed environ-
ments, Akkio and its mechanisms can be useful in other
scenarios. For example, Akkio can be used to migrate µ-
shards between cold storage media (e.g. HDDs) and hot
storage media (e.g., SSDs) on changes in data tempera-
tures, similar in spirit to CockroachDB’s archival parti-
tioning support [38]. Further, for public cloud solutions,
Akkio could migrate µ-shards when shifting application
workloads from one cloud provider to another cloud
provider that is operationally less expensive [39]. Fi-
nally, when resharding is required, Akkio could migrate
µ-shards, on first access, to newly instantiated shards, al-
lowing a more gentle, incremental form of resharding in
situations where many new nodes (e.g. a row of racks)
come online simultaneously.

Contributions. We describe the design and imple-
mentation of Akkio (§4). To the best of our knowledge,
Akkio is the first system capable of managing data lo-
cality at µ-shard granularity and at scale, while also sup-
porting strong consistency. In describing Akkio, we fo-
cus on scalability; in that sense, this paper focuses on
the “plumbing” and not on policy; i.e., specific decision-
making algorithms. For applications where Akkio is suit-
able, we show in §5 that Akkio is:

Effective along a number of dimensions: Compared to
typical alternatives, Akkio can achieve read latency re-
ductions: up to 50%; Write latency reductions: 50% and
more; Cross-datacenter traffic reductions: by up to 50%.
Further, Akkio reduces storage space requirements by up
to X −R compared to full replication with X datacenters
when a replication factor of R is required for availability.

Scalable: Statistics from production workloads servic-
ing well over a billion users demonstrate the system re-
mains efficient and effective even when processing many
tens of millions of requests per second. Akkio can sup-
port trillions of µ-shards.

Portable: Akkio’s design is simple and flexible
enough to allow it to be easily layered on top of most
backend datastore systems. Akkio currently runs on
top of ZippyDB, Cassandra, and three other internally-
developed databases at Facebook.

Limitations. Akkio’s approach to managing locality
with µ-shards will not be beneficial for all types of data,
such as those better served by distributed caches, or
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Figure 3: Proportion (in %) of incoming service requests origi-
nating from Region A processed at each datacenter. Each curve
represents a datacenter. The sum over all curves is always
equal to 100%. In this case, Region A has a local datacenter.

datasets that do not exhibit sufficient access locality. For
example, Akkio would not helpful in improving locality
for data belonging to the Social Graph. Instead Akkio
focuses on workloads with datasets that have low read-
write ratios and high access locality. These workloads
are quite common and not well served by a caching tier.
Further, while Akkio can be layered on top of a vari-
ety of datastores, the datastore needs to provide partic-
ular features to Akkio as outlined in §4.2. As a result,
Akkio may not be able to accommodate all datastore sys-
tems. Finally, Akkio does not currently support inter-
µ-shard transactions, unless implemented entirely client-
side; providing this support is left for future work.

We begin the paper by substantiating our motiva-
tion underlying Akkio’s approach (§2) and present back-
ground needed to understand the rest of the paper (§3).

2 Motivation

2.1 Capital and operational costs matter

Capital and operational costs become consequential
when an organization’s infrastructure must scale to tar-
get a large number of users around the world, justifying
considerable efforts to restrain resource usage where pos-
sible. Consider an organization with ten datacenters and
many hundreds of petabytes of data that must be acces-
sible. While it is difficult to obtain transparent, publicly
available pricing information on the true cost of storage,
a lower bound for capital depreciation and operational
costs could be on the order of two cents per gigabyte
per month [9, 28]. This translates to $2 million per 100
petabytes per month. Clearly, replicating all data onto all
ten datacenters is difficult to justify from an economic
perspective when, in many cases, acceptable durability
could be achieved with three replicas.

WAN cross-datacenter links can also be costly and
need to be taken into account. For example, estimates
for the costs of a 10 Gbps subterranean link vary from
$1 to $9 per km per month, depending on route [22]. (To
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Figure 4: Proportion (in %) of incoming service requests orig-
inating from Region B processed at each datacenter. In this
case, Region B does not have a local datacenter.

put this into perspective, transferring a 10 GB shard over
a 10 Gbps WAN link will consume roughly 10 seconds
of bandwidth.) As a result, cross-datacenter link band-
width will typically be constrained and therefore needs
to be used judiciously.

2.2 Service request movements
The datacenters from which data access requests origi-
nate can vary over time, even for data accessed on behalf
of a unique user. A change in the requesting datacen-
ter can arise, for example, because the user travels from
one region to another, or, more likely, because service
workload is shifted from a datacenter with high loads to
another with lower loads in order to lower service request
response latencies. The alternative to shifting workload
to other datacenters at peak times would be to increase
the capacity of the overloaded datacenter to deal with
peak influx of service requests. But this comes with sig-
nificant operational overheads, which are hard to justify
when other datacenters are mostly idle at the same time,
given diurnal request patterns.

Figure 3 shows that shifts in traffic occur on a daily ba-
sis at Facebook. The figure shows which datacenters pro-
cessed incoming service requests originating from one
particular region over a week. Each curve represents a
different datacenter to which the service requests orig-
inating from one region were forwarded. The figure
shows that during busy periods, as many as 50% of the
requests originating from the given region were shifted to
remote datacenters (most often located in an adjacent re-
gion). The figure also shows that during non-peak times
all of the requests are processed by the local datacenter.

Figure 4 shows the same type of information, but for
a region with no local datacenter. Because there is no
local datacenter, the service requests are distributed to a
number of different datacenters. During non-peak times,
we see that almost all traffic is serviced from a single,
non-local, but nearby datacenter.

We also measured, for each individual end-user, how
many datacenters processed service requests issued on
behalf of that user over a period of a week (Table 2): over

448    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Num regions: 1 2 3 4
% of users: 46% 42% 10% 2%

Table 2: The percentage of users for which Num regions were
contacted to service requests on behalf of the user.

54% of users have their data accessed from two or more
regions. Bottom line: there is a reasonable likelihood
that requests issued on behalf of one end-user will be
processed by multiple distinct datacenters.

2.3 Low read-write ratios

Many important datasets exhibit low read-write ratios
(Table 1). As a Facebook-specific example, dataset
ViewState (§5.2.1) keeps track of content previously
shown to the end-user and has a read-write ratio of 1.
Overall, Facebook has on the order of 100PB of period-
ically accessed data that has a read-write ratio below 5.
Note that with low read-write ratios, fully-replicated data
would incur significant cross-datacenter communication,
as all replicas would have to be updated on writes.

2.4 Ineffectiveness of distributed caches

A common strategy to obtain localized data accesses is
to deploy a distributed cache at each datacenter [2, 5, 13,
14, 15, 27, 32]. In practice this alternative is ineffective
for most of the workloads important to Facebook. First,
unless the cache hit rate in the cache is extremely high,
average read latencies will be high if the target data is not
located in the local datacenter. Because of this, caching
will demand significant hardware infrastructure, as the
caches at each datacenter would have to be large enough
to hold the working set of the data being accessed from
the datacenter.

Second, low read-write ratios lead to excessive com-
munication over cross-datacenter links, because the data
being written will, in the common case, be remote.

Finally, many of the datasets accessed by our services
require strong consistency. While providing strongly
consistent caches is possible, it significantly increases
the complexity of the solution, and it incurs a large
amount of extra cross-datacenter communication, fur-
ther exacerbating WAN latency overheads. It is notable
that the widely popular distributed caching systems that
are scalable, such as Memcached or Redis, do not offer
strong consistency. And for good reason.

2.5 Separate locality management layer

Akkio is implemented as a layer between the application
service and the underlying distributed datastore system.
This raises the question of whether it would make more
sense to implement Akkio’s functionality directly within

the datastore system. Technically, it would be possible,
but we argue that this is not a good idea for two reasons.

First, the size of shards are carefully selected by the
datastore architects for the purpose of managing load
balancing and failure recovery, taking into account the
configuration and other metadata needed to manage the
shards. Maintaining this data at µ-shard cardinality
would come at high storage overheads with 100’s of bil-
lions of µ-shards vs. 10,000’s of shards. Restructuring a
datastore system to achieve the level of scale required to
support µ-shards across each of its layers would require
non-trivial changes.

Second, many application services use data that are
not well-served by Akkio-style locality management;
e.g., Google search or Facebook’s social graph. Hence, it
would only make sense to incorporate Akkio’s function-
ality into specialized datastore systems; given that data-
store system designers optimize for the common case,
they would be reluctant to incorporate the additional
complexities associated with µ-shards. However, even
with a specialized datastore system, legacy issues come
into play; in our experiences, application service owners
are reluctant to switch away from the underlying data-
store system for which their service was tuned and on
which they rely for special features or behaviors.

We believe that Akkio bridges the functionality of-
fered by various distributed datastore systems and the
application services’ desire for (transparent) data local-
ity management to improve response times and reduce
WAN datalink overheads.

3 Background

In this section, we briefly review several aspects of shard
replication in distributed datastore systems so we can
explain Akkio’s architecture in §4. In doing so, we in-
troduce some vocabulary we use in subsequent sections.
Without loss of generality, we specifically describe how
shard replication is handled in ZippyDB, an internally
developed scalable key-value store system.4

ZippyDB’s data is partitioned horizontally, with each
partition assigned to a different shard. Each shard may
be configured to have multiple replicas, with one desig-
nated to be the primary and the others referred to as sec-
ondaries. (See Fig. 5.) We refer to all of the replicas of a
shard as a shard replica set, and each replica participates
in a shard-specific Paxos group [21, 24, 25]. A write to a
shard is directed to its primary replica, which then repli-
cates the write to the secondary replicas, using Paxos to
ensure that writes are processed in the same order at each

4 ZippyDB is used as the database service for hundreds of use cases
at Facebook including news products, Instagram services and Whats-
App components. An increasing number of services are being moved
onto ZippyDB at Facebook.
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Figure 5: Shards with different replication configurations dis-
tributed across datacenters. The shaded rectangles represent
shards. Shard 1 has the primary replica in Datacenter A and
two secondary replicas in Datacenter B. Shard 2 is replicated
across A, B, and C with the primary in B. The smaller boxes
represent µ-shards. µ-shard v is assigned to replica set 2; a
write that modifies µ-shard v is directed to replica set 2’s pri-
mary replica and the underlying datastore system replicates the
write to the secondary replicas. Akkio is migrating µ-shard x
from replica set 78 to replica set 1, and the datastore system
replicates x onto 1’s secondary.

replica. Reads that need to be strongly consistent are di-
rected to the primary replica. If eventual consistency is
acceptable then reads can be directed to a secondary.

A shard’s replication configuration identifies the
number of replicas of the shard and how the replicas are
distributed over datacenters, clusters, and racks. Shard
replication configurations are customizable given that the
data owners are in the best position to make the right
tradeoffs between availability, consistency, resource-
effectiveness, and performance. For example, a service
may specify that it requires three replicas, with two repli-
cas (representing a quorum) in one datacenter for im-
proved write latencies and a third in different datacen-
ter for durability. Another service may specify that it re-
quires three replicas located in three different datacenters
but that eventual consistency is sufficient. A third might
require only one copy, perhaps because the infrastructure
overhead of having multiple copies may be deemed to be
too high relative to the value of the data.

We use the term replica set collection to refer to the
group of all replica sets that have the same replication
configuration. Each such collection is assigned a unique
id we call a location handle. When running on top of
ZippyDB, Akkio places µ-shards on, and migrates µ-
shards between different such replica set collections.

Fig. 5 depicts several shard replica sets and a number

of µ-shards within the replica sets. It also shows how a
write to a µ-shard is propagated to all secondaries.

Replica sets collections are provisioned and made
available to a client application service by a utility that
takes input from the client application service owners
to help them make the right tradeoffs between avail-
ability, consistency, resource-effectiveness, and perfor-
mance. For example, it inputs application-service param-
eters that include expected data size, expected access rate
(i.e., QPS), R/W-ratios, etc. It also inputs policy param-
eters that include replication factor, availability require-
ments, consistency requirements and constraints with re-
spect to where the replicas can be placed.

In general, all possible configurations are included
that minimize the replication factor (within the specified
constraints). However, some configurations may be ex-
cluded. For example, for ViewState, all replica set con-
figurations with three replicas in three different datacen-
ters are excluded so that two replicas will always be lo-
cated in the same datacenter so that writes have lower
latency (given the applications low R/W-ratio).

Once shards have been provisioned, then ZippyDB’s
Shard Manager assigns each shard replica to a specific
ZippyDB server while obeying the specified policy rules.
The assignment is registered with a Directory Service
so that the ZippyDB client library embedded in the ap-
plication service can identify the server to send its ac-
cess requests to. Shard Manager is also responsible for:
(i) load balancing, by migrating shards if necessary; and
(ii) monitoring the liveliness of ZippyDB servers, taking
appropriate action when a server failure is detected.

As a final comment, we observe that ZippyDB is able
to manage multiple different replication configurations
inside a single ZippyDB deployment. Other datastore
systems may not be able to support multiple configura-
tions inside a single deployment. However, in that case
one can usually implement different replication configu-
rations in a straight-forward way by using multiple data-
store deployments.

4 Akkio Design and Implementation

For clarity, we describe Akkio’s design and implemen-
tation in the context of a single client application ser-
vice, ViewState, which uses ZippyDB as its its underly-
ing datastore system. This is without loss of generality,
because the underlying database is unaware of Akkio’s
presence beyond a small portion of code in the database
client library.

4.1 Design guidelines
Akkio’s design is informed by three primary guidelines.
First, Akkio uses an additional level of indirection: it
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maps µ-shards onto shard replica set collections whose
shards are in turn mapped to datastore storage servers.
This allows Akkio to rely on ZippyDB functionality to
provide replication, consistency, and intra-cluster load
balancing. Secondly, Akkio is structured so as to keep
most operations asynchronous and not on any critical
path — the only operation in the critical path is the µ-
shard location lookup needed for each data access to
identify in which replica set collection the target µ-shard
is located. Thirdly, Akkio minimizes the intersection
with the underlying application datastore tier (e.g., Zip-
pyDB), which makes it more portable. The only two
points where the datastore system and Akkio meet are
in the datastore client libraries and in Akkio’s migration
logic which is specific to the datastore.

4.2 Requirements

Akkio imposes three requirements on client application
services that wish to use it. First, the client applica-
tion service must partition data into µ-shards, which are
expected to exhibit a fair degree of access locality for
Akkio to be effective. Second, the client application
service must establish its own µ-shard-id scheme that
identifies its µ-shards. µ-shard-ids can be any arbitrary
string, but must be globally unique. Finally, to access
data in the underlying application database, the client
application service must specify the µ-shard the data be-
longs to in the call to the database client library. For
databases that do not support µ-shards natively as Zip-
pyDB does, the function used to access data is mod-
ified to include a µ-shard-id as an argument to each
access request; e.g., read(key) must be modified to
read(µ-shard-id,key).

Akkio imposes two requirements on the underlying
database. First, the database must ensure µ-shards do
not span shards. Because ZippyDB understands the no-
tion of µ-shards, it will never partition µ-shards. Many
databases support explicit partition keys that inform the
database how to partition data (e.g., MySQL, Cassan-
dra). Yet other databases may recognize key prefixes
when partitioning data (e.g., HBase, CockroachDB).

Second, the underlying application database must pro-
vide a minimal amount of support so that Akkio can im-
plement migration while maintaining strong consistency.
Because the specific features supported by different data-
store systems will vary, the µ-shard migration logic that
Akkio implements must be specific to the underlying
datastore system being supported. For example, some
databases, including ZippyDB, offer access control lists
(ACLs) and transactions, which are sufficient for imple-
menting µ-shard migration. Other databases, including
Cassandra, offer timestamp support for ordering writes,
which is also sufficient.
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Figure 6: Akkio System Design

4.3 Architectural overview

Akkio’s general architecture is depicted in Figure 6. A
portion of Akkio’s logic is located in the Akkio Client
Library, which is embedded into the database client li-
brary; i.e., ZippyDB client library, in this case. The client
application service makes data access requests by calling
the ZippyDB client library, which in turn may make calls
to the Akkio Client Library. Beyond the Akkio Client Li-
brary, Akkio is made up of three services, which are de-
picted at the bottom of the figure and described in more
detail in the subsections that follow.

The Akkio Location Service (ALS) maintains a lo-
cation database. The location database is used on each
data access to look up the location of the target µ-
shard: the ZippyDB client library makes a call to the
Akkio client library getLocation(µ-shard-id) function
which returns a ZippyDB location handle (represent-
ing a replica set collection) obtained from the location
database. The location handle enables ZippyDB’s client
library to direct the access request to the appropriate stor-
age server. The location database is updated when a µ-
shard is migrated.

An Access Counter Service (ACS) maintains an ac-
cess counter database, which is used to track all accesses
so that proper µ-shard placement and migration decisions
can be made. Each time the client service accesses a
µ-shard, the Akkio client library requests the ACS to
record the access, the type of access, and the location
from which the access was made. This request is issued
asynchronously so that it is not in the critical path.

The ACS is primarily used by Akkio’s third ser-
vice, the Data Placement Service (DPS), which decides
where to place each µ-shard so as to minimize access
latencies and reduce resource usage. The DPS also initi-
ates and manages µ-shard migrations. The Akkio Client
Library asynchronously notifies the DPS that a µ-shard
placement may be suboptimal whenever a data access re-
quest needs to be directed to a remote datacenter. The
DPS re-evaluates the placement of a µ-shard only when
it receives such a notification. This ensures the DPS
triggers migrations only when needed, thus effectively
prioritizing migrations and preventing unnecessary mi-
grations for µ-shards that are not being accessed. Note,
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however, that a µ-shard access never waits for a poten-
tial migration to be evaluated or complete, but proceeds
directly with the remote access.

We now discuss these services in more detail.

4.4 Akkio Location Service (ALS)
The Akkio Location Service maintains a database that
stores the location handle of each µ-shard. In principle,
most any database could be used for storing this infor-
mation; here we use ZippyDB (without Akkio layered
on top of it).5 The location information is configured to
have an eventually consistent replica at every datacenter
to ensure low read latencies and high availability, with
the primary replicas evenly distributed across all data-
centers. This configuration is justified, given the high
read-write ratio (> 500) of the database. Moreover, dis-
tributed in-memory caches are used at every datacenter
to cache the location information so as to reduce the read
load on the database, considering that the database needs
to be queried on every access request.

It is possible that the distributed cache will serve a
stale location mapping, causing the access request to be
sent to the wrong server. The target ZippyDB server will
determine that the µ-shard is not present from the missing
ACL, and will respond accordingly. When that happens,
the ZippyDB client library queries the Akkio Location
Service again, this time requesting that the cache be by-
passed. The client library subsequently re-populates the
cache with the latest mapping (making the cache a typi-
cal demand-filled look aside cache).

The amount of storage space needed for the ALS is
relatively small: each µ-shard requires at most a few hun-
dred bytes of storage, so the size of the dataset for typi-
cal client application services will be a few hundred GB.
The overhead of maintaining a database for this amount
of data in every datacenter is trivial. Similarly, the in-
memory caches require no more than a handful of servers
per datacenter, since a single machine can service mil-
lions of requests per second. The service can easily scale
by increasing the number of caching servers.

4.5 Access Counter Service
Access counters are used to keep track of where µ-shards
are accessed from and how frequently. To maintain this
information, we use the time-windowed counters [7] pro-
vided natively by ZippyDB. The counter database uses
a separate, dedicated ZippyDB instance, configured to

5 If the application service uses a different underlying datastore sys-
tem, we use a separate instance of that datastore system for the location
database. We do this because the product owners of the underlying
datastores were hesitant to allow another system to be in the critical
path of data accesses to their system. The two other Akkio services use
ZippyDB regardless.

c o n s i s t e n c y r e q u i r e m e n t s = STRONG;
r e p l i c a t i o n c o n f i g u r a t i o n s = {

” l o c a t i o n h a n d l e a ” : <A, B , C>
” l o c a t i o n h a n d l e b ” : <D, E , F>
. . . .

} ;
a c c e s s c o u n t e r s e r v i c e = A c c e s s S t a t e ;
m i g r a t i o n p o l i c y = M i g r a t i o n P o l i c y (

m i c r o s h a r d l i m i t =6 h o u r s ) ;

Listing 1: Akkio Configuration for Sample Service

use 3X replication. For each client application service,
Akkio stores a single counter per µ-shard per datacenter.

The amount of storage needed for the counters is on
the order of 10’s of bytes per µ-shard and datacenter; in
our environment less than 200GB per datacenter, which
is again trivial. The counter service can easily scale by
spreading the counters over a larger number of servers.
As an optimization, the number of counters needed and
the overhead of incrementing them can be reduced sub-
stantially by observing that many of the client applica-
tion services have identical access patterns. For exam-
ple, Facebook’s AccessState service, which records ac-
tions taken in relation to displayed content, has very sim-
ilar access traffic patterns as ViewState, which records
which content was displayed; the traffic of both services
is driven by Facebook user traffic. For this reason, Akkio
allows a client application service to specify that the
counters of another service should be used as a proxy for
its own access pattern, in which case the application ser-
vice does not need a separate set of counters. Moreover,
the requests are batched and send-optimized, so the extra
communication traffic generated is marginal. (With our
workload, ACS adds 0.001% in networking bandwidth.)

4.6 Akkio Data Placement Service (DPS)

Akkio’s Data Placement Service is responsible for map-
ping µ-shards to location handles and for migrating µ-
shards in order to improve locality. There is one DPS per
Akkio-supported backend datastore system that is shared
among all of the application services using instances of
that same datastore system. It is implemented as a dis-
tributed service with a presence in every datacenter.

The two main interfaces exported by DPS are
createUshard() and evaluatePlacement(). New
µ-shards are provisioned on demand when a µ-shard is
accessed for the first time; in that case, the Akkio client
library receives an UNKNOWN ID response from ALS, so it
invokes createUshard() (§4.6.1). EvaluatePlace-

ment() is invoked by the Akkio client library asyn-
chronously. It first checks whether initiating a migra-
tion is permissible, by checking whether the policy al-
lows the target µ-shard to be migrated at that time, and
whether the µ-shard is not already in the process of being
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migrated. If migration is permissible, it determines the
optimal placement for the µ-shard (§4.6.2) and starts the
migration (§4.6.3).

DPS stores various information in its datastore sys-
tem for each µ-shard migration, including locks to pre-
vent multiple concurrent migrations of the same µ-shard,
and sufficient information needed to recover the migra-
tion should a DPS server fail during the migration (e.g.,
from and to location handles, lock owners, etc). As well
it maintains historical migration data: e.g., time of last
migration to limit migration frequency (to allow the pre-
vention of µ-shards ping-ponging).

4.6.1 Provisioning new µ-shards

When a new µ-shard is being created, DPS must decide
where to initially place the µ-shard. Our typical strategy
is to select a replica set collection with a primary replica
local to the requesting client and secondary replica(s) in
one of the more lightly loaded datacenters. But, in prin-
ciple, any available shard replica set collection could be
chosen, so using a hash function to distribute initial µ-
shard assignments is also a viable strategy.

The primary reason µ-shard provisioning is delegated
to DPS is that if any Akkio client library instance were to
do this directly, then a race condition might ensue if two
or more client instances decide to create the same new
µ-shard concurrently. A further advantage of leveraging
DPS is that current resource usage can be taken into ac-
count when placing the µ-shard.

4.6.2 Determining optimal µ-shard placement

The default policy for selecting a target replica set col-
lection for an existing µ-shard is to choose the one with
the highest score from among the available replica set
collections, excluding those with replicas in datacenters
with exceptionally high disk usage or exceptionally high
computing loads.6 Our implementation computes the
score in two steps. First, we compute a per-datacenter
score by summing the number of times the µ-shard was
accessed from that datacenter over the last X days (where
X is configurable), weighting more recent accesses more
strongly. The per-datacenter scores for the datacenters
on which the replica set collection has replicas are then
summed to generate a replica set collection score. If
there is a clear winner, we pick that winner.

If multiple replica set collections have the same high-
est score, we take this set of replica set collections and
generate, for each, another score using resource usage
data. A per-datacenter score is again generated first,

6 Policies can be configured to include specific thresholds that
shouldn’t be breached; e.g. to not consider datacenters with over n%
CPU usage.

A t o m i c a l l y :
a . a c q u i r e l o c k on u−s h a r d
b . add m i g r a t i o n t o ongoing m i g r a t i o n s l i s t

S e t s r c u−s h a r d ACL t o R /O;
Read u−s h a r d from t h e s r c
A t o m i c a l l y :
− w r i t e u−s h a r d t o d e s t
− s e t d e s t u−s h a r d ACL t o R /O

Update l o c a t i o n−DB wi th new u−s h a r d mapping
D e l e t e s o u r c e u−s h a r d and ACL
S e t d e s t i n a t i o n u−s h a r d ACL t o R /W
A t o m i c a l l y :

a . r e l e a s e l o c k on u−s h a r d
b . remove m i g r a t i o n from ongoing migr . l i s t

Listing 2: µ-shard migration for ZippyDB using ACLs and
transactions. Writes are blocked during the migration.

which is proportional to the amount of available re-
sources in the datacenter, taking into account, for ex-
ample, CPU utilization, storage space usage, and IOPS.
The per-replica set collection score is then generated by
summing the individual datacenter scores on which the
replica set collection has a presence. The replica set col-
lection with the highest score is then selected for placing
the target µ-shard, or a random one in case of a tie.

Information on which replica set collections are avail-
able is obtained from Configurator [35], a Facebook
configuration service that each client application ser-
vice keeps up to date. Listing 1 shows a simpli-
fied Akkio configuration for a sample application ser-
vice. Replication configurations provides a map-
ping between location handles and lists of datacenters
in which the shard replicas are located. While location
handles are opaque to Akkio, it does understand the list
of datacenters and uses that information when deciding
where to place µ-shards. Consistency requirements

specifies that this application service requires strong con-
sistency. Access counter service specifies which
data to use for the access counters. Migration policy

specifies a limit on the number of migrations for each µ-
shard to once every 6 hours. Migrations may be limited
to prevent µ-shard migration ping-ponging.

4.6.3 µ-shard migration

Once the DPS has identified a destination replica set
collection for a given µ-shard, it migrates the µ-shard
from the source to a destination. Different µ-shard mi-
gration methods are used, depending on the functional-
ity of the application service’s underlying database. We
first describe µ-shard migration for ZippyDB, which of-
fers access control lists (ACL’s) and transactions. Other
databases are considered further below. In these descrip-
tions, we assume strong consistency of µ-shard data. We
also assume the systems run reliably during migration;
migration failure handling is described in (§4.6.5).
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A t o m i c a l l y :
a . a c q u i r e l o c k on u−s h a r d
b . add m i g r a t i o n t o ongoing m i g r a t i o n s l i s t

S t a r t double−w r i t i n g t o s r c & d e s t
Wait f o r l o c a t i o n i n f o cache TTL t o e x p i r e
Copy d a t a from s o u r c e t o d e s t
Swi tch r e a d i n g t o d e s t
Wait f o r l o c a t i o n i n f o cache TTL t o e x p i r e
Swi tch w r i t i n g t o d e s t ( e nd i ng dbl−w r i t e s )
Wait f o r l o c a t i o n i n f o cache TTL t o e x p i r e
Remove s r c
A t o m i c a l l y :

a . r e l e a s e l o c k on u−s h a r d
b . remove m i g r a t i o n from ongoing migr . l i s t

Listing 3: µ-shard migration for Cassandra using timestamps
and double-writes. Writes are not blocked during the migra-
tion. The timestamps are used to merge data when copying

Listing 2 lists the method we first used for ZippyDB.
First, a lock is acquired on the µ-shard to prevent other
DPS instances from migrating the same µ-shard. (The
lock does not prevent the client from reading and writ-
ing µ-shard data.) The source µ-shard ACL is then set
to read only (R/O). This effectively blocks writes for the
duration of the migration; however, the ZippyDB client
library embedded in the application will automatically
retry the write if the previous attempt was blocked, thus
hiding blocked writes from the client application ser-
vice.7 The source µ-shard is then read and subsequently
written to the destination µ-shard and the destination µ-
shard ACL is set to R/O. The location database is updated
with the new µ-shard mapping. The source µ-shard and
its ACL is deleted, the destination µ-shard ACL is set to
R/W, and the migration lock is released.

Not all underlying databases support ACLs. For ex-
ample, the variant of Cassandra currently used at Face-
book does not offer ACLs. Hence, a different migration
method is needed. (See Listing 3.) In this case, the mi-
gration method takes advantage of the fact that Cassan-
dra offers timestamps natively and can thus allow writes
during ongoing migrations. After first acquiring a lock
on the µ-shard, the location database information associ-
ated with the µ-shard is modified so that client writes are
double written to both the source and destination, while
reads continue to be directed to the source. The µ-shard
data (from before the start of the double-writing) is then
copied from the source to the destination. The times-
tamps associated with each write are used to merge data
appropriately. Once the copy is complete, the location
database is modified to have reads go to the destination,
while continuing double-writing. The location database
is modified to have writes only go to the destination. Fi-
nally, the data at the source can be deleted at the source,
the µ-shard lock can be released, and the migration can

7 With our ViewState workload, which has a very low read-write
ratio, writes are retried in 0.007% of all accesses.

be removed from the list of ongoing migrations.
With this method, each time the location database is

updated, which occurs three times, it is necessary to wait
for the location database TTL to expire to ensure no stale
accesses go to the wrong destination. This delay could
be avoided if the underlying database supports ACLs (as,
e.g., open source Cassandra does), or if cache entries
could be reliably invalidated, then the wait times could
be reduced substantially. Also note that a potential race
condition could occur with double-writes: if a write on
the source succeeds, but not on the destination, then the
write is observable when reading from the source, but not
when later reading from the destination. We address this
by always first writing to the destination, before writing
to the source, on double writes.

4.6.4 Replica set collection changes

The replica set collections available to the client ap-
plication service, and in particular the set of replica-
tion topologies they represent, will change over time;
e.g., to account for shifts in request traffic or because of
changes in underlying hardware availability. Adding a
new replica set collection is straightforward: it is simply
added to the configuration state and the DPS can begin to
use it, migrating µ-shards to it when beneficial. Remov-
ing a replica set collection is, however, more involved.
The replica set collection to be removed is first disabled
in the configuration, preventing the DPS from selecting
this shard replica set collection from future placement
decisions. Then, in an off-line process, a DPS evaluat-

ePlacement() call is made for each µ-shard in the dis-
abled shard, which will cause the DPS to migrate the
µ-shard to another shard replica set collection using the
processes described above.

4.6.5 DPS fault recovery

When any of the servers running Akkio’s location or
counter services ceases to execute (say, due to a hard-
ware or software failure), they can simply be restarted
since their data is reliably persisted. The situation is dif-
ferent with a DPS server, since it may have been in the
middle of migrating µ-shards.

To deal with this case, every DPS server instance
is assigned a monotonically increasing sequence num-
ber (which is obtained from a global Zookeeper deploy-
ment [19]). This sequence number is persisted with all
state related to pending migrations; e.g., in the per µ-
shard lock that is acquired prior to beginning of a mi-
gration. When a DPS server instance fails, it will be
restarted, potentially on a different server, with a higher
sequence number. The newly restarted DPS instance will
then go through a recovery process where it queries the
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Changes to datastore Datastore-specific
Database client library migration logic

ZippyDB C++ 100 1,000ZippyDB PHP 150
Cassandra 500 700
Queue datastore 100 250
Datastore-X 100 250

Table 3: Lines of code implementing the two touch points be-
tween Akkio and underlying databases.

location database to identify any ongoing migrations that
were initiated by the failed DPS server instance but did
not complete. The sequence number for any recovered
migration is updated in order to avoid any conflicts with
a stale, failed DPS server instance.

For each recovered migration, the DPS servers identi-
fies which state to continue the migration on. This is a
custom piece of code that is different for each underly-
ing datastore system and migration approach used. For
example, in our ACL based approach, the DPS scans the
state of the µ-shard in the source backend and the desti-
nation backend to identify which steps of the migration
had been completed. It then resumes the migration from
that point on. In case of errors during a single migration
step, we restart the migration. Migrations are typically
retried until they succeed (although this is configurable).

5 Evaluation

5.1 Implementation metrics

A benefit of Akkio’s design that enhances portability is
how lightweight the touchpoints are between Akkio and
the underlying databases. Table 3 lists the lines of code
(LoC) required for each of the two touchpoints: e.g., the
ZippyDB client library only required 100-150 new or
modified LoC to accommodate Akkio, and Akkio only
required 1,000 or fewer LoC of datastore-specific code
for µ-shard migrations in ZippyDB.

5.2 Use cases analysis

We describe the effect Akkio had on 4 different client
application services. All of the metrics we present were
gathered from our live production systems running at
scale, driven by live user traffic. This limits our abil-
ity to experiment, so we primarily compare against the
systems that were in place before Akkio was introduced.

5.2.1 ViewState

Description: ViewState stores a history of content pre-
viously shown to a user. Each time a user is shown some
content, an additional snapshot is appended to the View-
State data. The data is used to prioritize subsequent con-

tent each time it is displayed to the user. ViewState stores
this history, with an average size of 500KB, in ZippyDB.

Requirements: ViewState data is read on the criti-
cal path when displaying content, so minimizing read la-
tencies is important. Writes are not on the critical path,
but low write latencies are important for the application,
as user engagement tends to drops if the content is not
“fresh”. The data needs to be replicated three ways for
durability. Strong consistency is a requirement.

Setup: ViewState uses replica set collections config-
ured with two replicas in one (local) datacenter and a
third in a nearby datacenter with the primary preferen-
tially located in the local datacenter. Akkio migrates µ-
shards aggressively for ViewState. Having the primary
replica be local ensures reads are fast. Having two repli-
cas locally ensures writes are fast given that a quorum
exists locally. Having two replicas locally has the further
advantage that, should the primary fail, then the other
can become primary. In aggregate, 6 different replica set
collections are available for Akkio to migrate ViewState
µ-shards across when using 6 datacenters.

Having the primary plus a replica in the same datacen-
ter could, however, cause some writes to get lost should
an entire datacenter go down: writes that have reached
the primary and the other replica in the same datacenter,
but have not reached the third replica, will get lost. The
ViewState owners were willing to make this tradeoff for
this rare scenario.

Result: Originally, ViewState data was fully repli-
cated across six datacenters. Using Akkio with the setup
described above led to a 40% smaller storage footprint,8

a 50% reduction of cross-datacenter traffic, and about a
60% reduction in read and write latencies compared to
the original non-Akkio setup. Each remote access noti-
fies the DPS, resulting in approximately 20,000 migra-
tions a second. See Fig. 7. Using Akkio, roughly 5% of
the ViewState reads and writes go to a remote datacenter.

5.2.2 AccessState

Description: AccessState stores information with re-
spect to user actions taken in response to content dis-
played to the user. The information includes the ac-
tion taken, what content it was related to, a timestamp
of when the action was taken, and so on. AccessState
data is appended to by a number of different services,
but read mostly by the dynamic content display system.
AccessState stores the action history, with an average
size of 200KB, in ZippyDB. The read-write ratio for Ac-
cessState is far lower than it is for ViewState.

Requirements: Reads are on the critical path when
deciding what content to display, and hence low read la-

8 Only 40% because the number of servers couldn’t be further re-
duced due to the CPU becoming the bottleneck.
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Figure 7: ViewState (top); AccessState (bottom): per-
centage of accesses to remote data, the number of
evaluatePlacement() calls to DPS per second, and the
number of ensuing µ-shard migrations per second. For View-
State the number of calls to DPS per second and the number of
migrations per second are the same.

avg p90 p95 p99
With Akkio: 10ms 23ms 26ms 34ms
Without Akkio 76ms 151ms 237ms 371ms
Table 4: AccessState client service access latencies.

tencies are needed. However, writes are not on the criti-
cal path and moderate write latency is acceptable (unlike
ViewState). The data needs to be replicated three ways
but only needs to be eventually consistent.

Setup: AccessState uses replica set collections config-
ured to have three replicas, each one in a different data-
center. Overall, 20 such replica set collections, each with
a different topology configuration, plus one replica set
collection configured to have a replica in each datacenter,
are available for Akkio to migrate AccessState µ-shards.
Akkio is configured to not migrate µ-shards aggressively
if, based on the access history, it believes the remote pro-
cessing may be transient. Moreover, it does not migrate
the primary replica to the datacenter from which the ac-
cess was made even though it would lead to lower write
latencies, mainly because not doing so significantly re-
duces the number of migrations needed. (Note that the
read-write ratio for AccessState is far higher than it is for
ViewState.)

Result: Originally, AccessState data was configured
to be fully replicated across six datacenters. Using Akkio
with the setup described above led to a 40% decrease

in storage footprint, a roughly 50% reduction of cross-
datacenter traffic, negligible increase in read latency
(0.4%) and a 60% reduction in write latency. Roughly
0.4% of the reads go remote, resulting in about 1,000 mi-
grations a second. Figure 7 shows that there are roughly
half as many migrations as there are calls to the DPS.

We also compared AccessState read latencies for a
configuration with 3X replication, with and without
Akkio. For the configuration without Akkio, the replicas
were spread evenly across all datacenters. The results
are shown in Table. 4: without Akkio, access latencies
are 7X–10X higher.

5.2.3 Instagram Connection-Info

Description: Connection-Info stores data for each user,
including when and from where they were online, as
well as other status and connection endpoint information.
This data is stored on Cassandra. There are roughly 30
billion µ-shards.

Requirements: This application service requires
strong consistency, for which it uses Cassandra’s quo-
rum read and write features [18]. Intra-continental quo-
rum read and write latencies are important. Originally,
this service stored its data using full replication across
five datacenters on one continent, but as usage in a sec-
ond continent increased substantially, some of the data
had to be stored on that continent.

Setup: This service uses two replica configurations.
One has 5X replication, with a replica in each of five
datacenters (as its original setup). The second has 3X
replication with two in the second continent and one in
the first. Having two replicas together ensures a quorum
stays within the same continent in the steady state.

Result: With Akkio it was possible to keep both read
and write latencies lower than 50ms which was important
to its operation, compared to greater than 100ms which
would have been incurred if quorums went across data-
centers. This service could not have expanded into the
second continent without Akkio.

5.2.4 Instagram Direct

Description: This is a traditional messaging application
service that supports group messaging. Each message
queue contains the sent messages as well as “cursors”
that track the position in the queue for each subscriber.
There are roughly 15 billion such queues, but with most
queues having a small footprint of a few hundred bytes.
The messaging application relies on Iris, a specialized
Facebook-internal queuing datastore service that guaran-
tees in-order delivery. (Underneath, Iris uses MySQL for
persistent storage.)
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Figure 8: Distribution of client-side latencies for accessing the
Akkio location and counter databases, (not taking the cache
into account). Read latencies are shown in the top graph; write
latencies in the bottom graph.

Requirements: Iris is on the critical path for Insta-
gram Direct end-to-end message delivery. Both low
write and low read latencies are thus important. Strong
consistency is required.

Setup: Currently, three datacenters are used to store
Instagram Direct data. The database is configured to
have replica configurations with a primary in each dat-
acenter. Further, each replica set has a secondary replica
in the same datacenter as the primary and two additional
replica in another datacenter, for a total of four replicas.
User access history information is used to decide where
to place µ-shards; for message queues that are accessed
by multiple users (i.e., group messaging) placement is
determined by using each user’s access history weighted
by rate of user actions.

Result: With Akkio, on average, roughly 3,000 mi-
grations occur per second, resulting in a reduction in
end-to-end message delivery latency by 90ms at p90 and
150ms at p95. This, in turn, resulted in user engagement
improvements, where the number of message sends in-
creased by 0.9% overall and the number of text message
sends increased by 1.1%.

5.3 Analysis of Akkio services
Location Service Using AccessState as an example,
the location database uses roughly 200GB storage space
(unreplicated) to keep track of the location of each µ-
shard, with one µ-shard for each of Facebook’s billion+
users. The location database is itself one of the use
cases that shares a multi-tenant ZippyDB deployment. It
consumes 1,200 fully replicated shards with the primary
replicas spread evenly across all regions.

The hit rate of the distributed front-end cache is 98%

Step Time (avg.)
Acquire Lock 151ms
Set Source ACL To Read Only 315ms
Read µ-shard from Source 184ms
Write µ-shard to Destination 130ms
Update Location in DB 151ms
Delete µ-shard From Source 160ms
Set Destination ACL to Read Write 120ms
Release Lock 151ms

Table 5: Breakdown for AccessState µ-shard migration times.

on average. Read latency on the cache averages to around
1 ms. Figure 8 show the distributions of Akkio client
library-side read and write latencies after a miss in the
cache. Writes take considerably longer because a quo-
rum needs to be achieved across datacenters before a
write is acknowledged.

Access Counter Service We present various metrics
from the Access Counter DB for AccessState as an ex-
ample. The amount of storage required for storing one
counter for each of the billion+ users and datacenter is
about 400GB in total (unreplicated). The Access Counter
database also lives in our ZippyDB multi-tenant deploy-
ment with 1,100 dedicated shards. Figure 8 depicts the
counter database read and write latencies. Neither the
reads nor the writes on this database are on any critical
path. The read-write ratio is about 1:500. In a typical
day, the Access Counter DB for ViewState processes be-
tween 300,000 and 550,000 writes per second.

Data Placement Service The DPS receives about
100,000 evaluatePlacement() calls per second.
However, these calls are asynchronous and not on any
critical path. Migrations are the heavy-weight operations
executed by the DPS. Table 5 shows the elapsed time
breakdown of an AccessState µ-shard migration. The
sum of all the individual latencies is relatively high; how-
ever, some of the operations can be executed in parallel,
different migrations can proceed in parallel, and migra-
tion itself is not on the critical path. These latencies have
not been an issue for the client application services using
Akkio today; optimizing them is left for future work.

6 Related Work

Almost all datastore systems have some form of sharding
in order to be scalable, and offer replication to provide
high availability; e.g., [6, 10, 16, 30, 33]. However, these
systems offer little in terms of locality management. For
example, while Cassandra supports fine-grained control
of cross-datacenter replication, the control is static and
not based on access patterns [23].

A number of systems manage data locality at shard
granularity [4, 12, 29, 40]. Given their typical size, we
argue that it is challenging to place shards so that most
data accesses are local if the number of replicas is lim-
ited. Moreover, the overhead of migrating entire shards
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is high, and hence these systems tend to be slow to react
to shifts in workload.

A few systems manage data locality at a granularity
finer than shards. Spanner supports µ-shards in the form
of directories [11], its unit of data placement. Applica-
tions control the contents of a directory using common-
ality in key prefixes. However, [11] makes no mention of
directory-level locality management.

Kadambi et al. extend Yahoo! PNUTs [10] with a
per-record selective replication policy [20] but only of-
fer eventual consistency. PNUTs behaves similarly to
a distributed cache in that some replicas of records are
transient and created on reads and removed when stale;
however data resides on disk and a (configurable) min-
imum number of replicas are kept up to date by prop-
agating updates. The authors argue that collecting and
maintaining access statistics of individual records is too
complex and incurs too much overhead. Akkio’s design
shows this need not be. Not tracking these fine grained
statistics can lead to sub-optimal decisions.

Volley determines where to place data based on logs
that must capture each access [1]. It does this at object
granularity. It generates placement and migration recom-
mendations, but leaves the coordination and execution of
any resulting migrations to the application, thus making
it cumbersome for an application to integrate it. Volley’s
design to process access logs offline makes it slow to re-
act to shifts in workload and to other real-time events.

Nomad is a prototype distributed key-value store that
supports overlays as an abstraction [36] designed to hide
the protocols needed to coordinate access to data as it is
migrated across datacenters. The unit of data manage-
ment is a container, which corresponds to an Akkio µ-
shard. However, Nomad does not track access histories
or take capacities, loads, and resource-effectiveness into
account as Akkio does.

7 Concluding Remarks

This paper makes two key contributions. First, we in-
troduce Akkio, a dynamic locality management service.
Second, we introduce and advocate for a finer-grained
notion of datasets called µ-shards. To our knowledge,
Akkio is the first dynamic data locality system for geo-
distributed datastore systems that migrates data at µ-
shard granularity, that can offer strong consistency, and
that can operate at scale. The system demonstrates that
it is possible, and advantageous, to capture data access
statistics at fine granularity for making data placement
decisions.

Akkio’s design is reasonably simple and largely based
on techniques well-established in the distributed systems
community. Yet we have found it to be effective (§5.2).
So far, several hundred application services at Facebook

use Akkio, and Akkio manages over 100PB of data. We
believe that our choice to implement Akkio as a separate
layer between the application services and their underly-
ing databases has worked out well. Separating the con-
cerns of locality management on the one hand, and repli-
cation, load-balancing and failure recovery on the other
hand, led to a much simpler design and made Akkio vi-
able to a larger set of application services.

With our experiences deploying Akkio, we learned a
number of lessons, most of which center around having
to make Akkio far more configurable than we had antic-
ipated. (1) we initially planned on storing all of Akkio’s
metadata in Akkio’s own datastore system (ZippyDB).
However, we found that application service owners were
not willing to add an extra cross-datastore dependency
in their critical path (and not willing to change the un-
derlying datastore system they were already using). This
forced us to make the location metadata store logic plug-
gable so that the location metadata could be stored on
the application’s underlying datastore system. (2) We
initially assumed all application services would follow
the same migration strategy. However, we found that we
had to create a separate migration strategy for each un-
derlying datastore system so as to play to its strengths.
(3) We learned that migrations didn’t need to be real-
time in all cases; e.g., moving messenger conversations
to their center of gravity once a day lead to more ef-
ficient resource usage, in part because smarter, off-line
placement decisions became feasible. More generally,
we found that the decision of when to migrate had to be
customizable: many application services wanted to de-
lay having their µ-shards migrated by several hundred
milliseconds after the first sub-optimal access in order
to decrease the chances of the migration interfering with
subsequent write accesses (especially if the migration
strategy involved taking the µ-shard offline to writes for
a small duration). (4) We expected to only need a few
different scoring policies when making placement deci-
sions, but ultimately had to support quite a variety of spe-
cific scoring policies; e.g., taking recent activity of indi-
vidual end-users into account when making messaging
µ-shard placement decisions. (5) We found that Akkio
made capacity planning (growth projections for different
datacenters) significantly more difficult with the added
dimension of locality, requiring finer-grained estimates
of datacenter resource growth.

Going forward, more applications are being moved to
run on Akkio, and more datastore systems are being sup-
ported (e.g., MySQL). Further, work has started using
Akkio (i) to migrate data between hot and cold storage,
and (ii) to migrate data more gracefully onto newly cre-
ated shards when resharding is required to accommodate
(many) new nodes.

458    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Acknowledgements

Many helped contribute to the Akkio system; in particu-
lar Victoria Dudin, Harsh Poddar, Dmitry Guyvoronsky;
from the ZippyDB team: Sanketh Indarapu, Sumeet Un-
gratwar, Benjamin Renard, Daniel Pereira, Prateek Jain,
Renato Ferreira, Joanna Bujnowska, Igor Pozgaj, Charlie
Pisuraj, Tim Mulhern; from the Cassandra team: Dikang
Gu, Andrew Whang, Xiangzhou Xia, Abhishek Maloo;
from the Generic Iris team: Changle Wang, Jeremy Fein,
Kristina Shia; From the Instagram team: Colin Chang,
Jingsong Wang; from the Messaging Iris team: Rafal
Szymanski, Jeffrey Bahr, Phil Lopreiato, Adrian Wang.
We also thank the reviewers, and our shepherd Kang
Chen, for their constructive comments that led to a far
better paper.

References
[1] AGARWAL, S., DUNAGAN, J., JAIN, N., SAROIU, S., WOL-

MAN, A., AND BHOGAN, H. Volley: Automated data placement
for geo-distributed cloud services. In Proc. 7th USENIX Conf. on
Networked Systems Design and Implementation (NSDI’10) (San
Jose, California, April 2010), pp. 17–32.

[2] AMIRI, K., PARK, S., TEWARI, R., AND PADMANABHAN, S.
DBProxy: A dynamic data cache for web applications. In Proc.
19th Intl. Conf. on Data Engineering (ICDE’03) (Bangalore, In-
dia, March 2003), pp. 821–831.

[3] ANNAMALAI, M. ZippyDB: A distributed key-value store.
Talk at Data @ Scale: https://code.facebook.com/posts/
371721473024046/inside-data-scale-2015, June 2015.

[4] ARDEKANI, M. S., AND TERRY, D. B. A self-configurable geo-
replicated cloud storage system. In Proc 11th USENIX Symp.
on Operating Systems Design and Implementation (OSDI’14)
(Broomfield, CO, October 2014), pp. 367–381.

[5] BRONSON, N., AMSDEN, Z., CABRERA, G., CHAKKA, P., DI-
MOV, P., DING, H., FERRIS, J., GIARDULLO, A., KULKARNI,
S., LI, H. C., ET AL. TAO: Facebook’s distributed data store for
the social graph. In Proc. USENIX Annual Technical Conference
(USENIXATC’13) (San Jose, CA, June 2013), pp. 49–60.

[6] CATTELL, R. Scalable SQL and NoSQL data stores. SIGMOD
Rec. 39, 4 (May 2011), 12–27.

[7] CHABCHOUB, Y., AND HEBRAIL, G. Sliding HyperLogLog:
Estimating cardinality in a data stream over a sliding window.
In Proc. IEEE Intl. Conf. on Data Mining Workshops (Sydney,
Australia, Dec 2010), pp. 1297–1303.

[8] CHEN, G. J., WIENER, J. L., IYER, S., JAISWAL, A., LEI,
R., SIMHA, N., WANG, W., WILFONG, K., WILLIAMSON, T.,
AND YILMAZ, S. Realtime data processing at Facebook. In
Proc. 2016 Intl. Conf. on Management of Data (SIGMOD’16)
(San Francisco, California, 2016), pp. 1087–1098.

[9] CHESTER, D. Considering the real cost of public cloud storage
vs. on-premises object storage, June 2017. [Online; posted 23-
June-2017].

[10] COOPER, B. F., RAMAKRISHNAN, R., SRIVASTAVA, U., SIL-
BERSTEIN, A., BOHANNON, P., JACOBSEN, H.-A., PUZ, N.,
WEAVER, D., AND YERNENI, R. PNUTS: Yahoo!’s hosted data
serving platform. Proc. of the VLDB Endowment 1, 2 (2008),
1277–1288.

[11] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J., GHEMAWAT, S., GUBAREV, A., HEISER,
C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN,
E., LI, H., LLOYD, A., MELNIK, S., MWAURA, D., NAGLE,
D., QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., SZYMA-
NIAK, M., TAYLOR, C., WANG, R., AND WOODFORD, D.
Spanner: Google’s globally-distributed database. In Proc. 10th
USENIX Symp. on Operating Systems Design and Implementa-
tion (OSDI’12) (Hollywood, CA, Oct 2012), pp. 261–264.

[12] CURINO, C., JONES, E., ZHANG, Y., AND MADDEN, S.
Schism: A workload-driven approach to database replication and
partitioning. Proc. VLDB Endowment 3, 1-2 (Sept. 2010), 48–57.

[13] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P., AND VOGELS, W. Dynamo: Amazon’s highly
available key-value store. In Proc. 21st ACM Symp. on Operating
Systems Principles (SOSP’07) (Stevenson, Washington, 2007),
pp. 205–220.

[14] FITZPATRICK, B. Distributed caching with Memcached. Linux
Journal 2004, 124 (2004), 5.

[15] GARROD, C., MANJHI, A., AILAMAKI, A., MAGGS, B.,
MOWRY, T., OLSTON, C., AND TOMASIC, A. Scalable query
result caching for web applications. Proc. VLDB Endow. (Aug.
2008), 550–561.

[16] GEORGE, L. HBase: The Definitive Guide, 2nd ed. O’Reilly
Media, Inc., 2017.

[17] GOOGLE. Cloud locations. https://cloud.google.com/

about/locations/. [Online; retrieved 12-April-2018].

[18] HEWITT, E., AND CARPENTER, J. Cassandra: The Definitive
Guide, 2 ed. O’Reilly Media, 2016.

[19] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B.
ZooKeeper: Wait-free coordination for Internet-scale systems. In
Proc. USENIX Annual Technical Conference (USENIXATC’10)
(Boston, MA, 2010), pp. 145–158.

[20] KADAMBI, S., CHEN, J., COOPER, B. F., LOMAX, D., RA-
MAKRISHNAN, R., SILBERSTEIN, A., TAM, E., AND GARCIA-
MOLINA, H. Where in the world is my data. In Proc. 34th Intl.
Conf. on Very Large Data Bases (VLDB’11) (Seattle, Washing-
ton, August 2011), pp. 1040–1050.

[21] KIRSCH, J., AND AMIR, Y. Paxos for system builders: An
overview. In Proc. 2nd Workshop on Large-Scale Distributed Sys-
tems and Middleware (LADIS’08) (Yorktown Heights, NY, 2008),
ACM, pp. 3:1–3:6.

[22] KREIFELDT, E. Myriad factors conspire to lower subma-
rine bandwidth prices. http://www.lightwaveonline.

com/articles/2016/08/myriad-factors-conspire-

to-lower-submarine-bandwidth-prices.html, August
2016. [Online; posted 31-August-2016 — original source:
TeleGeography https://www.telegeography.com].

[23] LAKSHMAN, A., AND MALIK, P. Cassandra: A decentralized
structured storage system. SIGOPS Operating Systems Review
44, 2 (Apr. 2010), 35–40.

[24] LAMPORT, L. The part-time parliament. ACM Transactions on
Computer Systems 16, 2 (May 1998), 133–169.

[25] LAMPORT, L. Paxos made simple. ACM SIGACT News (Dis-
tributed Computing Column) 32, 4 (Dec 2001), 51–58.

[26] MARZ, N., AND WARREN, J. Big Data: Principles and Best
Practices of Scalable Realtime Data Systems. Manning Publica-
tions Co., Greenwich, CT, USA, 2015.

[27] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M.,
LEE, H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D.,
SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARAMANI,

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    459

https://code.facebook.com/posts/371721473024046/inside-data-scale-2015
https://code.facebook.com/posts/371721473024046/inside-data-scale-2015
https://cloud.google.com/about/locations/
https://cloud.google.com/about/locations/
http://www.lightwaveonline.com/articles/2016/08/myriad-factors-conspire-to-lower-submarine-bandwidth-prices.html
http://www.lightwaveonline.com/articles/2016/08/myriad-factors-conspire-to-lower-submarine-bandwidth-prices.html
http://www.lightwaveonline.com/articles/2016/08/myriad-factors-conspire-to-lower-submarine-bandwidth-prices.html
https://www.telegeography.com


V. Scaling Memcache at Facebook. In Proc. 10th USENIX Conf.
on Networked Systems Design and Implementation (NSDI’13)
(Lombard, IL, 2013), pp. 385–398.

[28] NUFIRE, T. The cost of cloud storage. https://

www.backblaze.com/blog/cost-of-cloud-storage, June
2017. [Online; posted 29-June-2017].

[29] P N, S., SIVAKUMAR, A., RAO, S., AND TAWARMALANI, M.
D-tunes: Self tuning datastores for geo-distributed interactive ap-
plications. In Proc. of the ACM SIGCOMM 2013 Conference on
SIGCOMM (SIGCOMM’13) (Hong Kong, 2013), pp. 483–484.

[30] PLUGGE, E., HOWS, D., MEMBREY, P., AND HAWKINS, T.
The Definitive Guide to MongoDB: A complete guide to dealing
with Big Data using MongoDB, 3rd ed. Apress, 2015.

[31] ROWLING, J. K. Harry Potter and the Goblet of Fire. Thorndike
Press, 2000.

[32] SHAROV, A., SHRAER, A., MERCHANT, A., AND STOKELY,
M. Take me to your leader!: Online optimization of distributed
storage configurations. Proc. of the VLDB Endowment 8, 12
(2015), 1490–1501.

[33] STRICKLAND, R. Cassandra 3.x High Availability, 2nd ed. Packt
Publishing Ltd, 2016.

[34] TAI, A., KRYCZKA, A., KANAUJIA, S., PETERSEN, C.,
ANTONOV, M., WALIJI, M., JAMIESON, K., FREEDMAN,
M. J., AND CIDON, A. Live recovery of bit corruptions in data-
center storage systems. CoRR abs/1805.02790 (2018).

[35] TANG, C., KOOBURAT, T., VENKATACHALAM, P., CHANDER,
A., WEN, Z., NARAYANAN, A., DOWELL, P., AND KARL, R.
Holistic configuration management at Facebook. In Proc. 25th
Symp. on Operating Systems Principles (SOSP’15) (Monterey,
California, 2015), pp. 328–343.

[36] TRAN, N., AGUILERA, M. K., AND BALAKRISHNAN, M. On-
line migration for geo-distributed storage systems. In Proc.
USENIX Annual Technical Conference (USENICATC’11) (Port-
land, Oregon, June 2011), pp. 201–215.

[37] WIKIPEDIA CONTRIBUTORS. Shard (database architecture)
— Wikipedia. https://en.wikipedia.org/w/index.

php?title=Shard_(database_architecture)&oldid=

845931919, 2018. [Online; accessed 14-September-2018].

[38] WOODS, A., AND HARRISON, D. How to leverage geo-
partitioning. https://www.cockroachlabs.com/blog/geo-
partitioning-two/, April 2018. [Online; retrieved 12-April-
2018].

[39] WU, Z., BUTKIEWICZ, M., PERKINS, D., KATZ-BASSETT, E.,
AND MADHYASTHA, H. V. SPANStore: Cost-effective geo-
replicated storage spanning multiple cloud services. In Proc.
24th ACM Symp. on Operating Systems Principles (SOSP’13)
(Farminton, Pennsylvania, November 2013), pp. 292–308.

[40] YU, H., AND VAHDAT, A. Minimal replication cost for availabil-
ity. In Proc. 21st Annual Symp. on Principles of Distributed Com-
puting (PODC’02) (Monterey, California, July 2002), pp. 98–
107.

460    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.backblaze.com/blog/cost-of-cloud-storage
https://www.backblaze.com/blog/cost-of-cloud-storage
https://en.wikipedia.org/w/index.php?title=Shard_(database_architecture)&oldid=845931919
https://en.wikipedia.org/w/index.php?title=Shard_(database_architecture)&oldid=845931919
https://en.wikipedia.org/w/index.php?title=Shard_(database_architecture)&oldid=845931919
https://www.cockroachlabs.com/blog/geo-partitioning-two/
https://www.cockroachlabs.com/blog/geo-partitioning-two/


Write-Optimized and High-Performance Hashing Index Scheme for
Persistent Memory

Pengfei Zuo, Yu Hua, Jie Wu
Wuhan National Laboratory for Optoelectronics

School of Computer, Huazhong University of Science and Technology, China
Corresponding author: Yu Hua (csyhua@hust.edu.cn)

Abstract
Non-volatile memory (NVM) as persistent memory is
expected to substitute or complement DRAM in memory
hierarchy, due to the strengths of non-volatility, high
density, and near-zero standby power. However, due to
the requirement of data consistency and hardware limita-
tions of NVM, traditional indexing techniques originally
designed for DRAM become inefficient in persistent
memory. To efficiently index the data in persistent
memory, this paper proposes a write-optimized and
high-performance hashing index scheme, called level
hashing, with low-overhead consistency guarantee and
cost-efficient resizing. Level hashing provides a sharing-
based two-level hash table, which achieves a constant-
scale search/insertion/deletion/update time complexity in
the worst case and rarely incurs extra NVM writes. To
guarantee the consistency with low overhead, level hash-
ing leverages log-free consistency schemes for insertion,
deletion, and resizing operations, and an opportunistic
log-free scheme for update operation. To cost-efficiently
resize this hash table, level hashing leverages an in-
place resizing scheme that only needs to rehash 1/3 of
buckets instead of the entire table, thus significantly
reducing the number of rehashed buckets and improving
the resizing performance. Experimental results demon-
strate that level hashing achieves 1.4×−3.0× speedup
for insertions, 1.2×−2.1× speedup for updates, and
over 4.3× speedup for resizing, while maintaining high
search and deletion performance, compared with state-
of-the-art hashing schemes.

1 Introduction
As DRAM technology is facing significant challenges in
density scaling and power leakage [44, 56], non-volatile
memory (NVM) technologies, such as ReRAM [9],
PCM [61], STT-RAM [10] and 3D XPoint [1], are
promising candidates for building future memory sys-
tems. The non-volatility enables data to be persistently
stored into NVM as persistent memory for instantaneous

failure recovery. Due to byte-addressable benefit and
the access latency close to DRAM, persistent memory
can be directly accessed through the memory bus by
using CPU load and store instructions, thus avoiding high
overheads of conventional block-based interfaces [18,
39, 63, 64]. However, NVM typically suffers from the
limited endurance and low write performance [50, 67].

The significant changes of memory architectures and
characteristics result in the inefficiency of indexing
data in the conventional manner that overlooks the
requirement of data consistency and new NVM device
properties [35, 46, 58, 64, 68]. A large amount of
existing work has improved tree-based index structures
for efficiently adapting to persistent memory, such as
CDDS B-tree [58], NV-Tree [64], wB+-Tree [17], FP-
Tree [46], WORT [35], and FAST&FAIR [30]. Tree-
based index structures are typically with the lookup time
complexity of average O(log(N)) where N is the size
of data structures [12, 19]. Unlike tree-based index
structures, hashing-based index structures are flat data
structures, which are able to achieve constant lookup
time complexity, i.e., O(1), which is independent of
N [42]. Due to providing fast lookup responses, hashing
index structures are widely used in main memory sys-
tems. For example, they are fundamental components
in main memory databases [27, 33, 38, 65], and used to
index in-memory key-value stores [7, 8, 25, 36, 66], e.g.,
Redis and Memcached. However, when hashing index
structures are maintained in persistent memory, multiple
non-trivial challenges exist which are rarely touched by
existing work.

1) High Overhead for Consistency Guarantee. Data
structures in persistent memory should avoid any data
inconsistency (i.e., data loss or partial updates) when
system failures occur [28, 35, 46]. However, the
new architecture that NVM is directly accessed through
the memory bus causes high overhead to guarantee
consistency. First, memory writes are usually reordered
by CPU and memory controller [18, 20]. To ensure the
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ordering of memory writes for consistency guarantee,
we have to employ cache line flush and memory fence,
introducing high performance overhead [17, 31, 45, 64].
Second, the atomic write unit for modern processors is
generally no larger than the memory bus width (e.g.,
8 bytes for 64-bit processors) [17, 20, 24, 60]. If the
written data is larger than an atomic write unit, we need
to employ expensive logging or copy-on-write (CoW)
mechanisms to guarantee consistency [30, 35, 58, 64].

2) Performance Degradation for Reducing Writes.
Memory writes in NVM consume the limited endurance
and cause higher latency and energy than reads [50, 67].
Moreover, more writes in persistent memory also cause
more cache line flushes and memory fences as well as
possible logging or CoW operations, significantly de-
creasing the system performance. Hence, write reduction
matters in NVM. Previous work [22, 68] demonstrates
that common hashing schemes such as chained hashing,
hopscotch hashing [29] and cuckoo hashing [47, 55]
usually cause many extra memory writes for dealing with
hash collisions. The write-friendly hashing schemes,
such as PFHT [22] and path hashing [68], are proposed
to reduce NVM writes in hashing index structures but
at the cost of decreasing access performance (i.e., the
throughput of search, insertion and deletion operations).

3) Cost Inefficiency for Resizing Hash Table. With
the increase of the load factor (i.e., the ratio of the
number of stored items to that of total storage units) of
a hash table, the number of hash collisions increases,
resulting in the decrease of access performance as well
as insertion failure. Resizing is essential for a hash
table to increase the size when its load factor reaches a
threshold or an insertion failure occurs [26, 29, 48, 57].
Resizing a hash table needs to create a new hash table
whose size is usually doubled, and then iteratively rehash
all the items in the old hash table into the new one.
Resizing is an expensive operation due to requiring O(N)
time complexity to complete where N is the number of
items in the hash table. Resizing also incurs N insertion
operations, resulting in a large number of NVM writes
with cache line flushes and memory fences in persistent
memory.

To address these challenges, this paper proposes
level hashing, a write-optimized and high-performance
hashing index scheme with low-overhead consisten-
cy guarantee and cost-efficient resizing for persistent
memory. Specifically, this paper makes the following
contributions:
• Low-overhead Consistency Guarantee. We propose

log-free consistency guarantee schemes for insertion,
deletion, and resizing operations in level hashing. The
three operations can be atomically executed for consis-
tency guarantee by leveraging the token in each bucket
whose size is no larger than an atomic write unit, without

the need of expensive logging/CoW. Furthermore, for
update operation, we propose an opportunistic log-
free scheme to update an item without the need of
logging/CoW in most cases. If the bucket storing the
item to be updated has an empty slot, an item can be
atomically updated without using logging/CoW.
•Write-optimized Hash Table Structure. We propose

a sharing-based two-level hash table structure, in which
a search/deletion/update operation only needs to probe
at most four buckets to find the target key-value item,
and hence has the constant-scale time complexity in the
worst case with high performance. An insertion probes
at most four buckets to find an empty location in most
cases, and in rare cases only moves at most one item,
with the constant-scale worst-case time complexity.
• Cost-efficient Resizing. To improve the resizing

performance, we propose a cost-efficient in-place re-
sizing scheme for level hashing, which rehashes only
1/3 of buckets in the hash table instead of the entire
hash table, thus significantly reducing NVM writes and
improving the resizing performance. Moreover, the in-
place resizing scheme enables the resizing process to
take place in a single hash table. Hence, search and
deletion operations only need to probe one table during
the resizing, improving the access performance.
• Real Implementation and Evaluation. We have

implemented level hashing1 and evaluated it in both real-
world DRAM and simulated NVM platforms. Extensive
experimental results show that the level hashing speeds
up insertions by 1.4×−3.0×, updates by 1.2×−2.1×,
and resizing by over 4.3× while maintaining high search
and deletion performance, compared with start-of-the-art
hashing schemes including BCH [25], PFHT [22] and
path hashing [68]. The concurrent level hashing im-
proves the request throughput by 1.6×−2.1×, compared
with the start-of-the-art concurrent hashing scheme, i.e.,
libcuckoo [37].

The rest of this paper is organized as follows. Sec-
tion 2 describes the background and motivation. Sec-
tion 3 presents the design details. The performance
evaluation is shown in Section 4. Section 5 discusses
the related work and Section 6 concludes this paper.

2 Background and Motivation
In this section, we present the background of the data
consistency issue in persistent memory and hashing
index structures.

2.1 Data Consistency in NVM
In order to improve system reliability and efficiently
handle possible system failures (e.g., power loss and

1The source code of level hashing is available at https://

github.com/Pfzuo/Level-Hashing.
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system crashes), the non-volatility property of NVM
has been well explored and exploited to build persistent
memory systems. However, since the persistent systems
typically contain volatile storage components, e.g., CPU
caches, we have to address the potential problem of
data consistency that is interpreted as preventing data
from being lost or partially updated in case of a system
failure. To achieve data consistency in NVM, it is
essential to ensure the ordering of memory writes to
NVM [17, 35, 64]. However, the CPU and memory
controller may reorder memory writes. We need to
use the cache line flush instruction (CLFLUSH for short),
e.g., cl f lush, cl f lushopt and clwb, and memory fence
instruction (MFENCE for short), e.g., m f ence and s f ence,
to ensure the ordering of memory writes, like existing
state-of-the-art schemes [17, 35, 46, 58, 64]. The
CLFULSH and MFENCE instructions are provided by the
Intel x86 architecture [4]. Specifically, CLFULSH evicts
a dirty cache line from caches and writes it back to
NVM. MFENCE issues a memory fence, which blocks
the memory access instructions after the fence, until
those before the fence complete. Since only MFENCE can
order CLFLUSH, CLFLUSH is used with MFENCE to ensure
the ordering of CLFLUSH instructions [4]. However,
the CLFLUSH and MFEMCE instructions cause significant
system performance overhead [17, 20, 58]. Hence, it is
more important to reduce writes in persistent memory.

It is well-recognized that the atomic memory write
of NVM is 8 bytes, which is equal to the memory bus
width for 64-bit CPUs [17, 35, 46, 58, 64]. If the size
of the updated data is larger than 8 bytes and a system
failure occurs before completing the update, the data will
be corrupted. Existing techniques, such as logging and
copy-on-write (CoW), are used to guarantee consistency
of the data whose sizes are larger than an atomic-write
size. The logging technique first stores the old data (undo
logging) or new data (redo logging) into a log and then
updates the old data in place. The CoW first creates
a new copy of data and then performs updates on the
copy. The pointers that point to the old data are finally
modified. Nevertheless, logging and CoW have to write
twice for each updated data. The ordering of the two-
time writes also needs to be ensured using CLFLUSH and
MFENCE, significantly hurting the system performance.

2.2 Hashing Index Structures for NVM

2.2.1 Conventional Hashing Schemes

Hashing index structures are widely used in current
main memory databases [23, 27, 33, 38, 65], and key-
value stores [7, 8, 25, 36, 51], to provide fast query
responses. Hash collisions, i.e., two or more keys are
hashed into the same bucket, are practically unavoidable
in hashing index structures. Chained hashing [32] is

a popular scheme to deal with hash collisions, which
stores the conflicting items in a linked list via pointers.
However, the chained hashing consumes extra memory
space due to maintaining the pointers, and decreases
access performance when the linked lists are too long.

Open addressing is another kind of hashing scheme
to deal with hash collisions without pointers, in which
each item has a fixed probe sequence. The item must
be in one bucket of its probe sequence. Bucketized
cuckoo hashing (BCH) [13, 25, 37] is a memory-efficient
open-addressing scheme, which has been widely used
due to the constant lookup time complexity in the worst
case and memory efficiency (i.e., achieving a high load
factor). BCH uses f ( f ≥ 2) hash functions to compute
f bucket locations for each item. Each bucket includes
multiple slots. An inserted item can be stored in any
empty slot in its corresponding f buckets. If all slots in
the f buckets are occupied, BCH randomly evicts an item
in one slot. The evicted item further iteratively evicts
other existing items until finding an empty location. For
a search operation, BCH probes at most f buckets and
hence has a constant search time complexity in the worst
case. Due to sufficient flexibility with only two hash
functions, f = 2 is actually used in BCH [13, 22, 25, 37].
Hence, the BCH in our paper uses two hash functions.

2.2.2 Hashing Schemes for NVM

The mentioned hashing schemes above mainly consider
the properties of the traditional memory devices, such
as DRAM and SRAM. Unlike them, the new persistent
memory systems are tightly related with the significant
changes of memory architectures and characteristics,
which bring the non-trivial challenges to hashing index
structures. For example, NVM typically has limited en-
durance and incurs higher write latency than DRAM [50,
67]. The chained hashing results in extra NVM writes
due to the modifications of pointers and BCH caus-
es cascading NVM writes due to frequently evicting
and rewriting items for insertion operations, which
exacerbate the endurance of NVM and the insertion
performance of hash tables [22, 68]. More importantly,
the traditional hashing schemes do not consider data
consistency and hence cannot directly work on persistent
memory.

Hashing schemes [22, 68] have been improved to effi-
ciently adapt to NVM, which mainly focus on reducing
NVM writes in hash tables. Debnath et al. [22] propose
a PCM-friendly Hash Table (PFHT) which is a variant
of BCH for reducing writes to PCM. PFHT modifies
the BCH to only allow one-time eviction when inserting
a new item, which can reduce the NVM writes from
frequent evictions but results in low load factor. In
order to improve the load factor, PFHT further uses a
stash to store the items failing to be inserted into the
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Table 1: Comparisons among level hashing and state-
of-the-art memory-efficient hashing schemes. (In this
table, “×” indicates a bad performance, “

√
” indicates

a good performance and “−” indicates a moderate
performance in the corresponding metrics.)

BCH PFHT Path hashing Level hashing
Memory Efficiency

√ √ √ √

Search
√

− −
√

Deletion
√

− −
√

Insertion × − −
√

NVM Writes ×
√ √ √

Resizing × × ×
√

Consistency × × ×
√

hash table. However, PFHT needs to linearly search the
stash when failing to find an item in the hash table, thus
increasing the search latency. Our previous work [68, 69]
proposes the path hashing that supports insertion and
deletion operations without any extra NVM writes. Path
hashing logically organizes the buckets in the hash table
as an inverted complete binary tree. Each bucket stores
one item. Only the leaf nodes are addressable by hash
functions. When hash collisions occur in the leaf node
of a path, all non-leaf nodes in the same path are used
to store the conflicting key-value items. Thus insertions
and deletions in the path hashing only need to probe
the nodes within two paths for finding an empty bucket
or the target item, without extra writes. However, path
hashing offers a low search performance due to the need
of traversing two paths until finding the target item for
each search operation.

Table 1 shows a high-level comprehensive comparison
among these state-of-the-art memory-efficient hashing
schemes including BCH, PFHT and path hashing. In
summary, BCH is inefficient for insertion due to frequent
data evictions. PFHT and path hashing reduce NVM
writes in the insertion and deletion operations but at the
cost of decreasing access performance. More important-
ly, these hashing schemes overlook the data consistency
issue of hash tables in NVM as well as the efficiency of
the resizing operation that often causes a large number
of NVM writes. Our paper proposes the level hashing
that achieves good performance in terms of all these
metrics as shown in Section 3, which is also verified in
the performance evaluation as shown in Section 4.

2.2.3 Resizing a Hash Table

With the increase of the load factor of a hash table,
the number of hash collisions increases, resulting in the
decrease of the access performance as well as insertion
failure [48, 57]. Once a new item fails to be inserted
into a hash table, this hash table has to be resized by
growing its size. Traditional resizing schemes [40, 48,
53] perform out-of-place resizing, in which expanding a
hash table needs to create a new hash table whose size is

larger than that of the old one, and then iteratively rehash
all items from the old hash table to the new one.

The size of the new hash table is usually double size
of the old one [40, 53, 54, 57], due to two main reasons.
First, the initial size of a hash table is usually set to
be a power of 2, since it allows very cheap modulo
operations. For a hash table with power-of-2 (i.e., 2n)
buckets, computing the location of a key based on its
hash value, i.e., hash(key)%2n, is a simple bit shift,
which is much faster than computing an integral division,
e.g., hash(key)%(2n-1). Thus, if doubling the size in
resizing a hash table, the size of the new hash table is
still a power of 2. Second, the access performance of
a hash table depends on the size of the hash table [57].
If resizing the hash table to a too small size, the new
hash table may result in high hash collision rate and
poor insertion performance, which will quickly incur
another resizing operation. If resizing the hash table
to a too large size for inserting a few new items, the
new hash table consumes too much memory, reducing
the memory space available for other applications. In
general, doubling the size when resizing a hash table has
been widely recognized [53, 54, 57]. For example, in the
real-world applications, such as Java HashMap [5] and
Memcached [7], doubling the size is the default setting
for resizing a hash table.

When the stored items are far fewer than the storage
units in a hash table, the hash table also needs to be
resized via shrinking its size. Resizing is an expensive
operation that consumes O(N) time to complete, where N
is the number of buckets in the old hash table. Moreover,
during the resizing, each search or deletion operation
needs to check both old and new hash tables, decreasing
the access performance. For hashing index structures
maintained in persistent memory, resizing causes a
large number of NVM writes with cache line flushes
and memory fences, significantly hurting the NVM
endurance and decreasing the resizing performance.

3 The Level Hashing Design

We propose level hashing, a write-optimized and high-
performance hashing index scheme with cost-efficient
resizing and low-overhead consistency guarantee for
persistent memory. In this section, we first present the
basic data structure of level hashing (§3.1), i.e., level
hash table, which aims to achieve the high performance
as well as high load factor, and rarely incurs extra
writes. We then present a cost-efficient in-place resizing
scheme (§3.2) for level hashing to reduce NVM writes
and improve the resizing performance. We then present
the (opportunistic) log-free schemes (§3.3) to reduce the
consistency overhead. We finally present the concurrent
level hashing leveraging fine-grained locking (§3.4).
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Figure 1: The hash table structure of level hashing with
4 slots per bucket. (In these tables, “TL” indicates the
top level, and “BL” indicates the bottom level.)

3.1 Write-optimized Hash Table Structure
A level hash table is a new open-addressing structure
with all the strengths of BCH, PFHT and path hashing,
including memory-efficient, write-optimized, and high
performance, while avoiding their weaknesses, via per-
forming the following major design decisions.

D1: Multiple Slots per Bucket. According to mul-
tiple key-value workload characteristics published by
Facebook [11] and Baidu [34], small key-value items
whose sizes are smaller than a cache-line size dominate
in current key-value stores. For example, the size of
most keys is smaller than 32 bytes, and 16 or 21-byte
key with 2-byte value is a common request type in
Facebook’s key-value store [11]. Motivated by the real-
world workload characteristics, we enable the level hash
table to be cache-efficient by setting multiple slots in
each bucket, e.g., 4 slots per bucket as shown in Figure 1.
Thus a bucket can store multiple key-value items each
in one slot. When accessing a bucket in the level hash
table, multiple key-value items in the same bucket can
be prefetched into CPU caches in one memory access,
which improves the cache efficiency and thus reduces the
number of memory accesses.

D2: Two Hash Locations for Each Key. Since each
bucket has k slots, the hash table can deal with at most
k−1 hash collisions occurring in a single hash position.
It is possible that more than k key-value items are hashed
into the same position. In this case, insertion failure
easily occurs, resulting in a low load factor. To address
this problem, we enable each key to have two hash
locations via using two different hash functions, i.e.,
hash1() and hash2(), like BCH [13, 25, 37], PCHT [22]
and path hashing [68, 69]. A new key-value item is
inserted into the less-loaded bucket between the two
hash locations [14]. Due to the randomization of two
independent hash functions, the load factor of hash table
is significantly improved as shown in Figure 2.
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Figure 2: The maximum load factors when adding
different design decisions. (D1: a one-level hash table
with 4 slots per bucket; D1 + D2: a hash table with
design decisions D1 and D2; D1 +D2 +D3: a hash table
with D1, D2 and D3; All: level hash table that uses
D1 +D2 +D3 +D4.)

D3: Sharing-based Two-level Structure. The buckets
in the level hash table are divided into two levels, i,e.,
a top level and a bottom level, as shown in Figure 1a.
Only the buckets in the top level are addressable by hash
functions. The bottom level is not addressable and used
to provide standby positions for the top level to store
conflicting key-value items. Each bottom-level bucket
is shared by two top-level buckets, and thus the size
of the bottom level is half of the top level. If a hash
collision occurs in a top-level bucket and all positions in
the bucket are occupied, the conflicting key-value item
can be stored in its corresponding standby bucket in the
bottom level. By using the two-level structure, the load
factor of hash table is significantly improved as shown
in Figure 2. Moreover, since each addressable bucket
has one standby bucket, a search operation only needs
to probe at most four buckets, having the constant-scale
time complexity in the worst case.

D4: At Most One Movement for Each Successful
Insertion. To enable key-value items to be evenly
distributed among buckets, if both buckets are full during
inserting an item in the BCH [13, 22, 25, 37], BCH
iteratively evicts one of existing items and thus incurs
cascading writes, which is not friendly for NVMs. To
avoid the problem of the cascading writes, instead, level
hashing allows the movement of at most one item for
each insertion. Specifically, during inserting a new item
(Inew), if the two top-level buckets are full, we check
whether it is possible to move any key-value item from
one of its two top-level buckets to its alternative top-
level location. If no movement is possible, we further
insert the new item Inew into the bottom level. If the
two bottom-level buckets are full, we also check whether
it is possible to move any key-value item from one of
its two bottom-level buckets to its alternative bottom-
level location. If the movement still fails, the insertion
fails and the hash table needs to be resized. Note that
the movement is saved if the alternative location of the
moved item has no empty slot. Allowing one movement
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redistributes the items among buckets, thus improving
the maximum load factor, as shown in Figure 2.

Put them all together, the hash table structure of level
hashing is shown in Figure 1. Figure 1a shows the logical
structure of a level hash table that contains two-level
buckets. The links between two levels indicate the bucket
sharing relationships, instead of pointers. Figure 1b
shows the physical storage of a level hash table, in which
each level is stored in a one-dimensional array. For a key-
value item with the key K, its corresponding two buckets
in the top level (i.e., the No.Lt1 and No.Lt2 buckets)
and its two standby buckets in the bottom level (i.e.,
the No.Lb1 and No.Lb2 buckets) can be obtained via the
following equations:

Lt1 = hash1(K)%N,Lt2 = hash2(K)%N (1)

Lb1 = hash1(K)%(N/2),Lb2 = hash2(K)%(N/2) (2)

The computations of Equations 1 and 2 only require
the simple bit shift operation since N is a power of 2.
The simple yet efficient hash table structure shown in
Figure 1 has the following strengths:
• Write-optimized. Level hashing does not cause the

cascading writes via allowing at most one movement for
each insertion. Moreover, only a very small number of
insertions incur one movement. Based on our experi-
ments, when continuously inserting key-value items into
a level hash table until reaching its maximum load factor,
only 1.2% of insertions incur one movement.
• High-performance. For a search/deletion/update

operation, level hashing probes at most four buckets to
find the target item. For an insertion operation, level
hashing probes at most four buckets to find an empty
location in most cases, and in rare cases further moves
at most one existing item. Hence, level hashing achieves
the constant-scale worst-case time complexity for all
operations.
• Memory-efficient. In the level hash table, two hash

locations for each key enables the key-value items in
the top level to be evenly distributed [43]. Each un-
addressable bucket is shared by two addressable buckets
to store the conflicting items, which enables the items
in the bottom level to be evenly distributed. Allowing
one movement enables items to be evenly redistributed.
These design decisions enable the level hash table to
be load-balanced and memory-efficient, thus achieving
more than 90% load factor as shown in Figure 2.

Moreover, the level hashing has a good resizing
performance via a cost-efficient in-place resizing scheme
as shown in Section 3.2. We guarantees the data
consistency in the level hashing with low overhead
via the (opportunistic) log-free schemes as shown in
Section 3.3.

……………………

0 1 2 3 N-1N-2

TL:

BL:

……………………

2 3 4 5 6 7 2N-22N-32N-40 1 2N-1

……………………

Rehashing

TL:

BL:

IL:

(Old TL)

(Old BL)

……………………

2 3 4 5 6 7 2N-22N-32N-40 1 2N-1

TL:

BL:

(a) The old level hash table before resizing

(b) The level hash table during resizing

(c) The new level hash table after resizing

Figure 3: The cost-efficient in-place resizing in the level
hashing. (“IL” indicates the interim level.)

3.2 Cost-efficient In-place Resizing

To reduce NVM writes and improve the resizing per-
formance, we propose a cost-efficient in-place resizing
scheme. The basic idea of the in-place resizing scheme
is to put a new level on the top of the old hash table and
only rehash the items in the bottom level of the old hash
table when expanding a level hash table.

1) An Overview of Resizing. A high-level overview
of the in-place resizing process in the level hashing
is shown in Figure 3. Before the resizing, the level
hash table is a two-level structure, including a top level
(TL) with N buckets and a bottom level (BL) with N/2
buckets, as shown in Figure 3a. During the resizing,
we first allocate the memory space with 2N buckets
as the new top level and put it on the top of the old
hash table. The level hash table becomes a three-level
structure during the resizing, as shown in Figure 3b.
The third level is called the interim level (IL). The in-
place resizing scheme rehashes the items in the IL into
the top-two levels. Each rehashing operation includes
reading an item in the IL, inserting the item into the top-
two levels and deleting the item from the IL. After all
items in the IL are rehashed into the top-two levels, the
memory space of the IL is reclaimed. After the resizing,
the new hash table becomes a two-level structure again,
as shown in Figure 3c. The rehashing failure (which
indicates a rehashed item fails to be inserted into the top-
two levels) does not occur when the resizing is underway,
since currently the total number of stored items is smaller
than half of the total size of the new level hash table, and
level hashing is able to achieve the load factor of higher
than 0.9 (> 0.5) as evaluated in Section 4.2.1.

We observe that the new hash table with 3N buck-
ets is exactly double size of the old hash table with
1.5N buckets, which meets the demand of real-world
applications as discussed in Section 2.2.3. Unlike the
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traditional out-of-place resizing scheme [48] in which
the resizing occurs between the old and new tables, the
in-place resizing enables the whole resizing process to
occur in a single hash table. Thus during resizing, search
and deletion operations only need to probe one table
and compute the hash functions once, thus improving
the access performance. Moreover, the in-place resizing
rehashes only the bottom level of the old hash table
instead of the entire table. The bottom level only contains
1/3(= 0.5N/1.5N) of all buckets in the old hash table,
thus significantly reducing data movements and NVM
writes during the resizing, as well as improving the
resizing performance.

We can also shrink the level hash table in place which
is an inverse process of expanding the level hash table.
Specifically, to shrink the level hash table, we first
allocate the memory space with N/4 buckets as the new
bottom level which is placed on the bottom of the old
hash table. We then rehash all items in the old top level
into the bottom-two levels.

2) Improving the Maximum Load Factor after Re-
sizing. In the level hash table, each item is stored in
the bottom level only when its corresponding two top-
level buckets are full. Thus before resizing, the top-level
buckets are mostly full and the bottom-level buckets are
mostly non-full. After resizing, the top level in the old
hash table becomes the bottom level in the new hash table
as shown in Figure 3. Thus the bottom-level buckets in
the new hash table are mostly full, which easily incur an
insertion failure, reducing the maximum load factor. The
blue line in Figure 4 shows the load factors of the level
hash table when the multiple successive resizings occur.
We observe that the maximum load factors in the 2-nd,
4-th, and 6-th resizings are reduced, compared with those
in the 1-st, 3-rd and 5-th resizings. The reason is that the
bottom-level buckets are mostly full in the 2-nd, 4-th and
6-th resizings.

To address this problem, we propose a bottom-to-top
movement (B2T) scheme for level hashing. Specifically,
during inserting an item, if its corresponding two top-
level buckets (Lt1 and Lt2) and two bottom-level buckets
(Lb1 and Lb2) are full, the B2T scheme tries to move one
existing item (Iext ) in the bottom-level bucket Lb1 or Lb2

into the top-level alternative locations of Iext . Only when
the corresponding two top-level buckets of Iext have no
empty slot, the insertion is considered as a failure and
incurs a hash table resizing. By performing the B2T
scheme, the items between top and bottom levels are
redistributed, thus improving the maximum load factor.
The red line in Figure 4 shows the load factors when the
resizings occur via using the B2T scheme. We observe
that the maximum load factors in the 2-nd, 4-th and 6-th
resizings are improved.

3) Improving the Search Performance after Resizing.
After resizing, the search performance possibly decreas-
es. This is because in the original search scheme (called
static search) as shown in Section 3.1, we always first
probe the top level, and if not finding the target item, we
then probe the bottom level. Before resizing, about 2/3
items are in the top level. However, the 2/3 items are in
the bottom level after resizing, since the top level in the
old hash table becomes the bottom level in the new one as
shown in Figure 3. Hence, a single search needs to probe
two levels in most cases (i.e., about 2/3 probability) after
resizing, thus degrading the search performance.

To address this problem, we propose a dynamic search
scheme for level hashing. Specifically, for a search, we
study two cases based on the numbers of items in the top
and bottom levels. First, if the items in the bottom level
are more than those in the top level, we first probe the
bottom level (based on Equation 2), and if not finding
the target item, we then probe the top level (based on
Equation 1). Second, if the items in the bottom level
are less than those in the top level, we first probe the
top level and then the bottom level. Thus after resizing,
the items in the bottom level are more than those in the
top level and hence we first probe the bottom level, thus
improving the search performance. We also demonstrate
the performance improvement in Section 4.2.4.

3.3 Low-overhead Consistency Guarantee
In the open-addressing hash tables, a token associated
with each slot is used to indicate whether the slot is
empty [25, 68]. As shown in Figure 5, in a bucket,
the header area stores the tokens of all slots and the
remaining area stores the slots each with a key-value
item. A token is defined as a 1-bit flag that indicates
whether the corresponding slot is empty. For example,
the token ‘0’ indicates the corresponding slot is empty
and the token ‘1’ indicates the slot is non-empty. The
header area is 1 byte when the number of slots is not
larger than 8, and 2 bytes for the buckets with 16 slots.
Since the header area is always smaller than 8 bytes,
modifying the tokens only needs to perform an atomic
write. But the key-value items are usually larger than
8 bytes. A straightforward approach is to guarantee
the consistency of writing key-value items via logging
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or CoW, which however incurs significant performance
overhead as discussed in Section 2.1.

To reduce the overhead of guaranteeing consistency in
level hashing, we propose log-free consistency guarantee
schemes for deletion, insertion, and resizing operations,
and an opportunistic log-free guarantee scheme for up-
date operation, by leveraging the tokens to be performed
in the atomic-write manner.

1) Log-free Deletion. When deleting a key-value item
from a slot, we change the token of the slot from ‘1’ to
‘0’, which invalidates the deleted key-value item. The
deletion operation only needs to perform an atomic write
to change the token. After the token of the slot is changed
to ‘0’, the slot becomes available and can be used to
insert a new item.

2) Log-free Insertion. There are two cases when
inserting a new item into the level hash table.

a) No item movement: The insertion incurs no move-
ment, i.e., inserting a new item to an empty slot. In
this case, we first write the new item into the slot and
then change its token from ‘0’ to ‘1’. The ordering of
writing the item and changing the token is ensured via
an MFENCE. Although the new item is larger than 8 bytes,
writing the item does not require logging or CoW, since
the item becomes valid until the token is set to ‘1’. If a
system failure occurs during writing the item, this item
may be partially written but invalid since the current
token is ‘0’ and this slot is still available. Hence, the
hash table is in a consistent state when system failures
occur.

b) Moving one item: The insertion incurs the move-
ment of one item. In this case, we need to take two
steps to insert an item, and the ordering of executing the
two steps is ensured via an MFENCE. The first step is to
move an existing item into its alternative bucket. We use
slotcur to indicate the current slot of the existing item
and use slotalt to indicate its new slot in the alternative
bucket. Moving this item first copies the item into
slotalt, then modifies the token of slotalt from ‘0’
to ‘1’ and finally modifies the token of slotcur from ‘1’
to ‘0’. If a system failure occurs after changing the token
of slotalt before changing the token of slotcur, the
hash table contains two duplicate key-value items, which
however does not impact on the data consistency. It is
because when searching this key-value item, the returned
value is always correct whichever one of the two items
is queried. When updating this item, one of the two
items is first deleted and the other one is then updated, as
presented in Section 3.3(4). After moving this existing

item, the second step inserts the new item into the empty
slot using the method of “a) no item movement”.

3) Log-free Resizing. During resizing, we need to
rehash all key-value items in the interim level. For a
rehashed item, we use slotold to indicate its old slot in
the interim level and use slotnew to indicate its new slot
in the top-two levels. Rehashing an item in the interim
level can be decomposed into two steps, i.e., inserting
the item into slotnew (Log-free Insertion) and then
deleting the item from slotold (Log-free Deletion).
To guarantee the data consistency during a rehashing
operation, we first copy the key-value item of slotold
into slotnew, and then modifies the token of slotnew
from ‘0’ to ‘1’ and finally modifies the token of slotold
from ‘1’ to ‘0’. The ordering of the three steps is ensured
via MFENCEs. If a system failure occurs when copying
the item, the hash table is in a consistent state since the
slotnew is still available and the item in slotold is
not deleted. If a system failure occurs after changing
the token of slotnew before changing the token of
slotold, slotnew is inserted successfully but the item
in slotold is not deleted. There are two duplicate
items in the hash table, which however has no impact on
the data consistency, since we can easily remove one of
the two duplicates after the system is recovered without
scanning the whole hash table. In case of a system
failure, only the first item (I f irst ) to be rehashed in the
interim level may be inconsistent. To check whether
there are two duplicates of I f irst in the hash table, we only
need to query the key of I f irst in the top-two levels. If two
duplicates exist, we directly delete I f irst . Otherwise, we
rehash it. Therefore, the hash table can be recovered in a
consistent state.

4) Opportunistic Log-free Update. When updating
an existing key-value item, if the updated item has two
copies in the hash table, we first delete one and then
update the other. If we directly update the key-value
item in place, the hash table may be left in the corrupted
state when a system failure occurs, since the old item
is overwritten and lost, and the new item is not written
completely. Intuitively, we address this problem via
first writing the new or old item into a log and then
updating the old item in place, which however incur high
performance overhead.

To reduce the overhead, we leverage an opportunistic
log-free update scheme to guarantee consistency. Specif-
ically, for an update operation (e.g., updating KV1 to
KV1

′), we first check whether there is an empty slot in
the bucket storing the old item (KV1).

• Yes. If an empty slot exists in the bucket as
shown in Figure 6a, we directly write the new item
(KV1

′) into the empty slot, and then modify the
tokens of the old item (KV1) and new item (KV1

′)
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Figure 6: The opportunistic log-free update scheme.
((a) The log-free update scheme; (b) The probability
of performing log-free update with the increase of load
factor and the change of the number of slots/bucket.)

simultaneously. The two tokens are stored together
and hence can be simultaneously modified in an
atomic write. The ordering of writing the new item
and modifying the tokens is ensured by an MFENCE.

• No. If no empty bucket exists in the bucket storing
the old item (KV1), we first log the old item and
then update the old item in place. If a system failure
occurs during overwriting the old item, the old item
can be recovered based on the log.

In summary, if there is an empty slot in the bucket
storing the item to be updated, we update the item
without logging. We evaluate the opportunity to perform
log-free update, i.e., the probability that the bucket
storing the updated item contains at least one empty slot,
as shown in Figure 6b. The probability is related with
the number of slots in each bucket and the load factor of
hash table. We observe that when the load factor of hash
table is smaller than about 2/3, the probability of log-free
update is very high and decreases with the increase of
the load factor and the decrease of the number of slots in
each bucket. However, when the load factor is larger than
2/3, the probability increases with the increase of the
load factor. This is because the number of storage units
in the top level is 2/3 of the total storage units. When
the load factor is beyond 2/3, more items are inserted
into the bottom level, and the buckets in the bottom level
have the higher probability to contain an empty slot than
those in the top level.

We further discuss whether the proposed consistency-
guarantee schemes work on other hashing schemes. 1)
The proposed log-free deletion scheme can be used in
other open-addressing hashing schemes, since deletion
only operates on a single item. 2) The opportunistic log-
free update scheme can be used in other multiple-slot
hashing schemes, e.g, BCH, and PFHT. 3) Obviously,
the log-free insertion scheme can be used in the hashing
schemes without data evictions during insertions, e.g.,
path hashing, and the hashing schemes with at most
one eviction, e.g., PFHT. In fact, the log-free insertion

a b

x

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 7: An insertion in the cuckoo hashing.

scheme can also be used in the hashing schemes with
iterative eviction operations during insertions, e.g., cuck-
oo hashing. Specifically, an insertion in cuckoo hashing
may iteratively evict key-value items until finding an
empty location. The sequence of evicted items is called
a cuckoo path [37]. To perform log-free insertion, we
first search for a cuckoo path with an empty location
but do not execute evictions during search. We then
perform evictions starting with the last item in the cuckoo
path and working backward toward the first item. For
example, as shown in Figure 7, the new item x is inserted
into the location L4, and the sequence of x→ a→ b→∅
is a cuckoo path. To perform log-free insertion, we first
move b from L7 to L10, and then move a from L4 to L7,
and finally insert x into L4.

3.4 Concurrent Level Hashing
As current systems are being scaled to larger number
of cores and threads, concurrent data structures become
increasingly important [15, 25, 37, 41]. The level hash
table does not use pointers and has no cascading writes,
which enables level hashing to efficiently support multi-
reader and multi-writer concurrency via simply using
fine-grained locking.

In the concurrent level hashing, the conflicts occur
when different threads concurrently read/write the same
slot. Hence, we allocate a fine-grained locking for each
slot. When reading/writing a slot, the thread first locks
it. Since level hashing allows each insertion to move
at most one existing item, an insertion operation locks
at most two slots, i.e., the current slot and the target
slot that the item will be moved into. Nevertheless, the
probability that an insertion incurs a movement is very
low as presented in Section 3.1. An insertion locks only
one slot in the most cases, and hence the concurrent
level hashing delivers high performance as evaluated in
Section 4.2.7.

4 Performance Evaluation
4.1 Experimental Setup
All our experiments are performed on a Linux server
(kernel version 3.10.0) that has four 6-core Intel Xeon
E5-2620 2.0GHz CPUs (each core with 32KB L1 in-
struction cache, 32KB L1 data cache, and 256KB L2
cache), 15MB last level cache and 32GB DRAM.

Since the real NVM device is not available for us
yet, we conduct our experiments using Hewlett Packard’s
Quartz [2, 59], which is a DRAM-based performance
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emulator for persistent memory and has been widely
used [31, 35, 39, 52, 60]. Quartz emulates the latency
of persistent memory by injecting software created de-
lays per epoch and limiting the DRAM bandwidth by
leveraging DRAM thermal control registers. However,
the current implementation of Quartz [2] does not yet
support the emulation of write latency in the persistent
memory. We hence emulate the write latency by adding
an extra delay after each CLFLUSH instruction, following
the methods in existing work [31, 35, 39, 52, 60].

The evaluation results in PFHT [22] and path hash-
ing [68] demonstrated that PFHT and path hashing
significantly outperform other existing hashing schemes,
including chained hashing, linear probing [49], hop-
scotch hashing [29] and cuckoo hashing [47, 55], in
NVM. Therefore, we compare our proposed level hash-
ing with the state-of-the-art NVM-friendly schemes,
i.e., PFHT and path hashing, and the memory-efficient
hashing scheme for DRAM, i.e., BCH, in both DRAM
and NVM platforms. Since these hashing schemes do
not consider the data consistency issue on persistent
memory, we implement persistent BCH, PFHT, and
path hashing using our proposed consistency guarantee
schemes as discussed in Section 3.3 for fairly comparing
their performance on persistent memory. Moreover, we
also compare the performance of these hashing schemes
without crash consistency guarantee in DRAM.

Since 16-byte key has been widely used in current key-
value stores [11, 34, 62], we use the 16-byte key, the
value that is no longer than 15 bytes, and 1-bit token
for each slot. Two slots align a cache line (64B) via
padding several unused bytes. Every hash table is sized
for 100 million key-value items and thus needs about
3.2GB memory space. Besides examining the single-
thread performance of each kind of operation, we also
use YCSB [21], a benchmark for key-value stores, to
evaluate the concurrent performance of the concurrent
level hashing in multiple mixed workloads. In the
experimental results, each data value is the average of
10-run results.

4.2 Experimental Results

4.2.1 Maximum Load Factor

The maximum load factor is an important metric for
hash table due to directly affecting the number of key-
value items that a hash table can store and the hardware
cost [25, 37]. For evaluating the maximum load factor,
we insert unique string keys into empty BCH, PFHT,
level and path hash tables until an insertion failure
occurs. Specifically, BCH reaches the maximum load
factor when a single insertion operation fails to find an
empty slot after 500 evictions [25, 37]. For PFHT, the
3% space of the total hash table size is used as a stash,
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Figure 8: Maximum load factors of hash tables. ( # in
the NAME-# indicates the number of slots per bucket.)
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Figure 9: Maximum load factors of the level hash table
with different-distribution integer keys. (Normal< x,y >
indicates the logarithmic normal distribution with the
parameters µ = x and σ = y.)

following the configuration in the original paper [22].
PFHT reaches the maximum load factor when the stash is
full. Level and path hash tables reach the maximum load
factors when a single insertion fails to find an empty slot
or bucket.

Figure 8 shows that all the four hash tables can
achieve over 90% of maximum load factor. Figure 8
also compares different hash tables with the different
numbers of slots in each bucket. More slots in each
bucket incur higher maximum load factor for BCH,
PFHT and level hash table. For the same number of
slots in each bucket, PFHT and level hash table have
approximately the same maximum load factor, which
are higher than BCH. Path hash table is a one-item-per-
bucket table and achieves up to 94.2% maximum load
factor.

We also evaluate the maximum load factors of the
level hash table with different-distribution integer keys
including uniform and skewed normal key distributions,
as shown in Figure 9. We observe that the level hash
table achieves the approximate maximum load factors
for the different key distributions. The reason is that
hash functions map keys to random hash values, and
hence whatever the key distribution is, the generated
hash value distribution is still randomized. Keys are
then randomly distributed among buckets of hash table
based on their hash values. Therefore, the skewed
key distribution doesn’t result in the skewed hash value
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Figure 10: Insertion latency of different hashing schemes in DRAM and NVM with different read/write latencies.

distribution without significantly affecting the maximum
load factor of hash table.

In the following experiments, we set 4 slots per
buckets for BCH, PFHT and level hashing, like existing
work [13, 22, 25].

4.2.2 Insertion Latency

To evaluate the insertion latency of different hashing
schemes, we insert unique key-value items to empty
BCH, PFHT, level and path hash tables until reaching
their maximum load factors. In the meantime, we
measure the average latency of each insertion operation
when hash tables are in the different load factors. We
evaluate these hashing schemes on both DRAM and the
persistent memory with different read/write latencies,
i.e., 200ns/200ns, 200ns/600ns, and 200ns/1000ns. On
persistent memory, these hash tables are implemented
with data consistency guarantee as described in Sec-
tion 4.1.

Figure 10a shows the average latency of each inser-
tion operation in different hash tables in DRAM. Fig-
ures 10b, 10c and 10d show the average insertion latency
of different hash tables in persistent memory. Compared
with the experimental results in Figures 10a and 10b, we
observe that the insertion latency in persistent memory is
much higher than that in DRAM, while the read/write
latency of persistent memory (200ns) is close to that
of DRAM (136ns). The main reason is that each
inserted item must be flushed into persistent memory
via CLFLUSH, and the ordering of writes is ensured via
MFENCE for consistency guarantee, significantly increas-
ing the latency.

As shown in Figure 10, with the increase of the load
factors, the insertion latency of BCH sharply increases,
due to causing many eviction operations to deal with
hash collisions. The insertion performance of BCH
becomes worse in persistent memory, since the eviction
operations in BCH cause many cache line flushes and
memory fences. The insertion latency of PFHT increases
since many items need to be inserted in the stash when
the load factor is high. PFHT uses the chained hash
table to manage the items in the stash. An insertion in
the stash needs to allocate the node space and revise

pointers, causing extra writes. The insertion latency of
path hashing is higher than that of PFHT in DRAM as
shown in Figure 10a, while becoming lower than that
of PFHT in persistent memory as shown in Figure 10b,
for a high load factor (e.g., ≥ 0.7). The reason is
that path hashing performs only multiple read operations
to find an empty bucket for inserting an item without
extra write operations. Reads are much cheaper than
writes in persistent memory. In both DRAM and
persistent memory, level hashing has the best insertion
performance due to probing fewer buckets than path
hashing and rarely causes extra writes. From Figure 10b,
we observe when the load factor is larger than 0.8, level
hashing reduces the insertion latency by over 67%, 43%,
and 30%, i.e., speeding up the insertions by over 3.0×,
1.8×, and 1.4×, compared with BCH, PFHT and path
hashing.

4.2.3 Update Latency

We investigate the update latency of different hash tables
with different load factors in persistent memory. The
read/write latency of NVM is 200ns/600ns. As shown in
Figure 11, we observe that the update latencies of BCH,
PFHT, and path hashing are similar since the update only
operates on a single key-value item. In a low load factor
(e.g., < 0.5), their update latency are significantly higher
than their insertion latency as shown in Figure 10c, since
each update operation needs to use the expensive logging
to guarantee consistency.

To show the efficiency of our proposed opportunistic
log-free update scheme as presented in Section 3.3(4),
we also evaluate the update latency of Level w/o Opp
which indicates the level hashing without this oppor-
tunistic scheme. Compared with BCH, PFHT, path
hashing, and Level w/o Opp, we observe that level
hashing efficiently reduces the update latency by 15%∼
52%, i.e., speeding up the updates by 1.2×∼ 2.1×.

4.2.4 Search Latency

We evaluate the performance of both positive and neg-
ative searches in different hash tables on the persistent
memory. For a search operation, if the target item is
found in the hash table, the query is positive. Otherwise,
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it is negative. When hash tables are in two typical load
factors, i.e., 0.6 and 0.8 [68], we perform 1 million
positive and negative searches respectively and measure
their average latency, as shown in Figure 12.

We observe that higher load factor results in higher
search latency for each hash table. Among these hash
tables, BCH has the lowest positive search latency due to
probing the fewest positions to find a target item. The
positive search latency of level hashing is very close
to that of BCH since level hashing probes at most two
buckets in the bottom level when failing to find the target
item in the top level. PFHT has higher positive search
latency than BCH and level hashing, due to linearly
searching the stash when failing to find the target item
in the main hash table. The chains in the stash become
long when the load factor is high, e.g., 0.8. Path hashing
has the highest search latency due to probing multi-level
buckets. Moreover, the negative search has higher search
latency than the positive search for each hash table, since
the negative search must traverse all positions that the
target item may be stored. Level hashing probes at most
four buckets for each search operation, which has the
constant worst-case search time complexity like BCH.
Nevertheless, PFHT uses chained hashing to manage the
items in the stash with the O(N1) worst-case search time
complexity [32], where N1 is the number of items in the
stash. The path hash table has about log(N2)/2 levels,
thus producing the O(log(N2)) worst-case search time
complexity, where N2 is the total number of buckets.
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before and after resizing.
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schemes in DRAM and NVM.

To show the effectiveness of the proposed dynamic
search scheme in Section 3.2(3), we evaluate the average
latency of positive searches before and after resizing
in level hashing. We insert unique keys into the level
hash table and resize the hash table when its load factor
reaches 0.85, until the level hash table is resized four
times. When the level hash table is in different load
factors, we perform 1-million uniform random searches.
The average search latency is shown in Figure 13. We
observe the search latency using the static search sharply
increases after each resizing since most items are in the
bottom level at this point. By performing the dynamic
search, we efficiently reduce the search latency of the
hash table after the first resizing.

4.2.5 Deletion Latency

We investigate the deletion latency of different hash
tables in DRAM and persistent memory, as shown in
Figure 14. In DRAM, we observe that the deletion
latency of each hash table is approximate to its search
latency since the deletion operation first searches the
position storing the target item and then sets the position
to null. The set-null operation has very low latency in
DRAM due to being completed in CPU caches. But
in persistent memory, the set-null operation causes high
latency since the modified data have to be flushed into
NVM for consistency guarantee. Like the positive search
performance, BCH and level hashing have better deletion
performance than PFHT and path hashing.

472    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



4.2.6 Resizing Time

To evaluate the resizing performance of different hashing
schemes, we resize the hash tables when their load
factors reach the same threshold, i.e., 0.85 (the maximum
load factor that the 4-slot BCH can achieve as shown
in Figure 8). We measure the total time that different
hashing schemes complete the resizing. In order to show
the benefit of our proposed in-place resizing scheme, we
also evaluate the resizing performance of Level-Trad,
which indicates the level hashing using the traditional
resizing scheme [48], as shown in Figure 15.

We observe that the level hashing reduces the resizing
total time by about 76%, i.e., speeding up the resizing by
4.3×, compared with Level-Trad. The reason is that the
level hashing by using the in-place resizing scheme only
needs to rehash the key-value items in the bottom level,
significantly reducing the number of rehashed items.
The number of buckets in the bottom level is 1/3 of all
buckets. An item is stored in the bottom level only when
both buckets in the top level are full. Hence, the items
in the bottom level to be rehashed are always less than
1/3 of all items in the level hash table. Moreover, BCH,
PFHT, path hashing and Level-Trad have the similar
resizing time, since they need to rehash all items from
the old hash table to the new one.

4.2.7 Concurrent Throughput

Since PFHT and path hashing do not support the con-
current access, we compare the concurrent level hashing
with the state-of-the-art concurrent hash table in DRAM,
i.e., libcuckoo [6, 37]. We focus on general hashing
schemes without special hardware support. We hence
use the libcuckoo with fine-grained locking instead of
that with hardware transaction memory (HTM). We vary
the number of concurrent threads from 2 to 16 and
use the YCSB workloads with different search/insertion
ratios. We use the default configuration of YCSB, i.e.,
zipfian request distribution with 0.99 skewness. The
experimental results are shown in Figure 16. We observe
that the concurrent level hashing has 1.6×−2.1× higher
throughput than libcuckoo in all workloads. This is
because libcuckoo incurs iterative eviction operations
during an insertion. Thus an insertion needs to lock
an entire cuckoo path [37], i.e., locking all slots in
the eviction sequence. As a result, all insertion and
search operations in other threads that access any one
slot in the locked cuckoo path have to wait until the
current insertion completes, thus reducing the concurrent
performance. Unlike libcuckoo, in the concurrent level
hashing, most insertions lock only one slot and a few
insertions lock at most two slots, reducing the concurrent
conflictions and thus delivering high performance.
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5 Related Work
Tree-based Index Structures on NVM. For tree-based

index structures, most work focuses on B-tree [30].
Chen et al. [16] propose a PCM-friendly B+-tree that
reduces PCM writes by allowing leaf nodes to be
unsorted, without considering the data consistency of
B+-tree in PCM. Venkataraman et al. [58] propose the
CDDS B-tree that leverages versioning and CLFLUSH and
MFENCE instructions to achieve data consistency in B-
tree. Yang et al. [64] propose the NV-Tree to guarantee
the consistency of only leaf nodes in B+-tree while
relaxing that of internal nodes. The internal nodes can
be rebuilt based on leaf nodes in case of system failures.
NV-Tree reduces the number of cache line flushes due to
only persisting the leaf nodes. Chen et al. [17] propose
a write-atomic B-tree (wB+-Tree) that adds a bitmap
in each node of B+-tree and achieves consistency via
the atomic update of the bitmap. However, wB+-Tree
requires expensive redo logging for node split operations.
Oukid et al. [46] propose the FP-tree, a persistent B-
Tree for hybrid DRAM-NVM main memory, in which
only the leaf nodes of B+-tree are persisted in NVM
while the internal nodes are stored in DRAM. Hwang et
al. [30] propose the log-free failure-atomic shift (FAST)
and in-place rebalance (FAIR) algorithms for B+-tree in
persistent memory via tolerating transient inconsistency.
Except B-tree, Lee et al. [35] focus on the radix tree
on persistent memory and propose Write Optimal Radix
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Trees (WORT) that achieve data consistency via 8-byte
atomic writes. Unlike them, our paper focuses on the
hashing-based index structure on NVM.

Hashing-based Index Structures on NVM. Existing
work on hashing-based index structures for NVM, such
as PFHT [22] and path hashing [68, 69], mainly fo-
cuses on reducing NVM writes without considering the
consistency issue on NVM. Unlike them, our proposed
level hashing guarantees the consistency of hash table
via (opportunistic) log-free schemes without expensive
logging/CoW mechanisms in most cases, while deliver-
ing high performance and rarely incurring extra NVM
writes. Moreover, we observe that the resizing in hash
tables is expensive for the endurance and performance of
NVM systems, which however is overlooked by existing
work. Our paper proposes a cost-efficient in-place
resizing scheme to significantly reduce the NVM writes
and alleviate performance penalty during resizing.

Concurrent Hashing Index Structures. MemC3 [25]
proposes an optimistic concurrent cuckoo hashing that is
optimized for the multi-reader and single-writer concur-
rency by using a global lock and version counters. The
Intel Threading Building Blocks (TBB) [3] provides a
chaining-based concurrent hash table using per-bucket
fine-grained locking. Libcuckoo [37] is a multi-reader
and multi-writer concurrent cuckoo hashing scheme us-
ing fine-grained locking that delivers higher performance
than the TBB hash table. Our proposed concurrent level
hashing has higher concurrent throughput than libcuckoo
due to locking fewer slots for insertions. To support
variable-length keys and values, MemC3 [25] stores a
short summary of the key and a pointer for each key-
value item in the hash table. This pointer points to the
full key-value term that is stored outside the hash table.
The same method can be added into level hashing as
needed to support variable-length keys and values.

6 Conclusion
In order to efficiently index the data on persistent
memory, this paper proposes a write-optimized and
high-performance hashing index scheme, called level
hashing, along with a cost-efficient in-place resizing
scheme and (opportunistic) log-free consistency guaran-
tee schemes. Level hashing efficiently supports multi-
reader and multi-writer concurrency via simply us-
ing fine-grained locking. We have evaluated level
hashing in both DRAM and NVM platforms. Com-
pared with the state-of-the-art hashing schemes, level
hashing achieves 1.4×−3.0× speedup for insertions,
1.2×−2.1× speedup for updates, and over 4.3× speedup
for resizing while maintaining high search and deletion
performance. Compared with the start-of-the-art con-
current hashing scheme, the concurrent level hashing
improves the throughput by 1.6×−2.1×.
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Abstract

A modern datacenter server aims to achieve high energy
efficiency by co-running multiple applications. Some of
such applications (e.g., web search) are latency sensi-
tive. Therefore, they require low-latency I/O services to
fast respond to requests from clients. However, we ob-
serve that simply replacing the storage devices of servers
with Ultra-Low-Latency (ULL) SSDs does not notably
reduce the latency of I/O services, especially when co-
running multiple applications. In this paper, we pro-
pose FLASHSHARE to assist ULL SSDs to satisfy differ-
ent levels of I/O service latency requirements for differ-
ent co-running applications. Specifically, FLASHSHARE
is a holistic cross-stack approach, which can signifi-
cantly reduce I/O interferences among co-running appli-
cations at a server without any change in applications.
At the kernel-level, we extend the data structures of the
storage stack to pass attributes of (co-running) applica-
tions through all the layers of the underlying storage
stack spanning from the OS kernel to the SSD firmware.
For given attributes, the block layer and NVMe driver
of FLASHSHARE differently manage the I/O scheduler
and interrupt handler of NVMe. We also enhance the
NVMe controller and cache layer at the SSD firmware-
level, by dynamically partitioning DRAM in the ULL
SSD and adjusting its caching strategies to meet diverse
user requirements. The evaluation results demonstrate
that FLASHSHARE can shorten the average and 99th-
percentile turnaround response times of co-running ap-
plications by 22% and 31%, respectively.

1 Introduction

Datacenter servers often run a wide range of online ap-
plications such as web search, mail, and image ser-

vices [8]. As such applications are often required to
satisfy a given Service Level Agreement (SLA), the
servers should process requests received from clients and
send the responses back to the clients within a certain
amount of time. This requirement makes the online ap-
plications latency-sensitive, and the servers are typically
(over)provisioned to meet the SLA even when they un-
expectedly receive many requests in a short time period.
However, since such events are infrequent, the average
utilization of the servers is low, resulting in low energy
efficiency with poor energy proportionality of contempo-
rary servers [28, 17].

To improve utilization and thus energy efficiency, a
server may run an online application with offline applica-
tions (e.g., data analytics workloads), which are latency-
insensitive and are often throughput-oriented [26, 30,
29]. In such cases, it becomes challenging for the server
to satisfy a given SLA for the online application because
co-running these applications further increase I/O ser-
vice latency. We observe that device-level I/O service
latency of a high-performance NVMe solid state drive
(SSD) contributes to more than 19% of the total response
time of online applications, on average. To reduce the
negative impact of long I/O service latency on response
time of online applications, we may deploy Ultra-Low-
Latency (ULL) SSDs based on emerging memory, such
as Z-NAND [36] or 3D-Xpoint [15]. These new types
of SSDs can accelerate I/O services with ULL capabil-
ity. Our evaluation shows that ULL SSDs (based on Z-
NAND) can give up to 10× shorter I/O latency than the
NVMe SSD [14] (cf. Section 2).

These ULL SSDs offer memory-like performance, but
our in-depth analysis reveals that online applications can-
not take full advantage of ULL SSDs particularly when
a server co-runs two or more applications for higher uti-
lization of servers. For example, the 99th percentile re-
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sponse time of Apache (i.e., online application) is 0.8 ms.
However, the response time increases by 228.5% if the
server executes it along with a PageRank (i.e., offline ap-
plication). A reason behind this offset of the benefits of
memory-like performance is that server’s storage stack
lacks understanding of criticality of user’s I/O requests
and its impact on the response time or throughput of a
given application.

In this paper, we propose FLASHSHARE, a holis-
tic cross-stack approach that enables a ULL SSD de-
vice to directly deliver its low-latency benefits to users
and satisfy different service-level requirements. Specif-
ically, FLASHSHARE fully optimizes I/O services from
their submission to execution to completion, by punch-
ing through the current server storage stack. To en-
able this, FLASHSHARE extends OS kernel data struc-
tures, thereby allowing users to dynamically configure
their workload attributes (for each application) without
any modification to their existing codes. FLASHSHARE
passes these attributes through all components spanning
from kernel to firmware and significantly reduces inter-
application I/O interferences at servers when co-running
multiple applications. The specific stack optimizations
that this work performs can be summarized as follows:
• Kernel-level enhancement. At the kernel-level, there
are two technical challenges in exposing the pure perfor-
mance of ULL SSDs to users. First, the Linux multi-
queue block layer (blk-mq) holds I/O requests in its soft-
ware/hardware queues, introducing long latencies. Sec-
ond, the current standard protocol of the NVMe queu-
ing mechanism has no policy on I/O prioritization, and
therefore, a request from an offline application can eas-
ily block an urgent I/O service requested by an online ap-
plication. FLASHSHARE carefully bypasses the latency-
critical requests to the underlying NVMe queue. In addi-
tion, our NVMe driver pairs NVMe submission and com-
pletion queues by being aware of the latency criticality
(per application).
• Firmware-level design. Even though kernel-level op-
timizations guarantee to issue latency-critical requests
with the highest order, the ULL characteristics (memory-
like performance) cannot be fully exposed to users if the
underlying firmware has no knowledge of latency crit-
icality. In this work, we redesign the firmware for I/O
scheduling and caching to directly disclose ULL char-
acteristics to users. We partition ULL SSD’s embed-
ded cache and separately allocate the cache for each I/O
service based on its workload attributes. Our firmware
dynamically updates the partition sizes and adjusts the
prefetch I/O granularity in a fine-granular manner.
• New interrupt services for ULL SSDs. We observe
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Figure 1: High-level view of software kernel stack.
that the current NVMe interrupt mechanism is not op-
timized for ULL I/O services, due to the long latency
incurred by storage stack layers. We also discover that a
polling method (implemented in Linux 4.9.30) consumes
many CPU cycles to check the completion of I/O ser-
vices, which may not be a feasible option for servers co-
running two or more applications. FLASHSHARE em-
ploys a selective interrupt service routine (Select-ISR),
which uses message-signaled interrupts for only offline
applications, while polling the I/O completion for online
interactive applications. We further optimize the NVMe
completion routine by offloading the NVMe queue and
ISR management into a hardware accelerator.

We implement the kernel enhancement components in
a real I/O stack of Linux, while incorporating Select-ISR
and hardware/firmware modifications using a full system
simulation framework [2, 21]. We also revise the mem-
ory controller and I/O bridge model of the framework,
and validate the simulator with a real 800GB Z-SSD pro-
totype. The evaluation results show that FLASHSHARE
can reduce the latency of I/O stack and the number of
system context switch by 73% and 42%, respectively,
while improving SSD internal cache hit rate by 37% in
the co-located workload execution. These in turn shorten
the average and 99th percentile request turnaround re-
sponse times of the servers co-running multiple appli-
cations (from an end-user viewpoint) by 22% and 31%,
respectively.

2 Background

2.1 Storage Kernel Stack
Figure 1 illustrates the generic I/O stack in Linux, from
user applications to low-level flash media. An I/O re-
quest is delivered to a file system driver through the vir-
tual file system interface. To improve system-level per-
formance, the request can be buffered in the page buffer
module, using an address space structure, which in-
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cludes the inode information and mapping/spin-lock
resources of the owner file object. When a cache miss oc-
curs, the file system retrieves the actual block address, re-
ferred to as Logical Block Address (LBA) by looking up
inodes and sends the request to the underlying multi-
queue block layer (blk-mq) through a bio structure.

In contrast to the kernel’s block layer that operates
with a single queue and lock, the multi-queue block layer
(blk-mq) splits the queue into multiple separate queues,
which helps to eliminate most contentions on the single
queue and corresponding spin-lock. blk-mq allocates a
request structure (associated to bio) with a simple
tag and puts it in the per-CPU software queues, which
are mapped to the hardware issue queues. The soft-
ware queue of blk-mq merges the incoming request
with an already-inserted request structure that has the
same LBA, or an adjacent LBA to the current LBA. The
merge operation of blk-mq can reduce the total num-
ber of I/O operations, but unfortunately, it consumes
many CPU cycles to search through the software queues.
From the latency viewpoint, the I/O merging can be
one of the performance bottlenecks in the entire storage
stack. On the other hand, the hardware issue queues sim-
ply buffer/reorder multiple requests for the underlying
NVMe driver. Note that the hardware issue queue can
freely reorder the I/O requests without considering the
I/O semantics, since the upper-level file system handles
the consistency and coherence for all storage requests.

The NVMe driver exists underneath blk-mq, and it
also supports a large number of queue entries and com-
mands per NVMe queue. Typically, each deep NVMe
queue is composed of pairing a submission queue (SQ)
and a completion queue (CQ). The NVMe driver informs
the underlying SSD of the arrivals and completions of
I/O requests through head and tail pointers, allocated per
NVMe queue. In the storage stack, every request issued
by the NVMe driver is delivered to the PCI/PCIe device
driver in the form of a nvme rw command structure,
while the SSD dispatches them in an active manner; in
contrast to other storage protocols in which a host-side
controller must dispatch or transfer all data and com-
mands, NVMe SSDs can pull the command and data
stored in system memory from storage side without a
host intervention. When the I/O request is completed
by the SSD, it sends a message signaled interrupt (MSI)
that directly writes the interrupt vector of each core’s pro-
grammable interrupt controller. The interrupted core ex-
ecutes an ISR associated with the vector’s interrupt re-
quest (IRQ). Subsequently, the NVMe driver cleans up
the corresponding entry of the target SQ/CQ and returns
the completion results to its upper layers, such as blk-mq
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Figure 2: Overview of device firmware stack.
and filesystem.

2.2 Device Firmware Stack

Based on the NVMe specification, the deep queues
are created and initialized by the host’s NVMe driver
through the administrator queues, and the I/O requests in
the queues are scheduled by the NVMe controller that ex-
ists on top of the NVMe SSD firmware stack [46]. Most
high-performance SSDs, including all devices we tested
in this study [13, 14, 36], employ a large internal DRAM
(e.g., 1 GB ∼ 16 GB). Thus, underneath the NVMe con-
troller, SSDs employ an embedded cache layer, which
can immediately serve the I/O requests from the internal
DRAM without issuing an actual storage-level operation
when a cache hit occurs at the internal DRAM [42, 20].
If a cache miss or replacement is observed, the NVMe
controller or cache layer generates a set of requests (asso-
ciated with miss or replacement) and submits them to the
underlying flash translation layer (FTL), which manages
many Z-NAND chips across multiple channels [6, 18].

Figure 2 shows the components of the firmware
stack and depicts how the NVMe controller pulls/pushes
a request to/from the host. Specifically, when the
NVMe driver receives a request ( 1 ), it increases
the tail/head of SQ ( 2 ) and writes the doorbell regis-
ter ( 3 ) that the NVMe controller manages. The NVMe
controller then initiates to transfer the target data ( 4 )
associated with the tail from the host’s kernel mem-
ory pointed by the corresponding Physical Region Page
(PRP) (stored in nvme rw command). Once the DMA
transfer is completed, the NVMe controller moves the
head to the NVMe queue entry pointed by the tail ( 5 ),
and forwards the request to either the embedded cache
layer or underlying FTL ( 6 ). When a cache miss or re-
placement occurs, the FTL translates the target LBA to
the corresponding physical page address of the underly-
ing Z-NAND, and performs complex flash-related tasks
(if needed), such as garbage collection and wear-leveling
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Components Spec. Components Spec.

CPU
i7-4790 Memory 32GB
3.6GHz DDR3
8 cores Chipset H97

Table 1: Server configurations.
[38, 33, 5, 4, 12]. Unlike traditional NAND [11], Z-
NAND completes a 4KB-sized read service within 3 µs
[36] and we observed that a Z-NAND based ULL SSD
can complete an I/O service within 47∼52 µs, including
data transfer and FTL execution latencies (cf. Figure 3a).

After completing the service of the I/O request, the
NVMe controller increases the corresponding tail pointer
of CQ ( 7 ). It then performs a DMA transfer to the host
and changes the phase tag bit associated with the target
CQ entry ( 8 ). The controller notifies the DMA com-
pletion by sending an MSI to the host ( 9 ). The host’s
ISR checks the phase tag by searching through the queue
entries from the head to the tail. For the ones that have a
valid phase tag, the ISR clears the tag bit and processes
the rest of the I/O completion routines. Finally, it in-
creases the head of CQ ( 10 ), removes the correspond-
ing entry of SQ, and writes the CQ’s head doorbell of the
NVMe controller ( 11 ). While polling is not a standard
method in the NVMe specification, the state-of-the-art
Linux (4.9.30) can support it, since the NVMe controller
directly changes the phase tags of the target entries over
PCIe before sending the corresponding MSI. Thus, in the
kernel storage stack, the NVMe driver checks the phase
tags of CQ and simply ignores the MSI updates.

3 Cross-Layer Design

3.1 Challenges with Fast Storage
In this section, we characterize the device latency of a
prototype of real 800GB Z-NAND based ULL SSD by
comparing it against the latency of a high-performance
NVMe SSD [14]. We then evaluate the performance
of a server equipped with the ULL SSD, when Apache
(an online latency-sensitive application) co-runs with
PageRank (an offline throughput-oriented application).
While Apache requires responding to the service com-
ing from the client through TCP/IP by retrieving data on
object storage, PageRank performs data analytics over
Hadoop’s MapReduce (24GB dataset). The configura-
tion details of the server under test are listed in Table 1.

Figure 3a compares the average latency of the ULL
SSD and NVMe SSD, with the number of queue en-
tries varying from 1 to 64. The latencies of the ULL
SSD for the random and sequential access patterns are
42% and 48% shorter than that of the NVMe SSD, re-
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Figure 3: Application co-running analysis.

spectively. However, as shown in Figure 3b, we observe
that the turnaround response times of the online applica-
tion significantly degrade when co-running it along with
the offline application. Specifically, the response time
of Apache becomes 41% longer if PageRank also runs
on the same server. This performance deterioration is
also observed in the long tail: the 95th and 99th response
times of Apache under the co-running scenario increase
by 24% and 43%, respectively, compared to those of an
Apache-only execution scenario.

The reason behind these response time increases is
captured by Figure 3c. Once PageRank begins to per-
form I/O services (at 58,880 ms), the I/O services of
Apache gets interfered by PageRank, and this increases
the response time of Apache by 42× compared to the
standalone execution situation (before 58,880 ms). This
happens because the server storage stack has no knowl-
edge of the ultra-low latency exposed by the underlying
Z-NAND media, and also most of the components in
the stack cannot differentiate Apache’s I/O services from
PageRank’s I/O services (even though the two applica-
tions require different levels of the I/O responsiveness).

3.2 Responsiveness Awareness

It is very challenging for the kernel to speculate work-
load behaviors and predict the priority/urgency of I/O re-
quests [24]. Since users have a better knowledge of I/O
responsiveness, a more practical option is to offer a set
of APIs to users. However, such APIs require signifi-
cant changes to existing server application’s sources. In-
stead, we modify the Linux process control block, called
task struct, to accommodate a workload attribute
for each application. A potential issue in leveraging
the attribute, stored in task struct, from the soft-
ware layers in the storage stack is that a reference of
task struct may not be valid, based on the loca-
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Figure 4: Overview of our server stack optimizations.

tion of the storage stack and the timing when a layer re-
trieves such task struct. Therefore, it is necessary
for blk-mq and NVMe driver to have their own copies
of the workload attribute per I/O service. To this end,
we further extend address space, bio, request,
and nvme rw command structures to punch through the
storage stack and pass the workload attribute to the un-
derlying SSD firmware.

As such, FLASHSHARE provides a utility, called
chworkload attr, which allows servers to configure
and dynamically change the attribute of each ap-
plication similar as the nice mechanism [9]. The
chworkload attr helps users to embed the crit-
icality of responsiveness into each application’s
task struct. We modify the system call table (e.g.,
arch/x86/entry/syscalls/syscall 64.tbl)
and implement two system calls, to set/get the workload
attribute to/from the target task struct. These sys-
tem invocations are registered at /linux/syscall.h
with the asmlinkage tag. They change the attribute of
a specific process (given by the user from a shell), which
is implemented in /sched/cores.c. The chwork-
load attr simply invokes the two system calls with an
appropriate system call index, registered in the system
table. Using such interfaces, the chworkload attr
can capture the attribute and fill the information in
task struct for each application at the kernel level.
It should be noted that the chworkload attr is designed
for server-side users (e.g., datacenter operators), not
for client-side users who may recklessly ask a higher
priority all the time.

Figure 4 illustrates how the workload attribute is re-
ferred by task struct in the storage stack modified
by FLASHSHARE. If an incoming I/O request uses a di-
rect I/O (O DIRECT), the file system driver (EXT4 used
in our implementation) retrieves the attribute and puts it
into bio. Otherwise, the page cache copies the attribute
from task struct to address space. Therefore,

when blk-mq receives a bio, it includes the critical-
ity of responsiveness in the attribute, and copies that in-
formation to a request structure. Lastly, the NVMe
driver overrides the attribute to an unused field, called
rsvd2 of nvme rw command. The underlying SSD’s
firmware can catch the host-side attribute information per
request by reading out the value in rsvd2 and passing
it to the NVMe controller and embedded cache layer, the
details of which will be explained in Section 4.

3.3 Kernel Layer Enhancement

By utilizing the workload attributes, we mainly optimize
the two layers underneath the file system: blk-mq and
NVMe driver, as shown in Figure 4. The software and
hardware queues of blk-mq hold I/O requests with the
goal of merging or reordering them. Even though a deep
blk-mq queue can increase chances for merging and re-
ordering requests thereby higher bandwidth utilization,
it also introduces long queue waiting delays. This can,
unfortunately, hurt the responsiveness of online applica-
tions (and cannot take the advantage of ULL). To address
this potential shortcoming, we enhance blk-mq to bypass
all the I/O services requested from the online application
to the NVMe driver (without queueing), while tracking
other requests coming from the throughput applications
just like normal software and hardware queues. How-
ever, this simple bypass strategy potentially raises an I/O
hazard issue; a hazard could happen if an offline applica-
tion has an I/O request being scheduled by blk-mq to the
same LBA that a subsequent online application issued.

Because such request cannot be skipped in the queue,
blk-mq retrieves it, which may have the potential haz-
ard, from the software queue. If the operation type of
the retrieved request is different from that of the incom-
ing request that we want to bypass, blk-mq submits the
retrieved request along with the incoming request in tan-
dem. Otherwise, blk-mq merges those two requests into
a single request structure and forwards the merged re-
quest to the underlying NVMe driver.

Under blk-mq, the NVMe driver submits the bypassed
request to the corresponding SQ. One of the issues in
the NVMe queue management is that the head and tail
pointers for a pair of the target CQ/SQ are managed
by the (kernel-side) NVMe driver and the (firmware-
side) NVMe controller together in a round-robin fash-
ion. Thus, even though our modification in blk-mq pri-
oritizes latency-critical I/O services by expecting them
to be scheduled in the SQ earlier than other requests,
the NVMe controller can dispatch a service requested
by an offline application prior to the latency-critical I/O
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Figure 5: I/O execution analysis of ULL SSD.

service. This, in turn, makes the service latency of the
latter considerably longer. To address this undesirable
situation, we create two SQs and one CQ per core as
a pair of NVMe queue, which is different from a tradi-
tional NVMe queue management strategy. Specifically,
as shown in Figure 4, an SQ between two SQs is used for
the requests whose attributes come from online applica-
tions. In our implementation, the NVMe driver sends a
message via the administrator queue to inform the NVMe
controller of selecting a new queue arbitration method
that always gives a high priority to scheduling requests
in such the SQ. To avoid a starvation owing to the pri-
ority SQ, the NVMe driver drains the I/O requests origi-
nating from the offline applications if the number of such
queued requests is greater than a threshold, or if they are
not served within a certain amount of time. We observed
that it is best to start draining the queue with a 200 µs
threshold or when there are 8 pending queue entries.

4 I/O Completion and Caching

Figure 5a shows the actual latency improvement when
we use the Linux 4.9.30 polling mechanism for a ULL
SSD (Z-SSD prototype). In this evaluation, we set the
size of all the requests to 4KB. As shown in Figure
5a, the I/O latency with the polling mechanism is 12%
shorter than the one managed by MSI for all I/O request
patterns. However, we also observe that the cores in the
kernel mode are always busy in handling I/O comple-
tions. Specifically, Figure 5b shows the CPU utilization
of the polling mechanism for both the kernel and user
modes. This figure shows that the CPU utilization for
polling gets significantly high (almost 97% of CPU cy-
cles are used for only polling the I/O completion). This
high CPU utilization presents two technical issues. First,
as there is no core to allocate in handling the criticality
of I/O responsiveness, the original polling method is not
a feasible option for a server co-running multiple appli-
cations. Second, while a 12% latency improvement of
the polling method is still promising, we could shorten

Figure 6: The process implemented by the selective
interrupt service routine.

the latency even more, if we could alleviate the core-side
overheads brought by polling for the I/O completion.

4.1 Selective Interrupt Service Routine
FLASHSHARE uses polling for only I/O services origi-
nating from online applications, while MSI is still used
for offline applications. Figure 6 shows how this se-
lective ISR (Select-ISR) is implemented. We change
submit bio() of blk-mq to insert an incoming re-
quest (i.e., bio), delivered by the file system or page
cache, into its software queue if the attribute of bio in-
dicates an offline application. This request will be re-
ordered and served just like a normal I/O operation. In
contrast, if the incoming request is associated with an
online application, blk-mq directly issues it to the un-
derlying NVMe driver by invoking queue rq(). The
NVMe driver then converts the I/O request into NVMe
commands and enqueues it into the corresponding SQ.

With Select-ISR, the CPU core can be released from
the NVMe driver through a context switch (CS), if the
request came from offline applications. Otherwise, blk-
mq invokes to the polling mechanism, blk poll(),
after recording the tag of the I/O service along with
online applications. blk poll() continues to invoke
nvme poll(), which checks whether a valid comple-
tion entry exists in the target NVMe CQ. If it is, blk-mq
disables IRQ of such CQ so that MSI cannot hook the
procedures of blk-mq later again. nvme poll() then
looks up the CQ for a new entry by checking the CQ’s
phase tags. Specifically, nvme poll() searches an CQ
entry whose request information is matched with the tag
that blk poll() waits for completion. Once it detects
such a new entry, blk-mq exits from the infinite iteration
implemented in blk poll() and switches the context
to its user process.

A challenge in enhancing the storage stack so that it
can be aware of ULL is that, even though we propose
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(a) Hardware viewpoint. (b) Software viewpoint.
Figure 7: Overview of our I/O stack accelerator.

Select-ISR, polling still wastes many CPU cycles and
blk-mq consumes kernel CPU cycles to perform sim-
ple operations, such as searching the tag in SQ/CQ and
merging the requests for each I/O service invocation.
This is not a big issue with conventional SSDs, but with
a ULL SSD, it can prevent one from enjoying the full
benefits of low latency. For example, in Figure 5c, we
observed that polling and storage stack modules, includ-
ing ISR, context switching, and blk-mq cycles, take 58%
of total I/O completion time. Thus, as a further enhance-
ment of Select-ISR, we propose an I/O-stack accelerator.
Figure 7 shows how our I/O-stack accelerator is orga-
nized from the hardware and software viewpoints. This
additional enhancement migrates the management of the
software and hardware queues from blk-mq to an accel-
erator attached to a PCIe. This allows a bio generated
by the upper file system to be directly converted into a
nvm rw command. Especially, the accelerator searches
a queue entry with a specific tag index and merges bio
requests on behalf of a CPU core. The offload of such
tag search and merge operations can reduce the latency
overhead incurred by the software layers in the storage
stack by up to 36% of the total I/O completion time. The
specifics of this accelerator are described in Section 4.3.

4.2 Firmware-Level Enhancement

In our implementation, the NVMe controller is aware of
the two SQs per core, and gives a higher priority to the
I/O service enqueued in the latency-critical SQ. While
this I/O scheduling issue can be simply updated, a modi-
fication of the embedded cache layer to expose a shorter
latency to online applications can be challenging. Specif-
ically, the cache layer can starve latency-critical I/O ser-
vices if it serves more throughput-oriented I/O services.
This situation can be observed even when the cache layer
understands the workload attribute brought by the NVMe
driver/controller, as the internal DRAM is a shared re-
source in a given SSD. In addition, the I/O patterns and
locality of online applications are typically different from
those of offline applications. That is, a single generic

Figure 8: Example of adjustable cache partition.

cache access policy cannot efficiently manage I/O re-
quests from both online and offline applications.

The cache layer of FLASHSHARE partitions the
DRAM into two DRAM caches with the same number
of sets, but different ways of associativity (i.e., cache
ways) [45], and allocates each to online and offline ap-
plications, separately. If the size of partitioned caches
is fixed, it can introduce cache thrashing depending on
the I/O behavior of the given applications (and the cor-
responding workload patterns). For example, in Figure
8, if two partitioned caches (one for online applications
and another for offline applications) employ two ways
for each, the requests 2 ∼ 4 compete for the way ‘c’, and
they experience cache misses.

To address this, in cases of high I/O demands, our
cache layer collects the number of I/O accesses for the
online and offline applications at each epoch. The pro-
posed cache layer dynamically adjusts the number of
cache ways allocated to two different cache partitions.
As shown in Figure 8, if the cache splits can be adjusted
(cf. adjustable cache split), the ways ‘b’∼‘d’ can accom-
modate the requests 2 ∼ 4. However, as the way ’b’
is reallocated to the I/O requests of offline applications
(e.g., throughput-oriented I/Os), the latency critical re-
quest 1 is unable to access data residing in the way ‘b’,
introducing cache miss. To address this challenge, when
adjusting the cache ways, the cache layer keeps the data
for the previous owner as “read-only” until a new request
is written into the corresponding way.

Most firmware in SSDs read out the data from mul-
tiple memory media to improve parallelism, and there-
fore, the cache can be polluted by an ill-tuned prefetch-
ing technique. As shown in Figure 9, we leverage a
“ghost caching” mechanism [37, 31, 34] to help the
SSD controller to evaluate the performance (i.e., cache
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Figure 9: Adjustable cache prefetching scheme.

miss rate) of various prefetching configurations and ad-
just the cache layer to the optimal prefetching configu-
ration at runtime. Specifically, we build multiple ghost
caches, each maintaining only cache tags without any
actual data. The associativity and size of ghost caches
are configured the same way as the configuration of the
proposed cache layer, but each of these caches employs
a different prefetching I/O granularity. In each epoch,
FLASHSHARE identifies the ghost cache that exhibits
a minimum number of cache misses, and changes the
prefetch granularity of the cache layer to that of the se-
lected ghost cache.

4.3 I/O-Stack Acceleration
We load the kernel driver of the proposed accelera-
tor as an upper layer module of blk-mq (cf. Fig-
ure 7b). As shown in Figure 10, the accelera-
tor driver checks if the incoming bio is associated
with online latency-critical applications. If so, the
driver extracts the operation type, LBA, I/O size,
memory segment pointer (related to target data con-
tents), and the number of memory segments from
bio’ bio->bi opf, bio->bi iter.bi sector,
bio->bi iter.bi size, bio->bi io vec and
bio->bi vcnt, respectively. The kernel driver then
writes this extracted information into the corresponding
registers in base address registers (BAR) of the acceler-
ator. The accelerator then identifies an I/O submission
queue entry that has an LBA, which is the same as the
target LBA of incoming bio request. If the accelerator
finds such an entry, its merge logic automatically merges
the information (stored in BAR) into the target entry; oth-
erwise, the accelerator composes a new NVMe command
and appends it to the tail of the target SQ. Then, the ac-
celerator rings (writes) the doorbell register of the under-
lying ULL SSD. However, as the merge logic and ULL
SSD can simultaneously access the I/O SQ entries, an
I/O hazard may occur. To prevent such situations, we
propose to add a barrier logic, which is a simple MUX
and works as a hardware arbitrator. It allows either the
merge logic or ULL SSD (via BAR1 register) to access
the target NVMe SQ at one time. Once the I/O request

Figure 10: Design details of hardware accelerator.
is inserted into the SQ, the polling logic of our acceler-
ator starts to poll the corresponding CQ. When the I/O
service is completed, the accelerator raises an interrupt
signal for the accelerator driver. The driver then takes
the control of I/O completion.

Note that, since searching through all entries can in-
troduce a long latency, the accelerator employs content-
addressable memory (CAM), which keeps the LBA of re-
ceived nvme cmd instances (for I/O submissions). Us-
ing the content-addressable memory, our accelerator in
parallel compares the incoming LBA with all recorded
LBAs, thereby significantly reducing the search latency.
For the simultaneous comparison, the number of CAM
entries is set to be same as the number of SQ entries. In
addition, if there is no issued nvme cmd or nvme cmd
instance(s) is fetched by the underlying ULL SSD, the
corresponding SQ entries should be invalid. Thus, we
introduce a status bitmap to filter the entries, which do
not contain valid nvme cmd instances. Specifically, our
status bitmap is set to 1, if merge logic inserts a new
NVMe command; the status bitmap is reset to 0, if the
ULL SSD is detected to pull NVMe commands from I/O
SQ. If the status bitmap indicates that the request entries
in CAM (associated with the target SQ) are invalid, CAM
will skip searching those entries.

5 Evaluation

5.1 Experimental Setup
Implementation environment. We simulate our holistic
optimization approaches on an event-driven computer-
system architecture simulator, gem5 [2]. Specifically,
we configure it to a full system mode which runs on 64-
bit ARM ISA. We use Linux 4.9.30 as the default kernel
in this simulation, and set up 8 ARM cores with 2GHz,
which have private 64KB L1 data and 64KB L1 instruc-
tion caches. We also configure a 2GB DRAM-based
main memory, which is shared by all 8 cores. Note that,
as we employ a detailed architectural simulator (simu-
lation is up to 1000x slower than native-execution), we
scale the simulation memory size to reduce the warmup
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gem5 SimpleSSD
parameters value parameters values
core 64-bit ARM, 8, 2GHz read/write/erase 3us/100us/1ms
L1D$/L1I$ 64KB, 64KB channel/package 16/1
mem ctrler 1 die/plane 8/8
memory DDR3, 2GB page size 2KB
Kernel 4.9.30 DMA/PCIe 800MHz,3.0, x4
Image Ubuntu 14.04 DRAM cache 1.5GB

Table 2: The configurations of gem5 and SimpleSSD.

App Read Ratio I/O size I/Os per MegaInst. Seq Ratio
bfs 0.997 238KB 0.025 0.70
gpgnu 1.000 134KB 1.985 0.78
gp 0.995 23KB 0.417 0.81
gzip 0.989 150KB 0.105 0.66
index 0.998 28KB 0.205 0.79
kmn 1.000 122KB 0.037 0.82
PR 0.995 30KB 0.367 0.71
ungzip 0.096 580KB 0.076 0.79
wcgnu 1.000 268KB 0.170 0.75
wc 0.999 25KB 0.548 0.89
ap 0.999 24KB 0.666 0.11
au 0.476 27KB 1.205 0.13
is 0.990 12KB 5.761 0.86

Table 3: The characteristics of workloads.

time of the CPU caches and DRAM. This is a com-
mon practice in architectural studies [1]. Our simula-
tion environment integrates an accurate SSD simulator,
SimpleSSD [21], which is attached to the computer sys-
tem as a PCIe device. When booting, Linux running
on gem5 recognizes SimpleSSD as a storage by creat-
ing a pair of NVMe SQ and NVMe CQ for each ARM
core via the NVMe protocol [10]. Our SimpleSSD sim-
ulator is highly flexible and can configure various SSD
prototypes. In this experiment, we configure SimpleSSD
simulator as an ultra low latency SSD, similar to 800GB
ZSSD [36]. The important characteristics of our gem5
simulation and SimpleSSD simulation setups are shown
in Table 2.
Configurations. We implement four different computer
systems by adding the optimization techniques proposed
in FLASHSHARE, and compare them against Vanilla.

1. Vanilla: a vanilla Linux-based computer system run-
ning on ZSSD.

2. CacheOpt: compared to Vanilla, we optimize the
cache layer of the SSD firmware by being aware of
responsiveness.

3. KernelOpt: compared to CacheOpt, we further opti-
mize the block I/O layer to enable latency-critical I/Os
to bypass the software and hardware queues. In addi-
tion, this version also supports reordering between the
NVMe driver and the NVMe controller.

4. SelectISR: compared to KernelOpt, we add the op-
timization of selective ISR (cf. Section 4).

5. XLER: based on SelectISR, we improve the I/O
stack latency by employing our hardware accelerator.

Workloads. We evaluate three representative online
interactive workloads (latapp): Apache (ap), Apache-
update (au), and ImageServer (is). All these workloads
create a web service scenario, in which a client thread is
created to send client requests periodically and a server
thread is created to receive the client requests. Once re-
quests arrive in the server side, the server thread creates
multiple worker threads to process these requests and re-
spond to the client after the completion. For Apache
and Apache-update, the requests are “SELECT” and
“UPDATE” commands targeting a database, while the
requests of ImageServer are image access requests.
Note that the response time we measure in our experi-
ments is the time between when the client thread issues a
request and when the response of the request is received
by the client. To satisfy the SLA requirements of the
online applications, we select the request issue rate (as
400) right at the knee of the latency-load curve, which
is also suggested by [28]. We also collect ten different
offline workloads (thrapp) from BigDataBench (a Big
Data benchmark Suite) [43] and GNU applications. The
salient characteristics of our online and offline applica-
tions are listed in Table 3. In our evaluations, we co-
run online interactive workloads and offline workloads
together to simulate a real-world server environment.

In our evaluations, the response time means “end-to-
end latency”, collected from interacting workloads be-
tween client and server, which is different with other
storage performance metrics that we used (i.e., I/O la-
tency). Specifically, while the storage performance met-
rics only consider the characteristics of storage subsys-
tems, the response time in our evaluations includes the
request generate/send/receive latencies in a client, net-
work latency, request receive/process/response latencies
in a server, and storage-system latency.

5.2 Performance Analysis

Figures 11 and 12 plot the average response time and the
99th response time, respectively, with the five different
system configurations, normalized to those of Vanilla.
Overall, CacheOpt, KernelOpt, SelectISR and
XLER reduce the average response time by 5%, 11%,
12% and 22%, respectively, compared to Vanilla,
while achieving 7%, 16%, 22% and 31% shorter 99th
response times than Vanilla in that order.
Vanilla has the longest response time across all sys-

tem configurations tested, because, it is not aware of the
different workload attributes, and in turn loses the oppor-
tunity to optimize the kernel stack and flash firmware for
latency-critical I/Os. In contrast, CacheOpt catches the
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(c) ImageServer (is).
Figure 11: Average response times of our online interactive applications normalized to Vanilla.
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Figure 12: 99th response times of our online interactive applications normalized to Vanilla.

Apache

Apache-update

ImageServer

Apache

Apache-update

ImageServer0.0
0.2
0.4
0.6
0.8
1.0 Average

N
o

rm
. 

R
e

s
p

. 
T

im
e  DedCore  XLER

99th

Figure 13: Response time
analysis of using different
polling techniques (nor-
malized to Vanilla).

bfs
gpgnu gp

gzip
index

kmn PR
0.8

0.9

1.0

1.1

Vanilla CacheOpt KernelOpt

SelectISR XLER

N
o

rm
a

liz
e

d
 I

P
C

 o
f

th
ro

u
g

h
p

u
t 

a
p

p

Figure 14: Performance
analysis of offline ap-
plications (normalized to
Vanilla).

workload attributes from the user processes and passes
them to the underlying flash firmware. It further op-
timizes the SSD embedded cache by isolating latency-
critical I/Os from the interference coming from through-
put I/Os and customizing the cache access policy for
latency-critical I/Os. As a result, it can accommodate
more latency-critical I/Os in the SSD-embedded cache.
As shown in Figures 11b and 12b, CacheOpt can re-
duce the average response time and 99th response time
by up to 11% and 27%, respectively, if there are inten-
sive write I/Os. Nonetheless, as flash firmware sits at the
bottom of overall I/O stack, CacheOpt cannot effec-
tively prevent throughput I/Os from impeding latency-
critical I/Os from upper Linux kernel layers. Compared
to CacheOpt, KernelOpt detects latency-critical I/O
when it is inserted into the block I/O layer and creates
a short path to send latency-critical I/O directly to the
ULL SSD. Specifically, it enables latency-critical I/Os to
directly bypass the software and hardware queues in the
block I/O layer. It also collaborates with NVMe driver
and NVMe controller to allocate an NVMe submission
queue dedicated to latency-critical I/Os and fetch the

latency-critical I/Os with a higher priority. Note that,
KernelOpt can significantly reduce the 99th response
time when offline applications generate intensive I/O
requests (e.g., ungzip). The optimizations mentioned
above can further reduce the average response time and
the 99th response time by 6% and 8%, respectively,
compared to CacheOpt. While KernelOpt works
well for I/O submission optimization, it fails to handle
the software overhead introduced by the interrupt-based
I/O completion approach. For example, while an SSD
read is as short as 3us, the ISR of the MSI-X interrupt
and context switch collectively consume more than 6us.
SelectISR selectively polls the latency-critical I/Os to
avoid the use of ISR and context switch. Compared to
the relatively long response time (i.e., more than 3 ms),
the time saved from the ISR and context switch does not
significantly reduce the average response time. How-
ever, in Figure 12b, we can observe that SelectISR
can reduce the 99th request time by up to 34% in work-
load bfs. This is because, this compute-intensive work-
load creates multiple working threads that use up CPU
resources and postpone the scheduling of the latency-
critical I/Os. SelectISR secures CPU resources for
the online interactive workloads as the CPU resources
are not yielded to other user processes during polling.
XLER can further reduce the average response time and
99th response time by 8% and 10%, respectively, com-
pared to SelectISR. This is because, XLER simplifies
the multiple queue management of the block I/O layer
and NVMe driver, and accelerates the execution by em-
ploying customized circuits.

Since it would be possible to shorten the latency of
storage stack by allocating a dedicated CPU core, we
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Figure 15: Execution time analysis of co-running Apache-Index.

also compare this alternative option with our hardware-
assisted approach. Figure 13 shows the average re-
sponse time and the 99th response time of online ap-
plications with a dedicated CPU core (DedCore) and a
hardware accelerator (XLER). XLER reduces the average
response time and the 99th response time by 12% and
15%, compared to DedCore, respectively. This is be-
cause, to leverage a dedicated core to poll NVMe CQs,
DedCore requires intensive communications with the
general cores, which are in process of the actual online
applications. Unfortunately, such communications intro-
duce different types of overheads associated with CPU
cache flushes and spin-lock management.

Although all our proposed techniques are oriented to-
wards reducing the latency of the online interactive ap-
plications, offline workloads actually do not suffer from
severe performance degradation. Figure 14 shows the
performance of all evaluated offline workloads. Overall,
FLASHSHARE does not degrade the performance of the
offline applications, compared to Vanilla (the worst
degradation observed is around 4%). This is because,
the offline applications are not sensitive to the latency of
each individual I/O, but instead rely on the storage band-
width. Specifically, CacheOpt improves the perfor-
mance of the offline applications by 3.6%, compared to
Vanilla. This benefit comes mainly from the effective
cache design and management. As CacheOpt separates
the cache spaces for latency-critical I/O and throughput
I/O, the throughput I/Os can better enjoy the fruits of
short cache access latency without any competition orig-
inating from the latency-critical I/Os. On the other hand,
we tune the delay time threshold and maximal number of
throughput I/Os in the NVMe submission queue to make
sure that all the delayed throughput I/Os are flushed by
the NVMe controller before they start to introduce se-
vere performance degradation. SelectISR degrades
the performance of offline workloads by 2%, compared
to KernelOpt. This is because, SelectISR uses up
CPU resources for polling the latency-critical I/Os rather
than executing the offline workloads. XLER achieves
1.2% higher performance than SelectISR, as it can
effectively reduce the time spent for polling.

5.3 Effectiveness of Holistic Optimization

Figure 15a shows the execution time breakdown of co-
running workloads Apache and Index. As shown in the
figure, CacheOpt reduces the time needed to serve I/Os
by 6%, compared to Vanilla, which in turn allows
CPU to allocate more time for the offline application. On
the other hand, KernelOpt postpones throughput I/Os,
which blocks CPU from executing the offline applica-
tion. For SelectISR, as CPU is used up for polling,
less CPU time is allocated to the offline application. Fi-
nally, as XLER offloads the polling function to our hard-
ware accelerator (cf. Section 4.3) and also reduces the
time of I/O stack, both the online applications and of-
fline applications can benefit from the reduced I/O ser-
vice time.

Figure 15b plots the latency-critical I/O service break-
down between the co-running workloads, Apache and In-
dex. CacheOpt reduces the average SSD access latency
from 29 us to 18 us, compared to Vanilla, thanks to
the short cache access latency. As the latency-critical
I/Os are not queued in the software and hardware queues,
the time for latency-critical I/O to pass through the block
I/O layer is reduced from 39 us to 21 us when employ-
ing KernelOpt. Since the block I/O layer still needs
to merge the latency-critical I/Os with the I/Os queued
in software queues, the delay of the software and hard-
ware queues cannot be fully eliminated. Compared to
KernelOpt, SelectISR reduces the total I/O com-
pletion time by 5 us. We will present a deeper analysis of
the I/O completion procedure shortly. As XLER removes
the software and hardware queues in its implementation,
it fully removes overheads of the block I/O layer.

Figure 15c plots the read and write I/O completion
time breakdown. As shown in the figure, the polling
function, interrupt service routine (ISR), context switch
(CS) and block I/O layer collectively consume 96% of
the I/O completion time, while the NVMe driver, send-
ing MSI-X interrupt, and ringing CQ doorbell register
together cost less than 0.5 us. Interestingly, although
polling can remove the overhead caused by ISR and con-
text switch, the polling function itself also introduces a
6 us delay. This delay is mainly caused by inquiring the
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Figure 16: Online interactive I/O execution time analysis.
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Figure 18: Various cache perfor-
mance by co-running Apache (ap).
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Figure 19: Analysis of performance dynamics
when co-running Apache and PageRank.

IRQ locks of both BIO and NVMe CQ, setting current
task status, and checking if there are any valid comple-
tion queue entries. In addition, although both the in-
terrupt based approach and polling based approach ex-
ecute the same block I/O completion function, polling
reduces the average completion latency of block I/O by
4 us in both read I/Os and write I/Os. This is because, the
interrupt-based approach context-switches CPU to other
user processes which can pollute CPU caches, while
the polling-based approach buffers the data used for I/O
completion in the CPU cache.

5.4 I/O Stack Delay Analysis

Figure 16a shows the I/O service delay of the five dif-
ferent system configurations tested, for Apache-Index
over time. In addition, Figure 16b plots the cache miss
rates of a dummy cache (i.e., traditional SSD internal
cache that has no knowledge of the host-side informa-
tion) and our adaptive cache, while Figures 16c and 16d
plot, respectively, the software and hardware queue la-
tencies if we bypass or do not bypass latency-critical
I/Os, and the number of context switches over time if
we use the poll-based approach and the interrupt-based
approach. CacheOpt exhibits a shorter I/O service de-
lay than Vanilla, because it adjusts the cache space
and prefetch granularity for the latency-critical I/Os and
throughput I/Os, separately, resulting in fewer cache
misses than the dummy cache in Vanilla (cf. Figure
16b). However, as shown in Figure 16a, CacheOpt can-
not mitigate the long tail latency which is also observed
in Vanilla, while KernelOpt successfully removes

such tail latency. As shown in Figure 16c, the long
tail latency comes from the software queue and hard-
ware queue, if we buffer I/O requests in the software
queue and hardware queue for merging and reordering.
As KernelOpt enables the latency-critical I/Os to by-
pass the queues, it successfully eliminates the latency
impact from the queues. SelectISR reduces the I/O
service latency further, compared to KernelOpt. This
is because, the polling-based approach can effectively
reduce the number of interrupt service routine invoca-
tions and the number of context switches compared to
the interrupt-based approach (cf. Figure 16d).

Since the I/O requests of online applications directly
bypass the blk-mq layer under KernelOpt, the in-
coming I/O requests can lose their chances for merg-
ing, which can in turn increase the number of NVMe
commands. Figure 17 shows the total number of NVMe
commands, generated under different system configura-
tions, namely Vanilla, KernelOpt and XLER. Com-
pared to Vanilla that disables the bypassing scheme,
KernelOpt increases the number of NVMe commands
by only 2%. This is because the latency-critical I/O re-
quests (coming from the online applications) exhibit low
locality, and their arrival times are sporadic. Thanks to its
merge logic, XLER further reduces the number of NVMe
commands by 0.4%, on average, compared to Vanilla.

5.5 Sensitivity to Embedded Cache Design

Figure 18 gives the cache hit rate of various cache con-
figurations when co-running Apache with offline work-
loads. Specifically, uni-no, uni-128 and uni-dyn con-
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figure a uniform cache for both the latency-critical
and throughput I/Os. However, uni-no disables page
prefetching and uni-128 always prefetches 128 pages
when cache misses, while uni-dynfetch employs the
adaptive prefetching scheme we proposed (cf. Section
4.2). On the other hand, split-lat$ and split-thr$ rep-
resent the separate caches owned by the latency-critical
I/Os and throughput I/Os, respectively. The separate
cache employs adaptive prefetch scheme and adjusts
cache space at runtime. Apache is a representative work-
load which randomly accesses the storage (cf. Table
3). As shown in the figure, although offline applica-
tions access the storage in a sequential manner, uni-128
achieves only a 12% higher cache hit rate than uni-no.
This is because, the random access pattern exhibited by
Apache can pollute the cache space and make prefetch-
ing less effective. On the other hand, uni-dyn adjusts the
prefetch granularity to small number of pages at runtime
so that prefetching pages for latency-critical I/Os will
not pollute all the caches. split-lat$ does not achieve a
high cache hit rate, due to the random access pattern of
Apache. However, as we split the cache and isolate the
interference from online applications, split-thr$ achieves
a great improvement in terms of hit rates.

Figure 19 further demonstrates the effectiveness of our
dynamic cache partitioning scheme. Specifically, the
lower half of Figure 19 shows the number of I/O re-
quests, generated by offline applications during the ex-
ecution, while the upper half shows the dynamics of
the cache spaces, allocated to the offline application (in
terms of ratio), and in parallel, demonstrates the response
time of the online application. When there is an I/O
burst imposed by PageRank (0∼2.8 seconds), our SSD
controller isolates the negative impact of this I/O burst
by preserving the cache spaces for Apache as 23% of
the total cache space, on average. By partitioning the
cache space being aware of the responsiveness for dif-
ferent applications, our cache partitioning secures just
enough cache spaces for both PageRank and Apache such
that the response time of Apache can be sustained at 3.1
ms while PageRank improves the cache hit rates by ap-
proximately 36% compared to a dummy cache. In cases
where the offline application requests I/O services less
than before (3∼6 seconds), our dynamic cache partition-
ing method increases the faction of internal cache spaces
for the online application, which can be used for the ap-
plication to perform pre-fetch or read-ahead in helping
with an immediate response from the internal cache.

6 Related Work

In various computing domains, there are multiple studies
to vertically-optimize storage stack [16, 24, 47, 50, 19,
22]. For example, [19] and [22] take flash firmware out
of an SSD and locate it to the host, in order to remove the
redundant address translation between a file system and
FTL. In comparison, [47] proposes multiple partitioned
caches on the host side. These caches understand mul-
tiple client characteristics by profiling the hints passed
from one or more clients through out-of-bound protocol.
However, the application hints are used only for cache
management; such hints/approaches have no knowledge
of the underlying storage stack and they do not consider
the potential benefits of ULL. [16] optimizes mobile sys-
tems from the viewpoint of a file system and a block I/O
device to improve the performance of databases such as
SQLite. However, this optimization is applied only for
the logging performance of mobile databases; it cannot
be applied to other applications and cannot expose ULL
to them. [50] schedules write requests by considering
multiple layers on the kernel-side. While this can im-
prove the write performance, such writes can block reads
or ULL operations at the device level, as the ULL SSD
also includes embedded DRAM caches and schedulers.

[24] observes that there exists an I/O dependency be-
tween background and foreground tasks. This depen-
dency degrades overall system performance with a con-
ventional storage stack since kernel always assigns a high
priority to I/O services generated from the foreground
tasks and postpones the background I/O requests. This
I/O stack optimization allows the foreground tasks to do-
nate their I/O priority to the background I/O services,
when an I/O dependency is detected. However, this ap-
proach does not well fit with I/O workloads that often ex-
hibit no I/O dependency. In particular, multiple applica-
tions executed on a same server (for a high resource uti-
lization and energy efficiency) are already independent
(as they operate in a different domain).

[32] and [23] propose sharing a hint with the underly-
ing components to have a better data allocation in disk
array or virtual machine domains. Similarly, [51] mod-
ifies a disk scheduler to priotize I/O requests, which are
tagged by interactive applications. While most prior ap-
proaches leverage the hints from users/applications to
improve the design of specific software layers, they do
not consider the impact from the other parts of the stor-
age stack.

[41] simplifies the handshaking processes of the
NVMe protocol by removing doorbell registers and com-
pletion signals. Instead of using MSI, it employs a
polling-like scheme for the target storage system. More
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recently, [16, 7, 40, 3, 48] also observed that polling can
consume significant CPU cycles to perform I/O comple-
tion. [7, 44] applies a hybrid polling method, which
puts the core into sleep for a certain period of time, and
just performs poll the request only when the sleep time
has passed. While this strategy can reduce the CPU
overheads to some extent, it is not trivial to determine
the optimal time-out period for sleeps. Even in cases
where system architects can decide a suitable time-out
period, I/O request patterns can dynamically change and
the determined time-out period may not be able to sat-
isfy all user demands. Further, this can waste CPU cy-
cles (if the time-out is short) or make the latency of
I/O request longer (if for example the time-out is longer
than the actual completion time). In addition, unlike our
FLASHSHARE, the hybrid scheme cannot reduce the la-
tency burden imposed by the software modules in the
storage stack.

7 Discussion and Future Work

While the hardware accelerator of FLASHSHARE can
perform a series of time-consuming tasks such as NVMe
queue/entry handling and I/O merging operations on be
half of CPUs, the accelerator employed in the target
system is optional; we can drop the accelerator in fa-
vor of a software-only approach. This software-only
FLASHSHARE (as a less-invasive option) makes perfor-
mance of the server-side storage system approximately
10% worse and consumes 57% more storage-stack
side CPU-cycles than hardware-assisted FLASHSHARE.
Note that the hardware accelerator does not require
high-performance embedded-cores and needs no high-
capacity memory either, since it only deals with NVMe-
commands and reuses the system-memory for data-
management (via PRPs).

Bypassing a request is not a new idea, but it requires
the proposed optimization of FLASHSHARE to apply
such bypassing concept from the kernel to the firwmare.
For example, bypassing scheme has been well investi-
gated to improve the throughput of network [27]. While
network kernel bypassing transfers data by directly map-
ping user memory to physical memory, the storage stack
cannot simply adopt the same idea, due to ACID capa-
bility supports and block interface requirements. In addi-
tion, bypassing in block interface devices should still go
through filesystem, page-cache, scheduler and interface-
driver for user-level services. This introduces higher
complexity and multiple interface boundaries than net-
work, and also renders the direct mapping between user
memory and phyiscal memory not a viable option. On

the other hand, SPDK [39] is designed for a specific-
purpose, namely, NVMe-over-Fabric that requires client-
side file-systems or RocksDB-based applications, which
is different from the datacenter’s co-located workload
scenario that FLASHSHARE works on.

Even though FLASHSHARE can remove a significant
chunk of CPU-side overheads (around 79%, compared
to naive-polling) with 20%∼31% better user experience
from the client-side, it also has a limit; FLASHSHARE
is mainly designed towards accelerating the services in
the cluster servers, but it unfortunately does not fit for
the workload scenarios that rent computing-capability
to multiple tenants, such as Infrastructure as a Ser-
vice (IaaS). In our on-going work, we are extending
FLASHSHARE with a different type of storage, such as
multi-streamed (or ported) SSDs [52, 25, 49, 35] over
diverse storage I/O virtualization techniques.
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9 Conclusion

We propose FLASHSHARE, which punches through the
storage stack from kernel to firmware, helping ULL
SSDs satisfy different levels of user requirements. At
the kernel level, we extend the data structures of the stor-
age stack to pass attributes of (co-running) applications
through all software modules of the underlying OS and
device. Given such attributes, the block layer and NVMe
driver of FLASHSHARE custom-manage the I/O sched-
uler and interrupt handler of NVMe. The target ULL
SSD dynamically partitions the internal DRAM and ad-
just its caching strategies to meet diverse user demands.
By taking full advantage of the ULL services, this holis-
tic approach significantly reduces the inter-application
I/O interferences in servers co-running multiple applica-
tions, without modifying any of the applications.
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Abstract
Today, we depend on numerous large-scale services for
basic operations such as email. These services are com-
plex and extremely dynamic as developers continuously
commit code and introduce new features, fixes and, con-
sequently, new bugs. Hundreds of commits may enter
deployment simultaneously. Therefore one of the most
time-critical, yet complex tasks towards mitigating ser-
vice disruption is to localize the bug to the right commit.

This paper presents the concept of differential bug lo-
calization that uses a combination of differential code
analysis and software provenance tracking to effectively
pin-point buggy commits. We have built Orca, a cus-
tomized code search-engine that implements differential
bug localization. On-Call Engineers (OCEs) of Orion,
a large enterprise email and collaboration service, use
Orca to localize bugs to the appropriate buggy commits.
Our evaluation shows that Orca correctly localizes 77%
of bugs for which it has been used. We also show that it
causes a 3x reduction in the work done by the OCE.

1 Introduction
Orion 1 is a large enterprise email and collaboration ser-
vice that supports several millions of users, runs across
hundreds of thousands of machines, and serves millions
of requests per second. Thousands of developers con-
tribute code to it at the rate of hundreds of commits per
day. Dozens of new builds are deployed every week.
Software bugs are bound to be common in such a com-
plex and dynamic environment. It is critical to detect
and promptly localize such bugs since service disrup-
tions lead to customer dissatisfaction and significantly
lower revenues [21].

When a service disruption happens because of a soft-
ware bug, the first-step towards mitigating its effect is
to localize the responsible bug to the right commit. We
call this commit-level bug localization. This is a non-
trivial task since the intense pace of development de-
mands that multiple commits be aggregated into a sin-
gle deployment. In addition, commit-level bug localiza-
tion needs to happen as quickly as possible so that buggy

1Name changed.

commits can be reverted promptly thereby restoring ser-
vice health. About half of all Orion’s service disruptions
are caused by software bugs.

Unfortunately, bug localization in large services such
as Orion is a cumbersome, time-consuming, and error-
prone task. The On-Call Engineers (OCEs) are the first
points-of-contact when a disruption occurs, and they are
responsible for bug localization. Though knowledgeable,
on-call engineers can hardly be expected to have com-
plete and in-depth understanding of all recent commits.
Moreover, bugs that emerge after deployment are com-
plex and often non-deterministic. And yet, very few tools
exist to enable OCEs to perform this critical task.

Our goal is to build a tool that will help OCEs correctly
and swiftly localize a bug to the buggy commit. Over
a period of eight months, we studied post-deployment
bugs, their symptoms, the buggy commits that caused
them, and the current approach to bug localization that
Orion’s OCEs follow. We made four key observations.

1) Bug localization is time-critical, bug fixing is not.
When a bug disrupts a service, the OCE’s task is to keep
the service disruption time to a minimum. She finds the
buggy commit as fast as possible and reverts it rather than
wait for the concerned developer to fix the bug. The rea-
son is that, depending on the complexity of the bug, the
developer may take a long time to fix it. Therefore to
keep disruption to a minimum, it is better to revert the
buggy commit first and introduce the fix at a later time.
Thus, fast commit-level bug localization is critical.

2) Rich monitoring infrastructure exists but is insuffi-
cient because of uncaptured dependencies. Since service
disruptions are a major concern, developers have cre-
ated thousands of active probes that periodically moni-
tor service-components or API calls and raise alerts if
they fail. Despite this, bug localization is a challenge
because a probe to a component may fail not because
of any change to the component itself, but because of a
change to another component that depends upon it. For
instance, a server-side probe failed with an exception
Type RecipientId not supported because a
developer made a commit to client-side code that added
support for the data type RecipientIdwithout adding
support on the server-side. To make matters worse, as the
service evolves fast, new dependencies emerge at a rapid
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rate and no tool can completely capture all of them.
3) Symptom descriptions and their causes tend to have

similar terms. We have found that when a probe de-
tects a bug, a similarity often exists between terms in
the unhealthy probe name or exception text that it gen-
erates and the source-code change that caused the bug.
In the example mentioned in the previous paragraph, the
term recipient occurs in both symptom (the excep-
tion text) and cause (added support to the data type on
the client). We also see this similarity in some customer
complaints as well which predominantly use natural lan-
guage. For instance, a customer recently complained that
“Email ID suggestions for people I know is not work-
ing.”. The cause for this was an incorrect change to a
function named PeopleSuggest.

4) Bugs may appear well after the buggy commit is
deployed. We observed that while the symptoms of a
bug appear in a current build, the cause may be a commit
deployed in a much older build. These are particularly
challenging for the OCE to localize because they have to
investigate, in the worst-case, all commits in the current
build before moving on to investigate an older build. This
can significantly lengthen service disruptions.

Keeping these observations in mind, we design a novel
search technique that we call differential bug localiza-
tion. Using descriptions of the bug as a query, we de-
tect changes to the abstract syntax tree in the source-code
and search only these changes for text-based similarity.
We call this differential code analysis. To find offend-
ing commits in older builds, we introduce a construct
called the build provenance graph that captures depen-
dencies between builds. We designed Orca, a custom
code search-engine that leverages differential bug local-
ization to provide a ranked list of “suspect” commits.

The Orion service has integrated Orca into its alerting
and monitoring processes. This paper describes Orca and
makes the following contributions:

• We provide a study of post-deployment bugs found
in the Orion service and their characteristics (Sec-
tion 3).

• We introduce differential bug localization, which
uses two constructs: differential code analysis of
the abstract syntax tree, and the build provenance
graph. In addition, we use a prediction of commit
risk to call out riskier commits in the list of potential
root-causes (Section 4).

• We have designed Orca, a tool that Orion’s OCEs
are actively using to localize bugs (Section 5).

• We provide an evaluation of Orca for bugs found in
the Orion service (Section 6).

To the best of our knowledge, ours is the first study of a
bug localization tool deployed on a large-scale enterprise
service. We have evaluated Orca on 48 post-deployment
bugs found in Orion since October 2017. We show that
Orca correctly localizes 37 out of 48 bugs for a recall
of 77%. In 30 of the 37 cases, the correct commit was
ranked in the top 5 records shown by our UI (Section 6).
We also show that Orca causes a 3× reduction in the
work done by the OCE.

We have designed Orca for usability and ease-of-
adoption. While this paper concentrates on Orion’s de-
ployment of the tool, Orca has been deployed on five
other services within our enterprise. Our techniques are
generic and extend well to other large services. To make
it easy for OCEs to use the tool interactively, we have
optimized its performance through multiple caching and
preprocessing techniques. Our user-interface provides
results with an average run-time of 5.9 seconds per query.

2 Related Work

The Programming Languages, Software Engineering and
Systems communities have extensively studied bug de-
tection, bug localization and debugging. While Orca
takes inspiration from some of this prior work, it targets
a fundamentally different application space, i.e. large-
scale service deployments. Also, Orca is meant to be
used by on-call engineers, not developers.

A bug localization tool for such services needs to be
fast: the query response time should be at most a few sec-
onds since OCEs will use the UI interactively. It should
be general: the techniques should support code in differ-
ent languages and should not need an OCE or developer
to provide specification. It should be non-intrusive: we
should not require any changes to the service’s existing
coding and deployment practices. Finally, it should be
adaptive: it should work in an extremely dynamic and
changing environment. We now describe prior work in
the area and explain why it does not satisfy some or all
of these requirements.

IR-based Bug localization techniques [3, 25, 35, 36,
38,42,49] use a given bug-report to search, based on tex-
tual similarity, for similar bug reports in the past. For
each match, they localize the bug at the file-level, not at
commit-level, to files that have been changed to address
similar bug-reports. Wang et al. [38] present a structured
and detailed study of the various techniques that are used
for information-retrieval based bug localization. They
use similar search techniques over five major concepts:
version history, bug reports, stack traces, and reporter in-
formation.

While these techniques are fast, general and non-
intrusive, they assume a stationary system, i.e. they as-
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sume that there is an inherent similarity between the cur-
rent version of the system and previous versions. This
is fundamentally not true in service deployments. For
instance, Orion experiences a change in module depen-
dencies at the rate of 1% to 3% every month, and some
source-code files consistently change more than once a
day.

Moreover, prior work has mostly studied software
products, not deployed services. Comparatively, the
work presented in this paper is different because it fo-
cuses on (a) dynamic deployments of software services,
and (b) both structured and unstructured queries for lo-
calization of the manifested issue. Finally Orca is de-
ployed and being used in real-time on a large service de-
ployment. To our knowledge, existing bug localization
techniques have not seen such scale of deployment.

Dynamic Analysis techniques are the most commonly
used and widely studied approaches for detecting bugs
and issues in software. Testing and automated fuzz test-
ing techniques [6, 18] provide an effective method to au-
tomatically generate test-cases that produce random in-
puts for the underlying software. Although these tech-
niques are useful, they are complementary to our ap-
proach. Testing is never complete and does not pro-
vide guarantees about the correctness of the software.
As a result, in spite of comprehensive testing, bugs still
emerge regularly in service deployments, as we have no-
ticed with Orion.

To find post-deployment bugs, previous work has pre-
sented statistical techniques [7, 9, 26] to automatically
isolate bugs in programs by tracking and analyzing suc-
cessful and failed runs of the program. While these tech-
nique hold promise, they are intrusive: they requires fine-
grained instrumentation and a large number of program
traces from the service deployment. Given the stringent
performance needs and dynamism in services, we do not
have the luxury of utilizing such techniques.

Delta Debugging techniques [12, 45] help automate
the problem of debugging by providing the debugger or
programmer information about the state of the program
in passing and failing runs. The possible search space
of the root cause is systematically pruned by using in-
formation from the various runs and by creating new ex-
ecutions. The ideas in delta debugging rely heavily on
program slicing [1,39]. Given its requirements, delta de-
bugging tends to require a large number of tests and the
data from instrumented programs. Hence, it is intrusive.

The GIT bisect command [17] is similar in flavor.
Given the last good commit, it uses an algorithm based
on binary search to go through subsequent commits, re-
peatedly test the code, and ultimately localize the prob-
lem to the buggy commit. However, like delta debug-
ging, this may require a large number of testing cycles.
Moreover, a bug in a large deployment may not be repro-

ducible by simple testing.
Static analysis entails analyzing software without ex-

ecuting the programs in question. The analysis may be
performed at the level of the source-code itself, or at the
level of the object code that is generated for execution
(byte code or binary). Analysis is performed by auto-
mated tools that tend to be rooted in some formal method
such as model checking [11], symbolic execution [29],
and abstract interpretation [13]. Although such tech-
niques have shown significant promise in the past, per-
forming such analysis on a large scale for services has
proven to be very slow and intractable. Performing pro-
gram analysis and verification at smaller scales for in-
dividual components is the current limit of such tech-
niques.

Tools such as Semmle [14] provides a unified frame-
work that implements various program analysis tech-
niques and correctness checks. In our experience,
Semmle has proven to be somewhat useful for simple
situations, but it lacks generality.

Differential static analysis techniques such as SymD-
iff [24] are immediately relevant to the problem dis-
cussed in this paper. But differential analysis techniques
are usually property driven; two versions of the program
are analyzed with respect to a specific correctness prop-
erty. For example, the analysis may be performed for as-
serting differences in the new version w.r.t. null pointer
dereferences. We believe this approach too lacks gener-
ality since it is not feasible to enumerate all such proper-
ties of code in large dynamic services with multiple de-
pendent components. Yet, we do draw inspiration from
this work to build Orca’s AST-based differential analysis.

Tools such as Gumtree [15] use differences in ASTs to
derive accurate edit scripts. Their techniques need to be
fine-grained and therefore use heavyweight algorithms
that implement isomorphism detection. Orca uses differ-
ences in ASTs with a different goal: for a changed file,
we use the AST difference to enumerate all changed enti-
ties, such as changed variables, methods, classes, names-
paces, etc. So we use faster, more coarse-grained heuris-
tics than Gumtree, making our techniques much more
performant.

Log Enhancement techniques [44, 47] improve log-
based debugging by making logs richer and more tar-
geted towards diagnosability. We believe such work is
complementary to our approach and Orca can gain sig-
nificantly with such techniques.

3 Overview

In this Section, we first describe the system development
lifecycle of the Orion enterprise email service and the
role of the OCE. We next describe the characteristics
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Figure 1: System Development Lifecycle (SDLC) of the Orion Service.

of post-deployment bugs in Orion and motivate the ap-
proaches we adopt in Orca. We provide an overview of
Orca and its goals, and finally state Orca’s scope.

3.1 System Development Lifecycle
Figure 1 shows Orion’s system development lifecycle
(SDLC) and Table 1 holds a summary definition of each
term we use for the reader’s convenience. Multiple de-
velopers commit code, where a commit varies in com-
plexity from a small tweak to a single file to changes to
hundreds, even thousands of files. These commits are
reviewed by one or more reviewers that the developer
chooses. After multiple iterations with the reviewers, the
commits are tested using unit, integration, and functional
tests. Periodically, the administrator creates a new build
by combining a set of commits. A build is a unit of de-
ployment of the service and may contain just one, or hun-
dreds of commits.

Builds are deployed in stages onto rings. A ring is a
pre-determined set of machines on which the same build
runs. The build is first deployed onto the smallest ring, or
“Ring 0”, consisting of a few thousand machines. When
it is considered safe, the build progresses through multi-
ple rings such as Ring 1 and Ring 2 until it is finally de-
ployed world-wide. The idea of this staged deployment
is to find bugs early in the life-cycle.

Once the build is deployed to a ring, several tools mon-
itor it. A tool may use passive or active monitoring tech-
niques, either analyzing logs or sending periodic probes
to a component. It uses anomaly detection techniques to
raise an alert that the OCE receives.

If only the machines running a specific build raise
alerts, the OCE concludes that the build is buggy and
she begins bug localization. Roughly half of all alerts
in Orion are caused by bugs. Consequently, bugs are
a significant reason for service disruption. If the alerts
are not confined to a particular build, the bug is likely
due to other reasons such as faulty networks or hardware

misconfiguration. Root-causing infrastructure issues is
not our focus as several tools already exist for this pur-
pose [43, 46].

To localize the bug to a commit, the OCE picks the
commit that she feels is most likely to cause an issue
and contacts the developer who created it. If the devel-
oper responds in the affirmative that her commit may in-
deed have caused the bug, the commit is immediately re-
verted and the service is restored to a healthy state. Note
that the developer does not necessarily debug or fix the
bug before responding to the OCE. If the developer says
that their commit is not responsible for the bug, then the
OCE picks the next most likely commit, and repeats the
process until the service becomes healthy. Compared to
a novice, an experienced OCE with domain-knowledge
may pick the correct commits more promptly and there-
fore restore the service much faster. Orca removes
this dependency on experience and domain-knowledge
by codifying it in its search algorithms.

3.2 Post-Deployment Bugs
Over a period of eight months, we analyzed various post-
deployment bugs and the buggy source-code that caused
them. Table 2 outlines a few characteristic issues. The
table shows the type of alert, it provides an overview of
the symptom, and a description of the root-cause. It also
shows the number of commits (and the number of files)
that an OCE has to consider while performing bug attri-
bution which, in some cases is more than 200.

In general, we have found that bugs fall predominantly
into one of the following categories:

• Bugs specific to certain environments. Often, a
component starts failing because files implement-
ing that component have a bug (Bugs 2, 5). Usu-
ally, the failures happen only for a specific type of
client such as web-based clients, or in a specific re-
gion such as Japan. Tests do not catch the bug since
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Term Definition
Commit Set of file changes made by one developer.
Review Recommendations made by one or more developers for a commit.
Build Unit of deployment for the service consisting of one or more commits.
Ring Set of machines onto which a build is deployed.
Probe Periodic checks to functions/APIs to ensure they are working as expected.
Alert An email- or web-based notification that warns the OCE of a problem.

Table 1: Terms used in the SDLC description and their definitions

not all configurations, clients and environments are
tested.

• Bugs due to uncaptured dependencies. Depen-
dencies can be of various types. In Bug 10, a server-
side implementation is modified without appropri-
ately modifying the client-side code. This happens
because developers often overlook such dependen-
cies as no compile-time tool captures them com-
pletely. Another example of an uncaptured depen-
dency is Bug 4. A commit modifies a certain library,
but unbeknownst to the developer, another compo-
nent depends on certain features in the older version
of the library and stops working correctly.

• Bugs that introduce performance overheads.
Several probes track performance issues. For in-
stance, in Bug 8, a code addition that was not
thread-safe caused CPU overload that slowed down
the service. The bug emerges only when a large
number of users use the service. Hence it is not
caught in testing.

• Bugs in the user-interface. A UI Feature starts
misbehaving, so a customer complains. An example
of this is Bug 1.

3.3 Orca Overview

Studying these bugs and observing the OCEs gave us
valuable insights. We state these insights, and describe
how Orca ’s design is influenced by them.

Often, the same meaningful terms occur both in the
symptom and the cause. Table 2 captures this under
the “Term Similarity” column. Some matched terms are
proper nouns such as the component name (Bug 3) or
global data types (Bug 7). They can also be commonly
used terms such as protocols (Imap in Bug 9) or the
function performed (suggest in Bug 1 and migrat in
Bug 6). Given the term similarity between symptom and
cause, we designed Orca as a custom-designed search
engine, using the symptom as the query-text, and giving
us a ranked list of commits as results. Orca searches for
the symptomatic terms in names of the modified code by

performing differential code analysis on the abstract syn-
tax tree. We describe this procedure in Section 4.1.

Testing and anomaly detection algorithms do not al-
ways find a bug immediately. A bug may start surfacing
in a new build despite being introduced through a commit
to a much older build. Bug 3 in Table 2 is an example.
We introduce a build provenance graph to allow Orca to
expand its search to older builds from which the current
build has been derived. We describe this in Section 4.2.

Builds may have hundreds of commits, so manually
attributing bugs can be long-drawn task. For instance,
Bug 2 appears in a build that had 201 commits. Bug 3 ap-
pears in a build with 160 commits but the root-cause was
in the previous build which had 41 commits. The OCE
is faced with the uphill task of analyzing, in these cases,
up to 200 commits before discovering the buggy com-
mit. OCEs often work at odd hours and are constantly
pressed for time. Orca therefore ranks commits based on
a prediction of commit risk. Orca uses machine-learning
and several features such as developer experience, code
hot-spots and commit type to make this prediction. We
describe this in Step 4 of Section 4.3.

To facilitate its use, we have built an Orca user inter-
face and leverage caching and parallelism to ensure an
interactive experience for the OCE. We describe our op-
timizations in Section 5.

There are thousands of probes in the system, and probe
failures and exceptions are continuously logged. There-
fore there is rich data on what symptoms, or potential
queries to Orca look like. This allows us to track fre-
quency of terms that appear in the queries and use the
Inverse Query Frequency (IQF) rather than the Inverse
Document Frequency (IDF) in our search rankings. We
explain this further in in Section 4.3.

3.4 Orca Scope
In this section, we elaborate what Orca does not aim to
solve. This is primarily because existing techniques al-
ready address these issues.

Orca does not target issues caused by faults in the in-
frastructure. Several techniques [22, 43] exist to do this.
Orca does not solve the anomaly detection problem di-
rectly as several techniques already exist for this [4, 10].
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No. Type Symptom Cause Term Similarity Commits

1 Customer
complaint

”People Suggestion” feature,
that suggests potential recip-
ients for an email, was not
working for a subset of users.

A ”people ranking” algorithm was in-
correctly modified.

A variable used the keyword
suggest in the modified func-
tion.

33

2 Probe An email synchronization
problem was detected.

A buggy commit to the synchroniza-
tion component caused requests com-
ing only from web-based clients to
fail.

The probe contained the name of
the synchronization component,
which was also in the directory
path of the modified files.

201

3 Probe A worker process for a
specific component started
crashing repeatedly.

Incorrect configuration changes to the
component’s environment caused this.
The commit was to a previous build
but bug showed later only after a large
number of users hit it.

The component name matched
in the class name of modified
code.

201

4 Customer
complaint

Authentication process for
some applications that used
REST started crashing.

A library that these applications de-
pended upon was modified but was not
tested for all applications.

Keyword auth was in the path-
name of the change.

46

5 Probe Threads were getting
blocked in processing, large
delays were noticed in REST
calls made by a web service.

HTTP client code for the service had
been modified to make some syn-
chronous calls asynchronous.

The component name matched a
modified user-agent string in the
HTTP client.

18

6 Probe No. of exceptions generated
anomalously high while mi-
grating mailboxes

Caused by a code-change to a mailbox
migration components.

Keyword migrat matched a
changed function’s name.

12

7 Probe Number of exceptions in the
log file for a component C
became abnormally high.

Support for a new data type was added
in a component that made an API call
to component C, but C does not sup-
port that data type.

The exception text for C con-
tained the data type.

70

8 Probe CPU Usage on a set of
machines was anomalously
high.

Reads and writes to a dictionary were
not thread-safe. Multiple threads were
reading from a dictionary while it
was being modified, causing a CPU
blowout.

No keyword matched. 89

9 Probe POP and IMAP services
started failing.

Dependencies were broken when a
code commit changed a library that the
POP and IMAP services used.

Keywords Pop and Imap
matched in code changes.

110

10 Customer
complaint

A client signing in via OAuth
does not display calendar.

Client-side implementation was in-
compatible with the server-side com-
mit.

Keyword OAuth matched the
symptom and the server-side
change.

39

Table 2: Examples of post-deployment bugs.

But we do recognize that anomaly detection algorithms
are imperfect. Orca’s build provenance graph helps find
bugs even when the anomaly detection algorithm detects
a bug well after a commit introduces the bug.

Orca does not handle bugs where the query does not
have any context-specific information. Notable examples
are performance issues, where the symptoms are, sim-
ply, out-of-memory exceptions or CPU-above-threshold
exceptions. There exist other techniques [10, 48] in the
literature which can debug such issues and therefore, can
be used in combination with Orca. We discuss this fur-
ther in Section 7.

4 Design

In this Section, we describe Orca’s differential bug local-
ization constructs in more detail. The input query to Orca
is a symptom of the bug. This could be the name of the

anomalous probe, an exception message, a stack-trace, or
the words of a customer-complaint. The idea is to search
for this query through changes in code or configurations
that could have caused this bug. Thus the “documents”
that the tool searches are properties that changed with
a commit, such as names of files that were added, re-
moved or modified, commit and review comments, mod-
ified code and modified configuration parameters. Orca’s
output is a ranked list of commits, with the most likely
buggy commit displayed first.

First, we describe two novel constructs that we use
for search-space pruning and search-space expansion
respectively: differential code analysis, and the build
provenance graph. Next, we describe the machine-
learning based model of commit risk prediction which
Orca uses to determine a rank-order of probably root-
cause commits. Finally we provide a detailed description
of the search algorithm.
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4.1 Differential Code Analysis

Orca can search the entire code file to perform bug lo-
calization. But this approach can find false matches and
drop Orca’s precision, especially since we have found
that every commit changes, on average, only about 20
lines of source-code per-file (including file additions),
whereas the entire file can consist of hundreds of lines
of code.

Another simple approach, on the other end of the spec-
trum, would be to search only the file names for matches,
and not look into the code at all. While this is partially
effective, our evaluation in Section 6 shows that this does
not give us satisfactory recall.

We therefore employ a middle-path – differential code
analysis – within Orca. Prior work has studied dif-
ferential code analysis, albeit mostly at the semantic
level [23]. It identifies relevant pieces of the code change
that can potentially cause different behavior in the new
version relative to the old version, but with reference to
a specified property, such as null dereference, memory
consistency, etc. Such techniques rely on compuation-
ally expensive techniques such as differential symbolic
execution [34] and regression verification [19].

We do not go with the semantic approach because
(a) it is difficult to determine the full set of properties
to capture all bugs in large-scale services, and (b) we
would like to avoid the performance overhead of tradi-
tional static analyzers for differential analysis.

On the other hand, we could go with a complete lexi-
cal analysis on the differences, i.e., we can match terms
in the query with terms in the difference, without any
syntactic or semantic understanding. This approach will
be relatively lightweight. However, it will miss several
root-causes because very often, terms that match, such as
protocol names, are parts of higher-level structures such
as the method names and classes that have been modi-
fied. Consider Bug 6 in Table 2, for instance. the term
migrat appears in the name of the function that has
been changed, but not in text that has changed. Our tech-
niques therefore need to identify syntactic constructs,
such as methods and classes, that have changed.

Therefore, rather than going with a semantic or lexical
analysis, we perform a syntactic analysis. We use the
abstract syntax trees (AST) of the old and new version of
the program to discover relevant parts of the source that
have been added, removed, and modified.

Our analysis finds differences in entities of the follow-
ing types: class, method, reference, condition, and loop.
We create a “difference set” D of two ASTs, Aold and
Anew, in the following way. Say ei is the old version of
an entity, and ej the new version. Say t is the type of the
entity. Then,

D =



dadded = ∀e ∈ Anew | e 6∈ Aold

dremoved = ∀e ∈ Aold | e 6∈ Anew

dchanged = ∀enew ∈ Anew | type(enew) = t

∧enew ∈ Aold ∧ enew 6= eold

∧type(eold) = t

ddiff = eold∆enew | enew ∈ Anew

∧type(enew) = t ∧ eold ∈ Aold

∧enew 6= eold

Thus, the difference set D captures entities that have
been added, removed, or changed. For all entities in D
that have been changed, we also capture the differences
(ddiff ) between the two versions of the entity using a
heuristic. For instance, say our heuristic detects that two
lines of a function F have been changed. In addition to
D containing the name of the function F , D also includes
ddiff , which contains the entire text of the two changed
lines: both the old version, and the new version.

We would like to point out that our syntactic approach
to differential code analysis is not sound: we may de-
tect changes even though there are none. For instance,
consider the case where a function name changes com-
pletely, but the body remains unchanged. Our algorithm
will treat this as a completely new function. While this
could cause a precision drop in Orca since we are in-
cluding more textual differences than actually exist, the
algorithm does ensure that all changes are captured.

4.2 Build Provenance Graph
In Section 3.2, we have shown that a buggy commit to
an older build may show symptoms only in a subsequent
build. This could be because an inaccurate anomaly de-
tection algorithm detects an anomaly too late. It may
also be that a subtle bug manifests only in certain envi-
ronments or only when a large number of users hit the
service.

To accommodate this scenario, we expand our search
to include previous builds that the symptomatic build
is “derived” from. We maintain a build provenance
graph (BPG) that captures dependencies between vari-
ous builds along the axes of time and ring ID. Figure 2
shows an example fragment of a build provenance graph.

4.2.1 Construction

We now describe how we construct the build provenance
graph. The BPG captures how builds are created and pro-
moted in the different rings. Every build is represented
as Bi

r,v , where i is a the build identifier, r is the ring
identifier, and v is the version of the build within a ring.
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Figure 2: Example fragment of a build provenance graph.

Say a build spends a certain amount of time in Ring
0. If it is stable and shows no unhealthy behavior for
a while, it is considered for promotion to the next ring.
Build Bn

0,0 is one such build. It forks off build Bn
1,0

which runs in the next ring, Ring 1. Since Bn
1,0 is di-

rectly derived from Bn
0,0, any bugs that emerge in Bn

1,0

could potentially be due to commits originally made to
Bn

0,0. Thus, we introduce an inter-ring edge between the
two builds. Similarly, once a build is considered stable
in Ring 1, it is forked off to Ring 2. This introduces the
inter-ring edge between Bn

1,0 and Bn
2,0. For a given build

identifier n, only one inter-ring edge can exist between
two consecutive rings.

Meanwhile, developers make fresh commits within
each ring too, thereby creating the next build versions
within the same ring. So in Figure 2, Bn

0,1 is derived from
Bn

0,0, Bn
1,1 from Bn

1,0, and so on. We call the edges be-
tween these builds intra-ring edges. Several such intra-
ring edges may exist in all rings though most are in Ring
0 which is the most dynamic and experimental ring.

At any given time, a vertical line drawn through the
graph yields the active build within each ring at that time.
For instance, at time t1, the active builds are Bn

0,3, Bn
1,1,

and Bn
2,0. For ease of explanation, we assume that at any

given time there is only one active build in every ring
though in reality there could be many.

We now explain a third edge-type called the back-port
edge, shown in Figure 2 by dotted arrows. A critical bug
that goes undetected may, with time, propagate to a large
number of builds across all rings. Say at time t0, such a
bug causes an alert in build Bn

1,1. Say at time t1, using the
process described in Section 4.2.2, we localize the bug to
a commit made to the earlier build Bn

0,0. The bug is fixed
through a new commit c to the code of Bn

1,1, and this
generates Bn

1,2, with an intra-ring edge between them.
We can see that since the bug originated in Bn

0,0, it
also exists in the active builds within Ring 0 and Ring 2
that have been derived from it, i.e. Bn

0,3 and Bn
2,0. Con-

sequently we apply the commit c, or we back-port it, to
Bn

0,3 and Bn
2,0. This creates new builds Bn

0,4 in Ring 0

and Bn
2,1 in Ring 2. Thus we add two back-port edges

with the label c from Bn
1,2 to Bn

0,4, and Bn
1,2 to Bn

2,1.
Finally, we describe how the build identifier n gets

incremented in the build provenance graph. All builds
across all rings that have the build identifier n are derived
originally from Bn

0,0. Thus Bn
0,0 is called an origin build.

With time, several new commits are applied in Ring 0.
To ensure that these commits are fully deployed across
all rings, a subsequent build from Ring 0 is chosen to be
the next origin build. In the figure, this is Bn

0,4, which we
rename as Bn+1

0,0 , or the next origin build. All subsequent
builds are now derived from this new origin build.

It can be seen that, barring backport edges, every node
in the build provenance graph has only one incoming
edge. This can be either an inter-ring or an intra-ring
edge.

4.2.2 Traversal

We now describe how Orca uses the build provenance
graph to expand its search-space and find potential buggy
commits in older builds. Given a symptomatic build
Bi

p,q , the purpose of the traversal is to find a list of can-
didate commits for the search.

We observe that Ring 0 is the most experimental of
all rings. Builds in Ring 0 see a large number of sig-
nificant commits. Consequently, our intuition is that, to
localize a bug that appears in Bi

p,q , we should search all
builds back to the the origin build Bi

0,0, which is in Ring
0. Thus using inter-ring and intra-ring edges, we back-
track from Bi

p,q to the origin build Bi
0,0. In addition, we

also include all back-ported commits to every build on
the same path. Since every build has only one incom-
ing inter-ring or intra-ring edge, there is only one such
path from Bi

p,q to Bi
0,0. The candidate list of commits

to search will include all commits made to the builds on
this path, and the back-ported commits on the same path.

We now explain this through an example with Fig-
ure 2. Say an alert is raised in Bn

2,1. Backtrack-
ing from Bn

2,1 to Bn
0,0 yields the set of commits

{C(Bn
2,1), C(Bn

2,0), C(Bn
1,0), C(Bn

0,0}), where C(Bi,j)
is the set of commits that were made to build Bi,j . To
this, we add c, which is a backported commit from Bn

1,2

to Bn
2,1, thereby giving us the final list of commits to

search in. That is,

Γ = {C(Bn
2,1), C(Bn

2,0), C(Bn
1,0), C(Bn

0,0), c}

4.3 Algorithm
In this Section, we describe Orca’s search algorithm
which uses differential code analysis and the build prove-
nance graph. The Orca search algorithm consists of four
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steps: 1) Query pre-processing where we perform to-
kenization, stemming and stop-word removal, 2) build
graph traversal described in Section 4.2.2, 3) token-
matching in code changes using Differential Code Anal-
ysis and 4) ranking and visualization of results. Our
system runs differential code analysis and constructs the
build provenance graph in the background periodically
so that these tasks do not slow down the query response
time.

Step 1: The search queries are symptoms of the prob-
lem, consisting of probe names, exception texts, log mes-
sages, etc. We first tokenize the terms in these symptoms
by using a custom-built code tokenizer. This tokenizer
uses heuristics that we have built specifically for code
and log messages, such as splitting large complex strings
along Camel-cased or Pascal-cased fragments. We also
create n-gram based tokens since we have found that bi-
grams, such as ImapTransfer and mailboxSync,
capture important information.

Next, we filter out irrelevant words also called stop-
words [27] from these symptoms. Previous work
has shown that logs have a lot of inherent struc-
ture [40]. For instance, all exception names have the
suffix Exception and almost all log messages have
a timestamp. Unlike conventional search-engines, even
before we built Orca, we had access to about 8 mil-
lion alerts consisting of probe names, exceptions and log
messages from Orion’s log store. We therefore perform
stop-word removal on these to weed out commonly used
or irrelevant terms such as Exception or timestamps.
This step gives us a list of relevant “tokens” in the symp-
tom. For each token t, we also maintain an Inverse Query
Frequency (IQF) value [41] that we call tIQF , obtained
by analyzing Orion ’s logs. tIQF is calculated as (No. of
queries/No. of queries in which token t appears). A high
value of tIQF implies that the token t is more important.

Step 2: We traverse the build provenance graph to find
all builds related to the symptomatic build. From each
build we discover, we enumerate all the commits that
created the build. This leads us to the next step, which is
matching tokens to files for each commit.

Step 3: Within a given commit C, for each file f and
token t in the symptom, i.e for each tuple T =< f, t >,
we search for the token in the difference set of the file,
Df . We use TF-IQF [41] as a “relevance” score, RC

T ,
for each tuple. RC

T is calculated as n ∗ tIQF where n is
the number of times the token t appears in difference set.
This relevance score captures that the tuple < f, t > is
more relevant if the token t is very infrequent (i.e. tIQF

is very high), or if it appears many times in f .
We repeat this step for every token and file in the com-

mit. At this point, we have file-level relevance values.
Note though that we perform commit-level bug local-
ization. Thus, we now aggregate the relevance values

across all files and tokens to get one relevance value for
the commit C, that we call RC . So,

RC = Θ
T
RC

T (1)

where Θ is an aggregation function such as such as Max,
Avg or Sum. We show in Section 6 that the MAX func-
tion provides the best results in our deployment.

Step 4: Finally, Orca returns a list of commits in
decreasing-order of their relevance. However, in deploy-
ment, we found that ranking solely based on decreas-
ing order of relevance was not enough. Quite often,
more than one commit had the same relevance score be-
cause several commits made at similar times matched the
search terms equally.

We therefore build a machine-learning model that pre-
dicts commit risk to break the tie between commits that
have the same relevance. This model uses ideas from a
vast body of prior-work in this space in the Software En-
gineering community [5,20,30,32]. However, we believe
ours is the first tool to apply such a risk prediction model
to bug localization at the commit-level.

We have built a regression tree-based model that,
given a commit, outputs a risk value for it which falls
between 0 and 1. This is based on data we have collected
for around 93,000 commits made over 2 years. Commits
that caused bugs in deployment are labeled “risky” while
those that did not, we labeled “safe”. We have put in
considerable effort into engineering the features for this
task. The features that we input to the learner roughly
fall into four categories:

• Developer Experience. Developers who are new to
the organization and to the code-base tend to create
more post-deployment bugs. Hence, we associate
several experience-related features with each com-
mit.

• Code ownership. We found that certain files that
were mostly changed by a single developer caused
fewer bugs than files that were constantly touched
by several developers. Hence, for each commit, we
use features to capture whether it touched files with
very few owners or many owners.

• Code hotspots. Certain code-paths, when touched,
tend to cause more post-deployment bugs than oth-
ers. Some of our features capture this fact.

• Commit complexity. Several features, such as file
types changed, number of lines changed, and num-
ber of reviewer comments capture the complexity of
the commit.

Thus, for commits that have the same relevance score
based on the terms match, we use the commit risk as a
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secondary sort key to obtain a rank-order for Orca’s out-
put.

4.3.1 Example

We shall use the following example to illustrate
how the search algorithm works. Say commits C1

and C2 create a build B. Say a probe called
LdapAuthProbe, that monitors the LDAP authen-
tication service, starts throwing exceptions of type
AuthFailedException. Let us also say that
the bug was caused by commit C2 that erroneously
modified a function LdapRequestHandler in a
class LdapService, declared and defined in a file
LdapService.cs. Say C1 modified an Imap pro-
tocol implementation in a file Imap.cs.

The query to Orca is “LdapAuthProbe
AuthFailedException”. First, we tokenize
and stem the query, and remove stop-words Failed
and Exception. This yields the tokens Ldap, Auth
and Probe. The word Probe occurs very frequently
across all symptoms and therefore receives a very low
IQF score, whereas Ldap, being a specific protocol,
gets the highest IDF score. Auth, being somewhat more
frequent than Ldap, receives a slightly lower IQF score.

We leave out build graph traversal for the sake of sim-
plicity. Therefore, our list of candidate commits are
only C1 and C2. In our example, the token Ldap will
match both the class name, LdapService, and the
function modified, LdapRequestHandler. There-
fore the value of relevance for this is 2∗ the IDF value
of token Ldap. C2 will also find a match with token
Auth. C1, however, does not match any of these tokens.
Our ranking algorithm will therefore choose C2 over C1

and, as the highest-ranked result, it will show the file-
name LdapService.cs and token Ldap rather than
Auth.

5 Implementation
We have implemented Orca in a combination of C# (us-
ing .NET Framework v4.5) and SQL. We use the Fast-
Tree [16] algorithm within the ML.Net [31] suite for our
commit risk prediction. Currently, the implementation
is approximately 50,000 lines of code. In this Section,
we briefly describe our implementation of Orca, and the
various user interfaces we expose for OCEs.

5.1 Data Loaders
Since Orca requires information about various different
parts of the system – source-code, builds, deployment
information and alerts – a significant part of our imple-
mentation are data loaders for these different types of

data. Figure 3 shows an architectural overview of the
implementation. At the heart of Orca is a standard SQL
database. This database is populated by data loaders at a
predefined frequency. We now describe the different data
loaders we use.

Source Data We implemented loaders for various
source-control systems such as GIT and others in-
ternal to our organization. These loaders ingest
source-code, code-versions and histories. The dif-
ferential code analysis algorithm uses data from this
loader.

Builds Data about builds resides in multiple big-data
logs. We have build loaders that interface with sev-
eral big-data logging systems to load build-specific
information into our SQL database. We use this
loader to construct the build provenance graph.

Deployment and Machine Data We load logs created
by continuously monitoring the state of all ma-
chines within all rings. The state includes in-
formation about the current status of the machine
(healthy/unhealthy), along with the information on
the build version running on the machine.

Alerts are loaded from existing databases. Today, Orca
supports multiple data sources for loading alert in-
formation.

5.2 Background Analyses
As our data loaders periodically load new data into the
SQL database, we periodically initiate differential code
analysis, build provenance graph construction, IQF cal-
culation, and the commit risk prediction used in Sec-
tion 4.3. If needed, the frequency of an analysis can
be changed to make it more/less frequent. For example,
the IQF calculation runs once a week, while commit risk
prediction runs once every day. The other two processes
run once every hour. Finally, it should be noted that all
analyses that have been developed and deployed within
this system are agnostic of the data source. The SQL
database schema is normalized; thus, providing the same
interface to all analyzers irrespective of the data source.

5.3 API Implementation
We now describe the Orca API and its implementation.
Each Orca request is processed in real-time by the core
Orca engine, and results are returned in JSON format.
Clients decide on the relevant parts of the return re-
sult and how to display them. We make use of a Re-
dis Cache [8] for improving our lookup times associ-
ated with data that is static. This includes data about the
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Figure 3: Implementation of Orca.

builds, files, source-code, difference sets, and the build
provenance graph. Internally, the Orca system records
all requests made and any feedback provided, which we
use for learning and improvement.

All our services, servers, databases, and caches are im-
plemented and operated using Azure as both a Platform
as a Service (PaaS) and Infrastructure as a Service (IaaS)
provider.

5.4 Usage

Orca can be used in two ways: OCEs can use it to make
ad-hoc queries interactively, or an alerting infrastructure
can query Orca to get a list of suspect commits for an
alert and include it in the alert itself.

For the OCEs, we have built a web-based UI that al-
lows them to enter the details of their query and view
the results. Figure 4 shows a screenshot of the UI with
sensitive information removed. We have also built a
PowerShell R© cmdlet with which the OCE can interact
with through a command-line interface.

To integrate Orca with alerting infrastructure, we have
built an API that the alerting system can query directly.
Currently, this mechanism is being used by multiple
groups that are generating alerts within the Orion group.
The web-based UI and cmdlet tend to be used by OCEs
when new information such as log text or exception text
has been discovered after the original alerts were gener-
ated.

Today, Orca has been deployed on multiple code-bases
for six large-scale services within our enterprise. The
combination of data loaders used in each code-base is
slightly different and unique, but fully operational and
functional.

Figure 4: Web based UI of ORCA for Orion.

6 Evaluation
In this section, we provide results we obtain by evalu-
ating Orca. First, we evaluate Orca’s result quality, i.e.
how often it attributes a bug correctly to the right com-
mit. Next, we evaluate how much effort an OCE saves by
using Orca. Third, we evaluate the performance of Orca
and the savings we get by using a Redis-based cache.

Since its deployment with Orion in October 2017, the
Orca API has been invoked 4400 times to debug issues
within the Orion service. Unfortunately, there is no cen-
tral location where OCEs retrospectively log information
about buggy commits. To evaluate how well Orca local-
izes a bug, we not only need the complete symptom of
the bug, such as error messages or exceptions, but also
the root-cause commit. Consequently, we begun a man-
ual process towards gaining this information for as many
bugs as we could. We interviewed multiple OCEs and
manually analyzed source-code, bug-reports and email-
threads.

By performing this exercise, we collected complete in-
formation for 48 of these bugs. These bugs vary greatly
in characteristics. While some were inadvertently intro-
duced by a single line-change, others were caused by
complex dependencies between components.

6.1 Result Quality
To measure the quality of Orca’s results, we interviewed
several OCEs about how they would quantify result qual-
ity. Based on these interviews we determined that it is
important that we find the buggy commit in as many
cases as possible. This is captured by the Recall, i.e.
the fraction of bugs where we found the buggy commit
in any position in our results. The OCEs also told us that
they linearly scan the list of commits that Orca provides,
hence the closer the correct commit is to the top, the more
time they save. To capture this, we use the Mean Recip-
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No. of results = 5 No. of results = 10 No. of results = 20
Agg.fn. DCA DCA+BPG ALL DCA DCA+BPG ALL DCA DCA+BPG ALL
MAX 0.65(31) 0.60(29) 0.63(30) 0.69(33) 0.77(37) 0.77(37) 0.69(33) 0.77(37) 0.77(37)
SUM 0.52(25) 0.52(25) 0.60(29) 0.71(34) 0.67(32) 0.77(37) 0.73(35) 0.79(38) 0.77(37)
AVG 0.60(29) 0.46(22) 0.58(28) 0.67(32) 0.73(35) 0.77(37) 0.69(33) 0.75(36) 0.77(37)

Table 3: We use recall to evaluate applying differential code analysis alone (DCA), differential code analysis with
build provenance graph (DCA+BPG), and differential code analysis with build provenance graph and commit risk
(ALL). Numbers in parentheses are the number of bugs correctly localized. We evaluate aggregating by MAX, SUM,
and AVG.

No. of results = 5 No. of results = 10 No. of results = 20
Agg.fn. DCA DCA+BPG ALL DCA DCA+BPG ALL DCA DCA+BPG ALL
MAX 0.41 0.38 0.39 0.44 0.38 0.42 0.44 0.38 0.42
SUM 0.42 0.36 0.40 0.44 0.38 0.43 0.44 0.39 0.43
AVG 0.36 0.25 0.38 0.37 0.29 0.41 0.37 0.29 0.41

Table 4: We use MRR to evaluate applying differential code analysis alone (DCA), differential code analysis with
build provenance graph (DCA+BPG), and differential code analysis with build provenance graph and commit risk
(ALL). We also evaluate aggregating by MAX, SUM, and AVG.

rocal Rank (MRR) [28]. MRR is the most suitable metric
since we assume there is only one buggy commit that
causes the symptom. MRR is calculated as 1

nΣn
i=11/ri,

where n is the number of queries, ri is the rank of the
buggy commit for query i. If Orca is unable to find the
correct commit, we assume ri is infinity, i.e. we add 0 to
the sum total.

We first evaluate differential code analysis (DCA)
only. Next, we add the build provenance graph, with-
out the commit risk-based ranking (DCA+BPG). Finally,
we add commit risk prediction and evaluate Orca using
all the techniques described in the paper (ALL). Tables 3
and 4 show the results for various combinations of pa-
rameters and features. We have varied the number of
results we return as part of the Orca API to evaluate
the quality for 5, 10 and 20 results, and we have evalu-
ated Orca for different aggregation functions (Θ in Equa-
tion 1): MAX, SUM and AVG.

To evaluate Orca, we ask three questions:

• How much value does differential code analysis
add? We wanted to understand whether looking
into code was necessary.

• How much value does the build provenance
graph and commit risk prediction add? We
wanted to understand in what number of cases the
build graph helped improve result quality. In addi-
tion, we wanted to see whether our rank-order based
on commit-risk helped improve our results.

• How should we aggregate the file-level relevances
to commit-level? Equation 1 in Section 4.3 de-

scribed how we need to aggregate file-level rele-
vance value into one value at the commit-level.

• How many results should we show in the Orca
UI? When asked, the OCEs mentioned that they
would not want to see beyond 10 results for each
query. Hence, we wanted to evaluate the trade-off
between the number of results shown and the recall
and MRR.

We now answer each of these questions in order.
The build provenance graph adds 8% to the recall.

Observe the data in bold in Table 3. DCA alone localizes
33 bugs for a recall of 0.69. Adding the build provenance
graph helps us localize 4 more bugs correctly thereby in-
creasing our recall to 0.77. While at first glance, this may
appear to be a small increase, OCEs find it significantly
more difficult to attribute bugs that occur in older builds,
and therefore the value of finding these 4 bugs eases the
OCE’s workload considerably. We show this quantita-
tively in Section 6.2.

Adding commit risk-based ranking improves
MRR by 11%. Observing the data in bold in Table 4,
one can see that adding the build provenance graph re-
duced our MRR from 0.44 to 0.38. This happens because
the build provenance graph increases our search-space
significantly, and this increases the number of false-
positive matches between terms and commits. Here,
adding our secondary rank order based on commit risk
improved our results by restoring the MRR value to 0.42.

The MAX and SUM aggregation functions per-
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Figure 5: For all 48 bugs, a cumulative distribution func-
tion of the expected number of commits that the OCE
investigates without Orca and with Orca.

form better than AVG. While the buggy code-changes
match some very high-relevance tokens, several lower-
relevance tokens match these code-changes too. Hence
taking the average value across all matches dilutes the
high-value token matches, therefore reducing both recall
and MRR. Such a dilution does not happen if we use
MAX or SUM. We choose MAX in our implementation.

Showing 10 results seems a good trade-off between
result quality and UI succinctness. We evaluated re-
sults while setting the number of results shown as 5, 10
and 20. We find that with 10 results we achieve close to
our best recall and MRR values.

With 10 results and using MAX, we obtained a recall
of 0.77, i.e. we found the root-cause in 37 out of 48
cases. The MRR was 0.42. We also studied the matched
terms for these 37 bugs and found that term-similarity
serves as a good proxy to capture different types of bugs.
Table 2 showed that matched terms fall roughly into four
categories: they either match a component name, a func-
tion that the component performs such as migrat or
suggest, data types, or protocol names such as Imap.
We found in our case that of the 37 correctly localized
cases, in 14 cases the token was a component name, in
17 cases it captured the function being performed, in 4
cases it matched a protocol name, and in the remaining
2 cases, the match was on a data type. Therefore term-
similarity is quite versatile: it helps us catch a variety of
bugs.

Of the 11 cases that we could not localize, in 1 case the
issue was related to performance. In 4 cases, the prob-
lem was because a configuration setting. changed, and
that triggered the use of code that was committed much
earlier than our build provenance graph covered. In fu-
ture work, we therefore plan to include all configuration

settings in our differential analysis. In the remaining 6
cases, term similarity just did not capture the high-level
semantics of the bug, and static or dynamic analysis may
be required.

6.2 Reduction of OCE Workload
We now investigate the effect of Orca on reducing the
OCE’s workload. There are multiple ways to measure
this. One way is to measure the amount of time saved
by Orca for the OCE. Another is to determine the de-
crease in the number of commits that the OCE needs to
manually investigate, both with and without Orca. We
chose the latter metric because it allows us to quantify
the reduction of OCE workload both at the level of every
individual bug and as an aggregate. The former metric,
i.e. the amount of time saved, can only provide us an
aggregate across all alerts. Moreover, unless we shadow
OCEs over an extended period of time, it is difficult to
accurately quantify the time saved.

Given a bug, an OCE will investigate an average of c/2
commits to localize it, where c is the number of commits
in the buggy build. If the OCE uses Orca, they need in-
vestigate at most r commits, where r is the rank of the
correct commit in the results that the UI shows. If Orca
does not find the correct commit, then apart from the 10
commits that Orca shows, the OCE needs to investigate
an additional (c− 10)/2 commits in expectation.

Figure 5 shows the number of commits investigated
with and without Orca, for all 48 bugs that we evalu-
ated, as a cumulative distribution function. Over all 48
bugs, without Orca, the OCE investigates a median of
22.75 commits, and an average of 28.9 commits. With
Orca, she investigates a median of just 3.5 commits and
an average of only 9.4 commits. Therefore, using Orca
causes a 6.5× reduction in median OCE workload and a
3× (67%) reduction in the OCE’s average workload. For
the 37 bugs Orca localizes, this reduction factor in the
average is much higher, i.e. 9.7×. For the 4 bugs that
were caught only because of the build provenance graph,
the OCE had to investigate an average of 59.4 commits
without Orca, and only 1.25 commits with it. This is a
47.5× improvement. These numbers point out the ben-
efits that the build provenance graph gives us, and the
benefits overall of using Orca for commit-level bug lo-
calization.

6.3 Performance
Finally, we evaluate the performance of Orca. We run
Orca on a 32 core, 2GHz Intel Xeon E7-4820 CPU with
64 GB memory. We ran all 48 queries in sequence to ob-
tain these results. First, we evaluated the effect of the Re-
dis cache on Orca’s average query response time. Using
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Redis, the average response time reduced from 12.4 sec-
onds to 5.97 seconds, a gain of 51.8%. Next, we varied
the degree of parallelism in Orca from 32 to 128 using the
C# MAXDOP parameter [37] and noticed a significant
effect on average query response time. With parallelism
set to 32, the average response time is 30.94 seconds,
whereas with parallelism of 128, it is 5.97 seconds. Our
evaluation shows that there is a significant potential for
parallelizing Orca further, thereby catering to many more
queries and providing lower response times. Therefore
we can effectively scale Orca out to more services within
our enterprise without loss in performance.

Figure 6: The efficacy of using Redis in Orca’s deploy-
ment.

Figure 6 shows the effect of using Redis with Orca’s
deployment over two months, starting from August 2018.
On average, the number of hits is 2.2 times the number
of misses. This shows that users of the Orca API make
queries that have locality and therefore benefit greatly
from the use of the Redis cache. This is to be expected
as successive queries to Orca will be highly likely for the
same builds and therefore will access similar difference
sets.

7 Discussion
In this section, we first discuss the generalizability of
Orca to other services. We then discuss the limitations,
and how we intend to address these in the future.

7.1 Generalizing Orca
Fundamentally, in a CI/CD pipeline, to save time and
resouce-usage, services combine various commits before
they build, test and deploy. Performing these procedures
after every commit would be prohibitively expensive.
Since such an aggregation of commits is absolutely nec-
essary, so is the need for a tool that localizes bugs at the
commit-level, such as Orca.

Though we describe Orca in the context of a large
service and post-deployment bugs, we believe the tech-
niques we have used also apply generically to many Con-
tinuous Integration/Continuous Deployment (CI/CD)
pipeline. This is based on our experience with multiple
services that Orca is operational on within our organiza-
tion. Orca needs expressive symptoms as input. Modern-
day services use rich monitoring systems enabled by in-
frastructure such as Nagios [33] and AlertSite [2] which
can provide probe-level symptoms of problems.

7.2 Future Work
Two types of bugs that Orca currently cannot localize are
performance and configuration issues. Addressing these
bugs, therefore, are immediate next-steps.

To deal with performance-related bugs, we plan to in-
corporate better anomaly detection algorithms, and cor-
relate anomalies with code-changes that could poten-
tially cause them. We believe that the principal idea of
Orca, i.e. keyword match, can also be applied to bugs
that arise from faulty configuration settings. Therefore,
we plan to include configuration-based difference sets
into our search engine.

8 Conclusion
In this paper, we described Orca and the differential bug
localization algorithm. Orca uses differential code anal-
ysis and the build provenance graph to find buggy com-
mits in large-scale services. Orca is deployed with a large
email and collaboration platform. We have shown that
Orca finds the correct buggy commits in about 77% of
bugs that we studied, and causes a 3× reduction in the
work done by the OCE. We have also shown that Orca is
efficient, accurate and easy to deploy.
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Abstract

Mobile app energy profilers provide a foundational en-

ergy diagnostic tool by identifying energy hotspots in the

app source code. However, they only tackle the first chal-

lenge faced by developers, as, after presented with the en-

ergy hotspots, developers typically do not have any guid-

ance on how to proceed with the remaining optimization

process: (1) Is there a more energy-efficient implementa-

tion for the same app task? (2) How to come up with the

more efficient implementation?

To help developers tackle these challenges, we devel-

oped a new energy profiling methodology called differ-

ential energy profiling that automatically uncovers more

efficient implementations of common app tasks by lever-

aging existing implementations of similar apps which

are bountiful in the app marketplace. To demonstrate

its effectiveness, we implemented such a differential en-

ergy profiler, DIFFPROF, for Android apps and used it

to profile 8 groups (from 6 popular app categories) of

5 similar apps each. Our extensive case studies show

that DIFFPROF provides developers with actionable di-

agnosis beyond a traditional energy profiler: it identifies

non-essential (unmatched or extra) and known-to-be in-

efficient (matched) tasks, and the call trees of tasks it ex-

tracts further allow developers to quickly understand the

reasons and develop fixes for the energy difference with

minor manual debugging efforts.

1 Introduction

Despite the prevalence of smartphones, the user expe-

rience has remained severely limited by their battery life.

As such, major mobile platform vendors such as Apple

and Google have taken initiatives encouraging app devel-

opers to take effort optimizing their apps [7, 26].

The typical development cycle for optimizing the en-

ergy drain of mobile apps is similar to that for optimiz-

ing the running time of traditional software – iterating

the process of (1) finding hotspots in the app source code

that contribute to a significant portion of the total app en-

ergy drain, and then (2) determining whether and how the

energy hotspots can be restructured to drain less energy.

However, modern mobile apps are highly complex,

easily consisting of millions of lines of source code

and third-party software, and interacting with the OS-

provided frameworks in complex ways. Without the help

of automatic tools, even finding energy hotspots in the

app source code by developers would be very hard.

To this end, mobile app energy profilers (e.g., [32, 31])

made a major step forward by providing a foundational

energy diagnostic tool that automatically identifies en-

ergy hotspots in the app source code. However, these

profilers only help with the first step of the app energy

optimization process, because after presented with the

energy hotspots, developers typically do not have any

guidance on whether and how the energy hotspots can

be restructured to drain less energy.

To help app developers with this remaining challenge

in the energy optimization process, in this paper, we de-

velop a new energy profiling methodology called differ-

ential energy profiling (or energy diffing for short) that

can automatically uncover more efficient implementa-

tions of common app tasks, and in doing so, not only

determines whether an energy-hotspot code segment can

be optimized, but also gives hints on how to optimize it.

The basic idea behind differential energy profiling is

intuitive: if we can find a set of similar apps by dif-

ferent developers that implement many identical app

tasks, chances are the implementations differ and will

have different energy footprint. Directly comparing their

source-code energy profile generated by an energy pro-

filer should expose more efficient implementation from

the less one for the same app tasks.

In this work, we first make three key observations

about the uniqueness of the mobile app marketplace and

common mobile app development practice: (1) Because

of the low barriers to entry of app development, for every

popular app in the app market, there are typically a few

dozen competing apps that implement similar or identi-

cal app functions or app features. (2) Using a traditional

energy profiler, we profiled 8 selected app groups from

6 popular app categories from Google Play, each consist-

ing of 5 similar apps and 5 different versions of one of

them, and we found similar apps can differ significantly

in energy drain in performing similar app functions. (3)

We further observe that mobile apps make heavy use

of the common framework services provided by modern
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mobile OSes such as the Android framework, and our

profiling analysis of the above 8 app groups has shown

similar apps in each group share 38.6% to 81.9% of the

same framework method calls and spent 44.0% to 96.7%

of their app energy drain in calling framework services.

Observations (1) and (2) suggest it is possible to learn

more efficient implementation of the same app task by

comparing the energy profiles of similar apps, but if apps

have very different source code structures, such compar-

ison may not be effective. Observation (3) affirms such

comparison of similar apps is actually meaningful and

potentially effective.

We then present the design and implementation of

such a differential energy profiler, DIFFPROF. Develop-

ing DIFFPROF faces three challenges: (1) What should

be the diffing granularity? (2) How to identify the diffing

units in the source-code energy profiler output of each

app? (3) How to actually diff the energy profiles of simi-

lar apps? We address these challenges as follows:

(1) Using app tasks as the diffing granularity. We ar-

gue following the widely adopted modular programming

principle, an app is typically structured to implement a

number of app features or tasks. Since the ultimate goal

of energy diffing is to uncover more efficient implementa-

tions of app tasks, the ideal diffing granularity that most

directly helps the developers should be an app task.

(2) Characterizing how app tasks manifest in call

trees. Diffing at the app task granularity requires identi-

fying app tasks in the call tree output by a source-code en-

ergy profiler. To address this challenge, we examine the

call trees for top 100 non-game apps and find that app

tasks manifest themselves as Erlenmeyer flask-shaped

slices (denoted as EFLASKS) represented in (call path,

framework-method, subtree) tuples where the call path

identifies the context of the task, the framework-method

is used to invoke the framework service to accomplish

the task, and the subtree captures the particular execution

of the framework service.

(3) An efficient EFLASK matching algorithm. We

give insights on how and why different implementations

(EFLASKS) of the same app task differ which motivates

the need for approximate EFLASK matching. We de-

velop to our knowledge the first EFLASK-shaped tree

slice matching algorithm that accurately finds similar

EFLASKS corresponding to the same app task.

To demonstrate its effectiveness, we implemented

DIFFPROF on top of a state-of-the-art energy profiler

EPROF [32] for Android, and compared it to EPROF

in profiling 8 groups (from 6 popular app categories in

Google Play) of 5 similar apps each. We show DIFFPROF

accurately identifies matched tasks that account for 79%

of the app total energy drain on average as well as unique

tasks (21% of total energy on average), in similar apps.

Further, we conducted 12 case studies to show that

DIFFPROF provides developers with actionable diagno-

sis beyond a traditional energy profiler: (1) When EPROF

identifies energy bottlenecks, they may be necessary or

not inefficient; DIFFPROF identifies non-essential (un-

matched or extra) and known-to-be inefficient (matched)

tasks; (2) The EFLASK of tasks extracted by DIFFPROF

further shows the details of the more efficient implemen-

tation, which allows the developer to quickly understand

the reasons for the energy difference with minor manual

debugging efforts (e.g., setting breakpoints) since the de-

veloper did not author the similar app. Out of the 12 in-

efficient or buggy implementations in 9 apps, 3 of which

have already been confirmed by developers, and remov-

ing them reduces app energy drain by 5.2%–27.4%.

This work makes the following contributions:

• It presents differential energy profiling, which tackles

a key challenge faced by app developers in optimizing

app energy drain - determining whether and how en-

ergy hotspots in app source code can be optimized, by

identifying and comparing different implementations

of the same tasks in similar apps.

• It presents DIFFPROF, an energy diffing tool for An-

droid mobile apps. It describes DIFFPROF’s implemen-

tation and the core algorithm that finds approximate

matching of Erlenmeyer flask-shaped slices in calling

context trees of similar apps, and demonstrates its ben-

efits over traditional energy profilers.

2 Key Insights

The DIFFPROF design is motivated by three key in-

sights we make about the mobile app market.

2.1 Competing/similar apps are abundant

Our first observation is about a unique phenomenon

of the mobile app marketplace: (O1) for every popular

app, there are typically a few dozen competing apps that

implement similar or identical app functions or app fea-

tures. The top 100 non-game apps in Google Play belong

to 34 functionally similar app groups and each of these

categories consists of many competing popular apps. Ta-

ble 1 lists 8 such similar app groups with apps in the

top 100 as well as outside the top 100 apps; the major-

ity of them have 50M+ downloads.1 We see that many

groups include over a dozen similar apps each. More-

over, similar apps, e.g., competing apps such as Pandora

and Spotify, or a popular app (Candy Crush Saga) and

its dozens of clones, typically have similar user interac-

tions. For example, the music playback screens of all

music streaming apps have an album cover image, the

song and the album title, a progress bar, elapsed and re-

maining time text, and buttons to control music playback,

and every app performs music playback.
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Table 1: Eight groups of similar apps from top 100 non-game apps, their competitors, and energy drain measurement.

“*”: Popular but not a top 100 app, “+”: Pre-installed app.

App App Group Similar/Competing Apps Max/min Perc. energy

Category energy ratio in framework

Communica-

tion

Messaging &

calling

Whatsapp, Google Hangouts+, Facebook Messenger, BBM, Line,

Wechat, Viber, Skype, Tango, Whatscall, Telegram, TextNow, imo

8.0 60.2% - 90.3%

Email Yahoo Mail, Gmail, Outlook, Android mail+, Aqua Mail*, Email
For Any*, MailRU*, myMail*

4.6 56.6% - 90.9%

Music &

Audio

Music

streaming

Spotify, Pandora, Soundcloud, iHeartRadio, Youtube Music, Free

music, Napster, Google Play Music+, Apple Music*

4.2 49.6% - 93.8%

Personalization Launcher GO Launcher, CM Launcher 3D*, APUS Launcher*, Solo

Launcher*, Hola Launcher*

3.1 44.0% - 93.8%

Productivity File explorer ES*, FX*, Solid*, File explorer*, File manager* 5.3 89.3% - 94.9%

Shopping Shopping Wish, eBay, Amazon, Walmart, AliExpress, Kohl*, letgo* 3.2 83.1% - 96.7%

Tools Antivirus Supo Security, CM Security AppLock AntiVirus, 360 Security, AVG

AntiVirus, DU antivirus, Mobile Security & Antivirus*, Kaspersky

Antivirus Security*

2.8 53.5% - 91.3%

Cleaning Clean Master, DFNDR, Fast Cleaner - Speed Booster, Turbo cleaner,

Power clean Lionmobi, OK clean lite, DU speed booster & cleaner*,

Ccleaner*

3.6 78.5% - 93.9%

2.2 Similar apps differ in energy drain

Given the abundance of similar apps for every popu-

lar app, we next ask the question: how do they stack

against each other in energy drain, in performing similar

app functions? To answer this question, we profiled the

similar apps in the 8 popular app categories on a Nexus

6 phone running Android 6.0.1 while connected to WiFi.

We use automated tests to perform identical actions

on the similar apps in each group and measure the en-

ergy drained by these actions using EPROF. In particular,

we use UI Automator, the Android black-box UI testing

framework, which does not require app source code.

For each group of similar apps, we first write a generic

base test that interacts with common UI elements. Next,

for each app in the cluster, we launch the app on the

phone and find the unique ids of all the UI elements in-

volved in the base test using Android’s uiautomatorview

tool. Finally, we run the base test with app-specific UI

element ids, thus performing homogeneous interactions

across similar apps. The specific tests for the 8 app

groups are listed in the sub-captions of Figure 1.

Figure 1 contrasts the total energy drain of 5 similar

apps and 5 versions of 1 app under the same user interac-

tions in each of the selected 8 app groups from Table 1.

We observe that the maximal to minimal energy drain

across the 5 apps in each group range between 2.8x to

8.0x, as shown in Table 1. We thus draw our second ob-

servation that (O2) similar apps easily differ significantly

in energy drain in performing similar app functions.

The above observation suggests that directly compar-

ing the energy footprint of similar apps at the source-

code level is promising to diagnose energy hotspots.

However, such comparison will be fruitful only if their

source code have significant overlap.

2.3 Framework services dominate app en-

ergy drain

Our next observation is that mobile apps make heavy

use of the common framework services provided by

modern mobile OSes such as the Android framework.

To simplify app programming, such frameworks imple-

ment and export to apps many services that implement

commonly performed tasks, e.g., the Android frame-

work provides LocationManager, DownloadManager, Me-

diaPlayer, and WindowManager, among others. Typi-

cally, an app presents requirements via configuration pa-

rameters to the services, and the services then perform

the low-level work on the app’s behalf. We hypothesize

that the heavy usage of framework services leads to a

high percentage of app energy drain occurring in these

common services and the framework methods called in

similar apps have a high overlap.

To confirm this hypothesis, we use EPROF to decou-

ple the energy spent in app methods from those spent in

framework services. First, we run dexinfo [5] on all the

framework jar files located in /system/framework/ on

the phone to identify all the framework packages such

as android.view, dalvik.system and java.math. Next,

for each app, we identify all the framework methods in

its energy profiling output belonging to these framework

packages. Finally, we aggregate their energy drain to

compute the total framework energy drain. The remain-

ing energy drain is marked as app energy drain.

Our results (details for only 4 app groups are shown

in Figure 2 due to page limit) show that the apps in the 8

app groups have significant pairwise overlap in the frame-

work methods called during the profiling run, between

38.6% and 81.9% (61.7% on average). Further, Table 1

shows that a significant portion of the total energy of the

apps in each group was spent in framework API calls,

ranging between 44.0% to 93.8% for Launcher apps to
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Figure 1: Energy consumption of similar apps in 8 app groups. Energy drain numbers (in µAh) are direct output of

EPROF, for the actual tests, which vary between 30 seconds to 1 minute long for different app groups.

between 89.3% to 94.9% for File explorer apps. We thus

draw our third observation that (O3) the heavy usage of

framework services leads to a high percentage of app en-

ergy drain occurring in these shared services, up to over

90% of the app energy consumption. This phenomenon

suggests learning more efficient implementations of app

functions by comparing their energy footprints not only

is possible, but actually is a meaningful and practical ap-

proach.

3 How to Diff Energy Profiles?

The above three key insights suggest comparing the en-

ergy profiles of similar apps generated by a source-code

energy profiler has the potential to automatically identify

inefficiencies in implementing common app functions in

similar apps. We call this approach differential energy

profiling, or energy diffing for short.

Developing such a differential energy profiler has to

address three challenges: (1) What is the diffing granu-

larity? (2) How to identify the diffing units in the energy

profiler output of each app? (3) How to actually diff the

energy profiles of similar apps?

3.1 What diffing granularity?
A mobile app typically implements many features. We

refer to the implementation of individual app features in

the source code and their invocations at runtime as app

tasks. Similar apps are expected to implement a common

set of core tasks pertaining to the apps’ common, main

functionality, e.g., music playback along with some basic

UI features (e.g., progress bar) for music streaming apps.

In addition, similar apps by different vendors often

support some differentiating features which result in dif-

ferent tasks at runtime. For example, among the five

streaming apps, SoundCloud uniquely depicts the audio

track using a waveform animation during music play-

back.

Since there are two potential factors that contribute to

the different energy drain of similar apps: (1) different

implementation of common app tasks, and (2) app tasks

unique to each of the similar apps, the natural granularity

for energy diffing of similar apps should be an app task.

3.2 How do app tasks manifest in call trees?

Diffing at the task granularity, however, faces a funda-

mental challenge: app tasks are not explicitly labeled by

developers. To overcome the above challenge, we exam-

ine how app tasks manifest in the call trees of Android

apps.

Android app programming is event-driven where the

Android framework implements frequently used tasks as

services. These Android framework services provide sev-
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Figure 2: Pairwise overlap of similar apps. Lower triangle boxes show the percentage of overlapping framework

method calls (0.30 means 30%). Upper triangle boxes show the matched app tasks in percentage of all tasks.
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eral Java interfaces and classes with callback methods

that apps can override. Apps then use the associated

registration-callback mechanism to register the overrid-

den callback app methods with the framework. Upon

an event, the Android framework calls these overridden

methods registered for the event.

We refer to Android framework methods as F-methods

and app methods as A-methods. The above asynchronous

programming suggests (1) an app’s energy profiling out-

put typically consists of many call trees [9], one for each

thread; (2) as shown in Figure 3, each call tree typically

starts with some framework method (F0) that receives

call-back related messages and makes a callback into the

app (A1). The app callback method (A1) may call various

other app methods (folded in A1) which later call another

framework method (F2 or F3) to register more callbacks

(A2) or for general processing that implements the task.

Using a script, we examined the call tree output by

EPROF for all the apps in Figure 1 and confirmed that

their call trees all follow the above structure, with one

minor variation: a path may contain only F-methods

(e.g., (F0, F1)). This happens when an app task

calls some framework method X that in turn regis-

ters an asynchronous callback of some other framework

method Y. When framework method Y is invoked, it

starts a new path off the root of the call tree consist-

ing entirely of framework methods. Typical general-

purpose framework methods that serve as the roots of

the call trees include Handler.dispatchMessage and

Binder.execTransact.
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Figure 4: Call trees, dynamic call graphs, and calling

context trees.

What constitutes a task in the call tree? The above call

tree structure suggests an app task typically manifests in

a call tree in an Erlenmeyer flask-shaped [19] slice with

three components 2, as shown in Figure 3:

• Call path: The call path from the root of the call tree

consisting of some F-methods followed by some A-

methods that lead to the F-method uniquely captures

the context of the task, i.e., under which the F-method

was called;

• F-method: The specific F-method invoked by the app

method that is the entry to the invoked framework ser-

vice that accomplishes the app task;

• Subtree: The actual execution of the F-method, given

the context and the parameters passed to the entry

method.

We denote the three-component structure as an EFLASK,

which is a (path, F-method, subtree) task tuple.

In practice, it is often not obvious to isolate all the

EFLASKS in a given call tree that correspond to app tasks,

due to the possibly many layers of interleaving of A-

methods and F-methods. Our EFLASK matching algo-

rithm described in §3.4 takes the call trees of two similar

apps and simultaneously identifies EFLASKS correspond-

ing to app tasks and finds matching tasks.

3.3 What tree structures to diff?

Before discussing the diffing algorithm, we first ex-

plore different options of tree structures to perform diff-

ing, as shown in Figure 4.

Call tree Since EPROF outputs a call tree for each exe-

cution profile, the baseline approach would be to directly
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diff the two call trees (CT). However, this is not practi-

cal, since an app task may be invoked many times during

a profiling run and thus its task tuple may appear many

times in the call tree output. Further, the call tree be-

comes hopelessly large, up to several million call tree

nodes in just a few minutes of a typical profiling run.

Dynamic call graph An alternative approach is to con-

vert call trees to dynamic call graphs (DCG) [9] and diff

DCGs instead, where every method executed has just one

corresponding method node in a DCG. However, using

DCG faces a fundamental challenge that a DCG is not

path preserving, i.e., it may contain code paths that never

occurred during the profile run. For example, the DCG

in Figure 4(b) contains path M → A → B → D which never

occurred in the CT in Figure 4(a). Paths need to be pre-

served for matching the EFLASKS of the same app task.

Calling context tree DIFFPROF overcomes the above

shortcomings of CT and DCG by building and using call-

ing context trees (CCT) [9], a middle ground between

call trees and dynamic call graphs. In a nutshell, two

method call nodes in the call tree are merged in the CCT

whenever both nodes have an identical path from the

root. In addition, recursive calls are merged to the non-

recursive ancestor to keep the tree bounded in size, for

example node A in Figure 4(c)3. Thus, using a CCT pre-

serves the valuable path information while significantly

reducing the number of nodes in the tree. In practice, we

found CCT to contain only tens of thousands of nodes in

a few minutes of profiling run, allowing our sophisticated

matching algorithm to run in less than 30 seconds (§5).

3.4 How to perform EFLASK matching?

We first discuss the need for approximate matching to

find EFLASKS corresponding to the same app tasks. We

then review prior tree matching algorithms, discuss their

drawbacks when applied to our problem, followed by our

EFLASK matching algorithm.

3.4.1 Need for approximate DIFFPROF matching

The above understanding of how app tasks manifest in

call trees in §3.2 suggests that different implementations

and hence their EFLASK structures of the same task in

two apps can differ in the following ways:

• The corresponding call paths may differ slightly. This

can happen for two main reasons. First, apps may

use slightly different mechanisms to achieve the same

app callback. For example, an app can start its

Runnable.run method directly from a new thread, or

via ExecutorService; the two lead to different paths

from root. Second, the app can use different app call-

backs for receiving similar events. For example, the

Turbocleaner app handles the ”clean” button press us-

ing .onClick callback while the DFNDR app uses

.onItemClick callback after which both apps call Ac-

tivity.startActivity to perform a common task.

• The entry F-methods may differ due to two main rea-

sons. First, the same task API can be provided by many

different framework classes. For example, both Https

URLConnectionImpl.getInputStream and HttpURL-

ConnectionImpl.getInputStream get data from a

server, one from an https and another from an http

connection. Second, the same framework class

may provide many alternate APIs to perform the

same app task. For example, three different apps,

Wish, Kohl and letgo, share 8 common nodes in

the call path from the root call and finally call

three different APIs, ImageView.setImageDrawable,

ImageView.setImageBitmap and ImageView.

setImageResource, respectively, for setting an image.

• The subtrees that reflect the actual executions of the

app task in similar apps can differ. Even when the de-

velopers use the same framework API call to accom-

plish a task, the program state and the call parameters

passed in can differ which lead the framework service

to take different paths resulting in different subtrees.

3.4.2 Prior tree matching algorithms

How to match two trees to find similar components

has been previously studied with a diverse set of ap-

plications such as matching RNA structures, structured

text databases and image analysis [12]. However,

prior matching algorithms are not suitable for matching

EFLASKS.

Exact path matching Let T1 and T2 be two CCTs

rooted at r1 and r2, with the set of nodes denoted

by V (T1) and V (T2). Formally, exact path matching

produces a maximal one-to-one node matching4 M ⊆

V (T1)×V (T2), where for any pair (v,w)∈{M− (r1,r2)}:

(r1,r2) ∈ M and (P(v),P(w)) ∈ M

(Path Condition) (1)

where P(v) and P(w) are parents of nodes v and w respec-

tively. However, exact path matching cannot match paths

(e.g., of EFLASK) with minor variations.

Prior approximate tree matching algorithms Tai et

al. [38] gave the first approximate tree matching algo-

rithm. This algorithm produces a maximal one-to-one

matching M where for any pair (v1,w1),(v2,w2) ∈ M:

v1 is ancestor of v2 iff w1 is ancestor of w2

(Ancestor Condition) (2)

The output matching replaces the Path Condition in

Eqn. 1 with a significantly weaker Ancestor Condition

(i.e., Path Condition implies Ancestor Condition). How-

ever, the algorithm is Max-SNP hard.
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To reduce the running time, Zhang et al. [44] added a

Structure Respecting Condition to output matching. This

algorithm produce a matching M, such that for any pairs

(v1,w1), (v2,w2), (v3,w3) ∈ M:

nca(v1,v2) =nca(v1,v3) iff nca(w1,w2) = nca(w1,w3)

(Structure Respecting Condition) (3)

where nca(x,y) is the nearest common ancestor of nodes

x and y. Due to the additional constraint, fewer match-

ing possibilities need to be considered, making the algo-

rithm’s running time polynomial.

However, these algorithms may match EFLASKS with

very different call paths. In contrast to the exact path

matching algorithm which focuses on matching the path

(component of EFLASKS) without considering the sub-

trees underneath, the above approximate matching algo-

rithms match two nodes only based on similarity of sub-

trees (another component of EFLASKS) underneath them

disregarding the call paths. The EFLASK matching al-

gorithm we propose below leverages both the path and

subtree information in matching two nodes, and in doing

so, matches two EFLASKS.

3.4.3 The EFLASK matching algorithm

The EFLASK matching algorithm relaxes the Path Con-

dition incrementally, i.e., the paths from root to matched

nodes in two trees can differ by at most α nodes, and

maximizes the subtree overlap. We replace the Path Con-

dition in the exact matching algorithm with a Relaxed

Path Condition while retaining the Structure Respecting

Condition (Eqn. 3) and Ancestor Condition (Eqn. 2) to

find such matching. Formally, we wish to produce a max-

imal one-to-one matching M, that satisfies Eqn. 2 and

Eqn. 3 and for any pair (v,w) ∈ M:

w ∈Cα(v)

(Relaxed Path Condition) (4)

where Cα(v)⊆V (T2) is the candidate set, where the path

from T2’s root to each node in Cα(v) differs from the path

from T1’s root to v by less than or equal to α nodes. For

example, Figure 5 highlights the nodes in the candidate

set Cα(b) for α equal to 0, 1 and 2. C0(b) contains just

1 node that has the same path from its root as the b in

T1. C1(b) includes 3 additional nodes a, b and c whose

path from root becomes identical to b’s from T1’s root,

r → a → b by doing exactly one operation – deleting b,

deleting a and replacing b by c, respectively.

Notations Before presenting the algorithm we define a

few notations. Let T1,T2 denote two unordered labeled

tree with maximum degrees D1 and D2, respectively. We

denote the set of children nodes of node v by child(v)
and its label by label(v). The path from the root to node

v thus forms a string of labels and is represented by s(v).
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Figure 5: Candidate set Cα(b) for α = 0, 1 and 2.

Let θ denotes an empty tree and let T (v) denote the sub-

tree of T rooted at a node v ∈V (T ) and F(v) denote the

forest under node v, F(v) = T (v)−{v}.

While matching the nodes in two trees, we can per-

form three types of edit operations to the tree nodes – (1)

a relabeling operation to change the node label, (2) a dele-

tion operation to delete node v and make all the children

of v the children of P(v), and (3) an insertion operation,

the complement of deletion.

Let λ denote a special blank symbol. The cost of each

edit operation can be specified using a cost function, γ .

Thus, γ(l1, l2) is the cost of replacing l1 by l2, γ(l1,λ ) is

the cost of deleting l1 and γ(λ , l1) is the cost of inserting

l1. γ is generally assumed to be a distance metric, i.e., γ is

non-negative, symmetric and follows triangular inequal-

ity. We extend the notation such that γ(v,w) for nodes

v and w denotes γ(label(v), label(w)). We assume unit

cost distance in the design of algorithm, i.e., γ(l1, l2) = 1

when l1 6= l2.

Now we are ready to define a few functions and their

properties which form the basis of our algorithm.

Path edit distance function We first find Cα(v) by

computing a path edit distance function ρ . For some

v ∈ V (T1) and w ∈ V (T2), ρ(s(v),s(w)) is the to-

tal cost of edit operations required for v and w to

have identical paths from the root. Thus Cα (v) =
{w ∈V (T2)|ρ(s(v),s(w)) ≤ α}.

Since paths s(v) and s(w) are strings, path edit distance

function ρ(s(v),s(w)) is thus equal to the string edit dis-

tance [41] between s(v) and s(w) and hence can be cal-

culated in a similar manner.

Since we only care about path edit distance when it is

less than or equal to α , we prune some computation as

soon as the distance exceeds α . We can show the runtime

for computing Cα is O(min(N1Dα+2
2 , N1N2)).

Subtree match function Next, we define a subtree

match function µα between two trees. For v ∈ V (T1)
and w ∈ V (T2),µα (T1(v),T2(w)) is the size of maximal

matching of subtrees T1(v) and T2(w) where the match-

ing nodes’ paths differ by at most α .
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Before providing the next lemma, we need the fol-

lowing definition. A restricted matching RM(v,w) is a

matching between nodes of F1(v) and F2(w) and is de-

fined as follows: (1) RM(v,w) follows all the match-

ing conditions – Relaxed Path Condition (Eqn. 4), Struc-

ture Respecting Condition (Eqn. 3), Ancestor Condition

(Eqn. 2), and (2) if (p,q) is in RM(v,w), p is in T1(vi)
and q is in T2(w j), then for any (p′,q′) in RM(v,w), p′

is in T1(vi) iff q′ is in T2(w j) where vi ∈ child(v) and

w j ∈ child(w). In other words, node from a subtree T1(vi)
must only map to nodes of one subtree T2(w j) and vice

versa.

Motivated by the constrained edit distance algo-

rithm [44], we derive the recurrence relationship for µα .

Lemma 3.1. For all v ∈V (T1) and w ∈V (T2),

µα(T1(v),θ ) = 0

µα (θ ,T2(w)) = 0

µα (T1(v),T2(w)) = 0 if w /∈Cα (v)

µα (T1(v),T2(w)) = max













max
w j∈child(w)

µα(T1(v),T2(w j))

max
vi∈child(v)

µα (T1(vi),T2(w))

max
RM(v,w)

µα(RM(v,w))

+(1− γ(v,w))













;

otherwise

Proof. Proof is similar to [44], we skip the details here.

Again, for any v ∈ V (T1), we need to compute

the µα(T1(v),T2(w)) function described above for all

w ∈ Cα(v). The runtime for computing µα is O(N1 ·

min(Dα+1
2 ,N2) · (D1 +D2) · log(D1 +D2))

2.

The EFLASK matching algorithm Putting things to-

gether, the flexible tree matching algorithm makes two

passes. First, it makes a top-down pass to compute Cα(v)
for all v ∈V (T1), i.e., find nodes with call paths different

by at most α nodes. Next, it makes a bottom-up pass to

compute µα(T1,T2). Third, it uses a simple backtrack-

ing mechanism to find for each node v ∈ T1 the matching

node w∈ T2 that maximizes the T1-T2 tree match. Finally,

it finds the matching EFLASKS based on these maximally

matched nodes.

The two passes together simultaneously accomplish

matching of both the call path and the subtree compo-

nents of similar EFLASKS.

3.5 Preprocessing CCTs to facilitate effec-

tive matching

The α value affects the tradeoff between finding more

matching tasks (that vary in their call paths) and false

positive matches. To make the algorithm more effective,

we identified several factors that may increase the path
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Figure 6: App namespace problem.
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Figure 7: Class hi-

erarchy problem.

distance between the paths for the same app task, and pre-

process the CCTs to remove such factors so that more

matchings can be found with smaller α values.

App namespace problem The call paths for the same

task in two CCTs can contain many app methods that are

unique to either app as different developers are likely to

structure and name the app methods differently. Such

app-specific app methods can easily blow up the path

edit distance of the call paths of a matching task. Fig-

ure 6(a,b) show an example of two paths with differing

app methods.

We observe that all the callback app methods must

override some predefined framework methods, and the

remaining internal app methods called from other app

methods have arbitrary names and are also often obfus-

cated. We thus merge all the internal app method calls

into the app callback method root node as shown in Fig-

ure 6(c), and drop the app specific class names from

app’s callback node to allow matching callback methods.

We note that like using DCGs, merging app methods

to address the app namespace problem conceptually also

reduces path sensitivity, but it actually improves the ef-

fectiveness of task matching. This is because the internal

methods of different apps tend to be named very differ-

ently and thus path sensitivity to app method names actu-

ally harms path similarity matching.

Class hierarchy problem A similar issue arises due to

the object-oriented nature of Java, as shown in the follow-

ing example. The two apps in Figure 7(a,b) share a same

task pointed by the dashed arrow, but the first app uses

method S.A which extends and calls method T.A and the

second app directly uses T.A. Each such occurrence in

the path increases the path edit distance by one, and more

occurrences will quickly inflate the path edit distance.

We solve this problem in two steps. First, we merge

T.A into the caller node S.A (S’.A). Second, we tweak

the distance function γ to allow matching S.A with T.A,

i.e., γ(S.A,T.A) = 0. This allows matching the common

task in Figure 7(a,b) with a path distance of zero while

retaining the same path edit distance for sibling classes

in Figure 7(a,c).

518    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



F-method only paths A third situation happens when

a path off the root consists entirely of framework meth-

ods as discussed in §3.2 (path (F0, F1) in Figure 3). When

this happens, in energy profiling, the energy consump-

tion of the call path is not propagated to its asynchronous

caller, i.e., the app task, which leaves the developer clue-

less as to what app task caused the energy drain.

DIFFPROF patches such asynchronous framework

only subtrees to its parent app task by adding additional

logging in the Android framework. In particular, it logs

the callback object’s .hashCode() along with the current

timestamp and thread id, when an asynchronous callback

is enqueued in framework and when the callback is later

dispatched. During post-processing, for each dispatch

method call, the nearest preceding enqueue method call

with matching object .hashCode log is patched as the dis-

patch method call’s asynchronous caller. 5

4 Implementation and Usage

We implemented DIFFPROF on top of EPROF [32]

with 5.7K lines of Java code. DIFFPROF is packaged

as an IDE plugin that can be installed on a laptop, with

a GUI front-end, for interacting with the developer and

computing and showing the energy diffing result. EPROF

traces are collected on a phone running a modified An-

droid 6.0.1 framework version that adds 95 lines to cap-

ture hidden causal relationships due to asynchronous pro-

gramming (§3.5). 6

After collecting EPROF traces of two similar apps, the

developer specifies these traces to DIFFPROF, and DIFF-

PROF performs energy diffing in the following steps. (1)

First, DIFFPROF patches the call tree dumped by EPROF

using the call timing and the log timestamp as described

in §3.5. (2) Next, DIFFPROF converts EPROF’s CT out-

put into CCT and dumps the CCT along with the inclu-

sive and exclusive energy consumption by and the num-

ber of recursive and non-recursive invocations of each

CCT node. (3) Next, the developer is presented with

a list of Java package names that appeared in either app

trace to determine app packages used for merging app

methods as described in §3.5. By default, all packages

not belonging to the Android framework are marked as

app packages. For comparing two different apps, devel-

opers can skip this step, since packages not belonging to

the Android framework are already marked as app pack-

ages. When comparing two versions of the same app,

however, this presents an opportunity for the developer

to unmark certain app packages to expose app-internal

path information (Figure 6) during matching. (4) DIFF-

PROF performs the EFLASK matching algorithm on the

pair of CCTs. (5) Finally, since the EFLASKS of multiple

tasks may share a common path, DIFFPROF assigns the

energy drain for each task as the inclusive energy of the

Table 2: Average running time and matched tasks when

adjusting α . The results are averaged over all app pairs

in each group. α=0 gives the exact matching algorithm.

α 0 1 2 3 4 5

Avg. time (sec) 0.20 1.12 4.89 7.79 16.4 25.7

Avg. % of

matched tasks

10.8 15.6 18.0 19.5 21.3 22.9

F-method.

DIFFPROF gives two outputs: (1) a merged list of

matched (with the other app) and unmatched tasks in the

app, sorted by the energy drain for unmatched tasks and

the energy difference for matched ones, i.e., based on the

potential room for improvement; and (2) upon selection,

a task’s EFLASK in a graphical view.

5 Evaluation

Our evaluation answers the following questions:

(1) Does DIFFPROF effectively identify matching and

unique tasks among similar apps? (2) Does DIFFPROF

offer added benefits over EPROF, in particular, how does

it help developers with understanding and coming up

with more efficient implementation?

5.1 Experimental setup

We use DIFFPROF to profile popular apps belonging

to the 8 app groups in Table 1. For each group, we pick

5 different apps and 4 older versions of one of the 5 apps,

same as in Figure 1. In running the tests, we ensure user

interaction homogeneity using automated testing as de-

scribed in §2.2. All app tests are less than 1 minute long

and are run on a Nexus 6 phone running DIFFPROF’s

modified version of Android 6.0.1. The traces are post

processed and task matching is performed on a Macbook

pro laptop with a 2.5 GHz Intel i5 CPU and 8GB 1600

MHz DDR3 main memory.

Impact of α We first evaluate the impact of changing

α on the EFLASK matching algorithm’s running time and

output. Table 2 summarizes the results. We see that as

expected, the running time grows close to exponentially

with the α value (from 0 to 2 and from 2 to 4). On av-

erage, the algorithm produces the energy diffing output

within half a minute for all values of α ≤ 5.

Next, we observe that the average percentage of match-

ing tasks grows steadily as we increase the value of α ,

starting 10.8% on average at α=0 up to 22.9% at α=5.

The growth slows down at α = 5.

Based on the above result, when profiling the 8 app

groups, for each app pair in a category, we run DIFFPROF

to find the matching tasks using the lowest α that can

match 20% of the tasks, up to α = 5 (shown as dynamic

α in Table 3).
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5.2 Diffing results

The pairwise task overlap for 4 app groups (Music

streaming, Cleaning, Email, Launcher) are shown in the

upper triangles in Figure 2. We see that the task overlap

between similar apps is significant, ranging between 7%–

61%, with an average of 27%, 24%, 28%, and 17%, for

the 4 groups, respectively.

Table 3 gives the details of diffing results for each app

in the 8 app groups. For each app, we classify all its

tasks into tasks that could not be matched with any of the

4 other apps in its category and tasks that were matched

with 4, 3, 2 or 1 other app(s). The columns under “Dy-

namic α” show that the count of such tasks for each app

varies for different categories, e.g., Email apps have 17

5-way matching tasks while Music apps have only 2, sug-

gesting the apps in different categories have different lev-

els of overlapping tasks. We manually examined 20% of

the matched tasks and did not find any false positives.

Table 3 also shows that the percentage of energy

drained by matched tasks (i.e., 1 minus that of unique

tasks energy) is over 70% of the total energy drained by

the app for 32 out of the 40 apps. This suggests that

although it is hard to measure the coverage (false nega-

tive) of task matching produced by DIFFPROF, in prac-

tice, DIFFPROF produces matched tasks that already ac-

count for a majority of the app energy drain which gives

app developers enough focus for optimization.

DIFFPROF also exposes app unique tasks that drain

significant amounts of energy. Table 3 shows Sound-

Cloud and CM launcher drain 53.7% and 43.7% of the to-

tal energy in performing unique app tasks/features, wave-

form animation and rotation animation, respectively.

To show the effectiveness of the EFLASK algorithm,

Table 3 last column lists the number of tasks in each app

that do not get matched using the exact path matching al-

gorithm (α = 0). We see that the EFLASK matching algo-

rithm with dynamic α reduces the number of unmatched

tasks by 13.5% on average (shown in second column).

5.3 Effectiveness

We discuss how DIFFPROF offers added benefits over

a standard energy profiler through extensive case stud-

ies. Our case studies show that DIFFPROF provides de-

velopers with actionable diagnosis beyond a standard en-

ergy profiler in two ways: (1) DIFFPROF identifies non-

essential (unmatched or extra) and known-to-be ineffi-

cient (matched) tasks; (2) the EFLASKS of tasks extracted

by DIFFPROF further expose the reasons for the more

efficient implementation. For convenience, in the fol-

lowing, we often refer to a task by the F-method in its

EFLASK 3-tuple.

Methodology We ran DIFFPROF on the top 3 energy-

draining apps in each of the 8 groups against the least

Table 3: Task overlap for all apps.

Dynamic α α=0

App 0 1 2 3 4 Unique

tasks’

en-

ergy

0

Antivirus

AVG 424 191 45 5 5 7.27% 498

CMSecurity 433 169 36 6 5 20.36% 532

DU 252 68 27 8 5 14.10% 286
Kaspersky 126 48 28 7 5 26.01% 149

MobileSec 165 52 39 9 5 30.02% 227

Cleaner

CCleaner 301 100 41 18 8 23.43% 395

CM 797 290 92 44 8 29.18% 863
DFNDR 402 138 77 46 8 26.48% 495

Fast 265 356 92 55 8 5.11% 286

Turbo 250 234 69 46 8 11.54% 259

Email

Android
Mail

581 67 25 11 17 17.26% 656

Aqua Mail 223 59 28 21 17 6.67% 308

Email For

Any

331 154 193 40 17 3.79% 338

Mail RU 131 129 199 47 17 0.60% 145

myMail 434 200 202 40 17 3.10% 454

File Explorer

ES 244 43 14 4 5 25.15% 272

FX 83 33 5 2 5 4.97% 97

File Exp. 110 42 13 1 5 10.92% 130

File Man. 332 51 9 4 5 24.76% 366

Solid 260 47 16 2 5 7.31% 295

Instant Messaging and Calling

Hangout 780 160 44 7 8 36.50% 881

Line 291 88 35 21 8 29.14% 411

Messenger 928 256 59 13 8 28.00% 1167

TextNow 1405 194 40 4 8 38.47% 1542
Whatsapp 274 107 26 15 8 40.51% 391

Launcher

Apus 430 111 23 6 8 32.77% 495

CM 252 65 30 11 8 43.65% 318

Go 161 50 11 8 8 26.21% 204
Hola 212 45 21 4 8 29.74% 252

Solo 560 132 31 7 8 26.23% 640

Music

FreeMusic 11 6 6 1 2 1.38% 12

Pandora 97 18 5 3 2 17.34% 107
SoundCloud 123 24 10 3 2 53.72% 135

Spotify 14 5 3 3 2 6.23% 14

iHeartRadio 98 34 8 3 2 8.72% 104

Shopping

Amazon 1030 135 54 17 10 32.03% 1118
Kohl 900 218 80 24 10 27.84% 1041

Wish 1321 264 94 30 10 23.15% 1473

eBay 715 172 86 32 10 26.69% 840

letgo 618 222 108 31 10 19.55% 729

Average 409 119 51 16 8 21.14% 473
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Table 4: Buggy and inefficient tasks in case studies and

their energy drain.

App Task Task

energy

drain

(µAh)

% of

total

energy

drain

Unmatched tasks

Hangout ContentResolver.query 44.3 10.1%

Kohl ObjectInputStream.readObject 12.8 3.9%

Kohl ObjectOutputStream.writeObject 10.5 3.2%

Kaspersky Thread.getStackTrace 39.6 14.8%

Pandora
8.0

SharedPreferencesImpl $Edi-
torImpl.apply

22.9 17.5%

DFNDR Runtime.exec 19.5 5.2%

Matched tasks

Wish
Bitmap.compress

100.9 15.9%

letgo 7.14 3.6%

Wish
BitmapFactory.decodeStream

126.3 19.9%

letgo 5.01 2.5%

Pandora5.7
TextView.setText

43.6 28.1%

Pandora8.3 0.74 0.7%

Spotify
ProgressBar.setProgress

29.2 20.2%

Pandora 1.74 1.6%

TextNow
ViewRootImpl.performTraversal

230.5 40.6%

Whatsapp 24.0 28.4%

Solid
Drawable.invalidateSelf

35.5 18.9%

FX 1.24 2.0%

energy-draining app in the same group, and looked at

the top energy-draining app tasks output by DIFFPROF.

Out of these, we skip the cases where the app tasks are

for supporting unique app features (e.g., 47.2% of Sound-

Cloud’s total energy was by a task supporting the wave-

form animation feature). The remaining 12 tasks, sum-

marized in Table 4, all belong to buggy or inefficient im-

plementations, removing which reduces the app energy

drain by 5.2%–27.4% (based on the energy difference).

5.3.1 Unmatched (extra) tasks

Instant Messaging Table 5 shows Google Hangout’s

energy output from EPROF and from DIFFPROF when

compared with Whatsapp. When sorted by inclusive en-

ergy, EPROF shows really high-level Android methods

such as Looper.loop on the top, and when sorted by ex-

clusive energy, it shows really low-level Android meth-

ods such as BinderProxy.transactNative on the top.

Such top energy drainers in both inclusive and exclusive

energy lists are F-methods that do not directly call app

methods and are not directly called by the app; the devel-

opers thus do not get useful guidance on what to focus

on from the long list of EPROF output.

In contrast, DIFFPROF outputs tasks sorted by en-

ergy drain. It shows Hangout consumes more than 10%

of its total energy in an unmatched task ContentRe-

solver.query. Since tasks’ F-methods are directly

called by the app, the top task’s name provides direct

hints to developer on how to optimize the app. EPROF,

Table 5: Rank ordered EPROF’s method energy out-

put and DIFFPROF’s task energy difference output for

Google Hangout compared to Whatsapp. Energy in µAh.

”*”: unmatched tasks.

Rank Method name (EPROF output) Inclusive

energy

1 (toplevel) 436.8

2 void Looper.loop() 220.6

3 void Handler.dispatchMessage( Message ) 207.3

4 void Thread.run() 176.9

5 Object Method.invoke() 175.4
27 Cursor ContentResolver.query() 44.3

Rank Method name (EPROF output) Exclusive

energy

1 boolean BinderProxy.transactNative() 50.8

2 void VMRuntime.runHeapTasks() 11.6
3 void MessageQueue.nativePollOnce() 9.86

4 Object Throwable.nativeFillInStackTrace() 9.39

5 void Trace.nativeTraceBegin() 7.81

1336 Cursor ContentResolver.query() 0.00

Rank Task name (DIFFPROF output) Task

energy

1 Cursor ContentResolver.query()* 44.3

2 int TelephonyManager.getSimState()* 24.9

3 Cursor SQLiteQueryBuilder.query()* 17.2

4 void ObjectOutputStream.writeObject() 11.2

5 Spanned Html.fromHtml() 6.49

however, does not highlight such methods; the top task

method appeared at position 27 when sorted by inclusive

energy and at 1336 when sorted by exclusive energy.

Finding the reasons and optimization for task Con-

tentResolver.query would have been easy for its de-

veloper from the EFLASK output, e.g., the ContentRe-

solver.query method was called 116 times. But since

we did not write the app, to understand this energy drain,

we set a breakpoint at the ContentResolver.query

method and reran the app to examine the parameters

passed to the method. In one call to the method, the app

queries multiple fields that are stored in a local database.

We found that at one message send, the app queries for

81 unique database fields which often are repeated across

two different queries. Moreover, 36 out of the 81 fields,

such as author chat id and author first name, do not

change across two send key presses, but keep on getting

queried at each send. This suggests that there is ample

room for optimization by keeping a staleness flag; only

when the user navigates away from a chat window, the

36 fields can be declared stale and re-queried later.

Shopping Table 6 shows the Kohl’s app’s output from

EPROF and from DIFFPROF when compared with letgo.

DIFFPROF shows ObjectInputStream.readObject and

ObjectOutputStream.writeObject are two top energy

draining extra tasks, consuming 3.9% and 3.2% respec-

tively of its total energy consumption. In contrast,

EPROF outputs them at positions 90 and 133 when sorted

by inclusive energy and at 1516 and 1547 when sorted by

exclusive energy, respectively.
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Table 6: Rank ordered EPROF’s method energy output

and DIFFPROF’s task energy difference output for Kohl

compared to letgo. Energy in µAh. ”*”: unmatched

tasks.

Rank Method name (EPROF output) Inclusive

energy

1 (toplevel) 329.71

2 Object Method.invoke() 149.74

3 void Looper.loop() 134.65

4 void ActivityThread.main() 132.89

5 void ZygoteInit$MethodAndArgsCaller.run() 132.89
90 Object ObjectInputStream.readObject() 12.82

133 void ObjectOutputStream.writeObject() 10.53

Rank Method name (EPROF output) Exclusive
energy

1 void VMRuntime.runHeapTasks() 26.11
2 boolean BinderProxy.transactNative() 11.9

3 Bitmap BitmapFac-

tory.nativeDecodeByteArray()

10.34

4 void DdmVmInternal.threadNotify() 10.02

5 String StringFactory.newStringFromChars() 7.96

1516 Object ObjectInputStream.readObject( ) 0.0

1547 void ObjectOutputStream.writeObject() 0.0

Rank Task name (DIFFPROF output) Task

energy

1 Object ObjectInputStream.readObject()* 12.82

2 Bitmap BitmapFactory.decodeByteArray() 11.19

3 void ObjectOutputStream.writeObject()* 10.53

4 boolean Class.isAnonymousClass() 9.55
5 String JSONObject.toString() 8.24

Since we did not write the app, we dug into the energy

drain by setting breakpoints. We found that the app keeps

the entire catalog and current discount campaigns on the

SD card in catalog.tmp and cms.tmp files respectively

which were 227 KB and 21 KB at the time of the exper-

iment. Whenever a new catalog or a new campaign is

synced with the server, the entire files are dumped again,

rewriting the previous entries; using a database just to

update new entries would have been more efficient.

Note that task View.draw consumes 12.16 µAh energy,

more than the above extra tasks, but does not appear in

the top task list. This is because DIFFPROF prioritizes

the tasks with the most room for optimization: since the

letgo app consumes 8.29 µAh for the same task, the dif-

ference is less than 4 µAh.

Antivirus DIFFPROF highlights

Thread.getStackTrace as an extra task in the Kasper-

sky app which consumes 39.57 µAh, 14.8% of the

app’s total energy drain (position 1 in DIFFPROF

output, but 22 in EPROF output). After decompiling

the app apk using dex2jar [4], we inspected the caller

of Thread.getStackTrace in the app source code and

found that the app collects logs with unicode characters

but in every such attempt, the code throws Unsupport-

edEncodingException which internally collects the

thread stack trace thus unnecessarily wasting energy.

This bug was confirmed by Kaspersky developers.

Music DIFFPROF highlights SharedPreferences-

Impl$Editor.apply as an extra task in Pandora v8.0

that consumes 17.5% of its total energy drain (position

4 in DIFFPROF output but 42 in EPROF output). This

method is used to change app preferences. The Android

developer manual suggests that apps should call Shared-

PreferencesImpl$Editor.edit repeatedly to keep

making changes in memory and then call SharedPref-

erencesImpl$Editor.apply once at the end to commit

all the changes to the disk. However, the app mistakenly

calls SharedPreferencesImpl$Editor.apply once

every second. This bug was confirmed and fixed in the

latest version of the Pandora app.

Cleaner DIFFPROF shows that the DFNDR app calls

framework method Runtime.exec, consuming 19.52

µAh, 5.2% of the app’s total energy consumption (posi-

tion 3 in DIFFPROF output but 50 in EPROF output). We

set a breakpoint at this method and examined its parame-

ters and found that the app runs ps | grep <app pkg> for

each app installed on the phone. Since ps walks down the

entire /proc directory, it would be more efficient to just

obtain the ps output once and parse it to find the fields

related to each app.

5.3.2 Matched tasks

Shopping In diffing Wish and letgo, although the

CCTs of the two apps differ a lot structurally as

shown in Figure 8(a), DIFFPROF is able to match

two commons tasks, Bitmap.compress and Bitmap-

Factory.decodeStream, by collapsing app methods to

⋆.run and its flexible EFLASK matching algorithm.

For the Bitmap.compress task, DIFFPROF shows that

Wish consumes 100.94 µAh, 15.9% of its total energy

drain whereas letgo consumes only 7.14 µAh. To find the

root cause of energy difference, we examined the param-

eters passed to the F-method by setting a breakpoint and

rerunning both apps. We found that Wish compresses

the image into a png image with quality set to 100 while

letgo compresses into a jpg image with quality set to 90.

This causes the large energy difference while the images

shown by both apps are visually similar.

The above image format difference also explains the

energy drain difference between the second common task

BitmapFactory.decodeStream where Wish consumes

126.32 µAh, 19.9% of its total energy drain while letgo

consumes only 5.01 µAh.

Music – Pandora In diffing two versions of Pandora,

DIFFPROF matches the common task TextView.setText

even though structurally their EFLASKS look different,

as shown in Figure 8(b) (merged to save space). DIFF-

PROF shows that the common task consumes 43.63

µAh, 28.1% of its total energy consumption in Pandora

v5.7 but only 0.74 µAh in the latest Pandora app, v8.3.
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Figure 8: Matched tasks between (a) Wish and letgo, (b) Pandora v5.7 and v8.3.

DIFFPROF further highlights the reason for the differ-

ence: in Pandora v5.7, the subtree additionally contains

the ViewRootImpl.scheduleTraversal subtree that tra-

verses and measures the entire view hierarchy. We used

a premium account to disable ads and played the same ra-

dio station on both Pandora versions for two hours while

leaving the phone on the playback screen. We found that

Pandora v5.7 drained 9.2% battery per hour whereas Pan-

dora v8.3 drained only 6.7% battery per hour. We re-

ported this bug to Pandora engineers, who verified that

Pandora v5.7’s layout.xml file erroneously declared the

width of elapsed time and remaining time text views to

wrap content. This flag signals Android’s ViewManager

that the text view must be just large enough to enclose

its content. As a result, every second when the app up-

dates the elapsed time and remaining time text views, An-

droid ViewManager traverses the entire view hierarchy to

recompute the size of the text boxes. The text boxes were

set to a fixed size in later versions of Pandora.

Music – Spotify In diffing Pandora and Spotify

apps, DIFFPROF shows that the common Progress-

Bar.setProgress task consumes 43.63 µAh, 28.1% of

its total energy in Spotify, but just 1.74 µAh in Pandora.

The EFLASK output further shows that Spotify calls this

method from App.doFrame 596 times while Pandora calls

it only 29 times from App.onTrackElapsedTime during

the 30 second music playback, i.e., while Pandora up-

dates the progress bar once per second, Spotify updates it

on every frame, which is unnecessarily frequent as many

frame draws lead to no pixel change.

Instant Messaging In diffing TextNow and Whatsapp,

DIFFPROF shows that TextNow consumes 230.46 µAh,

40.6% of its total energy drain, in calling a common

task ViewRootImpl.performTraversal, almost 10 times

that in Whatsapp. On inspecting the layout of the two

apps with Android’s HierarchyViewer, we found that

TextNow contains 226 views compared to 76 in What-

sapp. Our closer inspection of view properties shows that

172 views in TextNow are in fact not even visible on the

screen. The app statically loads all the possible UI inter-

actions such as pause playing voice note button and

change billing details button icon, keeping them all

in the view hierarchy instead of dynamically loading

views on demand as recommended by Android [3] and

thus inflating the view hierarchy traversal energy. More-

over, the app contains several LinearLayout with just an

ImageView and a TextView which are recommended to

be compressed into one compound view [8] to reduce

the size of the view hierarchy.

File Explorer DIFFPROF shows that Solid explorer

consumes 35.52 µAh, 18.9% of its total energy in task

Drawable.invalidateSelf whereas FX file explorer

only consumes 1.24 µAh. DIFFPROF further shows

that Solid calls Drawable.invalidateSelf 1002 more
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times than FX and that the EFLASK contains ObjectAn-

imator.animateValue followed by Solid’s CircularAn-

imatedDrawable$1.set. Upon inspecting this class, we

found that the app does the animation when a new folder

is created. At each frame, it draws an arc and requests

another frame. However, after the folder gets created,

the app stops drawing the arc but keeps requesting new

frames, unnecessarily wasting energy.

6 Discussions

DIFFPROF’s effectiveness in finding energy optimiza-

tions stems from the large overlap of Android libraries

used among competing Android apps and accurate

source-level energy profiling. As such, its central idea of

diffing source-code-level profiling of similar apps in prin-

ciple can be extended to find optimization opportunities

in other performance metrics of interests to developers,

such as latency, scalability and memory efficiency.

One of the central principles of software engineering,

DRY (Don’t repeat yourself) [24], preaches the use of

reusable code, by abstracting all common reusable code

into standalone libraries. The principle improves modern

software developers’ productivity and has gained wide

adoption in recent years; almost every major build tool

today [1, 6, 2] allows developers to specify library depen-

dencies which are downloaded from a central repository

and packaged with their software. We envision that DIFF-

PROF’s approach can be extended to effectively compare

source-code level profiling measurements of software in

broader domains beyond mobile such as games, web

frontends and server backends.

7 Related work

Performance and energy profiling There is a large

body of work on performance profiling of sequential pro-

grams [20, 15, 30] and concurrent programs [17, 39].

There are also several works on energy profiling for

mobile apps [32, 31, 34, 18]. EPROF [32] performs

source-code-level energy profiling and accounts the en-

ergy drained by each phone component to individual app

method calls. ARO [34] performs cross-layer profiling

for network usage to expose apps’ inefficient interactions

with lower layers. Wattson [31] estimates app energy

consumption on the developer workstation by emulating

different environments such as network conditions, CPU

speed and display technologies. GfxDoctor [18] quanti-

fies the energy drain spent in traversing the entire frame

rendering stack due to each UI update. All such profilers

stop at finding performance/energy hotspots. DIFFPROF

builds on top of such traditional profilers and tackles the

hard but critical question in the app energy optimization

process: whether and how energy hotspots in app source

code can be restructured to drain less energy.

Diffing programs and runtime behavior. (1) Pro-

grams. There has been a large body of research to find re-

gressions introduced from code revisions [13, 36, 22, 23],

and on data mining application source code to detect soft-

ware bugs, e.g., [40]. DIFFPROF allows app developers

to catch and debug energy drain regressions by compar-

ing source-code energy profiles after code revisions. (2)

Runtime behavior. Execution indexing [43] aligns event

logs of two executions of the same program under dif-

ferent input or perturbations and has been used in detect-

ing and understanding security leaks [27], deadlocks [28]

and failures [45, 21]. DIFFPROF aligns calling context

trees of two executions that may be from apps written by

different developers to find energy inefficiencies.

Diffing beyond programs. More generally, diffing is a

pervasive technique that celebrates and exploits diversity

and has been applied to many other scenarios in com-

puter systems and networking. Diffing data has been

applied to storage data for data compression (e.g., [29]),

to network traffic for traffic reduction (e.g., [11, 10]), to

data structures in memory images for detecting polymor-

phic malware [16], and to frames for reducing graphics

energy for mobile devices [25].

Beyond data, many systems, e.g., PeerPressure [42],

ClearView [33], Shen et al. [37], Encore [46], and Diff-

Prov [14], apply diffing to learn or detect deviations from

the correct or reference behavior, via statistical analysis

or data mining, for detecting and diagnosing misconfig-

urations, performance anomalies or faulty events in the

network and distributed systems.

8 Conclusion

This paper presents differential energy profiling which

tackles the hard but critical question in the app energy op-

timization process faced by app developers: whether and

how energy hotspots in app source code can be restruc-

tured to drain less energy. By performing approximate

matching of energy profiles of similar apps by a tradi-

tional energy profiler, energy diffing automatically un-

covers more efficient implementations of common app

tasks and app-unique tasks among similar apps. We

show how our prototype DIFFPROF tool provides de-

velopers with actionable diagnosis beyond a traditional

energy profiler: it effortlessly reveals 12 inefficient or

buggy implementations in 9 apps, and it further allows

(non)developers to quickly understand the reasons and

develop fixes for the energy difference.

Acknowledgement We thank our shepherd Andreas

Haeberlen and the anonymous reviewers for their help-

ful comments which helped to improve this paper. This

work was supported in part by NSF grant CSR-1718854.

524    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] Apache maven project. http://maven.apache.org.

[2] Create .net apps faster with NuGeT. https://www.nuget.

org.

[3] Delayed loading of views. https://developer.

android.com/training/improving-layouts/

loading-ondemand.html#ViewStub.

[4] dex2jar. https://sourceforge.net/projects/

dex2jar/.

[5] dexinfo. https://github.com/poliva/dexinfo.

[6] Npm package manager. https://www.npmjs.com.

[7] Optimizing battery life. https://developer.android.

com/training/monitoring-device-state/index.

html.

[8] Using compound drawables. https://developer.

android.com/training/improving-layouts/

optimizing-layout.html#Lint.

[9] AMMONS, G., BALL, T., AND LARUS, J. R. Exploiting hard-
ware performance counters with flow and context sensitive profil-

ing. ACM Sigplan Notices 32, 5 (1997), 85–96.

[10] ANAND, A., GUPTA, A., AKELLA, A., SESHAN, S., AND

SHENKER, S. Packet caches on routers: the implications of uni-

versal redundant traffic elimination. In Proc. of ACM SIGCOMM

(2008), pp. 219–230.

[11] ANAND, A., SEKAR, V., AND AKELLA, A. Smartre: an archi-

tecture for coordinated network-wide redundancy elimination. In

Proc. of ACM SIGCOMM (2009), pp. 87–98.

[12] BILLE, P. A survey on tree edit distance and related problems.

Theoretical computer science 337, 1 (2005), 217–239.

[13] CALCAGNO, C., DISTEFANO, D., DUBREIL, J., GABI, D.,

HOOIMEIJER, P., LUCA, M., OHEARN, P., PAPAKONSTANTI-

NOU, I., PURBRICK, J., AND RODRIGUEZ, D. Moving fast

with software verification. In NASA Formal Methods Symposium

(2015), Springer, pp. 3–11.

[14] CHEN, A., WU, Y., HAEBERLEN, A., ZHOU, W., AND LOO,

B. T. The good, the bad, and the differences: Better network

diagnostics with differential provenance. In Proc. of ACM SIG-

COMM (2016), pp. 115–128.

[15] COPPA, E., DEMETRESCU, C., AND FINOCCHI, I. Input-

sensitive profiling. ACM SIGPLAN Notices 47, 6 (2012), 89–98.

[16] COZZIE, A., STRATTON, F., XUE, H., AND KING, S. T. Dig-

ging for data structures. In Proc. of USENIX OSDI (2008),
pp. 255–266.

[17] CURTSINGER, C., AND BERGER, E. D. Coz: finding code that

counts with causal profiling. In Proceedings of the 25th Sympo-

sium on Operating Systems Principles (2015), ACM, pp. 184–

197.

[18] DING, N., AND HU, Y. C. Gfxdoctor: A holistic graphics energy

profiler for mobile devices. In Proceedings of the Twelfth Euro-

pean Conference on Computer Systems (2017), ACM, pp. 359–

373.

[19] Erlenmeyer flask. https://en.wikipedia.org/wiki/

Erlenmeyer_flask.

[20] GRAHAM, S. L., KESSLER, P. B., AND MCKUSICK, M. K.

gprof: A call graph execution profiler. In Proc. of ACM PLDI

(1982).

[21] GUO, L., ROYCHOUDHURY, A., AND WANG, T. Accurately

choosing execution runs for software fault localization. In Inter-

national Conference on Compiler Construction (2006), Springer,

pp. 80–95.

[22] GUPTA, R., HARROLD, M. J., AND SOFFA, M. L. An approach

to regression testing using slicing. In Software Maintenance,

1992. Proceedings., Conference on (1992), IEEE, pp. 299–308.

[23] HASSAN, A. E. Predicting faults using the complexity of code

changes. In Proceedings of the 31st International Conference on

Software Engineering (2009), IEEE Computer Society, pp. 78–

88.

[24] HUNT, A., AND THOMAS, D. The Pragmatic Programmer:

From Journeyman to Master. Addison Wesley Longman, Inc.,

ISBN-10: 020161622X., 1999.

[25] HWANG, C., PUSHP, S., KOH, C., YOON, J., LIU, Y., CHOI,

S., AND SONG, J. Raven: Perception-aware optimization of

power consumption for mobile games. In Proceedings of the 23rd

Annual International Conference on Mobile Computing and Net-

working (2017), ACM, pp. 422–434.

[26] Energy efficiency and the user experience. https://

developer.apple.com/library/archive/

documentation/Performance/Conceptual/

EnergyGuide-iOS/EnergyandNetworking.html.

[27] JOHNSON, N. M., CABALLERO, J., CHEN, K. Z., MCCAMANT,

S., POOSANKAM, P., REYNAUD, D., AND SONG, D. Differen-

tial slicing: Identifying causal execution differences for security

applications. In Security and Privacy (SP), 2011 IEEE Sympo-

sium on (2011), IEEE, pp. 347–362.

[28] JOSHI, P., PARK, C.-S., SEN, K., AND NAIK, M. A randomized
dynamic program analysis technique for detecting real deadlocks.

In Proc. of ACM PLDI (2009), pp. 110–120.

[29] KULKARNI, P., DOUGLIS, F., LAVOIE, J. D., AND TRACEY,

J. M. Redundancy elimination within large collections of files.

In USENIX Annual Technical Conference, General Track (2004),

pp. 59–72.
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Notes

1We did not include social networks because their main app func-

tions appear to differ (e.g., Facebook, twitter, snapchat).
2F-method-only paths will be patched to other tasks as discussed in

§3.5.
3Refer to [9] for more details on calling context tree construction.
4A maximal one-to-one matching matches the most nodes in the

two trees.
5Our approach to tracking events is similar to AppInsight [35], but

instead of instrumenting app binary, we directly modify the Android

framework to track asynchronous calls. Since we use timestamp and

thread id in addition to hashCode to track objects, we did not see prob-

lems due to hashCode collisions in our experiments.
6 Since EPROF does not break down app energy drain into native

code methods - it simply folds native code’s energy into JNI boundary

method for Java, DIFFPROF would not be able to identify tasks in native

code. In practice, tasks typically start from framework callback Java

methods and hence most of the task structures are captured in the Java

methods that invoke the native code.
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Abstract
This paper tries to identify waiting events that limit the
maximal throughput of a multi-threaded application. To
achieve this goal, we not only need to understand an
event’s impact on threads waiting for this event (i.e., lo-
cal impact), but also need to understand whether its im-
pact can reach other threads that are involved in request
processing (i.e., global impact).

To address these challenges, wPerf computes the local
impact of a waiting event with a technique called cas-
caded re-distribution; more importantly, wPerf builds a
wait-for graph to compute whether such impact can in-
directly reach other threads. By combining these two
techniques, wPerf essentially tries to identify events with
large impacts on all threads.

We apply wPerf to a number of open-source multi-
threaded applications. By following the guide of wPerf,
we are able to improve their throughput by up to 4.83×.
The overhead of recording waiting events at runtime is
about 5.1% on average.

1 Introduction

This paper proposes wPerf, a generic off-CPU analysis
method to identify critical waiting events that limit the
maximal throughput of multi-threaded applications.

Developers often need to identify the bottlenecks of
their applications to improve their throughput. For a
single-threaded application, one can identify its bottle-
neck by looking for the piece of code that takes the most
time to execute, with the help of tools like perf [60] and
DTrace [20]. For a multi-threaded application, this task
becomes much more challenging because a thread could
spend time waiting for certain events (e.g., lock, I/O,
condition variable, etc.) as well as executing code: both
execution and waiting can create bottlenecks.

Accordingly, performance analysis tools targeting
multi-threaded applications can be categorized into two

types: on-CPU analysis to identify bottlenecks created
by execution and off-CPU analysis to identify bottle-
necks created by waiting [56]. As shown in previous
works, off-CPU analysis is important because optimiz-
ing waiting can lead to a significant improvement in per-
formance [3, 4, 9, 14, 42, 69–71, 76].

While there are systematic solutions for on-CPU anal-
ysis (e.g., Critical Path Analysis [40] and COZ [16]), ex-
isting off-CPU analysis methods are either inaccurate or
incomplete. For example, a number of tools can rank
waiting events based on their lengths [36, 57, 74], but
longer waiting events are not necessarily more important
(see Section 2); some other tools design metrics to rank
lock contention [2, 18, 75], which is certainly one of the
most important types of waiting events, but other waiting
events, such as waiting for condition variables or I/Os,
can create a bottleneck as well (also see Section 2). As
far as we know, no tools can perform accurate analysis
for all kinds of waiting events.

To identify waiting events critical to throughput, the
key challenge is a gap between the local impact and the
global impact of waiting events: given the information
of a waiting event, such as its length and frequency, it
may not be hard to predict its impact on the threads wait-
ing for the event (i.e., local impact). To improve overall
application throughput, however, we need to improve the
throughput of all threads involved in request processing
(called worker threads in this paper). Therefore, to un-
derstand whether optimizing a waiting event can improve
overall throughput, we need to know whether its impact
can reach all worker threads (i.e., global impact). These
two kinds of impacts are not always correlated: events
with a small local impact usually have a small global im-
pact, but events with a large local impact may not have a
large global impact. As a result, it’s hard to directly rank
the global impact of waiting events.

To address this problem, we propose a novel technique
called “wait-for graph” to compute which threads a wait-
ing event may influence. This technique is based on a
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simple observation: if thread B never waits for thread A,
either directly or indirectly, then optimizing A’s waiting
events would not improve B, because neither B’s execu-
tion speed nor B’s waiting time would be affected. Fol-
lowing this observation, wPerf models the application as
a wait-for graph, in which each thread is a vertex and a
directed edge from A to B means thread A sometimes
waits for B. We can prove that if such a graph contains
any knots with worker threads inside them, we must op-
timize at least one waiting event in each of these knots.
Intuitively, this conclusion is a generalization of our ob-
servation: a knot is an inescapable section of the graph
(see formal definition in Section 3.1), which means the
worker threads in a knot never wait for outside threads,
so optimizing outside events would not improve these
worker threads. However, to improve overall through-
put, we must improve all worker threads, which means
we must optimize at least one event in the knot. In other
words, each knot must contain a bottleneck.

A knot means there must exist cyclic wait-for relation-
ship among its threads. In practice, such cyclic wait-for
relationship can be caused by various reasons, such as
blocking I/Os, load imbalance, and lock contention.

For complicated knots, wPerf refines them by trim-
ming edges whose local impact is small, because events
with little local impact usually have little global impact
and thus optimizing them would have little impact on
the application. For this purpose, the length of a waiting
event can serve as a natural heuristic for its local impact,
but using it directly may not be accurate when waiting
events are nested. For example, if thread A wakes up
B and then B wakes up C later, adding all C’s waiting
period to edge C→ B is misleading because part of this
period is caused by B waiting for A. To solve this prob-
lem, we introduce a technique called “cascaded redistri-
bution” to quantify the local impact of waiting events: if
thread A waits for thread B from t1 to t2, wPerf checks
what B is doing during t1 to t2 and if B is waiting for an-
other thread, wPerf will re-distribute the corresponding
weight and perform the check recursively.

Given such local impact as a weight on each edge,
wPerf can refine a complicated knot by continuously re-
moving its edges with small weights, till the knot be-
comes disconnected, which allows wPerf to further iden-
tify smaller knots. wPerf repeats these two procedures
(i.e., identify knots and refine knots) iteratively until the
graph is simple enough, which should contain events
whose local impact is large and whose impact can po-
tentially reach all worker threads.

We apply wPerf to various open-source applications.
Guided by the reports of wPerf, we are able to improve
their throughput by up to 4.83×. For example, we find
in ZooKeeper [34], using blocking I/Os and limiting the
number of outstanding requests combined cause ineffi-

Thread A Thread B

while(true)
recv req from network
funA(req) //2ms
queue.enqueue(req)

while(true)
req = queue.dequeue()
funB(req) //5ms
log req to a file
sync //5ms

(a) Code (queue is a producer-consumer queue with max size k)

A

B

Disk

funA(req
n+k+1

)

sync sync

queue is fullqueue is full

funB(req
n
)

funA(req
n+k+2

)

funB(req
n+1

)

write req
n write req

n+1

req
n+1

 to reqn+k in the queue

idleidle

(b) Runtime execution.

Figure 1: An example of a multi-threaded program with
a bottleneck waiting event.

ciency when the workload is read-heavy: in this case,
for each logging operation, ZooKeeper can only batch a
small number of writes, leading to inefficient disk perfor-
mance. wPerf’s runtime overhead of recording waiting
events is about 5.1% on average.

2 Motivating Example

This section presents an example that motivates our
work. As shown in Figure 1: since thread B needs to
sync data to the disk (Figure 1a), B and the disk cannot
process requests in parallel at runtime (Figure 1b). As
a result, B and the disk combined take 10ms to process
a request, which becomes the bottleneck of this applica-
tion. As one can see, this application is saturated while
none of its threads or disks are fully saturated. Further-
more, one can observe the following phenomena:

• Off-CPU analysis is important. In this example,
on-CPU analysis like Critical Path Analysis [40] or
COZ [16] can identify that funB and disk write are
worth optimizing, which is certainly correct, but we
should not neglect that the blocking pattern between
B and the disk is worth optimizing as well: if we can
change thread B to write to disk asynchronously, we
could double the throughput of this application.

• While lock contention is well studied, we should not
neglect other waiting events. The bottleneck of this
example is not caused by contentions, but by waiting
for I/Os. Replacing the disk with thread C and letting
B wait for C on a condition variable can create a simi-
lar bottleneck.

• Longer waiting events are not necessarily more impor-
tant. In other words, events with a large local impact
may not have a large global impact. In this example,
thread A spends 80% of its time waiting for B, which
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is longer than the time B spends waiting for the disk,
but it is because A has less work than B and is not the
cause of the bottleneck.

Although a number of tools like off-CPU flame
graph [57] have been developed to help off-CPU anal-
ysis, we are not aware of any tools that can answer the
question which waiting events are important, when con-
sidering all kinds of waiting events. As a result, such
investigation largely relies on the efforts of the develop-
ers. For the above simple example, it may not be dif-
ficult. In real applications, however, such patterns can
become complicated, involving many more threads and
devices (see Section 5). These phenomena motivate us to
develop a new off-CPU analysis approach, which should
be generic enough to handle all kinds of waiting events.

3 Identify Bottleneck Waiting Events

In this paper, we propose wPerf, a generic approach
to identify bottleneck waiting events in multi-threaded
applications. To be more specific, we assume the tar-
get application is processing requests from either remote
clients or user inputs, and the goal of wPerf is to iden-
tify waiting events whose optimization can improve the
application’s throughput to process incoming requests.

wPerf models the target application as a number of
threads (an I/O device is modeled as a pseudo thread). A
thread is either executing some task or is blocked, wait-
ing for some event from another thread. A task can be
either a portion of an incoming request or an internal task
generated by the application. A thread can be optimized
by 1) increasing its speed to execute tasks; 2) reducing
the number of tasks it needs to execute; or 3) reducing
its waiting time. Since wPerf targets off-CPU analysis, it
tries to identify opportunities for the third type.

To identify bottleneck waiting events, wPerf uses two
steps iteratively to narrow down the search space: in the
first step, it builds the wait-for graph to identify sub-
graphs that must contain bottlenecks. If these subgraphs
are large, wPerf refines them by removing edges with lit-
tle local impact.

In this section, we first present a few definitions, then
explain the basic idea of wPerf in a simplified model, and
finally extend the model to general applications.

3.1 Definitions
Definition 3.1. Worker and background threads. A
thread is a worker thread if its throughput of process-
ing its tasks grows with the application’s throughput to
process its incoming requests; a thread is a background
thread if its throughput does not grow with the through-
put of the application.

A B Disk

Figure 2: Wait-for graph of the application in Figure 1.

For example, threads that process incoming requests
are obvious worker threads; threads that perform tasks
like garbage collection or disk flushing are also worker
threads, though they usually run in the background;
threads that perform tasks like sending heartbeats are
background threads.

This definition identifies threads that must be opti-
mized to improve overall application throughput (i.e.,
worker threads), because they are directly or indirectly
involved in processing incoming requests. In real appli-
cations, we find most of the threads are worker threads.

Definition 3.2. Wait-for relationship. Thread A directly
waits for thread B if A sometimes is woken up by thread
B. Thread A indirectly waits for B if there exists a se-
quence of threads T1, T2, ... Tn such that T1 = A , Tn = B,
and Ti directly waits for T(i+1). Thread A waits for thread
B if A either directly or indirectly waits for B.

Definition 3.3. Wait-for graph. We construct a wait-for
graph for a multi-threaded application in the following
way: each vertex is a thread and a directed edge from
thread A to B means A directly waits for B.

For example, Figure 2 shows the wait-for graph for the
application shown in Figure 1. One can easily prove that
A waits for B if there is a directed path from A to B.

Definition 3.4. Knot and sink. In a graph, a knot is a
nonempty set K of vertices such that the reachable set of
each vertex in K is exactly set K; a sink is a vertex with
no edges directed from it [32].

Intuitively, knot and sink identify minimal inescapable
sections of a graph. Note that by definition, a vertex with
a self-loop but no other outgoing edges is a knot.

3.2 Identify bottleneck waiting events in a
simplified model

In this simplified model, we make the following assump-
tions and we discuss how to relax these assumptions in
the next section: 1) each application is running a fixed
number of threads; 2) there are more CPU cores than the
number of threads; 3) all threads are worker threads; 4)
threads are not performing any I/O operations. Our algo-
rithm uses two steps to narrow down the search space.

3.2.1 Step 1: Identifying knots

Our algorithm first narrows down the search space by
identifying subgraphs that must contain bottlenecks,
based on the following lemma and theorem.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    529



Lemma 3.1. If thread B never waits for A, reducing A’s
waiting time would not increase the throughput of B.

Proof. If we don’t optimize the execution of B, the only
way to improve B’s throughput is to give it more tasks,
i.e., reduce its waiting time. However, since B never
waits for A, optimizing A would not affect B’s waiting
time. Therefore, B’s throughput is not affected.

Theorem 3.2. If the wait-for graph contains any knots,
to improve the application’s throughput, we must opti-
mize at least one waiting event in each knot.

Proof. We prove by contradiction: suppose we can im-
prove the application’s throughput without optimizing
any events in a knot. On one hand, since all threads
are worker threads, if overall throughput were improved,
the throughput of each thread should increase (Defini-
tion 3.1). On the other hand, because a knot is an in-
escapable section of a graph, threads in the knot never
wait for outside threads, so optimizing outside threads or
events would not improve the throughput of threads in
the knot (Lemma 3.1). These two conclusions contradict
and thus the theorem is proved.

For example, in Figure 2, thread B and the disk form a
knot and thus at least one of their waiting events must be
optimized to improve the application’s throughput.

A graph must contain either knots or sinks or
both [32]. A sink means the execution of the corre-
sponding thread is the bottleneck, which is beyond the
scope of off-CPU analysis. A knot means there must ex-
ist cyclic wait-for relationship among multiple threads,
which can cause the application to saturate while none of
the threads on the cycle are saturated. In practice, such
cyclic wait-for relationship can happen for different rea-
sons, among which the following ones are common:

• Lock contention. Multiple threads contending on a
lock is probably the most common reason to cause a
cyclic wait-for relationship. In this case, threads con-
tending on the lock may wait for each other.

• Blocking operation. Figure 1 shows an example of this
problem: since B needs to wait for the responses from
the disk, and the disk needs to wait for new requests
from B, there exists a cyclic wait-for relationship be-
tween B and the disk.

• Load imbalance. Many applications work in phases
and parallelize the job in each phase [19, 68]. Imbal-
ance across phases or imbalance across threads in the
same phase can create a cycle. For example, suppose
in phase 1, thread A executes three tasks and thread B
executes one task; in phase 2, A executes one task and
B executes three tasks: in this case, A needs to wait
for B at the end of phase 1 and B needs to wait for A
at the end of phase 2, creating a cycle.

3.2.2 Step 2: Refining knots

If a knot is small, the developers may manually inves-
tigate it and decide how to optimize. For a large knot,
wPerf further narrows down the search space by remov-
ing edges whose optimization would have little impact
on the application. However, accurately predicting the
global impact of a waiting event is a challenging problem
in the first place. To address this challenge, we observe
that the local impact of a waiting event can be viewed as
the upper bound of the global impact of this event: im-
provement to all threads naturally includes improvement
to threads waiting for this event, so the local impact of
an event should be at least as large as its global impact.

Following this observation, wPerf removes edges
with a small local impact until the knot becomes dis-
connected. When disconnection happens, wPerf tries
to identify smaller knots. wPerf repeats these two
procedures—identifying knots and trimming edges with
a small local impact—until the result is simple enough
for developers. We discuss the termination condition in
Section 4.3. By combining these two procedures, wPerf
essentially tries to identify the edges with a large impact
on all worker threads.

Since local impact marks the upper bound of global
impact, knot refinement will not bring false negatives
(i.e., removing important edges), which means the
user will not miss important optimization opportunities.
However, it may bring false positives (i.e., not remov-
ing unimportant edges), which requires additional effort
from the user, but in our case studies, we find such ad-
ditional effort is not significant, mainly because many
edges with a large local impact are outside of the knot
and thus are removed.

The total waiting time spent on an edge is a natural
heuristic to quantify the local impact of the edge, but
we find it may be misleading when waiting events are
nested. To illustrate the problem, we show an example in
Figure 3: thread C wakes up B at time t1 and B wakes up
A at time t2. In practice, such nested waiting can happen
in two ways: first, it is possible that C wakes up B and
A simultaneously and B happens to execute first (e.g., C
releases a lock that both A and B try to grab) and we call
this type “symmetric waiting”; second, it is also possible
that A’s Task 3 depends on B’s Task 2, which depends
on C’s Task 1. We call this type “asymmetric waiting”.
However, from the recorded waiting events, wPerf does
not know which type it is, which means its solution to
compute the edge weights should work for both types.

To motivate wPerf’s solution, we show several op-
tions we have tried. The naive solution (Graph1) adds
weight (t2− t0) to edge A→ B and weight (t1− t0) to
edge B→ C. This solution underestimates the impor-
tance of B → C, because reducing the time spent on
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Figure 3: Building edges weights from length of waiting events (Graphs 1-3 are our failed attempts).

B→C can automatically reduce the time spent on A→B.
Graph2 moves the overlapping part (t1− t0) from A→ B
to B→C, which increases the importance of B→C, but
it underestimates the importance of A→ B: in asymmet-
ric waiting, it is possible to optimize A→ B but not op-
timize B→ C, so it is inappropriate to assume optimiz-
ing A→ B can only reduce the waiting time by t2− t1.
Graph3 draws a new edge A→C and moves the weight
of (t1− t0) to the new edge, indicating that (t1− t0) is
actually caused by waiting for C: this approach makes
sense for symmetric waiting, but is confusing for asym-
metric waiting, in which A does not directly wait for
C. wPerf’s solution is to keep weight (t2− t0) for edge
A→ B, which means optimizing this edge can reduce A’s
waiting time by up to (t2− t0), and increases the weight
of B→C by (t1− t0), which means optimizing this edge
can lead to improvement in both B and A. wPerf’s solu-
tion may seem to be unfair for symmetric waiting, but for
symmetric waiting, A and B should have similar chance
to be woken up first, so if we test the application for suf-
ficiently long, the weights of A→ B and B→ C should
be close.

Following this idea, wPerf introduces a cascaded re-
distribution algorithm to build the weights in the general
case: at first, wPerf assigns a weight to an edge accord-
ing to the waiting time spent on that edge. If wPerf finds
while thread A is waiting for thread B, thread B also
waits for thread C (length t), wPerf increases the weight
of (B→C) by t. If C waits for other threads during the
same period of time, wPerf will perform such adjustment
recursively (see the detailed algorithm in Section 4.2).

3.3 Extending the model
Next, we extend our model by relaxing its assumptions.

Not enough CPUs. A thread may also wait because
all CPU cores are busy (i.e., the thread is in “runnable”
state). We can record the runnable time of each thread:
if a thread in a knot is often in the runnable state, then
the application may benefit from using more CPU cores
or giving those bottleneck threads a higher priority.

I/Os. wPerf models an I/O device as a pseudo thread.
If a normal thread sometimes waits for an I/O to com-
plete, wPerf draws an edge from the normal thread to the
corresponding I/O thread. If an I/O device is not fully
utilized (see Section 4.1), wPerf draws an edge from the

I/O thread to all normal threads that have issued I/Os to
this device, meaning the device waits for new I/Os from
these normal threads.

Busy waiting. Some threads use busy waiting to con-
tinuously check whether another thread has generated the
events. A typical example is a spin lock. From the OS
point of view, a thread that is busy waiting is not counted
as waiting, because it is executing code; at the logical
level, however, time spent on busy waiting should be
counted as waiting time in our model. We discuss how
to trace such events in Section 4.1.

Background threads. A knot consisting of only back-
ground threads does not have to be optimized to improve
the application’s throughput, because the throughput of a
background thread does not grow with the application’s
throughput. Note that though not necessary, optimizing
such a knot may still be beneficial. For example, suppose
a background thread needs to periodically send a heart-
beat, during which it needs to grab a lock and thus may
block a worker thread. In this case, reducing the locking
time of the background thread may improve the worker
threads contending on the same lock, but it is not nces-
sary since optimizing those worker threads may improve
the application’s throughput as well. Therefore, wPerf
reports such a knot to the user, removes the knot, and
continues to analyze the remaining graph, because there
may exist other optimization opportunities. wPerf uses
the following heuristic to identify such a knot: if the knot
does not contain any I/O threads and the sum of the CPU
utilization of all threads in the knot is less than 100%,
wPerf will report it, because this means some threads in
the knot sleep frequently, which is a typical behavior of
background threads.

Short-term threads. Some applications create a new
thread for a new task and terminate the thread when
the task finishes. Such short-term threads do not follow
our definition of worker thread, because their through-
put does not grow with the application’s throughput. To
apply our idea, wPerf merges such short-term threads
into a virtual long-running thread: if any of the short-
term threads is running/runnable, wPerf marks the vir-
tual thread as running/runnable; otherwise, wPerf marks
the virtual thread as blocked, indicating it is waiting for
new tasks from the thread that is creating these short-
term threads.
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4 Design and Implementation

To apply the above ideas, wPerf incorporates three com-
ponents: the recorder records the target application’s and
the OS’s waiting events at runtime; the controller re-
ceives commands from the user and sends the commands
to the recorder; the analyzer builds the wait-for graph
from the recorded events offline and tries to identify
knots or sinks. In this section, we present how recorder
and analyzer work in detail.

4.1 Recording sufficient information
The responsibility of the recorder is to capture sufficient
information to allow the analyzer to build the wait-for
graph. Towards this goal, such information should be
able to answer two questions: 1) if a thread is waiting,
which thread is it waiting for? and 2) how long does a
thread spend on waiting for another thread? The former
will allow us to create edges in the wait-for graph, and
the latter will allow us to compute weights for edges.

Profiling tools (e.g., perf [60], DTrace [20], ETW [1],
etc.) can record events at different layers. We decide
to record waiting events at low layers (i.e. CPU schedul-
ing and interrupt handling) because events at lower layers
usually can provide more accurate answers to the above
two questions. Taking I/O waiting as an example, one
option is to record the lengths of related system calls, but
such information is not precise: it is possible that most
of the time is indeed spent on waiting for I/Os to com-
plete; it is possible that much time is spent on in-kernel
processing, such as data copy; it is also possible that in
the kernel, this system call contends with another thread
(e.g., write to the same file). Recording at lower layers,
on the other hand, can provide precise information.

Following this observation, wPerf uses kprobe [41] to
record key waiting events in the kernel, with one excep-
tion about busy waiting. Since we implement wPerf on
Linux, next we first present the background about how
Linux performs scheduling and interrupt handling and
then present what information wPerf records.

Background. A thread can be in different states: a
thread is running if it is being executed on a CPU; a
thread is runnable if it is ready to run but has not been
scheduled yet, maybe because all CPUs are busy; a
thread is blocked if it is waiting for some events and thus
cannot be scheduled. While an application can block or
unblock a thread through corresponding system calls, OS
scheduling module decides which threads to run.

When an interrupt is triggered, CPU jumps to the pre-
defined interrupt request (IRQ) function, preempting the
current thread running on the CPU. An IRQ function is
usually not executed in a thread context, so it is not con-
trolled by scheduling, which means wPerf has to record

IRQ events as well as scheduling events. An IRQ func-
tion can wake up a blocked thread: this is common when
the thread is waiting for I/Os to complete.

Recording scheduling events. For CPU scheduling,
wPerf records two key functions: switch to and
try to wake up. try to wake up changes a thread’s state
from blocked to runnable, which can be invoked in func-
tions like pthread mutex unlock or when an I/O com-
pletes (usually in an IRQ). For this function, wPerf
records the timestamp, the thread ID of the thread to be
woken up, and the entity (either a thread or an IRQ) that
invokes the wakeup. switch to switches out a thread
from a CPU and switches in another. The thread that is
switched in must be in running state; the one that gets
switched out could be either in runnable state, which
means this switch is caused by CPU scheduling, or in
blocked state, which means this switch is caused by
events like pthread mutex lock or issuing an I/O. wPerf
records the timestamp and the states of both threads.

Recording IRQ events. wPerf intercepts IRQ func-
tions to record its starting time, ending time, its type,
and which CPU it runs. To know IRQ type, wPerf in-
tercepts soft IRQ functions defined in interrupt.h, each
for a specific type of device. By utilizing the function
name, wPerf can know what type of hardware device
triggers the interrupt, but this approach has a limitation
that it cannot distinguish different instances of the same
type of devices. This problem could be solved if wPerf
can record the IRQ number, which is unique to each de-
vice, but unfortunately in Linux, IRQ number is not ob-
servable to every IRQ function. Modifying Linux kernel
could solve this problem, but our current implementation
tries to avoid kernel modification for portability.

Recording information for I/O devices. wPerf mod-
els an I/O device as a pseudo I/O thread (Section 3.3).
To build the wait-for graph, wPerf needs to know 1)
how long a normal thread waits for an I/O thread and
2) how long an I/O thread waits for a normal thread. The
recorded IRQ events can only answer the first question.

Since we cannot instrument the internal execution of
a hardware device, we have designed an approximate so-
lution to answer the second question: we assume an I/O
device is waiting during its idle time; we draw an edge
from the device to each normal thread that has issued an
I/O to this device; and we distribute the device’s idle time
to different edges based on how much data each thread
sends to the device, meaning the device is waiting for
new I/Os from these threads in its idle time. To imple-
ment this mechanism, we need to estimate the idle time
of each device.

For a disk, we record its used bandwidth and I/Os
per second (IOPS). We use the bandwidth to estimate
the disk’s idle time under sequential I/Os and use the
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IOPS to estimate its idle time under random I/Os. The
case about network interface card (NIC) is more compli-
cated because its capacity is not only limited by the NIC
device, but also by the network infrastructure or the re-
mote service. Our current implementation uses the NIC’s
maximal bandwidth as an upper bound to estimate the
NIC’s idle time. If the user has a better knowledge about
the link bandwidth or the capacity of the remote service,
wPerf can use these values for a better estimation.

Recording information for busy waiting. From the
OS point of view, a thread that is performing busy wait-
ing is in running state but logically it is in blocked state.
Since such waiting and waking up do not involve ker-
nel functions, recording events in kernel cannot capture
them. To make things worse, there is no well-defined in-
terface for such mechanism: some applications use spin-
lock provided by pthread while others may implement
their own mechanisms (e.g., MySQL [51]). Previous
studies have shown that, although such mechanisms are
error prone, they are quite popular [73].

wPerf has no perfect solution to this problem. Instead,
it relies on the developers’ knowledge. wPerf provides
two tracing functions before spin and after spin to de-
velopers, so that they can insert these tracing functions
at appropriate places. In practice, a developer does not
need to trace every of such functions. Instead, he/she can
first find frequent ones with on-CPU analysis tools, and
then instrument these frequent ones.

Removing false wakeup. A false wakeup is a phe-
nomenon that a thread is woken up but finds its condi-
tion to continue is not satisfied, so it has to sleep again.
For example, a ticket selling thread A may broadcast to
threads B and C, claiming it has one ticket. In this case,
only one of B and C can get the ticket and continue. Sup-
pose B gets the ticket: though wPerf can record an event
A waking up C, adding weight to edge C→ A is mislead-
ing, because C’s condition to continue is not satisfied.

Similar as the case for busy waiting, wPerf provides
a tracing function to developers, which can declare a
wakeup event as a false one. The developer can insert it
after a wakeup, together with a condition check. During
analysis, wPerf will remove the pair of wakeup and wait-
ing events that encapsulate this declaration. Once again,
the developer only needs to identify significant ones.

Recording call stacks. Developers need to tie events
to source code to understand the causes of waiting. For
this purpose, wPerf utilizes perf [60] to sample the call
stacks of the scheduling and IRQ events as mentioned
above. By comparing the timestamp of a call stack
with the timestamps of recorded events, wPerf can af-
filiate a call stack to an edge in the wait-for graph to
help developers understand why each edge occurs. Note

that getting accurate call stacks requires additional sup-
ports, such as enabling the sched schedstats feature in
kernel and compiling C/C++ applications with the -g
option. For Java applications, we need to add the -
XX:+PreserveFramePointer option to the JVM and at-
tach additional modules like perf-map-agent [61] or
async-profiler [6] (wPerf uses perf-map-agent). We are
not aware of supports for Python applications yet.

Minimizing recording overhead. To reduce record-
ing overhead, we apply two classic optimizations: 1)
to reduce I/O overhead, the recorder buffers events and
flushes the buffers to trace files in the background; 2)
to avoid contentions, the recorder creates a buffer and a
trace file for each core. Besides, we meet two challenges.

First, recording busy waiting and false wakeup events
can incur a high overhead in a naive implementation.
The reason is that these events are recorded in the user
space, which means a naive implementation needs to
make system calls to read the timestamp and the thread
ID of an event: frequent system calls are known to have
a high overhead [65]. To avoid reading timestamps from
the kernel space, we use the virtual dynamic shared ob-
ject (vDSO) technique provided by Linux to read current
time in the user space; to avoid reading thread ID from
the kernel space, we observe the pthread library pro-
vides a unique pthread ID (PID) for each thread, which
can be retrieved in the user space. However, recording
only PIDs is problematic, because PID is different from
the thread ID (TID) used in the kernel space. To cre-
ate a match between such two types of IDs, the recorder
records both PID and TID for the first user-space event
from each thread and records only PIDs afterwards.

Second, Linux provides different types of clocks, but
the types supported by vDSO and perf have no overlap,
so we cannot use a single type of clock for all events. To
address this problem, the recorder records two clock val-
ues for each kernel event, one from the vDSO clock and
one from the perf clock. This approach allows us to tie
perf call stacks to kernel events and to order user-space
events and kernel events. However, this approach can-
not create an accurate match between perf call stacks and
user-space events, so we decide not to record call stacks
for user-space events: this is fine since the user needs
to annotate these events anyway, which means he/she al-
ready knows the source code tied to such events.

4.2 Building the wait-for graph
Based on the information recorded by the recorder,
wPerf’s analyzer builds the wait-for graph and computes
the weights of edges offline in two steps.

In the first step, the analyzer tries to match wait
and wakeup events. A wait event is one that changes
a thread’s state from “running” or “runnable” to
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1 input: w is a waiting segment.
2 w.start: starting time of this segment
3 w.end: ending time of this segment
4 w.ID: thread ID of this segment
5 w.wakerID: the thread that wakes up this

segment

7 function cascade(w)
8 add weight (w.end-w.start) to edge

w.ID→ w.wakerID
9 find all waiting segments in w.wakerID

that overlap with [w.start w.end)
10 for each of these segments
11 if segment.start < w.start
12 segment.start = w.start
13 if segment.end > w.end
14 segment.end = w.end
15 cascade(segment)

Figure 4: Pseudocode of cascaded re-distribution.

“blocked”; a wakeup event is one that changes a thread’s
state from “blocked” to “runnable”. For each wait event,
the analyzer searches for the next wakeup event that has
the waiting thread’s ID as the argument.

Such matching of wait and wakeup events can nat-
urally break a thread’s time into multiple segments, in
either “running/runnable” or “waiting” state. The ana-
lyzer treats running and runnable segments in the same
way in this step and separates them later. At the end of
this step, the analyzer removes all segments which con-
tain the false wakeup event, by removing the wakeup and
wait events that encapsulate the event.

In the next step, the analyzer builds the wait-for graph
using the cascaded re-distribution algorithm (Figure 3).
As shown in Figure 4, the analyzer performs a recur-
sive algorithm for each waiting segment: it first adds
the length of this segment to the weight of edge w.ID→
w.wakerID (line 8) and then checks whether thread wak-
erID is waiting during the same period of time (line 9).
If so, the analyzer recursively calls the cascade function
for those waiting segments (line 15). Note that the wait-
ing segments in wakerID will be analyzed as well, so
their lengths are counted multiple times in the weights
of the corresponding edges. This is what cascaded re-
distribution tries to achieve: nested waiting segments
that cause multiple threads to wait should be emphasized,
because optimizing such segments can automatically re-
duce waiting time of multiple threads.

After building the wait-for graph, the analyzer applies
the algorithms described in Section 3: the analyzer first
applies the Strongly Connected Component (SCC) algo-
rithm to divide the graph into multiple SCCs and finds
SCCs with no outgoing edges: an SCC with no outgoing
edges is either a knot or a sink. If a knot is still complex,
the analyzer repeatedly removes the edge with the low-
est weight, until the knot becomes disconnected. Then
the analyzer identifies knots or sinks again. The analyzer
repeats this procedure till the developer finds the knot

understandable. Finally, the analyzer checks whether the
remaining threads contain any runnable segments: if so,
the application may benefit from using more CPU cores
or giving higher priority to these threads.

The analyzer incorporates two optimizations:

Parallel graph building. Building the wait-for graph
could be time consuming if the recorded information
contains many events. The analyzer parallelizes the com-
putation of both steps mentioned above. In the first step,
the analyzer parallelizes the matching of events and sep-
aration of segments: this step does not require synchro-
nization because the event list is read-only and the output
segment information is local to each analyzer thread. In
the second step, the analyzer parallelizes the cascaded re-
distribution for each segment: this phase does not require
synchronization either because the segmentation infor-
mation becomes read-only and we can maintain a local
wait-for graph for each analyzer thread and merge all lo-
cal graphs when all threads finish.

Merging similar threads. Many applications create
a number of threads to execute similar kinds of tasks.
wPerf merges such threads into a single vertex to sim-
plify the graph. To identify similar threads, wPerf’s uti-
lizes the recorded call stacks: the analyzer merges two
threads if their distributions of call stacks are similar.
Note that in the original wait-for graph, a vertex should
never have a self-loop because a thread should not wait
for itself, but after merging similar threads, a self-loop
can happen if similar threads wait for each other.

4.3 Using wPerf

First, the user needs to run the target application and use
the wPerf recorder to record events. wPerf provides com-
mands to start and stop recording at any time. If the user
observes significant busy waiting or false wakeup during
the experiment, he/she should annotate those events and
re-run the experiment.

Then the user needs to run the analyzer on the recorded
events. The analyzer provides both a graphic output and
a text output to present the bottleneck. In this step, the
user can set up the termination condition of knot refine-
ment. By default, the refinement terminates when the re-
maining graph is either a single vertex or a simple cycle.
In addition, the user can instruct the refinement to termi-
nate when the smallest weight in the remaining graph is
larger than a threshold. The user should set this threshold
based on how much improvement he/she targets, since
the weight of an edge represents the upper bound of the
improvement one may gain by optimizing the edge.

In the third step, the user needs to investigate the knot
to identify optimization opportunities. To facilitate such
investigation, wPerf allows the user to query the call
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Problem Speedup Known fixes? Involved techniques
HBase [5] Blocking write 2.74× Yes VI, M-SHORT, M-SIM, FW
ZooKeeper [34, 79] Blocking write 4.83× No VI
HDFS [29, 64] Blocking write 2.56× Yes VI, M-SIM
NFS [55] Blocking read 3.9× No VI, M-SIM
BlockGrace [10, 72] Load imbalance 1.44× No M-SHORT, M-SIM
Memcached [47] Lock contention 1.64× Partially VI, M-SIM
MySQL [51] Lock contention 1.42× Yes VI, M-SIM, BW

Table 1: Summary of case studies. (Speedup = ImprovedT hroughput
OriginalT hroughput ; VI: virtual I/O threads; M-SHORT: merging short-

term threads; M-SIM: merging similar threads; BW: tracing busy waiting; FW: tracing false wakeup)

stacks attached to each edge to understand how each edge
is formed. This step requires the user’s efforts, and our
experience is that for one who is familiar with the target
application, this step usually takes no more than a few
hours. One reason that simplifies this step is that many
edges are caused by a thread waiting for new tasks from
another thread (e.g., Disk→ B in Figure 1), which are
usually not optimizable.

Finally, the user needs to optimize the application.
Similar as most other profiling tools, wPerf does not pro-
vide any help in this step. Based on our experience (Sec-
tion 5), we have summarized a few common problems
and potential solutions, most of which are classic: for
blocking I/Os, one could consider using non-blocking
I/Os or batching I/Os; for load imbalance, one could con-
sider fine-grained task scheduling; for lock contention,
one could consider fine-grained locking. However, since
most of such optimizations will affect the correctness of
the application, the user needs to investigate whether it
is possible and how to apply them. In our case studies,
the required user’s efforts in this step vary significantly
depending on the optimization, ranging from a few min-
utes to change a configuration option to a few weeks to
re-design the application.

Taking the application in Figure 1 as an example,
wPerf will output a wait-for graph like Figure 2, in which
B and the disk form a knot. The user can then query the
call stacks of edges B→ Disk and Disk→ B; wPerf will
show that B→ disk is caused by the sync call in thread
B and Disk→ B is caused by the disk waiting for new
I/Os from B. The user will realize that Disk→ B is not
optimizable and thus will focus on the sync call.

5 Case Study

To verify the effectiveness of wPerf, we apply wPerf to a
number of open-source applications (Section 5.1): we try
to optimize the events reported by wPerf and see whether
such optimization can lead to improvement in through-
put. We find some problems are already fixed in newer
versions of the applications or online discussions, which

can serve as a direct evidence of wPerf’s accuracy. Ta-
ble 1 summarizes our case studies. Note that we have
avoided complicated optimizations because how to opti-
mize is not the contribution of wPerf, and thus there may
exist better ways to optimize the reported problems.

Furthermore, as a comparison, we run three existing
tools on the same set of applications and present their
reports (Section 5.2). Finally, we report the overhead of
online recording and offline analysis (Section 5.3).

We run all experiments in a cluster with 21 machines:
one machine is equipped with two Intel Xeon E5-2630 8-
core processors (2.4GHz), 64GB of memory, and a 10Gb
NIC; 20 machines are equipped with an Intel Xeon E3-
1231 4-core processor (3.4GHz), 16GB of memory, and
a 1Gb NIC each.

For each experiment, we record events for 90 sec-
onds. We set the analyzer to terminate when the re-
sult graph is a single vertex or a simple cycle or when
the lowest weight of its edges is larger than 20% of the
recording time (i.e., 18). We visualize the wait-for graph
with D3.js [17], and we use solid lines to draw edges
whose weights are larger than 18 and use dashed lines to
draw the other edges. Since D3.js cannot show a self-
loop well, we use “*” to annotate threads with self-loops
whose weights are larger than 18. We record all edge
weights in the technical report [78]. wPerf uses a thread
ID to represent each thread, and for readability, we man-
ually check the call stacks of each thread to find its thread
name and replace the thread ID with the thread name. We
set perf sampling frequency to be 100Hz, which allows
perf to collect sufficient samples with a small overhead.

5.1 Effectiveness of wPerf

HBase. HBase [5] is an open-source implementation
of Bigtable [12]. It provides a key-value like interface to
users and stores data on HDFS. We first test HBase 0.92
with one RegionServer, which runs on HDFS with three
DataNodes. We run a write workload with a key size of
16 bytes and a value size of 1024 bytes.

With the default setting, HBase can achieve a through-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    535



Handler*

ParallelGC*

VMThread

RespProc(Log)

NIC ConcurrentGC

LogRoller

RespProc(MemStore)

Streamer(MemStore)

IPC Client(HDFS)

CacheFlusher

ParallelCMS

Streamer(Log)

Bottleneck

(a) HBase with 10 handlers (default setting)

Handler*

ParallelGC*

VMThread

RespProc(Log)

NIC

ConcurrentGC

LogRoller

IPC Client(HDFS)

CacheFlusher

Streamer(Log)

RespProc(MemStore)

Streamer(MemStore)

ParallelCMS

Bottleneck

(b) HBase with 60 handlers

Figure 5: Wait-for graphs of HBase. For readability, we
sort edges by their weights and only show the top 40.

put of 9,564 requests per second (RPS). Figure 5a shows
the wait-for graph, in which wPerf identifies a significant
cycle among HBase Handler threads, HDFS Streamer
threads, the NIC, and HDFS ResponseProcessor threads.
This cycle is created for the following reason: the Han-
dler threads flushes data to the Streamer threads; the
Streamer threads send data to DataNodes through the
NIC; when the NIC receives the acknowledgements from
the DataNodes, it wakes up the ResponseProcessors; and
finally the ResponseProcessors notify the Handlers that
a flushing is complete. The blocking flushing pattern,
i.e., the Handlers must wait for notification of flushing
complete from the ResponseProcessor, is the fundamen-
tal reason to create the cycle. The HBase developers
are aware that blocking flush is inefficient, so they cre-
ate multiple Handlers to flush in parallel, but the default
number of 10 Handlers is too small on a modern server.

We increase the number of Handlers and HBase can
achieve a maximal throughput of 13,568 RPS with 60
Handlers. Figure 5b shows the new wait-for graph, in
which wPerf identifies the Handlers as the main bottle-
neck. Comparing to Figure 5a, the edge weight of Han-
dler→ ResponseProcessor drops from 87.4 to 16.5: this
is because overlapping more Handlers make them spend
more time in runnable state. The setting of Handler count
has been discussed online [27, 28].
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Figure 6: Wait-for graphs and throughput of ZooKeeper.

In Figure 5b, wPerf identifies a significant self-loop
inside Handlers. Such waiting is caused by contentions
among Handlers. We find that HBase 1.28 has incorpo-
rated optimizations to reduce such contentions and our
experiments show that it can improve the throughput to
26,164 RPS. Such results confirm the report of wPerf:
fixing the two bottlenecks reported by wPerf can bring a
total of 2.74× speedup.

ZooKeeper. ZooKeeper [34, 79] is an open-source im-
plementation of Chubby [11]. We evaluate ZooKeeper
3.4.11 with a mixed read-write workload and 1KB key-
value pairs. As shown in Figure 6c, we find a perfor-
mance problem that even adding 0.1% write can signif-
icantly degrade system throughput from 102K RPS to
about 44K RPS. We use wPerf to debug this problem.

As shown in Figure 6a, for the read-only workload,
wPerf identifies NIC as the major bottleneck, which is
reasonable because the NIC’s max bandwidth is 1Gbps:
this is almost equal to 102K RPS. For the workload with
0.1% write (Figure 6b), however, wPerf identifies the
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key bottleneck is a knot consisting of the SyncThread
in ZooKeeper, the disk, and the journaling thread in the
file system. As shown in the knot, the disk spends a lot
of time waiting for the other two, which means the disk’s
bandwidth is highly under-utilized.

We investigate the code of SyncThread. SyncThread
needs to log write requests to disk and perform a block-
ing sync operation, which explains why it needs to wait
for the disk. Sync for every write request is obviously in-
efficient, so ZooKeeper performs a classic batching op-
timization that if there are multiple outstanding requests,
it will perform one sync operation for all of them. In
ZooKeeper, the number of requests to batch is limited by
two parameters: one is a configuration option to limit
the total number of outstanding requests in the server
(default value 1,000), which is used to prevent out of
memory problems; the other is a hard-coded 1,000 limit,
which means the SyncThread will not batch more than
1,000 requests. However, we find both limits count both
read and write requests, so if the workload is dominated
by reads, the SyncThread will only batch a small number
of writes for each sync, leading to inefficient disk access.

We try a temporary fix to raise this limit to 10,000,
by modifying both the configuration file and the source
code. As shown in Figure 6c, such optimization can im-
prove ZooKeeper’s throughput by up to 4.83X. However,
a fixed limit may not be a good solution in general: if the
workload contains big requests, a high limit may cause
out of memory problems; if the workload contains small
requests, a low limit is bad for throughput. Therefore,
it may be better to limit the total size of outstanding re-
quests instead of limiting the total number of them.

HDFS NameNode. HDFS [29, 64] is an open-source
implementation of Google File System [23]. It incorpo-
rates many DataNodes to store file data and a NameN-
ode to store system metadata. Since NameNode is well-
known to be a scalability bottleneck [63], we test it with
a synthetic workload [62]: we run MapReduce TeraSort
over HDFS 2.7.3, collect and analyze the RPC traces to
NameNode, and synthesize traces to a larger scale.

With the default setting, NameNode can reach a max-
imal throughput of 3,129 RPCs per second. As shown
in Figure 7, wPerf identifies the bottleneck is a cycle be-
tween Handler threads and the disk. Our investigation
shows that its problem is similar to that of ZooKeeper:
Handler threads need to log requests to the disk and to
improve performance, NameNode batches requests from
all Handlers. Therefore, the number of requests to be
batched is limited by the number of Handlers. The
default setting of 10 Handlers is too small to achieve
good disk performance. By increasing the number of
Handlers, NameNode can achieve a throughput of about
8,029 RPCs per second with 60 handlers. This problem
has been discussed online [52, 53].
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Figure 7: Wait-for graphs of HDFS NameNode.
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Figure 8: Wait-for graph of running grep over NFS.

NFS. Networked File System (NFS) [55] is a tool to
share files among different clients. We set up an NFS
server 3.2.29 on CloudLab [15] and set up one NFS client
2.7.5 on our cluster. We test its performance by storing
Linux 4.1.6 kernel source code on it and running “grep”.

As shown in Figure 8, wPerf identifies a cycle among
the grep process, the kernel worker threads, and the NIC.
The reason is that grep performs blocking read opera-
tions. As a result, grep needs to wait for data from the
receiver threads, and the sender threads need to wait for
new read requests from grep. This problem can be opti-
mized by either performing reads in parallel or prefetch-
ing data asynchronously. We create two NFS instances,
distribute files into them, and run eight grep processes in
parallel: this can improve the throughput by 3.9×.

BlockGrace. BlockGrace [10, 72] is an in-memory
graph processing system. It follows the classic Bulk Syn-
chronous Parallel (BSP) model [68], in which an algo-
rithm is executed in multiple iterations: in each itera-
tion, the algorithm applies the updates from the last iter-
ation and generates updates for the next iteration. We test
BlockGrace with its own Single-Source Shortest Path
(SSSP) benchmark and with 32 worker threads.

wPerf identifies a cycle between the main thread and
the computation threads. Since the wait-for graph is sim-
ple, consisting of only these two types of threads, we
do not show it here. Our investigation shows the pri-
mary reason is the main thread needs to perform initial-
ization work for the computation threads, so the compu-
tation threads need to wait for initialization to finish and
the main thread then waits for all computation threads
to finish. To solve this problem, we let the computa-
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Figure 9: Changing the termination condition for HBase.

tion threads perform initialization in parallel: this can
improve the throughput by 34.19%.

Then we run wPerf again and find the cycle still exists,
but the weight of (computation thread→ main thread) is
reduced. Our investigation shows the secondary reason is
the load imbalance among computation threads. To alle-
viate this problem, we apply fine-grained task schedul-
ing and implement long running computation threads
(original BlockGrace creates new computation threads in
each iteration): these techniques can further improve the
throughput by 17.82% (44.14% in total).

Memcached and MySQL. wPerf identifies con-
tentions in these two applications. Since contention is
well explored, we briefly describe our experience here
and one can refer to the technical report [78] for details.

When running the memaslap benchmark [46] on
Memcached 1.4.36, wPerf identifies a knot consisting
of worker threads, which is mainly caused by lock con-
tention on the LRU list and on the slab memory allo-
cator. Optimizing them with fine-grained locking can
improve the throughput from 354K RPS to 547K RPS.
Memcached 1.5.2 has reduced LRU-related contention
and can reach a throughput of 527K RPS; optimizing the
slab allocator can improve its throughput to 580K RPS.

When running the TPC-C benchmark [67] over
MySQL 5.7.20 [51] on RAM-disk, wPerf identifies a
knot consisting of the worker threads, which is caused
by contentions among worker threads. These contentions
are caused by multiple reasons, and we are able to reduce
the contention on the buffer pages by allocating more
pages: this can improve the throughput from 2,682 trans-
actions per second (TPS) to 3,806 TPS. Another major
reason is contention on rows, and since previous works
have studied this problem [70, 71], we do not continue.

Effects of termination condtion. The user can termi-
nate the knot refinement when the minimal weight of
the edges in the knot is larger a threshold. We use
threshold 18 in previous experiments and Figure 9 uses

COZ Flame graph SyncPerf
HBase - Yes -
ZooKeeper - No -
HDFS - No -
NFS No Yes No
BlockGrace-1 Yes Yes No
BlockGrace-2 No Yes No
Memcached Maybe No Yes
MySQL Maybe No *

Table 2: Can other tools identify similar problems? (- the
tool does not support Java; * experiment reports errors.)

HBase as an example to study how this threshold affects
wPerf. The gap between the top line (i.e., total number of
edges) and the middle line (i.e., number of edges whose
weights are larger than the termination threshold) rep-
resents the number of edges eliminated because of their
small weights. As one can see, only using weights as a
heuristic can eliminate many edges, but even with a large
threshold, there are still 20-30 edges remaining. The gap
between the middle line and the bottom line (i.e., number
of edges wPerf reports as bottleneck) represents the num-
ber of edges eliminated by knot identification, i.e, these
edges have large weights but are outside of the knot. By
combining weights (i.e., cascaded re-distribution) and
knot identification, wPerf can narrow down the search
space to a small number of edges. For other applica-
tions, we observe the similar trend in ZooKeeper, HDFS
NameNode, NFS, and MySQL experiments; for Block-
Grace and Memcached experiments, we do not observe
such trend because their wait-for graphs are simple and
need little refinement.

Summary. By utilizing wPerf, we are able to identify
bottleneck waiting events in a variety of applications and
improve their throughput, which confirms the effective-
ness of wPerf. Though most of the problems we find are
classic ones, they raise some new questions: many prob-
lems are caused by inappropriate setting (e.g., number
of threads, number of outstanding requests, task granu-
larity, etc.) and no fixed setting can work well for all
workloads, so instead of expecting the users to find the
best setting, it may be better for the application to change
such setting adaptively according to the workload.

5.2 Comparison to existing tools

As a comparison, we test one on-CPU analysis tool
(COZ) and two off-CPU analysis tools (perf and
SyncPerf) on the same set of applications. Since COZ
and SyncPerf currently do not support Java, we run them
only on NFS, BlockGrace, Memcached, and MySQL.
We summarize their reports in Table 2 and record all their

538    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



detailed reports in the technical report [78].

COZ. To compute how much improvement we can
gain by optimizing a certain piece of code, COZ [16] vir-
tually speeds up the target piece of code by keeping its
speed unchanged and slowing down other code when the
target code is running. After the experiment is finished,
COZ adjusts the measured throughput to compensate for
this slowdown.

COZ is designed for on-CPU analysis, and when we
try to use it to analyze off-CPU events, we meet two
problems: first, COZ’s implementation can only virtu-
ally speed up execution on the CPU but cannot virtually
speed up I/O devices and thus it does not report any bot-
tlenecks related to I/Os. For example, in the grep over
NFS experiment, COZ suggests us to optimize code in
kwset.c, which is grep’s internal data structure, but does
not report anything related to I/Os. However, we believe
there is nothing fundamental to prevent COZ from im-
plementing virtual speed up for I/O devices. The second
problem, however, is fundamental: the virtual speed up
idea does not work well with waiting events, because in
many cases, slowing down other events will automati-
cally slow down a waiting event, which breaks COZ’s
idea to keep the speed of the target event unchanged.
Taking the application in Figure 1 as an example, sup-
pose we want to investigate how much improvement we
can gain by removing the “sync” call: following COZ’s
idea, we should keep the length of “sync” unchanged and
slow down the disk write, but this will automatically in-
crease the length of “sync”. For this reason, we do not
find an accurate way to apply COZ to off-CPU events.

That said, we find on-CPU and off-CPU analysis
are not completely orthogonal, so COZ can provide
hints to off-CPU analysis in certain cases. For exam-
ple, in the BlockGrace experiment, the first bottleneck
(BlockGrace-1) is caused by the computation threads
waiting for the main thread to perform initialization:
while wPerf identifies this bottleneck as a knot consist-
ing of the main thread and the computation threads, COZ
identifies that the initialization code is worth optimizing.
Both reports can motivate the user to parallelize the ini-
tialization phase. The second bottleneck (BlockGrace-
2), however, is caused by load imbalance among worker
threads. While wPerf identifies a knot again, which mo-
tivates us to improve load balance, COZ reports the code
in the computation threads is worth optimizing, which is
certainly correct but misses the opportunity to improve
load balance. Lock contention (e.g., in Memcached and
MySQL) is another example: COZ can identify that ex-
ecution in a critical section is worth optimizing. In this
case, an experienced programmer may guess that reduc-
ing contention with fine-grained locking may also help,
but without additional information, such guess may be
inaccurate because long execution in the critical section
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can create a bottleneck as well even if there is almost no
contention.

In summary, COZ can identify bottleneck on-CPU
events, which wPerf cannot identify, but when regard-
ing off-CPU events, COZ can at most provide some hints
while wPerf can provide more accurate reports. There-
fore, COZ and wPerf are mainly complementary.

Off-CPU flame graph. perf’s off-CPU flame
graph [57] can output all calls stacks causing wait-
ing and aggregate them based on their lengths. However,
it does not tell which events are important. One can
focus on long events: for HBase, grep over NFS, and
BlockGrace, the longest events happen to be the same as
the ones reported by wPerf; for the others, the longest
ones are not the same as the ones reported by wPerf, and
such unimportant but long waiting are usually caused
by threads waiting for some rare events, such as JVM’s
garbage collection threads or threads waiting for new
connections. Figure 10 shows an example, in which
one can see that the event reported by wPerf is not the
longest one.

SyncPerf. SyncPerf [2] reports long or frequent lock
contentions. For Memcached, it reports similar prob-
lems as wPerf, but for the other systems, it does not:
for grep over NFS, SyncPerf does not report anything
because grep does not have contention at all; for Block-
Grace, SyncPerf reports asymmetric contention, but the
key problem is imbalance among threads. We fail to
run SyncPerf with MySQL, and the SyncPerf develop-
ers confirmed that it is probably because MySQL uses
some functions SyncPerf does not fully implement. Note
that the SyncPerf paper reported contentions in MySQL,
so our problem may be caused by different versions of
MySQL or glibc, etc. and if fixed, we believe SyncPerf
and wPerf should identify similar bottlenecks.

5.3 Overhead

Table 3 reports overhead of wPerf. At runtime, wPerf
incurs an average overhead of 5.1% for recording
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Slowdown Trace size Analysis
HBase 2.84% 1.4GB 110.6s
ZooKeeper 3.37% 393.9MB 23.8s
HDFS 3.40% 64.8MB 10.9s
NFS 0.77% 3.6MB 5.1s
BlockGrace 8.04% 110.7MB 14.7s
Memcached 2.43% 2.7GB 160.0s
MySQL 14.64% 7.4GB 271.9s

Table 3: Overhead of wPerf (recording for 90 seconds)

events. For BlockGrace and MySQL, the two applica-
tions with relatively large overhead, we further decouple
the sources of their overhead: for BlockGrace, recording
events in kernel and recording call stacks with perf in-
cur 3.1% and 4.9% overhead respectively; for MySQL,
recording events in kernel, recording call stacks with
perf, and recording events in user space incur 0.5%,
4.2%, and 9.9% overhead respectively.

As shown in Table 3, the trace size and analysis time
vary significantly depending on the number of waiting
events in the application; the analysis time further de-
pends on the number of nested waiting events. wPerf’s
parallel analysis helps significantly: for example, for
HBase, with 32 threads, it reduces analysis time from
657.1 seconds to 110.6 seconds.

Besides, wPerf needs users’ efforts to insert tracing
functions for false wakeup and busy waiting events: we
inserted 7 lines of code in HBase to trace false wakeup
events and 12 lines of code in MySQL to trace busy wait-
ing events; we do not modify the other applications since
these two events are not significant in them.

6 Related Work

Performance analysis is a broad area: some works focus
on identifying key factors to affect throughput [20, 58,
60] and others focus on latency-related factors [13, 33];
some works focus on a few abnormal events [7, 43, 45,
77] and others focus on factors that affect average per-
formance [13, 20, 21, 37, 58, 60]. wPerf targets iden-
tifying key factors that affect the average throughput of
the application. Therefore, this section mainly discusses
related work in this sub-area.

As mentioned earlier, tools in this sub-area can be cat-
egorized into on-CPU analysis and off-CPU analysis.

On-CPU analysis. For single-threaded applications,
traditional performance profilers measure the time spent
in different call stacks and identify functions that con-
sume most time. Following this idea, a number of per-
formance profilers (e.g., perf [60], DTrace [20], opro-
file [58], yourkit [74], gprof [25, 26], etc.) have been
developed and applied in practice. Two approaches are

widely used: the first is to periodically sample the call
stack of the target application and use the number of sam-
ples spent in each function to approximate the time spent
in each function; the second is to instrument the target
application and trace certain function calls [44, 54].

For multi-threaded programs, a number of works try to
identify the critical path of an algorithm [22, 30, 31, 48–
50, 59, 66] and pieces of code that often do not execute in
parallel [35, 38, 39]. COZ [16] can further estimate how
much improvement we can gain by optimizing a certain
piece of code, as discussed in Section 5.2.

Off-CPU analysis. To identify important waiting
events, many existing tools (e.g., perf [60], yourkit [74],
jprofiler [36], etc.) can rank waiting events based on their
aggregated lengths. However, as shown in Section 2,
long waiting events are not necessarily important.

A number of tools design metrics to identify impor-
tant lock contentions [2, 8, 18, 24, 75]. For example,
Freelunch [18] proposes a metric called “critical section
pressure” to identify important locks; SyncProfiler [75]
proposes a graph-based solution to rank critical sections;
SyncPerf [2] considers both the frequency and length of
contentions. However, they are not able to identify prob-
lems unrelated to contention.

SyncProf [75] and SyncPerf [2] can further identify
the root cause of a problem and make suggestions about
how to fix the problem. Similar as many other tools,
wPerf does not provide such diagnosis functionality.

7 Conclusion and Future Work

To identify waiting events that limit the application’s
throughput, wPerf uses cascaded re-distribution to com-
pute the local impact of a waiting event and uses wait-for
graph to compute whether such impact can reach other
threads. Our case studies show that wPerf can identify
problems other tools cannot find. In the future, we plan to
extend wPerf to distributed systems, by connecting wait-
for graphs from different nodes.
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Sledgehammer: Cluster-fueled debugging

Andrew Quinn, Jason Flinn, and Michael Cafarella
University of Michigan

Abstract
Current debugging tools force developers to choose

between power and interactivity. Interactive debuggers
such as gdb let them quickly inspect application state
and monitor execution, which is perfect for simple bugs.
However, they are not powerful enough for complex bugs
such as wild stores and synchronization errors where de-
velopers do not know which values to inspect or when to
monitor the execution. So, developers add logging, insert
timing measurements, and create functions that verify in-
variants. Then, they re-run applications with this instru-
mentation. These powerful tools are, unfortunately, not
interactive; they can take minutes or hours to answer one
question about a complex execution, and debugging in-
volves asking and answering many such questions.

In this paper, we propose cluster-fueled debugging,
which provides interactivity for powerful debugging
tools by parallelizing their work across many cores in a
cluster. At sufficient scale, developers can get answers to
even detailed queries in a few seconds. Sledgehammer is
a cluster-fueled debugger: it improves performance by
timeslicing program execution, debug instrumentation,
and analysis of results, and then executing each chunk
of work on a separate core. Sledgehammer enables pow-
erful, interactive debugging tools that are infeasible to-
day. Parallel retro-logging allows developers to change
their logging instrumentation and then quickly see what
the new logging would have produced on a previous ex-
ecution. Continuous function evaluation logically evalu-
ates a function such as a data-structure integrity check
at every point in a program’s execution. Retro-timing
allows fast performance analysis of a previous execu-
tion. With 1024 cores, Sledgehammer executes these
tools hundreds of times faster than single-core execution
while returning identical results.

1 Introduction
Debugging is onerous and time-consuming, compris-

ing roughly half of all development time [24]. It involves
detective work: using the tools at her disposal, a devel-
oper searches a program execution for clues about the
root cause of correctness or performance problems.

Current debugging tools force developers to choose
between power and interactivity. Tools such as gdb
are interactive: developers can inspect program values,

follow execution flow, and use watchpoints to monitor
changes to specific locations. For many simple bugs, in-
teractive debuggers like gdb allow developers to quickly
identify root causes by asking and answering many low-
level questions about a particular program execution.

Yet, complex bugs such as wild stores, synchroniza-
tion errors, and other heisenbugs are notoriously hard
to find. Consider a developer trying to uncover the
root cause of non-deterministic data corruption in a Web
server. She cannot use gdb because she does not yet
know which values to inspect or which part of the server
execution to monitor. So, she employs more heavy-
weight tools. She adds logging message and sprinkles
functions to verify invariants or check data structures at
various points in the server code.

Custom tools like logging and invariant checks are
powerful, but they are definitely not interactive. First, the
developer must execute a program long enough for a bug
to occur. Complex bugs may not be evinced with a sim-
ple test case; e.g., rare heisenbugs may require lengthy
stress testing before a single occurrence. Second, de-
tailed logging and custom predicates slow down program
execution, sometimes by an order of magnitude. This
means that each new question requires a long wait until
an answer is delivered, and diagnosing a root cause often
requires asking many questions.

Ideally, our developer would have tools that are both
powerful and interactive. Then, she could ask complex
questions about her server execution and receive an an-
swer in a few seconds. Yet, the tradeoff seems fundamen-
tal: these powerful tools are time-consuming precisely
because they require substantial computation to answer
complex questions about long program executions.

Cluster-fueled debugging solves this dilemma: it pro-
vides interactivity for complex tools by parallelizing
their work across many cores in a compute cluster. With
sufficient scale, developers see answers to even detailed
queries in a few seconds, so they can quickly iterate to
gather clues and identify a root cause.

Sledgehammer is the first general cluster-fueled de-
bugger. It is designed to mirror current debugging work-
flows: i.e., adding logging [38] or invariant checks, re-
compiling, re-executing to reproduce the problem, and
analyzing the output of the additional instrumentation.
However, Sledgehammer produces results much faster
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through parallelization of instrumentation and analysis.
Like prior academic [17, 32, 34] and commercial [27, 31]
tools, Sledgehammer is replay-based; i.e., it can deter-
ministically reproduce any previously-recorded execu-
tion on demand for debugging. Replay facilitates itera-
tive debugging because each question is answered by ob-
serving the same execution, ensuring consistent answers.

Sledgehammer uses deterministic replay for another
purpose: it time-slices a recorded program execution into
distinct chunks called epochs, and it runs each epoch on a
different core. It uses ptrace to inject debugging code,
called tracers into program execution. Vitally, Sledge-
hammer provides isolation so that tracers do not modify
program behavior, guaranteeing that each replayed exe-
cution is consistent with the original recording. Because
tracers are associated with specific points in the program
execution and the execution is split across many cores,
the overhead of both tracer execution and isolation is mit-
igated through parallelization.

Tracers may produce large amounts of data for com-
plex debugging tasks, and processing this data could be-
come a bottleneck. So, Sledgehammer also provides
several options to parallelize data analysis. First, local
analysis of each epoch can be performed on each core.
Second, stream-based analysis allows information to be
propagated from preceding epochs to subsequent epochs,
allowing further refinement on each core. Finally, tree-
based aggregation, terminating in a global analysis step,
produces the final result.

Cluster-fueled debugging makes existing tools faster.
Retro-logging [6, 15, 36] lets developers change logging
in their code and see the output that would have been
produced if the logging had been used with a previously-
recorded execution. Retro-logging requires isolating
modified logging code from the application to guaran-
tee correct results. Both isolation and voluminous log-
ging add considerable overhead. We introduce parallel
retro-logging, which hides this overhead through cluster-
fueled debugging to make retro-logging interactive.

Cluster-fueled debugging enables new, powerful de-
bugging tools that were previously infeasible due to per-
formance overhead. To demonstrate this, we have cre-
ated continuous function evaluation, which lets devel-
opers define a function over the state of their execution
that is logically evaluated after every instruction. The
tool returns each line of code where the function return
value changes. Continuous function evaluation mirrors
the common debugging technique of adding functions
that verify invariants or check data structure integrity at
strategic locations in application code [9], but it frees de-
velopers from having to carefully identify such locations
to balance performance overhead and the quality of in-
formation returned.

We have also created parallel retro-timing, which lets

developers retroactively measure timing in a previously-
recorded execution (a feature not available in prior
replay-based debugging tools). Sledgehammer returns
timing measurements as a range that specifies minimum
and maximum values that could have been returned dur-
ing the original execution.

This paper makes the following contributions:
• We present a general framework for parallelizing

complex debugging tasks across a compute cluster
to make them interactive.
• Parallelization makes scalability a first-class de-

sign constraint for debugging tools, and we explore
the implications of this constraint.
• We introduce continuous function evaluation as a

new, powerful debugging tool made feasible by
Sledgehammer parallelization and careful use of
compiler instrumentation and memory protections.
• We explore the fundamental limits of paralleliza-

tion and show how to alleviate the bottlenecks ex-
perienced when trying to scale debugging.

We evaluate Sledgehammer with seven scenarios de-
bugging common problems in memcached, MongoDB,
nginx, and Apache. With 1024 compute nodes, Sledge-
hammer returns the same results as sequential debug-
ging, but parallelization lets it return answers 416 times
faster on average. This makes very complex debugging
tasks interactive.

2 Usage

To use Sledgehammer, a developer records the exe-
cution of a program with suspect behavior for later de-
terministic replay. Recording could occur during testing
or while reproducing a customer problem in-house. De-
terministic replay enables parallelization. It also makes
results from successive replays consistent, since each re-
play of the application executes the same instructions and
produces the same values on every replay.

Next, the developer specifies a debugging query by
adding tracers to the application source code. A tracer
can be any function that observes execution state and
produces output. Examples of tracers are logging func-
tions, functions that check invariants, and functions for
measuring timing. A tracer can be inserted at a single
code location, inserted at multiple locations, or evaluated
continuously. Thus, tracers are added in much the same
way that developers currently add logging messages or
invariant checks to their code.

A developer can also add analyzers to aggregate tracer
output and produce the final result; e.g., an analyzer
could filter log messages or correlate events to iden-
tify use-after-free bugs. Sledgehammer provides several
ways to parallelize analysis. Developers can write local
analyzers that operate only on output from one epoch of
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program execution, stream analyzers that propagate data
between epochs in the order of program execution, and
tree-based analyzers that combine per-epoch results to
generate the final result over the entire execution.

In summary, the interface to Sledgehammer is de-
signed to be equivalent to the current practice of adding
logging/tracing code and writing analysis code to process
that output. However, Sledgehammer uses a compute
cluster to parallelize application execution, instrumenta-
tion, and analysis, and, in our setup, produces answers in
a few seconds, instead of minutes or hours.

3 Debugging tools

We have created three new parallel debugging tools.

3.1 Parallel retro-logging

Retro-logging [6, 15, 36] lets developers modify ap-
plication logging code and observe what output would
have been generated had that logging been used during
a previously-recorded execution. We implement parallel
retro-logging by adding tracers to the application code
that insert new log messages; often tracers use the exist-
ing logging code in the application with new variables.
Log messages are deleted via filtering during analysis,
and log messages are modified by both inserting a new
log message and filtering out old logging.

Parallelizing retro-logging has several benefits. First,
the application being logged may run for a long time, and
verbose logging causes substantial performance over-
head. Second, even carefully-written logging code per-
turbs the state of the application in subtle ways, e.g.,
by modifying memory buffers and advancing file point-
ers. If left unchecked, these subtle differences cause the
replayed execution to diverge from the original, which
can prevent the replayed execution from completing or
silently corrupt the log output with incorrect values. Iso-
lation is required for correctness, and the cost of isolation
is high. This cost is not unique to Sledgehammer: tools
such as Pin [22] and Valgrind [26] that also isolate de-
bugging code from the application have high overhead.
Sledgehammer hides this overhead via parallelization.

3.2 Continuous function evaluation

Continuous function evaluation logically evaluates
the output of a specified function after every instruction.
It reports the output of the function each time the output
changes and the associated instruction that caused the
change. Continuous function evaluation can be used to
check data structure invariants or other program proper-
ties throughout a recorded execution.

Actually evaluating the function after each instruction
would be prohibitively expensive, even with paralleliza-
tion. Sledgehammer uses static analysis to detect values
read by the function that may affect its output and mem-

ory page protections to detect when those values change.
This reduces performance overhead to the point where
parallelization can make this debugging tool interactive.

3.3 Retro-timing

Many debugging tasks require developers to under-
stand the timing of events within an execution. Replay
debugging recreates the order of events, but not event
timing. Thus, a recorded execution is often useless for
understanding timing bugs.

Sledgehammer systematically captures timing data
while recording an execution. To reduce overhead of
frequent time measurements, it integrates time record-
ing with the existing functionality for recording non-
deterministic program events. When debugging, devel-
opers call RetroTime, a Sledgehammer provided func-
tion that returns bounds on the clock value that would
have been read during the original execution. These
bounds are determined by finding the closest time mea-
surements in the replay log.

4 Scenarios

We next describe seven scenarios that show how
Sledgehammer aids debugging. We use these scenarios
as running examples throughout the paper and measure
them in our evaluation.

4.1 Atomicity Violation

Concurrency errors such as atomicity violations are
notoriously difficult to find and debug [21]. In this sce-
nario, a memcached developer finds an error message in
memcached’s production log indicating an inconsistency
in an internal cache. Memcached uses parallel arrays,
heads, tails and sizes, to manage items within the
cache. For each index, heads[i] and tails[i] point
to the head and tail of a doubly-linked list, and size[i]

holds the number of list items.
To use Sledgehammer, the developer first records an

execution of memcached that exhibits the bug. Next, she
decides to use continuous function evaluation and writes
tracers to identify the root cause of the bug. To illustrate
this process, we used existing assert statements in the
memcached code to write the sample tracer in Figure 1.
The is corrupt function validates the correctness of a
single list. The check all lists function returns “1”
if any list is corrupt and “0” otherwise.

By adding SH Continuous(check all lists) to
the memcached source, the developer specifies that
check all lists should be evaluated continuously.
This outputs a line whenever the state of the lists
transitions from valid to invalid, or vice versa. The
CFE RETURN macro prepends to each line the thread id
and instruction pointer where the transition occurred.

The developer then writes an analysis function; we
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1 bool is corrupt (item ∗head, item ∗tail, int size) {
2 int count = 0;
3
4 while (tail−>prev != NULL)
5 tail = tail−>prev;
6 if (tail != head) return true;
7
8 while (head != NULL) {
9 head = head−>next;

10 count++;
11 }
12 return (count != size);
13 }
14
15 char ∗check all lists () {
16 for (int i = 0; i < SIZE; ++i)
17 if (is corrupt (heads[i], tails[i], sizes[i]))
18 CFE RETURN (‘‘1’’);
19 CFE RETURN (‘‘0’’);
20 }

Figure 1: Tracer for the first memcached query.

1 void analyze (int in, int out) {
2 FILE ∗inf = fdopen(in), outf = fdopen(out);
3 map<int, int> invalid count;
4 char line[128];
5 int location, tid, count;
6
7 while (getline(&line, NULL) > 0) {
8 sscanf(‘‘%x:%x:%x\n’’, &location, &tid, &count);
9 if (count) invalid[location] += count;

10 }
11 for (auto &it : invalid)
12 fprintf(outf, ‘‘%x:%x\n’’, it.first, it.second);
13 }

Figure 2: Analyzer for the first memcached query.

show the function she would write in Figure 2. This
function reports all code locations where a transition to
invalid occurs. We wrote this function so that the same
code can be used for local and tree analysis.

Running this query doesn’t reveal the root cause of the
bug, as each transition to invalid occurs at a code loca-

1 char∗ check all lists () {
2 for (int i = 0; i < SIZE; ++i)
3 if (check(heads[i], tails[i], sizes[i]))
4 CFE APPEND (‘‘invalid:%x\n’’, locks[i]);
5 else
6 CFE APPEND (‘‘valid:%x\n’’, locks[i]);
7 CFE RETURN();
8 }
9

10 void hook lock (pthread mutex t ∗mutex) {
11 tracerLog(‘‘0:%x:lock:%x\n’’, tracerGettid(), mutex);
12 }
13
14 void hook unlock (pthread mutex t ∗mutex) {
15 tracerLog(‘‘0:%x:unlock:%x\n’’, tracerGettid(), mutex);
16 }

Figure 3: Tracer for the second memcached query.

tion that is supposed to update the cache data structures.
So, the developer next suspects a concurrency bug. The
cache is updated in parallel; for each index i, a lock,
locks[i], should be held when updating the parallel ar-
rays at index i. Thus, there are two invariants that should
be upheld: whenever the arrays at index i become invalid,
locks[i] should be held, and whenever locks[i] is
released, the arrays should be valid.

Figure 3 shows how the developer would modify the
tracer for a second query. The check all lists func-
tion now appends the validity and lock for each item in
the list to a string and returns the result. The developer
also adds two functions that report when cache locks are
acquired and released. She adds two more statements to
the memcached source code to specify that these func-
tions should run on each call to pthread mutex lock

and pthread mutex unlock.
Figure 4 shows the new analysis routine that the de-

veloper would write. The analyzer is structured like a
state-machine; each line of input is a transition from one
state to the next. lockset tracks the locks currently held
and needed locks tracks which locks must be held until
lists are made valid again. Line 14 checks the first invari-
ant mentioned above, and line 28 checks the second.

We again use the same analyzer for both local and
tree-based analysis. Since local analysis occurs in par-
allel, a needed lock may have been acquired in a prior
epoch, and locks held at the end of an epoch may be
needed in a future epoch. Thus, the analyzer outputs
all transitions that it can not prove to be correct based
on local information, as well as information that may be
needed to prove transitions in subsequent epochs correct.
The global analyzer at the root of the tree has all infor-
mation, so any transition it outputs is incorrect.

In our setup, the query returns in a few seconds and
identifies two instructions where an array becomes in-
valid while the lock is not held. One occurs during ini-
tialization (and is correct because the data structure is not
yet shared). The other is the atomicity bug.

4.2 Apache 45605

In this previously reported bug [3], a Apache devel-
oper noted that an assertion failed during stress testing.
The assertion indicated that a thread pushed too many
items onto a shared queue. Without Sledgehammer, de-
velopers spent more than two months resolving the bug.
They even proposed an incorrect patch, suggesting that
they struggled to understand the root cause.

Four unsigned integers, nelts, bounds, idlers

and max idlers, control when items are pushed onto
the queue. By design, nelts should always be less
than bounds, and idlers should always be less than
max idlers. We emulated a developer using Sledge-
hammer to debug this problem by writing a tracer that
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1 void analyzer (int in, int out) {
2 FILE ∗inf = fdopen (in), outf = fdopen (out);
3 map<int, set<int>> lockset;
4 map<int, set<int>> needed locks;
5 char line[128], type[8];
6 int thread, ip, lock;
7
8 while (getline (&line, NULL) > 0) {
9 sscanf (‘‘%x:%x:%s:%x’’, ip, thread, type, lock);

10
11 if (!strcmp (type, ‘‘lock’’))
12 lockset[thread].insert (lock);
13 } else if (!strcmp(type, ‘‘invalid’’)) {
14 if (lockset[thread].contains (lock))
15 needed locks[thread].insert (lock);
16 else
17 fprintf (outf, line);
18 } else if (!strcmp (type, ‘‘valid’’)) {
19 if (needed locks[thread].contains (lock))
20 needed locks[thread].remove (lock);
21 else
22 fprintf (out, line);
23 } else if (!strcmp (type, ‘‘unlock’’) {
24 if (lockset[thread].contains (lock))
25 lockset[thread].remove (lock);
26 else
27 fprintf (outf, ‘‘%s’’, line);
28 if (needed locks[thread].contains (lock))
29 fprintf (outf, ‘‘BUG: atomicity violation: %x\n’’, ip);
30 } else {
31 fprintf(outf, ‘‘%s’’, line);
32 }
33 }
34
35 for (const auto &l set : lockset)
36 for (lock : l set.second)
37 fprintf (outf, ‘‘lock:%x:%x\n’’, l set.first, lock);
38 for (const auto &l set : needed locks)
39 for (lock : l set.second)
40 fprintf (outf, ‘‘invalid:%x:0:%x\n’’, l set.first, lock);
41 }

Figure 4: Analyzer for the second memcached query.

uses continuous function evaluation to check these rela-
tionships and an analyzer that lists instructions that cause
a relationship to no longer hold.

The query returns a single instruction that decrements
idlers. As this result is surprising, we modified the
query to also output the value of each integer when the
transition occurs. This shows that the faulty instruction
causes an underflow by decrementing idlers from 0 to
UINT MAX. From this information, the developer can re-
alize that idlers should never be 0 when the instruction
is executed and that the root cause is that the preceding
if statement should be a while statement.

4.3 Apache 25520

In another previously-reported bug [2], an Apache
developer found that the server log was corrupted af-
ter stress testing. Apache uses an in-memory buffer to
store log messages and flushes it to disk when full. With
Sledgehammer, a developer could debug this issue by

writing a tracer that uses continuous function evalua-
tion to validate the format of log messages in the buffer.
The analyzer identifies instructions that transition from
a correctly-formatted buffer to an incorrectly-formatted
one. Running this query returns only an instruction that
updates the size of the buffer after data has been copied
into the buffer. This indicates that the buffer corruption
occurs during the data copy before the size is updated.

Thus, the developer next writes a query to detect such
corruption by validating the following invariant: each
byte in the buffer should be written no more than once
between flushes of the buffer to disk. The continuous
function evaluation tracer returns a checksum of the en-
tire buffer region (so that all writes to the buffer re-
gion are detected irrespective of the value of the size
variable) and the memory address triggering the tracer
(see tracerTriggerMemory() in Section 5.2). The
developer also writes a tracer that hooks calls to the
buffer flush function. The analyzer outputs when mul-
tiple writes to the same address occur between flushes.
The output shows that such writes come from different
threads, identifying a concurrency issue in which the in-
structions write to the buffer without synchronization.

4.4 Data corruption

Memory corruption is a common source of software
bugs [20] that are complex to troubleshoot; often, the
first step in debugging is reproducing the problem with
more verbose logging enabled. In this scenario, an nginx
developer learns that the server very infrequently reports
corrupt HTTP headers during stress testing, even though
no incoming requests have corrupt headers. Without
Sledgehammer, he would enable verbose logging and run
the server for a long time to try to produce a similar error.
Reproduction is painful; verbose logging adds consider-
able slowdown and produces gigabytes of data.

With Sledgehammer, the developer uses parallel
retro-logging to enable the most verbose existing nginx
logging level over the failed execution recorded during
testing. In nginx, this requires adding tracepoints in two
dedicated logging functions. Each tracer calls a low-level
nginx log function after specifying the desired level of
verbosity. The developer also filters by regular expres-
sion to only collect log messages pertaining to HTML
header processing. The same filter code can be run as
a local analyzer without modification, so parallelization
is trivial. In our setup, the Sledgehammer query returns
results in a few seconds, and the developer notes that cor-
ruption occurs between two log messages. This provides
a valuable clue, but the developer must iteratively add
more logging to narrow down the problem. Fortunately,
these messages can be added retroactively to the same
execution; the resulting output is seen in a few seconds.
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4.5 Wild store

Wild stores, i.e., stores to invalid addresses that cor-
rupt memory, are another common class of errors that are
reportedly hard to debug [20]. In this scenario, Mongodb
crashes and reports an error due to a corruption in its key
B-tree data structure. Mongodb has an existing debug-
ging function that walks the B-tree and checks its valid-
ity. Without Sledgehammer, the developer must sprinkle
calls to this function throughout the code, re-run the ap-
plication to reproduce the rare error, and try to catch the
corruption as it happens. Unfortunately, the corruption
was introduced during processing of a much earlier re-
quest and lay dormant for over 10 seconds. Further, the
wild store was performed by an unrelated thread, so it
takes numerous guesses and many iterations of running
the program to find the bug.

With Sledgehammer, the developer specifies that the
existing Mongodb debugging function should be evalu-
ated continuously. Since the B-tree is constantly being
modified, its validity changes often in the code that adds
and deletes elements. The developer therefore writes a
simple analyzer that counts the number of transitions that
occur at each static instruction address. The same code is
used for both local and tree-based analyzers. The query
returns in under a minute. It reports three code locations
where the data structure becomes invalid exactly once:
two are initialization and the third is the wild store.

4.6 Memory leak

Memory leaks, double frees, and use-after-free bugs
require reasoning about an execution’s pattern of alloca-
tions and deallocations. In this scenario, an nginx devel-
oper notes that a large code change has introduced very
infrequent memory leaks that lead to excessive memory
usage for long-running servers. One option for tracking
down this bug is to run a tool like Valgrind [26] over a
long execution with varied requests. Due to the overhead
of Valgrind instrumentation, this takes many minutes to
return a result over even a relatively short execution.

With Sledgehammer, the developer adds three tracers
and hooks the entry and exit of routines such as malloc
and free. The analyzer matches allocations and deallo-
cations and reports remaining unallocated memory. Par-
allelizing the analyzer is straightforward: the sequential
analyzer can be used for tree-based and local analysis
without modification. Stream analysis requires adding
10 lines of code to pass a list of allocated memory re-
gions that have not yet been deallocated from epoch to
epoch. In our setup, a Sledgehammer query identifies
leaked memory in nginx in a few seconds.

4.7 Lock Contention

Rare performance anomalies are hard to debug. One
common source of performance anomalies is lock con-
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Figure 5: Sledgehammer architecture overview. A replay
is divided into n epochs. Each core runs an epoch by execut-
ing the original application (A boxes) and injecting tracers (T
boxes). Local analysis runs on each core with output from a
single epoch, stream analysis takes input from previous epochs
and sends output to subsequent ones. Tree analyzers combine
output from multiple epochs.

tention [33]. Low-level timing data is informative, but
gathering such data has high overhead and may pre-
vent the anomaly from occurring. In this scenario, a
memcached developer sees infrequent requests that have
much longer latencies than expected. She runs a pro-
filer, but the tool reports only average behavior, which
obscures the occasional outlier. So, she sprinkles timing
measurements at key points in her code and re-runs the
application many times to drill down to the root cause:
lock contention with a background thread. Each run re-
quires a long time to exhibit an anomaly and difficult
analysis to determine which requests are outliers in each
new execution.

With Sledgehammer, the developer runs a query that
gathers RetroTime data at key points in request pars-
ing, starting with existing timing code originally dis-
abled during recording. Because queries are fast, she
retroactively adds even more timing code, and she can
iterate quickly to drill down to the suspect lock acqui-
sition. Her analysis function tracks time taken in each
specified request phase, and compares breakdowns for
the five longest requests with average behavior. A final
query identifies the thread holding the contended lock by
combining retro-timing with tracers that hook mutex ac-
quisition and release. Analysis of the tracelog identifies
the background thread that holds the lock on which the
anomalous requests wait.

5 Design and implementation

Figure 5 shows how Sledgehammer parallelizes de-
bugging. The developer specifies (1) a previously-
recorded execution to debug, (2) tracers that run during
a replay of that execution, and optionally, (3) analysis
functions that aggregate tracer output to produce a final
result. Sledgehammer parallelizes the replayed execu-
tion, tracers, and analysis across many cores in a cluster.
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Section 5.2 discusses how developers specify tracers
by annotating their source code to add logging and in-
strumentation. Sledgehammer parses the source code to
extract the tracers, the arguments passed to each tracer,
and the locations where tracers should be invoked.

Section 5.3 describes how Sledgehammer prepares
for query execution by distributing generic (non-query-
specific) information needed to replay the execution to
available compute nodes. It divides the execution into
epochs of roughly-equal duration, where the number of
epochs is determined by the number of cores available.
Read-only data shared across epochs, e.g., the replay log,
application binaries, and shared libraries, are read from a
distributed file system. Sledgehammer caches these files
on local-disk for improved performance on subsequent
queries. The per-epoch state, e.g., application check-
points at the beginning of each epoch, is generated in
parallel, with each core generating its own state.

As discussed in Section 5.4, Sledgehammer runs a
query by executing each epoch in parallel on a separate
core. Epoch execution starts from a checkpoint and re-
plays non-deterministic operations from the replay log to
reproduce the recorded execution. Sledgehammer uses
ptrace to insert software breakpoints at code locations
where tracers should run. When a breakpoint is trig-
gered, it runs the tracer in an isolated environment that
rolls back any perturbation to application state after the
tracer finishes. To support continuous function evalu-
ation, Sledgehammer uses page protections to monitor
memory addresses that may affect the return value of the
function; it triggers a tracer when one of those addresses
is updated.

Section 5.5 discusses how analyzers process the
stream of output from tracers. As shown in Figure 5,
Sledgehammer supports three types of analysis routines:
local, stream, and tree. Local analysis (e.g., filtering) op-
erates on tracer output from a single epoch. Stream anal-
ysis allows information to be propagated from epochs
earlier in the application execution to epochs later in
the execution. Sledgehammer runs a stream analyzer on
each compute node; each analyzer has sockets for read-
ing data from its predecessor epoch and sending data
to its successor. A tree analyzer combines input from
many epochs and writes its output to stdout. For a large
number of cores, these analyzers are structured as a tree
with the root of the tree producing the final answer to
the query. Thus, a purely sequential analysis routine can
always run as the root tree analyzer.

5.1 Background: Deterministic record and replay

Sledgehammer uses deterministic record and replay
both to parallelize the execution of a program for debug-
ging, and also to ensure that successive queries made
by a developer return consistent results. Determinis-

tic replay [11] allows the execution of a program to
be recorded and later reproduced faithfully on demand.
During recording, all inputs from nondeterministic ac-
tions are written to a replay log; these values are supplied
during subsequent replays instead of performing the non-
deterministic operations again. Thus, the program starts
in the same state, executes the same instructions on the
same data values, and generates the same results.

Epoch parallelism [35] is a general technique for us-
ing deterministic replay to partition a fundamentally se-
quential execution into distinct epochs and then exe-
cute each epoch in parallel, typically on a different core
or machine. Determinism guarantees that the result of
stitching together all epochs is equivalent to a sequential
execution of the program. Replay also allows an execu-
tion recorded on one machine to be replayed on a differ-
ent machine. There are few external dependencies, since
interactions with the operating system and other external
entities are nondeterministic and replayed from the log.

Sledgehammer uses Arnold [10] for deterministic
record and replay due to its low overhead (less than 10%
for most workloads) and because Arnold supports epoch
parallelism [29]. We modified Arnold to support ptrace-
aware replay, in which Sledgehammer sets breakpoints
and catches signals. We also modified Arnold to run
tracers in an isolated environment where they can allo-
cate memory, open files, generate output, etc. Our mod-
ifications roll back the effects of these actions after the
tracer finishes to guarantee that the replay of the original
execution is not perturbed, similar to prior systems that
support inspection of replayed executions [6, 15, 16]. In
other words, the same application instructions are exe-
cuted on the same program values, but Sledgehammer
inserts additional tracer execution into replay and the in-
strumentation needed to support that execution. We also
modified Arnold to capture additional timing data during
recording to support retro-timing.

5.2 Sledgehammer API

Developers debug a replayed execution by specify-
ing tracers that observe the program execution, defining
when those tracers should execute, and supplying analy-
sis functions that aggregate tracer output. This is analo-
gous to placing log functions in source code and writing
programs to process log output.

5.2.1 Tracers
Tracers are functions that execute in the address space

of the program being debugged, allowing them to ob-
serve the state of the execution. Tracers are compiled
into a shared library that is loaded dynamically during
query execution. Tracers write output to a logging stream
called the tracelog; this output is sent to analysis routines
for aggregation. Tracers can write to the tracelog directly
by calling a Sledgehammer-supplied function or they can
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specify that all output from a specific set of file descrip-
tors should be sent to the tracelog.

Isolation Tracers must not perturb program state. Even
a subtle change to application memory or kernel state can
cause the replay to diverge from the recording, leading to
replay failure, or even worse, silent errors introduced into
the debugging output. None of the queries in our sce-
narios run without isolation. As Section 5.4.1 describes,
Sledgehammer isolates tracers in a sandbox during exe-
cution; any changes to application state are rolled back
on tracer completion. Sledgehammer has two methods
of isolation with different tradeoffs between performance
and code-generality: fork-based and compiler-based.

With fork-based isolation, tracers run as separate pro-
cesses. Developers have great flexibility. A tracer can
make arbitrary modifications to the program address
space, and it can make system calls that write to the
tracelog or that affect only child process state. A tracer
may link to any application code or libraries and invoke
arbitrary functionality within that code, provided it does
not make system calls that externalize state. However,
we found that fork-based isolation was very slow to use
with frequently-executed tracers.

Thus, we added support for compiler-based isolation,
in which tracers can execute more limited functional-
ity. This isolation is enabled by compiling tracers with
a custom LLVM [18] pass. Tracers can modify any ap-
plication memory or register. However, they must use
a Sledgehammer-provided library to make system calls.
This library prevents these calls from perturbing appli-
cation state. A tracer may call functions in application
code or libraries only if that code is linked into the tracer
and compiled with LLVM. Since LLVM cannot compile
glibc by default, Sledgehammer provides many low-level
functions for tracer usage. Our compiler pass verifies
that all functions linked into a tracer call only other func-
tions compiled with the tracer or Sledgehammer library
functions. Our results in Section 6.5 show that compiler-
based isolation executes queries 1–2 orders of magnitude
faster than fork-based isolation.

The tracestore Tracers must execute independently.
Since tracers run in parallel in different epochs, a tracer
cannot rely on state or output produced by any tracer ex-
ecuted earlier in the program execution. Yet, there are
often many tracers executed during a single epoch, and
sharing data between them can be a useful optimization.
For instance, it is wasteful for each tracer to indepen-
dently determine the file descriptor used for logging by
an application.

Sledgehammer provides a tracestore for opportunistic
sharing of state within an epoch. If data in the tracestore
is available, a tracer uses it; if not available, it obtains the
data elsewhere. Sledgehammer allocates the tracestore

by scanning the replay log to find an address region never
allocated by the execution being debugged; it maps the
tracestore into this region. This prevents tracestore data
from perturbing application execution.

Sledgehammer initializes the tracestore at the begin-
ning of each epoch, prior to executing any application
instructions. The developer can supply an initialization
routine that inspects application state and sets variables
to initial values. If compiler-based isolation is being
used, the LLVM compiler pass automatically places all
static tracer function variables in the trace store and ini-
tializes them at the start of each epoch.

Tracers read and write tracestore values, and updates
are propagated to all subsequent tracer executions until
the end of the epoch. Tracers may dynamically allocate
and deallocate memory in the tracestore; the memory re-
mains allocated until the end of the epoch. All of our sce-
narios use the tracestore to cache file descriptors, which
avoids the overhead of opening and closing files in each
tracer. The continuous function evaluation scenarios also
cache lists of memory addresses accessed by the func-
tion.

Tracer Library Sledgehammer provides several func-
tions that implement common low-level tasks, including:
• tracerTriggerAddress(), which returns the in-

struction pointer that triggered the tracer.
• tracerStack(), which returns the stack pointer

when the tracer was called.
• tracerTriggerMemory(), which returns the

memory address that triggered a continuous func-
tion evaluation tracer.

5.2.2 Tracepoints
Sledgehammer inserts tracers at tracepoints, which

are user-defined locations in the application being de-
bugged. There are several ways to add tracepoints. First,
a location-based tracepoint executes a tracer each time
the program execution reaches a given location. Our data
corruption scenario uses this method to add tracers to
nginx log routines. These tracepoints are specified by
adding annotations to the application source code at the
desired locations.

Second, a user can hook a specific function to invoke
a tracer each time a given function is called or whenever
a function exits. The tracer receives all arguments passed
to the function by default. For example, the memory leak
scenario hooks the entry and exit of malloc and free to
track memory usage.

Third, a continuous function evaluation logically in-
serts a tracepoint to evaluate the function after every pro-
gram instruction. In practice, Sledgehammer tracks the
values read by the function and uses memory page pro-
tection to detect when those values change. It only runs
the function at these instances. Hooks and continuous
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functions can be specified by annotations anywhere in
the application source code since their effects are global
to the entire execution.

When running a query, developers specify which
C/C++ source files contain their modified source code.
The Sledgehammer parser scans these files and extracts
all tracepoint annotations. It correlates each tracer with
a line or function name in the application source code
as appropriate. Next, it uses the same method as gdb
to convert source code lines and function symbols to in-
struction addresses. For each parameter passed to a tra-
cepoint, the parser determines the location of the symbol,
i.e., its memory address or register.

Developers who lack source code or use other pro-
gramming languages can instead use gdb-like syntax to
specify tracepoints, or they can specify all functions re-
siding in a particular binary, or matching some regex. In
this case, Sledgehammer leverages UNIX command-line
utilities and gdb scripts to associate tracepoints with in-
struction pointers and symbols.

5.3 Preparing for debugging queries

Much of the work required to run a parallel debug-
ging tool is query-independent: it can be done once, be-
fore running the first query, and reused for future queries.
To prepare a recorded execution for debugging, a master
node parses the replay log and splits the execution into
distinct epochs, where the number of epochs is set to
the number of cores available. Each core is assigned a
distinct epoch. Currently, Sledgehammer requires each
epoch to start and end on a system call. The master di-
vides epochs so that each has approximately the same
number of system calls in the replay log.

Next, the master distributes or creates the data needed
to replay execution. Arnold replay requires a determin-
istic replay log, application binaries and libraries, and
snapshots of any read-only files [10]. These files are
read-only and accessed by many epochs, so the master
places them in a distributed file system and sends a mes-
sage to compute cores informing them of the location.

Each epoch starts at a different point in the program
execution. Prior to instrumenting and running the epoch,
Sledgehammer must re-create the application state at the
beginning of the epoch. A simple approach would replay
the application up to the beginning of the epoch. How-
ever, for the last epoch, this process takes roughly as long
as the original execution of the program. To avoid this
performance overhead, Sledgehammer starts each epoch
from a unique checkpoint.

During recording, Sledgehammer takes periodic
checkpoints every few seconds. This creates a relatively
small set of checkpoints that are distributed to com-
pute nodes by storing them in the distributed file system.
Prior to running the query, the master asks each compute

core to create an epoch-specific checkpoint. Each core
starts executing the application from the closest previ-
ous recording checkpoint, pauses at the beginning of its
epoch, and takes a new checkpoint. This process effec-
tively parallelizes the work of creating hundreds or thou-
sands of epoch-specific checkpoints, and it avoids having
to store and transfer many large checkpoints.

Sledgehammer hides the cost of checkpoint creation
in two ways. First, it overlaps per-epoch checkpoint cre-
ation with parsing of source code. Second, it caches
checkpoints on each core so that they can be reused by
subsequent queries over the same execution.

5.4 Running a parallel debugging tool

To run a query, the master sends a message to each
compute core specifying the shared libraries that contain
the compiled tracers and analysis functions. It also sends
a list of tracepoints, each of which consists of an instruc-
tion address in the application being debugged, a tracer
function, and arguments to pass to that function.

Upon receiving the query start message, a compute
core restores its per-epoch checkpoint and loads the
tracer dynamic library into the program address space
via dlopen. Sledgehammer uses dlsym to get pointers
to tracer functions. Unfortunately, the dynamic loader
modifies program state and causes divergences in replay.
Sledgehammer therefore checkpoints regions that will
be modified before invoking the loader and restores the
checkpointed values after the loader executes.

Prior to starting an epoch, each core also maps the
tracestore into the application address space and calls the
tracestore initialization routine. Each compute core starts
a control process that uses the ptrace interface to man-
age the execution and isolation of tracer code. For each
location-based tracepoint or function hook, the control
process sets a corresponding software breakpoint at the
specified instruction address by rewriting the binary code
at that address with the int 3 instruction.

Each core replays execution from the beginning of its
epoch. When a software breakpoint is triggered, replay
stops and the control process receives a ptrace signal.
The control process rewrites the application binary to call
the specified tracer with the given arguments. It uses one
of the isolation mechanisms described next to ensure that
the tracer does not perturb application state. After the
tracer executes, the control process rewrites the binary to
restore the software breakpoint.

5.4.1 Isolation
Tracer execution must be side-effect free: any per-

turbations to the state of the original execution due to
tracer execution can cause the replay to diverge and fail
to complete, or such perturbation can lead to incorrect
debugging output. Sledgehammer supports fork-based
and compiler-based isolation.
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Fork-based isolation When a tracepoint is triggered,
the control process forks the application process to clone
its state. The parent waits until the child finishes exe-
cuting. The control process rewrites the child’s binary
to call the tracer. As the tracer executes, it may call
arbitrary code in the application and its libraries, but
it must be single-threaded. The kernel sandboxes the
system calls called by the child process. It allows sys-
tem calls that are read-only or perturb only state local
to the child process (e.g., its address space). To avoid
deadlocks, Sledgehammer ignores synchronization op-
erations made by the tracer; this is safe only because
the tracer itself is single-threaded. The kernel also redi-
rects output from any file descriptors specified by the
developer to the tracelog; this is convenient for captur-
ing unmodified log messages. Tracelog output can also
be generated by system calls made by the Sledgeham-
mer library. System calls that modify state external to
the process (e.g., writing to sockets or sending signals)
are disallowed. System calls that observe process state,
e.g., getpid(), return results consistent with the original
recording.

At the end of tracer execution, the child process exits
and the tracer restarts application execution. If a tracer
fails, the control process receives the signal via ptrace
and resumes application execution.

Compiler-based isolation Our early results showed
that fork-based isolation was often too slow for
frequently-executed tracers. So, we created compiler-
based isolation, which improves performance at the cost
of losing some developer flexibility. With compiler-
based isolation, tracer libraries must be self-contained;
i.e., rather than calling application or library code from
a tracer, that code must be copied or compiled into the
tracer library. This means that tracers must use a set of
standard library functions provided by Sledgehammer in-
stead of calling those functions directly. Tracers must
also be single-threaded and written in C/C++.

Sledgehammer compiles tracers with LLVM. A cus-
tom compiler pass inserts code into the tracer that in-
struments all store instructions and dynamically logs the
memory locations modified by tracer execution and the
original values at those locations to an undo log. The
compiler pass inserts code before the tracer returns that
restores the original values from the undo log. It also
checkpoints register state before executing a tracer and
restores that state on return. To avoid deadlocks, the
compiler pass omits any synchronization instructions in
the tracer; this is safe only because the tracer itself is
single-threaded and all its effects are rolled back. The
compiler pass verifies that the tracer is self-contained;
e.g., that it does not make any system calls.

We noticed that most addresses in tracer undo logs
were stack locations. Rather than log all of these stores,

Sledgehammer allocates a separate stack for tracer exe-
cution and switches the stack pointer at the beginning and
end of tracer execution. The compiler pass statically de-
termines instructions that write to the stack via an intra-
procedural points-to analysis, and it omits these stores
from the undo log. Some variables are passed to the
tracer on the stack, so Sledgehammer explicitly copies
this data when switching stacks.

If a tracer fails, the control process catches the signal,
runs the code to undo memory modifications, restores
register state, and continues the application execution.
5.4.2 Support for continuous function evaluation

Continuous function evaluation must use compiler-
based isolation. When a tracer runs, the compiler pass
tracks the set of memory addresses read. The tracer is
guaranteed to be deterministic because it cannot call non-
deterministic system calls and must be single-threaded.
Therefore, the value produced by the tracer cannot
change unless one of the values that it has read changes.

Sledgehammer uses memory page protections to de-
tect if any value read by a tracer changes. The control
process causes the continuous function to be evaluated
at the beginning of the epoch, before any application in-
struction executes. Tracer execution generates an initial
set of addresses to monitor; the compiler adds instrumen-
tation to record this monitor set in the tracestore. Sledge-
hammer executes the tracer only to initialize the monitor
set, so tracer output is not logged to the tracelog. The
control process asks the kernel to mark all pages contain-
ing at least one address in the monitor set as read-only.

When a page fault occurs due to the application writ-
ing to one of these pages, the kernel alerts the control
process. The control process unprotects the page and
single-steps the application. Then, the control process
checks if the the faulting address is in the monitor set.
If the address is not in the set, the page fault is due to
false sharing, so Sledgehammer re-protects the page and
continues execution.

If the address is in the monitor set, Sledgehammer
runs the tracer again, and records its output in the
tracelog. If the tracer faults on a page in the monitor set,
the control process unprotects the page and resumes ex-
ecution of the tracer. Since tracers do not write to many
of the pages in the monitor set, unprotecting on demand
is much more efficient than unprotecting all pages before
tracer execution.

After the tracer completes, Sledgehammer updates the
monitor set. If a page is added to the monitor set, Sledge-
hammer protects it. However, if a page is removed from
the monitor set, Sledgehammer does not unprotect the
page until the next page fault; this optimization improves
performance by deferring work.

The stack switching optimization used for compiler-
based isolation is also useful for continuous function
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evaluation. Reads of addresses on the stack are detected
via an intra-procedural points-to analysis and not instru-
mented. Any remaining stack reads are detected dynam-
ically from their addresses.

5.4.3 Support for retro-timing
To support retro-timing, we modified Arnold to query

the system time when a replay event occurs: such events
include all system calls, signals delivered, and synchro-
nization operations, including low-level synchronization
in glibc. The timing information is written into the re-
play log for efficiency. Since Arnold is already paying
the cost of interrupting the application and logging its
activity, the additional performance cost of querying the
system time is minimal (1%, as measured in Section 6.6).

A typical replay log will have tens of millions of
events even for a few seconds of execution. Logging all
this data would introduce substantial slowdown, so we
compress the timing data by only logging the time if the
difference from the last logged time is greater than 1 us.

Sledgehammer provides a library function to query
time retroactively. Starting from the application’s cur-
rent location in the replay log, Sledgehammer finds and
returns the immediately preceding and succeeding time
recorded in the log. Reading the clock at this point in the
execution would have returned a value in this range.

5.5 Aggregating results

Tracelog output can be quite large, so Sledgehammer
allows developers to write analysis routines that aggre-
gate the tracelog data. It provides several options for
parallelizing analysis to improve performance.

There are three types of analysis routines. A local an-
alyzer runs on each compute core and operates only over
the tracelog data produced by a single epoch. For exam-
ple, the data corruption scenario uses a local analyzer to
filter undesired messages from verbose logging. If a lo-
cal analyzer is specified, Sledgehammer creates an anal-
ysis process that loads and executes the local analyzer
from a dynamic library. Local analyzers receive tracelog
data on an input file descriptor and write to an output file
descriptor. Sledgehammer uses shared memory to imple-
ment high-performance data sharing.

A stream analyzer passes information from epoch to
epoch along the direction of program execution. The
memory leak scenario passes allocated chunks of mem-
ory to succeeding epochs so that they can be matched
with corresponding frees. This allows each core to re-
duce the amount of output data it produces.

Each epoch’s stream analyzer has an input file de-
scriptor on which it receives the output of the local an-
alyzer (or the tracelog data if no local analyzer is being
used). The stream analyzer has an additional file descrip-
tor on which it receives data from its predecessor epoch.
It has two output file descriptors: one to which it writes

analysis output and another by which it passes data to
its successor epoch. Data is passed between epochs via
TCP/IP sockets. Each stream analyzer closes the output
socket when it is done passing data to its successor, and
each learns that no more data will be forthcoming by ob-
serving that the input socket has been closed.

A tree analyzer combines the output of many epochs.
Each compute core sends its output to the node running
the tree analyzer via a TCP/IP socket. Sledgehammer re-
ceives the data, buffers and reorders the data, then passes
the output of the prior stage to the tree analyzer in the or-
der of program execution. The tree analyzer aggregates
the data and writes its output to a file descriptor.

By default, Sledgehammer allows a tree analyzer to
combine up to 64 input streams. Therefore, if there are
less than 64 epochs, a single tree analyzer performs a
global aggregation.

Since use of these analyzers is optional, the simplest
form of aggregation is NULL tree aggregation, in which
Sledgehammer concatenates all tracelog output into a file
in order of application execution. Alternatively, a devel-
oper may take any existing sequential analysis routine
and run it as a tree analyzer at the root of the tree. How-
ever, Section 6.4 reports substantial performance benefits
for many queries from using local, stream, and tree ag-
gregation to parallelize analysis.

6 Evaluation
Our evaluation answers the following questions:
• How much does Sledgehammer reduce the time to

get debugging results?
• What are the challenges for further scaling?
• What is the benefit of parallelizing analysis?
• Does compiler-based isolation reduce overhead?

6.1 Experimental Setup
We evaluated Sledgehammer using a CloudLab [30]

cluster of 16 r320 machines (8-core Xeon E5-2450
2.1 GHz processors, 16 GB RAM, and 10 Gb NIC). Since
several applications we evaluate use at least 2 GB of
RAM, we only use 4 cores on each machine, yielding 64
total cores for parallelization. To investigate scaling, we
emulate more cores by splitting the execution into 64-
epoch subtrees, each with their own tree analyzer, and
running the subtrees iteratively. We calculate the time
for the final tree aggregation by distributing subtree out-
puts across the cores and measuring the time to send all
outputs to a root node and run the global analyzer. We
add this time to the maximum subtree execution time.
This estimate is pessimistic since no output is sent until
the last byte has been generated by the last tree analyzer.
We also do not run stream analyzers beyond 64 cores.

Our results assume that the query-independent prepa-
ration of Section 5.3 (e.g., parallel checkpoint genera-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    555



Benchmark Application Replay Tracer calls 1 Core 64 Cores 1024 Cores
time(s) (millions) query time(s) query time(s) speedup query time(s) speedup

Data corruption nginx 2.0 7.7 324.8 (±2.2) 7.2 (±0.2) 45 (±1.0) 1.0 (±0.0) 330 (±13)
Wild store MongoDB 30.1 3.4 7688.4 (±13.5) 181.3 (±6.0) 42 (±2.0) 17.2 (±1.0) 446 (±15)
Atomicity violation memcached 98.5 42.8 7852.4 (±20.1) 173.1 (±1.2) 45 (±0.3) 13.7 (±0.7) 573 (±15)
Memory leak nginx 76.0 3.6 1575.2 (±8.1) 30.3 (±0.2) 52 (±0.3) 2.8 (±0.2) 559 (±25)
Lock contention memcached 93.4 75.5 3281.8 (±17.5) 68.3 (±0.6) 48 (±0.5) 10.9 (±1.2) 301 (±16)
Apache 45605 Apache 50.7 1.9 249.9 (±1.1) 5.2 (±0.5) 48 (±0.5) 1.0 (±0.6) 255 (±15)
Apache 25520 Apache 60.1 3.7 717.3 (±1.6) 12.9 (±0.0) 55 (±0.2) 1.2 (±0.0) 601 (±4.4)

Table 1: Sledgehammer performance. This table shows how Sledgehammer speeds up the time to run a debug query with 64 and
1024 cores, as compared to sequential (1 core) execution. For reference, we also show the time to replay the application without
debugging and the number of tracers executed during each query. Figures in parentheses are 95% confidence intervals.

tion) is already completed. Preparation is only done once
for each execution and can be done in the background as
the developer constructs a query. We measured this time
to be proportional to the recording checkpoint frequency;
e.g., preparation takes an average of 2.1 seconds when
the record checkpoint interval is every 2 seconds.

6.2 Benchmarks

We reproduce the 7 scenarios described in Section 4
by injecting the described bug into each application and
running the specified Sledgehammer query. In each sce-
nario, our query correctly identifies the bug. All reported
results are the mean of 5 trials; we show 95% confidence
intervals. Queries use compiler-based isolation and par-
allelize analysis as described in each scenario. We use
the following workloads:
• Data corruption We send nginx 100,000 static

Web requests.
• Wild store We send MongoDB workload A from

the YCSB benchmarking tool [7].
• Atomicity violation We use memtier [25] to send

memcached 10,000 requests and execute the final
query described in the scenario.
• Memory leak We send nginx 2 million static Web

requests. By default, nginx leaks memory with this
workload, so we did not inject a bug.
• Lock contention We use memtier [25] to send

memcached 10,000 requests and execute the final
query that hooks pthread functions and mea-
sures timing at 5 tracepoints.
• Apache 45605 We recreate the bug by stress test-

ing using scripts from a collection of concurrency
bugs [37] and run the final query.
• Apache 25520 We recreate the bug by stress test-

ing Apache and run the final query.

6.3 Scalability

Table 1 shows results for the 7 scenarios. The first col-
umn shows the time to replay the execution with no de-
bugging. The next column shows the number of tracers
executed during the query. The remaining columns com-
pare sequential (1 core) query time with performance at
64 and 1024 cores, respectively.
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Figure 6: Sledgehammer Scalability. This figure shows how
query time improves as the number of cores increases.

The wild store and atomicity violation scenarios take
over 2 hours to return a result with sequential execution.
The simplest scenario, Apache 45605, still takes over
4 minutes when executed sequentially. With 64 cores,
Sledgehammer speeds up these queries by a factor of
42–55 (with a geometric mean of 48). With 1024 cores,
the speedup is 255–601 with a mean of 416. Queries
that take hours when executed sequentially return in less
than 20 seconds. The data corruption and Apache 45605
queries returns results in one second. At 1024 cores, the
result is returned faster than the time to replay the execu-
tion sequentially without debugging in all cases.

Figure 6 shows how Sledgehammer performance
scales as the number of cores increases from 1 to 1024.
The diagonal line through the origin shows ideal scaling.
Most queries approach ideal scaling, and all continue to
scale up to 1024 cores. However, some start to scale less
well as the number of cores approaches 1024.
6.3.1 Scaling bottlenecks

We next investigated which factors hinder Sledge-
hammer scaling. One minor factor is disk contention.
Arnold stores replay logs on local disk, which leads to
contention when 4 large server applications each read
their logs during epoch execution on separate cores. We
measured this overhead as ranging from 0 to 41% at 4
cores per node, with an average of 15%. This accounts
for some of the dip in scalability from 1 to 4 cores.
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Figure 7: Total work. Each bar sums initialization time, epoch
execution time, and analysis time overs all epochs. This shows
how much extra work is created by parallelization.

The last step in tree analysis is sequential; its perfor-
mance does not improve with the number of cores. At
1024 cores, this step is only 0.1–7% of total query time
in our benchmarks. While it could be a factor for higher
numbers of cores, it has little impact at 1024 cores.

For each query, Figure 7 totals individual execution
time over all cores when using 64 and 1024 cores, nor-
malized to execution time for single-core execution. Ini-
tialization includes restoring checkpoints and mapping
tracers into the application address space. Epoch exe-
cution is the time to run the application and its tracers,
Analysis includes all local, stream, and tree-based anal-
ysis. As expected, the cost of per-node initialization in-
creases as the number of cores increases; this is espe-
cially noticeable in the Apache 45605, data corruption
and lock contention scenarios. Initialization overhead is
the primary factor inhibiting the scalability of Apache
45605. Initialization will eventually bound Sledgeham-
mer scalability in other scenarios as well, but it is not the
most important factor at 1024 cores.

Interestingly, the total work for the wild store sce-
nario actually decreases slightly as we increase the num-
ber of cores. Continuous function evaluation defers work
when pages are deleted from the monitor set. For shorter
epochs, deleted pages are more likely to never be ac-
cessed again; work deferred is never done. At 1024
cores, this effect is dwarfed by increasing per-node ini-
tialization work, so total work increases again.

In most scenarios, the most significant barrier to scal-
ability is workload skew. As Sledgehammer partitions
epochs into smaller chunks, we see more imbalance in
the work done by different epochs. Outlier epochs lead
to high tail latency [8]. We quantify skew in Table 2 as
the ratio of maximum epoch execution time over mean
epoch execution time. Perfect partitioning would yield a

Skew
Benchmark 64 cores 1024 cores
Data corruption 1.13 (±0.04) 1.72 (±0.07)

Wild store 1.78 (±0.07) 2.38 (±0.14)

Atomicity violation 1.28 (±0.02) 1.40 (±0.08)

Memory leak 1.06 (±0.01) 1.40 (±0.14)

Lock contention 1.17 (±0.01) 2.16 (±0.24)

Apache 45605 1.07 (±0.03) 1.27 (±0.03)

Apache 25520 1.01 (±0.00) 1.17 (±0.00)

Table 2: Skew. The reported values are the longest epoch exe-
cution time divided by the average execution time.
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Figure 8: Analysis. We compare query time with sequential
(S) and parallel (P) analysis using 64 cores. The regions in
each bar show how much time is spent in each phase along the
critical path of query processing.

skew of 1, but Sledgehammer sees average skew of 1.19
at 64 scores and 1.60 at 1024 cores. Skew is the most im-
portant factor in the decreased scaling seen in Figure 6.

6.4 Benefit of parallel analysis

We next quantify how much benefit is achieved by
parallelizing analysis. Figure 8 compares query response
time for sequential analysis and parallel analysis using
the analyzers for each query described in Section 4. We
show results with 64 cores, i.e., the largest number of
cores we can support without emulation.

All scenarios except the wild store and Apache sce-
narios achieve substantial speedup by parallelizing anal-
ysis. The atomicity violation, lock contention, and mem-
ory leak analyses traverse large tracelogs and track com-
plex interactions across log messages. Many of these
interactions are contained within a single epoch, so lo-
cal analysis can resolve them. Using parallel analysis
speeds up analysis by up to a factor of 96, with a mean
improvement of 31. Overall, parallel analysis accelerates
total query time by up to a factor of 4, with a mean im-
provement of 2. Sequential analysis does not scale, so we
expect this speedup to increase as the cluster size grows.
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Fork-based Compiler-based
Benchmark query time(s) query time(s) Speedup
Data corruption 7.5 (±0.9) .79 (±0.1) 9.6 (±1.4)
Memory leak 32.5 (±0.2) 2.30 (±0.1) 14.2 (±0.5)
Lock contention 632.2 (±5.0) 6.01 (±0.0) 105.3 (±1.0)

Table 3: Isolation performance. We compare the time to
execute the first 64 out of 1024 epochs using fork-based and
compiler-based isolation.

6.5 Isolation

Table 3 compares the performance of compiler-
based and fork-based isolation for all queries that do
not use continuous function evaluation (which requires
compiler-based isolation). On average, compiler-based
isolation speeds up epoch execution by a factor of 24,
making it the best choice unless its restrictions on what
can be included in a tracer become too onerous.

6.6 Recording Overhead

We measured recording overhead on a server with an
8-core Xeon E5620 2.4 GHz processor, 6 GB mem-
ory, and two 1 TB 7200 RPM hard drives. The aver-
age recording overhead for our application benchmarks
was 6%. Checkpointing every two seconds increases the
average overhead to 8%, and adding additional logging
for retro-timing increases average overhead to 9%. The
additional space overhead for retro-timing is 17% com-
pared to the base Arnold logging.

7 Related Work

Sledgehammer is the first general-purpose framework
for accelerating debugging tools by parallelizing them
across a cluster. It has frequently been observed that de-
terministic replay [11] is a great help in debugging [5,
17, 27, 32, 36]. Sledgehammer leverages Arnold [10]
replay both to ensure that results of successive queries
are consistent and also to parallelize work via epoch
parallelism [35]. JetStream [29] uses epoch parallelism
for a different task: dynamic information flow tracking
(DIFT). Sledgehammer’s tracer isolation has less over-
head and scales much better than the dynamic binary in-
strumentation used by JetStream, making it better suited
for tasks like debugging that need not monitor every in-
struction executed.

Many tools aim to simplify and optimize the dynamic
tracing of program execution. Dtrace and SystemTap re-
duce overhead when tracing is not being used, but are
expensive when gathering large traces [4, 28]. Execution
mining [19] treats executions as data streams that can
be dynamically analyzed and supports iterative queries
by indexing and caching streams. Other tools introspect
distributred systems. Fay [12] lets users introspect at the
start and end of functions but injected code must be side-
effect free. Pivot tracing [23] lets users specify queries
in an SQL-like language. These tools help debug par-

allel programs, but, unlike Sledgehammer, they are not
themselves parallelized for performance.

Several prior systems support retro-logging. Most
isolate all code added to an execution using fork-based
approaches [6, 15]; this comes with high overhead. Oth-
ers use binary rewriting approaches for isolation such as
Pin and Valgrind; these tools do not scale to thousands
of cores [29]. Sledgehammer reduces isolation over-
head through compiler-based isolation and hides remain-
ing overhead through parallelization. Like Sledgeham-
mer, rdb [14] allows users to modify source code and
executes the modifications during replay; however, rdb
prohibits program state modifications instead of isolating
them. Dora [36] allows the added code to perturb appli-
cation state and uses mutable replay to make a best effort
to keep replaying the application correctly after the per-
turbation. This eliminates isolation overhead, but there
is no guarantee that the debugging output will be correct.
Mutable replay is a good choice when output is simple
and can be verified by inspection, but incorrect results
could prove frustrating for complex debugging tasks.

As documented in the wild store scenario, develop-
ers commonly write debug functions to verify invariants.
Researchers have advocated running similar functions at
strategic code locations to repair structures [9] or detect
likely invariants [13]. Continuous function evaluation
takes this to an extreme by logically running a function
after every instruction. X-Ray [1] systematically mea-
sures timing during recording to support profiling of re-
played executions; Sledgehammer’s more general inter-
face allows debuggers to define the events being mea-
sured and understand the uncertainty in timing results.

8 Conclusion

Sledgehammer is a cluster-fueled debugger: it makes
powerful debugging tools interactive by parallelizing ap-
plication and tool execution, as well as analysis, across
many cores in a cluster. This makes tools such as parallel
retro-logging, continuous function evaluation, and retro-
timing practical by running them an average of 416 times
faster than sequential execution on a 1024-core cluster.
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Abstract
The next generation of AI applications will continuously
interact with the environment and learn from these inter-
actions. These applications impose new and demanding
systems requirements, both in terms of performance and
flexibility. In this paper, we consider these requirements
and present Ray—a distributed system to address them.
Ray implements a unified interface that can express both
task-parallel and actor-based computations, supported by
a single dynamic execution engine. To meet the perfor-
mance requirements, Ray employs a distributed scheduler
and a distributed and fault-tolerant store to manage the
system’s control state. In our experiments, we demon-
strate scaling beyond 1.8 million tasks per second and
better performance than existing specialized systems for
several challenging reinforcement learning applications.

1 Introduction

Over the past two decades, many organizations have been
collecting—and aiming to exploit—ever-growing quanti-
ties of data. This has led to the development of a plethora
of frameworks for distributed data analysis, including
batch [20, 64, 28], streaming [15, 39, 31], and graph [34,
35, 24] processing systems. The success of these frame-
works has made it possible for organizations to analyze
large data sets as a core part of their business or scientific
strategy, and has ushered in the age of “Big Data.”

More recently, the scope of data-focused applications
has expanded to encompass more complex artificial intel-
ligence (AI) or machine learning (ML) techniques [30].
The paradigm case is that of supervised learning, where
data points are accompanied by labels, and where the
workhorse technology for mapping data points to labels
is provided by deep neural networks. The complexity of
these deep networks has led to another flurry of frame-
works that focus on the training of deep neural networks
∗equal contribution

and their use in prediction. These frameworks often lever-
age specialized hardware (e.g., GPUs and TPUs), with the
goal of reducing training time in a batch setting. Examples
include TensorFlow [7], MXNet [18], and PyTorch [46].

The promise of AI is, however, far broader than classi-
cal supervised learning. Emerging AI applications must
increasingly operate in dynamic environments, react to
changes in the environment, and take sequences of ac-
tions to accomplish long-term goals [8, 43]. They must
aim not only to exploit the data gathered, but also to ex-
plore the space of possible actions. These broader require-
ments are naturally framed within the paradigm of rein-
forcement learning (RL). RL deals with learning to oper-
ate continuously within an uncertain environment based
on delayed and limited feedback [56]. RL-based systems
have already yielded remarkable results, such as Google’s
AlphaGo beating a human world champion [54], and are
beginning to find their way into dialogue systems, UAVs
[42], and robotic manipulation [25, 60].

The central goal of an RL application is to learn a
policy—a mapping from the state of the environment to a
choice of action—that yields effective performance over
time, e.g., winning a game or piloting a drone. Finding ef-
fective policies in large-scale applications requires three
main capabilities. First, RL methods often rely on simula-
tion to evaluate policies. Simulations make it possible to
explore many different choices of action sequences and to
learn about the long-term consequences of those choices.
Second, like their supervised learning counterparts, RL al-
gorithms need to perform distributed training to improve
the policy based on data generated through simulations or
interactions with the physical environment. Third, poli-
cies are intended to provide solutions to control problems,
and thus it is necessary to serve the policy in interactive
closed-loop and open-loop control scenarios.

These characteristics drive new systems requirements:
a system for RL must support fine-grained computations
(e.g., rendering actions in milliseconds when interacting
with the real world, and performing vast numbers of sim-
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ulations), must support heterogeneity both in time (e.g.,
a simulation may take milliseconds or hours) and in re-
source usage (e.g., GPUs for training and CPUs for simu-
lations), and must support dynamic execution, as results
of simulations or interactions with the environment can
change future computations. Thus, we need a dynamic
computation framework that handles millions of hetero-
geneous tasks per second at millisecond-level latencies.

Existing frameworks that have been developed for
Big Data workloads or for supervised learning work-
loads fall short of satisfying these new requirements for
RL. Bulk-synchronous parallel systems such as Map-
Reduce [20], Apache Spark [64], and Dryad [28] do not
support fine-grained simulation or policy serving. Task-
parallel systems such as CIEL [40] and Dask [48] provide
little support for distributed training and serving. The
same is true for streaming systems such as Naiad [39]
and Storm [31]. Distributed deep-learning frameworks
such as TensorFlow [7] and MXNet [18] do not naturally
support simulation and serving. Finally, model-serving
systems such as TensorFlow Serving [6] and Clipper [19]
support neither training nor simulation.

While in principle one could develop an end-to-end so-
lution by stitching together several existing systems (e.g.,
Horovod [53] for distributed training, Clipper [19] for
serving, and CIEL [40] for simulation), in practice this ap-
proach is untenable due to the tight coupling of these com-
ponents within applications. As a result, researchers and
practitioners today build one-off systems for specialized
RL applications [58, 41, 54, 44, 49, 5]. This approach im-
poses a massive systems engineering burden on the devel-
opment of distributed applications by essentially pushing
standard systems challenges like scheduling, fault toler-
ance, and data movement onto each application.

In this paper, we propose Ray, a general-purpose
cluster-computing framework that enables simulation,
training, and serving for RL applications. The require-
ments of these workloads range from lightweight and
stateless computations, such as for simulation, to long-
running and stateful computations, such as for training.
To satisfy these requirements, Ray implements a unified
interface that can express both task-parallel and actor-
based computations. Tasks enable Ray to efficiently and
dynamically load balance simulations, process large in-
puts and state spaces (e.g., images, video), and recover
from failures. In contrast, actors enable Ray to efficiently
support stateful computations, such as model training, and
expose shared mutable state to clients, (e.g., a parameter
server). Ray implements the actor and the task abstrac-
tions on top of a single dynamic execution engine that is
highly scalable and fault tolerant.

To meet the performance requirements, Ray distributes
two components that are typically centralized in existing
frameworks [64, 28, 40]: (1) the task scheduler and (2) a

state (si+1) 
(observation)

reward (ri+1)

action (ai)
Policy 

improvement
(e.g., SGD)

trajectory: s0, (s1, r1), …, (sn, rn)

policy
Training Serving Simulation

Policy
evaluation 

EnvironmentAgent

Figure 1: Example of an RL system.

metadata store which maintains the computation lineage
and a directory for data objects. This allows Ray to sched-
ule millions of tasks per second with millisecond-level
latencies. Furthermore, Ray provides lineage-based fault
tolerance for tasks and actors, and replication-based fault
tolerance for the metadata store.

While Ray supports serving, training, and simulation
in the context of RL applications, this does not mean that
it should be viewed as a replacement for systems that pro-
vide solutions for these workloads in other contexts. In
particular, Ray does not aim to substitute for serving sys-
tems like Clipper [19] and TensorFlow Serving [6], as
these systems address a broader set of challenges in de-
ploying models, including model management, testing,
and model composition. Similarly, despite its flexibility,
Ray is not a substitute for generic data-parallel frame-
works, such as Spark [64], as it currently lacks the rich
functionality and APIs (e.g., straggler mitigation, query
optimization) that these frameworks provide.

We make the following contributions:

• We design and build the first distributed frame-
work that unifies training, simulation, and serving—
necessary components of emerging RL applications.

• To support these workloads, we unify the actor and
task-parallel abstractions on top of a dynamic task
execution engine.

• To achieve scalability and fault tolerance, we pro-
pose a system design principle in which control state
is stored in a sharded metadata store and all other
system components are stateless.

• To achieve scalability, we propose a bottom-up dis-
tributed scheduling strategy.

2 Motivation and Requirements

We begin by considering the basic components of an RL
system and fleshing out the key requirements for Ray. As
shown in Figure 1, in an RL setting, an agent interacts
repeatedly with the environment. The goal of the agent
is to learn a policy that maximizes a reward. A policy is
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// evaluate policy by interacting with env. (e.g., simulator)
rollout(policy, environment):

trajectory = []
state = environment.initial_state()
while (not environment.has_terminated()):

action = policy.compute(state) // Serving
state, reward = environment.step(action) // Simulation
trajectory.append(state, reward)

return trajectory

// improve policy iteratively until it converges
train_policy(environment):

policy = initial_policy()
while (policy has not converged):

trajectories = []
for i from 1 to k:

// evaluate policy by generating k rollouts
trajectories.append(rollout(policy, environment))
// improve policy

policy = policy.update(trajectories) // Training
return policy

Figure 2: Typical RL pseudocode for learning a policy.

a mapping from the state of the environment to a choice
of action. The precise definitions of environment, agent,
state, action, and reward are application-specific.

To learn a policy, an agent typically employs a two-step
process: (1) policy evaluation and (2) policy improvement.
To evaluate the policy, the agent interacts with the envi-
ronment (e.g., with a simulation of the environment) to
generate trajectories, where a trajectory consists of a se-
quence of (state, reward) tuples produced by the current
policy. Then, the agent uses these trajectories to improve
the policy; i.e., to update the policy in the direction of the
gradient that maximizes the reward. Figure 2 shows an
example of the pseudocode used by an agent to learn a
policy. This pseudocode evaluates the policy by invok-
ing rollout(environment, policy) to generate trajectories.
train policy() then uses these trajectories to improve the
current policy via policy.update(trajectories). This pro-
cess repeats until the policy converges.

Thus, a framework for RL applications must provide
efficient support for training, serving, and simulation
(Figure 1). Next, we briefly describe these workloads.

Training typically involves running stochastic gradient
descent (SGD), often in a distributed setting, to update the
policy. Distributed SGD typically relies on an allreduce
aggregation step or a parameter server [32].

Serving uses the trained policy to render an action based
on the current state of the environment. A serving system
aims to minimize latency, and maximize the number of
decisions per second. To scale, load is typically balanced
across multiple nodes serving the policy.

Finally, most existing RL applications use simulations
to evaluate the policy—current RL algorithms are not

sample-efficient enough to rely solely on data obtained
from interactions with the physical world. These simula-
tions vary widely in complexity. They might take a few ms
(e.g., simulate a move in a chess game) to minutes (e.g.,
simulate a realistic environment for a self-driving car).

In contrast with supervised learning, in which train-
ing and serving can be handled separately by different
systems, in RL all three of these workloads are tightly
coupled in a single application, with stringent latency re-
quirements between them. Currently, no framework sup-
ports this coupling of workloads. In theory, multiple spe-
cialized frameworks could be stitched together to provide
the overall capabilities, but in practice, the resulting data
movement and latency between systems is prohibitive in
the context of RL. As a result, researchers and practition-
ers have been building their own one-off systems.

This state of affairs calls for the development of new
distributed frameworks for RL that can efficiently support
training, serving, and simulation. In particular, such a
framework should satisfy the following requirements:

Fine-grained, heterogeneous computations. The dura-
tion of a computation can range from milliseconds (e.g.,
taking an action) to hours (e.g., training a complex pol-
icy). Additionally, training often requires heterogeneous
hardware (e.g., CPUs, GPUs, or TPUs).

Flexible computation model. RL applications require
both stateless and stateful computations. Stateless compu-
tations can be executed on any node in the system, which
makes it easy to achieve load balancing and movement
of computation to data, if needed. Thus stateless com-
putations are a good fit for fine-grained simulation and
data processing, such as extracting features from images
or videos. In contrast stateful computations are a good fit
for implementing parameter servers, performing repeated
computation on GPU-backed data, or running third-party
simulators that do not expose their state.

Dynamic execution. Several components of RL appli-
cations require dynamic execution, as the order in which
computations finish is not always known in advance (e.g.,
the order in which simulations finish), and the results of a
computation can determine future computations (e.g., the
results of a simulation will determine whether we need to
perform more simulations).

We make two final comments. First, to achieve high
utilization in large clusters, such a framework must handle
millions of tasks per second.∗ Second, such a framework
is not intended for implementing deep neural networks
or complex simulators from scratch. Instead, it should
enable seamless integration with existing simulators [13,
11, 59] and deep learning frameworks [7, 18, 46, 29].

∗Assume 5ms single-core tasks and a cluster of 200 32-core nodes.
This cluster can run (1s/5ms)×32×200 = 1.28M tasks/sec.
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Name Description
futures = f.remote(args) Execute function f remotely. f.remote() can take objects or futures as inputs

and returns one or more futures. This is non-blocking.
objects = ray.get(futures) Return the values associated with one or more futures. This is blocking.
ready futures = ray.wait(futures,k, timeout) Return the futures whose corresponding tasks have completed as soon as either

k have completed or the timeout expires.
actor = Class.remote(args) Instantiate class Class as a remote actor, and return a handle to it. Call a method
futures = actor.method.remote(args) on the remote actor and return one or more futures. Both are non-blocking.

Table 1: Ray API

3 Programming and Computation Model

Ray implements a dynamic task graph computation
model, i.e., it models an application as a graph of depen-
dent tasks that evolves during execution. On top of this
model, Ray provides both an actor and a task-parallel
programming abstraction. This unification differentiates
Ray from related systems like CIEL, which only pro-
vides a task-parallel abstraction, and from Orleans [14] or
Akka [1], which primarily provide an actor abstraction.

3.1 Programming Model

Tasks. A task represents the execution of a remote func-
tion on a stateless worker. When a remote function is
invoked, a future representing the result of the task is
returned immediately. Futures can be retrieved using
ray.get() and passed as arguments into other remote func-
tions without waiting for their result. This allows the user
to express parallelism while capturing data dependencies.
Table 1 shows Ray’s API.

Remote functions operate on immutable objects and
are expected to be stateless and side-effect free: their
outputs are determined solely by their inputs. This implies
idempotence, which simplifies fault tolerance through
function re-execution on failure.
Actors. An actor represents a stateful computation. Each
actor exposes methods that can be invoked remotely and
are executed serially. A method execution is similar to a
task, in that it executes remotely and returns a future, but
differs in that it executes on a stateful worker. A handle
to an actor can be passed to other actors or tasks, making
it possible for them to invoke methods on that actor.

Tasks (stateless) Actors (stateful)
Fine-grained load balancing Coarse-grained load balancing
Support for object locality Poor locality support

High overhead for small updates Low overhead for small updates
Efficient failure handling Overhead from checkpointing

Table 2: Tasks vs. actors tradeoffs.

Table 2 summarizes the properties of tasks and actors.
Tasks enable fine-grained load balancing through leverag-
ing load-aware scheduling at task granularity, input data
locality, as each task can be scheduled on the node stor-
ing its inputs, and low recovery overhead, as there is no
need to checkpoint and recover intermediate state. In con-
trast, actors provide much more efficient fine-grained up-
dates, as these updates are performed on internal rather
than external state, which typically requires serialization
and deserialization. For example, actors can be used to
implement parameter servers [32] and GPU-based itera-
tive computations (e.g., training). In addition, actors can
be used to wrap third-party simulators and other opaque
handles that are hard to serialize.

To satisfy the requirements for heterogeneity and flex-
ibility (Section 2), we augment the API in three ways.
First, to handle concurrent tasks with heterogeneous du-
rations, we introduce ray.wait(), which waits for the
first k available results, instead of waiting for all results
like ray.get(). Second, to handle resource-heterogeneous
tasks, we enable developers to specify resource require-
ments so that the Ray scheduler can efficiently manage re-
sources. Third, to improve flexibility, we enable nested re-
mote functions, meaning that remote functions can invoke
other remote functions. This is also critical for achiev-
ing high scalability (Section 4), as it enables multiple pro-
cesses to invoke remote functions in a distributed fashion.

3.2 Computation Model

Ray employs a dynamic task graph computation
model [21], in which the execution of both remote func-
tions and actor methods is automatically triggered by the
system when their inputs become available. In this sec-
tion, we describe how the computation graph (Figure 4) is
constructed from a user program (Figure 3). This program
uses the API in Table 1 to implement the pseudocode
from Figure 2.

Ignoring actors first, there are two types of nodes in
a computation graph: data objects and remote function
invocations, or tasks. There are also two types of edges:
data edges and control edges. Data edges capture the de-
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@ray.remote

def create_policy():

# Initialize the policy randomly.

return policy

@ray.remote(num_gpus=1)

class Simulator(object):

def __init__(self):

# Initialize the environment.

self.env = Environment()

def rollout(self, policy, num_steps):

observations = []

observation = self.env.current_state()

for _ in range(num_steps):

action = policy(observation)

observation = self.env.step(action)

observations.append(observation)

return observations

@ray.remote(num_gpus=2)

def update_policy(policy, *rollouts):

# Update the policy.

return policy

@ray.remote

def train_policy():

# Create a policy.

policy_id = create_policy.remote()

# Create 10 actors.

simulators = [Simulator.remote() for _ in range(10)]

# Do 100 steps of training.

for _ in range(100):

# Perform one rollout on each actor.

rollout_ids = [s.rollout.remote(policy_id)

for s in simulators]

# Update the policy with the rollouts.

policy_id =

update_policy.remote(policy_id, *rollout_ids)

return ray.get(policy_id)

Figure 3: Python code implementing the example in Figure 2
in Ray. Note that @ray.remote indicates remote functions and
actors. Invocations of remote functions and actor methods return
futures, which can be passed to subsequent remote functions or
actor methods to encode task dependencies. Each actor has an
environment object self.env shared between all of its methods.

pendencies between data objects and tasks. More pre-
cisely, if data object D is an output of task T , we add a
data edge from T to D. Similarly, if D is an input to T ,
we add a data edge from D to T . Control edges capture
the computation dependencies that result from nested re-
mote functions (Section 3.1): if task T1 invokes task T2,
then we add a control edge from T1 to T2.

Actor method invocations are also represented as nodes
in the computation graph. They are identical to tasks
with one key difference. To capture the state dependency
across subsequent method invocations on the same actor,
we add a third type of edge: a stateful edge. If method
M j is called right after method Mi on the same actor,
then we add a stateful edge from Mi to M j. Thus, all

policy1

T1
create_policy

T2
update_policy

A11
rollout

A12
rollout

policy2

T3
update_policy

rollout11

rollout12

A21
rollout

A22
rollout

rollout22

A10
Simulator

A20
Simulator

… ……

data	edges stateful edges
object task/method

control	edges

rollout21

T0
train_policy

Figure 4: The task graph corresponding to an invocation of
train policy.remote() in Figure 3. Remote function calls and the
actor method calls correspond to tasks in the task graph. The
figure shows two actors. The method invocations for each actor
(the tasks labeled A1i and A2i) have stateful edges between them
indicating that they share the mutable actor state. There are con-
trol edges from train policy to the tasks that it invokes. To train
multiple policies in parallel, we could call train policy.remote()
multiple times.

methods invoked on the same actor object form a chain
that is connected by stateful edges (Figure 4). This chain
captures the order in which these methods were invoked.

Stateful edges help us embed actors in an otherwise
stateless task graph, as they capture the implicit data de-
pendency between successive method invocations sharing
the internal state of an actor. Stateful edges also enable
us to maintain lineage. As in other dataflow systems [64],
we track data lineage to enable reconstruction. By explic-
itly including stateful edges in the lineage graph, we can
easily reconstruct lost data, whether produced by remote
functions or actor methods (Section 4.2.3).

4 Architecture

Ray’s architecture comprises (1) an application layer im-
plementing the API, and (2) a system layer providing high
scalability and fault tolerance.

4.1 Application Layer
The application layer consists of three types of processes:

• Driver: A process executing the user program.

• Worker: A stateless process that executes tasks
(remote functions) invoked by a driver or another
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Figure 5: Ray’s architecture consists of two parts: an applica-
tion layer and a system layer. The application layer implements
the API and the computation model described in Section 3, the
system layer implements task scheduling and data management
to satisfy the performance and fault-tolerance requirements.

worker. Workers are started automatically and as-
signed tasks by the system layer. When a remote
function is declared, the function is automatically
published to all workers. A worker executes tasks
serially, with no local state maintained across tasks.

• Actor: A stateful process that executes, when in-
voked, only the methods it exposes. Unlike a worker,
an actor is explicitly instantiated by a worker or a
driver. Like workers, actors execute methods seri-
ally, except that each method depends on the state
resulting from the previous method execution.

4.2 System Layer
The system layer consists of three major components: a
global control store, a distributed scheduler, and a dis-
tributed object store. All components are horizontally
scalable and fault-tolerant.

4.2.1 Global Control Store (GCS)

The global control store (GCS) maintains the entire con-
trol state of the system, and it is a unique feature of our
design. At its core, GCS is a key-value store with pub-
sub functionality. We use sharding to achieve scale, and
per-shard chain replication [61] to provide fault tolerance.
The primary reason for the GCS and its design is to main-
tain fault tolerance and low latency for a system that can
dynamically spawn millions of tasks per second.

Fault tolerance in case of node failure requires a solu-
tion to maintain lineage information. Existing lineage-
based solutions [64, 63, 40, 28] focus on coarse-grained
parallelism and can therefore use a single node (e.g., mas-
ter, driver) to store the lineage without impacting perfor-
mance. However, this design is not scalable for a fine-
grained and dynamic workload like simulation. Therefore,

we decouple the durable lineage storage from the other
system components, allowing each to scale independently.

Maintaining low latency requires minimizing over-
heads in task scheduling, which involves choosing where
to execute, and subsequently task dispatch, which in-
volves retrieving remote inputs from other nodes. Many
existing dataflow systems [64, 40, 48] couple these by
storing object locations and sizes in a centralized sched-
uler, a natural design when the scheduler is not a bottle-
neck. However, the scale and granularity that Ray targets
requires keeping the centralized scheduler off the critical
path. Involving the scheduler in each object transfer is pro-
hibitively expensive for primitives important to distributed
training like allreduce, which is both communication-
intensive and latency-sensitive. Therefore, we store the
object metadata in the GCS rather than in the scheduler,
fully decoupling task dispatch from task scheduling.

In summary, the GCS significantly simplifies Ray’s
overall design, as it enables every component in the sys-
tem to be stateless. This not only simplifies support for
fault tolerance (i.e., on failure, components simply restart
and read the lineage from the GCS), but also makes it
easy to scale the distributed object store and scheduler in-
dependently, as all components share the needed state via
the GCS. An added benefit is the easy development of de-
bugging, profiling, and visualization tools.

4.2.2 Bottom-Up Distributed Scheduler

As discussed in Section 2, Ray needs to dynamically
schedule millions of tasks per second, tasks which may
take as little as a few milliseconds. None of the clus-
ter schedulers we are aware of meet these requirements.
Most cluster computing frameworks, such as Spark [64],
CIEL [40], and Dryad [28] implement a centralized sched-
uler, which can provide locality but at latencies in the tens
of ms. Distributed schedulers such as work stealing [12],
Sparrow [45] and Canary [47] can achieve high scale, but
they either don’t consider data locality [12], or assume
tasks belong to independent jobs [45], or assume the com-
putation graph is known [47].

To satisfy the above requirements, we design a two-
level hierarchical scheduler consisting of a global sched-
uler and per-node local schedulers. To avoid overloading
the global scheduler, the tasks created at a node are sub-
mitted first to the node’s local scheduler. A local sched-
uler schedules tasks locally unless the node is overloaded
(i.e., its local task queue exceeds a predefined threshold),
or it cannot satisfy a task’s requirements (e.g., lacks a
GPU). If a local scheduler decides not to schedule a task
locally, it forwards it to the global scheduler. Since this
scheduler attempts to schedule tasks locally first (i.e., at
the leaves of the scheduling hierarchy), we call it a bottom-
up scheduler.
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Figure 6: Bottom-up distributed scheduler. Tasks are submitted
bottom-up, from drivers and workers to a local scheduler and
forwarded to the global scheduler only if needed (Section 4.2.2).
The thickness of each arrow is proportional to its request rate.

The global scheduler considers each node’s load and
task’s constraints to make scheduling decisions. More pre-
cisely, the global scheduler identifies the set of nodes that
have enough resources of the type requested by the task,
and of these nodes selects the node which provides the
lowest estimated waiting time. At a given node, this time
is the sum of (i) the estimated time the task will be queued
at that node (i.e., task queue size times average task ex-
ecution), and (ii) the estimated transfer time of task’s
remote inputs (i.e., total size of remote inputs divided by
average bandwidth). The global scheduler gets the queue
size at each node and the node resource availability via
heartbeats, and the location of the task’s inputs and their
sizes from GCS. Furthermore, the global scheduler com-
putes the average task execution and the average transfer
bandwidth using simple exponential averaging. If the
global scheduler becomes a bottleneck, we can instantiate
more replicas all sharing the same information via GCS.
This makes our scheduler architecture highly scalable.

4.2.3 In-Memory Distributed Object Store

To minimize task latency, we implement an in-memory
distributed storage system to store the inputs and outputs
of every task, or stateless computation. On each node, we
implement the object store via shared memory. This al-
lows zero-copy data sharing between tasks running on the
same node. As a data format, we use Apache Arrow [2].

If a task’s inputs are not local, the inputs are replicated
to the local object store before execution. Also, a task
writes its outputs to the local object store. Replication
eliminates the potential bottleneck due to hot data objects
and minimizes task execution time as a task only read-
s/writes data from/to the local memory. This increases
throughput for computation-bound workloads, a profile
shared by many AI applications. For low latency, we keep
objects entirely in memory and evict them as needed to

disk using an LRU policy.
As with existing cluster computing frameworks, such

as Spark [64], and Dryad [28], the object store is limited
to immutable data. This obviates the need for complex
consistency protocols (as objects are not updated), and
simplifies support for fault tolerance. In the case of node
failure, Ray recovers any needed objects through lineage
re-execution. The lineage stored in the GCS tracks both
stateless tasks and stateful actors during initial execution;
we use the former to reconstruct objects in the store.

For simplicity, our object store does not support dis-
tributed objects, i.e., each object fits on a single node. Dis-
tributed objects like large matrices or trees can be imple-
mented at the application level as collections of futures.

4.2.4 Implementation

Ray is an active open source project† developed at the Uni-
versity of California, Berkeley. Ray fully integrates with
the Python environment and is easy to install by simply
running pip install ray. The implementation com-
prises ≈ 40K lines of code (LoC), 72% in C++ for the
system layer, 28% in Python for the application layer. The
GCS uses one Redis [50] key-value store per shard, with
entirely single-key operations. GCS tables are sharded
by object and task IDs to scale, and every shard is chain-
replicated [61] for fault tolerance. We implement both
the local and global schedulers as event-driven, single-
threaded processes. Internally, local schedulers maintain
cached state for local object metadata, tasks waiting for
inputs, and tasks ready for dispatch to a worker. To trans-
fer large objects between different object stores, we stripe
the object across multiple TCP connections.

4.3 Putting Everything Together
Figure 7 illustrates how Ray works end-to-end with a
simple example that adds two objects a and b, which
could be scalars or matrices, and returns result c. The
remote function add() is automatically registered with the
GCS upon initialization and distributed to every worker
in the system (step 0 in Figure 7a).

Figure 7a shows the step-by-step operations triggered
by a driver invoking add.remote(a,b), where a and b are
stored on nodes N1 and N2, respectively. The driver sub-
mits add(a, b) to the local scheduler (step 1), which for-
wards it to a global scheduler (step 2).‡ Next, the global
scheduler looks up the locations of add(a, b)’s arguments
in the GCS (step 3) and decides to schedule the task on
node N2, which stores argument b (step 4). The local
scheduler at node N2 checks whether the local object
store contains add(a, b)’s arguments (step 5). Since the

†https://github.com/ray-project/ray
‡Note that N1 could also decide to schedule the task locally.
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Figure 7: An end-to-end example that adds a and b and returns
c. Solid lines are data plane operations and dotted lines are
control plane operations. (a) The function add() is registered
with the GCS by node 1 (N1), invoked on N1, and executed
on N2. (b) N1 gets add()’s result using ray.get(). The Object
Table entry for c is created in step 4 and updated in step 6 after
c is copied to N1.

local store doesn’t have object a, it looks up a’s location
in the GCS (step 6). Learning that a is stored at N1, N2’s
object store replicates it locally (step 7). As all arguments
of add() are now stored locally, the local scheduler in-
vokes add() at a local worker (step 8), which accesses the
arguments via shared memory (step 9).

Figure 7b shows the step-by-step operations triggered
by the execution of ray.get() at N1, and of add() at N2,
respectively. Upon ray.get(idc)’s invocation, the driver
checks the local object store for the value c, using the
future idc returned by add() (step 1). Since the local
object store doesn’t store c, it looks up its location in the
GCS. At this time, there is no entry for c, as c has not
been created yet. As a result, N1’s object store registers a
callback with the Object Table to be triggered when c’s
entry has been created (step 2). Meanwhile, at N2, add()
completes its execution, stores the result c in the local
object store (step 3), which in turn adds c’s entry to the
GCS (step 4). As a result, the GCS triggers a callback
to N1’s object store with c’s entry (step 5). Next, N1
replicates c from N2 (step 6), and returns c to ray.get()
(step 7), which finally completes the task.

While this example involves a large number of RPCs,
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Figure 8: (a) Tasks leverage locality-aware placement. 1000
tasks with a random object dependency are scheduled onto one
of two nodes. With locality-aware policy, task latency remains
independent of the size of task inputs instead of growing by 1-2
orders of magnitude. (b) Near-linear scalability leveraging the
GCS and bottom-up distributed scheduler. Ray reaches 1 million
tasks per second throughput with 60 nodes. x ∈ {70,80,90}
omitted due to cost.

in many cases this number is much smaller, as most tasks
are scheduled locally, and the GCS replies are cached by
the global and local schedulers.

5 Evaluation

In our evaluation, we study the following questions:
1. How well does Ray meet the latency, scalability,

and fault tolerance requirements listed in Section 2?
(Section 5.1)

2. What overheads are imposed on distributed primi-
tives (e.g., allreduce) written using Ray’s API? (Sec-
tion 5.1)

3. In the context of RL workloads, how does Ray com-
pare against specialized systems for training, serv-
ing, and simulation? (Section 5.2)

4. What advantages does Ray provide for RL applica-
tions, compared to custom systems? (Section 5.3)

All experiments were run on Amazon Web Services.
Unless otherwise stated, we use m4.16xlarge CPU in-
stances and p3.16xlarge GPU instances.

5.1 Microbenchmarks

Locality-aware task placement. Fine-grain load bal-
ancing and locality-aware placement are primary benefits
of tasks in Ray. Actors, once placed, are unable to move
their computation to large remote objects, while tasks can.
In Figure 8a, tasks placed without data locality awareness
(as is the case for actor methods), suffer 1-2 orders of
magnitude latency increase at 10-100MB input data sizes.
Ray unifies tasks and actors through the shared object
store, allowing developers to use tasks for e.g., expensive
postprocessing on output produced by simulation actors.

End-to-end scalability. One of the key benefits of
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Figure 9: Object store write throughput and IOPS. From a
single client, throughput exceeds 15GB/s (red) for large objects
and 18K IOPS (cyan) for small objects on a 16 core instance
(m4.4xlarge). It uses 8 threads to copy objects larger than 0.5MB
and 1 thread for small objects. Bar plots report throughput with
1, 2, 4, 8, 16 threads. Results are averaged over 5 runs.

the Global Control Store (GCS) and the bottom-up dis-
tributed scheduler is the ability to horizontally scale the
system to support a high throughput of fine-grained tasks,
while maintaining fault tolerance and low-latency task
scheduling. In Figure 8b, we evaluate this ability on an
embarrassingly parallel workload of empty tasks, increas-
ing the cluster size on the x-axis. We observe near-perfect
linearity in progressively increasing task throughput. Ray
exceeds 1 million tasks per second throughput at 60 nodes
and continues to scale linearly beyond 1.8 million tasks
per second at 100 nodes. The rightmost datapoint shows
that Ray can process 100 million tasks in less than a
minute (54s), with minimum variability. As expected, in-
creasing task duration reduces throughput proportionally
to mean task duration, but the overall scalability remains
linear. While many realistic workloads may exhibit more
limited scalability due to object dependencies and inher-
ent limits to application parallelism, this demonstrates the
scalability of our overall architecture under high load.

Object store performance. To evaluate the perfor-
mance of the object store (Section 4.2.3), we track two
metrics: IOPS (for small objects) and write throughput
(for large objects). In Figure 9, the write throughput from
a single client exceeds 15GB/s as object size increases.
For larger objects, memcpy dominates object creation
time. For smaller objects, the main overheads are in seri-
alization and IPC between the client and object store.

GCS fault tolerance. To maintain low latency while
providing strong consistency and fault tolerance, we build
a lightweight chain replication [61] layer on top of Redis.
Figure 10a simulates recording Ray tasks to and reading
tasks from the GCS, where keys are 25 bytes and values
are 512 bytes. The client sends requests as fast as it can,
having at most one in-flight request at a time. Failures are
reported to the chain master either from the client (having
received explicit errors, or timeouts despite retries) or
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(a) A timeline for GCS read and write latencies as viewed from
a client submitting tasks. The chain starts with 2 replicas. We
manually trigger reconfiguration as follows. At t ≈ 4.2s, a chain
member is killed; immediately after, a new chain member joins,
initiates state transfer, and restores the chain to 2-way replication.
The maximum client-observed latency is under 30ms despite
reconfigurations.
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Figure 10: Ray GCS fault tolerance and flushing.

from any server in the chain (having received explicit
errors). Overall, reconfigurations caused a maximum
client-observed delay of under 30ms (this includes both
failure detection and recovery delays).

GCS flushing. Ray is equipped to periodically flush
the contents of GCS to disk. In Figure 10b we submit 50
million empty tasks sequentially and monitor GCS mem-
ory consumption. As expected, it grows linearly with the
number of tasks tracked and eventually reaches the mem-
ory capacity of the system. At that point, the system be-
comes stalled and the workload fails to finish within a rea-
sonable amount of time. With periodic GCS flushing, we
achieve two goals. First, the memory footprint is capped
at a user-configurable level (in the microbenchmark we
employ an aggressive strategy where consumed memory
is kept as low as possible). Second, the flushing mecha-
nism provides a natural way to snapshot lineage to disk
for long-running Ray applications.

Recovering from task failures. In Figure 11a, we
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Figure 11: Ray fault-tolerance. (a) Ray reconstructs lost task
dependencies as nodes are removed (dotted line), and recovers
to original throughput when nodes are added back. Each task
is 100ms and depends on an object generated by a previously
submitted task. (b) Actors are reconstructed from their last
checkpoint. At t = 200s, we kill 2 of the 10 nodes, causing 400
of the 2000 actors in the cluster to be recovered on the remaining
nodes (t = 200–270s).

demonstrate Ray’s ability to transparently recover from
worker node failures and elastically scale, using the
durable GCS lineage storage. The workload, run on
m4.xlarge instances, consists of linear chains of 100ms
tasks submitted by the driver. As nodes are removed (at
25s, 50s, 100s), the local schedulers reconstruct previous
results in the chain in order to continue execution. Over-
all per-node throughput remains stable throughout.

Recovering from actor failures. By encoding actor
method calls as stateful edges directly in the dependency
graph, we can reuse the same object reconstruction mech-
anism as in Figure 11a to provide transparent fault tol-
erance for stateful computation. Ray additionally lever-
ages user-defined checkpoint functions to bound the re-
construction time for actors (Figure 11b). With minimal
overhead, checkpointing enables only 500 methods to be
re-executed, versus 10k re-executions without checkpoint-
ing. In the future, we hope to further reduce actor recon-
struction time, e.g., by allowing users to annotate meth-
ods that do not mutate state.

Allreduce. Allreduce is a distributed communication
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Figure 12: (a) Mean execution time of allreduce on 16 m4.16xl
nodes. Each worker runs on a distinct node. Ray* restricts Ray
to 1 thread for sending and 1 thread for receiving. (b) Ray’s low-
latency scheduling is critical for allreduce.

primitive important to many machine learning workloads.
Here, we evaluate whether Ray can natively support a
ring allreduce [57] implementation with low enough over-
head to match existing implementations [53]. We find that
Ray completes allreduce across 16 nodes on 100MB in
∼200ms and 1GB in ∼1200ms, surprisingly outperform-
ing OpenMPI (v1.10), a popular MPI implementation,
by 1.5× and 2× respectively (Figure 12a). We attribute
Ray’s performance to its use of multiple threads for net-
work transfers, taking full advantage of the 25Gbps con-
nection between nodes on AWS, whereas OpenMPI se-
quentially sends and receives data on a single thread [22].
For smaller objects, OpenMPI outperforms Ray by switch-
ing to a lower overhead algorithm, an optimization we
plan to implement in the future.

Ray’s scheduler performance is critical to implement-
ing primitives such as allreduce. In Figure 12b, we inject
artificial task execution delays and show that performance
drops nearly 2× with just a few ms of extra latency. Sys-
tems with centralized schedulers like Spark and CIEL typ-
ically have scheduler overheads in the tens of millisec-
onds [62, 38], making such workloads impractical. Sched-
uler throughput also becomes a bottleneck since the num-
ber of tasks required by ring reduce scales quadratically
with the number of participants.

5.2 Building blocks

End-to-end applications (e.g., AlphaGo [54]) require a
tight coupling of training, serving, and simulation. In this
section, we isolate each of these workloads to a setting
that illustrates a typical RL application’s requirements.
Due to a flexible programming model targeted to RL, and
a system designed to support this programming model,
Ray matches and sometimes exceeds the performance of
dedicated systems for these individual workloads.
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Figure 13: Images per second reached when distributing the
training of a ResNet-101 TensorFlow model (from the official
TF benchmark). All experiments were run on p3.16xl instances
connected by 25Gbps Ethernet, and workers allocated 4 GPUs
per node as done in Horovod [53]. We note some measurement
deviations from previously reported, likely due to hardware
differences and recent TensorFlow performance improvements.
We used OpenMPI 3.0, TF 1.8, and NCCL2 for all runs.

5.2.1 Distributed Training

We implement data-parallel synchronous SGD leverag-
ing the Ray actor abstraction to represent model replicas.
Model weights are synchronized via allreduce (5.1) or pa-
rameter server, both implemented on top of the Ray API.

In Figure 13, we evaluate the performance of the
Ray (synchronous) parameter-server SGD implementa-
tion against state-of-the-art implementations [53], us-
ing the same TensorFlow model and synthetic data gen-
erator for each experiment. We compare only against
TensorFlow-based systems to accurately measure the over-
head imposed by Ray, rather than differences between the
deep learning frameworks themselves. In each iteration,
model replica actors compute gradients in parallel, send
the gradients to a sharded parameter server, then read the
summed gradients from the parameter server for the next
iteration.

Figure 13 shows that Ray matches the performance of
Horovod and is within 10% of distributed TensorFlow
(in distributed replicated mode). This is due to
the ability to express the same application-level optimiza-
tions found in these specialized systems in Ray’s general-
purpose API. A key optimization is the pipelining of gra-
dient computation, transfer, and summation within a sin-
gle iteration. To overlap GPU computation with network
transfer, we use a custom TensorFlow operator to write
tensors directly to Ray’s object store.

5.2.2 Serving

Model serving is an important component of end-to-end
applications. Ray focuses primarily on the embedded
serving of models to simulators running within the same
dynamic task graph (e.g., within an RL application on
Ray). In contrast, systems like Clipper [19] focus on
serving predictions to external clients.

In this setting, low latency is critical for achieving high
utilization. To show this, in Table 3 we compare the

System Small Input Larger Input
Clipper 4400 ± 15 states/sec 290 ± 1.3 states/sec

Ray 6200 ± 21 states/sec 6900 ± 150 states/sec

Table 3: Throughput comparisons for Clipper [19], a dedicated
serving system, and Ray for two embedded serving workloads.
We use a residual network and a small fully connected network,
taking 10ms and 5ms to evaluate, respectively. The server is
queried by clients that each send states of size 4KB and 100KB
respectively in batches of 64.

server throughput achieved using a Ray actor to serve
a policy versus using the open source Clipper system
over REST. Here, both client and server processes are co-
located on the same machine (a p3.8xlarge instance). This
is often the case for RL applications but not for the general
web serving workloads addressed by systems like Clipper.
Due to its low-overhead serialization and shared memory
abstractions, Ray achieves an order of magnitude higher
throughput for a small fully connected policy model that
takes in a large input and is also faster on a more expensive
residual network policy model, similar to one used in
AlphaGo Zero, that takes smaller input.

5.2.3 Simulation

Simulators used in RL produce results with variable
lengths (“timesteps”) that, due to the tight loop with train-
ing, must be used as soon as they are available. The task
heterogeneity and timeliness requirements make simu-
lations hard to support efficiently in BSP-style systems.
To demonstrate, we compare (1) an MPI implementation
that submits 3n parallel simulation runs on n cores in 3
rounds, with a global barrier between rounds§, to (2) a
Ray program that issues the same 3n tasks while concur-
rently gathering simulation results back to the driver. Ta-
ble 4 shows that both systems scale well, yet Ray achieves
up to 1.8× throughput. This motivates a programming
model that can dynamically spawn and collect the results
of fine-grained simulation tasks.

System, programming model 1 CPU 16 CPUs 256 CPUs
MPI, bulk synchronous 22.6K 208K 2.16M

Ray, asynchronous tasks 22.3K 290K 4.03M

Table 4: Timesteps per second for the Pendulum-v0 simulator
in OpenAI Gym [13]. Ray allows for better utilization when
running heterogeneous simulations at scale.

§Note that experts can use MPI’s asynchronous primitives to get
around barriers—at the expense of increased program complexity —we
nonetheless chose such an implementation to simulate BSP.
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5.3 RL Applications

Without a system that can tightly couple the training, sim-
ulation, and serving steps, reinforcement learning algo-
rithms today are implemented as one-off solutions that
make it difficult to incorporate optimizations that, for ex-
ample, require a different computation structure or that
utilize different architectures. Consequently, with imple-
mentations of two representative reinforcement learning
applications in Ray, we are able to match and even out-
perform custom systems built specifically for these algo-
rithms. The primary reason is the flexibility of Ray’s pro-
gramming model, which can express application-level op-
timizations that would require substantial engineering ef-
fort to port to custom-built systems, but are transparently
supported by Ray’s dynamic task graph execution engine.

5.3.1 Evolution Strategies

To evaluate Ray on large-scale RL workloads, we imple-
ment the evolution strategies (ES) algorithm and com-
pare to the reference implementation [49]—a system spe-
cially built for this algorithm that relies on Redis for mes-
saging and low-level multiprocessing libraries for data-
sharing. The algorithm periodically broadcasts a new pol-
icy to a pool of workers and aggregates the results of
roughly 10000 tasks (each performing 10 to 1000 simula-
tion steps).

As shown in Figure 14a, an implementation on Ray
scales to 8192 cores. Doubling the cores available yields
an average completion time speedup of 1.6×. Conversely,
the special-purpose system fails to complete at 2048 cores,
where the work in the system exceeds the processing
capacity of the application driver. To avoid this issue, the
Ray implementation uses an aggregation tree of actors,
reaching a median time of 3.7 minutes, more than twice
as fast as the best published result (10 minutes).

Initial parallelization of a serial implementation using
Ray required modifying only 7 lines of code. Performance
improvement through hierarchical aggregation was easy
to realize with Ray’s support for nested tasks and actors.
In contrast, the reference implementation had several hun-
dred lines of code dedicated to a protocol for communi-
cating tasks and data between workers, and would require
further engineering to support optimizations like hierar-
chical aggregation.

5.3.2 Proximal Policy Optimization

We implement Proximal Policy Optimization (PPO) [51]
in Ray and compare to a highly-optimized reference im-
plementation [5] that uses OpenMPI communication prim-
itives. The algorithm is an asynchronous scatter-gather,
where new tasks are assigned to simulation actors as they
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Figure 14: Time to reach a score of 6000 in the Humanoid-
v1 task [13]. (a) The Ray ES implementation scales well to
8192 cores and achieves a median time of 3.7 minutes, over
twice as fast as the best published result. The special-purpose
system failed to run beyond 1024 cores. ES is faster than PPO
on this benchmark, but shows greater runtime variance. (b)
The Ray PPO implementation outperforms a specialized MPI
implementation [5] with fewer GPUs, at a fraction of the cost.
The MPI implementation required 1 GPU for every 8 CPUs,
whereas the Ray version required at most 8 GPUs (and never
more than 1 GPU per 8 CPUs).

return rollouts to the driver. Tasks are submitted un-
til 320000 simulation steps are collected (each task pro-
duces between 10 and 1000 steps). The policy update per-
forms 20 steps of SGD with a batch size of 32768. The
model parameters in this example are roughly 350KB.
These experiments were run using p2.16xlarge (GPU) and
m4.16xlarge (high CPU) instances.

As shown in Figure 14b, the Ray implementation out-
performs the optimized MPI implementation in all exper-
iments, while using a fraction of the GPUs. The reason
is that Ray is heterogeneity-aware and allows the user to
utilize asymmetric architectures by expressing resource
requirements at the granularity of a task or actor. The Ray
implementation can then leverage TensorFlow’s single-
process multi-GPU support and can pin objects in GPU
memory when possible. This optimization cannot be eas-
ily ported to MPI due to the need to asynchronously gather
rollouts to a single GPU process. Indeed, [5] includes two
custom implementations of PPO, one using MPI for large
clusters and one that is optimized for GPUs but that is re-
stricted to a single node. Ray allows for an implementa-
tion suitable for both scenarios.

Ray’s ability to handle resource heterogeneity also de-
creased PPO’s cost by a factor of 4.5 [4], since CPU-only
tasks can be scheduled on cheaper high-CPU instances.
In contrast, MPI applications often exhibit symmetric ar-
chitectures, in which all processes run the same code and
require identical resources, in this case preventing the
use of CPU-only machines for scale-out. Furthermore,
the MPI implementation requires on-demand instances
since it does not transparently handle failure. Assum-
ing 4× cheaper spot instances, Ray’s fault tolerance and
resource-aware scheduling together cut costs by 18×.
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6 Related Work

Dynamic task graphs. Ray is closely related to
CIEL [40] and Dask [48]. All three support dynamic
task graphs with nested tasks and implement the futures
abstraction. CIEL also provides lineage-based fault toler-
ance, while Dask, like Ray, fully integrates with Python.
However, Ray differs in two aspects that have important
performance consequences. First, Ray extends the task
model with an actor abstraction. This is necessary for
efficient stateful computation in distributed training and
serving, to keep the model data collocated with the com-
putation. Second, Ray employs a fully distributed and de-
coupled control plane and scheduler, instead of relying on
a single master storing all metadata. This is critical for ef-
ficiently supporting primitives like allreduce without sys-
tem modification. At peak performance for 100MB on 16
nodes, allreduce on Ray (Section 5.1) submits 32 rounds
of 16 tasks in 200ms. Meanwhile, Dask reports a maxi-
mum scheduler throughput of 3k tasks/s on 512 cores [3].
With a centralized scheduler, each round of allreduce
would then incur a minimum of ∼5ms of scheduling
delay, translating to up to 2× worse completion time (Fig-
ure 12b). Even with a decentralized scheduler, coupling
the control plane information with the scheduler leaves
the latter on the critical path for data transfer, adding an
extra roundtrip to every round of allreduce.

Dataflow systems. Popular dataflow systems, such
as MapReduce [20], Spark [65], and Dryad [28] have
widespread adoption for analytics and ML workloads,
but their computation model is too restrictive for a fine-
grained and dynamic simulation workload. Spark and
MapReduce implement the BSP execution model, which
assumes that tasks within the same stage perform the
same computation and take roughly the same amount of
time. Dryad relaxes this restriction but lacks support for
dynamic task graphs. Furthermore, none of these systems
provide an actor abstraction, nor implement a distributed
scalable control plane and scheduler. Finally, Naiad [39]
is a dataflow system that provides improved scalability
for some workloads, but only supports static task graphs.

Machine learning frameworks. TensorFlow [7] and
MXNet [18] target deep learning workloads and effi-
ciently leverage both CPUs and GPUs. While they
achieve great performance for training workloads consist-
ing of static DAGs of linear algebra operations, they have
limited support for the more general computation required
to tightly couple training with simulation and embedded
serving. TensorFlow Fold [33] provides some support for
dynamic task graphs, as well as MXNet through its inter-
nal C++ APIs, but neither fully supports the ability to mod-
ify the DAG during execution in response to task progress,
task completion times, or faults. TensorFlow and MXNet
in principle achieve generality by allowing the program-

mer to simulate low-level message-passing and synchro-
nization primitives, but the pitfalls and user experience in
this case are similar to those of MPI. OpenMPI [22] can
achieve high performance, but it is relatively hard to pro-
gram as it requires explicit coordination to handle hetero-
geneous and dynamic task graphs. Furthermore, it forces
the programmer to explicitly handle fault tolerance.

Actor systems. Orleans [14] and Akka [1] are two ac-
tor frameworks well suited to developing highly available
and concurrent distributed systems. However, compared
to Ray, they provide less support for recovery from data
loss. To recover stateful actors, the Orleans developer
must explicitly checkpoint actor state and intermediate re-
sponses. Stateless actors in Orleans can be replicated for
scale-out, and could therefore act as tasks, but unlike in
Ray, they have no lineage. Similarly, while Akka explic-
itly supports persisting actor state across failures, it does
not provide efficient fault tolerance for stateless computa-
tion (i.e., tasks). For message delivery, Orleans provides
at-least-once and Akka provides at-most-once semantics.
In contrast, Ray provides transparent fault tolerance and
exactly-once semantics, as each method call is logged in
the GCS and both arguments and results are immutable.
We find that in practice these limitations do not affect the
performance of our applications. Erlang [10] and C++ Ac-
tor Framework [17], two other actor-based systems, have
similarly limited support for fault tolerance.

Global control store and scheduling. The concept
of logically centralizing the control plane has been pre-
viously proposed in software defined networks (SDNs)
[16], distributed file systems (e.g., GFS [23]), resource
management (e.g., Omega [52]), and distributed frame-
works (e.g., MapReduce [20], BOOM [9]), to name a
few. Ray draws inspiration from these pioneering efforts,
but provides significant improvements. In contrast with
SDNs, BOOM, and GFS, Ray decouples the storage of
the control plane information (e.g., GCS) from the logic
implementation (e.g., schedulers). This allows both stor-
age and computation layers to scale independently, which
is key to achieving our scalability targets. Omega uses
a distributed architecture in which schedulers coordinate
via globally shared state. To this architecture, Ray adds
global schedulers to balance load across local schedulers,
and targets ms-level, not second-level, task scheduling.

Ray implements a unique distributed bottom-up sched-
uler that is horizontally scalable, and can handle dynami-
cally constructed task graphs. Unlike Ray, most existing
cluster computing systems [20, 64, 40] use a centralized
scheduler architecture. While Sparrow [45] is decentral-
ized, its schedulers make independent decisions, limiting
the possible scheduling policies, and all tasks of a job are
handled by the same global scheduler. Mesos [26] im-
plements a two-level hierarchical scheduler, but its top-
level scheduler manages frameworks, not individual tasks.
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Canary [47] achieves impressive performance by having
each scheduler instance handle a portion of the task graph,
but does not handle dynamic computation graphs.

Cilk [12] is a parallel programming language whose
work-stealing scheduler achieves provably efficient load-
balancing for dynamic task graphs. However, with no
central coordinator like Ray’s global scheduler, this fully
parallel design is also difficult to extend to support data
locality and resource heterogeneity in a distributed setting.

7 Discussion and Experiences

Building Ray has been a long journey. It started two years
ago with a Spark library to perform distributed training
and simulations. However, the relative inflexibility of the
BSP model, the high per-task overhead, and the lack of an
actor abstraction led us to develop a new system. Since we
released Ray roughly one year ago, several hundreds of
people have used it and several companies are running it
in production. Here we discuss our experience developing
and using Ray, and some early user feedback.

API. In designing the API, we have emphasized mini-
malism. Initially we started with a basic task abstraction.
Later, we added the wait() primitive to accommodate roll-
outs with heterogeneous durations and the actor abstrac-
tion to accommodate third-party simulators and amortize
the overhead of expensive initializations. While the re-
sulting API is relatively low-level, it has proven both pow-
erful and simple to use. We have already used this API to
implement many state-of-the-art RL algorithms on top of
Ray, including A3C [36], PPO [51], DQN [37], ES [49],
DDPG [55], and Ape-X [27]. In most cases it took us
just a few tens of lines of code to port these algorithms to
Ray. Based on early user feedback, we are considering
enhancing the API to include higher level primitives and
libraries, which could also inform scheduling decisions.

Limitations. Given the workload generality, special-
ized optimizations are hard. For example, we must make
scheduling decisions without full knowledge of the com-
putation graph. Scheduling optimizations in Ray might
require more complex runtime profiling. In addition, stor-
ing lineage for each task requires the implementation of
garbage collection policies to bound storage costs in the
GCS, a feature we are actively developing.

Fault tolerance. We are often asked if fault tolerance
is really needed for AI applications. After all, due to the
statistical nature of many AI algorithms, one could sim-
ply ignore failed rollouts. Based on our experience, our
answer is “yes”. First, the ability to ignore failures makes
applications much easier to write and reason about. Sec-
ond, our particular implementation of fault tolerance via
deterministic replay dramatically simplifies debugging as
it allows us to easily reproduce most errors. This is par-
ticularly important since, due to their stochasticity, AI al-

gorithms are notoriously hard to debug. Third, fault toler-
ance helps save money since it allows us to run on cheap
resources like spot instances on AWS. Of course, this
comes at the price of some overhead. However, we found
this overhead to be minimal for our target workloads.

GCS and Horizontal Scalability. The GCS dramati-
cally simplified Ray development and debugging. It en-
abled us to query the entire system state while debugging
Ray itself, instead of having to manually expose internal
component state. In addition, the GCS is also the backend
for our timeline visualization tool, used for application-
level debugging.

The GCS was also instrumental to Ray’s horizontal
scalability. In Section 5, we were able to scale by adding
more shards whenever the GCS became a bottleneck. The
GCS also enabled the global scheduler to scale by sim-
ply adding more replicas. Due to these advantages, we
believe that centralizing control state will be a key design
component of future distributed systems.

8 Conclusion

No general-purpose system today can efficiently support
the tight loop of training, serving, and simulation. To ex-
press these core building blocks and meet the demands of
emerging AI applications, Ray unifies task-parallel and
actor programming models in a single dynamic task graph
and employs a scalable architecture enabled by the global
control store and a bottom-up distributed scheduler. The
programming flexibility, high throughput, and low laten-
cies simultaneously achieved by this architecture is partic-
ularly important for emerging artificial intelligence work-
loads, which produce tasks diverse in their resource re-
quirements, duration, and functionality. Our evaluation
demonstrates linear scalability up to 1.8 million tasks per
second, transparent fault tolerance, and substantial perfor-
mance improvements on several contemporary RL work-
loads. Thus, Ray provides a powerful combination of flex-
ibility, performance, and ease of use for the development
of future AI applications.
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Abstract

There is an increasing need to bring machine learn-
ing to a wide diversity of hardware devices. Current
frameworks rely on vendor-specific operator libraries
and optimize for a narrow range of server-class GPUs.
Deploying workloads to new platforms – such as mo-
bile phones, embedded devices, and accelerators (e.g.,
FPGAs, ASICs) – requires significant manual effort.
We propose TVM, a compiler that exposes graph-level
and operator-level optimizations to provide performance
portability to deep learning workloads across diverse
hardware back-ends. TVM solves optimization chal-
lenges specific to deep learning, such as high-level op-
erator fusion, mapping to arbitrary hardware primitives,
and memory latency hiding. It also automates optimiza-
tion of low-level programs to hardware characteristics by
employing a novel, learning-based cost modeling method
for rapid exploration of code optimizations. Experimen-
tal results show that TVM delivers performance across
hardware back-ends that are competitive with state-of-
the-art, hand-tuned libraries for low-power CPU, mo-
bile GPU, and server-class GPUs. We also demonstrate
TVM’s ability to target new accelerator back-ends, such
as the FPGA-based generic deep learning accelerator.
The system is open sourced and in production use inside
several major companies.

1 Introduction

Deep learning (DL) models can now recognize images,
process natural language, and defeat humans in challeng-
ing strategy games. There is a growing demand to deploy
smart applications to a wide spectrum of devices, rang-
ing from cloud servers to self-driving cars and embed-
ded devices. Mapping DL workloads to these devices is
complicated by the diversity of hardware characteristics,
including embedded CPUs, GPUs, FPGAs, and ASICs
(e.g., the TPU [21]). These hardware targets diverge in
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Figure 1: CPU, GPU and TPU-like accelerators re-
quire different on-chip memory architectures and com-
pute primitives. This divergence must be addressed when
generating optimized code.

terms of memory organization, compute functional units,
etc., as shown in Figure 1.

Current DL frameworks, such as TensorFlow, MXNet,
Caffe, and PyTorch, rely on a computational graph in-
termediate representation to implement optimizations,
e.g., auto differentiation and dynamic memory man-
agement [3, 4, 9]. Graph-level optimizations, however,
are often too high-level to handle hardware back-end-
specific operator-level transformations. Most of these
frameworks focus on a narrow class of server-class
GPU devices and delegate target-specific optimizations
to highly engineered and vendor-specific operator li-
braries. These operator-level libraries require significant
manual tuning and hence are too specialized and opaque
to be easily ported across hardware devices. Providing
support in various DL frameworks for diverse hardware
back-ends presently requires significant engineering ef-
fort. Even for supported back-ends, frameworks must
make the difficult choice between: (1) avoiding graph
optimizations that yield new operators not in the prede-
fined operator library, and (2) using unoptimized imple-
mentations of these new operators.

To enable both graph- and operator-level optimiza-
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tions for diverse hardware back-ends, we take a fun-
damentally different, end-to-end approach. We built
TVM, a compiler that takes a high-level specification of
a deep learning program from existing frameworks and
generates low-level optimized code for a diverse set of
hardware back-ends. To be attractive to users, TVM
needs to offer performance competitive with the multi-
tude of manually optimized operator libraries across di-
verse hardware back-ends. This goal requires addressing
the key challenges described below.

Leveraging Specific Hardware Features and Abstrac-
tions. DL accelerators introduce optimized tensor com-
pute primitives [1, 12, 21], while GPUs and CPUs con-
tinuously improve their processing elements. This poses
a significant challenge in generating optimized code for
a given operator description. The inputs to hardware in-
structions are multi-dimensional, with fixed or variable
lengths; they dictate different data layouts; and they have
special requirements for memory hierarchy. The system
must effectively exploit these complex primitives to ben-
efit from acceleration. Further, accelerator designs also
commonly favor leaner control [21] and offload most
scheduling complexity to the compiler stack. For spe-
cialized accelerators, the system now needs to gener-
ate code that explicitly controls pipeline dependencies to
hide memory access latency – a job that hardware per-
forms for CPUs and GPUs.

Large Search Space for Optimization Another chal-
lenge is producing efficient code without manually tun-
ing operators. The combinatorial choices of memory ac-
cess, threading pattern, and novel hardware primitives
creates a huge configuration space for generated code
(e.g., loop tiles and ordering, caching, unrolling) that
would incur a large search cost if we implement black
box auto-tuning. One could adopt a predefined cost
model to guide the search, but building an accurate cost
model is difficult due to the increasing complexity of
modern hardware. Furthermore, such an approach would
require us to build separate cost models for each hard-
ware type.

TVM addresses these challenges with three key mod-
ules. (1) We introduce a tensor expression language
to build operators and provide program transformation
primitives that generate different versions of the pro-
gram with various optimizations. This layer extends
Halide [32]’s compute/schedule separation concept by
also separating target hardware intrinsics from transfor-
mation primitives, which enables support for novel ac-
celerators and their corresponding new intrinsics. More-
over, we introduce new transformation primitives to ad-
dress GPU-related challenges and enable deployment to
specialized accelerators. We can then apply different se-
quences of program transformations to form a rich space

of valid programs for a given operator declaration. (2)
We introduce an automated program optimization frame-
work to find optimized tensor operators. The optimizer is
guided by an ML-based cost model that adapts and im-
proves as we collect more data from a hardware back-
end. (3) On top of the automatic code generator, we
introduce a graph rewriter that takes full advantage of
high- and operator-level optimizations.

By combining these three modules, TVM can take
model descriptions from existing deep learning frame-
works, perform joint high- and low-level optimizations,
and generate hardware-specific optimized code for back-
ends, e.g., CPUs, GPUs, and FPGA-based specialized
accelerators.

This paper makes the following contributions:

• We identify the major optimization challenges in pro-
viding performance portability to deep learning work-
loads across diverse hardware back-ends.

• We introduce novel schedule primitives that take ad-
vantage of cross-thread memory reuse, novel hardware
intrinsics, and latency hiding.

• We propose and implement a machine learning based
optimization system to automatically explore and
search for optimized tensor operators.

• We build an end-to-end compilation and optimiza-
tion stack that allows the deployment of deep learning
workloads specified in high-level frameworks (includ-
ing TensorFlow, MXNet, PyTorch, Keras, CNTK) to
diverse hardware back-ends (including CPUs, server
GPUs, mobile GPUs, and FPGA-based accelerators).
The open-sourced TVM is in production use inside
several major companies.
We evaluated TVM using real world workloads on a
server-class GPU, an embedded GPU, an embedded
CPU, and a custom generic FPGA-based accelerator.
Experimental results show that TVM offers portable
performance across back-ends and achieves speedups
ranging from 1.2× to 3.8× over existing frameworks
backed by hand-optimized libraries.

2 Overview

This section describes TVM by using an example to walk
through its components. Figure 2 summarizes execu-
tion steps in TVM and their corresponding sections in
the paper. The system first takes as input a model from
an existing framework and transforms it into a computa-
tional graph representation. It then performs high-level
dataflow rewriting to generate an optimized graph. The
operator-level optimization module must generate effi-
cient code for each fused operator in this graph. Oper-
ators are specified in a declarative tensor expression lan-
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Figure 2: System overview of TVM. The current stack
supports descriptions from many deep learning frame-
works and exchange formats, such as CoreML and
ONNX, to target major CPU, GPU and specialized ac-
celerators.

guage; execution details are unspecified. TVM identifies
a collection of possible code optimizations for a given
hardware target’s operators. Possible optimizations form
a large space, so we use an ML-based cost model to find
optimized operators. Finally, the system packs the gen-
erated code into a deployable module.

End-User Example. In a few lines of code, a user can
take a model from existing deep learning frameworks and
call the TVM API to get a deployable module:

import tvm as t
# Use keras framework as example, import model
graph, params = t.frontend.from_keras(keras_model)
target = t.target.cuda()
graph, lib, params = t.compiler.build(graph, target, params)

This compiled runtime module contains three compo-
nents: the final optimized computational graph (graph),
generated operators (lib), and module parame-
ters (params). These components can then be used to
deploy the model to the target back-end:

import tvm.runtime as t
module = runtime.create(graph, lib, t.cuda(0))
module.set_input(**params)
module.run(data=data_array)
output = tvm.nd.empty(out_shape, ctx=t.cuda(0))
module.get_output(0, output)

TVM supports multiple deployment back-ends in lan-
guages such as C++, Java and Python. The rest of this
paper describes TVM’s architecture and how a system
programmer can extend it to support new back-ends.

3 Optimizing Computational Graphs

Computational graphs are a common way to represent
programs in DL frameworks [3, 4, 7, 9]. Figure 3 shows
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inputs
dataflow
dependency
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data

channels=32,
kernel_size=(3,3), 
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Figure 3: Example computational graph of a two-layer
convolutional neural network. Each node in the graph
represents an operation that consumes one or more ten-
sors and produces one or more tensors. Tensor operations
can be parameterized by attributes to configure their be-
havior (e.g., padding or strides).

an example computational graph representation of a two-
layer convolutional neural network. The main differ-
ence between this high-level representation and a low-
level compiler intermediate representation (IR), such as
LLVM, is that the intermediate data items are large,
multi-dimensional tensors. Computational graphs pro-
vide a global view of operators, but they avoid specifying
how each operator must be implemented. Like LLVM
IRs, a computational graph can be transformed into func-
tionally equivalent graphs to apply optimizations. We
also take advantage of shape specificity in common DL
workloads to optimize for a fixed set of input shapes.

TVM exploits a computational graph representation to
apply high-level optimizations: a node represents an op-
eration on tensors or program inputs, and edges represent
data dependencies between operations. It implements
many graph-level optimizations, including: operator fu-
sion, which fuses multiple small operations together;
constant-folding, which pre-computes graph parts that
can be determined statically, saving execution costs; a
static memory planning pass, which pre-allocates mem-
ory to hold each intermediate tensor; and data layout
transformations, which transform internal data layouts
into back-end-friendly forms. We now discuss operator
fusion and the data layout transformation.

Operator Fusion. Operator fusion combines multiple
operators into a single kernel without saving the interme-
diate results in memory. This optimization can greatly
reduce execution time, particularly in GPUs and spe-
cialized accelerators. Specifically, we recognize four
categories of graph operators: (1) injective (one-to-one
map, e.g., add), (2) reduction (e.g., sum), (3) complex-
out-fusable (can fuse element-wise map to output, e.g.,
conv2d), and (4) opaque (cannot be fused, e.g., sort). We
provide generic rules to fuse these operators, as follows.
Multiple injective operators can be fused into another in-
jective operator. A reduction operator can be fused with
input injective operators (e.g., fuse scale and sum). Op-
erators such as conv2d are complex-out-fusable, and we
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Figure 4: Performance comparison between fused and
non-fused operations. TVM generates both operations.
Tested on NVIDIA Titan X.

can fuse element-wise operators to its output. We can
apply these rules to transform the computational graph
into a fused version. Figure 4 demonstrates the impact
of this optimization on different workloads. We find that
fused operators generate up to a 1.2× to 2× speedup by
reducing memory accesses.

Data Layout Transformation. There are multiple
ways to store a given tensor in the computational graph.
The most common data layout choices are column major
and row major. In practice, we may prefer to use even
more complicated data layouts. For instance, a DL ac-
celerator might exploit 4×4 matrix operations, requiring
data to be tiled into 4× 4 chunks to optimize for access
locality.

Data layout optimization converts a computational
graph into one that can use better internal data layouts
for execution on the target hardware. It starts by spec-
ifying the preferred data layout for each operator given
the constraints dictated by memory hierarchies. We then
perform the proper layout transformation between a pro-
ducer and a consumer if their preferred data layouts do
not match.

While high-level graph optimizations can greatly im-
prove the efficiency of DL workloads, they are only as
effective as what the operator library provides. Cur-
rently, the few DL frameworks that support operator fu-
sion require the operator library to provide an implemen-
tation of the fused patterns. With more network opera-
tors introduced on a regular basis, the number of possible
fused kernels can grow dramatically. This approach is
no longer sustainable when targeting an increasing num-
ber of hardware back-ends since the required number
of fused pattern implementations grows combinatorially
with the number of data layouts, data types, and accel-
erator intrinsics that must be supported. It is not feasi-
ble to handcraft operator kernels for the various opera-
tions desired by a program and for each back-end. To

for y in range(1024):
  for x in range(1024):
    C[y][x] = 0
    for k in range(1024):
      C[y][x] += A[k][y] * B[k][x]

for yo in range(128):
  for xo in range(128):
    C[yo*8:yo*8+8][xo*8:xo*8+8] = 0
    for ko in range(128):
      for yi in range(8):
        for xi in range(8):
          for ki in range(8):
            C[yo*8+yi][xo*8+xi] += 
               A[ko*8+ki][yo*8+yi] * B[ko*8+ki][xo*8+xi]

inp_buffer AL[8][8], BL[8][8]
acc_buffer CL[8][8]
for yo in range(128):
  for xo in range(128):
    vdla.fill_zero(CL)
    for ko in range(128):
      vdla.dma_copy2d(AL, A[ko*8:ko*8+8][yo*8:yo*8+8])
      vdla.dma_copy2d(BL, B[ko*8:ko*8+8][xo*8:xo*8+8])        
      vdla.fused_gemm8x8_add(CL, AL, BL)
    vdla.dma_copy2d(C[yo*8:yo*8+8,xo*8:xo*8+8], CL)

+ Cache Data on Accelerator Special Buffer 

A = t.placeholder((1024, 1024))
B = t.placeholder((1024, 1024))
k = t.reduce_axis((0, 1024))
C = t.compute((1024, 1024), lambda y, x: 
                t.sum(A[k, y] * B[k, x], axis=k))
s = t.create_schedule(C.op)

schedule schedule 
transformation

corresponding 
low-level code

+ Map to Accelerator Tensor Instructions

CL = s.cache_write(C, vdla.acc_buffer)
AL = s.cache_read(A, vdla.inp_buffer)
# additional schedule steps omitted …

s[CL].tensorize(yi, vdla.gemm8x8)

+ Loop Tiling
yo, xo, ko, yi, xi, ki = s[C].tile(y, x, k, 8, 8, 8)

Figure 5: Example schedule transformations that opti-
mize a matrix multiplication on a specialized accelerator.

this end, we next propose a code generation approach
that can generate various possible implementations for a
given model’s operators.

4 Generating Tensor Operations

TVM produces efficient code for each operator by gen-
erating many valid implementations on each hardware
back-end and choosing an optimized implementation.
This process builds on Halide’s idea of decoupling de-
scriptions from computation rules (or schedule optimiza-
tions) [32] and extends it to support new optimizations
(nested parallelism, tensorization, and latency hiding)
and a wide array of hardware back-ends. We now high-
light TVM-specific features.

4.1 Tensor Expression and Schedule Space
We introduce a tensor expression language to support au-
tomatic code generation. Unlike high-level computation
graph representations, where the implementation of ten-
sor operations is opaque, each operation is described in
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Schedule primitives  
used in various hardware backends

CPU 
Schedule

GPU 
Schedule 

ee

Accel. 
Schedule 

ule[Halide] Loop Transformations ✔ ✔ ✔
[Halide] Thread Binding ✔ ✔ ✔
[Halide] Compute Locality ✔ ✔ ✔
[TVM] Special Memory Scope ✔ ✔
[TVM] Tensorization ✔ ✔ ✔
[TVM] Latency Hiding ✔

Tensor Expression

Code Lowering

Select Schedule 
Primitives

Final Schedule

Low level code

Figure 6: TVM schedule lowering and code generation
process. The table lists existing Halide and novel TVM
scheduling primitives being used to optimize schedules
for CPUs, GPUs and accelerator back-ends. Tensoriza-
tion is essential for accelerators, but it can also be used
for CPUs and GPUs. Special memory-scope enables
memory reuse in GPUs and explicit management of on-
chip memory in accelerators. Latency hiding is specific
to TPU-like accelerators.

an index formula expression language. The following
code shows an example tensor expression to compute
transposed matrix multiplication:

m, n, h = t.var('m'), t.var('n'), t.var('h')
A = t.placeholder((m, h), name='A')
B = t.placeholder((n, h), name='B')
k = t.reduce_axis((0, h), name='k')
C = t.compute((m, n), lambda y, x: 
                   t.sum(A[k, y] * B[k, x], axis=k))
result shape

computing rule

Each compute operation specifies both the shape of
the output tensor and an expression describing how to
compute each element of it. Our tensor expression
language supports common arithmetic and math oper-
ations and covers common DL operator patterns. The
language does not specify the loop structure and many
other execution details, and it provides flexibility for
adding hardware-aware optimizations for various back-
ends. Adopting the decoupled compute/schedule princi-
ple from Halide [32], we use a schedule to denote a spe-
cific mapping from a tensor expression to low-level code.
Many possible schedules can perform this function.

We build a schedule by incrementally applying basic
transformations (schedule primitives) that preserve the
program’s logical equivalence. Figure 5 shows an ex-
ample of scheduling matrix multiplication on a special-
ized accelerator. Internally, TVM uses a data structure
to keep track of the loop structure and other information
as we apply schedule transformations. This information
can then help generate low-level code for a given final
schedule.

Our tensor expression takes cues from Halide [32],
Darkroom [17], and TACO [23]. Its primary enhance-
ments include support for the new schedule optimiza-
tions discussed below. To achieve high performance
on many back-ends, we must support enough schedule
primitives to cover a diverse set of optimizations on dif-
ferent hardware back-ends. Figure 6 summarizes the
operation code generation process and schedule primi-
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Figure 7: Performance comparison between TVM with
and without cooperative shared memory fetching on ma-
trix multiplication workloads. Tested on an NVIDIA Ti-
tan X.

tives that TVM supports. We reuse helpful primitives
and the low-level loop program AST from Halide, and
we introduce new primitives to optimize GPU and ac-
celerator performance. The new primitives are neces-
sary to achieve optimal GPU performance and essen-
tial for accelerators. CPU, GPU, TPU-like accelerators
are three important types of hardware for deep learning.
This section describes new optimization primitives for
CPUs, GPUs and TPU-like accelerators, while section 5
explains how to automatically derive efficient schedules.

4.2 Nested Parallelism with Cooperation

Parallelism is key to improving the efficiency of
compute-intensive kernels in DL workloads. Modern
GPUs offer massive parallelism, requiring us to bake par-
allel patterns into schedule transformations. Most exist-
ing solutions adopt a model called nested parallelism, a
form of fork–join. This model requires a parallel sched-
ule primitive to parallelize a data parallel task; each task
can be further recursively subdivided into subtasks to ex-
ploit the target architecture’s multi-level thread hierarchy
(e.g., thread groups in GPU). We call this model shared-
nothing nested parallelism because one working thread
cannot look at the data of its sibling within the same par-
allel computation stage.

An alternative to the shared-nothing approach is to
fetch data cooperatively. Specifically, groups of threads
can cooperatively fetch the data they all need and place
it into a shared memory space. 1 This optimization can
take advantage of the GPU memory hierarchy and en-

1 Halide recently added shared memory support but without general
memory scope for accelerators.
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able data reuse across threads through shared memory
regions. TVM supports this well-known GPU optimiza-
tion using a schedule primitive to achieve optimal per-
formance. The following GPU code example optimizes
matrix multiplication.

Barrier inserted 
automatically
by compiler

All threads cooperatively
load AS and BS in different
parallel patterns

for thread_group (by, bx) in cross(64, 64):
  for thread_item (ty, tx) in cross(2, 2):
    local CL[8][8] = 0
    shared AS[2][8], BS[2][8] 
    for k in range(1024):
      for i in range(4):
        AS[ty][i*4+tx] = A[k][by*64+ty*8+i*4+tx]
      for each i in 0..4:
        BS[ty][i*4+tx] = B[k][bx*64+ty*8+i*4+tx]
      memory_barrier_among_threads()
      for yi in range(8):
        for xi in range(8):
          CL[yi][xi] += AS[yi] * BS[xi]
      for yi in range(8):
        for xi in range(8):
          C[yo*8+yi][xo*8+xi] = CL[yi][xi]

Figure 7 demonstrates the impact of this optimiza-
tion. We introduce the concept of memory scopes to the
schedule space so that a compute stage (AS and BS in the
code) can be marked as shared. Without explicit memory
scopes, automatic scope inference will mark compute
stages as thread-local. The shared task must compute
the dependencies of all working threads in the group.
Additionally, memory synchronization barriers must be
properly inserted to guarantee that shared loaded data is
visible to consumers. Finally, in addition to being use-
ful to GPUs, memory scopes let us tag special memory
buffers and create special lowering rules when targeting
specialized DL accelerators.

4.3 Tensorization

DL workloads have high arithmetic intensity, which
can typically be decomposed into tensor operators like
matrix-matrix multiplication or 1D convolution. These
natural decompositions have led to the recent trend of
adding tensor compute primitives [1, 12, 21]. These
new primitives create both opportunities and challenges
for schedule-based compilation; while using them can
improve performance, the compilation framework must
seamlessly integrate them. We dub this tensorization: it
is analogous to vectorization for SIMD architectures but
has significant differences. Instruction inputs are multi-
dimensional, with fixed or variable lengths, and each has
different data layouts. More importantly, we cannot sup-
port a fixed set of primitives since new accelerators are
emerging with their own variations of tensor instructions.
We therefore need an extensible solution.

We make tensorization extensible by separating the
target hardware intrinsic from the schedule with a mech-
anism for tensor-intrinsic declaration. We use the same
tensor expression language to declare both the behavior
of each new hardware intrinsic and the lowering rule as-
sociated with it. The following code shows how to de-
clare an 8×8 tensor hardware intrinsic.

w, x = t.placeholder((8, 8)), t.placeholder((8, 8))
k = t.reduce_axis((0, 8))
y = t.compute((8, 8), lambda i, j: 
               t.sum(w[i, k] * x[j, k], axis=k))

def gemm_intrin_lower(inputs, outputs):
   ww_ptr = inputs[0].access_ptr(“r")
   xx_ptr = inputs[1].access_ptr("r")
   zz_ptr = outputs[0].access_ptr("w")
   compute = t.hardware_intrin("gemm8x8", ww_ptr, xx_ptr, zz_ptr)
   reset = t.hardware_intrin("fill_zero", zz_ptr)
   update = t.hardware_intrin("fuse_gemm8x8_add", ww_ptr, xx_ptr, zz_ptr)
   return compute, reset, update

gemm8x8 = t.decl_tensor_intrin(y.op, gemm_intrin_lower)

declare behavior

lowering rule to generate
hardware intrinsics to carry 
out the computation

Additionally, we introduce a tensorize schedule primi-
tive to replace a unit of computation with the correspond-
ing intrinsics. The compiler matches the computation
pattern with a hardware declaration and lowers it to the
corresponding hardware intrinsic.

Tensorization decouples the schedule from specific
hardware primitives, making it easy to extend TVM
to support new hardware architectures. The generated
code of tensorized schedules aligns with practices in
high-performance computing: break complex operations
into a sequence of micro-kernel calls. We can also use
the tensorize primitive to take advantage of handcrafted
micro-kernels, which can be beneficial in some plat-
forms. For example, we implement ultra low precision
operators for mobile CPUs that operate on data types
that are one- or two-bits wide by leveraging a bit-serial
matrix vector multiplication micro-kernel. This micro-
kernel accumulates results into progressively larger data
types to minimize the memory footprint. Presenting the
micro-kernel as a tensor intrinsic to TVM yields up to a
1.5× speedup over the non-tensorized version.

4.4 Explicit Memory Latency Hiding

Latency hiding refers to the process of overlapping mem-
ory operations with computation to maximize utilization
of memory and compute resources. It requires different
strategies depending on the target hardware back-end.
On CPUs, memory latency hiding is achieved implic-
itly with simultaneous multithreading [14] or hardware
prefetching [10, 20]. GPUs rely on rapid context switch-
ing of many warps of threads [44]. In contrast, special-
ized DL accelerators such as the TPU [21] usually favor
leaner control with a decoupled access-execute (DAE)
architecture [35] and offload the problem of fine-grained
synchronization to software.

Figure 9 shows a DAE hardware pipeline that reduces
runtime latency. Compared to a monolithic hardware de-
sign, the pipeline can hide most memory access over-
heads and almost fully utilize compute resources. To
achieve higher utilization, the instruction stream must be
augmented with fine-grained synchronization operations.
Without them, dependencies cannot be enforced, leading
to erroneous execution. Consequently, DAE hardware
pipelines require fine-grained dependence enqueuing/d-
equeuing operations between the pipeline stages to guar-
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for vthread tx in range(2):
  acc_buffer CL[8]
  inp_buffer AL[8]
  for k in range(128):
    ld.dma_copy2d(AL, AL[k][tx*8:tx*8+8])
    ex.accumulate(AL, CL)

  acc_buffer CL[2][8]
  inp_buffer AL[2][8]
  ex.push_dep_to(ld)
  ex.push_dep_to(ld)
  for k in range(128):
    ld.pop_dep_from(ex)
    ld.dma_copy2d(AL[0], AL[k][0:8])
    ld.push_dep_to(ex)
    ld.pop_dep_from(ex)
    ld.dma_copy2d(AL[1], AL[k][8:16])
    ld.push_dep_to(ex)
    ex.pop_dep_from(ld)
    ex.accumulate(AL[0], CL[0])
    ex.push_dep_to(ld)
    ex.pop_dep_from(ld)
    ex.accumulate(AL[1], CL[1])
    ex.push_dep_to(ld)
  ld.pop_dep_from(ex)
  ld.pop_dep_from(ex)

for vthread tx in range(2):
  acc_buffer CL[8]
  inp_buffer AL[8]
  ex.push_dep_to(ld)
  for k in range(128):
    ld.pop_dep_from(ex)
    ld.dma_copy2d(AL, AL[k][tx*8:tx*8+8])
    ld.push_dep_to(ex)
    ex.pop_dep_from(ld)
    ex.accumulate(AL, CL)
    ex.push_dep_to(ld)
  ld.pop_dep_from(ex)

read after write  (RAW) dependence
read after write  (RAW) dependence
push RAW dependence

push WAR dependence

pop RAW dependence
pop WAR dependence

Figure 8: TVM virtual thread lowering transforms a virtual thread-parallel program to a single instruction stream; the
stream contains explicit low-level synchronizations that the hardware can interpret to recover the pipeline parallelism
required to hide memory access latency.
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ld.perform_action(ld1)
ex.perform_action(ex1)
...

Instruction Stream

Figure 9: Decoupled Access-Execute in hardware hides
most memory access latency by allowing memory and
computation to overlap. Execution correctness is en-
forced by low-level synchronization in the form of de-
pendence token enqueueing/dequeuing actions, which
the compiler stack must insert in the instruction stream.

antee correct execution, as shown in Figure 9’s instruc-
tion stream.

Programming DAE accelerators that require explicit
low-level synchronization is difficult. To reduce the
programming burden, we introduce a virtual threading
scheduling primitive that lets programmers specify a
high-level data parallel program as they would a hard-
ware back-end with support for multithreading. TVM
then automatically lowers the program to a single in-
struction stream with low-level explicit synchronization,
as shown in Figure 8. The algorithm starts with a high-
level multi-threaded program schedule and then inserts
the necessary low-level synchronization operations to
guarantee correct execution within each thread. Next,
it interleaves operations of all virtual threads into a sin-
gle instruction stream. Finally, the hardware recovers the

compute boundmemory bound

Figure 10: Roofline [47] of an FPGA-based DL ac-
celerator running ResNet inference. With latency hid-
ing enabled by TVM, performance of the benchmarks is
brought closer to the roofline, demonstrating higher com-
pute and memory bandwidth efficiency.

available pipeline parallelism dictated by the low-level
synchronizations in the instruction stream.

Hardware Evaluation of Latency Hiding. We now
demonstrate the effectiveness of latency hiding on a cus-
tom FPGA-based accelerator design, which we describe
in depth in subsection 6.4. We ran each layer of ResNet
on the accelerator and used TVM to generate two sched-
ules: one with latency hiding, and one without. The
schedule with latency hiding parallelized the program
with virtuals threads to expose pipeline parallelism and
therefore hide memory access latency. Results are shown
in Figure 10 as a roofline diagram [47]; roofline perfor-
mance diagrams provide insight into how well a given
system uses computation and memory resources for dif-
ferent benchmarks. Overall, latency hiding improved
performance on all ResNet layers. Peak compute utiliza-
tion increased from 70% with no latency hiding to 88%
with latency hiding.
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5 Automating Optimization

Given the rich set of schedule primitives, our remaining
problem is to find optimal operator implementations for
each layer of a DL model. Here, TVM creates a special-
ized operator for the specific input shape and layout as-
sociated with each layer. Such specialization offers sig-
nificant performance benefits (in contrast to handcrafted
code that would target a smaller diversity of shapes and
layouts), but it also raises automation challenges. The
system needs to choose the schedule optimizations –
such as modifying the loop order or optimizing for the
memory hierarchy – as well as schedule-specific param-
eters, such as the tiling size and the loop unrolling factor.
Such combinatorial choices create a large search space of
operator implementations for each hardware back-end.
To address this challenge, we built an automated sched-
ule optimizer with two main components: a schedule ex-
plorer that proposes promising new configurations, and
a machine learning cost model that predicts the perfor-
mance of a given configuration. This section describes
these components and TVM’s automated optimization
flow (Figure 11).

5.1 Schedule Space Specification

We built a schedule template specification API to let a
developer declare knobs in the schedule space. The tem-
plate specification allows incorporation of a developer’s
domain-specific knowledge, as necessary, when specify-
ing possible schedules. We also created a generic mas-
ter template for each hardware back-end that automati-
cally extracts possible knobs based on the computation
description expressed using the tensor expression lan-
guage. At a high level, we would like to consider as many
configurations as possible and let the optimizer manage
the selection burden. Consequently, the optimizer must
search over billions of possible configurations for the real
world DL workloads used in our experiments.

5.2 ML-Based Cost Model

One way to find the best schedule from a large configu-
ration space is through blackbox optimization, i.e., auto-
tuning. This method is used to tune high performance
computing libraries [15, 46]. However, auto-tuning re-
quires many experiments to identify a good configura-
tion.

An alternate approach is to build a predefined cost
model to guide the search for a particular hardware back-
end instead of running all possibilities and measuring
their performance. Ideally, a perfect cost model con-
siders all factors affecting performance: memory access
patterns, data reuse, pipeline dependencies, and thread-

Raspberry Pi

Tracker
Mali GPU

Nvidia GPU

TensorOp 
Specification

Schedule Space 
Template

Database

Device Cluster

Schedule Explorer

ML Cost Model

log

querytraining 
data FPGA Board

rpc
get_perf

…

update

Figure 11: Overview of automated optimization frame-
work. A schedule explorer examines the schedule space
using an ML-based cost model and chooses experiments
to run on a distributed device cluster via RPC. To im-
prove its predictive power, the ML model is updated pe-
riodically using collected data recorded in a database.

Method Category Data
Cost

Model
Bias

Need
Hardware
Info

Learn
from
His-
tory

Blackbox auto-tuning high none no no
Predefined cost model none high yes no
ML based cost model low low no yes

Table 1: Comparison of automation methods. Model bias
refers to inaccuracy due to modeling.

ing patterns, among others. This approach, unfortu-
nately, is burdensome due to the increasing complexity
of modern hardware. Furthermore, every new hardware
target requires a new (predefined) cost model.

We instead take a statistical approach to solve the cost
modeling problem. In this approach, a schedule explorer
proposes configurations that may improve an operator’s
performance. For each schedule configuration, we use
an ML model that takes the lowered loop program as in-
put and predicts its running time on a given hardware
back-end. The model, trained using runtime measure-
ment data collected during exploration, does not require
the user to input detailed hardware information. We up-
date the model periodically as we explore more config-
urations during optimization, which improves accuracy
for other related workloads, as well. In this way, the qual-
ity of the ML model improves with more experimental
trials. Table 1 summarizes the key differences between
automation methods. ML-based cost models strike a bal-
ance between auto-tuning and predefined cost modeling
and can benefit from the historical performance data of
related workloads.

Machine Learning Model Design Choices. We must
consider two key factors when choosing which ML
model the schedule explorer will use: quality and speed.
The schedule explorer queries the cost model frequently,
which incurs overheads due to model prediction time
and model refitting time. To be useful, these overheads
must be smaller than the time it takes to measure per-
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Figure 12: Comparison of different automation methods
for a conv2d operator in ResNet-18 on TITAN X. The
ML-based model starts with no training data and uses
the collected data to improve itself. The Y-axis is the
speedup relative to cuDNN. We observe a similar trend
for other workloads.

for yo in range(4):
  for xo in range(4):
    C[yo*2:yo*2+2][xo*2:xo*2+2] = 0
    for ko in range(8):
     for yi in range(2):
        for xi in range(2):
          C[yo*2+yi][xo*2+xi] +=  
            A[k][yo*2+yi] * B[k][xo*2+xi]

xi yi k xo yo
C 2 4 4 16 64
A 1 2 16 16 64
B 2 2 16 64 64

Feature ExtractionQuery: Loop AST

cost prediction

e.g. touched memory size

Schedule Explorer

XGBoost
alternatively, we can feed AST to TreeRNN

Figure 13: Example workflow of ML cost models. XG-
Boost predicts costs based on loop program features.
TreeRNN directly summarizes the AST.

formance on real hardware, which can be on the order
of seconds depending on the specific workload/hardware
target. This speed requirement differentiates our problem
from traditional hyperparameter tuning problems, where
the cost of performing measurements is very high rela-
tive to model overheads, and more expensive models can
be used. In addition to the choice of model, we need
to choose an objective function to train the model, such
as the error in a configuration’s predicted running time.
However, since the explorer selects the top candidates
based only on the relative order of the prediction (A runs
faster than B), we need not predict the absolute execution
times directly. Instead, we use a rank objective to predict
the relative order of runtime costs.

We implement several types of models in our ML opti-
mizer. We employ a gradient tree boosting model (based
on XGBoost [8]), which makes predictions based on fea-
tures extracted from the loop program; these features in-

clude the memory access count and reuse ratio of each
memory buffer at each loop level, as well as a one-hot
encoding of loop annotations such as “vectorize”, “un-
roll”, and “parallel.” We also evaluate a neural network
model that uses TreeRNN [38] to summarize the loop
program’s AST without feature engineering. Figure 13
summarizes the workflow of the cost models. We found
that tree boosting and TreeRNN have similar predictive
quality. However, the former performs prediction twice
as fast and costs much less time to train. As a result, we
chose gradient tree boosting as the default cost model in
our experiments. Nevertheless, we believe that both ap-
proaches are valuable and expect more future research on
this problem.

On average, the tree boosting model does prediction
in 0.67 ms, thousands of times faster than running a real
measurement. Figure 12 compares an ML-based opti-
mizer to blackbox auto-tuning methods; the former finds
better configurations much faster than the latter.

5.3 Schedule Exploration
Once we choose a cost model, we can use it to select
promising configurations on which to iteratively run real
measurements. In each iteration, the explorer uses the
ML model’s predictions to select a batch of candidates
on which to run the measurements. The collected data is
then used as training data to update the model. If no ini-
tial training data exists, the explorer picks random candi-
dates to measure.

The simplest exploration algorithm enumerates and
runs every configuration through the cost model, se-
lecting the top-k predicted performers. However, this
strategy becomes intractable with large search spaces.
Instead, we run a parallel simulated annealing algo-
rithm [22]. The explorer starts with random configura-
tions, and, at each step, randomly walks to a nearby con-
figuration. This transition is successful if cost decreases
as predicted by the cost model. It is likely to fail (reject)
if the target configuration has a higher cost. The random
walk tends to converge on configurations that have lower
costs as predicted by the cost model. Exploration states
persist across cost model updates; we continue from the
last configuration after these updates.

5.4 Distributed Device Pool and RPC
A distributed device pool scales up the running of on-
hardware trials and enables fine-grained resource sharing
among multiple optimization jobs. TVM implements a
customized, RPC-based distributed device pool that en-
ables clients to run programs on a specific type of de-
vice. We can use this interface to compile a program
on the host compiler, request a remote device, run the
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Name Operator H,W IC,OC K,S
C1 conv2d 224, 224 3,64 7, 2
C2 conv2d 56, 56 64,64 3, 1
C3 conv2d 56, 56 64,64 1, 1
C4 conv2d 56, 56 64,128 3, 2
C5 conv2d 56, 56 64,128 1, 2
C6 conv2d 28, 28 128,128 3, 1
C7 conv2d 28, 28 128,256 3, 2
C8 conv2d 28, 28 128,256 1, 2
C9 conv2d 14, 14 256,256 3, 1
C10 conv2d 14, 14 256,512 3, 2
C11 conv2d 14, 14 256,512 1, 2
C12 conv2d 7, 7 512,512 3, 1

Name Operator H,W IC K,S
D1 depthwise conv2d 112, 112 32 3, 1
D2 depthwise conv2d 112, 112 64 3, 2
D3 depthwise conv2d 56, 56 128 3, 1
D4 depthwise conv2d 56, 56 128 3, 2
D5 depthwise conv2d 28, 28 256 3, 1
D6 depthwise conv2d 28, 28 256 3, 2
D7 depthwise conv2d 14, 14 512 3, 1
D8 depthwise conv2d 14, 14 512 3, 2
D9 depthwise conv2d 7, 7 1024 3, 1

Table 2: Configurations of all conv2d operators in
ResNet-18 and all depthwise conv2d operators in Mo-
bileNet used in the single kernel experiments. H/W
denotes height and width, IC input channels, OC out-
put channels, K kernel size, and S stride size. All ops
use “SAME” padding. All depthwise conv2d operations
have channel multipliers of 1.

function remotely, and access results in the same script
on the host. TVM’s RPC supports dynamic upload and
runs cross-compiled modules and functions that use its
runtime convention. As a result, the same infrastruc-
ture can perform a single workload optimization and
end-to-end graph inference. Our approach automates the
compile, run, and profile steps across multiple devices.
This infrastructure is especially critical for embedded de-
vices, which traditionally require tedious manual effort
for cross-compilation, code deployment, and measure-
ment.

6 Evaluation

TVM’s core is implemented in C++ (∼50k LoC). We
provide language bindings to Python and Java. Earlier
sections of this paper evaluated the impact of several in-
dividual optimizations and components of TVM, namely,
operator fusion in Figure 4, latency hiding in Figure 10,
and the ML-based cost model in Figure 12. We now fo-
cus on an end-to-end evaluation that aims to answer the
following questions:

• Can TVM optimize DL workloads over multiple
platforms?

• How does TVM compare to existing DL frame-
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Figure 14: GPU end-to-end evaluation for TVM,
MXNet, Tensorflow, and Tensorflow XLA. Tested on the
NVIDIA Titan X.

works (which rely on heavily optimized libraries)
on each back-end?

• Can TVM support new, emerging DL workloads
(e.g., depthwise convolution, low precision opera-
tions)?

• Can TVM support and optimize for new specialized
accelerators?

To answer these questions, we evaluated TVM on four
types of platforms: (1) a server-class GPU, (2) an embed-
ded GPU, (3) an embedded CPU, and (4) a DL accelera-
tor implemented on a low-power FPGA SoC. The bench-
marks are based on real world DL inference workloads,
including ResNet [16], MobileNet [19], the LSTM Lan-
guage Model [48], the Deep Q Network (DQN) [28] and
Deep Convolutional Generative Adversarial Networks
(DCGAN) [31]. We compare our approach to exist-
ing DL frameworks, including MxNet [9] and Tensor-
Flow [2], that rely on highly engineered, vendor-specific
libraries. TVM performs end-to-end automatic optimiza-
tion and code generation without the need for an external
operator library.

6.1 Server-Class GPU Evaluation
We first compared the end-to-end performance of
deep neural networks TVM, MXNet (v1.1), Tensor-
flow (v1.7), and Tensorflow XLA on an Nvidia Titan
X. MXNet and Tensorflow both use cuDNN v7 for con-
volution operators; they implement their own versions
of depthwise convolution since it is relatively new and
not yet supported by the latest libraries. They also use
cuBLAS v8 for matrix multiplications. On the other
hand, Tensorflow XLA uses JIT compilation.

Figure 14 shows that TVM outperforms the base-
lines, with speedups ranging from 1.6× to 3.8× due to
both joint graph optimization and the automatic opti-
mizer, which generates high-performance fused opera-
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Figure 15: Relative speedup of all conv2d operators in
ResNet-18 and all depthwise conv2d operators in Mo-
bileNet. Tested on a TITAN X. See Table 2 for op-
erator configurations. We also include a weight pre-
transformed Winograd [25] for 3x3 conv2d (TVM PT).

tors. DQN’s 3.8 x speedup results from its use of un-
conventional operators (4×4 conv2d, strides=2) that are
not well optimized by cuDNN; the ResNet workloads are
more conventional. TVM automatically finds optimized
operators in both cases.

To evaluate the effectiveness of operator level opti-
mization, we also perform a breakdown comparison for
each tensor operator in ResNet and MobileNet, shown in
Figure 15. We include TensorComprehension (TC, com-
mit: ef644ba) [42], a recently introduced auto-tuning
framework, as an additional baseline. 2 TC results in-
clude the best kernels it found in 10 generations × 100
population × 2 random seeds for each operator (i.e.,
2000 trials per operator). 2D convolution, one of the
most important DL operators, is heavily optimized by
cuDNN. However, TVM can still generate better GPU
kernels for most layers. Depthwise convolution is a
newly introduced operator with a simpler structure [19].
In this case, both TVM and TC can find fast kernels com-
pared to MXNet’s handcrafted kernels. TVM’s improve-
ments are mainly due to its exploration of a large sched-
ule space and an effective ML-based search algorithm.

6.2 Embedded CPU Evaluation

We evaluated the performance of TVM on an ARM Cor-
tex A53 (Quad Core 1.2GHz). We used Tensorflow Lite
(TFLite, commit: 7558b085) as our baseline system.
Figure 17 compares TVM operators to hand-optimized

2According to personal communication [41], TC is not yet meant
to be used for compute-bound problems. However, it is still a good
reference baseline to include in the comparison.
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Figure 16: ARM A53 end-to-end evaluation of TVM and
TFLite.

Figure 17: Relative speedup of all conv2d operators in
ResNet-18 and all depthwise conv2d operators in mo-
bilenet. Tested on ARM A53. See Table 2 for the con-
figurations of these operators.

ones for ResNet and MobileNet. We observe that TVM
generates operators that outperform the hand-optimized
TFLite versions for both neural network workloads. This
result also demonstrates TVM’s ability to quickly opti-
mize emerging tensor operators, such as depthwise con-
volution operators. Finally, Figure 16 shows an end-to-
end comparison of three workloads, where TVM outper-
forms the TFLite baseline.3

Ultra Low-Precision Operators We demonstrate
TVM’s ability to support ultra low-precision infer-
ence [13, 33] by generating highly optimized operators
for fixed-point data types of less than 8-bits. Low-
precision networks replace expensive multiplication with
vectorized bit-serial multiplication that is composed of
bitwise and popcount reductions [39]. Achieving effi-
cient low-precision inference requires packing quantized
data types into wider standard data types, such as int8
or int32. Our system generates code that outperforms
hand-optimized libraries from Caffe2 (commit: 39e07f7)

3DCGAN and LSTM results are not presented because they are not
yet supported by the baseline.
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Figure 18: Relative speedup of single- and multi-
threaded low-precision conv2d operators in ResNet.
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1x1 convolutions that have less compute intensity, result-
ing in less speedup by multi-threading.

[39]. We implemented an ARM-specific tensorization
intrinsic that leverages ARM instructions to build an ef-
ficient, low-precision matrix-vector microkernel.We then
used TVM’s automated optimizer to explore the schedul-
ing space.

Figure 18 compares TVM to the Caffe2 ultra low-
precision library on ResNet for 2-bit activations, 1-bit
weights inference. Since the baseline is single threaded,
we also compare it to a single-threaded TVM version.
Single-threaded TVM outperforms the baseline, particu-
larly for C5, C8, and C11 layers; these are convolution
layers of kernel size 1×1 and stride of 2 for which the ul-
tra low-precision baseline library is not optimized. Fur-
thermore, we take advantage of additional TVM capa-
bilities to produce a parallel library implementation that
shows improvement over the baseline. In addition to the
2-bit+1-bit configuration, TVM can generate and opti-
mize for other precision configurations that are unsup-
ported by the baseline library, offering improved flexi-
bility.

6.3 Embedded GPU Evaluation

For our mobile GPU experiments, we ran our end-to-end
pipeline on a Firefly-RK3399 board equipped with an
ARM Mali-T860MP4 GPU. The baseline was a vendor-
provided library, the ARM Compute Library (v18.03).
As shown in Figure 19, we outperformed the baseline on
three available models for both float16 and float32
(DCGAN and LSTM are not yet supported by the base-
line). The speedup ranged from 1.2× to 1.6×.

6.4 FPGA Accelerator Evaluation

Vanilla Deep Learning Accelerator We now relate
how TVM tackled accelerator-specific code generation
on a generic inference accelerator design we prototyped
on an FPGA. We used in this evaluation the Vanilla Deep
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Figure 19: End-to-end experiment results on Mali-
T860MP4. Two data types, float32 and float16, were
evaluated.

Learning Accelerator (VDLA) – which distills charac-
teristics from previous accelerator proposals [12, 21, 27]
into a minimalist hardware architecture – to demonstrate
TVM’s ability to generate highly efficient schedules that
can target specialized accelerators. Figure 20 shows the
high-level hardware organization of the VDLA architec-
ture. VDLA is programmed as a tensor processor to
efficiently execute operations with high compute inten-
sity (e.g, matrix multiplication, high dimensional con-
volution). It can perform load/store operations to bring
blocked 3-dimensional tensors from DRAM into a con-
tiguous region of SRAM. It also provides specialized on-
chip memories for network parameters, layer inputs (nar-
row data type), and layer outputs (wide data type). Fi-
nally, VDLA provides explicit synchronization control
over successive loads, computes, and stores to maximize
the overlap between memory and compute operations.

Methodology. We implemented the VDLA design on a
low-power PYNQ board that incorporates an ARM Cor-
tex A9 dual core CPU clocked at 667MHz and an Artix-7
based FPGA fabric. On these modest FPGA resources,
we implemented a 16×16 matrix-vector unit clocked at
200MHz that performs products of 8-bit values and accu-
mulates them into a 32-bit register every cycle. The the-
oretical peak throughput of this VDLA design is about
102.4GOPS/s. We allocated 32kB of resources for ac-
tivation storage, 32kB for parameter storage, 32kB for
microcode buffers, and 128kB for the register file. These
on-chip buffers are by no means large enough to provide
sufficient on-chip storage for a single layer of ResNet and
therefore enable a case study on effective memory reuse
and latency hiding.

We built a driver library for VDLA with a C runtime
API that constructs instructions and pushes them to the
target accelerator for execution. Our code generation al-
gorithm then translates the accelerator program to a se-
ries of calls into the runtime API. Adding the specialized
accelerator back-end took ∼2k LoC in Python.
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End-to-End ResNet Evaluation. We used TVM to
generate ResNet inference kernels on the PYNQ plat-
form and offloaded as many layers as possible to VDLA.
We also used it to generate both schedules for the CPU
only and CPU+FPGA implementation. Due to its shal-
low convolution depth, the first ResNet convolution layer
could not be efficiently offloaded on the FPGA and was
instead computed on the CPU. All other convolution lay-
ers in ResNet, however, were amenable to efficient of-
floading. Operations like residual layers and activations
were also performed on the CPU since VDLA does not
support these operations.

Figure 21 breaks down ResNet inference time into
CPU-only execution and CPU+FPGA execution. Most
computation was spent on the convolution layers that
could be offloaded to VDLA. For those convolution lay-
ers, the achieved speedup was 40×. Unfortunately, due
to Amdahl’s law, the overall performance of the FPGA
accelerated system was bottlenecked by the sections of
the workload that had to be executed on the CPU. We
envision that extending the VDLA design to support
these other operators will help reduce cost even further.
This FPGA-based experiment showcases TVM’s ability
to adapt to new architectures and the hardware intrinsics
they expose.

7 Related Work

Deep learning frameworks [3, 4, 7, 9] provide convenient
interfaces for users to express DL workloads and deploy
them easily on different hardware back-ends. While ex-
isting frameworks currently depend on vendor-specific
tensor operator libraries to execute their workloads, they
can leverage TVM’s stack to generate optimized code for
a larger number of hardware devices.

High-level computation graph DSLs are a typical
way to represent and perform high-level optimiza-
tions. Tensorflow’s XLA [3] and the recently introduced
DLVM [45] fall into this category. The representations

Figure 21: We offloaded convolutions in the ResNet
workload to an FPGA-based accelerator. The grayed-out
bars correspond to layers that could not be accelerated
by the FPGA and therefore had to run on the CPU. The
FPGA provided a 40x acceleration on offloaded convo-
lution layers over the Cortex A9.

of computation graphs in these works are similar, and a
high-level computation graph DSL is also used in this
paper. While graph-level representations are a good fit
for high-level optimizations, they are too high level to
optimize tensor operators under a diverse set of hard-
ware back-ends. Prior work relies on specific lowering
rules to directly generate low-level LLVM or resorts to
vendor-crafted libraries. These approaches require sig-
nificant engineering effort for each hardware back-end
and operator-variant combination.

Halide [32] introduced the idea of separating comput-
ing and scheduling. We adopt Halide’s insights and reuse
its existing useful scheduling primitives in our compiler.
Our tensor operator scheduling is also related to other
work on DSL for GPUs [18, 24, 36, 37] and polyhedral-
based loop transformation [6,43]. TACO [23] introduces
a generic way to generate sparse tensor operators on
CPU. Weld [30] is a DSL for data processing tasks. We
specifically focus on solving the new scheduling chal-
lenges of DL workloads for GPUs and specialized accel-
erators. Our new primitives can potentially be adopted
by the optimization pipelines in these works.

High-performance libraries such as ATLAS [46] and
FFTW [15] use auto-tuning to get the best perfor-
mance. Tensor comprehension [42] applied black-box
auto-tuning together with polyhedral optimizations to
optimize CUDA kernels. OpenTuner [5] and existing
hyper parameter-tuning algorithms [26] apply domain-
agnostic search. A predefined cost model is used to
automatically schedule image processing pipelines in
Halide [29]. TVM’s ML model uses effective domain-
aware cost modeling that considers program structure.
The based distributed schedule optimizer scales to a
larger search space and can find state-of-the-art kernels
on a large range of supported back-ends. More impor-
tantly, we provide an end-to-end stack that can take de-
scriptions directly from DL frameworks and jointly opti-
mize together with the graph-level stack.
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Despite the emerging popularity of accelerators for
deep learning [11, 21], it remains unclear how a com-
pilation stack can be built to effectively target these de-
vices. The VDLA design used in our evaluation provides
a generic way to summarize the properties of TPU-like
accelerators and enables a concrete case study on how
to compile code for accelerators. Our approach could
potentially benefit existing systems that compile deep
learning to FPGA [34,40], as well. This paper provides a
generic solution to effectively target accelerators via ten-
sorization and compiler-driven latency hiding.

8 Conclusion

We proposed an end-to-end compilation stack to solve
fundamental optimization challenges for deep learning
across a diverse set of hardware back-ends. Our system
includes automated end-to-end optimization, which is
historically a labor-intensive and highly specialized task.
We hope this work will encourage additional studies of
end-to-end compilation approaches and open new op-
portunities for DL system software-hardware co-design
techniques.
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Abstract
We introduce Gandiva, a new cluster scheduling frame-
work that utilizes domain-specific knowledge to improve
latency and efficiency of training deep learning models
in a GPU cluster.

One key characteristic of deep learning is feedback-

driven exploration, where a user often runs a set of jobs
(or a multi-job) to achieve the best result for a specific
mission and uses early feedback on accuracy to dynam-
ically prioritize or kill a subset of jobs; simultaneous
early feedback on the entire multi-job is critical. A sec-
ond characteristic is the heterogeneity of deep learning
jobs in terms of resource usage, making it hard to achieve
best-fit a priori. Gandiva addresses these two challenges
by exploiting a third key characteristic of deep learn-
ing: intra-job predictability, as they perform numerous
repetitive iterations called mini-batch iterations. Gan-
diva exploits intra-job predictability to time-slice GPUs
efficiently across multiple jobs, thereby delivering low-
latency. This predictability is also used for introspect-
ing job performance and dynamically migrating jobs to
better-fit GPUs, thereby improving cluster efficiency.

We show via a prototype implementation and micro-
benchmarks that Gandiva can speed up hyper-parameter
searches during deep learning by up to an order of mag-
nitude, and achieves better utilization by transparently
migrating and time-slicing jobs to achieve better job-to-
resource fit. We also show that, in a real workload of jobs
running in a 180-GPU cluster, Gandiva improves aggre-
gate cluster utilization by 26%, pointing to a new way of
managing large GPU clusters for deep learning.

1 Introduction
All men schedulers make mistakes; only the wise learn from
their mistakes.

-Winston Churchill
∗The first two authors have equal contribution. This work is done

while Wencong Xiao, Zhenhua Han, Xuan Peng, and Hanyu Zhao are

interns in Microsoft Research.

An increasingly popular computing trend over the last

few years is deep learning [32]; it has already had signif-

icant impact; e.g., on widely-used personal products for

voice and image recognition, and has significant poten-

tial to impact businesses. Hence, it is likely to be a vital

and growing workload, especially in cloud data centers.

However, deep learning is compute-intensive and

hence heavily reliant on powerful but expensive GPUs;

a GPU VM in the cloud costs nearly 10x that of a regu-

lar VM. Cloud operators and large companies that man-

age clusters of tens of thousands of GPUs rely on cluster

schedulers to ensure efficient utilization of the GPUs.

Despite the importance of efficient scheduling of deep

learning training (DLT) jobs, the common practice to-

day [12, 28] is to use a traditional cluster scheduler, such

as Kubernetes [14] or YARN [50], designed for handling

big-data jobs such as MapReduce [17]; a DLT job is

treated simply as yet another big-data job that is allo-

cated a set of GPUs at job startup and holds exclusive

access to its GPUs until completion.

In this paper, we present Gandiva, a new scheduling

framework that demonstrates that a significant increase

in cluster efficiency can be achieved by tailoring the

scheduling framework to the unique characteristics of the

deep learning workload.

One key characteristic of DLT jobs is feedback-driven
exploration (Section 2). Because of the inherent trial-

and-error methodology of deep learning experimenta-

tion, users typically try several configurations of a job

(a multi-job), and use early feedback from these jobs to

decide whether to prioritize or kill some subset of them.

Such conditional exploration, called hyper-parameter

search, can either be manual or automated [10, 33, 41].

Traditional schedulers run a subset of jobs to comple-

tion while queueing others; this model is a misfit for

multi-jobs, which require simultaneous early feedback

on all jobs within the multi-job. Also, along with multi-

jobs, other DLT jobs that have identified the right hyper-

parameters, run for several hours to days, leading to
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head-of-line-blocking, as long-running jobs hold exclu-

sive access to the GPUs until completion, while multi-

jobs depending on early feedback wait in queue. Long

queueing times force users to either use reserved GPUs,

or demand cluster over-provisioning, thus reducing clus-

ter efficiency.

Second, like any other cluster workload, DLT jobs

are heterogeneous because of the diverse application do-

mains they target. Jobs widely differ in terms of memory

usage, GPU core utilization, sensitivity to interconnect

bandwidth, and/or interference from other jobs. For ex-

ample, certain multi-GPU DLT jobs may perform much

better with affinitized GPUs, while other jobs may not be

as sensitive to affinity (Section 3). A traditional sched-

uler that treats a job as a black-box will hence achieve

sub-optimal cluster efficiency.

To address the twin problems of high latency and

low efficiency, Gandiva exploits a powerful property of

DLT jobs: intra-job predictability (Section 3). A job is

comprised of millions of similar, clearly separated mini-

batch iterations. For example, the GPU RAM usage of

a DLT job follows a cyclic pattern aligned with mini-

batch boundaries, usually with more than 10x differ-

ence in GPU RAM usage within a mini-batch. Gandiva
exploits this cyclic predictability to implement efficient

application aware time-slicing; in effect, it re-defines

the atom of scheduling from a job to automatically-

partitioned micro-tasks. This enables the cluster to over-

subscribe DLT jobs and provide early feedback through

time-slicing to all DLT jobs, including all jobs that are

part of a multi-job.

Gandiva also uses the predictability to perform profile-
driven introspection. It uses the mini-batch progress rate

to introspect its decisions continuously to improve clus-

ter efficiency (Section 4). For example, it packs multiple

jobs on the same GPU only when they have low memory

and GPU utilization; it dynamically migrates a commu-

nication intensive job to more affinitized GPUs; it also

opportunistically “grows” the degree of parallelism of a

job to make use of spare resources, and shrinks the job

when the spare resources go away. The introspection pol-

icy we presently implement is a stateful trial-and-error

policy that is feasible because of the predictability and

the limited state space of options we consider.

Beyond the specific introspection and scheduling pol-

icy evaluated in this paper, the Gandiva framework pro-

vides the following APIs that any DLT scheduling pol-

icy can leverage: (a) efficient suspend-resume or time-

slicing, (b) low-latency migration, (c) fine-grained pro-

filing, (d) dynamic intra-job elasticity, and (e) dynamic

prioritization. The key to making these primitives ef-

ficient and practical is the co-design approach of Gan-
diva that spans across both the scheduler layer and the

DLT toolkit layer such as Tensorflow [8] or PyTorch [38].

Traditional schedulers, for a good reason, treat a job as

a black-box. However, by exploiting the dedicated na-

ture of GPU clusters, Gandiva customizes the scheduler

to the specific workload of deep learning, thus providing

the scheduler more visibility and control into a job, while

still achieving generality to arbitrary DLT jobs.

We have implemented Gandiva by modifying two

popular frameworks, PyTorch and Tensorflow, to pro-

vide the necessary new primitives to the scheduler, and

also implemented an initial scheduling policy manager

on top of Kubernetes and Docker containers (Section 5).

We evaluate Gandiva on a cluster of 180 heterogeneous

GPUs and show, through micro-benchmarks and real

workloads, that (i) Gandiva improves the efficiency of

cluster scheduling by up to 26%, and (ii) Gandiva is re-

active enough to time-slice multiple jobs dynamically on

the same GPU, reducing the time to early feedback by as

much as 77%. We also show that, for a popular hyper-

parameter search technique [10], Gandiva improves the

overall completion time of the hyper-parameter search by

up to an order of magnitude while using same resources

(Section 6).

The key contributions of the paper are as follows.

• We illustrate various unique characteristics of the

deep learning workflow and map it to specific re-

quirements needed for cluster scheduling.

• We identify generic primitives that can be used

by a DLT job scheduling policy, and provide

application-aware techniques to make primitives

such as time-slicing and migration an order of mag-

nitude more efficient and thus practical by leverag-

ing DL-specific knowledge of intra-job periodicity.

• We propose and evaluate a new introspective

scheduling framework that utilizes domain-specific

knowledge of DLT jobs to refine its scheduling de-

cision continuously, thereby significantly improving

early feedback time and delivering high cluster effi-

ciency.

2 Background

Deep learning is a type of representation learning that au-

tomatically infers features from raw data in order to ac-

complish tasks such as image classification or language

translation [32]. Deep learning may be supervised (data

with labels) or unsupervised (data only). In either case,

the representation is a deep neural network model with

parameters called weights. These weights are carefully

arranged in layers and number typically in the millions.

These model weights are learned through training.

Deep learning training operates on a few samples of

data at a time called a mini-batch. It computes a set

of scores for each mini-batch by performing numerical

596    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



 0.5

 0.6

 0.7

 0.8

 0.9

 1

VGG16 ResNet-50

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

SamePCIeSw SameSocket DiffSocket

Figure 1: Intra-server locality.

 0
 100
 200
 300
 400
 500
 600
 700
 800

ResNet-50 InceptionV3

Im
ag

es
/se

co
nd

Local 4-GPU 2 * 2-GPU 4 * 1-GPU

Figure 2: Inter-server locality.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

LM GNMT ResNet-50

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Models co-located with LM

LM Other

Figure 3: 1-GPU interference.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

ResNet-50
InceptionV3

DeepSpeech

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

1 Job 2 Jobs 4 Jobs

Figure 4: NIC interference.

computations using the model weights, called the for-
ward pass. Based on the desired task, an objective func-

tion is defined that measures an error between the com-

puted scores and desired scores. The error is populated

via a backward pass over the model, where it first com-

putes a gradient for each weight (i.e., the impact of each

weight on the error) and then applies a negative of the

gradient, scaled by a parameter called the learning rate,

to each weight to decrease the error. Both the forward

and backward passes typically involve billions of floating

point operations and thus leverage GPUs. Each forward-

backward pass is called a mini-batch iteration. Typi-

cally, millions of such iterations are performed on large

datasets to achieve high task accuracy.

Feedback-driven exploration. One pre-requisite for

achieving high accuracy is model selection. Discovery

of new models such as ResNet [24] or Inception [46] is

mostly a trial-and-error process today, though ways to

automate it is an active area of research [36].

Apart from the model structure, there are a number of

parameters, called hyper-parameters, that also need to

be specified as part of the DLT job. Hyper-parameters

include the number of layers/weights in the model, mini-

batch size, learning rate, etc. These are typically chosen

today by the user based on domain knowledge and trial-

and-error, and can sometimes even result in early train-

ing failure. Thus, early-feedback on DLT jobs is critical,

especially in the initial stages of training.

Multi-job. Once the user has identified a particular

model to explore further, the user typically performs

hyper-parameter search to improve task accuracy. This

can be done using various searching techniques over the

space of the hyper-parameters; that is, the user gener-

ates multiple DLT jobs or multi-jobs, each performing

full training using one set of hyper-parameters or con-

figuration. Because users typically explore hundreds of

such configurations, this process is computationally ex-

pensive. Thus, sophisticated versions of hyper-parameter

searches are available in the literature, such as Hyper-

Opt [10] and Hyperband [33]. For example, Hyperband

might initially spawn 128 DLT jobs and, in each round

(e.g., 100 mini-batch iterations), kill half of the jobs with

the lowest accuracy. Again, for these algorithms, early
feedback on the entire set of jobs is crucial because they

would be unable to make effective training decisions oth-

erwise.

3 DLT Job Characteristics

In this section, we motivate the design of Gandiva by

highlighting several unique characteristics of DLT jobs.

3.1 Sensitivity to locality
The performance of a multi-GPU DLT job depends on

the affinity of the allocated GPUs. Different DLT jobs

exhibit different levels of sensitivity to inter-GPU affin-

ity. Even for GPUs on the same machine, we observe dif-

ferent levels of inter-GPU affinity due to asymmetric ar-

chitecture: two GPUs might be located in different CPU

sockets (denoted as DiffSocket), in the same CPU socket,

but on different PCIe switches (denoted as SameSocket),

or on the same PCIe switch (denoted as SamePCIeSw).

Figure 1 shows different sensitivity to intra-server lo-
cality for two models VGG16 [44] and ResNet-50 [24].

When trained with two P100 GPUs using Tensorflow,

VGG16 suffers greatly under bad locality. With the worst

locality, when two GPUs are located in different CPU

sockets, VGG16 achieves only 60% of the best locality

config, where two GPUs are placed under the same PCIe

switch. On the other hand, the ResNet-50 is not affected

by GPU locality in this setting. This is because VGG16

is a larger neural model than ResNet-50, hence the model

synchronization in each mini-batch incurs a higher com-

munication load on the underlying PCIe bus.

We observe similar trends in a distributed setting. Fig-

ure 2 shows the performance of a 4-GPU Tensorflow

job running with different inter-server locality, training

ResNet-50 and InceptionV3 [46] models. Even when

interconnected with a 40G InfiniBand network, the per-

formance difference is clearly seen when the job is as-

signed to 4 GPUs, where they are evenly scattered across

4 servers (denoted as 4*1-GPU), 2 servers (denoted as

2*2-GPU), and all in one server (denoted as local 4-

GPU), though the sensitivity to locality of the two mod-

els is different.

Thus, a DLT scheduler has to take into account a job’s

sensitivity to locality when allocating GPUs.
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3.2 Sensitivity to interference

When running in a shared execution environment, DLT

jobs might interfere with each other due to resource con-

tention. We again observe that different DLT jobs exhibit

different degrees of interference.

Interference exists even for single-GPU jobs. When

placing a Language Model [56] job (marked as LM) with

another job under the same PCI-e switch, Figure 3 shows

the performance degradation due to intra-server interfer-

ence. When two LMs run together, both jobs suffer 19%

slowdown. However, ResNet-50 does not suffer from

GPU co-location with LM. Neural Machine Translation

(GNMT) [51] exhibits a modest degree of interference

with LM. Similarly, we also observe various degrees of

interference for multi-GPU training with different types

of training models. We omit the result due to space limi-

tation.

Figure 4 shows inter-server interference on two 4-

GPU servers that are connected with a 40G InfiniBand

network. When running multiple 2-GPU jobs, where

each GPU is placed on different server, ResNet-50 shows

up to 47% slowdown, InceptionV3 shows 30% slow-

down, while DeepSpeech [23] only shows 5% slowdown.

In summary, popular deep learning models across dif-

ferent application domains such as vision, language, and

speech demonstrate different levels of sensitivity to lo-

cality and interference. To cater to these challenges,

Gandiva leverages a key characteristic of DLT jobs,

which we elaborate next.
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3.3 Intra-job predictability

A DLT job consists of numerous mini-batch iterations.

The total GPU memory used1 during a 20s snapshot

of training on ImageNet data when using ResNet-50

model [24] on four K80 GPUs is shown in Figure 5(a).

The GPU memory used clearly follows a cyclic pattern.

Each of these cycles corresponds to the processing of a

single mini-batch (about 1.5s), with the memory increas-

ing during the forward pass and decreasing during the

backward pass. The maximum and minimum GPU mem-

ory used is 23GB and 0.3GB, respectively, or a factor of

77x. This ratio scales with the mini-batch size (typically

between 16 to 256; 128 in this case).

The total GPU memory used during a 20s snapshot of

training on WMT’14 English German language dataset

when using GNMT model [51] on one K80 GPU is

shown in Figure 5(b). While the mini-batch iterations

are not identical to each other as in the ImageNet exam-

ple (due to differing sentence lengths and the use of dy-

namic graphs in PyTorch), the graph has a similar cyclic

nature. The difference between maximum and minimum

is smaller (3x) primarily due to larger model (0.4GB) and

smaller mini-batch size (16 in this example).

Apart from image and language models shown here,

other training domains such as speech, generative

adverserial networks (GANs), and variational auto-

encoders all follow a similar cyclic pattern (not shown

due to space limitation) since the core of training is the

gradient descent algorithm performing many mini-batch

iterations.

Leveraging predictability. This characteristic behavior

is exploited in Gandiva in multiple ways. First, a DLT

job can be automatically split into mini-batch iterations

and a collection of these iterations over 60 seconds, say

a micro-task, forms a scheduling interval. Second, by

performing the suspend operation at the minimum of the

memory cycle, the amount of memory to be copied from

GPU to be saved in CPU can be significantly reduced,

thereby enabling suspend/resume and migration to be an

order of magnitude more efficient than a naı̈ve imple-

mentation. Third, the mini-batch progress rate can be

profiled and used as a proxy to evaluate the effectiveness

of applying mechanisms such as packing or migration.

4 Design

High latency and low utilization in today’s cluster arises

because DLT jobs are assigned a fixed set of GPUs ex-
clusively (Figure 6). Exclusive access to GPUs causes

1This is actual GPU memory used. Toolkits like Py-

Torch/Tensorflow use caching to avoid expensive GPU memory

(de)allocations.
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head-of-line blocking, preventing early feedback and re-

sulting in high queuing times for incoming jobs. Exclu-

sive access to a fixed set of GPUs also results in low GPU

utilization when jobs are unable to utilize their assigned

GPUs fully.

4.1 Mechanisms

In Gandiva, we address these inefficiencies by remov-

ing the exclusivity and fixed assignment of GPUs to DLT

jobs in three ways (Figure 6). First, during overload, in-

stead of waiting for current jobs to depart, Gandiva al-

lows incoming jobs to time-share GPUs with existing

jobs. This is enabled using a custom suspend-resume

mechanism tailored for DLT jobs along with selective

packing. Second, Gandiva supports efficient migration

of DLT jobs from one set of GPUs to another. Migra-

tion allows time-sliced jobs to migrate to other (recently

vacated) GPUs or for de-fragmentation of the cluster so

that incoming jobs are assigned GPUs with good locality.

Third, Gandiva supports a GPU grow-shrink mechanism

so that idle GPUs can be used opportunistically. In order

to support these mechanisms efficiently and enable ef-

fective resource management, Gandiva introspects DLT

jobs by continuously profiling their resource usage and

estimating their performance. We now describe each of

these mechanisms.

Suspend-Resume and Packing. Suspend-resume is

one mechanism Gandiva uses to remove exclusivity of

a set of GPUs to a DLT job. Modern operating systems

support efficient suspend-resume for CPU process time-

slicing. Gandiva leverages this mechanism and adds cus-

tom support for GPU time-slicing.

As shown in Figure 5(a), usage of GPU memory by

DLT jobs has a cyclic pattern with as much as 77x dif-

ference between the minimum and maximum memory

usage. The key idea in Gandiva is to exploit this cyclic

behavior and suspend-resume DLT jobs when their GPU

memory usage is at their lowest. Thus, when a suspend

call is issued, the DLT toolkit waits until the minimum

of the memory usage cycle, copies the objects stored in

the GPU to the CPU, releases all its GPU memory alloca-

tions (including cache), and then invokes the classic CPU

suspend mechanism. Later, when the CPU resumes the

job, the DLT framework first allocates appropriate GPU

memory, copies the stored objects back to the GPU, and

then resumes the job.

Suspend-resume may also initiate a change of GPU

within the same server (e.g., in the case of six 1-GPU

jobs time-sharing 4-GPUs). While changing GPU is ex-

pensive, we hide this latency from the critical path. As

we show in our evaluation (Section 6.1), for typical im-

age classification jobs, suspend-resume together can be

accomplished in under 100ms, while for large language

translation jobs suspend-resume can take up to 1s. Given

a time-slicing interval of 1 minute, this amounts to an

overhead of 2% or less.

Note that suspend in Gandiva may be delayed by at

most a mini-batch interval of the DLT job (typically, a

few seconds or less), but we believe this is a worthwhile

trade-off as it results in significantly less overhead due to

the reduced GPU-CPU copy cost and less memory used

in the CPU. Further, useful work is accomplished during

this delay. The scheduler keeps track of this delay and

adjusts the time-slicing interval accordingly for fairness.

An alternative to suspend-resume for time-slicing is to

run multiple DLT jobs on a GPU simultaneously and let

the GPU time-share the jobs. We call this packing. Pack-

ing in GPU is efficient only when the packed jobs do

not exceed the GPU resources (cores, memory) and do

not adversely impact each other. If jobs interfere, pack-

ing can be significantly worse than suspend-resume (Sec-

tion 6.1). We use profiling to monitor the resource and

progress of DLT jobs when they have exclusive access. If

two jobs are identified as candidates for packing, we pack

them together and continue monitoring them. If a given

packing results in adverse impact on jobs’ performance,

we unpack those jobs and revert to suspend-resume.

Migration. Migration is the mechanism Gandiva uses

to change the set of GPUs assigned to a DLT job. Mi-

gration is useful in several situations such as i) moving

time-sliced jobs to vacated GPUs anywhere in the clus-

ter; ii) migrating interfering jobs away from each other;

iii) de-fragmentation of the cluster so that incoming jobs

get GPUs with good locality.

We evaluate two approaches for tackling DLT pro-

cess state migration. In the first approach, we leverage a

generic process migration mechanism such as CRIU [1].

Because CRIU by itself does not support migration of

processes that use the GPU device, we first checkpoint

GPU objects and remove all GPU state from the process

before CRIU is invoked. Because CRIU checkpoints and

restores the entire process memory, the size of the check-

point is on the order of GBs for these DLT jobs using Py-

Torch. Thus, the resulting migration overhead is about 8-

10s for single GPU jobs and higher for multi-GPU jobs.

The second approach we consider is the use of

DLT jobs that are checkpoint-aware. DLT frame-

works such as Tensorflow already support APIs (e.g.,
tensorflow.train.saver) that allow automatic

checkpoint and restore of models. This API is used to-

day to ensure that long running jobs do not have to be

rerun due to server failures. We extend the framework

to support migration of such jobs. By warming up the

destination before migration and only migrating the nec-

essary training state, we can reduce the migration over-
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head to as little as a second or two (Section 6.1). With

either approach, we find that the overhead of inter-server

migration is worthwhile compared to the benefits it pro-

vides in terms of higher overall GPU utilization.

Grow-Shrink. The third mechanism that Gandiva uses

to remove the exclusivity of GPUs to a DLT job is

grow-shrink. This mechanism primarily targets situa-

tions when the cluster may not be fully utilized, say, late

at night. The basic idea is to grow the number of GPUs

available to a job opportunistically during idle times and

correspondingly also shrink the number of GPUs avail-

able when the load increases.

Many DLT jobs, especially in the image domain, see

linear performance scaling as the number of GPUs is in-

creased. Gandiva applies this mechanism only to those

DLT jobs that specifically declare that they are adaptive

enough to take advantage of these growth opportunities.

When multiple DLT jobs fit this criteria, Gandiva uses

profiling information, discussed next, to estimate each

job’s progress rate and then allocate GPUs accordingly.

Profiling. Like any scheduler, Gandiva monitors re-

source usage such as CPU and GPU utilization,

CPU/GPU memory, etc. However, what is unique

to Gandiva is that it also introspects DLT jobs in

an application-aware manner to estimate their rate of

progress. This introspection exploits the regular pattern

exhibited by DLT jobs (Section 3) and uses the periodic-

ity to estimate their progress rate.

Gandiva estimates a DLT job’s mini batch time,

the time to do one forward/backward pass over a batch

of input data, as the time taken between two minimums

of the GPU memory usage cycles (Figure 5(a)). Be-

cause DLT jobs typically perform millions of such mini

batch operations in their lifetime, the scheduler compares

the mini batch time of a DLT prior to and post a

scheduling decision to determine its effectiveness.

For example, consider the example of packing two

DLT jobs in a GPU described earlier. By comparing the

mini batch time of each of the two DLT jobs before

and after packing, Gandiva can decide whether packing

is effective. Without such profiling, in order to make a

packing decision, one would have to model not only the

two DLT jobs’ performance on various GPUs but also the

various ways in which they may interfere with each other

(e.g., caches, memory bandwidth, etc.), a non-trivial task

as evidenced by the varied performance of packing we

see in Section 6.1.

4.2 Scheduling Policy
Definitions: Before we describe the details of the sched-

uler, we define some terminology. DLT jobs are encap-

sulated in containers (Section 5) and include the num-

ber of GPUs required, their priority (can be dynamically

GPU 0 GPU 1 GPU 2 GPU 3

Job 1

Job 5

Job 2 Job 3 Job 4

Job 6

GPU 0 GPU 1 GPU 2 GPU 3

Job 7

Job 11

Job 8 Job 9 Job 10

Job 12

GPU 0 GPU 1 GPU 2 GPU 3

Job 13 Job 14

Job 15

Server with 1-GPU Jobs Server with 1-GPU Jobs

Server with 2-GPU Jobs
GPU 0 GPU 1 GPU 2 GPU 3

Job 16

Job 17

Server with 4-GPU Jobs

Figure 7: Scheduling example in a 16-GPU Cluster.

changed), and a flag indicating if the job is capable of

grow-shrink. We assume the number of GPUs requested

by a job is a power of two (typical for DLT jobs today).

A cluster is composed of one or more servers, with each

server having one or more GPUs. Further, we assume a

dedicated GPU cluster for DLT jobs [28, 12].

We define the height of a server as
⌈
M/N

⌉
, where M

is the number of allocated GPUs and N is the number

of total GPUs. Thus, the suspend/resume mechanism

will only be used when the height of a server exceeds

one. The height of a cluster is defined as the maximum

height of all its servers. Overload occurs when the height

of the cluster is greater than one; i.e., the sum of re-

quested/allocated GPUs of all jobs is greater than the to-

tal number of GPUs. We define the affinity of a server

as the type of jobs (based on GPUs required) assigned to

that server. For example, initially servers have affinity of

zero and, if a job that requires two GPUs is assigned to a

server, the affinity of that server is changed to two. This

parameter is used by the scheduler to assign jobs with

similar GPU requirements to the same server.

Goals: The primary design goal of the Gandiva sched-

uler is to provide early feedback to jobs. In prevalent

schedulers, jobs wait in a queue during overload. In con-

trast, Gandiva supports over-subscription by allocating

GPUs to a new job immediately and using the suspend-

resume mechanism to provide early results. A second de-

sign goal is cluster efficiency. This is achieved through

a continuous optimization process that uses profiling and

a greedy heuristic that takes advantage of mechanisms

such as packing, migration, and grow-shrink. Cluster-
level fairness is not a design goal in Gandiva. While we

believe achieving long-term fairness at the cluster level

is feasible using the Gandiva mechanisms, in this paper,

we focus only on providing fairness among jobs at each

server using the suspend-resume mechanism and leave

cluster-level fairness to future work.

To achieve these goals, the Gandiva scheduler oper-

ates in two modes: reactive and introspective. By re-

active mode, we refer to when the scheduler reacts to

events such as job arrivals, departures, machine failures

etc. By introspective mode, we refer to a continuous pro-

cess where the scheduler aims to improve cluster utiliza-
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Algorithm 1 getNodes(in job, out nodes)

1: nodes0 ← f indNodes( job.gpu,a f f inity ← job.gpu)
2: nodes1 ← minLoadNodes(node0)
3: nodes2 ← f indNodes( jog.gpu,a f f inity ← 0)
4: nodes3 ← f indNodes( job.gpu)
5: if nodes1 and height(nodes1)< 1:

6: return nodes1 // Same affinity with free GPUs

7: if nodes2 and numGPUs(nodes2)≥ job.gpu:

8: return nodes2 // Unallocated GPU servers

9: if nodes3:

10: return nodes3 // Relax affinity constraint

11: elif nodes1:

12: return nodes1 // Allow over-subscription

13: else:
14: enqueue( job) // Job queued

tion and job completion time. Note that the scheduler can

be operating in both modes at the same time. We discuss

each of these modes next.

4.2.1 Reactive Mode

The reactive mode is designed to take care of events such

as job arrivals, departures, and machine failures. Con-

ventional schedulers operate in this mode. Here we dis-

cuss only our job placement policy since we follow the

conventional approach for failure handling.

When a new job arrives, the scheduler allocates

servers/GPUs for the job. The node allocation policy

used in Gandiva is shown in Algorithm 1. f indNodes
is a function to return the node candidates that satisfy

the job request with an optional parameter for affinity

constraint. Initially, Gandiva tries to find nodes with the

same affinity as the new job and, among those, ones with

the minimum loads. If such nodes exist and their height

is less than one (lines 5–6), that node is assigned. Oth-

erwise, Gandiva tries to find and assign un-affinitized

nodes (lines 7–8). If no such free servers are available,

the third option is to look for nodes with free GPUs while

ignoring affinity (lines 9–10). This may result in frag-

mented allocation across multiple nodes but, as we shall

see later, migration can be used for defragmentation. If

none of the above work, it implies that no free GPUs are

available in the cluster. In this case, if nodes with the

same affinity exist, they are used with suspend-resume

(lines 11–12); if not, the job is queued (lines 13–14).

For example, as shown in Figure 7, jobs that require

1-GPU are placed together but jobs that require 2 or 4

GPUs are placed on different servers. Further, we try to

balance the over-subscription load on each of the servers

by choosing the server with the minimum load (e.g., six

1-GPU jobs on each of the two servers in the figure).

Conventional schedulers will use job departures to

pick the next job from the waiting queue for placement.

J0 J0

D

Server0

Server1

Server2

Server3

Server4

J3

J3

Server5

Server6

J1

J1

D J2

J2D

J0 Job0 slot D DeepSpeech slot
OtherJob’s slot Migrate

Figure 8: Job migration in a shared cluster.

In addition, in Gandiva, we check whether the height of

the cluster can be reduced; e.g., by migrating a job that is

suspended to the newly vacated GPU. This job could be

from the same server or from any other server in the clus-

ter. Finally, job departures can also trigger migrations for

improving locality, as discussed in the next section.

Gandiva’s job placement policy takes into account

two factors. First, unlike conventional schedulers, Gan-
diva allows over-subscription. When a server is over-

subscribed, we do weighted round-robin scheduling to

give each job its fair time-share. Second, unlike today’s

schedulers, where GPU allocation is a one-time event

at job arrival, Gandiva uses the introspective mode, dis-

cussed next, to improve cluster utilization continuously.

Thus, Gandiva relies on a simple job placement policy

to allocate GPU resources quickly to new jobs, thereby

enabling early feedback.

4.2.2 Introspective Mode

In the introspective mode, Gandiva continuously moni-

tors and optimizes placement of jobs to GPUs in the clus-

ter to improve the overall utilization and the completion

time of DLT jobs.

Packing. Packing is considered only during overload.

The basic idea behind packing is to run two or more

jobs simultaneously on a GPU to increase efficiency. If

the memory requirements of the packing jobs combined

are higher than GPU memory, the overhead of “paging”

from CPU memory is significantly high [16] that pack-

ing is not effective. When the memory requirements of

two or more jobs are smaller than GPU memory, pack-

ing still may not be more efficient than suspend-resume

as we show in Section 6.1. For example, for some DLT

jobs, packing increases efficiency, while for others pack-

ing can be worse than suspend-resume.

Analytically modeling performance of packing is a

challenging problem given the heterogeneity of DLT

jobs. Instead, Gandiva relies on a greedy heuristic to

pack jobs. When jobs arrive, we always run them in ex-

clusive mode using suspend-resume and collect profiling

information (GPU utilization, memory and job progress

rate). Based on the profiling data, the scheduler main-

tains a list of jobs sorted by their GPU utilization. The

scheduler greedily picks the job with the lowest GPU uti-
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lization and attempts to pack it on a GPU with the lowest

GPU utilization. We only do this when the combined

memory utilization of the packed jobs do not exceed the

overall memory of the GPU. Packing is deemed success-

ful when the total throughput of packed jobs is greater

than time-slicing. If packing is unsuccessful, we undo

the packing and try the next lowest utilization GPU. If

the packing is successful, we find the next lower utiliza-

tion job and repeat this process. Based on our evaluation,

we find that this simple greedy heuristic achieves 26%

efficiency gains.

Migration. GPU locality can play a significant role in

the performance of some jobs (Section 3.1). In Gandiva,

we use migration to improve locality whenever a job de-

parts and also as a background process to “defrag” the

cluster. To improve locality, we pick jobs that are not

co-located and try to find a new co-located placement.

Figure 8 illustrates an example from a cluster experiment

(Section 6.4). When a multi-job with 4 jobs that requires

2-GPUs each was scheduled, it had poor GPU affinity;

only J0’s two GPUs are colocated with the other 3 jobs

in the multi-job (J1, J2, and J3,) assigned to separated

GPUs. Three minutes later, a background training job,

DeepSpeech, completes and releases its 8 GPUs. Three

of the 8 GPUs, marked as D in Figure 8 in three differ-

ent servers (server 1, 3, and 4), can improve the training

efficiency of the multi-job. Gandiva hence initiates the

migration process, relocating J1, J2, and J3 to colocated

GPUs. For de-fragmentation, we pick the server with the

most free GPUs among all non-idle ones. We then try

to move the jobs running on that server to others. The

job will be migrated to another server with fewer free

GPUs, as long as there is negligible performance loss.

We repeat this until the number of free GPUs on every

non-idle server is less than a threshold (3 out of 4 in our

experiments) or if no job will benefit from migration.

Grow-shrink. Grow-shrink is only triggered when the

cluster is under-utilized and the DLT jobs specifically

identify themselves as amenable to grow-shrink. In our

current system, we only grow jobs to use up to the max-

imum number of GPUs available in a single server. Fur-

ther, we trigger growth only after an idle period to avoid

thrashing and shrink immediately when a new job might

require the GPUs.

Time-slicing. Finally, we support round robin schedul-

ing in each server to time-share GPUs fairly (Sec-

tion 6.1). When jobs have multiple priority levels, higher

priority jobs will never be suspended to accommodate

lower priority jobs. If a server is fully utilized with

higher priority jobs, the lower priority job will be mi-

grated to another server, if feasible.

5 Implementation

DLT jobs are encapsulated as Docker containers con-

taining our customized versions of DL toolkits and a

Gandiva client. These jobs are submitted to a Kuber-

netes [14] system. Gandiva also implements a custom

scheduler that then schedules these jobs.

5.1 Scheduler
Gandiva consists of a custom central scheduler and also a

client component that is part of every DLT job container.

The scheduler is just another container managed by Ku-

bernetes. Kubernetes is responsible for overall cluster

management, while the Gandiva scheduler manages the

scheduling of DLT jobs. The Gandiva scheduler uses the

Kubernetes API to get cluster node and container infor-

mation and, whenever a new container is submitted, the

scheduler assigns it to one or more of the GPUs in the

cluster based on the scheduling policy.

When a container is scheduled on a node, initially only

the Gandiva client starts executing. It then polls the Gan-
diva scheduler to identify which GPUs to make available

for the DLT job and also controls the execution of the

DLT job using suspend/resume and migrate commands.

While scheduling of all the GPUs in our cluster is fully

controlled by the central scheduler, a hierarchical ap-

proach may be needed if scalability becomes a concern.

5.2 Modifications to DL toolkits
In the interest of space, we describe only the time-slicing

implementation for PyTorch and the migration imple-

mentation for Tensorflow.

PyTorch time-slicing. The Gandivaclient issues a SIGT-

STP signal to indicate that the toolkit must suspend the

process. It also indicates whether or not the resume

should occur in a new GPU via an in-memory file. Upon

receiving the signal, the toolkit sets a suspend flag and

executes the suspend only at the end of a mini-batch

boundary.

In Tensorflow, a define-and-run toolkit, the mini-

batch boundaries are easily identified (end of

session.run()). In PyTorch, a define-by-run

toolkit, we identify the mini-batch boundary by tracking

GPU memory usage cycles as part of PyTorch’s GPU

memory manager (THCCachingAllocator) and looking

for a cycle minimum whenever GPU memory is freed.

Once the minimum is detected, the toolkit i) copies

all stored objects from GPU to CPU, ii) frees up GPU

allocations, and iii) suspends the process. When Gan-
diva client issues a SIGCONT signal, the toolkit allo-

cates GPU memory, copies stored objects from CPU to

GPU, and resumes the process. To handle device address
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change on resume, we track GPU objects in the toolkit

and patch them with the new addresses. Changing GPU

involves calling cudaDeviceReset and CudaInit, which

can take 5-10s. We hide this latency by performing these

actions in the background while “suspended”.

Tensorflow migration. We make changes to Tensorflow

(TF) with 400+ lines of Python/C++ code. With 200+

line of additional code, we deploy a Migration Helper on

each server to support on-demand checkpointing and mi-

gration. When receiving a migration command from the

scheduler, the destination Helper first warms up the TF

session and waits for the checkpoint. The source Helper

then asks TF to save the checkpoint, moves the check-

point to destination in case of cross-server migration, and

finally resumes the training session. To speed up the mi-

gration process, we adopt Ramdisk to keep the check-

point in memory. In the cross-server case, the modified

TF saves the checkpoint to the remote Ramdisk directly

through the Network File System (NFS) protocol.

When the Migration Helper asks a job to perform

checkpointing, the modified TF calls tf.Saver at the

end of a mini-batch. For data parallelism, the checkpoint

only includes the model in one GPU, regardless of the

number of GPUs used in the training. To speedup TF mi-

gration further, we do not include the meta-graph struc-

ture in a checkpoint as it can be reconstructed based on

user code.

In the warm-up phase, the modified TF checks the

GPU configuration and reconstructs the meta-graph. It

further creates the Executor to run a warm-up opera-

tion to ensure that the initialization is not deferred lazily.

When resuming the training process, the modified TF

loads the checkpoint, with multiple GPUs loading it in

parallel, and continues the training.

6 Evaluation

In this section, we first present micro-benchmark results

of the Gandiva mechanisms. We then evaluate the ben-

efit Gandiva provides to multi-jobs. Finally, we present

our evaluation results of the experiments on a 180-GPU

cluster.

Our servers are 12-core Intel Xeon E5-

2690@2.60GHz with 448GB RAM and two 40Gbps

links (no RDMA), running Ubuntu 16.04. Each server

has either four P100 or four P40 GPUs. All servers are

connected to a network file-system called GlusterFS [3]

with two-way replication on the server disks (SSDs).

For jobs that use more than one GPU, we only evaluate

data parallelism (as it is more common than model

parallelism), and use synchronous updates (though we

can support asynchronous update as well). Our evalu-

ation uses 18 models, 8 implemented in PyTorch 0.3

and 10 implemented in TensorFlow 1.4. The batch size

Figure 9: Time slicing six 1-GPU jobs on 4 GPUs.

Figure 10: Packing jobs on single P40 GPU.

used for training are defaults from their references. All

models take 6s or less per mini-batch in our evaluation.

Thus, we set the time-slicing interval to 60s in these

experiments.

6.1 Micro-benchmarks
In this section, we evaluate the Gandiva mechanisms,

viz., time-slicing, packing, grow-shrink, and migration.

Time-slicing. We use six 1-GPU jobs on a single server

with four P100 GPUs to illustrate time-slicing. These

are ResNet-50 [24] models trained on the Cifar10 dataset

using the PyTorch toolkit. When six 1-GPU jobs share

four GPUs, each job ideally should get four minutes of

GPU time out of every six.

Figure 9 shows a trace with the progress rate of each

of the jobs over time. Initially, four 1-GPU long jobs are

running and at time t=25min, two 1-GPU short jobs are

scheduled at this server. One can see that the initial four

1-GPU jobs now get 4/6th their previous share. When

the two short jobs depart, the long jobs return to their ear-

lier performance. Also, note that the aggregate through-

put of all jobs (right scale) is only marginally affected

(less than 2%) during the entire trace, demonstrating that

time-slicing is an efficient mechanism for providing early

feedback during over-subscription.

Packing. Table 1 shows the performance of packing

multiple jobs on a single GPU for various DLT mod-
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GPU Time Packing Packing
Job Util Slicing Max Gain

(%) (mb/s) (mb/s) (%)

VAE [29] 8.7 81.8 419.3 412

SuperResolution [43] 14.1 40.3 145.2 260

RHN [58] 61.6 10.1 14.8 46

SCRNN [37] 66.8 16.7 23.3 39

MI-LSTM [52] 76.2 22.2 25.9 17

LSTM [5] 87.2 63.8 53.0 -16

ResNet-50 [24] 94.0 10.3 9.0 -13

ResNext-50 [53] 98.9 83.6 74.4 -11

Table 1: Packing multiple jobs on P40 (mb/s = minibatches/s).

Figure 11: Grow from 1 to 4 GPUs, Shrink to 1-GPU.

els using PyTorch toolkit. For small DLT jobs with low

GPU utilization, packing can provide significant gains of

as much as 412%. For DLT jobs with middling GPU uti-

lization, packing gains vary from model to model with

some showing gains of up to 46%, but some exhibiting a

loss of 16%. Finally, for image processing jobs with high

utilization, such as ResNet-50 or ResNext-50 on the Ci-

far10 dataset, packing hurts performance by 11-13% .

Note that these packing results are without enabling

NVIDIA’s multi-process service (MPS) [7]. We found

that MPS results in significant overhead in P40/P100

GPUs. However, hardware support for MPS in V100

GPUs [7] suggests that the use of MPS may be able to

increase further packing gains in V100 GPUs.

Based on these results, predicting packing perfor-

mance even with jobs of the same type appears chal-

lenging, let alone when jobs of different types are packed

together. Instead, Gandiva adopts a profiling-based ap-

proach to packing. Figure 10 shows a case where two

image super-resolution jobs [43] are initially being time-

sliced on the same P40 GPU. After some time, the sched-

uler concludes that their memory and GPU core utiliza-

tion is small enough that packing them is feasible and

schedules them together on the GPU. The scheduler con-

tinues to profile their performance. Because their aggre-

gate performance improves, packing is retained; other-

wise (not shown), packing is undone and the jobs con-

tinue to use time-slicing.

Grow-Shrink. Grow-shrink is useful primarily when

the cluster is under-utilized. Gandiva uses grow-shrink

only for those jobs that specifically state that they can

make use of this feature because users may want to ad-

Figure 12: The breakdown of TF migration overhead.

just the learning rate and the batch size depending on the

number of GPUs available. Figure 11 demonstrates this

mechanism in action. Initially, a 4-P100 server has three

jobs, 1-GPU growth-capable job, 1-GPU short job, and

a 2-GPU short job, all using ResNet-50 with PyTorch.

At time t=25min, the short job departs and after a time-

out period of no new jobs being allocated to this GPU,

the long running job expands to use 2 GPUs. At time

t=45min, the second short job departs and the long run-

ning job expands to use all four GPUs. At time t=75min,

a new 2-GPU job enters and the long job immediately

shrinks to use two GPUs and, when another new 1-GPU

job appears, the long job shrinks to use only 1 GPU.

This micro-benchmark demonstrates that idle GPU re-

sources can be effectively used with a mechanism like

grow-shrink.

Migration. We use a server with 8 P100 GPUs and

the Tensorflow toolkit to evaluate migration overhead.

First, we migrate a ResNet-50 single-server training job

from one server to another. Figure 12 shows the detailed

breakdown with a varying number of GPUs. Using our

optimized implementation, we are able to eliminate or

hide the majority of the migration overhead. The ac-

tual migration time, saving and restoring checkpoints, re-

mains almost constant regardless of the number of GPUs

because we save only one copy of the model. The load-

ing of the in-memory checkpoint in each GPU runs in

parallel and does not saturate the PCI-e bandwidth. The

warm-up time and the cost due to meta-graph and check-

points from other GPUs grow with the number of GPUs.

As a result, we are able to save 98% of the migration

overhead of 35s for 8-GPU jobs.

Figure 13 shows the max, min, and average intra-

server and inter-server migration time of a 1-GPU job

with 10 different deep learning models (summarized in

Table 2) over 3 runs. Six of the 10 can be migrated within

1 second. Even the largest model (DeepSpeech [23] with

a 1.4GB checkpoint) can be migrated in about 3.5 sec-

onds, which is negligible compared to the long training

time that often lasts for hours or days.
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Figure 13: Migration time of real workloads.

6.2 Model exploration in a multi-job

AutoML, or automatic model exploration through hyper-

parameter search is an important way to help users iden-

tify good neural models [21]. Typically, AutoML in-

volves a hyper-parameter configuration generator and a

performance evaluator. The generator uses different al-

gorithms [11, 33] to generate new candidate configura-

tions (DLT jobs), sometimes using the performance of

prior configuration runs as a signal. The evaluator uses

the early output of running jobs (e.g., the learning curve)

to predict the jobs’ final performance and decide whether

to continue running a given job or terminate it early.

Compared to a traditional scheduler where the number

of configurations explored at any given time is limited by

the number of GPUs available, Gandiva provides new

primitives such as time-slicing and dynamic prioritiza-

tion for AutoML algorithms to exploit. For example, the

configuration generator is no longer limited by the num-

ber of GPUs and can dynamically generate many more

configurations. Similarly, the performance evaluator can

not only decide whether to continue or terminate a job

but also how much priority to give to each configuration.

In this section, we explore one particular instance of

using these new options enabled by Gandiva to highlight

the potential benefit for AutoML. Detailed analysis of

when and how many configurations to generate and/or

how to best allocate priority among the various running

configurations to utilize Gandiva features optimally is an

open problem that we leave for future work.

At a high level, Gandiva can benefit an AutoML sys-

tem in two ways. First, Gandiva can help AutoML

explore more hyper-parameter configurations within a

timespan, thereby enabling it to find better models [10,

19, 11]. Alternatively, Gandiva can help AutoML find

a qualified model faster given a set of configurations

through prioritization.

To demonstrate the benefit of Gandiva in exploring

more configurations, we first use AutoML to run a multi-

job to tune a LeNet-like CNN model with multiple con-

volution layers and fully connected layers, trained with

the Cifar10 dataset. The hyper-parameters we search

have 12 dimensions, including learning rate, dropout

rate, number of layers, choice of optimization, etc. In this

Neural model Type Dataset

10%

InceptionV3 [46] CV ImageNet [18]
ResNet-50 [24] CV ImageNet
Alexnet [31] CV ImageNet
Vgg16 [44] CV ImageNet

60%

Bi-Att-Flow [42] NLP SQuAD [40]
LanguageModel [56] NLP PTB [34]
GNMT [51] NLP WMT16 [6]
Transformer [49] NLP WMT16

30%
Wavenet [48] Speech VCTK [54]
DeepSpeech [23] Speech CommonVoice [2]

Table 2: Neural models and the ratios in the trace.
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experiment, AutoML continually generates new hyper-

parameter configurations based on Hyperopt [10] and

leverages a curve-fitting method [19] to evaluate and pre-

dict the learning curve every 1,000 mini-batches (3% of

the total mini-batches [19]). Jobs with no promise (less

than 30% predicted accuracy) will be stopped early. The

multi-job runs on 4 (or 16) P40 GPUs and each job re-

quires 1 GPU. In the experiment, AutoML schedules 2

(or 8) more jobs every 1,000 mini-batches. In the base-

line, jobs have to stay in a FIFO queue waiting for the

running jobs to be terminated early or complete while in

Gandiva, they are scheduled with time-slicing and mi-

gration support.

Figure 14 shows the number of explored hyper-

parameter configurations. Gandiva can explore almost

10 times the number in the baseline approach in both

the 4-GPU and 16-GPU cases. This is because, in the

baseline approach, the GPUs can get “stuck” with a sub-

optimal set of jobs that need to be run to completion, but

in Gandiva, because of time-slicing, new configurations

can be explored in parallel along with those jobs.

To demonstrate the benefit of Gandiva in finding a

qualified model faster, we use Hyperopt to generate ran-

domly the same set of 374 hyper-parameter configura-

tions for both the baseline and Gandiva. The experiment

measures the time required to find a configuration with

at least 84% accuracy2. AutoML algorithms evaluate

the jobs every 1,000 mini-batches and re-prioritize them

based on the learning-curve prediction of their probabil-

ity to achieve 84% accuracy [19]. In Gandiva, the top M

jobs with the highest probabilities are then trained in the

GPUs exclusively. In this experiment, we set M to 2 and

8 for 4-GPU and 16-GPU cases. Other jobs run in a time

2The LeNet-like CNN model is small: 84% is the best accuracy we

found in the generated configurations.
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Position
93th
(25%)

187th
(50%)

280th
(75%)

365th
(98%)

4
GPUs

Baseline 691.5 1373.0 2067.2 2726.4
Gandiva 125.5 213.8 302.4 387.1
Speedup 5.51x 6.42x 6.84x 7.04x

16
GPUs

Baseline 253.0 492.7 731.7 970.0
Gandiva 74.4 103.7 135.4 162.6
Speedup 3.40x 4.75x 5.40x 5.96x

Table 3: Time to find a qualified configuration (minutes).

slicing manner. Our baseline approach stays the same as

in the previous experiment. The result shows that Gan-
diva achieves 7x speedup compared to the baseline for

the 4-GPU case and 6x for the 16-GPU case. More GPUs

benefit the baseline as it implicitly improves the degree

of parallelism of the long running jobs. There are two

factors contributing to these gains. First, with prioritiza-

tion, Gandiva grants more computation resources to the

promising jobs. Second, because of the ability to run

more configurations in parallel, Gandiva is able to find

promising jobs quickly based on early feedback.

Further study shows the first job with the qualified

configuration gets scheduled by Gandiva and the base-

line in the 365th place. We move the first qualified job

from 365th place to the first 25th percentile, 50th per-

centile, and 75th percentile scheduling place and rerun

the experiment. Table 3 summarizes the result: the later

the qualified configuration shown, the larger gain Gan-
diva has. In a typical AutoML experiment, quality mod-

els usually show up later as those early-stopped jobs’

configurations guide the system to find the better con-

figurations.

To understand the sensitivity of Gandiva’s perfor-

mance to the target accuracy of the model, we run Au-

toML with different target accuracies on a large state-of-

the-art ResNet-like model (the official ResNet example

in Keras [4]) for Cifar10. We use Hyperopt to gener-

ate 100 configurations, with the search space covering

both the neural network architecture and various tunable

hyper-parameters. The learning-curve prediction works

as before; i.e., for every 3% of total mini-batches. The

multi-job experiment runs on 16 P40 GPUs and every job

runs on 1 GPU.

Table 4 shows the time spent on finding a model that

is better than target accuracy using the baseline and Gan-
diva respectively. For a higher target accuracy, the per-

formance gain of Gandiva is more notable. With 90%

specified as a goal, the qualified model that is found

achieves 92.62% validation accuracy. However, if the

target accuracy is low; e.g., 70%, a qualified model will

appear early. In this case, the time for completing a sin-

gle qualified configuration run dominates the total Au-

toML search time. Thus, Gandiva shows little bene-

fit. We can see that when AutoML is used for achiev-

ing high accuracy models, Gandiva provides significant

gains over the baseline.

Accuracy 70% 80% 90%

Baseline 134.1 2849.1 5296.7

Gandiva 134.1 543.1 935.4

Speedup 1.00x 5.25x 5.66x

Position 15th 58th 87th

Table 4: Model searching in ResNet-like network (minutes).

Figure 15: Cluster GPU utilization.

6.3 Cluster experiments: time-slicing and
packing

In this section, we evaluate the Gandiva scheduler in a

45 server, 180-GPU cluster with about an equal mix of

P100 and P40 GPUs. The scheduler implements both

the reactive and introspective modes described earlier.

In order to understand the gains contributed by different

mechanisms in Gandiva, in this experiment, we only use

time-slicing and packing, and disallow migrations. Fur-

ther, none of the jobs are grow-shrink enabled. Thus, the

accuracy achieved during training is unaffected by the

Gandiva mechanisms.

We use the eight DLT jobs from Table 1 for this ex-

periment and derive a mix of these jobs such that aver-

age GPU utilization is about 50%, similar to the average

GPU utilization numbers reported from a study of a large

deep learning cluster [28]. DLT jobs 1 and 2 from Table 1

(low utilization) are chosen with 0.3 probability, jobs 3,

4, and 5 (mid utilization) are chosen with 0.25 probabil-

ity and jobs 6, 7, and 8 (high utilization) are chosen with

probability of 0.45. Further, jobs 7 and 8 require either 2

or 4 GPUs while the rest each uses 1-GPU.

The number of mini-batches for each of these jobs are

chosen such that, in isolation on P40, they take between

30 and 45 minutes of GPU time. A total of 1,000 jobs

drawn from the above distribution arrive in a uniformly

random manner over two hours. Using the same work-

load, we compare with Gandiva a baseline scheduler that

does bin-packing but does not oversubscribe.

The primary goal of Gandiva is early feedback. We

compute the average time to 100 mini-batches for all jobs

as a measure of early feedback (e.g., HyperBand [33]

uses 100 mini-batches to evaluate a job). We find that

the average time to complete 100 mini-batches is 498s

for Gandiva and 2,203s for the baseline, for a reduction

of 77%.
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The second goal of Gandiva is cluster efficiency. Fig-

ure 15 shows the average GPU utilization of the cluster

for the baseline scheduler and Gandiva, as well as the

cumulative number of successful packings by Gandiva
(right y-axis). The result shows clearly that Gandiva is

able to use the cluster more efficiently than the baseline.

The average utilization (computed over the stable regime

from 20 to 200 mins) achieved by Gandiva is 62.8%

compared to baseline average of 50.1%, resulting in a

26% relative improvement. Further, the greedy packing

heuristic employed by Gandiva can be seen to be mostly

successful with only a few packing decisions that need to

be undone (the packing curve is mostly increasing with

only small occasional dips).

6.4 Cluster experiments: time-slicing and
migration

Trace. We collect a 9-day real-world job trace on a

2,000 GPU production cluster at Microsoft. The trace in-

cludes over 8,800 DLT jobs from three categories: com-

puter vision (CV) (10%), Natural Language Processing

(NLP) (60%), and Speech (30%), according to user sur-

vey and log analysis. However, the data/code used by

these jobs are not available to us, due to security and pri-

vacy regulations. In their place, we pick 10 state-of-the-

art deep learning models from Github with 50,000+ stars

in total. The models are summarized in Table 2.

To synthesize a trace with similar characteristics as the

production cluster, we mix these models with the same

ratio as that in the trace. The number of mini-batches of

the jobs in the trace are set to follow the job running time

distribution of the 9-day real-world trace. We ensure

that the synthesized trace closely follows the job run-

ning time distribution of the real-world trace, as shown

in Figure 16. As before, none of the jobs are grow-shrink

enabled in this experiment, as the cluster is in high load.

We run the trace using Hadoop’s YARN capacity

scheduler [50] and our Gandiva scheduler.

Fast-forwarding. To speed up replaying the 9-day trace,

we leverage the predictability of the 10 models. We use

the scheduler to instruct a running job to skip a number

of mini-batches (i.e., fast-forwarding) whenever there are

no scheduling events, including job arrival, departure,

and migration, etc. The time skipped is calculated by

measuring the previous mini-batch performance when

the job reaches a stable state.

We validate fast-forwarding by constructing a 3-hour

trace and compute average job completion time (JCT)

and the makespan (the running time for the entire exper-

iment) for the full trace and the experiment with fast-

forwarding enabled using the capacity scheduler and

Gandiva. The difference between the real and fast-

forwarded experiment in all cases was less than 1%.

Avg. JCT
(mins)

Makespan
(mins)

Cap. Sche. 832 13371

Gandiva 656 11349

Improvement 26.8% 17.8%

Table 5: Full trace experiment with fast-forwarding

Table 5 shows the average job completion time and the

makespan for the two schedulers when replaying the syn-

thesized job trace in a cluster with 100 GPUs (50 P100,

50 P40). We see that Gandiva improves average JCT by

26.8% and the total makespan is reduced by 17.8%. Fig-

ure 17 shows the CDF of the JCT of the two approaches:

it shows Gandiva has more jobs with a JCT less than

around 100 mins. During the entire experiment, Gandiva
initiates migration 470 times; i.e., approximately once

every 20 minutes.

Multi-job performance in a shared cluster. To com-

pare the AutoML performance of a multi-job in a shared

environment, we run the synthesized trace the same way

as earlier in the same cluster with 100 GPUs. The trace-

driven jobs act as background jobs, emulating a realis-

tic shared cluster environment. At the 5,607th minute

(roughly in the middle of the trace), we launch two multi-

jobs, each to find a qualified CNN model described in

Section 6.2, trained on the Cifar10 dataset. Each multi-

job is allocated 8 GPUs. For fair comparison, each multi-

job is allowed to preempt other jobs to get 8 GPUs to

reduce the unpredictable resource sharing.

We are particularly interested in understanding the

effect of migration in Gandiva and therefore use a 2-

GPU VGG-like model that is large and locality sensi-

tive (Section 3.1). Each AutoML job runs for 100,000

mini-batches and reports the learning curve every 3,000

mini-batches (3%). Like the previous experiment, the

job can be early stopped if the learning shows no

promise [19]. In this experiment, the AutoML algorithm

tunes the learning rate of the model with 40 configura-

tions. The multi-job completes if a job’s model achieves

99.5% training accuracy, with 91.3% validation accu-

racy. Again, the top M highest probability jobs run ex-

clusively while other jobs are time-sliced. In this experi-

ment, we set M to 2 (i.e., 4 GPUs).

As shown in Figure 18, with the capacity scheduler,

it takes 1,215.74 and 1,110.62 mins, respectively, to

find the qualified configuration for the two multi-jobs.

Gandiva’s mechanisms like migration, time-slicing, and

dynamic priority help provide better locality, identify

promising jobs earlier, and improve the training speed

of high priority jobs. As a result, Gandiva achieves

a speedup of 13.6 and 12.9, respectively. Based on a

micro-benchmark we did, we observed that time-slicing

alone gave 7x gains for this AutoML experiment. Thus,

the rest of the gains are attributable to improved locality

due to migration. A real example of migration observed

in this experiment was shown in Figure 8.
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7 Related Work

DLT job scheduling today. DLT jobs are scheduled

today by big data schedulers such as Kubernetes or

YARN [12, 28]. In these systems, a fixed set of GPUs is
assigned exclusively for the lifetime of a DLT job. Thus,

job queueing times can vary from a few minutes [12] to

even hundreds of minutes [28] in these clusters.

An earlier study [28] shows that the average GPU uti-

lization in a production cluster was only around 52%.

Some jobs can inherently result in low GPU utilization

due to the use of small models [29] and/or the use of

small batch sizes for better generalization [35]. Fur-

ther, jobs with inherently high GPU utilization can be

adversely affected by poor GPU affinity and/or interfer-

ence.

Scheduling policies for machine learning. Recent re-

search [9, 15] also suggests that locality, interference,

and GPU utilization are important performance factors

for GPU workloads. They develop analytical models to

predict the performance of GPU workloads. A Gandiva
scheduler may leverage such models to guide its schedul-

ing decisions. At its core, Gandiva framework is de-

signed to empower DLT schedulers with the primitives

such as time-slicing and migration.

SLAQ [57] proposes a scheduling policy that priori-

tizes resources in a CPU-based cluster to Spark jobs with

high potentials (e.g., the one with a fast improving learn-

ing curve). Gandiva can leverage the same policy for

DLT on GPU clusters. Optimus [39] derives a proper

number of parameter-servers and workers for MxNet-

based deep learning jobs, which complements Gandiva
in GPU cluster scheduling.

AutoML. Gandiva enables the co-design of DLT sched-

ulers and AutoML algorithms like [10, 30]. Jobs in

a multi-job can be promoted dynamically with more

resource and/or better locality, accordingly to Au-

toML specific algorithms. Google Vizier [21], Hyper-

Drive [41], and TuPAQ [45] focus more on the sys-

tem design of AutoML. Gandiva empowers these sys-

tems with lower level system primitives that can further

improve AutoML training experience in a multi-job, as

shown in the experiments.

Big data cluster scheduling frameworks. Most recent

big data scheduling frameworks assume jobs are mod-

eled after a data flow graph (DFG) [26, 55, 13, 27, 20,

22]. Map/Reduce like tasks instantiated from the log-

ical DFG get scheduled dynamically according to the

job progress and the DFG dependency. Gandiva in-

stead relies on the micro-task boundary implicitly de-

fined by the mini-batch boundary. The low-level mech-

anisms of Gandiva such as time-slicing and migration

also differ significantly from those big data scheduling

systems [13, 22, 25, 14], while being surprisingly simi-

lar to a traditional operation system [47].

Time-slicing, suspend-resume, and process migra-
tion. Gandiva adopts traditional OS process primitives to

facilitate DLT scheduling [47]. Unlike the general pur-

pose OS mechanisms, Gandiva leverages the intra-job

predictability of DLT to achieve a highly efficient im-

plementation. Gandiva does not claim generality of the

proposed techniques to other application domains.

8 Conclusion

We present Gandiva, a cluster scheduling framework for

deep learning, which provides a set of efficient, low-level

system primitives such as time-slicing, migration, intra-

job elasticity, and dynamic priority. Using these primi-

tives, Gandiva can effectively support neural model ex-

ploration in a multi-job, finding accurate neural mod-

els up to an order of magnitude faster than using tra-

ditional schedulers in a realistic shared cluster environ-

ment. Gandiva provides an efficient implementation of

the proposed mechanisms by exploiting the intra-job pre-

dictability of DLT: our system prototype demonstrates

that job suspend/resume and migration can be achieved

under a second, even for cross-server migration for pop-

ular deep learning toolkits such as Tensorflow and Py-

Torch. Combined with an introspective scheduling pol-

icy, Gandiva improves overall cluster utilization by 26%.
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Abstract
Machine Learning models are often composed of
pipelines of transformations. While this design allows to
efficiently execute single model components at training-
time, prediction serving has different requirements such
as low latency, high throughput and graceful performance
degradation under heavy load. Current prediction serv-
ing systems consider models as black boxes, whereby
prediction-time-specific optimizations are ignored in fa-
vor of ease of deployment. In this paper, we present
PRETZEL, a prediction serving system introducing a
novel white box architecture enabling both end-to-end
and multi-model optimizations. Using production-like
model pipelines, our experiments show that PRETZEL is
able to introduce performance improvements over differ-
ent dimensions; compared to state-of-the-art approaches
PRETZEL is on average able to reduce 99th percentile la-
tency by 5.5× while reducing memory footprint by 25×,
and increasing throughput by 4.7×.

1 Introduction
Many Machine Learning (ML) frameworks such as
Google TensorFlow [4], Facebook Caffe2 [6], Scikit-
learn [48], or Microsoft ML.Net [14] allow data scien-
tists to declaratively author pipelines of transformations
to train models from large-scale input datasets. Model
pipelines are internally represented as Directed Acyclic
Graphs (DAGs) of operators comprising data transforma-
tions and featurizers (e.g., string tokenization, hashing,
etc.), and ML models (e.g., decision trees, linear models,
SVMs, etc.). Figure 1 shows an example pipeline for text
analysis whereby input sentences are classified according
to the expressed sentiment.

ML is usually conceptualized as a two-steps process:
first, during training model parameters are estimated
from large datasets by running computationally inten-

“This is a nice product”

Positive vs. Negative

Tokenizer
Char 

Ngram

Word

Ngram

Concat

Logistic
Regression

Figure 1: A Sentiment Analysis (SA) pipeline consisting
of operators for featurization (ellipses), followed by a ML
model (diamond). Tokenizer extracts tokens (e.g., words)
from the input string. Char and Word Ngrams featurize
input tokens by extracting n-grams. Concat generates a
unique feature vector which is then scored by a Logistic
Regression predictor. This is a simplification: the actual
DAG contains about 12 operators.

sive iterative algorithms; successively, trained pipelines
are used for inference to generate predictions through
the estimated model parameters. When trained pipelines
are served for inference, the full set of operators is de-
ployed altogether. However, pipelines have different sys-
tem characteristics based on the phase in which they are
employed: for instance, at training time ML models run
complex algorithms to scale over large datasets (e.g., lin-
ear models can use gradient descent in one of its many
flavors [52, 50, 54]), while, once trained, they behave as
other regular featurizers and data transformations; further-
more, during inference pipelines are often surfaced for
direct users’ servicing and therefore require low latency,
high throughput, and graceful degradation of performance
in case of load spikes.

Existing prediction serving systems, such as Clip-
per [9, 32], TensorFlow Serving [5, 46], Rafiki [59],
ML.Net [14] itself, and others [17, 18, 43, 15] focus
mainly on ease of deployment, where pipelines are con-
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sidered as black boxes and deployed into containers (e.g.,
Docker [11] in Clipper and Rafiki, servables in Ten-
sorFlow Serving). Under this strategy, only “pipeline-
agnostic” optimizations such as caching, batching and
buffering are available. Nevertheless, we found that black
box approaches fell short on several aspects. For in-
stance, prediction services are profitable for ML-as-a-
service providers only when pipelines are accessed in
batch or frequently enough, and may be not when models
are accessed sporadically (e.g., twice a day, a pattern we
observed in practice) or not uniformly. Also, increasing
model density in machines, thus increasing utilization, is
not always possible for two reasons: first, higher model
density increases the pressure on the memory system,
which is sometimes dangerous—we observed (Section 5)
machines swapping or blocking when too many models
are loaded; as a second reason, co-location of models
may increase tail latency especially when seldom used
models are swapped to disk and later re-loaded to serve
only a few users’ requests. Interestingly enough, model
pipelines often share similar structures and parameters
inasmuch as A/B testing and customer personalization are
often used in practice in large scale “intelligent” services;
operators could therefore be shared between “similar”
pipelines. Sharing among pipelines is further justified
by how pipelines are authored in practice: ML pipelines
are often produced by fine tuning pre-existing or default
pipelines and by editing parameters or adding/removing
steps like featurization, etc.

These and other limitations of existing black box sys-
tems (further described in Section 2) inspired us for de-
veloping PRETZEL: a system for serving predictions over
trained pipelines originally authored in ML.Net and that
borrows ideas from the Database and System commu-
nities. Starting from the above observation that trained
pipelines often share operators and parameters (such as
weights and dictionaries used within operators, and es-
pecially during featurization [64]), we propose a white
box approach for model serving whereby end-to-end and
multi-pipeline optimization techniques are applied to re-
duce resource utilization while improving performance.
Specifically, in PRETZEL deployment and serving of
model pipelines follow a two-phase process. During
an off-line phase, statistics from training and state-of-
the-art techniques from in-memory data-intensive sys-
tems [33, 66, 26, 40, 45] are used in concert to optimize
and compile operators into model plans. Model plans
are white box representations of input pipelines such that
PRETZEL is able to store and re-use parameters and com-
putation among similar plans. In the on-line phase, mem-
ory (data vectors) and CPU (thread-based execution units)

resources are pooled among plans. When an inference
request for a plan is received, an event-based schedul-
ing [60] is used to bind computation to execution units.

Using 500 different production-like pipelines used in-
ternally at Microsoft, we show the impact of the above
design choices with respect to ML.Net and end-to-end
solutions such as Clipper. Specifically, PRETZEL is on
average able to improve memory footprint by 25×, re-
duce the 99th percentile latency by 5.5×, and increase the
throughput by 4.7×.

In summary, our contributions are:

• A thorough analysis of the problems and limitations
burdening black box model serving approaches;

• A set of design principles for white box model serv-
ing allowing pipelines to be optimized for inference
and to share resources;

• A system implementation of the above principles;

• An experimental evaluation showing order-of-
magnitude improvements over several dimensions
compared to previous black box approaches.

The remainder of the paper is organized as follows:
Section 2 identifies a set of limitations affecting current
black box model serving approaches; the outcome of the
enumerated limitations is a set of design principles for
white box model serving, described in Section 3. Sec-
tion 4 introduces the PRETZEL system as an implementa-
tion of the above principles. Section 5 contains a set of
experiments validating the PRETZEL performance, while
Section 6 lists the limitations of current PRETZEL imple-
mentation and future work. The paper ends with related
work and conclusions, respectively in Sections 7 and 8.

2 Model Serving: State-of-the-Art and
Limitations

Nowadays, “intelligent” services such as Microsoft Cor-
tana speech recognition, Netflix movie recommender or
Gmail spam detector depend on ML scoring capabilities,
which are currently experiencing a growing demand [31].
This in turn fosters the research in prediction serving sys-
tems in cloud settings [5, 46, 9, 32], where trained models
from data science experts are operationalized.

Data scientists prefer to use high-level declarative tools
such as ML.Net, Keras [13] or Scikit-learn for better
productivity and easy operationalization. These tools pro-
vide dozens of pre-defined operators and ML algorithms,
which data scientists compose into sequences of operators
(called pipelines) using high-level APIs (e.g., in Python).
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ML.Net, the ML toolkit used in this paper, is a C# li-
brary that runs on a managed runtime with garbage col-
lection and Just-In-Time (JIT) compilation. Unmanaged
C/C++ code can also be employed to speed up processing
when possible. Internally, ML.Net operators consume
data vectors as input and produce one (or more) vectors
as output. 1 Vectors are immutable whereby multiple
downstream operators can safely consume the same input
without triggering any re-execution. Upon pipeline initial-
ization, operators composing the model DAG are analyzed
and arranged to form a chain of function calls which, at
execution time, are JIT-compiled to form a unique func-
tion executing the whole DAG on a single call. Although
ML.Net supports Neural Network models, in this work
we only focus on pipelines composed by featurizers and
classical ML models (e.g., trees, logistic regression, etc.).

Pipelines are first trained using large datasets to esti-
mate models’ parameters. ML.Net models are exported
as compressed files containing several directories, one per
pipeline operator, where each directory stores operator
parameters in either binary or plain text files. ML.Net,
as other systems, aims to minimize the overhead of de-
ploying trained pipelines in production by serving them
into black box containers, where the same code is used
for both training and inference. Figure 2 depicts a set
of black box models where the invocation of the func-
tion chain (e.g., predict()) on a pipeline returns the
result of the prediction: throughout this execution chain,
inputs are pulled through each operator to produce inter-
mediate results that are input to the following operators,
similarly to the well-known Volcano-style iterator model
of databases [36]. To optimize the performance, ML.Net
(and systems such as Clipper among others) applies tech-
niques such as handling multiple requests in batches and
caching the results of the inference if some predictions
are frequently issued for the same pipeline. However,
these techniques assume no knowledge and no control
over the pipeline, and are unaware of its internal structure.
Despite being regarded as a good practice [65], the black
box, container-based design hides the structure of each
served model and prevents the system from controlling
and optimizing the pipeline execution. Therefore, under
this approach, there is no principled way neither for shar-
ing optimizations between pipelines, nor to improve the
end-to-end execution of individual pipelines. More con-
cretely, we observed the following limitations in current
state-of-the-art prediction serving systems.

Memory Waste: Containerization of pipelines disallows

1Note that this is a simplification. ML.Net in fact support several
data types. We refer readers to [23] for more details.

…

DAG1

DAG2

<DAG1, “foo”>

<DAG1, “bar”>

<DAG2, “baz”>

Thread

predict()

predict()

Figure 2: A representation of how existing systems handle
prediction requests. Each pipeline is surfaced externally
as a black box function. When a prediction request is
issued (predict()), a thread is dispatched to execute
the chain as a single function call.

any sharing of resources and runtimes 2 between pipelines,
therefore only a few (tens of) models can be deployed per
machine. Conversely, ML frameworks such as ML.Net
have a known set of operators to start with, and featuriz-
ers or models trained over similar datasets have a high
likelihood of sharing parameters. For example, transfer
learning, A/B testing, and personalized models are com-
mon in practice; additionally, tools like ML.Net suggest
default training configurations to users given a task and
a dataset, which leads to many pipelines with similar
structure and common objects and parameters. To better
illustrate this scenario, we pick a Sentiment Analysis (SA)
task with 250 different versions of the pipeline of Figure 1
trained by data scientists at Microsoft.
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Figure 3: How many identical operators can be shared
in multiple SA pipelines. CharNgram and WordNgram
operators have variations that are trained on different
hyper-parameters. On the right we report operators sizes.

Figure 3 shows how many different (parameterized)
operators are used, and how often they are used within the
250 pipelines. While some operators like linear regression
(whose weights fit in ~15MB) are unique to each pipeline,

2One instance of model pipeline in production easily occupies 100s
of MB of main memory.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    613



and thus not shown in Figure 3, many other operators
can be shared among pipelines, therefore allowing more
aggressive packing of models: Tokenize and Concat are
used with the same parameters in all pipelines; Ngram
operators have only a handful of versions, where most
pipelines use the same version of the operators. This
suggests that the resource utilization of current black box
approaches can be largely improved.
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Figure 4: CDF of latency of prediction requests of 250
DAGs. We denote the first prediction as cold; the hot
line is reported as average over 100 predictions after a
warm-up period of 10 predictions. We present the 99th
percentile and worst case latency values.

Prediction Initialization: ML.Net employs a pull-based
execution model that lazily materializes input feature vec-
tors, and tries to reuse existing vectors between interme-
diate transformations. This largely decreases the memory
footprint and the pressure on garbage collection at training
time. Conversely, this design forces memory allocation
along the data path, thus making latency of predictions
sub-optimal and hard to predict. Furthermore, at pre-
diction time ML.Net deploys pipelines as in the training
phase, which requires initialization of function chain call,
reflection for type inference and JIT compilation. While
this composability conveniently hides complexities and
allows changing implementations during training, it is of
little use during inference, when a model has a defined
structure and its operators are fixed. In general, the above
problems result in difficulties in providing strong tail la-
tency guarantees by ML-as-a-service providers. Figure 4
describes this situation, where the performance of hot
predictions over the 250 sentiment analysis pipelines with
memory already allocated and JIT-compiled code is more
than two orders of magnitude faster than the worst cold
case version for the same pipelines.

To drill down more into the problem, we found that
57.4% of the total execution time for a single cold pre-
diction is spent in pipeline analysis and initialization of
the function chain, 36.5% in JIT compilation and the
remaining is actual computation time.

Infrequent Accesses: In order to meet milliseconds-level
latencies [61], model pipelines have to reside in main
memory (possibly already warmed-up), since they can

have MBs to GBs (compressed) size on disk, with loading
and initialization times easily exceeding several seconds.
A common practice in production settings is to unload
a pipeline if not accessed after a certain period of time
(e.g., a few hours). Once evicted, successive accesses will
incur a model loading penalty and warming-up, therefore
violating Service Level Agreement (SLA).

0% 20% 40% 60% 80% 100%
Latency breakdown

23.1 34.2 32.7

0.3

9.6

CharNgram WordNgram Concat LogReg Others

Figure 5: Latency breakdown of a sentiment analysis
pipeline: each frame represents the relative wall clock
time spent on an operator.

Operator-at-a-time Model: As previously described,
predictions over ML.Net pipelines are computed by
pulling records through a sequence of operators, each
of them operating over the input vector(s) and producing
one or more new vectors. While (as is common practice
for in-memory data-intensive systems [45, 58, 24]) some
interpretation overheads are eliminated via JIT compila-
tion, operators in ML.Net (and in other tools) are “logical”
entities (e.g., linear regression, tokenizer, one-hot encoder,
etc.) with diverse performance characteristics. Figure 5
shows the latency breakdown of one execution of the SA
pipeline of Figure 1, where the only ML operator (linear
regression) takes two orders-of-magnitude less time with
respect to the slowest operator (WordNgram). It is com-
mon practice for in-memory data-intensive systems to
pipeline operators in order to minimize memory accesses
for memory-intensive workloads, and to vectorize com-
pute intensive operators in order to minimize the number
of instructions per data item [33, 66]. ML.Net operator-at-
a-time model [66] (as other libraries missing an optimiza-
tion layer, such as Scikit-learn) is therefore sub-optimal
in that computation is organized around logical operators,
ignoring how those operators behave together: in the ex-
ample of the sentiment analysis pipeline at hand, linear
regression is commutative and associative (e.g., dot prod-
uct between vectors) and can be pipelined with Char and
WordNgram, eliminating the need for the Concat opera-
tion and the related buffers for intermediate results. As we
will see in the following sections, PRETZEL’s optimizer
is able to detect this situation and generate an execution
plan that is several times faster than the ML.Net version
of the pipeline.

Coarse Grained Scheduling: Scheduling CPU re-
sources carefully is essential to serve highly concurrent
requests and run machines to maximum utilization. Under
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the black box approach: (1) a thread pool is used to serve
multiple concurrent requests to the same model pipeline;
(2) for each request, one thread handles the execution of
a full pipeline sequentially 3, where one operator is active
at each point in time; (3) shared operators/parameters are
instantiated and evaluated multiple times (one per con-
tainer) independently; (4) thread allocation is managed
by the OS; and (5) load balancing is achieved “externally”
by replicating containers when performance degradation
is observed. We found this design sub-optimal, especially
in heavily skewed scenarios where a small amount of
popular models are scored more frequently then others:
indeed, in this setting the popular models will be repli-
cated (linearly increasing the resources used) whereas
containers of less popular pipelines will run underutilized,
therefore decreasing the total resource utilization. The
above problem is currently out-of-scope for black box,
container-based prediction serving systems because they
lack visibility into pipelines execution, and they do not
allow models to properly share computational resources.

After highlighting the major inefficiencies of current
black box prediction serving systems, we discuss a set of
design principles for white box prediction serving.

3 White Box Prediction Serving:
Design Principles

Based on the observations of Section 2, we argue that
all previously mentioned limitations can be overcome by
embracing a white box approach allowing to optimize the
execution of predictions both horizontally end-to-end and
vertically among multiple model pipelines.

White Box Prediction Serving: Model containerization
disallows any sharing of optimizations, resources, and
costs between pipelines. By choosing a white box archi-
tecture, pipelines can co-exist on the same runtime; un-
popular pipelines can be maintained up and warm, while
popular pipelines pay the bills. Thorough scheduling of
pipelines’ components can be managed within the run-
time so that optimal allocation decisions can be made
for running machines to high utilization. Nevertheless,
if a pipeline requires exclusive access to computational
or memory resources, a proper reservation-based alloca-
tion strategy can be enforced by the scheduler so that
container-based execution can be emulated.

End-to-end Optimizations: The operationalization of
models for prediction should focus on computation units
making optimal decisions on how data are processed

3Certain pipelines allow multi-threaded execution, but here we eval-
uate only single-threaded ones to estimate the per-thread efficiency.

and results are computed, to keep low latency and grace-
fully degrade with load increase. Such computation units
should: (1) avoid memory allocation on the data path; (2)
avoid creating separate routines per operator when possi-
ble, which are sensitive to branch mis-prediction and poor
data locality [45]; and (3) avoid reflection and JIT com-
pilation at prediction time. Optimal computation units
can be compiled Ahead-Of-Time (AOT) since pipeline
and operator characteristics are known upfront, and often
statistics from training are available. The only decision
to make at runtime is where to allocate computation units
based on available resources and constraints.

Multi-model Optimizations: To take full advantage of
the fact that pipelines often use similar operators and
parameters (Figure 3), shareable components have to be
uniquely stored in memory and reused as much as possible
to achieve optimal memory usage. Similarly, execution
units should be shared at runtime and resources properly
pooled and managed, so that multiple prediction requests
can be evaluated concurrently. Partial results, for example
outputs of featurization steps, can be saved and re-used
among multiple similar pipelines.

4 The Pretzel System
Following the above guidelines, we implemented PRET-
ZEL, a novel white box system for cloud-based infer-
ence of model pipelines. PRETZEL views models as
database queries and employs database techniques to
optimize DAGs and improve end-to-end performance
(Section 4.1.2). The problem of optimizing co-located
pipelines is casted as a multi-query optimization and tech-
niques such as view materialization (Section 4.3) are em-
ployed to speed up pipeline execution. Memory and CPU
resources are shared in the form of vector and thread
pools, such that overheads for instantiating memory and
threads are paid upfront at initialization time.

PRETZEL is organized in several components. A data-
flow-style language integrated API called Flour (Sec-
tion 4.1.1) with related compiler and optimizer called
Oven (Section 4.1.2) are used in concert to convert
ML.Net pipelines into model plans. An Object Store
(Section 4.1.3) saves and shares parameters among plans.
A Runtime (Section 4.2.1) manages compiled plans and
their execution, while a Scheduler (Section 4.2.2) man-
ages the dynamic decisions on how to schedule plans
based on machine workload. Finally, a FrontEnd is used
to submit prediction requests to the system.

In PRETZEL, deployment and serving of model
pipelines follow a two-phase process. During the off-
line phase (Section 4.1), ML.Net’s pre-trained pipelines
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are translated into Flour transformations. Oven optimizer
re-arranges and fuses transformations into model plans
composed of parameterized logical units called stages.
Each logical stage is then AOT-compiled into physical
computation units where memory resources and threads
are pooled at runtime. Model plans are registered for
prediction serving in the Runtime where physical stages
and parameters are shared between pipelines with similar
model plans. In the on-line phase (Section 4.2), when
an inference request for a registered model plan is re-
ceived, physical stages are parameterized dynamically
with the proper values maintained in the Object Store.
The Scheduler is in charge of binding physical stages to
shared execution units.

Figures 6 and 7 pictorially summarize the above de-
scriptions; note that only the on-line phase is executed
at inference time, whereas the model plans are generated
completely off-line. Next, we will describe each layer
composing the PRETZEL prediction system.

4.1 Off-line Phase
4.1.1 Flour

The goal of Flour is to provide an intermediate represen-
tation between ML frameworks (currently only ML.Net)
and PRETZEL, that is both easy to target and amenable
to optimizations. Once a pipeline is ported into Flour,
it can be optimized and compiled (Section 4.1.2) into a
model plan before getting fed into PRETZEL Runtime for
on-line scoring. Flour is a language-integrated API simi-
lar to KeystoneML [55], RDDs [63] or LINQ [42] where
sequences of transformations are chained into DAGs and
lazily compiled for execution.

Listing 1 shows how the sentiment analysis pipeline
of Figure 1 can be expressed in Flour. Flour programs
are composed by transformations where a one-to-many
mapping exists between ML.Net operators and Flour
transformations (i.e., one operator in ML.Net can be
mapped to many transformations in Flour). Each Flour
program starts from a FlourContext object wrapping
the Object Store. Subsequent method calls define a DAG
of transformations, which will end with a call to Plan to
instantiate the model plan before feeding it into PRETZEL
Runtime. For example, in lines 2 and 3 of Listing 1 the
CSV.FromText call is used to specify that the target
DAG accepts as input text in CSV format where fields
are comma separated. Line 4 specifies the schema for the
input data, where TextReview is a class whose param-
eters specify the schema fields names, types, and order.
The successive call to Select in line 5 is used to pick
the Text column among all the fields, while the call to

Tokenize in line 6 is used to split the input fields into
tokens. Lines 8 and 9 contain the two branches defin-
ing the char-level and word-level n-gram transformations,
which are then merged with the Concat transform in
lines 10/11 before the linear binary classifier of line 12.
Both char and word n-gram transformations are param-
eterized by the number of n-grams and maps translating
n-grams into numerical format (not shown in the Listing).
Additionally, each Flour transformation accepts as input
an optional set of statistics gathered from training. These
statistics are used by the compiler to generate physical
plans more efficiently tailored to the model characteristics.
Example statistics are max vector size (to define the mini-
mum size of vectors to fetch from the pool at prediction
time, as in Section 4.2), dense/sparse representations, etc.

We have instrumented the ML.Net library to collect
statistics from training and with the related bindings to
the Object Store and Flour to automatically extract Flour
programs from pipelines once trained.

Listing 1: Flour program for the SA pipeline. Parameters
are extracted from the original ML.Net pipeline.
1 var fContext = new FlourContext(objectStore, ...)
2 var tTokenizer = fContext.CSV
3 .FromText(’,’)
4 .WithSchema<TextReview>()
5 .Select("Text")
6 .Tokenize();
7

8 var tCNgram = tTokenizer.CharNgram(numCNgrms, ...);
9 var tWNgram = tTokenizer.WordNgram(numWNgrms, ...);

10 var fPrgrm = tCNgram
11 .Concat(tWNgram)
12 .ClassifierBinaryLinear(cParams);
13

14 return fPrgrm.Plan();

4.1.2 Oven

With Oven, our goal is to bring query compilation and
optimization techniques into ML.Net.
Optimizer: When Plan is called on a Flour transforma-
tion’s reference (e.g., fPrgrm in line 14 of Listing 1), all
transformations leading to it are wrapped and analyzed.
Oven follows the typical rule-based database optimizer
design where operator graphs (query plans) are trans-
formed by a set of rules until a fix-point is reached (i.e.,
the graph does not change after the application of any
rule). The goal of Oven Optimizer is to transform an
input graph of Flour transformations into a stage graph,
where each stage contains one or more transformations.
To group transformations into stages we used the Tuple-
ware’s hybrid approach [33]: memory-intensive transfor-
mations (such as most featurizers) are pipelined together
in a single pass over the data. This strategy achieves
best data locality because records are likely to reside in
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Figure 6: Model optimization and compilation in PRET-
ZEL. In (1), a model is translated into a Flour program. (2)
Oven Optimizer generates a DAG of logical stages from
the program. Additionally, parameters and statistics are
extracted. (3) A DAG of physical stages is generated by
the Oven Compiler using logical stages, parameters, and
statistics. A model plan is the union of all the elements.

CPU L1 caches [40, 45]. Compute-intensive transforma-
tions (e.g., vector or matrix multiplications) are executed
one-at-a-time so that Single Instruction, Multiple Data
(SIMD) vectorization can be exploited, therefore opti-
mizing the number of instructions per record [66, 26].
Transformation classes are annotated (e.g., 1-to-1, 1-to-n,
memory-bound, compute-bound, commutative and asso-
ciative) to ease the optimization process: no dynamic
compilation [33] is necessary since the set of operators
is fixed and manual annotation is sufficient to generate
properly optimized plans 4.

Stages are generated by traversing the Flour transforma-
tions graph repeatedly and applying rules when matching
conditions are satisfied. Oven Optimizer consists of an
extensible number of rewriting steps, each of which in
turn is composed of a set of rules performing some modifi-
cation on the input graph. Each rewriting step is executed
sequentially: within each step, the optimizer iterates over
its full set of rules until an iteration exists such that the
graph is not modified after all rules are evaluated. When
a rule is active, the graph is traversed (either top-down, or
bottom up, based on rule internal behavior; Oven provides
graph traversal utilities for both cases) and the rewriting
logic is applied if the matching condition is satisfied over
the current node. In its current implementation, the Oven
Optimizer is composed of 4 rewriting steps:

InputGraphValidatorStep: This step comprises three
rules, performing schema propagation, schema validation

4Note that ML.Net does provide a second order operator accepting
arbitrary code requiring dynamic compilation. However, this is not
supported in our current version of PRETZEL.

and graph validation. Specifically, the rules propagate
schema information from the input to the final transfor-
mation in the graph, and validate that (1) each transfor-
mation’s input schema matches with the transformation
semantics (e.g., a WordNgram has a string type as input
schema, or a linear learner has a vector of floats as input),
and (2) the transformation graph is well-formed (e.g., a
final predictor exists).

StageGraphBuilderStep: It contains two rules that rewrite
the graph of (now schematized) Flour transformations
into a stage graph. Starting with a valid transformation
graph, the rules in this step traverse the graph until a
pipeline-breaking transformation is found, i.e., a Concat
or an n-to-1 transformation such as an aggregate used for
normalization (e.g., L2). These transformations, in fact,
require data to be fully scanned or materialized in mem-
ory before the next transformation can be executed. For
example, operations following a Concat require the full
feature vector to be available, or a Normalizer requires
the L2 norm of the complete vector. The output of the
StageGraphBuilderStep is therefore a stage graph,
where each stage internally contains one or more trans-
formations. Dependencies between stages are created
as aggregation of the dependencies between the internal
transformations. By leveraging the stage graph, PRETZEL
is able to considerably decrease the number of vectors
(and as a consequence the memory usage) with respect to
the operator-at-a-time strategy of ML.Net.

StageGraphOptimizerStep: This step involves 9 rules that
rewrite the graph in order to produce an optimal (logical)
plan. The most important rules in this step rewrite the
stage graph by (1) removing unnecessary branches (simi-
lar to common sub-expression elimination); (2) merging
stages containing equal transformations (often generated
by traversing graphs with branches); (3) inlining stages
that contain only one transform; (4) pushing linear models
through Concat operations; and (5) removal of unneces-
sary stages (e.g., when linear models are pushed through
Concat operations, the latter stage can be removed if not
containing any other additional transformation).

OutputGraphValidatorStep: This last step is composed
of 6 rules. These rules are used to generate each stage’s
schema out of the schemas of the single internal transfor-
mations. Stage schema information will be used at run-
time to request properly typed vectors. Additionally, some
training statistics are applied at this step: transformations
are labeled as sparse or dense, and dense compute-bound
operations are labeled as vectorizable. A final validation
check is run to ensure that the stage graph is well-formed.

In the example sentiment analysis pipeline of Figure

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    617



1, Oven is able to recognize that the Linear Regression
can be pushed into CharNgram and WordNgram, there-
fore bypassing the execution of Concat. Additionally,
Tokenizer can be reused between CharNgram and Word-
Ngram, therefore it will be pipelined with CharNgram (in
one stage) and a dependency between CharNgram and
WordNgram (in another stage) will be created. The final
plan will therefore be composed of 2 stages, versus the
initial 4 operators (and vectors) of ML.Net.

Model Plan Compiler: Model plans have two DAGs: a
DAG of logical stages, and a DAG of physical stages.
Logical stages are an abstraction of the results of the
Oven Optimizer; physical stages contain the actual code
that will be executed by the PRETZEL runtime. For each
given DAG, there is a 1-to-n mapping between logical to
physical stages so that a logical stage can represent the
execution code of different physical implementations. A
physical implementation is selected based on the parame-
ters characterizing a logical stage and available statistics.

Plan compilation is a two step process. After the stage
DAG is generated by the Oven Optimizer, the Model
Plan Compiler (MPC) maps each stage into its logical
representation containing all the parameters for the trans-
formations composing the original stage generated by the
optimizer. Parameters are saved for reuse in the Object
Store (Section 4.1.3). Once the logical plan is generated,
MPC traverses the DAG in topological order and maps
each logical stage into a physical implementation. Phys-
ical implementations are AOT-compiled, parameterized,
lock-free computation units. Each physical stage can be
seen as a parametric function which will be dynamically
fed at runtime with the proper data vectors and pipeline-
specific parameters. This design allows PRETZEL runtime
to share the same physical implementation between mul-
tiple pipelines and no memory allocation occurs on the
prediction path (more details in Section 4.2.1). Logical
plans maintain the mapping between the pipeline-specific
parameters saved in the Object Store and the physical
stages executing on the Runtime as well as statistics such
as maximum vector size (which will be used at runtime
to request the proper amount of memory from the pool).
Figure 6 summarizes the process of generating model
plans out of ML.Net pipelines.

4.1.3 Object Store

The motivation behind Object Store is based on the in-
sights of Figure 3: since many DAGs have similar struc-
tures, sharing operators’ state (parameters) can consid-
erably improve memory footprint, and consequently the
number of predictions served per machine. An example

Inlined DAGs

Scheduler

Stages

(1) 

(2) 

(4) 

(3) 

Runtime

Executor

FrontEnd

(5) 

Executor
Executor

Figure 7: (1) When a prediction request is issued, (2) the
Runtime determines whether to serve the prediction using
(3) the request/response engine or (4) the batch engine.
In the latter case, the Scheduler takes care of properly
allocating stages over the Executors running concurrently
on CPU cores. (5) The FrontEnd returns the result to the
Client once all stages are complete.

is language dictionaries used for input text featurization,
which are often in common among many models and are
relatively large. The Object Store is populated off-line
by MPC: when a Flour program is submitted for plan-
ning, new parameters are kept in the Object Store, while
parameters that already exist are ignored and the stage
information is rewritten to reuse the previously loaded
one. Parameters equality is computed by looking at the
checksum of the serialized version of the objects.

4.2 On-line Phase
4.2.1 Runtime

Initialization: Model plans generated by MPC are reg-
istered in the PRETZEL Runtime. Upon registration, a
unique pipeline ID is generated, and physical stages com-
posing a plan are loaded into a system catalog. If two
plans use the same physical stage, this is loaded only once
in the catalog so that similar plans may share the same
physical stages during execution. When the Runtime
starts, a set of vectors and long-running thread pools
(called Executors) are initialized. Vector pools are al-
located per Executor to improve locality [35]; Executors
are instead managed by the Scheduler to execute physical
stages (Section 4.2.2) or used to manage incoming pre-
diction requests by the FrontEnd. Allocations of vector
and thread pools are managed by configuration parame-
ters, and allow PRETZEL to decrease the time spent in
allocating memory and threads during prediction time.
Execution: Inference requests for the pipelines registered
into the system can be submitted through the FrontEnd
by specifying the pipeline ID, and a set of input records.
Figure 7 depicts the process of on-line inference. PRET-
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ZEL comes with a request-response engine and a batch
engine. The request-response engine is used by single pre-
dictions for which latency is the major concern whereby
context-switching and scheduling overheads can be costly.
Conversely, the batch engine is used when a request con-
tains a batch of records, or when the prediction time is
such that scheduling overheads can be considered as neg-
ligible (e.g., few hundreds of microseconds). The request-
response engine inlines the execution of the prediction
within the thread handling the request: the pipeline physi-
cal plan is JIT-compiled into a unique function call and
scored. Instead, by using the batch engine requests are
forwarded to the Scheduler that decides where to allocate
physical stages based on the current runtime and resource
status. Currently, whether to use the request-response
or batch engine is set through a configuration parameter
passed when registering a plan. In the future we plan to
adaptively switch between the two.

4.2.2 Scheduler

In PRETZEL, model plans share resources, thus schedul-
ing plans appropriately is essential to ensure scalability
and optimal machine utilization while guaranteeing the
performance requirements.

The Scheduler coordinates the execution of multi-
ple stages via a late-binding event-based scheduling
mechanism similar to task scheduling in distributed sys-
tems [47, 63, 60]: each core runs an Executor instance
whereby all Executors pull work from a shared pair of
queues: one low priority queue for newly submitted plans,
and one high priority queue for already started stages. At
runtime, a scheduling event is generated for each stage
with related set of input/output vectors, and routed over a
queue (low priority if the stage is the head of a pipeline,
high priority otherwise). Two queues with different pri-
orities are necessary because of memory requirements.
Vectors are in fact requested per pipeline (not per stage)
and lazily fulfilled when a pipeline’s first stage is be-
ing evaluated on an Executor. Vectors are then utilized
and not re-added to the pool for the full execution of the
pipeline. Two priority queues allow started pipelines to
be scheduled earlier and therefore return memory quickly.

Reservation-based Scheduling: Upon model plan regis-
tration, PRETZEL offers the option to reserve memory or
computation resources for exclusive use. Such resources
reside on different, pipeline-specific pools, and are not
shared among plans, therefore enabling container-like pro-
vision of resources. Note however that parameters and
physical stage objects remain shared between pipelines
even if reservation-based scheduling is requested.

4.3 Additional Optimizations

Sub-plan Materialization: Similarly to materialized
views in database multi-query optimization [37, 29], re-
sults of installed physical stages can be reused between
different model plans. When plans are loaded in the run-
time, PRETZEL keeps track of physical stages and enables
caching of results when a stage with the same parameters
is shared by many model plans. Hashing of the input is
used to decide whether a result is already available for that
stage or not. We implemented a simple Least Recently
Used (LRU) strategy on top of the Object Store to evict
results when a given memory threshold is met.
External Optimizations: While the techniques de-
scribed so far focus mostly on improvements that other
prediction serving systems are not able to achieve due
to their black box nature, PRETZEL FrontEnd also sup-
ports “external” optimizations such as the one provided in
Clipper and Rafiki. Specifically, the FrontEnd currently
implements prediction results caching (with LRU eviction
policy) and delayed batching whereby inference requests
are buffered for a user-specified amount of time and then
submitted in batch to the Runtime. These external op-
timizations are orthogonal to PRETZEL’s techniques, so
both are applicable in a complementary manner.

5 Evaluation

PRETZEL implementation is a mix of C# and C++. In its
current version, the system comprises 12.6K LOC (11.3K
in C#, 1.3K in C++) and supports about two dozens of
ML.Net operators, among which linear models (e.g., lin-
ear/logistic/Poisson regression), tree-based models, clus-
tering models (e.g., K-Means), Principal Components
Analysis (PCA), and several featurizers.
Scenarios: The goals of our experimental evaluation are
to evaluate how the white box approach performs com-
pared to black box. We will use the following scenarios
to drive our evaluation:

• memory: in the first scenario, we want to show
how much memory saving PRETZEL’s white box
approach is able to provide with respect to regular
ML.Net and ML.Net boxed into Docker containers
managed by Clipper.

• latency: this experiment mimics a request/response
pattern (e.g., [19]) such as a personalized web-
application requiring minimal latency. In this sce-
nario, we run two different configurations: (1) a
micro-benchmark measuring the time required by a
system to render a prediction; and (2) an experiment
measuring the total end-to-end latency observed by
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Table 1: Characteristics of pipelines in experiments.

Type
Sentiment
Analysis (SA)

Attendee
Count (AC)

Input
Plain Text
(variable length)

Structured Text
(40 dimensions)

Size
50MB - 100MB
(Mean: 70MB)

10KB - 20MB
(Mean: 9MB)

Featurizers
N-gram with
dictionaries
(∼1M entries)

PCA, KMeans,
Ensemble of
multiple models

a client submitting a request.
• throughput: this scenario simulates a batch pattern

(e.g., [8]) and we use it to assess the throughput of
PRETZEL compared to ML.Net.

• heavy-load: we finally mix the above experiments
and show PRETZEL’s ability to maintain high
throughput and graceful degradation of latency, as
load increases. To be realistic, in this scenario we
generate skewed load across different pipelines. As
for the latency experiment, we report first the PRET-
ZEL’s performance using a micro-benchmark, and
then we compare it against the containerized version
of ML.Net in an end-to-end setting.

Configuration: All the experiments reported in the paper
were carried out on a Windows 10 machine with 2 × 8-
core Intel Xeon CPU E5-2620 v4 processors at 2.10GHz
with Hyper Threading disabled, and 32GB of RAM. We
used .Net Core version 2.0, ML.Net version 0.4, and
Clipper version 0.2. For ML.Net, we use two black box
configurations: a non-containerized one (1 ML.Net in-
stance for all models), and a containerized one (1 ML.Net
instance for each model) where ML.Net is deployed as
Docker containers running on Windows Subsystem for
Linux (WSL) and orchestrated by Clipper. We commonly
label the former as just ML.Net; the latter as ML.Net
+ Clipper. For PRETZEL we AOT-compile stages using
CrossGen [16]. For the end-to-end experiments compar-
ing PRETZEL and ML.Net + Clipper, we use an ASP.Net
FrontEnd for PRETZEL; the Redis front-end for Clipper.
We run each experiment 3 times and report the median.

Pipelines: Table 1 describes the two types of model
pipelines we use in the experiments: 250 unique versions
of Sentiment Analysis (SA) pipeline, and 250 different
pipelines implementing Attendee Count (AC): a regres-
sion task used internally to predict how many attendees
will join an event. Pipelines within a category are similar:
in particular, pipelines in the SA category benefit from
sub-plan materialization, while those in the AC category
are more diverse and do not benefit from it. These lat-

ter pipelines comprise several ML models forming an
ensemble: in the most complex version, we have a di-
mensionality reduction step executed concurrently with
a KMeans clustering, a TreeFeaturizer, and multi-class
tree-based classifier, all fed into a final tree (or forest)
rendering the prediction. SA pipelines are trained and
scored over Amazon Review dataset [38]; AC ones are
trained and scored over an internal record of events.

5.1 Memory

In this experiment, we load all models and report the to-
tal memory consumption (model + runtime) per model
category. SA pipelines are large and therefore we ex-
pect memory consumption (and loading time) to improve
considerably within this class, proving that PRETZEL’s
Object Store allows to avoid the cost of loading dupli-
cate objects. Less gains are instead expected for the AC
pipelines because of their small size.
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Figure 8: Cumulative memory usage (log-scaled) of the
pipelines in PRETZEL, ML.Net and ML.Net + Clipper.
The horizontal line represents the machine’s physical
memory (32GB). Only PRETZEL is able to load all SA
pipelines within the memory limit. For AC, PRETZEL
uses one order of magnitude less memory than ML.Net
and ML.Net + Clipper. The memory usage of PRETZEL
without Object Store is almost on par with ML.Net.

Figure 8 shows the memory usage for loading all the
250 model pipelines in memory, for both categories. For
SA, only PRETZEL with Object Store enabled can load
all pipelines. 5 For AC, all configurations are able to
load the entire working set, however PRETZEL occupies
only 164MBs: about 25× less memory than ML.Net and
62× less than ML.Net + Clipper. Given the nature of
AC models (i.e., small in size), from Figure 8 we can
additionally notice the overhead (around 2.5×) of using a
container-based black box approach vs regular ML.Net.

5Note that for ML.Net, ML.Net + Clipper and PRETZEL without
Object Store configurations we can load more models and go beyond
the 32GB limit. However, models are swapped to disk and the whole
system becomes unstable.
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Keeping track of pipelines’ parameters also helps re-
ducing the time to load models: PRETZEL takes around
2.8 seconds to load 250 AC pipelines while ML.Net takes
around 270 seconds. For SA pipelines, PRETZEL takes
37.3 seconds to load all 250 pipelines, while ML.Net fills
up the entire memory (32GB) and begins to swap objects
after loading 75 pipelines in around 9 minutes.

5.2 Latency

In this experiment we study the latency behavior of PRET-
ZEL in two settings. First, we run a micro-benchmark
directly measuring the latency of rendering a prediction
in PRETZEL. Additionally, we show how PRETZEL’s
optimizations can improve the latency. Secondly, we re-
port the end-to-end latency observed by a remote client
submitting a request through HTTP.
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Figure 9: Latency comparison between ML.Net and
PRETZEL. The accompanying blue lines represent the
cold latency (first execution of the pipelines). On top are
the P99 latency values: the hot case is above the horizon-
tal line and the cold case is annotated with an arrow.

5.2.1 Micro-benchmark

Inference requests are submitted sequentially and in iso-
lation for one model at a time. For PRETZEL we use the
request-response engine over one single core. The com-
parison between PRETZEL and ML.Net for the SA and
AC pipelines is reported in Figure 9. We start with study-
ing hot and cold cases while comparing PRETZEL and
ML.Net. Specifically, we label as cold the first prediction
requested for a model; the successive 10 predictions are
then discarded and we report hot numbers as the average
of the following 100 predictions.

If we directly compare PRETZEL with ML.Net, PRET-
ZEL is 3.2× and 3.1× faster than ML.Net in the 99th
percentile latency in hot case (denoted by P99hot), and
about 9.8× and 5.7× in the P99cold case, for SA and AC
pipelines, respectively. If instead we look at the difference

between cold and hot cases relative to each system, PRET-
ZEL again provides improvements over ML.Net. The
P99cold is about 13.3× and 4.6× the P99hot in ML.Net,
whereas in PRETZEL P99cold is around 4.2× and 2.5×
from the P99hot case. Furthermore, PRETZEL is able to
mitigate the long tail latency (worst case) of cold scor-
ing. In SA pipelines, the worst case latency is 460.6× off
the P99hot in ML.Net, whereas PRETZEL shows a 33.3×
difference. Similarly, in AC pipelines the worst case is
21.2× P99hot for ML.Net, and 7.5× for PRETZEL.

To better understand the effect of PRETZEL’s optimiza-
tions on latency, we turn on and off some optimizations
and compare the performance.
AOT compilation: This options allows PRETZEL to pre-
load all stage code into cache, removing the overhead of
JIT compilation in the cold cases. Without AOT compila-
tion, latencies of cold predictions increase on average by
1.6× and 4.2× for SA and AC pipelines, respectively.
Vector Pooling: By creating pools of pre-allocated vec-
tors, PRETZEL can minimize the overhead of memory
allocation at prediction time. When we do not pool vec-
tors, latencies increase in average by 47.1% for hot and
24.7% for cold, respectively.
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Figure 10: Latency of PRETZEL to run SA models with
and without sub-plan materialization. Around 80% of
SA pipelines show more than 2× speedup. Sub-plan
materialization does not apply for AC pipelines.

Sub-plan Materialization: If different pipelines have
common featurizers (e.g., SA as shown in Figure 3), we
can further apply sub-plan materialization to reduce the
latency. Figure 10 depicts the effect of sub-plan mate-
rialization over prediction latency for hot requests. In
general, for the SA pipelines in which sub-plan materi-
alization applies, we can see an average improvement of
2.0×, while no pipeline shows performance deterioration.

5.2.2 End-to-end

In this experiment we measure the end-to-end latency
from a client submitting a prediction request. For PRET-
ZEL, we use the ASP.Net FrontEnd, and we compare
against ML.Net + Clipper. The end-to-end latency con-
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Figure 11: The latency comparison between ML.Net +
Clipper and PRETZEL with ASP.Net FrontEnd. The over-
head of client-server communication compared to the
actual prediction is similar in both PRETZEL and ML.Net:
the end-to-end latency compared to the just prediction
latency is 9× slower in SA and 2.5× in AC, respectively.

siders both the prediction latency (i.e., Figure 9) as well
as any additional overhead due to client-server communi-
cation. As shown in Figure 11, the latter overhead in both
PRETZEL and ML.Net + Clipper is in the milliseconds
range (around 4ms for the former, and 9 for the latter).
Specifically, with PRETZEL, clients observe a latency of
4.3ms at P99 for SA models (vs. 0.56ms P99 latency of
just rendering a prediction) and a latency of 7.3ms for AC
models (vs. 3.5ms). In contrast, in ML.Net + Clipper,
clients observe 9.3ms latency at P99 for SA models, and
18.0ms at P99 for AC models.

5.3 Throughput

In this experiment, we run a micro-benchmark assuming
a batch scenario where all 500 models are scored sev-
eral times. We use an API provided by both PRETZEL
and ML.Net, where we can execute prediction queries
in batches: in this experiment we fixed the batch size at
1000 queries. We allocate from 2 up to 13 CPU cores
to serve requests, while 3 cores are reserved to generate
them. The main goal is to measure the maximum number
of requests PRETZEL and ML.Net can serve per second.

Figure 12 shows that PRETZEL’s throughput (queries
per second) is up to 2.6× higher than ML.Net for SA mod-
els, 10× for AC models. PRETZEL’s throughput scales
on par with the expected ideal scaling. Instead, ML.Net
suffers from higher latency in rendering predictions and
from lower scalability when the number of CPU cores
increases. This is because each thread has its own internal
copy of models whereby cache lines are not shared, thus
increasing the pressure on the memory subsystem: indeed,
even if the parameters are the same, the model objects are
allocated to different memory areas.
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Figure 12: The average throughput computed among the
500 models to process one million inputs each. We scale
the number of CPU cores on the x-axis and the number of
prediction queries to be served per second on the y-axis.
PRETZEL scales linearly to the number of CPU cores.

5.4 Heavy Load
In this experiment, we show how the performance changes
as we change the load. To generate a realistic load, we
submit requests to models by following the Zipf distri-
bution (α = 2).6 As in Section 5.2, we first run a micro-
benchmark, followed by an end-to-end comparison.
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Figure 13: Throughput and latency of PRETZEL under
the heavy load scenario. We maintain all 500 models in-
memory within a PRETZEL instance, and we increase the
load by submitting more requests per second. We report
latency measurements from latency-sensitive pipelines,
and the total system throughput.

5.4.1 Micro-benchmark

We load all 500 models in one PRETZEL instance. Among
all models, we assume 50% to be “latency-sensitive" and
therefore we set a batch size of 1. The remaining 50%
models will be requested with 100 queries in a batch. As
in the throughput experiment, we use the batch engine
with 13 cores to serve requests and 3 cores to generate
load. Figure 13 reports the average latency of latency-
sensitive models and the total system throughput under
different load configurations. As we increase the number
of requests, PRETZEL’s throughput increases linearly until
it stabilizes at about 25k queries per second. Similarly, the
average latency of latency-sensitive pipelines gracefully
increases linearly with the load.

6The number of requests to the ith most popular models is propor-
tional to i−α , where α is the parameter of the distribution.
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Figure 14: Throughput and latency of PRETZEL and
ML.Net + Clipper under the end-to-end heavy load sce-
nario. We use 250 AC pipelines to allow both systems to
have all pipelines in memory.

Reservation Scheduling: If we want to guarantee that
the performance of latency-critical pipelines is not de-
grading excessively even under high load, we can enable
reservation scheduling. If we run the previous experiment
reserving one core (and related vectors) for one model,
this does not encounter any degradation in latency (max
improvement of 3 orders of magnitude) as the load in-
creases, while maintaining similar system throughput.

5.4.2 End-to-end

In this setup, we periodically send prediction requests
to PRETZEL with the ASP.Net FrontEnd and ML.Net +
Clipper. We assume all pipelines to be latency-sensitive,
thus we set a batch of 1 for each request. As we can see in
Figure 14, PRETZEL’s throughput keeps increasing up to
around 300 requests per second. If the load exceeds that
point, the throughput and the latency begin to fluctuate.
On the other hand, the throughput of ML.Net + Clipper is
considerably lower than PRETZEL’s and does not scale as
the load increases. Also the latency of ML.Net + Clipper
is several folds higher than with PRETZEL. The difference
is due to the overhead of maintaining hundreds of Docker
containers; too many context switches occur across/within
containers.

6 Limitations and Future Work

Off-line Phase: PRETZEL has two limitations regarding
Flour and Oven design. First, PRETZEL currently has sev-
eral logical and physical stages classes, one per possible
implementation, which make the system difficult to main-
tain in the long run. Additionally, different back-ends
(e.g., PRETZEL currently supports operators implemented
in C# and C++, and experimentally on FPGA [53]) require
all specific operator implementations. We are however
confident that this limitation will be overcome once code
generation of stages will be added (e.g., with hardware-

specific templates [41]). Secondly, Flour and Oven are
currently limited to pipelines authored in ML.Net, and
porting models from different frameworks to the white
box approach may require non-trivial work. On the long
run our goal is, however, to target unified formats such
as ONNX [7]; this will allow us to apply the discussed
techniques to models from other ML frameworks as well.
On-line Phase: PRETZEL’s fine-grained, stage-based
scheduling may introduce additional overheads in con-
trasts to coarse-grained whole pipeline scheduling due
to additional buffering and context switching. However,
such overheads are related to the system load and there-
fore controllable by the scheduler. Additionally, we found
GC overheads to introduce spikes in latency. Although
our implementation tries to minimize the number of ob-
jects created at runtime, in practice we found that long
tail latencies are common. On white box architectures,
failures happening during the execution of a model may
jeopardize the whole system. We are currently working
on isolating model failures over the target Executor. Fi-
nally, PRETZEL runtime currently runs on a single-node.
An experimental scheduler adds Non Uniform Memory
Access (NUMA) awareness to scheduling policies. We
expect this scheduler to bring benefits for models served
from large instances (e.g., [12]). We expect in the future
to be able to scale the approach over distributed machines,
with automatic scale in/out capabilities.

7 Related Work

Prediction Serving: As from the Introduction, current
ML prediction systems [9, 32, 5, 46, 17, 30, 18, 43,
59, 15] aim to minimize the cost of deployment and
maximize code re-use between training and inference
phases [65]. Conversely, PRETZEL casts prediction serv-
ing as a database problem and applies end-to-end and
multi-query optimizations to maximize performance and
resource utilization. Clipper and Rafiki deploy pipelines
as Docker containers connected through RPC to a front
end. Both systems apply external model-agnostic tech-
niques to achieve better latency, throughput, and accuracy.
While we employed similar techniques in the FrontEnd,
in PRETZEL we have not yet explored “best effort” tech-
niques such as ensembles, straggler mitigation, and model
selection. TensorFlow Serving deploys pipelines as Serv-
ables, which are units of execution scheduling and ver-
sion management. One Servable is executed as a black
box, although users are allowed to split model pipelines
and surface them into different Servables, similarly to
PRETZEL’s stage-based execution. Such optimization is
however not automatic. LASER [22] enables large scale
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training and inference of logistic regression models, apply-
ing specific system optimizations to the problem at hand
(i.e., advertising where multiple ad campaigns are run on
each user) such as caching of partial results and graceful
degradation of accuracy. Finally, runtimes such as Core
ML [10] and Windows ML [21] provide on-device infer-
ence engines and accelerators. To our knowledge, only
single operator optimizations are enforced (e.g., using
target mathematical libraries or hardware), while neither
end-to-end nor multi-model optimizations are used. As
PRETZEL, TVM [20, 28] provides a set of logical opera-
tors and related physical implementations, backed by an
optimizer based on the Halide language [49]. TVM is spe-
cialized on neural network models and does not support
featurizers nor “classical” models.

Optimization of ML Pipelines: There is a recent in-
terest in the ML community in building languages and
optimizations to improve the execution of ML work-
loads [20, 44, 27, 3, 39]. However, most of them ex-
clusively target Neural Networks and heterogeneous hard-
ware. Nevertheless, we are investigating the possibility to
substitute Flour with a custom extension of Tensor Com-
prehension [57] to express featurization pipelines. This
will enable the support for Neural Network featurizers
such as word embeddings, as well as code generation
capabilities (for heterogeneous devices). We are confi-
dent that the set of optimizations implemented in Oven
generalizes over different intermediate representations.

Uber’s Michelangelo [2] has a Scala DSL that can
be compiled into bytecode which is then shipped with
the whole model as a zip file for prediction. Similarly,
H2O [1] compiles models into Java classes for serving.
This is exactly how ML.Net currently works. Conversely,
similar to database query optimizers, PRETZEL rewrites
model pipelines both at the logical and at the physical
level. KeystoneML [55] provides a high-level API for
composing pipelines of operators similarly to Flour, and
also features a query optimizer similar to Oven, albeit
focused on distributed training. KeystoneML’s cost-based
optimizer selects the best physical implementation based
on runtime statistics (gathered via sampling), while no
logical level optimizations is provided. Instead, PRET-
ZEL provides end-to-end optimizations by analyzing logi-
cal plans [33, 40, 45, 26], while logical-to-physical map-
pings are decided based on stage parameters and statistics
from training. Similarly to the SOFA optimizer [51],
we annotate transformations based on logical character-
istics. MauveDB [34] uses regression and interpolation
models as database views and optimizes them as such.
MauveDB models are tightly integrated into the database,
thus only a limited class of declaratively definable models

is efficiently supported. As PRETZEL, KeystoneML and
MauveDB provide sub-plan materialization.

Scheduling: Both Clipper [9] and Rafiki [59] schedule
inference requests based on latency targets and provide
adaptive algorithms to maximize throughput and accuracy
while minimizing stragglers, for which they both use en-
semble models. These techniques are external and orthog-
onal to the ones provided in PRETZEL. To our knowledge,
no model serving system explored the problem of schedul-
ing requests while sharing resource between models, a
problem that PRETZEL addresses with techniques simi-
lar to distributed scheduling in cloud computing [47, 62].
Scheduling in white box prediction serving share simi-
larities with operators scheduling in stream processing
systems [25, 56] and web services [60].

8 Conclusion

Inspired by the growth of ML applications and ML-as-
a-service platforms, this paper identified how existing
systems fall short in key requirements for ML prediction-
serving, disregarding the optimization of model execution
in favor of ease of deployment. Conversely, this work
casts the problem of serving inference as a database prob-
lem where end-to-end and multi-query optimization strate-
gies are applied to ML pipelines. To decrease latency, we
have developed an optimizer and compiler framework
generating efficient model plans end-to-end. To decrease
memory footprint and increase resource utilization and
throughput, we allow pipelines to share parameters and
physical operators, and defer the problem of inference
execution to a scheduler that allows running multiple pre-
dictions concurrently on shared resources.

Experiments with production-like pipelines show the
validity of our approach in achieving an optimized exe-
cution: PRETZEL delivers order-of-magnitude improve-
ments on previous approaches and over different perfor-
mance metrics.
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Abstract

In-memory key-value stores that use kernel-bypass net-

working serve millions of operations per second per ma-

chine with microseconds of latency. They are fast in part

because they are simple, but their simple interfaces force

applications to move data across the network. This is inef-

ficient for operations that aggregate over large amounts of

data, and it causes delays when traversing complex data

structures. Ideally, applications could push small func-

tions to storage to avoid round trips and data movement;

however, pushing code to these fast systems is challeng-

ing. Any extra complexity for interpreting or isolating

code cuts into their latency and throughput benefits.

We present Splinter, a low-latency key-value store that

clients extend by pushing code to it. Splinter is designed

for modern multi-tenant data centers; it allows mutually

distrusting tenants to write their own fine-grained exten-

sions and push them to the store at runtime. The core

of Splinter’s design relies on type- and memory-safe ex-

tension code to avoid conventional hardware isolation

costs. This still allows for bare-metal execution, avoids

data copying across trust boundaries, and makes granular

storage functions that perform less than a microsecond of

compute practical. Our measurements show that Splin-

ter can process 3.5 million remote extension invocations

per second with a median round-trip latency of less than

9 µs at densities of more than 1,000 tenants per server.

We provide an implementation of Facebook’s TAO as an

800 line extension that, when pushed to a Splinter server,

improves performance by 400 Kop/s to perform 3.2 Mop/s

over online graph data with 30 µs remote access times.

1 Introduction

Today’s model of separated compute and storage is

reaching its limits. Fast, kernel-bypass networking has

yielded key-value stores that perform millions of re-

quests per second per machine with microseconds of la-

tency [22, 37, 45, 55, 71]. These systems gain much of

their speed by being simple, allowing only lookups and

updates. However, this simplicity results in inefficient

data movement between storage and compute and costly

client-side stalls [6, 51]. To efficiently exploit these new

stores, applications will be under increasing pressure to

push compute to them, but the granularity at which they

can do so is a concern. At microsecond timescales, even

small costs for isolation, containerization, or request dis-

patching dominate, placing practical limits on the granu-

larity of functions that applications can offload to storage.

We resolve this tension in Splinter, a multi-tenant in-

memory key-value store with a new approach to pushing

compute to storage servers. Splinter preserves the low re-

mote access latency (9 µs) and high throughput (3.5 Mop-

s/s) of in-memory storage while adding native-code run-

time extensions and the dense multi-tenancy (thousands

of tenants) needed in modern data centers. Tenants send

arbitrary type- and memory-safe extension code to stores

at runtime, adding new operations, data types, or storage

personalities. These extensions are exposed so tenants

can remotely invoke them to perform operations on their

data. Splinter’s lightweight isolation lets thousands of un-

trusted tenants safely share storage and compute, giving

them access to as much or as little storage as they need.

Splinter’s design springs from the intersection of three

trends: in-memory storage with low-latency networking,

which is driving down the practical limits of request gran-

ularity; massive multi-tenancy driven by the cloud and the

efficiency gains of consolidation; and serverless comput-

ing, which is already training developers to write stateless,

decomposed application logic that can run anywhere in

order to gain agility, scalability, and ease of provisioning.

Together, these trends drive Splinter’s key design goals:

No-cost Isolation. Since extensions come from un-

trusted tenants, they must be isolated from one another.

Hardware-based isolation is too expensive at microsec-

ond time scales; even a simple page table switch would

significantly impact response time and throughput.

Zero-copy Storage Interface. Extensions interact with

stored data through a well-defined interface that serves

as a trust boundary. For fine-grained requests, it must be

lightweight in terms of transfer of control and in terms

of data movement. This effectively requires extensions

to be able to directly operate on tenant data in situ in the

store, while maintaining protection and preventing data

races with each other and the storage engine.

Lightweight Scheduling for Heterogeneous Tasks.

Extensions are likely to be heterogeneous. Some

extensions might involve simple point lookups of data

or constructing small indexes; others might involve

expensive computation or more data. Preemptive

scheduling involves costly context switches, so Splinter

must avoid preemption in the normal case, yet maintain

it as an option to contain poorly-behaving extensions.

It must also be able to support high quality of service

under heavy skew, both in terms of the tenants issuing

requests at different rates and extensions that take

different amounts of time to complete.
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Adaptive Multi-core Request Routing. With multiple

tenants sharing a single machine, synchronization over

tenant state can become a bottleneck. To minimize con-

tention, tenants maintain locality by routing requests to

preferred cores on Splinter servers. We can’t, however,

use a hard partitioning, as we don’t want high skew to

create hotspots and underused cores [58]. Routing deci-

sions can’t get in the way of fast dispatch of requests [7].

These goals give rise to Splinter’s design. Developers

write type-safe, memory-safe extensions in Rust [2] that

they push to Splinter servers. Exploiting type-safety for

lightweight isolation isn’t new; SPIN [8] allowed appli-

cations to safely and dynamically load extensions into its

kernel by relying on language-enforced isolation. Simi-

larly, NetBricks [56] applied Rust’s safety properties to

dataplane packet processing to provide memory safety

between sets of compile-time-known domains compris-

ing network function chains. Splinter combines these

approaches and applies them in a new and challenging

domain. Language-enforced isolation with native per-

formance and without garbage collection overheads is

well-suited to low-latency data-intensive services like in-

memory stores — particularly, when functionality must

be added and removed at runtime by large numbers of

fine-grained protection domains.

Splinter’s approach allows it to scale to support thou-

sands of tenants per machine, while processing more than

3.5 million tenant-provided extension invocations per sec-

ond with a median response time of less than 9 µs. We

describe our prototype of the Splinter key-value store

and its extension and isolation model. We evaluate it on

commodity hardware and show that a simple 800 line

extension imbues Splinter with the functionality of Face-

book’s TAO [10]. On a single store, the extension can

perform 3.2 million social graph operations per second

with 30 µs average response times, making it competitive

with the fastest known implementation [22].

2 Motivation

Splinter’s key motivation is the desire to support complex

data models and operations over large structures in a fast

kernel-bypass stores. Existing in-memory stores trade

data model for performance by providing a simple key-

value interface that only supports get and put. Many real

applications organize their data as trees, graphs, matrices,

or vectors. Performing operations like aggregation or

tree traversal with a key-value interface often requires

multiple gets. Applications are usually disaggregated

into a storage and compute tier, so these extra gets move

data over the network and induce stalls for each request.

Figure 1 illustrates this problem with a storage client

that traverses data logically organized as a tree. The

client must first issue a get to retrieve the tree’s root node.

Next, it must perform a comparison and move down the

Application

Storage

get()/put()

fn find_in_tree(n: &Node, key: u64)
-> Option<Value>

{
if n.key == key { // Found correct value
Some(n.value)

} else {
// Traverse left or right
let next = if key < n.key { n.left }

else { n.right };
if let Some(next) = next {

// Fetch each node from storage
find_in_tree(get(next), key)

} else {
None // Break if dead end

}
}

}

Figure 1: Tree traversal using get() operations over a key-

value store. Each step requires a lookup at the storage layer,

which is latency-bound and expensive for deep traversals. If

multi-tenant stores could be safely extended this function could

avoid remote access stalls and request processing costs.

tree by issuing another get. It must repeat this for ev-

ery step of the traversal. Each get incurs a round trip

that fetches a single node from storage; since the control

flow is dependent on the data fetched, the client can only

issue one request at a time. The number of round trips

needed is proportional to the tree’s depth, and a significant

portion of the tree gets moved over the network. Even

with modern low-latency networking, latency still domi-

nates the client’s performance: network transmission and

processing takes tens of microseconds while the actual

comparisons take less than a microsecond [55].

One solution is to customize the storage tier of each

application to support specialized data types. However, to

improve efficiency and utilization, storage tiers are usually

deployed as multi-tenant services [14, 19], so they cannot

be customized for every possible data structure. SQL

could be used at the storage tier, but SQL is known to be

a poor fit for data types like graphs and matrices, does

not support abstract data types, and is too expensive at

microsecond timescales. Instead, Splinter takes a different

approach; it allows applications to push small pieces of

native compute (extensions) to stores at runtime. These

extensions can implement richer data types and operators,

avoiding extra round trips and reducing data movement.

2.1 The Need for Lightweight Isolation

Multi-tenancy at the storage layer makes running exten-

sions challenging; a tenant cannot be allowed to access

memory it does not own, starve others for resources, or

crash the system. The major challenge is that, at microsec-

ond timescales, context switches and data copying across

isolation boundaries significantly hurt performance.

To quantify the overhead of hardware isolation, we

simulated an 8-core multi-tenant store that isolates ex-

tensions using processes while varying the numbers of

tenants making requests to it. Simulated requests con-
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Xeon Architecture Context switch delay (µs)

Pre KPTI KPTI

D-1548, Broadwell 1.60 2.40

E5 2450, Sandy bridge 1.50 2.48

Gold 6142, Skylake 1.40 2.16

Table 1: Context switch overhead for different Intel Xeon archi-

tectures as measured on CloudLab. Each number represents the

median of a million samples. Based on these measurements, we

chose 2.16 µs and 1.40 µs for the context switch overhead with

and without KPTI in our simulations.
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Figure 2: Simulated throughput versus the number of tenants.

With hardware isolation, even modestly increasing the number

of tenants to 16 (just twice the number of cores) leads to a

significant drop in throughput. “No isolation” represents an

upper bound where isolation costs are zero.

sume 1.5 µs of compute at the store; this is based on our

benchmarks of simple unisolated operations on Splinter

(§5.2); our numbers are similar to those reported by others’

kernel-bypass stores [55]. Different context switch costs

are simulated to show the overheads of hardware-based

isolation of tenant code. The simulation only accounts

for context switch costs; copying data across hardware

isolation boundaries has also been shown to have signif-

icant performance costs [56]. Nearly all extensions will

access data, which will force data copying when using

hardware isolation and hurt throughput further. Based on

measurements we made on different processor microar-

chitectures (Table 1), we simulate 1.40 µs of overhead

for a basic context switch and 2.16 µs for a KPTI [16]

protected kernel (which mitigates attacks that can leak the

contents of protected memory [46]). The request pattern

is uniform; all tenants make the same number of requests.

The results are similar with skew. The simulator is also

optimistic; whenever a request is made and an idle core

is available at the store that last processed a request from

the same tenant, the isolation cost is assumed to be zero.

Figure 2 presents simulated throughput at different ten-

ant densities. The baseline represents an upper bound

where extensions are run un-isolated at the storage sys-

tem. The simulations show that throughput with hardware

isolation (irrespective of KPTI) is significantly lower than

the baseline. Even at just 16 tenants, context switch costs

alone cut server throughput by a factor of 1.8.

Overall, for these types of fast stores, hardware iso-

lation limits performance and tenant density. The chal-

lenges that we face in Splinter, and our design goals, stem

from the need to (nearly) eliminate trust boundary cross-

ing costs, to keep data movement across trust boundaries

low, and to perform efficient fine-grained task scheduling.

3 Splinter Design

Each Splinter server works as an in-memory key-value

store (Figure 3). Like most key-value stores, tenants can

directly get and put values, but they can also customize

the store at runtime by installing safe Rust-based exten-

sions (shared libraries mapped into the store’s address

space) (Figure 3 1©). These extensions can define new

operations on the tenant’s data, including extensions that

stitch together new data models in terms of the store’s low-

level get/put interface. Each tenant-provided extension

is exported over the network, so a tenant can remotely

invoke the procedures it has installed into the store.

Tenants send requests to a Splinter store over the net-

work using kernel bypass ( 2©). Splinter currently only

supports a simple, custom UDP-based RPC protocol,

though other optimized transports may provide similar

performance [38]. Each tenant’s requests are steered to

a specific receive queue by the network card, improving

locality ( 3©). Each receive queue is paired with a sin-

gle kernel thread (or worker) that is pinned to a specific

core. Each worker pulls requests from its receive queue

and creates a user-level task for the requested operation.

Tasks provide an accounting context for resources con-

sumed while executing the operation, the storage needed

to suspend/resume the operation, and a unit of schedul-

ing. Each worker has a task queue of new and suspended

tasks, and it schedules across them to make progress in

processing the operations ( 4©). Scheduling is cooperative;

as tasks yield and are resumed, they store/restore their

state, so when a worker schedules a task no stack switch

is performed. As tasks execute user-provided logic, they

interact with the store through a get/put interface similar

to the one exposed remotely ( 5©); the key difference is

that the functions exposed to extensions take and return

references rather than forcing copies (Table 2).

Beyond fast kernel-bypass network request processing,

Splinter’s speed depends on exploiting the Rust compiler

in two key ways: first, to enable low-cost isolation and,

second, to enable low-cost task switching. The two are

intertwined. Splinter uses stackless generators to suspend

and resume running extensions, which require compiler

support. That is, the Rust compiler analyzes extension

code, determines the state that needs to be held across

extension cooperative-yield/resume boundaries, and gen-

erates the code to suspend and resume extension opera-

tions. No separate stack is needed, and the code needed

to yield/resume is transparent to the extension.
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Figure 3: Overview of Splinter. Tenant data is stored in memory,

and tenants can invoke extensions they have installed in the

store ( 1©). Extensions are type safe, but compile to native code.

The NIC uses kernel bypass for low latency ( 2©) and assists

in dispatch by routing tenant requests to cores ( 3©). Each core

runs a single worker kernel thread that uses a user-level task

scheduler to interleave the execution of tenant requests ( 4©).

These lightweight tasks are key, but Splinter’s care-

ful attention to object lifetimes, ownership, and memory

safety make them effective, since otherwise full context

switch would be needed between tasks for isolation. A

key challenge in Splinter is ensuring its fine-grained tasks

from different trust domains—compiled to native code,

and mapped directly into the store’s memory—remain

low-overhead while still operating within Rust’s static

safety checks. Low-overhead trust boundary crossings

are essential to Splinter’s design; they enable easy and

inexpensive task switching, dispatch (§3.3), and work

stealing (§3.4), which keep response latency low and

CPU utilization high across all the cores of the store.

Another key challenge is that extension invocations

introduce more irregularity into request processing than

a simple get/put interface. By avoiding hardware con-

text switches, Splinter keeps task switch costs down to

about 11 nanoseconds, but the difficult tradeoff is that

this forces it to handle these variable workloads without

traditional preemptive scheduling. At the same time, it

cannot use fully cooperative scheduling, since the store

does not trust tenants to supply well-behaved extensions.

Splinter’s per-worker task scheduler resolves this tension

by multiplexing long-running and short-running tasks to

build mostly-cooperative scheduling. This is backed up

by having an extra thread that acts as a watchdog for the

others to support preemption when needed.

3.1 Compiling and Restricting Extensions

The Splinter store cannot directly load native code pro-

vided by tenants. Code must be compiled and type

checked to ensure its safety before it can be loaded into

a store, and extensions face some extra restrictions that

must be enforced at compile time. The compiler is trusted

and must be run by the storage provider. Tenants must not

be able to tamper with the emitted extension, so it must

be loaded directly into the store by the provider or the

provider must ensure its integrity in transit between the

trusted compiler and the store. Aside from Rust’s stan-

dard type and lifetime checks (§3.1.2), Splinter extensions

have the following static restrictions:

No Unsafe Code. Unsafe code could skip compiler

checks resulting in memory unsafety. So, our wrapper

over rustc disallows unsafe code in extensions (§3.1.3).

Module Whitelist. Code from external dependencies

could include unsafe code, and that unsafe code

shouldn’t be incorporated into untrusted extensions un-

less it is trusted. Even beyond memory safety, such

unsafe blocks could, for example, make syscalls. So, our

wrapper restricts external dependencies to modules that

are re-exported by a Splinter library that includes many

standard functions and types. This restriction applies

to the standard library (std) as well: the wrapper only

exposes whitelisted std functionality to extensions.

These checks combine with three other runtime guaran-

tees to ensure isolation: the store only accepts or provides

references to insert/fetch a value under a key if the same

tenant owns both the extension and the key (§3.2); it pre-

vents uncooperative extensions from dominating CPU

time and stack, heap, or record memory (§3.3); and it

catches panics (runtime exceptions) and stack overflows

that occur while executing an extension operation (§3.3).

Next, we describe what guarantees this gives the storage

provider and its tenants; the runtime checks are described

later along with details about the execution model.

3.1.1 Trust Model

There are two stakeholders for a Splinter store: the stor-

age provider and storage tenants. Splinter should protect

tenants from each other and the provider from the tenants.

Tenant misbehavior could be unintentional, in the form of

bugs or unexpectedly high application load, or it could be

malicious, in the form of tenants attempting to read others’

data, deny service, or use an unfair fraction of resources.

We consider threats from “within” the store; threats from

“without” such as an attacker gaining root access to the

machine by exploiting other services running on it should

be dealt with using standard security best practices.

Aside from providing good quality of service to tenants,

service providers have one key concern: protecting the

secrecy and integrity of tenants’ data. Extensions don’t

share state with one another, and Splinter provides no

means for inter-extension communication. So, no com-

plex sharing policies are needed; Splinter’s only goal is

extension isolation. Rust references act as capabilities;

they ensure that extensions cannot fabricate arbitrary ref-

erences to storage state or to other tenants’ state (§3.1.2).

Like any database, Splinter’s Trusted Computing Base

(TCB) includes the libraries, compilers, hardware, etc. on
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which it is built; while this code is not directly exposed

to tenants, vulnerabilities in it can still lead to exploits.

Dependencies include LLVM [42], the CPU, the network

card (NIC) and its kernel-bypass libraries (DPDK [20]).

Splinter’s design provides a larger attack surface rela-

tive to other databases in some ways, but decreases the

attack surface in others. Because it allows execution of

tenant code, Splinter’s safety depends on the soundness

of Rust’s type system, which is not proven. While some

soundness issues in the compiler have been found [34],

progress is being made in proof efforts [35], and Splinter

automatically benefits from such progress. If extensions

cannot violate Rust’s safe types, the remaining avenue

for attack is unsafe code in the system; extensions cannot

supply unsafe code, but they can indirectly call it in the

interfaces and libraries that Splinter explicitly exposes to

extensions. On the plus side, extensions must break one

of these layers of protection before they can attack other

code: they do not have direct access to system libraries,

system calls, etc. and can only gain it by breaking out of

Rust’s safe environment.

Splinter decreases the attack surface with respect to

the virtual memory system – both hardware and kernel

components. Because it doesn’t rely on virtual address

translation for isolation, recent Meltdown speculation at-

tacks don’t affect its design [46]; however, Spectre-based

speculation attacks do affect Splinter [40, 41]. Like any

system that runs untrusted code or operates on untrusted

inputs, Splinter would require special steps to mitigate

these side channels. It already limits them in part because

it doesn’t provide explicit timing functions to extensions.

Full protection will require compiler support [13], hard-

ened storage interfaces (like the Linux kernel [17]), and

hardened libraries for extensions. The measurements in

this paper do not include these mitigations.

3.1.2 Memory Safety

Rust’s memory safety (and data race freedom) is guaran-

teed through a strong notion of ownership that lets the

rustc compiler reason statically about the lifetime of each

object and any references to it. The compiler’s borrow

checker statically tracks where objects and references are

created and destroyed. It ensures that the lifetime of a

reference (initially determined by its binding’s scope) is

subsumed by the lifetime of its referent. Rust separates

immutable and mutable references; an immutable refer-

ence is a reference that when held restricts access to the

underlying object to be read-only. The compiler disallows

multiple references (of either type) to an object while a

mutable reference exists, which prevents data races.

Often, the lifetime of an object cannot be restricted to

a single, static scope. This is especially true in a server

that processes requests across threads, where the lifetime

of many objects (RPC buffers, extension runtime state)

Store Operations for Extensions

get(table: u64, key: &[u8]) → Option〈ReadBuf〉

Return view of current value stored under 〈table, key〉.

alloc(table: u64, key: &[u8], len: u64) → Option〈WriteBuf〉

Get buffer to be filled and then put under 〈table, key〉.

put(buf: WriteBuf) → bool

Insert filled buffer allocated with alloc.

args() → &[u8]

Return a slice to procedure args in request receive buffer.

resp(data: &[u8])

Append data to response packet buffer.

Table 2: Extensions interact with the store locally through an

interface designed to avoid data copying.

is defined by request/response. Rust provides various

accommodations for this, such as moving ownership be-

tween bindings and runtime reference counting that is

safe but implemented in unsafe Rust. Splinter efficiently

handles these issues while working within rustc’s static

safety checks (§3.2.2). Unlike C/C++ pointers, Rust refer-

ences cannot be fabricated or manipulated with arithmetic;

they always refer to a valid, live object. Rust supports

pointers but their use is restricted for safety.

3.1.3 Restricting Unsafe Rust

An important extra restriction that Splinter imposes be-

yond Rust is that extension code must be free from unsafe

Rust, a superset of the language that allows operations that

could violate its safety properties. For example, unsafe

code can dereference pointers, perform unsafe casts, omit

bounds checks, and implement low-level synchronization

primitives. All unsafe code in Rust requires an unsafe

block, which Splinter disallows in extension code.

Extensions cannot implement unsafe code, but they can

invoke it indirectly. This is often desired. For example,

extensions execute some unsafe code when they ask the

store to populate a response packet buffer. In some cases

it is not desired. For example, file I/O can be induced

through the Rust standard library. To prevent this, Splinter

restricts extensions to use a subset of the standard library

that doesn’t include I/O or OS functionality.

Our experience has been that safe Rust combined with

basic data structures from its standard library are suffi-

cient to write even complex imperative extensions like

Facebook’s TAO [10]. In cases where unsafe code could

provide a performance benefit, the store can provide that

functionality if it is deemed safe to do so, since it is trusted

and can include unsafe code (§3.2.3).
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3.2 Store Extension Interface

The interface that extensions use on the server to interact

with stored records is similar to the external, remote inter-

face that clients use in any conventional key-value store

(Table 2). The main differences are in careful organization

to eliminate the need to copy data between buffers.

All persisted records are stored in a table heap. Keep-

ing records in a identifiable region will be essential to

support replication, recovery, and garbage collection as

Splinter’s implementation evolves.

3.2.1 Storing Values

Extensions can put() data they receive over the network

or new values that they produce into the store. When an

extension invocation request is received from a tenant, the

store invokes the indicated operation. Incoming data is

in a packet buffer that is registered with the NIC. Those

buffers cannot be used for long-term storage because the

NIC must use them to receive new requests; data that

must be preserved needs to be copied into the store.

Splinter tries to ensure that data can be moved from

NIC buffers into the store with a single copy. This requires

put() to be split into two steps. First, an extension calls

alloc(table, key, length) to allocate a region in the

table heap for a record. The extension receives a bounded

slice (a view) to the underlying allocated memory. Then,

it copies data from the request’s receive buffer, unmar-

shalling as it does so, if needed. Extensions use args()

to directly access data (by reference) in the receive buffer

to perform this copy. An extension may produce its own

data values as part of this process either from input argu-

ments or together with values read from the store. Once

the allocated region is properly populated, it is inserted

into the table with put(), which takes ownership of the

buffer and inserts it into a hash table.

Problems like use-after-free are prevented by Rust’s

borrow checker; extensions cannot hold references to a

buffer once ownership is transferred to the store, elimi-

nating the need for copying data into the store for safety.

The receive packet buffer has the same guarantee. Rust’s

borrow checker ensures references to it cannot outlast the

life of the RPC, eliminating the need to copy received

arguments or data into the extension for safety.

Values stored by put() must be allocated from the ta-

ble heap; extensions should not be able to pass arbitrary

(heap or stack allocated) memory to put(). Splinter en-

forces this so that it can optimize record layout; keys

and values can be forced into a single table heap alloca-

tion, which eases heap management and eliminates cache

misses for hash table lookups. As a result, Splinter wraps

allocations with a type (WriteBuf) that extensions cannot

construct, ensuring they can only pass buffers acquired

from alloc(). WriteBuf has a method to get a reference

to the underlying buffer, so extensions can fill it.

1 fn aggregate(db: Rc<DB>) {

2 let mut sum = 0u64;

3 let mut status = SUCCESS;

4 let key = &db.args()[..size_of::<u64>()];

5

6 if let Some(key_lst) = db.get(TBL, key) {

7 // Iterate KLEN sub-slices from key_lst

8 for k in key_lst.read().chunks(KLEN) {

9 if let Some(v) = db.get(TBL, k) {

10 sum += v.read()[0] as u64;

11 } else {

12 status = INVALIDKEY;

13 break;

14 }

15 }

16 } else {

17 status = INVALIDARG;

18 }

19 db.resp(pack(&status));

20 db.resp(pack(&sum));

21 }

Listing 1: Example aggregate extension code. The extension

takes a key as input (directly from a request receive buffer),

looks it up in the store, and gets a reference to a value that

contains a list of keys. It looks up each of those keys, it sums

their values, and directly appends the result to a response buffer.

3.2.2 Accessing Values

Extensions can interact with stored data in a similar way,

requiring only one copy into a response buffer to return

values from the store. When an extension procedure is

invoked, it is also provided with a response buffer that

can be incrementally filled via resp(). On each extension

procedure invocation, the store pre-populates the response

buffer’s packet headers; extensions can only append their

data after these headers. All response buffers are pre-

registered with the NIC for transmission.

Extensions call get(table, key), and they receive

back a reference to the underlying portion of the table

heap that contains the value associated with key. No copy-

ing is needed at this step; the store tracks this reference

and prevents the table heap garbage collector from freeing

the buffer while an extension has a live reference to the

data. Since values are never updated in place, extensions

see stable views of values. Extensions can compute over

the value or many values concurrently (by calling get()

multiple times), and they can copy portions of the data

they observe or any results they compute directly into the

response buffer. Once the extension procedure has popu-

lated the response buffer, Intel’s DDIO [32] transmits the

data directly from the L1 cache, which avoids the cost of

memory access for DMA of stored data.

Listing 1 and Figure 4 show an example of how this

works for a simple extension that sums up a set of values

stored under keys that are listed as part of another stored
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let key = &db.args()[..size_of::<u64>()];

if let Some(key_lst) = db.get(TBL, key) {
for k in key_lst.read().chunks(KLEN) {

if let Some(v) = db.get(TBL, k) {
sum += v.read()[0] as u64;

...

Reference

Table Heap &

Hash Map

Figure 4: References during aggregation. All data accessed by

the extension in Listing 1 is by reference whether that data is

part of the arguments in the receive buffer or part of a record

in the store. References work in reverse for the response; the

extension passes references to data to the store, and the store

copies that data into the response buffer.

value without any extra data copying. In Line 4, the

extension obtains a reference to its transmit buffer to find

which key it should look up in order to find a list of keys

that will be aggregated over. Line 6 passes a reference

to that same location to the store in order to obtain a

reference to the value that contains the key list. In Line 8,

still without copying, the extension iterates over that value

in chunks equal to the length of the keys stored in the

value. Each step of the iteration produces a reference that

the extension uses to get() references to values for each

of the stored keys, one at a time (Line 9). Using each of

those references, it extracts a field that it adds to sum, a

local variable. Finally, the extension passes references to

status and sum to append them to the response buffer. In

all, data copying is only forced where it is needed, so the

compiler has flexibility in optimizing extension code.

The store’s get() call returns a ReadBuf rather than

a plain slice (&[u8]) in order to satisfy Rust’s borrow

checker. Calling get() cannot return an immutable refer-

ence or slice to a stored value, because the borrow checker

wouldn’t be able to statically verify that the reference

would always refer to a valid location. For example, the

compiler couldn’t be sure that the store wouldn’t garbage

collect the value while the reference still exists. Further-

more, extension invocations are generators, and they must

yield regularly (§3.3). Yielding marks the end and start of

a new static scope, so each time the generator is resumed,

the calling scope could vary. Any obtained references

to a stored value couldn’t be held across yields, because

the borrow checker wouldn’t be able to verify that those

references would still be valid on reentry.

The ReadBuf returned by get() solves this. It is a smart

pointer that maintains a reference count to ensure the

underlying stored object isn’t disposed, and it allows the

extension code to (re-)obtain a reference to the underlying

object data. Once a ReadBuf is returned to a generator, it

is stored within the generator’s local state, so the generator

owns this ReadBuf. Extensions cannot hold references

between yields, but by working with the ReadBuf it can

(transparently) re-obtain a reference to the data without

performing another get(). Rust’s Arc smart pointer does

the same; ReadBuf hides its constructor from extensions

and disallows duplication. This prevents extension code

from creating ReadBufs that persist beyond the life of a

single request/response, which could otherwise hold back

table heap garbage collection.

3.2.3 Avoiding Serialization and De-serialization

Allowing extensions to interact directly with receive

buffers, transmit buffers, and table heap buffers elimi-

nates copying for opaque data, but Rust’s safety makes

avoiding some copies harder. Extensions cannot perform

unsafe operations, otherwise they could thwart Rust’s

memory safety guarantees. Unfortunately, this means

safe Rust code cannot cast an opaque byte array to/from

different types to avoid the need to serialize/de-serialize

data. For example, if args() returned an 8-byte slice an

extension may desire to treat that slice data as a 64-bit

unsigned value. Safe Rust disallows this.

For small arguments, extensions can convert between

formats with arithmetic, but for richer data models, ar-

guments, stored values, and responses will have more

complex, structured formats. To accommodate this, Splin-

ter’s interface provides a mechanism for extension code

to convert between byte slices and references to a small

set of types. If a slice (&[u8]) is naturally aligned to the

desired type, Splinter allows conversion to a reference

of that type (&T), where T is limited to signed/unsigned

integers and compound types built from them.

These casts are safe, but they are meaningless across

architectures. As a result, they can only be used between

a client and the store when they have the same underlying

platform (e.g. x86-64). Similarly, they can only be used

with extensions’ get/alloc/put interface if all stores in

the system (e.g. before/after recovery, source/destination

for migration) have matching hardware platforms.

3.3 Cooperatively Scheduled Extensions

Splinter is designed to work well regardless of whether

tenant-provided extensions are short and latency-sensitive

or long-running and compute- or data-intensive. In fact,

the best mix of tenants will mix these operations, keeping

CPU, network, and in-memory storage better utilized than

would be possible with a single, homogeneous workload.

Even so, latency-sensitive operations can easily suffer

under interference from heavier operations.

This means Splinter must multiplex execution of tenant

extension invocations not only across cores but also within

a core. Long-running procedures cannot be allowed to
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dominate CPUs, but preemptive multitasking is too costly

even when page table switching can be avoided.

Rust’s lightweight isolation is part of the solution, since

calls across trust domains have little overhead. Splinter

already relies on rustc for safety, but it can also rely on

it to help minimize task switching costs. When a new

request comes into the store, Splinter calls into the re-

sponsible extension to allocate a stackless coroutine (a

generator) that closes over the state needed to process

the request. Generators support a yield statement that

suspends execution and enables cooperative scheduling;

extension code is expected to periodically call yield to al-

low other tasks to run. rustc produces generators specific

to the extension, so the cost to create them and switch

between them is low. Splinter invokes the created genera-

tor. Whenever it yields, Splinter’s per-core task scheduler

runs another generator task. Since yielding requires no

costly hardware boundary crossing and no stack switch,

it is fast and inexpensive to yield frequently.

Like other similar systems, to avoid jitter due to kernel

thread context switches and migrations, Splinter runs the

same number of worker threads as cores in the system

(Figure 3), and each is pinned to a specific core. Genera-

tors are invoked on the worker’s stack, avoiding a stack

switch. Note that the compiler generates the structure to

hold a suspended task’s state across yields. Consequently,

a worker’s stack never concurrently contains state for dif-

ferent tenants (or even tasks); furthermore, whenever a

task yields or completes, the worker’s stack contains no

extension state. This makes it easier to handle uncoopera-

tive extensions (§3.3.1) and load imbalance (§3.4).

3.3.1 Uncooperative and Misbehaving Extensions

All calls through the store interface include an implicit

yield, so extensions can only dominate CPU time with

infinite or compute-intensive loops. Nonetheless, such

behavior can disrupt latency-sensitive tasks and constitute

a denial-of-service attack in the limit.

To solve this, Splinter uses ideas from user-level thread-

ing for latency-sensitive services [59] and adapts them

for untrusted code. An extra (mostly idle) thread acts as

a watchdog. If a task on a core fails to yield for a few

milliseconds, the watchdog remedies the situation. First,

the worker thread on the core with the uncooperative task

is re-pinned to a specific core that is shared among all

misbehaving threads and low-priority background work

that the store performs. Second, a new worker kernel

thread is started and pinned to the idle core left behind

after the misbehaving thread was re-pinned. Finally, the

new worker steals the tasks remaining in the scheduler

queue for the re-pinned worker and resumes execution for

these tasks. Note, this is safe in part because all of the

state of a suspended task is encapsulated. Tasks only have

state on a worker’s stack if they are running, so the misbe-

In-progress
Tasks

Requests
(Receive Queues)

Steal

Figure 5: Dispatch tasks on each core steal requests from the

receive queue of the core to their right whenever they have no

requests in their own receive queue. As a result, work from

overloaded cores get redistributed without generating high con-

tention. Here, core 1’s in-progress tasks were induced by re-

quests stolen from core 2’s queue.

having task is the only one the new worker cannot steal.

Whenever a misbehaving task finally yields, the scheduler

on that worker realizes that it has been displaced, and the

worker thread terminates along with the task.

Hence, misbehaving tasks don’t block other requests,

but they can still cause disruption. Creating and migrating

kernel threads is expensive, so there must be a disincentive

against forcing watchdog action. Tenants that run uncoop-

erative tasks will experience poor quality of service, since

they must share a core with other disruptive work. Fur-

thermore, when a worker is re-pinned the watchdog also

takes away access to its receive and transmit queues, so

tenants cannot get responses from bad requests and, thus,

benefit from their misbehavior. Even so, billing policies

should ensure such behavior is unprofitable.

Aside from infinite loops, the store must also pro-

tect against other things that cannot be prevented with

compile-time checks. For example, Rust doesn’t have

general exceptions, but extensions can raise exceptions

with operations like division by zero that raise a panic.

Splinter must “catch” these panics or they would termi-

nate the worker, since panics unwind the call stack and

worker threads call extension code on their own stack.

Fortunately, Rust provides a mechanism to do this, and

Splinter catches panics and converts them to an error re-

sponse to the appropriate client. Stack overflows and

violation of heap quotas are handled similarly.

3.4 Tenant Locality and Work Stealing

The Splinter store avoids any kind of centralized dispatch

core to route requests to cores, since this can easily be-

come a bottleneck [55]. At the same time, it needs to

balance requests across cores, while still trying to exploit

locality to avoid cross-core coordination overheads. To

do this, clients route each tenant’s requests to a particular

core. This provides cache locality, it reduces contention,

and it improves performance isolation. Splinter configures

Flow Director [31] so that the NIC directly stores packets

with a specific destination port number in a specific re-

ceive queue. Each receive queue is paired to a single task

dispatcher owned by a worker thread (pinned to a core).

As a result, tenants can steer requests to specific cores by

placing their tenant id in the UDP destination port field.
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CPU 2×Xeon E5-2640v4 2.40 GHz

10 cores (20 hardware threads) per socket

RAM 1 TB 2400 MHz DDR4

NIC Mellanox CX5, 40 Gbps Ethernet

OS Ubuntu 16.04, Linux 4.4.0-116,

DPDK 17.08, 16×1 GB Hugepages,

Rust 1.28.0-nightly

Table 3: Experimental configuration. Evaluation used one ma-

chine as server and one as client. Only the NIC-local CPU

socket was used on the server.

However, this approach alone can leave cores idle under

imbalance, and, as a multi-tenant store, it is important for

the system to deliver good resource utilization. Whenever

the scheduler on a core has no incoming requests in its

local receive queue, it attempts to steal requests from a

neighbor’s receive queue (Figure 5). Transmit queues

aren’t bound to specific (server-side) source ports, so the

response can be sent directly from the core that stole the

request. This simple form of soft affinity works well, and,

since tasks are lightweight, it is also relatively easy for

Splinter to take advantage of idle compute in the system

without costly thread migration.

4 Implementation

The Splinter store is implemented in 7,500 lines of Rust. It

uses the NetBricks network function virtualization frame-

work [56] as a wrapper over the DPDK [20] packet pro-

cessing framework. Splinter also includes 1,100 lines of

Rust that provide the store interface to extensions. Exten-

sions import it and compile against it. The store also im-

ports the interface, since it defines how the store interacts

with extensions to create a new generator for an invoca-

tion. Splinter is open and freely available on github1.

The store needn’t be written in Rust, but doing so has

advantages. It prevents data races and segmentation faults

within the store, but it also lets the store use Rust’s type

system and lifetimes to ensure that mistakes aren’t made

with lifetimes of objects and references handed across

trust boundaries, which an adversary could exploit.

5 Evaluation

We evaluated Splinter on five key questions:

1. What is Splinter’s isolation overhead?

2. Does Splinter support high tenant densities?

3. How does Splinter perform under operations with

heterogeneous runtimes?

4. Do representative extensions see latency and

throughput benefits?

5. When does performing operations client-side outper-

form extension-based operations?

1https://github.com/utah-scs/Sandstorm/
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Figure 6: Comparison of YCSB-B performance using native

and extension-based get() and put() operations at a tenant

density of 1,024. When using extensions, the server saturates

at 4.3 million operations per second. In comparison, native

operations are about 23% more efficient, saturating at 5.3 million

operations per second.

5.1 Experimental Setup

All evaluation was done on two machines consisting

of one client and one storage server on the CloudLab

testbed [60] (Table 3). Both used DPDK [20] over Ether-

net using Mellanox NICs for kernel-bypass support. The

server was configured to use only one processor socket;

out of the ten hardware cores, eight were used for request

processing, one was used for management and to detect

misbehaving extensions, and the last one was used to hold

all misbehaving extensions once detected.

To evaluate Splinter and its isolation costs under high

load and density, the client ran a YCSB-B workload [15]

(95% gets, 5% puts; keys were chosen from a Zipfian

distribution with θ = 0.99) that accessed tenant data on

the storage server. Unless stated otherwise, the client

simulates 1,024 total tenants. Tenant ids for each request

were chosen from a Zipfian distribution with θ = 0.1
(unless stated otherwise) to simulate some tenant skew.

Each simulated tenant owns one data table consisting of

1 million 100 B record payloads with 30 B primary keys

(totaling about 120 GB of stored data). The client always

offered an open-loop load to the server.

5.2 Isolation Overhead

Figure 6 compares the performance of YCSB-B under two

different cases. In one case (“Native”), the Splinter store

executes get and put operations like any other key-value

store would; none of Splinter’s extension functionality is

used. This case sets an upper-bound for Splinter’s perfor-

mance. In the other case (“Extension”), that same get or

put is executed as part of a tenant-provided and untrusted
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Figure 7: Storage server scalability at a tenant density of 1,024.

Points represent throughput when YCSB-B latency crosses

10 µs. Isolation overhead is consistently lower than 20%.

Splinter extension. This teases apart the isolation and dis-

patch costs for Splinter to run arbitrary tenant-provided

logic. For offered loads of less than 3.5 million operations

per second (Mops/s), median latency with and without

isolation are nearly identical (about 9 µs).

Splinter extensions have some overhead, so the store

saturates earlier when gets/puts are executed through ex-

tensions. With isolation, the median latency spikes above

4 Mops/s, reaching 59 µs at 4.3 Mops/s. Without isola-

tion, this spike comes at 5.3 Mops/s. Tail latency (99th-

percentile) begins to show a difference at 3 Mops/s. On

the whole, in this pessimal workload with extremely fine-

grained operations all invoked as extensions, Splinter’s

isolation costs still only impact throughput of the store by

about 19%. Compared to the 1.8× (simulated) penalty for

hardware-based isolation in Figure 2, this is a significant

improvement (a 1.2× penalty over native get/put).

Figure 7 compares YCSB-B scalability when the server

is approaching saturation (median latency > 10 µs) un-

der the native and extension-based cases. Invoking get

and put operations from extensions instead of directly

has no impact on scalability; scalability is near linear in

both scenarios. However, as pointed out above, it does

affect throughput. At one core, throughput is reduced by

200 Kops/s (18%), while at eight cores, the reduction is

700 Kops/s (17%). This shows that, though extensions

do increase the number of cycles each core spends pro-

cessing requests, it doesn’t come at the cost of significant

increased coordination between the cores.

5.3 Tenant Density

Figure 8 shows how varying the number of tenants sharing

the store impacts its throughput. As in the prior experi-

ments, tenants run YCSB-B under two cases: without iso-

lation (“Native”) and with isolation (“Extension”), so the

experiment captures extension isolation overheads. The

results show that Splinter can efficiently support high ten-

ant densities with minimal overhead. With isolation, the

throughput at 1,024 tenants is 3.3 Mops/s, only 700 Kop-

●●● ● ● ●
● ●

0

1

2

3

4

5

8 64 256 512 1024

Number of Tenants

T
h
ro

u
g
h
p
u
t

(M
il

li
o
n
s 

o
f 

O
p
er

at
io

n
s/

s)

● Extension Native

Figure 8: Scaling tenants. Points represent server throughput

when YCSB-B latency crosses 10 µs. With isolation, increasing

the number of tenants only impacts performance modestly; mov-

ing from 8 to 1,024 tenants reduces throughput by 700 Kops/s.
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Figure 9: Latency with tenant skew. The server runs near

saturation at 4 Mops/s in each case. Without work stealing,

tail latency under high skew increases from 138 µs to 330 µs.

Without tenant locality, median and tail latencies are affected.

s/s less than the throughput at 8 tenants. Additionally, the

throughput with isolation is consistently within 22% of

the throughput without isolation.

In practice, offered tenant load will be skewed, since

some tenants are likely to have heavier workloads than

others. This results in a few heavy workloads that must

share the store with a long tail of many more passive ones.

We ran an experiment to show that Splinter can handle this

imbalance and that its work stealing and tenant locality

help maintain Splinter’s response times under high load.

Recall that Splinter routes requests for a tenant to a spe-

cific core, but cores steal work from each other to combat

imbalance. To gauge the benefits of this approach, we

compare it against a tenant-partitioned approach with no

work stealing and an unpartitioned approach that sprays

requests over all cores in a tenant-oblivious fashion. We

vary tenant skew, which affects all three approaches.

636    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



●

●● ● ● ● ●

0

0.2

0.4

0.6

0.8

1.0

1.2
T

h
ro

u
g
h
p
u
t

(M
il

li
o
n
s 

o
f 

O
p
er

at
io

n
s/

s)

●

●
●

●

●

●

   0

10

20

30

40

2 8 16 32 64 128

Objects Read Per Yield

M
ed

ia
n
 L

at
en

cy
 (

µ
s)

Figure 10: Performance with a small fraction (15%) of cooper-

ative long running procedures that perform 128 gets. Yielding

frequently can help improve median latency from 38 µs to 22 µs.

However, yielding too frequently hurts median latency. The

storage server was offered a constant load of 1.1 Mops/s.

Figure 9 shows the results. These measurements are

with an offered load of 4 Mops/s, keeping the store close

to saturation. In each case, the store meets the offered load

by running at 4 Mop/s. Without work stealing, Splinter’s

tail latency suffers by a factor of 2 under high tenant skew

(0.9 and 0.99). In this case, partitioning helps through-

put due to locality and reduced contention (as evidenced

by its relatively consistent median response time), but

queues become imbalanced hurting tail latency. The un-

partitioned approach doesn’t respond as significantly to

tenant skew though it is slower overall, as expected. Un-

partitioned execution results in 42% to 86% worse median

latency with 38% to 155% worse tail latency.

5.4 Request Heterogeneity

Figure 10 investigates the impact of mixing short oper-

ations with cooperative longer-running operations. We

configured our client so that 15% of extension operations

performed 128 gets on the storage server. The rest of the

requests invoked an extension that performed one get. We

varied the number of gets made by the longer extension

per yield (frequency). These measurements were made at

an offered load of 1.1 Mops/s. Increasing the frequency of

yields improves median latency of the smaller operations

by 42% until a frequency of 8 gets per yield. Yields add

some overhead, and yielding more frequently pushes the

store to saturation in this case. As a result, all requests

see increased response times. Extensions should yield

frequently, but yielding too often is wasteful. Splinter

may be able to help with this in the future; Splinter could

provide extensions with a yield that is ignored if called

too quickly in succession, avoiding the full yield cost.
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Figure 11: Impact of uncooperative requests on performance.

System throughput stays constant at 3 Mops/s throughout. For

fractions of uncooperative requests greater than 1 every million,

tail latency is significantly affected (> 100 µs).

Figure 11 shows how uncooperative extensions impact

system performance. Here, the client invoked a small

fraction of extension operations that executed an infinite

loop. The remaining fraction of requests invoked a small

extension that performed a single get. Splinter performs

well in the presence of misbehaving extensions. Through-

put is steady at 3 Mops/s irrespective of the fraction of

misbehaving requests. Median latency isn’t shown, but

it is steady as well. Tail latency suffers as more requests

misbehave, though it is within 100 µs for fractions as high

as one in a million requests.

Note that one in a million requests (1e-6) is harsh. The

store can execute more than 4 Mop/s, so this represents a

misbehaving invocation starting every quarter second; at

1e-5 misbehavior starts about once every 25 ms.

5.5 Aggregation Extension

Online data aggregation is a common task for applications.

For example, a user might send a query demanding a

movie studio’s total earnings in the year 2017. With

a key-value data model, this would require two round-

trips to storage: one to fetch the list of movies made by

the studio and one to fetch the box-office earnings of

each of the movies. Splinter improves the user-facing

and server-side performance of these types of queries by

allowing applications to inexpensively embed their data

model (studios and movies) and operations (total earnings

aggregation) within storage.

Figure 12 compares a completely client-based and a

Splinter extension-based implementation of such an aggre-

gation over 4 records. Each of the store’s 1,024 tenants

owned a table with 300 K indirection lists pointing to

1.2 million records, totalling about 100 GB of stored data.
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Figure 12: Aggregation throughput versus latency. Aggrega-

tions combine 4 records. Under low load, the median latency of

a client-side implementation is 1.6× that of an extension-based

implementation. Using an extension also improves saturating

throughput from 1.2 M to 1.6 M aggregations per second.

The client-based implementation first performed a get()

to retrieve an indirection list followed by a multiget() (a

single RPC requesting values for multiple keys) to fetch

all of the records indicated in the indirection list. The

first field from each of the returned objects is summed up

into a single 64-bit result. The extension-based implemen-

tation invoked a Splinter extension called aggregate()

with the same functionality as the client-based approach.

Pushing the aggregation from the client to the server

has two key benefits. First, it improves performance from

the client’s perspective: the extension-based implementa-

tion reduces median latency by 38% (from 16 µs to 10 µs)

under low load with larger gains under higher loads. This

improvement is mainly due to a reduction in the num-

ber of round-trips; unlike the client-based extension, the

aggregate() extension doesn’t need to wait for the store

to return an indirection list before it can start aggrega-

tion. Second, it improves performance from the server’s

perspective as well. Splinter’s extension invocations are

more expensive than plain get() operations (§5.2), but

they eliminate some of the costly network and RPC pro-

cessing. Hence, saturating throughput improves from

1.2 M to 1.6 M aggregations per second.

Note, this improvement comes in a challenging case

for Splinter; at 40 Gbps, Splinter is never network limited.

These results show that even if a store is CPU-limited,

pushing compute to the store can still provide a through-

put benefit, since it can mitigate request processing over-

heads. On slower networks, Splinter would provide more

of a benefit since extensions can reduce network load.

Figure 13 shows the impact of the number of records

aggregated on the saturating throughput of the extension-

based and client-based implementation. In both ap-

proaches, increasing the number of records aggregated

increases the work the store has to do per request

(aggregate()/multiget()), and, hence, decreases the

overall throughput of the system. However, if that work
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Figure 13: Saturating throughput of aggregation versus the

number of aggregated records. The extension-based implemen-

tation outperforms the client-side implementation irrespective

of the number of records aggregated. The gains are highest

when aggregations are over two records (2.4 M versus 1.5 M

aggregations per second).
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Figure 14: Saturating throughput of the aggregation extension

versus the amount of compute per aggregation. After aggre-

gating 2 records, each operation raised the result to the power

n, implemented as n 64-bit multiplications (hence the x-axis).

Increasing the order (n) increases server-side compute in the

extension-based implementation, hurting throughput. At an

order of 5000, the client-side approach is 2× faster.

is simple (like summation) it is always better to aggre-

gate at the store. The gain in saturating throughput of the

extension-based aggregation is always more than 50%.

For compute-intensive operations, the extra CPU cost

of running extensions at the store can outweigh the gains

of fewer RPCs. Figure 14 explores this effect. After

adding the first field of two records, each operation raises

the result to the power n (with n 64-bit multiplications).

Using an extension, increasing n above 2,000 slows the

store and decreases saturating throughput from 1.8 M to

800 K aggregations per second. The client-side approach

can hold throughput constant at 1.6 M aggregations per

second; the client has enough idle CPU capacity to com-

pute the result. This shows that extensions are ideal for op-

erations with modest amounts of compute. For compute-

intensive operations over data stored on high-load servers,

clients should fetch data and perform operations locally.

5.6 TAO Extension

TAO [10] is a graph-oriented in-memory cache used at

Facebook to hold objects from the social graph and as-
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Figure 15: TAO extension throughput versus latency. With

60% object_get and 40% assoc_range operations, the TAO

extension can reach 2.8 Mop/s before saturating with an av-

erage latency of 30 µs. By using native get() operations for

object_get, the extension-based approach can outperform a

purely client-side implementation by 400 Kop/s.

sociations between those objects. TAO is well-suited to

Splinter. It is designed for interactive data, but it embeds

knowledge about Facebook’s workload to decrease round-

trips to the store, which eliminates client-side stalls and

improves server-side efficiency. We have implemented its

simple operations as an 800-line Splinter extension.

Full details of TAO are beyond the scope of this pa-

per, but the basics are simple. Aside from object put/get,

TAO’s association lists (e.g. user1’s “likes”) allow one ob-

ject to be associated to another via a typed, directed edges.

For example, user1’s “likes” may be represented as an

association list (user1, likes) → [post1, post32]. As-

sociation lists provide simple operations for adding, re-

moving, and counting associations. Entries in association

lists are timestamped, and range operations over associa-

tion lists to fetch subsets of them are common (“get the

first 10 entries in the (user1, likes) association list”).

Figure 15 shows Splinter’s performance under

three different configurations: an extension-based ap-

proach (Extension), a client-based approach (Native),

and a combined approach (Combined) that imple-

mented object_get using native get() operations, and

assoc_range using an extension. The workload was

configured to issue a mix of 60% object_get and 40%

assoc_range operations. We picked this ratio based on

Facebook’s reported TAO workload [10], which is domi-

nated by reads (99.8%) mostly from these two operations.

Each of the 1,024 tenants on the storage node owned a

graph with half a million objects and two million edges

(associations), totalling about 100 GB of stored data.

Since a significant fraction of requests are single round-

trip object_gets, the client-based approach has a better

saturating throughput than the extension-based approach.

However, combining the two improves saturating through-

put from 2.8 Mop/s to 3.2 Mop/s at a latency of 31 µs; the

native get() helps eliminate the isolation overhead while

executing an object_get, and the extension helps reduce

the number of round-trips required by an assoc_range.

This makes Splinter competitive with FaRM’s TAO

implementation which is the fastest known implementa-

tion. Interestingly FaRM, takes the opposite approach

of Splinter. On FaRM, TAO operations use multiple

RDMA reads and careful object layout. FaRM reported

6.3 Mops/s (about 200 Kop/s/core) with a 41 µs average

latency; Splinter performs about 400 Kops/s/core with

lower latency. Differences in hardware and experimental

setup likely account for some of the differences, but it

shows Splinter’s CPU-active server approach is competi-

tive against FaRM’s CPU-passive server approach. Fur-

thermore, Splinter maintains a simple, remote procedure

call interface, and the TAO extension enforces strong ab-

stract data types. Splinter TAO clients have no knowledge

of the internal layout of the stored data objects.

6 Related Work

Shipping computation to data and isolating untrusted code

are well-studied, and Splinter builds on prior work. How-

ever, prior work does not address multi-tenancy at Splin-

ter’s granularity and number of tenants; further, no work

addresses these issues with its throughput and latency

goals, which are far beyond most cloud storage systems.

Low-latency RDMA-based Storage Systems. Low-

latency, high-throughput key-value stores are now thou-

sands of times faster than conventional cloud storage by

exploiting RDMA, kernel-bypass, and DRAM [22, 23, 36,

44, 45, 55]. These systems are well-understood for small,

regular workloads, but their simple (get/put, read/write)

interfaces make them easy to optimize internally at the

expense of application efficiency, since they force clients

to make many round trips to storage and to compute lo-

cally [21]. RDMA lowers CPU overhead for transmit,

but it cannot make up for the fundamental inefficiency

of moving large amounts of data over the wire; receivers

must still perform the same computation on the data that

a server could have. Splinter eliminates this waste, while

still using efficient kernel-bypass networking. At 40 Gbps

a Splinter store is never network bound, so combining

Splinter’s approach with (one- or two-sided) RDMA verbs

could provide a benefit by freeing up additional compute

on store servers.

6.1 Pushing Computation to Storage

MapReduce [18] and Spark [73] ship code to data sets,

though latency is not a concern. Even when compute is

shipped to a storage (HDFS [63]) node, data is still copied

via interprocess communication. Untrusted extensions,

like those in Splinter, could eliminate these overheads.

Some distributed systems and frameworks support com-

posing internal storage abstractions to synthesize new ser-

vices [3, 4, 11, 28, 48, 62]. Malacology [62] claims stor-
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age extensions have been popular in the Ceph distributed

file system, showing that extensions are useful to devel-

opers. In these systems, extensions are trusted, so they

don’t work for cloud storage; Splinter is also focused on

tight integration of fine-grained computation and storage

rather than on coarse composition of software services.

Comet [26] embedded sandboxed Lua extensions into a

decentralized hash table to allow application-specific ex-

tensions to get/put behavior. Lua’s entry/exit costs are

low; it is unclear how the performance of its just-in-time

(JIT) compiled runtime would compare to Splinter.

SQL. SQL may be the most widely used approach to

ship computation to data, and it also supports use as a

stored procedure language [50, 54]. In-memory databases

have placed pressure on performance, resulting in JIT

compilation for SQL [25, 53]. With JIT, queries run fast,

and calls back-and-forth between the database and user

logic are inexpensive. SQL is type safe, so it is also

easy to isolate. SQL’s main drawback is that it is declar-

ative. Often, this is a benefit, since it can use runtime

information for optimization, but this also limits its gen-

erality. Implementing new functionality, new operators,

or complex algorithms in SQL is difficult and inefficient.

Some have extended SQL for specific domains, like graph

processing [52], scientific computing [47, 57] and simu-

lation [12], showing that SQL by itself is insufficient for

many domains.

Native-code Extensions. The popular Redis [1] in-

memory store supports native extensions. In FaRM [22,

23], an RDMA-based in-memory store, applications are

written as native, storage-embedded functions that are

statically compiled into the server. These systems don’t

allow extensions to be loaded at runtime, and application

code is trusted so it does not work for multi-tenant cloud

storage. Similarly, H-Store [39], VoltDB [65], and Hazel-

cast [29] are in-memory stores that support Java-based

procedures, though none of them provide multi-tenancy.

6.2 Fault Isolation

Software-fault isolation (SFI) sandboxes untrusted code

within a process (or OS kernel [33, 61, 67]) with low

control transfer costs [9, 24, 27, 49, 72]. Both hardware

isolation [66] and SFI [69] were applied to Postgres [64],

which pioneered database extensions [68]. SFI still re-

quires protected data to be copied in/out of extensions,

since it relies on hardware paging or address masking that

can only restrict access to contiguous memory regions.

Language-level approaches to kernel extension [8, 30]

closely match Splinter’s design and goals. SPIN let

language-isolated extensions run as part of the kernel.

It eliminated runtime overheads (aside from garbage col-

lection), since extensions were compiled; it eliminated

control transfer overheads, since it didn’t require page

table switching; and it eliminated copying between pro-

tection domains, since type-safe pointers worked as ca-

pabilities. Like Splinter, where tenants must write Rust

code, a key downside of SPIN was that extensions had to

be written in Modula-3, not C, so legacy code couldn’t be

used. Java also “sandboxed” applets using type-safety and

specialized class loaders, which supported inexpensive

control transfer and data access between domains [70].

Using Rust for low-cost, zero-copy isolation has been

used for inexpensive software fault isolation both gener-

ally [5] and for network packet processing pipelines [56].

Splinter builds on these ideas, bringing them to storage

and moving beyond static domains to a runtime extensible

service. Tock [43] is an embedded OS that decomposes its

kernel into untrusted capsules by exploiting Rust’s safety.

Tock’s capsules are similar to Splinter’s extensions, but

they don’t protect against denial of service (infinite loops)

and capsules are static – they can’t be added to a running

kernel. These also differ from Splinter in that they assume

a small number of trust domains; they are targeted at soft-

ware decomposition. Splinter targets dense multi-tenancy

with no static bound on the number of trust domains.

7 Conclusion

In-memory storage can significantly accelerate data-

intensive applications, including those that need fine-

grained and real-time access to data. However, as Den-

nard scaling ends, future cloud storage must not only be

faster but also more efficient. Splinter shows that soon

legacy hardware isolation techniques will limit resource

provisioning granularity in the cloud, but it also provides

a way forward. Systems must evolve to support granu-

lar, low-overhead shipping of compute to storage, and

lightweight isolation between small compute tasks. Splin-

ter works toward that evolution by discarding hardware

isolation in favor of static safety checks. As a result,

it supports thousands of tenants that can all access data

in tens of microseconds while customizing storage op-

erations to their needs and while performing millions of

remote operations on modern multicore machines.

Acknowledgments

Thanks to Ankit Bhardwaj and Ethan Ransom for con-

tributing to Splinter; to Abhiram Balasubramanian, Anton

Burtsev, and Amit Levy for the conversations that helped

lead us to this work; to the reviewers for their comments;

and to our shepherd, Jon Howell. This material is based

upon work supported by the National Science Foundation

under Grant Nos. CNS-1750558 and CNS-1566175. Any

opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and

do not necessarily reflect the views of the National Sci-

ence Foundation. This work was also supported in part

by Facebook and VMware.

640    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



References

[1] Redis. http://redis.io/. Accessed: 2018-09-27.

[2] The Rust Programming Language. http://www.rust-lang.org/

en-US/. Accessed: 2018-09-27.

[3] BALAKRISHNAN, M., MALKHI, D., PRABHAKARAN, V., WOB-

BLER, T., WEI, M., AND DAVIS, J. D. CORFU: A Shared Log

Design for Flash Clusters. In Proceedings of the 9th USENIX

Symposium on Networked Systems Design and Implementation

(San Jose, CA, 2012), NSDI ’12, USENIX Association, pp. 1–14.

[4] BALAKRISHNAN, M., MALKHI, D., WOBBER, T., WU, M.,

PRABHAKARAN, V., WEI, M., DAVIS, J. D., RAO, S., ZOU,

T., AND ZUCK, A. Tango: Distributed Data Structures Over

a Shared Log. In Proceedings of the 24th ACM Symposium on

Operating Systems Principles (Farmington, PA, 2013), SOSP ’13,

ACM, pp. 325–340.

[5] BALASUBRAMANIAN, A., BARANOWSKI, M. S., BURTSEV,
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Neural Adaptive Content-aware Internet Video Delivery

Hyunho Yeo Youngmok Jung Jaehong Kim Jinwoo Shin Dongsu Han
KAIST

Abstract
Internet video streaming has experienced tremendous

growth over the last few decades. However, the quality

of existing video delivery critically depends on the band-

width resource. Consequently, user quality of experience

(QoE) suffers inevitably when network conditions become

unfavorable. We present a new video delivery framework

that utilizes client computation and recent advances in

deep neural networks (DNNs) to reduce the dependency

for delivering high-quality video. The use of DNNs en-

ables us to enhance the video quality independent to the

available bandwidth. We design a practical system that

addresses several challenges, such as client heterogeneity,

interaction with bitrate adaptation, and DNN transfer, in

enabling the idea. Our evaluation using 3G and broadband

network traces shows the proposed system outperforms

the current state of the art, enhancing the average QoE

by 43.08% using the same bandwidth budget or saving

17.13% of bandwidth while providing the same user QoE.

1 Introduction
Internet video has experienced tremendous growth over

the last few decades. Recent market reports indicate peo-

ple around the world watch 5.75 hours of online video

per week on average [10] and video traffic is expected to

quadruple in the next five years [26, 63]. Current video

delivery infrastructure has been successful in handling the

scalability challenges with two key technologies. First,

at the server side, distributed computing technologies en-

abled content delivery at Internet scale. Second, at the

client side, adaptive bitrate (ABR) streaming addressed

the problem of bandwidth heterogeneity and its variations

across time and space. Techniques at both ends evolved

over time to optimize user quality of experience (QoE)

as it ultimately impacts the revenue of various stakehold-

ers [22, 27, 77].

However, the limitation of existing content distribution

networks (CDNs) is that its quality heavily depends on

the bandwidth between servers and clients. When the

bandwidth resource becomes scarce, user QoE suffers

directly [43, 47]. Bitrate adaptation has been the primary

tool to relax the problem [52]. Nevertheless, its sole

reliance on network resource is a fundamental limitation.

Inspired by the ever-increasing clients’ computational

power and recent advances in deep learning, this paper

identifies an alternative and complementary approach to

enhancing the video quality. We apply a deep neural net-

work (DNN)-based quality enhancement on video content
utilizing the client computation to maximize user QoE. In

particular, a deep learning model learns a mapping from

a low-quality video to a high-quality version, e.g., super-

resolution. This enables clients to obtain high-definition

(e.g., 1080p) video from lower quality transmissions, pro-

viding a powerful mechanism for QoE maximization on

top of bitrate adaption.

Leveraging client computation via DNNs impacts the

server/client system and introduces a number of non-

trivial challenges:

◦ First, the CDN servers have to provide a DNN model

for the content they provide. However, it is difficult to

guarantee the test performance of DNN’s predictions.

It is especially unreliable for unseen/new content, pre-

senting a significant barrier to deployment.

◦ Second, client devices are heterogeneous. Their com-

putational power varies widely and may even exhibit

temporal variation due to multiplexing. Nevertheless,

DNN-based quality enhancement must occur at real-

time to support online video streaming.

◦ Finally, the DNN-based quality enhancement has a

cascading effect on ABR-based QoE optimization. The

quality now depends on the availability of DNNs at

the client in addition to the available bandwidth. Thus,
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existing ABR algorithms must reflect the changes.

This paper presents NAS, the first video delivery frame-

work that applies DNNs on video content using client’s

computational power to maximize user QoE. We present

a system design that runs on top of Dynamic Adaptive

Streaming over HTTP (DASH) framework. NAS ad-

dresses the challenges by introducing new system designs.

To guarantee reliable quality enhancement powered by

DNN, it takes a content-aware approach in which a DNN

is trained for each content separately. The idea is to lever-

age the DNN’s overfitting property and use the training ac-

curacy to deliver predictable high performance, instead of

relying on the unpredictable test accuracy. Next, to meet

the real-time constraints on heterogeneous environments,

we use multiple scalable DNNs that provide anytime pre-

diction [24, 36]. Such DNN architectures can adaptively

control their computational cost given resource budget.

NAS clients choose a DNN (from multiple options) that

best fits their resources and adapt to temporal variations

in computing power at each time epoch. The scalable

DNN also enables the use of a partially downloaded DNN,

bringing an incremental benefit in downloading a DNN

model. Finally, to reconcile the ABR-based QoE opti-

mization and DNN-based quality enhancement, we devise

a content enhancement-aware ABR algorithm for QoE

optimization. To this end, we integrate our design into

the state-of-the-art ABR algorithm [52] that uses rein-

forcement learning [68]. The algorithm decides when to

download a DNN model and which video bitrate to use

for each video chunk.

We evaluate NAS using a full system implementation.

Our evaluation on 27 real videos and 17.8 hours of real-

world network traces [8] using six different GPU models

shows NAS delivers substantial benefit in a wide range

of settings and is able to meet the real-time constraint on

desktop class GPUs of varying capacity. In particular, it

improves user QoE between 63.80-136.58% compared

to BOLA [66] used in DASH [4] and between 21.89-

76.04% compared to Pensieve, the state-of-the-art ABR

design. Finally, we provide in-depth performance analysis

of individual system components.

In summary, we make three key contributions:

◦ End-to-end video delivery system: NAS is an end-to-

end video streaming system that integrates the content-

aware approach, DNNs for super-resolution, scalable

anytime prediction, and mechanisms for handling de-

vice heterogeneity on top of an existing adaptive stream-

ing framework.

◦ Use of DNNs in adaptive streaming: NAS is the first

system to apply super-resolution DNNs over video con-

tent in the context of adaptive streaming. From the
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Figure 1: Growth of GPU’s processing power

machine learning (ML) side, we are the first to apply

DNN-streaming, super-resolution, and anytime predic-

tion to adaptive streaming.

◦ Content-aware DNN: NAS streams video along with

the corresponding content-aware DNN to its clients.

This is a key enabler and a novel component of NAS,

which can be also viewed as a new approach to video

coding.

2 Motivation and Goal
Traditional approaches to improving video stream quality

include: using better codecs [11, 12]; optimizing adaptive

bitrate algorithms [20,39,42]; choosing better servers and

CDNs [17, 50, 74]; and using coordination among clients

and servers through a centralized control plane [51, 54].

These approaches focus on how to best utilize the network

resource, but suffer from two common limitations.

Under-utilization of client’s computation. Market re-

ports [10, 57] indicate the majority of users watch video

primarily on PCs, which have significant computation

power. Mobile devices, which is the next popular plat-

form, are also equipped with power-efficient graphic pro-

cessing units (GPUs) [29]. Figure 1 shows the expo-

nential growth in GPU’s computing power over time on

mobile devices and desktop PCs. Latest mobile devices

even have dedicated hardware for neural processing [7].

However, the current video delivery infrastructure under-
utilizes client’s computational power. With their growing

computational capacity and ever-increasing demand for

bandwidth, we envision a video delivery system in which

clients take an active role in improving the video quality.

Limitation of current video coding. Video episodes of-

ten contain redundancy that occurs at large timescales.

For example, consider a popular sports game (e.g., NBA

finals) watched by millions of people. Same objects (e.g.,

balls and players) and scenes (e.g., basketball court) show

up repeatedly. Similarly, redundancy is also found within

episodes of a TV show, games in a sports league, and

videos from the same streamers. Such frequently reoccur-

ring high-level features contain valuable information that

can be leveraged for video coding. However, standard
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video coding, such as MPEG and H.26x, only captures

spacial and short-term redundancy, lacking any mech-

anisms to exploit motion picture’s high-level features.

Within a group of pictures (GOP), inter-frame coding en-

codes the difference between adjacent frames to compress

a motion picture [30]. However, a GOP is typically on the

order of seconds for online video [13], making it impossi-

ble to capture redundancy that occurs at large timescales.

As long as codecs compress video only within a GOP

(arguably a fundamental constraint for streaming), using

sophisticated codecs would not completely close this gap.

Motivated by this, we envision a video delivery system

that exploits such redundancy by capturing the high-level

features and applies additional client computation to aug-

ment the limitation of traditional video encoding. To this

end, we utilize DNNs that abstract meaningful features

from a low-level representation of data [23].

System goal. Our goal is to design a practical system

that augments the existing infrastructure to optimize user

QoE. As the first step, we consider servicing on-demand

videos, as opposed to live streams, and using personal

computers that have desktop-class GPUs. We propose a

redesign of the video delivery infrastructure to take advan-

tage of client computation to a greater degree. For qual-

ity enhancement, we utilize super-resolution that takes

low-quality video as input and generates an “up-scaled”

version. We choose super-resolution because significant

advances have been made recently [28, 45, 49]. While

we scope our study to desktop-class GPUs and super-

resolution, we believe the framework is generic enough to

accommodate different types of DNN models and devices.

3 Background and Related Work
Adaptive streaming (e.g., Apples HLS [1], DASH [2])

is designed to handle unpredictable bandwidth variations

in the real world. Video is encoded into various bitrates

(or resolutions) and divided into fixed length chunks, typi-

cally 2 – 10 seconds. An adaptive birate algorithm (ABR)

decides the bitrate for each video chunk. Traditional ABR

algorithms select bitrates using heuristics based on the

estimated network bandwidth [42] and/or the current size

of the client-side playback buffer [66]. MPC [77] and

Pensieve [52] demonstrate that directly optimizing for

the desired QoE objective delivers better outcomes than

heuristics-based approaches. In particular, Pensieve uses

deep reinforcement learning and learns through “observa-

tions” how past decisions and the current state impact the

video quality. Oboe [21] dynamically adjusts the ABR

parameters depending on the network conditions consult-

ing the offline pre-computation result. Although these

algorithms successfully cope with bandwidth variations,

they consider neither the effect of client-side quality en-

hancement nor the dynamics of simultaneously streaming

a DNN and video chunks.

Super-resolution recovers a high-resolution image from

a single or multiple lower resolution image(s). Super-

resolution has been used in a variety of computer vi-

sion applications, including surveillance [78] and medical

imaging [65], where the original high-quality image/video

is not available. Recent studies use DNNs [28, 45, 49]

to learn low-resolution to high-resolution mapping and

demonstrate a significant performance gain over non-

DNN approaches [25, 64]. In particular, MDSR [49] is

a state-of-the-art DNN that integrates the residual neural

network architecture [34] and supports multi-scale inputs.

In NAS, we apply super-resolution on top of adaptive

streaming to improve user QoE by enhancing low-quality

videos at the client side.

Scalable DNN is an emerging type of DNN designed to

dynamically adapt to computational resource constraints,

enabling anytime prediction [36]. A shallow and a deep

network are used in resource-constrained and -sufficient

environments respectively [24, 36]. ISResNeXt [48] alter-

natively uses a thin and a wide network that adapts to the

width (or channels) of a DNN. Scalable DNN has been

applied primarily to image classification/detection tasks.

NAS applies anytime prediction to super-resolution and

uses it delivering incremental quality enhancement in a

streaming context.

DNN-based media compression. Recent studies [18,

61, 71] have shown DNN-based image compression out-

performs traditional image codecs, such as JPEG2000

and WebP. The benefit over conventional codecs comes

mainly from two aspects: 1) directly optimizing for the

target quality metric and 2) adapting the codec configu-

ration based on the image rather than using a fixed con-

figuration [61]. Applying this to video, however, involves

significant challenges including the problem of reducing

inter-frame redundancy across DNN-encoded images. A

recent work [72] performs both I-frame compression and

frame interpolation using DNNs. However, the DNN-

based video compression is still at its early stage and only

offers “comparable performance to MPEG-2” and falls

short in delivering real-time decoding [72]. NAS aims to

augment existing video delivery using DNN—it applies

super-resolution DNNs on top of traditional video codecs

by applying quality enhancements frame-by-frame.

Video processing systems. Back-end video processing

systems have been of growing importance due to the scale

required for video encoding. Studies have reported that

latency for fast interactive sharing, system efficiency in

encoding, scalability and fault tolerance are major issues

[31,37,70]. SVE [37] presents a backend system for video
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Figure 2: 240p to 1080p super-resolution results
(Content type – 1st row: Game [15], 2nd row: Entertainment [14], 3rd row: News [16])

processing used in Facebook. ExCamera [31] uses mas-

sive parallelism to enable interactive and collaborative

editing. They focus on solving distributed system prob-

lems within a datacenter without changing the clients,

whereas we focus on the division of work between the

servers and clients.

Studies on video control plane [32, 41, 44, 51] identify

spatial and temporal diversity of CDNs in performance

and advocate for an Internet-scale control plane which

coordinates client behaviors to collectively optimize user

QoE. Although they control client behaviors, they do not

utilize client computation to directly enhance the video

quality.

4 Key Design Choices
Achieving our goal requires redesigning major compo-

nents of video delivery. This section describes the key

design choices we make to overcome practical challenges.

4.1 Content-aware DNN
Key challenge. Developing a universal DNN model that

works well across all Internet video is impractical be-

cause the number of video episodes is almost infinite.

A single DNN of finite capacity, in principle, may not

be expressive enough to capture all of them. Note, a

fundamental trade-off exists between generalization and

specialization for any machine learning approach (i.e.,

as the model coverage becomes larger, its performance

degrades), which is referred to as the ‘no free lunch’ the-

orem [75]. Even worse, one can generate ‘adversarial’

new videos of arbitrarily low quality, given any existing

DNN model [38, 58], making the service vulnerable to

reduction of quality attacks.

NAS’ content-aware model. To tackle the challenge, we

consider a content-aware DNN model in which we use a

Start End
Large timescale redundancy

Short timescales

: Intra-frame coding
: Inter-frame coding

Group of Pictures (GOP)

H.26x, VPx

Input
Output

Update
Target

Recover high-quality redundancy
(e.g., Super-resolution)

DNN

Content-aware DNN

Figure 3: Content-aware DNN based video encoding

different DNN for each video episode. This is attractive

because DNNs typically achieve near-zero training error,

but the testing error is often much higher (i.e., over-fitting

occurs) [67]. Although the deep learning community

has made extensive efforts to reduce the gap [40, 67],

relying on the DNN’s testing accuracy may result in un-

predictable performance [38, 58]. NAS exploits DNN’s

inherent overfitting property to guarantee reliable and

superior performance.

Figure 2 shows the super-resolution results of our

content-aware DNN and a content-agnostic DNN

trained on standard benchmark images (NTIRE 2017

dataset [19]). We use 240p images as input (d) to the

super-resolution DNNs to produce output (b) or (c). The

images are snapshots of video clips from YouTube. The

generic, universal model fails to achieve high quality con-

sistently over a variety of contents—in certain cases, the

quality degrades after processing. In §5.1, we show how

to design a content-aware DNN for adaptive streaming.

The content-aware approach can be seen as a type of

video compression as illustrated in Figure 3. The content-

aware DNN captures redundancy that occurs at large time

scales (e.g. multiple GOPs) and operates over the entire

video. In contrast, the conventional codecs deals with re-
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Model name Compute capacity
(Single precision) Price

GTX 1050 Ti 1.98 TFLOPS $139

GTX 1060 3.86 TFLOPS $249

GTX 1070 5.78 TFLOPS $379

GTX 1070 Ti 7.82 TFLOPS $449

GTX 1080 8.23 TFLOPS $559

GTX 1080 Ti 10.61 TFLOPS $669

Titan Xp 10.79 TFLOPS $1,200

Table 1: Nvidia’s desktop GPU (Geforce 10 series)

dundancy within a frame or between frames within a GOP.

In NAS, we demonstrate the new encoding scheme using

per-video super-resolution DNNs. However, we believe

the content-aware approach can be applied to a series of

videos (of similar content) and extended to work with

different types of DNNs, such as frame interpolation [56],

as discussed in our position paper [76].

4.2 Multiple, Scalable DNNs
Key challenge. The available capacity of computing

changes across time and space because of heterogeneity

of client devices, changes in workloads, and multiplex-

ing. Table 1 shows even within the desktop-class GPUs

the computational power varies up to 5.68 times. Never-

theless, real-time inference is required for online video

streaming—the DNN inference has to be at least as fast

as the playback rate. However, existing super-resolution

DNNs [28, 45, 49] require a fixed amount of computing

power and cannot adapt to time-varying capacity. Thus,

using a single DNN either under-utilizes client’s GPU or

does not meet the real-time requirement.

NAS’ multiple, scalable DNN design. To tackle the

challenge, NAS offers multiple DNNs and let clients dy-

namically choose one that fits their resource. Similar to

multiple bitrates that adaptive streaming offers, we pro-

vide a range of DNN options that differ in their inference

time (or computational requirements). NAS servers pro-

vide multiple DNN specifications as part of the video

manifest file. We provide a light-weight mechanism that

does not require clients to download the DNNs for choos-

ing the right DNN from available options.

However, using multiple DNNs introduces another

challenge. Because the size of DNN grows proportional

to its computation requirement, DNNs designed for high-

end GPU devices can be very large (a few MBs). It can

take a long time to download and utilize the DNN. To

address the issue, we design a scalable DNN that enables

a client to utilize a partially downloaded model in an in-

cremental fashion. The scalable DNN consists of multiple

bypass-able intermediate layers, enabling a partial DNN

without the intermediate layers to generate the output as

shown in Figure 4. In addition, the design naturally ac-

commodates temporal variation in computational power

due to multiplexing. When the computational resource is

abundant, clients can use all layers, otherwise they can op-

portunistically bypass any number of intermediate layers,

enabling anytime prediction [24, 36, 48]. Finally, the use

of multiple scalable DNNs allows each device to benefit

from partially downloaded DNNs and provides the same

level of temporal adaptation regardless of the device’s

computational power. §5.2 presents the details of scalable

DNNs.

4.3 Integrated ABR

Key challenges. As NAS uses per-video DNN, a client

must download a DNN from a server to benefit from DNN-

based quality enhancement. However, DNN downloads

also compete for the bandwidth with the video stream

itself. As a result, aggressively downloading the DNN

model may degrade user QoE. At the same time, a client

may benefit from an early DNN download because it can

receive the quality enhancement early on. Because there

exists a conflict, a careful decision making as to when and

how to download the DNN is critical.

NAS’ bitrate adaptation integrates the decision to down-

load a DNN with bitrate selection for QoE maximization.

It considers three additional factors that impact user QoE:

1) To benefit from quality enhancement, a client-side

DNN must be downloaded first; 2) a partially downloaded

DNN improves quality in proportion to the amount down-

loaded; and 3) DNN chunk downloads compete for band-

width with video chunk downloads.

To solve the non-trivial problem, we leverage reinforce-

ment learning [52] and generate an ABR algorithm that

integrates the decision to download a DNN model. For

this, we divide the DNN model into fixed-size chunks and

train an RL network that outputs a decision (i.e., whether

to download a video or a DNN chunk) using as input

the current state (e.g., throughput measurement, playback

buffer occupancy, the number of remained video chunks)

and its history. We train the RL network using a large

training set consisting of real network traces [9, 60].

The decision to use RL brings a number of benefits: 1)

it allows NAS to directly optimize for any target QoE met-

ric, while accounting for the benefit of DNN-based quality

enhancement; 2) RL balances multiple interacting factors,

such as bandwidth variations, bandwidth sharing between

video and DNN chunks, and quality enhancement of par-

tial DNNs, in a way that optimizes the QoE; and 3) it

naturally accommodates the use of multiple DNNs by

encoding the DNN type in the RL network. §5.3 presents

the details of the integrated ABR.
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5 System Design
NAS is implemented on top of current HTTP adaptive

streaming, standardized in DASH [2]. We start by ex-

plaining the key differences in how the system operates.

New video admission (server-side processing). As in

DASH, when a video clip is uploaded, it is encoded at

multiple bitrates and divided into chunks. In addition,

the server trains content-aware DNNs for the video for

client-side quality enhancement (§5.1). It then associates

the DNNs with the video by placing their URLs in the

manifest file along with DNN specifications (§5.2).

Client behavior. A client’s video player first downloads

a manifest file, which contains a list of available DNNs

for the video. The client then selects one of them that fits

its computing power. The client’s DNN processor uses a

light-weight mechanism to choose the best available one

that fits its resource (§5.2). The player then downloads

the selected DNN or video chunks following the decision

given by the integrated adaptive bitrate (ABR) algorithm

(§5.3). When a DNN chunk is downloaded, the player

passes it to the DNN processor, and the processor loads

the (partial) DNN on the client’s computing device (e.g.

GPU). When a video chunk is downloaded, the player

keeps it in the playback buffer and the chunk becomes

ready for immediate playback. The player then oppor-

tunistically passes video chunks in the playback buffer to

the DNN processor for quality enhancement along with

their associated playback time, which indicates the dead-

line for neural processing. When the DNN processor

finishes processing a chunk, it replaces the original chunk

in the playback buffer. Finally, the quality enhanced video

chunk is played.

Client-side neural processing. The DNN processor ini-

tializes the DNN as DNN chunks arrive. The DNN we use

performs quality enhancement on a per-frame basis for

super-resolution. Thus, the DNN processor first decodes

a video chunk into frames. The DNN processor then

applies the super resolution DNN. The resulting frames

are then re-encoded to video chunks which replace the

original chunks in the playback buffer. The decoding,

super-resolution, and encoding phases are pipelined and

parallelized to minimize the latency (See §7.5 for details).

5.1 Content-aware DNN for DASH
Applying DNN to adaptive streaming. Standard DNN

architectures are not designed for adaptive streaming

which introduces specific requirements. First, because

adaptive streaming uses multiple resolutions, DNN must

be able to take multiple resolutions as input. Second, the

DNN inference has to take place in real-time. Finally,

DNN should sacrifice its inference quality as little as pos-

sible in meeting the first two requirements. The inference

time can be reduced at the cost of quality by reducing the

number of layers and/or the number of channels (a set of

features) in each layer. Such down-scaling also decreases

DNN’s network footprint. Thus, we must strike a balance

between the tradeoff in quality and size, while meeting

the real-time requirement.

Using a super-resolution network. Our system extends

MDSR [49], a state-of-the-art super-resolution network.

As shown in Figure 4, MDSR supports multi-scale super-

resolution (x2, x3, x4) in a single network, while sharing

the intermediate layers to reduce the footprint. The in-

put resolution drastically affects the inference time of

MDSR. For example, even on a flagship desktop GPU

(e.g., Nvidia Titan Xp), a 720p input only delivers 3.23

frames per second, whereas a 240p image is processed

nearly in real-time at 28.96 frames per second. Thus, to

meet the real-time constraint for the highest resolution,

one has to downscale the network size.

However, due to the shared layer design, this degrades

the quality of all resolutions uniformly, making the lower

resolution suffer from significant quality degradation. To

avoid the limitation, we use a separate network for each

resolution (Figure 4), trading in the total size of the DNN

for inference quality. For each DNN, we fix the number
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of layers that represents the capacity to adapt to temporal

variation in computing power (§5.2). Then, we take the

maximum number of channels, independently, for each

resolution, that satisfies the real-time constraint. The re-

sulting DNN configuration and size we use for our evalua-

tion are listed in Table 2. The footprint of the ‘Ultra-high’

DNN is 2,145 KB, which is about the size of a single

1080p (four-second) video chunk (4.8 Mbps) from our

evaluation. The size of the ‘Low’ DNN is only about half

the size of a 240p chunk (400 Kbps). While we use NAS-

MDSR and specific settings for evaluation, NAS design is

not bound to any specific DNNs but accommodates their

evolution.

Training content-aware DNNs. The training data is

pairs of a low resolution (e.g., 240p, 360p, 480p, 720p)

and the original highest resolution (e.g., 1080p) image.

We update the DNN parameters to minimize the differ-

ence between the DNN’s output and the target high res-

olution image. The training cost is of “one-time” and is

amortized across the total watch time of the video episode.

Nevertheless, for CDNs that deliver many video episodes,

the total computational cost may be high. To reduce the

cost of training, we apply the fine-tuning strategy of a

transfer learning type. Namely, we first train a generic

DNN model using a popular standard benchmark [19].

We then train the content-aware DNN model on each

video episode with its weights initialized as those from

the generic model. This reduces the computation cost in

training by 5-6x, while achieving similar quality enhance-

ment compared to random initialization [33].

5.2 Adaptation to Computational Power
This section describes two mechanisms (multiple DNNs

and anytime prediction) that clients use to adapt to their

computational capacity to deliver real-time quality en-

hancement. For each technique, we describe the enabling

DNN design and explain the client-side dynamic adapta-

tion logic.

Providing multiple DNNs (server-side). As discussed

in §4.2, we provide multiple DNN configurations that vary

in quality and computational requirements to support a

broad range of GPUs. Similar to GPU’s rendering quality

options, we provide four quality levels of DNNs: ‘Low’,

‘Medium’, ‘High’, ‘Ultra-high’. Thus, we have a DNN

per quality per input-resolution, as shown in Table 2. Fi-

nally, the server records the available DNN configurations

on a manifest file, including the DNN name and level,

input resolution, the number of layers, and the number of

channels.

Choosing a DNN from multiple options (client-side).
Clients test-run the DNN options to choose the one that

gives the best quality improvement and delivers real-time

Input DNN Quality Level
Resolution Low Medium High Ultra-high

240p
20, 9

43 KB

20, 21

203 KB

20, 32

461 KB

20, 48

1026 KB

360p
20, 8

36 KB

20, 18

157 KB

20, 29

395 KB

20, 42

819 KB

480p
20, 4

12 KB

20, 9

37 KB

20, 18

128 KB

20, 26

259 KB

720p
6, 2

2 KB

6, 7

5 KB

6, 16

17 KB

6, 26

41 KB

Table 2: DNN configurations for NAS-MDSR
(#Layer, #Channel, Size)

performance. A naive way to measure the inference time

of DNNs is downloading all DNNs at the client device.

However, this consumes large bandwidth (several MBs)

and unnecessarily delays video streaming, ultimately de-

grading user QoE. To streamline the process, NAS pro-

vides enough information about the DNN options (i.e.,

the number of layers and channels) in the manifest file

for clients to reconstruct mock DNNs without download-

ing the DNNs. Using the DNN configuration defined in

the manifest file, clients generate DNNs initialized with

random weights and run them on their GPUs. Finally,

the clients select the largest (highest-quality) DNN that

runs in real-time—the client does not need actual weights

here because a larger DNN provides better quality. With

four DNN options, the client-side test-run takes between

1.64-3.40 seconds depending on a GPU model. Thus, the

client can decide which DNN to use early on without

downloading any DNN.

Scalable DNN and anytime prediction (server-side).
Our scalable DNN architecture enables the client to utilize

a partially downloaded DNN and adapt to time-varying

computational power. Utilizing partial DNNs provides

incremental benefit as the download progresses. This

especially benefits the QoE at the beginning of a video

because the full DNN of a few MBs cannot be transferred

instantly. In addition, the scalable architecture enables

anytime prediction allowing us to adapt to client’s avail-

able computational power that may change unexpectedly.

For this, we modify the DNN architecture and its train-

ing method. The DNN’s intermediate layers consist of

multiple residual blocks [49] each of which consists of

two convolutional layers. We allow bypassing consec-

utive intermediate blocks during inference. To enable

bypassing, we add direct connections from intermediate

blocks to the final layers, as shown in Figure 4. This

creates multiple inference paths as shown in the figure.

We then train all interference paths in the following way.

In each training iteration, we randomly bypass inter-

mediate layers to calculate the error between the net-
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work output and the target image. Then, we use back-

propagation [62] to update parameters. In particular, we

go through all layers with probability 1/2 (for training the

original path) and choose one of the remaining by-passing

paths uniformly at random otherwise. The resulting DNN

can generate an output image using only a part of the

DNN and provide incremental quality improvement as

more layers are used. Finally, DNNs are divided into

chunks. Our server places the chunks’ URLs in the video

manifest file. The first DNN chunk consists of the base

layers for all input resolutions. The subsequent chunks

contain the rest of DNNs.

Using the scalable DNN (client-side). A client down-

loads the DNN in chunks. It reconstructs the first partial
DNN after downloading the base layers. The size of this

minimal DNN is only 35.11% – 36.14% of the full DNN

(33 KB to 768 KB), allowing the client to start benefiting

from DNN-based quality enhancement early on. As the

client downloads more blocks, it updates the DNN, which

provides incremental benefit.

Finally, our client opportunistically determines the

number of layers to use during video playback. At every

time interval, the client’s DNN processor first calculates

the amount of time remaining until the playback time of

the chunk it is processing. The client then calculates the

maximum amount of layers it can use that meets the dead-

line. To aid this, the client records the latest inference

time for each layer and updates this table when the infer-

ence time changes. We empirically set the time interval to

four seconds, which is the length of a single video chunk

in our evaluation. This allows NAS clients to dynamically

adapt to changes in the available computational power, as

we demonstrate in §7.4.

5.3 Integrated Bitrate Adaptation
NAS integrates two decisions into its ABR algorithm for

QoE optimization: 1) it decides whether to fetch a video

chunk or a DNN chunk; and 2) if the first decision is to

fetch a video chunk, it chooses the chunk’s bitrate.

The algorithm must balance the two conflicting strate-

gies. The first strategy places emphasis on downloading

the DNN model in the hope that this will bring qual-

ity enhancement in the future, while sacrificing video’s

streaming quality at the moment. The second strategy

optimizes for video bitrate at the moment and delays the

DNN download. In practice, the resulting outcome is

unpredictable because it depends on how the network

conditions change. The solution space is extremely large

considering the number of bitrates, the download order

of video and DNN chunks, and the dynamic range of

available bandwidth.

To tackle the challenge, we use a reinforcement learn-

ing (RL) framework [52,53] that directly optimizes the tar-

get metric (without using explicit decision labels) through

comprehensive “experience”. In particular, we adopt the

actor-critic framework of A3C [53]. It learns a strategy

(or policy) from observations and produces a mapping

from raw observations, such as the fraction of DNN model

downloaded, the quality improvement due to DNN, net-

work throughput samples, and playback buffer occupancy,

to the decisions described above.

RL design. An RL agent interacts with an environment

[68]. For each iteration t, the agent takes an action at ,

after observing a state st from the environment. The

environment then produces a reward rt and updates its

state to st+1. A policy is defined as a function that gives

the probability of taking action at given st , π(st ,at) :→
[0,1]. The goal then is to learn a policy, π , that maximizes

the sum of future discounted reward ∑∞
t=0 γ t rt , where γ ∈

(0,1] is a discount-rate for future reward.

In our case, the set of actions {at} includes whether

to download a DNN chunk or to download a video chunk

of a specific bitrate. The state st includes the number of

remaining DNN chunks to download, throughput mea-

surements, and player measurements (e.g., the playback

buffer occupancy, past bitrates). Table 3 summarizes the

state st . The reward rt is the target QoE metric which is a

function of bitrate utility, rebuffering time, and smooth-

ness of selected bitrates [52, 77] defined as:

N
∑

n=1
q(Rn)−μ

N
∑

n=1
Tn −

N−1

∑
n=1

∣
∣
∣
∣q(Rn+1)−q(Rn)

∣
∣
∣
∣

N
(1)

where N is the number of video chunks; Rn and Tn re-

spectively represent the video chunk n’s bitrate and the

rebuffering time resulting from its download; μ is the

rebuffering penalty; and q(Rn) is the perceived quality of

bitrate Rn (refer to Table 5 in §7.1 for the choices of μ
and q(Rt)).

To reflect the DNN-based quality enhancement of NAS,

we define effective bitrate Reffective instead of the nomi-

nal bitrate Rn. For each video chunk Cn:

Reffective(Cn) = SSIM−1(SSIM(DNNm(Cn)))

where DNNm(Cn) represents the quality enhanced video

chunk Cn after downloading the (partial) DNN chunk m,

SSIM is the average structural similarity [73] for mea-

suring the video quality, and its inverse SSIM−1 maps

a SSIM value back to the video bitrate. To create the

mapping, we measure the SSIM of original video chunks

at each bitrate (or resolution) and use piece-wise linear

interpolation (e.g., (400 Kbps, SSIM1), ..., (4800 Kbps,

SSIM5)).
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Type State

DNN status # of remaining DNN chunks

Network status
Throughput for past N chunks

Download time past N chunks

Player status Playback buffer occupancy

Video status

Next video chunk sizes

Bitrate of the latest video chunk

# of remaining video chunks

Table 3: State used in our RL framework. We use N
= 8 which empirically provides good performance.

RL training. Our RL framework has two neural approxi-

mators: an actor representing the policy and a critic used

to assess the performance of the policy. We use the policy
gradient method [69] to train the actor and critic networks.

The agent first generates trajectories following the cur-

rent policy πθ (st ,at), where θ represents parameters (or

weights) of the actor’s neural network. The critic net-

work observes these trajectories and learns to estimate

the action-value function Qπθ (st ,at), which is the total

expected reward with respect to taking action at starting

at state st and following the policy πθ . At each iteration,

the actor network uses this estimation to update the model:

θ ← θ +α ∑
t

∇θ logπθ (st ,at)(Qπθ (st ,at)−V πθ (st)),

where V πθ (st) is the value function representing the total

expected reward of πθ starting at state st , and α is the

learning rate. In our RL framework, because the reward

reflects the average QoE enhancement that content-aware

DNN delivers, the critic network learns to estimate the

updated total reward. This enables the actor network to

learn a policy that balances video and DNN downloads to

maximize the QoE.

We use a chunk-level simulator similar to that of Pen-

sieve to accelerate the ABR training. It takes network

throughput traces and simulates NAS’ video streaming

dynamics. In addition, we pre-compute the DNN-based

quality enhancement by averaging it over all the videos

for each DNN quality. We then use the values to produce

a generic ABR model.

When a DNN is downloaded, the simulator updates

the amount of downloaded DNN chunks (i.e., decrements

the state ‘number of remaining DNN chunks’). When

a video chunk is downloaded, it adds the chunk to the

playback buffer. It then computes the QoE that reflects

DNN-based quality enhancement, using the (effective)

bitrate utility of each chunk and the rebuffing time. Note,

the simulator performs neither actual video downloads

nor DNN inferences. Thus, it reduces the training time by

97.12% compared to real-time emulation.

Component Lines of code (LoC) Changed

DASH video player 19K lines of JavaScript 8.8% (1763)

Content-aware DNN 6.3K lines of Python - (6.3K)

Integrated ABR algorithm 5.5K lines of Python - (5.5K)

Table 4: NAS implementation (Lines of Code)
<DNN>

<Representation quality=“low”>
<SegmentTemplate

DNN=“$RepresentationQuality$/$Number$” 
startNumber=“1” endNumber=“5”/>

</Representation>

</DNN>

Figure 5: NAS manifest file structure

6 Implementation
We implement NAS client by extending a DASH video

player. Both the server-side (training) and client-side

(inference) DNN processing are implemented using Py-

torch [59]. Table 4 shows the lines of code (LoC) for each

component.

NAS client (DASH video player). To implement NAS

client, we modify dash.js [4] (version 2.4), a reference im-

plementation of MPEG DASH client written in JavaScript.

We run the integrated ABR and content-aware DNNs as

separate processes. dash.js is configured to fetch the

ABR decisions and quality enhanced chunks through

inter-process communication. We add DNN metadata

on a manifest file as shown in Figure 5. The quality
attribute indicates the DNN quality level. The DNN at-

tribute of SegmentTemplate is used to create the

chunk URL, and startNumber and endNumber indi-

cate the chunk index range. In addition, the manifest file

includes the number of layers and the number of channels

for each DNN.

Training content-aware DNNs. We implement the scal-

able super-resolution DNN using Pytorch. For training

the DNN model, we use input image patches of size 41x41

pixels by randomly cropping the low-resolution images

(e.g., 240p, 360p, 480p, 720p) and run the popular ADAM

algorithm [46] to optimize DNN parameters. The mini-

batch size, weight decaying parameter, and learning rate

are set to 64, 10−3, and 10−4, respectively. We initialize

the DNN model using parameters of the generic model

(§4.1). We then fine-tune it over 100 mini-batch updates

per minute of video to generate a content-aware DNN.

Finally, we round off its parameters from single-precision

(32-bit) to half-precision (16-bit), which halves the DNN

size while introducing minimal performance degradation

(virtually no difference in SSIM).

Training integrated ABR. We implement our integrated

ABR extending Pensieve’s implementation [8]. The initial

learning rates of actor/critic networks are set to 10−4 and
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QoE type Bitrate utility (q(R)) Rebuffer penalty (μ)

QoElin R 4.3

QoElog log(R/Rmin) 2.66

QoEhd

0.4→1, 0.8→2, 1.2→3

2.4→12, 4.8→15
8

Table 5: QoE metrics used for evaluation

10−3, respectively. The entropy weight is initialized as

2. We iterate training over 60,000 epochs in which we

decay the entropy weight from 2 to 0.055 exponentially

over every epoch. Finally, we select the ABR network

that delivers the highest QoE for our training traces.

7 Evaluation
We evaluate NAS by answering the following questions.

◦ How does NAS perform compared to its baseline

competitors, and what is the training cost?

◦ How does each design component of NAS contribute

to the overall performance?

◦ Does NAS effectively adapt to heterogeneous de-

vices and temporal variance in client’s computing

power?

◦ What is the end-to-end processing latency and re-

source usage of NAS?

7.1 Methodology
Videos. We use videos from popular channels on Youtube.

For each of the nine Youtube channel categories, we select

three popular channels in the order of appearance. We

then pick the most popular video from each channel that

supports 1080p quality and whose length is longer than 5

minutes—the number of views of 27 video clips ranges

from 7M to 737M. Finally, we download 1080p videos

and produce multi-bitrate videos following the Youtube

and DASH recommendations [3,13]: Each 1080p video is

re-encoded using the H.264 codec [11] in which GOP (or

chunk size), frame rate, and bitrates are respectively set to

4 seconds, 24 fps and {400, 800, 1200, 2400, 4800}Kbps

(which represent for {240, 360, 480, 720, 1080}p resolu-

tion videos). Unless otherwise noted, we use the entire

video for training and use the first 5 minutes for playback.

Training over the entire video ensures that NAS delivers

consistent quality enhancement over the entire video.

Network traces. We use a real bandwidth dataset consist-

ing of 508 throughput traces from Norway’s 3G network

(2010-2011) [60] and 421 traces from U.S. broadband

(2016) [9], compiled by the Pensieve author [8]. We filter

out the traces that consistently experience low bandwidth

(< 400 Kbps) for an extended time (≥100 seconds). The

resulting average throughput ranges from 0.38 Mbps to

4.69 Mbp, and the mean and median are 1.31 Mbps and

1.09 Mbps, respectively. Each trace spans 320 seconds,

and we loop the trace until a video is completely down-

loaded. We use randomly selected 80 % of our traces for

training and the remaining 20 % for testing.

Baseline. We compare NAS against the following state-

of-the-art bitrate adaptation that does not utilize client

computation.

◦ Pensieve [52] uses deep reinforcement learning to

maximize QoE.

◦ RobustMPC [77] uses playback buffer occupancy

and throughput predictions over next five chunks to

select the bitrate that maximizes QoE. We use the

version reproduced by the authors of Pensieve [8].

◦ BOLA [66] uses Lyapunov optimization based on

playback buffer occupancy. We use the BOLA ver-

sion implemented in dash.js, which is a Javascript-

based reference implementation of a MPEG-DASH

player [4].

QoE metrics. We use three types QoE metrics, compiled

by MPC and Pensieve, whose the bitrate utility function,

q(Rn), and rebuffering penalty constant, μ of Equation 1,

differ as summarized in Table 5.

◦ QoElin uses a linear bitrate utility.

◦ QoElog uses a logarithmic bitrate utility function

that represents its decreasing marginal utility.

◦ QoEhd heavily favors high-definition (HD) video

(720p and 1080p) over non-HD.

Experimental settings. We run our dash.js implemen-

tation on a Chromium Browser (version 65) to stream

MPEG-DASH videos. We use six GPU models from

Nvidia’s desktop GPU product line listed in Table 1. Un-

less otherwise noted, the default client-side GPU is Nvidia

Titan Xp. In our setting, the content-aware DNN and the

ABR network run at the client as separate processes. To

emulate the network conditions from the network traces,

we use Mahimahi [55].

We use two experiment settings. To evaluate NAS

client on all six GPUs, we have a local testbed. To

scale training and testing, we use Google Cloud Plat-

form. Training is done using GPU instances equipped

with Nvidia’s server-class Tesla P100 GPU. However,

Google Cloud Platform does not have desktop class GPUs,

while we need to scale client-side streaming experiments

to 18 hours of network traces x 27 video clips x 4 types of

ABR x 3 types of QoE, totaling 5,832 hours of streaming

time. Thus, we take quality and latency measurements

of content-aware DNNs using the local testbed on each

GPU device for each video. We then emulate the network

condition between NAS server and client once for each

network trace and apply the effect of the quality enhance-

ment and latency of content-aware DNNs. We confirm

the network-emulated, DNN-simulated clients produce
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Figure 6: Normalized QoE comparison of video clips from the nine content categories of YouTube.
(1: Beauty, 2: Comedy, 3: Cook, 4: Entertainment, 5: Game, 6: Music, 7: News, 8: Sports, 9: Technology)
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Figure 7: Cumulative distribution of QoE for ‘Sports’ content category
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Figure 8: QoElin breakdown
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the same QoE as real clients of our local testbed using a

fraction of test data.

7.2 NAS vs. Existing Video Delivery
QoE improvement. Figure 6 shows the average QoE

of video clips across the nine content categories. The

error bars indicate one standard deviation from the av-

erage. NAS delivers the highest QoE across all content

categories over all three QoE metrics. The result shows

significant improvement over prior work. NAS consis-

tently outperforms Pensieve by a large margin across all

QoE metrics: QoElin (43.08% better), QoElog (36.26%

better), and QoEhd (42.57% better). With QoElin, NAS

outperforms Pensieve 43.08% on average, whereas Pen-

sieve achieves a 19.31% improvement over RobustMPC

(R-MPC). Compared to BOLA, NAS achieves 92.28%

improvement in QoElin. The QoE improvement varies

across content types from 21.89% (1: ‘Beauty’) to 76.04%

(6: ‘Music’) over Pensieve because many factors, such as

the scene complexity, compression artifacts, and temporal

redundancy, affect the DNN performance.

Figure 7 shows the cumulative distribution of QoE

over our test traces. It shows the ‘Sports’ content cat-

egory which shows medium gain among all categories.

NAS delivers benefit across all network conditions. NAS

improves the median QoElin by 58.55% over Pensieve.

Note, Pensieve mainly delivers its QoE gain over Ro-

bustMPC by reducing rebuffering at the cost of bitrate

utility. In contrast, NAS does not exhibit such tradeoff

because it uses client computation. Other content (not

shown) displays a similar trend. Finally, Figure 8 shows a

breakdown of QoE into bitrate utility, rebuffering penalty,

and the smoothness penalty. NAS benefits the most from

the bitrate utility due to the DNN-based quality enhance-

ment.

Bandwidth savings. Despite the DNN transfer overhead,

NAS requires less bandwidth in delivering the same QoE

level. To demonstrate this, we create a hypothetical setting

using the chunk-level simulator (§5.3) where NAS clients

receive a fraction of bandwidth that Pensieve clients re-

ceive including the DNN transfer overhead. We adjust the

fraction and empirically determine the fraction that deliv-
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Figure 13: Scalable DNN vs. Full DNN

ers the same QoE. We assume NAS clients download the

largest DNN (‘Ultra-high’) model for every five-minute

video. Figure 9 shows the average bandwidth usage of

Pensieve and NAS. On average across all videos, NAS re-

quires 17.13% less bandwidth than Pensieve to deliver the

same quality. The savings vary across content between

10.69% and 26.90%. This demonstrates the benefit of

using a DNN outweighs the overhead of transferring the

DNN.

Cost-benefit analysis (server-side). We now quantify

the overall server-side cost in using a NAS content deliv-

ery network. While NAS servers use less bandwidth to

deliver the same quality, they must train content-aware

DNNs and the integrated ABR network. We quantify the

computation and bandwidth cost of the CDN servers. The

training time for the integrated ABR is only 10.92 hours

on a CPU. Because it is a one-time cost amortized across

all video streams, the additional cost is negligible. In con-

trast, the content-aware DNNs must be trained for each

video. The total training time (across multiple DNNs) per

minute of video is 10 minutes.

For a Google cloud instance with 8 vCPUs, 32 GB

RAM, and a Nvidia P100 GPU, this translates to $0.23 per

minute of video. For bandwidth, Amazon CDN instance

charges at most 0.085 $/GB. The price per bandwidth

becomes cheaper as one uses more bandwidth. Using

these as reference, we compute the total video delivery

cost a function of cumulative viewing time per minute of

video. Figure 10 shows the cost comparison for NAS and

Pensieve. As before, we assume each user watches a video

clip for five minutes (i.e., DNNs are transferred every five

minutes of viewing). This is a conservative estimate given

the popularity of binge-watching [5]. NAS pays the up-

front cost of computation, but as the cumulative viewing

time increases, it is amortized. Note, NAS uses 17.13%

less bandwidth to deliver the same user QoE. Thus, when

the cumulative viewing reaches 30 hours (per minute

of video in the system), NAS CDN recoups the initial

investment.

7.3 Component-wise Analysis
We evaluate how each design component contributes to

the quality improvement.

Content-awareness. Figure 11 compares video qual-

ity of content-aware DNN (awDNN), a content-agnostic

DNN (agDNN) trained on standard benchmark images

(NTIRE 2017 dataset [19]), and the original 240p video

we use as input upscaled by the bicubic interpolation.

We measure the video quality both in PSNR [35] and

SSIM [73] in which PSNR represents the average mean

square error between two images in logarithmic decibel

scale. Content-aware DNN delivers consistent improve-

ment whereas content-agnostic DNNs even degrades the

quality in some cases with respect to the PNSR measure

(content type: 6) and the SSIM measure (type: 1,2,4,5,6).

This confirms our rationale for using DNN’s training ac-

curacy.

Scalable DNN. Figure 13 demonstrates the benefit of uti-

lizing a partial DNN. We compare Pensieve, NAS, and

a version of NAS (NAS-FULL) that does not utilize par-

tial DNN downloads. Specifically, Figure 13(a) shows

the cumulative distribution of QoElin before the average

full DNN download time (47.82 seconds). As soon as a

partial DNN is downloaded (22.16 seconds on average),

NAS enhances the quality. The result shows that this

delivers 17.54 % and 3.35 % QoE improvement in the

median and mean, respectively. Note, the QoE of NAS

and NAS-FULL becomes identical after downloading the

full DNN (t > 47.82 seconds) as shown in Figure 13(b).

Integrated ABR. The integrated ABR delivers benefit

during and after the DNN download. To demonstrate this,

we create two hypothetical settings using the chunk-level

simulator (§5.3).

First, we compare NAS with a version that uses a naive
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Model Name
Frames per second (FPS)

Low Medium High Ultra-high

GTX 1050 Ti 34.36 17.62 14.91 7.37

GTX 1060 45.27 30.05 25.96 13.17

GTX 1070 Ti 41.76 45.24 41.53 21.47

GTX 1080 53.82 52.86 38.95 21.46

GTX 1080 Ti 58.94 56.29 57.12 31.34
Titan Xp 52.99 51.72 52.22 33.58

Table 6: DNN processing speed on desktop GPUs
(Bold font indicates the selected quality level.)

DNN download strategy that downloads a DNN at a frac-

tion of the video bitrate chosen by Pensieve. Note, it does

not integrate the bitrate selection and DNN download de-

cision. We use two variants: one that aggressively down-

loads DNN at 100% of the video bitrate and the other that

uses only 10%. Both are configured to start downloading

the DNN when the playback buffer becomes larger than

15.42 seconds, which is the average time that NAS starts

to stream a DNN in our test traffic traces. Our result

shows NAS respectively outperforms the non-aggressive

and aggressive strawman by 16.36% and 9.13% with re-

spect to QoElin. Figure 12 shows the comparison of QoE

components. The non-aggressive version experiences

lower bitrate utility compared to NAS because the for-

mer downloads the DNN more slowly. In contrast, the

aggressive version increases the rebuffering penalty by

x2.5 which negatively affects the QoE.

Next, to evaluate the benefit of quality-enhancement

aware bitrate selection after the DNN is fully downloaded,

we compare NAS with a quality-enhancement unaware

ABR after the full DNN download. Figure 14(a) shows

the average QoE in this setting. We see that the quality-

enhancement aware ABR delivers a large gain for QoEhd

(28.96 %), whereas it offers minimal benefit to QoElin

(0.01 %) and slightly degrades on QoElog (-3.14 %). The

reason it delivers a large gain for QoEhd is because the

DNN-enhanced quality of 1.2 Mbps (480p) videos get

close to that of the original 2.4 Mbps (720p) video and

the marginal utility with respect to the increased quality is

far greater for QoEhd than any other QoE type, especially

between 1.2 Mbps to 2.4 Mbps (Table 5). The integrated
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ABR reflects this enhancement in the bitrate decisions to

download 480p much more often when using QoEhd as

shown in Figure 14(b).

7.4 Dynamic Adaptation to Computation
We demonstrate NAS’s ability to adapt to heterogeneous

clients and temporal variation in computing power.

Heterogeneous clients. We demonstrate NAS is able to

meet real-time constraints on six desktop GPUs shown in

Table 1. We run our DASH client on six clients each with

a different GPU model and measure their performance.

First, we measure the throughput of the DNN processing

engine, which includes decoding, DNN inference, and

re-encoding. Table 6 reports the minimum processing

speed across all input resolutions for each device. The

video playback rate is 30 frames per second. Clients per-

form a test-run when it receives a video manifest file. The

selected quality level (e.g., ‘Low’, ‘Medium’, ‘High’, or

‘Ultra-high’) is indicated in boldface. We see that each de-

vice selects one that meets the real-time constraint. Note

the processing time does not depend on video content.

Next, we measure the QoE of clients using four differ-

ent quality levels in our cloud setting. Figure 15 shows

the cumulative distribution of QoElin for each quality

level. All quality levels outperform Pensieve. The higher

the quality level DNN, the better the quality it delivers.

Note, even though DNNs of higher quality are larger in

size, they deliver incremental benefit over lower quality

DNNs.

In sum, the results indicate that NAS adapts to hetero-

geneous devices, and a device with higher computational

power receives greater benefit.
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Figure 17: Case study: A time-line of NAS client in operation (Video Source: [16])

Phase Processing time (sec)

Decode 0.28

Super resolution 3.69

Encode 0.91

Total 4.88

NAS’ parallel pipeline 3.76 (23.0% reduction)

Table 7: Video processing time per phase
Temporal variation. We evaluate client’s adaptation to

temporal variation in computing power in isolation. We

emulate the changes in available computing power by

varying the clock frequency of GPU (Titan Xp). We

change the GPU clock frequency at 10% granularity and

report the inference path used and its throughput. Fig-

ure 16 shows the result compared to a naive version that

only uses the full DNN (NAS-FULL) and the ideal line

that plots the normalized throughput (y-axis) of each in-

ference path at full clock cycle. x-axis shows the number

of optional blocks used for inference. The y-intercept

represents the computing requirement for the required

layers of DNN. We report the raw throughput for all re-

sults. It shows NAS adapts to the changing resource with

anytime prediction to the extent that the underlying DNN

supports and thus delivers real-time performance unlike

NAS-FULL that does not.

7.5 End-to-end Operation
NAS client in operation. We present an end-to-end op-

eration of our NAS client using a network trace from our

testset. We use a client with a Titan Xp GPU, running

on our local testbed. Figure 17 shows the time-line start-

ing from a video request made from our DASH client.

At t = 0.36 (sec), it downloads the video manifest and

test-runs the mock DNNs to select the DNN quality level.

The test-run finishes at t = 2. The video starts playing

at t = 2.03. At t = 17.64, the first DNN chunk is down-

loaded, and the minimal DNN initialized at t = 17.71. At

this time, the DNN processing begins, and video chunks

(6-7) in the playback buffer receive quality enhancement.

Subsequent video chunks are processed by the DNN as

they arrive. As new DNN chunks arrive, the DNNs are

incrementally updated. At t = 46.41, DNNs are fully

downloaded.

DNN processing time. We evaluate the DNN process-

ing latency of NAS client. For DNN processing, NAS

pipelines three processes, each of which respectively han-

dles decoding, super-resolution, and re-encoding. Ta-

ble 7 shows the processing time for each phase for a four-

second video chunk. We use GTX 1080 Ti for processing

‘Ultra-high’ quality DNN using a 30 fps, 240p video as

input. We re-encode the DNN’s output in H.264 using the

fastest option in ffmpeg [6]. This is because the compres-

sion factor is not important. The total processing time

when each phase is serialized is 4.88 seconds, whereas

our pipelined processing takes 3.76 seconds. Considering

super-resolution takes 3.69 seconds, the latency overhead

of the rest is minimal.

Finally, we measure the client’s GPU memory usage

for DNN processing. ‘Ultra-high’, ‘High’, ‘Medium’,

‘Low’ quality DNNs respectively use 3.57 GB, 3.12 GB,

3.05 GB, and 2.99 GB of GPU memory.

8 Conclusion
We present NAS, a video delivery system that utilizes

client computation to enhance the video quality. Unlike

existing video delivery that solely relies on the bandwidth

resource, NAS uses client-side computation powered by

deep neural networks (DNNs). NAS introduces new sys-

tem designs to address practical problems in realizing the

vision on top of DASH. Our evaluation over real videos on

real network traces shows NAS delivers improvement be-

tween 21.89–76.04% in user quality of experience (QoE)

over the current state of the art. Finally, the cost-benefit

analysis shows content distribution networks can actually

reduce the cost of video delivery while providing the same

or better QoE compared to the current state of the art.
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Abstract
Developing server applications that offload computation
to a NIC accelerator is complex and laborious. De-
velopers have to explore the design space, which in-
cludes semantic changes for different offloading strate-
gies, as well as variations on parallelization, program-
to-resource mapping, and communication strategies for
program components across devices.

We therefore design FLOEM — a language, compiler,
and runtime — for programming NIC-accelerated appli-
cations. FLOEM enables offload design exploration by
providing programming abstractions to assign computa-
tion to hardware resources; control mapping of logical
queues to physical queues; access fields of a packet and
its metadata without manually marshaling a packet; use
a NIC to memoize expensive computation; and interface
with an external application. The compiler infers which
data must be transferred between the CPU and NIC and
generates a complete cache implementation, while the
runtime transparently optimizes DMA throughput. We
use FLOEM to explore NIC-offloading designs of real-
world applications, including a key-value store and a dis-
tributed real-time data analytics system; improve their
throughput by 1.3–3.6× and by 75–96%, respectively,
over a CPU-only implementation.

1 Introduction

Network bandwidth is growing much faster than CPU
performance [5], forcing many data-center applications
to sacrifice application cycles for packet processing [9,
23, 37]. As a result, system developers have started to
offload computation to programmable network interface
controllers (NICs), dramatically improving the perfor-
mance and energy efficiency of many data-center appli-
cations, such as search engines, key-value stores, real-
time data analytics, and intrusion detection [12, 23, 26,
40]. These NICs have a variety of hardware architec-
tures including FPGAs [12, 33, 48], specialized flow

engines [6], and more general-purpose network proces-
sors [3, 32].

However, implementing data-center network applica-
tions in a combined CPU-NIC environment is difficult.
It often requires many design-implement-test iterations
before the accelerated application can outperform its
CPU-only version. These iterations involve non-trivial
changes: programmers may have to move portions of ap-
plication code across the CPU-NIC boundary and manu-
ally refactor the program.

We propose FLOEM, a programming system for
NIC-accelerated applications. Our current prototype
targets a platform with the Cavium LiquidIO [3], a
general-purpose programmable NIC that executes C
code. FLOEM is based on a data-flow language that is
natural for expressing packet processing logic and map-
ping elements (modular program components) onto hard-
ware devices. The language lets developers easily move
an element onto a CPU or a NIC to explore alternative
offloading designs, as well as parallelize program com-
ponents. Application developers can define a FLOEM el-
ement as a Python class that contains a C implementa-
tion of the element. To aid programming productivity,
we provide a library of common elements.

Further examining how developers offload data-center
applications to NICs, we have identified the following
commonly encountered problems, which led us to pro-
pose abstractions and mechanisms amenable to a data-
flow programming model that can solve these problems.

• Different offloading choices require different commu-
nication strategies. We observe that these strategies
can be expressed by a mapping of logical communi-
cation queues to physical queues, so we propose this
mapping as a part of our language.

• Moving computation across the CPU-NIC boundary
may change which parts of a packet must be sent across
the boundary. Marshaling the necessary packet fields
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is tedious and error-prone. Thus, we propose per-
packet state — an abstraction that allows a packet and
its metadata to be accessed anywhere in the program
— while FLOEM automatically transfers only required
packet parts between a NIC and CPU.

• Using an in-network processor to cache application
state or computation is a common pattern for accelerat-
ing data-center applications. However, it is non-trivial
to implement a cache that guarantees the consistency
of data between a CPU and NIC. We propose a caching
construct for memoizing a program region, relieving
programmers from having to implement a complete
cache protocol.

• Developers often want to offload an existing applica-
tion without rewriting the code into a new language.
We let programmers embed C code in elements and
allow a legacy application to interact with FLOEM el-
ements via a simple function call, executing those ele-
ments in the host process of the legacy application.

We demonstrate that without significant programming
effort, FLOEM can help offload parts of real-world ap-
plications — a key-value store and a real-time analytics
system — improving their throughput by 1.3–3.6× and
75–96%, respectively, over a CPU-only configuration.

In summary, this paper makes the following contribu-
tions:

• Identifying challenges in designing of NIC-accelerated
data-center applications (Section 2)

• Introducing programming abstractions to address
these challenges (Sections 3 and 4)

• Developing a programming system that enables ex-
ploration of alternative offloading designs, including
a compiler (Section 5) and a runtime (Section 6) for
efficient data transfer between a CPU and NIC

2 Design Goals and Rationale

We design FLOEM to help programmers explore how
to offload their server network applications to a NIC.
The applications that benefit from FLOEM have compu-
tations that may be more efficient to run on the NIC than
on the CPU because of the NIC’s hardware-accelerated
functions, parallelism, or reduced latency when eliminat-
ing the CPU from fast-path processing. These computa-
tions include packet filtering (e.g., format validation and
classification), packet transformation (e.g., serialization,
compression, and encryption), packet steering (e.g., load
balancing to CPU cores), packet generation, and caching
of application state. This list is not exhaustive. Ulti-
mately, we would like FLOEM to help developers dis-
cover new ways to accelerate their applications.

The main challenge when designing programming ab-
stractions is to realize a small number of constructs that
let programmers express a large variety of implemen-
tation choices. This requires an understanding of com-
mon challenges within the application domain. We build
FLOEM to meet the following design goals.

Goal 1: Expressing Packet Processing
As described above, computations suitable for NIC of-
floading are largely packet processing. Programming ab-
stractions and systems for packet processing have long
been studied, and the Click modular router [34] is widely
used for this task. We adopt its data-flow model to ease
the development of packet processing logic (Section 3).

Goal 2: Exploring Offload Designs
A data-flow model is suitable for mapping computations
to desired hardware devices, as we have seen with many
Click extensions that support offloading [24, 27, 46].
Similarly, FLOEM programmers implement functionality
once, as a data-flow program, after which they can use
code annotations to assign elements to desired devices
and to parallelize the program. However, trivially adopt-
ing a data-flow model is insufficient to meet this design
goal. By inspecting the design of a key-value store and
a TCP stack offloaded with FlexNIC [23], we discover
several challenges that shape the design of our language.

Logical-to-physical queue mapping (Section 4.1).
One major part of designing an offloading strategy is
managing the transfer of data between the host and ac-
celerator. Various offloading strategies require different
communication strategies, such as how to steer packets,
how to share communication resources among different
types of messages, and whether to impose an order of
messages over a communication channel.

By examining hand-optimized offloads, we find that
developers typically express communication in terms of
logical queues and then manually implement them us-
ing the provided hardware communication mechanisms.
A logical queue handles messages sent from one element
to another, while a hardware communication channel im-
plements one physical queue. As part of an offload im-
plementation, developers have to make various mapping
choices among logical and physical queues. The right
mapping depends on the workload and hardware config-
uration and is typically realized via trial-and-error.

To aid this task, we design a queue construct with an
explicit logical-to-physical queue mapping that can be
controlled via parameters and by changing element con-
nections. Existing frameworks [24, 27, 46] do not sup-
port this mapping. To control the number of physical
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queues in these frameworks, programmers have to ex-
plicitly: (1) create more logical queues by demultiplex-
ing the flow into multiple branches and making more el-
ements and connections, or (2) merge logical queues by
multiplexing multiple branches into one.

Per-packet state (Section 4.2). In a well-optimized
program, developers meticulously construct a message
by copying only the necessary parts of a packet to send
between a CPU and NIC; this minimizes the amount of
data transferred over PCIe. When developers move com-
putation between the CPU and NIC, they may need to re-
think which fields must be sent, slowing the exploration
of alternative offloading designs.

Nevertheless, no existing system performs this opti-
mization automatically. ClickNP [27] sends an entire
packet, while NBA [24] and Snap [46] rely on develop-
ers to annotate each element with a packet’s region of
interest, specified as numeric offsets in a packet buffer.
We design FLOEM to automatically infer what data to
send across the CPU-NIC boundary and offer the per-
packet state abstraction as if an entire packet could be ac-
cessed anywhere in the program. This abstraction resem-
bles P4’s per-packet metadata [10] and RPC IDLs (e.g.,
XDR [14] and Google’s protobuf [18]). However, P4 al-
lows per-packet metadata to be carried across multiple
processing pipelines only within a single device, while
RPC IDLs generate marshaling code based on interface
descriptions, rather than automatically inferring.

Caching construct (Section 4.3). Caching application
state or memoizing computation in an in-network pro-
cessor is a common strategy to accelerate server applica-
tions [15, 22, 26, 30]. While the abstractions we have so
far are sufficient to express this strategy, implementing a
cache protocol still requires a significant effort to guar-
antee both data consistency and high performance when
messages between a CPU and NIC may arrive out-of-
order. Thus, we introduce a caching construct, a general
abstraction for caching that integrates well with the data-
flow model. This construct provides a full cache proto-
col that maintains data consistency between the CPU and
NIC. Unlike FLOEM, existing systems support caching
only of flow state [6, 27] — which typically does not re-
quire maintaining consistency between the CPU and NIC
— but not caching of application state.

Goal 3: Integrating with Existing Applica-
tions

Prior frameworks were designed exclusively to imple-
ment network functions and packet processing [13, 16,
24, 27, 34, 36, 46], where computation is mostly state-
less and simpler than in our target domain of server ap-

plications. While parts of typical server applications can
be built by composing pre-defined elements, many parts
cannot. In our target domain, developers often want
to offload an application by reusing existing application
code instead of writing code from scratch. Besides port-
ing existing applications, some developers may prefer to
implement most of their applications in C because a data-
flow programming model may not be ideal for the full
implementation of complex applications.

FLOEM lets developers combine custom and stock el-
ements, embed C code in data-flow elements, and inte-
grate a FLOEM program with an external program. As a
result, developers can port only program parts that may
benefit from offloading into the data-flow model. The
impedance mismatch between the data-flow model and
the external program’s model (e.g., event-driven or im-
perative) raises the issue of interoperability. Our solution
builds on the queue construct to decouple the internal
part from the interface part, which appears to the external
program as a function (Section 4.4). The external pro-
gram can execute the function using its own thread to (1)
retrieve a message from the queue and process it through
elements in the interface part, or (2) process a message
through the interface part and push it to the queue.

3 Core Abstractions

We use a key-value store application as our running ex-
ample. Figure 1 displays several offloading designs for
the applicaton: CPU-only (Figure 1a), split CPU-NIC
(Figure 1b), and NIC as cache (Figure 1c). Figure 1d
illustrates how to create an interface that an external pro-
gram can use to interact with FLOEM. We show how
to implement these offloads using our programming ab-
stractions in this and the next sections.

Elements. FLOEM programs are composed of ele-
ments. Upon receiving inputs from all its input ports, an
element processes the inputs and emits outputs to its out-
put ports. The listing below illustrates how to create the
classify element in our key-value store example, which
classifies incoming requests by type (GET or SET).
class Classify(Element ): # Define an element class

def configure(self):
self.inp = Input(pointer(kvs_message ))
self.get = Output(pointer(kvs_message ))
self.set = Output(pointer(kvs_message ))

def impl(self):
self.run_c(r’’’ // C code

kvs_message *p = inp();
uint8_t cmd = p->mcr.request.opcode;

output switch { // switch --> emit one output port
case (cmd == PROTOCOL_BINARY_CMD_GET ): get(p);
case (cmd == PROTOCOL_BINARY_CMD_SET ): set(p);

}
’’’)

classify = Classify () # Instantiate an element
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(a) No offloading (b) CPU-NIC split
(see Section 4.1)

(c) NIC as cache
(see Section 4.3)

(d) Interface to external program
(see Section 4.4)

Figure 1: Several offloading strategies of a key-value store implemented in FLOEM

We specify input and output ports in the configure

method. We express the logic for processing a single
packet in the impl method by calling run_c, which ac-
cepts C code with special syntax to retrieve value(s) from
an input port and emit value(s) to an output port.

To create the program shown in Figure 1a, we connect
elements as follows:
from_net >> hash >> classify
classify.get >> hasht_get >> get_resp >> to_net
classify.set >> item >> hasht_put >> set_resp >> to_net

Note that .get and .set refer to the output ports of
classify.

Queues. Instead of pushing data to the next element
instantaneously, a queue can store data until the next el-
ement dequeues it. A queue can connect and send data
between elements on both different devices (e.g., CPU
and NIC) and on the same device.

Shared state. FLOEM provides a shared state abstrac-
tion that lets multiple elements share a set of variables
that are persistent across packets. For example, elements
hasht_get and hasht_put share the same state contain-
ing a hash table. FLOEM normally prohibits elements on
different devices from sharing the same state. Instead,
programmers must use message passing across queues to
share information between those elements. Shared state
lets programmers express complex stateful applications.

Segmented execution model. A segment is a set of
connected elements that begins with from a source ele-
ment, which is either a from_net element or a queue, and
ends with leaf elements (elements with no output ports)
or queues. A queue sends packets between segments.

Our execution model is run-to-completion within a seg-
ment. A source element processes a packet and pushes it
to subsequent elements until the packet reaches the end
of the segment. When the entire segment finishes pro-
cessing a packet, it starts on the next one. By default,
one thread on a CPU executes each segment, so elements
within a segment run sequentially with respect to their
data-flow dependencies.

The program in Figure 1a has a single segment, while
the program in Figure 1b has three. Note that not all
elements in a segment must be executed for each packet.
In our example, either hasht_get or hasht_put (not both)
will be executed depending on the port where classify

pushes a packet to.

Offloading and parallelizing. A segment is a unit of
code migration and parallelization. Programmers map
each segment to a specific device by supplying the
device parameter. They can also assign multiple threads
to run the same segment to process different packets in
parallel using the cores parameter. Programmers cannot
assign a segment to run on both the NIC and CPU in par-
allel; the current workaround is to create two identical
segments, one for NIC and another for CPU. Figure 2
displays a FLOEM program that implements a sharded
key-value store with the offloading strategy in Figure 1b.

4 Advanced Offload Abstractions

This section presents programming abstractions that we
propose to mitigate recurring programming challenges
encounters when exploring different ways to offload ap-
plications to a NIC.
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1 Q1 = Queue(channel=2, inst =3)
2 Q2 = Queue(channel=2, inst =3)
3

4 class P1(Segment ):
5 def impl(self):
6 from_net >> hash >> queue_id >> classify
7 classify.get >> Q1.enq[0] # channel 0
8 classify.set >> create_item >> Q1.enq[1] # chnl 1
9

10 class P2(Segment ):
11 def impl(self):
12 self.core_id >> Q1.qid # use core id as queue id
13 Q1.deq[0] >> hasht_get >> Q2.enq[0]
14 Q1.deq[1] >> hasht_put >> Q2.enq[1]
15

16 class P3(Segment ):
17 def impl(self):
18 scheduler >> Q2.qid # scheduler produces queue id
19 Q2.deq[0] >> get_resp >> to_net
20 Q2.deq[1] >> set_resp >> to_net
21

22 P1(device=NIC , cores =[0 ,1]) # run on core id 0,1
23 P2(device=CPU , cores =[0,1,2])
24 P3(device=NIC , cores =[2 ,3])

Figure 2: FLOEM program implementing a sharded key-
value store with the CPU-NIC split strategy of Figure 1b

4.1 Logical-to-Physical Queue Mapping
To achieve correctness and maximize performance,
FLOEM gives programmers control over how the
compiler instantiates logical queues for a par-
ticular offloading strategy. The queue construct
Queue(channel=n, inst=m) represents n logical queues
(n channels) using m physical queues (m instances). For
example, Q1 on line 1 of Figure 2 represents two logical
queues — displayed as red channels in Figure 1b —
using three physical queues. Different mappings of log-
ical to physical queues lead to different communication
strategies, as elaborated below.

Packet steering. Developers can easily implement
packet steering by creating a queue with multiple physi-
cal instances. For example, in the split CPU-NIC version
of the key-value store (Figure 1b), we want to shard the
key-value store so that different CPU threads can han-
dle different subsets of keys to avoid lock contention and
CPU cache misses. As a result, we want to represent
queue Q1 by multiple physical queues, with each CPU
thread having a dedicated physical queue to handle re-
quests for its shard. The NIC then steers a packet to the
correct physical queue based on its key. FlexNIC [23]
shows that such key-based steering improves throughput
of the key-value store application by 30–45%.

To implement this strategy, we create Q1 with multiple
physical queues (line 1 in Figure 2). Steering a packet
is controlled by assigning the target queue instance ID
to the qid field of per-packet state in the C code of any
element that precedes the queue. In this example, we set
state.qid = hash(pkt.key) % 3, where state refers to
per-packet state.

Client NIC thread CPU thread

set (k1, v1)

confirm k1 set k1

set (k2, v2)

confirm k2 set k2
evict (k1,v1)

set k1

get k1

get k1

miss

miss
no k1

no k1

Figure 3: Inconsistency of a write-back cache if mes-
sages from NIC to CPU are reordered

Resource sharing. Developers may want to map mul-
tiple logical queues to the same physical queue for re-
source sharing, or vice versa for resource isolation. For
example, they may want to consolidate infrequently used
logical queues into one physical queue to obtain a larger
batch of messages per PCIe transfer. In the sharded key-
value store, we want to use the same physical queue to
transport both the GET and SET requests of one shard
so that the receiver’s side processes these requests at the
same rate as the sender’s. To implement this, we use Q1 to
represent two logical queues (line 1 in Figure 2): one for
GET and one for SET. Different degrees of sharing can
vary application performance by up to 16% (Section 7.2).

Packet ordering. For correctness, developers may
want to preserve the order of packets being processed
from one device to another. For example, an alternative
way to offload the key-value store is to use the NIC as
a key-value cache, only forwarding misses to the CPU.
To ensure consistency of the write-back cache, we must
enforce that the CPU handles evictions and misses of the
same key in the same order as the cache. Figure 3 shows
an inconsistent outcome when an eviction and a miss are
reordered. To avoid this problem, developers can map
logical queues for evictions and misses to the same phys-
ical queue, ensuring in-order delivery.

The ability to freely map logical to physical queues
lets programmers express different communication
strategies with minimal effort in a declarative fashion. A
queue can also be parameterized by whether its enqueu-
ing process is lossless or lossy, where a lossless queue
is blocking. Note that programmers are responsible for
correctly handling multiple blocking queues.

4.2 Per-Packet State
FLOEM provides per-packet state, an abstraction that al-
lows access to a packet and its metadata from any el-
ement without explicitly passing the state. To use this
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abstraction, programmers define its format and refer to
it using the keyword state. For our key-value store, we
define the format of the per-packet state as follows:
class MyState(State ): # define fields in a state
hash = Field(uint32_t)
pkt = Field(pointer(kvs_message ))
key = Field(pointer(void), size=’state.pkt ->keylen ’)

The provided element from_net creates a per-packet state
and stores a packet pointer to state.pkt so that sub-
sequent elements can access the packet fields, such as
state.pkt->keylen. The element hash computes the hash
value of a packet’s key and stores it in state.hash, which
is used later by element hasht_get. To handle a variable-
size field, FLOEM requires programmers to specify its
size, as with the key field above.

4.3 Caching Construct
With only minimal changes to a program, FLOEM of-
fers developers a high-level caching construct for explor-
ing caching on the NIC and storing outputs of expensive
computation to be used in the future. First, program-
mers instantiate the caching construct Cache to create
an instance of a cache storage and elements get_start,
get_end, set_start, and set_end. Programmers then in-
sert get_start right before the get query begins, and
get_end right after the get query ends; a get query is
computation we want to memoize. Programmers must
also specify what to store as a key (input) and a value
(output) in the cache; this can be done by assigning
state.key and state.keylen (key and keylen fields of
per-packet state) before the element get_start, and as-
signing state.val and state.vallen before get_end. If
the application has a corresponding set query, elements
set_start and set_end must be inserted, and those fields
of the per-packet state must be assigned accordingly for
the set query; a set query mutates application state and
must be executed when a cache eviction occurs. Finally,
programmers can use parameters to configure the cache
with the desired table size, cache policy (either write-
through or write-back), and a write-miss policy (either
write-allocate or no-write-allocate).

For our key-value store example, we can use the NIC
to cache outputs from hash table get operations by just
inserting the caching elements, as shown in Figure 1c.
Notice that queues Q1 and Q2 are parts of the expensive
queries (between get_start and get_end and between
set_start and set_end) that can be avoided if outputs
are in the cache.

Requirements. The get and set query regions cannot
contain any callable segment (see Section 4.4). Elements
get_start, get_end, set_start, and set_end must be on
the same device. Paths between get_start and get_end,
and between set_start and set_end, must pass through

the same set of queues (e.g., Figure 1c) to ensure the in-
order delivery of misses and evictions of the same key.
Multiple caches can be used as long as cached regions
are not overlapped. The compiler returns an error if a
program violates these requirements.

4.4 Interfacing with External Code
To help developers offload parts of existing programs
to run on a NIC, we let them: (1) embed C code in
elements, (2) implement elements that call external C
functions available in linkable object files, and (3) ex-
pose segments of FLOEM elements as functions callable
from any C program. The first mechanism is the stan-
dard way to implement an element. The second simply
links FLOEM-generated C code with object files. For the
last mechanism, we introduce a callable segment, which
contains elements between a queue and an endpoint, or
vice versa. An endpoint element may send/receive a
value to/from an external program through its output/in-
put port. A callable segment is exposed as a function
that can be called by an external program to execute the
elements in a segment.

In Figure 1d, we implement simple computation, such
as hashing and response packet construction, in FLOEM,
but we leave complex functionality, including the hash
table and item allocation, in an external C program. The
external program interacts with the FLOEM program to
retrieve a packet, send a get response, and send a set re-
sponse via function obtain_pkt, get_send, and set_send,
respectively. The following listing defines the function
obtain_pkt using a callable segment. This function takes
a physical queue ID as input, pulls the next entry from the
queue with the given ID, executes element retrieve_pkt
on the entry, and returns the output from retrieve_pkt as
the function’s return value.
class ObtainPkt(CallableSegment ):

def configure(self):
self.inp = Input(int) # argument is int
self.out = Output(q_entry) # return value is q_entry

def impl(self):
self.inp >> Q1.qid
Q1.deq >> retrieve_pkt >> self.out

ObtainPkt(name=’obtain_pkt ’)

The external program running on the CPU calls
obtain_pkt to retrieve a packet that has been processed
by element hash on the NIC and pushed into queue Q1.

5 The FLOEM Compiler

The FLOEM compiler contains three primary compo-
nents that: (1) translate a data-flow program with el-
ements into C programs, (2) infer minimal data trans-
fers across queues, and (3) expand the high-level caching
construct into primitive elements, as depicted in Figure 4.
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Figure 4: FLOEM system architecture

5.1 Data-Flow to C
FLOEM compiles a data-flow program into two exe-
cutable C programs: one running on the CPU and the
other on the NIC. Our code generator compiles a seg-
ment of primitive elements into a chain of function calls,
where one element corresponds to a function. The com-
piler replaces an output port invocation with a function
call to the next element connected to that output port.
The calling element passes an output value to the next
element as an argument to the function call. Earlier com-
piler passes transform queues (Section 5.2) and caching
constructs (Section 5.3) into primitive elements.

5.2 Inferred Data Transfer
In this section, we explain how the FLOEM compiler in-
fers which fields of a packet and its metadata must be sent
across each queue, and how it transforms queues into a
set of primitive elements.

Liveness analysis. The compiler infers per-packet
state’s fields to send across each logical queue (each
queue’s channel) using a classical liveness analysis [7].
The analysis collects used and defined fields at each el-
ement and propagates information backward to compute
a live set at each element (i.e., a set of fields that are used
by the element’s successors). For each segment, the com-
piler also collects a use set of all fields that are accessed
in the segment.

Transformation. After completing the liveness analy-
sis, the compiler transforms each queue construct into
multiple primitive elements that implement enqueue and

(a) Before transformation (b) After transformation

Figure 5: The key-value store’s data-flow subgraph in the
proximity of queue Q1 from the split CPU-NIC version

dequeue operations. In the split CPU-NIC version of the
key-value store example, the compiler transforms queue
Q1 in Figure 5a into the elements in Figure 5b.

To enqueue an entry to a logical queue at a channel X,
we first create element fill_entry_X to reserve a space
in a physical queue specified by state.qid. We then
copy the live per-packet state’s fields at channel X into
the queue. To dequeue an entry, element dequeue_get

locates the next entry in a specified physical queue, clas-
sifies which channel the entry belongs to, and passes the
entry to the corresponding output port (i.e., demultiplex-
ing). Element save_entry_X allocates memory for the
per-packet state on the receiver’s side to store the use
fields and a pointer to the queue entry so that the fields
in the entry can be accessed later. Each save_entry_X is
connected to the element that was originally connected
to that particular queue channel. Finally, the compiler
inserts a dequeue_release element to release the queue
entry after its last use in the segment. These generated
elements utilize the built-in queue implementations de-
scribed in Section 6.

5.3 Cache Expansion

The compiler expands each high-level caching construct
into primitive elements that implement a cache policy us-
ing the expansion rules shown in Figure 6. Each node in
the figure corresponds to a subgraph of one or more ele-
ments. For a write-through cache without allocation on
write misses, the compiler expands the program graphs
that handle get and set queries in the left column into the
graphs in the middle column. For a write-back policy
with allocation on write misses, the resulting graphs are
shown in the right column. For get-only applications, we
skip the set expansion rule.

We apply various optimizations to reduce response
time. For example, when a new allocation causes an
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Figure 6: Cache expansion rules

eviction in a write-back cache, we write back the evicted
key asynchronously. Instead of waiting for the entire
set query to finish before executing after get (e.g.,
sending the response), we wait only until the local part
of set query (on a NIC) reaches a queue to the remote
part of set query (on a CPU). Once we successfully en-
queue the eviction, we immediately execute after get.

5.4 Supported Targets

We prototype FLOEM on a platform with a Cavium Liq-
uidIO NIC [3]. We use GCC and Cavium SDK [2] to
compile C programs generated by FLOEM to run on a
CPU in user mode and on a NIC, respectively. If a
FLOEM program contains an interface to an external C
program, the compiler generates a C object file that the
external application can link to in order to call the inter-
face functions.

Intrinsics, libraries, and system APIs of the two hard-
ware targets differ. To handle these differences, FLOEM
lets programmers supply different implementations of a
single element class to target x86 and Cavium via impl

and impl_cavium methods, respectively. If impl_cavium

is not implemented, the compiler refers to impl to gen-
erate code for both targets. To generate programs with
parallelism, FLOEM uses pthread on the CPU for multi-
ple segments and relies on the OS thread scheduler. On
the NIC, we directly use hardware threads and assign
each segment to a dedicated NIC core. Consequently, the
compiler prohibits creating more segments on the NIC
than the maximum number of cores (12 for LiquidIO).

6 PCIe I/O Communication

To efficiently communicate between the NIC and CPU
over PCIe, FLOEM provides high-performance, built-in
queue implementations, which rely on the queue syn-
chronization layer (sync layer) to efficiently synchronize
data between NIC and CPU. Figure 4 depicts how these
components interact with the rest of the system. Cur-
rently, we support only a one-way queue with fixed-size
entries, parameterized during compile-time.

6.1 Queue Synchronization Layer
Because DMA engines on the NIC are underpowered,
they must be managed carefully. If we implemented
the queue logic together with data synchronization, the
queue implementation would be extremely complicated
and difficult to troubleshoot. Hence, we decouple these
layers. The sync layer can then additionally be used
for other queue implementations, such as a queue with
variable-size entries.

Our sync layer provides the illusion that the NIC
writes directly to a circular buffer in host memory, where
one buffer represents one physical queue. The layer
keeps shadow copies of queues in local NIC memory,
asynchronously synchronizes these copies with master
copies in host memory, batches multiple DMA requests,
and overlaps DMA operations with other computation.

To use this layer, a queue implementation must: (1)
maintain a status flag in each entry to indicate its avail-
ability, and (2) provide basic queue information and
queue entry’s status checking functions. In turn, the sync
layer provides access_entry and access_done functions
to the queue implementation; the queue implementation
must call access_entry and access_done before and after
accessing/modifying any queue entry, respectively.

6.2 Maintaining Coherent Buffers
The queue synchronization layer relies on FLOEM’s NIC
runtime to maintain coherence between buffers on the
NIC and the CPU by taking advantage of the circular
access pattern of reads followed by writes. We do not
explicitly track a queue’s head and tail; instead, we use a
status flag in each entry to determine if an entry is filled
or empty. We choose this design to synchronize both
the queue entry’s content and status using one DMA op-
eration instead of two. Thus, the runtime continuously
checks the state of every queue entry and performs ac-
tions accordingly.

Typically, a queue entry on the NIC cycles through
invalid, reading, valid, modified, and writing states, as
shown in Figure 7. An invalid entry contains stale con-
tent and must be fetched from host memory. An asyn-
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Figure 7: Transitions of a queue entry’s status by a NIC
worker thread and a NIC runtime manager thread

chronous DMA read transitions an entry from invalid to
reading state. Once the read completes, and the entry is
NIC owned (indicated by the status flag), the entry tran-
sitions to valid state. It may transition back to invalid
if it is still CPU owned, for example, when the NIC at-
tempts to dequeue an entry that the CPU has not finished
enqueuing. The runtime uses the status checking func-
tions provided by the queue implementation to check an
entry’s status flag. The program running on the NIC can
access only valid entries; function access_entry returns
the pointer to an entry if it is in valid state; otherwise, it
returns NULL.

An entry transitions from valid to modified once the
queue implementation calls function access_done to in-
dicate that it is finished accessing that entry. An asyn-
chronous DMA write then transitions the entry to invalid
state, based on the assumption that the CPU side will
eventually modify it, and the NIC must read it from the
CPU. This completes a typical cycle of states through
which an entry passes.

Note that the CPU side does not need this sync layer or
track these states because, unlike the NIC, it does not
issue DMA operations.

6.3 I/O Batching
In the actual implementation, we do not track the state of
individual queue entries due to high overhead. Instead,
we use five pointers to divide a circular queue buffer into
five portions with the five states. When a pointer ad-
vances, we effectively change the states of a batch of en-
tries that the pointer has moved past. The runtime has a
dedicated routine to advance each pointer, and executes
these routines in round-robin fashion, overlapping DMA
read/write routines with other routines. To achieve DMA
batching, the DMA read routine issues a DMA read for
the next batch of entries instead of a single entry, as does
the DMA write routine. We use a configurable number
of dedicated NIC cores (manager threads) to execute the
runtime. Each core manages a disjoint subset of queues.

More details about our queue implementation and
queue synchronization layer beyond this section can be
found in Section 3.6 of the first author’s thesis [38].

7 Evaluation

We ran experiments on two small-scale clusters to eval-
uate the benefit of offloading on servers with different
generations of CPUs: 6-core Intel X5650 in our West-
mere cluster, and 12-core Intel E5-2680 v3 in our Sandy
Bridge cluster (more powerful). Each cluster had four
servers; two were equipped with Cavium LiquidIO NICs,
and the others had Intel X710 NICs. All NICs had two
10Gbps ports.

We evaluated CPU-only implementations on the
servers with the Intel X710 NICs, using DPDK [4] to
send and receive packets bypassing the OS networking
stack to minimize overheads. We used the servers with
the Cavium LiquidIO NICs to evaluate implementations
with NIC offloading. The Cavium LiquidIO has a 12-
core 1.20GHz cnMIPS64 processor, a set of on-chip/off-
chip accelerators (e.g., encryption/decryption engines),
and 4GB of on-board memory.

7.1 Programming Abstraction
We implemented in FLOEM two complex applications
(key-value store and real-time data analytics) and three
less complex network functions (encryption, flow classi-
fication, and network sequencer).

Hypothesis 1 FLOEM lets programmers easily explore
offload strategies to improve application performance.

The main purpose of this experiment is to demonstrate
that FLOEM makes it easier to explore alternative of-
floading designs, not to show when or how one should
or should not offload an application to a NIC.

For the complex applications, we started with a CPU-
only solution as a baseline by porting parts of an existing
C implementation into FLOEM. Then, we used FLOEM
to obtain a simple partition of the application between
the CPU and NIC for the first offload design. In both case
studies, we found that the first offloading attempt was un-
successful because an application’s actual performance
can greatly differ from a conceptual estimate. However,
we used FLOEM to redesign the offload strategy to obtain
a more intelligent and higher performing solution, with
minimal code changes, and achieved 1.3–3.6× higher
throughput than the CPU-only version.

For the less complex workloads, FLOEM let us quickly
determine whether we should dedicate a CPU core to
handle the workload or just use the NIC and save
CPU cycles for other applications. By merely chang-
ing FLOEM’s device mapping parameter, we found that
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it was reasonable to offload encryption and flow classifi-
cation to the NIC, but that the network sequencer should
be run on the CPU. The rest of this section describes the
applications in our experiment in greater detail.

Case Study: Key-Value Store

In this case study, we used one server to run the key-
value store and another to run a client generating work-
load, communicating via UDP. The workload consisted
of 100,000 key-value pairs of 32-byte keys and 64-byte
values, with the Zipf distribution (s = 0.9) of 90% GET
requests and 10% SET requests, the same workload used
in FlexNIC [23]. We used a single CPU core with a NIC
offload (potentially with multiple NIC cores); this setup
was reasonable since other CPU cores may be used to ex-
ecute other applications simultaneously. Figure 8 shows
the measured throughput of different offloading strate-
gies, and Table 1 summarizes the implementation effort.

CPU-only (Figure 1a): We ported an existing C im-
plementation, which runs on a CPU using DPDK, into
FLOEM except for the garbage collector of freed key-
value items. This effort involved converting the origi-
nal control-flow logic into the data-flow logic, replacing
538 lines of code with 334 lines. The code reduction
came from using reusable elements (e.g., from_net and
to_net), so we did not have to set up DPDK manually.

Split CPU-NIC (Figure 1b): We tried a simple
CPU-NIC partition, following the offloading design of
FlexKVS [23], by modifying 296 lines of the CPU-only
version; this offload strategy was carefully designed to
minimize computational cycles on a CPU. It required
many changes because the NIC (create_item element)
creates key-value items that reside in CPU memory. Un-
expectedly, this offload strategy lowered performance
(the second bar). Profiling the application revealed a
major bottleneck in the element that prepares a GET re-
sponse on the NIC. The element issued a blocking DMA
read to retrieve the item’s content from host memory.
This DMA read was not part of queue Q2 because that
queue sent only the pointer to the item, not the item it-
self. Therefore, the runtime could not manage this DMA
read; as a result, this strategy suffered from this addi-
tional DMA cost.

NIC caching (Figure 1c): We then used FLOEM to
explore a completely different offload design. Since the
Cavium NIC has a large amount of local memory, we
could cache a signification portion of the key-value store
on the NIC. This offload design, previously explored,
was shown to have high performance [26]. Therefore, we
modified the CPU-only version by inserting the caching
construct (43 lines of code) as well as creating segments
and inserting queues (62 lines of code). For a baseline
comparison, code relevant to communication on the CPU
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Figure 8: Throughput per CPU core of different imple-
mentations of the key-value store. WB = write-back, WT
= write-through. #N in “cache-WB-#N” is the configu-
ration number. Table 2 shows the cache sizes of the dif-
ferent configurations and their resulting hit rates.

Version Effort Details
(obtained from) (loc)

Existing 1708 Hand-written C program
CPU-only replace 538 Refactor C program into
(Existing) with 334 FLOEM elements.

Split CPU-NIC add 296 Create queues.
(CPU-only) NIC remotely allocates

items on CPU memory.
Caching add 43 Create a cache. Assign

(CPU-only) key, keylen, val, vallen.
NIC caching add 62 Create queues and

(Caching) segments.

Table 1: Effort to implement key-value store. The last
column describes specific modification details other than
creating, modifying, and rewiring elements. As a base-
line, code relevant to communication on the CPU side
alone was 240 lines in a manual C implementation.

side alone was already at 240 lines in a manually-written
C implementation of FlexKVS with a software NIC em-
ulation. This translated to fewer than 15 lines of code in
FLOEM. These numbers show that implementing a NIC-
offload application without FLOEM requires significantly
more effort than with FLOEM.

Regarding performance, the third bar in Figure 8 re-
ports the throughput when using a write-through cache
with 215 buckets and five entries per bucket, resulting
in a 90.3% hit rate. According to the result, the write-
through cache did not provide any benefit over the CPU-
only design, even when the cache hit rate was quite high.
Therefore, we configured the caching construct to use a
write-back policy (by changing the cache policy parame-
ter) because write-back generally yields higher through-
put than write-through. The remaining bars show the
performance when using a write-back cache with differ-
ent cache sizes, resulting in the different hit rates shown
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Config. #1 #2 #3 #4 #5 #6 #2 (WT)
# of buckets 215 215 215 215 214 214 215

# of entries ∞ 5 2 1 1 1 5
hit rate (%) 100 97.2 88.4 75.3 65.0 55.2 90.3

Table 2: The sizes of the cache (# of buckets and # of
entries per bucket) on the NIC and the resulting cache hit
rates when using the cache for the key-value store. All
columns report the hit rates when using write-back policy
except the last column for write-through. ∞ entries mean
a linked list.

in Table 2. This offloading strategy improved through-
put over the CPU-only design by 2.8–3.6× on Westmere
and 28–60% on Sandy Bridge when the hit rate exceeded
88% (configuration #1–3).

Notice that at high cache hit rates, the throughput for
this offload strategy was almost identical on Westmere
and Sandy Bridge regardless of the CPU technology. The
NIC essentially boosted performance on the Westmere
server to be on par with the Sandy Bridge one. In other
words, an effective NIC offload reduced the workload’s
dependency on CPU processing speed.

Case Study: Distributed Real-Time Data Analytics

Distributed real-time analytics is a widely-used applica-
tion for analyzing frequently changing datasets. Apache
Storm [1], a popular framework built for this task, em-
ploys multiple types of workers. Spout workers emit tu-
ples from a data source; other workers consume tuples
and may emit more tuples. A worker thread executes one
worker. De-multiplexing threads route incoming tuples
from the network to local workers. Multiplexing threads
route tuples from local workers to other servers and per-
form simple flow control. Our specific workload ranked
the top n users from a stream of Twitter tweets. In this
case study, we optimized for throughput per CPU core.
Figure 9 and Table 3 summarize the throughput and im-
plementation effort of different strategies, respectively.

CPU-only: We ported demultiplexing, multiplex-
ing, and DCCP flow-control from FlexStorm [23] into
FLOEM but kept the original implementation of the
workers as an external program. We used callable seg-
ments (Section 4.4) to define functions inqueue_get and
outqueue_put for workers (in the external program) to
obtain a task from the demultiplexer and send a task
to the multiplexer (in FLOEM). This porting effort in-
volved replacing 1,192 lines of code with only 350 lines.
The code reduction here was much higher than in the
key-value store application because FlexStorm’s original
implementation required many communication queues,
which were replaced by FLOEM queues. The best CPU-
only configuration that achieved the highest throughput
per core used three cores for three workers (one spout,
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Figure 9: Throughput per CPU core of different Storm
implementations

Version Effort Details
(obtained from) (loc)

Existing 2935 Hand-written C program
CPU-only replace 1192 Refactor C program into
(Existing) with 350 FLOEMelements.

Split CPU-NIC modify 1 Change device parameter.
(CPU-only)
Redesigned add 23 Create bypass queues.

(Split CPU-NIC)

Table 3: Effort to implement Storm. The last column de-
scribes specific modification details other than creating,
modifying, and rewiring elements.

one counter, and one ranker), one core for demultiplex-
ing, and two cores for multiplexing.

Split CPU-NIC: As suggested in FlexNIC, we of-
floaded (de-)multiplexing and flow control to the NIC, by
changing the device parameter (one line of code change).
This version, however, lowered throughput slightly com-
pared to the CPU-only version.

Redesigned CPU-NIC: The split CPU-NIC version
can be optimized further. A worker can send its output
tuple to another local worker or a remote worker over
the network. For the former case, a worker sends a tuple
to the multiplexer on the NIC, which in turn forwards it
to the target worker on the CPU. Notice that this CPU-
NIC-CPU round-trip is unnecessary. To eliminate this
communication, we created bypass queues for workers
to send tuples to other local workers without involving
the multiplexer. With this slight modification (23 lines of
code), we achieved 96% and 75% higher throughput than
the CPU-only design on the Westmere and Sandy Bridge
cluster, respectively.

Other Applications

The following three applications are common network
function tasks. Because of their simplicity, we did not
attempt to partition them across the CPU and NIC. Fig-
ure 10 reports throughput when using one CPU core on a
Sandy Bridge server or offloading everything to the Cav-
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Figure 10: Throughput of AES encryption, flow classifi-
cation, and network sequencer running on one CPU core
and the LiquidIO NIC. ‘CPU-AES-NI’ uses AES-NI.

ium NIC. In our experiment, we used a packet size of
1024 bytes for encryption and network sequencer, and
80 bytes for flow classification.

Encryption is a compute-intensive stateless task, used
for Internet Protocol Security. In particular, we imple-
mented AES-CBC-128. We wrote two CPU versions: (1)
using Intel Advanced Encryption Standard New Instruc-
tions (AES-NI), and (2) without AES-NI, which is avail-
able in only some processors. NIC Offloading improved
throughput by 2.5× and 17.5× with and without AES-NI
on CPU, respectively. Using AES-NI improved perfor-
mance on the CPU but to a lesser degree than utilizing all
encryption co-processors on the NIC. This result would
be difficult to predict without an empirical test.

Flow classification is a stateful task that tracks flow
statistics. We categorized flows using the header 5-
tuple and used a probabilistic data structure (a count-min
sketch) to track the number of bytes per flow. This appli-
cation ran slightly faster on the NIC. Therefore, it seems
reasonable to offload this task to the NIC if we want to
spare CPU cycles for other applications.

Network sequencer orders packets based on prede-
fined rules. It performs simple computation and main-
tains limited in-network state. This function has been
used to accelerate distributed system consensus [29] and
concurrency control [28]. Our network sequencer was
82% faster on the CPU core than on the NIC. Applica-
tion throughput did not scale with the number of cores
because of the group lock’s contention; the number of
locks acquired by each packet was 5 out of 10 on average
in our synthetic workload, making this task inherently se-
quential. Therefore, using one fast CPU core yielded the
best performance. We also tried running this program us-
ing multiple CPU cores, but throughput stayed the same
as we increased the number of cores. On the NIC, using
three cores offered the highest performance.

In summary, even for simple applications, it is not
obvious whether offloading to the NIC improves or de-
grades performance. Using FLOEM lets us answer these
questions quickly and precisely by simply changing the
device parameter of the computation segment to either
CPU or NIC. Comparing cost-performance or power-
performance is beyond the scope of this paper. Never-
theless, one can use FLOEM to experiment with different
configurations for a specific workload to optimize for a
particular performance objective.

7.2 Logical-to-Physical Queue Mapping
Hypothesis 2 Logical-to-physical queue mapping lets
programmers implement packet steering, packet order-
ing, and different degrees of resource sharing.

Packet steering. Storm, the second case study, re-
quired packet steering to the correct input queues, each
dedicated to one worker. This was done by creating a
queue with multiple physical instances and by setting
state.qid according to an incoming tuple’s type.

Packet ordering. The write-back cache implementa-
tion required in-order delivery between CPU and NIC to
guarantee consistency (see Section 4.1).

Resource sharing. For the split NIC-CPU version of
the key-value store, sending both GET and SET requests
on separate physical queues offered 7% higher through-
put than sharing the same queue. This is because we can
use a smaller queue entry’s size to transfer data for GET
requests. In contrast, for our Storm application, shar-
ing the same physical output queue between all workers
yielded 16% higher throughput over separate dedicated
physical queues. Since some workers infrequently pro-
duce output tuples, it was more efficient to combine tu-
ples from all workers to send over one queue. Hence, it is
difficult to predict whether sharing or no sharing is more
efficient, so queue resource sharing must be tunable.

7.3 Inferred Data Transfer
Hypothesis 3 Inferred data transfer improves perfor-
mance relative to sending an entire packet.

In this experiment, we evaluated the benefit of sending
only a packet’s live fields versus sending an entire packet
over a queue. We measured the throughput of transmit-
ting data over queues from the NIC to CPU when varying
the ratio of the live portion to the entire packet’s size (live
ratio), detailed in Table 4. The sizes of live portions and
packets were multiples of 64 bytes because performance
was degraded when a queue entry’s size was not a mul-
tiple of 64 bytes, the size of a CPU cache line. We used
numbers of queues and cores that maximized throughput.
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Live ratio 1/5 1/4 1/3 1/2 2/3 3/4 4/5
Live size (B) 64 64 64 64 128 192 256
Total size (B) 320 256 192 128 192 256 320

Speedup 3.1x 2.5x 2x 1.5x 1.3x 1.2x 1.2x

Table 4: Speedup when sending only the live portions
when varying live ratios from a micro-benchmark. Sizes
are in bytes (B).

As shown on the table, sending only live fields improved
throughput by 1.2–3.1×. Additionally, we evaluated the
effect of this optimization on the split CPU-NIC version
of the end-to-end key-value store, whose queues from
NIC to CPU transfer packets with a live ratio of 1/2. The
optimization improved the throughput of this end-to-end
application by 6.5%.

7.4 Queue Synchronization Layer
Hypothesis 4 The queue synchronization layer enables
high-throughput communication queues.

We measured the throughput of three benchmarks.
The first benchmark performed a simple packet forward-
ing from the NIC to CPU with no network activity, so its
performance purely reflects the rate of data transfer over
the PCIe bus rather than the rate of sending and receiving
packets over the network. We used packet sizes of 32, 64,
128, and 256 bytes. The other two benchmarks were the
write-back caching version of the key-value store and the
redesigned CPU-NIC version of Storm.

Figure 11 displays the speedup when using the sync
layer versus using primitive blocking DMA without
batching (labeled “without sync layer”). The sync layer
offered 9–15× speedup for pure data transfers in the
first benchmark. Smaller packet sizes showed a higher
speedup; this is because batching effectiveness increases
with the number of packets in a batch. For end-to-end
applications, we observed a 7.2–14.1× speedup for the
key-value store and a 3.7× speedup for Storm. Note that
the sync layer is always enabled in the other experiments.
Hence, it is crucial for performance of our system.

7.5 Compiler Overhead
Hypothesis 5 The FLOEM compiler has negligible
overhead compared to hand-written code.

We compared the throughput of code generated from
our compiler to hand-optimized programs in C. To mea-
sure the compiler’s overhead on the CPU, we ran a sim-
ple echo program, Storm, and key-value store. The C im-
plementations of Storm and key-value store were taken
from FlexStorm and one of FlexKVS’s baselines [23];
these implementations are highly-optimized and perform
better than the standard public implementations of Storm
and memcached. On the NIC, we compared a simple

 0

 2

 4

 6

 8

 10

 12

 14

Inqueue-32

Inqueue-64

Inqueue-128

Inqueue-256

KVS-cache-#3

KVS-cache-#4

KVS-cache-#5

KVS-cache-#6

Storm

N
o
rm

a
liz

e
d

 t
h
ro

u
g

h
p

u
t

without sync layer
with sync layer

Figure 11: Effect of the queue synchronization layer.
Throughput is normalized to that without the sync layer.

echo program, encryption, flow classification, and net-
work sequencer. On average, the overhead was 9% and
1% on CPU and NIC, respectively. We hypothesize that
the higher overhead on the CPU was primarily because
we did not implement computation batching [24, 46],
which was used for hand-optimized programs.

8 Discussion and Future Work

Multi-message packets. FLOEM can support a packet
whose payload contains multiple requests via Batcher

and Debatcher elements. Given one input packet,
Debatcher invokes its one output port n times sequen-
tially, where n is the number of requests in the payload.
Batcher stores the first n− 1 packets in its state. Upon
receiving the last token, it sends out n packets as one
value. The Debatcher element can inform the value of n
to the Batcher element via the per-packet state. One can
also take advantage of this feature to support computa-
tion batching, similar to Snap [46].

Multi-packet messages and TCP. Exploring the TCP
offload with FLOEM is future work. FLOEM supports
multi-packet messages via Batcher and Debatcher ele-
ments and could be used together with a TCP offload on
the NIC, but our applications do not use TCP.

Shared data structures. In FLOEM, queues and
caches are the only high-level abstractions for shared
data structures between the NIC and CPU. However, ad-
vanced developers can use FLOEM to allocate a memory
region on the CPU that the NIC can access via DMA op-
erations, but they are responsible for synchronizing data
and managing the memory by themselves.

Automation. Automatic program partitioning was
among our initial goals, but we learned that it cannot be
done entirely automatically. Different offloading strate-
gies often require program refactoring by rewriting the
graph and even graph elements. These program-specific
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changes cannot be done automatically by semantics-
preserving transformation rules. Therefore, we let pro-
grammers control the placement of elements while refac-
toring the program for a particular offload design. How-
ever, FLOEM would benefit from and integrate well with
another layer of automation, like an autotuner or a run-
time scheduler, that could select parameters for low-level
choices (e.g., the number of physical queues, the number
of cores, and the placement of each element) after an ap-
plication has been refactored.

Other SmartNICs. The current FLOEM prototype tar-
gets Cavium LiquidIO but can be extensible to other
SmartNICs that support C-like programming, such as
Mellanox BlueField [32] and Netronome Agilio [6].
However, FPGAs [12, 33, 48] require compilation to
a different execution model and the implementation of
bodies of elements in a language compatible with the
hardware.

9 Related Work

Packet processing frameworks. The FLOEM data-
flow programming model is inspired by the Click
modular router [34], a successful framework for pro-
grammable routers, where a network function is com-
posed from reusable elements [34]. SMP Click [13]
and RouteBricks [16] extend Click to exploit paral-
lelism on a multi-processor system. Snap [46] and
NBA [24] add GPU offloading abstractions to Click,
while ClickNP [27] extends Click to support joint CPU-
FPGA processing. Dragonet, a system for a network
stack design, automatically offloads computations (de-
scribed in data-flow graphs) to a NIC with fixed hardware
functions rather than programmable cores [43, 44].

Other packet processing systems adopt different pro-
gramming models. PacketShader [19] is among the first
to leverage GPUs to accelerate packet processing in soft-
ware routers. APUNet [17] identifies the PCIe bottleneck
between the CPU and GPU and employs an integrated
GPU in an APU platform as a packet processing accel-
erator. Domain-specific languages for data-plane algo-
rithms, including P4 [10] and Domino [45], provide even
more limited operations.

Overall, programming abstractions provided by exist-
ing packing processing frameworks are insufficient for
our target domain, as discussed in Section 2.

Synchronous data-flow languages. Synchronous
data-flow (SDF) is a data-flow programming model in
which computing nodes have statically known input
and output rates [25]. StreamIt [47] adopts SDF for
programming efficient streaming applications on mul-
ticore architectures. Flextream [20] extends StreamIt

with dynamic runtime adaptation for better resource
utilization. More recently, Lime [21] provides a unified
programming language based on SDF for programming
heterogeneous computers that feature GPUs and FPGAs.
Although some variations of these languages support
dynamic input/output rates, they are designed primarily
for static flows. As a result, they are not suitable for
network applications, where the flow of a packet through
a computing graph is highly dynamic.

Systems for heterogeneous computing. Researchers
have extensively explored programming abstractions and
systems for various application domains on various
heterogeneous platforms [8, 11, 31, 35, 39, 41, 42].
FLOEM is unique among these systems because it is de-
signed specifically for data-center network applications
in a CPU-NIC environment. In particular, earlier sys-
tems were intended for non-streaming or large-grained
streaming applications, whose unit of data in a stream
(e.g., a matrix or submatrix) is much larger than a packet.
Furthermore, most of these systems do not support a pro-
cessing task that maintains state throughout a stream of
data, which is necessary for our domain.

10 Conclusions

Developing NIC-accelerated network applications is ex-
ceptionally challenging. FLOEM aims to simplify the
development of these applications by providing a uni-
fied framework to implement an application that is split
across the CPU and NIC. It allows developers to quickly
explore alternative offload designs by providing pro-
gramming abstractions to place computation to devices;
control mapping of logical queues to physical queues;
access fields of a packet without manually marshaling it;
cache application state on a NIC; and interface with an
external program. Our case studies show that FLOEM
simplifies the development of applications that take ad-
vantage of a programmable NIC, improving the key-
value store’s throughput by up to 3.6×.
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Abstract
We propose Graviton, an architecture for supporting
trusted execution environments on GPUs. Graviton en-
ables applications to offload security- and performance-
sensitive kernels and data to a GPU, and execute kernels
in isolation from other code running on the GPU and all
software on the host, including the device driver, the op-
erating system, and the hypervisor. Graviton can be in-
tegrated into existing GPUs with relatively low hardware
complexity; all changes are restricted to peripheral com-
ponents, such as the GPU’s command processor, with
no changes to existing CPUs, GPU cores, or the GPU’s
MMU and memory controller. We also propose exten-
sions to the CUDA runtime for securely copying data
and executing kernels on the GPU. We have implemented
Graviton on off-the-shelf NVIDIA GPUs, using emula-
tion for new hardware features. Our evaluation shows
that overheads are low (17-33%) with encryption and de-
cryption of traffic to and from the GPU being the main
source of overheads.

1 Introduction

Recent trends such as the explosion in volume of data
being collected and processed, declining yields from
Moore’s Law [16], growing use of cloud computing,
and applications, such as deep learning have fueled the
widespread use of accelerators such as GPUs, FPGAs
[37], and TPUs [20]. In a few years, it is expected that a
majority of compute cycles in public clouds will be con-
tributed by accelerators.

At the same time, the increasing frequency and so-
phistication of data breaches has led to a realization that
we need stronger security mechanisms to protect sensi-
tive code and data. To address this concern, hardware
manufacturers have started integrating trusted hardware
in CPUs in the form of trusted execution environments
(TEE). A TEE, such as Intel SGX [28] and ARM Trust-
zone [1], protects sensitive code and data from system
administrators and from attackers who may exploit ker-
nel vulnerabilities and control the entire software stack,
including the operating system and the hypervisor. How-
ever, existing TEEs are restricted to CPUs and cannot be
used in applications that offload computation to accelera-

tors. This limitation gives rise to an undesirable trade-off
between security and performance.

There are several reasons why adding TEE support
to accelerators is challenging. With most accelerators,
a device driver is responsible for managing device re-
sources (e.g., device memory) and has complete control
over the device. Furthermore, high-throughput accelera-
tors (e.g., GPUs) achieve high performance by integrat-
ing a large number of cores, and using high bandwidth
memory to satisfy their massive bandwidth requirements
[4, 11]. Any major change in the cores, memory man-
agement unit, or the memory controller can result in
unacceptably large overheads. For instance, providing
memory confidentiality and integrity via an encryption
engine and Merkle tree will significantly impact avail-
able memory capacity and bandwidth, already a precious
commodity on accelerators. Similarly, enforcing mem-
ory isolation through SGX-like checks during address
translation would severely under-utilize accelerators due
to their sensitivity to address translation latency [35].

In this paper, we investigate the problem of supporting
TEEs on GPUs. We characterize the attack surface of
applications that offload computation to GPUs, and find
that delegating resource management to a device driver
creates a large attack surface [26, 36] leading to attacks
as page aliasing that are hard to defend without hardware
support. Interestingly, we also find that architectural dif-
ferences between GPUs and CPUs reduce the attack sur-
face in some dimensions. For instance, all recent server-
class GPUs use 3D-IC designs with stacked memory
connected to GPU cores via silicon interposers [4, 11].
Unlike off-package memory connected to the CPU using
copper-based traces on the PCB, which are easy to snoop
and tamper, it is extremely hard for an attacker to open
a GPU package and snoop on the silicon interconnect
between GPU and stacked memory, even with physical
access to the GPU. Thus, it is a reasonable assumption to
include on-package memory within the trust boundary.

Based on these insights, we propose Graviton, an ar-
chitecture for supporting TEEs on GPUs. In Graviton,
a TEE takes the form of a secure context, a collec-
tion of GPU resources (e.g., device memory, command
queues, registers) that are cryptographically bound to a
public/private key pair and isolated from untrusted soft-
ware on the host (including the driver) and all other GPU
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contexts. Graviton guarantees that once a secure context
has been created, its resources can only be accessed by a
user application/runtime in possession of the correspond-
ing private key. As long as the key is protected from the
adversary (e.g., the key is hosted in a CPU TEE), the ad-
versary cannot access the context’s address space. Gravi-
ton supports two additional primitives: measurement for
generating remotely verifiable summaries of a context’s
state and the platform, and secure memory allocation and
deallocation for letting a device driver dynamically allo-
cate and free memory without compromising security.

Graviton achieves strong security by redefining the
interface between the GPU driver and the hardware.
Specifically, we prevent the driver from directly access-
ing security sensitive resources, such as page directories,
page tables, and other memory containing sensitive code
and data. Instead, we require that the driver route all re-
source allocation requests through the GPU’s command
processor. The command processor tracks ownership of
resources, and ensures that no resource owned by a se-
cure context can be accessed by the adversary. The com-
mand processor also ensures that the resources are cor-
rectly initialized on allocation to a secure context, and
cleaned up on destruction, preventing attacks that exploit
improper initialization [23, 36, 52].

Our design has several key attributes including low
hardware complexity, low performance overheads and
crypto-agility. Graviton requires no changes to the GPU
cores, MMU, or the memory controller. All changes
are limited to peripheral components, such as the GPU
command processor and the PCIe control engine; this is
largely due to the assumption that on-package memory
can be trusted. Graviton places no restrictions on the
instruction set available within the TEE. We also show
that a GPU runtime can use Graviton to build secure ver-
sions of higher-level APIs, such as memory copy, kernel
launch, and streams, which can be used to build applica-
tions with end-to-end confidentiality and integrity.

We have evaluated our design on NVIDIA Titan
GPUs, gdev [21], an open-source CUDA runtime, and
nouveau [29], an open source GPU driver. In the ab-
sence of hardware that implements the proposed exten-
sions, we implement and emulate the extensions using
interrupts delivered to the host. Our evaluation using a
set of representative machine learning benchmarks sug-
gests that the overheads of running compute-bound GPU
applications using secure contexts are low (17-33%) for
the level of security we provide. The overheads are dom-
inated by the cost of authenticated encryption/decryption
of kernel launch commands and user data.

In summary, we make the following contributions.

• We propose Graviton, an architecture for supporting
TEEs on accelerators, such as GPUs. Graviton pro-
vides strong security properties even against an ad-
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Figure 1: System stack (left) and hardware stack (right).

versary that might control the entire software stack
on the host, including the accelerator driver.

• We define a threat model that places trust in the
GPU hardware, including on-package memory.

• We propose a minimal set of extensions to the GPU
hardware for implementing Graviton and show how
these extensions can be used to design applications
with end-to-end security guarantees. The design
requires no changes to the GPU cores, MMU, or
memory controller, resulting in low hardware com-
plexity and low performance overheads.

2 Background

2.1 GPU
We review the NVIDIA GPU architecture and the CUDA
programming model to illustrate how a compute task is
offloaded and executed on the GPU. We focus on the se-
curity critical parts of the architecture.

Software stack. A user-space application uses an API
provided by the user-space GPU runtime (e.g., CUDA
runtime), to program the GPU execution units with a
piece of code known as the kernel, and transfer data be-
tween host and device memory. The GPU runtime con-
verts each API call to a set of GPU commands for con-
figuring the device and controlling kernel launches and
data transfers. A GPU driver is responsible for submit-
ting these commands to the GPU via the PCI bus and for
managing device memory.

Hardware. The GPU (Figure 1) interfaces with the host
CPU via the PCI control engine, which is connected with
the rest of the GPU components via an internal bus. The
key components are a command processor, compute and
copy (DMA) engines, and the memory system, including
the memory controller and memory chips.

The PCI control engine consists of (a) a PCI controller
that receives incoming and outgoing PCI transactions,
and (b) a master control engine, which exposes a set of
memory-mapped-IO (MMIO) registers that are accessed
by the host CPU to enable and disable the GPU engines.
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Figure 2: Host memory and GPU memory spaces.

The command processor (aka channel engine) receives
commands submitted by the device driver over as set of
command queues known as channels and forwards them
to the corresponding engines once they are idle. Chan-
nels are configured through a set of memory locations
known as the channel control area which is mapped over
the MMIO and serviced by the command processor.

The compute engine consists of a set of graph pro-
cessing clusters (GPCs) and a shared L2 cache. Each
GPC consists of a number of streaming multiproces-
sors (SMs), which are used to run GPU kernels. Each
SM consists of multiple cores and a private memory
hierarchy, including a read-only cache, L1 cache, and
application-managed memory. GPU kernels specify the
number of threads to be created, organized into thread
blocks and grids. Thread blocks are divided into warps,
where each warp is a unit of scheduling on each SM.
Threads belonging to the same thread block share the
caches and the application-managed memory.

Modern GPUs support virtual memory via a mem-
ory controller with page table walkers for address trans-
action, and a hierarchy of TLBs. For example, in the
NVIDIA Volta, the L1 cache is virtually addressed and
the L2 is physically addressed. The GPU has a shared
two-level TLB used while accessing the L2 cache [19].

Context and channel management. Execution on
GPUs is context-based. A CUDA context represent the
collection of resources and state (memory, data, etc.) that
are required to execute a CUDA kernel. Resources are
allocated to contexts to run a compute task and are freed
when a context is destroyed. Each context has its own
address space. GPUs use channels to isolate a context’s
address space from other contexts. A channel is the only
way to submit commands to the GPU. Therefore, every
GPU context allocates at least one GPU channel.

To create a channel, the device driver allocates a
channel descriptor and multi-level page tables in device
memory (Figure 2 and 3). For example, a simple two-
level page table consists of the page directory (PGD) and
a number of leaf page tables (PGT). The driver writes the
channel descriptor address to the channel control area,
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Figure 3: Channel-level address space management.
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Figure 4: GPU command submission.

and the page directory address in the channel descrip-
tor. The page directory consists of entries that point to
leaf page tables, and leaf page tables contain virtual-to-
physical mappings. Page tables typically support small
(4KB) and big pages (128KB). The device driver updates
all these data structures over the PCI bus via BARs.

Once the channel has been created, the device driver
allocates device memory for a few channel-specific data
structures, including (a) the internal context of the chan-
nel and compute engines, (b) a fence buffer used for syn-
chronization between the host CPU and GPU, and (c) an
interrupt buffer for notifying the host with interrupts gen-
erated by the GPU engines.

Command submission. The command processor is re-
sponsible for fetching commands submitted by the soft-
ware stack and relaying them to the appropriate GPU en-
gines. Figure 4 shows the data structures used for com-
mand submission. The driver allocates two buffers in
kernel space, a command and a ring buffer. The com-
mand buffer is memory-mapped to the user space. The
runtime pushes groups of commands to the command
buffer, updates the channel’s ring buffer with the size
and offset of each group, and then updates over MMIO
a register called the PUT register with a pointer to the
command group. When the PUT register is updated, the
command processor fetches a command group from the
buffers, and updates the GET register to notify the run-
time that the commands have been fetched.

Programming model. Next, we present an overview of
the main stages of dispatching kernels to the GPU.

Initialization. An application wishing to use the GPU
first creates a CUDA context. During context creation,
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the runtime allocates a DMA buffer for data transfers be-
tween host memory and device memory (Figure 2). Sub-
sequently, the application loads one or more CUDA mod-
ules into the context. For each kernel defined in the mod-
ule, the runtime creates a corresponding kernel object on
the GPU by allocating device memory for (a) the ker-
nel’s code, (b) constant memory used by the kernel, and
(c) local memory used by each thread associated with the
kernel. The runtime then copies code and constant mem-
ory to device memory via DMA.

Memory allocation. The application allocates device
memory for storing inputs and outputs of a kernel using
a memory allocation API (cudaMalloc and cudaFree).
Memory allocations are serviced by the driver, which up-
dates the page directory and page tables.

Host-GPU transfers. When the application issues
a host-to-device copy, the runtime pushes a command
group to the context’s channel, passing the virtual ad-
dresses of source and destination to the copy engine.
Once the engine is configured, it translates virtual ad-
dresses to physical ones and initiates DMA transfers.

Kernel dispatch. When the application executes a ker-
nel, the runtime passes a command group to the com-
mand processor that includes the kernel’s context, the
base address of the code segment, the entry program
counter, the grid configuration, and the kernel’s environ-
ment, which includes the stack and parameters values.
The command processor uses these parameters to initial-
ize compute engines, which in turn initialize and sched-
ule the computation on GPU cores.

Sharing. A GPU can be used to execute multiple kernels
from multiple host processes using techniques such as
pre-emptive multi-tasking [33, 42], spatial multi-tasking
[2, 34], simultaneous execution [47], multi-process ser-
vice [30], or virtualization [25]. In such scenarios, it
is the responsibility of the host (driver) to isolate ker-
nels using the channel abstraction and virtual memory.
While spatial multi-tasking advocates for SM partition-
ing, it still shares memory resources and relies on vir-
tual memory for isolation. Even in devices that support
SR-IOV and partition resources in hardware (e.g., AMD
MxGPU), system software is still responsible for assign-
ing virtual devices to virtual machines.

2.2 Intel SGX
Trusted execution environments, or enclaves (e.g., In-
tel SGX) protect code and data from all other software
in a system. With OS support, an untrusted hosting
application can create an enclave in its virtual address
space. Once an enclave has been initialized, code and
data within the enclave is isolated from the rest of the
system, including privileged software.

Intel SGX enforces isolation by storing enclave code
and data in a data structure called the Enclave Page

Cache (EPC), which resides in a pre-configured por-
tion of DRAM called the Processor Reserved Memory
(PRM). The processor ensures that any software out-
side the enclave cannot access the PRM. However, code
hosted inside an enclave can access both non-PRM mem-
ory and PRM memory that belongs to the enclave. SGX
includes a memory encryption engine that encrypts and
authenticates enclave data evicted to memory, and en-
sures integrity and freshness.

In addition to isolation, enclaves also support remote
attestation. Remote attestation allows a remote chal-
lenger to establish trust in an enclave. In Intel SGX, code
hosted in an enclave can request a quote, which contains
a number of enclave attributes including a measurement
of the enclave’s initial state. The quote is signed by a
processor-specific attestation key. A remote challenger
can use Intel’s attestation verification service to verify
that a given quote has been signed by a valid attestation
key. The challenger can also verify that the enclave has
been initialized in an expected state. Once an enclave has
been verified, the challenger can set up a secure channel
with the enclave (using a secure key exchange protocol)
and provision secrets such as encrypted code or data en-
cryption keys to the enclave.

3 Threat Model

We consider a strong adversary who controls the entire
system software, including the device drivers, the guest
operating system, and the hypervisor, and has physi-
cal access to all server hardware, including the GPU.
Clearly, such an adversary can read and tamper with
code or data of any victim process. The adversary can
also access or tamper with user data in DMA buffers or
with commands submitted by the victim application to
the GPU. This gives the adversary control over attributes,
such as the address of kernels being executed and param-
eters passed to the kernel. The adversary may also access
device memory directly over MMIO, or map a user’s
GPU context memory space to a channel controlled by
the adversary. In multi-tasking GPUs, malicious kernels
can be dispatched to the GPU, thereby accessing mem-
ory belonging to a victim’s context. These attacks are
possible even in a virtualized environment (e.g., even if a
device supports SR-IOV) because the mapping between
VMs and virtual devices is controlled by the hypervisor.

An adversary with physical access to the server can
mount snooping attacks on the host memory bus and the
PCIe bus. However, we do trust the GPU and CPU pack-
ages and firmware, and assume that the adversary can-
not extract secrets or corrupt state within the packages.
This implies that we trust CPUs to protect code and data
hosted inside TEEs. Side-channel attacks (e.g., based on
speculative execution, access patterns and timing) and
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denial-of-service attacks are also outside the scope of this
paper. Side channels are a serious concern with trusted
hardware [10, 12, 22, 38, 45, 50] and building efficient
counter measures remains an open problem. In Gravi-
ton, we use TEEs to host the user application and the
GPU runtime.

Unlike host memory, which is untrusted, we trust on-
package GPU memory as GPU cores are attached to
memory using silicon interposers, which make it ex-
tremely difficult for an attacker to mount snooping or
tampering attacks. There is an emerging class of at-
tacks on stacked integrated circuits (ICs), such as attacks
where the package assembler inserts a trojan die between
the GPU and memory dies [49]. Developing mitigations
for these attacks is ongoing work [3] and outside the
scope of this paper.

Even under this threat model, we wish to guaran-
tee confidentiality and integrity for applications that use
GPUs. Specifically, we wish to guarantee that the adver-
sary cannot observe or tamper with code, data, and com-
mands transferred to/from the GPU by a trusted applica-
tion that runs in a CPU TEE or an on-premise machine.
Finally, we wish to guarantee that the GPU computation
proceeds without interference from the adversary.

4 Overview

Consider a CUDA application (Figure 5) that performs
matrix multiplication, which is a key building block in
machine learning algorithms. The application creates a
new CUDA context (implicitly on the first CUDA API
call), allocates memory for input and output matrices
in host and device memory, populates the matrices, and
then invokes the matrix multiplication kernel on the GPU
(not shown), passing pointers to device memory and
other kernel’s parameters. After the kernel has com-
pleted, the application copies the results into host mem-
ory and releases memory allocated on the GPU.

As described earlier, an attacker with privileged ac-
cess to the server can easily recover the contents of the
matrices and the result even if this application is hosted
in a CPU enclave. We can harden this application against
such attacks simply by linking it against Graviton’s ver-
sion of the CUDA runtime. Graviton’s version of the
runtime creates a secure context (instead of a default con-
text) on a Graviton-enabled GPU. In this process, the
runtime authenticates the GPU and establishes a secure
session with the GPU’s command processor, with session
keys stored in CPU enclave memory.

The runtime also provides a custom implementation
of cudaMalloc, which invokes the device driver to allo-
cate GPU memory and additionally verifies that allocated
memory is not accessible from any other context or from
the host. The secure implementation of cudaMemcpy en-

int main() {

...

float* h_A = malloc(M*N*sizeof(float));

float* h_B = malloc(N*K*sizeof(float));

float* h_C = malloc(M*K*sizeof(float));

float* d_A , d_B , d_C;

...

cudaMalloc ((void **)&d_A , M*N*sizeof(float)

);

...

populate_matrices(h_A , h_B);

cudaMemcpy(d_A , h_A , M*N*sizeof(float),

cudaMemcpyHostToDevice);

cudaMemcpy(d_B , h_B , N*K*sizeof(float),

cudaMemcpyHostToDevice);

...

matrixMul <<<grid ,threads >>>(d_C ,d_A ,d_B ,M,

N,K);

...

cudaMemcpy(d_C , h_C , M*K*sizeof(float),

cudaMemcpyDeviceToHost);

cudaFree(d_A);

...

}

Figure 5: Sample CUDA application.

sures that all transfers between host and the GPU, in-
cluding code and data, are encrypted and authenticated
using keys inaccessible to the attacker. The implementa-
tion of cudaLaunch sends encrypted launch commands
to the GPU’s command processor over a secure session.
Finally, the implementation of cudaFree authorizes the
GPU’s command processor to unmap previously allo-
cated pages from page tables, and scrubs their content,
enabling the driver to reuse the pages without leaking
sensitive data.

5 Graviton Architecture

In this section, we describe extensions to existing GPU
architectures for supporting secure contexts.

5.1 Remote Attestation

A Graviton-enabled GPU supports remote attestation for
establishing trust between a secure context and a remote
challenger. Hardware support for attestation is similar
to TPMs; we require (a) a secret, known as the root en-
dorsement key (EK), to be burned into the device’s e-
fuses during manufacturing and (b) a cryptographic en-
gine for asymmetric key generation and signing. The EK
is the root of trust for attestation and never leaves the
GPU package. During boot, the GPU generates a fresh
attestation key (AK) pair and stores the private key se-
curely within the command processor. The GPU also
signs the public part of the AK with the EK and makes
it available to the device driver, which in turn sends the
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signed AK to a trusted CA. The CA validates the signa-
ture using a repository of public endorsement keys pro-
visioned by the manufacturer and generates a signed AK
certificate. The certificate is stored by the device driver
and used during secure context creation to prove to a
challenger that the GPU holds and protects the private
attestation key.

5.2 Secure Context Management

In Graviton, a secure context consists of one or more se-
cure channels. We extend the GPU’s command proces-
sor with new commands for creation, management, and
destruction of secure channels (Figure 6).

A secure channel is created using the command
CH CREATE, which requires as parameters a channel
identifier and a public key UK pub. On receiving the re-
quest, the command processor generates a fresh channel
encryption key (CEK) for encrypting commands posted
to this channel. The public key UK pub, CEK, and a
counter are stored in a region of device memory accessi-
ble only to the command processor. CH CREATE may be
used to create multiple channels associated with the same
secure context by passing the same UK pub, in which case
all such channels will use the same CEK.

After generating the CEK, the command processor es-
tablishes a session by securely transferring the CEK to
the trusted user-space runtime. The command proces-
sor encrypts the CEK with UK pub and generates a quote
containing the encrypted CEK and a hash of UK pub. The
quote contains the channel identifier and security criti-
cal platform-specific attributes, such as the firmware ver-
sion, and flags indicating whether preemption and debug-
ging are enabled. The quote is signed using AK. The
device driver passes this quote and the AK certificate
(obtained during initialization) to the user-space runtime.
The runtime authenticates the response by (a) verifying
the AK certificate, (b) verifying the quote using the pub-
lic AK embedded in the certificate, and (c) checking that
the public key in the quote matches UK pub. The runtime
can then decrypt the CEK and use it for encrypting all
commands sent to the GPU.

Once a session has been established, the command
processor authenticates and decrypts all commands it re-
ceives over the channel using the CEK. This guarantees
that only the user in possession of the CEK can execute
tasks that access the context’s address space. We use au-
thenticated encryption (AES in GCM mode) and the per-
channel counter as IV to protect commands from drop-
ping, replay, and re-ordering attacks. This ensures that
all commands generated by the GPU runtime are deliv-
ered to the command processor without tampering.

5.3 Secure Context Isolation

In existing GPUs, the responsibility of managing re-
sources (e.g., device memory) lies with the device driver.
For example, when allocating memory for an applica-
tion object, the driver determines the virtual address at
which to allocate the object, then determines physical
pages to map to the virtual pages, and finally updates
virtual-physical mappings in the channel’s page tables
over MMIO. This mechanism creates a large attack vec-
tor. A compromised driver can easily violate channel-
level isolation—e.g., by mapping a victim’s page to the
address space of a malicious channel.

One way of preventing such attacks and achieving
isolation is to statically partition resources in hardware
between channels. However, this will lead to under-
utilization of resources. Moreover, it prohibits low-cost
sharing of resources between channels, which is required
to implement features, such as streams. Instead, Gravi-
ton guarantees isolation by imposing a strict ownership
discipline over resources in hardware, while allowing the
driver to dynamically partition resources.

More formally, consider a physical page P that is
mapped to a secure channel associated with a secure
context C and a channel encryption key CEK, and
contains sensitive data. We consider any object (code
and data) allocated by the application in a secure context
and all address space management structures (i.e.,
channel descriptor, page directory and page tables) of
all channels as sensitive. We propose hardware changes
to a GPU that enforce the following invariants, which
together imply isolation.

Invariant 5.1 P cannot be mapped to a channel associ-
ated with a context C′ 6=C.

Invariant 5.2 P cannot be unmapped without authoriza-
tion from the user in possession of CEK.

Invariant 5.3 P is not accessible over MMIO to un-
trusted software on the host CPU.

Invariant 5.4 P is cleared before being mapped to an-
other channel associated with a context C′ 6=C.

In the rest of this section, we describe hardware ex-
tensions for enforcing these invariants, and discuss their
implications on the driver-GPU interface.

Memory regions. Our first extension is to partition de-
vice memory into three regions: unprotected, protected
and hidden, each with different access permissions.

The unprotected region is a region in memory that is
both visible from and accessible by the host via PCI BAR
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Ch. Desc.

PGD

PGTs

Protected Memory

MMIO

Command

processor
Bootstrap channel 

command submission

Command Attributes Description

CH_CREATE
chid, pgd_address, public_key

→ quote

Sets page directory address within channel descriptor

Returns quote for secure channels

CH_DESTROY chid, MAC
Unsets channel descriptor and page directory

Expects a keyed MAC of command for secure channels

CH_PDE chid, pgd_index, PDE Sets page table address in a page directory entry

CH_PTE
chid, pgd_index, pgt_index, size, 

PTE[], MAC → summary, MAC 

Sets VA-PA mapping in page table entry 

Expects keyed MAC for user-authorized deallocation

Returns a summary along with a MAC for secure allocations 

CH_MEASURE chid, address, size → 

measurement, MAC
Returns a measurement of a range of virtual addresses 

mapped in a secure channel along with a MAC

GPU driver

Figure 6: Commands for configuring a channel’s address space and measuring the address space. PDE and PTE refer
to page directory and page table entries respectively, and a MAC is a keyed message authentication code.

registers. The driver can use this region to allocate non-
sensitive memory objects (e.g., synchronization and in-
terrupt buffers) that are accessed over MMIO. This re-
gion can also be accessed from the GPU engines.

The protected region is visible to but not accessible
from the host. The driver can allocate objects within
the region (by creating page mappings), but cannot ac-
cess the region directly over MMIO. Thus, this region
can only be accessed from the GPU engines.

The hidden region is not visible or accessible to host
CPU or to the GPU engines. Memory in this region are
not accessible over PCI and are not mapped into any
channel’s virtual address space. This region is exclu-
sively reserved for use by the command processor for
maintaining metadata, such as ownership state of pro-
tected memory pages and per-channel encryption keys.

Regions can be implemented using simple range
checks on MMIO accesses in the PCI controller and on
commands that update address-space management struc-
tures in the command processor. The size of each region
can be configured during initialization by untrusted host
software. The size does not affect security; only avail-
ability as the system administrator could block creation
of secure contexts by allocating a small protected region.

Address-space management. The next set of exten-
sions are designed to enforce Invariant 5.1 and Invari-
ant 5.2. We achieve this by decoupling the task of al-
locating and deallocating virtual and physical memory
from the task of managing device-memory-resident ad-
dress translation data structures (i.e., page directories and
page tables) and delegating the latter to the GPU’s com-
mand processor. In particular, we allow the driver to de-
cide where in virtual and physical memory an object will
reside, but require that the driver route requests to update
page directories and page tables through the command
processor using the API described in Figure 6.

The implementation of the API in the command pro-
cessor enforces these invariants by tracking ownership of

physical pages in the protected region in a data structure
called the Protected Memory Metadata (PMM). We first
describe PMM and then the commands.

Tracking ownership. The PMM is a data structure lo-
cated in hidden memory, making it invisible to the host.
It is indexed using the physical address of a memory
page. Pages are tracked at the granularity of a small page
(i.e., 4 KB). The PMM maintains the following attributes
for each physical page.

• The attribute owner id is the identifier of the chan-
nel that owns the page.

• The attribute state ∈ {FREE,MAPPED} represents
whether the page is free or already mapped to some
channel. The initial value is FREE.

• The attribute refcnt tracks the number of channels
a physical page has been mapped to.

• The attribute lock ∈ {UNLOCKED,LOCKED} repre-
sents whether the page requires explicit authoriza-
tion to be unmapped.

• The attribute pgd index is an index into the page
directory that points to the page table containing
the mapping for the current page. Using this at-
tribute, the command processor can reconstruct the
virtual address of a physical page. In that sense, the
PMM acts as an inverted page table for the protected
region—i.e., stores PA→VA mappings.

• The attribute pgt entrycnt is a 2-byte value that
tracks the number of pages table entries allocated
within a page table. Using this attribute, the com-
mand processor can know if a locked page table is
empty and hence may be unmapped.

Assuming each PMM entry requires 64-bits, the total
size of the PMM for a GPU with 6GB of physical mem-
ory is 12MB, which is ∼ 0.2% of total memory.
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Commands. The new commands for context and ad-
dress space management use the PMM to enforce Invari-
ant 5.1 and Invariant 5.2 as follows:

CH CREATE. This command takes as a parameter the
address of the page directory (pgd address) for the
newly created channel chid. It checks whether the chan-
nel descriptor and page directory are allocated on pages
in the protected region, and that the pages are FREE. The
former constraint ensures that after channel creation, the
driver does not bypass the API and access the channel
descriptor and page directory directly over MMIO.

If the checks succeed, the pages become MAPPED and
the owner id attribute of the pages is updated to the iden-
tifier of the channel being created. If a secure channel
is being created (using a public key), the pages become
LOCKED. The command processor then updates the ad-
dress of the page directory in the channel descriptor, and
clears the contents of pages storing the page directory
to prevent an attacker from injecting stale translations.
CH CREATE fails if any of the pages containing the chan-
nel descriptor or the page directory is already LOCKED or
MAPPED to an existing channel.

CH PDE. This command unmaps an existing page ta-
ble if one exists and maps a new page table at the index
pgd index in the page directory of the channel.

Before unmapping, the command checks if the phys-
ical pages of the page table are UNLOCKED or the
pgt entrycnt attribute is zero. In either case, the com-
mand decrements refcnt. If refcnt reaches zero, the
pages become FREE. The command fails if the driver at-
tempts to unmap a LOCKED page table or a page table
with valid entries.

Before mapping a new page table, the command
checks whether the page table is allocated on FREE pages
in the protected region. If the checks succeed, the pages
become MAPPED. Additionally, if the channel is secure,
the pages become LOCKED. However, if these pages are
already MAPPED, the command checks if the channel that
owns the page (the current owner id) and the channel
that the page table is being mapped to belong to the
same context by comparing the corresponding public key
hashes. If the hashes match, the page’s reference count is
incremented. This allows physical page tables and hence
physical pages to be shared between channels as long as
they share the same context; this is required for support-
ing features such as CUDA streams [31]. If either of the
checks succeed, the command creates a new entry in the
page directory and clears the contents of the pages stor-
ing the page table. The command fails if the page table is
mapped to a channel associated with a different context.

CH PTE. This command removes existing mappings
and creates new mappings (specified by PT E) for a con-

tiguous range of virtual addresses of size size starting
at VA, where VA is the virtual address mapped at in-
dex pgt index by the page table at index pgd index in
the channel chid’s page directory. Before clearing exist-
ing page table entries, the command checks if the physi-
cal pages are LOCKED. To remove mappings for LOCKED
physical pages, the command requires explicit authoriza-
tion by the user runtime in the form of a MAC over the
tuple {chid,VA,size} using the CEK and a per-channel
counter as the initialization vector (IV). The unforgeabil-
ity of the MAC coupled with the use of a counter for IV
ensures that a malicious driver cannot forge a command
that unmaps physical pages allocated to secure channels,
and then remapping them to other channels. If the checks
and MAC verification succeed, the pages transition to
FREE, and the page table entries are cleared.

Similarly, before creating new mappings, the com-
mand checks if the pages are FREE. Additionally, if the
channel is secure, the command checks if the pages are
located in the protected region (for sensitive code and
data, discussed in Section 6). If the checks succeed, the
page become MAPPED and if the page is being mapped
to a secure channel, the pages become LOCKED.1 If pages
are already MAPPED, the command checks if the chan-
nel that owns the page (the current owner id) and the
channel that the page is being mapped to belong to the
same context by comparing the corresponding public
key hashes. On success, the command increments the
pgt entrycnt of the page table, updates the page table,
and issues a TLB flush to remove any stale translations.
While conventionally the latter is the responsibility of the
device driver, in our design, the flush is implicit. The
command fails if any of the pages are mapped to a chan-
nel associated with a different context.

When the command succeeds, it generates a summary
structure, which encodes all VA→ PA mappings created
during the invocation of CH PTE. The summary is a tu-
ple {chid,VA,n,k,HASH(p 1, ..., p n)}, where VA is the
starting virtual address of the memory being allocated, n
is the number of pages allocated in the protected region,
k is the number of total pages allocated, and p 1, ...p n
are addresses of protected physical pages. The command
processor also generates a keyed MAC over this sum-
mary using the CEK. As described later, this summary is
used by the runtime to verify that sensitive code and data
are allocated in protected region.

CH DESTROY. This command frees memory allocated
to a channel by walking the page directory, finding phys-
ical pages owned by the channel, and resetting their en-

1Note that CH PTE also permits pages in the unprotected region
to be mapped to a secure channel; these pages can be accessed over
MMIO and are used to store objects, such as fence buffers required by
the driver for synchronization.
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tries in the PMM. It then unmaps physical pages of the
channel descriptor and the page directory, decrements
refcnt for pages used for page tables, and pages be-
come FREE if their refcnt reduces to 0.

For secure channels, the command requires explicit
authorization in the form of a MAC over chid using
the CEK and a per-channel counter as IV. However, the
command processor also accepts unauthorized instances
of this command; this enables the device driver to re-
claim resources in scenarios where the user runtime is
no longer able to issue an authorized command—e.g.,
due to a process crash.

In such a scenario, the command processor walks
PMM to find physical pages mapped exclusively to the
channel’s address space, unmaps them, decrements their
refcnt and clears their contents if their refcnt reduces
to 0. The command processor also flushes all caches be-
cause memory accesses of the command processor do not
go through the memory hierarchy of compute engines.

A malicious driver may misuse this mechanism to re-
claim resources of a channel which is still in use, result-
ing in denial of service; there is not violation of confi-
dentiality or integrity as pages containing sensitive infor-
mation, including the channel descriptor, are scrubbed.

CH MEASURE We extend the command processor with
a command CH MEASURE for generating a verifiable ar-
tifact that summarizes the contents of a secure channel.
The artifact can be used to prove to a challenger (e.g., a
GPU runtime) that a channel exists in a certain state on
hardware that guarantees channel isolation. In our im-
plementation, CH MEASURE takes as parameters a range
of virtual pages that should be included in the measure-
ment. It generates a measurement, which contains a
digest (HMAC) of the content of pages within the re-
quested range, and a keyed MAC of the measurement
using the CEK.

Bootstrapping. Introducing a command-based API for
address-space management raises the following issue:
How does the driver send commands for managing the
address space of secure channels without having access
to the channel-specific CEK? We overcome this by re-
quiring the driver to use separate channels, which we re-
fer to as bootstrap channels, for routing address-space
management commands for all other channels. We allow
the driver to create and configure one or more bootstrap
channels over MMIO and allocate their address-space
management structures in the unprotected region.

The command processor identifies a channel as a boot-
strap channel by intercepting MMIO writes to the chan-
nel descriptor attribute in the channel control area. If
the address being written to this attribute is in the unpro-
tected region, the corresponding channel is marked as a
bootstrap channel.

To ensure that the driver does not use a bootstrap
channel to violate isolation of secure channels, the com-
mand processor prohibits a bootstrap channel from issu-
ing commands to the copy and compute engines since
such commands can be used to access sensitive state.
The command processor also checks that all commands
executed from a bootstrap channel are used to configure
non-bootstrap channels. This prevents an adversary from
allocating protected memory pages of a secure context as
page directory and/or page tables for a bootstrap channel
and then leveraging the CH PDE and CH PTE commands
to tamper with the memory of the secure context.

Big page support. The virtual memory subsystem on
modern GPUs employ multiple page sizes. For example,
in NVIDIA GPUs, each page directory entry consists of
two entries, one pointing to a small page (4KB) table,
and another to a big page (128KB) table. Our design re-
quires minor extensions to support large pages. In the
PMM, we continue to track page metadata at the small
page granularity, but we add a bit to each entry to indi-
cate if the corresponding physical page was mapped to a
small or big virtual page. In addition, we require an addi-
tional parameter in the CH PDE and CH PTE commands to
specify whether the updates are to a small or big page ta-
ble. Finally, these commands check that the same virtual
page is not mapped to two different physical pages.

Error handling. When a command fails, the command
processor writes the error in an SRAM register that is ac-
cessible by the device driver over MMIO. This allows the
device driver to take necessary actions so as to guarantee
consistent view of a channel’s address space between the
command processor and the device driver.

6 Software Stack

We now describe new CUDA primitives supported by the
Graviton runtime that use secure contexts and enable de-
sign of applications with strong security properties.

Secure memory management. The Graviton run-
time supports two primitives cudaSecureMalloc and
cudaSecureFree for allocating and deallocating device
memory in the protected region.
cudaSecureMalloc guarantees that allocated GPU

memory is owned by the current context (Invari-
ant 5.1) and lies within the protected region (Invariant
5.3). Much like the implementation of cudaMalloc,
cudaSecureMalloc relies on the device driver to iden-
tify unused virtual memory and physical pages in de-
vice memory, and update page directory and page tables
using the commands CH PDE and CH PTE. As described
above, these commands implement checks to enforce In-
variant 5.1. The runtime enforces Invariant 5.3 using the
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Figure 7: Secure memory copy protocol. The kernel is
copied to the GPU during module creation.

summary structure generated by the CH PTE command.
In particular, the runtime uses the CEK and channel-
specific counter to authenticate the summary structure(s)
returned by the driver. The driver may return multiple
summary structures in case the allocation spans multiple
page tables. After authentication, the runtime can ver-
ify that memory objects are allocated in protected region
using the attribute n in the summary.
cudaSecureFree first clears all allocated pages us-

ing a memset kernel. It then generates a MAC over the
starting virtual address and size of the object using the
CEK, and passes the MAC to the driver, which gener-
ates CH PTE commands to remove entries from the page
table. The MAC serves as an authorization to remove
entries from the page table (Invariant 5.2). In the case
where an object spans multiple page tables, the runtime
generates one MAC per page table.

An implication of the redefined interface between the
driver and the hardware is the inability of the driver to
compact pages allocated to secure channels. Conven-
tionally, the driver is responsible for compacting live
objects and reducing fragmentation in the physical ad-
dress space. However, Graviton prohibits the driver from
accessing these objects. This can cause fragmentation
in the protected region. We leave hardware support for
compaction for future work.

Secure memory copy. The Graviton runtime supports
the primitive cudaSecureMemcpy for securely copying
code and data from the host TEE to device memory and
vice versa. The protocol (Figure 7) works as follows.

1. After a secure context is created, the runtime al-
locates device memory using cudaSecureMalloc

and copies a kernel that performs authenticated de-
cryption (in clear text) into allocated memory, re-
ferred to as AuthDec. To ensure that the kernel
was copied correctly without tampering, the run-
time measures the region in device memory that
contains the kernel (using CH MEASURE), and checks
the the returned digest matches the digest of the ker-
nel computed inside the host TEE.

2. The implementation of cudaSecureMemcpy first
encrypts data to be copied using a fresh symmet-
ric key within the host TEE, and copies encrypted
data to untrusted memory.

3. The runtime initiates a DMA to transfer encrypted
data to target memory region. The command group
that initiates the DMA is encrypted and integrity
protected using the CEK.

4. The runtime uses the AuthDec kernel to decrypt data
in device memory. It issues a command group to
launch the kernel, passing the data’s virtual address,
the data encryption key, and the expected authenti-
cation tag as the kernel’s parameters.

5. AuthDec authenticates encrypted data and generates
an authentication tag which is checked against the
expected authentication tag. If the check succeeds,
the kernel decrypts the data in device memory, over-
writing the encrypted data in the process.

A key attribute of secure memory copy is crypto-
agility. Since the primitive is implemented fully in soft-
ware, the runtime may support various encryption and
authentication schemes without hardware changes.

Secure kernel launch. cudaSecureKernelLaunch

uses secure memory copy to transfer the kernel’s code
and constant memory to the GPU, and then issues a com-
mand group to launch the kernel.

Recent GPUs have introduced preemption at in-
struction and/or thread-block boundaries. Extending
our design to support preemption at the boundary of
thread blocks is relatively straightforward because thread
blocks are independent units of computation [42] and all
ephemeral state, such as registers, application-managed
memory, caches and TLBs can be flushed on preemp-
tion. Instruction-level preemption can also be supported
by saving and restoring ephemeral state to and from a
part of hidden memory reserved for each channel.

Secure streams. CUDA streams is a primitive used
to overlap host and GPU computation, and I/O trans-
fers. Each stream is assigned a separate chan-
nel, with each channel sharing the same address
space, to enable concurrent and asynchronous submis-
sion of independent tasks. Our design supports se-
cure streams (cudaSecureStreamCreate) by allowing
channels within the same context to share page tables
and pages. In particular, the runtime can remap a mem-
ory object to the stream’s address space. Much like
allocation requests, the driver uses CH PTE command
to update page tables. The runtime verifies that the
HASH(p 1, ..., p n) generated by the CH PTE command
matches with the hash of the requested memory object.
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7 Evaluation

7.1 Implementation

We implemented Graviton using an open-source GPU
stack consisting of ocelot, an implementation of the
CUDA runtime API [14], gdev, which implements the
CUDA driver API [21], and libdrm and nouveau, which
implement the user- and kernel-space GPU device driver
[29]. Due to gdev’s limitations (e.g., inability to use
textures), we could not use some operations in cuBLAS
(NVIDIA’s linear algebra library) such as matrix-matrix
(GEMM) and matrix-vector multiply (GEMV). Instead,
we used implementations from Magma, an open-source
implementation of cuBLAS with competitive perfor-
mance [43]. Our implementation does not yet use
SGX for hosting the user application and GPU run-
time—porting the stack to SGX can be achieved using
SGX-specific containers [5, 39, 44], and is outside the
scope of this work.

Command-based API emulation. Since command
processors in modern GPUs are not programmable, we
emulate the proposed commands in software. Our em-
ulator consists of (a) a runtime component which trans-
lates each new command and its parameters into a se-
quence of existing commands that triggers interrupts dur-
ing execution, and (b) a kernel component, which han-
dles interrupts, reconstructs the original command in the
interrupt handler, and implements the command’s se-
mantics. The emulator uses the following commands:
REFCNT sets the value of a 32-bit register in the channel
control area which is readable from the host, SERIALIZE
waits until previous commands are executed, NOP and
NOTIFY triggers an interrupt when a subsequent NOP

command completes.
Figure 8 shows the pseudo-code of the emulator along

with an example for the CH CREATE command. When
a command is submitted, the runtime invokes the func-
tion cmd emu, which translates each 32-bit value v in
the command’s original bit stream into the following se-
quence of commands: REFCNT with v as the parameter,
SERIALIZE, NOTIFY, and NOP. This sequence is pushed
into the ring buffer (using push ring emu), from where it
is read by the command processor. When the command
processor executes this sequence, it raises an interrupt,
and an interrupt handler (interrupt handler) is called on
the host. The handler implements a state machine that
reads the register in the channel control area and recon-
structs the original command one value at a time. After
reconstructing the entire command, the emulator imple-
ments its semantics (in this case using chcreate emu) us-
ing reads and writes to device memory over MMIO (not
shown in the figure).

We choose this emulation strategy because it allows us

u32* ring_buf; /* ring buffer for context */

void push_ring(val) {

*ring_buf=val;

ring_buf ++;

}

void push_ring_emu(u32 value) {

push_ring(REF_CNT);

push_ring(value);

push_ring(SERIALIZE);

push_ring(interrupt_buffer_addr >> 32);

push_ring(interrupt_buffer_addr);

push_ring(NOTIFY);

push_ring(NOP);

}

void cmd_emu(u32 cmd , u32 param[], u32 size)

{

...

push_ring_emu(cmd);

for (int i=0; i<size; i++)

push_ring_emu(param[i]);

...

}

u32 chcreate(ctx_t *ctx , void *chan_base ,

void *pgd , u8 *pub_key) {

...

cmd_emu(CMD_CHCREATE , param , 6);

...

}

void interrupt_handler(device_t *dev) {

...

u32 val = mmio_rd32(dev);

if (val != 0 || dev ->cmd != 0) {

if (dev ->cmd == 0)

dev ->cmd = val;

else {

dev ->param[dev ->size ++] = val;

switch (dev ->cmd) {

...

case CMD_CHCREATE: {

if (dev ->size == 6) {

chcreate_emu(dev);

dev ->size = 0;

dev ->cmd = 0;

}

} break;

...

}

Figure 8: Pseudo code for command emulation.

to run the software stack as if we had hardware support.
Furthermore, it gives us a conservative approximation of
performance because every command processor access
to the PMM and memory mapping data structures in de-
vice memory translates into an access from the host to
device memory over PCIe.

Command group authentication emulation. We also
emulate the command processor logic for authenticated
decryption of command groups. Our emulator intercepts
encrypted command groups before they are copied to de-
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vice memory and decrypts them. As we show later, this
gives us a conservative approximation of performance
since we decrypt command groups in software (aided by
AES-NI) instead of a hardware encryption engine.

To estimate performance that can be achieved using
a hardware encryption engine, we added a mode in our
emulator which encrypts command groups on the host,
but sends command groups in cleartext to the device,
and adds a delay equal to the latency of decrypting the
command group using a hardware engine. We compute
the latency of decryption using the published latency of
decrypting a block in hardware [40] and the size of the
command group (in blocks).

Secure memory copy. Our implementation of secure
memory copy combines AES and SHA-3 for authen-
ticated encryption. We choose SHA-3 as its parallel
tree-based hashing scheme is a good fit for GPUs. It
also provides means for configuration (e.g., the num-
ber of rounds) allowing developers to explore different
performance-security trade-offs [6, 7].

7.2 Performance Overheads
Testbed setup. For our evaluation, we used an Intel
Xeon E5-1620-v3 server with 8 cores operating at 3.5
GHz, and two different NVIDIA GPUs: GTX 780 with
2304 CUDA cores operating at 863 MHz and GTX Ti-
tan Black with 2880 CUDA cores operating at 889 MHz.
The general performance trends were similar with both
GPUs. Therefore, we present results only for Titan
Black. The host CPU runs Linux kernel 4.11 and uses
CUDA toolkit v5.0 for GPU kernel compilation.

Command-based API. First, we quantify the over-
head of using the command-based API using a matrix-
matrix addition microbenchmark. Table 1 shows a break-
down of latency of command execution into five com-
ponents: Base, which is the cumulative latency of all
MMIO operations performed during command execu-
tion without any security extensions; Inv. which is the
additional latency of invariant checks including PMM
maintenance; Init which is the latency for initialization
of page directory and page tables; Crypto which in-
cludes all required cryptographic operations; and inter-
rupt handling, labeled as Intr. Note that the measured la-
tency is obtained based on emulation, and therefore over-
estimates the latency that can be achieved with dedicated
hardware support.

We find that the latency of CH CREATE is dominated
by the cost of initializing the page directory, and that
of CH DESTROY is dominated by the cost of walking the
page directory to remove pages of locked page tables
from PMM. For CH PDE, we measure the latency for al-
locating a page directory entry for a small and big page
tables. Allocating an entry for a small page table incurs

Table 1: Command execution latency (µs)
Command Base Inv. Init Crypto Intr
CH CREATE 2 13 2246 11 58

CH DESTROY 1 10592 N/A 23 68

CH PDE (S) 1 104 3783 N/A 62

CH PDE (B) 1 62 57 N/A 63

CH PTE (S-8) 8 14 N/A 21 82

CH PTE (B-8) 8 297 N/A 21 78
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Figure 9: Secure memory copy performance for various
sizes and configurations.

a higher latency because the command needs to reset a
larger number of entries. Finally, we measure the la-
tency of CH PTE for allocating an object spanning eight
entries of a small page table or a big page table. Here,
the latency is higher for big page tables because a larger
number of invariant checks using the PMM, which tracks
ownership at small page granularity.

Secure memory copy. Figure 9 plots the latency of se-
cure copy for three AES/SHA3 variants and transfer sizes.
The variants ParallelHash256 and Marsupilami14

provide 256-bit hashing strength while Kangaroo12 pro-
vides 128-bit hashing strength. We find that latency re-
mains flat for small transfer sizes and scales almost lin-
early for larger transfer sizes. Unless stated otherwise,
we utilize the AES256/Marsupilami14 configuration
for the rest of the evaluation.

Table 2 shows a breakdown of the latency for
AES256/Marsupilami14 configuration. Base refers to
the latency of normal (insecure) copy, and the other four
components refer to the latency of executing AES and
SHA-3 on the CPU and GPU. We find that as the trans-
fer size increases, SHA3-CPU and AES-GPU account for
a majority of the overheads (over 75% of the latency
for 64MB transfers). For small data sizes, the AES-GPU

phase, which is compute bound, under-utilizes the GPU
cores and hence the execution time remains flat. In con-
trast, the SHA3-GPU kernel scales better due to lower al-
gorithmic complexity. More generally, we attribute both
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Table 2: Secure memory copy breakdown for
AES256/Marsupilami14. Latency is reported in ms.

Size 4KB 64KB 256KB 4MB 64MB
Base 0.02 0.03 0.08 1.07 11.05

AES-CPU 0.01 0.05 0.10 1.46 25.45

SHA3-CPU 0.02 0.11 0.34 3.19 51.79

SHA3-GPU 0.12 0.13 0.12 0.31 0.58

AES-GPU 0.31 0.38 0.79 6.54 87.98

Total 0.46 0.70 1.43 12.57 176.87

Table 3: CUDA driver API latency (ms)
API Normal Secure
cuCtxCreate 77.65 252.63

cuCtxDestroy 17.00 29.43

cuModuleLoad 1.72 85.27

cuMemAlloc (S|B) 0.02|0.03 0.19|0.43

cuMemFree (S|B) 0.03|0.05 0.28|0.66

these costs to the lack of ISA support for SHA-3 on the
CPU and for AES on the GPU.

CUDA driver API. Our implementation of secure ex-
tensions to the CUDA runtime API are based on exten-
sions to the CUDA driver API. Table 3 shows the im-
pact of adding security on latency of these APIs. As ex-
pected, all driver APIs incur higher latencies. The rela-
tively high latency of secure version of context creation
cuCtxCreate is dominated by the latency of creating
an RSA key (75% of latency). The secure version of
module load cuModuleLoad is more expensive because
it (a) bootstraps secure copy, which measures the au-
thenticated encryption kernels and (b) uses secure copy
to transfer the application kernels to device memory.
These APIs are typically used infrequently, and there-
fore these latencies do not have a large impact on overall
execution time in most applications. On the other hand,
cuMemAlloc and cuMemFree can be on the critical path
for applications that use a large number of short-lived
objects. The increased latency of these operations is pre-
dominantly due to emulation (interrupts and MMIO ac-
cesses). We expect an actual implementation of these op-
erations on real Graviton hardware to incur much lower
overheads with no involved interrupts and reduced mem-
ory access latency.

7.3 Applications

Finally, we quantify the impact of using secure CUDA
APIs on end-to-end application performance using a set
of GPU benchmarks. We use two benchmarks with dif-
ferent characteristics, namely Caffe, a framework for
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Figure 10: Cifar-10 performance. For training, time is
reported for 25 batches averaged across all epochs. HW
refers to a hypothetical hardware encryption engine used
for command group authenticated decryption.

training and inference of artificial neural networks [18],
and BlackScholes, an option pricing application [8].

Cifar-10. We use Caffe to train a convolutional neural
network on the Cifar-10 dataset, which consists of 60000
32x32 images spanning 10 classes. The network con-
sists of 11 layers: 3 layers of convolution, pooling, recti-
fied linear unit non-linearities (RELU) followed by local
contrast normalization and a linear classifier. We run 40
epochs (each epoch is a sweep over 50000 images) with
a batch size of 200 and test the model at the end of ev-
ery epoch using 10000 images with a batch size of 400.
Both the baseline system and Graviton achieve the same
training accuracy.

Figure 10 shows Graviton’s impact on execution time
for three phases of execution—i.e. initialization, test-
ing (which is similar to inference), and training. For
training, execution time is reported for 25 batches aver-
aged across all epochs. We also breakdown the overhead
into two buckets, isolation (i.e., using the secure CUDA
driver API and command group authentication) and se-
cure memory copy. In the emulated environment, our
security extensions cause a slowdown of 73%, 57% and
53% respectively in each of these phases.

The overheads during initialization are due to secure
context and module creation (22% of the overhead), se-
cure copy of the model and data used for the initial
test (31%), and command authentication during an ini-
tial testing phase (47%).

A breakdown of testing and training overheads shows
that that command group authentication accounts for
66% and 77% of the overhead, respectively. This is be-
cause this workload executes a large number of relatively
short kernels (one for each batch and layer). We pro-
filed the time spent on kernel launches, and find that a
large fraction of the overhead is due to the cost of em-
ulating authenticated decryption of commands. In par-
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Figure 11: System performance for various benchmarks.

ticular, each secure kernel launch incurs a 9.2µs latency,
with 0.8µs on encryption in the runtime, and 3.0µs on
decryption in the emulator.

The figure also shows the estimated overhead assum-
ing we extend the command processor with a hardware
encryption engine. The overhead reduces from 35-41%
to 5-7% for testing and training phases due to a reduc-
tion in time spent on authenticated decryption from 3µs
to around 30ns. Adding a hardware encryption engine
reduces the overall overhead to 17% (Figure 11).

MNIST. We use Caffe to train an autoencoder on the
MNIST dataset, which consists of 60000 28x28 hand-
written digits. The network consists of six encoding lay-
ers and six decoding layers. We run 10000 batches (with
a batch size of 128) and test the model every 500 batches
using 8192 images with a batch size of 256. Both base-
line and Graviton achieve same accuracy.

As shown in Figure 11, Graviton introduces 33% per-
formance overhead. The overhead is higher than in Cifar-
10 as the complexity of encoding and decoding layers is
lower than convolutional layers, and hence each iteration
spends higher fraction time on secure memory copy.

BlackScholes. We run BlackScholes with 10 batches
of four million options and 2500 iterations each. As
shown in Figure 11, the overall overhead is 26%. Un-
like Cifar-10, command authentication is not a factor in
BlackScholes as it executes one long-running kernel per
batch; thus, the overhead for enforcing isolation is at-
tributed mainly to secure context and module creation.

8 Related Work

Trusted hardware. There is a history of work [9, 13,
15, 17, 24, 27, 32, 41, 48] on trusted hardware that iso-
lates code and data from the rest of the system. Intel
SGX [28] is the latest in this line of work, but stands
out because it provides comprehensive protection and is
already available in client CPUs and public cloud plat-
forms. Graviton effectively extends the trust boundary
of TEEs on the CPU to rich devices, such as GPUs.

Trusted execution on GPUs. A number of researchers
have identified the need for mechanisms that allow an ap-
plication hosted in a TEE to securely communicate with
I/O devices over a trusted path. Yu et al. [51] propose an
approach for using the trusted path approach for GPUs.
Their approach relies on a privileged host component to
enforce isolation between virtual machines and display,
whereas our attacker model precludes trust in any host
component.

PixelVault proposed an architecture for securely of-
floading cryptographic operations to a GPU [46]. Sub-
sequent work has demonstrated that such design suffers
from security vulnerabilities due to lack of page initial-
ization upon allocations and module creation, lack of
kernel-level isolation, and information leakage of reg-
isters by either attaching a debugger to a running ker-
nel (and the GPU runtime) or invoking a kernel on
the same channel [23, 52]. In contrast, Graviton en-
ables a general-purpose trusted execution environment
on GPUs. Information leakage via kernel debugging is
prevented as the user hosts its GPU runtime inside a
CPU TEE, guaranteeing that debugging cannot be en-
abled during execution.

9 Conclusion

Unlike recent CPUs, GPUs provide no support for
trusted execution environments (TEE), creating a trade-
off between security and performance. In this paper,
we introduce Graviton, an architecture for supporting
TEEs on GPUs. Our proof-of-concept on NVIDIA GPUs
shows that hardware complexity and performance over-
heads of the proposed architecture are low.

An interesting avenue for future work is to extend
Graviton to secure kernel execution and communication
across multiple GPUs and to investigate support for ad-
vanced features, such as on-demand paging and dynamic
thread creation. In addition, we would like to investigate
whether it is possible to remove the dependency on CPU
TEEs, such as Intel SGX, and if so to quantify the impli-
cations on system performance. Finally, we would like
to validate whether the proposed architecture extends to
other accelerators, such as FPGAs.
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§ Università della Calabria, Italy

Abstract
The Rowhammer vulnerability common to many modern
DRAM chips allows attackers to trigger bit flips in a row
of memory cells by accessing the adjacent rows at high
frequencies. As a result, they are able to corrupt sensitive
data structures (such as page tables, cryptographic keys,
object pointers, or even instructions in a program), and
circumvent all existing defenses.

This paper introduces ZebRAM, a novel and compre-
hensive software-level protection against Rowhammer.
ZebRAM isolates every DRAM row that contains data
with guard rows that absorb any Rowhammer-induced bit
flips; the only known method to protect against all forms
of Rowhammer. Rather than leaving guard rows unused,
ZebRAM improves performance by using the guard rows
as efficient, integrity-checked and optionally compressed
swap space. ZebRAM requires no hardware modifications
and builds on virtualization extensions in commodity pro-
cessors to transparently control data placement in DRAM.
Our evaluation shows that ZebRAM provides strong se-
curity guarantees while utilizing all available memory.

1 Introduction

The Rowhammer vulnerability, a defect in DRAM chips
that allows attackers to flip bits in memory at locations
to which they should not have access, has evolved from a
mere curiosity to a serious and very practical attack vector
for compromising PCs [6], VMs in clouds [28, 37], and
mobile devices [13, 34]. Rowhammer allows attackers
to flip bits in DRAM rows simply by repeatedly reading
neighboring rows in rapid succession. Existing software-
based defenses have proven ineffective against advanced
Rowhammer attacks [4, 7], while hardware defenses are
impractical to deploy in the billions of devices already in
operation [23]. This paper introduces ZebRAM, a compre-
hensive software-based defense preventing all Rowham-
mer attacks by isolating every data row in memory with
guard rows that absorb any bit flips that may occur.

Practical Rowhammer attacks Rowhammer attacks
can target a variety of data structures, from page table
entries [30, 34, 36, 37] to cryptographic keys [28], and
from object pointers [6, 13, 32] to opcodes [14]. These
target data structures may reside in the kernel [30, 34],
other virtual machines [28], the same process address
space [6, 13], and even on remote systems [32]. The
attacks may originate in native code [30], JavaScript [6,
15], or from co-processors such as GPUs [13] and even
DMA devices [32]. The objective of the attacker may
be to escalate privileges [6, 34], weaken cryptographic
keys [28], compromise remote systems [32], or simply
lock down the processor in a denial-of-service attack [18].

Today’s defenses are ineffective Existing hardware-
based Rowhammer defenses fall into three categories: re-
fresh rate boosting, target row refresh, and error correcting
codes. Increasing the refresh rate of DRAM [21] makes
it harder for attackers to leak sufficient charge from a row
before the refresh occurs, but cannot prevent Rowham-
mer completely without unacceptable performance loss
and power consumption increase. The target row refresh
(TRR) defense, proposed in the LPDDR4 standard, uses
hardware counters to monitor DRAM row accesses and
refreshes specific DRAM rows suspected to be Rowham-
mer victims. However, TRR is not widely deployed; it
is optional even in DDR4 [20]. Moreover, researchers
still regularly observe bit flips in memory that is equipped
with TRR [29]. As for error correcting codes (ECC), the
first Rowhammer publication already argued that even
ECC-protected DRAM is susceptible to Rowhammer at-
tacks that flip multiple bits per memory word [21]. While
this is complicating attacks, they do not stop fully stop
them as shown by the recent ECCploit attack [10]. Fur-
thermore, ECC memory is unavailable on most consumer
devices.

Software defenses do not suffer from the same deploy-
ment issues as hardware defenses. These solutions can
be categorized into primitive weakening, detection, and
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isolation.
Primitive weakening makes some of the steps in

Rowhammer attacks more difficult, for instance by mak-
ing it harder to obtain physically contiguous uncached
memory [30], or to create the cache eviction sets required
to access DRAM in case the memory is cached. Research
has already shown that these solutions do not fundamen-
tally prevent Rowhammer [13].

Rowhammer detection uses heuristics to detect sus-
pected attacks and refresh victim rows before they suc-
cumb to bit flips. For instance, ANVIL uses hardware
performance counters to identify likely Rowhammer at-
tacks [4]. Unfortunately, hardware performance counters
are not available on all CPUs, and some Rowhammer
attacks may not trigger unusual cache behavior or may
originate from unmonitored devices [13].

A final, and potentially very powerful defense against
Rowhammer is to isolate the memory of different security
domains in memory with unused guard rows that absorb
bit flips. For instance, CATT places a guard row between
kernel and user memory to prevent Rowhammer attacks
against the kernel from user space [7]. Unfortunately,
CATT does not prevent Rowhammer attacks between
user processes, let alone attacks within a process that aim
to subvert cryptographic keys [28]. Moreover, the lines
between security domains are often blurry, even in seem-
ingly clear-cut cases such as the kernel and user-space,
where the shared page cache provides ample opportunity
to flip bits in sensitive memory areas and launch devastat-
ing attacks [14].

ZebRAM: isolate everything from everything Given
the difficulty of correctly delineating security domains,
the only guaranteed approach to prevent all forms of
Rowhammer is to isolate all data rows with guard rows
that absorb bit flips, rendering them harmless. The
guard rows, however, break compatibility: buddy allo-
cation schemes (and certain devices) require physically-
contiguous memory regions. Furthermore, the drawback
of this approach is obvious—sacrificing 50% of memory
to guard rows is extremely costly. This paper introduces
ZebRAM, a novel, comprehensive and compatible soft-
ware protection against Rowhammer attacks that isolates
everything from everything else without sacrificing mem-
ory consumed by guard rows. To preserve compatibility,
ZebRAM remaps physical memory using existing CPU
virtualization extensions. To utilize guard rows, ZebRAM
implements an efficient, integrity-checked and optionally
compressed swap space in memory.

As we show in Section 7, ZebRAM incurs an over-
head of 5% on the SPEC CPU 2006 benchmarks. While
ZebRAM remains expensive in the memory-intensive
redis instance, our evaluation shows that ZebRAM’s in-
memory swap space significantly improves performance
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Figure 1: DRAM organization and example mapping of
two consecutive addresses.

compared to our basic solution that leaves the guard
rows unused, in some cases eliminating over half of the
observed performance degradation. In practice, the re-
cent Meltdown/Spectre vulnerabilities show that for a
sufficiently serious threat, even expensive fixes are ac-
cepted [24]. First and foremost, however, this work inves-
tigates an extreme point in the design space of Rowham-
mer defenses: the first complete protection against all
forms of Rowhammer, without sacrificing memory, at a
cost that is a function of the workload.

Contributions Our contributions are the followings:

• We describe ZebRAM, the first comprehensive soft-
ware protection against all forms of Rowhammer.

• We introduce a novel technique to utilize guard
rows as fast, memory-based swap space, significantly
improving performance compared to solutions that
leave guard rows unused.

• We implement ZebRAM and show that it achieves
both practical performance and effective security in
a variety of benchmark suites and workloads.

• ZebRAM is open source to support future work.

2 Background

This section discusses background on DRAM organiza-
tion, the Rowhammer bug, and existing defenses.

2.1 DRAM Organization
We now discuss how DRAM chips are organized inter-
nally, which is important knowledge for launching an
effective Rowhammer attack. Figure 1 illustrates the
DRAM organization.
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The most basic unit of DRAM storage is a cell that
can hold a single bit of information. Each DRAM cell
consists of two components: a capacitor and a transistor.
The capacitor stores a bit by retaining electrical charge.
Because this charge leaks away over time, the memory
controller periodically (typically every 64 ms) reads each
cell and rewrites it, restoring the charge on the capacitor.
This process is known as refreshing.

DRAM cells are grouped into rows that are typically
1024 cells (or columns) wide. Memory accesses happen at
row granularity. When a row is accessed, the contents of
that row are put in a special buffer, called the row buffer,
and the row is said to be activated. After the access, the
activated row is written back (i.e., recharged) with the
contents of the row buffer.

Multiple rows are stacked together to form banks, with
multiple banks on a DRAM integrated circuit (IC) and
a separate row buffer per bank. In turn, DRAM ICs are
grouped into ranks. DRAM ICs are accessed in parallel;
for example, in a DIMM that has eight ICs of 8 bits wide
each, all eight ICs are accessed in parallel to form a 64
bit memory word.

To address a memory word within a DRAM rank, the
system memory controller uses three addresses for the
bank, row and column, respectively. Note that the map-
ping between a physical memory address and the corre-
sponding rank-index, bank-index and row-index on the
hardware module is nonlinear. Consequently, two con-
secutive physical memory addresses can be mapped to
memory cells that are located on different ranks, banks,
or rows (see Figure 1). As explained next, knowledge of
the address mapping is vital to effective Rowhammer.

2.2 The Rowhammer Bug

As DRAM chips become denser, the capacitor charge re-
duces, allowing for increased DRAM capacity and lower
energy consumption. Unfortunately, this increases the
possibility of memory errors owing to the smaller differ-
ence in charge between a “0” bit and a “1” bit.

Research shows that it is possible to force memory er-
rors in DDR3 memory by activating a row many times
in quick succession, causing capacitors in neighboring
victim rows to leak their charge before the memory con-
troller has a chance to refresh them [21]. This rapid
activation of memory rows to flip bits in neighboring
rows is known as the Rowhammer attack. Subsequent
research has shown that bit flips induced by Rowham-
mer are highly reproducible and can be exploited in a
multitude of ways, including privilege escalation attacks
and attacks against co-hosted VMs in cloud environ-
ments [6, 15, 27, 28, 30, 34, 37].

The original Rowhammer attack [30] is now known
as single-sided Rowhammer. As Figure 2 shows, it uses

Aggressor row (k-1)

Victim row (k)
Aggressor row (k-1) 

Victim row (k)

Aggressor row (k+1) 

(a) Single-sided Rowhamamer attack (b) Double-sided Rowhammer attack

Figure 2: Flipping a bit in a neighboring DRAM row
through single-sided (a) and double-sided (b) Rowham-
mer attacks.

many rapid-fire memory accesses in one aggressor row
k− 1 to induce bit flips in a neighboring victim row k.
A newer variant called double-sided Rowhammer ham-
mers rows k − 1 and k + 1 on both sides of the victim
row k, increasing the likelihood of a bit flip (see Fig-
ure 2). Recent research shows that bit flips can also be
induced by hammering only one memory address [14]
(one-location hammering). Regardless of the type of ham-
mering, Rowhammer can only induce bit flips on directly
neighboring DRAM rows.

In contrast to single-sided Rowhammer, the double-
sided variant requires knowledge of the mapping of virtual
and physical addresses to memory rows. Since DRAM
manufacturers do not publish this information, this neces-
sitates reverse engineering the DRAM organization.

2.3 Rowhammer Defenses
Research has produced both hardware- and software-
based Rowhammer defenses.

The original hardware defense proposed by Kim et
al. [21] doubles the refresh rate. Unfortunately, this
has been proven insufficient to defend against Rowham-
mer [4]. Other hardware defenses include error-correcting
DRAM chips (ECC memory), which can detect and
correct a 1-bit error per ECC word (64-bit data). Un-
fortunately, ECC memory cannot correct multi-bit er-
rors [3, 23] and is not readily available in consumer hard-
ware. The new LPDDR4 standard [19] specifies two
features which together defend against Rowhammer: Tar-
get Row Refresh (TRR) enables the memory controller to
refresh rows adjacent to a certain row, and Maximum Acti-
vation Count (MAC) specifies a maximum row activation
count before adjacent rows are refreshed. Despite these
defenses, Gruss et al. [29] still report bit flips in TRR
memory.

ANVIL [4], a software defense, uses Intel’s perfor-
mance monitoring unit (PMU) to detect physical ad-
dresses that cause many cache misses indicative of
Rowhammer.1 It then recharges suspected victim rows

1Rowhammer attacks repeatedly clear hammered rows from the CPU
cache to ensure that they hammer DRAM memory, not the cache.
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by accessing them. Unfortunately, the PMU does not
accurately capture memory accesses through DMA, and
not all CPUs feature PMUs. Moreover, the current im-
plementation of ANVIL does not accurately take into
account DRAM address mapping and has been reported
to be ineffective because of it [31].

Another software-based defense, B-CATT [8], imple-
ments a bootloader extension to blacklist all the loca-
tions vulnerable to Rowhammer, thus wasting the mem-
ory. However, Gruss et al. [14] show that this approach
is not practical as it may blacklist over 95% of memory
locations; similar results were reported by Tatar et al. [31]
showing DIMMs with 99+% vulnerable memory loca-
tions. In addition, in our experiments, we have observed
different bit flip patterns over time for the same module,
making B-CATT incomplete.

Yet another software-based defense called CATT [7]
proposes an alternative memory allocator for the Linux
kernel that isolates user and kernel space in physical mem-
ory, thus ensuring that user-space attackers cannot flip
bits in kernel memory. However, CATT does not defend
against attacks between user-space processes, and pre-
vious work [14] shows that CATT can be bypassed by
flipping bits in the code of the sudo program.

3 Threat Model

The Rowhammer attacks found in prior research aim for
privilege escalation [6, 27, 28, 30, 34, 37, 15], compro-
mising co-hosted virtual machines [28, 37] or even attacks
over the network [32]. Our approach, ZebRAM, addresses
all these attacks through its principle of isolating memory
rows from each other. Our prototype implementation of
ZebRAM focuses only on virtual machines, stopping all
of the aforementioned attacks launched from or at a victim
virtual machine, assuming the hypervisor is trusted. We
discuss possible alternative implementations (e.g., native)
in Section 9.2.

4 Design

To build a comprehensive solution against Rowhammer
attacks, we should consider Rowhammer’s fault model:
bit flips only happen in adjacent rows when a target row
is hammered as shown in Figure 3. Given that any row
can potentially be hammered by an attacker, all rows in
the system can be abused. To protect against Rowhammer
in software, we can follow two approaches: we either
need to protect the entire memory against Rowhammer
or we need to limit the rows that the attacker can ac-
cess. Protecting the entire memory is not secure even in
hardware [23, 34] and software attempts have so far been
shown to be insecure [14]. Instead, we aim to design a

Aggressor row (k-1) 

Aggressor row (k+1)

Victim row (k)Odd row

Even row

Figure 3: Hammering even-numbered rows can only in-
duce bit flips in odd-numbered rows and vice versa.

Safe region

Unsafe region

 DRAM Address
       Space

 

Figure 4: Splitting the memory into safe and unsafe re-
gions using even and odd rows in a zebra pattern.

system where an attacker can only hammer a subset of
rows directly.

Basic ZebRAM In order to make sure that Rowhammer
bit flips cannot target any data, we should enforce the
invariant that all adjacent rows are unused. This can
be done by making sure that either all odd or all even
rows are unused by the system. Assuming odd rows are
unused, all even rows will create a safe region in memory;
it is not possible for an attacker to flip bits in this safe
regions simply because all the odd rows are inaccessible
to the attacker. The attacker can, however, flip bits in the
odd rows by hammering the even rows in the safe region.
Hence, we call the odd rows the unsafe region in memory.
Given that the unsafe region is unused, the attacker cannot
flip bits in the data used by the system. This simple design
with its zebra pattern shown in Figure 4 already stops all
Rowhammer attacks. It however has an obvious downside:
it wastes half of the memory that makes up the unsafe
region. We address this problem later when we explain
our complete ZebRAM design.

A more subtle downside in this design is incompat-
ibility with the Buddy page allocation scheme used in
commodity operating systems such as Linux. Buddy al-
location requires contiguous regions of physical memory
in order to operate efficiently and forcing the system not
to use odd rows does not satisfy this requirement. Ide-
ally, our design should utilize the unsafe region while
providing (the illusion of) a contiguous physical address
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Figure 5: ZebRAM logically divides system memory into
a safe region for normal use, a swap space made from the
unsafe region, and a swap cache to protect the safe region
from accesses made to the unsafe region.

space for efficient buddy allocation as shown on the right
side of Figure 4. To address this downside, our design
should provide a translation mechanism that creates a
linear physical address space out of the safe region.

ZebRAM If we can find a way to securely use the un-
safe region, then we can gain back the memory wasted
in the basic ZebRAM design. We need to enforce two
invariants if we want to make use of the unsafe region for
storing data. First, we need to make sure that we properly
handle potential bit flips in the unsafe region. Second, we
need to ensure that accessing the unsafe region does not
trigger bit flips in the safe region. Our proposed design,
ZebRAM, shown in Figure 5 satisfies all these require-
ments. To handle bit flips in the unsafe region, ZebRAM
performs software integrity checks and error correction
whenever data in the unsafe region is accessed. To pro-
tect the safe region from accesses to the unsafe region,
ZebRAM uses a cache in front of the unsafe region. This
cache is allocated from the safe region and ZebRAM is
free to choose its size and replacement policy in a way
that protects the safe region. Finally, to provide backward-
compatibility with memory management in commodity
systems, ZebRAM can employ translation mechanisms
provided by hardware (e.g., virtualization extensions in
commodity processors) to translate even rows into a con-
tiguous physical address space for the guest.

To maintain good performance, ZebRAM ensures that
accesses to the safe region proceed without interposition.
As mentioned earlier, this can potentially cause bit flips in
the unsafe region. Hence, all accesses to the unsafe region
should be interposed for bit flip detection and correction.
To this end, ZebRAM exposes the unsafe region as a
swap device to the protected operating system. With
this design, ZebRAM reuses existing page replacement
policies of the operating system to decide which memory
pages should be evicted to the swap (i.e., unsafe region).
Given that most operating systems use some form of
Least Recently Used (LRU), the working set of the system
remains in the safe region, preserving performance. Once
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Figure 6: ZebRAM Components.

the system needs to access a page from the unsafe region,
the operating system selects a page from the safe region
(e.g., based on LRU) and creates necessary meta data for
bit flip detection (and/or correction) using the contents of
the page and writes it to the unsafe region. At this point,
the system can bring the page to the safe region from
the unsafe region. But before that, it uses the previously
calculated meta data to perform bit flip detection and
correction. Note that the swap cache (for protecting the
safe region) is essentially part of the safe region and is
treated as such by ZebRAM.

Next, we discuss our implementation of ZebRAM’s
design before analyzing its security guarantees and evalu-
ating its performance.

5 Implementation

In this section, we describe a prototype implementation
of ZebRAM on top of the Linux kernel. Our prototype
protects virtual machines against Rowhammer attacks and
consists of the following four components: the Memory
Remapper, the Integrity Manager, the Swap Manager,
and the Cache Manager, as shown in Figure 6. Our pro-
totype implements Memory Remapper in the hypervisor
and the other three components in the guest OS. It is pos-
sible to implement all the components in the host to make
ZebRAM guest-transparent. We discuss alternative imple-
mentations and their associated trade-offs in Section 9.2.
We now discuss these components as implemented in our
prototype.

5.1 ZebRAM Prototype Components
Memory Remapper implements the split of physical
memory into a safe and unsafe region. One region con-
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tains all the even-numbered rows, while the other contains
all the odd-numbered rows. Note that because hardware
vendors do not publish the mapping of physical addresses
to DRAM addresses, we need to reverse engineer this
mapping following the methodology established in prior
work [26, 37, 31].

Because Rowhammer attacks only affect directly neigh-
boring rows, a Rowhammer attack in one region can
only incur bit flips in the other region, as shown in Fig-
ure 3. In addition, ZebRAM supports the conservative
option of increasing the number of guard rows to defend
against Rowhammer attacks that target a victim row not
directly adjacent to the aggressor row. However, our expe-
rience with a large number of vulnerable DRAM modules
shows that with the correct translation of memory pages
to DRAM locations, bit flips trigger exclusively in rows
adjacent to a row that is hammered.

Integrity Manager protects the integrity of the unsafe
region. Our software design allows for a flexible choice
for error detection and correction. For error correction,
we use a commonly-used Single-Error Correction and
Double-Error Detection (SECDED) code. As shown in
recent work [10], SECDED and other similar BCH codes
can still be exploited on DIMMs with large number of
bit flips. Our database of Rowhammer bit flips from 14
vulnerable DIMMs [31] shows that only 0.00015% of all
memory words with bit flips can bypass our SECDED
code (found in 2 of the 14 vulnerable DIMMs) and 0.13%
of them can cause a detectable corruption (found in 7
of the 14 vulnerable DIMMs). To provide strong detec-
tion guarantees, while providing correction possibilities,
ZebRAM provides the possibility to mix SECDED with
collision resistant hash functions such as SHA-256 at the
cost of extra performance overhead.

Swap Manager uses the unsafe region to implement an
efficient swap disk in memory, protected by the Integrity
Manager and accessible only by the OS. Using the unsafe
region as a swap space has the advantage that the OS
will only access the slow, integrity-checked unsafe region
when it runs out of fast safe memory. As with any swap
disk, the OS uses efficient page replacement techniques
to minimize access to it. To maximize utilization of the
available memory, the Swap Manager also implements
a compression engine that optionally compresses pages
stored in the swap space.

Note that ZebRAM also supports configurations with
a dedicated swap disk (such as a hard disk or SSD) in
addition to the memory-based swap space. In this case,
ZebRAM swap is prioritized above any other swap disks
to maximize efficiency.

Cache Manager implements a fully associative cache
that speeds up access to the swap space while simultane-
ously preventing Rowhammer attacks against safe rows
by reducing the access frequency on memory rows in the
unsafe region. The swap cache is faster than the swap
disk because it is located in the safe region and does not
require integrity checks or compression. Because attack-
ers must clear the swap cache to be able to directly access
rows in the unsafe region, the cache prevents attackers
from efficiently hammering guard rows to induce bit flips
in safe rows.

Because the cache layer sits in front of the swap space,
pages swapped out by the OS are first stored in the cache,
in uncompressed format. Only if the cache is full does
the Cache Manager flush the least-recently-added (LRA)
entry to the swap disk. The LRA strategy is important,
because it ensures that attackers must clear the entire
cache after every row access in the unsafe region.

5.2 Implementation Details

We implemented ZebRAM in C on an Intel Haswell ma-
chine running Ubuntu 16.04 with kernel v4.4 on top a
Qemu-KVM v2.11 hypervisor. Next we provide further
details on the implementation various components in the
ZebRAM prototype.

Memory Remapper To efficiently partition memory
into guard rows and safe rows, we use Second Level Ad-
dress Translation (SLAT), a hardware virtualization ex-
tension commonly available in commodity processors.
To implement the Memory Remapper component, we
patched Qemu-KVM’s mmap function to expose the un-
safe memory rows to the guest machine as a contiguous
memory block starting at physical address 0x3ffe0000.
We use a translation library similar to that of Throwham-
mer [32] for assigning memory pages to odd and even
rows in the Memory Remapper component.

Integrity Manager The Integrity Manager and Cache
Manager are implemented as part of the ZebRAM block
device, and comprise 369 and 192 LoC, respectively. The
Integrity Manager uses SHA-256 algorithm for error de-
tection, implemented in mainline Linux, to hash swap
pages, and keeps the hashes in a linear array stored in safe
memory. Additionally, the Integrity Manager by default
uses an ECC derived from the extended Hamming(63,57)
code [16], expurgated to have a message size an integer
multiple of bytes. The obtained ECC is a [64,56,4]2 block
code, providing single error correction and double error
detection (SECDED) for each individual (64-bit) mem-
ory word—functionally on par with hardware SEC-DED
implementations.
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Swap Manager The Swap Manager is implemented as
a Loadable Kernel Module (LKM) for the guest OS that
maintains a stack containing the Page Frame Numbers
(PFNs) of free pages in the swap space. It exposes the
RAM-based swap disk as a readable and writable block
device that we implemented by extending the zram com-
pressed RAM block device commonly available in Linux
distributions. We changed zram’s zsmalloc slab mem-
ory allocator to only use pages from the Swap Manager’s
stack of unsafe memory pages. To compress swap pages,
we use the LZO algorithm also used by zram [1]. The
Swap Manager LKM contains 456 LoC while our modifi-
cations to zram and zsmalloc comprise 437 LoC.

Cache Manager The Cache Manager implements the
swap cache using a linear array to store cache entries and
a radix tree that maps ZebRAM block device page indices
to cache entries. By default, ZebRAM uses 2% of the
safe region for the swap cache.

Guest Modifications The guest OS is unchanged ex-
cept for a minor modification that uses Linux’s boot mem-
ory allocator API (alloc bootmem low pages) to re-
serve the unsafe memory block as swap space at boot
time. Our changes to Qemu-KVM comprise 2.6K lines
of code (LoC), while the changes to the guest OS com-
prise only 4 LoC. Furthermore, the Linux kernel may
eagerly write dirty pages into the swap device based on
its swappiness tunable. In ZebRAM, we use a swappi-
ness of 10 instead of the default value of 60 to reduce the
number of unnecessary writes to the unsafe region.

6 Security Evaluation

This section evaluates ZebRAM’s effectiveness in defend-
ing against traditional Rowhammer exploits. Addition-
ally, we show that ZebRAM successfully defends even
against more advanced ZebRAM-aware Rowhammer ex-
ploits. We evaluated all attacks on a Haswell i7-4790
host machine with 16GB RAM running our ZebRAM-
based Qemu-KVM hypervisor on Ubuntu 16.04 64-bit.
The hypervisor runs a guest machine with 4GB RAM
and Ubuntu 16.04 64-bit with kernel v4.4, containing all
necessary ZebRAM patches and LKMs.

6.1 Traditional Rowhammer Exploits

Under ZebRAM’s memory model, traditional Rowham-
mer exploits on system memory only hammer the safe
region, and can therefore trigger bit flips only in the
integrity-checked unsafe region by construction. We
tested the most popular real-world Rowhammer exploit

variants to confirm that ZebRAM correctly detects these
integrity violations.

In particular, we ran the single-sided Rowhammer ex-
ploit published by Google’s Project Zero,2 as well as
the one-location3 and double-sided4 exploits published
by Gruss et al. on our testbed for a period of 24 hours.
During this period the single-sided Rowhammer exploit
induced two bit flips in the unsafe region, while the one-
location and double-sided exploits failed to produce any
bit flips. ZebRAM successfully detected and corrected all
of the induced bit flips.

The double-sided Rowhammer exploit failed due to
ZebRAM’s changes in the DRAM geometry, alternating
safe rows with unsafe rows. Conventional double-sided
exploits attempt to exploit a victim row k by hammering
the rows k−1 and k+1 below and above it, respectively.
Under ZebRAM, this fails because the hammered rows are
not really adjacent to the victim row, but remapped to be
separated from it by unsafe rows. Unaware of ZebRAM,
the exploit thinks otherwise based on the information gath-
ered from the Linux’ pagemap—due to the virtualization-
based remapping layer—and essentially behaves like an
unoptimized single-sided exploit. Fixing this requires a
ZebRAM-aware exploit that hammers two consecutive
rows in the safe region to induce a bit flip in the unsafe
region. As described next, we developed such an exploit
and tested ZebRAM’s ability to thwart it.

6.2 ZebRAM-aware Exploits
To further demonstrate the effectiveness of ZebRAM, we
developed a ZebRAM-aware double-sided Rowhammer
exploit. This section explains how the exploit attempts to
hammer both the safe and unsafe regions, showing that
ZebRAM detects and corrects all the induced bit flips.

6.2.1 Attacking the Unsafe Region

To induce bit flips in the unsafe region (where the swap
space is kept), we modified the double-sided Rowhammer
exploit published by Gruss et al. [15] to hammer every
pair of two consecutive DRAM rows in the safe region
(assuming the attacker is armed with an ideal ZebRAM-
aware memory layout oracle) and ran the exploit five
times, each time for 6 hours. As Table 1 shows, the first
exploit run induced a total of 4,702 bit flips in the swap
space, with 4,698 occurrences of a single bit flip in a 64-
bit data word and 2 occurrences of a double bit flip in a
64-bit word. ZebRAM successfully corrected all 4,698
single bit flips and detected the double bit flips. As shown

2https://github.com/google/rowhammer-test
3https://github.com/IAIK/flipfloyd
4https://github.com/IAIK/rowhammerjs/tree/master/

native
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1 bit flip 2 bit flips Total ZebRAM detection performance
Run no. in 64 bits in 64 bits bit flips Detected bit flips Corrected bit flips

1 4,698 2 4,702 4,702 4,698
2 5,132 0 5,132 5,132 5,132
3 2,790 0 2,790 2,790 2,790
4 4,216 1 4,218 4,218 4,216
5 3,554 0 3,554 3,554 3,554

Table 1: ZebRAM’s effectiveness defending against a ZebRAM-aware Rowhammer exploit.

in Table 1, the other exploit runs produced similar results,
with no bit flips going undetected. Note that ZebRAM
can also detect more than two errors per 64-bit word due
to its combined use of ECC and hashing, although our
experiments produced no such cases.

6.2.2 Attacking the Safe Region

In addition to hammering safe rows, attackers may also
attempt to hammer unsafe rows to induce bit flips in the
safe region. To achieve this, an attacker must trigger
rapid writes or reads of pages in the swap space. We
modified the double-sided Rowhammer exploit to attempt
this by opening the swap space with the open system call
with the O DIRECT flag, followed by repeated preadv
system calls to directly read from the ZebRAM swap disk
(bypassing the Linux page cache).

Because the swap disk only supports page-granular
reads, the exploit must read an entire page on each access.
Reading a ZebRAM swap page results in at least two
memory copies; first to the kernel block I/O buffer, and
next to user space. The exploit evicts the ZebRAM swap
cache before each swap disk read to ensure that it accesses
rows in the swap disk rather than in the cache (which is in
the safe region). After each page read, we use a clflush
instruction to evict the cacheline we use for hammering
purposes. Note that this makes the exploit’s job easier
than it would be in a real attack scenario, where the exploit
cannot use clflush because the attacker does not own
the swap memory. A real attack would require walking
an entire cache eviction buffer after each read from the
swap disk.

We ran the exploit for 24 hours, during which time the
exploit failed to trigger any bit flips. This demonstrates
that the slow access frequency of the swap space—due
to its page granularity, integrity checking, and the swap
cache layer—successfully prevents Rowhammer attacks
against the safe region.

To further verify the reliability of our approach, we
re-tested our exploit with the swap disk’s cache layer,
compression engine, and integrity checking modules dis-
abled, thus providing overly optimistic access speeds (and
security guarantees) to the swap space for the Rowham-
mer exploit. Even in this scenario, the page-granular read
enforcement of the swap device alone proved sufficient

to prevent any bit flips. Our time measurements using
rdtsc show that even in this optimistic scenario, memory
dereferences in the swap space take 2,435 CPU cycles, as
opposed to 200 CPU cycles in the safe region, removing
any possibility of a successful Rowhammer attack against
the safe region.

7 Performance Evaluation

This section measures ZebRAM’s performance in differ-
ent configurations compared to an unprotected system un-
der varying workloads. We test several different kinds of
applications, commonly considered for evaluation by ex-
isting systems security defenses. First, we test ZebRAM
on the SPEC CPU2006 benchmark suite [17] to measure
its performance for CPU-intensive applications. We also
benchmark ZebRAM the popular nginx and Apache web
servers, as well as the redis in-memory key-value store.
Additionally, we present microbenchmark results to better
understand the contributing factors to ZebRAM’s over-
head.

Testbed Similar to our security evaluation, we conduct
our performance evaluation on a Haswell i7-4790 ma-
chine with 16GB RAM running Ubuntu 16.04 64-bit
with our modified Qemu-KVM hypervisor. We run the
ZebRAM modules and the benchmarked applications in
an Ubuntu 16.04 guest VM with kernel v4.4 and 4GB of
memory using a split of 2GB for the safe region and 2GB
for the unsafe region. To establish a baseline, we use the
same guest VM with an unmodified kernel and 4GB of
memory. In the baseline measurements, the guest VM
has direct access to all its memory, while in the ZebRAM
performance measurements half of the memory is dedi-
cated to the ZebRAM swap space. In all reported memory
usage figures we include memory used by the Integrity
Manager and Cache Manager components of ZebRAM.
For our tests of server applications, we use a separate Sky-
lake i7-6700K machine as the client. This machine has
16GB RAM and is linked to the ZebRAM machine via
a 100Gbit/s link. We repeat all our experiments multiple
times and observe marginal deviations across runs.
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Figure 7: SPEC CPU 2006 performance results.

Unmodifie
d
ZebRAM

(ECC)
ZebRAM

(ECC+SHA-256)
0K

25K

50K

75K

100K

125K

150K

175K

Nu
m

be
r o

f t
ra

ns
ac

tio
ns

/s
ec

nginx

Unmodifie
d
ZebRAM

(ECC)
ZebRAM

(ECC+SHA-256)
0K

25K

50K

75K

100K

125K

150K

175K

Nu
m

be
r o

f t
ra

ns
ac

tio
ns

/s
ec

Apache

Figure 8: Nginx and Apache throughput at saturation.

SPEC 2006 We compare performance scores of the
SPEC 2006 benchmark suite in three different setups: (i)
unmodified, (ii) ZebRAM configured to use only ECC,
and (iii) ZebRAM configured to use ECC and SHA-256.
The ZebRAM (ECC) and ZebRAM (ECC and SHA-256)
show a performance overhead over the unmodified base-
line of 4% and 5%, respectively (see Figure 7). The
reason behind this performance overhead is that as the
ZebRAM splits the memory in a zebra pattern, the OS
can no longer benefit from huge pages. Also, note that
certain benchmarks, such as mcf, exhibits more than 5%
overhead because they use ZebRAM’s swap memory as
their working set do not fit in the safe region.

Web servers We evaluate two popular web servers:
nginx (1.10.3) and Apache (2.4.18). We configure the
virtual machine to use 4 VCPUs. To generate load to
the web servers we use the wrk2 [2] benchmarking tool,
retrieving a default static HTML page of 240 characters.
We set up nginx to use 4 workers, while we set up Apache
with the prefork module, spawning a new worker process
for every new connection. We also increase the maxi-
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Figure 9: Nginx and Apache latency (99th percentile).

mum number of clients allowed by Apache from 150 to
500. We configured the wrk2 tool to use 32 parallel keep-
alive connections across 8 threads. When measuring the
throughput we check that CPU is saturated in the server
VM. We discard the results of 3 warmup rounds, repeat
a one-minute run 11 times, and report the median across
runs. Figure 8 shows the throughput of ZebRAM under
two different configurations: (i) ZebRAM configured to
use only ECC, and (ii) ZebRAM configured to use ECC
and SHA-256. Besides throughput, we want to measure
ZebRAM’s latency impact. We use wrk2 to throttle the
load on the server (using the rate parameter) and report the
99th percentile latency as a function of the client request
rate in Figure 9.

The baseline achieves 182k and 50k requests per sec-
ond on Nginx and Apache respectively. The ZebRAM’s
first configuration (only ECC) reaches 172k and 49k while
the second configuration reaches 166k and 49k.

Before saturation, the results show that ZebRAM im-
poses no overhead on the 99th percentile latency. After
then, both configurations of ZebRAM show a similar
trend with linearly higher 99th percentile response time.

Overall, ZebRAM’s performance impact on both web
servers and SPEC benchmarks is low and mostly due to
the inability to efficiently use Linux’ THP support. This
is expected, since as long as the working set can comfort-
ably fit in the safe region (e.g., around 400MB for our
web server experiments) the unsafe memory management
overhead is completely masked. We isolate and study
such overhead in more detail in the following.

Microbenchmarks To drill down the overhead of each
single feature of ZebRAM, we measure the latency of
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swapping in a page from the ZebRAM device under dif-
ferent configurations. To measure the latency, we use a
small binary that sequentially writes on every page of
a large eviction buffer in a loop. This ensures that, be-
tween two accesses to the same page, we touch the entire
buffer, evicting that page from memory. To be sure that
Linux swaps in just one page for every access, we set the
page-cluster configuration parameter to 0. In this experi-
ment, two components interact with ZebRAM: our binary
triggers swap-in events from the ZebRAM device while
the kswapd kernel thread swaps pages to the ZebRAM
device to free memory. The interaction between them is
completely different if the binary uses exclusively loads
to stress the memory. This is because the kernel would
optimize out unnecessary flushes to swap and batch to-
gether TLB invalidations. Hence, we choose to focus on
stores to study the performance in the worst-case scenario
and because read-only workloads are less common than
mixed workloads.

We reserve a core exclusively for the binary so that
kswapd does not (directly) steal CPU cycles from it. We
measure 1,000,000 accesses for each different configura-
tion. Table 2 presents our results.We also run the binary in
a loop and profile its execution with the perf Linux tool
to measure the time spent in different functions. Due to
function inlining, it is not always trivial to map a symbol
to a particular feature. Nevertheless, perf can provide
insights into the overhead at a fine granularity. In the first
configuration, we disable the all features of ZebRAM and
perform only memory copies into the ZebRAM device.
As the copy operation is fast, the perf tool reports that
just 4% percent of CPU cycles are spent copying. Interest-
ingly, 47% of CPU cycles are spent serving Inter Process
Interrupts from other cores. This is because, while we
are swapping in, kswapd on another core is busy free-
ing memory. For this purpose, kswapd needs to unmap
pages that are on their way to be swapped out from the
process’s page tables. This introduces TLB shootdowns
(and IPIs) to invalidate other cores’ TLB stale entries. It
is important to notice that the faster we swap in pages, the
faster kswapd needs to free memory. This unfortunately
results in a negative feedback loop that represent one of
the major sources of overhead when the large number of
swap-in events continuously force kswapd to wake up.

Adding hashing (SHA-256) on top of the previous con-
figuration shows an increase in latency, which is also
reflected in the CPU cycles breakdown. The perf tool
reports that 55% of CPU cycles are spent swapping in
pages (copy + hashing), while serving IPIs accounts for
29%. Adding cache and compression on top of SHA-256
decreases the latency median and increases the 99th per-
centile. This is because, on a cache hit, the ZebRAM
only needs to copy the page to userspace; however, on
a cache miss, it has to verify the hash of the page and
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Figure 10: Redis throughput at saturation.

decompress the page too. The perf tool reports 42% of
CPU cycles are spent in the decompression routine and
26% in serving IPI requests for other cores and less than
5% in hashing and copying. This confirms the presence of
the swap-in/swap-out feedback loop under high memory
pressure. Adding ECC marginally increases the latency,
the perf tool reports similar CPU usage breakdown for
the version without ECC.

Larger working sets As expected, ZebRAM’s over-
heads are mostly associated to swap-in/swap-out opera-
tions, which are masked when the working set can fit in
the safe region but naturally become more prominent as
we grow the working set. In this section, we want to eval-
uate the impact of supporting increasingly larger working
sets compared to a more traditional swap implementa-
tion. For this purpose, we evaluate the performance of
a key-value store in four different setups: (i) unmodifed
system, (ii) the basic version of ZebRAM (iii) ZebRAM
configured with ECC, and (iv) ZebRAM configured with
ECC and SHA-256. The basic version of ZebRAM uses
just one of the two domains in which ZebRAM splits the
RAM and swaps to a fast SSD disk when the memory
used by the OS does not fit into it. We use YCSB[11] to
generate load and induce a target working set size against
a redis (4.0.8) key-value store. We setup YCSB to use
1KB objects and perform a 90/10 read/write operations
ratio. Each test runs for 20 seconds and, for each config-
uration, we discard the results of 3 warmup rounds and
report the median across 11 runs. We configure YCSB to
access the dataset key space uniformly and we measure
the throughput at saturation for different data set sizes.

Figure 10 depicts the reported normalized execution
time as a function of the working set size (in percent-
age compared to the total RAM size). As shown in the
figure, when the working set size is small enough (e.g.,
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Configuration median (ns) 90th (ns) 99th (ns)

copy 2,362.0 4,107.0 8,167.0
SHA-256 13,552.0 14,209.0 17,092.0
cache + comp + SHA-256 8,633.0 13,191.0 18,678.0
cache + comp + SHA-256 + ECC 9,862.0 15,118.0 20,794.0

Table 2: Page swap-in latency from the ZebRAM device.
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Figure 11: Redis latency (99th percentile). The working
set size is 50% of RAM (top) and 70% of RAM (bottom).

44%) the OS hardly reclaims any memory, hence the
unsafe region remains unutilized and the normalized exe-
cution time is only 1.08x for the basic version of ZebRAM
while the normalized execution time is between 1.04x and
1.10x for all other configurations of ZebRAM. As we in-
crease the working set size, the OS starts reclaiming pages
and the normalized execution time increases accordingly.
However, the increase is much more gentle for ZebRAM
compared to the basic version of ZebRAM and the gap
becomes more significant for larger working set sizes. For
instance, for a fairly large working set size (e.g., 70%),
ZebRAM (ECC) has 3.00x normalized execution time,
and ZebRAM (ECC and SHA-256) has 3.90x, compared
to the basic version of ZebRAM at 30.47x.

To study the impact of ZebRAM on latency, we fix
the working set size to 50% and 70% of the total RAM
and repeat the same experiment while varying the load
on the server. Figure 11 presents our results for the 99th
latency percentile. At 50%, results of (i) the ZebRAM
configured with ECC, (ii) the ZebRAM configured with
ECC and SHA-256, and (iii) baseline (unmodified) fol-
low the same trend. The ZebRAM’s first configuration
(only ECC) reports a 99th latency percentile of 138us for

client request rates below 80,000, compared to 584us for
ZebRAM (basic). At 70%, the gap is again more promi-
nent, with ZebRAM reporting a 99th latency percentile
of 466us and ZebRAM (basic) reporting 6,887us.

Overall, ZebRAM can more gracefully reduce perfor-
mance for larger working sets compared to a traditional
(basic ZebRAM) swap implementation, thanks to its abil-
ity to use an in-memory cache and despite the integrity
checks required to mitigate Rowhammer. As our exper-
iments demonstrate, given a target performance budget,
ZebRAM can support much larger working sets compared
to the ZebRAM’s basic implementation, while providing
a strong defense against arbitrary Rowhammer attacks.
This is unlike the basic ZebRAM implementation, which
optimistically provides no protection against similar bit
flip-based attacks. Unfortunately, such attacks, which
have been long-known for DRAM [21], have recently
started to target flash memory as well [9, 22].

8 Related work

This section summarizes related work on Rowhammer
attacks and defenses.

Attacks In 2014, Kim et al. [21] were the first to show
that it is possible to flip bits in DDR3 memory on x86
CPUs simply by accessing other parts of memory. Since
then, many studies have demonstrated the effectiveness
of Rowhammer as a real-world exploit in many systems.

The first practical Rowhammer-based privilege escala-
tion attack, by Seaborn and Dullien [30], targeted the x86
architecture and DDR3 memory, hammering the memory
rows by means of the native x86 clflush instruction that
would flush the cache and allow high-frequency access to
DRAM. By flipping bits in page table entries, the attack
obtained access to privileged pages.

Not long after these earliest attacks, researchers greatly
increased the threat of Rowhammer attacks by showing
that is possible to launch them from JavaScript also, al-
lowing attackers to gain arbitrary read/write access to the
browser address space from a malicious web page [6, 15].

Moreover, newer attacks started flipping bits in memory
areas other than page table entries, such as object pointers
(to craft counterfeit objects [6]), opcodes [14], and even
application-level sensitive data [28].
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For instance, Flip Feng Shui demonstrated a new attack
on VMs in cloud environments that flipped bits in RSA
keys in victim VMs to make them easy to factorize, by
massaging the physical memory of the co-located VMs
to land the keys on a page that was hammerable by the
attacker. Around the same time, other researchers inde-
pendently also targeted RSA keys with Rowhammer but
now for fault analysis [5]. Concurrently, also, Xiao et
al. [37] presented another cross-VM attack that manipu-
lates page table entries in Xen.

Where the attacks initially focused on PCs with DDR3
configurations, later research showed that ARM proces-
sors and DDR4 memory chips are also vulnerable [34].
While this opened the way for Rowhammer attacks on
smartphones, the threat was narrower than on PCs, as
the authors were not yet able to launch such attacks from
JavaScript. This changed recently, when research de-
scribed a new way to launch Rowhammer attacks from
JavaScript on mobile phones and PC, by making use of
the GPU. Hammering directly from the GPU by way
of WebGL, the authors managed to compromise a mod-
ern smart phone browser in under two minutes. More-
over, this time the targeted data structures are doubles and
pointers: by flipping a bit in the most significant bytes,
the attack can turn pointers into doubles (making them
readable) and doubles into pointers (yielding arbitrary
read/write access).

All Rowhammer attacks until that point required local
code execution. Recently, however, researchers demon-
strated that even remote attacks on servers are possi-
ble [32], by sending network traffic over high-speed net-
work to a victim process, using RDMA NICs. As the
server that is receiving the network packets is using DMA
to write to its memory, the remote attacker is able to flip
bits in the server. By carefully manipulating the data in a
key-value store, they show that it is possible to completely
compromise the server process.

It should be clear that Rowhammer exploits have spread
from a narrow and arcane threat to target two of the most
popular architectures, in all common computing environ-
ments, different types of memory (and arguably flash [9]),
while covering most common threat models (local priv-
ilege escalation, hosted JavaScript, and even remote at-
tacks). ZebRAM protects against all of the above attacks.

Defenses Kim et al. [21] propose hardware changes to
mitigate Rowhammer by increasing row refresh rates or
using ECC. These defenses have proven insufficient [4]
and infeasible to deploy on the required massive scale.
The new LPDDR4 standard [19] specifies two features
which together defend against Rowhammer: TRR and
MAC. Despite these defenses, van der Veen et al. still
report bit flips on a Google pixel phone with LPDDR4
memory [35] and Gruss et al. [29] report bit flips in TRR

memory. While nobody has demonstrated Rowhammer
attacks against ECC memory yet, the real problem with
such hardware solutions is that most systems in use today
do not have ECC, and replacing all DRAM in current
devices is simply infeasible.

In order to protect from Rowhammer attacks, many ven-
dors simply disabled features in their products to make
life harder for attackers. For instance, Linux disabled un-
privileged access to the pagemap [30], Microsoft disabled
memory deduplication [12] to defend from the Dedup Est
Machina attack [6], and Google disabled [33] the ION
contiguous heap in response to the Drammer attack [34]
on mobile ARM devices. Worryingly, not a single de-
fence is currently deployed to protect from the recent
GPU-based Rowhammer attack on mobile ARM devices
(and PCs), even though it offers attackers a huge number
of vulnerable devices.

Finally, researchers have proposed targeted software-
based solutions against Rowhammer. ANVIL [4] relies
on Intel’s performance monitoring unit (PMU) to detect
and refresh likely Rowhammer victim rows. An improved
version of ANVIL requires specialized Intel PMUs with
a fine-grained physical to DRAM address translation. Un-
fortunately, Intel’s (and AMD’s) PMUs do not capture
precise address information when memory accesses by-
pass the CPU cache through DMA. Hence, this version
of ANVIL is vulnerable to off-CPU Rowhammer attacks.
Unlike ANVIL, ZebRAM is secure against off-CPU at-
tacks, since device drivers transparently allocate memory
from the safe region.

CATT [7] isolates (only) user and kernel space in phys-
ical memory so that user-space attackers cannot trigger
bit flips in kernel memory. However, research [14] shows
CATT to be bypassable by flipping opcode bits in the
sudo program code. Moreover, CATT does not defend
against attacks that target co-hosted VMs at all [7]. In con-
trast, ZebRAM protects against co-hosted VM attacks, at-
tacks against the kernel, attacks between (and even within)
user-space processes and attacks from co-processors such
as GPUs.

Other recent software-based solutions have targeted
specific Rowhammer attack variants. GuardION iso-
lates DMA buffers to protect mobile devices against
DMA-based Rowhammer attacks [36]. ALIS isolates
RDMA buffers to protect RDMA-enabled systems against
Throwhammer [32]. Finally, VUSion randomizes page
frame allocation to protect memory deduplication-enabled
systems against Flip Feng Shui [25].

9 Discussion

This section discusses feature and performance tradeoffs
between our ZebRAM prototype and alternative ZebRAM
implementations.
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9.1 Prototype

Because the ZebRAM prototype relies on the hypervi-
sor to implement safe/unsafe memory separation, and on
a cooperating guest kernel for swap management, both
host and guest need modifications. In addition, the guest
physical address space will map highly non-contiguously
to the host address space, preventing the use of huge
pages. The guest modifications, however, are small and
self-contained, do not touch the core memory manage-
ment implementation and are therefore highly compatible
with mainline and third party LKMs.

9.2 Alternative Implementations

In addition to our implementation presented in Section 5,
several alternative ZebRAM implementations are possible.
Here, we compare our ZebRAM implementation to alter-
native hardware-based, OS-based, and guest-transparent
virtualization-based implementations.

Hardware-based Implementing ZebRAM at the hard-
ware level would require a physical-to-DRAM address
mapping where sets of odd and even rows are mapped to
convenient physical address ranges, for instance an even
lower-half and an odd upper-half. This can be achieved
with by a fully programmable memory controller, or im-
plemented as a configurable feature in existing designs.
With such a mapping in place, the OS can trivially sepa-
rate memory into safe and unsafe regions. In this model,
the Swap Manager, Cache Manager and Integrity Manager
are implemented as LKMs just as in the implementation
from Section 5. In contrast to other implementations,
a hardware implementation requires no hypervisor, al-
lows the OS to make use of (transparent) huge pages and
requires minimal modifications to the memory manage-
ment subsystem. While a hardware-supported ZebRAM
implementation has obvious performance benefits, it is
currently infeasible to implement because memory con-
trollers lack the required features.

OS-based Our current ZebRAM prototype implements
the Memory Remapper as part of a hypervisor. Alter-
natively, the Memory Remapper can be implemented as
part of the bootloader, using Linux’ boot memory allo-
cator to reserve the unsafe region for use as swap space.
While this solution obviates the use of a hypervisor, it also
results in a non-contiguous physical address space that
precludes the use of huge pages and breaks DMA in older
devices. In addition, it is likely that this approach requires
invasive changes to the memory management subsystem
due to the very fragmented physical address space.

Transparent Virtualization-based While our current
ZebRAM implementation requires minor changes to the
guest OS, it is also possible to implement a virtualization-
based variant of ZebRAM that is completely transparent
to the guest. This entails implementing the ZebRAM
swap disk device in the host and then exposing the disk
to the guest OS as a normal block device to which it can
swap out. The drawback of this approach is that it de-
grades performance by having the hypervisor interposed
between the guest OS and unsafe memory for each access
to the swap device, a problem which does not occur in
our current implementation. The clear advantage to this
approach is that it is completely guest-agnostic: guest ker-
nels other than Linux, including legacy and proprietary
ones are equally well protected, enabling existing VM
deployments to be near-seamlessly transitioned over to a
Rowhammer-safe environment.

10 Conclusion

We have introduced ZebRAM, the first comprehen-
sive software defense against all forms of Rowhammer.
ZebRAM uses guard rows to isolate all memory rows
containing user or kernel data, protecting these from
Rowhammer-induced bit flips. Moreover, ZebRAM im-
plements an efficient integrity-checked memory-based
swap disk to utilize the memory sacrificed to the guard
rows. Our evaluation shows ZebRAM to be a strong de-
fense able to use all available memory at a cost that is a
function of the workload. To aid future work, we release
ZebRAM as open source.
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Abstract
Karaoke is a system for low-latency metadata-private com-
munication. Karaoke provides differential privacy guaran-
tees, and scales better with the number of users than prior
such systems (Vuvuzela and Stadium). Karaoke achieves
high performance by addressing two challenges faced
by prior systems. The first is that differential privacy re-
quires continuously adding noise messages, which leads
to high overheads. Karaoke avoids this using optimistic
indistinguishability: in the common case, Karaoke re-
veals no information to the adversary, and Karaoke clients
can detect precisely when information may be revealed
(thus requiring less noise). The second challenge lies in
generating sufficient noise in a distributed system where
some nodes may be malicious. Prior work either required
each server to generate enough noise on its own, or used
expensive verifiable shuffles to prevent any message loss.
Karaoke achieves high performance using efficient noise
verification, generating noise across many servers and
using Bloom filters to efficiently check if any noise mes-
sages have been discarded. These techniques allow our
prototype of Karaoke to achieve a latency of 6.8 seconds
for 2M users. Overall, Karaoke’s latency is 5× to 10×
better than Vuvuzela and Stadium.

1 Introduction
Text messaging systems are often vulnerable to traffic
analysis, which reveals communication patterns like who
is communicating with whom. Hiding this information
can be important for some users, such as journalists and
whistleblowers. However, building a messaging system
just for whistleblowers is not a good idea, because us-
ing this system would be a clear indication of who is a
whistleblower [9]. Thus, it is important to build metadata-
private messaging systems that can support a large number
of users with acceptable performance, so as to provide
“cover” for sensitive use cases.

A significant limitation of prior work, such as Vu-
vuzela [26], Pung [1], and Stadium [25], is that they incur
high latency. For example, with 2 million connected users,
Vuvuzela has an end-to-end latency of 55 seconds, and
the latencies of Pung and Stadium are even higher. Such
high latencies hinder the adoption of these designs.

This paper presents Karaoke, a metadata-private mes-
saging system that reduces latency by an order of mag-
nitude compared to prior work. For instance, Karaoke

achieves an end-to-end latency of 6.8 seconds for 2 mil-
lion connected users on 100 servers (on Amazon EC2 with
simulated 100 msec round-trip latency between servers),
80% of which are assumed to be honest, and achieves dif-
ferential privacy guarantees comparable to Vuvuzela and
Stadium. Furthermore, Karaoke can maintain low latency
even as the number of users grows, by scaling horizon-
tally (i.e., having independent organizations contribute
more servers). Karaoke supports 16 million users with 28
seconds of latency, a 10× improvement over Stadium.

Achieving high performance requires Karaoke to ad-
dress two challenges. The first challenge is that differ-
ential privacy typically requires adding noise to limit
data leakage. Prior work achieves differential privacy
for private messaging by enumerating what metadata an
adversary could observe (e.g., the number of messages ex-
changed in a round of communication), and adding fake
messages (“noise”) that are mixed with real messages
to obscure this information. This translates into a large
number of noise messages that have to be added every
round, and handling these noise messages incurs a high
performance cost.

Karaoke addresses this challenge using optimistic in-
distinguishability. Karaoke’s design avoids leaking in-
formation in the common case, when there are no active
attacks. Karaoke further ensures that clients can precisely
detect whether any information was leaked (e.g., due to an
active attack), so that the clients can stop communicating
to avoid leaking more data. This allows Karaoke to add
fewer noise messages, because the noise messages need to
mask fewer message exchanges (namely, just those where
an active attack has occurred).

The second challenge lies in generating the noise in
the presence of malicious servers. One approach is to
require every server to generate all of the noise on its
own, under the assumption that every other server is mali-
cious [26]. This scheme leads to an overwhelming num-
ber of noise messages as the number of servers grows.
Another approach is to distribute noise generation across
many servers. However, a malicious server might drop
the noise messages before they are mixed with messages
from legitimate users. As a result, achieving privacy re-
quires the use of expensive zero-knowledge proofs (e.g.,
verifiable shuffles) to ensure that an adversary cannot
drop messages [25]. This approach reduces the number
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of noise messages, but leads to significant CPU overheads
due to cryptography.

Karaoke’s insight is that verifiable shuffles are overkill:
it is not necessary for all messages to be preserved, and
it is not necessary to prove this fact to arbitrary servers.
Instead, to achieve privacy, it suffices for each server to
ensure that its noise is observed by all other servers. This
can be done efficiently using Bloom filters, without having
to reveal which messages are noise and which messages
come from real users.

The contributions of this paper are as follows:
• The design of Karaoke, a metadata-private text mes-

saging system that achieves an order of magnitude
lower latency than prior work.

• Two techniques, optimistic indistinguishability and
efficient noise verification, which allow Karaoke to
achieve high performance.

• A privacy analysis of Karaoke’s design that supports
the use of these techniques.

• An experimental evaluation of a prototype of Karaoke.
One limitation of Karaoke is that it does not provide

fault tolerance, since it requires all servers to be online.
Handling server outages and denial-of-service attacks is
an interesting direction for future work.

2 Related work
In this section, we compare Karaoke to prior work in two
dimensions: privacy guarantees and the trade-off between
scalability and server trust assumptions.

2.1 Privacy guarantees
Karaoke considers adversaries that control network links
and some of the system’s servers. This attacker model
rules out systems based on Tor [7] such as Ricochet [3],
due to traffic analysis attacks [5, 11, 18]. Loopix [20] is a
recent system that delays messages and uses entropy [24]
as a metric for reasoning about a user’s anonymity set.
However, Loopix does not provide any formal guaran-
tees about privacy after users exchange multiple mes-
sages; it also requires users to trust a designated service
provider [20: Table 1].

Some systems leak no information to the attacker, us-
ing techniques like DC-nets [28], Private Information
Retrieval [1], or message broadcast [4]. Such systems pro-
vide the strongest form of privacy that users could hope
for, but due to the quadratic overhead of these schemes
in the number of users, their latency becomes high when
supporting millions of users.

Karaoke achieves differential privacy for metadata-
private messaging, much like Vuvuzela [26], Alpen-
horn [15], and Stadium [25]. One key difference in
Karaoke is that its design leaks no information about
a user’s traffic patterns in the common case, when there

Alice
. . .

Bob

1

2

. . .

N

1

2

. . .

N

. . .

. . .

. . .

. . .

1

2

. . .

N

B

A

. . .

C

Users Servers Dead drops

Figure 1: Overview of Karaoke’s design.

are no lost messages, using the idea of optimistic indis-
tinguishability. This allows Karaoke to add less noise for
reaching the same privacy level as prior work [15, 25, 26],
which improves performance.

Like Stadium, Karaoke is distributed over many ma-
chines, and must ensure that malicious servers do not
compromise privacy. Stadium uses zero-knowledge
proofs (e.g., verifiable shuffles) for this purpose, whereas
Karaoke relies on more efficient Bloom filter checks.

2.2 Scalability vs. trust assumptions

Systems that assume the anytrust model (where all but
one server may be malicious), such as Vuvuzela [26], Dis-
sent [28], and Riposte [4], do not scale horizontally and
cannot support the same magnitude of users as Karaoke.

One approach to horizontal scalability in metadata pri-
vate messaging systems is to route messages through only
a subset of all servers in the network, as in Loopix, Sta-
dium, and Atom [14]. This requires trusting multiple
servers to be honest, and introduces a tradeoff between
the number of trusted servers (translating into the number
of servers that process each message) and performance.

In Loopix every message is processed by a small num-
ber of servers (e.g., Loopix considers 3 or more servers
to be a good choice [20: §4.3.1]). For privacy, Loopix
requires that one of these servers is honest. However, if a
significant fraction of servers are malicious, using a small
number of servers means some users’ messages will not
be processed by any honest server. Karaoke ensures pri-
vacy with high probability by sending messages through
more servers (e.g., 14 servers).

Atom [14] assumes that a fraction of the servers might
be corrupt, and requires each message to be processed
by many servers (hundreds). This leads to high latency,
from 30 minutes to several hours. Karaoke also assumes
that some fraction of servers are malicious. However
it arranges its servers in a different, full-mesh topology,
which allows it to achieve privacy while processing each
message at fewer servers (e.g., 14 servers).

712    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



3 Overview
Figure 1 shows the main components of Karaoke. At the
highest level, Karaoke consists of users, servers, and dead
drops, similar to Vuvuzela and Stadium. All communica-
tion in Karaoke happens in rounds. In each round, users
communicate by sending and receiving messages to and
from dead drops. A dead drop is a designated location
used to exchange messages. Dead drops are named by the
server on which they are located, along with a pseudoran-
dom identifier, and are not reused across rounds. When
two users access the same dead drop, their messages are
exchanged, and each user receives the other user’s mes-
sage. When two users want to communicate, they arrange
to access the same dead drop (based on a shared secret).
If a user is not communicating with anyone, he or she
sends cover traffic to a randomly chosen dead drop.

The middle of the figure shows Karaoke’s servers, la-
beled 1 through N, which are used to shuffle messages in
order to hide information about which user is accessing
which dead drop. The servers shuffle messages in lay-
ers, which are indicated by vertical groups in Figure 1,
similar to a parallel mixnet [6, 8, 12, 21]. Each layer
decrypts the messages (which are onion-encrypted) and
re-orders them, so that the order of messages sent by a
server does not correlate with the order in which the mes-
sages were received. Each server takes part in each layer;
the figure depicts this by including each server in each
layer. Between layers, servers exchange messages with
one another.

The path of a message through the layers is chosen by
the message sender at random. The message is onion-
encrypted using the public keys of the servers on the
chosen path, so that the message cannot be decrypted
unless it passes through those servers. This ensures that
an adversary cannot bypass the shuffling of the honest
servers on the path of a message. Karaoke assumes that
users know the public keys of all servers.

In Figure 1, Alice and Bob are communicating in a
particular round. Their dead drop access paths are shown
using bold arrows; solid for Alice and dashed for Bob.
Alice and Bob send their messages to the same dead drop
B on server 2. When the messages arrive at server 2,
the server swaps them, and sends them back through the
layers: Alice’s message back to Bob along the reverse
of the dashed arrows, and Bob’s message back to Alice
along the reverse of the solid arrows. This ensures server
2 does not know whose messages it swapped.

3.1 Goals and threat model
Karaoke’s goal is to hide the communication patterns be-
tween users, so that an adversary cannot determine which
users are communicating with one another. Karaoke does
not hide information about which users are using Karaoke;
an adversary can determine that a user is using Karaoke

by observing a connection to one of Karaoke’s servers.
However, we hope that supporting a large number of users
makes the mere act of using Karaoke less suspicious, sim-
ilar to the argument by Dingledine et al. [7]. Karaoke also
does not make availability guarantees; defending against
DoS attacks is an interesting direction for future work.

In addition to Karaoke’s privacy goals, Karaoke aims
to achieve low latency for many users. This is important
in order to enable broad adoption of Karaoke’s design.
Furthermore, Karaoke’s goal is to provide horizontal scal-
ability, so that Karaoke’s operators can scale to more users
over time by adding physical machines, thereby spread-
ing the CPU and bandwidth requirements for operating
Karaoke across more servers.

Karaoke assumes that an adversary has full control
over the network and has compromised some number
of servers and users’ computers. Karaoke assumes that
some fraction of servers (e.g., 80%) remains honest (not
compromised), which we believe is achievable given
leaked documents [19] and measurements of the Tor net-
work [23, 27]. Karaoke hides communication patterns
between users whose computers have not been compro-
mised. If an adversary compromises a user’s computer,
the adversary can directly observe that user’s activity, and
Karaoke cannot provide any privacy guarantees. Karaoke
makes standard cryptographic assumptions (the adversary
cannot break cryptographic primitives), and assumes that
Karaoke clients know the public keys of Karaoke servers.

We capture Karaoke’s goal of hiding communication
patterns using differential privacy [10], as in Vuvuzela and
Stadium. Specifically, for a pair of users (call them Alice
and Bob), Karaoke considers the probabilities of the obser-
vations that an adversary could make (e.g., observations
of network traffic and observations from compromised
servers), conditioned on Alice and Bob communicating
or not communicating. Karaoke’s differential privacy
guarantee says that the probabilities of Alice and Bob
communicating or not communicating, based on what the
adversary observed, are close, and the ϵ and δ parame-
ters control the degree of closeness (eϵ is a multiplicative
factor and δ is an additive factor). The choice of the pa-
rameters is discussed in §6.1. Using differential privacy,
Karaoke ensures that two users can always plausibly deny
that they were communicating.

Since differential privacy is composable, a user can
leverage this guarantee to reason about other plausible
“cover stories.” For example, if Alice was actually talking
to Bob, she could instead claim she was talking to Charlie:
the probability of her talking to Bob is within (ϵ, δ) of her
not talking to anyone, which in turn is within (ϵ, δ) of her
talking to Charlie, for a total of (2ϵ, 2δ).

More formally, Karaoke treats the scenarios of two
users communicating or not communicating with one
another as “neighboring databases” in the context of dif-
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ferential privacy. Since Karaoke relies on cryptography,
Karaoke achieves computational differential privacy [17],
rather than the perfect information-theoretic definition.

Karaoke’s information leakage mostly comes from sit-
uations when a user’s message is lost. This can occur
either due to an active attack, or due to a long network
outage (from which TCP cannot recover). Karaoke pro-
vides differential privacy for many rounds of message loss
(hundreds, as discussed in §6.1). We expect users to avoid
private conversations on highly unreliable networks; §7.6
provides some evaluation of network reliability.

Karaoke’s design assumes that users can initiate con-
versations out-of-band. In other words, Karaoke hides
metadata during a conversation. A complete messaging
system would use Karaoke alongside a “dialing” protocol
for one user to initiate a conversation with another user,
and to establish a shared secret that is used to agree on
a pseudorandom sequence of dead drops. The bootstrap-
ping protocol would impose additional bandwidth and
CPU costs for clients, but these costs are amortized over
many conversation rounds. Alpenhorn [15] could serve
as such a dialing protocol.

3.2 Privacy approach
Karaoke’s design reveals two potential sources of infor-
mation to the adversary: information about dead drop
access patterns and information about how many mes-
sages were sent between servers across layers. In the rest
of this section, we outline Karaoke’s approach to hiding
this information from the adversary.

Optimistic indistinguishability. To prevent the adver-
sary from learning information based on dead drop access
patterns, Karaoke’s design strives to ensure that the dead
drop access patterns look the same regardless of the com-
munication pattern between users. Specifically, Karaoke
requires that users always send two messages in a round.
This allows a user to communicate with themselves if
they are not otherwise communicating with a buddy, by
arranging for their two messages to access the same dead
drop. This gives the appearance of an active conversation
to an adversary that is observing dead drop access pat-
terns. If the user is communicating with a buddy, the user
simply arranges for each of their messages to swap with a
message from the buddy, using two different dead drops.

When the adversary is passive and there are no network
outages, dead drop access patterns reveal no metadata
about the communication of any pair of users. This is
because, for a pair of users that might be either idle or
chatting, there will be two dead drops, each of which is
accessed twice. If messages are lost, an adversary may
observe a dead drop with a single access, which may
reveal some information. Karaoke addresses this through
the use of noise messages, which we describe shortly.
However, message loss is detectable in Karaoke because

a user can simply look at the messages they receive back
from the server to determine if any of their messages (or
their buddy’s messages) were lost.

Karaoke’s “leakage-free” rounds allow it to improve
performance by reducing noise and letting a client appli-
cation decide how to handle leaky rounds. For example,
the client application could choose to:

1. Alert the user, who could ignore it if their current
conversation is not sensitive, or end the conversation
if it is.

2. Retry the conversation after waiting (i.e., stopping
the conversation but continuing to send cover traf-
fic). This limits how quickly active attacks can learn
information about the user.

3. Retry the conversation after switching to a new net-
work (hopefully, one that is not under active attack).

These policies (or combinations of them) limit the rate
at which an adversary can learn information through ac-
tive attacks. This allows Karaoke to add less noise while
still providing meaningful privacy guarantees.

Message swaps. A passive adversary in Karaoke can
observe the number of messages sent between any two
servers. To ensure that these observations do not reveal
user metadata, Karaoke’s topology is designed so that, for
any pair of messages that traverse the same honest server
in the same layer, an adversary cannot determine which
path prefixes (i.e., paths leading up to this honest server)
correspond to which path suffixes (i.e., paths taken by the
messages after this honest server). In other words, the
real scenario is indistinguishable from a scenario where
the messages swap paths after the honest server.

The swapped paths correspond to the two neighboring
databases. If Alice and Bob are communicating, then
swapping the path suffix of one of Alice’s messages with
Bob’s would mean that the two messages from Alice/Bob
actually reach the same dead drop (so they are idle). Sim-
ilarly, if Alice and Bob are idle, swapping path suffixes of
two of their messages would mean that they are commu-
nicating.

This technique keeps the number of messages on each
link identical regardless of whether message paths were
swapped, thus preventing the adversary from learning
useful information given the number of messages on every
link.

Noise messages. Karaoke uses noise for two purposes:
to protect dead drop access patterns in case messages
are lost, and to enable message swaps. The noise takes
the form of additional messages generated by the servers
themselves. Each server generates messages to random
dead drops, and routes those messages through random
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paths in Karaoke’s topology. These noise messages di-
rectly obscure the information available from the dead
drop access patterns, because accesses by real users are
now indistinguishable from accesses by noise messages.

Efficient noise verification. Some servers may be con-
trolled by the adversary. It is crucial that these adver-
sarial servers cannot subvert Karaoke’s noise, either by
generating insufficient noise in the first place, or by drop-
ping noise messages as they traverse Karaoke’s topol-
ogy. Karaoke deals with the first problem by requiring
all servers to generate enough noise to account for the
possibility of malicious servers generating no noise at all.

To deal with the possibility of noise messages being
dropped along the way, Karaoke uses Bloom filters [2] to
efficiently check for the presence of noise at each layer.
Each server at each layer in Karaoke’s topology ensures
that it has received all noise messages. It does so by com-
puting a Bloom filter of all of the messages it has received,
and sending this Bloom filter to all other servers. The
other servers check whether the noise messages they gen-
erated appear in this Bloom filter. If any server indicates
that their noise has been lost, the round is stopped.

Prior systems such as Stadium [25] deal with this prob-
lem by ensuring that no messages can be lost along the
way. This requires expensive cryptographic techniques,
such as verifiable shuffles. Karaoke’s observation is that it
suffices to ensure that noise messages are not lost. Using
Bloom filters is a good choice because they do not require
servers to reveal which messages were actually noise; the
Bloom filter includes the set of all messages.

4 Design
This section describes Karaoke’s design, starting with the
overall structure and topology, and then describing the
Karaoke client library and how Karaoke servers work.

4.1 Overall structure
Karaoke operates in rounds, which are driven by a co-
ordinator. The coordinator is not trusted for privacy (its
only job is to announce the start of a new round), but a
malicious coordinator can impact the liveness of Karaoke.
Round numbers must be strictly increasing, so the coor-
dinator cannot trick clients into sending extra messages
in a round, and if it announces a round multiple times,
honest clients and servers will ignore it. Karaoke can
distribute the user load over many coordinators (that are
synchronized among themselves) since the coordinator’s
job is untrusted.

Karaoke’s communication topology is shown in Fig-
ure 1. By using randomly chosen paths and exchanging
messages at each layer, Karaoke provides a strong degree
of mixing between all messages. Furthermore, Karaoke
scales well with the number of servers, because each mes-
sage is handled by a fixed number of servers (one per

def client_active(roundnum, myid, buddyid, buddysecret,
msg1, msg2):

c1 = encrypt(buddysecret + "msg1" + myid, msg1)
c2 = encrypt(buddysecret + "msg2" + myid, msg2)
o1 = gen_onion(roundnum, myid, buddyid,

buddysecret + "onion1", c1)
o2 = gen_onion(roundnum, myid, buddyid,

buddysecret + "onion2", c2)
r1, r2 = karaoke_run_round(o1, o2)

d1 = decrypt(buddysecret + "msg1" + buddyid, r1)
d2 = decrypt(buddysecret + "msg2" + buddyid, r2)
if d1 == None or d2 == None:
raise("Message loss")

return d1, d2

def client_idle(roundnum, myid):
secret = random.secretvalue()
c1 = random.ciphertext()
c2 = random.ciphertext()
o1 = gen_onion(roundnum, myid, myid + "dummy",

secret, c1)
o2 = gen_onion(roundnum, myid + "dummy", myid,

secret, c2)
r1, r2 = karaoke_run_round(o1, o2)
if r1 != c2 or r2 != c1:
raise("Message loss")

def gen_path(roundnum, rng):
servers = get_servers_and_keys(roundnum)
return [rng.choice(servers) for i in range(nlayers-1)]

# Choosing the last server to be one of the users’ previous
# hops leads to more efficient noise generation.
def choose_last_srv(a, b):
pair_choice = (a.id + b.id) % 2
return sorted(a, b)[pair_choice]

def gen_onion(roundnum, myid, buddyid, secret, msg):
mypath = gen_path(roundnum, prng(secret + myid))
buddypath = gen_path(roundnum, prng(secret + buddyid))
drop_srv = choose_last_srv(mypath[-1], buddypath[-1])
drop_id = prng(secret).rand128()

onion = wrap((drop_id, msg), drop_srv)
for srv in reversed(mypath):
onion = wrap(onion, srv)

return onion

Figure 2: Pseudocode for the Karaoke client.

layer). As a result, adding more servers does not cause
Karaoke to do more work overall.

4.2 Client
Figure 2 shows the pseudocode for the Karaoke client
library. There are two modes of operation for the client:
either the client is in an active conversation with a buddy,
or the client is idle. In each round, the client must call
either client_active() or client_idle().

If the client is active, it must maintain a shared secret
with the buddy, denoted buddysecret in the pseudocode.
This secret should be established through a dialing pro-
tocol, such as Alpenhorn [15], and must evolve every
round (e.g., by hashing it, or by using Alpenhorn’s key-
wheel). Furthermore, if the client is active, it must pass
two messages to client_active() that will be relayed to
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the buddy; conversely, client_active() will return the
buddy’s two messages, if successful. Each message has a
fixed size (256 bytes).

Onion generation. In each round, the client library gen-
erates two onions using gen_onion(). This function en-
capsulates a message msg in an onion encryption. The
onion is sent towards a dead drop chosen pseudorandomly
based on the shared secret, the ID of this user (myid),
and the ID of the buddy (buddyid). For example, Fig-
ure 1’s solid arrows indicate an onion sent by Alice to
dead drop B on server 2. The payload, msg, is encrypted
by the caller (specifically, by client_active()).
gen_onion() encrypts the message for each server in

turn, using the public keys of the servers. The innermost
encryption uses the key of the dead drop server, drop_srv.
The other onion layers correspond to a path chosen by
gen_path() using a pseudorandom number generator.

One subtle detail is that the dead drop server, drop_srv,
is chosen deterministically in gen_onion() to be one of
the servers from the two users’ paths in the previous layer
(either mypath[-1] or buddypath[-1]). This is an opti-
mization that reduces the degrees of freedom in Karaoke,
and thus allows Karaoke to generate noise efficiently, as
we will discuss in §4.3.

The dead drop ID, drop_id, is chosen pseudorandomly
based on the shared secret. This ensures that an ad-
versary cannot learn any information by observing the
accessed dead drop IDs (since the secret changes every
round), yet the two users agree on the same dead drops.

Active conversation. When a client is in an active con-
versation, client_active() exchanges two messages
with the user’s buddy. It does so by first encrypting the
two messages, msg1 and msg2, to produce two cipher-
texts c1 and c2. The pseudocode uses + to derive sub-
keys from the buddysecretmaster key. client_active()
then calls gen_onion() twice, with two subkeys derived
from buddysecret (appending the strings onion1 and
onion2 respectively). These onions are then passed to
karaoke_run_round(), which sends the onions through
Karaoke’s server topology and waits for responses, if any.

Once client_active() receives the responses, it must
verify that no message loss took place—that is, that the
adversary did not block either of this user’s two messages,
or the buddy’s two messages. client_active() checks
for this by ensuring that it receives two ciphertexts that
properly decrypt (using authenticated encryption). If an
adversary dropped one of the messages from this client,
karaoke_run_round will return None, causing the decryp-
tion check to fail. If an adversary dropped one of the
messages from the buddy, the last server hosting the dead
drop will observe just one message reaching the dead
drop and echo back this client’s message in response,
which will similarly cause the decryption check to fail

(because the message is not encrypted using the subkey
generated with buddyid). If no message loss took place,
client_active() returns the decrypted messages.

Sending a message back to the user in case of message
loss is important since if there is a conversation between
Alice and Bob, and an adversary drops Bob’s message,
then one naive outcome might be that now Alice receives
nothing in response in that round. This would be quite
unfortunate: the adversary will know Bob was talking to
Alice! By echoing back the message, the last server sends
at least some (fixed-size) data towards Alice, so that an
adversary cannot tell that Alice was Bob’s conversation
partner. (To be precise, a random response would also
suffice in this case.) Intermediate servers similarly enforce
that every request must receive a response, in case the last
server was malicious.

Idle client. When there is no active conversation,
Karaoke’s client library ensures that the externally observ-
able behavior, from the adversary’s perspective, remains
identical. client_idle() does so by generating random
ciphertexts, c1 and c2, which should be indistinguish-
able from ciphertexts that would have been generated
by client_active(). client_idle() chooses a random
secret, and constructs two onions, o1 and o2, simulating
a conversation between users myid and myid+"dummy".

Much like client_active(), client_idle() needs to
check for message loss. It does so by ensuring that it
receives c2 and c1 respectively in response to its onions.

Handling message loss. In Karaoke, message loss can
leak information to an adversary, and thus reduce the de-
gree of privacy that the user can expect. Karaoke detects
such events, which allows the client application built on
top of the library from Figure 2 to avoid excessive privacy
loss. Specifically, Karaoke’s client closes any active con-
versation after encountering message loss. This prevents
an adversary from dropping a user’s messages in many
rounds to learn additional information. Other policies
for dealing with message loss can be implemented that
balance usability and privacy, as outlined in §3.

Karaoke should rarely lose messages, because IP
packet loss in the network is handled by TCP (see §7.6).
Thus, the primary source of false positives are long-lived
network outages. We recommend that users stop sensi-
tive conversations when their network becomes unreliable
(regardless of whether it is the result of an attack).

4.3 Server
Figure 3 presents the pseudocode for Karaoke’s server.
The pseudocode focuses on the processing of onions from
clients to the dead drops, as well as the generation and
verification of noise messages. Not shown is the logic for
setting up per-round public keys (signed with a long-term
private key of each server), accepting inputs from users in
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def process_layer(roundnum, layer, inputs):
msgs = [decrypt(srvkey[roundnum], msg)

for msg in inputs]
msgs = dedup(msgs)
if layer == 0:
msgs += generate_noise(roundnum)

else:
bloom = bloomfilter.new(inputs)
for srv in get_servers_and_keys(roundnum):
if srv.rpc("check_bloom", roundnum,

layer, bloom) != True:
raise("Lost noise, halting round")

outgoing = collections.defaultdict(list)
for m in msgs:
outgoing[m.next_hop].append(m)

for srv, q in outgoing:
srv.rpc("enqueue_batch_for_process_layer",

roundnum, layer+1, shuffle(q))

def check_bloom(roundnum, layer, bloom):
caller = get_rpc_caller()
for m in noise msgs routed via caller at layer:
if m not in bloom:
return False

return True

Figure 3: Pseudocode for Karaoke’s server.

the first layer, exchanging the messages that are addressed
to the same dead drop in the last layer, and sending the
responses back to the clients.

Layer processing. Each server uses the
process_layer() function shown in Figure 3 to
process the set of input messages at a given layer. In the
first layer, the server collects input messages from clients
until the round coordinator kicks off the round processing.
In subsequent layers, each server waits to receive inputs
from every server in the previous layer.

Layer processing starts by decrypting the inputs and
de-duplicating them. It is important to remove duplicates
(and to ensure the ciphertexts are not malleable), because
otherwise an adversary could tag a victim’s message by
replicating it several times and looking for which message
appears to be replicated at the end of Karaoke’s topology.

Noise. The next step of layer processing involves ensur-
ing that the necessary noise is present. In the first layer,
each server generates noise; subsequent layers use Bloom
filter checking to ensure that noise has not been dropped
by malicious servers.

Noise generation. At the start of every round, each
server generates noise. The goal of noise messages is
to mask dead drop access patterns in the case of message
loss, meaning that legitimate user messages did not form
a pair of accesses to the same dead drop. In this case, an
adversary observes some number of dead drops with two
accesses, and some number with just a single access (due
to a non-paired message). This translates into the two

kinds of noise messages generated by Karaoke: “singles”
(noise message that generates a single dead drop access),
and “doubles” (a pair of noise messages that generates a
double access to the same dead drop).

Karaoke’s threat model assumes that some servers may
be malicious, but it is not known a priori which servers
are malicious. An adversary could use a malicious server
to trace back the source of a dead drop access to the
last honest server in the path. Thus, as we show in our
analysis [16], it is important that all outgoing links from
every server carry an adequate number of noise messages,
since every link could potentially be the outgoing link
from the last honest server on some message’s path.

Like Stadium [25], Karaoke uses the Poisson distribu-
tion to sample noise messages. This distribution is a good
fit for distributed noise generation for two reasons. First,
it allows precisely sampling a non-negative integer for the
number of messages, even if the distribution mean is low.
Second, the sum of many small Poisson samples is also a
Poisson distribution, simplifying the analysis.

Let N be the number of servers, and l be the length of
Karaoke paths (nlayers in the pseudocode). Our topology
provides N l possible routes, which makes it computation-
ally cumbersome to sample for every route individually,
and inefficient, since there are only (l − 1) · N2 communi-
cation links in the entire system (there are l− 1 transitions
between layers, and in each transition each server is con-
nected to all others). We would ideally like to just sample
the amount of noise on every link.

To generate the singles noise, a server begins by sam-
pling the noise for the links to the last layer of servers
(layer l), and samples how many messages go over each
of the N2 links in that phase. For each link, the server
samples from the Poisson distribution, with mean λ1. The
server then sums them up to find how many of its noise
messages need to leave each server in the previous layer.
The server then samples again, to decide how many noise
messages travel on each link to the servers in the previous
layer (l − 1). Of course, there will likely be a mismatch;
i.e., a server in layer l−1 has to distribute a different num-
ber of messages than it receives. In this case, the server
just adds incoming or outgoing noise messages to match
the other by adding extra noise messages and distributing
them uniformly among all links. Karaoke continues in
this fashion until it reaches the first layer. The number
of these extra messages is unlikely to be large, because
it is simply the difference between two samples from the
same Poisson distribution. Overall, each server samples
(l − 1) · N2 times from the noise distribution to assign
single-access noise.

To generate doubles noise, the server performs a similar
procedure to the one described above. Notice that in the
last layer we only iterate over the N2/2 possible pairs of
links that output messages to the same dead-drop hosting
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server (N2/2 is the number of possible second-to-last-hop
pairs of servers, since order does not matter). This is
because the dead-drop hosting server is chosen determin-
istically by gen_onion() based on choose_last_srv().
Similarly to the above, for each such pair, we sample
noise from the Poisson distribution with mean λ2. The
result denotes the number of pairs of messages, where
one message is routed on each link. In all layers before
the last one, the procedure for generating double-access
noise is exactly the same as the single-access noise case
described above.

Preserving noise. In layers after the first one, the servers
must ensure that noise messages have not been dropped
by a malicious server from a previous layer. Karaoke
servers do this by computing a Bloom filter [2] over all of
the messages received by that server in a particular layer.
Each server then sends its Bloom filter to all other servers
to check whether their noise appears to be present. As
long as all servers indicate that their noise is present, this
server can assume that no noise messages from honest
servers have been dropped, and proceed with processing
the layer.

The only queries that matter are an honest relay check-
ing with an honest noise-sender. A malicious noise-sender
does not matter since it can send zero noise. A malicious
relay does not matter since it can relay messages even if
noise is missing. We incorporate both of these in deter-
mining how much noise is needed (generating extra noise
to account for malicious servers that generate zero noise).

At each hop, one encryption layer of the message is de-
crypted. If an adversary does not know a server’s private
key, the adversary cannot predict the decryption result
(it looks pseudorandom, since the onion contains another
encrypted message). A malicious server that refuses to
forward a message cannot guess the decrypted version of
that message after the next honest hop. Thus, the adver-
sary cannot fill in another message that will "look like"
the dropped message in the Bloom filters of subsequent
honest servers. Karaoke’s topology and parameters en-
sure at least two honest servers in every path (with high
probability); see analysis in §5.

To check whether noise messages are present, a server
runs check_bloom(). This function must first determine
which noise messages were routed through the calling
server at a given layer, and second, determine the cipher-
text representation of the onion that would be seen by that
server at that layer. Finally, check_bloom() verifies that
all of those ciphertexts are in the Bloom filter, without
disclosing which messages are noise and which are real.

The Bloom filter has false positives, which may lead
check_bloom() to falsely conclude that a noise message
is present. In Karaoke, it is up to the server running
process_layer() to construct the Bloom filter with ade-

quate parameters to achieve suitably false positive rate. If
the server running process_layer() is malicious, it can
construct a Bloom filter with 100% false positive rate.
However, such a malicious server could also ignore the
result of check_bloom() altogether.

The probability of not detecting n discarded noise mes-
sages shrinks exponentially with n, since messages are
independently pseudorandom (see above). This allows
Karaoke to use relatively small Bloom filters (with 10%
false positive rate) and yet ensure that no more than a few
noise messages may be lost (for n = 20 the probability
of missing detection is 10−20). Karaoke generates a few
extra noise messages to account for the possibility that
several might be lost without detection (but not more).

Noise verification involves an all-to-all communication,
but does not lead to quadratic bandwidth requirements as
the number of servers grows. This is because increasing
the number of servers would proportionally reduce the
size of the Bloom filters, since the Bloom filters repre-
sent only those messages that are handled by a particular
server. Other horizontally scalable systems have similar
phases. For example, Stadium [25], which most closely
related to Karaoke, includes an all to all distribution be-
tween “input chains” to “output chains”; in Stadium, this
phase involves cryptographic computations (signature ver-
ification and NIZKs). Although in Karaoke the all-to-all
communication happens at every hop, the number of hops
is fixed so the overhead of Karaoke is expected to remain
much smaller than Stadium even for large deployments.

5 Analysis
This sections shows that Karaoke achieves its privacy goal
(§3.1), which is captured by the following theorem.

Theorem 1. Karaoke is ϵ, δ-differentially private with
respect to the following neighboring databases: (1) Alice
is talking with another user Bob, and (2) Alice is idle.

Proof sketch. We show Theorem 1 holds in the analysis
below by the following argument. We begin by show-
ing that Karaoke servers maintain noise messages in the
system (§5.1). Next, we analyze optimistic indistinguisha-
bility, showing that in the common case Karaoke leaks
no communication metadata under passive attacks (§5.2).
Optimistic indistinguishability has one caveat: the at-
tacker may launch active attacks to learn some informa-
tion about the communication patterns of some users. We
use differential privacy to reason about the amount of
information leaked to the attacker under this scenario
(§5.3).

The differential privacy parameters (ϵ and δ), the sin-
gles and doubles noise (λ1 and λ2), and the number of
rounds k for which this theorem holds are discussed in
§6.1. An extended technical report [16] provides detailed
proofs.
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5.1 Efficient noise verification
For Karaoke’s privacy guarantees to hold, it is crucial
to prevent the attacker from discarding noise messages
generated by the honest servers. Karaoke identifies when
noise messages are discarded using Bloom filter checks
(§4.3). Bloom filters, however, allow for false positives,
so a few noise messages might be dropped even if the
Bloom filter check shows they are present. With a false
positive rate p, the probability that k lost noise messages
go undetected is pk. Even with a relatively high p = 10%,
it is sufficient to increase the mean of the single- and
double-access noise distributions (λ1 and λ2, from §4.3)
by just 20

h (where h is the number of honest servers) to
ensure Karaoke keeps adequate noise with probability
> 1 − 10−20.

Adjusting the Bloom filter size allows Karaoke to con-
trol the false positive rate, but the size of the Bloom filter
reveals the number of messages processed by a server.
This is acceptable, as the rest of Karaoke’s analysis does
not rely on the total number of messages being hidden.

5.2 Optimistic indistinguishability
We continue our analysis by showing that combining
noise with Karaoke’s routing topology prevents metadata
leakage. That is, if the two messages from Alice and the
two messages from Bob route through the system, then it
is very likely to be completely indistinguishable whether
they exchange messages with each other (active mode) or
with themselves (idle mode). We begin our analysis by
explaining the conditions under which optimistic indistin-
guishability holds, and then evaluate the probability for
these conditions to hold considering a passive adversary.

5.2.1 Avoiding metadata leakage

Karaoke’s optimistic indistinguishability stems from the
following theorem:

Theorem 2. Assume that two messages a and b, from
honest senders (users or servers), route through an hon-
est server si at layer i. Denote the two message routes
by ⟨s1

a, . . . , s
i, . . . , sl

a⟩ and ⟨s1
b, . . . , s

i, . . . , sl
b⟩. Then it is

equally likely, given the attacker’s observations of the
inter-server links and malicious intermediary servers (i.e.,
observations on all but the last server), that a routes
through ⟨si+1

a . . . , s
l
a⟩ and b routes through ⟨si+1

b . . . , s
l
b⟩

or vice-versa.

Proof. Since si is honest, its shuffle permutation is un-
known to the adversary. Each message in Karaoke takes
an independent route. Denote the outgoing links from
server si that a and b take by l1, l2, and the attacker’s
observations on outgoing links from si by O. It holds
that Pr[a takes l1 | O] = Pr[b takes l1 | O] and that

Pr[a takes l2 | O] = Pr[b takes l2 | O]. Therefore,

Pr[a takes l1 ∧ b takes l2 | O] =
Pr[a takes l2 ∧ b takes l1 | O]

Furthermore, since messages are onion-encrypted, the
bit-level representations of messages a and b forwarded
by si are indistinguishable from random. As a result, an
adversary cannot distinguish whether a travels over the
link si → si+1

a and b over si → si+1
b or vice-versa.

Assume that a and b swap the suffix of their routes
following layer si. Since the two messages swap routes,
the number of messages on each following link remains
the same (and the messages themselves are indistinguish-
able from one another because they are onion-encrypted).
Therefore all of the attacker’s observations on inter-server
links remain the same, regardless of whether the two mes-
sages were swapped. □

Theorem 2 allows us to swap between two messages.
However, it requires that the two swapped messages route
through the same honest server. The next theorem, which
follows from Theorem 2, extends this observation and
shows that even messages with non-intersecting routes
can be indistinguishably swapped, with the help of noise
messages.

Theorem 3. Let a and b be two messages that route
through ⟨s1

a, . . . , s
l
a⟩ and ⟨s1

b, . . . , s
l
b⟩ respectively. Let n0

and n1 be two other messages from honest participants
that route through ⟨s1

n0
, . . . , sl

n0
⟩ and ⟨s1

n1
, . . . , sl

n1
⟩. As-

sume that there exists some i0 and j1 such that si0
n0 = si0

a

and s j1
n0 = s j1

b , where the servers si0
a and s j1

b are honest and
i0 < j1. This means that, for some layer i0, n0 and a route
through the same honest server, and for some layer j1,
n0 and b route through the same honest server. Similarly,
assume there exists some i1 and j0 such that si1

n1 = si1
b and

s j0
n1 = s j0

a , where the servers si1
b and s j0

a are honest, i1 < j0,
i0 < j0, and i1 < j1. Under these conditions, and using
observations from network links and intermediary servers,
it is indistinguishable whether the messages took their
actual routes or the following alternative routes:

a routes via ⟨s1
a, . . . , s

i0
a , s

i0+1
n0 , . . . , s

j1−1
n0 , s

j1
b , . . . , s

l
b⟩

b routes via ⟨s1
b, . . . , s

i1
b , s

i1+1
n1 , . . . , s

j0−1
n1 , s

j0
a , . . . , sl

a⟩

n0 routes via ⟨s1
n0
, . . . , si0

a , s
i0+1
a , . . . , s j0−1

a , s j0
n1 , . . . , s

l
n1
⟩

n1 routes via ⟨s1
n1
, . . . , si1

b , s
i1+1
b , . . . , s j1−1

b , s j1
n0 , . . . , s

l
n0
⟩

Proof. Applying Theorem 2 four times on the following
arguments gives the result:

1. on messages a, n0 at honest server si0
a

2. on messages b, n1 at honest server si1
b

3. on messages a, n1 at honest server s j0
a

4. on messages b, n0 at honest server s j1
b
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Figure 4 illustrates these four swaps (where message a =
a1 and message b = b0). □

Given four messages a, b and n0, n1 the attacker cannot
identify, using observations on network links and mali-
cious intermediary servers, whether the messages take
one route where a, b end up on servers sl

a, s
l
b and n0, n1

end up on servers sl
n0
, sl

n1
or they take an alternative route

where a, b reach sl
b, s

l
a and n0, n1 reach sl

n1
, sl

n0
. However,

if the last servers (sl
∗) turn out to be malicious, then the

attacker might still distinguish between the two scenarios.
To see why, consider the case where n0 is a double-access
noise message and its pair routes through an all-malicious
route. In this case, the attacker can observe the differ-
ence between the two alternative scenarios because the
last server on n0’s route would have actually received n1
instead of n0 and therefore would observe one less double
access and two more single accesses if n0 and n1 were
to swap (i.e., using the alternative routes in Theorem 3).
The next theorem describes how messages between two
honest users can be swapped without leaking information
to the attacker, when n0 and n1 are single-access noise
messages.

Theorem 4. If the premise for Theorem 3 holds
for two user-messages a and b and two single-
access noise messages n0 and n1, then it is indis-
tinguishable whether a routes through ⟨s1

a, . . . , s
l
a⟩

and b through ⟨s1
b, . . . , s

l
b⟩, or a routes through

⟨s1
a, . . . , s

i0
a , s

i0+1
n0 , . . . , s

j1−1
n0 , s

j1
b , . . . , s

l
b⟩ and b routes

through ⟨s1
b, . . . , s

i1
b , s

i1+1
n1 , . . . , s

j0−1
n1 , s

j0
a , . . . , sl

a⟩.

Proof. Applying Theorem 3 shows that given just obser-
vations from network links and intermediary servers, an
adversary cannot determine which message takes what
route. We now focus on the last servers of each message
route. Assume that they are all malicious and allow the
attacker to observe the dead-drop access patterns. The
last server on n0’s route, in the alternative routing scheme,
would have received n1 (after all four swaps); see illus-
tration in Figure 4. Since n1 and n2 are two single access
noise messages, generated by honest servers, the mali-
cious last server would observe in both cases an encrypted
message (that was encrypted by an honest server) reach-
ing a dead drop by itself. Similarly this holds for the last
server on n1’s route. The user messages a and b would
both reach encrypted to a double-access dead drop (since
the attacker is passive, the paired message reaches the
dead drop too). So both cases are indistinguishable. □

We refer to two messages a and b for which there exists
two single-access noise messages n0 and n1 that satisfy
the premise of Theorem 4 as indistinguishably swappable.
We next use Theorem 4 to analyze Karaoke’s privacy
guarantees.

si0
a1

si1
b0

a0

n0

a1

b0

n1

b1

s j0
a1

s j1
b0

X

N1

N0

Y

Alice

Bob

Users Servers Dead drops

Figure 4: An illustration of Karaoke’s optimistic indistinguishability: an
adversary cannot determine whether Alice and Bob are communicating
via dead drops X and Y. Straight lines represent links (potentially across
multiple intermediate servers) that an adversary can track. Servers si0

a1 ,
si1

b0
, s j0

a1 , and s j1
b0

are honest. Solid bold lines indicate the actual path
taken by messages a1 and b0. Dotted bold lines indicate the actual path
taken by messages n0 and n1. An adversary cannot distinguish whether
a1 and b0 took the solid or dotted bold lines. Squiggly lines indicate
users generating two messages in a round.

5.2.2 Alice talking with Bob, and claims “idle”
Consider two users, Alice and Bob, who may be talking
with each other or idle. Alice sends two messages a0, a1
and Bob sends b0, b1. If Alice and Bob communicate,
then Alice’s a0 meets Bob’s b0 at the dead drop, and a1
meets b1 at a different (and independently chosen) dead
drop. If they do not communicate, then a0 meets a1 at a
dead drop and so do b0 and b1.

Theorem 5. If one of the pairs of messages ⟨a0, b1⟩ or
⟨a1, b0⟩ is indistinguishably swappable, then it is indistin-
guishable whether Alice is talking to Bob or they are both
idle.

Proof. To understand why this theorem holds, consider
Figure 4. Assume without loss of generality that the
premise holds for the pair of messages ⟨a1, b0⟩. Applying
Theorem 4 on ⟨a1, b0⟩, it is therefore indistinguishable
whether a1 routes to dead drop X and b0 routes to dead
drop Y or vise versa. In the first scenario a0 meets b0 at
dead drop Y and a1 meets b1 at dead drop X, so Alice
and Bob are talking. In the second (indistinguishable)
scenario it is actually a0 that meets a1 at dead drop X
and b0 that meets b1 at dead drop Y so Alice and Bob
are idle. Importantly, it does not matter what route Alice
and Bob’s other messages, a0 and b1, take; the servers
handling these messages may all be malicious. □

Our technical report [16] analyzes the probability with
which optimistic indistinguishability holds. For example,
with N = 100 servers, out of which h = 80 are assumed
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honest, a chain length of l = 14, and where each honest
server generates single-access noise with mean λ1 ≥ 0.5
(so the mean of single-access noise on each link is hλ1 =

40), the probability that optimistic indistinguishability
holds is at least 1 − 5 · 10−14.

5.2.3 Alice idle, and claims “talking with Bob”
Theorem 6. If the premise for Theorem 4 holds for at
least one of the message pairs ⟨a0, b0⟩, ⟨a0, b1⟩, ⟨a1, b0⟩,
⟨a1, b1⟩, then it is indistinguishable whether Alice is talk-
ing to Bob or they are both idle.

When Alice and Bob are idle, a0, a1 and b0, b1 travel
to the same dead drop. It is therefore sufficient to indistin-
guishably swap one of four options: a0 with b0, or a0 with
b1, or a1 with b0, or a1 with b1 (rather than two options as
in §5.2.2: a0 with b1, or a1 with b0). This gives an even
higher probability of achieving indistinguishability.

5.3 Message loss and differential privacy
An active attacker can discard user messages before
Karaoke unlinks them from their senders (e.g., before
the first layer, as users submit messages to Karaoke). This
might prevent Karaoke from “indistinguishably swapping”
messages as required for our analysis in the passive case
(§5.2). We now analyze this scenario. The technical
report [16] includes the proofs for the theorems below.

Consider a user Alice and an active attacker who tries
to learn whether she is talking with Bob.

Theorem 7. The active attacker’s best strategy (leaking
the most information) is to either discard both messages
from Alice, or both messages from Bob.

Intuitively, the theorem holds since if the attacker dis-
cards both messages from Alice or both messages from
Bob, there are no messages to swap with so optimistic
indistinguishability never holds. The following theorem
holds when the attacker is active:

Theorem 8. Karaoke is ϵ, δ-differentially private in the
face of message loss (e.g., due to active attackers), if both
user messages route through at least two honest servers.

The conditional in Theorem 8 holds with overwhelming
probability in the route length parameter l. For example,
with a route length l = 14, assuming 80% of the servers
are honest, this conditional holds with probability 1 −
2 · 10−8 (which is folded into the differential privacy δ
parameter of Karaoke).

6 Implementation
Karaoke is implemented in 4000 lines of Go code, com-
piled with Go 1.11. Onion decryption dominates the CPU
costs of our prototype and is implemented in native amd64
assembly, provided by Go’s NaCl library. The servers use
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Figure 5: eϵ as a function of the number of noise messages per server
per round, for δ = 10−4, h = ⌊0.8N⌋, and l = 14.

the gRPC library over TLS for communication. We use
streaming RPCs and batching RPCs together to reduce
latency. Karaoke issues RPCs over multiple TCP connec-
tions to improve throughput.

6.1 Parameter selection
We would like Karaoke to provide good privacy guaran-
tees even after users communicate via Karaoke for a long
time. We target ϵ = ln 4 and δ = 10−4 after 108 rounds of
communication, of which 245 rounds encounter message
loss during a sensitive conversation.

Figure 5 plots the expected number of noise messages
that an honest server generates in a round, and the re-
sulting eϵ privacy guarantee (with a fixed δ = 10−4 af-
ter 108 communication rounds with 245 rounds of mes-
sage loss), for deployments of N = 50, . . . , 200 servers
where we assume h = ⌊0.8N⌋ servers are honest, and
route length l = 14. For example, in our configuration
using 100 servers, each server generates an average of
N2λ1 + N2λ2 = 25K noise messages per round. Comput-
ing the data in Figure 5 required the use of composition
over multiple rounds [10, 13].

As we evaluate in §7.6, 245 rounds of message loss is
about an order of magnitude higher than the number of
expected losses due to network outages in a year. Karaoke
could achieve the same privacy guarantee under more
active attacks by adding more noise.

7 Evaluation
We quantitatively answer the following questions:
• Can Karaoke achieve low latency for many users?

• Can Karaoke scale to more users by adding servers
while maintaining the same low latency?

• How is Karaoke’s performance affected by the frac-
tion of honest servers?

• How important are Karaoke’s techniques for achiev-
ing low latency?
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Figure 6: End-to-end latency of user messages with a varying number
of users. Vuvuzela is running with 3 servers; Karaoke and Stadium are
both running with 100 servers.

• How often would network problems cause Karaoke
users to observe message loss?

7.1 Experimental setup
To answer the above questions we ran our prototype on
Amazon EC2 using c5.9xlarge instances (36× Intel
Xeon 3.0 GHz cores with 72 GB of memory and 10 Gbps
links). We ran experiments using VMs in the same data
center to save on AWS bandwidth costs. Realistically,
Karaoke would be deployed on servers in different coun-
tries (or trust zones). For example, we envision some
fraction of the servers running in the US and the rest
running in different countries in Europe. We simulate
this topology by adding 100ms of round-trip network la-
tency (the round-trip time from the east coast of the US
to Europe) to each VM using the tc qdisc command.

We simulate millions of users by having servers gener-
ate extra messages in the first layer (to avoid the cost of
launching many more client VMs). The extra messages
are pre-generated (before the round starts) so that server
CPU costs are not muddled by what would normally be
client CPU costs.

An additional VM is used to run a coordinator server.
This server has two jobs: it starts rounds across all
Karaoke servers and injects probe messages into each
round to measure the end-to-end latency of the round.

Unless specified otherwise, our experiments assume
that 80% of the servers are honest, which translates into
a topology with 14 layers. Karaoke’s Bloom filters are
tuned for a 10% false positive rate, as discussed in §5.1.

7.2 Karaoke achieves low latency
To evaluate Karaoke’s end-to-end latency we ran an ex-
periment using 100 Karaoke servers. Figure 6 shows the
results. For comparison, we also include the latency of
Vuvuzela and Stadium as reported in their papers which
provide privacy comparable to Karaoke. The Vuvuzela
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Figure 7: End-to-end latency of user messages with 25K users per
server, with a varying number of servers.

and Stadium results used c4.8xlarge VMs, so we also
measured Karaoke’s performance on this less powerful
instance type. Stadium’s performance was achieved using
100 servers with a chain length of 9. Vuvuzela used only
3 servers because its performance does not increase with
the number of servers.

The results show that with 2M users Karaoke achieves
5× lower latency than Vuvuzela, and 8× lower latency
than Stadium (using the weaker c4 instances). Further-
more, the slope of the Karaoke line in Figure 6 shows
that Karaoke scales better with more users than either
Vuvuzela or Stadium. Karaoke’s scaling is better than
Vuvuzela because only a fraction of Karaoke servers are
involved in handling the messages from every additional
user, whereas every Vuvuzela server must handle every
additional user’s messages. Karaoke’s scaling is better
than Stadium because Stadium must perform expensive
zero-knowledge proofs for every additional user message,
whereas Karaoke’s marginal cost are just in onion de-
cryption and network bandwidth. For instance, Karaoke
achieves 10× lower latency than Stadium with 16M users.

7.3 Scaling by adding servers
The previous subsection shows that Karaoke’s latency in-
creases as more users join the system. This is unavoidable
if the number of servers is fixed. Ideally, Karaoke would
be able to support additional users without increasing la-
tency by adding a proportional number of servers. To
evaluate if this is the case, we measured the end-to-end
latency of Karaoke with a varying number of servers and
a proportional number of users (25K users per server).

Figure 7 shows the results, which indicate that Karaoke
can maintain low latency for an increasing number of
users by adding more servers to the system. Karaoke’s
latency goes down slightly as the number of servers grows
because it requires less noise, as shown in Figure 5.

7.4 Fraction of honest servers
Figure 8 shows the number of layers required to achieve
Karaoke’s privacy guarantees with a varying fraction of
honest servers, and the impact that increasing the num-
ber of layers has on end-to-end latency. The results
show Karaoke’s tradeoff between lower latency and fewer
trusted servers. When fewer servers are assumed honest,
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Figure 8: End-to-end latency for 2M user messages and 100 servers
with a varying fraction of honest servers. The right y-axis shows the
required number of layers to achieve privacy for a given fraction of
honest servers.

each honest server has to create more noise to compen-
sate for the possibility of malicious servers not sending
any noise. Karaoke achieves acceptable latency for text
messaging even if only 60% of the servers are honest. On
the other hand, Karaoke would not be a good fit if only
30% of the server were honest.

7.5 Importance of techniques
To demonstrate the importance of Karaoke’s key tech-
niques (optimistic indistinguishability and using Bloom
filters for efficient noise verification), we consider the
performance of Karaoke without these techniques. In the
absence of optimistic indistinguishability, Karaoke would
need to add ∼320K noise messages per server per round
to achieve the same level of privacy. This translates into
an increase in latency from 6.8s to 31s for 2 million users.

In the absence of Bloom filters, Karaoke could use
verifiable shuffles similar to Stadium. For 6 million users
and 100 servers, each Stadium server spends 6s generating
verifiable shuffles and another 2s verifying shuffles at each
hop in the network. Karaoke, on the other hand, spends
250ms generating and checking Bloom filters at each
hop. Using verifiable shuffles in Karaoke would increase
Karaoke’s overall latency by about 2 minutes (8 seconds
for each of Karaoke’s 14 hops). This shows that both
techniques are crucial for Karaoke’s performance.

7.6 Leakage due to network issues
Karaoke’s design avoids leaking information when the
network is well-behaved, by arranging for all dead drop
access to occur in pairs. However, network issues could
result in some information being leaked if some dead drop
accesses are no longer paired. Karaoke runs over TCP so
momentary packet loss will not prevent message delivery.
On the other hand, if clients can not communicate with
the Karaoke servers for an extended period of time, they
will be unable to submit their message into a round.

To estimate how often this might happen, we per-
formed an experiment by probing a Karaoke server every
2 minutes for a day from 100 machines using RIPE AT-
LAS [22], which provided machines distributed across
the globe that communicate with our server. Each probe
consisted of 3 ping packets, spaced 1 second apart. The

experiment generated 71,194 probe results, of which
70,106 received responses to all 3 pings, 991 received
2 responses, 60 received 1 response, and 37 received no
responses (indicating a complete loss of network con-
nectivity). The complete losses of network connectivity
occurred in “bursts,” where a machine experienced com-
plete loss of connectivity for several adjacent two-minute
intervals. The complete losses were encountered by 8
machines (7 of them observing one “burst” and one ob-
serving two “bursts”).

These results suggest that a Karaoke client could en-
counter approximately 9 message loss events over 100
days, or about 33 such events per year. (Since Karaoke
clients switch to idle mode after detecting message loss,
only the first loss in a burst matters for this analysis.) This
compares favorably with the message loss that Karaoke’s
parameters can handle (245, as discussed in §6.1).

8 Conclusion
Karaoke improves the latency of metadata-private text
messaging by almost an order of magnitude compared
to prior work. Karaoke also scales well with the number
of users and the number of servers, maintaining its low
latency. To achieve its performance, Karaoke introduces a
new design, exchanging messages between each server in
multiple layers, as well as two key techniques. Optimistic
indistinguishability allows Karaoke to achieve perfect pri-
vacy with high probability in case no messages from the
user (and their peer) are lost, and allows clients to detect
message loss. Efficient noise verification allows Karaoke
to generate noise messages across many servers, and to
use efficient Bloom filter checks to prevent adversaries
from discarding the noise. We hope that Karaoke’s low
latency will bring metadata-private messaging closer to
widespread adoption.
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Abstract
This paper presents the design and implementation of

Obladi, the first system to provide ACID transactions while
also hiding access patterns. Obladi uses as its building block
oblivious RAM, but turns the demands of supporting transac-
tions into a performance opportunity. By executing transac-
tions within epochs and delaying commit decisions until an
epoch ends, Obladi reduces the amortized bandwidth costs
of oblivious storage and increases overall system through-
put. These performance gains, combined with new oblivious
mechanisms for concurrency control and recovery, allow
Obladi to execute OLTP workloads with reasonable through-
put: it comes within 5× to 12× of a non-oblivious baseline on
the TPC-C, SmallBank, and FreeHealth applications. Latency
overheads, however, are higher (70× on TPC-C).

1 Introduction
This paper presents Obladi, the first cloud-based key value
store that supports transactions while hiding access patterns
from cloud providers. Obladi aims to mitigate the fundamen-
tal tension between the convenience of offloading data to the
cloud, and the significant privacy concerns that doing so cre-
ates. On the one hand, cloud services [3, 4, 48, 49, 62] offer
clients scalable, reliable IT solutions and present application
developers with feature-rich environments (transactional sup-
port, stronger consistency [23, 52], etc.). Medical practices,
for instance, increasingly prefer to use cloud-based software
to manage electronic health records (EHR) [17, 39]. On the
other hand, many applications that could benefit from cloud
services store personal data that can reveal sensitive informa-
tion even when encrypted or anonymized [53, 54, 74, 83]. For
example, charts accessed by oncologists can reveal not only
whether a patient has cancer, but also, depending on the fre-
quency of accesses (e.g., the frequency of chemotherapy ap-
pointments), indicate the cancer’s type and severity. Similarly,
travel websites have been suspected of increasing the price
of frequently searched flights [83]. Hiding access patterns—
that is, hiding not only the content of an object, but also when
and how frequently it is accessed, is thus often desirable.

Responding to this challenge, the systems community has
taken a fresh look at private data access. Recent solutions,
whether based on private information retrieval [2, 31],
Oblivious RAM [15, 44, 70], function sharing [83], or trusted
hardware [5, 7, 25, 44, 81], show that it is possible to support
complex SQL queries without revealing access patterns.
Obladi addresses a complementary issue: supporting ACID

transactions while guaranteeing data access privacy. This
combination raises unique challenges [5], as concurrency
control mechanisms used to enforce isolation, and techniques
used to enforce atomicity and durability, all make hiding
access patterns more problematic (§3).
Obladi takes as its starting point Oblivious RAM, which

provably hides all access patterns. Existing ORAM imple-
mentations, however, cannot support transactions. First, they
are not fault-tolerant. For security and performance, they
often store data in a client-side stash; durability requires the
stash content to be recoverable after a failure, and preserving
privacy demands hiding the stash’s size and contents,
even during failure recovery. Second, ORAM provides
limited or no support for concurrency [12, 70, 75, 86],
while transactional systems are expected to sustain highly
concurrent loads.
Obladi demonstrates that the demands of supporting transac-

tions can not only be met, but also turned into a performance
opportunity. Its key insight is that transactions actually afford
more flexibility than the single-value operations supported by
previous ORAMs. For example, serializability [61] requires
that the effects of transactions be reflected consistently in the
state of the database only after they commit. Obladi leverages
this flexibility to delay committing transactions until the end
of fixed-size epochs, buffering their execution at a trusted
proxy and enforcing consistency and durability only at epoch
boundaries. This delay improves ORAM throughput without
weakening privacy.

The ethos of delayed visibility is the core that drives Obladi’s
design. First, it allows Obladi to implement a multiversioned
database atop a single-versioned ORAM, so that read opera-
tions proceed without blocking, as with other multiversioned

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    727



databases [10], and intermediate writes are buffered locally:
only the last value of any key modified during an epoch
is written back to the ORAM. Delaying writes reduces the
number of ORAM operations needed to commit a transac-
tion, lowering amortized CPU and bandwidth costs without
increasing contention: Obladi’s concurrency control ensures
that delaying commits does not affect the set of values that
transactions executing within the same epoch can observe.
Second, it allows Obladi to securely parallelize Ring

ORAM [69], the ORAM construction on which it builds.
Obladi pipelines conflicting ORAM operations rather than
processing them sequentially, as existing ORAM implemen-
tations do. This parallelization, however, is only secure if the
write-back phase of the ORAM algorithm is delayed until
pre-determined times, namely, epoch boundaries.
Finally, delaying visibility gives Obladi the ability to

abort entire epochs in case of failure. Obladi leverages this
flexibility, along with the near-deterministic write-back
algorithm used by Ring ORAM, to drastically reduce the
information that must be logged to guarantee durability and
privacy-preserving crash recovery.
The results of a prototype implementation of Obladi

are promising. On three applications (TPC-C [80], Small-
Bank [22], and FreeHealth [42], a real medical application)
Obladi is within 5×-12× of the throughput of non-private
baselines. Latency is higher (70×), but remains reasonable
(in the hundreds of milliseconds).

To summarize, this paper makes three contributions:
1. It presents the design, implementation, and evaluation of

the first ACID transactional system that also hides access
patterns.

2. It introduces an epoch-based design that leverages the
flexibility of transactional workloads to increase overall
system throughput and efficiently recover from failures.

3. It provides the first formal security definition of a trans-
actional, crash-prone, and private database. Obladi uses
the UC-security framework [14], ensuring that security
guarantees hold under concurrency and composition.

Obladi also has several limitations. First, like most
ORAMs that regulate the interactions of multiple clients,
it relies on a local centralized proxy, which introduces
issues of fault-tolerance and scalability. Second, Obladi
does not currently support range or complex SQL queries.
Addressing the consistency challenge of maintaining
oblivious indices [5, 25, 89] in the presence of transactions
is a promising avenue for future work.

2 Threat and Failure Model
Obladi’s threat and failure assumptions aim to model
deployments similar to those of medical practices, where
doctors and nurses access medical records through an on-site
server, but choose to outsource the integrity and availability
of those records to a cloud storage service [17, 39].

Threat Model. Obladi adopts a trusted proxy threat
model [70, 75, 86]: it assumes multiple mutually-trusting
client applications interacting with a single trusted proxy in a
single shared administrative domain. The applications issue
transactions and the proxy manages their execution, sending
read and write requests on their behalf over an asynchronous
and unreliable network to an untrusted storage server. This
server is controlled by an honest-but-curious adversary that
can observe and control the timing of communication to
and from the proxy, but not the on-site communication
between application clients and the proxy. We extend our
threat model to a fully malicious adversary in our technical
report [20]. We consider attacks that leak information
by exploiting timing channel vulnerabilities in modern
processors [13, 36, 43] to be out of scope. Obladi guarantees
that the adversary will learn no information about: (i) the
decision (commit/abort) of any ongoing transaction; (ii) the
number of operations in an ongoing transaction; (iii) the type
of requests issued to the server; and (iv) the actual data they
access. Obladi does not seek to hide the type of application
that is currently executing (ex: OLTP vs OLAP).
Failure Model. Obladi assumes cloud storage is reliable,

but, unlike previous ORAMs, explicitly considers that both
application clients and the proxy may fail. These failures
should invalidate neither Obladi’s privacy guarantees nor the
Durability and Atomicity of transactions.

3 Towards Private Transactions
Many distributed, disk-based commercial database sys-
tems [8, 19, 58] separate concurrency control logic from
storage management: SQL queries and transactional
requests are regulated in a concurrency control unit and
are subsequently converted to simple read-write accesses
to key-value/file system storage. As ORAMs expose a
read-write address space to users, a logical first attempt
at implementing oblivious transactions would simply
replace the database storage with an arbitrary ORAM. This
black-box approach, however, raises both security concerns
(§3.1) and performance/functionality issues (§3.2)

Security guarantees can be compromised by simply enforc-
ing the ACID properties. Ensuring Atomicity, Isolation, and
Durability imposes additional structure on the order of in-
dividual reads and writes, introducing sources of information
leakage [5, 72] that do not exist in non-transactional ORAMs
(§3.1). Performance and functionality, on the other hand, are
hampered by the inability of current ORAMs to efficiently
support highly concurrent loads and guarantee Durability.

3.1 Security for Isolation and Durability
The mechanisms used to guarantee Isolation, Atomicity, and
Durability introduce timing correlations that directly leak
information about the data accessed by ongoing transactions.
Concurrency Control. Pessimistic concurrency controls

like two-phase locking [26] delay operations that would vi-
olate serializability: a write operation from transaction T1
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cannot execute concurrently with any operation to the same
object from transaction T2. Such blocking can potentially
reveal sensitive information about the data, even when ex-
ecuting on top of a construction that hides access patterns:
a sudden drop in throughput could reveal the presence of a
deadlock, of a write-heavy transaction blocking the progress
of read transactions, or of highly contended items accessed by
many concurrent transactions. More aggressive concurrency
control schemes like timestamp ordering or multiversioned
concurrency control [1, 10, 34, 41, 66, 67, 87] allow trans-
actions to observe the result of the writes of other ongoing
transactions. These schemes improve performance in con-
tended workloads, but introduce the potential for cascading
aborts: if a transaction aborts, all transactions that observed
its write must also abort. If a write-heavy transaction Theavy
aborts, it may cause a large number of transactions to rollback,
again revealing information about Theavy and, perhaps more
problematically, about the set of objects that Theavy accessed.

Failure Recovery. When recovering from failure, Durabil-
ity requires preserving the effects of committed transactions,
while Atomicity demands removing any changes caused
by partially-executed transactions. Most commercial sys-
tems [50, 58, 59] preserve these properties through variants
of undo and redo logging. To guarantee Durability, write and
commit operations are written to a redo log that is replayed
after a failure. To guarantee Atomicity, writes performed by
partially-executed transactions are undone via an undo log,
restoring objects to their last committed state. Unfortunately,
this undo process can leak information: the number of undo
operations reveals the existence of ongoing transactions, their
length, and the number of operations that they performed.

3.2 Performance/functionality limitations

Current ORAMs align poorly with the need of modern
OLTP workloads, which must support large numbers of
concurrent requests; in contrast, most ORAMs admit little
to no concurrency [12, 70, 75, 86] (we benchmark the
performance of sequential Ring ORAM in Figure 10a).

More problematically, ORAMs provide no support for
fault-tolerance. Adding support for Durability presents two
main challenges. First, most ORAMs require the use of
a stash that temporarily buffers objects at the client and
requires that these objects be written out to server storage
in very specific ways (as we describe further in §4). This
process aligns poorly with guaranteeing Durability for
transactions. Consider for example a transaction T1 that
reads the version of object x written by T2 and then writes
object y. To recover the database to a consistent state, the
update to x should be flushed to cloud storage before the
update to y. It may however not be possible to securely flush
x from the stash before y. Second, ORAMs store metadata
at the client to ensure that cloud storage observes a request
pattern that is independent of past and currently executing

operations. As we show in §8, recovering this metadata after
a failure can lead to duplicate accesses that leak information.

3.3 Introducing Obladi
These challenges motivate the need to co-design the trans-
actional and recovery logic with the underlying ORAM data
structure. The design should satisfy three goals: (i) security—
the system should not leak access patterns; (ii) correctness—
Obladi should guarantee that transactions are serializable;
and (iii) performance—Obladi should scale with the number
of clients. The principle of workload independence underpins
Obladi’s security: the sequence of requests sent to cloud
storage shoud remain independent of the type, number, and
access set of the transactions being executed. Intuitively, we
want Obladi’s sequence of accesses to cloud storage to be
statistically indistinguishable from a sequence that can be
generated by an Obladi simulator with no knowledge of
the actual transactions being run by Obladi. If this condition
holds, then observing Obladi’s accesses cannot reveal to
the adversary any information about Obladi’s workload. We
formalize this intuition in our security definition in §9.
Much of Obladi’s novelty lies not in developing new con-

currency control or recovery mechanisms, but in identifying
what standard database techniques can be leveraged to
lower the costs of ORAM while retaining security, and what
techniques instead subtly break obliviousness.
To preserve workload independence while guaranteeing

good performance in the presence of concurrent requests,
Obladi centers its design around the notion of delayed
visibility. Delayed visibility leverages the observation that,
on the one hand, ACID consistency and Durability apply
only when transactions commit, and, on the other, commit
operations can be delayed. Obladi leverages this flexibility
to delay commit operations until the end of fixed-size epochs.
This approach allows Obladi to (i) amortize the cost of
accessing an ORAM over many concurrently executing re-
quests; (ii) recover efficiently from failures; and (iii) preserve
workload independence: the epochs’ deterministic structure
allows Obladi to decouple its externally observable behavior
from the specifics of the transactions being executed.

4 Background
Oblivious Remote Access Memory is a cryptographic
protocol that allows clients to access data outsourced to an un-
trusted server without revealing what is being accessed [29];
it generates a sequence of accesses to the server that is com-
pletely independent of the operations issued by the client. We
focus specifically on tree-based ORAMs, whose construc-
tions are more efficiently implementable in real systems: to
date, they have been implemented in hardware [27, 46] and
as the basis for blockchain ledgers [15] with reasonable over-
heads. Most tree-based ORAMs follow a similar structure:
objects (usually key-value pairs) are mapped to a random leaf
(or path) in a binary tree and physically reside (encrypted) in
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some tree node (or bucket) along that path. Objects are log-
ically removed from the tree and remapped to a new random
path when accessed. These objects are eventually flushed
back to storage (according to their new path) as part of an
eviction phase. Through careful scheduling, this write-back
phase does not reveal the new location of the objects; objects
that cannot be flushed are kept in a small client-side stash.
Ring ORAM. Obladi builds upon Ring ORAM [69], a

tree-based ORAM with two appealing properties: a constant
stash size and a fully deterministic eviction phase. Obladi
leverages these features for efficient failure recovery.
As shown in Figure 1, server storage in Ring ORAM

consists of a binary tree of buckets, each with a fixed number
Z + S of slots. Of these, Z are reserved for storing actual
encrypted data (real objects); the remaining S exclusively
store dummy objects. Dummy objects are blocks of encrypted
but meaningless data that appear indistinguishable from
real objects; their presence in each bucket prevent the server
from learning how many real objects the bucket contains and
which slots contains them. A random permutation (stored
at the client) determines the location of dummy slots. In
Figure 1, the root bucket contains a real slot followed by two
dummy slots; the real slot contains the data object a; its left
child bucket instead contains dummy slots in positions one
and three, and an empty real slot in second position.
Client storage, on the other hand, is limited to (i) a constant

sized stash, which temporarily buffers objects that have yet
to be replaced into the tree and, unlike a simple cache, is
essential to Ring ORAM’s security guarantees; (ii) the set of
current permutations, which identify the role of each slot in
each bucket and record which slot have already been accessed
(and marked invalid); and (iii) a position map, which records
the random leaf (or path) associated with every data object. In
Ring ORAM, objects are mapped to individual leaves of the
tree but can be placed in any one of the buckets along the path
from the root to that leaf. For instance, object a in Figure 1 is
mapped to path 4 but stored in the root bucket, while object b
is mapped to path 2 and stored in the leaf bucket of this path.
Ring ORAM maintains two core invariants. First, each data

object is mapped to a new leaf chosen uniformly at random
after every access, and is stored either in the stash, or in a
bucket on the path from the tree’s root to that leaf (path in-
variant). Second, the physical positions of the Z+S dummy

and real objects in each bucket are randomly permuted with
respect to all past and future writes to that bucket (i.e., no
slot can be accessed more than once between permutations)
(bucket invariant). The server never learns whether the
client accesses a real or a dummy object in the bucket, so the
exact position of the object along that path is never revealed.
Intuitively, the path invariant removes any correlation

between two accesses to the same object (each access will
access independent random paths), while the bucket invariant
prevents the server from learning when an object was last
accessed (the server cannot distinguish an access to a real
slot from a dummy slot). Together, these invariants ensure
that, regardless of the data or type of operation, all access
patterns will look indistinguishable from a random set of
leaves and slots in buckets.
Access Phase. The procedures for read and write requests

is identical. To access an object o, the client first looks up
o’s path in the position map, and then reads one object from
each bucket along that path. It reads o from the bucket in
which it resides and a valid dummy object from each other
bucket, identified using its local permutation map. Finally,
o is remapped to a new path, updated to a new value (if the
request was a write), and added to the stash; importantly, o
is not immediately written back out to cloud storage.
Figure 1 illustrates the steps involved in reading an object

b, initially mapped to path 2. The client reads a dummy
object from the first two buckets in the path (at slots two
and three respectively), and reads b from the first slot of
the bottom bucket. The three slots accessed by the client are
then marked as invalid in their respective buckets, and b is
remapped to path 1. To write a new object c, the client would
have to read three valid dummy objects from a random path,
place c in the stash, and remap it to a new path.
Access Security. Remapping objects to independent

random paths prevents the server from detecting repeated
accesses to data, while placing objects in the stash prevents
the server from learning the new path. Marking read slots as
invalid forces every bucket access to read from a distinct slot
(each selected according to the random permutation). The
server consequently observes uniformly distributed accesses
(without repetition) independently of the contents of the
bucket. This lack of correlation, combined with the inability
to distinguish real slots from dummy slots, ensures that the
server does not learn if or when a real object is accessed.
Accessing dummy slots from buckets not containing the
target object (rather than real slots), on the other hand, is
necessary for efficiency: in combination with Ring ORAM’s
eviction phase (discussed next) it lets the stash size remain
constant by preventing multiple real objects from being
addded to the stash on a single access.
Eviction Phase and Reshuffling. The aforementioned

protocol falls short in two ways. First, if objects are placed
in the stash after each access, the stash will grow unbounded.
Second, all slots will eventually be marked as invalid. Ring
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ORAM sidesteps these issues through two complementary
processes: eviction and bucket reshuffling. Every A accesses,
the evict path operation evicts objects from the client stash to
cloud storage. It deterministically selects a target path, flushes
as much data as possible, and permutes each bucket in the
path, revalidating any invalid slots. Evict path consists of a
read and write phase. In the read phase, it retrieves Z objects
from each bucket in the path: all remaining valid real objects,
plus enough valid dummies to reach a total of Z objects read.
In the write phase, it places each stashed object—including
those read by the read phase—to the deepest bucket on the
target path that intersects with the object’s assigned path.
Evict path then permutes the real and dummy values in each
bucket along the target path, marking their slots as valid, and
writes their contents to server storage. Figure 2 and 3 show
the evict path procedure applied to path 4. In the read phase,
evict path reads the unread object a from the root node and
dummies from other buckets on the path. In the write phase
(Fig. 3), a is flushed to leaf 4, as its path intersects completely
with the target path. Finally, we note that randomness may
cause a bucket to contain only invalid slots before its path
is evicted, rendering it effectively unaccessible. When this
happens, Ring ORAM restores access to the bucket by
performing an early reshuffle operation that executes the read
phase and write phase of evict path only for the target bucket.

Eviction Security. The read phase leaks no information
about the contents of a given bucket. It systematically reads
exactly Z valid objects from the bucket, selecting the valid
real objects from the z real objects in the bucket, padding the
remaining Z−z required reads with a random subset of the
S dummy blocks. The random permutation and randomized
encryption ensure that the server learns no information
about how many real objects exist, and how many have been
accessed. Similarly, the write phase hides the values and
locations of objects written. At every bucket, the storage
server observes only a newly encrypted and permuted set of
objects, eliminating any correlation between past and future
accesses to that bucket. Together, the read and write phases
ensure that no slot is accessed more than once between
reshuffles, guaranteeing the bucket invariant.

Similarly, the eviction process leaks no information about
the paths of the newly evicted objects: since all paths intersect
at the root and the server cannot infer the contents of any indi-
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Figure 3: Eviction - Write Phase

vidual bucket, any object in the stash may be flushed during
any evict path. Moreover, since all paths intersect at the root,
any object in the stash may be flushed during any evict path.

5 System Architecture
Obladi, like most privacy-preserving systems [70, 76, 86]
consists of a centralized trusted component, the proxy, that
communicates with a fault-tolerant but untrusted entity,
cloud storage (Figure 4). The proxy handles concurrency
control, while the untrusted cloud storage stores the private
data. Obladi ensures that requests made by the proxy to
the cloud storage over the untrusted network do not leak
information. We assume that the proxy can crash and that
when it does so, its state is lost. This two-tier design allows
applications to run a lightweight proxy locally and delegate
the complexity of fault-tolerance to cloud storage.
The proxy has two components: (i) a concurrency control

unit and (ii) a data manager comprised of a batch manager
and an ORAM executor. The batch manager periodically
schedules fixed-size batches of client operations that the
ORAM executor then executes on a parallel version of Ring
ORAM’s algorithm. The executor accesses one of two units
located on server storage: the ORAM tree, which stores
the actual data blocks of the ORAM; and the recovery unit,
which logs all non-deterministic accesses to the ORAM to
a write-ahead log [51] to enable secure failure recovery (§8).

6 Proxy Design
The proxy in Obladi has three goals: guarantee good
performance, preserve correctness, and guarantee security.
To meet these goals, Obladi designs the proxy around
the concept of epochs. The proxy partitions time into a
set of fixed-length, non-overlapping epochs. Epochs are
the granularity at which Obladi guarantees durability and
consistency. Each transaction, upon arriving at the proxy, is
assigned to an epoch and clients are notified of whether a
transaction has committed only when the epoch ends. Until
then, Obladi buffers all updates at the proxy.
This flexibility boosts performance in two ways. First, it

allows Obladi to implement a multiversioned concurrency
control (MVCC) algorithm on top of a single versioned
Ring ORAM. MVCC algorithms can significantly improve
throughput by allowing read operations to proceed with
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limited blocking. These performance gains are especially
significant in the presence of long-running transactions or
high storage access latency, as is often the case for cloud
storage systems. Second, it reduces traffic to the ORAM, as
only the database state at the end of the epoch needs to be
written out to cloud storage.

Importantly, Obladi’s choice to enforce consistency
and durability only at epoch boundaries does not affect
correctness; transactions continue to observe a serializable
and recoverable schedule (i.e., committed transactions do
not see writes from aborted transactions).
For transactions executing concurrently within the same

epoch, serializability is guaranteed by concurrency control;
transactions from different epochs are naturally serialized
by the order in which the proxy executes their epochs. No
transaction can span multiple epochs; unfinished transactions
at epoch boundaries are aborted, so that no transaction is
ongoing during epoch changes.
Durability is instead achieved by enforcing epoch

fate-sharing [82] during proxy or client crashes: Obladi guar-
antees that either all completed transactions (i.e., transactions
for which a commit request has been received) in the epoch
are made durable or all transactions abort. This way, no
committed transaction can ever observe non-durable writes.
Finally, the deterministic pattern of execution that epochs

impose drastistically simplifies the task of guaranteeing work-
load independence: as we describe further below, the fre-
quency and timing at which requests are sent to untrusted stor-
age are fixed and consequently independent of the workload.
The proxy processes epochs with two modules: the

concurrency control unit (CCU) ensures that execution
remains serializable, while the data handler (DH) accesses
the actual data objects. We describe each in turn.

6.1 Concurrency Control
Obladi, like many existing commercial databases [57, 65],
uses multiversioned concurrency control [10]. Obladi
specifically chooses multiversioned timestamp ordering
(MVTSO) [10, 68] because it allows uncommitted writes
to be immediately visible to concurrently executing
transactions. To ensure serializability, transactions log the
set of transactions whose uncommitted values they have
observed (their write-read dependencies) and abort if any of
their dependencies fail to commit. This optimistic approach
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is critical to Obladi’s performance: it allows transactions
within the same epoch to see each other’s effects even as
Obladi delays commits until the epoch ends. In contrast,
a pessimistic protocol like two-phase locking [26], which
precludes transactions from observing uncommitted writes,
would artificially increase contention by holding exclusive
write-locks for the duration of an epoch. When a transaction
starts, MVTSO assigns it a unique timestamp that determines
its serialization order. A write operation creates a new object
version marked with its transaction’s timestamp and inserts
it in the version chain associated with that object. A read
operation returns the object’s latest version with a timestamp
smaller than its transaction’s timestamp. Read operations
further update a read marker on the object’s version chain
with their transaction’s timestamp. Any write operation with
a smaller timestamp that subsequently tries to write to this
object is aborted, ensuring that no read operation ever fails to
observe a write from a transaction that should have preceded
it in the serialization order.
Consider for example the set of transactions executing

in Figure 5. Transaction t1’s update to object a (w(a1)) is
immediately observed by transaction t3 (r3(a1)). t3 becomes
dependent on t1 and can only commit once t1 also commits.
In contrast, t2’s write to object d causes t2 to abort: a
transaction with a higher timestamp (t3) had already read
version d0, setting the version’s read marker to 3.

6.2 Data Handler
Once a version is selected for reading or writing, the DH
becomes responsible for accessing or modifying the actual
object. Whereas it suffices to guarantee durability and con-
sistency only at epoch boundaries, security must hold at all
times, posing two key challenges. First, the number of re-
quests executed in parallel can leak information, e.g., data
dependencies within the same transaction [11, 70]. Second,
transactions may abort (§6.1), requiring their effects to be
rolled back without revealing the existence of contended ob-
jects [5, 72]. To decouple the demands of these workloads
from the timing and set of requests that it forwards to cloud
storage, Obladi leverages the following observation: transac-
tions can always be re-organized so that all reads from cloud
storage execute before all writes [19, 38, 47, 88]. Indeed,
while operations within a transaction may depend on the data
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returned by a read from cloud storage, no operation depends
on the execution of a write. Accordingly, Obladi organizes the
DH into a read phase and a write phase: it first reads all nec-
essary objects from cloud storage, before applying all writes.
Read Phase. Obladi splits each epoch’s read phase into

a fixed set of R fixed-sized read batches (bread) that are
forwarded to the ORAM executor at fixed intervals (∆epoch).
This deterministic structure allows Obladi to execute
dependent read operations without revealing the internal
control flow of the epoch’s transactions. Read operations are
assigned to the epoch’s next unfilled read batch. If no such
batch exists, the transaction is aborted. Conversely, before
a batch is forwarded to the ORAM executor, all remaining
empty slots are padded with dummy requests. Obladi further
deduplicates read operations that access the same key. As
we describe in §7, this step is necessary for security since
parallelized batches may leak information unless requests
all access distinct keys [12, 86]. Deduplicating requests also
benefits performance by increasing the number of operations
that can be served within a fixed-size batch.
Write Phase. While transactions execute, Obladi buffers

their write operations into a version cache that maintains
all object versions created by transactions in the epoch. At
the end of an epoch, transactions that have yet to finish
executing (recall that epochs terminate at fixed intervals) are
aborted and their operations are removed. The latest versions
of each object in the version cache according to the version
chain are then aggregated in a fixed-size write batch (bwrite)
that is forwarded to the ORAM executor, with additional
padding if necessary.
This entire process, including write buffering and dedupli-

cation, must not violate serializability. The DH guarantees
that write buffering respects serializability by directly serv-
ing reads from the version cache for objects modified in the
current epoch. It guarantees serializability in the presence
of duplicate requests by only including the last write of the
version chain in a write batch. Since Obladi’s epoch-based
design guarantees that transactions from a later epoch are
serialized after all transactions from an earlier epoch, interme-
diate object versions can be safely discarded. In this context,
MVTSO’s requirement that transactions observe the latest
committed write in the serialization order reduces to transac-
tions reading the tail of the previous epoch’s version chain.
In the presence of failures, Obladi guarantees serializability

and recoverability by enforcing epoch fate sharing: either
all transactions in an epoch are made durable or none are. If
a failure arises during epoch ei, the system simply recovers
to epoch ei−1, aborting all transactions in epoch ei. Once
again, this flexibility arises from Obladi delaying commit
notifications until epoch boundaries.
Example Execution. We illustrate the batching logic once

again with the help of Figure 5. Transactions t1, t2, t3 first
execute read operations. These operations are aggregated into
the first read batch of epoch i. The values returned by these

reads are then cached into the version cache. t2 then executes
a write operation, which Obladi also buffers into the version
cache. When executing r2(d0)), t3 reads object d directly
from the version cache (we discuss the security of this step in
the next section). Similarly, r1(a1) reads the buffered uncom-
mitted version of a. In contrast, Obladi schedules r1(b0) to
execute as part of the next read batch as b0 is not present in the
version cache. The read batch is then padded to its fixed bread
size and executed. t4 contains no read operations: its write
operations are simply executed and buffered at the version
cache. Obladi then finalizes the epoch by aborting all trans-
actions (and their dependencies) that have not yet finished
executing: t4 is consequently aborted. Finally, Obladi aggre-
gates the last version of every update into the write batch
(skipping version c1 of object c for instance, instead only
writing c2), before notifying clients of the commit decision.

6.3 Reducing Work
Obladi reduces work in two additional ways: it caches reads
within an epoch and allows Ring ORAM to execute write
operations without also executing dummy queries. While
these optimizations may appear straightforward, ensuring
that they maintain workload independence requires care.
Caching Reads. Ring ORAM maintains a client-side stash

(§4) that stores ORAM blocks until their eviction to cloud
storage. Importantly, a request for a block present in the
stash still triggers a dummy request: a dummy object is
still retrieved from each bucket along its path. While this
access may appear redundant at first, it is in fact necessary
to preserve workload independence: removing it removes
the guarantee that the set of paths that Obladi requests from
cloud storage is uniformly distributed. In particular, blocks
present in the stash are more likely to be mapped to paths
farther away from the one visited by the last evict path, as
they correspond to paths that could not be flushed: buckets
have limited space for real blocks and blocks mapped to
paths that only intersect near the top of the tree are less likely
to find a free slot to which they can be flushed. The degree
to which this effect skews the distribution leaks information
about the stash size, and, consequently, about the workload.
To illustrate, consider the execution in Figure 6. Objects
mapped to paths 1 and 2 (a, b, and f ) were not flushed from
the stash in the previous eviction of path 4. When these
objects are subsequently accessed, naively reading them
from the stash without performing dummy reads skews the
set of paths accessed toward the right subtree (paths 3 and 4)
Obladi securely mitigates some of this work by drawing

a novel distinction between objects that are in the stash as
a result of a logical access and those present because they
could not be evicted. The former can be safely accessed
without performing a dummy read, while the latter cannot.
Objects present in the stash following a logical access are
mapped to independently uniformly distributed paths. Ring
ORAM’s path invariant ensures that, without caching, the
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set of accessed paths is uniformly distributed. Removing
an independent uniform subset of those paths (namely,
the dummy requests) will consequently not change the
distribution. Thus, caching these objects, and filling out a
read batch with other real or dummy requests, preserves
the uniform distribution of paths and leaks no information.
Obladi consequently allows all read objects to be placed in
the version cache for the duration of the epoch. Objects a,
b, d are, for instance, placed in the version cache in Figure 5,
allowing read r2(d0) to read d directly from the cache. In
contrast, objects present in the stash because they could not
be evicted are mapped to paths that skew away from the
latest evict path. Caching these objects would consequently
skew the distribution of requests sent to the storage away
from a uniform distribution, as illustrated in Figure 6.
Dummiless Writes. Ring ORAM must hide whether re-

quests correspond to read or write operations, as the specific
pattern in which these operations are interleaved can leak in-
formation [89]; that is why Ring ORAM executes a read oper-
ation on the ORAM for every access. In contrast, since trans-
actions can always perform all reads before all writes, no in-
formation is leaked by informing the storage server that each
epoch consists of a fixed-size sequence of potentially dummy
reads followed by a fixed-size sequence of potentially dummy
writes. Obladi thus modifies Ring ORAM’s algorithm to di-
rectly place the new version of an object in the stash, without
executing the corresponding read. Note, though, that Obladi
continues to increment the evict path count on write opera-
tions, a necessary step to preserve the bounds on the stash
size, which is important for durability (§8).

6.4 Configuring Obladi
Obladi’s good performance hinges on appropriately config-
uring the size/frequency of batches and ORAM tree for a
target application. Table 1 summarizes the parameter space.
Ring ORAM. Configuring Ring ORAM first requires

choosing an appropriate Z parameter. Larger values of
Z reduce the total size of the ORAM on cloud-storage
by decreasing the required height of the ORAM tree
and decrease eviction frequency (reducing network/CPU
overhead). In contrast, this increase the maximum stash
size. Traditional ORAMs thus choose the largest value of
Z for which the stash size fits on the proxy. Obladi adds
an additional consideration: for durability (as we describe

N Number of real objects
Z Number of real slots
S Number of dummy slots
A Frequency of evict path
L Number of levels in the ORAM tree
R Number of read batches

bread Size of a read batch
bwrite Size of a write batch

∆ Batch frequency
Table 1: Obladi’s configuration parameters

in §8), the stash must be synchronously written out every
epoch. One must thus take into account the throughput
loss associated with the stash writeback time. Given an
appropriate value of Z, Obladi then chooses L, S, and A
according to the analytical model proposed in [69].

Epochs and batching. Identifiying the appropriate size
and number of batches hinges on several considerations.
First, Obladi must provision sufficiently many read batches
(R) to handle control flow dependencies within transactions.
A transaction that executes in sequence five dependent read
operations, will for instance require five read batches to exe-
cute (it will otherwise repeatedly abort). Second, the ratio of
reads (R∗bread) to writes (wwrite) must closely approximate
the application’s read/write ratio. An overly large write batch
will waste resources as it will be padded with many dummy
requests. A write batch that is too small will lead to frequent
aborts caused by the batch filling up. Third, the size of a
read or write batch (respectively bread and bwrite) defines the
degree of parallelism that can be extracted. The desired batch
size is thus a function of the concurrent load of the system,
but also of hardware considerations, as increasing parallelism
beyond an I/O or CPU bottleneck serves no purpose. Finally,
the number and frequency of read batches within an epoch in-
creases overall latency, but reduces amortized resource costs
through caching and operation pipelining (introduced in §7).
Latency-sensitive applications may favor smaller batch sizes,
while others may prefer longer epochs, but lower overheads.

Security Considerations. Obladi does not attempt to hide
the size and frequency of batches from the storage server (we
formalize this leakage in §9). Carefully tuning the size and
frequency of batches to best match a given application may
thus leak information about the application itself. An OLTP
application, for instance, will likely have larger batch sizes
(bread), but fewer read batches (R), as OLTP applications sus-
tain a high concurrent load of fairly short transactions. OLAP
applications will prefer small or non-existent write batches
(bwrite), as they are predominantly read-only, but require
many read batches to support the complex joins/aggregates
that they implement. Obladi does not attempt to hide the type
of application that is being run. It does, however, continue
to hide what data is being accessed and what transactions
are currently being run at any given point in time. While
Obladi’s configuration parameters may, for instance, suggest
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that a medical application like FreeHealth is being run, they
do not in any way leak information about how, when, or
which patient records are being accessed.

7 Parallelizing the ORAM
Existing ORAM constructions make limited use of paral-
lelism. Some allow requests to execute concurrently between
eviction or shuffle phases [12, 70, 86], while others target
intra-request parallelism to speed up execution of a single re-
quest [44]. Obladi explicitly targets both forms of parallelism.
Parallelizing Ring ORAM presents three challenges: (i) pre-
serving the correct abstraction of a sequential datastore, (ii)
enforcing security by concealing the position of real blocks
in the ORAM (thereby maintaining workload independence),
and (iii) preserving existing bounds on the stash size. While
these issues also arise in prior work [70], the idiosyncrasies
of Ring ORAM add new dimensions to these challenges.
Correctness. Obladi makes two observations. First, while

all operations conflict at the Ring ORAM tree’s root, they
can be split into suboperations that access mostly disjoint
buckets (§4). Second, conflicting bucket operations can be
further parallelized by distinguishing accesses to the bucket’s
metadata from those to its physical data blocks.
Obladi draws from the theory of multilevel serializabil-

ity [84], which guarantees that an execution is serializable if
the system enforces level-by-level serializability: if operation
o is ordered before o′ at level i, all suboperations of o must
precede conflicting suboperations of o′. Thus, if Obladi
orders conflicting operations at a level i, it enforces the same
order at level i+ 1 for all their conflicting suboperations;
conversely, if two operations do not conflict at level i, Obladi
executes their suboperations in parallel. To this end, Obladi
simply tracks dependencies across operations and orders
conflicting suboperations accordingly. Obladi extracts further
parallelism in two ways. First, since in Ring ORAM reads to
the same bucket between consecutive eviction or reshuffling
operations always target different physical data blocks
(even when bucket operations conflict on metadata access),
Obladi executes them in parallel. Second, Obladi’s own
batching logic ensures that requests within a batch touch
different objects, preventing read and write methods from
ever conflicting. Together, these techniques allow Obladi to
execute most requests and evictions in parallel.
We illustrate the dependency tracking logic in Figure 7.

The read operation to path 1 conflicts with the evict path for
path 2, but only at the root (bucket 1). Thus, reads to buckets
2 and 3 can proceed concurrently, even though accesses to
the root’s metadata must be serialized, as both operations
update the bucket access counter and valid/invalid map (§4).
Security. For security, Obladi’s parallel evict path operation

must flush the same blocks flushed by a sequential imple-
mentation. Reproducing this behavior without sacrificing
parallelism is challenging. It requires that all real objects
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Figure 7: Multilevel Pipelining for a read of path 1 and an evict
path of path 2 executing in parallel. Solid green lines represent
physical dependencies and dashed red lines represent data
dependencies. Inner blocks represent nested operations

brought in during the last A accesses be present in the
stash when data is flushed, which may introduce data
dependencies. Unlike dependencies that arise between
operations that access the same physical location in cloud
storage, these dependencies are not a deterministic function
of an epoch’s operations already known to the adversary.
Consider, for instance, block b in Figure 7. In a sequential

implementation, b would enter the stash as a result of reading
path 1 and be flushed to bucket 3 by the following evict path.
Thus, evict path would have to wait until b is placed in the
stash. Honoring these dependencies opens a timing channel:
delay in flushing certain blocks can reveal object placement.
As blocks holding real objects can exist anywhere in the
tree and be remapped to any path, it follows that it is never
secure to execute an eviction operation until all previous
access operations have terminated.
Obladi mitigates this restriction by again leveraging delayed

visibility and the idea to separate read and write operations
within an epoch—but with an important difference. In §6.2
the proxy created separate batches for logical read and write
operations; to improve parallelism, Obladi, expanding on an
idea used by Shroud [44], assigns to separate phases within
an epoch the physical read and write operations that underlie
each of those logical operations. The read phase computes
all necessary metadata and executes the set of physical read
operations for all logical read path, early reshuffle, and evict
path operations. This set is workload independent, so its
operations need not be delayed. Physical writes, however,
are only flushed at the end of an epoch. The proxy can again
apply write deduplication: if a bucket is repeatedly modified
during an epoch, only the last version must be written back.
Reads that should have read an intermediate write are served
locally from the buffered buckets.
The adversary thus always observes a set of reads to random

paths followed by a deterministic set of writes independent
of the contents of the ORAM and, consequently, of the work-
load. Data dependencies between read and evict operations
no longer create a timing channel. Meanwhile parallelism re-
mains high, as the physical blocks accessed in each phase are
guaranteed to be distinct—Ring ORAM directly guarantees
this for reads, while bucket deduplication does it for writes.
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8 Durability
Obladi guarantees durability at the granularity of epochs: af-
ter a crash, it recovers to the state of the last failure-free epoch.
Obladi adds two demands to the need of recovering to a con-
sistent state: recovery should leak no information about past
or future transactions, and it should be efficient, accessing
minimal data from cloud storage. Obladi guarantees the for-
mer by ensuring that recovery logic and data logged for recov-
ery maintain workload independence (§3). It strives towards
the latter by leveraging the determinism of Ring ORAM.
Consistency. Obladi recovery logic relies on two well-

known techniques: write-ahead logging [51] and shadow
paging [30]. Obladi mandates that transactions be durable
only at the end of an epoch; thus, on a proxy failure, all
ongoing transactions can be aborted, and the system reverted
to the previous epoch. To make this possible, Obladi must (i)
recover the proxy metadata lost during the proxy crash, and
(ii) ensure that the ORAM does not contain any of the aborted
transactions’ updates. To recover the metadata, Obladi logs
three data structures before declaring the epoch committed:
the position map, the permutation map, and the stash. The po-
sition map and the permutation map identify the position of
real objects in the ORAM tree (respectively, in a path and in
a bucket); logging them prevents the recovery logic from hav-
ing to scan the full ORAM to recover the position of buckets.
Logging the stash is necessary for correctness. As eviction
may be unable to flush the entire stash, some newly written
buckets may be present only in the stash, even at epoch bound-
aries. Failing to log the stash could thus lead to data loss.
To undo partially executed transactions, Obladi adapts the

traditional copy-on-write technique of shadow paging [30]:
rather than updating buckets in place, it creates new versions
of each bucket on every write. Obladi then leverages the
inherent determinism of Ring ORAM to reconstruct a
consistent snapshot of the ORAM at a given epoch. In Ring
ORAM, the current version of a bucket (i.e. the number of
times a bucket has been written) is a deterministic function of
the number of prior evict paths. The number of evict paths per
epoch is similarly fixed (evict paths happen every A accesses,
and epochs are of fixed size). Obladi can then trivially revert
the ORAM on failures by setting the evict path counter to
its value at the end of the last committed epoch. This counter
determines the number of evict paths that have occurred, and
consequently the object versions of the corresponding epoch.
Security. Obladi ensures that (i) the information logged for

durability remains independent of data accesses, and (ii) that
the interactions between the failed epoch, the recovery logic,
and the next epoch preserve workload independence.
Obladi addresses the first issue by encrypting the position

map and the contents of the permutations table. It similarly
encrypts the stash, but also pads it to its maximum size,
as determined in canonical Ring ORAM [69], to prevent
it from indicating skew (if a small number of objects are
accessed frequently, the stash will tend to be smaller).

The second concern requires more care: workload inde-
pendence must hold before, during, and after failures. Ring
ORAM guarantees workload independence through two in-
variants: the bucket invariant and the path invariant (§4).
Preserving bucket slots from being read twice between evic-
tions is straightforward. Obladi simply logs the invalid/valid
map to track which slots have already been read and recovers
it during recovery; there is no need for encryption, as the set
of slots read is public information. Ensuring that the ORAM
continues to observe a uniformly distributed set of paths is in-
stead more challenging. Specifically, read requests from par-
tially executed transactions can potentially leak information,
even when recovering to the previous epoch. Traditionally,
databases simply undo partially executed transactions, mark
them as aborted, and proceed as if they had never existed.
From a security standpoint, however, these transactions were
still observed by the adversary, and thus may leak informa-
tion. Consider a transaction accessing object a (mapped to
path 1) that aborts because of a proxy failure. Upon recovery,
it is likely that a client will attempt to access a again. As
the recovery logic restores the position map of the previous
epoch, that new operation on a will result in another access
to path 1, revealing that the initial access to path 1 was likely
real (rather than padded), as the probability of collisions be-
tween two uniformly chosen paths is low. To mitigate this
concern while allowing clients to request the same objects
after failure, Obladi durably logs the list of paths and slot
indices that it accesses, before executing the actual requests,
and replays those paths during recovery (remapping any real
blocks). While this process is similar to traditional database
redo logging [51], the goal is different. Obladi does not try to
reapply transactions (they have all aborted), but instead forces
the recovery logic to be deterministic: the adversary always
sees the paths from the aborted epoch repeated after a failure.
Optimizations. To minimize the overhead of checkpoint-

ing, Obladi checkpoints deltas of the position, permutation,
and valid/invalid map, and only periodically checkpoints
the full data structures. While the number of changes to the
permutation and valid/invalid maps directly follows from the
set of physical requests made to cloud storage, the size of the
delta for the position map reveals how many real requests
were included in an epoch—padded requests do not lead
to position map updates. Obladi thus pads the map delta to
the maximum number of entries that could have changed in
an epoch (i.e., the read batch size times the number of read
batches, plus the size of the single write batch).

9 System Security
We now outline Obladi’s security guarantees, deferring a
formal treatment to the associated technical report [20]. To
the best of our knowledge, we are the first to formalize the
notion of crashes in the context of oblivious RAM.
Model We express our security proof within the Universal

Composability (UC) framework [14], as it aligns well with
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the needs of modern distributed systems: a UC-secure system
remains UC-secure under concurrency or if composed with
other UC-secure systems. Intuitively, proving security in the
UC model proceeds as follows. First, we specify an ideal
functionality F that defines the expected functionality of
the protocol for both correctness and security. For instance,
Obladi requires that the execution be serializable, and that
only the frequency of read and write batches be learned.
We must ensure that the real protocol provides the same
functionality to honest parties while leaking no more
information than F would. To establish this, we consider
two different worlds: one where the real protocol interacts
with an adversary A, and one where F interacts with SA,
our best attempt at simulatingA.A’s transcript—including
its inputs, outputs, and randomness—and SA’s output are
given to an environment E, which can also observe all
communications within each world. E’s goal is to determine
which world contains the real protocol. To prompt the
worlds to diverge, E can delay and reorder messages, and
even control external inputs (potentially causing failures).
Intuitively, E represents anything external to the protocol,
such as concurrently executing systems. We say that the real
protocol is secure if, for any adversaryA, we can construct
SA such that E can never distinguish between the worlds.
Assumptions The security of Obladi relies on four

assumptions. (i) Canonical Ring ORAM is linearizable (ii)
MVTSO generates serializable executions. (iii) The network
will retransmit dropped packets. The adversary learns of the
retransmissions, but nothing more.
Ideal Functionality To define the ideal functionality FOb,

recall that the proxy is considered trusted while interactions
with the cloud storage are not. This allows FOb to replace
the proxy and intermediate between clients and the storage
server, performing the same functions as the proxy (we do not
try to hide the concurrency/batching logic). We must, how-
ever, define FOb to obliviously hide data values and access
patterns. To this end, when the proxy logic finalizes a batch,
FOb simply informs the storage server that it is executing a
read or write batch. SinceFOb is a theoretical ideal, we allow
it to manage all storage internally, so it then updates its local
storage and furnishes the appropriate response to each client.
In this setup, modeling proxy crashes is straightforward.

Crashes can occur at any time and cause the proxy to lose all
state. So, on an external input to crash, FOb simply clears its
state. Since we accept thatAmay learn of proxy crashes,FOb
also sends a message to the storage server that it has crashed.
Proof Sketch The correctness of the system is straightfor-

ward, as FOb behaves much the same as the proxy.
To prove security, we must demonstrate that, for any

algorithm A defining the behavior of the storage server,
we can accurately simulate A’s behavior using only the
information provided by FOb. Note that the simulator SA
can run A internally, as A is simply an algorithm. Thus
we can define SA to operate as follows. When SA receives
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Figure 8: FreeHealth Database Architecture

notification of a batch, it constructs a parallel ORAM batch
from uniformly random accesses of the correct type. It
provides these accesses toA and producesA’s response.

The security of this simulation hinges on two key proper-
ties: (i) the caching and deduplication logic do not affect the
distribution of physical accesses, and (ii) the physical access
pattern of a parallelized batch is entirely determined by the
physical accesses proscribed by sequential Ring ORAM for
the same batch. The first follows from Ring ORAM’s guaran-
tee that each access will be an independent uniformly random
path—removing an independently-sampled element does not
change the distribution of the remaining set. The second fol-
lows from the parallelization procedure simply aggregating
all accesses and performing all reads followed by all writes.

These properties ensure that the random access pattern
produced by SA is identical to the access pattern produced
by the proxy when operating on real data. Thus the simulated
Amust behave exactly as it would when provided with real
data, and produce indistinguishable output.

10 Implementation

Our prototype consists of 41,000 lines of Java code. We
use the Netty library for network communication (v4.1.20),
Google protobuffers for serialization (v3.5.1), the Bouncy
Castle library (v1.59) for encryption, and the Java MapDB
library (v3) for persistence. We additionally implement
a non-private baseline (NoPriv). NoPriv shares the same
concurrency control logic (TSO), but replaces the proxy
data handler with non-private remote storage. NoPriv neither
batches nor delays operations; it buffers writes at the local
proxy until commit, and serves writes locally when possible.

11 Evaluation

Obladi leverages the flexibility of transactional commits to
mitigate the overheads of ORAM. To quantify the benefits
and limitations of this approach, we ask:

1. How much does Obladi pay for privacy? (§11.1)

2. How do epochs affect these overheads? (§11.2)

3. Can Obladi recover efficiently from failures? (§11.3)

Experimental Setup The proxy runs on a c5.xlarge Ama-
zon EC2 instance (16 vCPUs, 32GB RAM), and the storage
on an m5.4xlarge instance (16 vCPUs, 64GB RAM). The
ORAM tree is configured with Z=100 and optimal values
of S and A (respectively, 196 and 168) [69]. We report the
average of three 90 seconds runs (30 seconds ramp-up/down).
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Figure 9: Application Performance

Benchmarks We evaluate the performance of our system
using three applications: TPC-C [22, 80], SmallBank [22],
and FreeHealth [28, 42]. Our microbenchmarks use the
YCSB [18] workload generator. TPC-C, the defacto
standard for OLTP workloads, simulates the business logic
of e-commerce suppliers. We configure TPC-C to run with
10 warehouses [87]. In line with prior transactional key-value
stores [79], we use a separate table as a secondary index on
the order table to locate a customer’s latest order in the
order status transaction, and on the customer table
to look up customers by their last names (order status
and payment). Smallbank [22] models a simple banking
application supporting money transfers, withdrawals, and
deposits. We configure it to run with one million accounts.
Finally, we port FreeHealth [28, 42], an actively-used cloud
EHR system (Figure 8). FreeHealth supports the business
logic of medical practices and hospitals. It consists of 21
transaction types that doctors use to create patients and look
up medical history, prescriptions, and drug interactions.

11.1 End-to-end Performance
Figure 9 summarizes the results from running the three
end-to-end applications in two setups: a local setup in which
the latency between proxy and server is low (0.3ms) (Obladi,
NoPriv), and a more realistic WAN setup with 10ms latency
(ObladiW, NoPrivW). We additionally compare those
results with a local MySQL setup. MySQL, unlike NoPriv,
cannot buffer writes. We consequently do not evaluate
MySQL in the WAN setting.
TPC-C Obladi comes within 8× of NoPriv’s throughput,

as NoPriv is contention-bottlenecked on the high rate of
conflicts between the new-order and payment transac-
tions on the district table. NoPriv’s performance is itself
slightly higher than MySQL as the use of MVTSO allows for
the new-order and payment transactions to be pipelined.
In contrast, MySQL acquires exclusive locks for the dura-
tion of the transactions. Latency, however, spikes to 70× over
NoPriv because of the inflexible execution pattern Obladi
needs for security. Transactions in TPC-C vary heavily in
size. Epochs must be large enough to accommodate all trans-
actions, and hence artificially increase the latency of short
instances. Moreover, write operations must be applied atom-
ically during epoch changes. For a write batch size of 2,000,

this process takes on average 340ms, further increasing la-
tency for individual transactions. The write-back process also
limits throughput, even preventing non-conflicting operations
from making progress (in contrast, NoPriv can benefit from
writes never blocking reads in MVTSO). Epoch changes
also introduce additional aborts for transactions that straddle
epochs. The additional 10ms latency of the WAN setting has
comparatively little effect, as the large write batch size of
TPC-C is the primary bottleneck: throughput remains within
9x of NoPrivW. Also NoPrivW’s performance does not de-
grade: since MVTSO exposes uncommitted writes immedi-
ately, increasing commit latency does not increase contention.

Smallbank Transactions in Smallbank are more homoge-
neous (between three and six operations); thus, the length
of an epoch can be set to more closely approximate most
transactions, reducing latency overheads (17× NoPriv).
NoPriv is CPU bottlenecked for Smallbank; the relative
throughput drop for Obladi is higher (12×) because of
the overhead of changing epochs and the blocking that it
introduces. Transaction dependency tracking becomes a
bottleneck in NoPriv, resulting in a 15% throughput loss
over MySQL. Increasing latency between proxy and storage
causes both systems’ throughput to drop. ObladiW’s 35%
drop is due to the increased duration of epoch changes
(during which no other transactions can execute) while
NoPrivW’s 30% drop stems from the larger dependency
chains that arise from the relatively long commit phase.

FreeHealth Like SmallBank, FreeHealth consists of fairly
short transactions and can thus choose a fairly small epoch
(five read batches), reducing the impact on latency (20×
NoPriv). Unlike Smallbank, however, FreeHealth consists
primarily of read operations, and so it can choose a much
smaller write batch (200), minimizing the cost of epoch
changes and maximizing throughput (only a 4× drop over
NoPriv and a 5.5× over NoPrivW for ObladiW). Both No-
Priv and Obladi are contention-bottlenecked on the creation
of episodes, the core units of EHR systems that encapsulate
prescriptions, medical history, and patient interaction.

11.2 Impact of Epochs

Though epochs create blocking and cause aborts, they are
key to reducing the cost of accessing ORAM, as they allow
to (i) securely parallelize the ORAM and (ii) delay and buffer
bucket writes. To quantify epochs’ impact on performance as
a function of their size and the underlying storage properties,
we instantiate an ORAM with 100K objects and choose
three different storage backends: a local dummy (storing
no real data) that responds to all reads with a static value
and ignores writes (dummy); a remote server backend with
an in-memory hashmap (server, ping time 0.3ms) and a
remote WAN server backend with an in-memory hashmap
(server WAN, ping time 10ms); and DynamoDB (dynamo,
provisioned for 80K req/s, read ping 1ms, write 3ms).
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Figure 10: Performance impact of various features

Parallelization We first focus on the performance impact
of parallelizing Ring ORAM (ignoring other optimizations).
Graph 10a shows that, unsurprisingly, the benefits of
parallelism increase with the latency of individual requests.
Parallelizing the ORAM for dummy, for instance, yields no
performance gain; in fact, it results in a 3× slowdown (from
72K req/s to 24K req/s). Sequential Ring ORAM on dummy
is CPU-bound on metadata computation (remapping paths,
shuffling buckets, etc.), so adding coordination mechanisms
to guarantee multi-level serializability only increases the cost
of accessing a bucket. As storage access latency increases and
the ORAM becomes I/O-bound, the benefits of parallelism
become more salient. For a batch size of 500, throughput
increases by 12× for server, as much as 51× for dynamo,
and 510× for WAN server. The available parallelism is a
function of both the size/fan-out of the tree and the under-
lying resource bottlenecks of the proxy. Graph 10b captures
the parallelization speedup for both intra- and inter-request
parallelism, while Graph 10b quantifies the latency impact
of batching. The parallelization speedup achieved for a
batch size of one captures intra-request parallelism: the
eleven levels of the ORAM can be accessed concurrently,
yielding an 11× speedup. As batch sizes increase, Obladi can
leverage inter-request parallelism to process non-conflicting

physical operations in parallel, with little to no impact on
latency. Dynamo peaks early (at 1750 req/s) because its
client API uses blocking HTTP calls, and dummy’s storage
eventually bottlenecks on encryption, but server and WAN
server are more interesting. Their throughput is limited
by the physical and data dependencies on the upper levels
of the tree (recall that paths always conflict at the root (§7)).
Work Reduction To amortize ORAM overheads across

a large number of operations, Obladi relies on delayed visi-
bility to buffer bucket writes until the end of an epoch, when
they can be executed in parallel, discarding intermediate
writes. Reads to those buckets are directly served from the
proxy, reducing network communication and CPU work (as
encryption is not needed). Graph 10d shows that enabling this
optimization for an epoch of eight batches (a setup suitable
for FreeHealth and TPC-C) yields a 1.5× speedup on both
dynamo and the server, a 1.6× speedup on the WAN server,
but only minimal gains for dummy (1.1×). When using a
small number of batches, throughput gains come primarily
from combining duplicate operations in buckets near the top
of the tree. For example, the root bucket is written 27 times in
an epoch of size eight (once per eviction, every 168 requests).
As these operations conflict, they must be executed sequen-
tially and quickly become the bottleneck (other buckets have
fewer operations to execute). Our optimization lets Obladi
write the root bucket only once, significantly reducing latency
and thus increasing throughput. As epochs grow in size, in-
creasingly many buckets are buffered locally until the end of
the epoch (§7), allowing reads to be served locally and further
reducing I/O with the storage. Consider Graph 10e: through-
put increases almost logarithmically; metadata computation
eventually becomes a bottleneck for dummy, while server
and server WAN eventually run out of memory from
storing most of the tree (our AWS account did not allow us
to provision dynamo adequately for larger batches). Larger
epochs reduce the raw amount of work per operation: with
one batch, Obladi requires 41 physical requests per logical
operation, but only requires 24 operations with eight batches.
For real transactional workloads, however, epochs are not
a silver bullet. Graph 10f suggests that applications are very
sensitive to identifying the right epoch duration: too short
and transactions cannot make progress, repeatedly aborting;
too long and the system will remain unnecessarily idle.

11.3 Durability
Table 11b quantifies the efficiency of failure recovery and
the cost it imposes on normal execution for ORAMS of
different sizes (we show space results for only the WAN
server as Dynamo follows a similar trend). During normal
execution, durability imposes a moderate throughput drop
(from 0.83× for 10K to 0.89× for 1M). This slowdown
is due to the need to checkpoint client metadata and to
synchronously log read paths to durable storage before
reading. As seen in Graph 11a, computing diffs mitigates the
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Figure 11: Durability

impact of checkpointing. Recovery time similarly increases
as the ORAM grows, from 1.5s to 6.1s (Table 11b, RecTime).
The costs of decrypting the position and permutation maps
(Pos and Perm) are low for small datasets, but grow linearly
with the number of keys. Read path logging (Paths) instead
starts much larger, but grows only with the depth of the tree.

12 Related Work
Batching Obladi amortizes ORAM costs by grouping
operations into epochs and committing at epoch boundaries.
Batching can mitigate expensive security primitives, e.g., it re-
duces server-side computation in private information retrieval
(PIR) schemes [9, 31, 33, 45], amortizes the cost of shuffling
networks in Atom [40] and the cost of verifying integrity
in Concerto [6]. Changing when operations output commit
is a popular performance-boosting technique: it yields
significant gains for state-machine replication [35, 37, 64],
file systems [55], and transactional databases [21, 47, 82].
ORAM parallelism Obladi extends recent work on

parallel ORAM constructions [11, 44, 86] to extract
parallelism both within and across requests. Shroud [44]
targets intra-request parallelism by concurrently accessing
different levels of tree-based ORAMs. Chung et al [12] and
PrivateFS [86] instead target inter-request parallelism, respec-
tively in tree-based [73] and hierarchical [85] ORAMs. Both
works execute requests to distinct logical keys concurrently
between reshuffles or evictions and deduplicate concurrent
requests for the same key to increase parallelism. Obladi
leverages delayed visibility to separate batches into read and
write phases, extracting concurrency both within requests
and across evictions. Furthermore, Obladi parallelizes across
requests by deduplicating requests at the trusted proxy.
ObliviStore [77] and Taostore [70] instead approach

parallelization by focusing on asynchrony. ObliviStore [77]
formalizes the security challenges of scheduling requests
asynchronously; the oblivious scheduling mechanism that
it presents for that model however is computationally
expensive and requires a large stash, making ObliviStore
unsuitable for implementing ACID transactions. Like
ObliviStore, Taostore leverages asynchrony to parallelize
Path ORAM [78], a tree-based construction from which
Ring ORAM descends. Taostore, however, targets a different
threat model: it assumes both that requests must be processed

immediately, and that the timing of responses is visible to
the adversary. Request latencies thus necessarily increase
linearly with the number of clients [86].

Hiding access patterns for non-transactional systems
Many systems seek to provide access pattern protections for
analytical queries: Opaque [89] and Cipherbase [5] support
oblivious operators for queries that scan or shuffle full tables.
Both rely on hardware enclaves for efficiency: Opaque runs
a query optimizer in SGX [32], while Cipherbase leverages
secure co-processors to evaluate predicates more efficiently.
Others seek to hide the parameters of the query rather than
the query itself: Olumofin et al. [56] do it via multiple rounds
of keyword-based PIR operations [16]; Splinter [83] reduces
the number of round-trips necessary by mapping these
database queries to function secret sharing primitives. Finally,
ObliDB [25] adds support for point queries and efficient
updates by designing an oblivious B-tree for indexing. The
concurrency control and recovery mechanisms of all these
approaches introduce timing channels and structure writes
in ways that leak access patterns [5].

Encryption Many commercial systems offer the possibility
to store encrypted data [24, 71]. Efficiently executing
data-dependent queries like joins, filters, or aggregations
without knowledge of the plaintext is challenging: systems
like CryptDB [63], Monomi [81], and Seabed [60] tailor
encryption schemes to allow executing certain queries
directly on encrypted data. Others leverage trusted hardware
[7]. In contrast, executing transactions on encrypted data is
straightforward: neither concurrency control nor recovery
requires knowledge of the plaintext data.

13 Conclusion

This paper presents Obladi, a system that, for the first
time, considers the security challenges of providing ACID
transactions without revealing access patterns. Obladi
guarantees security and durability at moderate cost through
a simple observation: transactional guarantees are only
required to hold for committed transactions. By delaying
commits until the end of epochs, Obladi inches closer to
providing practical oblivious ACID transactions.
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Abstract
While there has been a tremendous interest in processing
data that has an underlying graph structure, existing dis-
tributed graph processing systems take several minutes or
even hours to mine simple patterns on graphs. This paper
presents ASAP, a fast, approximate computation engine
for graph pattern mining. ASAP leverages state-of-the-art
results in graph approximation theory, and extends it to
general graph patterns in distributed settings. To enable
the users to navigate the tradeoff between the result accu-
racy and latency, we propose a novel approach to build the
Error-Latency Profile (ELP) for a given computation. We
have implementedASAP on a general-purpose distributed
dataflow platform and evaluated it extensively on several
graph patterns. Our experimental results show that ASAP
outperforms existing exact pattern mining solutions by up
to 77×. Further, ASAP can scale to graphs with billions
of edges without the need for large clusters.

1 Introduction
The recent past has seen a resurgence in storing and pro-
cessing massive amounts of graph-structured data [1, 3].
Algorithms for graph processing can broadly be classi-
fied into two categories. The first, graph analysis al-
gorithms, compute properties of a graph typically using
neighborhood information. Examples of such algorithms
include PageRank [46], community detection [31] and
label propagation [65]. The second, graph pattern min-
ing algorithms, discover structural patterns in a graph.
Examples of graph pattern mining algorithms include mo-
tif finding [44], frequent sub-graph mining (FSM) [60]
and clique mining [19]. Graph mining algorithms are
used in applications like detecting similarity between
graphlets [49] in social networking and for counting pat-
tern frequencies to do credit card fraud detection.
Today, a deluge of graph processing frameworks ex-

ist, both in academia and open-source [20, 24, 25, 34–
36, 40, 42, 43, 45, 50, 53, 54, 58, 64]. These frame-
works typically provide high-level abstractions that make
it easy for developers to implement many graph algo-
rithms. A vast majority of the existing graph processing

∗Equal contribution.

frameworks however have focused on graph analysis al-
gorithms. These frameworks are fast and can scale out
to handle very large graph analysis settings: for instance,
GraM [59] can run one iteration of page rank on a trillion-
edge graph in 140 seconds in a cluster. In contrast, systems
that support graph patternmining fail to scale to evenmod-
erately sized graphs, and are slow, taking several hours to
mine simple patterns [29, 55].

The main reason for the lack of the scalability in pattern
mining is the underlying complexity of these algorithms—
mining patterns requires complex computations and stor-
ing exponentially large intermediate candidate sets. For
example, a graph with a million vertices may possibly con-
tain 1017 triangles. While distributed graph-processing
solutions are good candidates for processing such massive
intermediate data, the need to do expensive joins to create
candidates severely degrades performance. To overcome
this, Arabesque [55] proposes new abstractions for graph
mining in distributed settings that can significantly opti-
mize how intermediate candidates are stored. However,
even with these methods, Arabesque takes over 10 hours
to count motifs in a graph with less than 1 billion edges.

In this paper, we present ASAP1, a system that enables
both fast and scalable pattern mining. ASAP is moti-
vated by one key observation: in many pattern mining
tasks, it is often not necessary to output the exact answer.
For instance, in FSM the task is to find the frequency of
subgraphs with an end-goal of ordering them by occur-
rences. Similarly, motif counting determines the number
of occurrences of a given motif. In these scenarios, it is
sufficient to provide an almost correct answer. Indeed, our
conversations with a social network firm [4] revealed that
their application for social graph similarity uses a count
of similar graphlets [49]. Another company’s [4] fraud
detection system similarly counts the frequency of pattern
occurrences. In both cases, an approximate count is good
enough. Furthermore, it is not necessary to materialize
all occurrences of a pattern2. Based on these use cases,
we build a system for approximate graph pattern mining.

1for A Swift Approximate Pattern-miner
2In fact, it may even be infeasible to output all embeddings of a

pattern in a large graph.
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Approximate analytics is an area that has gathered
attention in big data analytics [6, 13, 32], where the goal
is to let the user trade-off accuracy for much faster results.
The basic idea in approximation systems is to execute the
exact algorithm on a small portion of the data, referred
to as samples, and then rely on the statistical properties
of these samples to compose partial results and/or error
characteristics. The fundamental assumption underlying
these systems is that there exists a relationship between
the input size and the accuracy of the results which can
be inferred. However, this assumption falls apart when
applied to graph pattern mining. In particular, running
the exact algorithm on a sampled graph may not result in
a reduction of runtime or good estimation of error (§ 2.2).

Instead, inASAP, we leverage graph approximation the-
ory, which has a rich history of proposing approximation
algorithms for mining specific patterns such as triangles.
ASAP exploits a key idea that approximate pattern mining
can be viewed as equivalent to probabilistically sampling
random instances of the pattern. Using this as a foun-
dation, ASAP extends the state-of-the-art probabilistic
approximation techniques to general patterns in a dis-
tributed setting. This lets ASAP massively parallelize
instance sampling and provide a drastic reduction in run-
timeswhile sacrificing a small amount of accuracy. ASAP
captures this technique in a simple API that allows users
to plugin code to detect a single instance of the pattern
and then automatically orchestrates computation while
adjusting the error bounds based on the parallelism.
Further, ASAP makes pattern mining practical by sup-

porting predicate matching and introducing caching tech-
niques. In particular, ASAP allows mining for patterns
where edges in the pattern satisfy a user-specified property.
To further reduce the computation time, ASAP leverages
the fact that in several mining tasks, such as motif finding,
it is possible to cache partial patterns that are building
blocks for many other patterns. Finally, an important
problem in any approximation system is in allowing users
to navigate the tradeoff between the result accuracy and
latency. For this, ASAP presents a novel approach to build
the Error-Latency Profile (ELP) for graph mining: it uses
a small sample of the graph to obtain necessary informa-
tion and applies Chernoff bound analysis to estimate the
worst-case error profile for the original graph.

The combination of these techniques allows ASAP
to outperform Arabesque [55], a state-of-the-art exact
pattern mining solution by up to 77× on the LiveJournal
graph while incurring less than 5% error. In addition,
ASAP can scale to graphs with billions of edges—for
instance, ASAP can count all the 6 patterns in 4-motifs
on the Twitter (1.5B edges) and UK graph (3.7B edges) in
22 and 47 minutes, respectively, in a 16 machine cluster.
We make the following contributions in this paper:

• We present ASAP, the first system to our knowledge,
that does fast, scalable approximate graph pattern min-
ing on large graphs. (§3)

• We develop a general API that allows users to mine any
graph pattern and present techniques to automatically
distribute executions on a cluster. (§4)

• We propose techniques that quickly infer the relation-
ship between approximation error and latency, and show
that it is accurate across many real-world graphs. (§5)

• We show that ASAP handles graphs with billions of
edges, a scale that existing systems failed to reach. (§6)

2 Background & Motivation
We begin by discussing graph pattern mining algorithms
and then motivate the need for a new approach to approx-
imate pattern mining. We then describe recent advance-
ments in graph pattern mining theory that we leverage.

2.1 Graph Pattern Mining
Mining patterns in a graph represent an important class
of graph processing problems. Here, the objective is to
find instances of a given pattern in a graph or graphs. The
common way of representing graph data is in the form of
a property graph [52], where user-defined properties are
attached to the vertices and edges of the graph. A pattern
is an arbitrary subgraph, and pattern mining algorithms
aim to output all subgraphs, commonly referred to as
embeddings, that match the input pattern. Matching is
done via sub-graph isomorphism, which is known to be
NP-complete. Several varieties of graph pattern mining
problems exist, ranging from finding cliques to mining
frequent subgraphs. We refer the reader to [7, 55] for an
excellent, in-depth overview of graph mining algorithms.
A common approach to implement pattern mining al-

gorithms is to iterate over all possible embeddings in the
graph starting with the simplest pattern (e.g., a vertex or
an edge). We can then check all candidate embeddings,
and prune those that cannot be a part of the final answer.
The resulting candidates are then expanded by adding one
more vertex/edge, and the process is repeated until it is
not possible to explore further. The obvious challenge in
graph pattern mining, as opposed to graph analysis, is the
exponentially large candidate set that needs to be checked.
Distributed graph processing frameworks are built to

process large graphs, and thus seem like an ideal can-
didate for this problem. Unfortunately when applied to
graph mining problems, they face several challenges in
managing the candidate set. Arabesque [55], a recently
proposed distributed graphmining system, discusses these
challenges in detail, and proposes solutions to tackle sev-
eral of them. However, even Arabesque is unable to scale
to large graphs due to the need to materialize candidates
and exchange them between machines. As an example,
Arabesque takes over 10 hours to count motifs of size 3
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(b) 3-chains in Twitter graph
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(c) Triangles in UK graph
Figure 1: Simply extending approximate processing techniques to graph pattern mining does not work.

in a graph with less than a billion edges on a cluster of 20
machines, each having 256GB of memory.

2.2 Approximate Pattern Mining
Approximate processing is an approach that has been used
with tremendous success in solving similar problems in
both the big data analytics [6, 32] and databases [22, 26,
27], and thus it is natural to explore similar techniques
for graph pattern mining. However, simply extending
existing approaches to graphs is insufficient.
The common underlying idea in approximate process-

ing systems is to sample the input that a query or an
algorithm works on. Several techniques for sampling the
input exists, for instance, BlinkDB [6] leverages stratified
sampling. To estimate the error, approximation systems
rely on the assumption that the sample size relates to the
error in the output (e.g., if we sample K items from the
original input, then the error in aggregate queries, such
as SUM, is inversely proportional to

√
K). It is straightfor-

ward to envision extending this approach to graph pattern
mining—given a graph and a pattern to mine in the graph,
we first sample the graph, and run the pattern mining
algorithm on the sampled graph.
Figure 1a depicts the idea as applied to triangle count-

ing. In this example, the input graph consists of 10 trian-
gles. Using uniform sampling on the edges we obtain a
graph with 50% of the edges. We can then apply triangle
counting on this sample to get an answer 1. To scale this
number to the actual graph, we can use several ways. One
naive way is to double it, since we reduced the input by
half. To verify the validity of the approach, we evalu-
ated it on the Twitter graph [39] for finding 3-chains and
the UK webgraph [17] graph for triangle counting. The
relation between the sample size, error and the speedup
compared to running on the original graph ( Tor ig

Tsample
) is

shown in figs. 1b and 1c respectively.
These results show the fundamental limitations of the

approach. We see that there is no relation between the size
of the graph (sample) and the error or the speedup. Even
very small samples do not provide noticeable speedups,
and conversely, even very large samples end upwith signif-
icant errors. We conclude that the existing approximation
approach of running the exact algorithm on one or more

samples of the input is incompatible with graph pattern
mining. Thus, in this paper, we propose a new approach.

2.3 Graph Pattern Mining Theory
Graph theory community has spent significant efforts in
studying various approximation techniques for specific
patterns. The key idea in these approaches is to model
the edges in the graph as a stream and sample instances
of a pattern from the edge stream. Then the probability
of sampling is used to bound the number of occurrences
of the pattern. There has been a large body of theoretical
work on various algorithms to sample specific patterns and
analysis to prove their bounds [8, 11, 21, 38, 47, 48, 56].
While the intuition of using such sampling to approx-

imate pattern counts is straightforward, the technical de-
tails and the analysis are quite subtle. Since sampling
once results in a large variance in the estimate, multiple
rounds are required to bound the variance. Consider tri-
angle counting as an example. Naively, one would design
an technique that uniformly samples three edges from
the graph without replacement. Since the probability of
sampling one edge is 1/m in a graph of m edges, the prob-
ability of sampling three edges is 1/m3. If the sampled
three edges form a triangle, we estimate the number of
triangles to be m3 (the expectation); otherwise, the esti-
mation is 0. While such a sampling technique is unbiased,
since m is large in practice, the probability that the sam-
pling would find a triangle is very low and the variance
of the result is very large. Obtaining an approximated
count with high accuracy, would require a large number
of trials, which not only consumes time but also memory.
Neighborhood sampling [48] is a recently proposed

approach that provides a solution to this problem in the
context of a specific graph pattern, triangle counting.
The basic idea is to sample one edge and then gradu-
ally add more edges until the edges form a triangle or
it becomes impossible to form the pattern. This can
be analyzed by Bayesian probability [48]. Let’s denote
E as the event that a pattern is formed, E1,E2, . . .,Ek

are the events that edges e1, e2, . . ., ek are sampled and
stored. Thus the probability of a pattern is actually sam-
pled can be calculated as Pr(E) = Pr(E1∩E2 · · · ∩Ek) =

Pr(E1)×Pr(E2 |E1) · · · ×Pr(Ek |E1, . . .,Ek−1). Intuitively,
compared to the naive sampling, neighborhood sampling
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Figure 2: Triangle count by neighborhood sampling

increases the probability that each trial would find an
instance of the given pattern, and thus requires fewer
estimations to achieve the same accuracy.

2.3.1 Example: Triangle Counting
To illustrate neighborhood sampling, we will revisit the
triangle counting example discussed earlier. To sample a
triangle from a graph with m edges, we need three edges:
• First edge l0. Uniformly sample one edge from the
graph as l0. The sampling probability Pr(l0) = 1/m.

• Second edge l1. Given that l0 is already sampled, we
uniformly sample one of l0’s adjacent edges (neighbors)
from the graph, which we call l1. Note that neighbor-
hood sampling depends on the ordering of edges in
the stream and l1 appears after l0 here. The sampling
probability Pr(l1 |l0) = 1/c, where c is the number l0’s
neighbors appearing after l0.

• Third edge l2. Find l2 to finish if edges l2, l1, l0 form
a triangle and l2 appears after l1 in the stream. If
such a triangle is sampled, the sampling probability is
Pr(l0∩ l1∩ l2)= Pr(l0)×Pr(l1 |l0)×Pr(l2 |l0, l1)= 1/mc.
The above technique describes the behaviors of one

sampling trial. For each trial, if it successfully samples a
triangle, converting probabilities to expectation, ei = mc
will be the estimate of the triangles in the graph. For a
total of r trials, 1

r

∑
r ei is output as the approximate result.

Figure 2 presents an example of a graph with five nodes.

2.4 Challenges
While the neighborhood sampling algorithm described
above has good theoretical properties, there are a number
of challenges in building a general system for large-scale
approximate graph mining. First, neighborhood sampling
was proposed in the context of a specific graph pattern (tri-
angle counting). Therefore, to be of practical use, ASAP
needs to generalize neighborhood sampling to other pat-
terns. Second, neighborhood sampling and its analysis
assume that the graph is stored in a single machine. ASAP
focuses on large-scale, distributed graph processing, and
for this it needs to extend neighborhood sampling to com-
puter clusters. Third, neighborhood sampling assumes
homogeneous vertices and edges. Real-world graphs are
property graphs, and in practice pattern mining queries
require predicate matching which needs the technique to
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be aware of vertex and edge types and properties. Finally,
as in any approximate processing system, ASAP needs to
allow the end user to trade-off accuracy for latency and
hence needs to understand the relation between run-time
and error in a distributed setting.

3 ASAP Overview
In this work, we design ASAP, a system that facilitates
fast and scalable approximate pattern mining. Figure 3
shows the overall architecture of ASAP. We provide a
brief overview of the different components, and how users
leverage ASAP to do approximate pattern mining in this
section to aid the reader in following the rest of this paper.

User interface. ASAP allows the users to tradeoff accu-
racy for result latency. Specifically, a user can perform
pattern mining tasks using the following two modes 1 :
• Time budgetT . The user specifies a time budgetT , and

ASAP returns the most accurate answer within T with
a error rate guarantee e and a configurable confidence
level (default of 95%).

• Error budget ε . The user gives an error budget ε and
confidence level, and ASAP returns an answer within ε
in the shortest time possible.

Before running the algorithm, ASAP first returns to the
user its estimates on the time or error bounds it can achieve
6 . After user approves the estimates, the algorithm is
run and the result presented to the user consists of the
count, confidence level and the actual run time 7 . Users
can also optionally ask to output actual (potentially large
number of) embeddings of the pattern found.

Development framework. All pattern mining programs
in ASAP are versions of generalized approximate pattern
mining 2 we describe in detail in §4. ASAP provides a
standard library of implementations for several common
patterns such as triangles, cliques and chains. To allow
developers to write program to mine any pattern, ASAP
further provides a simple API that lets them utilize our
approximate mining technique (§ 4.1.2). Using the API,
developers simply need to write a program that finds a
single instance of the pattern they are interested in, which
we refer to as estimator in the rest of this paper. In a
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nutshell, our approximate mining approach depends on
running multiple such estimators in parallel.

Error-Latency Profile (ELP). In order to run a user
program, ASAP first must find out how many estimators
it needs to run for the given bounds 3 . To do this, ASAP
builds an ELP. If the ELP is available for a graph, it simply
queries the ELP to find the number of estimators 4 .
Otherwise, the system builds a new ELP 5 using a novel
technique that is extremely fast and can be done online.
We detail our ELP building technique in §5. Since this
phase is fast, ASAP can also accommodate graph updates;
on large changes, we simply rebuild the ELP.

System runtime. Once ASAP determines the number of
estimators necessary to achieve the required error or time
bounds, it executes the approximatemining programusing
a distributed runtime built on Apache Spark [62, 63].

4 Approximate Pattern Mining in ASAP
We now present how ASAP enables large-scale graph pat-
tern mining using neighborhood sampling as a foundation.
We first describe our programming abstraction(§ 4.1) that
generalizes neighborhood sampling. Then, we describe
how ASAP handles errors that arise in distributed pro-
cessing(§ 4.2). Finally, we show how ASAP can handle
queries with predicates on edges or vertices(§ 4.3).

4.1 Extending to General Patterns
To extend the neighborhood sampling technique to general
patterns, we leverage one simple observation: at a high
level, neighborhood sampling can be viewed as consisting
of two phases, sampling phase and closing phase. In
the sampling phase, we select an edge in one of two
ways by treating the graph as an ordered stream of edges:
(a) sample an edge randomly; (b) sample an edge that
is adjacent to any previously sampled edges, from the
remainder of the stream. In the closing phase, we wait for
one or more specific edges to complete the pattern.

The probability of sampling a pattern can be computed
from these two phases. The closing phase always has a
probability of 1 or 0, depending on whether it finds the
edges it is waiting for. The probability of the sampling
phase depends on how the initial pattern is formed and
is a choice made by the developer. For a general graph
pattern with multiple nodes, there can be multiple ways
to form the pattern. For example, there are two ways to
sample a four-clique with different probabilities, as shown
in Figure 4. (i) In the first case, the sampling phase finds
three adjacent edges, and the closing phase waits for rest
three edges to come, in order to form the pattern. The
sampling probability is 1

mc1c2
, where c1 is the number of

the first edge’s neighbors and c2 represents the neighbor
count of the first and the second edges. (ii) In the second
case, the sampling phase finds two disjoint edges, and

1
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Figure 4: Two ways to sample four cliques. (a) Sample two
adjacent edges (0,1) and (0,3), sample another adjacent edge
(1,2), and wait for the other three edges. (b) Sample two disjoint
edges (0,1) and (2,3), and wait for the other four edges.

the closing phase waits for other four edges to form the
pattern. The sampling probability in this case is 1

m2 .

4.1.1 Analysis of General Patterns
We now show how neighborhood sampling, when cap-
tured using the two phases, can extend to general patterns.

Definition 4.1 (General Pattern). We define a “general
pattern” as a set of k connected vertices that form a
subgraph in a given graph.

First, let’s consider how an estimator can (possibly) find
any general patterns. We show how to sample one general
pattern from the graph uniformly with a certain success
probability, taking 2 to 5-node patterns as examples. Then,
we turn to the problem of maintaining r ≤ 1 pattern(s)
sampled with replacement from the graph. We sample
r patterns and a reasonably large r will yield a count
estimate with good accuracy. For the convenience of the
analysis, we define the following notations: input graph
G = (V,E) has m edges and n vertices, and we denote the
occurrence of a given pattern in G as f (G). A pattern p =
{ei, ej, . . . } contains a set of ordered edges, i.e., ei arrives
before ej when i < j. When describing the operation of
an estimator, c(e) denotes the number of edges adjacent to
e and appearing after e, and ci is c(e1, . . ., ei) for any i ≥ 1.
For a given a pattern p∗ with k∗ vertices, the technique
of neighborhood sampling produces p∗ with probability
Pr[p = p∗, k = k∗]. The goal of one estimator is to fix
all the vertices that form the pattern, and complete the
pattern if possible.

Lemma 4.2. Let p∗ be a k-node pattern in the graph. The
probability of detecting the pattern p = p∗ depends on
k and the different ways to sample using neighborhood
sampling technique.
(1) When k = 2, the probability that p = p∗ after process-
ing all edges in the graph by all possible neighborhood
sampling ways is

Pr[p = p∗, k = 2] =
1
m

(2) When k = 3, the probability that p = p∗ is

Pr[p = p∗, k = 3] =
1

m · c1
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(3) When k = 4, the probability that p = p∗ is

Pr[p = p∗, k = 4] =
1

m2 (Type-I) or
1

m · c1 · c2
(Type-II)

(4) When k = 5, the probability that p = p∗ is

Pr[p = p∗, k = 5] =
1

m2 · c1
(Type-I)

or =
1

m2 · c2
(Type-II.a)

or =
1

m · c1 · c2 · c3
(Type-II.b)

Proof. Since a pattern is connected, the operations in the
sampling phase are able to reach all nodes in a sampled
pattern. To fix such a pattern, the neighborhood sampling
needs to confirm all the vertices that form the pattern.
Once the vertices are found, the probability of completing
such a pattern is fixed.
When k = 2, let p∗ = {e1} be an edge in the graph.

Let E1 be the event that e1 is found by neighborhood
sampling. There is only one way to fix two vertices of the
pattern—uniformly sampling an edge from the graph. By
reservoir sampling, we claim that

Pr[p = p∗, k = 2] = Pr[E1] =
1
m

When k = 3, we need to fix one more vertex beyond
the case of k = 2. As shown in [48], we need to sample
an edge e2 from e1’s neighbors that occur in the stream
after e1. Let E2 be the event that e2 is found. Since
Pr[E2 |E1] =

1
c(e1)

,

Pr[p = p∗, k = 3] = Pr[E1] ·Pr[E2 |E1] =
1

m · c(e1)

When k = 4, we require one more step from the case of
k = 2 or the case of k = 3, from extending neighborhood
sampling. By extending from the case of k = 2 (denoted
as Type-I), two more vertices are needed to fix a 4-node
pattern. In Type-I, we independently find another edge e∗2
that is not adjacent to the sampled edge e1. Let E∗2 be the
event that e∗2 is found. Since Pr[E∗2 |E1] =

1
m ,

Pr[p = p∗, k = 4] = Pr[p = p∗, k = 2] ∗Pr[E∗2 |E1]

=
1

m2 (Type-I)

When extending from the case k = 2 (denoted as Type-
II), one more vertex is needed to fix a 4-node pattern.
In Type-II, we sample a “neighbor” e3 that comes after
e1ande2. Let E3 be the event that e3 is found. Since e3 is
sampled uniformly from the neighbors of e1 and e2 and
is appearing after e1, e2, Pr[E3 |E1,E2] =

1
c(e1,e2)

. Thus,

Pr[p = p∗, k = 4] = Pr[p = p∗, k = 3] ·Pr[E3 |E1,E2]

=
1

m · c(e1) · c(e1, e2)
(Type-II)

When k = 5, we again need one more step from the
case k = 3 or the case k = 4. By extending from k = 3
(denoted as Type-I), we require two separate vertices to
fix a 5-node pattern. In Type-I, we independently sample
another edge e∗3 that is not adjacent to e1, e2. Let E∗3 be
the event that e∗3 is found. Pr[E∗3 |E1,E2] =

1
m . Therefore,

Pr[p = p∗, k = 5] = Pr[p = p∗, k = 3] ∗Pr[E∗3 |E1,E2]

=
1

m2 · c(e1)
(Type-I)

When extending from the case k = 4, we need to consider
the two types separately. By extending Type-I of case
k = 4 (denoted as Type-II.a), we need one more vertex to
construct a 5-node pattern and thus we sample a neighbor-
ing edge e4. Let E4 be the event that e4 is found. Since
e4 is sampled from the neighbors of e1, e2,

Pr[p = p∗, k = 5] = Pr[p = p∗, k = 4] ∗Pr[E4 |E1,E
∗
2]

=
1

m2 · c(e1, e2)
(Type-II.a)

Similarly, by extending Type-II of case k = 4 (denoted as
Type-II.b),

Pr[p = p∗, k = 5] =
1

m · c(e1) · c(e1, e2) · c(e1, e2, e3)

�

Lemma 4.3. For pattern p∗ with k∗ nodes, let’s define

t̃ =
{ 1

Pr[p=p∗,k=k∗] if p , ∅
0 if p = ∅

Thus, E[t̃] = f (G).

Proof. By Lemma 4.2, we know that one estimator sam-
ples a particular pattern p∗ with probability Pr[p= p∗, k =
k∗]. Let p(G) be the set of a given pattern in the graph,

E[t̃]=
∑

p∗∈p(G)

t̃(p, ∅)·Pr[p= p∗, k = k∗]= |p(G)| = f (G)

�

The estimated count is the average of the input of all
estimators. Now, we consider how many estimators are
needed to maintain an ε error guarantee.

Theorem 4.4. Let r ≥ 1, 0 < ε ≤ 1, and 0 < δ ≤ 1. There
is an O(r)-space bounded algorithm that return an ε-
approximation to the count of a k-node pattern, with
probability at least 1− δ. For a certain ε , when k = 4,
we need r ≥ C1m

2

f (G) Type-I estimators, or r ≥ C2m∆
2

f (G) Type-
II estimators for some constants C1 and C2, to achieve
ε-approximation in the worst case; When k = 5, we need
r ≥ C3m

2∆
f (G) Type-I estimators, or r ≥ C4m

2∆
f (G) Type-II.a es-

timators, or r ≥ C5m∆
3

f (G) Type-II.b estimators, for some
constants C3,C4,C5 in the worst case.
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API Description
sampleVertex: ()→(v, p) Uniformly sample one vertex from the graph.
SampleEdge: ()→(e, p) Uniformly sample one edge from the graph.
ConditionalSampleVertex: (subgraph)→(v, p) Uniformly sample a vertex that appears after a sampled

subgraph.
ConditionalSampleEdge: (subgraph)→(e, p) Uniformly sample an edge that is adjacent to the given

subgraph and comes after the subgraph in the order.
ConditionalClose: (subgraph, subgraph)→boolean Given a sampled subgraph, check if another subgraph

that appears later in the order can be formed.
Table 1: ASAP’s Approximate Pattern Mining API.

Proof. Let’s first consider the case k = 4. Let Xi for
i = 1, . . .,r be the output value of i-th estimator. Let X̄ =
1
r

∑r
i=1 Xi be the average of r estimators. By Lemma 4.3,

we know that E[Xi] = f (G) and E[X̄] = f (G). From the
properties of graph G, we have c(e) ≤ ∆ for ∀e ∈ E , where
∆ is the maximum degree (note that in practice ∆ isn’t a
tight bound for the edge neighbor information). In Type-I,
Xi ≤ m2 and we construct random variables Yi =

Xi

m2 such
that Yi = [0,1]. Let Y =

∑r
i=1 Yi and E[Y ] = f (G)r

m2 . Thus
the probability that the estimated number of patterns has
a more than ε relative error off its expectation f (G) is
Pr[X̄ > (1+ ε) f (G)] ≤ δ

2 , which is at most

Pr[
r∑
i=1

Yi > (1+ ε)E[Y ]] ≤ e−
ε2

2+ε E[Y] ≤ e−
ε2
3 E[Y] ≤

δ

2

by Chernoff bound. Thus r ≥ 3m2

ε2 f (G)
· ln 2

δ . Similarly, this
lower bound of r holds for Pr[X̄ < (1− ε) f (G)].
In Type-II, Xi ≤ 6m∆2. Let Yi =

Xi

6m∆2 such that
Yi = [0,1]. Let Y =

∑r
i=1Yi and E[Y ] = f (G)r

6m∆2 . By Cher-
noff bound, r ≥ 18m∆2

ε2 f (G)
· ln( 2

δ ). Similarly, when k = 5,

we (theoretically) need 6m2∆
ε2 f (G)

· ln( 2
δ ) Type-I estimators,

12m2∆
ε2 f (G)

· ln( 2
δ )Type-II.a estimators, and 24m∆3

ε2 f (G)
· ln( 2

δ )Type-
II.b estimators. Since each estimator stores O(1) edges,
the total memory is O(r). �

4.1.2 Programming API

ASAP automates the process of computing the probability
of finding a pattern, and derives an expectation from it by
providing a simple API that captures two phases. TheAPI,
shown in Table 1, consists of the following five functions:
• SampleVertex uniformly samples one vertex from the
graph. It takes no input, and outputs v and p, where v is
the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices.

• SampleEdge uniformly samples one edge from the graph.
It also takes no input, and outputs e and p, where e is the
sampled edge, and p is the sampling probability, which
is the inverse of the number of edges of the graph.

• ConditionalSampleVertex conditionally samples one
vertex from the graph, given subgraph as input. It
outputs v and p, where v is the sampled vertex and p
is the probability to sample v given that subgraph is
already sampled.

• ConditionalSampleEdge(subgraph) conditionally sam-
ples one edge adjacent to subgraph from the graph,
given that subgraph is already sampled. It outputs
e and p, where e is the sampled edge and p is the
probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges
that appear after the first subgraph to form the second
subgraph. It takes the two subgraphs as input and
outputs yes/no, which is a boolean value indicating
whether the second subgraph can be formed. This
function is usually used as the final step to sample a
pattern where all nodes of a possible instance have been
fixed (thereby fixing the edges needed to complete that
instance of the pattern) and the sampling process only
awaits the additional edges to form the pattern.

These five APIs capture the two phases in neighbor-
hood sampling and can be used to develop pattern mining
algorithms. To illustrate the use of these APIs, we de-
scribe how they can be used to write two representative
graph patterns, shown in Figure 5.
Chain. Using our API to write a sampling function for
counting three-node chains is straightforward. It only
includes two steps. In the first step, we use SampleEdge

() to uniformly sample one edge from the graph (line
1). In the second step, given the first sampled edge, we
use ConditionalSampleEdge (subgraph) to find the second
edge of the three-node chain, where subgraph is set to be
the first sampled edge (line 2). Finally, if the algorithm
cannot find e2 to form a chain with e1 (line 3), it estimates
the number of three-node chains to be 0; otherwise, since
the probability to get e1 and e2 is p1 · p2, it estimates the
number of chains to be 1/(p1 · p2).
Four clique. Similarly, we can extend the algorithm of
sampling three node chains to sample four cliques. We
first sample a three-node chain (line 1-2). Then we sample
an adjacent edge of this chain to find the fourth node (line
4). Again, during the three steps, if any edges were not
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SampleThreeNodeChain
(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2)
return 0

else
return 1/(p1.p2)

SampleFourCliqueType1
(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1, e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

Figure 5: Example approximate pattern mining programs written using ASAP API
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Figure 6: Runtime with graph partition.
sampled, the function would return 0 as no cliques would
be found (line 3 and 5). Given e1, e2 and e3, all the
four nodes are fixed. Therefore, the function only needs
to wait for all edges to form a clique (line 8-9). If the
clique is formed, it estimates the number of cliques to be
1/(p1 ·p2 ·p3); otherwise, it returns 0 (line 10). Figure 4(a)
illustrates this sampling procedure (CliqueType1).

4.2 Applying to Distributed Settings
Capturing general graph pattern mining using the simple
two phase API allows ASAP to extend pattern mining
to distributed settings in a seamless fashion. Intuitively,
each execution of the user program can be viewed as
an instance of the sampling process. To scale this up,
ASAP needs to do two things. First, it needs to parallelize
the sampling processes, and second, it needs to combine
the outputs in a meaningful fashion that preserves the
approximation theory.
For parallelizing the pattern mining tasks, ASAP’s

runtime takes the patternmining program andwraps it into
an estimator3 task. ASAPfirst partitions the vertices in the
graph across machines and executes many copies of the
estimator task using standard dataflow operations: map
and reduce. In the map phase, ASAP schedules several
copies of the estimator task on each of the machines. Each
estimator task operates on the local subgraph in each
machine and produces an output, which is a partial count.
ASAP’s runtime ensures that each estimator in a machine
sees the graph’s edges and vertices in the same order,
which is important for the sampling process to produce
correct results. Note that although every estimator in

3Since each program is providing an estimate of the final answer.

each partition sees the graph in the same order, there
is no restriction on what the order might be (e.g., there
is no sorting requirement), thus ASAP uses a random
ordering which is fast and requires no pre-processing of
the graph. Once this is completed, ASAP runs a reduce
task to combine the partial counts and obtain the final
answer. This is depicted in fig. 6. This massively parallel
execution is one of the reasons for huge latency reduction
in ASAP. Since the input to the reduce phase is simply
an array of numbers, ASAP’s shuffle is extremely light-
weight, compared to a system that produces exact answers
(and needs to exchange intermediate patterns).
Handling Underestimation. Only summing up the par-
tial counts in the reduce phase underestimates the total
number of instances, because when vertices are parti-
tioned to the workers, the instances that span across the
partitions are not counted. This results in our technique
underestimating the results, and makes the theoretical
bounds in neighborhood sampling invalid. Thus, ASAP
needs to estimate the error incurred due to distributed
execution and incorporate that in the total error analysis.
We use probability theory to do this estimation. We

enforce that the vertices in the graph are uniformly ran-
domly distributed across the machines. ASAP is not
affected by the normal shortcomings of random vertex
partitioning [35] as the amount of data communication
is independent of partitioning scheme used. In this case
random vertex partitioning is in fact simple to implement,
and allows us to theoretically analyze the underestimation.

The theoretical proof for handling the underestimation
is outside the scope of this paper. Intuitively, we can
think of the random vertex partitioning into w workers as
uniform vertex coloring from w available colors. Vertices
with the same color are at the sameworker and eachworker
estimates patterns locally on its monochromatic vertices.
By doing this coloring, the occurrence of a pattern has
been reduced by a factor of 1/ f (w), where f is a function
of the number of workers and the pattern. For instance, a
locally sampled triangle has threemonochromatic vertices
and the probability that this happens among all triangles
is 1/w2. Thus by the linearity of expectation, each such
triangle is scaled by f (w) = w2. A rigorous proof on
the maximum possible w with small errors (in practice
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w can be >> 100), can be shown using concentration
bounds and Hajnal-Szemerédi Theorem [47]. Similarly,
each monochromatic 4-clique is scaled by f (w) = w3 and
f (w) can be computed for any given pattern.

4.3 Advanced Mining Patterns
Predicate Matching. In property graphs, the edges and
vertices contain properties; and thus many real-world
mining queries require thatmatching patterns satisfy some
predicates. For example, a predicate query might ask for
the count of all four cliques on the graph where every
vertex in the clique is of a certain type. ASAP supports
two types of predicates on the pattern’s vertices and edges
all and atleast-one.
For “all” predicate, queries specify a predicate that is

applied to every vertex or edge. For example, such query
may ask for “four cliques where all vertices have a weight
of atleast 10”. To execute such queries, ASAP introduces
a filtering phase where the predicate condition is applied
before the execution of the pattern mining task. This
results in a new graph which consists only of vertices
and edges that satisfy the predicate. On this new graph,
ASAP runs the pattern mining algorithm. Thus, the “all”
predicate query does not require any changes to ASAP’s
pattern mining algorithm.
The “atleast-one” predicate allows specifying a condi-

tion that atleast one of the vertices or edges in the pattern
satisfies. An example of such a query is “four cliques
where atleast one edge has a weight of 10”. To execute
such predicate queries, we modify the execution to take
two passes on the edge list. In the first pass, edges that
match the predicate are copied from the original edge
list to a matched edge list. Every entry in the matched
list is a tuple, (edge, pos), where pos is the position
in the original list where the matched edge appears. In the
second pass, every estimator picks the first edge randomly
from the matched list. This ensures that the pattern
found by the estimator (if it finds one) satisfies the predi-
cate. For the second edge onwards, the estimator uses the
original list but starts the search from the position at
which the first matched edge was found. This ensures that
ASAP’s probability analysis to estimate the error holds.
Motif mining. Another query used in many real-world
workloads is to find all patterns with a certain number
of vertices. We define these as motif queries; for exam-
ple a 3-motif query will look for two patterns, triangles
and 3-chains. Similarly a 4-motif query looks for six
patterns [51]. For motif mining we notice that several
patterns have the same underlying building block. For
example, in 4-motifs, 3-chains are used in many of the
constituent patterns. To improve performance, ASAP
saves the sampling phase’s state for the building block
pattern. This state includes (i) the currently sampled
edges, (ii) the probability of sampling at that point, and
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Figure 7: The actual relations between number of estimators
and run-time or error rate.
(iii) the position in the edge list up to which the estimator
has traversed. All the patterns that use this building block
are then executed starting from the saved state. This tech-
nique can significantly speedup the execution of motif
mining queries and we evaluate this in Section 6.2.
Refining accuracy. In many mining tasks, it is com-
mon for the user to first ask for a low accuracy answer,
followed by a higher accuracy. For example, users per-
forming exploratory analysis on graph data often would
like to iteratively refine the queries. In such settings,
ASAP caches the state of the estimator from previous
runs. For instance, if a query with an error bound of 10%
was executed using 1 million estimators, ASAP saves the
output from these estimators. Later, when the same pat-
tern is being queried, but with an error bound of 5% that
requires 3 million estimators, ASAP only needs to launch
2 million, and can reuse the first 1 million.

5 Building theError-LatencyProfile (ELP)
A key feature in any approximate processing system is
allowing users to trade-off accuracy for result latency.
To do this for graph mining, we need to understand the
relation between running time and error.
In ASAP’s general, distributed graph pattern mining

technique described earlier, the only configurable parame-
ter is the number of estimator processes used for a mining
task. By using r estimators and making r sufficient large,
ASAP is able to get results with bounded errors. Since
an estimator takes computation and memory resource to
sample a pattern, picking the number of estimators r pro-
vides a trade-off between result accuracy and resource
consumption. In other words, setting a specific number
of estimators, Ne, results in a fixed runtime and an error
within a certain bound. As an example, fig. 7 depicts the
relation between the number of estimators, runtime and
error for triangle counting run on the Twitter graph [39].
To enable the user to traverse this trade-off, ASAP needs
to determine the correct number of estimators given an
error or time budget.

5.1 Building Estimator vs. Time Profile
The time complexity of our approximation algorithm is
linearly related to the number of edges in the graph and
the number of estimators. Given a graph and a particular
pattern, we find the computation time is dominated by the
number of estimators when the number of estimators is
large enough. From fig. 7, we see that the estimator-time
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Algorithm 1 BuildTimeProfile(T∗)
1: P← ∅ // store points for the profile
2: T ← 0, t← 0, α← α∗ // α∗ can be a reasonable random start
3: while T + t <=T ∗ do
4: t← run approximation algorithm with α estimators
5: P.add((α, t))
6: α← 2α
7: T ←T + t

curve is close to linear when the number of estimators is
greater than 0.5M. Thus we propose using a linear model
to relate the running time to the number of estimators.
When the number of estimators is small, the computa-

tion time is also affected by other factorsand thus the curve
is not strictly linear. However, for these regions, it is not
computationally expensive to profile more exhaustively.
Therefore, to build the time profile, we exponentially
space our data collection, gathering more points when
the number of estimators is small and fewer points as the
number of estimators grows. We use a profiling budget
T∗ to bound the total time spent on profiling. Algorithm 1
shows the pseudo code. ASAP starts from using a small
number of estimators (α← α∗), and doubles α each time
until the total profiling time exceeds the profiling cost T∗.
In practice, we have found that setting T∗ in the minute
granularity gives us good results.

5.2 Building Estimator vs. Error Profile
Since error profile is non-linear (fig. 7), techniques like
extrapolating from a few data points is not directly ap-
plicable. Some recent work has leveraged sophisticated
techniques, such as experiment design [57] or Bayesian
optimization [12] for the purpose of building non-linear
models in the context of instance selection in the cloud.
However, these techniques also require the system to com-
pute the error for a given setting forwhichwe need to know
the ground-truth, say, by running the exact algorithm on
the graph. Not only is this infeasible in many cases, it also
undermines the usefulness of an approximation system.
In ASAP, we design a new approach to determine the

relationship between the number of estimators Ne and
error ε . Our approach is based on two main insights:
first, we observe that for every pattern based on the prob-
ability of sampling, a loose upper bound for the number
of estimators required can be computed using Chernoff
bounds. For instance for triangle counting, the sampling
probability is 1/mc where m is the number of edges and
c is the degree of first chosen edge( § 2.3.1). This prob-
ability bound can be translated to an estimator of form
Ne >

K∗m∗∆
ε2P

(Theorem 3.3 [48]) where K is a constant, m
is the number of edges, ∆ is the maximum degree and P
is the ground truth or the exact number of triangles. At a
high level, the bound is based on the fact that the maxi-
mum degree vertex leads to the worst case scenario where
we have the minimum probability of sampling. Similar
bounds exist for 4-cliques and other patterns [48]. These

theoretical bounds provide a relation between the number
of estimators (Ne), error bound (ε) and ground truth (P)
in terms of the graph properties such as m and ∆.

The second insight we use is that for smaller graphs we
can get a very close approximation to the ground truth by
using a very large number of estimators. This is useful in
practice as this avoids having to run the exact algorithm
to get a good estimate of the ground truth. Based on these
two insights, the steps we follow are:

(a) We first uniformly sample the graph by edges to reduce
it to a size where we can obtain a nearly 100% accurate
result. In our experiments, we find that 5−10% of the
graph is appropriate according to the size of the graph.

(b) On the sampled graph, we run our algorithm with a
large number of estimators (Ngt ) to find P̂s, a value
very close to the ground truth for the sampled graph.

(c) Using P̂s as the ground truth value and the theoretical
relationship described above, we compute the value of
other variables on the sampled graph. For example, in
the sampled graph, it is easy to compute ms and ∆s , and
then infer K by running varying number of estimators.

(d) Finally we scale the values ms, ∆s and P̂s to the larger
graph to compute Ne. We note that the scaled P̂ might
not be close to P for the larger graph. But as we use the
worst case bound to compute P̂s , the computed value of
Ne offers a good bound in practice for the larger graph.

5.3 Handling Evolving Graphs
The ELP building process in ASAP is designed to be
fast and scalable. Hence, it is possible to extend our
pattern mining technique to evolving graphs [37] by sim-
ply rebuilding the ELP every time the graph is updated.
However, in practice, we don’t need to rebuild the ELP
for every update. and that it is possible to reuse an ELP
for a limited number of graph changes. Thus we use a
simple heuristic where are a fixed number of changes, say
10% of edges, we rebuild the ELP. The general problem
of accurately estimating when a profile is incorrect for ap-
proximate processing systems is hard [5] and in the future
we plan to study if we can automatically determine when
to rebuild the ELP by studying changes to the smaller
sample graph we use in § 5.2.

6 Evaluation
We evaluate ASAP using a number of real-world graphs
and compare it to Arabesque, a state-of-the-art distributed
graph mining system. Overall, our evaluations show that:

• Compared to Arabesque, we find ASAP can improve
performance by up to 77× with just 5% loss of accu-
racy for counting 3-motifs and 4-motifs.

• We find that ASAP can also scale to much larger
graphs (up to 3.7B edges) whereas existing systems
fail to complete execution.
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Graph Nodes Edges Degrees
CiteSeer [30] 3,312 4732 2.8
MiCo [30] 100,000 1,080,298 22

Youtube [41] 1,134,890 2,987,624 8
LiveJournal [41] 3,997,962 34,681,189 17
Twitter [39] 41.7 million 1.47 billion 36

Friendster [61] 65.5 million 1.80 billion 28
UK [16, 17] 105.9 million 3.73 billion 35

Table 2: Graph datasets used in evaluating ASAP.

• Our techniques to build error profile and time profile
(ELP) are highly accurate across all the graphs while
finishing within a few minutes.

Implementation. We built ASAP on Apache Spark [63],
a general purpose dataflow engine. The implementation
uses GraphX [34], the graph processing library of Spark
to load and partition the graph. We do not use any other
functionality from GraphX, and our techniques only use
simple dataflow operators like map and reduce. As such,
ASAP can be implemented on any dataflow engine.
Datasets and Comparisons. Table 2 lists the graphs
we use in our experiments. We use 4 small and 3 large
graphs and compare ASAP against Arabesque [55] (using
its open-source release [2] built on Apache Giraph [14])
on four smaller graphs: CiteSeer [30], Mico [30],
Youtube [41], and LiveJournal [41]. For all other evalu-
ations, we use the large graphs. Our experiments were
done on a cluster of 16 Amazon EC2 r4.2xlarge in-
stances, each with 8 virtual CPUs and 61GiB of memory.
While all of these graphs fit in the main memory of a
single server, the intermediate state generated (§2) dur-
ing pattern mining makes it challenging to execute them.
Arabesque, despite being a highly optimized distributed
solution, fails to scale to the larger graphs in our cluster.
We note that Arabesque (or any exact mining system)
needs to enumerate the edges significantly more number
of times compared to ASAP which only needs to do it
once or twice, depending on the query.
Patterns and Metrics. For evaluating ASAP, we use
two types of patterns, motif s and cliques. For motifs, we
consider 3-motifs (consisting of 2 individual patterns),
and 4-motifs (consisting of 6 individual patterns) and for
cliques, we consider 4-cliques. For our experiments, we
run 10 trials for each point and report the median, and
error bar in the ELP evaluation. We do not include the
time to load the graph for any of the experiments for
ASAP and Arabesque. We use total runtime as the metric
when raw performance is evaluated. When evaluating
ASAP on its ability to provide errors within the requested
bound, we need to know the actual error so that it can be
compared with ASAP’s output. We compute actual error
as |t−treal |treal

, where treal is the ground truth number of a
specific pattern in a given graph. Since this requires us to
know the ground-truth, we use simpler, known patterns,
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Figure 8: ASAP is able to gain up to 77× improvement in
performance against Arabesque. The gains increase with larger
graphs and more complex patterns. Y-axis is in log-scale.

such as triangles and chains, where the ground-truth can
be obtained from verified sources for such experiments.
Note that the actual error is only used for evaluation
purposes. Unless otherwise stated, the ASAP evaluations
were done with an error target of 5% at 95% confidence.

6.1 Overall Performance
We first present the overall performance numbers. To do
so, we perform comparisons with Arabesque and evaluate
ASAP’s scalability on larger graphs. We do not include
ELP building time in these numbers since it is a one-time
effort for each graph/task and we measure this in § 6.3.
Comparison with Arabesque. In this experiment, we
compare Arabesque and ASAP on the 4 smaller graphs
(Table 2). In each of these systems, we load the graph first,
and then warm up the JVM by running a few test patterns.
Then we use each system to perform 3-motif and 4-motif
mining, and measure the time taken to complete the task.
In Arabesque, we do not consider the time to write the
output. Similarly, for ASAP we do not output the patterns
embeddings. The results are depicted in figs. 8a and 8b.

We see thatASAP significantly outperforms Arabesque
on all the graphs on both the patterns, with performance
improvements up to 77× with under 5% loss of accuracy.
The performance improvements will increase if the user is
able to afford a larger error (e.g., 10%). We also noticed
that the performance gap between Arabesque and ASAP
increases with larger graph and/or more complex patterns.
In this experiment, mining the more complex pattern
(4-motif) on the largest graph (LiveJournal) provides the
highest gains forASAP. This validates our choice of using
approximation for large-scale pattern mining.
Scalability on Larger Graphs. We repeat the above ex-
periment on the larger graphs. Since Arabesque fails to
execute on these graphs on our cluster, we also provide per-
formance numbers that were reported by its authors [55]
as a rough comparison. The results are shown in Table 3.
When mining for 3-motif, ASAP performs vastly su-

perior on the Twitter, the Friendster, and the UK graphs.
Arabesque’s authors report a run time of approximately
11 hours on a graph with a similar number of edges. This
translates to a 258× improvement for ASAP. In the case

4These graph datasets in Arabesque are not publicly available.
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Figure 9: Runtime vs. number of estimators for Twitter, Friendster, and UK graphs. The black solid lines are ASAP’s fitted lines.

3-Motif System Graph |V| |E| Runtime

ASAP (5%) 16 x 8 Twitter 42M 1.5B 2.5m
16 x 8 Friendster 66M 1.8B 5.0m
16 x 8 UK 106M 3.7B 5.9m

Arabesque 20x32 Inst4 180M 0.9B 10h45m

4-Motif System Graph |V| |E| Runtime

ASAP (5%) 16 x 8 Twitter 42M 1.5B 22m
16 x 8 UK 106M 3.7B 47m
16 x 8 LiveJ 4M 34M 0.7m

Arabesque 16 x 8 LiveJ 4M 34M 53m
20x32 SN4 5M 199M 6h18m

Table 3: Comparing the performance of ASAP and Arabesque
on large graphs. The System column indicates the number of
machines used and the number of cores per machine.

of 4-motifs, ASAP is easily able to scale to the more com-
plex pattern on larger graphs. In comparison, Arabesque
is only able to handle a much smaller graph with less
than 200 million edges. Even then, it takes over 6 hours
to mine all the 4-motif patterns. These results indicate
that ASAP is able to not only outperform state-of-the-art
solutions significantly, but do so in a much smaller cluster.
ASAP is able to effortlessly scale to large graphs.

6.2 Advanced Pattern Mining
We next evaluate the advanced pattern mining capabilities
in ASAP described in § 4.3.
Motif mining. We first evaluate the impact of ASAP’s
optimization when handling motif queries for multiple
patterns. We use the Twitter graph and study a 4-motif
query that looks for 6 different patterns. In this case
ASAP caches the 3-node chain that is shared by multiple
patterns. As shown in Table 4, we see a 32% performance
improvement from this.
PredicateMatching. To study howwell predicate match-
ing queries work, we annotate every edge in the Twitter
graph with a randomly chosen property. We then con-
sider a 3-motif query which matches 10% of the edges.
With ASAP’s filtering based technique, the “all” query
completes in 27 seconds, compared to 2.5 minutes when
running without pre-filtering.
Accuracy Refinement. We study a scenario where the
user first launches a 3-motif query on the Twitter graph
with 10% error guarantee and then refines the results

Pattern Baseline ASAP Improv.
Motif Mining 32.2min 22min 32%

Predicate Matching 2.5min 27s 82%
Accuracy Refinement 2.5min 1.5min 40%

Table 4: Improvements from techniques in ASAP that handle
advanced pattern mining queries.

with another query that has a 5% error bound. We find
that the running time goes from 2.5min to 1.5min (40%
improvement) when our caching technique is enabled.

6.3 Effectiveness of ELP Techniques
Here, we evaluate the effectiveness of the ELP building
techniques in ASAP, described in §5.
Time Profile. To evaluate how well our time profiling
technique (§ 5.1) works, we run three patterns—3-chains,
triangles, and 4-cliques—on the three large graphs. In
each graph, we obtain the time vs. estimator curve by
exhaustively running themining taskwith varying number
of estimators and noting the time taken to complete the
task. We then use our time profiling technique which uses
a small number of points instead of exhaustive profiling
to obtain ASAP’s estimate. We plot both the curves in
fig. 9 for each of the three graphs. In these figures, the
colored lines represent the actual (exhaustively profiled)
curve, and the black line shows ASAP’s estimate. From
the figure we can see that the time profile estimated by
ASAP very closely tracks the actual time taken, thereby
showing the effectiveness of our technique.
Error Profile. We repeat the experiment for evaluating
ASAP’s error profile building technique. Here, we ex-
haustively build the error profile by running a different
number of estimators on each graph, and note the error.
Then we useASAP’s technique of using a small portion of
the graph to build the profile. We show both in fig. 10. We
see that the actual errors are always within the estimated
profile. This means that ASAP is able to guarantee that
the answer it returns is within the requested error bound.
We also note that in real-world graphs, the worst-case
bounds are never really reached. In edge cases, where
the number of patterns in the graphs are high like the
chains in UK graph, the overestimation may be large, and
one concern might be that we run more estimators than

756    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



5

10

15

20

25

0 10K 20K 30K 40K 50K 60K 70K 80K

E
rr

o
r 

(%
)

Twitter-graph

Actual Error
Profiled worst-case Error

5

10

15

20

25

0 10K 20K 30K 40K 50K 60K 70K 80K

E
rr

o
r 

(%
)

Friendster-graph

Actual Error
Profiled worst-case Error

5

10

15

20

25

0 10K 20K 30K 40K 50K 60K 70K 80K

E
rr

o
r 

(%
)

UK-graph

Actual Error
Profiled worst-case Error

(a) Chain Counting

5
10

20

30

40

50K 1M 2M 3.3M

E
rr

o
r 

(%
)

Twitter-graph

Actual Error
Profiled Worst-case Error

5
10

20

30

40

50K 1M 2M 3.3M

E
rr

o
r 

(%
)

Friendster-graph

Actual Error
Profiled Worst-case Error

5
10

20

30

40

50K 1M 2M 3.3M

E
rr

o
r 

(%
)

UK-graph

Actual Error
Profiled Worst-case Error

(b) Triangle Counting
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(c) Clique Counting

Figure 10: Error vs. number of estimators for Twitter, Friendster, and UK graphs.

Graph Task Time Profile Error Profile

3-Chain 5.2m 2.1m
UK-2007-05 3-Motif 6.1m 2.7m

4-Clique 9.5m 4.8m
4-Motif 11.2m 5.9m

Table 5: ELP building time for different tasks on UK graph

required. We are working on techniques that can help us
determine a tighter bound for the number of estimators in
the future but as discussed in § 6.1, even with this over-
estimation we get significant speedups in practice. This
experiment confirms thatASAP’s heuristic of using a very
small portion of the graph and leveraging the Chernoff
bound analysis (§ 5.2) is a viable approach.
Error rate Confidence. In Figure 11, we evaluate the
cumulative distribution function (CDF) of 100 indepen-
dent runs on the UK graph with 3% error target and 99%
confidence. We can see that 100/100 actual results are
not worse than 3% error and 74/100 results are within
2% error. Thus the actual results are even better than the
theoretical analysis for 99% confidence.
ELP Building Time. Finally, we evaluate the time taken
for building the profiling curves. For this, we use the
UK graph and configure ASAP to use 1% of the graph to
build the error profile. The results are shown in table 5
for different patterns, which shows that the time to build
the profiles is relatively small, even for the largest graph.

6.4 Scaling ASAP on a Cluster
ASAP partitions the graph into different subgraphs based
on random vertex partition, and aggregates scaled results
in the final reduce phase. In this section we evaluate
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Figure 11: CDF of 100 runs with 3% error target.

how configurations with different numbers of machines
impact the accuracy. In Fig. 12, we consider two sce-
narios: strong-scaling, where we fix the total number
of estimators used for the entire graph, and increase the
number of machines used; and weak-scaling where we
fix the number of estimators used per-machine and thus
correspondingly scale the number of estimators as we
add more machines. We run the triangle counting task
with the Twitter graph on different cluster sizes of 4, 8,
12, and 16 machines. From the figure we see that in
the strong-scaling regime, adding more machines has no
impact on the accuracy of ASAP and that we are able to
correctly adjust the accuracy as more graph partitions are
created. In the weak-scaling case we see that the accuracy
improves as we increase more machines, which is the
expected behavior when we have more estimators.

6.5 More Complex Patterns
Finally, we evaluate the generality of ASAP’s techniques
by applying to mine 5-motifs, consisting of 21 individual
patterns. This choice was influenced by our conversations
with industry partners, who use similar patterns in their
production systems. Due to the complexity of the patterns,
we used a larger cluster for this experiment, consisting
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5-Chain 5-House

Figure 13: Two representative (from 21) patterns in 5-Motif.
of 16 machines, each with 16 cores and 128GB memory.
Due to space constraints, and also because of the absence
of a comparison, we only provideASAP’s performance on
two representative patterns in table 6. As we see, ASAP
is able to handle complex patterns on large graphs easily.

7 Related Work
A large number of systems have been proposed in the
literature for graph processing [20, 23, 34, 35, 40, 42,
50, 53, 54, 58, 64]. Of these, some [40, 42, 54] are sin-
gle machine systems, while the rest supports distributed
processing. By using careful and optimized operations,
these systems can process huge graphs, in the order of a
trillion edges. However, these systems have focused their
attention mainly on graph analysis, and do not support
efficient graph pattern mining. Some systems implement
very specific versions of simple pattern mining (e.g., tri-
angle count). They do not support general pattern mining.
Similar to graph processing systems, a number of

graph mining systems have also been proposed. Here
too, the proposals contain a mix of centralized systems
and distributed systems. These proposals can be classi-
fied into two categories. The first category focuses on
mining patterns in an input consisting of multiple small
graphs. This problem is significantly easier, since the
system only finds one instance of the pattern in the graph,
and is trivially incorporated in ASAP. Since this approach
can be massively parallelized, several distributed systems
exist that focus specifically on this problem. The state-
of-the-art in distributed, general purpose pattern mining
systems is Arabesque [55]. While it supports efficient pat-
tern mining, the system still requires a significant amount
of time to process even moderately sized graphs. A few
distributed systems have focused on providing approxi-
mate pattern mining. However, these systems focus on a
specific algorithm, and hence are not general-purpose.

5-Chain System Graph |V| |E| Runtime

ASAP (5%) 16 x 16 Twitter 42M 1.5B 9.2m
16 x 16 UK 106M 3.7B 17.3m

ASAP (10%) 16 x 16 Twitter 42M 1.5B 3.2m
16 x 16 UK 106M 3.7B 6.5m

5-House System Graph |V| |E| Runtime

ASAP (5%) 16 x 16 Twitter 42M 1.5B 12.3m
16 x 16 UK 106M 3.7B 22.1m

ASAP (10%) 16 x 16 Twitter 42M 1.5B 5.6m
16 x 16 UK 106M 3.7B 14.2m

Table 6: Approximating 5-Motif patterns in ASAP.
In distributed data processing, approximate analysis

systems [6, 13, 32] have recently gained popularity due
to the time requirements in processing large datasets.
Following the approximate query processing theory in the
database community, these systems focus on reducing the
amount of data used in the analysis process in the hope that
the analysis time is also reduced. However, as we show
in this work, applying the exact algorithm on a sampled
graph does not yield desired results. In addition, doing so
complicates, or even makes it infeasible to provide good
time or error guarantees.
Theory community has invested a significant amount

of time in analyzing and proposing approximate graph
algorithms for several graph analysis tasks [9, 10, 15, 18,
28, 33]. None of these are aimed at distributed processing,
nor do they propose ways to understand the performance
profile of the algorithms when deployed in the real world.
We leverage this rich theoretical foundation in our work
by extending these algorithms to mine general patterns in
a distributed setting. We further devise a strategy to build
accurate profiles to make the approach practical.

8 Conclusion
We present ASAP, a distributed, sampling-based approxi-
mate computation engine for graph patternmining. ASAP
leverages graph approximation theory and extends it to
general patterns in a distributed setting. It further employs
a novel ELP building technique to allow users to trade-off
accuracy for result latency. Our evaluation shows that not
only does ASAP outperform state-of-the-art exact solu-
tions by more than a magnitude, but it also scales to large
graphs while being low on resource demands.
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Abstract
Graph mining is an important category of graph algo-
rithms that aim to discover structural patterns such as
cliques and motifs in a graph. While a great deal of work
has been done recently on graph computation such as
PageRank, systems support for scalable graph mining is
still limited. Existing mining systems such as Arabesque
focus on distributed computing and need large amounts
of compute and memory resources.

We built RStream, the first single-machine, out-of-core
mining system that leverages disk support to store inter-
mediate data. At its core are two innovations: (1) a rich
programming model that exposes relational algebra for
developers to express a wide variety of mining tasks; and
(2) a runtime engine that implements relational algebra
efficiently with tuple streaming. A comparison between
RStream and four state-of-the-art distributed mining/Dat-
alog systems — Arabesque, ScaleMine, DistGraph, and
BigDatalog — demonstrates that RStream outperforms
all of them, running on a 10-node cluster, e.g., by at least
a factor of 1.7×, and can process large graphs on an inex-
pensive machine.

1 Introduction
There are two major types of analytical problems over
large graphs: graph computation and graph mining.
Graph computation includes a set of problems that can
be represented through linear algebra over an adjacency
matrix based representation of the graph. As a typical
example of graph computation, PageRank [52] can be
modeled as iterative sparse matrix and vector multiplica-
tions. Due to their importance in information retrieval
and machine learning, graph computation problems have
been extensively studied in the past decade; practical so-
lutions have been implemented in a wide variety of graph
systems [31, 27, 30, 33, 43, 39, 63, 48, 85, 58, 75, 83, 34,
57, 69, 84], most of which follow the “think like a vertex”
programming paradigm pioneered by Pregel [46]. These
systems have been highly optimized for locality, partition-
ing, and communication in order to deliver efficiency and
scalability for processing very large graphs.

While this programming model makes it easy for de-
veloping computation algorithms, it is not designed for

∗Work was done when all authors were with UC Irvine.

mining algorithms that aim to discover complex structural
patterns of a graph rather than perform value computa-
tions. Fitting such algorithms into this model requires
significant reformulation. For many mining tasks such as
frequent subgraph mining (FSM), their patterns are not
known a priori; hence, it is impossible to express these
tasks using a vertex-centric model.

There is a body of work that uses declarative models to
solve mining problems. Representative examples are Dat-
alog [2, 40, 73, 62, 61], Arabesque [66], ScaleMine [4],
or DistGraph [65]. For instance, due to its support for
relational algebra, Datalog provides simple interfaces for
developing mining tasks [40, 61]. A Datalog program for
Triangle Counting, for example, needs only the following
two lines of code, with R representing the relation of
edges and U representing a new relation of triangles:

1 U(a,b,c) <- R(a,b), R(b,c), R(a,c)

2 count U(a,b,c)

However, Datalog’s support for graph mining is rather
limited since the declarative nature of its programming
model dictates that only mining algorithms whose pat-
terns are known a priori can be expressed by Datalog.
Arabesque is a Giraph-based graph mining system that
presents developers a view of “embeddings”. Embed-
dings are subgraphs that developers can easily check to
find structural patterns. Using a filter-process program-
ming model, Arabesque provides full support for devel-
oping a broad set of mining algorithms. For example,
Arabesque enumerates all possible subgraphs and invokes
the user-defined filter function on each subgraph. The
user logic in the function determines whether the given
subgraph is an instance of the specified motif (for motif
counting) or turns the subgraph into a canonical form to
count the number of instances of the form (for FSM).

Specialized systems have been developed for FSM due
to its broad applications. Examples are ScaleMine [4] and
DistGraph [65], but these systems do not work for other
mining algorithms such as Triangle Counting or Cliques.

1.1 Problems with State-of-the-Art Systems

Typical mining workloads are memory-intensive. Even
simple mining algorithms can generate an enormous
amount of intermediate data, which cannot fit into the
main memory of any single machine. Early single-
machine techniques such as gSpan [78] and GraMi [29]
can analyze only small graphs as they are fundamen-
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tally limited by the size of the main memory of the ma-
chine on which they run. Recent mining tools such as
Arabesque [66], ScaleMine [4], and DistGraph [65] are
distributed systems — they leverage distributed memory
resources to store intermediate mining data.

Mining Systems Distributed mining systems have sev-
eral drawbacks that significantly impact their practicality.
First, they commonly suffer from large startup and com-
munication overhead. For small graphs, it is difficult for
the startup/communication overhead to get amortized over
the processing. For example, when FSM was executed on
Arabesque to process a small graph (CiteSeer, with 4K
edges) on a 10-node cluster, it took Arabesque 35 seconds
to boost the system and load the graph, while executing
the algorithm itself only took 3 seconds.

Second, in order to scale to large graphs, mining sys-
tems often need enterprise clusters with large amounts
of memory. This is because the amount of intermediate
data for a typical mining algorithm grows exponentially
with the size of the graph. For example, built on top of
MPI, a recent mining system DistGraph [65], using 128
IBM BlueGene/Q compute nodes, could only run 3-FSM
with support = 250001 on a million-edge graph — even
on such a small graph, the computation requires a total
of 128 × 256 = 32,768GB memory. Obviously, not all
users have access to such enterprise clusters. Even if they
do, running a simple mining algorithm on a relatively
small graph does not seem to justify very well the cost
of blocking hundreds or even thousands of machines for
several hours.

When many compute nodes are employed primarily to
offer memory, their CPU resources are often underutilized.
Unlike the “think-like-a-vertex” computation algorithms
that are amenable to the bulk synchronous parallel (BSP)
model, mining workloads are not massively parallel by
nature — a mining algorithm enumerates subgraphs of
increasing sizes to find those that match a pattern; finer-
grained partitioning of the input graph to exploit paral-
lelism often does not scale well with increased CPU re-
sources because subgraphs often cross partitions, creating
great numbers of dependencies between tasks.

Load balancing in a distributed mining system is an-
other major challenge. Algorithms such as FSM have dy-
namic working sets. Their search space is often unknown
in advance and it is thus hard to partition the graph and
distribute the workload appropriately before the execu-
tion. When we executed FSM on DistGraph, we observed
that some nodes had high memory pressure and ran out
of memory in several minutes while the memory usage of
some other nodes was below 10%.

125000 is a very large frequency threshold for FSM — a subgraph
is considered frequent only if its frequency exceeds this threshold. The
smaller the support is, the more computation is needed.

Dataflow/Datalog Systems The major problem of
dataflow systems or Datalog engines is that they do not
have a programming model flexible enough for express-
ing complex graph mining algorithms. For example, for
mining frequent subgraphs whose structures have to be
dynamically discovered, none of the Datalog systems can
directly support it.

A Strawman Approach A possible way to develop a
more cost-effective graph mining system is to add sim-
ple support for data spilling in an existing system (such
as Arabesque or DistGraph) rather than developing a
new system from scratch — if intermediate data can be
swapped between memory and disk, the amount of com-
pute resources needed may be significantly reduced. In
fact, data spilling is already implemented in many exist-
ing systems: Arabesque is based on Giraph, which places
on disk partitions that do not fit in memory; BigDatalog
is based on Spark, which spills data throughout the execu-
tion. However, generic data spilling does not work well
due to the lack of semantic information of how each data
partition is used in the program.

To understand whether semantics-agnostic data spilling
is effective, we ran transitive closure computation on
BigDatalog over the MiCo graph [29] (with 1.1M edges)
using a cluster of 10 nodes each with 32GB memory.
Despite Spark’s disk support, which spilled a total of
6.006GB of data to disk across all executors, BigDatalog
still crashed in 1375 seconds.

1.2 Challenges and Contributions

To address the shortcomings of the existing mining tools,
we developed RStream, the first disk-based, out-of-core
system that supports efficient mining of large graphs. Our
key insight is consistent with the recent trend on building
single-machine graph computation systems [39, 58, 75,
70, 45, 83, 8, 81] — given the increasing accessibility
of high-volume SSDs, a disk-based system can satisfy
the large storage requirement of mining algorithms by
utilizing disk space available in modern machines; yet
it does not suffer from any startup and communication
inefficiencies that are inherent in distributed computing.

Building RStream has two major challenges. The first
challenge is how to provide a programming interface
rich enough to support a wide variety of mining algo-
rithms. The design of RStream’s programming model is
inspired from both Datalog and the gather-apply-scatter
(GAS) model used widely in the existing computation
systems [30, 39, 58]. On the one hand, the relational op-
erations in Datalog enable the composition of structures
of smaller sizes into a structure of a large size, making
it straightforward for the developer to program mining
algorithms. On the other hand, GAS is a powerful pro-
gramming model that supports iterative graph processing
with a well-defined termination semantics. To enable
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easy programming of mining algorithms with and without
statically-known structural patterns, we propose a novel
programming model (§3), referred to as GRAS, which
adds relational algebra into GAS. We show, with several
examples, that under GRAS, many mining algorithms,
including FSM, Triangle and Motif Counting, or Clique,
can all be easily developed with less than 80 lines of code.

The second challenge is how to implement relational
operators (especially join) efficiently for graphs. Since
join is expensive, its efficiency is critical to the system
performance. Instead of treating edges and vertices gener-
ically as relational tables as in Datalog, we take inspi-
rations from graph computation systems to leverage the
domain knowledge in graphs. In particular, we are in-
spired by recent systems (e.g., X-Stream [58] and Grid-
Graph [85]) that use streaming to reduce I/O costs.

The scatter/gather phase in these systems loads vertices
into memory and streams in edges/updates to generate
updates/new vertex values. The insight behind streaming
is that since the number of edges/updates is much larger
than the number of vertices for a graph, edge streaming
provides efficiency by sequentially accessing edge data
from disk (as edges are sequentially read but not stored
in memory) and randomly accessing vertex data held
in memory. Streaming essentially provides an efficient,
locality-aware join implementation. RStream leverages
this insight (§4) to implement relational operations.

1.3 Summary of Results

We have implemented RStream and made it publicly
available at https://github.com/rstream-system.
We evaluated it using 6 mining algorithms over 6 real-
world graphs. With a rich programming model and an
efficient implementation of the model using streaming,
RStream, running on a single machine with 32GB mem-
ory and 5.2TB disk space, outperformed 4 state-of-the-art
distributed mining and Datalog systems — Arabesque,
ScaleMine, DistGraph, and BigDatalog by at least a factor
of 1.7×, when they each ran on a 10-node cluster.

These results do not necessarily suggest that RStream
has better scalability than a distributed system, which may
be able to scale to larger graphs if sufficient memory is
provided. However, RStream is indeed a better choice if
a user has only a limited amount of computing resources,
since its disk requirement is easier to fulfill and yet it can
scale to large enough real-world graphs.

2 Background and Overview
Since RStream builds on streaming, we provide a brief
discussion of this idea and the related systems. We then
use a concrete example to overview RStream’s design.

2.1 Background

RStream’s tuple streaming idea is inspired by a number
of prior works, and in particular, the X-Stream graph com-

putation system [58] that uses edge streaming to reduce
I/O. X-Stream partitions a graph into streaming parti-
tions based on vertex intervals. Each streaming partition
consists of (1) a vertex set, which contains vertices in
a logical interval and their values, (2) an edge set, con-
taining edges whose source vertices are in its vertex set,
as well as (3) an update set, containing updates over the
edges whose destinations are in its vertex set. X-Stream’s
design is based on the GAS model. It first conducts the
scatter phase, which, for each partition, loads its vertex
set into memory and streams in edges from the edge set to
generate updates (i.e., propagate the value of the source
to the destination for each edge).

The update over each edge is shuffled into the update
set of the partition containing the destination of the edge.
This enables an important locality property — for each
vertex in a streaming partition, updates from all of its
incoming edges are present in the update set of the same
partition. The property leads to an efficient gather-apply
phase, because vertex computation can be performed lo-
cally in each partition without accessing other partitions.

The following gather-apply phase loads the vertex set
for each partition into memory, streams in updates from
the update set of the partition, and invokes the user vertex
function to compute a new value for each vertex. During
scatter and gather-apply, edges/updates are streamed in
sequentially from disk while in-memory vertices are ran-
domly accessed to compute vertex values. This design
leads to high performance because the number of edges
is much larger than that of vertices.

2.2 RStream Overview

We use X-Stream’s partitioning technique as the starting
point to build RStream. RStream adds a number of rela-
tional (R) phases into the GAS programming/execution
model, resulting in a new model referred to as GRAS
in the paper. To accommodate the relational semantics,
RStream’s programming interface treats vertex set, edge
set, and update set all as relational tables. From this point
on, we use vertex table, edge table, and update table to
refer to these sets.

Since edges do not carry data, the edge table has a
fixed schema of two columns (source and destination) –
its numbers of rows and columns never change. Both the
vertex and update table may change their schema during
computation. For example, the vertex table, initially with
two columns (ID and initial value), may grow to have
multiple columns (due to joins) where each vertex cor-
responds to a row with multiple elements; an example
can be found shortly in Figure 2. In the update table, one
vertex may have multiple corresponding rows since the
vertex can receive values from multiple edges. The update
table can also change due to joins. Tuples in these tables
remain unsorted throughout the execution.
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Figure 1: A Triangle Counting example in RStream; high-
lighted in each table is its key column. For each table,
only a small number of relevant tuples are shown.

RStream first conducts scatter to generate the update
table. Similarly to X-Stream, the vertex table is loaded
into memory in this phase; edges are streamed in and
updates are shuffled. The user-defined relational phases
are then performed over the update table and the edge
table in each streaming partition. What and how many
relational phases are needed is programmable. These re-
lational phases produce a new set of update tables, which
will be fed as input to the gather-apply phase to compute
new tuples for each vertex. The new tuples are saved into
the vertex table at the end of an iteration.

Example We use Triangle Counting as an example. Al-
though Triangle Counting is also supported by many com-
putation systems, it is a typical structure mining algorithm
that has a simple logic and thus provides a good intro-
ductory example. Figure 1 depicts the dataflow of the
computation while the RStream code is shown in Fig-
ure 2. The execution contains three phases: scatter and
two additional relational phases. The scatter phase has
the same semantics as in X-Stream — the vertex table is
loaded into memory; edges are streamed in and updates
are shuffled. The relational phases are user-defined and
their implementations are shown in Line 13–49. RStream
lets the developer register the dataflow by connecting
phases (Line 4–8). Each node on the dataflow graph is a
Phase object. Class TCScatter is a scatter phase with
a standard semantics; its definition is omitted for brevity.
The developer adds relational phases into the dataflow.

Initially, we let the value of each vertex be its own
ID (shown in the vertex table in Figure 1). The scatter

1 class TriangleCounting : public Application {
2 void run(Engine e){
3 /* Create a dataflow graph*/
4 TCScatter s;
5 e.set_start (&s);
6 R1 r1; R2 r2;
7 e.insert_phase(r1 , s);
8 e.insert_phase(r2 , r1);
9 e.run();

10 }
11 };
12

13 class R1 : public RPhase{
14 /* Called from join: only keep such <a, b, c>

that b < a < c */
15 bool filter(Tuple t1, Tuple t2){
16 if(t1.element (1) > t1.element (0))
17 return FALSE;
18 if(t2.element (0) > t2.element (2))
19 return FALSE;
20 return TRUE;
21 }
22

23 /* Called from join: new key column */
24 int new_key (){
25 return 2; /* set ‘C3’ as key*/
26 }
27

28 /*The main entry point */
29 void execute(StreamingPartition sp){
30 UpdateTable ut = sp.update_table;
31 ut.set_key (0); //set ‘VID’ as key
32 EdgeTable et = sp.edge_table;
33 /*Join ut with et; et’s key is ‘Src ’;

generated tuples are shuffled on
new_key */

34 super::join(sp);
35 }
36 };
37

38 class R2: public RPhase{
39 bool filter(Tuple t1, Tuple t2){
40 if(t2.element (1) != t1.element (0))
41 return FALSE;
42 return TRUE;
43 }
44

45 void execute(StreamingPartition sp){
46 super::join(sp);
47 super:: aggregate(sp , COUNT , null);
48 }
49 };

Figure 2: Triangle counting in RStream.

phase streams edges in from the edge table. For each
edge e, RStream retrieves the tuple from the vertex table
corresponding to e’s source vertex and produces an update
based on it. In the beginning, since each vertex has only
one value (i.e., its own ID), the update over each edge
e is essentially e’s source vertex ID. These updates are
shuffled into the update tables (#1 in Figure 1) across the
streaming partitions. Specifically, the update for e, which
is e’s source vertex ID, goes into the update table of the
partition that contains e’s destination.

The program has two relational phases R1 and R2. R1
essentially joins all such edges (a, b) with (b, c) to produce
relation (a, b, c), while R2 joins (a, b, c) with (c, a) to
detect triangles. To implement R1, the developer invokes
the join function defined in class RPhase. This function
takes a streaming partition (sp) as input and implements
a fixed semantics of joining sp’s update table (ut) with
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its own edge table (et) on their key columns. The key
column for the update table can be set by using set key,
while the edge table always uses the source vertex column
as its key column.

Joining the two tables also conducts (1) filtering, (2)
tuple reshuffling, and (3) updating of sp’s update table.
Filtering uses the user-defined filter function (Line 15–
21). Tuples produced by this join form the new update
table of each partition. The user can override the function
new key to specify the key column of this new table.
If the new key is different than the current key of the
update table, the generated tuples need to be reshuffled
across partitions — each tuple is sent to the partition that
contains the key element of the tuple.

For instance, the invocation of join in Line 34 joins
the update table #1 with the edge table in Figure 1 using
the filter defined in Line 15 of Figure 2. Specifically, it
joins (a, b) with (b, c) and produces tuples of the form
(a, b, c). The filter function specifies that we select
only rows (a, b, c) with b < a < c, to filter out duplicates.
Next, since function new key specifies C3 as the new key
column, each generated (a, b, c) will be shuffled to the
streaming partition whose vertex table contains vertex ID
c. This provides a benefit of locality for the next join,
which will be performed on column C3 of the update
table and Src of the edge table. Finally, the update table
of each streaming partition sp is updated to the new table
containing such (a, b, c) tuples.

The second invocation of join in Line 46 joins the
update table resulting from R1 (i.e., #2 in Figure 1) and
the same edge table with the filtering condition defined in
Line 39–43. The goal of this join is to find tuples of the
form (a, b, c) and (c, b) to confirm that (a, b, c) indeed
forms a triangle. After R2, the new update table (#3) in
each partition contains triangles that can be counted using
the aggregation function aggregate (Line 47). Here
we do not need a cycle in the dataflow graph and the
algorithm ends after the two joins.

Since the example aims to count the total number of
triangles, a gather-apply phase is not needed. However,
if one wants to count the number of distinct triangles for
each vertex, an additional gather-apply phase would be
required to stream in triangle tuples from the update table
#3 and gather them based on their key element to compute
per-vertex triangle counts. The gather phase essentially
implements a group-by operation. More details can be
found in §3.

Observation on Expressiveness We make several ob-
servations with the example. The first one is the expres-
siveness of the GRAS model. Joins performed by the
relational phases over the update table and the edge table
enable us to “grow” existing subgraphs we have found
(i.e., stored in the update table) with edges (i.e., stored
in the edge table) to form larger subgraphs. This is the

key ability enabling Datalog and Arabesque to express
mining algorithms. Our GRAS model is as expressive as
Arabesque’s filter-process model – the filter function
in a relational phase achieves the same functionality as
Arabesque’s filter while Arabesque’s embedding enumer-
ation and processing can be achieved with relational joins
between the update and edge tables.

Clearly GRAS is more expressive than Datalog – the
combination of dataflow cycles and relational joins allows
RStream to express algorithms that aim to discover struc-
tures whose shapes cannot be described a priori, such as
subgraph mining.

A surprising side effect of building our programming
model on top of GAS is that RStream can also support
graph computation algorithms and even the transitive clo-
sure computation, which none of the existing mining sys-
tems can support. Developing computation algorithms
such as PageRank is easy — they need the traditional scat-
ter, gather, and apply, rather than any relational phases.

Observation on Efficiency The locality property of X-
Stream is preserved in RStream. Tuple shuffling per-
formed at the end of each join (based on new key) makes
it possible for joins to occur locally within each stream-
ing partition sp. This is because (1) all the update tuples
whose key column contains a vertex ID belonging to sp
have been shuffled into the sp’s update table, and (2) all
the edges whose source vertex (i.e., key column) belong-
ing to sp are already in sp’s edge table. Random accesses
may occur only during shuffling; accesses are conducted
sequentially in all other phases. Our join is implemented
efficiently by tuple streaming (§4) – since the update table
is often orders of magnitude larger than the edge table,
RStream loads the edge table in memory and streams in
tuples from the update table.

Limitation A limitation of RStream is that it currently
assumes a static graph and does not deal with graph up-
dates without restarting the computation. Hence, it cannot
be used for interactive mining tasks at this moment.

3 Programming Model
This section provides a detailed description of RStream’s
programming model. Figure 3 shows the data struc-
tures and interface functions provided by RStream. An
RStream program is made up of a dataflow graph con-
structed by the developer. The main entry of an RStream
application is a subclass of Application, which the de-
veloper needs to provide to implement a given algorithm.

Adding Structural Info A special function to be im-
plemented in an application is need structure, which,
by default, returns FALSE. As shown in Figure 1, each
join grows an existing group of vertices with a new edge,
generating a new (larger) structure. However, since each
tuple currently only contains vertex IDs, the structural
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information of these vertices (i.e., edges connecting them)
is missing. This will not create a problem for applications
such as Triangle Counting because the structure of a tri-
angle is known a priori. However, for applications like
FSM, the shape of a frequent subgraph needs to be dis-
covered dynamically. Missing structural information in
tuples would create two challenges for these applications.
First, tuples with identical elements may represent differ-
ent structures. For example, a tuple 〈1,2,3,4〉 may come
from the joining of 〈1,2,3〉 and 〈3,4〉 or of 〈1,2,3〉 and
〈2,4〉; these are clearly two different subgraphs. The lack
of structural information causes RStream to recognize
them as the same subgraph instance, leading to incorrect
aggregation.

Conversely, missing structural information makes it
difficult for RStream to find and merge identical (auto-
morphic) subgraphs that are represented by different tu-
ples. For instance, joining 〈1,2,4〉 and 〈2,3〉 on the two
columns #1 and #0 generates the same subgraph instance
as joining 〈1,2,3〉 and 〈2,4〉 on the columns (#1, #0), al-
though the tuples produced look different (〈1,2,4,3〉 and
〈1,2,3,4〉). Failing to identify such duplicates would lead
not only to mis-aggregation but also inefficiencies.

To develop applications requiring structural infor-
mation, a RStream developer can override function
need structure to make it return TRUE. This informs
RStream to append a piece of information regarding each
join to each tuple produced by the join. For example, join-
ing 〈1,2〉 with 〈2,3〉 on the columns (#1, #0) produces
a tuple 〈1,2,3,(1)〉, where (1) indicates that this tuple
comes from expanding a previous tuple with an edge on
its 2nd column.

A further join between 〈1,2,3,(1)〉 and 〈2,4〉 on the
columns (#1, #0) generates tuple 〈1,2,3,4,(1,1)〉, which
indicates that this tuple comes from first expanding the
second column with an edge and then the second column
with another edge. This piece of information is added
(implicitly) at the end of each tuple, encoding the history
of joins, which, in turn, represents the edges that connect
the vertices in the tuple.

This structural information is needed in the following
two scenarios. First, it is used to encode a subgraph rep-
resented by a tuple into a coordination-free canonical
form, which can be used by the function is isomorphic

(defined in Tuple) during aggregation to find isomorphic
subgraphs. Two subgraphs (i.e., tuples) are isomorphic
iff there exists a one-to-one mapping between their ver-
tices and between their edges, s.t. (1) each vertex/edge
in one subgraph has one matching vertex/edge in another
subgraph, and (2) each matching edge connects match-
ing vertices. Tuples are aggregated at the end based on
isomorphism-induced equivalence classes.

Second, the structural information is used to identify
tuples representing the same subgraph instance (i.e., by

1 /*Data structures */
2 template <class T>
3 class Tuple {
4 int num_elements () {...}
5 T element(int i){...}
6 virtual bool is_automorphic(Tuple t){...}
7 virtual bool is_isomorphic(Tuple t){...}
8 };
9 class Edge : public Tuple {...};

10 class Vertex: public Tuple {...};
11

12 class Table {
13 int get_key (){...}
14 void set_key(int i) {...}
15 };
16 class UpdateTable : public Table {...};
17 class EdgeTable : public Table {...};
18 class VertexTable : public Table {...};
19 struct StreamingPartition {
20 UpdateTable update_table;
21 EdgeTable edge_table;
22 VertexTable vertex_table;
23 virtual void set_init_value(Vertex v);
24 };
25

26 class Application{
27 /* Dataflow graph registered here */
28 virtual void run();
29 /* Whether we need structural info*/
30 virtual bool need_structure () {return FALSE;}
31 };
32

33 /* Phases */
34 class Phase {
35 virtual bool converged(TerminationLogic l);
36 };
37 class Scatter : public Phase {
38 virtual Tuple generate_update(Edge e){...};
39 };
40 class GatherApply : public Phase {
41 virtual void apply_update(Vertex v, Tuple

update);
42 };
43

44 class RPhase : public Phase{
45 /* Functions called from join or select */
46 virtual bool filter(Tuple t1, Tuple t2) {

return TRUE;}
47 virtual int new_key ();
48

49 /* Called from the engine */
50 virtual void execute(StreamingPartition p);
51

52 /* == A set of relational functions ==*/
53 /* Join ut and et of p and updates ut*/
54 void join(StreamingPartition p){...}
55 /* Join ut and et of p on all columns of ut

and updates ut*/
56 void join_on_all_columns(StreamingPartition p)

{...}
57 /* Select rows from ut of p and updates ut*/
58 void select(StreamingPartition p){...}
59 /* Aggregate rows from ut of p*/
60 void aggregate(StreamingPartition p, int type)

{...}
61 };

Figure 3: Major data structures and API functions.

is automorphic). Two subgraphs are automorphic iff
they contain the same edges and vertices. Tuples that
represent the same subgraph instance need to be merged
during computation for correctness and performance. The
implementation of these functions is discussed in §4.

RStream tuples are essentially vertex-based represen-
tations of subgraphs. Edges are represented as structural
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Figure 4: A graphical illustration of join on all columns; the streaming partitions #1 and #2 contain vertices [0, 10]
and [11, 25], respectively; suppose new key returns 2 (which is column C3). Structural info is not shown.

information appended at the end of each tuple. Com-
pared to Arabesque where each subgraph (embedding)
has an edge-based representation, RStream’s representa-
tion allows the application to express whether the edge
information is needed, providing space efficiency for ap-
plications that aim to find statically-known patterns and
thus do not need the edge information.

Relational Phases Operations that can be performed
in a relational phase include join, select, aggregate,
and join on all columns. join joins the update table
with the edge table of each streaming partition on their
key columns; select selects rows from the update table
based on the user-defined filter; and aggregate aggre-
gates values from all rows in the update table. The “type”
parameter of aggregate indicates the type of aggrega-
tion such as MAX, MIN, SUM, COUNT, or STRUC-
TURE SUM. A special type is STRUCTURE SUM,
which counts the number of subgraphs that belong to
the same isomorphism class. If a programmer needs
to aggregate over a subset of rows, she can first in-
voke select and then aggregate. join and select

change the update table while aggregate does not.
join on all columns will be discussed shortly.

The two callback functions filter and new key

in class RPhase are invoked by join, select, and
join on all columns to determine what rows need to
be considered and how results should be shuffled, respec-
tively. For either join or select, changing the key col-
umn of the update table (i.e., using new key) will trigger
tuple shuffling across streaming partitions.

Note that RPhase does not provide a group-by func-
tion, because group-by can be essentially implemented by
a gather-apply phase. During a gather-apply, the vertex

table is loaded into memory and tuples from the update
table (produced either by a scatter phase or by a relational
phase) are streamed in. RStream gathers tuples that have
the same key element (i.e., vertex ID) and invokes the
user-defined apply update function at Line 41 to com-
pute a new tuple for the vertex. These new tuples are then
saved into the vertex table, which is written back to disk
at the end of each iteration. In other words, gather-apply
produces a new vertex table.
join on all columns is the same as join except

that it joins the update table with the edge table multi-
ple times, each time using a different column from the
update table as key. The key of the edge table remains un-
changed (i.e., source vertex column). The number of joins
performed by this function equals the number of columns
in the update table. This function is necessary to imple-
ment mining algorithms that need to grow a subgraph
from all of its vertices, such as Clique or FSM.

Figure 4 illustrates join on all columns. Since it
changes the key of the update table for each join, RStream
shuffles tuples twice after a join — the first one, referred to
as input shuffle (I-shuffle), shuffles tuples from the update
table based on the next key to be used to prepare for the
next join; the second one, referred to as output shuffle
(O-shuffle), shuffles the result tuples based on the new
key defined by new key to prepare for the final output,
which will eventually become the new update table (UT′).

Termination Class Phase contains an abstract function
converged that needs to be implemented in user-defined
phases. This function defines termination logic for iter-
ative computation algorithms (with back edges on the
dataflow graph). Note that RStream invokes this function
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1 class FSMProgram : public Application {
2 /*FSM needs structural info*/
3 bool need_structure () { return TRUE; }
4

5 void run(Engine e){
6 Scatter cs;
7 e.set_start(cs);
8 FSMPhase fsm;
9 e.insert_phase(fsm , cs);

10 /* This forms a cycle */
11 e.insert_phase(fsm , fsm);
12 e.run();
13 }
14 };
15

16 class AggregateFilter : public RowFilter{
17 AggregationStream aggStream;
18 int threshold;
19

20 bool filter_out_row(Tuple t){
21 int support = get_support(aggStream , t);
22 if(support >= threshold) return FALSE;
23 /*It couldn ’t be a frequent subgraph.*/
24 return TRUE;
25 }
26 };
27

28 class FSMPhase : public RPhase{
29 static int MAX_ITE = MAX_FSM_SIZE * (

MAX_FSM_SIZE - 1)/2;
30

31 bool converged(TerminationLogic l) {
32 if(l.get_ite_id () == MAX_ITE) return TRUE;
33 return FALSE;
34 }
35

36 int new_key (){ return LAST_COLUMN ;}
37

38 void execute(StreamingPartition sp){
39 UpdateTable ut = sp.update_table;
40 ut.set_key (0);
41 EdgeTable et = sp.edge_table;
42 et.set_key (0);
43 super:: join_on_all_columns(sp);
44 super:: aggregate(sp , STRUCTURE_SUM);
45 AggregateFilter af;
46 super:: select(sp, af);
47 }
48 };

Figure 5: An FSM program; structural info is needed.

only for the phases that are sources of dataflow back edges
to determine whether further iterations are needed.

Example: FSM on RStream We use one more exam-
ple — frequent subgraph mining — to demonstrate the
power of RStream’s programming model, and in par-
ticular, the usage of dataflow cycles and the function
join on all columns. Figure 5 shows the computa-
tion logic. It consists of two phases: a (standard) scatter
phase and an iterative relational phase FSMPhase. The
basic idea is that each execution of FSMPhase performs
join on all columns between the update and edge ta-
ble. Each tuple in the update table represents a new sub-
graph we have found. This special join attempts to “grow”
each subgraph with one edge on each vertex in the sub-
graph. For example, for a tuple (a,b,c,d), this join will
join it with the edge table four times, each on a differ-
ent column. Each join generates five-tuples of the form
(a,b,c,d,e), which is keyed at e (i.e., LAST COLUMN

specified in Line 36). Such tuples are shuffled into the
partitions to which e belongs.

Given the max size of subgraphs to be considered
(e.g., MAX FSM SIZE = 4), all we need is to execute
FSMPhase for a fixed number of times; this number equals
the maximum number of edges that can be involved in
the largest FSM: MAX FSM SIZE×(MAX FSM SIZE−
1)/2, as shown in Line 29.

At the end of each FSMPhase, we aggregate all tu-
ples in the update table (Line 44) to count the number of
each distinct structural pattern. After the aggregation, a
select is performed to filter out tuples corresponding to
infrequent subgraphs (Line 46). This function takes as
input a variable of class AggregateFilter, which con-
tains a function filter out row that will be applied to
each tuple. This function eliminates tuples that represent
structural patterns whose supports are not high enough
(Lines 20-25). The intuition here is that if a subgraph is
infrequent, then any supergraphs generated based on it
must be infrequent — referred to as the Downward Clo-
sure Property [7]. These infrequent tuples can be safely
ignored in the next iteration. Similarly to Arabesque [66],
we use the minimum image-based support metric [22] as
it can be efficiently computed. This metric defines the
frequency of a structural pattern as the minimum number
of distinct mappings for any vertex in the pattern over all
instances of the pattern.

4 RStream Implementation
RStream’s implementation has an approximate of 7K
lines of C++ code and is available on Github.

4.1 Preprocessing

For graphs that cannot fit into memory, they are first parti-
tioned by a preprocessing step. The graph is in the edge-
list or adjacency-list format on disk. RStream divides
vertices into logical intervals. One interval in RStream
defines a partition that contains edges whose source ver-
tices fall into the interval. Edges that belong to the same
partition do not need to be further sorted. To achieve
work balance, we ensure that partitions have similar sizes.
Since our join implementation (discussed shortly) needs
to load each edge table entirely into memory, the num-
ber of streaming partitions is determined automatically to
guarantee that the edge table for each streaming partition
does not exceed the memory capacity while memory can
still be fully utilized.

For graphs that can be fully loaded, RStream generates
one single partition and no tuple shuffling will be incurred
for joins. However, unlike share-memory graph compu-
tation systems that can hold all computations in memory,
mining algorithms in RStream can cause update tables
to keep increasing — even for very small graphs, their
update tables can grow to be several orders of magnitude
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larger than the size of the original graph. Hence, RStream
requires disk support regardless of the initial graph size.

4.2 Join Implementation

As the update table grows quickly, to implement join, we
load the edge table into memory and stream in tuples from
the update table for each streaming partition. RStream
performs sequential disk accesses to both the update table
and the edge table, and random memory accesses to the
loaded edge data.

Note that the edge table represents the original graph
while the update table contains intermediate data gen-
erated during computation. Since the edge table never
changes, the amount of memory required by RStream is
bounded by the maximum size of a partition in the origi-
nal graph, not the intermediate computation data, which
can be much larger than the graph size.

Scatter and gather-apply are implemented in the same
way as in X-Stream — for scatter, the vertex table is
loaded while edges are streamed in; for gather-apply, the
vertex table is loaded while updates are streamed in.

Filtering is performed by invoking the user-defined
filter function upon the generation of a new tuple. When
join on all columns is used, different tuples generated
may represent identical (automorphic) structures. Simi-
larly to Arabesque, we define tuple canonicality by select-
ing a unique (canonical) tuple from its automorphic set
as a representative and remove all other tuples. Details of
this step are discussed shortly in §4.3.

Multi-threading RStream uses a producer-consumer
paradigm for implementing join. The main thread pushes
the IDs of the streaming partitions to be processed into
a worklist as tasks, and starts multiple producer and con-
sumer threads. Each producer thread pops a task off the
list, loads its edge table, and streams in its update ta-
ble into the producer’s thread-local buffer. The producer
thread joins each “old” update tuple with the edge table
and produces a “new” update tuple.

We allocate a reshuffling buffer, for each streaming
partition, to store new update tuples entering this parti-
tion. Producers and consumers synchronize using locks
to ensure concurrent accesses to reshuffling buffers. Each
producer sends each generated tuple to its corresponding
reshuffling buffer when the buffer has room, while each
consumer flushes a buffer into its corresponding “new”
update table on disk when the buffer is full.

Figure 6 illustrates multiple producers and consumers.
There are four producer threads and two consumer threads.
Eight tasks are pushed onto the task worklist. Each pro-
ducer takes one task from the list, loads its edge parti-
tion, and streams in its update partition. Each producer
conducts the computation and generates output updates
locally. Reshuffling is synchronized using std::mutex.
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Figure 6: A graphical illustration of multiple producers,
multiple consumers and reshuffling buffers.

Load (Re)balancing Unlike X-Stream where the size
of each streaming partition stays unchanged, in RStream,
the size of each partition can grow significantly for two
reasons. First, mining algorithms keep looking for graph
patterns of increasing sizes, leading to the ever-growing
update table. Second, tuple reshuffling at the end of each
join can result in unbalanced partitions. These unbal-
anced partitions, if handled inappropriately, can result in
significant inefficiencies (e.g., underutilized CPU).

One possible solution would be to repartition the
streaming partitions at the end of each relational phase for
load rebalancing. However, repartitioning can incur sig-
nificant disk I/O, slowing down the computation. Rather
than repartition the graph, we use fine-grained tasks by
dividing each update table into multiple smaller update
chunks. Instead of pushing an entire update partition into
the list, we push one chunk at a time. For work balanc-
ing, we also order these tasks based on their sizes so that
“larger” tasks have a higher priority to be processed.

Enumeration Note that, by joining the update table
with the edge table, RStream performs breadth-first enu-
meration of subgraphs. While this approach requires more
storage to materialize tuples compared to a depth-first ap-
proach, it enables easier parallelization as all tuples of a
given size are materialized and available for processing.
Further, as a disk-based approach, RStream’s breadth-first
enumeration increases disk usage rather than memory us-
age — As shown in Figure 6, the enumeration delivers
each newly generated tuple to a shuffling buffer and once
the buffer is full, RStream flushes the buffer to disk.

4.3 Redundancy Removal via Automorphism
Checks

Since different workers can reach identical (automorphic)
tuples during processing, we need to identify and filter
out such tuples. RStream adopts the idea of embedding
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Figure 7: A graph and its canonical tuples of size 3.

canonicality used in Arabesque [66]. We select exactly
one of the automorphic tuples and elect it as “canoni-
cal”. RStream runs a tuple canonicality check to verify
whether a tuple t can be pruned. This algorithm runs
on a single tuple without coordination. It starts with an
existing canonical tuple t and checks, when t is grown
with a new vertex v into a new tuple t ′, whether t ′ is also
canonical. The basic idea is based on a notion of unique-
ness: given the set Sm of all tuples automorphic to a tuple
m, there exists exactly one canonical tuple tc in Sm. The
goal of this algorithm is, thus, to check whether the newly
generated tuple t ′ is this tc.

The tuple t ′ is canonical if and only if its vertices are
visited in an order that is consistent with their IDs: a
vertex with a smaller ID is visited earlier than one with a
larger ID. In other words, RStream characterizes a tuple
as the list of its vertices sorted by the order in which they
are visited. When we check the canonicality of tuple t ′

that comes from growing an existing canonical tuple t
with a vertex v, we first find the first neighbor v′ of v,
and then verify that there is no vertex ∈ t after v′ with
a larger ID than v. Figure 7 shows a simple graph and
its canonical tuples of size 3. Because RStream only
processes canonical tuples, uniqueness is maintained in
our tuple encoding (with structural information). A more
detailed description can be found in [67].

4.4 Pattern Aggregation via Isomorphism Checks

For mining algorithms, aggregation needs to be done on
tuples to count the number of each distinct shape (i.e.,
structural pattern) at the end of the computation. Aggre-
gation boils down to isomorphism checks — among all
non-automorphic tuples, we count the number of those
that belong to each isomorphism class. A challenge here
is that isomorphism checks are expensive to compute — it
is known to be isomorphism (GI)-complete and the bliss
library [3] we use employs an exponential time algorithm.

RStream adopts the aggregation idea from Arabesque
by turning each tuple into a quick pattern and then into
a canonical pattern [16, 66]. The canonical pattern of
a subgraph, which is different than the canonical tuple
described earlier for automorphism checks, encodes the
shape of the subgraph with all vertex information re-
moved. Two tuples are isomorphic iff they have the same

1（a）
2（b）

3（c）

1（a）
3（c）

4（b）

3（c）

2（b）

5（a）

Tuple 1 Tuple 2 Tuple 3

Figure 8: Aggregation example of three isomorphic tuples.

canonical patterns. The quick pattern of a subgraph is
simply a total order of edges in the subgraph with ver-
tex information removed. Two tuples may have different
quick patterns even if they are isomorphic.

Given that canonical checks are expensive, we use the
same two-step aggregation as in Arabesque — the first
step uses quick patterns that can be efficiently computed
to perform coarse-grained pattern aggregation, while the
second step takes as input results from the first step, con-
verts them into canonical patterns, based on which fine-
grained aggregation is done. The aggregation conducts a
two-stage MapReduce computation — the first on quick
patterns and the second on canonical forms — across
all streaming partitions. Although the aggregation idea
originates from Arabesque [66], we provide a detailed ex-
ample in the rest of this section to make this paper more
self-contained.

Example The map phase takes quick patterns and
canonical forms as input, performs local aggregation, and
shuffles them into hash buckets defined by the hash value
of these patterns. The reduce phase aggregates key/value
pairs in the same bucket. Figure 8 depicts an example
with three tuples: tuple1 : 〈1(a),2(b),3(c),(0)〉, tuple2 :
〈1(a),3(c),4(b),(0)〉, and tuple3 : 〈5(a),3(c),2(b),(0)〉.
Here numbers represent vertex IDs and characters repre-
sent labels for each vertex. Note that mining algorithms
often require graphs to have vertices and edges explicitly
labeled. These labels represent vertex/edge properties that
never change during the computation and they are needed
for isomorphism checks. (0) represents the structural
information obtained from the past joins.

RStream first turns each tuple into a quick pattern to
reduce the number of distinct tuples. A quick pattern is
obtained by simply extracting the label information and re-
naming vertex IDs in a given tuple, with vertex ID always
starting at 1 and increasing consecutively. In the previous
example, the quick patterns for the three tuples are qp1 :
〈1(a),2(b),3(c),(0,0)〉, qp2 : 〈1(a),2(c),3(b),(0,0)〉,
qp3 : 〈1(a),2(c),3(b),(0,0)〉, respectively. In the map
phase, RStream emits three quick pattern pairs: (qp1, 1),
(qp2, 1), (qp3, 1); the reduce phase further aggregates
them into (qp1, 1), (qp2, 2) as qp2 and qp3 are identical.
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Graphs #Edges #Vertices Description
CiteSeer [29] 4,732 3,312 CS pub graph

MiCo [29] 1.1M 100K Co-authorship graph
Patents [32] 14.0M 2.7M US Patents graph

LiveJournal [17] 69M 4.8M Social network
Orkut [1] 117M 3M Social network

UK-2005 [20] 936M 39.5M Web graph
Table 1: Real world graphs.

Program LoC Description
Triangle Counting (TC) 75 Counting # triangles

Closure 68 Computing transitive closure
N-Clique 36 Identify cliques of size N
N-Motif 36 Counting motifs of size N

Frequent Subgraph Mining (FSM) 40 Identify FSM of size N
Connected Components (CC) 40 Identify connected components

Table 2: Algorithms experimented.

Due to the coarse-grained modeling of quick patterns,
tuples that are actually isomorphic may correspond to
different quick patterns. As a next step, quick patterns
are turned into canonical forms (by bliss) to perform fine-
grained aggregation. A canonical form uniquely identifies
a class of isomorphic subgraphs. In the example, the two
quick patterns correspond to the same canonical form cf1 :
〈1(a),2(b),3(c),(0,0)〉. RStream eventually reports (cf1,
3) as the final result. Since the number of quick patterns
is much smaller than the number of distinct tuples, the
cost of isomorphic checks can be significantly reduced.

One possible optimization is to perform eager aggrega-
tion — tuples are aggregated as they are being streamed
into their respective partitions. We have implemented this
optimization, but our experimental results showed only
a minor improvement (5% in the aggregation phase and
less than 2% for the overall execution).

5 Evaluation
Our evaluation focuses on three research questions:

• Q1: How does RStream compare to state-of-the-art
graph mining systems? (§5.1)
• Q2: How does RStream compare to state-of-the-art

Datalog engines? (§5.2)
• Q3: What is RStream’s overall and I/O throughput

and how quickly does data grow for mining algo-
rithms? (§5.3)

Experimental Setup We ran our experiments using six
algorithms (Table 2) over six real-world graphs (Table 1).
CiteSeer, MiCo, and Patents are the graphs that were used
by Arabesque and DistGraph in their evaluations. We
used them primarily for comparisons with the mining
systems. Similarly, Orkut and LiveJournal were used by
BigDatalog [61] and we used them to compare RStream
with BigDatalog. UK-2005 has almost a billion edges and
is much larger than all the graphs used by Arabesque [66].

For mining algorithms, we developed Triangle Count-
ing (TC), Clique, Motif Counting (MC), Transitive Clo-

CS MC PA

TC

RS 0.04 15.8 6.7
AR-10 38.1 43.1 114.9
AR-5 39.8 44.9 116.4
AR-1 34.2 40.7 131.5

5-C

RS 0.01 115.1 35.3
AR-10 42.8 132.0 174.5
AR-5 39.3 171.7 183.0
AR-1 34.9 404.3 227.9

3-M

RS 0.02 43.0 89.1
AR-10 40.6 51.7 116.0
AR-5 39.7 52.8 110.5
AR-1 32.7 47.0 132.9

4-M

RS 1.41 93417 8849
AR-10 41.7 - -
AR-5 40.4 - -
AR-1 34.2 - -

3-F

RS 0.89 402.1 517.4

300

AR-10 35.9 - -
AR-5 39.3 - -
AR-1 33.7 - -
SM-10 2.1 69431.7 -
SM-5 2.6 66604.3 -
SM-1 3.5 77332.7 -
DG-10 12.3 - -
DG-5 4.1 - -
DG-1 5.2 - -

CS MC PA

3-F

RS 0.10 384.3 502.1

500

AR-10 35.7 - -
AR-5 39.3 - -
AR-1 34.4 - -
SM-10 2.0 15867.5 -
SM-5 2.3 15209.4 -
SM-1 3.2 21043.3 -
DG-10 0.4 - -
DG-5 0.12 - -
DG-1 0.11 - -

3-F

RS 0.06 351.7 383.7

1K

AR-10 35.6 5790.1 -
AR-5 39.9 5397.9 -
AR-1 33.9 5848.2 -
SM-10 1.2 802.6 -
SM-5 1.1 790.8 -
SM-1 1.1 1175.1 -
DG-10 0.4 - -
DG-5 0.12 - -
DG-1 0.10 - -

3-F

RS 0.02 51.0 376.4

5K

AR-10 41.6 120.8 -
AR-5 37.7 192.7 -
AR-1 31.8 610.3 -
SM-10 1.0 12.1 -
SM-5 1.1 11.6 -
SM-1 1.3 14.5 -
DG-10 0.3 - -
DG-5 0.05 - -
DG-1 0.08 - -

Table 3: Comparisons between RStream (RS), Arabesque
(AR-n), ScaleMine (SM-n), and DistGraph(DG-n) on four
mining algorithms — triangle counting (TC), Clique (k-
C), Motif Counting (k-M), and FSM (k-F) — over three
graphs CiteSeer (CS), MiCo (MC), and Patents (PA); n
represents the number of nodes the distributed systems
use; k is the size of the structure to be mined; ‘-’ indicates
execution failures. For FSM, four different support pa-
rameters (300, 500, 1K, and 5K) are used and explicitly
shown in each 3-F row. Highlighted rows are the shortest
times (in seconds).

sure Computation (Closure), and Frequent Subgraph Min-
ing (FSM). Closure is a typical Datalog workload, and
hence, we used it specifically to compare RStream with
Datalog. Connected Components (CC) is a graph compu-
tation algorithm. Since RStream can also support compu-
tation (with just GAS and no relational phases), we added
CC into our algorithm set to help us develop a deep un-
derstanding of the behavioral differences between graph
computation and graph mining (§5.3).

Our experiments were conducted on a 10-node cluster,
each with 2 Xeon(R) CPU E5-2640 v3 processors, 32GB
memory, and 3 SSDs with a total of 5.2TB disk space,
running CentOS 6.8. Data was split evenly on the three
disks. RStream ran on one single node with 32 threads
to fully utilize CPU resources and disk bandwidth, while
distributed systems used all the nodes.

5.1 Comparisons with Mining Systems

Systems and Algorithms We compared RStream
with three state-of-the-art distributed mining systems:
Arabesque [66], ScaleMine [4], and DistGraph [65].
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Other distributed mining systems such as G-thinker [77]
are not publicly available and hence not considered in our
experiments. We ran these three systems with 10 nodes,
5 nodes, and 1 node to have a precise understanding of
where RStream stands. In this first set of experiments,
all Motif executions were run with a maximum size of 4;
Clique was run with a maximum size of 5; and FSM was
run with size of 3.

As discussed earlier, to run FSM we used the minimum
image-based support metric [22], which defines the fre-
quency of a pattern as the minimum number of distinct
mappings for any vertex in the pattern, over all instances
of the pattern. We explicitly state the support, denoted S,
used in each experiment since this parameter is sensitive
to the input graph. Clearly, the smaller S is, the more
computation is needed.

In this experiment, we used CiteSeer, MiCo, and Patent
as our input graphs. These three graphs came with labels2

and were also used to evaluate Arabesque, ScaleMine,
and DistGraph. Our initial goal was to evaluate RStream
with all graphs used in prior works, but other graphs were
either unavailable or do not have labels. Although these
are relatively small graphs from the perspective of graph
computation, running mining algorithms on them can
generate orders-of-magnitude more data (see Table 5).

Table 3 reports the running times of the four systems.
Note that ScaleMine and DistGraph were designed specif-
ically to mine frequent subgraphs, and hence we could
obtain only FSM’s performance for these two systems. It
is clear that RStream outperforms all three systems in
all cases but 3-FSM with support = 5000. Arabesque,
ScaleMine, and DistGraph failed when the size of a pat-
tern increases. These failures were primarily due to their
high memory requirement (for storing intermediate data)
that could not be fulfilled by our cluster.

For FSM, on small graphs such as CiteSeer, DistGraph
appears to be more efficient than the other two systems.
However, DistGraph could not scale to the MiCo graph
on our 10-node cluster. ScaleMine successfully processed
MiCo, but took a long time, because ScaleMine trades off
computation for memory; instead of caching intermediate
results in memory, it always re-computes from scratch,
which explains why it has better scalability but lower
efficiency. None of these three systems could process
FSM over the Patents graph even when support = 5000.
By contrast, RStream successfully executed FSM over all
the graphs under all the configurations.

RStream underperforms ScaleMine in only one case:
3-FSM (S=5000) over MiCo. RStream outperforms
Arabesque (on 10 nodes) by an overall (GeoMean) of
60.9×, ScaleMine by an overall of 12.1×, and DistGraph
by an overall of 7.2×. As Arabesque was developed in

2Mining algorithms require labeled graphs (i.e., vertices and edges
have semantic labels).
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Figure 9: FSM performance comparisons with different
pattern sizes and supports over the Patents graph. Tall
red bars on the right of each group represent Arabesque
failures.

Java, the 60.9× speedup may be partly due to RStream’s
use of an efficient language (C++). ScaleMine and Dist-
Graph were both C++ applications and, hence, the wins
over them provide a closer approximation of the benefit a
disk-based system could offer.

UK Graph To understand RStream’s performance on
larger graphs, we ran 3-FSM on RStream to process the
UK-2005 graph that has almost a billion edge. Note that
none of the three distributed systems could process the
graph when running 3-FSM with even a 5K support on
our 10-node cluster. In all prior works, the only evidence
of a mining system successfully processing a billion-edge
graph was reported in [65] where DistGraph, using 512–
2048 IBM BlueGene/Q machines each with 16 cores and
256GB memory, processed several synthetic graphs with
1B–4B edges in 2000 – 7000 seconds (with varying sup-
ports). Here we experimented RStream with four support
parameters – 2K, 3K, 4K, and 5K – on one single ma-
chine with only 32GB memory. RStream successfully
processed all of them, e.g., in 4080.9, 3016.3, 2228.9, and
2146.2 seconds, respectively.

RStream ran out of memory when a relatively small
support was used (i.e., ≤1000) to compute frequent sub-
graphs over UK. After spending a great amount of time
investigating the problem, we found that the large mem-
ory consumption was potentially due to memory leaks in
the bliss library rather than RStream, which guarantees
that the amount of data to be loaded from each streaming
partition never exceeds the memory capacity.

Larger FSMs To evaluate how RStream performs on
k-FSMs with larger k, we conducted a set of experiments
over the Patents graph with various k and supports. Since
DistGraph failed in most cases when we increased k, this
set of experiments focused on RStream, ScaleMine, and
Arabseque, and the results of the comparisons are re-
ported in Figure 9. Both Arabesque and ScaleMine were
executed with 10 nodes. Overall, RStream is 2.46× and
2.28× faster than ScaleMine and Arabesque.
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Support Patents Mico
RStream GraMi RStream GraMi

5K 504.6 - 51.0 -
10K 286.7 - 23.2 36.5
15K 213.3 - 14.3 18.7
20K 190.8 - 8.6 9.2

Table 4: FSM performance comparisons between
RStream and GraMi over Patents and Mico; time is mea-
sured in seconds.

We have also compared RStream with GraMi [29],
which is a specialized graph mining library designed to
perform single-machine shared-memory FSM computa-
tion, over the Patents and Mico graphs. Table 4 reports
the results. Note that, for each support, GraMi reports pat-
terns of all sizes with respect to the support. RStream was
executed in a similar way to provide a fair comparison.
GraMi ran out of memory for all cases over the Patents
graph. On the Mico graph, RStream outperforms GraMi
even for large (e.g., 20K) supports.

There are two reasons that could explain RStream’s
superior efficiency. First, joins performed by RStream
grow subgraphs in batch while the other systems enumer-
ate and grow embeddings individually. Second, the three
systems RStream was compared against are all distributed
systems that have a large startup and communication over-
head. While the data size quickly grows to be larger than
the memory capacity of a single machine, this size is of-
ten small in an early stage of the execution. Distributed
systems suffer from communication overhead throughout
the execution, while RStream does not have heavy I/O in
this early stage.

The fact that the three distributed systems failed in
many cases does not necessarily indicate that RStream
can scale to larger graphs than them. We believe that these
systems, if given enough memory, should have performed
better than what is reported in Table 3. However, their
exceedingly high memory requirement is very difficult to
satisfy — the 10-node cluster we used is the only cluster
to which we have exclusive access. According to [66],
running 4-motif on a 200M-edge graph took Arabesque
6 hours consuming 20 × 110GB = 2200GB memory.
As a reference point, the most memory-optimized clus-
ter (x1.32xlarge) Amazon EC2 offers has only 1952GB
memory, which is still not enough to run the algorithm.

These results do suggest, though, that if a user has
only a limited amount of computing resources, RStream
should be a better choice than these other systems because
RStream’s disk requirement is much easier to fulfill and
yet it can scale to large enough real-world graphs.

5.2 Comparisons with Datalog Engines

Since our GRAS model is inspired partly by the way Dat-
alog enables easy programming of mining algorithms,
we have also compared RStream with the state-of-the-art
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Figure 10: (a) Comparisons between RStream (RS), Big-
Datalog (BD-n), and SociaLite (SL) on TC and CC; (b)
Closure comparison over CiteSeer.

Datalog engines. We use BigDatalog [61] with Spark
joins and SociaLite [40], a shared memory Datalog en-
gine. We used the LiveJournal and Orkut graphs, which
were initially used to evaluate BigDatalog [61] to evaluate
BigDatalog. We used three algorithms: Triangle Counting
(TC), Connected Components (CC), and Closure Compu-
tation (Closure). Although CC and Closure are not typical
mining algorithms, they are Datalog programs regularly
used to evaluate the performance of a Datalog engine.
Hence, we included them in this experiment. Note that
BigDatalog has been shown to outperform vanilla Spark
over these workloads due to several optimizations imple-
mented over Spark joins [61].

Figure 10(a) compares the performance of RStream
with that of BigDatalog and SociaLite. For TC and CC,
RStream outperforms BigDatalog (with 10 nodes) by a
GeoMean of 1.37×, while SociaLite failed in most cases.
For transitive closure, CiteSeer was the only graph that
RStream, BigDatalog, and SociaLite could all success-
fully process. Their performance comparison is shown in
Figure 10(b): RStream is 4× faster than BigDatalog run-
ning on 10 nodes, while it took SociaLite a large amount
of time (8021 seconds) to finish closure computation.

These results appear to be different from what was
reported in the prior works [61] and [40]. We found that
the difference was primarily due to the input graphs —
both the works [61] and [40] used synthetic acyclic graphs
for transitive closure, while real graphs have both cycles
and very high density that synthetic graphs do not have.
Neither BigDatalog nor SociaLite could finish closure
computation for any graph other than CiteSeer, while
RStream successfully computed closure for LiveJournal
in 4578 seconds.

5.3 RStream Performance Breakdown

To fully understand RStream’s performance, throughput,
I/O efficiency, and disk usage, we have conducted a set of
experiments using various graphs and algorithms.

Intermediate Data Generation Table 5 reports, for
4-Motif (over the Patents graph) and 4-FSM (over the
Patents graph), the number of tuples generated at the end
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Figure 11: RStream’s scalability (a), I/O throughput when running CC over UK (b), and I/O throughput when running
TC over UK (c). I/O was measured with iostat.

Phase #Tuples TS #MB

4-Motif 0 1,080,156 16 16.5

MiCo 1 91,151,339 24 2,086.3
2 29,044,509,725 32 886,378.1
3 10,016,299,628 40 382,091.5

Total 3.9×1010 - 1,270,572.4 (1.21TB)

4-FSM, S=10K

0 13,965,409 16 213.1

Patents

1 625 28 0.02
2 5,861,830 16 89.4
3 93,313,116 24 2,135.8
4 13,764 36 0.5
5 29,462,761 24 674.3
6 816,909,842 32 24,930.1
7 101,254 44 4.2
8 633,673,981 32 19,338.2
9 57,361,813 40 2,188.2

10 30,283 52 1.5
11 509,304 40 19.4

Total 1.65×109 - 49,594.72 (48.4GB)

Table 5: The number of tuples (Tuples) generated for
each phase execution, the size of each tuple (TS), and
the number of bytes (#MB) shuffled for 4-Motif over the
Patents graph and 4-FSM, S=10K over the Mico graph.

of each phase, the size of each tuple, as well as the storage
consumption of these tuples. The amount of data gener-
ated during the execution can easily exceed the memory
capacity. For 4-Motif, the total amount of intermediate
data generated requires 1.21TB of disk space. This moti-
vates our out-of-core design that leverages large SSDs to
store these intermediate subgraphs.

FSM(300) FSM(500) FSM(1000) 3-Motif 4-Motif 5-Clique
CiteSeer 129 110 76 83 1914 26

MiCo 2388 2366 2285 1206 12408 6968
Patents 1234 1151 936 110 2791 275

UK 1367 2379 1461 1001 8914 7231

Table 6: Ratios between the final disk usage and original
graph size (in the binary format).

To understand how large the total amount of data gen-
erated is, Table 6 further reports, for each graph, the ratio
between the amount of storage needed at the end of each
execution and the original size of the graph. This growth
can be as large as 5 orders of magnitude (4-Motif over
the MiCo graph). These ratios also reflect (1) the density
of each graph (regardless of the size of the graph), which
determines how difficult the graph is to process; and (2)
the computation complexity of each algorithm, which
determines how difficult the algorithm is to run. The
MiCo graph is the one with the highest density, although
it is relatively small in size. 4-Motif is the algorithm
that needs the most computations as it generates the most
intermediate data compared to other algorithms.

Scalability and I/O Figure 11(a) shows RStream’s run-
ning time for varying numbers of threads. In general,
RStream scales with the number of threads. However,
RStream’s scalability decreases when the number of
threads exceeds 8 because the disk bandwidth was almost
saturated when 8 threads were used.

To understand how RStream performs for mining and
computation algorithms, Figure 11(b) and (c) depict
RStream’s I/O throughput for a computation program
(CC) and a mining program (TC), respectively. For CC,
we monitored I/O in a full scatter-gather-apply iteration,
while for TC, our measurement covered the full cycle
of a join – loading the edge table, streaming in update
tuples, performing joining, and writing back to the update
table. The file system cache was flushed during monitor-
ing. Note that the high read throughput (e.g., 800+MB/s)
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achieved by RStream was primarily due to data stripped
across the SSDs.

These two plots reveal the differences of these two
types of algorithms: computation algorithms such as CC
are dominated by I/O — e.g., disk reads/writes occur
throughout the iteration. By contrast, relational joins in
the mining algorithms such as TC are more compute-
intensive, as most of the reads occur in an early stage
of the join and the rest of the time is all spent on the
in-memory computation (of joining and aggregation). For
TC, writes still scatter all over the window due to the
producer-consumer model used in RStream— the number
of consumer threads is often small and hence many of the
disk writes overlap with the computation.

6 Related Work
RStream is the first single-machine, out-of-core graph
mining system. Since graph processing is an extensively
studied topic, we focus on work that is closely related.

Distributed Mining Systems Arabesque [66] is a dis-
tributed system designed to support mining algorithms.
Arabesque presents to the developer an “embedding” view.
Arabesque enumerates all possible embeddings with in-
creasing sizes and the developer processes each embed-
ding with a filter-process programming model. RStream
is more efficient than Arabesque because we join tuples in
batch rather than enumerating them individually. ScaleM-
ine [4] is a parallel frequent subgraph mining system that
contains two phases. The first phase computes an ap-
proximate solution by quickly identifying subgraphs that
are frequent with high probability and collecting various
statistics. The second phase computes the exact solution
by using the results of the approximation to prune the
search space and achieve load balancing. DistGraph [65]
is an MPI-based distributed mining system that uses a set
of optimizations and efficient operations to minimize com-
munication costs. With these optimizations, DistGraph
scales to billion-edge graphs with 2048 IBM BlueGene/Q
nodes. G-thinker [77] is another distributed mining sys-
tem that provides an intuitive graph-exploration API and
a runtime engine. However, G-thinker does not support
FSM and Motif-counting, which are arguably the most
important mining algorithms. In addition, G-thinker’s
implementation is not publicly available.

Specialized Graph Mining Algorithms gSpan [78] is
an efficient frequent subgraph mining algorithm designed
for mining multiple input graphs. Michihiro et al. [38]
uses an anti-monotonic definition of support based on
the maximal independent set to find edge-disjoint em-
beddings. GraMi [29] is an effective method for min-
ing large input graph. Ribeiro et al. [55] proposes an
approach for counting frequencies of motifs [54]. Max-
imal clique is a well-studied problem. There exist a lot

of approaches to this problem, among which work from
Bron-Kerbosch [23] has the highest efficiency. Recently, a
body of algorithms have been developed to leverage paral-
lel [28, 12, 59, 64], distributed systems (such as Map/Re-
duce) [35, 19, 41, 44, 71, 6, 36, 82, 18], or GPUs [37].

Single-Machine Graph Computation Sys-
tems Single-machine graph computation sys-
tems [39, 58, 85, 75, 42, 83, 74, 34, 70, 45, 8]
have become popular as they do not need expensive
computing resources and free developers from man-
aging clusters and developing/maintaining distributed
programs. State-of-the-art single-machine systems
include Ligra [63], Galois [51], GraphChi [39], X-
Stream [58], GridGraph [85], raphQ [75], MMap [42],
FlashGraph [83], TurboGraph [34], Mosaic [45], and
Graspan [74].

Ligra [63] provides a shared memory abstraction for
vertex algorithms. The abstraction is suitable for graph
traversal. Galois [51] is a shared-memory implementation
of graph DSLs on a generalized Galois system, which has
been shown to outperform their original implementations.
GRACE [72], a shared-memory system, processes graphs
based on message passing and supports asynchronous
execution by using stale messages.

Efforts have been made to improve scalability
for systems over semi-external memory and SSDs.
GraphChi [39] uses shards and a parallel sliding algo-
rithm to reduce disk I/O for out-of-core graph processing.
Bishard Parallel Processor [49] reduces non-sequential
I/O by using separate shards to contain incoming and
outgoing edges. X-Stream [58] uses an edge-centric ap-
proach in order to minimize random disk accesses. Grid-
Graph [85] uses partitioned vertex chunks and edge blocks
as well as a dual sliding window algorithm to process
graphs residing on disks. Vora et al. from [70] reduces
disk I/O using dynamic shards.

FlashGraph [83] is a semi-external memory graph en-
gine that stores vertex states in memory and edge-lists on
SSDs. It is built on the assumption that all vertices can be
held in memory and a high-speed user-space file system
for SSD arrays is available to merge I/O requests to page
requests. TurboGraph [34] is an out-of-core engine for
graph database to process graphs using SSDs. Pearce
et al. [53] uses an asynchronous approach to execute
graph traversal algorithms with semi-external memory. It
utilizes in-memory prioritized visitor queues to execute
algorithms like breadth-first search and shortest paths.

Distributed Graph Computation Systems Google’s
Pregel [46] provides a synchronous vertex centric frame-
work for large scale graph processing. Many other dis-
tributed systems [46, 43, 30, 26, 57, 27, 84, 80, 60, 69,
48, 76, 24, 68] have been developed on top of the same
graph-parallel abstraction.
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GraphLab [43] is a framework for distributed asyn-
chronous execution of machine learning and data mining
algorithms on graphs. PowerGraph [30] provides effi-
cient distributed graph placement and computation by ex-
ploiting the structure of power-law graphs. Cyclops [26]
provides a distributed immutable view, granting vertices
read-only accesses to their neighbors and allowing uni-
directional communication from master vertices to their
replicas. Chaos [57] utilizes disk space on multiple ma-
chines to scale graph processing. PowerLira [27] is a
system that dynamically applies different computation
and partitioning strategies for different vertices. Gem-
ini [84] is a distributed system that adapts Ligras hybrid
push-pull computation model to a distributed form, facil-
itating efficient vertex-centric data update and message
passing. Cube [80] uses a 3D partitioning strategy to re-
duce network traffic for certain machine learning and data
mining problems. KickStarter [69] and Naiad [48] are
systems that deal with streaming graphs.

GraphX [31] is a distributed graph system built on top
of Spark, which is a general-purpose dataflow framework.
GraphX provides a middle layer that offers a graph ab-
straction and “think like a vertex” interface for graph
computation using low-level dataflow operators such as
join and group-by available in Spark. GraphX’s design
goal is completely opposite to that of RStream— GraphX
aims to hide the relational representation of data and op-
erations in the underlying dataflow system to provide a
user-familiar graph computation interface while RStream
aims to expose relational representation of data and op-
erations over the underlying graph engine to enable the
expression and processing of graph mining algorithms
that focus on patterns and structures.

Datalog Engines There exists a great deal of work that
aims to improve efficiency and scalability for Datalog
engines [13, 40, 73, 56, 61, 47]. These existing graph
computation and Datalog systems are orthogonal to our
work because none of them could support full graph min-
ing. LogicBlox [13] is a system designed to reduce the
complexity of software development for modern appli-
cations. It provides a LogiQL language, a unified and
declarative language based on Datalog, for developers
to express relations and constraints. SociaLite [40] is a
Datalog engine designed for social network analysis. So-
ciaLite programs are evaluated by parallel workers that
use message passing to communicate.

Myria [73] provides runtime support for Datalog eval-
uation using a pipelined, parallel, distributed execution
engine that evaluates a graph of operators. Datasets are
sharded and stored in PostgreSQL instances at worker
nodes. Both SociaLite and Myria support monotonic
aggregation inside recursion using aggregate semantics
based on the lattice-semantics of Ross and Sagiv [56].
BigDatalog [61] is a distributed Datalog engine built

on top of Spark. It bases its monotonic aggregate (op-
erational and declarative) semantics on work [47] that
uses monotonic w.r.t. set-containment semantics. While
RStream takes inspiration from Datalog, our experimen-
tal results show that RStream is much more efficient than
existing Datalog engines on graph mining workloads.

Dataflow Systems Many dataflow systems [79, 11, 9,
21, 25] were developed. Systems such as Spark [79]
and Asterix [10] provide relational operations for dataset
transformations. While RStream takes inspiration from
these systems, it is built specifically for graph mining, and
thus has to overcome unique challenges that do not exist
in existing systems.

At first glance, RStream’s GRAS model is similar to a
chain of MapReduce tasks — e.g., the input data first gets
shuffled into streaming partitions; relational expressions
are next applied and the generated data is re-shuffled be-
fore the next relational phase comes. The key difference
between these two model lies in the semantics — the
GRAS abstraction that we built enables developers to eas-
ily develop and reason about mining algorithms by com-
posing structures of smaller sizes into large sizes, while
generic MapReduce tasks do not have any semantics. Join
is a critical relational operation that has been extensively
studied in the database community [5, 50, 15, 14]. While
there exist many efficient join implementations such as
worst-case optimal join [50], RStream is largely orthog-
onal to these prior works — future work could improve
RStream with a more efficient join implementation.

7 Conclusion

This paper presents RStream, the first single-machine,
out-of-core graph mining system. RStream employs a
new GRAS programming model that uses a combination
of GAS and relational algebra to support a wide variety of
mining algorithms. At the low level, RStream leverages
tuple streaming to efficiently implement relational opera-
tions. Our experimental results demonstrate that RStream
can be more efficient than state-of-the-art distributed min-
ing systems. We hope that these promising results will
encourage future work that builds disk-based systems to
scale expensive mining algorithms.
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Abstract
Streaming computations are by nature long-running, and
their workloads can change in unpredictable ways. This
in turn means that maintaining performance may require
dynamic scaling of allocated computational resources.

Some modern large-scale stream processors allow dy-
namic scaling but typically leave the difficult task of de-
ciding how much to scale to the user. The process is
cumbersome, slow and often inefficient. Where automatic
scaling is supported, policies rely on coarse-grained met-
rics like observed throughput, backpressure, and CPU uti-
lization. As a result, they tend to show incorrect provi-
sioning, oscillations, and long convergence times.

We present DS2, an automatic scaling controller for
such systems which combines a general performance
model of streaming dataflows with lightweight instrumen-
tation to estimate the true processing and output rates of
individual dataflow operators.

We apply DS2 on Apache Flink and Timely Dataflow
and demonstrate its accuracy and fast convergence. When
compared to Dhalion, the state-of-the-art technique in
Heron, DS2 converges to the optimal, backpressure-free
configuration in a single step instead of six.

1 Introduction

We present DS2, a low-latency, robust controller for dy-
namic scaling of streaming analytics applications, which
can vary the resources available to a computation so as to
handle variable workloads quickly and efficiently.

Static provisioning is a poor fit for continuous, long-
running streaming applications: it forces users to choose a
single point on the spectrum between allocating resources
for worst-case, peak load (which is inefficient) and suffer-
ing degraded performance during load spikes. Fixing re-
sources a priori almost inevitably leads to a system which
is over- or under-provisioned for much of its execution.
∗Work done while visiting the Systems Group at ETH Zürich

Figure 1: Effect of Dhalion’s scaling decisions on the
source rate when trying to match the target throughput of
an under-provisioned word count dataflow.

The solution is to dynamically scale the system in re-
sponse to load, an idea used extensively in cloud envi-
ronments [30, 31]. This requires both a mechanism for
scaling the computation, and a scaling controller which
decides when and how to scale. This paper focuses on the
latter; DS2 is designed to be mechanism-agnostic.

A scaling controller makes two kinds of decisions.
First, it detects symptoms of over- or under-provisioning
(e.g. backpressure) and decides whether to make a change.
Detection is often straightforward and addressed by con-
ventional monitoring tools. Second, the controller must
identify the causes of symptoms (e.g. a bottlenecked or
idle operator) and propose a scaling action.

The second decision is challenging, involving perfor-
mance analysis and prediction. Streaming systems sup-
porting a form of automatic dynamic scaling (e.g. Google
Cloud Dataflow [26, 5], Heron [27, 13], Pravega [11],
Spark Streaming [45], and IBM System S [15]) and re-
search prototypes (e.g. Seep [12] and StreamCloud [17])
focus on the first decision and either ignore or provide
speculative, often ad-hoc solutions for the second.
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A good scaling controller should provide the SASO
properties [19] familiar from Control Theory: Stability
(not oscillating between different configurations), Accu-
racy (finding the optimal configuration for the given
workload), Short settling times to reach the optimal con-
figuration, and not Overshooting.

Speculative scaling decisions which do not provide
these properties can be bad for streaming systems. First,
they lead to temporary over- or under-provisioning, and
the resulting sub-optimal resource utilization incurs un-
necessary costs. Second, oscillations can in turn degrade
performance due to frequent scaling actions. Finally, spec-
ulative scaling can be slow to converge, resulting in Ser-
vice Level Objective (SLO) violations or load shedding.

Figure 1 illustrates these problems in the state-of-the-
art Dhalion controller [13] of Heron, using the same word
count dataflow as in the original paper. The dashed line
shows the target throughput (source output rate), while
the solid line tracks the achieved throughput, which varies
due to backpressure as Dhalion changes the computa-
tion scale. Dhalion performs six scaling decisions, taking
more than 30 minutes to converge.

We make the following contributions in this paper.
First, we review how existing dynamic scaling techniques
can lead to inaccurate, unstable, or slow provisioning de-
cisions. We identify the causes of these effects (§ 2),
which we attribute to the lack of a comprehensive per-
formance model, dependence on heuristics, and use of
coarse-grained, externally-observed execution metrics.

Second, we propose DS2, a general model and con-
troller for automatic scaling of distributed streaming
dataflows (§ 3). DS2 can accurately estimate parallelism
for all dataflow operators within a single scaling decision,
and operates reactively online. As a result, DS2 elimi-
nates oscillation and overprovisioning when making scal-
ing decisions. DS2 bases scaling decisions on real-time
performance traces, and is general: it relies neither on spe-
cific signals like backpressure, as in [13], nor simplistic
assumptions like 1-1 operator selectivity, as in [41].

Third, DS2 gives leverage on existing state-of-the-art
approaches: when used in Heron, it identifies the optimal
backpressure-free configuration in a few seconds and one
step, while Dhalion performs six steps to reach an over-
provisioned configuration in the same scenario (§ 5.2).

Fourth, we apply DS2 on Apache Flink (§ 5.3)
and demonstrate fully-automatic scaling of streaming
dataflows under dynamic workload.

Finally, we show that DS2 is accurate and converges
quickly for both Apache Flink and Timely Dataflow (§ 5.4
and § 5.5). In all experiments DS2 takes at most three
steps to reach the optimal configuration.

2 Background and Motivation

Designing a scaling controller with SASO properties is
non-trivial, and existing dynamic scaling techniques for
stream processing do not achieve them. Here, we sum-
marize existing approaches, and then examine why they
frequently lead to inaccurate, unstable, and slow scaling
decisions, before proposing our solution.

Many stream processors [45, 8, 40, 27, 4, 43] have elas-
tic runtimes and allow job reconfiguration by migrating
or by externalizing state, but the majority relies entirely
on manual intervention for both symptom detection and
scaling actions.

Table 1 summarizes those systems that do provide
some form of automatic scaling (for details also see [10]).
We categorize them by (i) metrics used for symptom de-
tection, (ii) policy logic for deciding when to scale, (iii)
type of scaling action which defines which operators to
scale and by how much, and (iv) optimization objective
(i.e. latency or throughput SLO).

We identify two areas in which current systems fall
short of the controller properties we would like: first, the
metrics used do not provide enough information to make
fast and accurate decisions as to how to rescale the system,
and second, the policies used for scaling (and the models
they are based on) are often simplistic and rule-based.

Limited metrics: Most systems rely on coarse-grained
externally observed metrics to detect suboptimal scaling:
CPU utilization, throughput, queue sizes, etc.

CPU and memory utilization can be inadequate met-
rics for streaming applications, particularly in cloud en-
vironments due to multi-tenancy and performance inter-
ference [38]. StreamCloud [17] and Seep [12] try to miti-
gate the problem by separating user time and system time,
but preemption can make these metrics misleading: high
CPU usage by a task running on the same physical ma-
chine as a dataflow operator can trigger incorrect scale-
ups (false positives) or prevent correct scale-downs (false
negatives), for example. Google Cloud Dataflow [26]
uses CPU utilization only for scale-down decisions but
could still suffer from false negatives. CPU usage is also
unsuitable for systems like Timely [32, 33], where opera-
tors spin waiting for input.

These metrics also imply continuous threshold tuning,
a cumbersome and error-prone process. Incorrect scal-
ing decisions can often arise from slightly misconfigured
thresholds, even on fine-grained metrics [13].

Dhalion [13] and IBM Streams [15] also use backpres-
sure and congestion to identify bottlenecks. These signals
are only helpful where a bottleneck exists. If the dataflow
is using resources unnecessarily, such metrics will not
trigger reconfiguration. Moreover, in under-provisioned
dataflows, backpressure will only detect a single bottle-
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System Metrics Policy Scaling Action Objective

Borealis [3] CPU, network slack, queue sizes Rule-based Load shedding Latency, throughput
StreamCloud [17] Average CPU, observed rates Threshold-based Speculative, multi-operator Throughput
Seep [12] User/system CPU time Threshold-based Speculative, single-operator Latency, throughput
IBM Streams [15] Congestion, observed rates Threshold-based,

blacklisting
Speculative, single-operator Throughput

FUGU+ [18] CPU, processing time Threshold-based Speculative, single-operator Latency
Nephele [29] Mean task latency, service time,

interarrival time, channel latency
Queuing theory model Predictive, multi-operator Latency

DRS [14] Service time, interarrival time Queuing theory model Predictive, multi-operator Latency
Stela [44] Observed rates Threshold-based Speculative, single-operator Throughput
Spark Streaming [1, 2] Pending tasks Threshold-based Speculative, multi-operator Throughput
Google Dataflow [6] CPU, backlog, observed rates Heuristics Speculative, multi-operator Latency, throughput
Dhalion [13] Backpressure, queue sizes,

observed rates
Rule-based,
blacklisting

Speculative, single-operator Throughput

Pravega [11] Observed rates Rule-based Speculative, single-operator Throughput

DS2 True processing and output rates Dataflow model Predictive, multi-operator Throughput

Table 1: Overview of automatic scaling policies in distributed dataflow systems.

neck; for this reason and to minimize the effects of incor-
rect decisions [39, 13], each scaling action only config-
ures one operator, increasing convergence time.

Simplistic performance models: scaling policy is gen-
erally expressed in simple rules, using predefined thresh-
olds and conditions, e.g. CPU utilization > 50 and back-
pressure =⇒ scale up. This results in a simple perfor-
mance model with poor predictive accuracy, which is un-
able to consider the structure of the dataflow graph or
computational dependencies among operators. We note
the exceptions of Nephele [29] and DRS [14], which use
queuing theory models. Both systems show poor predic-
tion quality in some cases, while Nephele also seems to
suffer from temporary over-provisioning and slow con-
vergence.

Since the controller cannot accurately estimate how
much to scale an operator, scaling actions are mostly spec-
ulative. The system applies pessimistic strategies which
introduce only small changes to the number of provi-
sioned resources [12, 15] and most policies configure a
single operator at a time. This delays convergence to a
steady state significantly, as all steps of the scaling pro-
cess are repeated many times: SLO monitoring, decision
making, state migration, and redeployment. [13] shows
that, from the point that backpressure is observed, Heron
needs almost an hour to reach a steady state that can han-
dle the input rate.

More aggressive strategies apply configurations, black-
listing them if they degrade performance. [39] allows
arbitrary scaling steps but requires a user-defined func-
tion to calculate the new number of instances whereas
[2] supports exponential increase in resources. Stream-
Cloud [17] tries to estimate the optimal number of VMs in
a single step, but using very coarse-grained scaling (a sub-
graph of the dataflow topology). Google Cloud Dataflow

is the only system we know with fully automatic scaling
per operator, although the details of the model used have
not been disclosed.

A better approach: stepping back, it seems a more
promising approach for making scaling decisions would
take into account both (i) each operator’s true process-
ing and output capabilities, regardless of backpressure or
other effects, and (ii) the dataflow topology and how scal-
ing each operator will affect downstream operators.

Figure 2 gives an intuition of how this works showing
the execution timelines of operator instances in a simple
dataflow. Solid lines show useful work performed by an
instance (e.g. record processing) while dotted lines show
it waiting for input or output. Edges across timelines rep-
resent data transfer.

In this example, o1 is a bottleneck slowing down both
the source and o2 by pausing their execution. Backpres-
sure means that an external observer sees o1 processing
10 rec/s and o2 processing 100 rec/s. Based on this, a
policy might provision three additional instances for o1
to reach a target of 40 rec/s, but it could not accurately
estimate how much to scale o2 and would need to make
a speculative decision or apply an extra reconfiguration
step.

A better approach would measure the useful time of
an operator’s timeline and would determine the true rate
of o1 as 10 rec/s and that of o2 as 200 rec/s, inferring
that when increasing the parallelism of o1 to 4, it also
needs to double the parallelism of o2 to keep up with the
output rate. Note this can be calculated globally, i.e. for
all operators in the dataflow, in a single step.

DS2 does precisely this, obtaining rate measurements
of each operator by lightweight instrumentation (already
present in many streaming systems). In the rest of the
paper we define this notion, extend it to more complex

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    785



Figure 2: An under-provisioned dataflow and the execu-
tion timelines of its operators. Target throughput is 40
rec/s, but o1 is a bottleneck creating backpressure and
limiting the observed source rate to 10 rec/s.

dataflow graphs with multiple sources, and show how
DS2 implements it to provide fast, accurate, and stable
reconfiguration of streaming dataflows.

3 The DS2 model

DS2 identifies the optimal level of parallelism for each
operator in the dataflow on the fly, while the computa-
tion executes, based on real-time performance traces. It
maintains a changing provisioning plan, i.e. the number
of resources allocated to each operator. It therefore works
online and in a reactive setting.

Note that we do not target offline computation of an ini-
tial resource provisioning plan (as in [7]). Such initial con-
figurations quickly become sub-optimal in a live system
where workloads and/or internal operator states change
continuously. However, for static workloads known a pri-
ori, DS2 could use historical performance metrics and
offline micro-benchmarks (as in [20, 21, 16]) to estimate
the optimal levels of parallelism before deployment.

In this section we define the scaling problem (§ 3.1),
describe the DS2 model (§ 3.2), and discuss the model
assumptions (§ 3.3) and properties (§ 3.4).

3.1 Problem definition

We target distributed streaming dataflow systems like
Flink [9] and Heron [27] that execute data-parallel com-
putations on shared-nothing clusters. Such a computation
can be represented as a logical directed acyclic graph
G = (V,E), where vertices in V denote operators and
edges in E are data dependencies between them. A ver-
tex with no incoming edges (no upstream operators) is
a source and a vertex with no outgoing edges (no down-
stream operators) is a sink.

A dataflow computation runs as a physical execution
plan which maps dataflow operators to provisioned com-
pute resources (or workers). Let the graph G′ = (V ′,E ′)

logical graph
physical graph

src
o1

o2
o3 sink

o11

src sinko12

o21

o31

o32

o33

Figure 3: Logical and physical dataflow graphs.

represent the execution plan. Vertices in V ′ are operator
(or task) instances of a corresponding vertex in V and
edges are data channels. The assignment of tasks to work-
ers is system-specific. We show in § 5 that DS2’s scaling
policy is independent of this assignment.

Figure 3 illustrates a logical graph and its correspond-
ing physical graph for a dataflow with a source, a sink,
and three operators. Operators o1, o2 and o3 execute with
two, one and three instances, respectively.

The Scaling Problem. Given a logical dataflow with
sources s1,s2, ...,sn and rates λ1,λ1, ...,λn, identify the
minimum parallelism πi per operator such that the physi-
cal dataflow can sustain all source rates.

Source operators generate records at a rate λs, defined
by application data sources (sensors, stock market feeds,
etc.). To maximize system throughput, the execution plan
must sustain the full source rate. This means that each
operator must be able to process data without stalling its
upstream operators from producing output.

Like any controller, DS2 targets workload changes on a
timescale greater than its convergence time, and reacting
to spikes or other changes on a shorter timescale than the
convergence time would cause inefficient fluctuations. In
these latter cases, the use of backpressure, buffering, or
load shedding leads to more stable results than dynamic
scaling at the cost of increased latency or lost data.

3.2 Performance model

We consider operator instances as repeatedly performing
three activities in sequence: deserialization, processing,
and serialization. This fits all types of operators in most
modern streaming dataflow systems, including Heron,
Flink, and Timely. When an operator instance is sched-
uled for execution, it pulls records from its input, dese-
rializes them, applies its processing logic, and serializes
the results (if any), which are pushed to the output. Serial-
ization and deserialization are optional and happen only
when data is moved between operator instances executed
within different OS processes, otherwise data is usually
exchanged via shared memory (e.g. queues).

The model is based on the concept of useful time, which
we define for an operator instance as follows:
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Useful Time. The time spent by an operator instance in
deserialization, processing, and serialization activities.

Useful time excludes time spent waiting on input or out-
put. Such waiting does occur in practice, for different rea-
sons depending on the design of the reference system. In
Flink, an operator instance may block on input when the
input buffers are empty, or on output when there is no free
space in the (bounded) output buffers. In Timely, operator
instances may continuously “spin” checking their input
queues until new records appear. In Heron, instances may
be forced to wait due to a backpressure signal from a slow
downstream operator.

In all cases, the useful time amounts to the time an
operator instance runs for if executed in an ideal setting
where it never has to wait to obtain input or push output.
In general, useful time differs from the total observed
time the instance needs to process and output records,
and plays a key role in solving the problem of § 3.1.

Based on this distinction, we define the true processing
and output rate of an operator instance as follows:

True Rates. The true processing (resp. output) rate cor-
responds to how many records an operator instance can
process (resp. output) per unit of useful time.

Intuitively, the true rates denote the capacity of the op-
erator instance, i.e. the maximum processing and output
rate the instance could sustain for the current workload.
In contrast, the observed rates are those measured by sim-
ply counting the number of records processed and output
by the instance over a unit of elapsed time, which might
include waiting. More precisely:

Observed Rates. The observed processing (resp. output)
rate corresponds to how many records an operator in-
stance processes (resp. outputs) per unit of observed time.

Although the observed rates are more sensitive to
changing workloads, due to the potential change in wait-
ing time, true rates typically have lower variance, espe-
cially within short time periods (e.g. a few seconds of
execution) as they represent the average “cost” to process
and output a single record. This cost naturally can depend
on factors like the size of the record, its content, and the
state maintained by the operator instance, but the average
cost can be estimated using appropriate instrumentation
of the operator without needing to saturate it.

We define all rates in our model relative to windows
of size W seconds of observed time. We denote the use-
ful time for an operator instance Wu, where 0≤Wu ≤W .
More precisely:

λp =
Rprc

Wu
(1) λo =

Rpsd

Wu
(2)

λ̂p =
Rprc

W
(3) λ̂o =

Rpsd

W
(4)

Symbol Description

G logical dataflow graph
m number of operators in G (m > 1)
n number of source operators in G (0 < n < m)

W size of a window in time units (observed time)
Wu useful time for an operator instance in W
Rprc number of records pulled from the input in W
Rpsd number of records pushed to the output in W
λ̂p observed processing rate of an operator instance
λ̂o observed output rate of an operator instance
λp true processing rate of an operator instance
λo true output rate of an operator instance
oi i-th operator in G (in topological order)
pi number of instances of the i-th operator

oi[λp] aggregated true processing rate of the i-th operator
oi[λo] aggregated true output rate of the i-th operator

πi optimal number of instances for the i-th operator

Table 2: Notation used in this paper.

where λp and λo are the true processing and output rate
respectively (undefined when Wu = 0), λ̂p and λ̂o are the
observed processing and output rates (undefined when
W = 0), and Rprc (resp. Rpsd) is the total number of
records the instance processed (resp. pushed) in W .

For a specific operator instance and a window W , the
following inequalities hold: 0≤ λ̂p ≤ λp and 0≤ λ̂o ≤ λo,
since 0 ≤Wu ≤W . In general, the less an operator in-
stance waits on its input and output the smaller the differ-
ence between the observed and true rates. Table 2 sum-
marizes the notation.

We instantiate the model with (i) the logical dataflow
graph G, (ii) the output rate of each data source, and (iii)
the true processing and output rates (λp and λo) of each
operator instance. G is static (known at compile time)
and does not change during execution, since the logical
dataflow is unaffected by the scaling decisions. The out-
put rates of the data sources are continuously monitored
outside the reference system, and the true rates of the op-
erator instances are computed based on system-generated
traces, as we explain in § 4.1. The output of DS2 is the
optimal parallelism, i.e. number of instances, for each log-
ical operator in the graph G, subject to the constraints of
the problem in § 3.1.

The calculation proceeds as follows: let A be the ad-
jacency matrix of G. Ai j = 1 iff the i-th operator outputs
to the j-th operator, otherwise Ai j = 0. We consider
operators numbered in topological order from i = 0 to
i = m−1, where m is the total number of operators in G.
This means that if oi outputs to o j and, hence, Ai j = 1,
then 0≤ i < j < m. Since G is acyclic (cf. § 3.1), there is
a topological ordering of its nodes and it can be computed
in linear time.

For a time window W and operator oi with pi
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instances, pi ≥ 1, we define the aggregated true
processing and output rates oi[λp] and oi[λo] as:

oi[λp] =
k=pi

∑
k=1

λ
k
p (5) oi[λo] =

k=pi

∑
k=1

λ
k
o (6)

where λ k
p and λ k

o are the true processing and output rates
of the k-th instance of oi, as given by Eq. 1 and Eq. 2.

The optimal level of parallelism πi for an operator oi
is now computed using the ratio of the aggregated true
output rate of its upstream operators (when they keep up
with their inputs) to the average true processing rate per
instance of oi. More formally:

πi =

⌈
∑
∀ j: j<i

A ji ·o j[λo]
∗ ·
(

oi[λp]

pi

)−1
⌉
,n≤ i < m (7)

where m is the total number of operators in G, and n is
the number of source operators in G, 0 < n < m.

o j[λo]
∗ denotes the aggregated true output rate of an

operator o j, when o j itself and all operators before it
(in topological order) are deployed with their optimal
parallelism to keep up with their inputs. It is recursively
computed as follows:

o j[λo]
∗ =


o j[λo] = λ

j
src, 0≤ j < n

o j [λo]

o j [λp]
· ∑
∀u:u< j

Au j ·ou[λo]
∗, n≤ j < m

(8)

where λ
j

src is the output rate of the j-th source operator,
0≤ j < n.

Note that o j[λo]
∗ depends on (i) the ratio o j [λo]

o j [λp]
, which

denotes the selectivity of o j, and (ii) the estimated true
output rate of the upstream operators (∀u : u < j in the
summation). The latter implies that o j[λo]

∗ and, hence,
πi can be efficiently computed for all operators in the
dataflow with a single traversal of G, starting from the
sources. This property is important in practice, as it al-
lows us to estimate the required number of instances for
all operators in the dataflow in the same scaling decision.

3.3 Assumptions

DS2 makes the following assumptions about the dataflow
system it is controlling:

Data-parallel operators. An operator’s output can be
produced by partitioning its input on a key and applying

the operator logic separately to each partition. Other than
this, the operator’s internal logic can be any user-defined
function. Data-parallelism is essential for effective scal-
ing decisions: executing multiple operator instances en-
tails partitioning its state into chunks of data processed
in parallel. In contrast, non-data-parallel operators do not
benefit from scaling. System users could tag such opera-
tors for DS2 to ignore, or their lack of parallelism could
be identified online by comparing input and output rates
before and after scaling. As with existing systems, we
leave the integration of such operators for future work.

No data or computation imbalance. Our scaling model
addresses neither data skew across operator instances
nor computational stragglers. Both these types of imbal-
ance can trigger backpressure which cannot be tackled
by changing the degree of parallelism of one or more
operators. Several robust solutions to the skew and strag-
gler problems exist and have been incorporated into real
systems. Techniques such as partial key grouping [35]
introduced in Storm [34] and further evaluated in [25],
and work-stealing for straggler mitigation in MapReduce
[28] and Google Dataflow [26] are complementary to
DS2. In § 4.2 we describe how DS2 could be integrated
in a general controller for streaming applications which
would not only handle dynamic scaling but also include
skew and straggler handling components.

Stable workloads during scaling. Like existing scaling
mechanisms, DS2 operates with the understanding that
workload characteristics remain stable between a scaling
decision being made and the new parallelism configura-
tion being deployed. This window is the time taken for
DS2 to make a decision (which we evaluate in § 5) plus
the time to deploy the new configuration, which depends
on the dataflow system in use. In practice, we find this
timescale is dominated by the latter in current systems.

3.4 Properties

DS2 estimates the optimal parallelism for each opera-
tor assuming perfect scaling, that is, the true processing
and output rates change linearly with the number of in-
stances. In general, however, true rates are described by
non-linear, most commonly sub-linear functions. Super-
linear speedups are possible [16] (e.g. when state fits in
cache after a scale-up) but are rare in practice. When
this “perfect scaling” assumption holds, DS2 estimations
(Eq. 7) correspond to bounds and the model enjoys the
following two properties:

Property 1. No overshoot: a scale-up decision will not
result in over-provisioning. The estimated optimal num-
ber of instances πi for an under-provisioned operator is
always less than or equal to the minimum required to keep
up with the target rate rt = ∑∀ j: j<i A ji ·o j[λo]

∗ in Eq. 7.
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(b) No undershoot when scaling down

Figure 4: Given a target rate rt and aggregated true processing rate λ which does not scale super-linearly, our model
guarantees no over-provisining when scaling up and no under-provisioning when scaling down.

Property 2. No undershoot: a scale-down decision will
not result in under-provisioning (and, hence, backpres-
sure). The estimated optimal number of instances πi for
an over-provisioned operator is always greater than or
equal to the minimum needed to keep up with the target
rate rt = ∑∀ j: j<i A ji ·o j[λo]

∗ in Eq. 7.

Figure 4 shows hypothetical scale up and scale down
scenarios, each during two consecutive time windows,
W and Wnext . Consider an operator initially configured
with parallelism p and aggregated processing rate λ < rt ,
where rt is the target rate, as shown in Figure 4a (left).
Assuming linear scaling, our model assigns π instances
to reach the target rate rt . Property 1 states that there ex-
ists no π ′ < π such that π ′ matches rt . Indeed such a π ′

can only exist in Wnext if the aggregated processing rate
scales super-linearly, as shown in Figure 4a (right).

Similarly, if an operator is initially configured with par-
allelism p and aggregated processing rate λ > rt , as in
Figure 4b (left), our model assigns π < p instances to
scale down to rt . Property 2 states that there exists no
π ′ > π such that π ′ matches the target rt . As shown in
Figure 4b (right), such a π ′ would violate the assumption
of non-superlinear aggregated true processing rate.

Together, these properties imply that repetitive appli-
cations of DS2 do not oscillate: they will monotonically
converge to the target rate from below or above, ensuring
stability without the need to blacklist previous decisions,
and simplifying the scaling mechanism significantly.

When true rates are linear and the target rate rt is ac-
curately estimated for each operator, DS2 converges in at
most one step. When one of these two conditions does
not hold, for example, true rates do not scale well due
to other overheads (e.g. worker coordination) or dataflow
operators have data-dependent output rates, DS2 needs
more steps to converge to a stable configuration. In each
of these steps, DS2 tries to minimize the error of its pre-
vious decision to get closer to the target, as any typical
controller does. We omit the details of this process here

and we only show empirically (in § 5.4) that DS2 needs
at most three steps to converge in all our experiments.
Further reducing the number of steps requires good ap-
proximation of non-linear rates, which could be gradually
learned by DS2 using machine learning techniques, open-
ing an interesting direction for future work.

4 Implementation and deployment

The DS2 controller consists of about 1500 lines of Rust
running as a standalone process. Here we describe the in-
strumentation requirements it imposes and discuss the is-
sues encountered integrating it with three different stream
processing engines: Flink, Timely dataflow, and Heron.

4.1 Instrumentation requirements

DS2 requires a subset of the instrumentation required
by bottleneck detection tools for stream processors like
SnailTrail [23]. The stream processor must periodically
collect and report records processed, records produced,
and useful time (serialization, deserialization, processing)
or waiting time per operator instance.

Flink gathers some of the metrics required by DS2 (e.g.
records read and produced) by default but we extended
its runtime so that each operator instance maintains lo-
cal counters for (de)serialization and processing duration
as well as for buffer wait time, reporting them to DS2
in configurable intervals. For record-at-a-time systems
like Flink, tracking and emitting metrics for every record
might incur significant overhead. Instead, we aggregate
measurements per input buffer for all operators, except
for sources where we aggregate per output buffer. Specifi-
cally, we have implemented a MetricsManager module
which is responsible for gathering, aggregating, and re-
porting policy metrics. We assign one MetricsManager
instance per parallel thread executing operator logic. Each

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    789



thread maintains local counters for records read, records
produced, (de)serialization duration, processing duration,
and waiting for input and output buffers. Source oper-
ator instances send their current local counters to the
MetricsManager every time an output buffer gets full
and regular operator instances send their local counters
every time they receive a new input buffer for processing.
The MetricsManager maintains a data structure with the
current aggregate metrics of its operator instance and re-
ports them to the outside world in configurable intervals.

Timely [32] outputs raw tracing information, which we
aggregate in configurable intervals to produce metrics
for DS2. We use a similar MetricsManager, as in Flink,
which receives streams of logged events coming from
Timely workers and aggregates them on the fly. Each
Timely worker logs individual events of different types,
such as scheduling an operator or sending a message over
a data channel, along with their timestamp in nanosec-
onds. Recall that operator instances in Timely are not
blocked on their input or output queues; instead, they
are continuously spinning, i.e. they are scheduled for
execution (in a round-robin fashion) even if there are
no data records to process. Spinning results in a huge
amount of scheduling event logs, which quickly saturate
the MetricsManager, although most of these logs are
not needed for computing the true rates. To tackle this
problem, we modified Timely’s logger to trace and send
to the MetricsManager only the “useful” scheduling
events, i.e. those that correspond to an operator instance
doing some “useful work” for the actual computation.

Heron also by default outputs detailed, aggregated met-
rics [22], which are periodically collected and fed into
DS2. The aggregation window depends on how fre-
quently Heron samples its metrics and can be configured.

4.2 Integration with stream processors

DS2 is mechanism-agnostic and can be integrated with
any stream processor capable of dynamically varying re-
sources and migrating state. Figure 5 shows the high-level
architecture of such an integration. Instrumented stream-
ing jobs periodically report metrics to a repository. DS2
consists of a Scaling Policy component implementing
the model of § 3.2, and a Scaling Manager monitoring
the repository, invoking the policy when new metrics are
available, and sending scaling commands to the stream
processor.

While DS2 currently only offers scaling functionality,
it could be easily extended with skew and straggler miti-
gation techniques as shown in Figure 5. In this case, the
system would consist of multi-purpose Manager and Pol-
icy components, where the first detects the problem type
(e.g., presence of skew) and the latter invokes the appro-
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Figure 5: DS2 integration with streaming systems

priate policy. Note that DS2 collects metrics from each
operator instance separately, thus skew detection can be
effortlessly implemented by the Manager.

We have integrated DS2 with Apache Flink, which em-
ploys a simple scaling mechanism: when instructed, Flink
takes a savepoint, a consistent snapshot of the job state,
halts the computation, and redeploys it with the updated
parallelism [24]. We demonstrate this integration in ac-
tion and evaluate it under a dynamic source rate in § 5.3.

4.2.1 Scaling Manager

Operational issues in real deployments that are not cap-
tured by the model must be handled by the implementa-
tion instead. To deal with factors that might affect scaling
decisions in practice, the Scaling Manager provides the
following configuration parameters:

Policy interval defines the frequency with which metrics
are gathered and the policy invoked. Tuning the policy
interval allows the scaling manager to aggregate metrics
meaningfully, e.g. to ensure enough data is available to
compute averages for processing and output rates. Long
intervals give stable metrics but also increase reaction
time. The interval must also be tuned based on the recon-
figuration mechanism of the reference system. In our ex-
periments, we found 5–30s intervals reasonable for Flink
and Timely. For Heron, we found the default 60s suitable.

Warm-up time is the number of consecutive policy in-
tervals ignored after a scaling action, since rate measure-
ments can be unstable at the start of a computation or
before backpressure builds up.

Activation time specifies when DS2 applies a scal-
ing decision, as the number of consecutive policy deci-
sions considered by the scaling manager before issuing
a scaling command. Activation time plus an appropriate
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policy interval mitigates the effects of irregularities in
some streaming computations, such as non-incremental
tumbling windows or data-dependent operators. For in-
stance, consider naively-implemented window operators
that buffer records and only apply the computation logic
after the window fires. As long as input is simply assigned
to a window, the operator’s processing rate will appear
high but once the window fires and the actual computa-
tion is performed the processing rate will suddenly drop.
DS2 can consider several consecutive policy decisions
and, for example, compute the maximum or median par-
allelism across intervals before applying a scaling action.

Target rate ratio defines a maximum allowed differ-
ence between the observed source rate achieved by the
policy and the target rate, addressing the practical issue
that processing and output rates might be affected by
overheads not captured by instrumentation. For instance,
adding workers to a distributed computation might incur
higher coordination, channel selection cost, or resource
contention, and so a computation might need more re-
sources to achieve the target rate than the policy indicates.
DS2 estimates the additional resources required by com-
puting the ratio between the currently achieved rate and
the target rate.

4.2.2 Practical considerations

DS2 also ignores minor changes (e.g. changing an opera-
tor’s parallelism by one or two), which can be triggered
by noisy metrics. External disruptions, such as garbage-
collection in Java-based systems or disk I/O, can also in-
fluence rates measurements. For example, when integrat-
ing DS2 with Flink, we took care to properly configure
task managers, heap memory, and network buffers. We
are also aware that system performance might degrade
after a scaling action (though we have not observed this
in practice). If this were to happen, DS2 rolls back to the
previous configuration. Similarly, consecutive decisions
resulting in very small improvements indicate a perfor-
mance issue (e.g. data skew, stragglers) that cannot be
improved by scaling. DS2 can limit the number of deci-
sions to prevent further reconfiguration.

4.2.3 DS2 in the presence of skew

Even though the scaling model assumes no data imbal-
ance and the current implementation of DS2 does not
offer skew mitigation functionality, it is worth discussing
how the system behaves if skew actually appears in a
streaming application it is controlling. In such a case,
the system makes a scaling decision assuming data bal-
ance (§ 3.3) by averaging true processing and output rates.
Thus, DS2 proposes a configuration which might not meet
the target throughput but at the same time will not over-

provision the system. Further, due to DS2’s ability to limit
the number of decisions (§ 4.2.2), the policy is guaran-
teed to converge. We have verified the above behavior ex-
perimentally on Flink varying the skew parameter in the
Dhalion benchmark from 20% to 50% and 70%. In all
cases, DS2 converged after two steps to the configuration
which would be optimal if there was no skew, but which
in this experiment did not meet the target throughput.

4.3 Execution model independence

DS2’s policy can be applied on streaming systems re-
gardless of their execution model. In Flink and Heron
each dataflow operator is assigned a number of worker
threads that define its level of parallelism, i.e. the num-
ber of parallel instances executing the operator’s logic. In
this case, Eq. 7 can be directly used to configure operator
parallelism independently. In Timely, on the other hand,
parallelism is configured globally for the whole dataflow.
Each worker runs every operator in the dataflow graph
according to a round-robin scheduling strategy.

For Timely, DS2 estimates the optimal number of to-
tal workers by summing up the optimal level of paral-
lelism, as given by Eq. 7, for all operators in the dataflow.
The intuition here is simple: an operator that needs πi in-
stances to keep up with its input actually needs πi ·100%
computing power per unit of time. In an execution model
like Timely’s where operators share computing resources
(worker threads), the total computing power needed so
that the system can keep up with its input is ∑∀i πi ·100%.
We experimentally validate the accuracy of DS2 decisions
on Timely in § 5.5.

5 Experimental evaluation

Our evaluation covers DS2 in use with three different
streaming systems: Heron, Flink, and Timely Dataflow.
We start our evaluation by comparing DS2 with the state-
of-the-art Dhalion scaling controller used in Heron, with
the benchmark in the original Dhalion publication [13].
We then demonstrate DS2 in action through end-to-end,
dynamic scaling experiments with Flink, followed by
measurements of DS2 convergence and accuracy in using
both Flink and Timely. Finally, we evaluate the overhead
of the instrumentation used by DS2.

5.1 Setup

We run all Flink and Timely experiments on up to four
machines, each with 16 Intel Xeon E5-2650 @2.00GHz
cores and 64GB of RAM, running Debian GNU/Linux
9.4. We use Apache Flink 1.4.1 configured with 12
TaskManagers, each with 3 slots (maximum parallelism
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Figure 6: Comparison of DS2 vs Dhalion on Heron using
the word count dataflow of [13].

per operator = 36), and Timely Dataflow 0.5.0 compiled
with Rust 1.24.0. For the comparison experiment, we
run Heron 0.17.8 on a four socket-machine equipped
with AMD Opteron 6276, with 64 threads in total and
256GiB of memory.

To demonstrate generality across diverse computations
and streaming operators, we selected six queries from the
Nexmark benchmarking suite of Apache Beam [42, 36,
37]. Specifically, we test the policy with Queries 1–3, 5,
8, and 11, which contain various representative streaming
operators: stateless streaming transformations, i.e. map
and filter in Q1 and Q2 respectively, a stateful record-at-
a-time two-input operator (incremental join) in Q3, and
various window operators: sliding window in Q5, tum-
bling window join in Q8, and session window in Q11.
These queries specify computations both in processing
and event time domains [5]. For the comparison with
Dhalion (§ 5.2) and the end-to-end experiment on Flink
(§ 5.3), we use the wordcount dataflow as specified in
Dhalion’s paper [13].

5.2 DS2 vs Dhalion on Heron

We compare the accuracy and convergence steps of DS2
with Dhalion, recreating the benchmark in [13].

We run Heron with Dhalion and its dynamic resource
allocation policy enabled. The source operator of the
three-stage wordcount topology (Source, FlatMap, Count)
produces sentences at a fixed rate of 1M per minute. The
FlatMap and Count operators are rate-limited to simulate
bottlenecks: each FlatMap instance splits at most 100K
sentences per minute, and each Count instance counts up
to 1M words per minute (the same ratios as in the Dhalion
paper). We start under-provisioned with one instance per
operator and let Heron stabilize without backpressure.

Figure 7: Dynamic scaling experiment with Flink using
DS2 on the word count dataflow of [13].

We have already seen how the source rate evolves to
match the target throughput in this experiment in Figure 1.
Figure 6 shows the parallelism of FlatMap and Count over
time, from the start until convergence. Dhalion makes six
scale-up decisions (each involving a single operator) and
reaches a stable configuration with 22 FlatMap instances
and 30 Count instances after 2000 seconds.

We then apply DS2 on the same initial under-
provisioned configuration using a 60s decision interval,
no warm-up, one interval activation time, and 1.0 target
ratio (cf. § 4). DS2 indicates a required parallelism of 10
for FlatMap and 20 for Count, which indeed is the mini-
mum configuration that handles 1M sentences per minute.
Note that DS2 correctly estimates the optimal parallelism
in a single step, after only one minute of collecting the
default Heron performance metrics.

Dhalion requires several re-configuration steps, each af-
fecting a single operator, and reaches a final configuration
that is significantly over-provisioned, even in this simple
wordcount dataflow. In contrast, DS2 correctly identifies
the optimal configuration in a single step and two orders
of magnitude less time than Dhalion.

Besides those discussed in § 2, another reason Dhalion
takes so long to reach a backpressure-free configuration
is that its reaction time depends on the size of the operator
queues. By default, Heron has a 100MiB buffer per opera-
tor queue, which may take some time to fill (depending on
the workload) before backpressure kicks in and Dhalion
can react. In contrast, DS2 only depends on the decision
interval where metrics are aggregated, arbitrarily speci-
fied by the user and typically much smaller.

5.3 DS2 on Flink

We now show DS2 driving Apache Flink, in order to
demonstrate the benefits of DS2 when combined with

792    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Bids Auctions Persons
Flink Timely Flink Timely Flink Timely

Q1 4M 5M — —
Q2 4M 5M — —
Q3 — 500K 3M 100K 800K
Q5 500K 2M — —
Q8 — 420K 4M 120K 4M
Q11 1M 9M — —

Table 3: Target source rate (records/s) configuration for
the Nexmark queries on Apache Flink and Timely.

a fast re-configuration mechanism such as that in Flink.
Here, DS2 uses a 10s decision interval, 30s warm-

up time, one interval activation time, and 1.0 target ra-
tio. DS2 hence ignores the first three decisions after re-
configuration, applying a decision immediately after.

We use the same wordcount dataflow as before, this
time with two phases corresponding to scale-up and
scale-down scenarios respectively. In phase 1, the source
rate is 2M sentences per second and Flink starts under-
provisioned with 10 FlatMap instances and 5 Count in-
stances. In this state, FlatMap can not keep up with the
source rate, neither can Count handle FlatMap’s output
rate. Once Flink has reached a backpressure-free config-
uration, we keep the source rate stable for 10 minutes.
During the second phase, we decrease the source rate to
1M sentences per second and keep it stable for another 10
minutes.

Figure 7 shows observed source rate and operator paral-
lelism over time. DS2 applies two scale-up actions. First,
at 40s it re-deploys the dataflow with 14 FlatMap in-
stances and 7 Count instances. This happens right after
the warm-up and activation time, and Flink takes around
30s to snapshot state and restart from the savepoint [24].

At 150s DS2 acts again to increase FlatMap to 19 and
Count to 11 instances. This time Flink takes about 50s to
redeploy the backpressure-free configuration at 200s.

At 803s (3s into the second phase) DS2 reacts to the
reduced source rate by reducing the configuration to 7
FlatMap and 4 Count instances at 845s. At 900s it makes
a final decision to increase Count parallelism by one, and
Flink successfully applies the change at 930s, reaching
the new optimal configuration.

This shows that DS2 plus an efficient re-configuration
mechanism can offer robust dynamic scaling for stream-
ing dataflows, allowing the reference system to react to
changes in its workload in just a few seconds – signifi-
cantly faster than any other systems we are aware of.

5.4 Convergence

We now show DS2 convergence from both over- and
under-provisioned states on more complex dataflows. We

use the same Flink configuration as before, and execute
each query with fixed source rates (cf. Table 3) and ini-
tial configurations of varying parallelism. We run each
query-configuration combination for 5 minutes and evalu-
ate DS2 with 30s decision interval, 30s warm-up time, 1.0
target ratio, and five intervals activation (i.e. we consider
the policy to have converged if the decision is unchanged
over 5 consecutive intervals).

Table 4 shows the indicated parallelism per decision
step for the main operator of each query on Flink. Note
that queries Q3, Q5, Q8, and Q11 include many opera-
tors, but we show results for the main operator of each for
simplicity. DS2 converges in one step for simple queries
and initial configurations close to optimal (e.g. Q1 with
parallelism 12), and in at most three steps for complex
queries and initial configurations far from optimal (e.g.
Q5 with initial parallelism 8).

In all cases, DS2 takes at most three steps to converge.
It needed three steps in 3 experiments (with Q2, Q5, and
Q11), two steps in 14 experiments, and a single step in 19
out of 36 total experiments. We also ran the same queries
using Timely Dataflow and the results were similar.

This shows that DS2 provides two important SASO
properties: stability and short settling time.

Intuitively, one DS2 step moves close to optimal by es-
timating ideal linear scaling (§ 3.4). For far-from-optimal
initial configurations, the second step “refines” this de-
cision with a more accurate measurement, and the third
step compensates for uncaptured overheads.

5.5 Accuracy

We next show accuracy: DS2 converges to configurations
that exhibit no backpressure (and thus keep up with the
source rates) while minimizing resource usage. In partic-
ular, we show that for a given dataflow, fixed input rate,
and initial configuration, DS2 identifies the optimal par-
allelism regardless of whether the job is initially under-
or over-provisioned. We further show that there exists no
other backpressure-free configuration with lower paral-
lelism than the one DS2 computes. Finally, we show that
this configuration gives low latency by minimizing wait-
ing time per operator instance.

We set source rates as in Table 3 and parallelism given
by the convergence experiment. Figure 8 plots observed
source rates (top) and per-record latency (bottom) for the
main operator of each Nexmark query on Flink with dif-
ferent configurations. For queries with two sources (Q3
and Q8), we show results for the higher-rate source (re-
sults for the low-rate sources are similar). In all cases,
DS2 successfully identifies the lowest parallelism that
can keep up with the source rate. Further increasing the
parallelism does not significantly improve latency and
would waste resources, while lower parallelism would
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(a) [Q1] Indicated parallelism: 16 (b) [Q2] Indicated parallelism: 14 (c) [Q3] Indicated parallelism: 20

(d) [Q5] Indicated parallelism: 16 (e) [Q8] Indicated parallelism: 10 (f) [Q11] Indicated parallelism: 28

Figure 8: Observed source output rates and per-record latency CDFs for different configurations of the Nexmark
operators on Apache Flink.

(a) [Q3] Indicated parallelism: 4 (b) [Q5] Indicated parallelism: 4 (c) [Q11] Indicated parallelism: 4

Figure 9: CDFs of per-epoch latencies for different configurations of the Nexmark operators on Timely.
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Initial configuration Q1 Q2 Q3 Q5 Q8 Q11

8 12→16 11→13→14 16→20 14→15→16 10 12→22→28
12 16 14 18→20 16 10 22→28
16 16 12→14 20 16 8→10 26→28
20 16 13→14 20 14→16 8→10 28
24 16 14 20 14→16 8→10 28
28 16 14 20 13→16 8→10 28

Table 4: DS2 convergence steps for Nexmark queries on Flink. Values are the level of parallelism of the main operator
of each query. Leftmost column shows initial parallelism (from 8 to 28 instances); subsequent columns show optimal
level of parallelism as estimated by DS2 in each step. Final decisions converged to by DS2 are highlighted.

(a) Flink instrumentation overhead (b) Timely instrumentation overhead

Figure 10: Policy instrumentation overhead for the Nexmark queries of Table 3 with instrumentation disabled (vanilla)
and enabled (instr) for both Flink (10a) and Timely (10b).

cause backpressure.
Timely does not have a backpressure mechanism so

data sources are never delayed and the observed source
rates are always equal to the initial fixed rate (instead,
queues grow when the system cannot keep up). We there-
fore simply show CDFs of per-epoch latencies with dif-
ferent configurations for Timely. Figure 9 shows these
for Q3, Q5, and Q11; results are similar for other queries.
Each epoch in the CDFs corresponds to 1s of data, which
must be processed in less than 1s. The optimal parallelism
indicated by DS2 is p = 4 in all queries, regardless of
the starting configuration. For Q3 (left) and Q11 (right),
p = 4 is clearly the configuration that can keep up with
the 1s target (vertical line in the plots) using minimum
required resources. For Q5, 18% of the epochs are above
the target by up to 0.5s. Here, the larger percentage of
epochs that cannot keep up is because of the window op-
erator, which stashes data and then forwards it at certain
time points. This manifests as load spikes, which require
additional resources for the system to keep up. Longer
decision intervals smooth out the spikes but tend to affect
policy decisions towards higher optimal configurations,
which is why DS2 indicated p = 4 (cf. § 4.2).

In summary, DS2 identified optimal configurations in
all experiments and never overshot (provisioned more re-
sources than needed), thereby exhibiting the remaining
two SASO properties: accuracy and no overshoot.

5.6 Instrumentation overhead

Finally, we evaluate instrumentation overhead. We run
the Nexmark queries for 5 minutes with source rates from
Table 3 and a 10s decision interval — the smallest we
use in this paper, which results in the most frequently
aggregated logs and has the highest potential overhead on
the system performance.

We measure per-record latency in Flink using its built-
in metric and per-epoch latency in Timely using 1s event-
time epochs. Figure 10 shows boxplots for both systems.
Individual columns show latency with logging completely
off (vanilla) and instrumentation activated (instr). Over-
heads are small: at most 13% on Flink (40ms absolute
difference) and at most 20% on Timely (5ms absolute dif-
ference) across all queries. Performance penalties are an
acceptable trade-off for a good scaling policy, and could
be further reduced with a larger decision interval and pre-
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aggregation of metrics. Note that Heron incurs no over-
head since it gathers the required metrics by default.

6 Conclusion

In this paper we have described and evaluated DS2, a
novel automatic scaling controller for distributed stream-
ing dataflows. Unlike existing scaling approaches, which
rely on coarse-grained metrics and simplistic models,
DS2 leverages knowledge of the dataflow graph, the com-
putational dependencies among operators, and estimates
the operators’ true processing and output rates.

DS2 uses a general performance model that is
mechanism-agnostic and broadly applicable to a range of
streaming systems. We have implemented DS2 atop dif-
ferent stream processing engines: Apache Flink, Timely
Dataflow, and Apache Heron, and showed that it is capa-
ble of accurate scaling decisions with fast convergence,
while incurring negligible instrumentation overheads.

An interesting question for future work is what kind
of scaling and adaptation mechanisms are a good match
for a controller like DS2. The efficiency of DS2’s model
means that responsiveness is often limited by the latency
of the scaling mechanism of the stream processor (when it
is not determined by the granularity of measurement). All
the stream processors we test against implement scaling
actions by checkpointing the dataflow, redeploying, and
restoring from the checkpoint. A faster, more dynamic
reconfiguration mechanism might allow DS2 to operate
on shorter timescales than the tens of seconds it allows in
current systems.

We will release DS2 as open source, together with all
code and data used to produce the results in this paper.
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Abstract
In recent years, Apache Spark has become the de facto
standard for big data processing. Spark has enabled a
wide audience of users to process petabyte-scale work-
loads due to its flexibility and ease of use: users are able
to mix SQL-style relational queries with Scala or Python
code, and have the resultant programs distributed across
an entire cluster, all without having to work with low-
level parallelization or network primitives.

However, many workloads of practical importance are
not large enough to justify distributed, scale-out execu-
tion, as the data may reside entirely in main memory of
a single powerful server. Still, users want to use Spark
for its familiar interface and tooling. In such scale-up
scenarios, Spark’s performance is suboptimal, as Spark
prioritizes handling data size over optimizing the com-
putations on that data. For such medium-size workloads,
performance may still be of critical importance if jobs
are computationally heavy, need to be run frequently on
changing data, or interface with external libraries and
systems (e.g., TensorFlow for machine learning).

We present Flare, an accelerator module for Spark
that delivers order of magnitude speedups on scale-up
architectures for a large class of applications. Inspired
by query compilation techniques from main-memory
database systems, Flare incorporates a code genera-
tion strategy designed to match the unique aspects of
Spark and the characteristics of scale-up architectures,
in particular processing data directly from optimized file
formats and combining SQL-style relational processing
with external frameworks such as TensorFlow.

Introduction
Modern data analytics applications require a combina-
tion of different programming paradigms, spanning rela-
tional, procedural, and map-reduce-style functional pro-

cessing. Systems like Apache Spark [8] have gained
enormous traction thanks to their intuitive APIs and abil-
ity to scale to very large data sizes, thereby commoditiz-
ing petabyte-scale (PB) data processing for large num-
bers of users. But thanks to its attractive programming
interface and tooling, people are also increasingly using
Spark for smaller workloads. Even for companies that
also have PB-scale data, there is typically a long tail of
tasks of much smaller size, which make up a very impor-
tant class of workloads [17, 44]. In such cases, Spark’s
performance is suboptimal. For such medium-size work-
loads, performance may still be of critical importance
if there are many such jobs, individual jobs are compu-
tationally heavy, or need to be run very frequently on
changing data. This is the problem we address in this pa-
per. We present Flare, an accelerator module for Spark
that delivers order of magnitude speedups on scale-up ar-
chitectures for a large class of applications. A high-level
view of Flare’s architecture can be seen in Figure 1b.

Inspiration from In-Memory Databases Flare is
based on native code generation techniques that have
been pioneered by in-memory databases (e.g., Hy-
Per [35]). Given the multitude of front-end program-
ming paradigms, it is not immediately clear that look-
ing at relational databases is the right idea. However, we
argue that this is indeed the right strategy: Despite the
variety of front-end interfaces, contemporary Spark is, at
its core, an SQL engine and query optimizer [8]. Rich
front-end APIs are increasingly based on DataFrames,
which are internally represented very much like SQL
query plans. Data frames provide a deferred API, i.e.,
calls only construct a query plan, but do not execute it
immediately. Thus, front-end abstractions do not inter-
fere with query optimization. Previous generations of
Spark relied critically on arbitrary UDFs, but this is be-
coming less and less of a concern as more and more func-
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Figure 1: Flare system overview: (a) architecture of
Spark adapted from [8]; (b) Flare generates code for en-
tire queries, eliminating the RDD layer, and orchestrat-
ing parallel execution optimized for shared memory ar-
chitectures. Flare also integrates with TensorFlow.

tionality is implemented on top of DataFrames.
With main-memory databases in mind, it follows that

one may look to existing databases for answers on im-
proving Spark’s performance. A piece of low-hanging
fruit seems to be simply translating all DataFrame query
plans to an existing best-of-breed main-memory database
(e.g., HyPer [35]). However, such systems are full
database systems, not just query engines, and would re-
quire data to be stored in a separate, internal format spe-
cific to the external system. As data may be changing
rapidly, loading this data into an external system is un-
desirable, for reasons of both storage size and due to the
inherent overhead associated with data loading. More-
over, retaining the ability to interact with other systems
(e.g., TensorFlow [3] for machine learning) is unclear.

Another logical alternative would be to build a new
system which is overall better optimized than Spark for
the particular use case of medium-size workloads and
scale-up architectures. While some effort has been done
in this vein (e.g., Tupleware [17]), such systems for-
feit the ability to leverage existing libraries and frame-
works built on top of Spark, including the associated
tooling. Whereas a system that competes with Spark
must replicate all of this functionality, our goal instead
was to build a drop-in module capable of handling work-
loads for which Spark is not optimized, preferably using
methodologies seen in these best-of-breed, external sys-
tems (e.g., HyPer).

Native Query Compilation Indeed, the need to accel-
erate CPU computation prompted the development of a
code generation engine that ships with Spark since ver-
sion 1.4, called Tungsten [8]. However, despite follow-
ing some of the methodology set forth by HyPer, there
are a number of challenges facing such a system, which
causes Tungsten to yield suboptimal results by compar-
ison. First, due to the fact that Spark resides in a Java-
based ecosystem, Tungsten generates Java code. This

(somewhat obviously) yields inferior performance to na-
tive execution as seen in HyPer. However, generating
native code within Spark poses a challenge of interfac-
ing with the JVM when dealing with e.g., data load-
ing. Another challenge comes from Spark’s reliance
on resilient distributed datasets (RDDs) as its main in-
ternal execution abstraction. Mapping query operators
to RDDs imposes boundaries between code generation
regions, which incurs nontrivial runtime overhead. Fi-
nally, having a code generation engine capable of inter-
facing with external frameworks and libraries, particu-
larly machine-learning oriented frameworks like Tensor-
Flow and PyTorch, is also challenging due to the wide
variety of data representations which may be used.

End-to-End Datapath Optimization In solving the
problem of generating native code and working within
the Java environment, we focus specifically on the is-
sue of data processing. When working with data di-
rectly from memory, it is possible to use the Java Native
Interface (JNI) and operate on raw pointers. However,
when processing data directly from files, fine-grained
interaction between decoding logic in Java and native
code would be required, which is both cumbersome and
presents high overhead. To resolve this problem, we elect
to reimplement file processing for common formats in
native code as well. This provides a fully compiled data
path, which in turn provides significant performance ben-
efits. While this does present a problem in calling Java
UDFs (user-defined functions) at runtime, we can sim-
ply fall back to Spark’s existing execution in such a case,
as these instances appear rare in most use cases consid-
ered. We note in passing that existing work (e.g., Tuple-
ware [17], Froid [40]) has presented other solutions for
this problem which could be adopted within our method,
as well.

Fault Tolerance on Scale-Up Architectures In addi-
tion, we must overcome the challenge of working with
Spark’s reliance on RDDs. For this, we propose a simple
solution: when working in a scale-up, shared memory
environment, remove RDDs and bypass all fault toler-
ance mechanisms, as they are not needed in such archi-
tectures (seen in Figure 1b). The presence of RDDs fun-
damentally limits the scope of query compilation to in-
dividual query stages, which prevents optimization at the
granularity of full queries. Without RDDs, we compile
whole queries and eliminate the preexisting boundaries
across query stages. This also enables the removal of ar-
tifacts of distributed architectures, such as Spark’s use of
HashJoinExchange operators even if the query is run on
a single core.
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Interfacing with External Code Looking now to the
issue of having a robust code generation engine capa-
ble of interfacing with external libraries and frameworks
within Spark, we note that most performance-critical ex-
ternal frameworks are also embracing deferred APIs.
This is particularly true for machine learning frame-
works, which are based on a notion of execution graphs.
This includes popular frameworks like TensorFlow [3],
Caffe [24], and ONNX [1], though this list is far from
exhaustive. As such, we focus on frameworks with APIs
that follow this pattern. Importantly, many of these sys-
tems already have a native execution backend, which al-
lows for speedups by generating all required glue code
and keeping the entire data path within native code.

Contributions The main intellectual contribution of
this paper is to demonstrate and analyze some of the
underlying issues contained in the Spark runtime, and
to show that the HyPer query compilation model must
be adapted in certain ways to achieve good results in
Spark (and, most likely, systems with a similar archi-
tecture like Flink [16]), most importantly to eliminate
codegen boundaries as much as possible. For Spark, this
means generating code not at the granularity of operator
pipelines but compiling whole Catalyst operator trees at
once (which may include multiple SQL-queries and sub-
queries), generating specialized code for data structures,
for file loading, etc.

We present Flare, an accelerator module for Spark
that solves these (and other) challenges which currently
prevent Spark from achieving optimal performance on
scale-up architectures for a large class of applications.
Building on query compilation techniques from main-
memory database systems, Flare incorporates a code
generation strategy designed to match the unique aspects
of Spark and the characteristics of scale-up architectures,
in particular processing data directly from optimized file
formats and combining SQL-style relational processing
with external libraries such as TensorFlow.

This paper makes the following specific contributions:

• We identify key impediments to performance for
medium-sized workloads running on Spark on a single
machine in a shared memory environment and present
a novel code generation strategy able to overcome
these impediments, including the overhead inherent in
boundaries between compilation regions. (Section 2).

• We present Flare’s architecture and discuss some im-
plementation choices. We show how Flare is capable
of optimizing data loading, dealing with parallel exe-
cution, as well as efficiently working on NUMA sys-
tems. This is a result of Flare compiling whole queries,

as opposed to individual query stages, which results in
an end-to-end optimized data path (Section 3).

• We show how Flare’s compilation model efficiently
extends to external user-defined functions. Specifi-
cally, we discuss Flare’s ability to integrate with other
frameworks and domain-specific languages, including
in particular machine learning frameworks like Tensor-
Flow that provide compilation facilities of their own
(Section 4).

• We evaluate Flare in comparison to Spark on TPC-H,
reducing the gap to best-of-breed relational query en-
gine, and on benchmarks involving external libraries.
In both settings, Flare exhibits order-of-magnitude
speedups. Our evaluation spans single-core, multi-
core, and NUMA targets (Section 5).

Finally, we survey related work in Section 6, and draw
conclusions in Section 7.

Background
Apache Spark [55, 56] is today’s most widely-used big
data framework. The core programming abstraction
comes in the form of an immutable, implicitly distributed
collection called a resilient distributed dataset (RDD).
RDDs serve as high-level programming interfaces, while
also transparently managing fault-tolerance.

We present a short example using RDDs (from [8]),
which counts the number of errors in a (potentially dis-
tributed) log file:
val lines = spark.sparkContext.textFile("...")
val errors = lines.filter(s => s.startsWith("ERROR"))
println("Total errors: " + errors.count())

Spark’s RDD abstraction provides a deferred API: in
the above example, the calls to textFile and filter

merely construct a computation graph. In fact, no actual
computation occurs until errors.count is invoked.

The directed, acyclic computation graph represented
by an RDD describes the distributed operations in a
rather coarse-grained fashion: at the granularity of map,
filter, etc. While this level of detail is enough to en-
able demand-driven computation, scheduling, and fault-
tolerance via selective recomputation along the “lineage”
of a result [55], it does not provide a full view of the com-
putation applied to each element of a dataset. For exam-
ple, in the code snippet shown above, the argument to
lines.filter is a normal Scala closure. This makes in-
tegration between RDDs and arbitrary external libraries
much easier, but it also means that the given closure must
be invoked as-is for every element in the dataset.

As such, the performance of RDDs suffers from two
limitations: first, limited visibility for analysis and op-
timization (especially standard optimizations, e.g., join
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reordering for relational workloads); and second, sub-
stantial interpretive overhead, i.e., function calls for each
processed tuple. Both issues have been ameliorated with
the introduction of the Spark SQL subsystem [8].

The Power of Multi-Stage APIs
The chief addition of Spark SQL is an alternative API
based on DataFrames. A DataFrame is conceptually
equivalent to a table in a relational database; i.e., a collec-
tion of rows with named columns. However, like RDDs,
the DataFrame API records operations, rather than com-
puting the result.

Therefore, we can write the same example as before:
val lines = spark.read.textFile("...")
val errors = lines.filter($"value".startsWith("ERROR"))
println("Total errors: " + errors.count())

Indeed, this is quite similar to the RDD API in that
only the call to errors.count will trigger actual execu-
tion. Unlike RDDs, however, DataFrames capture the
full computation/query to be executed. We can obtain the
internal representation using errors.explain(), which
produces the following output:
== Physical Plan ==
*Filter StartsWith(value#894, ERROR)
+- *Scan text [value#894]

Format: ...TextFileFormat@18edbdbb,
InputPaths: ...,
ReadSchema: struct<value:string>

From the high-level DataFrame operations, Spark
SQL computes a query plan, much like a relational
DBMS. Spark SQL optimizes query plans using its re-
lational query optimizer, called Catalyst, and may even
generate Java code at runtime to accelerate parts of the
query plan using a component named Tungsten (see Sec-
tion 2.2).

It is hard to overstate the benefits of this kind of de-
ferred API, which generates a complete program (i.e.,
query) representation at runtime. First, it enables vari-
ous kinds of optimizations, including classic relational
query optimizations. Second, one can use this API from
multiple front-ends, which exposes Spark to non-JVM
languages such as Python and R, and the API can also
serve as a translation target from literal SQL:
lines.createOrReplaceTempView("lines")
val errors = spark.sql("select * from lines

where value like ’ERROR%’")
println("Total errors: " + errors.count())

Third, one can use the full host language to structure
code, and use small functions that pass DataFrames be-
tween them to build up a logical plan that is then opti-
mized as a whole.

However, this is only true as long as one stays in the
relational world, and, notably, avoids using any exter-
nal libraries (e.g., TensorFlow). This is a nontrivial re-
striction; to resolve this, we show in Section 4 how the
DataFrame model extends to such library calls in Flare.

select *
from lineitem, orders
where l_orderkey = o_orderkey

Spark
Sort-merge join 14,937 ms
Broadcast-hash join 4,775 ms

of which in exchange 2,232 ms
Flare
In-memory hash join 136 ms

Stage 0

Stage 1

scan

Filter

BroadcastExchange

Project

scan

Filter

Broadcast
HashJoin...

CollectLimit

Project

(a) (b)

Figure 2: (a) The cost of Join lineitem ./ orders with
different operators (b) Spark’s hash join plan shows two
separate code generation regions, which communicate
through Spark’s runtime system.

Catalyst and Tungsten
With the addition of Spark SQL, Spark also introduced
a query optimizer known as Catalyst [8]. We elide the
details of Catalyst’s optimization strategy, as they are
largely irrelevant here. After Catalyst has finished op-
timizing a query plan, Spark’s execution backend known
as Tungsten takes over. Tungsten aims to improve
Spark’s performance by reducing the allocation of ob-
jects on the Java Virtual Machine (JVM) heap, control-
ling off-heap memory management, employing cache-
aware data structures, and generating Java code which
is then compiled to JVM bytecode at runtime [28]. No-
tably, these optimizations are able to simultaneously im-
prove the performance of all Spark SQL libraries and
DataFrame operations [56].

Following the design described by Neumann, and im-
plemented in HyPer [35], Tungsten’s code generation
engine implements what is known as a “data-centric”
model. In this type of model, operator interfaces consist
of two methods: produce, and consume. The produce

method on an operator signals all child operators to be-
gin producing data in the order defined by the parent op-
erator’s semantics. The consume method waits to receive
and process this data, again in accordance with the parent
operator’s semantics.

In HyPer (and Tungsten), operators that materialize
data (e.g., aggregate, hash join, etc.) are called “pipeline
breakers”. Where possible, pipelines of operators (e.g.,
scan, aggregate) are fused to eliminate unnecessary func-
tion calls which would otherwise move data between op-
erators. A consequence of this is that all code generated
is at the granularity of query stage, rather than generat-
ing code for the query as a whole. This requires some
amount of “glue code” to also be generated, in order to
pipeline these generated stages together. The directed
graph of the physical plan for a simple join query can be
seen in Figure 2b. In this figure, we can see that the first
stage generates code for scanning and filtering the first
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val tpchq6 = spark.sql("""
select
sum(l_extendedprice*l_discount) as

revenue
from
lineitem

where
l_shipdate >= to_date(’1994-01-01’)
and l_shipdate < to_date(’1995-01-01’)
and l_discount between 0.05 and 0.07
and l_quantity < 24

""")

// data loading elided ...
for (i = 0; i < size; i++) {
double l_quantity = l_quantity_col[i];
double l_extendedprice = l_extendedprice_col[i];
double l_discount = l_discount_col[i];
long l_shipdate = l_shipdate_col[i];
if (l_shipdate >= 19940101L && l_shipdate <

19950101L &&
l_discount >= 0.05 && l_discount <= 0.07 &&
l_quantity < 24.0) {

revenue += l_extendedprice * l_discount;
}

} ...

Spark SQL Preload ms Query ms
Direct CSV - 24,400
Preload CSV 118,062 1,418

Hand-Written C / Flare
Preload CSV 2,847 45

(a) (b) (c)

Figure 3: (a) Query 6 from the TPC-H benchmark in Spark (b) Q6 hand-written C code (c) Running times for Q6 in
Spark, with and without pre-loading, and compared to hand-written code and Flare.

table and the second stage generates code for the pipeline
of the scan, join, and project operators. In Section 2.4 we
discuss the impact of the granularity of code generation
and the choice of join algorithm on Spark’s performance.

Spark Performance Analysis
Spark performance studies primarily focus on the
scale-out performance, e.g., running big data bench-
marks [55] on high-end clusters, performing terabyte
sorting [56], etc. However, when considering the class
of computationally-heavy workloads that can fit in main-
memory, requires multiple iterations, or integrates with
external libraries (e.g., training a machine learning clas-
sifier), the performance of Spark becomes suboptimal.

On a similar note, McSherry, Isard, and Murray have
eloquently argued in their 2015 HotOS paper [30] and
accompanying blog post [29] that big data systems such
as Spark tend to scale well, but often this is because there
is a lot of internal overhead. In particular, McSherry et
al. demonstrate that a straightforward native implemen-
tation of the PageRank algorithm [37] running on a sin-
gle laptop can outperform a Spark cluster with 128 cores,
using the then-current version.

Laptop vs. Cluster Inspired by this setup and the fol-
lowing quote, we are interested in gauging the inherent
overheads of Spark and Spark SQL in absolute terms:

“You can have a second computer once you’ve
shown you know how to use the first one.”

— Paul Barham, via [30]

For our benchmark, we pick the simplest query
from the industry-standard TPC-H benchmark: Query
6 (shown in Figure 3a). We define the schema of ta-
ble lineitem, provide the source file, and finally reg-
ister it as a temporary table for Spark SQL (steps not
shown). For our experiments, we use scale factor 2 (SF2)
of the TPC-H data set, which means that table lineitem

is stored in a CSV file of about 1.4 GB. Following the
setup by McSherry et al., we run our tests on a fairly stan-
dard laptop.1 All times referenced below may be found

1MacBook Pro Retina 2012, 2.6 GHz Intel Core i7, 16 GB 1600

in Figure 3c.

We first do a naive run of our query, Q6. As reported
in Figure 3, we achieve a result of 24 seconds, which
is clearly suboptimal. In aiming to boost performance,
one option at this is to convert our data to the columnar
Parquet format [7] for increased performance. Alterna-
tively, we can preload the data so that subsequent runs
are purely in-memory. As we are mainly interested in
the computational part, we opt to preload.

We note in passing that preloading is quite slow (al-
most 2 min), which may be due to a variety of factors.
With things preloaded, however, we can now execute
our query in-memory, and we get a much better result of
around 1.4 seconds. Running the query a few more times
yields further speedups, but timings stagnate at around 1
second (timing from subsequent runs elided). Using 1s
as our baseline, we must now qualify this result.

Hand-Written C Due to the simplicity of Q6, we elect
to write a program in C which performs precisely the
same computation: mapping the input file into memory
using the mmap system call, loading the data into an in-
memory columnar representation, and then executing the
main query loop (see Figure 3b).

Compiling this C program via gcc -O3 Q6.c and run-
ning the resultant output file yields a time of 2.8 seconds
(including data loading), only 45ms of which is perform-
ing the actual query computation. Note that in compar-
ison to Spark 2.0, this is a striking 20× speedup. Per-
forming the same query in HyPer, however, takes only
46.58ms, well within the margin of error of the hand-
written C code. This disparity in performance shows that
although Tungsten is written with the methodologies pre-
scribed by HyPer in mind, there exist some impediments
either in the implementation of these methodologies or
in the Spark runtime itself which prevent Spark from
achieving optimal performance for these cases.

MHz DDR3, 500 GB SSD, Spark 2.0, Java HotSpot VM 1.8.0_112-
b16
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case class BroadcastHashJoinExec(/* ... inputs elided ... */)
extends BinaryExecNode with HashJoin with CodegenSupport {
// ... fields elided ...
override def doProduce(ctx: CodegenContext): String =
streamedPlan.asInstanceOf[CodegenSupport].produce(ctx, this)

override def doConsume(ctx: CodegenContext, input:
Seq[ExprCode], row: ExprCode): String = {

val (broadcastRelation, relationTerm) = prepareBroadcast(ctx)
val (keyEv, anyNull) = genStreamSideJoinKey(ctx, input)
val (matched, checkCondition, buildVars) =

getJoinCondition(ctx, input)
val numOutput = metricTerm(ctx, "numOutputRows")

val resultVars = ...
ctx.copyResult = true
val matches = ctx.freshName("matches")
val iteratorCls = classOf[Iterator[UnsafeRow]].getName
s"""
|// generate join key for stream side
|${keyEv.code}
|// find matches from HashRelation
|$iteratorCls $matches = $anyNull ? null :

($iteratorCls)$relationTerm.get(${keyEv.value});
|if ($matches == null) continue;
|while ($matches.hasNext()) {
| UnsafeRow $matched = (UnsafeRow) $matches.next();
| $checkCondition
| $numOutput.add(1);
| ${consume(ctx, resultVars)}
|}

""".stripMargin
}

}

Figure 4: Spark implementation of inner HashJoin.

Major Bottlenecks
By profiling Spark SQL during a run of Q6, we are able
to determine two key reasons for the large gap in per-
formance between Spark and HyPer. Note that while we
focus our discussion mainly on Q6, which requires low
computational power and uses only trivial query opera-
tors, these bottlenecks appear in nearly every query in the
TPC-H benchmark.

Data Exchange Between Code Boundaries We first
observe that Tungsten must generate multiple pieces of
code: one for the main query loop, the other an iterator
to traverse the in-memory data structure.

Consider the HashJoin code in Figure 4. We can see
that Tungsten’s produce/consume interface generates a
loop which iterates over data through an iterator inter-
face, then invokes the consume method at the end of
the loop in order to perform evaluation. HyPer’s orig-
inal codegen model is centrally designed around data-
centric pipelines within a given query, the notion of
“pipeline-breakers” as coarse-grained boundaries of data
flow, and the combination of pre-written code at the
boundary between pipelines with generated code within
each pipeline. While the particular implementation of
this design in HyPer leads to good results in HyPer itself,
the direct implementation of HyPer’s pipeline-focused
approach in Spark and similar systems falls short because
the overhead of traversing pipeline boundaries is much
higher (Java vs C++, RDD overhead, ecosystem integra-
tion, etc).

The CPU profile (Figure 5) shows that 80% of the ex-
ecution time is spent in one of two ways: accessing and

BasicColumnAccessor.extractTo(…)/…/DOUBLE$extract(…)	  

GeneratedIterator.processNext()	  

computa(on	   overhead	  

Figure 5: CPU profile of TPC-H Q6 in Spark SQL, after
preloading the lineitem table. 80% of time is spent ac-
cessing and decoding the in-memory data representation.

decoding the in-memory data representation, or moving
between the two pieces of generated code through code
paths which are part of the precompiled Spark runtime.
In order to avoid this overhead, then, we must replace
the runtime altogether with one able to reason about the
entire query, rather than just the stages.

JVM Overhead Even if the previous indirection is re-
moved and replaced with a unified piece of Java code,
the performance remains approximately 30% lower than
our hand-written C code. This difference becomes more
pronounced in other TPC-H queries which require both
memory management and tighter low-level control over
data structures. This bottleneck is certainly expected,
and choosing a lower level language does alleviate this
performance loss greatly.

Other Bottlenecks As shown, even fixing these bottle-
necks is not enough. This becomes even more apparent
when moving away from Q6. In dealing with more com-
plex queries, concerns regarding granularity of code gen-
eration and the necessity to interface with the Spark run-
time system become more pronounced than with TPC-H
Q6. In fact, queries which require join operations ex-
hibit some unfortunate consequences for main-memory
execution due to Spark’s design as primarily a cluster-
computing framework. Figure 2a shows timings for a
simple join query that joins the lineitem and orders ta-
bles of the TPC-H benchmark. Spark’s query optimizer
picks an expensive sort-merge join by default. Note that
this may be the correct choice for distributed or out-of-
core execution, but is suboptimal for main memory. With
some tuning, it is possible to force Spark’s query planner
to opt for a hash join instead, which is more efficient for
our architecture. However, even this follows a broadcast
model with high overhead for the internal exchange op-
erator (2.2s of 4.7s) which is present in the physical plan
even when running on a single core.

Flare: Adding Fuel to the Fire
Based on the observations made in Sections 2.3 and 2.4,
we formally present Flare: a new backend which acts
as an accelerator for Spark for medium-sized workloads
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on scale-up architectures. Flare eliminates all previously
identified bottlenecks without removing the expressive-
ness and power of its front-ends. At its core, Flare
efficiently generates code, and brings Spark’s perfor-
mance closer to HyPer and hand-written C. Flare com-
piles whole queries instead of only query stages, effec-
tively bypassing Spark’s RDD layer and runtime for op-
erations like hash joins in shared-memory environments.
Flare also goes beyond purely relational workloads by
adding another intermediate layer between query plans
and generated code.

As previously identified, this need to build a new run-
time, rather than selecting an existing system as an alter-
nate backend for Spark, is founded on a number of justi-
fications. In particular, we focus on the deferred API pro-
vided by Spark SQL which builds computation graphs to
perform the necessary queries as given by users. Access
to this graph structure allows for cross-optimization with
external libraries also using deferred APIs (e.g., Tensor-
Flow) through the use of robust code generation tech-
niques. In order to gain access to the necessary data
at the appropriate time without incurring the overhead
of passing (potentially large amounts of) data between
external programs, a new runtime capable of interfacing
with Spark’s existing front-end is required.

Interface between Spark and Flare
Flare supports most available Spark SQL DataFrame or
DataSet operations (i.e., all operations which can be ap-
plied to a DataFrame and have a representation as Cat-
alyst operators), though any operators currently missing
could be added without compatibility constraints. In the
event that a Spark job contains operations that are not
part of the SQL frontend, Flare can still be used to ac-
celerate SQL operations and then return the result to the
Spark runtime, which will then use the result for the rest
of the computation. However, the benefit of doing this
may be negated by the communication overhead between
the two systems.

Flare can operate in one of two modes. Either users
must invoke a function to convert the DataFrame they
wish to compute into a Flare DataFrame (a conversion
that may fail with a descriptive error), to that end Flare
exposes a dedicated API to allow users to pick which
DataFrames to evaluate through Flare:
val df = spark.sql("...") // create DataFrame (SQL or direct)
val fd = flare(df) // turn it into a FlareDataFrame
fd.show() // execute query plan with Flare

Or one can set a configuration item in Spark to use
Flare on all queries where possible, and only fall back
to the default Spark execution when necessary (option-
ally emitting a warning when doing so). When Flare is

analysis

cross-optimizationsQuery Plan

Libraries
+

Staged

Graph

Native
Code

mapping

LMS
Computation

Figure 6: Query compilation in Flare

invoked, it first generates C code as explained in the fol-
lowing section, then invokes a C compiler, and finally
launches the resulting binary either inside the JVM, or
as a separate process. This bypasses Spark’s runtime en-
tirely, relying solely on Flare’s runtime to trigger execu-
tion of the generated code.

Flare: Architecture
A high-level view of Flare’s architecture is illustrated in
Figure 1b. Spark SQL’s front-end, the DataFrame API,
and the Catalyst optimizer all remain the same. When
dealing with relational workloads, the optimized query
plan is exported without modification from Catalyst to
Flare, upon which Flare performs a compilation pass and
creates a code generation object for each of the nodes.

At a closer look, Figure 6 illustrates an end-to-end ex-
ecution path in Flare. Flare analyzes Spark’s optimized
plan (which possibly embeds external libraries as UDFs)
and constructs a computation graph that encodes rela-
tional operators, data structures, UDFs, data layout, and
any needed configurations.

Generative Programming and Lightweight Modular
Staging (LMS) Flare uses Lightweight Modular Stag-
ing (LMS) for code generation due to its multi-staging
capabilities. In LMS, a special type constructor Rep[T] is
used to denote a staged expression, which will cause an
expression of type T to be emitted in the generated code.
The example in Figure 7a shows a code snippet that gen-
erates a for loop (notice the loop counter is specialized
with Rep). At evaluation time, the for loop iteration will
be generated. On the other hand, the if condition is com-
posed of a regular Boolean type, so this code is executed
at code generation time as shown in Figure 7b.

val squared: Boolean = true
val arr = NewArray[Int](5)

for (i <- 0 until 5: Rep[Range]) {
if (squared)
arr(i) = i * i

else
arr(i) = i

}

int* x1 = malloc(5 *
sizeof(int));

int x2;
for (x2 = 0; x2 < 5; x2++) {

int x3 = x2 * x2;
x1[x2] = x3;

}

(a) (b)

Figure 7: (a) Generic LMS code example (only used for
Flare internals) (b) LMS generated C code.

The essence of multi-stage programming is to generate
efficient programs using high-level constructs without in-
curring runtime overheads [47]. In the late 1990s, it was
realized that multi-stage languages (i.e., languages used
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to express multi-stage programs) are useful not only as
intermediate formal description, but also directly as pro-
gramming tools, giving rise to the field of programmable
specialization or generative programming, embodied by
languages like MetaML [48] and MetaOCaml [15]. Even
more recently, library-based approaches have become
popular that implement generative programming abstrac-
tions using operator overloading and other features in
regular general-purpose languages. One instance of such
a system is LMS [43], implemented in Scala. LMS
maintains a graph-like intermediate representation (IR)
to encode constructs and operations. LMS introduces a
type constructor called Rep[T] (where T is a type, e.g.,
String) to denote expressions that will generate code.
For example, given two Rep[Int] values a and b, eval-
uating the expression a+b will generate the following
code: int x1 = a + b and return a reference to x1 as
new Rep[Int] result in the meta language. This value
can then be used in other computations.

Staging and code generation in Flare In the context
of query compilation, LMS is used to specialize a query
evaluator with respect to a query plan [42, 25]. Based on
partial evaluation results (the first Futamura projection
[21]), the outcome of programmatic specialization is a
compiled target of the query. Figure 8 shows an example
of compiling a join query in Flare, in which the special-
ization logic (i.e., staging code using Rep) is placed at
the granularity of low-level control flow constructs and
primitive operators.

case class DataLoop(foreach: (Rep[Record] => Unit) => Unit)
type ThreadCallback = Rep[Int] => DataLoop => Unit
case class CodeGen(gen: ThreadCallback => Unit)

// extract the join hash key functions
def compileCond(cond: Option[Expression]): (Rep[Record] =>

Rep[Record], Rep[Record] => Rep[Record]) = ...
def compile(plan: LogicalPlan): CodeGen = plan match {
case HashJoin(left, right, Inner, cond) =>
val lGen = compile(left); val rGen = compile(right)
val (lkey, rkey) = compileCond(cond)

val hmap = new ParHashMap[Record,Record]()
CodeGen(threadCallback =>
lGen.gen { tId => dataloop => // start section for left child
val lhmap = hmap.partition(tId) // Thread local data
for (ltuple <- dataloop) lhmap += (lkey(ltuple), ltuple)

}
rGen.gen { tId => dataloop => // start section for right

child
threadCallback(tId) { callback => // invoke downstream op
for (rtuple <- dataloop)
for (ltuple <- hmap(rkey(rtuple)))
callback(merge(ltuple, rtuple)) // feed downstream op

} } )
case ...

}

Figure 8: Internal Flare operator that generates code for
HashJoin (LogicalPlan and HashJoin are Spark classes).

Following the InnerJoin code generation example in
Figure 8, a CodeGen object is generated from each of
the two children, after which the logic of the Join op-
erator is implemented: the left child’s code generator is
invoked and the tuples produced populate a hash map.

The right child’s code generator is then invoked, and for
each of the tuples produced, the matching lines from the
left table are extracted from the map, merged, and finally
become the produced value of the Join operator. LMS
performs some lightweight optimizations (e.g., common
subexpression elimination, dead code elimination), and
generates C code that can be compiled and executed by
the Flare runtime.

Interestingly, this implementation looks exactly like
the implementation of an interpreter. Indeed, this is
no coincidence: much like Spark uses multi-stage APIs
(Section 2.1) at the operational level, Flare uses the LMS
compiler framework, which implements the same con-
cept, but at a lower level. In the same way that Scala
(or Python) is used to build DataFrames in Spark, we use
Scala to build a graph which represents the computations
needing to be generated. We qualify the code generation
of Spark as coarse-grain. The BroadcastHashJoinExec

operator in Figure 4 generates a string that corresponds to
the full join computation. This String is generated with
regard to some placeholders for the inputs/outputs and
join conditons that are specific to the given query. How-
ever, what is hardcoded in the template string will be
generated in the same way for every join. Contrast this
with Flare’s fine-grained code generation: The code in
Figure 8 also generates code for the Join operator. How-
ever, it does not generate one big string; rather, it invokes
functions that express the logic of the operator using the
full power of the Scala language. The use of Rep[T]

expressions in judicious places triggers code generation
and produces only low-level operations.

With the goal of removing the tightest bottlenecks
first, the implementation of Flare has focused on maxi-
mizing performance within a single machine. Therefore,
Flare does not implement any specific optimizations for
distributed execution. Furthermore, Flare is also unable
to handle any workloads which require more memory
than the machine has available. In either of these cases,
we fall back to the Spark runtime.

Optimizing Data Loading
Data loading is an often overlooked factor data process-
ing, and is seldom reported in benchmarks. However,
we recognize that data loading from CSV can often be
the dominant performance factor for Spark SQL queries.
The Apache Parquet [7] format is an attractive alterna-
tive, modeled after Dremel [31]. As a binary colum-
nar format, it offers opportunities for compression, and
queries can load only required columns.

While Parquet allows for irrelevant data to be ignored
almost entirely, Spark’s code to read Parquet files is very
generic, resulting in undue overhead. This generality is
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primarily due to supporting multiple compression and
encoding techniques, but there also exists overhead in
determining which column iterators are needed. While
these sources of overhead seem somewhat unavoidable,
in reality they can be resolved by generating specialized
code. In Flare, we implement compiled CSV and Par-
quet readers that generate native code specialized to a
given schema. As a result, Flare can compile data paths
end-to-end. We evaluate these readers in Section 5.

Indexing Structures
Query engines build indexing structures to minimize
time spent in table lookups to speed-up query execution.
Small-size data processing is performed efficiently using
table scans, whereas very large datasets are executed in
latency-insensitive contexts. On the other hand, medium-
size workloads can profit from indexes, as these datasets
are often processed under tight latency constraints where
performing full table scans is infeasible. On that basis,
Flare supports indexing structures on primary and for-
eign keys. At the time of writing, Spark SQL does not
support index-based plans. Thus, Flare adds metadata to
the table schema that describes index type and key at-
tributes. At loading time, Flare builds indexes as spec-
ified in the table definition. Furthermore, Flare imple-
ments a set of index-based operators, e.g., scan and join
following the methodology described in [49]. Finally, at
compilation time, Flare maps Spark’s operators to use the
index-based operators if such an index is present. The
index-based operators are implemented with the same
technique described for the basic operators, but shortcut
some computation by using the index rather than request-
ing data from its children.

Parallel and NUMA Execution
Query engines can implement parallelism either explic-
itly through special split and merge operators, or inter-
nally by modifying the operator’s internal logic to or-
chestrate parallel execution. Flare does the latter, and
currently realizes parallelism using OpenMP [2] anno-
tations within the generated C code, although alterna-
tives are possible. On the architectural level, Flare han-
dles splitting the computation internally across multiple
threads, accumulating final results, etc. For instance,
the parallel scan starts a parallel section, which sets the
number of threads and invokes the downstream opera-
tors in parallel through a ThreadCallback (see Figure 8).
join and aggregate operators, in turn, which implement
materialization points, implement their ThreadCallback
method in such a way that parallel invocations are pos-
sible without conflict. This is typically accomplished
through either per-thread data structures that are merged

after the parallel section or lock-free data structures.
Flare also contains specific optimizations for environ-

ments with non-uniform memory access (NUMA), in-
cluding pinning threads to specific cores and optimiz-
ing the memory layout of various data structures to re-
duce the need for accessing non-local memory. For in-
stance, memory-bound workloads (e.g., TPC-H Q6) per-
form small amounts of computation, and do not scale up
given a large number of threads on a single CPU socket.
Flare’s code generation supports such workloads through
various data partitioning strategies in order to maximize
local processing and to reduce the need for threads to ac-
cess non-local memory as illustrated Section 5.1.

Heterogeneous Workloads
Many data analytics applications require a combina-
tion of different programming paradigms, e.g., rela-
tional, procedural, and map-reduce-style functional pro-
cessing. For example, a machine learning (ML) appli-
cation might use relational APIs for the extract, trans-
form, load phase (ETL), and dedicated ML libraries
for computations. Spark provides specialized libraries
(e.g., ML pipelines), and supports user-defined func-
tions to support domain-specific applications. Unfortu-
nately, Spark’s performance is greatly diminished once
DataFrame operations are interleaved with calls to ex-
ternal libraries. Currently, Spark SQL optimization and
code generation treat calls to such libraries as calls to
black boxes. Hence, Flare focuses on generating effi-
cient code for heterogeneous workloads including exter-
nal systems e.g., TensorFlow [4].

User Defined Functions (UDF)
Spark SQL uses Scala functions, which appear as a black
box to the optimizer. As mentioned in Section 3.2,
Flare’s internal code generation logic is based on LMS,
which allows for multi-stage programming using Rep

types. Extending UDF support to Flare is achieved by in-
jecting Rep[A] => Rep[B] functions into DataFrames in
the same way that normal A => B functions are injected
in plain Spark. As an example, here is a UDF sqr that
squares a given number:
// define and register UDF
def sqr(fc: FlareUDFContext) = { import fc._;

(y: Rep[Int]) => y * y }
flare.udf.register("sqr", sqr)
// use UDF in query
val df = spark.sql("select ps_availqty from partsupp where

sqr(ps_availqty) > 100")
flare(df).show()

Notice that the definition of sqr uses an additional ar-
gument of type FlareUDFContext, from which we im-
port overloaded operators such as +, -, *, etc., to work
on Rep[Int] and other Rep[T] types. The staged func-
tion will become part of the code as well, and will be
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# Define linear classifier using TensorFlow
import tensorflow as tf
# weights from pre-trained model elided
mat = tf.constant([[...]])
bias = tf.constant([...])
def classifier(c1,c2,c3,c4):
# compute distance
x = tf.constant([[c1,c2,c3,c4]])
y = tf.matmul(x, mat) + bias
y1 = tf.session.run(y1)[0]
return max(y1)

# Register classifier as UDF: dumps TensorFlow graph to
# a .pbtxt file, runs tf_compile to obtain .o binary file
flare.udf.register_tfcompile("classifier", classifier)
# Use compiled classifer in PySpark query with Flare:
q = spark.sql("
select real_class,
sum(case when class = 0 then 1 else 0 end) as class1,
sum(case when class = 1 then 1 else 0 end) as class2,
... until 4 ...

from (select real_class,
classifier(c1,c2,c3,c4) as class from data)

group by real_class order by real_class")
flare(q).show()

Figure 9: Spark query using TensorFlow classifier as a
UDF in Python.

optimized along with the relational operations. This pro-
vides benefits for UDFs (general purpose code embedded
in queries), and enables queries to be be optimized with
respect to their surrounding code (e.g., queries run within
a loop).

Native UDF Example: TensorFlow
Flare has the potential to provide significant performance
gains with other machine learning frameworks that gen-
erate native code. Figure 9 shows a PySpark SQL query
which uses a UDF implemented in TensorFlow [3, 4].
This UDF performs classification via machine learning
over the data, based on a pretrained model. It is impor-
tant to reiterate that this UDF is seen as a black box by
Spark, though in this case, it is also opaque to Flare.

Calling TensorFlow code from Spark hits a number
of bottlenecks, resulting in poor performance (see Sec-
tion 5). This is in large part due to the separate nature
of the two programs; there is no inherent way to “share”
data without copying back and forth. A somewhat imme-
diate solution is to use the JNI, which enables the use of
TensorFlow’s ahead-of-time (AOT) compiler, XLA [50].
This already improves performance by over 100×, but
even here there is room for improvement.

Using Flare in conjunction with TensorFlow provides
speedups of over 1,000,000× when compared with Spark
(for concrete numbers, see Section 5). These gains come
primarily as a result of Flare’s ability to link with external
C libraries. As mentioned previously, in this example,
Flare is able to take advantage of XLA, whereas Spark
is relegated to using TensorFlow’s less efficient dy-
namic runtime (which executes a TensorFlow computa-
tion graph with only limited knowledge). Flare provides
a function flare.udf.register_tfcompile, which in-
ternally creates a TensorFlow subgraph representing the
UDF, saves it to a file, and then invokes TensorFlow’s

AOT compiler tool tfcompile to obtain a compiled ob-
ject file, which can then be linked against the query code
generated by Flare.

Finally, the TensorFlow UDF generated by XLA is
pure code, i.e., it does not allocate its own memory. In-
stead, the caller needs to preallocate all memory which
will be used by the UDF. Due to its ability to generate
native code, Flare can organize its own data structures to
meet TensorFlow’s data requirements, and thus does not
require data layout modification or extraneous copies.

Experimental Evaluation
To assess the performance and acceleration potential of
Flare in comparison to Spark, we present two sets of
experiments. The first set focuses on a standard re-
lational benchmark; the second set evaluates hetero-
geneous workloads, consisting of relational process-
ing combined with a TensorFlow machine learning ker-
nel. Our experiments span single-core, multi-core, and
NUMA targets.

Bare-Metal Relational Workloads
The first set of experiments focuses on a standard re-
lational workload, and demonstrates that the inherent
overheads of Spark SQL cause a slowdown of at least
10× compared to the best available query engines for
in-memory execution on a single core. Our experiments
show that Flare is able to bridge this gap, accelerating
Spark SQL to the same level of performance as state-of-
the-art query compiler systems, while retaining the flexi-
bility of Spark’s DataFrame API. We also compare paral-
lel speedups, the effect of NUMA optimization, and eval-
uate the performance benefits of optimized data loading.

Environment We conducted our experiments on a sin-
gle NUMA machine with 4 sockets, 24 Xeon(R) Plat-
inum 8168 cores per socket, and 750GB RAM per socket
(3 TB total). The operating system is Ubuntu 16.04.4
LTS. We use Spark 2.3, Scala 2.11, Postgres 10.2, Hy-
Per v0.5-222-g04766a1, and GCC 5.4 with optimization
flags -O3.

Dataset We use the standard TPC-H [51] benchmark
with scale factor SF10 for sequential, and SF20 and
SF100 for parallel execution.

Single-Core Running Time In this experiment, we
compare the single-core, absolute running time of Flare
with Postgres, HyPer, and Spark using the TPC-H bench-
mark with scale factor SF10. In the case of Spark, we
use a single executor thread, though the JVM may spawn
auxiliary threads to handle GC or the just-in-time com-
pilation. Postgres and HyPer implement cost-based op-
timizers that can avoid inefficient query plans, in partic-
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Postgres 72599 5064 20790 6032 17904 9071 16408 20003 31728 16409 4729 15755 16152 9369 9607 5662 66254 30104 12852 22795 184736 6900
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Figure 10: Performance comparison of Postgres, HyPer, Spark SQL, Flare in SF10

ular by reordering joins. While Spark’s Catalyst opti-
mizer [8] is also cost-based, the default configurations
do not perform any kind of join re-ordering. Hence, we
match the join ordering of the query plan in Spark SQL
and Flare with HyPer’s, with a small number of excep-
tions: in Spark SQL, the original join ordering given in
the TPC-H reference outperformed the HyPer plans for
Q5, Q9, Q10, and Q11 in Spark SQL, and for Q10 in
Flare. For these queries, we kept the original join order-
ing as is. For Spark SQL, this difference is mainly due
to Catalyst picking sort-merge joins over hash joins. It is
worth pointing out that HyPer and Postgres plans can use
indexes on primary keys, which may give an additional
advantage.

Figure 10 gives the absolute execution time of Post-
gres, HyPer, Spark SQL, and Flare for all TPC-H queries.
For all systems, data loading time is excluded, i.e., only
execution time is reported. In Spark and Flare, we use
persist to ensure that the data is loaded from mem-
ory. At first glance, the performance of Flare and Hy-
Per lie within the same range, and notably outperform
Postgres and Spark in all queries. Similarly, Spark’s
performance is comparable to Postgres’s in most of the
queries. Unlike the other systems, Postgres does not
compile queries at runtime, and relies on the Volcano
model [23] for query evaluation, which incurs significant
overhead. Hence, we can see that Spark’s query com-
pilation does not provide a significant advantage over a
standard interpreted query engines on most queries.

At a closer look, Flare outperforms Spark SQL in ag-
gregate queries Q1 and Q6 by 32× and 13× respectively.
We observe that Spark is 200× slower than Flare in
nested queries (e.g., Q2) After examining the execution
plans of Q2, we found that Catalyst’s plan does not de-
tect all patterns that help with avoiding re-computations,
e.g., a table which has been previously scanned or sorted.
In join queries, e.g., Q5, Q10, Q14, etc., Flare is faster
than Spark SQL by 19×-76×. Likewise, in join variants
outer join Q13, semi-join Q21, and anti-join Q22, Flare
is faster by 7×, 51× and 36× respectively.

The single-core performance gap between Spark SQL
and Flare is attributed to the bottlenecks identified in
Sections 2.3 and 2.4. First, overhead associated with
low-level data access on the JVM. Second, Spark SQL’s
distributed-first strategy that employs costly distributed
operators, e.g., sort-merge join and broadcast hash join,
even when running on a single core. Third, internal bot-
tlenecks in in-memory processing, the overhead of RDD
operations, and communication through Spark’s runtime
system. By compiling entire queries, instead of isolated
query stages, Flare effectively avoids these bottlenecks.

HyPer [35] is a state-of-the-art compiled relational
query engine. A precursory look shows that Flare is
faster than HyPer by 10%-60% in Q4-Q5,Q7, and Q14-
Q16. Moreover, Flare is faster by 2× in Q3, Q11, and
Q18. On the other hand, HyPer is faster than Flare by
20%-60% in Q9, Q10, Q12, and Q21. Moreover, Hy-
Per is faster by 2×-4× in Q2, Q8, Q17, and Q20. This
performance gap is, in part, attributed to (1) HyPer’s use
of specialized operators like GroupJoin [32], and (2) em-
ploying indexes on primary keys as seen in Q2, Q8, etc.,
whereas Flare (and Spark SQL) currently does not sup-
port indexes.

In summary, while both Flare and HyPer generate na-
tive code at runtime, subtle implementation differences
in query evaluation and code generation can result in
faster code. For instance, HyPer uses proper decimal
precision numbers, whereas Flare follows Spark in using
double precision floating point values which are native to
the architecture. Furthermore, HyPer generates LLVM
code, whereas Flare generates C code which is compiled
with GCC.

Compilation Time We compared the compilation time
for each TPC-H query on Spark and Flare (results omit-
ted). For Spark, we measured the time to generate the
physical plan, which includes Java code generation and
compilation. We do not quantify JVM-internal JIT com-
pilation, as this is hard to measure, and code may be
recompiled multiple times. For Flare, we measured C
code generation and compilation with GCC. Both sys-
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tems spend a similar amount of time on code generation
and compilation. Compilation time depends on the com-
plexity of the query, but is less than 1s for all queries,
i.e., well in line with interactive, exploratory, usage.
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Figure 11: Scaling up Flare and Spark SQL in SF20,
without NUMA optimizations: Spark has good nominal
speedups (top), but Flare has better absolute running time
in all configurations (bottom). For both systems, NUMA
effects for 32 cores are clearly visible (Benchmark ma-
chine: 96 cores, 3 TB RAM across 4 CPU sockets, i.e.,
24 cores, 750 GB each).

Parallel Scaling In this experiment, we compare the
scalability of Spark SQL and Flare. The experiment fo-
cuses on the absolute performance and the Configuration
that Outperforms a Single Thread (COST) metric pro-
posed by McSherry et al. [30]. We pick four queries that
represent aggregate and join variants.

Figure 11 presents speedup numbers for Q6, Q13,
Q14, and Q22 when scaled up to 32 cores. At first glance,
Spark appears to have good speedups in Q6 and Q13
whereas Flare’s Q6 speedup drops for high core counts.
However, examining the absolute running times, Flare
is faster than Spark SQL by 14×. Furthermore, it takes
Spark SQL estimated 16 cores in Q6 to match the perfor-
mance of Flare’s single core. In scaling up Q13, Flare is
consistently faster by 6×-7× up to 16 cores. Similarly,
Flare continues to outperform Spark by 12×-23× in Q14
and by 13×-22× in Q22.

What appears to be good scaling for Spark actually re-
veals that the runtime incurs significant overhead. In par-
ticular, we would expect Q6 to become memory-bound
as we increase the level of parallelism. In Flare we can
directly observe this effect as a sharp drop from 16 to 32
cores. Since our machine has 18 cores per socket, for 32

cores, we start accessing non-local memory (NUMA).
The reason Spark scales better is because the internal
overhead, which does not contribute anything to query
evaluation, is trivially parallelizable and hides the mem-
ory bandwidth effects. In summary, Flare scales as ex-
pected for both of memory and CPU-bound workloads,
and reflects the hardware characteristics of the workload,
which means that query execution takes good advantage
of the available resources – with the exception of multi-
ple CPU sockets, a problem we address next.
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Figure 12: Scaling up Flare for SF100 with NUMA op-
timizations on different configurations: threads pinned
to one, two, or four sockets. The speedups relative to a
single thread are shown on top of the bars (Benchmark
machine: 72 cores, 1 TB RAM across 4 CPU sockets,
i.e., 18 cores, 250 GB each).

As a next step, we evaluate NUMA optimizations in
Flare and show that these enable us to scale queries like
Q6 to higher core numbers. In particular, we pin threads
to individual cores and lay out memory such that most
accesses are to the local memory region attached to each
socket (Figure 12). Q6 performs better when the threads
are dispatched on different sockets. This is due to the
computation being bounded by the memory bandwidth.
As such, when dividing the threads on multiple sock-
ets, we multiply the available bandwidth proportionally.
However, as Q1 is more computation bound, dispatch-
ing the threads on different sockets has little effect. For
both Q1 and Q6, we see scaling up to the capacity of the
machine (up to 72 cores). This is seen in a maximum
speedup of 46× and 58× for Q1 and Q6, respectively.

Optimized Data Loading An often overlooked part of
data processing is data loading. Flare contains an opti-
mized implementation for both CSV files and the colum-
nar Apache Parquet format.2 We show loading times for
each of the TPC-H tables in Table 1.

Full table read From the data in Table 1, we see that
in both Spark and Flare, the Parquet file readers outper-
form the CSV file readers in most scenarios, despite this
being a worst-case scenario for Parquet. Spark’s CSV

2All Parquet files tested were uncompressed and encoded using
PLAIN encoding.
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Table #Tuples Postgres HyPer Spark Spark Flare Flare
CSV CSV CSV Parquet CSV Parquet

CUSTOMER 1500000 7067 1102 11664 9730 329 266

LINEITEM 59986052 377765 49408 471207 257898 11167 10668

NATION 25 1 8 106 110 < 1 < 1

ORDERS 15000000 60214 33195 85985 54124 2028 1786

PART 2000000 8807 1393 11154 7601 351 340

PARTSUPP 8000000 37408 5265 28748 17731 1164 1010

REGION 5 1 8 102 90 < 1 < 1

SUPPLIER 100000 478 66 616 522 28 16

Table 1: Loading time in ms for TPC-H SF10 in Post-
gres, HyPer, Flare, and SparkSQL.

reader was faster in only one case: reading nation, a
table with only 25 rows. In all other cases, Spark’s Par-
quet reader was 1.33×-1.81× faster. However, Flare’s
highly optimized CSV reader operates at a closer level of
performance to the Parquet reader, with all tables except
supplier having a benefit of less than a 1.25× speedup
by using Parquet.

Performing queries Figure 13 shows speedups gained
from executing queries without preloading data for both
systems. Whereas reading an entire table gives Spark and
Flare marginal speedups, reading just the required data
gives speedups in the range of 2×-144× (Q16 remained
the same) for Spark and 60%-14× for Flare. Across
systems, Flare’s Parquet reader demonstrated between
a 2.5×-617× speedup over Spark’s, and between 34×-
101× over Spark’s CSV reader. While the speedup over
Spark lessens slightly in higher scale factors, we found
that Flare’s Parquet reader consistently performed on av-
erage at least one order of magnitude faster across each
query, regardless of scale factor.

In nearly every case, reading from a Parquet file in
Flare is approximately 2×-4× slower than in-memory
processing. However, reading from a Parquet file in
Spark is rarely significantly slower than in-memory pro-
cessing. These results show that while reading from
Parquet certainly provides performance gains for Spark
when compared to reading from CSV, the overall per-
formance bottleneck of Spark does not lie in the cost of
reading from SSD compared to in-memory processing.

TensorFlow We evaluate the performance of Flare and
TensorFlow integration with Spark. We run the query
shown in Figure 9, which embeds a UDF that performs
classification via machine learning over the data (based
on a pre-trained model). As shown in Figure 14, using
Flare in conjunction with TensorFlow provides speedups
of over 1,000,000× when compared to PySpark, and
60× when Spark calls the TensorFlow UDF through JNI.
Thus, while we can see that interfacing with an object
file gives an important speed-up to Spark, the data load-
ing ultimately becomes the bottleneck for the system.

Flare, however, can optimize the data layout to reduce the
amount of data copied to the bare minimum, and elimi-
nate essentially all of the inefficiencies on the boundary
between Spark and TensorFlow.

Related Work
Cluster Computing Frameworks Such frameworks
typically implement a combination of parallel, dis-
tributed, relational, procedural, and MapReduce compu-
tations. The MapReduce model [18] realized in Hadoop
[6] performs big data analysis on shared-nothing, po-
tentially unreliable, machines. Twister [20] and Haloop
[14] support iterative MapReduce workloads by avoiding
reading unnecessary data and keeping invariant data be-
tween iterations. Likewise, Spark [55, 56] tackles the is-
sue of data reuse among MapReduce jobs or applications
by explicitly persisting intermediate results in memory.
Along the same lines, the need for an expressive pro-
gramming model to perform analytics on structured and
semistructured data motivated Hive [52], Dremel [31],
Impala [26], Shark [53] and Spark SQL [8] and many
others. SnappyData [41] integrates Spark with a trans-
actional main-memory database to realize a unified en-
gine that supports streaming, analytics and transactions.
Asterix [10], Stratosphere / Apache Flink [5], and Tuple-
ware [17] are other systems that improve over Spark in
various dimensions, including UDFs and performance,
and which inspired the design of Flare. While these sys-
tems are impressive, Flare sets itself apart by accelerat-
ing actual Spark workloads instead of proposing a com-
peting system, and by demonstrating relational perfor-
mance on par with HyPer [35] on the full set of TPC-H
queries. Moreover, in contrast to systems like Tuple-
ware that mainly integrate UDFs on the LLVM level,
Flare uses higher-level knowledge about specific exter-
nal systems, such as TensorFlow. Similar to Tupleware,
Flare’s main target are small clusters of powerful ma-
chines where faults are statistically improbable.

Query Compilation Recently, code generation for
SQL queries has regained momentum. Historic efforts
go back all the way to System R [9]. Query compila-
tion can be realized using code templates e.g., Spade[22]
or HIQUE [27], general purpose compilers, e.g., HyPer
[35] and Hekaton [19], or DSL compiler frameworks,
e.g., Legobase [25], DryadLINQ [54], DBLAB [45], and
LB2 [49].

Embedded DSL Frameworks and Intermediate Lan-
guages These address the compromise between pro-
ductivity and performance in writing programs that can
run under diverse programming models. Voodoo [39]
addresses compiling portable query plans that can run
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Figure 14: Running time (ms) of query in Figure 9 using
TensorFlow in Spark and Flare.

on CPUs and GPUs. Voodoo’s intermediate algebra
is expressive and captures hardware optimizations, e.g.,
multicores, SIMD, etc. Furthermore, Voodoo is used
as an alternative back-end for MonetDB [12]. Delite
[46], a general purpose compiler framework, implements
high-performance DSLs (e.g., SQL, Machine Learning,
graphs and matrices), provides parallel patterns and gen-
erates code for heterogeneous targets. The Distributed
Multiloop Language (DMLL) [13] provides rich col-
lections and parallel patterns and supports big-memory
NUMA machines. Weld [38] is another recent system
that aims to provide a common runtime for diverse li-
braries e.g., SQL and machine learning. Steno [33] per-
forms optimizations similar to DMLL to compile LINQ
queries. Furthermore, Steno uses DryadLINQ [54] run-
time for distributed execution. Nagel et. al. [34] gener-
ates efficient code for LINQ queries. Weld is similar to
DMLL in supporting nested parallel structures.

Performance evaluation In data analytics frame-
works, performance evaluation aims to identify bottle-
necks and study the parameters that impact performance
the most, e.g., workload, scale-up/scale-out resources,
probability of faults, etc. A recent study [36] on a single
Spark cluster revealed that CPU, not I/O, is the source
of bottlenecks. McSherry et al. [30] proposed the COST
(Configuration that Outperforms a Single Thread) met-
ric, and showed that in many cases, single-threaded pro-
grams can outperform big data processing frameworks
running on large clusters. TPC-H [51] is a decision sup-
port benchmark that consists of 22 analytical queries that
address several “choke points,” e.g., aggregates, large
joins, arithmetic computations, etc. [11].

Conclusions
Modern data analytics need to combine multiple pro-
gramming models and make efficient use of modern
hardware with large memory, many cores, and NUMA
capabilities. We introduce Flare: a new backend for
Spark that brings relational performance on par with the
best SQL engines, and also enables highly optimized het-
erogeneous workloads with external ML systems. Most
importantly, all of this comes without giving up the ex-
pressiveness of Spark’s high-level APIs. We believe that
multi-stage APIs, in the spirit of DataFrames, and com-
piler systems like Flare, will play an increasingly impor-
tant role in the future to satisfy the increasing demand for
flexible and unified analytics with high efficiency.
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